TECHNISCHE

] UNIVERSITAT
I WIEN

VIENNA

VIENNA UNIVERSITY OF

TECHNOLOGY

Dissertation

Automatic SIMD Vectorization

ausgefiithrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften
unter der Leitung von

Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Christoph W. Uberhuber
E101 — Institut fiir Analysis und Scientific Computing

eingereicht an der Technischen Universitat Wien
Fakultat fiir Informatik

von

Dipl.-Ing. Jiirgen Lorenz

Matrikelnummer 9525135
Zenogasse 3/4
1120 Wien

Wien, am 16. Mérz 2004 é)—“ Lﬁ\/

Kurzfassung

Automatisch generierter numerischer Quellcode kann von handelsiiblichen Compilern
nicht optimal verarbeitet werden. Algorithmische Strukturen werden nur unzureichend
erkannt und dementsprechend schlecht ausgenutzt. Es werden daher spezialisierte Com-
pilertechniken bendtigt um zu einem zufriedenstellend effizienten Zielcode zu gelangen.

Die immer weiter fortschreitende Zunahme der Bedeutung von Multimedia-
Anwendungen hat zur Entwicklung von SIMD-Befehlssatzerweiterungen auf allen
gingigen Mikroprozessoren gefiithrt. Die konventionellen Vektorisierungsmethoden der
handelsiiblichen Compiler sind jedoch nicht in der Lage, Parallelismus in einem lingeren
numerischen Straight-Line-Code zu erkennen.

In dieser Dissertation werden Techniken, die speziell die Ubersetzung numerischer Rou-
tinen zum Ziel haben, vorgestellt. Die automatische 2-fach-SIMD-Vektorisierung ent-
deckt den in einer Routine vorhandenen SIMD-Parallelismus und garantiert einen zu-
friedenstellenden Grad der Nutzung von SIMD-Befehlen. Die Gucklock-Optimierung
ersetzt bestimmte Kombinationen von Instruktionen durch effizientere. Fiir den letz-
ten Teil der Ubersetzung werden synthese-spefizische Techniken eingesetzt, die deutlich
zur Steigerung der Qualitdt des {ibersetzten Programmcodes — iiber das Maf han-
delsiiblicher Ubersetzer hinaus - beitragen.

Die in dieser Dissertation prisentierten Konzepte stellen die Grundlage des Special
Purpose Compilers MAP [70, 71, 72, 73, 75] dar, der speziell fir die effiziente Vekto-
risierung groBer numerischer Straight-Line-Codes entwickelt wurde. MAP unterstiitzt
die fithrenden automatischen Performance-Tuning-Softwareprodukte: FFTW!, SPIRAL?
und ATLAS®. Damit werden die wichtigsten Algorithmen der numerischen linearen Al-
gebra und der digitalen Signalverarbeitung abgedeckt.

Zu den praktischen Ergebnissen dieser Dissertation z#&hlen: (i) die schnellsten derzeit
verfiigbaren FFT-Codes fiir AMD Athlon basierte Systeme; (i7) automatisch erzeug-
te FFT-Codes fiir den Intel Pentium 4, die vergleichbare Leistung wie die schnellsten
handoptimierten Codes liefern und (i47) die schnellsten derzeit verfiigbaren FFT-Codes
fiir den IBM PowerPC 440 FP2 Prozessor, der im derzeit von IBM entwickelten Super-
computer BlueGene/L Verwendung findet.

Die experimentellen Resultate wurden durch Anwendung des MAP Special Purpose
Compilers auf von FFTW (Frigo and Johnson [35]), SPIRAL (Moura et al. [88]) und
ATLAS (Whaley et al. [115]) erzeugten Code erzielt.

IFFTW ist die Abkiirzung von “Fastest Fourier Transform in the West” (schnellste Fourier-
Transformation des Westens).

2SPIRAL ist die Abkiirzung von “Signal Processing Algorithms Implementation Research for
Adaptive Libraries” (Implementierungsforschung an Signalverarbeitungsalgorithmen fiir adap-
tive Software).

3ATLAS ist die Abkiirzung von “Automatically Tuned Linear Algebra Software” (automa-
tisch angepasste Software fiir Probleme der Linearen Algebra).

Summary

General purpose compilers produce suboptimal object code when applied to automat-
ically generated numerical source code. Moreover, general purpose compilers have
natural limits in deducing and utilizing information about the structure of the imple-
mented algorithms. Specialized compilation techniques, as introduced in this thesis,
are needed to realize such structural transformations.

Increasing focus on multimedia applications has resulted in the addition of short
vector SIMD extensions to most existing general-purpose microprocessors. This added
functionality comes primarily with the addition of short vector SIMD instructions. Un-
fortunately, access to these instructions is limited to proprietary language extensions,
in-line assembly, and library calls. Generally, it has been assumed that vector com-
pilers provide the most promising means of exploiting multimedia instructions. But
although vectorization technology is well understood, it is inherently complex and frag-
ile. Conventional vectorizers are incapable of locating SIMD style parallelism within a
basic block without introducing unacceptably large overhead. Without the adoption of
SIMD extensions, 50 % to 75 % of a machine’s possible performance is wasted, even in
conjunction with state-of-the-art performance tuning software. Automatic exploitation
of SIMD instructions therefore requires new compiler technology.

This thesis presents techniques tailor-made for the compilation of numerical straight
line code: (i) Automatic 2-way SIMD vectorization extracts SIMD parallelism out of
numerical straight line code in a way that guarantees a satisfactory level of SIMD
utilization. (¢i) Peephole optimization rewrites the SIMD vectorized code in a do-
main specific manner to further improve efficiency. (i#4) Backend specific techniques
are used for compiling the vectorized and optimized code, yielding object code whose
performance is significantly better than the performance of code produced by general
purpose compilers.

The new compiler techniques presented in this thesis form the basis of the “MAP
Vectorizer and Backend” [70, 71, 72, 73, 75], a special purpose compiler, which was
. designed especially for the efficient vectorization and backend optimization of large
basic blocks of numerical straight line code. MAP is currently applicable to the state-
of-the-art performance tuning systems FFTw*, SPIRAL® and ATLAS®. Thus, MAP is
covering a broad range of highly important algorithms in the fields of digital signal
processing and numerical linear algebra.

The experimental results were obtained using the MAP vectorizer and backend in
| connection with FFTW [35], SPIRAL [88] and ATLAS [115].

4FFTW is the abbreviation of “Fastest Fourier Transform in the West”.

SSPIRAL is the abbreviation of “Signal Processing Algorithms Implementation Research for
Adaptive Libraries”.

SATLAS is the abbreviation of “Automatically Tuned Linear Algebra Software ”.

Contents
Kurzfassung / Summary L 2
Introduction 8
1 Hardware vs. Algorithms. 14
1.1 Current Hardware Trends 14
1.2 Performance Implications 16
1.3 Automatic Performance Tuning 21
2 Standard Hardware 27
2.1 Processors e e 27
2.2 Advanced Architectural Features L 31
2.3 The Memory Hierarchy 33
3 Short Vector Hardware 36
3.1 Short Vector Extensions 37
3.2 Intel’s Streaming SIMD Extensions 42
3.3 AMD’s 3DNow! 47
3.4 The IBM BlueGene/L Supercomputer 48
3.5 Vector Computers vs. Short Vector SIMD 48
4 Fast Algorithms for Linear Transforms 52
4.1 Discrete Linear Transforms 52
5 Matrix Multiplication 58
5.1 The Problem Setting 58
6 A Portable SIMD API 61
6.1 Definition of the Portable SIMD APT 62
7 Automatic Vectorization of Straight-Line Code 67
7.1 Vectorization of Straight Line Code 68
7.2 The Vectorization Approach 68
7.3 Benefits of The MAP Vectorizer 69
7.4 Virtual Machine Models 70
7.5 The Vectorization Engine 75

76 PairingRules. o000 83

CONTENTS 5

8 Rewriting and Optimization 93
8.1 Optimization Goals 94
8.2 Peephole Optimization 94
8.3 Transformation Rules 96
8.4 The Scheduler 101

9 Backend Techniques for Straight-Line Code 107
9.1 Optimization Techniques Used in MAP 107
9.2 Backend Optimization Goals 108
9.3 One Time Optimizations 109
9.4 Feedback Driven Optimizations 114

10 Experimental Results 118
10.1 Experimental Layout 118
10.2 BlueGene/L Experiments 119
10.3 Experiments on IA-32 Architectures 121

Conclusion and Outlook 129

A The Kronecker Product Formalism 130
Al Notation 131
A.2 Extended Subvector Operations 134
A.3 Kronecker Products L. 134
A.4 Stride Permutations 138
A.5 Twiddle Factors and Diagonal Matrices 142

B Compiler Techniques 144
B.1 Register Allocation and Memory Accesses 144
B.2 Instruction Scheduling 145

C Performance Assessment, 147
C.1 Short Vector Performance Measures 149
C.2 Empirical Performance Assessment 149

D Short Vector Instruction Set 157
D.1 The Intel Streaming SIMD Extensions 2 157

E The Portable SIMD API 161
E.1 Intel Streaming SIMD Extensions 2 161
E.2 BG/L Double FPU SIMD Extensions 163

F SPIRAL Example Code 167
F1 ScalarCCode 167

F.2 Short Vector Code 170

6 CONTENTS

G FFTW Example Code 175
G.1 Scalar CCode 175
G.2 Short Vector Code 176

H ATLAS Example Code 179
H.1 Scalar CCode, 179
H.2 Short Vector Code 181

Table of Abbreviations 186

Bibliography 187

Curriculum Vitae 197

Acknowledgements

First of all, I would like to express my sincere gratitude to my Ph.D. advisor
Christoph Ueberhuber, who gave me the opportunity of working in the ASCOT
team operating in the interesting research field of scientific computing. I espe-
cially want to express my gratitude for leading my first steps in the area of high
performance computing and for giving me the possibility to work at the forefront
of scientific research. He supported my efforts with great dedication, not only
during the work on my thesis, but also throughout the time of my diploma the-
sis. Finally I would like to thank him for spending enjoyable evenings talking
about interesting this and that apart from work.

Very, very special thanks go to my colleague and friend Peter Wurzinger, with
whom I have spent countless rewarding programming afternoons in nerd friendly
atmosphere.

Franz Franchetti deserves great appreciation for his support and guidance
throughout my work. His ideas and comments were invaluable. Without his
effort of regulating my weird thoughts to their true semantically meaning, the
writing style of this document and especially this work would not be as they are.

I truly want to thank the outstanding Stefan Kral, the most discriminating
hacker I have ever met, for valuable discussions and for “gently” forcing me into
avantgarde programming. Without his help and private advice, this work could
not have been done at all.

I would like to thank all the people from the AURORA Project 5 and the Institute
for Analysis and Scientific Computing at the Vienna University of Technology for
having made the work on my thesis a rewarding and enjoyable experience.

In addition, I would like to acknowledge the financial support of the Austrian
Science Fund FWF,

I want to thank all my friends, too many to list all of them, for their friendship
and support.

Above all, I want to thank my family—my parents, grandparents and my
brother—for always supporting me and for giving me guidance. I want to thank
my parents for giving me the opportunity to study and for their support in all
the years. I especially want to thank my mother for always believing in me.

Finally, I am grateful to Johann Sebastian Bach and John Coltrane for their
invaluable music.

JURGEN LORENZ

Introduction

A few years ago major vendors of general purpose microprocessors have started
to include short vector single instruction, multiple data (SIMD) extensions into
their instruction set architecture (ISA) with the main objective of improving the
performance of multi-media applications. The fundamental idea behind SIMD
architectures is that a single instruction operates concurrently on several data
elements using several functional units, traditionally located on different proces-
SOrs.

Examples of SIMD extensions supporting both integer and floating-point op-
erations include Intel’s streaming SIMD extensions (SSE, SSE 2, and SSE 3),
AMD’s 3DNow! as well as its successors “enhanced 3DNow!” and “3DNow! pro-
fessional”, Motorola’s AltiVec, and last but not least IBM’s Double FPU floating-
point unit for BlueGene/L supercomputers.

Drawbacks of General Purpose Compilers. Although the newly introduced
SIMD instruction set extensions have the potential for outstanding speed-up, a
significant obstacle to their application in signal processing and scientific com-
puting has been the lack of compilers producing code comparable to carefully
hand-optimized code, in terms of overall floating-point performance. Not fully
exploiting the available short vector SIMD extensions wastes 50 % to 75% of a
processor’s capabilities.

Automatic Performance Tuning. Extensive experience shows that in numeri-
cal linear algebra and in digital signal processing, high performance is achieved ei-
ther by extremely costly hand optimization or by automatic performance tuning—
a new software paradigm in which optimized code for numerical computation is
generated automatically [35, 88, 115).

All high performance numerical vendor-supplied libraries (Intel MKL, IBM
ESSL, Apple vDSP,...) are hand-coded and/or hand-tuned to utilize SIMD ex-
tensions to a satisfactory degree. They have to be adapted to each new hardware
generation by hand, thus they are not performance portable.

Apart from automatic performance tuning software, there is currently no other
type of portable high-performance numerical software. However, at the moment,
automatic performance tuning software does not include proper support for SIMD
extensions. For example, FFTW 2—the de-facto standard for portable high per-
formance FFT computation—does not include support for short vector SIMD
extensions. This shortcoming demonstrates the need of short vector SIMD sup-
port in conjunction with numerical performance tuning software.

New Compiler Technology. This thesis presents new techniques for the com-
pilation of automatically generated code coming out of automatic performance
tuning systems like FFTW, SPIRAL, and ATLAS. The techniques introduced in

Introduction 9

this thesis include automatic 2-way SIMD vectorization of numerical straight line
code, domain-specific peephole optimization, and compiler backend optimization
(see [71], [76] and [26]).

The newly introduced concepts are realized in the MAP compiler, which is ca-
pable of generating SIMD vectorized code for digital signal processing algorithms
like FFTs, DCTs and DSTs, as well as algorithms in numerical linear algebra like
matrix multiplication.

MAP achieves the same level of performance as hand-tuned vendor libraries
while providing portability (see Chapter 10). Combined with leading-edge self-
tuning numerical software—FFTW, SPIRAL, and ATLAS—it produces

() the fastest FFTs running on x86 architecture machines (Intel and AMD
processors) for both real and complex FFTs and for arbitrary vector sizes;

(i7) the only FFT routines supporting IBM’s Power PC 440 FP2 double FPU
used in BlueGene/L machines (see [25] and Section 3.4);

(zi1) the only automatically tuned vectorized implementations of DSP trans-
forms (including discrete sine and cosine transforms, Walsh-Hadamard trans-
forms, and multidimensional transforms);

(iv) the only fully automatically vectorized ATLAS kernels.

This thesis points out the following major issues: (i) SIMD vectorization can-
not be achieved easily. Nonstandard compiler techniques are required to obtain
automatic performance tuning systems featuring satisfactory performance for pro-
cessors with SIMD extensions. (4i) Performance portability across platforms and
processor generations is not a straightforward matter, especially in the case of
short vector SIMD extensions. Even the members of a family of binary com-
patible processors featuring the same short vector SIMD extension are different
and adaptation is required to utilize them satisfactorily. (#7) Most standard
vectorizing compilers are not able to deliver competitive performance due to the
structural complexity of discrete linear transforms algorithms. (iv) Conventional
vector computer libraries optimized for dealing with long vector lengths do not
achieve satisfactory performance on short vector SIMD extensions.

Related Work

As the implementation of short vector SIMD extensions in general purpose pro-
cessors is a relatively new accomplishment, only few mathematical libraries and
vectorizing compilers providing SIMD support are available.

Numerical Libraries with SIMD Support

A radix-4 FFT implementation for the NEC V80R DSP processor featuring a,
4-way integer SIMD extension has been presented in 1999 [68]. Apple Computers
Inc. included the vDSP library with AltiVec support into their operating system

10 Introduction

MAC OS X [11, 17]. Intel’s” math kernel library (MKL) and performance prim-
itives (IPP) provide support for SSE, SSE 2, SSE 3, and the Itanium processor
family [62]. An SSE split-radix FFT implementation has been published in an
Intel application note [49]. SIMD-FFT [101] is a radix-2 FFT implementation for
SSE and AltiVec.

ATLAS dgemm kernels featuring (partially hand-coded) SIMD support are
available for several problem sizes and machines [1]. LIBSIMD [92] is an on-
going effort to develop a portable library utilizing short vector SIMD extensions.

Symbolic FFT Vectorization

The Kronecker product formalism (see Appendix A) was introduced in the early
1990s as a tool for developing FFT algorithms for parallel and vector ma-
chines [65]. The SCIPORT library [78] is a portable Fortran implementation of
the proprietary Cray SCILIB library targeted at traditional vector computers. A
SPIRAL based approach (i.e., SPIRAL-SIMD) to portably vectorize discrete lin-
ear transforms utilizing structural knowledge is presented in [24, 27, 28, 29, 31].
The method utilizes structural knowledge that is available on the algorithm level
only. The vectorization algorithm translates DSP algorithms into vectorized DSP
algorithms suitable for short vector SIMD architectures by means of algebraic al-
gorithm transformations using the Kronecker product formalism. A vectorized
algorithm can be mapped to any of the short vector architectures currently avail-
able. The vectorization algorithm works for arbitrary lengths of the data vectors
and is parameterized by the short vector SIMD architecture’s vector length v.
The methods were incorporated into FFTW and SPIRAL. v

Compiler Vectorization and Backends

Vectorizing compilers have to be divided into compilers targeted at (i) “classic”

loop vectorization, and (i) basic block vectorization. Krall and Lelait [77] give
a good overview of loop vectorization techniques. as well as the implementation
of vectorization by loop unrolling.

Loop Vectorization. Established vectorization techniques mainly focus on find-
ing loop-constructs which can be vectorized. If vectorization is possible, compiler
known functions, i.e., intrinsics, are inserted into the code through language ex-
tensions by the compiler. However, there is a strong need for complex techniques
for analyzing the source program. Additionally, the inserted instructions have a
great impact on the code generation steps following the vectorization process.

Intel’s C++ compiler [50] and Codeplay’s VECTOR C compiler [15] are able to
vectorize loop code for both integer and floating-point short vector extensions.

"http://developer.intel.com

Introduction 11

An upgrade to the SUIF ® compiler that vectorizes loop code for MMX is described
in [104]. The compiler identifies parallel sections of the code using scalar and
array dependence analysis. The enhanced compiler applies C source to source
translation with inline assembly instructions for the vectorizable sections of the
code. Another loop vectorization extension has been added to SUIF addressing
Berkeley’s Torrent MIPS-IT compliant processor with vector enhancements as
coprocessor (DeVries [18]).

A code generator for energy aware compilation on DSP processors using loop
level vectorization for code improvement w.r.t. execution time and therefore
energy consumption has been introduced in Lorenz et al. [81].

Basic Block Vectorization. Due to the complex analysis required for loop vec-
torization, proposed to perform the vectorization on basic blocks resulting from
increased parallelism by applying loop unrolling. After that, scalar instructions
whose semantics allow to be executed as SIMD instructions are packed into
groups. Vectorization of basic blocks by loop unrolling has the advantage that
the analysis is less complex compared to loop vectorization. However, for basic
block vectorizers addressing a wide range of different codes, i. e., codes where no
domain specific knowledge about code inherent parallelism is available, there is
a high risk of increasing code size for loops which cannot be vectorized.

A vectorizing compiler exploiting superword level parallelism (i. e., SIMD style
parallelism) has been introduced in Larsen and Amarasinghe [79]. It identifies
blocks of scalar operations offering enough parallelism for vectorization and joins
them with scalar code blocks not suited for vectorization via expensive data
reorganization operations. IBM’s XL C compiler for BlueGene/L [3] utilizes this
vectorization technique.

A vectorization approach that performs a data-flow graph based code selection
technique for media processors with support for SIMD instructions has been
introduced in Leupers and Bashford [80]. This advanced approach exploits SIMD
instructions in code selection for plain ANSI C code.

General purpose compilers are not capable of detecting potential parallelism
in their standard, fast code selection techniques.

As this technique for basic block code selection is highly related to the vec-
torization techniques introduced in this thesis, a short comparison of the two
approaches follows.

The main difference to the automatic vectorization approach introduced in
this thesis is that (¢) only consecutive load and store operations are allowed,
(4t) instruction parings of different operation type (e. g., add/sub) are not allowed,
and (#i1) two scalar instructions are to be covered by one SIMD instruction.

The graph based code selection technique for processors with SIMD instruc-

8SUIF is the abbreviation of “Stanford University Intermediate Format”, a public domain
compiler that takes either Fortran or. C as input language and automatically translates sequen-
tial scientific programs into parallel code for scalable parallel machines.

12 Introduction

tions deals with suboptimal cases by allowing an incomplete graph coverage by
SIMD instructions. On the other hand, the approach introduced in this thesis
always demands for a complete coverage but possibly with suboptimal SIMD
utilization (cf. the vectorization levels in Section 7.5).

These differences stem from the different target architectures. While the code
selection technique is targeted at embedded DSP processors, the vectorization
technique of this thesis addresses general purpose SIMD processors. It is generally
cheap to interleave scalar instructions with SIMD instructions for DSP processors,
which is not the case for processors such as AMD’s K7 or Intel’s Pentium 4.

Basic Block Backend. Standard compilers are intended for handwritten code
normally having only short basic blocks. However, code generated by automatic
performance tuning systems often contains very large basic blocks of loop-unrolled
code.

A compiler backend for MIPS processors targeting numerical straight-line code
is presented in Guo et al. [44]. The simple farthest first algorithm [105] has been
assessed as spilling strategy for register allocation used on large basic blocks.
The test codes, the experiments were carried out with, have been generated by
ATLAS and SPIRAL, two state of the art automatic performance tuning systems
automatically generating completely or partly unrolled code. Experiments show
that the farthest first algorithm is superior when used as spilling strategy for
large blocks of straight-line code.

Synopsis

This thesis introduces and discusses the MAP vectorizer and backend in detail.
It consists of four main parts.

Part I: Foundations

Chapter 1 discusses the reasons why it is hard to achieve high performance imple-
mentations of numerical algorithms on current computer architectures. The three
major automatic performance tuning systems for discrete linear transforms—
ATLAS, FFTW and SPIRAL—are discussed.

Chapter 2 describes current hardware trends and advanced hardware features.
The main focus lies on CPUs and memory hierarchies.

Chapter 3 discusses current short vector SIMD extensions and available program-
ming interfaces.

Chapter 4 deals with fast algorithms for discrete linear transforms, i.e., matrix-
vector products with specially structured matrices. The discrete Fourier trans-
form is discussed in detail. Classical iterative and modern recursive algorithms
are summarized. The mathematical approach of SPIRAL and FFTW is presented.

|

Introduction 13
Chapter 5 covers the matrix-matrix multiplication in scientific computation. Dif-
ferences between a straightforward implementation and the highly tuned BLAS
library ATLAS are pointed out.

Chapter 6 introduces a portable SIMD API as a prerequisite for the implemen-
tation of the short vector algorithms presented in subsequent chapters.

Part II: The MAP Special Purpose Compiler

Chapter 7 describes a new method for the automatic 2-way SIMD vectorization of
numerical straight line code. The new technique guarantees a satisfactory degree
of SIMD utilization and has been successfully used to vectorize (i) complex FFT
kernels of arbitrary length, (i4) real-to-halfcomplex FFT kernels of even lengths,
(447) various DSP transform kernels, and (i) kernels used in numerical linear
algebra.

Chapter 8 deals with domain-specific peephole optimization techniques used in
the code generator of MAP.

Chapter 9 describes domain-specific backend optimization techniques imple-
mented in the x86 compiler backend of MAP. '

Part III: Experimental Results

Chapter 10 presents a number of experimental results. The MAP vectorizer and
backend have been assessed in combination with ATLAS, FFTW and SPIRAL on
a variety of target processors, including Intel’s Pentium 4, AMD’s Athlon, and
IBM’s PowerPC 440 FP2. Experimental evidence for the superior performance
achievable by using the newly introduced methods is given.

Part IV: Appendices

Appendix A summarizes the mathematical framework required to express the
results presented in this thesis. The Kronecker product formalism and its con-
nection to programs for discrete linear transforms is discussed. The translation
of complex arithmetic into real arithmetic within this framework is described.

Appendix B contains elementary information about the compiler techniques of
register allocation and instruction scheduling,.

Appendix C discusses the performance assessment of scientific software.
Appendix D summarizes the relevant parts of short vector SIMD instruction sets.

Appendix E shows the implementation of the portable SIMD API required for
the numerical experiments of this thesis.

Appendix F displays example code obtained using the newly developed short
vector SIMD extension for SPIRAL.

Appendix G contains codelet examples taken from the short vector SIMD version
of FFTW.

Chapter 1

Hardware vs. Algorithms

The fast evolving microprocessor technology, following Moore’s law, has turned
standard, single processor off-the-shelf desktop computers into powerful com-
puting devices with peak performances of, at present, several gigaflop/s. Thus,
scientific problems that a decade ago required powerful parallel supercomputers,
are now solvable on a PC. On a smaller scale, many applications can now be
performed under more stringent performance constraints, e. g., in real time.

Unfortunately, there are several problems inherent to this development on
the hardware side that make the development of top performance software an
increasingly difficult task feasible only for expert programmers.

(i) Due to the memory-processor bottleneck the performance of applications
depends more on the pattern, e. g., locality of data access rather than on the mere
number of arithmetic operations.

(i7) Complex architectures make a performance prediction of algorithms a
difficult, if not impossible task.

(449) Most of the modern microprocessors introduce special instructions like
FMA (fused multiply-add), or short vector SIMD instructions (like SSE on Pen-
tium processors). These instructions provide superior potential speed-up but are
difficult to utilize.

(iv) High-performance code, hand-tuned to a given platform, becomes obsolete
as the next generation (in cycles of typically about two years) of microprocessors
comes onto the market.

As a consequence, the development of top performance software, portable
across architectures and time, has become one of the key challenges associated
with Moore’s law. As a result there has been a number of efforts recently, col-
lectively referred to as automatic performance tuning, to automate the process
of implementation and optimization for given computing platforms. Important
examples include FFTW by Frigo and Johnson [34], ATLAS by Whaley et al. [115],
and SPIRAL by Piischel et al. [98).

1.1 Current Hardware Trends

The gap between processor performance, memory bandwidth and network link
bandwidth is constantly widening. Processor power grows by approximately 60 %
per year while memory bandwidth is growing by a relatively modest 6 % per year.
Although the overall sum of the available network bandwidth is doubling every

1.1 Current Hardware Trends 15

year, the sustained bandwidth per link is only growing by less than 6 % per year.
Thus, it is getting more and more complicated to build algorithms that are able
to utilize modern (serial or parallel) computer systems to a satisfactory degree.

Only the use of sophisticated techniques both in hardware architecture and
software development allows to overcome these difficulties. Algorithms which
were optimized for a specific architecture several years ago, fail to perform well
on current and emerging architectures. Due to the fast product cycles in hardware
development and the complexity of today’s execution environments, it is of utmost
importance to provide users with easy-to-use self-adapting numerical software.

The development of algorithms for modern high-performance computers is
getting more and more complicated due to the following facts. (¢) The perfor-
mance gap between CPUs, memories, and networks is widening. (i¢) Hardware
tricks partially hide this performance gap. (iii) Performance modelling of pro-
grams running on current and future hardware is getting more and more difficult.
(7v) Non-standard processor extensions complicate the development of programs
with satisfactory performance characteristics.

In the remainder of this section, these difficulties are outlined in detail.

Computing Cores

Computing power increases at an undiminished rate according to Moore’s law.
This permanent performance increase is primarily due to the fact that more
and more non-standard computing units are incorporated into microprocessors.
For instance, the introduction of fused multiply add (FMA) operations doubled
the floating-point peak performance. The introduction of short vector SIMD
extensions (e.g., Intel’s SSE or Motorola’s AltiVec) enabled the increase of the
peak performance by another factor of 2 or 4.

Using standard algorithms and general purpose compiler technology, it is not
possible to utilize these recently introduced hardware extensions to a satisfactory
degree. Special algorithms have to be developed for high-performance numerical
software to achieve an efficient utilization of modern processors.

Memory Subsystems

Memory access is getting more and more expensive relatively to computation
speed. Caching techniques try to hide latency and the lack of satisfactory memory
bandwidth but require locality in the algorithm’s memory access patterns. Deep
memory hierarchies, cache associativity and size, transaction lookaside buffers
(TLBs), and automatic prefetching introduce another level of complexity. The
parameters of these facilities even vary within a given computer architecture
leading to an intrinsic problem for algorithm developers who try to optimize
floating-point performance for a set of architectures.

16 1. Hardware vs. Algorithms

Symmetrical multiprocessing introduces the problem of cache sharing as well
as cache coherency and the limited memory bandwidth becomes an even more
limiting factor. Non-uniform memory access on some architectures hides the
complexity of distributed memory at the cost of higher latencies for some memory
blocks.

1.1.1 Performance Modelling

For modern computer architectures, modelling of system characteristics and per-
formance characterization of numerical algorithms is extremely complicated. The
number of floating-point operations is no longer an adequate measure for predict-
ing the required run time.

The following features of current hardware prevent the accurate modelling and
invalidate current performance measures for a modern processor: (i) Pipelining
and multiple functional units, (i7) super-scalar processors and VLIW processors,
(44¢) fused multiply-add (FMA) instructions, (iv) short-vector SIMD -extensions,
(v) branch prediction, (vi) virtual registers, (vii) multi-level set-associative caches
as well as shared caches, and (viii) transaction lookaside buffers (TLBs).

As modelling of algorithms with respect to their actual run time is not pos-
sible to a satisfactory degree, the only reasonable performance assessment is an
empirical run time study carried out for given problems.

Chapter 2 explains performance relevant processor features and the respec-
tive techniques in detail. Appendix C explains the methodology of run time
measurement and performance assessment.

1.2 Performance Implications

This section exemplary shows the drawback of the standard approach of optimiz-
ing software to a given platform and shows that the asymptotic complexity and
even the actual number of operations is no adequate performance measure.

The standard approach to obtain an optimized implementation for a given
algorithm is summarized as follows.

e The algorithm is adapted to the hardware characteristics by hand, focussing,
e.g., on the memory hierarchy and/or processor features.

e The adapted algorithm is coded using a high-level language to achieve porta-
bility and make the programming manageable.

e Key portions of the code may be coded by hand in assembly language to
improve performance.

The complexity of current hardware and the pace of development make it impos-
sible to produce optimized implementations which are available at or shortly after

1.2 Performance Implications 17

FFT Program Vector Length N
25 210 215 220
NAG/c80fct 116 {1 6.0 | 3.3 | 2.6
IMSL/dfftct 20 | 1.7 127 | 39
Numerical Recipes/fourl | 2.6 | 2.1 | 2.2 | 3.9
FFTPACK/cfftf 14 [1.0]| 21 | 40
Green’s FFT 16 | 1.1 | 1.0 -
Frrw 2.1.3 1.0 | 11|11 | 10

Table 1.1: Slow-down factors of various FFT routines relative to the run time of the best
performing routine (with factor 1.0). Performance data were obtained on one processor of an
SGI Power Challenge XL (Auer et al. [12]).

a processor’s release date. This section shows the run time differences resulting
from the intrinsic problems.

1.2.1 Run Time vs. Complexity

For all Cooley-Tukey FFT algorithms the asymptotic complexity is O(N log N)
with N being the length of the vector to be transformed. Even the constant is
nearly the same for all algorithms.

Performance of Scalar Code

However, Table 1.1 shows that the run times of the corresponding programs
vary tremendously. It is a summary of experiments described in Auer et al. [12]
where the performance of many FFT routines was measured on various computer
systems.

For instance, on one processor of an SGI Power Challenge XL, for a transform
length N = 2° the function c¢60fcf of the NAG library is 11.6 times slower than
the fastest implementation, FFTw.

For N = 20 cfftf of FFTPACK is the fastest program and c60fcf is six times
slower while FFTW is a moderate 10 % slower.

For N = 2?° FFTW is again the fastest program. c60fcf is 2.6 times slower
and cfftf of FFTPACK is four times slower than FFTW.

This assessment study shows that (i) the performance behavior of FFT pro-
grams depends strongly on the problem size, and (i) architecture adaptive FFTs
are within 10 % of the best performance for all problem sizes.

Performance of Short Vector SIMD Code

The arguments in favor of architecture adaptive software become even more strik-
ing by extending this study to machines featuring short vector SIMD extensions.

18 1. Hardware vs. Algorithms

Figure 1.1 shows the performance of various one dimensional complex FFT
routines (SIMD and scalar) on one CPU of a prototype of BlueGene/L’s PowerPC
440 FP2 running at 500 MHz featuring a double FPU. The double FPU provides
two-way vector extensions (for single-precision and double-precision, respectively)
resulting in a theoretical speed-up of two.

Floating-Point Performance

1.0 T 1 T | T I T

Gflop/s 0.5 SPIRAL-SIMD for BG/L (i
SPIRAL with Vienna MAP Vectorizer (14
SPIRAL (Scalar Code) (#i4

SPIRAL (Vectorizing Compiler) {(iv

GSL Mixed Radix (v

Vector Length N

Figure 1.1: FFT Floating-point performance and speed-up of the vectorization techniques
applied by the MAP vectorizer for BG/L and SPIRAL-SIMD for BG/L (formal vectorization)
compared to the best scalar code and the best vectorized code (utilizing the VisualAge XL C
for BG/L vectorizing compiler) found by SPIRAL. Performance is displayed in pseudo Gflop/s
(5N log N/runtime with N being the vector length; Frigo and Johnson [35]).

The following scalar and vectorization techniques were tested:

The MAP Vectorizer is one of the main subjects of this thesis and its vec-
torization techniques will be explained in detail in Chapter 7. MAP pro-
vides vectorization of single static assignment straight-line code for two-way
short vector extensions as a source-to-source transformation. The source
codes to be vectorized may contain array accesses, index computation, and
arithmetic operations. Typically, such source codes consist of thousands of
arithmetic operations. In addition to SIMD vectorization, MAP provides
support for FMA instructions.

MAP was adapted to support BlueGene/L’s double FPU and connected to
the SPIRAL system to provide BlueGene/L specific vectorization of SPIRAL
generated code. SPIRAL’s SPL compiler was used to translate formulas gen-
erated by the formula generator into fully unrolled implementations leading
to large straight-line codes. These codes were subsequently vectorized by
MAP and thus transformed into a C program where all arithmetic oper-
ations and memory access operations are expressed using XL C’s intrinsic

1.2 Performance Implications 19

functions. Finally the codes were compiled utilizing the XL C compiler with
vectorization turned off. A detailed assessment of the MAP Vectorizer can
be found in Chapter 10.

SPIRAL-SIMD. A SIMD vectorizing version of SPIRAL’s SPL compiler that is
portable across different SIMD architectures was adapted to vectorize codes
for FFTs [28] targeting BlueGene/L’s double FPU. Certain mathematical
constructs used in SPIRAL’s formula representation of a DSP algorithm are
mapped to vectorized code by this compiler. These constructs occur in
virtually every DSP algorithm. Furthermore, in several important cases,
including the FFT, the formulas generated by SPIRAL are built exclusively
from these vectorizable constructs, and thus can be completely vectorized
using the adapted SIMD vectorizing SPL compiler.

In addition, a formally derived “short vector FF'T variant” is utilized to
vectorize FF'T codes [30]. This variant guarantees, that the generated FF'T
codes fit to the need of generic short vector SIMD extensions. The short
vector FF'T variant was adapted to support BlueGene’s double FPU.

Utilizing both methods of formal vectorization, FF'T formulas generated by
SPIRAL’s formula generator are translated into vector code utilizing Blue-
Gene/L’s double FPU efficiently.

SPIRAL. For scalar implementations, SPIRAL (besides FFTW) provides the
currently fastest publicly available FFT programs. It delivers codes which
are as fast as FF'T programs specifically optimized for a given architecture.
Thus, SPIRAL may serve as the baseline in Figure 1.1.

IBM XL C Compiler extracts instruction level parallelism [79]. It identifies
blocks of scalar operations offering enough parallelism for vectorization and
joins them with scalar code blocks not suited for vectorization via expen-
sive data reorganization operations. Therefore, it has no domain specific
knowledge about the codes to vectorize. The IBM XL C compiler supports
FMA extraction.

GNU GSL Mixed Radix. The GNU scientific library GSL features sophisti-
cated algorithms (without SIMD support) and is even much slower than
the best scalar adaptive SPIRAL code. It is slower than the best SIMD
vectorized codes by a factor of five and more.

Experimental Results. The presented scalar and vectorization techniques
were evaluated on an early BlueGene/L prototype. Performance data of 1D
FFTs with vector lengths N = 2%, 23 .. 210 were obtained on a single PowerPC
440 FP2 running at 500 MHz.

20 1. Hardware vs. Algorithms

In particular the following FFT implementations were tested: (i) The best
vectorized code found by SPIRAL utilizing formal vectorization, (iz) the best vec-
torized code found by SPIRAL utilizing the MAP vectorizer, (ii7) the best scalar
FFT implementation found by SPIRAL (XL C’s vectorizer and FMA extraction
turned off), (iv) the best vectorized FFT implementation found by SPIRAL us-
ing the XL C compiler’s vectorizer and FMA extraction turned on, and (v) the
mixed-radix FFT implementation provided by the GNU scientific library (GSL).
Fig. 1.1 displays the respective performance data.

The best scalar codes found by SPIRAL—referenced by (iii) in Fig. 1.1—serve
as baseline for the assessment of the various vectorization techniques. These codes
are very fast scalar implementations featuring no FMA instructions.

Formal vectorization—referenced by (i) in Fig. 1.1—provides up to 40%
speed-up w.r.t. the best scalar codes generated by SPIRAL for problem sizes
N > 64. Thus formal vectorization provides significant speed-up for larger prob-
lem sizes.

The MAP vectorizer—referenced by (i¢) in Fig. 1.1—is restricted to problem
sizes that can fully be unrolled fitting into instruction cache and the resulting
code can be handled well by the XL C compiler’s register allocator. For problem
sizes N < 32, the MAP vectorizer provides the same level of performance as
formal vectorization for larger problem sizes.

The third-party GNU GSL FFT library—referenced by (v) in Fig. 1.1—reaches
about 30% of the performance of the best scalar SPIRAL generated code thus
performing badly.

XL C’s vectorization and FMA extraction—referenced by (iv) in Fig. 1.1—
produces code 15 % slower than scalar XL C without FMA extraction. Thus, the
vectorization techniques to vectorize straight-line code currently used within the
XL C compiler cannot handle SPIRAL generated FFT codes well.

Conclusion. The numerical experiments carried out on the BlueGene/L pro-
totype summarized in Figure 1.1 show that automatic performance tuning in
combination with the two newly developed vectorization approaches is able to
speed up FFT code considerably, while vectorization by IBM’s XL C compiler
does not speed up the automatically generated scalar codes at all. The two vec-
torization approaches, the MAP vectorizer and SPIRAL-SIMD, are able to provide
high-performance FFT kernels for BlueGene/L by fully utilizing the new double
FPU.

These experiments provide evidence that modern (vectorizing) compilers are not
able to generate fast machine code in conjunction with portable libraries. This
gives an impression of how much performance can be gained by using automatic
performance tuning and utilizing special processor features as short vector SIMD
extensions.

The next section explains, why this performance gain is possible and gives an

1.3 Automatic Performance Tuning 21

short overview over current automatic performance tuning systems.

1.3 Automatic Performance Tuning

Automatic performance tuning is a step beyond standard compiler optimization.
It is required to overcome the problem that today’s compilers on current machines
cannot produce high performance code any more as outlined in the previous
section.

Automatic performance tuning is a problem specific approach and thus is able
to achieve much more than general purpose compilers are capable of.

Current automatic empirical optimization systems (AEOS) focus on (i) CPU
level optimizations (loop unrolling, source code scheduling, FMA utilization),
and (#4) memory hierarchy utilization (loop tiling, cache blocking). Actual code
runtime is used to steer the automatic optimization process.

For instance, ATLAS’ search for the correct loop tiling for carrying out a
matrix-matrix product is a loop transformation a compiler could in principle do
(and some compilers try to), if the compiler would have an accurate machine
model to deduce the correct tiling. But compilers do not reach ATLAS’ perfor-
mance. The same phenomenon occurs with the source code scheduling done by
SPIRAL and FFTW for straight line code, which should be done satisfactorily by
the target compiler.

1.3.1 Compiler Optimization

Modern compilers make extensive use of optimization techniques to improve the
program’s performance. The application of a particular optimization technique
largely depends on a static program analysis based on simplified machine models.
Optimization techniques include high level loop transformations, such as loop
unrolling and tiling. These techniques have been extensively studied for over 30
years and have produced, in many cases, good results. However, the machine
models used are inherently inaccurate, and transformations are not independent
in their effect on performance making the compiler’s task of deciding the best
sequence of transformations difficult (Aho et al. [2]).

Typically, compilers use heuristics that are based on averaging observed be-
havior for a small set of benchmarks. Furthermore, while the processor and
memory hierarchy is typically modelled by static analysis, this does not account
for the behavior of the entire system. For instance, the register allocation policy
and strategy for introducing spill code in the backend of the compiler may have
a significant impact on performance. Thus static analysis can improve program
performance but is limited by compile-time decidability.

22 1. Hardware vs. Algorithms

1.3.2 The Program Generator Approach

A method of source code adaptation at compile-time is code generation. In code
generation, a code generator (i.e., a program that produces other programs) is
used. The code generator takes as parameters the various source code adaptations
to be made, e. g., instruction cache size, choice of combined or separate multiply
and add instructions, length of floating-point and fetch pipelines, and so on.
Depending on the parameters, the code generator produces source code having
the desired characteristics.

Example 1.1 (Parameters for Code Generators) In genfft, the codelet generator of
FrTw, the generation of FMA specific code can be activated using the -magic-enable-fma
switch. Calling genfft using

genfft 4 -notwiddle -magic-enable-fma

results in the generation of a no-twiddle codelet of size four which is optimized for FMA archi-
tectures.

1.3.3 Compile-Time Adaptive Algorithms
Using Feedback-Information

Not all important architectural variables can be handled by parameterized com-
pile-time adaptation since varying them actually requires changing the underlying
source code. This brings in the need for the second method of software adapta-
tion, compile-time adaptation by feedback directed code generation, which involves
actually generating different implementations of the same operation and selecting
the best performing one.

There are at least two different ways to proceed:

(7) The simplest approach is to get the programmer to supply various hand-tuned
implementations, and then to choose a suitable one.

(24) The second method is based on automatic code generation. In this ap-
proach, parameterized code generators are used. Performance optimization with
respect to a particular hardware platform is achieved by searching, i.e., varying
the generator’s parameters, benchmarking the resulting routines, and selecting
the fastest implementation. This approach is also known as automated empirical
optimization of software (AEOS) (Whaley et al. [115]).

In the remainder of this section the existing approaches are introduced briefly.

PHiPAC

Portable high-performance ANSI C (PHiPAC) was the first system which im-
plemented the “generate and search” methodology (Bilmes et al. [14]). Its code
generator produces matrix multiply implementations with various loop unrolling

1.3 Automatic Performance Tuning 23

depths, varying register and L1- and L2-cache tile sizes, different software pipelin-
ing strategies, and enables other options. The output of the generator is C code,
both to make the system portable and to allow the compiler to perform the final
register allocation and instruction scheduling. The search phase benchmarks code
produced by the generator under various options to select the best performing
implementation.

ATLAS

The automatically tuned linear algebra software (ATLAS!) project [102, 115, 114,
113, 112] is an ongoing research effort (at the University of Tennessee, Knoxville)
focusing on empirical techniques in order to produce software having portable
performance. Initially, the goal of the ATLAS project was to provide a portably
efficient implementation of the BLAS. Now ATLAS provides at least some level of
support for all of the BLAS, and first tentative extensions beyond this level have
been taken.

While originally the ATLAS project’s principle objective was to develop an
efficient library, today the field of investigation has been extended. Within a
couple of years new methodologies to develop self-adapting programs have become
established, the AEOS approach has been established which forms a new sector in
software evolution. ATLAS’ adaptation approaches are typical AEOS methods;
even the concept of “AEOS” was coined by ATLAS’ developers (Whaley et al.
[115]). In this manner, the second main goal of the ATLAS project is the general
investigation in program adaptation using AEOS methodology.

ATLAS uses automatic code generators in order to provide different implemen-
tations of a given operation, and involves sophisticated search scripts and robust
timing mechanisms in order to find the best way of performing this operation on
a given architecture.

The remainder of this chapter introduces the two leading projects dealing with
architecture adaptive implementations of discrete linear transforms, SPIRAL and
Frrw. One result of this thesis is the usage of the output codes of these systems
with the newly developed MAP vectorizer and backend.

FFTW

FrTw? (fastest Fourier transform in the west) was the first effort to automatically
generate FF'T code using a special purpose compiler and use to the actual run
time as optimization criterion (Frigo [33], Frigo and Johnson [34, 35, 36, 37]).
Typically, FFTW performs faster than publicly available FFT codes and faster to
equal with hand optimized vendor-supplied libraries across different machines. It
provides comparable performance to SPIRAL). Several extensions to FFTW exist,

lavailable from http://math-atlas.sourceforge.net/
2available from http://www.fftw.org/

24 1. Hardware vs. Algorithms

including the AC FFTw package and the UHFFT library. Currently, FFTW is the
most popular portable high performance FFT library that is publicly available.

FrTW provides a recursive implementation of the Cooley-Tukey FFT algo-
rithm. The actual computation is done by automatically generated routines called
codelets which restrict the computation to specially structured algorithms called
right expanded trees (see Section 4.1 and Haentjens [46]). The recursion stops
when the remaining right subproblem is solved using a codelet. For a given prob-
lem size there are many different ways of solving the problem with potentially
very different run times. FFTW uses dynamic programming with the actual run
time of problems as cost function to find a fast implementation for a given DFT y
on a given machine. FFTW consists of the following fundamental parts. Details
about FFTW can be found in Frigo and Johnson [35].

The Planner. At run time but as a one time operation during the initialization
phase, the planner uses dynamic programming to find a good decomposition
of the problem size into a tree of computations according to the Cooley-Tukey
recursion called plan. '

The Executor. When solving a problem, the ezecutor interprets the plan as
generated by the planner and calls the appropriate codelets with the respective
parameters as required by the plan. This leads to data access patterns which
respect memory access locality.

The Codelets. The actual computation of the FFT subproblems is done within
the codelets. These small routines come in two flavors, (i) twiddle codelets which
are used for the left subproblems and additionally handle the twiddle matrix,
and (i2) no-twiddle codelets which are used in the leaf of the recursion and which
additionally handle the stride permutations. Within a larger variety of FFT algo-
rithms is used, including the Cooley-Tukey algorithm, the split-radix algorithm,
the prime factor algorithm, and the Rader algorithm (Van Loan [109]).

The Codelet Generator genfft. At install time, all codelets are generated by
a special purpose compiler called the codelet generator genfft. As an alternative
the preponderated codelet library can be downloaded as well. In the standard
distribution, codelets of sizes up to 64 (not restricted to powers of two) are in-
cluded. But if special transform sizes are required, the required codelets can be
generated.

SPIRAL

SPIRAL® (signal processing algorithms implementation research for adaptive li-
braries) is a generator for high performance code for discrete linear transforms
like the DFT, the discrete cosine transforms (DCT's), and many others by Piischel
et al. [99], Moura et al. [87, 88, 89]. SPIRAL uses a mathematical approach that

3available from http://wuw.ece.cmu.edu/ spiral/

1.3 Automatic Performance Tuning 25

translates the implementation problem of discrete linear transforms into a search
in the space of structurally different algorithms and their possible implementa-
tions to generate code that is adapted to the given computing platform. SPpI-
RAL’s approach is to represent the many different algorithms for a transform as
formulas in a concise mathematical language. These formula are automatically
generated and automatically translated into code, thus enabling an automated
search. Chapter 4 summarizes the discrete linear transforms and Appendix A
summarizes the mathematical framework.

More specifically, the SPIRAL approach is based on the following observations.

e For every discrete linear transform transform there exists a very large num-
ber of different fast algorithms. These algorithms differ in dataflow but are
essentially equal in the number of arithmetic operations.

o A fast algorithm for a discrete linear transform can be represented as a
formula in a concise mathematical notation using a small number of math-
ematical constructs and primitives (see Appendix A).

e It is possible to automatically generate the alternative formulas, i.e., algo-
rithms, for a given discrete linear transform.

e A formula representing a fast discrete linear transform algorithm can be
mapped automatically into a program in a high-level language like C or

Fortran.
DSP transform (user specified)
controls

algorithm generation
—d Formula Generator e g g)
C
< 5
m fast algorithm (T}
— as SPL formula -8
(a W \ controls o
- implementation options} ©
(Jp) SPL Compiler e P P o
C/Fortran/SIMD [

code runtime on given platform

v

platform-adapted
implementation

Figure 1.2: SPIRAL’s architecture.

26 1. Hardware vs. Algorithms

The architecture of SPIRAL is shown in Figure 1.2. The user specifies a trans-
form to be implemented, e. g., a DF'T of size 1024. The formula generator expands
the transform into one (or several) formulas, i.e., algorithms, represented in the
SPIRAL proprietary language SPL (signal processing language). The formula
translator (also called SPL compiler) translates the formula into a C or Fortran
program. The run time of the generated program is fed back into a search engine
that controls the generation of the next formula and possible implementation
choices, such as the degree of loop unrolling. Iteration of this process yields a
platform-adapted implementation. Search methods in SPIRAL include dynamic
programming and evolutionary algorithms. By including the mathematics in
the system, SPIRAL can optimize, akin to a human expert programmer, on the
implementation level and the algorithmic level to find the best match to the
given platform. Further information on SPIRAL can be found in Piischel et al.
[97], Singer and Veloso [103], Xiong et al. [116].

GAP and AREP. SpPIRAL’s formula generator uses AREP, a package by Egner
and Pilischel [22] implemented in the language GAP [107] which is'a computer
algebra system for computational group theory. The goal of AREP was to cre-
ate a package for computing with group representations up to equality, not up
to equivalence, hence, AREP provides the data types and the infrastructure to
do efficient symbolic computation with representations and structured matrices
which arise from the decomposition of representations.

Algorithms represented as formulas are written in mathematical terms of ma-
trices and vectors which are specified and composed symbolically in the AREP
notation. Various standard matrices and matrix types are supported such as
many algebraic operations, like DFT and diagonal matrices, and the Kronecker
product formalism.

One result of the work presented in this thesis will be the MAP vectorizer which
allows for the automatic vectorization of computational kernels generated by self-
tuning numerical software and the MAP backend, a special purpose kernel back-
end to translate vectorized code into high-performance assembly code. The MAP
vectorizer and backend can be connected to FFTw, SPIRAL, and ATLAS, thus
addressing many different numerical computations ranging from FFTs and many
other DSP transforms to BLAS kernels.

Chapter 2

Standard Hardware

This chapter gives an overview over standard features of single processor systems
relevant for the computation of discrete linear transforms, i.e., microprocessors
and the associated memory subsystem. Sections 2.1 and 2.2 discuss the features
on the processor level while Section 2.3 focusses on the memory hierarchy.

Further details can be found, for example, in Gansterer and Ueberhuber [40]
or Hlavacs and Ueberhuber [47].

2.1 Processors

Due to packaging with increased density and architectural concepts like RISC, the
peak performance of processors has been increased by about 60 percent each year
(see Figure 2.1). This annual growth rate is likely to continue for at least another

Clock Rate
10,000 — I I I

1000 |- -
MHz 100 — —
10 - -~

1 | | |] | |

1975 1980 1985 1990 1995 2000 2005
Year

Figure 2.1: Clock rate trend for off-the-shelf CPUs.

decade. Then physical limitations like Heisenberg’s principle of uncertainty will
impede package density to grow.

28 2. Standard Hardware

2.1.1 CISC Processors

The term CISC is an acronym for complex instruction set computer, whereas
RISC is an acronym for reduced instruction set computer. Until the 1980s, prac-
tically all processors were of CISC type. Today, the CISC concept is quite out-
of-date, though most existing processors are designed to understand CISC in-
struction sets (like Intel x86 compatibles). Sixth and seventh generation x86
compatible processors (Intel’s PentiumII, III, and 4, and AMD’s Athlon line)
internally use advanced RISC techniques to achieve performance gains. They
fetch x86 CISC style instructions from memory in order and translate them to
an internal instruction format of one or more simpler fixed length RISC style
instructions. Multiple RISC execution units are utilized to feed them into their
multiple pipelines and other functional units.

Microcode

When designing new processors, it is not always possible to implement instruc-
tions by means of transistors and resistors only. Instructions that are executed
directly by electrical components are called hardwired. Complex instructions,
however, often require too much effort to be hardwired. Instead, they are emu-
lated by simpler instructions inside the processor. The “program” of hardwired
instructions emulating complex instructions is called microcode. Microcode makes
it possible to emulate instruction sets of different architectures just by adding or
changing ROMs containing microcode information.

Compatibility with older computers also forces vendors to supply the same set
of instructions for decades, making modern processors to deal with old fashioned,
complex instructions instead of creating new, streamlined instruction sets to fit
onto RISC architectures.

Example 2.1 (Microcode) Intel’s Pentium4, and AMD’s Athlon XP dynamically translate
complex CISC instructions into one or more equivalent RISC instructions. Each CISC instruc-
tion thus is represented by a microprogram containing optimized RISC instructions.

2.1.2 RISC Processors

Two major developments paved the road to RISC processors.

High Level Languages. Due to portability and for faster and affordable soft-
ware development high level languages are used instead of native assembly.
Thus, optimizing compilers are needed that can create executables having
an efficiency comparable to programs written in assembly language. Com-
pilers prefer small and simple instructions which can be moved around more
easily than complex instructions with more dependencies.

2.1 Processors 29

Performance. Highest performance has to be delivered at any cost. This goal
is achieved by either increasing the packaging density, by increasing the
clock rate or by reducing the cycles per instruction (CPI) count. The lat-
ter is impossible when using ordinary CISC designs. On RISC machines,
instructions are supposed to take only one cycle, yet several stages were
needed for their execution. The answer is a special kind of parallelism:
pipelining. Due to the availability of cheap memory it is possible to design
fixed length instruction sets, the most important precondition for smooth
pipelining. Also, cheaper SRAMs are available as caches, thus providing
enough memory-processor bandwidth for feeding data to faster CPUs.

RISC processors are characterized by the following features: (i) pipelining, (i)
uniform instruction length, (7i¢) simple addressing modes, (iv) load/store archi-
tecture, and (v) more registers.

Additionally, modern RISC implementations use special techniques to improve
the instruction throughput and to avoid pipeline stalls (see Section 2.2): (i) low
grain functional parallelism, (i7) register bypassing, and (¢i:) optimized branches.
As current processors understanding the x86 CISC instruction set feature internal
RISC cores, these advanced technologies are used in x86 compatible processors
as well.

In the remainder of this section the features are discussed in more detail.

2.1.3 Pipelines

Pipelines consist of several stages which carry out a small part of the whole
operation. The more complex the function is that a pipeline stage has to perform,
the more time it needs and the slower the clock has to tick in order to guarantee
the completion of one operation each cycle. Thus, designers face a trade-off
between the complexity of pipeline stages and the smallest possible clock cycle.
As pipelines can be made arbitrarily long, one can break complex stages into two
or more separated simple ones that operate faster. Resulting pipelines can consist
of ten or more stages, enabling higher clock rates. Longer pipelines, however, need
more cycles to be refilled after a pipeline hazard or a context switch. Smaller clock
cycles, however, reduce this additional overhead significantly.

Processors containing pipelines of ten or more stages are called superpipelined.

Example 2.2 (Superpipeline) The Intel Pentium 4 processor core contains pipelines of up
to 20 stages. As each stage needs only simple circuitry, processors containing this core are able
to run at more than 3 GHz.

2.1.4 VLIW Processors

When trying to issue more than one instruction per clock cycle, processors have to
contain several pipelines that can operate independently. In very long instruction

30 2. Standard Hardware

word (VLIW) processors, instruction words consist of several different operations
without interdependence. At run time, these basic instructions can be brought
to different units where they are executed in parallel.

The task of scheduling independent instructions to different functional units
is done by the compiler at compile time. Typically, such compilers try to find
a good mixture of both integer and floating-point instructions to form up long
instruction words.

Example 2.3 (VLIW Processor) The digital signal processors (DSPs) VelociTI from TI,
Trimedia~1000 from Philips and FR500 from Fujitsu are able to execute long instruction words.

The 64 bit Itanium processor family (IPF, formerly called IA-64) developed in a cooperation
between Intel and HP, follows the VLIW paradigm. This architecture is also called EPIC
(explicit parallel instruction computing).

It is very difficult to build compilers capable of finding independent integer, mem-
ory, and floating-point operations for each instruction. If no floating-point opera-
tions are needed or if there are much more integer operations than floating-point
operations, for example, much of this kind of parallelism is wasted. Only programs
consisting of about the same number of integer and floating-point operations can
exploit VLIW processors efficiently.

2.1.5 Superscalar Processors

Like long instruction word processors, superscalar processors contain several in-
dependent functional units and pipelines. Superscalar processors, however, are
capable of scheduling independent instructions to different units dynamically at
run time. Therefore, such processors must be able to detect instruction depen-
dencies. They have to ensure that dependent instructions are executed in the
same order they appeared in the instruction stream.

Modern superscalar RISC processors belong to the most complex processors
ever built. To feed their multiple pipelines, several instructions must be fetched
from memory at once, thus making fast and large caches inevitable. Also, so-
phisticated compilers are needed to provide a well balanced mix of independent
integer and floating-point instructions to ensure that all pipelines are kept busy
during execution. Because of the complexity of superscalar processors their clock
cycles cannot be shortened to the same extent than in simpler processors.

Example 2.4 (Superscalar Processor) The IBM POWER/1 is capable of issuing up to 8 in-
structions per cycle, with a sustained completion rate of five instructions. As its stages are very
complex, it runs at only 1.30 GHz.

The AMD Athlon XP 2100+ processor running at 1733 MHz features a floating-point adder
and a floating-point multiplier both capable of issuing one two-way vector operation per cycle.

2.2 Advanced Architectural Features 31

2.2 Advanced Architectural Features

Superscalar processors dynamically schedule instructions to multiple pipelines
and other functional units. As performance is the top-most goal, all pipelines and
execution units must be kept busy in order to achieve maximum performance.
Dependencies among instructions can hinder the pipeline from running smoothly,
advanced features have to be designed to detect and resolve dependencies. Other
design features have to make sure that the instructions are executed in the same
order they entered the processor.

2.2.1 Functional Parallelism

As was said before, superscalar RISC processors contain several execution units
and pipelines that can execute instructions in parallel. To keep all units busy as
long as possible, it must be assured that there are always instructions to execute,
waiting in buffers. Such buffers are called reservation stations or queues. Every
execution unit can have a reservation station of its own or get the instructions
from one global queue. Also, for each instruction leaving such a station, another
one should be brought from memory. Thus, memory and caches have to deliver
several instructions each cycle.

Depending on the depths of the used pipelines, some operations might take
longer than others. It is therefore possible that instruction ¢+ 1 is finished, while
instruction 7 is still being processed in a pipeline. Also, an integer pipeline may
get idle, while the floating-point unit is still busy. Thus, if instruction 7+ 1 is an
integer operation, while instruction 7 is a floating-point operation, i + 1 might be
put into the integer pipeline, before ¢ can enter the floating-point unit. This is
called out-of-order execution. The instruction stream leaving the execution units
will often differ from the original instruction stream. Thus, earlier instructions
must wait in a reorder buffer for all prior instructions to finish, before their results
are written back.

2.2.2 Registers

Registers obviously introduce some kind of bottleneck, if too many values have
to be stored in registers within a short piece of code. The number of existing reg-
isters depends on the designs of the underlying architecture. The set of registers
known to compilers and programs is called the logical register file. To guarantee
software compatibility with predecessors, the number of logical registers cannot
be increased within the same processor family. Programs being compiled for new
processors having more registers could not run on older versions with a smaller
number of registers. However, it is possible to increase the number of physi-
cal registers existing within the processor and to use them to store intermediate
values.

32 2. Standard Hardware

2.2.3 Fused Multiply-Add Instructions

In current microprocessors equipped with fused multiply-add (FMA) instructions,
the floating-point hardware is designed to accept up to three operands for exe-
cuting FMA operations, while other floating-point instructions requiring fewer
operands may utilize the same hardware by forcing constants into the unused
operands. In general, FPUs with FMA instructions use a multiply unit to com-
pute a X b, followed by an adder to compute a x b+ c.

FMA operations have been implemented in the floating-point units, e.g., of
the HP PA-87004, IBM PowegRr4, Intel IA-64 and Motorola POWER PC mi-
croprocessors. In the Motorola POWER PC, FMA instructions have been imple-
mented by chaining the multiplier output into the adder input requiring rounding
between them. On the contrary, processors like the IBM POWER4 implement the
FMA instruction by integrating the multiplier and the adder into one multiply-
add FPU. Therefore in the POWER 4 processor, the FMA operation has the same
latency (two cycles) as an individual multiplication or addition operation. The
FMA instruction has one other interesting property: It is performed with one
round-off error. In other words, in a = b X c+d, b x ¢ is first computed to quadru-
ple (128 bit) precision, if b and ¢ are double (64 bit) precision, then d is added,
and the sum rounded to a. This use of very high precision is used by IBM’s
RS6000 to implement division, which still takes about 19 times longer then either
multiply or add. The FMA instruction may be used to simulate higher precision
cheaply.

2.2.4 Short Vector SIMD Extensions

A recent trend in general purpose microprocessors is to include short vector SIMD
extensions. Although initially developed for the acceleration of multi-media appli-
cations, these extensions have the potential to speed up digital signal processing
kernels, especially discrete linear transforms. The range of general purpose pro-
cessors featuring short vector SIMD extensions starts with the Motorola MPC G4
(featuring the AltiVec extension), [85] used in embedded computing and by Apple.
It continues with Intel processors featuring SSE and SSE 2 (PentiumIII and 4,
Itanium and Itanium 2) [50] and AMD processors featuring different 3DNow! ver-
sions (Athlon and successors) [4]. These processors are used in desktop machines
and commodity clusters. But short vector SIMD extensions are even included into
the next generation of supercomputers like the IBM BG/ L machine currently in
development.

All these processors feature two-way or four-way floating-point short vector
SIMD extensions. These extensions operate on a vector of v floating-point num-
bers in parallel (where v denotes the extension’s vector length) and feature con-
strained memory access: only naturally aligned vectors of v floating-point num-
bers can be loaded and stored efficiently. These extensions offer a high potential

2.3 The Memory Hierarchy 33

speed-up (factors of up to two or four) but are difficult to use: (i) vectorizing
compilers cannot generate satisfactorily code for problems with more advanced
structure (as discrete linear transforms are), (4¢) direct use is beyond standard
programming, and (47i) programs are not portable across the different extensions.

The efficient utilization of short vector SIMD extensions for discrete linear
transforms in a performance portable way is the core of this thesis. Details about
short vector SIMD extensions are given in Chapter 3.

2.3 The Memory Hierarchy

Processor technology has improved dramatically over the last years. Empirical
observation shows that processor performance annually increases by 60 %. RISC
design goals will dominate microprocessor development in the future, allowing
pipelining and the out-of-order execution of up to 6 instructions per clock cycle.
Exponential performance improvements are here to stay for at least 10 years.
Unfortunately, other important computer components like main memory chips
could not hold pace and introduce severe bottlenecks hindering modern processors
to fully exploit their power.

Memory chips have only developed slowly. Though fast static RAM (SRAM)
chips are available, they are much more expensive than their slower dynamic
RAM (DRAM) counterparts. One reason for the slow increase in DRAM speed
is the fact that during the last decade, the main focus in memory chip design was
primarily to increase the number of transistors per chip and therefore the number
of bits that can be stored on one single chip.

When cutting the size of transistors in halve, the number of transistors per
chip is quadrupled. In the past few years, this raising was observed within a period
of three years, thus increasing the capacity of memory chips at an annual rate
of 60 % which corresponds exactly to the growth rate of processor performance.
Yet, due to the increasing address space, address decoding is becoming more
complicated and finally will nullify any speed-up achieved with smaller transistors.
Thus, memory latency can be reduced only at a rate of 6 percent per year. The
divergence of processor performance and DRAM development currently doubles
every six years.

In modern computers memory is divided into several stages, yielding a memory
hierarchy. The higher a particular memory level is placed within this hierarchy,
the faster and more expensive (and thus smaller) it is. Figure 2.2 shows a typical
memory hierarchy

The fastest parts belong to the processor itself. The register file contains
several processor registers that are used for arithmetic tasks. The next stages
are the primary or L1-cache (built into the processor) and the secondary or L2-
cache (on extra chips near the processor). Primary caches are usually fast but
small. They directly access the secondary cache which is usually larger but slower.

34 2. Standard Hardware

CPU

Register File
(2KB)

Primary Cache
(512 KB)

l

Secondary Cache (1 MB) 5-10 ns

<2 ns

Main Memory (2 GB) 10-50 ns

r

Disk (Several hundred GB) 3-7 ms

Figure 2.2: The memory hierarchy of a modern computer.

The secondary cache accesses main memory which—on architectures with virtual
memory—exchanges data with disk storage. Some microprocessors of the seventh
generation hold both L1- and L2-cache on chip, and have an L3-cache near the
processor.

Example 2.5 (L2-Cache on Chip) Intel’s Itanium processors hold both L1- and L2-cache
on chip. The 2 MB large L3-cache is put into the processor cartridge near the processor.

2.3.1 Cache Memory

To prevent the processor from waiting most of the time for data from main
memory, caches were introduced. A cache is a fast, but small memory chip
placed between the processor and main memory. Typical cache sizes vary between
128 KB and 8 MB.

Data can be moved to and from the processor within a few clock cycles. If the
processor needs data that is not currently in the cache, the main memory has to
send it, thus decreasing the processor’s performance. The question arises whether
caches can effectively reduce main memory traffic. T'wo principles of locality that
have been observed by most computer programs support the usage of caches:

2.3 The Memory Hierarchy 35

Temporal Locality: If a program has accessed a certain data element in mem-
ory, it is likely to access this element again within a short period of time.

Spatial Locality: Ifa program has accessed a data element, it is likely to access
other elements located closely to the first one.

Program monitoring has shown that 90 % of a program’s work is done by only
10% of the code. Thus data and instructions can effectively be buffered within
small, fast caches, as they are likely to be accessed again and again. Modern RISC
processors would not work without effective caches, as main memory could not
deliver data to them in time. Therefore, RISC processors have built-in caches,
so-called primary or on-chip caches. Many RISC processors also provide the
possibility to connect to them extra cache chips forming secondary caches. The
current generation of processors even contains this secondary cache on chip and
some processors are connected to an external tertiary cache. Typical caches show
latencies of only a few clock cycles. State-of-the-art superscalar RISC processors
like IBM’s POWER4 architecture have caches that can deliver several different
data items per clock cycle. Moreover, the on-chip cache is often split into data
cache and instruction cache, yielding the so-called Harvard architecture.

Cache Misses

If an instruction cache miss is detected, the whole processor pipeline has to wait
until the requested instruction is supplied. This is called a stall. Modern proces-
sors can handle more than one outstanding load, i.e., they can continue execution
of other instructions while waiting for some data items brought in from cache or
memory. But cache misses are very expensive events and can cost several tens of
cycles.

Chapter 3

Short Vector Hardware

Major vendors of general purpose microprocessors have included single instruc-
tion, multiple data (SIMD) extensions to their instruction set architectures (ISA)
to improve the performance of multi-media applications by exploiting the subword
level parallelism available in most multi-media kernels.

All current SIMD extensions are based on the packing of large registers with
smaller datatypes (usually of 8, 16, 32, or 64 bits). Once packed into the larger
register, operations are performed in parallel on the separate data items within the
vector register. Although initially the new data types did not include floating-
point numbers, more recently, new instructions have been added to deal with
floating-point SIMD parallelism. For example, Motorola’s AltiVec and Intel’s
streaming SIMD extensions (SSE) operate on four single-precision floating-point
numbers in parallel. IBM’s double FPU extension and Intel’s SSE 2 and SSE 3
can operate on two double-precision numbers in parallel.

IBM’s double FPU extension which is part of the BlueGene initiative and is
implemented in BG/L processor prototypes is still classified and will therefore be
excluded from a detailed discussion. However, this particular SIMD extension is
a major target for the technology presented in this thesis.

By introducing double-precision short vector SIMD extensions this technol-
ogy entered scientific computing. Conventional scalar codes become obsolete on
machines featuring these extensions as such codes utilize only a fraction of the
potential performance. However, SIMD extensions have strong implications on
algorithm development as their efficient utilization is not straightforward.

The most important restriction of all SIMD extensions is the fact that only
naturally aligned vectors can be accessed efficiently. Although, loading subvectors
or accessing unaligned vectors is supported by some extensions, these operations
are more costly than aligned vector access. On some SIMD extensions these
operations feature prohibitive performance characteristics. This negative effect
has been the major driving force behind the work presented in this thesis.

The intra-vector parallelism of SIMD extensions is contrary to the inter-vector
parallelism of processors in vector supercomputers like those of Cray Research,
Inc., Fujitsu or NEC. Vector sizes in such machines range to hundreds of elements.
For example, Cray SV1 vector registers contain 64 elements, and Cray T90 vector
registers hold 128 elements. The most recent members of this type of vector
machines are the NEC SX-6 and the Earth Simulator.

3.1 Short Vector Extensions 37

3.1 Short Vector Extensions

The various short vector SIMD extensions have many similarities, with some no-
table differences. The basic similarity is that all these instructions are operating
in parallel on lower precision data packed into higher precision words. The opera-
tions are performed on multiple data elements by single instructions. Accordingly,
this approach is often referred to as short vector SIMD parallel processing. This
technique also differs from the parallelism achieved through multiple pipelined
parallel execution units in superscalar RISC processors in that the programmer
explicitly specifies parallel operations using special instructions.

Two classes of processors supporting SIMD extensions can be distinguished:
(i) Processors supporting only integer SIMD instructions, and (i) processors
supporting both integer and floating-point SIMD instructions.

The vector length of a short vector SIMD architecture is denoted by v.

3.1.1 Integer SIMD Extensions

MAX-1. With the PA-7100LC, Hewlett-Packard introduced a small set of multi-
media acceleration extensions, MAX-1, which performed parallel subword arith-
metic. Though the design goal was to support all forms of multi-media applica-
tions, the single application that best illustrated its performance was real-time
MPEG-1, which was achieved with C codes using macros to directly invoke MAX-
1 instructions.

VIS. Next, Sun introduced VIS, a large set of multi-media extensions for Ultra-
Sparc processors. In addition to parallel arithmetic instructions, VIS provides
novel instructions specifically designed to achieve memory latency reductions for
algorithms that manipulate visual data. In addition, it includes a special-purpose
instruction that computes the sum of absolute differences of eight pairs of pixels,
similar to that found in media coprocessors such as Philips’ Trimedia.

MAX-2. Then, Hewlett-Packard introduced MAX-2 with its 64 bit PA-RISC 2.0
microprocessors. MAX-2 added a few new instructions to MAX-1 for subword
data alignment and rearrangement to further support subword parallelism.

MMX. Intel’s MMX technology is a set of multi-media extensions for the x86
family of processors. It lies between MAX-2 and VIS in terms of both the number
and complexity of new instructions. MMX integrates a useful set of multi-media
instructions into the somewhat constrained register structure of the x86 archi-
tecture. MMX shares some characteristics of both MAX-2 and VIS, and also
includes new instructions like parallel 16 bit multiply-accumulate instruction.

VIS, MAX-2, and MMX all have the same basic goal. They provide high-
performance multi-media processing on general-purpose microprocessors. All

38 3. Short Vector Hardware

three of them support a full set of subword parallel instructions on 16 bit sub-
words. Four subwords per 64 bit register word are dealt with in parallel. Differ-
ences exist in the type and amount of support they provide driven by the needs of
the target markets. For example, support is provided for 8 bit subwords when tar-
get markets include lower end multi-media applications (like games) whereas high
quality multi-media applications (like medical imaging) require the processing of
larger subwords.

3.1.2 Floating-Point SIMD Extensions

Floating-point computation is the heart of each numerical algorithm. Thus,
speeding up floating-point computation is essential to overall performance.

AltiVec. Motorola’s AltiVec SIMD architecture extends the recent MPC74xx
(G4 generation of the Motorola POWER PC microprocessor line—starting with the
MPC7400—through the addition of a 128 bit vector execution unit. This short
vector SIMD unit operates concurrently with the existing integer and floating-
point units. This new execution unit provides for highly parallel operations,
allowing for the simultaneous execution of four arithmetic operations in a single
clock cycle for single-precision floating-point data.
Technical details are given in the Motorola AltiVec manuals [85, 86].

SSE. In the Pentium III streaming SIMD Extension (SSE) Intel added 70 new
instructions to the IA-32 architecture.

The SSE instructions of the Pentium III processor introduced new general
purpose floating-point instructions, which operate on a new set of eight 128 bit
SSE registers. In addition to the new floating-point instructions, SSE technology
also provides new instructions to control cacheability of all data types. SSE
includes the ability to stream data into the processor while minimizing pollution
of the caches and the ability to prefetch data before it is actually used. Both
64 bit integer and packed floating-point data can be streamed to memory.

Technical details are given in Intel’s architecture manuals [55, 56, 57] and the
C++ compiler manual [50]. The features relevant for this thesis are summarized
in Appendix D.1.

SSE 2. Intel’s Pentium 4 processor is the first member of a new family of pro-
cessors that are the successors to the Intel P6 family of processors, which include
the Intel Pentium Pro, Pentium II, and Pentium III processors. New SIMD in-
structions (SSE 2) were introduced in the Pentium 4 processor architecture and
included floating-point SIMD instructions, integer SIMD instructions, as well as
conversion of packed data between XMM registers and MMX registers.

The added floating-point SIMD instructions allow computations to be per-
formed on packed double-precision floating-point values (two double-precision
values per 128 bit XMM register). Both the single-precision and double-precision

3.1 Short Vector Extensions 39

floating-point formats and the instructions that operate on them are fully com-
patible with the IEEE Standard 754 for binary floating-point arithmetic.

Technical details are given in Intel’s architecture manuals [55, 56, 57] and the
C++ compiler manual [50]. The features relevant for this thesis are summarized
in Appendix D.1.

SSE 3. The newly developed 90nm version of Intel’s Pentium 4 (formerly code
name Prescott) includes the SSE 3 technology with improved performance over
SSE and SSE 2. SSE 3 incorporates new instructions that help to significantly
improve (7) complex arithmetic evaluation, (i7) the evaluation of quantities like
dot products, (4iz) the conversion to integer for applications using x87 floating
point code, and (iv) 128-bit unaligned memory accesses.

Technical details are given in Intel’s software developer’s guide [63] and the
technology journal [64].

IPF. Support for Intel’s SSE is maintained and extended in Intel’s and HP’s
new generation of Itanium processor family (IPF) processors when run in the
32 bit legacy mode. Native 64 bit instructions exist which split the double-
precision registers in a pair of single-precision registers with support of two-way
SIMD operations. In the software layer provided by Intel’s compilers these new
instructions are emulated by SSE instructions.

Technical details are given in Intel’s architecture manuals [59, 60, 61] and the
C++ compiler manual [50].

3DNow! Since AMD requires Intel x86 compatibility for business reasons, they
implemented the MMX extensions in their processors too. However, AMD specific
instructions were added, known as “3DNow!”.

AMD’s Athlon has instructions, similar to Intel’s SSE instructions, designed
for purposes such as digital signal processing. One important difference between
the Athlon extensions (Enhanced 3DNow!) and those on the Pentium III are that
no extra registers have been added in the Athlon design. The AMD Athlon XP
features the new 3DNow! professional extension which is compatible to both En-
hanced 3DNow! and SSE. AMD’s new 64 bit architecture x86-64 and the first
processor of this new line called Hammer supports a superset of all current x86
SIMD extensions including SSE 2.

Technical details can be found in the AMD 3DNow! manual [4] and in the
x86-64 manuals [8, 9].

Double FPU. Within the PowerPC 440 FP2 the standard FPU is replicated
leading to a double FPU that is capable to operate well on complex numbers.
Up to four floating-point operations (one two-way vector fused multiply-add op-
eration) can be issued every cycle. This double FPU has many similarities to
industry-standard two-way short vector SIMD extensions like AMD’s 3DNow! or
Intel’s SSE2 and SSE 3. In particular, data to be processed by the double FPU
has to be naturally aligned on 16-byte boundaries in memory.

3. Short Vector Hardware

However, the PowerPC 440 FP2 features some characteristics that are different
from standard short vector SIMD implementations:

(¢) Non-standard fused multiply-add (FMA) operations required for complex
multiplications, (i7) computationally expensive data reorganization within 2-way
registers, and (4i¢) cheap intermix of scalar and vector operations.

| A more detailed description of the PowerPC 440 FP2 processor and the double
| FPU extension can be found in Section 3.4.

| Overview. Table 3.1 gives an overview over the SIMD floating-point capabilities
found in current microprocessors. In the context of this thesis, especially Intel’s

SSE 2 and AMD’s 3DNow! extensions as well as IBM’s double FPU are of
importance. Thus, only 2-way vectorization is of concern.

Vendor Name n-way | Prec. Processor Compiler
Intel SSE 4-way | single Pentium II1 MS Visual C++
Pentium 4 Intel C4-+ Compiler
GNuU C Compiler 3.0
Intel SSE 2 2-way | double Pentium 4 MS Visual C++
(Willamette) Intel C4+ Compiler
GnNU C Compiler 3.0
Intel SSE 3 2-way | double Pentium 4 MS Visual C++
(Prescott) Intel C++ Compiler 8.0
GNu C Compiler 3.3.3
Intel IPF 2-way | single Itanium Intel C++ Compiler
Itanium 2
AMD 3DNow! 2-way | single K6, K6-11 MS Visual C++
GNU C Compiler 3.0
AMD Enhanced | 2-way | single Athlon (K7) MS Visual C++
3DNow! GNu C Compiler 3.0
AMD 3DNow! 4-way | single Athlon XP MS Visual C++
Professional Athlon MP Intel C++ Compiler
Gnu C Compiler 3.0
Motorola AltiVec 4-way | single MPCT74xx G4 GNU C Compiler 3.0
Apple C Compiler 2.96
IBM Double FPU | 2-way | double | PowerPC 440 FP2 IBM XL Century

Table 3.1: Short vector SIMD extensions providing floating-point arithmetic found in general
purpose microprocessors. In the context of this thesis, especially Intel’s SSE 2 and AMD’s
3DNow! extensions as well as IBM’s double FPU are of importance.

3.1 Short Vector Extensions 41

3.1.3 Data Streaming

One of the key features needed in fast multi-media applications is the efficient
streaming of data into and out of the processor. Multi-media programs such
as video decompression codes stress the data memory system in ways that the
multilevel cache hierarchies of many general-purpose processors cannot handle ef-
ficiently. These programs are data intensive with working sets bigger than many
first-level caches. Streaming memory systems and compiler optimizations aimed
at reducing memory latency (for example, via prefetching) have the potential to
improve these applications’ performance. Current research in data and compu-
tational transforms for parallel machines may provide for further gains in this
area.

3.1.4 Software Support

Currently, application developers have three common methods for accessing
multi-media hardware within in a general-purpose micro processor: (i) They
can invoke vendor-supplied libraries that utilize the new instructions, (i) rewrite
key portions of the application in assembly language using the multi-media in-
structions, or (i4¢) code in a high-level language and use vendor-supplied macros
that make available the extended functionality through a simple function-call like
interface.

System Libraries. The simplest approach to improving application perfor-
mance is to rewrite the system libraries to employ the multi-media hardware.
The clear advantage of this approach is that existing applications can immedi-
ately take advantage of the new hardware without recompilation. However, the
restriction of multi-media hardware to the system libraries also limits potential
performance benefits. An application’s performance will not improve unless it in-
vokes the appropriate system libraries, and the overheads inherent in the general
interfaces associated with system functions will limit application performance
improvements. Even so, this is the easiest approach for a system vendor, and
vendors have announced or plan to provide such enhanced libraries.

Assembly Language. At the other end of the programming spectrum, an
application developer can benefit from multi-media hardware by rewriting key
portions of an application in assembly language. Though this approach gives a
developer great flexibility, it is generally tedious and error prone. In addition,
it does not guarantee a performance improvement (over code produced by an
optimizing compiler), given the complexity of today’s microarchitectures.

Programming Language Abstractions. Recognizing the tedious and difficult
nature of assembly coding, most hardware vendors which have introduced multi-
media extensions have developed programming-language abstractions. These give
an application developer access to the newly introduced hardware without having

42 3. Short Vector Hardware

to actually write assembly language code. Typically, this approach results in
a function-call-like abstraction that represents one-to-one mapping between a
function call and a multi-media instruction.

There are several benefits of this approach. First, the compiler (not the de-
veloper) performs machine-specific optimizations such as register allocation and
instruction scheduling. Second, this method integrates multi-media operations
directly into the surrounding high-level code without an expensive procedure call
to a separate assembly language routine. Third, it provides a high degree of porta-
bility by isolating from the specifics of the underlying hardware implementation.
If the multi-media primitives do not exist in hardware on the particular target
machine, the compiler can replace the multi-media macro by a set of equivalent
operations.

The most common language extension supplying such primitives is to pro-
vide within the C programming language function-call like intrinsic (or built-in)
functions and new data types to mirror the instructions and vector registers. For
most SIMD extensions, at least one compiler featuring these language extensions
exists. Examples include C compilers for HP’s MAX-2, Intel’s MMX, SSE, and
SSE 2, Motorola’s AltiVec, and Sun’s VIS architecture as well as the GNU C
compiler which supports a broad range of short vector SIMD extensions.

Each intrinsic directly translates to a single multi-media instruction, and the
compiler allocates registers and schedules instructions. This approach would be
even more attractive to application developers if the industry agreed upon a
common set of macros, rather than having a different set from each vendor. For
the AltiVec architecture, Motorola has defined such an interface. Under Windows
both the Intel C++ compiler and Microsoft’s Visual Studio compiler use the same
macros to access SSE, SSE 2, and SSE 3. The Intel C++ compiler for Linux uses
these macros as well. These two C extensions provide defacto standards on the
respective architectures.

Vectorizing Compilers. While macros may be an acceptably efficient solu-
tion for invoking multi-media instructions within a high-level language, subword
parallelism could be further exploited with automatic compilation from high-level
languages to these instructions. Some vectorizing compilers for short vector SIMD
extensions exist, including the Intel C++ compiler, the PGI Fortran compiler,
the Vector C compiler and the IBM’s XL C compiler for BlueGene/L. The latter
compiler will be assessed together with the vectorization methods introduced in
this thesis in Section 10.2. |

3.2 Intel’s Streaming SIMD Extensions

The Pentium III processor was Intel’s first processor featuring the streaming
SIMD extensions (SSE). SSE instructions are Intel’s floating-point and integer
SIMD extensions to the P6 core. They also support the integer SIMD operations

3.2 Intel’s Streaming SIMD Extensions 43

(MMX) introduced by it’s predecessor, the Pentium II processor.
Appendix D.1 lists all SSE 2 instructions relevant in the context of this thesis.

SSE offers general purpose floating-point instructions that operate on a set
of eight 128 bit SIMD floating-point registers. Each register is considered to
be a vector of four single-precision floating-point numbers. The SSE registers
are not aliased onto the floating-point registers as are the MMX registers. This
feature enables the programmer to develop algorithms that can utilize both SSE
and MMX instructions without penalty. SSE also provides new instructions to
control cacheability of MMX technology and IA-32 data types. These instructions
include the ability to load data from memory and store data to memory without
polluting the caches, and the ability to prefetch data before it is actually used.
These features are called data streaming. SSE provides the following extensions
to the IA-32 programming environment: (i) one new 128 bit packed floating-point
data type, (#) 8 new 128 bit registers, and (i¢7) 70 new instructions.

The 128 bit Packed Floating Data Type

The new data type is a vector of single-precision floating-point numbers, capable
of holding exactly four single-precision floating-point numbers.

The new SIMD floating-point unit (FPU) can be used as a replacement for
the standard non-SIMD FPU. Unlike the MMX extensions, the new floating-point
SIMD unit can be used in parallel with the standard FPU.

The New Registers

The 8 new registers are each capable of holding exactly one 128 bit SSE data
type. Unlike the standard Intel FPU, the SSE FPU registers are not viewed as
register stack, but rather are directly accessible by the names XMMO through XMM7.

Unlike the general purpose registers, the new registers operate only on data,
and can not be used to address memory (which is sensible since memory locations
are 32 bit addressable). The SSE control status register MXCSR provides the usual
information such as rounding modes, exception handling, for a vector as a whole,
but not for individual elements of a vector. Thus, if a floating-point exception is
raised after performing some operation, one may be aware of the exception, but
cannot tell where in the vector the exception applies to.

Through the introduction of new registers the Pentium III processor has oper-
ating system visible state and thus requires operating system support. The integer
SIMD (MMX) registers are aliased to the standard FPU’s registers, and thus do
not require operating system support. Operating system support is needed if on
a context switch the contents of the new registers are to be stored and loaded

properly.

44 3. Short Vector Hardware

| x| xeem [xae) | x4 |

| vien | vofsm | wsfsm | valsm |

]

| x1 opv1 (sP) | x20p¥2(5P) [X3 0pY3 (SP) | X4 opY 4(5P) |

Figure 3.1: Packed SSE operations.

| xiem [xeem [xaem | x|
‘ Y1(sP) ‘ v2 lisp) (v3 isp) | Y4 (SP) T
y
oP
Y Y Y
| x| xese) | xase) | xaopvase |

Figure 3.2: Scalar SSE operations.

3.2.1 The SSE Instructions

The 70 SSE instructions are mostly SIMD floating-point related, however, some
of them extend the integer SIMD extension MMX, and others relate to cache
control. There are: (7) data movement instructions, (i¢) arithmetic instructions,
(ii%) comparison instructions, (7v) conversion instructions, (v) logical instructions,
(vi) shuffle instructions, (viz) state management instructions, (viii) cacheability
control instructions, and (iz) additional MMX SIMD integer instructions. These
instructions operate on the MMX registers, and not on the SSE registers.

The SSE instructions operate on either all (see Figure 3.1) or the least signif-
icant (see Figure 3.2) pairs of packed data operands in parallel. In general, the
address of a memory operand has to be aligned on a 16 byte boundary for all
instructions.

The data movement instructions include pack/unpack instructions and data
shuffle instructions that enable to “mix” the indices in the vector operations.
The instruction SHUFPS (shuffle packed, single-precision, floating-point) is able
to shuffle any of the packed four single-precision, floating-point numbers from
one source operand to the lower two destination fields; the upper two destination
fields are generated from a shuffle of any of the four floating-point numbers from
the second source operand (Figure 3.3). By using the same register for both

3.2 Intel’s Streaming SIMD Extensions 45

4.. YT} | ¥4 . Y1} [{X4 ... X1} | {Xd...X]}*I

Figure 3.3: Packed shuffle SSE operations.

sources, SHUFPS can return any combination of the four floating-point numbers
from this register.

When stored in memory, the floating-point numbers will occupy consecutive
memory addresses. Instructions exist which allow data to be loaded to and from
memory, in 128 bit, 64 bit, or 32 bit blocks, that is: (i) instructions for moving
all 4 elements to and from memory, (i) instructions for moving the upper two
elements to and from memory, (44) instructions for moving the lower two elements
to and from memory, and (iv) instructions for moving the lowest element to and
from memory.

Some important remarks about the SSE instruction set have to be made.

e The SSE instruction set offers no means for moving data between the stan-
dard FPU registers and the new SSE registers, as well as no provision for
moving data between the general purpose registers and the new registers
(without converting types). '

e Memory access instructions, as well as instructions which use a memory
address as an operand like the arithmetic instruction MULPS (which can use
a memory address or a register as one of it’s operands) distinguish between
16 byte aligned data and data not aligned on a 16 byte boundary. Instruc-
tions exist for moving aligned and unaligned data, however, instructions
which move unaligned data suffer a performance penalty of 9 to 12 extra
clock cycles. Instructions which are able to use a memory location for an
operand (such as MULPS) assume 16 byte alignment of data. If unaligned
data is accessed when aligned data is expected, a general protection error
Is raised.

e The Pentium III SIMD FPU is a true 32 bit floating-point unit. It does all
computations using 32 bit floating-point numbers. The standard FPU on
the Intel IA-32 architecture defaults all internal computations to 80 bits
(IEEE 754 extended), and truncates the result if less than 80 bits is

46 3. Short Vector Hardware

needed. Thus, noticeable differences can be observed when comparing
single-precision output from the two units.

Documentation. The SSE instruction set is described in the IA-32 manu-
als [55, 56]. Further information on programming Intel’s SSE can be found in
the related application notes [49, 52] and the [A-32 optimization manual [53].
Further information on data alignment issues is given in [51].

3.2.2 The SSE 2 Instructions

The streaming SIMD extensions 2 (SSE 2) add 144 instructions to the IA-32
architecture and allow the Pentium 4 to process double-precision data using short
vector SIMD instructions. In addition, extra long integers are supported.

SSE 2 is based on the infrastructural changes already introduced with SSE.
In particular, the SSE registers are used for SSE 2, and all instructions appear
as two-way versions of the respective four-way SSE instructions. Thus, most
restrictions of the SSE instructions are mirrored by the SSE 2 instructions. Most
important, the memory access restriction is the same as in SSE: Only naturally
(16 byte) aligned vectors can be accessed efficiently. Even the same shuffle SSE
operations are implemented as two-way SSE 2 versions.

The SSE 2 arithmetic offers full IEEE 754 double-precision arithmetic and
thus is can be used in science and engineering applications. SSE 2 is designed
to replace the standard FPU. This can be achieved by utilizing scalar SSE 2
arithmetic operating on the lower word of the two-way vector. The main impact
is that floating-point code not utilizing the SSE 2 extension becomes obsolete and
again the complexity of high-performance programs is raised.

SSE 2 introduces the same data alignment issues as SSE. Efficient memory
access requires 16-byte aligned vector memory access.

Documentation. The SSE 2 instruction set is described in the IA-32 manu-
als [55, 56]. Further information on programming Intel’s SSE 2 can be found in -
the IA-32 optimization manuals [53, 58]. Further information on data alignment
issues is given in [51].

3.2.3 The SSE 3 Instructions

The streaming SIMD extensions 3 (SSE 3) add 11 instructions to the SSE 2
instruction set. Thereby, they don’t so much add new functionality as much as
they improve the efficiency of the previous SSE and SSE 2 instructions.

Among the new instructions the most important are the following.

Overall, five instructions have been added to significantly accelerate complex
arithmetics. In contrast to SSE 2 it is possible to perform a mix of addition and
subtraction operations, hence removing the need for changing the sign of some

3.3 AMD’s 3DNow! 47

operands and therefore saving instructions. These new instructions are useful for
evaluating complex products on packed single and double-precision data.

While most SIMD instructions operate in parallel, four SSE 3 instructions
allow intraoperand addition and subtraction both on single and double precision
operands, meaning that contiguous data elements from the same operand are
used to produce a result data element.

One instruction has been added to ease the converting of SIMD packed to x87
floating point data.

One instruction now allows 128-bit unaligned data load, designed to avoid
cache line splits and thus increasing memory transfer performance.

Three instructions combine loads with duplication of data elements saving the
need for a shuffle instruction on the loaded data.

Documentation. The newly added SSE 3 instructions are described in [63].

3.3 AMD’s 3DNow!

AMD is Intel’s competitor in the field of x86 compatible processors. In response
to Intel’s MMX technology, AMD released the 3DNow! technology line which is
MMX compatible and additionally features two-way floating-point SIMD opera-
tion. In the first step, 21 instructions were included defining the original 3DNow!
extension. The original 3DNow! was released with the AMD K6-1I processor.
Up to two 3DNow! instructions could be executed per clock cycle, including one
two-way addition and one two-way multiplication leading to a peak performance
of four floating-point operations per cycle.

With the introduction of the AMD Athlon processor, AMD has taken 3DNow!
technology to the next level of performance and functionality. The AMD Athlon
processor features an enhanced version of 3DNow! that adds 24 instructions to
the existing 21 original 3DNow! instructions. These 24 additional instructions
include: () 12 standard SIMD instructions, (i) 7 streaming memory access in-
structions, and (7i¢) 5 special DSP instructions.

AMD’s Athlon XP and Athlon MP processor line introduces SSE compatibility
by the introduction of 3DNow! professional. Thus, Athlon XP and Athlon MP
processors are both enhanced 3DNow! and SSE compatible.

The 3DNow! extension shares the FPU registers and features a very fast
switching between MMX and the FPU. Thus, no additional operating system
support is required. Information about the AMD 3DNow! extension family can
be found in the related manuals [5, 4, 7, 6]

With AMD’s next generation processor (codename Hammer [8, 9]), a new
64 bit architecture called x86-64 will be introduced. This architecture features
128 bit media instructions and 64 bit media programming. The new 64 bit instruc-
tion set will support a superset of all IA-32 SIMD extensions, thus supporting
MMX, all 3DNow! versions, SSE, and SSE 2.

48 3. Short Vector Hardware

3.4 The IBM BlueGene/L Supercomputer

IBM’s BlueGene/L (BG/L) planned to be in operation in 2005 will be an order
of magnitude faster than the Earth Simulator, currently being the number one
on the Top 500 list. BlueGene/L is developed to run large scale simulations on
64k processors in parallel making new classes of problems solvable. Its custom
double floating-point unit provides support for complex arithmetic. However, as
a non-standard feature, it is difficult to utilize this FPU efficiently when not using
complex arithmetic explicitly.

Efficient computation of fast Fourier transforms (FFTs) is required in many
applications planned to be run on BlueGene/L. In most of these applications,
very fast one-dimensional FFT routines for small problem sizes (up to 2048 data
points) running on a single processor are required as major building blocks.

The BlueGene/L machine (3] will be built from 65,536 PowerPC 440 FP2
processors connected by a 3D torus network leading to 360 Tflop/s peak perfor-
mance. The Earth Simulator, currently leading the ToP 500 list, provides 40
Tflop/s peak performance. A small prototype of the BlueGene/L machine was
built recently. In contrast to BlueGene/L’s 700 MHz target frequency, the current
prototype runs at only 500 MHz.

BlueGene/L’s Floating-Point Unit. To boost BlueGene/L’s floating-point
performance, a custom “double FPU” is applied: The standard FPU is replicated
within the PowerPC 440 FP2 leading to a double FPU that is capable to operate
well on complex numbers: Up to four floating-point operations (one 2-way vector
fused multiply-add operation) can be issued every cycle. This double FPU has
many similarities to industry-standard 2-way short vector SIMD extensions like
AMD’s 3DNow! or Intel’s SSE 2. In particular, data to be processed by the double
FPU has to be naturally aligned on 16-byte boundaries in memory.

However, the PowerPC 440 FP2 features some characteristics that are differ-
ent from standard short vector SIMD implementations: (¢) Non-standard fused
multiply-add (FMA) operations required for complex multiplications, (i) com-
putationally expensive data reorganization within 2-way registers, and (7iz) cheap
intermix of scalar and vector operations.

Without tailor-made adaptation of established short vector SIMD vectoriza-
tion techniques to the specific features of BlueGene/L’s double FPU no high-per-
formance short vector code can be obtained.

3.5 Vector Computers vs. Short Vector SIMD

Vector computers are supercomputers used for large scientific and engineering
problems, as many numerical algorithms allow those parts which consume the
majority of computation time to be expressed as vector operations. This holds es-
pecially for almost all linear algebra algorithms [42, 20]. It is therefore a straight-

3.5 Vector Computers vs. Short Vector SIMD 49

forward strategy to improve the performance of processors used for numerical
data processing by providing an instruction set, tailor-made for vector operations
as well as suitable hardware.

This idea materialized in vector architectures comprising specific vector in-
structions, which allow for componentwise addition, multiplication and/or divi-
sion of vectors as well as the multiplication of the vector components by a scalar.
Moreover, there are specific load and store instructions enabling the processor to
fetch all components of a vector from the main memory or to move them there.

The hardware counterparts of vector instructions are the matching vector reg-
wsters and vector units. Vector registers are memory elements which can contain
vectors of a given maximum length. Vector units performing vector operations,
as mentioned above, usually require the operands to be stored in vector registers.

These systems are specialized machines not comparable to general purpose
processors featuring short vector SIMD extensions. The most obvious difference
on the vector extension level is the larger machine vector length, the support
for smaller vectors and non-unit memory access. In vector computers actually
multiple processing elements are processing vector data, while in short vector
SIMD extensions only a very short fixed vector length is supported.

Example 3.1 (Vector Computers) The Cray T90 multiprocessor uses Cray Research Inc.
custom silicon CPUs with a clock speed of 440 MHz, and each processor has a peak performance
of 1.7 Gflop/s. Each has 8 vector registers with 128 words (vector elements) of eight bytes
(64 bits) each.

Current vector computers provided by NEC range from deskside systems {the NEC SX-6i
featuring one CPU and a peak performance of 8 Gflop/s) up to the currently most powerful
computer in the world: the Farth Simulator featuring 5120 vector CPUs running at 500 MHz
leading to a peak performance of 41 Tflop/s.

The high performance of floating-point operations in vector units is mainly due
to the concurrent execution of operations (as in a very deep pipeline).

There are further advantages of vector processors as compared with other
processors capable of executing overlayed floating-point operations.

e As vector components are usually stored contiguously in memory, the access
pattern to the data storage is known to be linear. Vector processors exploit
this fact using a very fast vector data fetch from a massively interleaved
main memory space.

o There are no memory delays for a vector operand which fits completely into
a vector register.

e There are no delays due to branch conditions as they might occur if the
vector operation were implemented in a loop.

In addition, vector processors may utilize the super-scalar principle by executing
several vector operations per time unit [21].

e

50 3. Short Vector Hardware

Parallel Vector Computers

Most of the vector supercomputer manufacturers produce multiprocessor systems
based on their vector processors. Since a single node is so expensive and so finely
tuned to memory bandwidth and other architectural parameters, the multipro-
cessor configurations have only a few vector processing nodes.

Example 3.2 (Parallel Vector Computers) A NEC SX-5 multi node configuration can in-
clude up to 32 SX-5 single node systems for the SX-6A configuration.

However, the latest vector processors fit onto single chips. For instance, NEC SX-6 nodes
can be combined to form much lager systems in multiframe configuration (up to 1024 CPUs
are combined) or even the earth simulator with its 5120 CPUs.

3.5.1 Vectorizing Compilers

Vectorizing compilers were developed for the vector computers described above.
Using vectorizing compilers to produce short vector SIMD code for discrete lin-
ear transforms in the context of adaptive algorithms is not straightforward. As
the vectorizing compiler technology originates from completely different machines
and in the short vector SIMD extensions other and new restrictions are found,
the capabilities of these compilers are limited. Especially automatic performance
tuning poses additional challenges to vectorizing compilers as the codes are gen-
erated automatically and intelligent search is used which conflicts with some
compiler optimization. Thus compiler vectorization and automatic performance
tuning cannot be combined easily. The two leading adaptive software systems
for discrete linear transforms cannot directly use compiler vectorization in their
code generation and adaptation process.

FFTW. Due to the recursive structure of FFTW and the fact that memory access
patterns are not known in advance, vectorizing compilers cannot prove alignment,
and unit stride properties required for vectorization. Thus FFTW cannot be
vectorized automatically using compiler vectorization.

SPIRAL. The structure of code generated by SPIRAL implies that such code
cannot be vectorized directly by using vectorizing compilers without some hints
and changes in the generated code. A further difficulty is introduced by opti-
mizations carried out by SPIRAL. Vectorizing compilers only vectorize rather
large loops, as in the general case the additional cost for prologue and epilogue
has to be amortized by the vectorized loop. Vectorizing compilers require hints
about which loop to vectorize and to prove loop carried data dependencies. It
is required to guarantee the proper alignment. The requirement of a large num-
ber of loop iterations conflicts with the optimal code structure, as in discrete
linear transforms a small number (sometimes as small as the extension’s vector
length) turns out to be most efficient. In addition, straight line codes cannot be
vectorized.

3.5 Vector Computers vs. Short Vector SIMD 51

3.5.2 Vector Computer Libraries

Traditional vector processors have typically vector lengths of 64 and more ele-
ments. They are able to load vectors at non-unit stride but feature a rather high
startup cost for vector operations [65]. Codes developed for such machines do
not match the requirements of modern short vector SIMD extensions. Highly
efficient implementations for DFT computation that are portable across different
conventional vector computers are not available. For instance, high-performance
implementations for Cray machines were optimized using assembly language [66)].
An example for such an library is Cray’s proprietary SCILIB which is also available
as the Fortran version SCIPORT which can be obtained via NETLIB [78].

. BB L

Chapter 4

Fast Algorithms for Linear Transforms

This chapter defines discrete linear transforms and fast algorithms for such trans-
forms, following the methodology introduced by the SPIRAL team. The approach
is based on Kronecker product factorizations of transform matrices and on recur-
sive factorization rules.

4.1 Discrete Linear Transforms

This section defines discrete linear transforms as a foundation for the specific
discussion of fast Fourier transform algorithms in the next section. In this thesis,
the main focus is on the discrete Fourier transform and its fast algorithms based
on the Cooley-Tukey recursion.

Discrete linear transforms are represented by real or complex valued matrices and
their application means to calculate a matrix-vector product. Thus, they express
a base change in the vector space of sampled data.

Definition 4.1 (Real Discrete Linear Transforms) Let M € R™" z €
R™, and y € R™. The real linear transform M of z is obtained by the matrix-

vector multiplication
y=Mz.

Examples include the Walsh-Hadamard transform and the sine and cosine trans-
forms.

Definition 4.2 (Complex Discrete Linear Transforms) Let M € C™*"
z € C* and y € C™. The complex linear transform M of z is again given
by the matrix-vector multiplication

y=Mz.

A particularly important example and the main focus in this thesis is the discrete
Fourier transform (DFT), which, for size N, is given by the following definition.

Definition 4.3 (Discrete Fourier Transform Matrices) The matrix DFTy
is defined for any N € N with i = v/~1 by

DFTy = (/N |k, £=0,1,...,N - 1).

ke

The values wkf = e2mik¢/N

=e are called twiddle factors.

4.1 Discrete Linear Transforms 53

Example 4.1 (DFT Matrices) The first five DFT matrices are

1 1 1
DFT, = (1), DFT, = (11 > DFTy= | 1 e-2m/3 g—tmif3
1 -1 1 e—4mi/3 o—2mi/3
1 1 1 1 1
1 1 1 1 1 e-2mi/5 =4mi/5 o—6mi/5 —8mi/b
DFT, = I =i -1 i , DFT; = 1 e—4mi/s ,—8xi/5 ,—2mi/5 —6mi/5
1 —1 1 —} 1 e—6mi/5 o—2mi/5 —8mwi/S —4mi/5
1 i -1 —1 1 e=Bmi/s o—6mi/5 ,—4mi/5 ,—2mi/5

DFTy is the largest DFT matrix having only trivial twiddle-factors, i.e., 1,4, —1, —i.

Definition 4.4 (The Discrete Fourier Transform) The discrete Fourier
transform y € CV of a data vector z € CV is given by the matrix-vector product

y=DFTy x.

Fast Algorithms

An important property of discrete linear transforms is the existence of fast algo-
rithms. Typically, these algorithms reduce the complexity from O(N?) arithmetic
operations, as required by direct evaluation via matrix-vector multiplication, to
O(Nlog N) operations. This complexity reduction guarantees their very efficient
applicability for large V.

Mathematically, any fast algorithm can be viewed as a factorization of the
transform matrix into a product of sparse matrices. It is a specific property
of discrete linear transforms that these factorizations are highly structured and
can be written in a very concise way using the formalisms of Kronecker (tensor)
products [109], in combination with permutation and twiddle factor matrices.

The permutation operator L™ sorts the components of z according to their index
modulo n. Thus, components with indices equal to 0 modn come first, followed
by the components with indices equal to 1 modn, and so on.

Definition 4.5 (Stride Permutation) For a vector x € C™ with

mn—1
T = Z rrep” with e =e ®e*, and 1z €C,
k=0
the stride permutation L7™ is defined by its action on the tensor basis of C™".
Ly (el ® e;") =e]' ®e;.
An important class of matrices arising in FFT factorizations are diagonal matrices

whose diagonal elements are roots of unity. Such matrices are called twiddle factor
matrices.

54 4. Fast Algorithms for Linear Transforms

Definition 4.6 (Twiddle Factor Matrices) Let wy = €*™/" denote the Nth
root of unity. The twiddle factor matrix, denoted by T."", is a diagonal matrix
defined by

Tﬁ"(e?@e?)zw%n(e;"@)e;’), 1=0,1,...,m~-1,7=0,1,...,n— 1,

m—1n—1 m—1
mn __ iy)
T = D D witn = D Qni(wmn),
=0 j=0 j=

where Q, (@) = diag(l, a,...,a" 1)k

Example 4.2 (DFT,) Consider a factorization, i.e., a fast algorithm, for DFTy4. Using the
mathematical notation from [109] it follows that

1 1 1 1
DFT= | ;1
1 —i =1
100 1 0 1000 1000 (4.1)
o1l 0 1 0100 0010
I N S 0010 0100
01| 0 -1 000 i 0001
= (DFT, ®1,) - T - (I,®DFTy) - Li.

T3 denotes a twiddle matrix, i.e., T4 = diag(1,1,1,). L3 denotes a stride permutation which
swaps the two middle elements x; and z5 in a four-dimensional vector, i.e.,

Zo Zo
T2 | 14 | =
z1 2 x3
X3 z3

Automatic Derivation of Fast Algorithms

In [23] a method has been introduced that automatically derives fast algorithms
for a given transform and size. This method is based on algebraic symmetries of
the transformation matrices utilized by the software package AREP [22], a library
for the computer algebra system GAP [43] used in SPIRAL. AREP is able to
factorize transform matrices and to find fast algorithms automatically. In [96] an
algebraic derivation of fast sine and cosine transform algorithms is described.

Recursive Rules

One key element in factorizing a discrete linear transform matrix into sparse
factor matrices is the application of breakdown rules or simply rules.

4.1 Discrete Linear Transforms 5Y5)

A rule is a sparse factorization of the transform matrix and breaks down the
computation of the given transform into transforms of smaller size. These smaller
transforms, which can be of a different type, can be further expanded using the
same or other rules. Thus rules can be applied recursively to reduce a large linear
transform to a number of smaller discrete linear transforms.

In breakdown rules, the transform sizes have to satisfy certain conditions
which are implicitly given by the rule. Here the transform sizes are functions of
some parameters which are denoted by lowercase letters. For instance, a break-
down rule for DFTy, whose size N has to be a product of at least two factors
(say m and n), is given by an equation for DFT,,,. In such a rule, m and n are
subsequently used as parameters in the right-hand side of the rule.

Examples of discrete linear transforms featuring rules include the Walsh-
Hadamard transform (WHT), the discrete cosine transform (DCT) used, for in-
stance, in the JPEG standard [100], as well as the fast Fourier transform [16].

In the following examples F,, P., and P” denote permutation matrices, S,
denotes a bidiagonal and D,, a diagonal matrix [110].

Example 4.3 (Walsh-Hadamard Transforms) The WHTy for N = 2F is given by
k times

WHTy =DFTy®... @ DFT,.

A particular example of a rule for this transform is

k
WHT 2 = [(Lysrw iy ® WHT e, @ Ly yytiie) s K=Ky 4 + k. (4.2)

i=1

Example 4.4 (Discrete Cosine Transforms) The DCT y for arbitrary N is given by
DCTy = (cos ((¢+1/2)kn/N) | k,£=0,1,...,N —1).
A corresponding rule is
DCT2y = Py, (DCT, @85, DCT,, Day) Py, (In @ DFT2) Py,
Example 4.5 (Discrete Fourier Transforms) A rule for the DFTy matrix is given by
DFT,., = (DFT,,®1L,) T, (1, ® DFT,) L7"" . (4.3)

(4.3) is the Cooley-Tukey FFT written in the Kronecker product notation [65].

Transforms of higher dimension are also captured in this framework and naturally
possess rules. For example, if M is an N x N transform, then the corresponding
two-dimensional transform is given by M ® M. Using the respective property of
the tensor product, the rule

MM =(M®Ily)(IyoM) (4.4)

is obtained.

The set of rules used in SPIRAL is constantly growing. A set of important rules
can be found in [97].

56 4. Fast Algorithms for Linear Transforms

Formulas and Base Cases

Eventually a mathematical formula is obtained when all transforms are expanded
into base cases.

Example 4.6 (Fully Expanded Formula for WHTg) According to rule (4.2), WHTg can
fully be expanded into

(DFT; ® I4)}(I, ® DFT; ® I)(1s ® DFT3)
with DFTy being the base case.

Trees and Recursion

The recursive decomposition of a discrete linear transform into smaller ones using
recursion rules can be expressed by trees. FFTW calls these trees plans while
SPIRAL calls these trees rule trees. In these trees the essence of the recursion—
the type and sizes of the child transforms—is specified.

As an example, rule trees for a recursion rule that breaks down a transform
of size N into two smaller transforms is discussed.

Figure 4.1 shows a tree of a discrete linear transform of size N = mn that is
decomposed into smaller transforms of the same type of sizes m and n. When
specific rules are used, the nodes have to carry the rule name.

Figure 4.1: Tree representation of a discrete linear transform of size N = mn with one
recursion step applied.

The node marked with mn is the parent node of the child nodes lying directly
below, which indicate here transforms of sizes m and n.

Analogously, Figure 4.2 shows a tree of a discrete linear transform of size
N = kmn where in a first step the transform is decomposed into discrete linear
transforms of size £ and mn. In a second step the transforms of size mn are
further decomposed into transforms of size m and n.

Figure 4.2: Right-expanded tree, two recursive steps.

In general, the splitting rules are not commutative with respect to m and n.
Thus, the trees are generally not symmetric. Left- and right-child nodes have to
be distinguished which is done simply by left and right branches.

4.1 Discrete Linear Transforms 97

In every tree there exists a root node, i.e., the upmost node which has no
“parents”. There are lowest nodes without “children” which are the leave nodes.

The upmost recursive decomposition in a tree, the one of the root node, is
called the top level decomposition. If its two branches are equivalent the tree is
called balanced, if they are nearly equivalent it is said to be “somewhat” bal-
anced. But there also exist trees that are not balanced at all. They may be even
extremely unsymmetrical. A tree with just leafs as left children is formed strictly
to the right. Such s tree is called right-expanded, its contrary left-ezpanded.

The Search Space

By selecting different breakdown rules, a given discrete linear transform expands
to a large number of formulas that correspond to different fast algorithms. For
example, for N = 2% there are k— 1 ways to apply rule (4.3) to DFTy. A similar
degree of freedom recursively applies to the smaller DFTs obtained, which leads
to O(5%/k%?) different formulas for DFTq. In the case of the DFT, allowing
breakdown rules other than (4.3) further extends the formula space.

The problem of finding an efficient formula for a given transform translates
into a search problem in the space of formulas for that specific transform. The
size of the search space depends on the rules and transforms actually used.

The conventional approach for solving the search problem is to make an edu-
cated guess (with some machine characteristics as hints) which formula might lead
to an efficient implementation and then to continue by optimizing this formula.

The automatic performance tuning systems SPIRAL and FFTW use a differ-
ent approach. Both systems find fast implementations by intelligently looking
through the search space. SPIRAL uses various search strategies and fully ex-
pands the formulas. FrTw uses dynamic programming and restricts its search
to the coarse grain structure of the algorithm. The rules are hardcoded into the
executor while the fine grain structure is fixed by the codelet generator at compile
time.

Chapter 5

Matrix Multiplication

Many mathematical problems involve various matrix calculations. In most cases
these calculations can be implemented quite easily. These simple programs may
be sufficient for small problems but with increasing problem size they turn out
to be slower than one would expect. As a result of inefficient memory manage-
ment they are unable to take advantage of the potential performance of modern
computer systems in a satisfactory way.

The reason for this phenomenon is the high amount of data transfers occur-
ring between different levels of the memory hierarchy if the problem is too large
to fit into the (highest level) cache. For example, when performing a -matrix mul-
tiplication it is important that both factor matrices and the product matrix fit
into cache. Otherwise data that is still to be used has to be expunged from the
cache in order to free cache space for other data from the main memory.

As matrix multiplication is the most important operation in high performance
linear algebra software it is usually carried out using vendor supplied routines
optimized for specific computer systems. In most cases this is the relevant BLAS
routine, for which standard syntax and semantics have been established, and for
which an individually optimized version can be produced using ATLAS (Whaley
et al. [115]). Software utilizing optimized BLAS routines is besides being efficient
also widely portable.

5.1 The Problem Setting

Example 5.1 illustrates the straight-forward way for implementing a matrix mul-
tiplication of an m X n matrix A and an n X p matrix B using three nested
loops.

Example 5.1 (Naive Matrix Multiplication Implementation)

C=0.
DO0i=1¢tom
DO j=1ton
DOk =1+top
C(i,3) = C(i,j) + A(i,k)*B(k,j)
END DO
END DO
END DO

5.1 The Problem Setting 59

First the element c¢;; is calculated by calculating the inner product of the first
row of A and the first column of B. Then 7 is increased and the first column of
B is, after only one access, for the moment not needed any more. But in fact
every element of B has to be accessed m times. If the problem is too large to fit
into cache this data will be expunged sometime. So for every value of 4 (which
means m times) every element of B has to be loaded into cache, but is accessed
only one time. This results in a very large number of cache misses, which leads
to a significant performance deterioration. Fig. 5.1 shows (as represented by the
code fragment given above) the floating-point performance of the ijk-variant of
matrix multiplication (with m =n = p).

Floating-Point Performance

Percentage Mflop/s
100 % 7 T 500
80 % T — 400
60 % -1 300
40% — -1 200
20% — 100
0% z | 1 L] 0
0 200 400 600 800 1000

Matrix dimension n.

Figure 5.1: Floating-point performance of the ijk-variant of multiplying n X n matrices on
one processor of an SGI Origin 2000.

One technique to overcome this undesirable performance deterioration is
blocking, where the calculations are subdivided and applied to small submatrices.
The final result is put together from the solutions of the subproblems. Of course
a block size should be chosen which allows the subproblems to fit into cache com-
pletely. Thus, the block size is a hardware dependent parameter which needs to
be set before execution to guarantee an optimal performance. Algorithms with
such parameters are called cache aware.

The matrix multiplication routine of ATLAS is based on a blocking algorithm.
First, the input matrices A and B are copied to block major format, if the problem
is large enough to justify the resulting O(n?) overhead. The blocksize is chosen
such that when multiplying one block of A and one block of B resulting in one
block of C, there is at least enough space in the L1 cache for the whole A-
block, two columns of the B-block and one cache line from the C-block to ensure

60 5. Matrix Multiplication

maximal L1 cache reusage for block multiplication. The code for this cache-
contained matrix multiplication is generated by ATLAS after having empirically
determined the optimal blocksize with its feedback loop search engine.

The algorithm wound around the block multiplication works after the same
principle. ATLAS allocates space for the whole matrix A, one column of B and
one block of C' to be copied into, which ensures optimal L2 cache reusage, and
calls the generated block multiplication routine for the blocks inside the cache
resident area. For further details see Whaley, Petitet and Dongarra [115]. Fig.
5.2 shows the floating-point performance of ATLAS’ dgemm routine which runs at
nearly 80 % of peak performance.

Floating-Point Performance

Percentage Mflop/s
100 % T T 500
80% - — 400
60 % [300
40% H — 200
20% i — 100
0%] | I I 0
0 600 1200 1800 2400 3000

Matrix dimension n.

Figure 5.2: Floating-point performance of ATLAS’ dgemm routine on one processor of an SGI
. Origin 2000.

Chapter 6

A Portable SIMD API

Short vector SIMD extensions are advanced architectural features. Utilizing the
respective instructions to speed up applications introduces another level of com-
plexity and it is not straightforward to produce high performance codes.

The reasons why short vector SIMD instructions are hard to use are the following:
(i) They are beyond standard (e. g., C) programming. (#4) They require an un-
usually high level of programming expertise. (zii) They are usually non-portable.
(iv) Compilers in general don’t (can’t) use these features to a satisfactory extent.
(v) They are changed/extended with every new architecture. (vi) It is not clear
where and how to use them. (vii) There is a potential high payoft (factors of 2,
4, and more) for small and intermediate problem sizes whose solution cannot be
accelerated with multi-processor machines but there is also potential speed-up
for large scale problems.

As discussed in Chapter 3, a sort of common programming model was established
recently. The C language has been extended by new data types according to the
available registers and the operations are mapped onto (intrinsic or built-in func-
tions) functions. This way, a portable SIMD API consisting of a set of C macros
was defined that can be implemented efficiently on all current architectures and
features all necessary operations. Using this programming model, a programmer
does not have to deal with assembly language. Register allocation and instruction
selection is done by the compiler. However, these interfaces are not standardized
neither across different compiler vendors on the same architecture nor across ar-
chitectures. But for any current short vector SIMD architecture at least one
compiler featuring this interface is available.

The machine models introduced in Section 7.4 are based on this portable
SIMD API, which serves two main purposes: (i) to abstract from hardware pe-
culiarities, and (i2) to abstract from special compiler features.

The vector straight-line codes generated by the MAP vectorizer (see Chap-
ter 7) which do not use the introduced straight-line code MAP backend (see
Chapter 9) use the newly defined portable SIMD API in the scope of this thesis.

Abstracting from Special Machine Features

In the context of this thesis all short vector SIMD extensions feature the function-
ality required in intermediate level building blocks. However, the implementation
of such building blocks depends on special features of the target architecture.

62 6. A Portable SIMD API

For instance, a complex reordering operation like a permutation has to be im-
plemented using register-register permutation instructions provided by the target
architecture. In addition, restrictions like aligned memory access have to be han-
dled. Thus, a set of intermediate building blocks has to be defined which (¢) can
be implemented on all current short vector SIMD architectures and (i7) enables
all discrete linear transforms to be built on top of these building blocks. This set
is called the portable SIMD APIL

Appendix D describes the relevant parts of the instruction sets provided by
current short vector SIMD extensions. As the instruction set of IBM’s BG/L
supercomputer is classified, it has not been included.

Abstracting from Special Compiler Features

All compilers featuring a short vector SIMD C language extension provide the
required functionality to implement the portable SIMD API. But syntax and
semantics differ from platform to platform and from compiler to compiler. These
specifics have to be hidden in the portable SIMD API.

Table 3.1 (on page 40) shows that for any current short vector SIMD extension
compilers with short vector SIMD language extensions exist.

Short vector SIMD extensions are advanced architectural features. Utilizing
the respective instructions to speed up applications introduces another level of
complexity and it is not straightforward to produce high performance codes.

The reasons why short vector SIMD instructions are hard to use are the
following: (i) They are beyond standard (e. g., C) programming. (ii) They re-
quire an unusually high level of programming expertise. (4i7) They are usually
non-portable. (iv) Compilers in general don’t (can’t) use these features to a sat-
isfactory extent. (v) They are changed/extended with every new architecture.
(vi) It is not clear where and how to use them.

6.1 Definition of the Portable SIMD API

The portable SIMD API includes macros of four types: (i) data types, (i) con-
stant handling, (#i%) arithmetic operations, and (iv) extended memory operations.
An overview of the provided macros is given below. Appendix E contains exam-
ples of actual implementations of the portable SIMD API on various platforms.

Data Types
The portable SIMD API introduces three data types, which are all naturally

aligned: (i) Real numbers of type float or double (depending on the extension)

have type simd_real. (i7) Complex numbers of type simd_complex are pairs
of simd_real elements. (iii) Vectors of type simd_vector are vectors of v ele-
ments of type simd_real. For two-way short vector SIMD extensions the type

6.1 Definition of the Portable SIMD API 63

simd_complex is equal to simd_vector. Table 6.1 summarizes the data types
supported by the portable SIMD API.

API type Elements

simd_real single or double

simd_complex | a pair of simd_real

simd_vector native data type, vector length v,
for two-way equal to simd_complex

Table 6.1: Data types provided by the portable SIMD API.

For two-way short vector SIMD extensions the type simd_complex is equal to
simd_vector.

Nomenclature. In the remainder of this section,variables of type simd_vector
are named t, t0, t1 and so forth. Memory locations of type simd_vector are
named *v, *v0 , *vl and so forth. Memory locations of type simd_complex
are named *c, *c0, *c1 and so forth. Memory locations of type simd_real are
named *r, *r0, *r1 and so forth. Constants of type simd_real are named r, r0,
rl and so forth. '

Table 6.1 summarizes the data types supported by the portable SIMD APIL
The portable SIMD API includes macros of five types: (i) data types, (7)
constant handling, (¢i7) arithmetic operations, (iv) reorder operations, and (v)
memory access operations. An overview of the provided macros is given be-
low. The portable SIMD API can be extended to arbitrary vector length. Thus,
optimization techniques like loop interleaving (Gatlin and Carter [41]) can be
implemented on top of the portable SIMD APL)

In this chapter, the SIMD API is defined for an arbitrary vector length v. As for
the remaining part of this thesis only Intel’s SSE 2 and AMD’s 3DNow! extensions
as well as IBM’s double FPU are featured, this universal representation can be
disregarded for the sake of simplicity. Only 2-way SIMD extensions will be of
further concern.

Constant Handling

The portable SIMD API provides declaration macros for the following types of
constants whose values are known at compile time: (¢) the zero vector, (i7) ho-
mogeneous vector constants (all components have the same value), and (24) in-
homogeneous vector constants (all components may have a different value).
There are three types of constant load operations: (i) load a constant vector
(both homogeneous and inhomogeneous) that is known at compile time, (i7) load
a constant vector (both homogeneous and inhomogeneous) that is precomputed at
run time (but not known at compile time), and (ii4) load a precomputed constant

64 6. A Portable SIMD API

real number and build a homogeneous vector constant with that value. Table 6.2
shows the most important macros for constant handling.

Macro Type

DECLARE_CONST (name, r) compile time homogeneous
DECLARE_CONST_2(name, r0, ri) compile time inhomogeneous
DECLARE_CONST_4(name, r0, rl, r2, r3) | compile time inhomogeneous
LOAD_CONST (name)
LOAD_CONST_SCALAR (*r) precomputed homogeneous real
LOAD_CONST_VECT (*v) precomputed vector

[SIMD_SET_ZERO() | compile time homogeneous |

compile time —)

Table 6.2: Constant handling operations provided by the portable SIMD API. r, »0, r1, r2
and 73 denote variables of type simd.real. *r denotes a memory location holding a value of
type simd_real. *v denotes a memory location holding a value of type simd_vector.

Arithmetic Operations

The portable SIMD API provides (with and without constant operators) real
addition, subtraction, and multiplication operations, the unary minus, four types
of fused multiply-add operations, and a complex multiplication. See Table 6.3 for
a summary.

Macro Operation

VEC_ADD(v, v0, vl) v=vy+um

VEC_SUB(v, v0, v1) V=g — U

VEC_ACCA(v, v1, v2,..., vw) |v=(vy.l+ - +wnv,..., 0,1+ F+v,1)
VEC_ACCS(v, v1, v2,..., w) {v={(vy.l— - —v1.1,...,0,. 1 = rs —w,.0)
VEC_UMINUS(v, v0) v = —g

VEC_CHS(v, v0, pos) v=(v9.1,...,—v0.p0S,...,00.V)
VEC_MUL(v, v0, vl) v =1Ug X V1

VEC_MUL_CONST(v, *v0, v1) V=g X U1

VEC_MUL_MEM(v, r, v0) vl=rxuv.l,v2=1r Xl

VEC_MADD (v, vO0, vi, v2) U= Uy X U1 + Vg

VEC_MSUB(v, v0, vi, v2)

V=g XU — V2

VEC_NMSUB(v, v0, vi, v2)

v=—(vg X V1 — v2)

VEC_FMCA(v, *v0, vi, v2)

V=g X V1 + V2

VEC_FMCS (v, *v0, vi, v2)

V=7 X V1 — Vg

COMPLEX_MULT(vO, vi, v2,

Vo = U X VUq —V3 X Up

Table 6.3: Arithmetic operations provided by the portable SIMD APIL. v, v0, v1, v2, v3, v4,
v5 and vv denote variables of type simd_vector. pos denotes the position of the desired vector
element.

6.1 Definition of the Portable SIMD API 65

Reorder Operations

The SIMD API supports the vector reorder operations VEC_COPY, VEC_UNPACK,
VEC_SWAP2 and VEC_SHUFFLE2. They are summarized in Table 6.4. The
VEC_SWAP2 and VEC_SHUFFLE2 operation are defined for 2-way SIMD architec-
tures only.

Macro Operation

VEC_COPY(v, vO0) v =g

VEC_UNPACK(v, vl,..., vi, pos) v = (v1.pos, ..., v,.pos)
VEC_SWAP2(v, v0Q) v.1 =v9.2,v.2 =170.1
VEC_SHUFFLE2(v, vO0, v1, posl, pos2) | v.1 =vy.posl, v.2 = vg.pos2

Table 6.4: Vector reorder operations provided by the SIMD API. v, v0, v1 and vv denote vari-
ables of type simd_vector. pos denotes the desired position inside the vector of length v. The
VEC_SWAP2 and VEC_SHUFFLE?2 instruction are defined for 2-way SIMD extensions exclusively.

Memory Access Operations

The portable SIMD API provides load and store instructions both for whole
vectors of type simd_vector (VEC_LOAD, VEC_STORE) as well as for single data
elements of type simd_real (SCA_LOAD, SCA_STORE). In the latter case, the lo-
cations of the simd_real value that is to be loaded/stored inside the source and
destination vectors must be specified. Table 6.5 gives the syntactic and semantic
details of the memory access operations supported by the SIMD APIL.

Macro Operation
VEC_LOAD(v, *v0) v = *Up
SCA_LOAD(v.pos1, *vO.pos2) v.pos1 = xvgy.pos2
VEC_STORE(*v, v0) *U = 1g
SCA_STORE(*v.posl, v0.pos2) | xv.posl = vg.pos2

Table 6.5: Memory access operations provided by the SIMD API. v and v0 denote variables of
type simd_vector. *v and *v0 denote memory loacations holding values of type simd_vector.
posl and pos2 denote the desired position inside the vector of length v.

Specific 2-way Operations

The portable SIMD API provides macros for operations which are specific to vec-
tors where v = 2 i.e., 2-way SIMD. Tabel 6.6 shows how v-way macros translate
to specific 2-way macros necessary in the context of this thesis.

66 6. A Portable SIMD API

v-way Macro 2-way Macro
VEC_CHS (v, v0, 1) VEC_CHS_LO(v, v0)
VEC_CHS(v, vO0, 2) VEC_CHS_HI(v, v0)

| VEC_MUL_CONST (v, *v0, v1) | VEC_MULCONST2(v, vi, *v0) |
VEC_UNPACK(v, v1, v2, 1) VEC_UNPACK_LO(v, vi, v2)
VEC_UNPACK (v, vi, v2, 2) VEC_UNPACK_HI(v, vi, v2)
VEC_SHUFFLE2(v, v0, vi, 2, 1) [VEC_SHUFFLEO1(v, vO0, vi)
VEC_LOAD (v, *vO0) VEC_LOAD_Q(v, *vO0)
SCA_LOAD(v.1, *v0.pos2) VEC_LOAD_D_LO(v.1, *v0.pos2)
SCA_LOAD(v.2, *v0.pos2) VEC_LOAD_D_HI(v.2, *v0.pos2)
VEC_STORE(*v, v0) VEC_STORE_Q(*v, v0)
SCA_STORE (#v.pos1, v0.1) VEC_STORE_D_LO(*v.pos1, v0)
SCA_STORE (*v.pos1, v0.2) VEC_STORE_D_HI (*v.pos1, v0)

Table 6.6: Specific 2-way operations provided by the SIMD API. v, v0, vl and v2 denote
variables of type simd_vector. *v and *v0 denote memory loacations holding values of type
simd_vector. posl and pos2 denote the desired position inside the vector of length v.

Chapter 7

Automatic Vectorization of
Straight-Line Code

A few years ago major vendors of general purpose microprocessors started to in-
clude short vector single instruction, multiple data (SIMD) extensions into their
instruction set architectures to enable exploitation of data level parallelism found
in multi-media applications. Examples of SIMD extensions supporting both inte-
ger and floating-point operations include Intel’s SSE, AMD’s 3DNow!, and Mo-
torola’s AltiVec.

SIMD extensions have the potential to significantly speed up implementations
in all areas where (i) performance is crucial, and (ii) the relevant algorithms
exhibit fine grain parallelism.

Currently, most short vector extensions can be utilized by either high language
extensions, or by vectorizing compilers.

The available SIMD extensions mirror the underlying hardware features by
means of data types and intrinsic or built-in functions that can be utilized by
hand-coding. However, the scalar code produced by automatic performance tun-
ing software packages (see Chapter 1) often has thousands of lines which makes
hand-coding using short vector language extensions unfeasible.

Besides, the usefulness of vectorizing compilers is rather limited because they
mostly deal with loop-level parallelism and the underlying scalar code has to be
of a special structure to allow for this. Thus, vectorizing compilers are not useful
in the vectorization of scalar code emitted by FFTW, SPIRAL, or ATLAS because
the code’s structure does not allow for loop vectorization.

This chapter introduces the MAP vectorizer that uses a completely different ap-
proach to automatically extracts 2-way SIMD parallelism out of a sequence of
operations from static single assignment (SSA) straight-line code while maintain-
ing data locality and utilizing special features of short vector SIMD extensions.

The MAP vectorizer uses a non-deterministic pattern matching system (i) to
find two scalar instructions which can be paired into one SIMD instruction defined
by the virtual vector architecture’s machine model and (i7) to perform a fusion
of the corresponding operand variables to 2-way SIMD variables, i. e., cells. The
inherent difficulty of this vectorization process results from the requirement to
keep the semantics of the scalar computation.

The newly introduced vectorizer boasts the following benefits.
(i) The total number of instructions is reduced by utilizing short vector in-

68 7. Automatic Vectorization of Straight-Line Code

structions. In the optimal case, every pair of scalar floating-point instructions is
joined into one equivalent SIMD floating-point instruction, cutting the instruc-
tion count into half. (é4) The register allocator benefits from the SIMD register
file being twice as wide as in the scalar case. (i74) The pairing of memory access
instructions on interleaved complex numbers significantly contributes to a reduc-
tion of the amount of integer instructions needed for effective address calculation.

7.1 Vectorization of Straight Line Code

The goal of the MAP vectorizer is to transform a scalar computation into short
vector code while achieving the best possible utilization of SIMD resources. It pro-
duces vectorized code either (i) via a source-to-source transformation delivering
macros compliant with the portable SIMD API (see Chapter 6) [32] and addi-
tionally providing support for FMA instructions, or (i¢) via a source-to-assembly
transformation utilizing the MAP backend (see Chapter 9).

The vectorizer aims at vectorizing straight-line code containing arithmetic op-
erations, array access operations and index computations. Such codes cannot be
handled by established vectorizing compilers mainly focussing on loop vectoriza-
tion [50]. Even standard methods for vectorizing straight-line code (Larsen and
Amarasinghe [79]) fail in producing high performance vector code as well.

7.2 The Vectorization Approach

The MAP vectorizer uses a backtracking search engine to automatically extract
2-way SIMD parallelism out of scalar code blocks by fusing pairs of scalar tem-
porary variables into SIMD variables, and by replacing the corresponding scalar
instructions by vector instructions as illustrated by Fig. 7.1.

(A8](o]LE]
@ & =
add(4,B,C)
d2(AD F
add@EF) — (AD,BE,CF)

Figure 7.1: 2-way Vectorization. Two scalar add instructions are transformed into a vector
add? instruction. The result of the vector addition of the fusions AD and BE is stored in CF.

Tuples of scalar variables, i.e., fusions, are declared such that every scalar
variable appears in exactly one of them. Each fusion is assigned one SIMD
variable.

7.3 Benefits of The MAP Vectorizer 69

[Scalar] ACC | PAR1 LPAR?J

Figure 7.2: SIMD Vectorization of Scalar ADD/SUB. Two scalar instructions, i.e., ad-
dition and subtraction, are transformed into semantically equivalent SIMD instructions. Three
different ways (i.e., accumulate (ACC), parallel 1 (PAR1) and parallel 2 (PAR2)) to do so

exist.

On the set of SIMD variables, SIMD instructions have to perform exactly
the same computation as the originally given scalar instructions do on the scalar
variables. This is achieved by rules specifying how each pair of scalar instructions
is replaced by a sequence of semantically identical SIMD instructions operating
on the corresponding SIMD variables.

Rules for pairs of scalar binary instructions allow up to three different, seman-
tically equivalent ways to do so, as illustrated by Fig. 7.2. Locally, this allows
vectorizations of different efficiency. Globally, it widens the search space of the
vectorizer’s backtracking search engine.

The vectorizer’s goal is to yield an optimal utilization of SIMD resources. This
target and the fact that the backtracking engine uses a pick first result strategy
to minimize vectorization runtime does not necessarily lead to the best possible
vectorization in terms of an overall minimum of SIMD instructions but allows the
vectorization of large straight line codes (see Table 7.4 for vectorization runtimes
of large FFTW codelets).

The MAP vectorizer utilizes an automatic fallback to different vectorization
levels in its vectorization process. Each level provides a set of pairing rules with
different pairing restrictions. Thus, more restrictive rules are just applied to
highly parallel codes resulting either in efficient vectorization or no vectorization
at all. Less restrictive rules address a broader range of codes but result in less
efficient vectorization.

This concept assists the searching for good vectorizations needing a minimum
of data reorganization, provided such vectorizations exist. The fallback to a less
restrictive vectorization level allows to vectorize even codes featuring less parallel
parts to some extent.

7.3 Benefits of The M AP Vectorizer

Thus, the vectorizer exhibits the following benefits:

Halving the Instruction Count. Optimally, every pair of scalar floating-point

70 7. Automatic Vectorization of Straight-Line Code

instructions is joined into one equivalent SIMD floating-point instruction, thus
cutting the instruction count into half.

Diminishing Data Spills and Reloads. The wider SIMD register files allow
for a more efficient computation. The register allocator indirectly benefits from
the register file being twice as wide as in the scalar case.

Accelerating Effective Address Calculations. The pairing of memory ac-
cess instructions potentially reduces the effort needed for calculating effective
addresses by fifty percent.

7.4 Virtual Machine Models

To keep the amount of hardware specific details in the vectorization process as
small as possible, virtual machine models are utilized. These models are sets of
virtual instructions emulating the semantics of operations without incorporating
any architecture specific syntactic idioms.

The usage of such models enables portability and extensibility as the vectorizer
can be adapted to produce code for any processor architecture supporting 2-way
SIMD floating-point instructions easily. Also, future 2-way SIMD instructions,
supported by the successors of existing processors, can be easily included into a
model’s instruction set allowing the vectorizer to extract them.

The virtual machine models used in the vectorizer are abstractions of scalar as
well as 2-way SIMD architectures, i. e., the vectorizer transforms virtual scalar to
virtual 2-way SIMD instructions. During the optimization process the resulting
instructions are rewritten into instructions that are actually available in a specific
architecture’s instruction set. For that purpose there are specific machine models
for (¢) AMD K7, (ii) AMD K6, and (i7) Intel P4 . While the vectorizer’s machine
model is target architecture independent, the virtual machine models for AMD’s
K7, and K6, as well as Intel’s P4 are target architecture specific.

Recent hardware development has resulted in a wide range of computer sys-
tems having SIMD style instruction set extensions included. These have a lot
in common but there are vendor characteristic differences. Even a single vendor
enhances and widens the number of SIMD instructions from one hardware gener-
ation to the next. For instance, some SIMD architectures (e.g., AMD’s K6, K7)
include intraoperand style (accumulate) instructions while others, e.g., Intel’s
Pentium 4 don’t. Intel’s new SSE 3 SIMD instruction set feature some of them.

Taking this fact into consideration, the following approach is pursued in se-
lecting suitable instructions in the vector code generation process for a specific
target architecture.

Principally, all instructions of the vectorizer’s virtual machine model are avail-
able to the vectorization engine with respect to any addressed target architecture.
Even those, for which no equivalent instruction is actually implemented there.
Nevertheless, those having an equivalent in a target processor’s machine model

7.4 Virtual Machine Models 71

are favored. Vector instructions not supported by the target machine model are
only used if otherwise no vectorization is possible at all, because they would
have to be rewritten into supported instructions in the optimization step directly
following vectorization (see Chapter 8).

The Vectorizer’s Virtual Machine Model. The instructions supported and
therefore extracted by the vectorizer are: (i) load of a SIMD or scalar variable,
(i2) store of a SIMD or scalar variable, (ii4) swap, unpack, and copy, (iv) multipli-
cation by floating-point constants, (v) unary change sign instructions, (vi) binary
parallel instructions, and (vii) binary intraoperand (accumulate) instructions.
Table 7.2 illustrates the syntactic and semantic details of the instructions.

Virtual Machine Model of Intel’s P4. The virtual machine model of In-
tel’s Pentium 4 supports all instructions of the vectorizer’s machine model ex-
cept the intraoperand (i.e., accPP2, accNN2, accNP2, accPN2) instructions, the
change sign instructions, and the swap2 instruction. Additionally, it supports a
shuffleXY2 instruction. For details, see Table 7.2.

Virtual Machine Model of AMD’s K6. The virtual machine model of AMD’s
K6 processor supports all instructions of the vectorizer’s machine model except
some intraoperand (i.e., accNN2, accNP2, accPN2) instructions, and the swap2
instruction. For details, see Table 7.2.

Virtual Machine Model of AMD’s K7. The virtual machine model of AMD'’s
K7 processor comprises the same virtual instructions as the vectorizer’s machine
model except the accPN2 instruction. For details, see Table 7.2.

7.4.1 The Virtual Scalar Machine Model

The instructions defined by the virtual scalar machine model are semantically
compliant with SSA code, i.e., they can be directly mapped into C or Fortran
code. Besides, the model complies with the output of FFTw’s original scalar
code generator. SPIRAL and ATLAS codes need to be parsed and translated into
a format compatible to the virtual scalar machine model before being processed.

Assumptions Underlying the Scalar Model

Any virtual model for scalar machines has to include the following basic op-
erations: (i) load from, as well as (i4) store to memory instructions, (4i¢) the
unary negation instruction neg, instructions for multiplication by a constant, i. e.,
mulc, (iv) binary addition, i.e., add, subtraction, i.e., sub, and multiplication,
i.e., mult instructions. Table 7.1 gives examples of such instructions.

Registers. An arbitrarily large number of registers is assumed such that all
scalar variables can be treated as registers. Any individual register is called a
scalar cell which corresponds to a temporary scalar variable A,B, . ..

72 7. Automatic Vectorization of Straight-Line Code

Memory M[i], i = 0,1,...,N~1is considered to be an array of scalar cells.

Instructions. There are memory access instructions which load data from a
memory location to a register or, respectively, store data from a register to mem-
ory. There are unary and binary instructions which, in the first case, have one
register and, in the second case have two registers or one register and floating-
point constant as their source operands. The result of such an operation is stored
in a destination register.

Virtual Scalar Instruction Effect
load(M[i],A) A = M[i]
| store(a,M[i]) [M[] =4 |
[mulc(4, (K),B) [B = A * (K)]
| neg(4,B) [B:=-4 |
add(A,B,C) C:=A+8B
sub(4,B,C) C:=A-B
mul(A,B,C) C := 4 %B

Table 7.1: Virtual Scalar Instructions. The first column contains examples of scalar
instructions operating on scalar variables A,B, ... as well as on a floating-point constant K.
The second column illustrates the effect of executing these instructions.

7.4.2 The Virtual Vector Machine Model

The virtual vector machine model is based on the portable SIMD API introduced
in Chapter 6. It includes virtual instructions needed because of their semantics
but not necessarily included in the actually available target architecture instruc-
tion set. Thus, these instructions have to be emulated by a sequence of the
cheapest available target architecture vector instructions. This is done in a local
rewriting step that directly follows the vectorization step in order to keep the
vectorization process as simple as possible (see Chapter 8). Moreover, it makes
sense to perform the rewriting step not until a vectorization result is available.

To summarize, the virtual vector machine model includes all instructions
needed to yield a valid vectorized DAG that allows to be rewritten for any avail-
able and future hardware.

Assumptions Underlying the Vector Model

Registers. An arbitrarily large number of registers is assumed. Each register is
a 2-way SIMD cell and corresponds to a temporary variable A,B, The lower
part and the higher part of a 2-way SIMD cell can be addressed by A.1 and A.h,
assuming that A = (A.1,A.h).

7.4 Virtual Machine Models 73

Memory M[i], i = 0,1...,N/2-1 is considered to be an array of 2-way mem-
ory cells. The lower part and the higher part of a 2-way memory cell can be
addressed by M[i] .1 and M[i] .h, assuming that M[1] = (M[i].1,M[i].h).

Instructions. There are unary and binary instructions available. Unary instruc-
tions have one 2-way register or a memory location as source operand. Binary
instructions have two source operands which are 2-way registers or a 2-way reg-
ister and a 2-way floating point constant. The result of any instruction is stored
into a 2-way register or into a memory location as well.

The instructions supported by the vector machine model are grouped into
seven categories: (i) load of a SIMD or float variable, (ii) store of a SIMD or
float variable, (ii7) unary swap and binary unpack, (iv) multiplication by floating-
point constants, (v) unary change of sign operations, (vi) binary parallel opera-
tions, and (vii) binary intraoperand (accumulate) operations. Table 7.2 gives an
overview of these instructions.

7.4.3 Scalar and Vector Main Memory Layout

The main memory is physically identical in both, scalar and vector computation.
Nevertheless, as already described in Sections 7.4.1 and 7.4.2, the indexing of
memory locations is different. While indexing to scalar memory locations always
addresses one single data value, indexing a vector memory location has a value
tuple (i.e., 2-way memory cell) as its target. Each of the cell components, i.e.,
the lower and the higher part, can be individually addressed.

Under these assumptions, locations used by memory access instructions from
the scalar machine model have to be aliased to their corresponding memory lo-
cations usable by vector machine model instructions. The following definitions
unambiguously specify these mappings and explicitly ascertain whether memory
is accessed in scalar or vector layout. The introduced memory layout will be used
throughout this chapter whenever memory access is an issue.

#if SINGLE_PREC

typedef float scalar;
#else

typedef double scalar;
#endif

typedef struct {
scalar 1, h;
} vector;

union {
scalar scal(N];
vector vect([N/2];
M

vector A, B, C, D, E, F, G, H, T;

74 7. Automatic Vectorization of Straight-Line Code
Type Vector Instruction ffect Supported
A1 := M[i].1,
loadQ2(M[i],4) AR = ME% h
Load A-l TN - Py P4,K6,K7,Vec
Instructions loadDL2(M[i] .pos,A) és =1/ 1.1p ’
(load)(2) i h := M[l] pos;
loadDH2(M[i] .pos,4A) pos := 1/ h
M{il.1 := A.1,
storeQZ(A,M[i]) MEi% h := A.h
Store M[i]'l — A. v P4,K6,K7,Vec
Instructions storeDL2(A.pos,M[i]) os 1= 1 / 1.1p ’
(storeX2) ﬁ[i] .h = A.pos;
storeDH2(A.pos,M[1]) pos :=1/h
B.1 :=A.1,
copy2(4A,B) B.h := Ah P4,K6,K7,Vec
B.1 := A.h,
swap2(A,B) Bh = A1 K7,Vec
B. = A.1xK.1,
Unary milc2(h, (K.1KB),B) | o3 o L | PAKGKT, Vee
Instructions B.l p _A 1 -
(unaryX2) chsL2(4,B) B.h := A.h
B.1 := A.1,
chsH2(A,B) B.h i= -Ah K6,K7,Vec
B.1 := -A.1,
chsLH2(A,B) B h := -A.h
C.1 := A.1+4B.1,
add2(4,B,C) C.h := A.h+B.h
. C.1 := A.1-B.1,
sub2(4,B,C) C.h := Ah-B.h P4,K6,K7,Vec
. C.1 := A.1%B.1,
Binary mul2(4,B,0) C.h := A.h*B.h
Instructions C1 = A1+A 1
(binaryX2) accPP2(A,B,0C) Ch = B.1+B.0 K6,K7,Vec
accNN2(4,B,C) ¢.1:= A.1-A.h,
C.h := B.1-B.h
C1 = AIchn, | Ve
acchiP2(4,B,C) C.h := B.1+B.h
C.1 := A.1+A.h,
accPN2(4,B,C) Ch = B1-Bn | Ve
unpackL2(4,B,C) 8111 i gi’
o P4,K6,K7,Vec
unpackH2(4,B,C) C.1:=Ab,
? C.h := B.h
C.1 := A.X,
shuffleXY2(4,B,C) C.h := B.Y P4
X,:=1/nh

Table 7.2: Currently Supported Vector Instructions. The first column contains the type
of the vector instruction, the second column contains all available vector instructions {containing
temporary SIMD variables A,B,...). The third column illustrates the effect of executing these
instructions. The fourth column shows which machine models support each instruction.

7.5 The Vectorization Engine 75

According to the above definitions, memory accesses such as load(M.scallil),
loadQ(M.vect[j]), loadDL(M.vect[j].h), and loadDH(M.vect[j].1l) with
i=0,1,...,N-1and j = 0,1,...,N/2-1 are well defined.

7.5 The Vectorization Engine

The vectorization engine expects a scalar DAG (directed acyclic graph) repre-
sented by straight line code consisting of virtual scalar instructions in static sin-
gle assignment (SSA) form as input. In the vectorization engine all virtual scalar
instructions are replaced by virtual SIMD instructions. To achieve this goal, the
vectorization engine has to find pairs of scalar floating-point instructions (and fu-
sions of their respective operands), each yielding—in the optimal case—one SIMD
floating-point instruction. In some cases, additional SIMD instructions may be
required to obtain a SIMD construct that is semantically equivalent to the orig-
inal pair of scalar instructions. The vectorization algorithm described hereby
utilizes the infrastructure provided by MAP’s vectorization engine. To describe
the vectorization algorithm some definitions and explanations for describing the
concepts of the vectorization engine, are provided.

Pairing

Pairing rules specify ways of transforming pairs of scalar instructions into a
single SIMD instruction or a sequence of semantically equivalent SIMD instruc-
tions. A pairing rule often provides several alternatives to do so. The rules used
in the vectorizer are classified according to the type of the scalar instruction
pair: unary (i.e., multiplication by a constant), binary (i.e., addition and sub-
traction), and memory access type (i. e., load and store instructions). Pairings of
the following instruction combinations are supported: (i) consecutive load/load,
(1) arbitrary load/load, (¢i¢) consecutive store/store, (iv) arbitrary store/store,
(v) unary/unary, (vi) binary/binary, (vii) unary/binary, (viii) unary/load, and
(iz) load/binary. Not all of the above pairing combination allow for an optimal
utilization of SIMD resources.

A pairing ruleset comprises various pairing rules. At the moment, the pairing
ruleset does not comprise a rule for vectorizing an odd number of scalar store
instructions.

Two scalar instructions are vectorized, i.e., paired, if and only if neither of
them is already paired and the instruction types are matching a pairing rule from
the utilized pairing rule set.

Fusion

Two scalar operands S and T are assigned together, i.e., fused, to form a SIMD
variable of layout ST = (S,T) or TS = (T,S) if and only if they are the corre-

76 7. Automatic Vectorization of Straight-Line Code

sponding operands of instructions considered for pairing and neither of them is
already involved in another fusion. The position of the scalar variables S and
T inside a SIMD variable (either as its lower or its higher part) strictly defines
the fusion, i.e., ST # TS, see Fig. 7.2. A special fusion type containing the same
scalar variable twice, i.e., TT = (T,T), is needed for some types of code partly
containing non-parallel program flow.

An instruction pairing rule forces the fusion layout for the corresponding scalar
operands. For two scalar binary instructions, three substantially different layouts
for assigning the four operands to two SIMD variables exist, namely (i) accu-
mulate (ACC), (i2) parallel 1 (PARI1), and (i) parallel 2 (PAR2). Fig. 7.2
illustrates their semantics in more detail.

A fusion X12 = (X1,X2) is compatible to another fusion Y12 = (Y1,Y2) if and
only if X12 = Y12 or X1 = Y2 and X2 = Y1. In the second case, a swap operation
is required as and additional “special transformation” to use Y12 whenever X12
is needed. The number of special transformations is minimized in a separate
optimization step to minimize the runtime of the vectorization process. Chapter 8
describes this along other optimization techniques in more detail.

Vectorization Levels

A vectorization level embodies a subset of rules from the overall set of pairing
rules. Different subsets belonging to different levels comprise pairing rules of
different versatility. Generally, more versatile rule sets lead to less efficient vec-
torization but allow to operate on codes featuring less parallelism. In contrast,
less versatile rule sets are more restrictive in their application and are thus only
usable for highly parallel codes. They assure that if a good solution exists at all,
it is found resulting in highly performant code.

The vectorization engine utilizes three levels of vectorization in its search pro-
cess as follows: First, a vectorization is sought that utilizes the most restrictive
level, i.e., full vectorization. This vectorization level only provides pairing rules
for instructions of the same type and allows quadword memory access operations
exclusively. If full vectorization is not obtainable, a fallback to a less restrictive
vectorization level, i.e., semi vectorization, is made. This level provides versatile
pairing rules for instructions of mixed type and allows doubleword memory access
operations. In the worst case, if neither semi vectorization nor full vectorization
is feasible, a fallback is made to a vector implementation of scalar code, i.e.,
null vectorization is applied. Null vectorization rules allow to vectorize any code
by leaving half of each SIMD instruction’s capacity unused. Even null vector-
ization results in better performance than using legacy x87 code. Besides, null
vectorization is used as default, without trying full and semi vectorization, when
it is known in advance that vectorization is impossible because, €. g., of an odd
number of scalar store instructions, etc.

Table 7.3 illustrates which rules are available for each vectorization level.

7.5 The Vectorization Engine 7

Operations Vectorization Level
semi | full | null

Store/Store X X -~
Load/Load X X -~
Load/Binary X - -~
Binary/Load X - -~
Unary/Unary X X -
Unary/Any X - -
Any/Unary X — -~
Binary/Binary X X -
Null Vectorization - — X

Table 7.3: Rulesets for Three Vectorization Levels. Semi vectorization uses all transfor-
mation rule groups except null vectorization rules. Full vectorization only applies rules which
refer to pairs of the same instruction type, i.e., binary/binary, unary/unary, ...In null vec-
torization there is no vectorization applied at all. Each scalar instruction is straightforwardly
transformed into a semantically equivalent SIMD instruction.

7.5.1 The Vectorization Algorithm

MAP’s vectorization algorithm implements a depth first search with chronological
backtracking. The search space is given by appying rules given by the current
vectorization level in an arbitrary order. Depending on how versatile/restrictive
the utilized pairing rule set is, there can be many, one or no possible solution at
all.

The vectorization algorithm performs the following steps:

Step 1. Initially, no scalar variables are fused and no scalar instructions are paired.
The process starts by pairing two arbitrary store instructions and fusing the
corresponding source operands. Should the algorithm backtrack without success,
it tries possible pairings of store instructions, one after the other.

Step 2: Pick an existing fusion on the vectorization path currently being pro-
cessed, whose two writing instructions have not yet been paired. As the scalar
code is assumed to be in SSA form, there is exactly one instruction that uses
each of the fusion’s scalar variables as its destination operand. According to the
vectorization level and the type of these instructions, an applicable pairing rule is
chosen. If all existing fusions have already been processed, i.e., the dependency
path has been successfully vectorized from the stores to all affected loads, start
the vectorization of another dependency path by choosing two remaining stores.
If all stores have been paired and no fusions are left to be processed, a solution
has been found and the algorithm terminates.

Step 3: According to the chosen pairing rule, fuse the source operands of the scalar
_instructions if possible (i.e., none of them is already part of another fusion) or,
if a compatible fusion exists use it instead.

78 7. Automatic Vectorization of Straight-Line Code

Code Name | Loads/Stores | Adds+Subs | Muls | Vectorization Runtime
frc_32 32/32 156 42 <.1s
frc_30 30/30 158 56 5.6s
ftw 17 66/34 328 180 <.ls
fn_ 128 256/256 2164 660 0.7s
fn_256 512/512 5008 1656 2.2s

Table 7.4: Vectorization Runtimes. The table shows instruction counts as well as vec-
torization runtimes in seconds for various twiddle complex-to-complex, no-twiddle complex-
to-complex, and real-to-halfcomplex FrTw codelets. The vectorization algorithm has been
implemented in Objective Caml. The runtimes have been determined using Objective Caml
v3.06 with native-code compilation on an 800 MHz AMD K7 processor.

Step 4: Pair the chosen instructions, i. e., substitute them by one or more accord-
ing SIMD instructions.

Step 5: If a fusion or pairing alternative does not lead to a valid vectorization,
choose another pairing rule. If none of the applicable rules leads to a solution,
fail and backtrack to the most recent vectorization step.

Steps 2 to 5 are iterated until all scalar instructions are vectorized, possibly
requiring new initialization carried out by Step 1 during the search process. If
the search process terminates without having found a result, a fallback to the
next more general vectorization level is tried, leading to null vectorization in the
worst case.

If a given rule set is capable of delivering more than one valid solution, the order
in which the pairing rules are tested is relevant for the result. This is used to
favor specific kinds of instruction sequences by ranking the corresponding rules
before the others. For instance, the vectorization engine is forced first to look
for instructions implementing operation semantics directly supported by a given
architecture, thus minimizing the number of extracted virtual instructions that
have to be rewritten in the optimization step.

Runtime. Table 7.4 shows runtimes of the vectorization algorithm for some rep-
resentative FFTW codelets. Even large codelet, e.g., n = 256, can be vectorized
in a few seconds.

Example. Figures 7.3 to 7.5 contain an example for one possible solution of the
vectorization algorithm. Fig. 7.3 depicts the scalar code, an FFT kernel of size 3,
which is the input of MAP’s vectorizer. Fig. 7.4 lists all transformations (together
with the rule group number from Section 7.6) that yield the vectorization solution
shown in Fig. 7.5. Due to the fact that different vectorizations are possible, this
is just one example out of all possible solutions.

7.5 The Vectorization Engine 79

Scalar Instructions Scalar Dataflow

load(in[0],TO)
load(in[1],T1)
load(in{2],T2)
load(in[3]1,T3)
load(in(4],T4)
load(in[5],T5)
add(T2,T4,T6)
add(T3,T5,T7)
sub(T4,T2,T8)
sub(T3,T5,T9)
mulc(T8, (.866),T10)
mulc(T9, (.866),T11)
mulc(T6,(.5),T12)
mulc(T7,(.5),T13)
sub(T0,T12,T14)
sub(T1,T13,T15)
add(T0,T6,T16)
add(T1,T7,T17)
add(T14,T11,T18)
add(T15,T10,T19)
sub(T14,T11,T20)
sub(T15,T10,T21)
store(T16,out [0])
store(T17,out[1])
store(T18,out[2])
store(T19,out [3])
store(T20,o0ut[4])
store(T21,out [5])

I
AN

S,

Figure 7.3: (Example) Scalar FFT of Size N = 3. The scalar instruction sequence in the
left column corresponds to the scalar data flow layout depicted in the right column.

7.5.2 Vectorization Heuristics

The vectorization search space can be pruned by applying additional heuristic
schemes that reduce the number of possible pairing partners in load/load and
store/store vectorization. This pruning is done in a way to enforce the exploita-
tion of obvious parallelism inherent in the code.

Full vectorization tries several heuristic schemes to vectorize memory access
operations, whereas semi vectorization just relies on one of these schemes. Exper-
iments have shown that the application of heuristic schemes significantly reduces
the vectorization runtime.

Limiting Pairings for Memory Accesses

The vectorization search space can be pruned by utilizing heuristics to restrict
the possible pairings for load/load and store/store vectorization rules (see Sec-

80 7. Automatic Vectorization of Straight-Line Code

Group Scalar Sequence SIMD Sequence
load(inf{0],T0)
load(in{1],T1)
load(in[2],T2) .
1 load(in[3],T3) = loadR2(in2[23],T2T3)

load(in(4],T4)

= loadQ2(in2[01],TOT1)

2(in2[45] ,T4

1 load(in[5],T5) = 10ad2(in2[45],T4TS)
add(T2,T4,T6)

22 dd2(T2T3,T4TS,T6T

5 2dd(T3.T5. T7) = add2(T2T3,T4T5,T6T7)

. sub(T4,T2,T8) _ sub2(T2T3,T4T5,T8T9)
sub(T3,T5,T9) mulc2(T8T9, (-1.,1.),T8TY)
mulc(T8, (.866),T10)

3 melo(T9 (8669 T11) mulc2(T8T9, (.866, .866) ,T10T11)

3 mulc (T, (.5),T12) mulc2(T6T7, (.5,.5) ,T12T13)

mulc(T7,(.5),T13)
sub(T0,T12,T14)
5 sub(T1 T13 Ti5) = sub2(TOT1,T12T13,T14T15)

add(T0,T6,T16)

5 add(TL T7 T47) = add2(TOT1,T6T7,T16T17)

7 add(T14,T11,T18) N swap2(T10T11,T11T10)
add(T15,T10,T19) add2(T14T15,T11T10,T18T19)

5 sub(T14,T11,T20) = sub2(T14T15,T11T10,T20T21)

sub(T15,T10,T21)

store(T16,in[0])
2 store(T17 in[1]) = storeQ2(T16T17,o0ut2[0])

store(T18,in[2])
9 store(T1 in[3]) = storeQ2(Ti8T19,out2[1])

store(T20,in[4])
2 store(T21 . in[5]) = storeQ2(T20T21,0ut2([2])

Figure 7.4: (Example) Scalar To Vector Transformation of an FFT of Size N = 3.
The scalar instructions in the second left column are transformed into the vector instruction
sequence in the right column. It will be explained in Section 7.6 that it is not always possible
to transform two scalar instructions into one SIMD instruction. The leftmost column shows to
which transformation rule group introduced in Section 7.6 the scalar to vector transformation
belongs.

tions 7.6.1 and 7.6.2). The details are given in Tables 7.5 and 7.6. The heuristics
immediately reject apparently suboptimal vectorization paths and enforce obvi-
ous parallelism onto the vectorization process. Full vectorization uses heuristics
HO, H1 and H2 to vectorize memory accesses, semi vectorization just relies on
heuristic H1.

Experiments have shown that these heuristics significantly reduce vectoriza-
tion runtime by additionally pruning the vector code search space.

o

7.5 The Vectorization Engine 81

Vector Instructions Vector Dataflow

loadQ2(in2[01],TOT1)
loadQ2(in2[23],T2T3)
loadQ2(in2(45],TATS5)
add2(T2T3,T4T5,T6T7)
mulc2(T2T3-T4T5,(-1.0,1.0),T8TY)
mulc2(T8TY, (.866,.866),T10T11)
mulc2(T6717,(.5,.5),T12T13)
sub2(TOT1,T12T13,T14T15)
add2(TOT1,T6T7,T16T17)
swap2(T10T11,T11T10)
add2(T14T15,T11T10,T18T19)
sub2(T14T15,T11T10,T20T21)
storeQ2(T16T17,0ut2[01])
storeQ2(T18T19,0ut2[23])
store2(T20T21,0ut2[45])

Figure 7.5: Example: 2-way Vector FFT of Size N = 3. The vector instruction sequence
in the left column corresponds to the data flow layout depicted in the right column. This code is
one possible result of the vectorizer when it is fed the scalar instruction sequence from Fig. 7.3.

Order of Application of Pairing Rules

If a given rule set is capable of delivering more than one valid solution, the order
in which the pairing rules are tested is relevant for the result. This is used to
favor specific kinds of instruction sequences by ranking the corresponding rules
before the others. For instance, the vectorization engine is forced first to look for
instructions implementing operations directly supported by a given architecture,
thus minimizing the number of extracted virtual instructions that have to be
rewritten in the optimization step.

For example, MAP’s AMD K7 specific ruleset provides the rules in an order
to favor intraoperand and swap instructions because they are inherent in this
processor’s target instruction set. On the other hand, the application order in
Intel’s Pentium 4 ruleset “tries” to avoid these instructions by only extracting
them if no vectorization can be achieved otherwise, i.e., the preferred rules do

82 7. Automatic Vectorization of Straight-Line Code

| Memory Access || HO 1 Hi | H2]

| Arbitmry “ |'i1—-i2|=N/2 | Iil—iz|:N/2 l |i1-—'L'2|=N/2]
i1=0; ZQZN/Q i1=0; ’62:N/2 S
Re/Re 2 =0, 1, =DN/2 52=0; i,=N/2 lin ~ iz| = N/4
Complex Re/Im 1,02 <> 0; i1 — o] = N/4 i1, ip <> 0 o
Im/Re or iy =i htiy = N2
i1 = N/4; iy =N/4 tT
Im/Im not supported not supported not supported

Table 7.5: Heuristics for Store/Store Vectorization. In the leftmost column the possible
types of store memory access in MAP are listed. For further details refer to [36]. The following
columns show which constraints the indices 47 and i of the two stores have to satisfy for a pairing
of the corresponding instructions to be allowed. N is the size of memory when addressed with
scalar memory layout.

| Memory Access || HO | Hi | H2 i
r ATbitTllTy ” 'Z1—22,=N/2 , ,Zl—lleN/2 ' ,ZI—Z2!=N/2 J
Re/Re
Complez Re/Im not restricted | mot restricted | not restricted
Im/Re
Im/Im

Table 7.6: Heuristics for Load/Load Vectorization. In the leftmost column the possible
types of load memory access in MAP are listed. For further details refer to [36]. The following
columns show which constraints the indices i1 and i3 of the two loads have to satisfy for a pairing
of the corresponding instructions to be allowed. N is the size of memory when addressed with
scalar memory layout.

not work. They are rewritten into supported instructions in a separate step after
the vectorization process (see Chapter 8).

7.5.3 Handling Different Results of Vectorization

The backtracking search in the vectorization process might yield multiple solu-
tions. Therefore, three strategies are introduced for selecting a result, namely
(¢) the pick first strategy, (i) the pick best strategy, and (i) the pick good
strategy.

The pick first strategy immediately commits to the first solution. The pick
best strategy lets some later compiler stage, ideally the last one, evaluate the
quality of every obtained vectorized code and commits to the best solution. The
pick good strategy restricts the set of regarded vectorization results to the first
solutions obtained from the vectorizer.

7.6 Pairing Rules 83

7.6 Pairing Rules

Rules for scalar instruction pairing are fundamental to the pattern matching
approach of the vectorization engine as described in the previous section.

The rules used in MAP’s code generator can be classified according to the
types of the two scalar instructions on which vectorization is performed, i.e.,
unary, binary and memory access type. Accordingly, eight groups of pairing
rules exist: (i) load/load, (ii) store/store, (ii¢) unary/unary, (iv) load/binary,
(v) binary/binary, (vi) unary/any, (vit) reordering of compatible fusions, and
(vii) null vectorization. For each group, an introduction to its transformation’s
semantics as well as a specific code example will be given in the following sections.

7.6.1 Group 1: Load/Load Pairing Rules

This set of rules aims at transforming two scalar loads from memory into a SIMD
load storing into a 2-way vector variable. In fact, there are two rules differing
in the way they address main memory locations, as well as the way they are
implemented in SIMD.

| Ezample Rule | Scalar Sequence = Vector Sequence |
MCT [T TiT1]
Load from
Consecutive
P1
Addresses oA
=
load(M.scal[4],D1)
load (1. scal [5] .D2) loadQ2(M.vect [2] ,D1D2)
Load from
Arbitrary
Addresses
=
load(M.scal[2] ,D1) loadD2(M.vect[1].1,A.1)
load(M.scal[6] .D2) loadD2(M.vect[3].1,B.1)
) ’ unpackL2(A,B,D1D2)

Figure 7.6: (Example) Various Load Pairings. While scalar loads on consecutive ad-
dresses can be implemented in SIMD straightforwardly, the scalar loads on arbitrary addresses
need to be rearranged. The load on consecutive addresses corresponds to a complex load while
the load on arbitrary addresses corresponds to a split load on MAP input arrays.

84 7. Automatic Vectorization of Straight-Line Code

Load from Consecutive Addresses

This transformation of two scalar loads to one SIMD load only works on two
consecutive addresses.

If addr1 = addr0 + 1 with addr0 = 2*i, i = 0,1,...,N/2-1, the scalar
loads are transformed into one SIMD load as demonstrated by the upper example
in Fig. 7.6. In MAP’s input arrays, a load on such consecutive memory cells
corresponds to a complex load, where the first element is assumed to be the real
part and the second element is the imaginary part of a complex number.

Load from Arbitrary Addresses

This type of SIMD load works on any two addresses. Therefore, addr0 and addr1
can address any valid position of the input array. This has the drawback that the
two scalar loads from addrO and addr1 cannot be realized using just one vector
load instruction, i. e., 1oadQ2. ‘

Therefore, the data elements are loaded into the lower parts of two tempo-
rary vector variables A.1 and B.1, using two loadD2 instructions. An unpackL2
operation must be applied on A.1 and B.1 before the data can be used for compu-
tation. This instruction sequence is illustrated by the lower example in Fig. 7.6.
In the case of MAP’s input arrays, a load on arbitrary memory cells corresponds
to a split load, where the first and the second element are both real elements of a
real transform array or any combination of real and imaginary parts of a complex
array.

7.6.2 Group 2: Store/Store Pairing Rules

This set of rules is targeted at transforming two scalar stores to memory into one
SIMD store from a two-way vector variable. Again, there are two rules differing
in the style they arrange the data locations in memory, and in the way they are
implemented in SIMD.

Store to Consecutive Addresses

This type of transforming two scalar stores into one SIMD store only works if the
2-way vector variable is stored into two consecutive addresses.

If addrl = addr0 + 1 with addr0 = 2*i where i = 0,1,...,N/2-1, the
scalar stores are transformed into one SIMD store as shown in the upper part
of Fig. 7.7. In the case of MAP’s output arrays, a store on such consecutive
memory cells corresponds to a complex store, where the first element is the real
part and the second element the imaginary part of a complex number. This rule
is the counterpart to the load to consecutive addresses rule.

7.6 Pairing Rules 85

| Ezample Rule | Sequence = Sequence’ |
Store to (51]52]
Consecutive
Addresses MCI T ITTT 1]
=
store(S1,M.scall4])
= .
store(S2.M.scal[5]) storeQ2(S1582,M.vect[2])
Store To
Arbitrary
Addresses
=
L1,M. t[1].h
store(S1,M.scal[3]) storeD2(S1S2.1,M.vect[1] .h)
tore(S2,M.scal[5]) = unpackH2(S1S2,51S2,4)
S S storeD2(A.1,M[2].h)

Figure 7.7: (Example) Various Store Pairings. This is the counterpart ruleset to the load
rules from Fig. 7.6. The store to consecutive addresses corresponds to a complex store while
the store to arbitrary addresses corresponds to a split store to MAP’s output arrays.

Store to Arbitrary Addresses

This type of transforming two scalar stores into one SIMD store works on any
two addresses. Therefore, addr0 and addrl can address any valid position of the
output array with the same drawback as its counterpart, i. e., load from arbitrary
addresses. Two scalar stores to addrO and addrl cannot be realized with just
one vector quad store instruction, i.e., storeQ2. The lower part of the SIMD
variable can be directly stored to the corresponding memory location by a double
store while the higher part has to be rearranged into a temporary vector variable
by an unpack operation before it can be stored into memory from there. This
approach is shown in the lower example of Fig. 7.7.

In the case of MAP’s output arrays, a store on arbitrary memory cells corre-
sponds to a split store whose function is analogous to split access that has been
already described in the load case.

7.6.3 Group 3: Unary/Unary Pairing Rules

These rules are used to transform two scalar unary instructions into one vector
instruction.

These transformations are performed straightforwardly as depicted in Fig. 7.8.
Fig. 7.9 defines, according to the scalar machine model, how to transform com-
binations of scalar operations into semantically equivalent SIMD operations.
Fig. 7.10 gives an example of a unary/unary transformation.

86 7. Automatic Vectorization of Straight-Line Code

| Scalar Instructions | Vector Instruction |

s 2
> o>

Figure 7.8: Pairing of Two Unary Instructions. Two scalar unary operations Opl and
Op2 are transformed into one SIMD operation Op. The operation transformation is performed
according to the unary operation algebra introduced in Fig. 7.9.

| Operation 1 Operation 2 = Operation’ |
neg neg = chsLH2
neg mulc(K) = mulc2(-1,K)
mulc(K) neg = mulc2(X,-1)
mulc (K1) mulc(K2) = mulc2(K1,K2)

Figure 7.9: Unary/Unary Operation Algebra. Two scalar operations are transformed
into one semantically equivalent SIMD operation.

[Sequence = Sequence’ ’

[A]K1][<][k2

® ®
(&} [o]

mulc (A, (K1) ,B)

1c2(AC, (K1, ,
mlc(C. (k2y.py - MuLc2(AC,(K1,k2),BD)

Figure 7.10: (Example) Application of a Unary/Unary Rule. Two scalar mulc instruc-
tions are transformed into a vector mulc?2 instruction. This is the transformation out of Group
3 which most frequently occurs in FFT kernel vectorization.

7.6 Pairing Rules 87

7.6.4 Group 4: Load/Binary Pairing Rules

This set of rules is used for transforming scalar load and binary instructions
(addition or subtraction) into one vector instruction of intraoperand type.

Fig. 7.11 shows the binding of a load instruction with a binary instruction.
Not all possible binary instructions supported by the virtual machine model of the
vectorizer are supported in this ruleset. Fig. 7.12 illustrates which instructions are
allowed to be paired with the unary load and which SIMD operations are utilized
to transform these instructions into a semantically equivalent vector instruction
sequence. Fig. 7.13 gives an example showing the application of a load/binary
transformation.

| Scalar Instructions | Vector Instruction |

Figure 7.11: Pairing of Load and Binary Instructions. The scalar load and the binary
operation Op are transformed into two SIMD instructions of which one is a SIMD double load.
The operation Op of the intraoperand vector instruction is set according to the algebra defined
in Fig. 7.12. Not ouly the depicted fusion of load/binary but also the mirrored binary/load is
allowed.

| Operation = Operation’ |

add = accPP2
sub = accNN2

Figure 7.12: Load/Binary Operation Algebra. Scalar binary operations are transformed
into semantically equivalent SIMD operations.

7.6.5 Group 5: Binop/Binop Pairing Rules

This set of rules is used to transform two scalar binary instructions into one single
vector instruction or, if necessary, a sequence of vector instructions.

As there are intraoperand and parallel style binary vector instructions pro-
vided by the vectorizer’s machine model, there are different but computationally
equivalent ways of vectorizing scalar binary instructions. This brings about the
benefit of widening the vectorization search space.

When pairing binary scalar instructions for vectorization, the respective four
input operands have to be fused. There are three different ways (disregarding
redundant equivalents) for fusing the four operands to two SIMD cells, namely
(¢) accumulate (4¢) parallel 1, and (24¢) parallel 2.

88 7. Automatic Vectorization of Straight-Line Code

[Sequence = Sequence’]

load(S1,M.scalar[1]) N loadD2{(M.vect[0] .h,D10.1)
add(S1,T1,D2) accPP2(D10,S1T1,D1D2)

Figure 7.13: (Example) Application of a Load/Binary Rule. Scalar load and add
instructions are transformed into one double load into the lower part of a SIMD variable whose
higher part is initialized with 0. The accumulate instruction leaves the loaded value unchanged
and performs the addition.

The accumulate binding type (ACC) fuses input operands in a way allowing
intraoperand SIMD instructions to be performed. The parallel 1 (PAR1) and the
parallel 2 (PAR2) binding type are mirrored cases for fusing operands in a way
such that parallel SIMD operations like addition, subtraction and multiplication
can be performed.

Fig. 7.14 illustrates the three binding types in more detail. Fig. 7.15 gives
an overview of all transformations depending on the binding type. All possible
binary instruction pairs are presented together with their transformation into
SIMD instruction sequences. Fig. 7.16 depicts an example for computationally
equivalent SIMD transformations of a scalar addition and subtraction instruction.

i Scalar [ACC [PAR1] PAR2 |

st (s2](r2]
@D &D
1)

add, sub, mul || accPP2, accPN2 | add2, sub2, mul2 { add2, sub2, mul2
accNP2, accNN2

Figure 7.14: Binary Binding Types. The operands S1, T1 and S2, T2 of the scalar
binary operations in the leftmost column can be fused in three different ways shown in columns
two, three and four. Accumulate style operand fusion allows the scalar operations Op1 and 0p2
to be transformed into an intraoperand vector operation Op. Parallel 1 and Parallel 2 operand
fusions allow scalar operations to be transformed into a parallel style operation. The last row
shows feasible operations that Op can be transformed into.

7.6 Pairing Rules 89

Binding ADD/ADD | ADD/SUB | SUB/ADD | SUB/SUB | MUL/MUL
ACC accPP2 acchP2 accNP2 accNN2 —
swap?2
chsL2 chsL2
PAR1 add?2 <ub2 add? sub2 mul?2
chsH2 chsL2 sub?2
PAR2 add2 add?2 add? chsH2 mul2

Figure 7.15: Binding Types for Two Binary Operations. The columns specify the scalar
operations and their transformations into semantically equivalent SIMD instructions. The rows
are indexed by the different binding types and therefore indicate which transformations are
allowed together with which of the binding types.

| Scalar ADD/SUB |~ ACC | PAR1 | PAR2 |

sUml 212
D T
pZ

Figure 7.16: (Example) Binary Bindings for ADD/SUB. The ADD/SUB case has
been chosen because of its nontrivial transformation from scalar add and sub instructions to a
sequence of more than one semantically identical SIMD instructions.

7.6.6 Group 6: Unary/Any Pairing Rules

This set of rules is used to pair a unary instruction with any load or binary
instruction. It is characteristic for this set of rules, that the source operand
of the unary instruction is always fused with the destination operand of the
other instruction. The vector operation is chosen such that it performs a dummy
operation on the vector register part which holds the destination of the preceeding
“any” instruction. Not only a rule for the combination unary/any but also for
any/unary is provided. Figures 7.17 and 7.18 illustrate this approach in more
detail.

7.6.7 Group 7: Reordering of Compatible Fusions

As stated in Section 7.5, every scalar variable is allowed to be a member of not
more than one fusion. Therefore, if two scalar operands A and B already form
a SIMD cell fusion of layout AB = (A,B), but a fusion of layout BA = (B,A) is
needed, an additional vector swap instruction with AB as its input is generated.

90 7. Automatic Vectorization of Straight-Line Code

rScalar Instructions [Vector Instruction I

Sl RF]
P>
b b2

Figure 7.17: Pairing of a Unary Operation with Any Other Operation. It is specific
for this pairing type that not the sources S1 and S2 of the two scalar operations are fused,
but the source of the unary operation S1 with the destination D2 of the “any” operation which
remains unchanged by the vector operation Op. The source operands may also be fused the
other way round, i.e., D2S1.

| Operation = Operation’ |

neg = mulc2(-1,1)
mulc(X) = mulc2(K,1)

Figure 7.18: Unary/Any Operation Algebra. The scalar unary operation is transformed
into a semantically equivalent SIMD Operation which performs a dummy operation on the
corresponding part of the fused SIMD register by simply multiplying one.

This preserves the existing fusion AB, but also provides the desired SIMD cell
with switched operands. Two examples are given in Fig. 7.19.

Group 8: Null Vectorization Pairing Rules

This set of rules is used to replace one arbitrary scalar instruction by one equiva-
lent, vector instruction. The scalar operands are transformed into SIMD operands
by putting the scalar content into the lower part of a SIMD cell. The instruction
count is not reduced, thus, no satisfactory utilization of the two-way SIMD in-
frastructure can be achieved this way. This ruleset is to be used only at the null
vectorization level.

Fig. 7.20 depicts all rules for transforming single scalar operations into vectorial
ones.

7.6 Pairing Rules 91

[Erample Rule | Scalar Sequence = Vector Sequence |

Insert Swap
for Load
Vectorization

load(M.scal{4],4)
load(M.scal[5],B)
add(B,D,C)
add(A,E,F)

loadQ2(M.vect [2],T1T2)
= swap2(TiT2,BA)
add2(BA,DE,CF)

Insert Swap
for Other
Instruction
Vectorization

=
agjgg’g’gi swap2(DA,T1T2)
adars, s, = add2(T1T2,BE,CF)
sub(D,G,H) sub2(DA,GI,HJ)
sub(A,I,J) P

Figure 7.19: (Example) Generation of Swaps Needed for Vectorization. All scalar
instruction sequences’ dataflow is downwards while the vectorization is performed bottom up.
In the upper example, the two scalar loads cannot be vectorized into 1oadQ2(M.vect[2],AB).
This happens because A and B are already involved in pairing BA. Therefore, a temporary
SIMD variable T1T2 is needed along with swap2(T1T2,BA) to preserve the dataflow semantics
of the scalar DAG. In the lower example, the scalar add instructions are not vectorized to
add2(AD,BE,CF) because the pairing DA already exists. The temporary SIMD variable T1T2 is
used along with swap2(DA,T1T2) to enable the vectorization of the scalar add instructions.

92 7. Automatic Vectorization of Straight-Line Code

Operation’]
load(M[i],A) loadD2(M[i] ,A2.1)
store(A,M[i]) storeD2(A2.1,M[i])

[Operation =
=
=
mulc(A,K,B) = mulc2(A2,K,1,B2)
=
=
=
=

neg(A,B) chsL2(A2,B2)
add(4A,B,0) add2(A2,B2,C2)
sub(A,B,C) sub2(A2,B2,C2)
mul (A,B,C) mul2(A2,B2,C2)

Figure 7.20: Null Vectorization Rules. In the case of null vectorization, a general agree-
ment is to rearrange content of the scalar registers A,B, ... into the lower parts A.1,B.1, ...
of the vector cells A2,B2, . .. Under this assumption it is possible to transform the scalar unary,
binary and load/store instructions into equivalent SIMD instructions.

Chapter 8

Rewriting and Optimization

During the non-deterministic search process of the vectorizer, it is not clear if a
(global) solution of the search process exists at all, as the vectorizer maintains
only weak (local) consistency, ensuring that all SIMD instructions extracted so
far are compatible with each other.

For that reason, it is better to postpone all further optimization of the SIMD
code until the vectorizer can guarantee that a solution exists. Delaying the fol-
lowing optimization steps, i.e., peephole optimization and scheduling, until one
particular solution has been found entails two positive effects: (¢) The implemen-
tation of the vectorizer is kept simple as vectorization and optimization are not
mixed up. (i¢) An overall speed-up of the vectorization process is achieved, as no
effort is wasted in incrementally optimizing partial (local) solutions that are not
a part of a global solution.

Once the vectorizer has found a solution and committed to it, the resulting SIMD
SSA code is put into the optimizer that consists of two parts.

The first part is a peephole optimizer that matches a set of transformation
rules against the SIMD code, substituting code sequences by optimized, seman-
tically equivalent code, until a fixed point is reached.

The implemented rewriting rules perform both () commonplace compiler opti-
mization (carrying out dead code elimination, copy propagation, constant folding,
and redundant instruction elimination, a special case of common subexpression
elimination) and (77) use of machine specific idioms.

Moreover, the vectorization engine uses an abstract machine model, whose
instructions are not necessarily supported on a specific target architecture (see
Section 7.4).

Therefore, it is necessary to optimize with respect to target-architecture in-
dependent as well as target-architecture dependent criterions.

The second part of the optimizer topologically sorts the DAG in an attempt
to maximize register usage.

The result of that second part of the optimizer, i.e., vectorized, optimized,
and scheduled SIMD code, can be put into the MAP backend for compilation
to x86 assembly or can be directly emitted to intrinsic code using the portable
SIMD API.

The remaining parts of this chapter are organized as follows. Section 8.1 describes
the goals targeted by the peephole optimization. Section 8.2 introduces the peep-
hole optimizer, explains how it works, and describes what kind of optimizations

94 8. Rewriting and Optimization

it performs. Section 8.4 shows how the scheduler works and how its output can
be further refined in certain cases.

8.1 Optimization (GGoals

The peephole optimizer tries to maximize the computational performance of the
input code by pursuing the following goals.

Reduce the Number of Instructions. The output of the vectorizer usually
includes many redundant operations, e.g., SIMD swaps. By applying dead code
elimination, constant folding, copy propagation, and by rewriting SIMD specific
code patterns, the size of the SIMD code can be reduced significantly.

Shorten the Length of the Critical Path. The length of the critical path
({105]) of a computational task defines the minimum execution time the compu-
tation must inevitably take, regardless of the maximum amount of computation
allowed to be carried out simultaneously. In certain cases, the length of the crit-
ical path of the data dependency graph can be shortened by replacing a depen-
dency on some instruction with a dependency on a predecessor of that particular
instruction. Applying rules of this group slightly increases the register pressure.

Reduce the Number of Source Operands. Some transformation rules reduce
the number of source operands needed to perform an operation, locally reducing
the register pressure.

Exploit Target Specific SIMD Features. These rules only work on machines
offering intra-operand SIMD instructions, as they focus on substituting patterns
using a parallel SIMD style with sequences of intra-operand SIMD instructions.

Rewrite Unsupported Instructions. As some SIMD instructions, defined
by the vectorizer’s virtual hardware architecture, are extracted during the vec-
torizer process which may not be available on a particular target machine, all
unsupported instructions need to be rewritten into combinations of instructions
actually supported by the target hardware.

8.2 Peephole Optimization

Peephole optimization is a local code rewriting technique. A window (peephole)
uncovers a (small) set of instructions that is considered for optimization. The in-
structions dealt with inside a peephole are connected by dependencies [2]. Then,
if possible, optimizing transformations are applied to the actually considered set
of instructions. More specifically, a combination of instructions that matches
a corresponding pattern is improved according to the associated transformation
rule. The newly obtained sequence is either shorter or comprises faster but se-
mantically equivalent instructions.

8.2 Peephole Optimization 95

It is a typical characteristic of peephole optimization that new rewriting possi-
bilities arise after carrying out a first set of transformations, i. e., several iterations
are needed to yield a satisfactory optimization result. Because of the locality of
the approach, peephole optimization usually is not able to eliminate all redun-
dancies in a given code.

8.2.1 The Local Rewriting Process

The core of the peephole optimization module described in this chapter is a rule
based local rewriting engine. In the following, definitions needed to describe its
basic functionality are given.

Transformations. A transformation adds and/or removes instructions to/from
a given sequence of instructions.

Instruction Patterns are used to identify groups of instructions. They either
match instruction types (e.g., unaryX2, binaryX2, loadX2 or storeX2) or spe-
cific instructions (e.g., loadQ2, mulc2, ...).

Rewriting Rules. A rewriting rule is specified by an instruction pattern and
the corresponding transformations.

Rule Guards may be used to control the application of a rewriting rule.

Firing Rules. A rule fires, if and only if its pattern successfully matches the
considered instructions. In this case the corresponding transformations are per-
formed.

Rule Sets. A rule set is an ordered set of distinct rewriting rules.

8.2.2 The Rewriting Engine

Because of the locality of the peephole optimization, certain combinations that
could easily be optimized, can not be rewritten.

There are (at least) two different methods addressing this problem. First, the
size of the peephole could be enlarged. Secondly, peephole optimization could be
split into multiple consecutive passes that include different rules to move instruc-
tions into the peephole of some other rules, enabling further optimization.

As the first strategy would immensely increase the number and the complexity
of the optimization rules, hindering verification and debugging, MAP’s peephole
optimizer implements the second strategy.

Therefore, the rewriting engine performs three optimization steps with three
different rule sets. Steps one and two optimize within the scope of the vectorizer’s
machine model. The third and final optimization step optimizes and transforms
code from the vectorizer’s machine model to the target machine model. Everyone
of these steps is carried out as long as improvements to the instruction DAG are
yielded.

96 8. Rewriting and Optimization

The rule sets for step one and two are identical, except for the so-called code
motion rule. While step one’s code motion rule moves swap instructions up, step
two’s code motion rule moves swap instructions down in the DAG. Thus, local
instruction sequences allowing for further optimization may be obtained. The
up rule and the down rule cannot be combined into a single optimization step,
because the up and down code motion would lead to non-termination.

8.2.3 The Order of Rule Application

During the rewriting process, the code is under permanent alteration. Rules not
firing in the first place might become applicable through code transformations
performed by other rules. Taking this rule “interaction” into consideration is a
prerequisite for achieving a good overall optimization result. So the code rewriting
process is implemented iteratively. An ordered sequence of rules—provided by a
rule set—is specified for any individual optimization step. The rules are tried for
their applicability as described in the following:

For a given instruction sequence that is to be rewritten, one rule after the
other is matched for its applicability. As soon as a suitable rule is found, the
according transformation is applied and the process starts anew with the first
rule. The first rules in the rule set are therefore favored and will be checked more
frequently. This is continued as long as at least one rule matches and optimizes
the instruction DAG.

8.3 Transformation Rules

This section describes the target architecture specific and unspecific transforma-
tion rules utilized by the local rewriting system. The first class of transformations
is divided into subgroups according to the different optimization goals they are
targeted at. The second class has a subgroup for each supported target architec-
ture.

8.3.1 Target Architecture Independent Rules

Three groups of optimization rules, namely (i) substitution, (i7) sign change
specific, and (#i¢) code motion rules, do not depend on the target architecture
and can therefore be applied straightforwardly to the vectorizer’s output.

The Substitution Rules

This first group of rules is intended to perform copy propagation on (i) registers,
(#1) stores, (i74) unary, and (iv) binary short vector instructions.

In most cases, copy propagation can be performed straightforwardly as the
first three examples in Fig. 8.1 illustrate. The last group of examples in Fig. 8.1

8.3 Transformation Rules 97

deals with nonstandard register substitutions utilizing special properties of vec-
tor operations. These are exclusively algebraic sign identities and are shown in
Fig. 8.2. In the following, the substitution rules are described in more detail.

Register and Store Substitution. For an arbitrary unary, binary or store
instruction I2 that consumes a temporary variable B, get B’s producer instruction
I1. If and only if I1 is a copy instruction, replace B by the copy’s source operand.

Unary and Binary Substitution. For two identical unary or binary instruc-
tions I1 and I2 that have the same source operands, replace I2 by a copy in-
struction of I1’s destination into I2’s destination.

Nonstandard Unary Substitution. For two read-after-write dependent unary
instructions, replace the second instruction according to the rules given in Fig. 8.2.

| Rule Type | Sequence = Sequence’ ‘
copy2(A,B) N copy2(4,B)

Reaister chsL2(B,C) chsL2(A,C)

g copy2(A,B) N copy2(A,B)
add2(B,C,D) add2(A,C,D)
copy2(A,B) N copy2(4,B)

Store storeD2(hi,B,M,3) storeD2(hi,A,M,3)
copy2(A,B) N copy2(4,B)
storeQ2(B,M,2) storeQ2(A,M,2)

Una chsH2(A,B) N chsH2(4,B)

Y chsH2(A,C) copy2(B,C)

Bina sub2(4,B,C) N sub2(A,B,C)

Y sub2(4,B,D) copy2(C,D)
chsL2(A,B) N chsL2(A,B)
chsH2(B,C) chsLH2(4,C)

Nonstandard chsH2(A,B) N chsH2(A,B)

Unary mulc2(B, (N1,N2),C) mulc2(A, (N1,-N2),C)
mulc2(4, (N1,N2),B) N mulc2(A, (N1,N2),B)
mulc2(B, (M1,M2),C) mulc2(A, (N1xM1,N2%M2),C)

Figure 8.1: (Example) Subgroups of Substitution Rules. The register, binary and unary
substitution transformations are transformed straightforwardly into Sequence’. The nontrivial
register operations cannot be transformed that easy as they involve vector algebra specific
transformations as described in Fig. 8.2.

The Sign Change Specific Rules

Whenever two scalar binary instructions, one of them implementing a subtraction,
the other one an addition operation, are paired in the vectorization process, an
additional sign change instruction is unavoidable! for implementing a parallel

LAll parallel operations currently available in modern processor instruction sets, e. g., Intel
Pentium 4, AMD K7, or AMD K6, just support add/add or sub/sub but no mixed add/sub or

98 8. Rewriting and Optimization
r Operation 1 Operation 2 = Operation’ [

Swap2 Swap2 = Identity

chsL2 chsL2 = Identity

chsL2 chsH2 = chsLH2

chsL2 chsLH2 = chsH2

chsH2 chslL2 = chsLH2

chsH2 chsH2 = Identity

chsH2 chsLH2 = chsL2

chsLH2 chsL2 = chsH2

chsLH2 chsH2 = chsL2

chsLH2 chsLH2 = Identity
chsL2 mulc2(N,M) = mulc2(-N,M)
chsH2 mulc2(N,M) = mulc2(N,-M)
chsLH2 mulc2(N,M) = mulc2(-N,-M)
mulc2(N,M) chsL2 = mulc2(-N,M)
mulc2(N,M) chsH2 = mulc2(N,-M)
mulc2(N,M) chsLH2 = mulc2(-N,-M)

mulc2(N1,M1) mulc2(N2,M2) = mulc2(N1*N2,M1xM2)

Figure 8.2: Nonstandard Operand Transformations for Register Substitution. Op-
eration 2 is transformed into Operation’ to eliminate the read-after-write dependency between
Operation 1 and Operation 2. These transformations are supposed to remove as many register
dependencies between operations as possible to allow for later optimization.

add/sub or sub/add vector operation.

Sign change specific transformations remove sign change instructions as well as
rewrite sign changes in combinations with other instructions into more optimal
code sequences.

Some sign change specific rules are used to find code sequences including sign
change instructions where optimization allows to minimize the overall instruc-
tion count. Other rules, are used to rewrite sign change instructions into swap
instructions which are generally known to be cheaper or at least of the same qual-
ity in terms of latency and throughput. The only constraint is that the overall
instruction count is not to be increased.

Fig. 8.3 exemplarily shows one characteristic example for each of these rule tar-
gets. In Fig. 8.4 all utilizable rules are given showing the basic transform idea
without further details about operand registers and their constraints.

The Code Motion Rules

This set of rules is used to topologically shift swap instructions up and down
in the considered instruction sequence. It allows for the interchange of swap
instructions with unary or binary instructions, which opens appliance possibilities
for other rules at first not firing. The code motion rules which interchange a swap

sub/add as 2-way short vector operand combinations.

8.3 Transformation Rules 99

I— Example Rule] Sequence = Sequence’ :‘

Remove
Change Sign
=
chsL2(A,B) sub2(A,C,D)
chsH2(C.D) =) 12D,E)
add2(B,D,E) ’
A
@ g
B C
B C
Rewrite l
Change Sign D b
=
chsL2(A,B) chsL2(A,B)
swap2(4,C) = swap2(4A,C)
chsH2(C,D) swap2(B,D)

Figure 8.3: (Example) Change Sign Specific Transformations. One example rule for
each subgroup of these transformation rules is given.

[Sequence = Sequence’ | Goal |

chsL2, chsH2, add2, add2 = chsl2, add2, sub2 instr

chsH2, chsL2, add2 = sub2, chsH2 instr

. chsL2, chsH2, add?2 = sub2, chsL2 instr
chsL2, swap2, chsH2 = chsL2, swap2, swap2 | swap

chsH2, swap2, chsl2 = chsH2, swap2, swap2 | swap

Figure 8.4: Rewriting Ruleset for Change Sign Specific Transformations. All com-
binations of remove and rewrite change sign rule transformations are given together with the
| goal they aim at. The goal instr aims at minimizing the instruction count. swap occurs when
' the associated transformation generates this operation.

instruction with an arbitrary sign change instruction are used in the rulesets for
optimization steps one and two as described in Section 8.2.2.

Fig. 8.5 gives an example for the functionality of these code motion transfor-
mations. Fig. 8.6 briefly illustrates all available code motion transformations.

100 8. Rewriting and Optimization

[Example Rule [Sequence = Sequence’ |
Binary
Code
Motion
swap2(A,B) swap2(A,B)
swap2(C,D) = add2(A,C,D)
add2(B,D,E) swap2(D,E)
A A
B B
Unary
Code C c
Motion
=
chsL2(A,B) N swap2(4,B)
swap2(B,C) chsH2(B,C)

Figure 8.5: (Example) Code Motion Transformations. Code motion transformations are
intended to change the topological position of swap operations inside the examined instruction
sequence.

r;, Sequence

swap2, swap2, binop2

swap2, binop2, swap2
mulc2, swap2

swap2, mulc2, mulc2
chsL2, swap2
swap2, chsL2

Sequence’ |

swap2, binop2, swap2

swap2, swapZ, binop2
swap2, mulc2

swap2, mulc2, mulc2
swap2, chsH2
chsH2, swap2

444 4

Figure 8.6: Rule Set for Code Motion Transformations. The shift transformations allow
for topological position interchange of swap operations with unary mulconst operations and all
types of binary operations.

8.3.2 Target Architecture Specific Rules

So far rule groups have been introduced whose code transformations were specific
to the vectorizer’'s machine model. These are independent of the final target
architecture. The instruction set specific rules address the fact that the vector
code utilizing the vectorizer’s machine model is not necessarily compliant and/or
optimal for every target architecture.

8.4 The Scheduler 101

Although the vectorizer tries to avoid the extraction of SIMD instructions that
are not supported by the target architecture (e. g., intra-operand instructions on
a Intel Pentium 4), such instructions are sometimes needed to prevent the vector-
ization from failure. Whenever the vectorizer extracts instructions that are not
available on the target architecture, the optimizer first tries to improve code se-
quences containing these instructions by applying target architecture independent
optimization rules.

As target architecture independent optimization rules have no specific knowl-
edge about the instructions actually supported by the target machine, they do
not convert intra-operand instructions into parallel instructions (or vice versa).

Target architecture specific rules are applied in a final transformation step of
MAP’s peephole optimization module where the code is rewritten into an archi-
tecture compatible form. Code for the (z) AMD K7 (i) AMD K6, and (4i¢) Intel
P4 instruction sets can be generated. Afterwards, additional optimizations are
performed targeted at the peculiarities of architecture specific instructions present
in the new vector code.

Specific Rules for AMD’s K7

Fig. 8.7 presents examples for transforming code to the AMD K7 Virtual Machine
Model. Accumulate instructions are generated and optimizations concerning these
highly efficient instructions are performed. Fig. 8.8 shows the basic AMD K7
transformation ideas without further operand and constraint details.

Specific Rules for AMD’s K6

Fig. 8.9 presents examples for transforming instructions unsupported by the AMD
K6 Virtual Machine Model into supported ones. Fig. 8.10 shows the basic AMD
K6 transformation ideas without further operand and constraint details.

Specific Rules for Intel’s Pentium 4

Fig. 8.11 shows example transformations for the Intel P4 Virtual Machine Model.
Fig. 8.12 shows the basic Intel Pentium 4 transformation ideas without further
operand and constraint details.

8.4 The Scheduler

The scheduling process of MAP’s optimizer is virtually identical with its counter-
part in FFTw 2.1.3. It has been extended from operating on scalar instructions
to be equivalently useable on virtual SIMD instructions. In the following, the
goals and the basic functionality of the scheduler will be described.

102 8. Rewriting and Optimization

!—Ezample Rule | Sequence = Sequence’ |

A A
B
Rewrite for
Accumulate c D D
=

swap2(A,B)
chsL2(B,C) = accNP2(A,A,D)

add2(A,C,D)
A
c B
D

Rewrite for
Change Sign

= .
accNN2(A,B,C) N swap2(A,C)
chsL2(C,D) accNN2(C,B,D)

A
Ci B C| A
Copy B
Propagation
D D

=

swap2(4,B) swap2(A,B)

accNP2(C,B,D) ~ accNP2(C,A,D)

Figure 8.7: (Example) Transformations for AMD’s K7. One example rule for each
subgroup of transformation rules is given.

The scheduling phase produces a topologically sorted order of the DAG, i.e., a
list of static single assignments, called a schedule. This schedule can be executed
by a sequential processor. The goal of scheduling is to minimize the variable
lifetime in the resulting code to enhance locality, i. e., reduce register pressure by
reducing register spills.

The scheduling process is divided into a scheduling phase and into an annotated
scheduling phase.

The scheduling phase transforms the DAG into a recursive decomposition of
serial and parallel sub-DAGs. A serial decomposition specifies that a sub-DAG

8.4 The Scheduler

103

[Sequence = Sequence’ | Goal |
swap2, accXp2 = swap2, accXp2 reg
swap2, accpX2 = swap2, accpX2 reg
swap2, accNP2 = swap2, accNP2 reg

swap2,swap2,nnacc2,mulc2 =- swap2,swap2,nnacc2,mulc2 reg
accXX2, swap2 = accXX2 instrent
swap2, chsL2, sub2 = accNP2, swap2 acc
swap2, chsl2, add2 = accNpP2 acc
swap2, chsH2, add2 = accPN2, swap2 acc
accNN2, chsL2 = swap2, acclNN2 swap
accNN2, chsH2 = swap2, accNN2 swap

Figure 8.8: Rule Set for AMD K7 Transformations. All AMD K7 specific rules are
given together with the goals they are objected at. The goals reg and instrent are targeted
at minimizing the number of operand registers and the instruction count. acc and swap are
quoted when the associated transformation generates these operations.

| Example Rule | Sequence =

Sequence’

]

A
A
B T B
C C
=

Rewrite
Accumulate
chsH2(A,T)
accNP2(A,B,C) = accPP2(T,B,C)
A
A
B
Rewrite
Swap °

swap2(4,B)

unpackL2(4,A,T)

= unpackH2(A,T,B)

Figure 8.9: (Example) Transformations for AMD’s K6. As the AMD K6 does not
support swap operations and not all combinations of accumulate operations, they have to be

rewritten.

D1 has dependencies to another sub-DAG D2 and therefore D1 has to be executed
before D2. In a parallel decomposition the relative execution order of a sub-DAG

is not specified.

104 8. Rewriting and Optimization

[Sequence Sequence’]

=
swap2 = unpackL2, unpackH2
swap2 = unpackH2, unpackL2
=
=

accNN2 unpackL2, unpackH2, sub2
accNP2 unpackH2, accPP2

Figure 8.10: Rule Set for AMD K6 Transformations. This figure contains all rewriting
combinations of unsupported operations on the AMD K6.

| Example Rule | Sequence = Sequence’ |
A 8
_ B n 12
Rewrite
Accumulate
C C
=

unpackL2(4,B,T1)
accPP2(A,B,C) = unpackH2(A,B,T2)
add2(T1,T2,C)

A C

B D A C
Rewrite
Swap

E E
=

swap2(A,B)

swap2(C,D) = unpackH2(A,C,E)

unpackL2(B,D,E)

Figure 8.11: (Example) Transformations for Intel’s Pentium 4. As Intel’s Pentium 4
has no special operations for accumulate and swap in its instruction set, these operations have
to be rewritten. For each type of unsupported instructions, an example is given.

The annotated scheduling phase annotates a serial order onto parallel blocks
of the serial-parallel DAG. Parallel blocks using mostly the same set of register
variables are scheduled consecutively, i.e., they get an annotation which defines
their scheduled order. This order is optimized w.r.t. minimizing variable lifetime.
Therefore, the annotated scheduler finds the smallest sub-DAG that encompasses
the entire lifespan of the variable. This is necessary for finding nested scopes
inside a set of sub-DAGs.

A more detailed description of the scheduler and an example illustrating its func-
tionality can be found in [38].

8.4 The Scheduler 105

[Sequence = Sequence’ |
swap2, chsH2 = chsL2, swap2
chsH2, swap2 = swap2, chsL2
swap2, swap2, unpackL2 = swap2, swap2, unpackH2
swap2, swap2, unpackH2 = swap2, swap2, unpackL2
unpackL2, swap2 = unpackL2
unpackH2, swap?2 = unpackH2
swap2 = shufpd2
accPP2 = unpackL2, unpackH2, add2
accNN2 = unpackL2, unpackH2, sub2
accPN2 = unpackL2, unpackH2, chsL2, sub2
accNP2 = unpackL2, unpackHi2, chsL2, add2

Figure 8.12: Rule Set for Pentium 4 Transformations. All rewriting combinations of
unsupported operations on Intel’s Pentium 4.

8.4.1 Improvements of the Scheduler

MAP performs additional reordering (code motion) to the output of the scheduler.
The goal of code motion is to improve locality of register accesses inside a schedule
by shifting instructions up and down.

As the access patterns occurring in SIMD vectorized code may differ sig-
nificantly from the scalar case, FFTW-GEL uses a set of heuristics to reorder
instructions, thus breaking FrTw’s schedule.

Moreover, there are usually more unary instructions in SIMD code than in
scalar code, because these instructions are needed to do auxiliary operations, e. g.,
data shuffling and sign change operations.

To improve the output of MAP’s scheduler of in these cases, MAP employs a
local reordering strategy, trying to reduce the register pressure.

The following definitions are needed in the context of code motion.

Instruction Neighbor. An instruction X is neighbored to an instruction Y when
X is directly followed by Y in a sub-DAG of the schedule or vice versa.

Instruction Sequence. An instruction sequence <I1,...,In> consists of n
neighboring instructions.

Producer Instruction. A producer of a register R is an instruction using R as
destination operand.

Consumer Instruction. A consumer of a register R is an instruction using R as
source operand.

Moving an Instruction Down. Consider an instruction sequence <I1,I2>
where 11 and I2 are neighbors. Instruction I1 is moved down in the sequence
leading to the new sequence <I2,I1> if and only if all source operands of the
instruction I2 are neither source nor target operands of instruction I1.

106 8. Rewriting and Optimization

Moving an Instruction Up. Consider an instruction sequence <I1,I2> where
I1 and I2 are neighbors. Instruction I2 is moved up in the sequence leading to
the new sequence <I2,I1> if and only if all source operands of the instruction I1
are neither source nor target operands of instruction I2.

As the code dealt with is of SSA form, for the reasons described in Appel [10], the
code motion process can be simplified. In the up shifts, it is not necessary to check
for the destination of I1 being source or destination of I2. In the down shifts, it
is not necessary to check for the destination of I2 being source or destination of
I1.

Code Motion Transformation

The following code motion steps are performed: (i) Loads are moved down.
(i1) Stores are moved up. (4i¢) Unary instructions, whose source operand is not
read by any instruction following in the program text, are moved up. (iv) All
other unary instructions are moved down. (v) Binary instructions are moved up
if both of their source operand are not used in the following program text. This
step has turned out to be especially beneficial for SIMD codes mainly consisting
of intra-operand instructions.

Chapter 9

Backend Techniques for Straight-Line
Code

The MAP backend {74, 76] introduced in this section generates assembly code
optimized for short vector SIMD hardware. It is able to exploit special features
of automatically generated straight-line codes. The MAP backend is included
in the most current version of FFTw, FFTW-GEL and has been connected to
SPIRAL and ATLAS. It currently supports assembly code for x86 with 3DNow!
or SSE 2.

The automatically generated codes to be translated are large blocks of SSA
code with the following properties: (¢) there is no program control flow except the
basic block’s single point of entry and exit, (zi) there is full knowledge of future
temporary variable usage, (#41) there are indexed memory accesses possibly with
a stride as runtime parameter, and (4v) loads from and stores to data vector
elements are performed only once.

Standard backends fail to compile such blocks of SSA code to performant ma-
chine code as they are targeted at a broad range of structurally different hand-
written codes lacking the necessary domain specific meta information mentioned
above. Thus, standard backends fail in register allocation when too many tem-
porary variables are to be assigned to a small number of registers and they also
have trouble with efficient calculation of effective addresses.

9.1 Optimization Techniques Used in MAP

The MAP backend performs the following two kinds of optimization.

Low Level Optimization. Low level optimization rests upon the following two
properties of the x86 instruction set.

First, most instructions are destructive, i.e., the output of an instruction is
written into one of its source registers.

Secondly, the instruction set offers special instructions that constitute a com-
bination of several simple instructions, e.g., a “shift by some constant and add”
instruction. Code quality can often be improved by utilizing these composite
instructions.

After transforming high-level instructions into a sequence of equivalent x86-style
code, the MAP backend applies register allocation based on the farthest first

108 9. Backend Techniques for Straight-Line Code

algorithm for choosing a spill victim. That process is interwoven with the gener-
ation of efficient code for the calculation of effective addresses. The latter utilizes
a particularly well-suited mix of integer instructions to speed up the access of
elements residing in strided arrays.

Ultra Low Level Optimization. Even within a class TheVienna MAP BACKEND
SIMD Virtual Code |
; ¥

of processors implementing the same instruction set ar- =
chitecture, individual members may have different exe- Form
cution behavior with regard to instruction latencies, in- Low Register |[ea
struction throughput, ports, and (the number and type |Levet Alcrator |
of) functional units. e o

E Instruction | :
Ultra low level optimizations take specific execution § | Scheduler |1 19
properties of one particular processor into account. 3z WZ}JJ{ &
These properties are provided by processor-specific ex- §_>°"°’j"" ; ,‘:’-:
ecution models specifying (7) how many instructions can ' [reger 1| |3
be issued per clock cycle, (i) the latency of each in- g B
struction, (i4) the execution resources required by each |y AGlt o
instruction, and (#v) the overall available resources. L Proventon

The ultra low level optimizations comprise an inStruc- yngarsing to Assembly
tion scheduler and a register reallocator, both of which Figure 9.1: The ba-
form a feedback driven optimization loop. sic structure of MAP’s

The instruction scheduler is capable of estimating Packend. A SIMD, DAG
the runtime of the generated code by modeling a super- fen.em‘.ﬁed by MAP’s vec-

.) ' orization frontend is sub-

scalar, in-order approximation of the target processor. jected to advanced low

The register reallocator eliminates useless copy in- and ultra low level back-
structions, promotes the use of CISC style load-and-use end optimization.
instructions, and renames all logical SIMD registers using
a least recently used (LRU) heuristic. The register reallocator can immediately
effect code size and register pressure, but more importantly, the renaming of reg-
isters can help the instruction scheduler do a better job in the next iteration of
the optimization loop.

As long as the code improves with regard to the estimated runtime or the
code size, a new iteration of the optimization loop is started.

As soon as the feedback driven optimizations are done, a final pass reorders
memory access instructions to avoid address generation interlocks (AGIs).

9.2 Backend Optimization Goals

MAP’s backend aims at the optimization of () integer arithmetics, and (i) the
code size of vectorized straight line code.

Optimized Integer Arithmetics. All integer calculations done by DSP or
matrix multiplication kernels are solely devoted to effective address calculation

9.3 One Time Optimizations 109

needed to access data arrays residing in memory. Whereas general purpose com-
pilers normally do not optimize the respective integer calculations, MAP’s back-
end applies a special technique for generating optimized code to be used in ef-
fective address computation. Using this optimization technique, the performance
of DSP and linear algebra kernels improves significantly, eliminating the need for
several specialized variants of the same kernel working with different fixed strides.

Minimizing Code Size. Although the main reduction of code size is achieved
by the MAP vectorizer [75], the backend further reduces the size of a kernel. Code
size minimization is of utmost importance because (i) the instruction caches of
modern processors are relatively small, and (i7) it allows to generate and use
codelets for larger transforms without performance deterioration.

For instance, the Pentium 4’s trace cache holds 12K of micro-operations. This
is not overwhelmingly much, considering that each x86 instruction demands at
least one micro-operation. Instructions using direct memory operands demand
even more.

MAP’s backend optimization even reduces the code size of bigger basic blocks,
helping a processor’s instruction cache not to be overstrained. If, for any reason,
there is a demand for very big basic blocks (e. g., large FFTW codelets, completely
unrolled ATLAS kernels, . ..) , it can be guaranteed that their performance is good
or at least acceptable.

The backend uses () efficient methods to compute effective addresses, (i) a
register allocator, (4i%) an optimizer for in-memory operands, and (iv) a register
reallocator for code size reduction.

For instance, the efficient calculation of effective addresses is hinted to reuse
already computed addresses as operands for other address computation code.
This technique yields the shortest possible instruction sequences in address com-
putation code, i.e., for one effective address translation locally.

The basic block register allocator that utilizes the farthest first algorithm
as its spill heuristic, reduces the number of register spills and reloads. Hence,
besides a performance improvement, the number of spill and reload instructions
is considerably reduced in the final assembly code.

Direct use of in-memory operands helps to discover weaknesses of the register
allocator. Loads from memory whose data is used as an instruction’s operand are
spilled only once. Such register operands are discarded and their use is substituted
by equivalent memory operands. The register reallocator does not care about
dropped out load instructions for discarded register operands in its subsequent
allocation process.

9.3 One Time Optimizations

Architecture specific instruction forms, register allocation, computation of effec-
tive addresses, and avoidance of address generation interlocks are optimization

110 9. Backend Techniques for Straight-Line Code

techniques performed only once.

9.3.1 Architecture Specific Instruction Forms

While most instructions of RISC style instruction sets comprise instructions in
standard form that take two source registers and one destination register without
any additional equality constraints pending, in the CISC style x86 instruction
most unary and binary instructions are destructive, i. e., one source register must
be used as a destination register.

When translating high-level instructions! into x86 instructions, one copy in-
struction is inserted for every instruction. In all following stages of the backend
compilation, x86 style instructions are used.

Example 9.1 demonstrates the rewriting of standard unspecific instruction
forms into x86, i.e., in this case Pentium 4, specific instruction forms.

Example 9.1 (Rewriting Instruction Forms) Unary and binary vector instructions of
standard instruction forms of a short example code sequence are rewritten into Pentium 4
specific instruction forms to allow for further, architecture and processor close backend opti-
mization.

Standard Instruction Form 286 Instruction Forms

p4copy2(si,d);

add2(s1,s2,d); p4add2(s2,d) ;

pécopy2(s,d);

mulc2(s, (0.7,0.5),d); pamulc2((0.7,0.5),d);

9.3.2 Register Allocation for Straight-Line Code

The register allocator’s input code contains vector computation as well as its
integer address computation accessing input and output arrays in memory. Thus,

registers have to be allocated for both register types assuming two different target .

register files.

The codes are in SSA form and thus only one textual definition of a variable
exists. There is no control flow either. As a consequence of these properties, it is
possible to evaluate the effective live span of each temporary variable, and thus,
a farthest first algorithm [105] can be used as a spilling scheme.

Whenever a temporary variable needs to be mapped to a logical register, the
register allocator uses the following strategy for finding a spill victim: (i) When-
ever possible, a fresh logical register is chosen. (i¢) If there is at least one dead

In the higher levels of MAP’s code generation, i.e., vectorizer and optimizer, intermediate
code is used without taking care for specific instruction forms. As the subsequent low and
ultra low level optimization are very close to a specific architecture, intermediate code has to
be transformed from standard form into x86 form accordingly.

9.3 One Time Optimizations 111

logical register, i.e., a logical register holding a value that is not referenced in
the future, the logical register that has been dead the longest is chosen. Reusing
a dead logical register introduces a false dependency. (iii) If there is no dead
logical register, the logical register R that holds a value V such that the reference
to V lies farther in the future than the references to the values held by all other
logical registers is chosen.

General purpose compilers cannot apply the farthest first algorithm in their
spilling schemes as they also address codes possibly containing complex control
flow structures not allowing to precisely determine the life span of each temporary
variable as in straight-line SSA codes.

Experiments carried out with numerical straight-line SSA code have shown
that the simple farthest first spilling strategy is superior to the strategies utilized
in general purpose C compilers [44].

9.3.3 Optimized Index Computation

Index computations are normally not addressed by advanced optimization tech-
niques as their occurrence in non-DSP codes is negligible. Nevertheless, straight-
line code produced by DSP program generators features disproportionately many
memory access operations in relation to arithmetic operations. Thus, optimized
index computation in such code is crucial for achieving high performance and
poses one of MAP’s optimization tasks.

The targeted codes operate on arrays of input and output data. Both may
not be stored contiguously in memory. Thus, access to element in[i] may result
in a memory access operation either at address

in + i*sizeof(in) or in + i*sizeof (in)*stride

where in and stride are parameters passed from the calling function.
Memory accesses with constant indices do not need explicit effective address
computation whereas those with variable array strides do.

Guidelines for Effective Address Computation

To achieve an efficient computation of effective addresses, the MAP backend fol-
lows some guidelines. (i) General multiplications are avoided. Instead of using
costly integer multiplication instructions (imul) for general integer multiplication
in effective address calculation, it is usually better to use equivalent sequences of
simpler instructions (add, sub, shift) instead. Typically, these instructions can
be decoded faster, have shorter latencies, and are all fully pipelined. (i) The in-
teger register file’s content is reused as often as possible. This is feasible as integer
registers are solely reserved for address computation and the full past and future
of required multiples of the stride is known. (ii7) Only integer multiplications are
rewritten whose result can be obtained using less than n other operations, where

112 9. Backend Techniques for Straight-Line Code

n depends on the latency of the integer multiplication instruction on the target
architecture.

The Load Effective Address Instruction

On x86 compatible hardware architectures it is possible to use the powerful lea
instruction instead of a sequence of (add, sub, shift) instructions as it combines
up to two adds and one shift operation into one instruction. The lea instruction
can be used, for instance, to quickly calculate addresses of array elements. As
it is better to utilize instructions with implicit integer computation, as this can
further reduce the code size, the lea instruction is used in the process of effective
address computation in MAP’s x86 backend.

Example 9.2 (The LEA Instruction) The complex computation of eax = ebx + ecx +
8 corresponds to just one lea instruction: lea eax,[ebx + ecx + 8] lea calculates the value
eax by performing the addition of a base register ebx with an index register ecx and some
constant displacement, e. g., 8.

In general, the lea instruction implements addressing modes of the form

Base + Index*Scale + Displacement

like, for instance,

eax - q

eax
ebx

ebx none
ecx ecx 1 none
edx + edx | * 2 + 8- b“.:
esp ebp. 4 16 — bit

b s

Zs}i) esi 8 32 — bit
edi L\ edi .
Base + Indexx*Scale 4+ Displacement

Base denotes an arbitrary register out of 8 different 32-bit integer registers.
Index is any non-base 32-bit register. It might include some of the base registers.
Scale is a scaling factor being either 0 (none), 1, 2, 4, or 8.

Displacement is either an 8, 16, or 32-bit integer containing an address or an offset. It may
happen that there is no displacement at all.

Not all of the four addressing components need to be specified, like in Example 9.2 where the
Scale factor has been omitted.

9.3 One Time Optimizations 113

The Optimized Index Computation Process

The generation of code sequences for calculating effective addresses is intertwined
with the register allocation process.

Whenever the register allocator needs to emit code for the calculation of an
effective address, the (locally) shortest possible sequence of lea instructions is
determined by depth-first iterative deepening (DFID) with a target architecture
specific depth limit n which depends on the latency of the integer multiplication
instruction on the target architecture?. As the shortest sequences tend to eagerly
reuse already calculated contents of the integer register file, a replacement policy
based on the least recently used (LRU) heuristic is employed for integer registers.

There are different ways of generating lea instructions producing a new factor
out of existing ones in one step of the iterative deepening approach:

4
+ s2 d—s*{s}

whereby d is the destination register, and s, s1, and s2 are registers holding
previously generated factors that are already present in the register file.

In the following, Example 9.3 shows an optimal efficient index computation,
as only one lea instruction is needed to compute an effective address.

d=s1x

0 BN =

Example 9.3 (Efficient Computation of 17*stride) The lea instruction is used to
compute 17+stride from the current entries of the integer register file. In this example all
required operands already reside in the register file providing three different ways of computing
the result. The entries in the register file and the respective lea instructions are displayed
below. The factors 1*stride and -1*stride have an register file entry by default and can
therefore be assumed as initially available. Due to the properties of the considered codes, it is
very likely that the needed factor for a lea instruction is already present in the integer register
file resulting in a maximum factor reuse.

Integer Register File LEA Instructions Result

Reg Entry

eax | stridex3

ebx | stride*5 lea ecx, [ebx + 4x*eax] (5+4*3)*stride
edx | stridex1 lea ecx, [edi + 2*esi) (-1+2*9) *stride
esp | stridex4 lea ecx, [edx + d*esp] = (1+4x4)*stride
esi | stridex*9

edi | stridex-1

2e.g., n = 3 operations on an AMD K7, as the general multiplication instruction has a
latency of 4 cycles on this processors.

114 9. Backend Techniques for Straight-Line Code

9.3.4 Avoiding Address Generation Interlocks

The memory access operations in the numerical straight-line codes of this thesis
do not have WAW dependencies concerning memory instructions as writing to
a specific memory location happens only once. Thus, any order of memory in-
structions obeys the given program semantics. This enables the MAP backend to
reorder store instructions to resolve address generation interlocks (AGIs). AGIs
occur whenever a memory operation involving some expensive effective address
calculation directly precedes a memory operation involving inexpensive address
calculation or no address calculation at all. Generally, as there is no knowledge
whether there are WAW dependencies between memory accessing instructions
or not in the codes, the second access is stalled by the computation of the first
access’ effective address. Example 9.4 illustrates the prevention of an AGI.

Example 9.4 (Address Generation Interlock) A write operation to out{17] is directly
preceding a write operation to out[0] in the assumed code. As hardware requires an in-
order memory access, writing to out [0] requires a completed writing to out[17] and thus
the computation of the effective address of out[17]. Both would stall write to out[0]. By
knowing that there are no WAW dependencies between out [0] and out [17], these operations
are swapped. The write to out [0] is done concurrently to computing the effective address of
out{17] and thus its writing is not stalled.

addr = 17 * stride; addr = 17 * stride;
out [addr] = temp0; —— out[0] = templ;
out [0] = tempil; out[addr] = tempi;

AGI prevention is performed as MAP’s last optimization after the feedback
driven optimization loop.

9.4 Feedback Driven Optimizations

Instruction scheduling, direct use of in-memory operands, and register realloca-
tion are executed in a feedback driven optimization loop to further improve the
optimization effect. The instruction scheduler serves as a basis for estimating the
runtime of the entire basic block. As long as the code’s estimated execution time
can be improved, the feedback driven optimizations are executed.

A final optimization technique applied to the output of the optimization feed-
back loop is the reordering of memory access instructions to avoid AGIs.

9.4.1 Basic Block Instruction Scheduling

Instruction scheduling is an optimization technique that aims at the rearrange-
ment of the micro-operations executed in a processor’s pipeline to maximize the
number of function units operating in parallel and to minimize the time they
spend waiting for each other [69]. To maximize a program’s overall performance,

9.4 Feedback Driven Optimizations 115

it is essential that the respective code is scheduled in a way to take maximum
advantage of the pipelines provided by the architecture [91].

The MAP backend’s instruction scheduler deals with the instructions of a sin-
gle basic block, using the local list scheduling described in [91] and [105]. The
scheduling algorithm utilizes information about the critical-path lengths of the
underlying data dependency graph as a heuristic when selecting an instruction
to be issued.

The list scheduling algorithm implemented interacts with an execution model
of the target processor to simulate the effects of super-scalar in-order execution
of an instruction sequence.

The Processor Execution Model

The MAP backend uses an execution model specifying low level hardware prop-
erties for each specific x86 target processor (e. g., Intel Pentium 4 and AMD K7).

For each instruction supported by a particular processor, the execution model
specifies (¢) how many instructions can be decoded and issued per clock cycle,
(¢2) the latency of each instruction, (4i7) the execution resources required by each
instruction, and (¢v) the available resources.

The execution model can be seen as an oracle that decides whether a given se-
quence of n instructions can be issued within the same cycle and executed in
parallel by means of super-scalar in-order execution while avoiding resource con-
flicts®. That oracle is used by MAP’s instruction scheduler to resolve tie situations
occurring in the instruction scheduling process.

For the sake of simplicity, the execution models do not take address generation
resources into account. In fact, the models assume that enough address generation
units (AGUs) are available at any time. Also, all execution models implemented
do not address instruction and data cache misses.

Using Execution Modeling in Instruction Scheduling

The issue priority heuristic of the list scheduling algorithm presented in [91] selects
among all instructions currently in ready state the instruction having the longest
critical path.

While the MAP backend also uses information about critical path lengths as
a global guideline, it uses a target processor specific ezecution model to estimate
how many cycles the execution of a given code would take on the target.

As the instruction scheduler of MAP has an actual notion of time, it tries
to maximally “fill” each cycle. The issuing of an instruction is delayed until the

3An instruction issue is possible if and only if (i) the latencies of the instructions are optimal
in terms of the scheduling heuristic, (i) n is less or equal the number of processor slots per
cycle, and (7i¢) the required execution units are not conflicting.

116 9. Backend Techniques for Straight-Line Code

results of its predecessors are available. Among all ready instructions that could
issue/execute with all other instructions previously chosen for that particular
cycle, the instruction scheduler selects the one with the longest critical path and
commits to it.

Whenever it is not possible to find a suitable instruction, the scheduler ad-
vances to the next cycle, updating its scheduling lists accordingly.

9.4.2 Register Reallocation

Register allocation and instruction scheduling have conflicting goals. As the regis-
ter allocator tries to minimize the number of register spills, it prefers introducing
a false dependency on a dead logical register over spilling a live logical register.
The instruction scheduler, however, aims at the maximization of the pipeline
usage of the processor, by spreading out the dependent parts of code sequences
according to the latencies of the respective instructions.

As the MAP backend performs register allocation before doing instruction
scheduling, it is clear that the false dependencies introduced by the register allo-
cator severely reduce the number of possible choices of the instruction scheduler.

To address this problem, the register reallocator tries to lift some (too restric-
tive) data dependencies introduced by the register allocator (or by a previous pass
of register reallocation), enabling a following pass of the instruction scheduler to
do a better job. Also, the register reallocator uses information about the spills
introduced by the register allocator to minimize the code size by appropriately
utilizing CISC style instructions and by optimizing x86 copy instructions.

Preparatory Steps for the Register Reallocator

To assist the following optimizations performed by the register reallocator, the
following two preparatory steps are carried out first.

In the first pass, all SIMD loads and reloads, all SIMD copy instructions, all
SIMD unary instructions, and all instructions for integer calculation are moved
down in the program text, until the moved instruction reaches another instruction
with whom it has either an RAW, a WAW, or a WAR dependency, i.e., the
respective instructions are moved down as far as possible.

The second pass is identical with the first one, except for the fact that SIMD
reloads are not moved down.

Utilizing CISC Style Instructions with In-Memory Operands

The x86 instruction set architecture defines only few logical registers. But, as on
other CISC style machines, it is possible to directly use an operand residing in
memory without previously loading it into a register.

9.4 Feedback Driven Optimizations 117

Using in-memory operands can (z) reduce register pressure locally and
(44) lower the total instruction count, as two separate instructions, i. e., one load
and one use instruction, can be merged into one load-and-use instruction.

However, excessively using in-memory operands can both increase the code
size and deteriorate performance. In extreme cases using in-memory operands
could lead to (¢) half empty register files, while (i¢) the same data is loaded over
and over again.

The MAP backend transforms load-use combinations into load-and-use in-
structions whenever a memory operand is used exactly once in the following
program text.

Helping the Instruction Scheduler

The process of instruction scheduling sheds some light on the false dependen-
cies introduced by the register allocator, showing that some false dependencies
impeded the process of instruction scheduling more than others did. Also, as
the utilization of CISC style instructions with in-memory operands slightly re-
duces the register pressure, reconsidering the false dependencies introduced by
the register allocator is one of the main goals of the register reallocator.

The MAP backend’s register reallocator takes the output of the instruction
scheduler and reallocates all logical SIMD registers using a LRU replacement
strategy. During that process, all register spills and reloads remain unchanged.

As the register reallocator effectively replaces false dependencies with more
favorable ones with regard to the instruction scheduler, it enables another pass
of the instruction scheduler to yield a better result.

Eliminating Superfluous Copy Instructions

As the preparation phase of the register reallocator has an impact on the relative
order of SIMD spill and SIMD copy instructions, it is sometimes possible to
eliminate copy instructions of logical registers.

Whenever the register reallocator encounters a SIMD copy instruction, such
that the source register of that instruction is used at most once in the following
program text, the copy instruction is eliminated and its destination register is
renamed to its source.

Chapter 10

Experimental Results

This chapter presents numerical experiments carried out to demonstrate the ap-
plicability and the performance boosting effects of the newly developed MAP
vectorizer and backend tools [74, 76].

The MAP vectorizer provides vectorized code either (i) via a source-to-source
transformation producing macros compliant with a portable SIMD API (see
Chapter 6) and additionally providing support for FMA instructions, or (ii) via
a source-to-assembly transformation utilizing the MAP backend currently sup-
porting assembly code for x86 with 3DNow! or SSE 2.

To obtain relevant performance results, the newly developed methods of the
MAP vectorizer and backend have been combined with leading-edge self-tuning
numerical software—FFTW [35], SPIRAL [99], and ATLAS [115]—resulting in high-
performance SIMD implementation of DSP and linear algebra codes. In the fol-
lowing sections, experimental evidence is given for the performance gain unleashed
by the MAP vectorizer and backend.

All performance values were obtained using the original timing routines pro-
vided by SPIRAL, FFTW and ATLAS. Third-party codes were assessed using these
timing routines as well. Details on performance assessment for scientific software
can be found in Appendix C and in Gansterer and Ueberhuber [40]. All codes for
complex transforms utilize the interleaved complex format (alternately real and
imaginary part data format) unless noted differently.

10.1 Experimental Layout

It has been demonstrated, that the MAP vectorizer provides one of the fastest
FFTs that are currently available on x86 processors featuring 3DNow! and SSE 2.
In addition, these methods provide the only FFT's for BlueGene/L’s PowerPC 440
FP2 processor taking full advantage of its double FPU [3]. Formal vectorization
and the MAP vectorizer leverage the only vectorized implementations for general
DSP transforms like DST, 2D-DCT that are automatically tuned. Moreover, the
only fully automatically vectorized ATLAS kernels are obtained utilizing the MAP
vectorizer.

Instruction statistics show that in most cases the MAP vectorizer reduces
the number of arithmetic instructions significantly (up to 50%). In some cases,
however, a considerable amount of reorder instructions is required, thus slightly
increasing the overall instruction count. On modern processors like the Pentium 4

10.2 BlueGene/L Experiments 119

this is not a critical issue, as floating-point and reordering instructions can be
carried out in parallel by specialized execution units providing an overall speed-
up anyway.

Furthermore, the MAP backend accelerates automatically generated DSP
code by up to 25%, compared to standard C compilers like the GNU C com-
piler. This allows code vectorized by the MAP vectorizer to achieve a superlinear
speed-up value of 2.2 for two-way SIMD extensions. Using the Intel C++ com-
piler, speed-up values of up to 1.8 are reached using the MAP vectorizer.

10.1.1 Experimental Setup

Numerical experiments on machines featuring different short vector extensions
were conducted: (i) a prototype of BlueGene/L’s PowerPC 440 FP2 running
at 500 MHz featuring a double FPU, (i) a Pentium4 featuring SSE and SSE 2
running at 1.8 GHz and, (74i) a 800 MHz Athlon Thunderbird featuring 3DNow!
professional. 3DNow! and the double FPU are two-way vector extensions (for
single-precision and double-precision, respectively) providing a theoretical speed-
up of two. The double FPU additionally provides fused multiply-add (FMA)
instructions.

First, the results of the experiments carried out on IBM’s BlueGene/L will
be presented. Then the two IA-32 machines, i.e., the 1.8 GHz Pentium 4 and the
1.53 GHz Athlon XP 1800+ will be assessed. The latter machines are interesting
to experiment with as their processors have different cache architectures and the
investigated codes fit into data caches.

FFT performance is displayed in pseudo Gflop/s, i.e., 5N log, N/T (in
nanoseconds) while actual performance is displayed for all other transforms.

10.2 BlueGene/L Experiments

Very recently, experiments were carried out on a prototype of IBM’s BlueGene/L
(BG/L) top performance supercomputer [25]. In tandem with SPIRAL, the MAP
vectorizer was evaluated on this prototype. Performance data of 1D FFTs with
vector lengths N = 22, 23 ... 21° were obtained on one single PowerPC 440 FP2
running at 500 MHz.

The following FFT implementations were tested: (i) The best vectorized code
found by SPIRAL utilizing formal vectorization, (i7) the best vectorized code found
by SPIRAL utilizing the MAP vectorizer, (7i) the best scalar FFT implementa-
tion found by SPIRAL (XL C’s vectorizer and FMA extraction turned off), (4v) the
best vectorized FFT implementation found by SPIRAL using the XL C compiler’s
vectorizer and FMA extraction turned on, and (v) the mixed-radix FFT im-
plementation provided by the GNU scientific library (GSL). Figs. 10.1 and 10.2
display the respective performance and speed-up data.

120 10. Experimental Results

Floating-Point Performance

| Gflop/s 0.5 |- ~
| SpIRAL with Vienna MAP Vectorizer (/i) =<43--
| SPIRAL (Scalar Code) (#ii) —p—
| SPIRAL (Vectorizing Compiler) (iv) --X--
GSL Mixed Radix (v) —Sk—
0 H 1 i
22 28 24 25 26

Vector Length N

Figure 10.1: Floating-point performance of the MAP vectorizer in tandem with SPIRAL over
another vectorized FFT implementations and scalar implementations on BlueGene/L’s Pow-
erPC 440 FP2 running at 500 MHaz.

Speed-up

1 | 1 I 1 1] I | I 1 1 A]

BlueGene/FFTW-GEL Vectorizer FMA e——ws
XL C Vectorizer FMA —---=-

2 XLC ——

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64
Vector Length

Figure 10.2: Speed-up of (z) the newly developed BlueGene/L MAP vectorizer with FMA
extraction but without backend optimizations and (i4) FFTW codelets vectorized by XL C with
FMA extraction, compared to (ii1) scalar FFTW codelets using XL C without FMAs and without
vectorization. The experiment has been carried out running no-twiddle codelets.

The best scalar codes found by SPIRAL serve as baseline for the assessment
of the various vectorization techniques. The tested codes are very fast scalar
implementations that do not utilize FMA instructions. The MAP vectorizer is
restricted to problem sizes that can be fully unrolled fitting into instruction cache
and the resulting code is such that it can be handled well by the XL C compiler’s
register allocator. This is the case for problem sizes N < 32 = 2°. The third-
party GNU GSL FFT library reaches about 30 % of the performance of the best
scalar SPIRAL generated code and thus shows a very disappointing performance.

10.3 Experiments on TA-32 Architectures 121

XL C’s vectorization and FMA extraction produces code which is 15 % slower than
scalar XL C without FMA extraction, i.e., XL C’s techniques used to vectorize
straight-line code does not handle SPIRAL generated FFT codes well.

Fig. 10.2 shows the relative performance (speed-up) of FFTw 2.5.1 no-twiddle
codelets vectorized using the MAP vectorizer compared to scalar FFTW codelets
and codelets vectorized by IBM’s XL C compiler.

IBM’s XL C compiler for BlueGene/L using code generation with SIMD vec-
torization and with FMA extraction (using the compiler techniques introduced
in [79]) sometimes accelerates the code slightly but also slows down the code in
some cases. The MAP vectorizer yields speed-up values up to 1.8 for sizes where
the XL C compiler’s register allocator generates reasonable code. For codes with
more than 1,000 lines (vector lengths 16, 32, 64) the performance degrades be-
cause of the lack of efficient register allocation.

For automatically generated FFT codes, vectorization of basic blocks using
instruction level parallelism sometimes can speed up codes slightly, but in other
cases slows down codes significantly. This effect is especially striking when using
IBM’s XL C compiler for BlueGene/L’s PowerPC 440 FP2 processor, as displayed
in Figs. 10.1 and 10.2. In all these cases the MAP vectorizer achieves significant
speed-up values.

These experiments provide evidence that modern (vectorizing) compilers are
not able to generate fast machine code in conjunction with portable libraries.

10.3 Experiments on [A-32 Architectures

This section assesses the MAP vectorizer [72] on [A-32 architectures. Exper-
imental evidence is provided that MAP successfully vectorizes a large class of
straight-line codes, including SPIRAL generated codes, FFTW codelets, and AT-
LAS kernels.

MAP has been investigated on two IA-32 compatible machines: (7) one with
an Intel Pentium4 processor featuring SSE 2 two-way double-precision SIMD
extensions and (#¢) one with an AMD Athlon Thunderbird featuring 3DNow!
professional two-way single-precision SIMD extensions.

All codes were generated using the GNU C compiler 2.95.2 and the GNU
assembler 2.9.5.

Performance data are displayed in pseudo Gflop/s, i.e., 5Nlog N/T (in
nanoseconds) for complex-to-complex and 2.5V log N/T for real-to-halfcomplex
FFTs.

122 10. Experimental Results

10.3.1 MAP Vectorization and Backend Applied to
FFTW Codelets

MAP was connected to FFTW leading to the AMD specific K7/FFTw-GEL and
the Pentium 4 specific P4/FFTw-GEL. In the newest release of FFTw, MAP for
AMD machines has been included.

It turned out in the experiments that the maximum speed-up value achievable
by vectorization (ignoring other effects like smaller code size, wider register files,
etc.) is two on both test machines. However, additional backend optimization
leads to further performance improvement of the generated codes.

Both complex-to-complex FFTs and real-to-halfcomplex FFTs for power of
two and non-powers of two problem sizes were evaluated using BENCHFFT. Real-
to-halfcomplex FFTs are notoriously hard to vectorize (especially for vector
lengths being non-powers of two) due to their much more complicated algorithmic
structure compared to complex-to-complex FFT algorithms.

Performance on the AMD Athlon. Figs. 10.3 (a)—(d) illustrate the per-
formance of K7/FrTw-GEL using codelets vectorized and assembled by MAP
on an Athlon Thunderbird utilizing enhanced 3DNow! which provides two-way
single-precision SIMD extensions. Both the vectorizer and the backend were used.
Standard C code generated by scalar FFTw, FFTPACK, and GSL demonstrates
the performance boosting effect of K7/FrTw-GEL.

More specifically, Figs. 10.3 (a)—(b) display the performance in pseudo Gflop/s
of complex-to-complex FFTs. (a) refers to power of two and (b) to non-powers
of two vector lengths. Figs. 10.3 (c¢)-(d) display the corresponding results for
real-to-halfcomplex FFTs. (c) refers to power of two and (d) to nonpowers of two
vector lengths. In the experiments underlying Figs. 10.3 (a)—(d) the data sets fit
into L2 cache.

FFTW is up to two times faster than FFTPACK, the industry standard in non-
hardware-adaptive FFT software. Fig. 10.3 (a) shows that for most problem sizes
of complex-to-complex power of two FFTs FFTw-GEL is about twice as fast as
FFTW with a peak performance of nearly 2 pseudo Gflop/s. In Fig. 10.3 (b),
the complex-to-complex non-power of two FFTs of K7/FFTw-GEL are about
twice as fast as FFTW with a peak performance of nearly 1.4 pseudo Gflop/s.
Fig. 10.3 (c) shows that for most problem sizes of real-to-halfcomplex power of
two FFTs FFTw-GEL is about twice as fast as FFTw with a peak performance
of nearly 1.5 pseudo Gflop/s. Fig. 10.3 (d) shows that for real-to-halfcomplex
non-power of two FFTs FFTw-GEL is about twice as fast as FFTw with a peak
performance of nearly 1.2 pseudo Gflop/s.

Performance on the Intel Pentium 4. Figs. 10.4 (a)—(d) illustrate the
performance of P4/FFTW-GEL on the Pentium4. P4/FrTw-GEL utilizes the
two-way double-precision SIMD operations provided by SSE 2. Standard C code
generated by scalar FFTW and FFTPACK enables the assessment of P4/FFTw-
GEL.

10.3 Experiments on IA-32 Architectures 123

One-dimensional complex to complex FFT One-dimensional complex to complex FFT

| 1 1 L T) T I T

K7/FFTWGEL 1.2 e K7/FFTWGEL 1.2 -

FFTW 2.1.3 —— - FFTW 2.1.3 ——
FFTPACK --~-- 4 1 N e~ ____FFTPACK ====-

T ¥ T T ¥ T T T T

GHop/s Gilop/s

0 1 1 | I 1 1 1 1 1 [0 i 1 1 1 1 1 1 1 | 1 i 1 1
27 98 g8 gl ML 9i2 9I3 gl p15 gl8 7 6 9 15 24 80 210 000 4725 27000
Vector Length N Vector Length N
(a) Powers of Two (b) Non-Powers of Two
One-dimensional real to half-complex FFT One-dimensional real to half-complex FFT

1 T T ¥ T 1 1 I T T ¥ T T T U T T 1 1 T T
K7/FFTWGEL 1.2 ——— K7/FFTWGEL 1.2 =mmase
FFIW 2.1.3 —— FFTW 2.1.3

20 GSL —--~- e GSL —----

Gllop/s Gflop/s

0 1 1 1 L 1 1 1 1 1 0 1 1 1 i | 1 1 i 1 1 i 1 1
27 2% 29 0 M 912 9l gl 915 9l6 97 9 15 24 80 210 1000 4725 27000
Vector Length N Vector Length N
(c) Powers of Two (d) Non-Powers of Two

Figure 10.3: Floating-point performance of K7/FFTrw-GEL (3DNow!) compared to FFTPACK
and FFTw 2.1.3 on a 800 MHz AMD Athlon Thunderbird carrying out complex-to-complex
and real-to-halfcomplex FFTs in single-precision both of power of two and nonpowers of two
problem sizes.

Figs. 10.4 (a)-(b) display the performance in pseudo Gflop/s of complex-to-
complex FFTs. (a) refers to power of two and (b) to non-powers of two transform
sizes. Figs. 10.4 (c)—(d) display the runtimes of real-to-halfcomplex FFTs. (c)
refers to power of two and (d) to non-powers of two transform sizes. In the
experiments underlying Figs 104 (a)—(d) the data sets fit into L2 cache.

Fig. 10.4 (a) shows that speed-ups of up to 2.2 have been achieved for complex
FFTs of powers of two (including the performance boost originating from the
backend). This is leading to FFTs running at 2.2 pseudo Gflop/s on a 1.8 GHz
Pentium 4, utilizing two-way SIMD extensions.

The performance of the code is best within L1 cache and decreases outside
L1. This happens to be the case only for vector lengths N = 2% and 2'° due to
the size of the Pentium 4’s very fast data cache.

Fig. 10.4 (b) shows that for complex-to-complex non-power of two FFTs
Frrw-GEL is about twice as fast as FFTw 2.1.3 with a peak performance of
nearly 1.2 pseudo Gflop/s. Fig. 10.4 (c) shows that the real-to-halfcomplex FFTs
of powers of two produced by FFTW already have a remarkable peak performance
of nearly 1 pseudo Gflop/s. Nevertheless, P4/FFrTw-GEL is up to 30 % faster

124 10. Experimental Results

One-dimensional complex to complex FFT One-dimensional complex to complex FFT

I T 1 1 1 1 1 T

1 1 1 1
P4/FFTWGEL 1.2 =
FFTW 2.1.3 ——

T T 1 ¥ T
P4/FFTWGEL 1,2 =
FFTW 2.1.3 ——
FFTPACK --=~- —

2.0

Gllop/s Gflop/s 1

0 1 I 1 ! 1 L 1 L 1 1 0 I NN OUNN TN RN NN (RS DUUVRD N N RN N
25 28 97 98 99 210 ll 912 o3 gl gls pI5 oI7 9 15 24 80 210 1000 4725 27000
Vector Length N Vector Length N
(a) Powers of Two (b} Non-powers of Two
One-dimensional rcal to half-complex FFT One-dimensional real to half-complex FFT

LI T T 1 T I ¥ I T T 1 T I T T T T i I | T
P4/FFTWGEL 1.2 —=—— P4/FFTWGEL 1.2 «——

FFIW 2.1.3 —— FFTW 2.1.3 ——
FFTPACK ----- -1 | FFTPACK ~===- =

Gllop/s

27 28 29 210 2! 212 2B gt gls 216 217 9 15 24 80 210 1000 4725 27000
Vector Length N Vector Length N
(c¢) Powers of Two (d) Non-powers of Two

Figure 10.4: Floating-point performance of P4/FrTw-GEL (SSE 2) compared to FFTw
{(double-precision) on an Intel Pentium4 running at 1.8 GHz carrying out complex-to-complex
and real-to-halfcomplex FFTs having problem sizes of both power of two and nonpowers of two.

than FrTw 2.1.3. The performance improvement is primarily due to backend
optimization as vectorization cannot yield a significant improvement in this case.
Fig. 10.4 (d) illustrates that for real-to-halfcomplex non-powers of two FFTs,
FrTw-GEL is up to 60 % faster than FrTw 2.1.3.

Reduction of the Number of Stack Accessing Instructions. Fig. 10.5
shows the relative count of instructions accessing stack variables, e.g., spill,
reload, or load-and-use instructions for FFTW codelets of various size. For codelet
sizes N = 4,...,256, the MAP backend produces assembly code superior to the
C code obtained with FrTw.

This leads to the proposition, that the farthest first policy used as spilling
scheme for the register allocation in the MAP backend is superior to the ones used
in mainstream C compilers, e. g., gcc, the Intel C compiler, or deccc, particularly

for FFTWcodelets and code having a similar structure, e. g., ATLAS linear algebra
kernels [44].

Reduction of the Number of Integer Operations. Using the technique for
calculating effective addresses described in [71], the total number of integer in-
structions can be reduced significantly. Fig. 10.6 illustrates the relative reduction

10.3 Experiments on [A-32 Architectures 125

Relative Stack Access Count

i

FN_4 FN_8 FN_16 FN_32 FN_64 FN_i28 FN_256

WFFTW-GEL OGCC

Figure 10.5: Stack access count of MAP vectorized and backend optimized FFTw-GEL
codelets compared to standard FFTW codelets, normalized by N log, N.

of integer operations achieved by MAP’s optimization techniques. The amount
of integer operations for effective address calculation is at least halved for the
codelet sizes between N =4, ...,256 of this assessment sudy.

Relative Integer Operation Count

FN_2 FN_4 FN_8 FN_16 FN_32 FN_64 FN_128 FN_256

WFFTW-GEL O0GCC

Figure 10.6: Relative integer operation count for FFTW codelets vectorized using the MAP
vectorizer and assembled by the MAP backend. The integer operations of effective address
computation are significantly reduced.

126 10. Experimental Results

10.3.2 MAP Vectorization and Backend Applied to
SPIRAL Generated Codes

The MAP vectorizer was investigated on a Pentium 4 running at 1.8 GHz using
DFTs, DCT, DSTs and WHT's generated by SPIRAL. Fig. 10.7 shows that the
MAP vectorizer significantly reduces the number of arithmetic instructions. The
vectorization process introduces a significant number of data reordering opera-
tions. However, these newly introduced operations can be executed in parallel
with the arithmetic operations carried out on the Pentium 4 processor.

Relative Instruction Count

1,50

1,00 | — l—l [—]

0,50 41— —1

0,00 -
FFT 13 FFT 64 DCT-I1 16 DCT-11 16 DST-18 DGEMM 80 DGEMM 128

BFPU Instr. OReorder Instr.

Figure 10.7: Relative instruction count of various DSP transforms and linear algebra routines.
The number of arithmetic instructions is significantly reduced by the MAP vectorizer.

To provide evidence that register allocation in standard compilers cannot han-
dle large straight-line code, the MAP backend was compared with the Intel C++
compiler’s backend using DFTs (unit stride memory access) of size 4, 8,..., 64
that require up to 1,300 floating-point instructions. DF'T codes were generated
and optimized by SPIRAL using (i) the MAP vectorizer and the MAP backend
and (i7) the MAP vectorizer outputting C code with intrinsics. In the second
case, the Intel C++ compiler’s backend was utilized. As largest code in this
experiment, DFTgy features approximately 2000 lines of SSA straight-line code.
This experiment only assesses register allocation and instruction scheduling, as
unit-stride code versions were used.

The experiments show that code generated using the the MAP backend main-
tains its performance level even for large problem sizes while the performance for
N =64 or N = 128 FFT code compiled by Intel’s C++ compiler degrades by
25% as illustrated in Figs. 10.9 and 10.8. For small problem sizes, when no
register spills occur as the number of temporary variables is small, there is no
significant difference between the P4/FFrTw-GEL backend and Intel’s C++ com-

‘/

10.3 Experiments on TA-32 Architectures 127

One-dimensional real to half-complex FFT

SPIRAL with MAP Vect. & Backend st
SPIRAL with MAP Vect. nn@nn
SPIRAL C scalar —+—

! 1
22 23 24 25 26

Vector Length N

Figure 10.8: Performance of the Intel C4++ compiler compared to the MAP backend for a
SPIRAL generated one dimensional FFT on an Intel Pentium 4 with 1.8 GHz.

Performance of the MAP Backend
4 T T T

| I |
P4/FrTW-GEL 1.2 Backend ——
P4/FrTW-GEL 1.2 Intrinsics ~—---

Gflop/s

1 1] 1
2 4 8 16 32 64 128 256

Vector Length N

Figure 10.9: Floating-point performance of P4/FFrw-GEL (SSE 2) with backend compared
to P4/FFTW-GEL (SSE 2) without backend using intrinsics and the Intel C++ compiler. The
experiment has been carried out on a 2.6 GHz Pentium 4 using on real FFTs. Performance
data are displayed in pseudo-Gflop/s, i.e., SN log N/T (nanoseconds).

piler backend. For N = 256 the performance of the P4/FFTW-GEL backend
decreases as the number of unavoidable spills prevails.

10.3.3 MAP Vectorization of ATLAS Kernels

The MAP vectorizer is able to deal with ATLAS kernels leading to the same in-
struction count (arithmetic operations, data reorder operations, loads and stores)
as the semi-automatically produced (hand-coded) SSE 2 and 3DNow! kernels con-
tributed to the ATLAS project by various people. However, it can automatically

128 10. Experimental Results

vectorize linear algebra code for kernel sizes that were not yet hand-coded by con-
tributors but would be required for top performance when machine parameters
like cache sizes change. Fig. 10.7 shows that the number of arithmetic instruc-
tions in dgemm kernels is halved by the MAP vectorizer and hardly any reorder
instructions are needed.

Conclusion

This thesis presents special purpose compilation techniques targeting the auto-
matic 2-way SIMD vectorization of straight-line DSP and linear algebra code.
The combination of these methods with other optimization techniques described
in this thesis—peephole optimization and compilation to assembly including var-
ious backend optimizations—has been demonstrated to provide outstanding per-
formance for the compiled codes on all supported target architectures.

The most prominent automatic performance tuning systems—ATLAS, FFTW,
and SPIRAL—hardware independently provide high performance scalar imple-
mentations of numerical algorithms. SIMD short vector hardware support has
been provided, at the most, by hand written kernels utilizing SIMD instructions.
The newly introduced compiler technology helps to achieve the same level of
performance as do hand-tuned vendor libraries while accomplishing performance
portability.

In conjunction with ATLAS, FFTW and SPIRAL, SIMD vectorized high per-
formance implementations of FFTs, general DSP transforms, and BLAS kernels
have been obtained. Some of the techniques described in this thesis have been
included in the current release of the industry standard numerical library FFTW
and will become part of IBM’s numerical library for BlueGene/L supercomputers.

The MAP vectorizer of this thesis leveraged the so far only vectorized im-
plementation of automatically tuned DCTs, DSTs, and multidimensional DSP
transforms. Moreover, the MAP vectorizer has produced the only fully automat-
ically vectorized ATLAS kernels so far.

The MAP vectorizer, relying on the techniques introduced in this thesis, pro-
vides the fastest FFTs currently available on x86 architectures featuring 3DNow!
(AMD Athlon) or SSE 2 (Intel Pentium 4) SIMD extensions.

IBM is currently developing its BlueGene/L supercomputers which aim at
the top rank in the Topr 500 list. The methods of this thesis rendered possible
the only currently existing FFT software for BlueGene/L’s PowerPC 440 FP2
processors taking full advantage of their double FPU.

Appendix A

The Kronecker Product Formalism

This chapter introduces the formalisms of Kronecker products (tensor products)
and stride permutations, which are the foundations of most algorithms for discrete
linear transforms. This includes various FFT algorithms, the Walsh-Hadamard
transform, different sine and cosine transforms, wavelet transforms as well as all
multidimensional linear transform.

Kronecker products allow to derive and modify algorithms on the structural
level instead of using properties of index values in the derivation process. The
Kronecker product framework provides a rich algebraic structure which captures
most known algorithms for discrete linear transforms. Both iterative as well as
recursive algorithms are captured. Most proofs in this section are omitted. They
can be found in Van Loan [109)].

The Kronecker product formalism has a long and well established history
in mathematics and physics, but until recently it has gone virtually unnoticed
by computer scientists. This is changing because of the strong connection be-
tween certain Kronecker product constructs and advanced computer architec-
tures (Johnson et al. [67]). Through this identification, the Kronecker product
formalism has emerged as a powerful tool for designing parallel algorithms.

In this chapter, Kronecker products and their algebraic properties are intro-
duced from a point of view well suited to algorithmic and programming needs.
It will be shown that mathematical formulas involving Kronecker product oper-
ations are easily translated into various programming constructs and how they
can be implemented on vector machines. The unifying approach is required to
allow automatic performance tuning for all discrete linear transforms.

In 1968, Pease [94] was the first who utilized Kronecker products for describ-
ing FFT algorithms. So it was possible to express all required operations on
the matrix level and to obtain considerably clearer structures. Van Loan [109]
used this technique for a state-of-the-art presentation of FFT algorithms. In the
twenty-five years between the publications of Pease and Van Loan, only a few au-
thors used this powerful technique: Temperton [106] and Johnson et al. [65] for
FFT implementations on classic vector computers and Norton and Silberger [93]
on parallel computers with MIMD architecture. Gupta et al. [45] and Pitsianis
[95] used the Kronecker product formalism to synthesize FFT programs.

The Kronecker product approach to FFT algorithm design antiquates more
conventional techniques like signal flow graphs. Signal flow graphs rely on the
spatial symmetry of a graph representation of FFT algorithms, whereas the Kro-
necker product exploits matrix algebra. Following the idea of Johnson et al. [65],

A.1 Notation 131

the SPIRAL project (Moura et al. [88] and Plischel et al. [97]) provides the first
automatic performance tuning system for the field of discrete linear transforms.
One foundation of SPIRAL is the work of Johnson et al. [65] which is extended
to cover general discrete linear transforms.

The Kronecker product approach makes it easy to modify a linear transform
algorithm by exploiting the underlying algebraic structure of its matrix represen-
tation. This is in contrast to the usual signal flow approach where no well defined
methodology for modifying linear transform algorithms is available.

A.1 Notation

The notational conventions introduced in the following are used throughout this
chapter. Integers denoting problem sizes are referred to by capital letters M, NV,
etc. Loop indices and counters are denoted by lowercase letters 7, j, etc. General
integers are denoted by k, m, n, etc. as well as r, s, t, etc.

A.1.1 Vector and Matrix Notation

In this chapter, vectors of real or complex numbers will be referred to by lowercase

letters x, y, z, etc., while matrices appear as capital letters A, B, C, etc.
Parameterized matrices (where the size and/or the entries depend on the

actual parameters) are denoted by upright capital letters and their parameters.

Example A.1 (Parameterized Matrices) LS is a stride permutation matrix of size 64 x 64
with stride 8 (see Section A.4), T$ is a complex diagonal matrix of size 8 x 8 whose entries are
given by the parameter “2” (see Section A.5), and I4 is an identity matrix of size 4 x 4.

Discrete linear transform matrices are denoted by an abbreviation in upright
capital letters and a parameter that denotes the problem size.

Example A.2 (Discrete Linear Transforms) WHTpy denotes a Walsh-Hadamard trans-
form matrix of size N x N and DFTpy denotes a discrete Fourier transform matrix of size
N x N (see Section 4.1).

Row and column indices of vectors and matrices start from zero unless otherwise
stated.

The vector space of complex n-vectors is denoted by C*. Complex m-by-n
matrices are denoted by C™*".

Example A.3 (Complex Matrix) The 2-by-3 complex matrix A € C?*3 is expressed as

aopo Go1 Qo2
AZ(, aoo,...,alze(c.

aip a11 ai2

Rows and columns are indexed from zero.

132 A. The Kronecker Product Formalism

A.1.2 Submatrix Specification

Submatrices of 4 € C™™ are denoted by A(u,v), where v and v are index vectors
that define the rows and columns of A used to construct the respective submatrix.

Index vectors can be specified using the colon notation:
u=j:k © u=(Gji+1,...,k), j<k

Example A.4 (Submatrix) A(2: 4,3 :7) € C3*® is the 3-by-5 submatrix of A € C™*"
(with m > 4 and n > 7) defined by the rows 2, 3, and 4 and the columns 3, 4, 5, 6, and 7.

There are special notational conventions when all rows or columns are extracted
from their parent matrix. In particular, if A € C™*"™, then

Alu,r) & Aw,0:n-—1),
AGv) & A0:m—1v).

Vectors with non-unit increments are speciﬁed by the notation
u=1:7:k & u=(@i+k,...,7),

where k € Z \ {0} denotes the increments. The number of elements specified by
this notation is S
J i+
max ({ A J ,O) .

Example A.5 (Non-unit Increments) Let A € C™*" then

m--1

A(0:m—1:2,:) e ClTIxn

is the submatrix with the even-indexed rows of A, whereas A(:tn —1:0: -1) e C™*" is A
with its columns in reversed order.
A.1.3 Diagonal Matrices
If d € C*, then D = diag(d) = diag(d, ..., dn—1) € C™" is the diagonal matrix
dy 0
di
0 dn—l

Example A.6 (Identity Matrix) The n x n identity matrix I, is a parameterized matrix
where the parameter n defines the size of the square matrix and is given by

1 0

A.1 Notation 133

A.1.4 Conjugation

If A € C*™" is an arbitrary matrix and P € C**" is an invertible matrix then
the conjugation of A by P is defined as

AP = P7LAP.

In this chapter P is a permutation matrix in most cases.

Example A.7 (Conjugation of a Matrix) The 2 x 2 diagonal matrix

_ ap 0
A=(%a)

is conjugated by the 2 x 2 anti-diagonal
01
n=(10)

leading to
Jp _ 1-1 _[a O

Property A.1 (Conjugation) For any A € C"*" and P € C™" being an
invertible matrix it holds that

PAY = AP,

Property A.2 (Conjugation) For any A € C™" and P € C™" being an
invertible matrix it holds that

APp~1l = p-l4,

A.1.5 Direct Sum of Matrices

Definition A.1 (Direct Sum of Matrices) The direct sum of two matrices A

and B is given by
A O
A@B-(O B),

where the 0’s denote blocks of zeros of appropriate size.

Given n matrices Ag, Aj,. .., An—1 being not necessarily of the same dimension,
their direct sum is defined as the block diagonal matrix

Ao 0
n—1 Al
@Ai=Ao@A1@"'@An—1=

i=0

134 A. The Kronecker Product Formalism

A.1.6 Direct Sum of Vectors

Vectors are usually regarded as elements of the vector space CV and not as
matrices in CV*! or C**¥. Thus the direct sum of vectors is a vector. The direct
sum of vectors can be used to decompose a vector into subvectors as required in
various algorithms.

Definition A.2 (Direct Sum of Vectors) Let y be a vector of length N and
x; be n vectors of lengths my:

uo Uuo Umg Urn,, o
u1 ui Umg+1 Um.,, _o+1
y= : , Tg = . , L1 = . yeeey Tyl = .
UN -1 Umg-1 Umy -1 UI\;—I

Then the direct sum of xg, z1,..., T,—; is defined by
n—1 5(1)
y=@xi=mo®$1®...@xn_l=< . >€CN.
=0 uN_1

A.2 Extended Subvector Operations

Most identities introduced in this chapter can be formulated and proved easily
using the standard basis.

Definition A.3 (Standard Basis) Let ¢}, elV,..., eX_, denote the vectors in
CV with a 1 in the component given by the subscript and 0 elsewhere. The set
{eV:i=0,1,...,N -1} (A1)

is the standard basis of CV.

A.3 Kronecker Products

Definition A.4 (Kronecker or Tensor Product) The Kronecker product
(tensor product) of the matrices A € CM*M and B € CM2XM2 js the block
structured matrix

ao,oB R ao,Nl_lB
A® B := € CMiM2xN1Ny
aMl——l,OB e anl—l,Nl—lB

Definition A.5 (Tensor Basis) Set N = N;N; and form the set of tensor
products

et e, i=01,...,Ni—1, j=0,1,...,Np—1. (A.2)

This set is called tensor basis.

A.3 Kronecker Products 135

Since any element el of the standard basis (A.1) can be expressed as

eﬁiN2=€£vl®€§v2’ i:0)17-")N1—1a j=071>--'7N2—17
the tensor basis of Definition A.5 ordered by choosing j to be the fastest running
parameter is the standard basis of CV. In particular, the set of tensor products
of the form

l-Nl ® yN2
spans CV, N = N; N,.

The following two special cases of Kronecker products involving identity matrices
are of high importance.

Definition A.6 (Parallel Kronecker Products) Let A € C™*" be an arbi-
trary matrix and let I € C*** be the identity matrix. The expression

A 0

A
L, @A =

is called parallel Kronecker product.

A parallel Kronecker product can be viewed as a parallel operation. Its action on
a vector £ = g @ x; @ -+ - ® xp—1 can be performed by computing the action of
A on each of the k consecutive segments z; of x independently.

Example A.8 (Parallel Kronecker Product) Let Ay € C?*? be an arbitrary matrix and
let I3 € C**3 be the identity matrix. Then

y:= (I3 QA2)x
is given by
Yo ap,0 @o,1 Zo
Y1 a1,0 0G1,1 T
Y2 . ag,0 Go0,1 T2
Y3 N aioe 11 T3
Y4 o0 Qg1 T4
Ys aio a1 Ts

This matrix-vector product can be realized by splitting up the input vector z € C® into three
subvectors of length 2 and performing the respective matrix-vector products

independently.

Yo \ _ [Go0 Qo1 To
Y1 aio a1 T
Y2 o Qo0 Qo,1)
Y3 a0 a1, z3
(Ya) — (ap,0 Qo T4
Ys aio @1 Ts

136 A. The Kronecker Product Formalism

Definition A.7 (Vector Kronecker Products) Let A € C™ " be an arbi-
trary matrix and let Iy € C*¥** be the identity matrix. The expression

agoly -+ aon—1lk
AQ® I = :

am-1,0 Lk - Om—1,n—1 I
is called vector Kronecker product.

A vector Kronecker product can be viewed as a vector operation. To compute its
action on a vector z =y @z, P - - - B x,,_1, the n vector operations

ar,0x0+ar,1x1 +"'+af’r,n—1$n—17 r= Oal,'-'am_ 1

are performed. Expressions of the form A ® I are called vector operations as the
operate on vectors of size k.

Example A.9 (Vector Kronecker Product) Let A2 € C?*2 be an arbitrary matrix and
let I3 € C3*3 be the identity matrix. Then

y:={A®I3)z
is given by
Yo ag,0 ap,1 Zo
A ag,0 ag,1 Z1
Y2 _ 0,0 ap,1 X2
y3 | a0 a1 z3
Yq ai1,0 a1,1 T4
Ys a1,0 ata Ts

This matrix-vector product can be computed by splitting up the vector z € C® into two sub-
vectors of length 3 and performing single scalar multiplications with these subvectors:

Y1 =ago | Z1 + ap,1 Ty

Y2 Z2 Ts5
(5)=oe(2) e (3)

Y4 =aio | Z1 ‘a1 | x4 |-

Ys z2 s

A.3.1 Algebraic Properties of Kronecker Products

Most of the following Kronecker product identities can be demonstrated to hold
by computing the action of both sides on the tensor basis given by Definition A.5.

Property A.3 (Identity) If I, and I, are identity matrices, then

L.®L, =1,,.

A.3 Kronecker Products 137

Property A.4 (Identity) If I, and I, are identity matrices, then
L, @I, =Inn.
Property A.5 (Associativity) If A, B, C are arbitrary matrices, then
(A®RB)®C =A® (B®C).
Thus, the expression A ® B ® C' is unambiguous.
Property A.6 (Transposition) If A, B are arbitrary matrices, then
(A9 B)T = AT®B'.
Property A.7 (Inversion) If A and B are regular matrices, then
(A®B)'=A"19 B

Property A.8 (Mixed-Product Property) If A, B, C and D are arbitrary

matrices, then
(A B)(C®D)=AC®BD,

provided the products AC and BD are defined.

A consequence of this property is the following factorization.

Corollary A.1 (Decomposition) If A € C™>*™ and B € C™2*"2 then
A®B=AL,®1L,, B=(A®1,,)1,, ®B),
AR®B =1, A®BI,, = (I, ®B)(A®1,,).

The mixed-product property can be generalized in two different ways.

Corollary A.2 (Generalized Mixed-Product Property) For k matrices of
appropriate sizes it holds that

(A1RA® - @A) (B ®B:® - ® By) = A1B; ® AsBy - -+ @ A By,
and
(A1 ® B1)(A2®@ Bs) - - (Ax ® By) = (A1As - Ap) @ (B1By - - By).
Property A.9 (Distributive Law) If A, B, and C are arbitrary matrices, then
(A+B)@C=(AC)+(B®C),
AR (B+C)=(A®B)+(A® ().
The Kronecker product is not commutative. This non-commutativity is mainly
responsible for the richness of the Kronecker product algebra, and naturally leads
to a distinguished class of permutations, the stride permutations. An important

consequence of this lack of commutativity can be seen in the relationship between
Kronecker products and direct sums of matrices.

Property A.10 (Left Distributive Law) It holds that
(A®B)®C=(A®C)® (B®C).
The right distributive law does not hold.

138 A. The Kronecker Product Formalism

A.4 Stride Permutations

Definition A.8 (Stride Permutation) For a vector z € C™ with

mn—1
T = E Trep T with e =el ®e¢", and =z €C,
k=0

the stride permutation L™ is defined by its action on the tensor basis (A.2) of
cmn,
Lo (ef @ e]') = €' @ e}

The permutation operator L' sorts the components of z according to their index
modulo n. Thus, components with indices equal to 0 mod n come first, followed
by the components with indices equal to 1 modn, and so on.

Corollary A.3 (Stride Permutation) For a vector z € C™ the application
of the stride permutation L™ results in

z(0: (m—1)n:n)
L g x(l:(m—.l)n+1:n)

zin—1:mn—1:n)

Definition A.9 (Even-Odd Sort Permutation) The permutation L3, n be-
ing even, is called an even-odd sort permutation, because it groups the even-
indexed and odd-indexed components together.

Definition A.10 (Perfect Shuffle Permutation) The permutation L7 ,, 7
being even, is called a perfect shuffle permutation, since its action on a deck
of cards could be the shuffling of two equal piles of cards so that the cards are
interleaved one from each pile.

The perfect shuffie permutation L} /2 1s denoted in short by II,.

Mixed Kronecker Products

Combinations of tensor products and stride permutations have both vector and
parallel characteristics like stride permutations and additionally feature arith-
metic operations like parallel and vector Kronecker products.

The factorization of these constructs leads to the short vector Cooley-Tukey
FFT.

A.4 Stride Permutations ‘ 139

Definition A.11 (Right Mixed Kronecker Product) Let A € C™*" be an
arbitrary matrix, I, € CF** be the identity matrix, and L™ be a stride permu-
tation. An expression of the form

(I ®A) L
is called right mized Kronecker product.

Definition A.12 (Left Mixed Kronecker Product) Let A € C™*" be an
arbitrary matrix, I, € C¥* be the identity matrix, and LZ”“ be a stride per-
mutation. An expression of the form

LT (A® L)

is called left mized Kronecker product.

A.4.1 Algebraic Properties of Stride Permutations
Property A.11 (Identity)
L =Ly =1
Property A.12 (Inversion/Transposition) If N = mn the
(L)t = (LT = L.
Property A.13 (Multiplication) If N = kmn then
Lmn [hmn — [fmnpgmn _ 1 ko

Example A.10 (Inversion of the Perfect Shuffle Permutation) The inverse matrix of
Lg is given by the perfect shuffle permutation:

(L¥)"' =12, = .

As already mentioned, the Kronecker product is not commutative. However, with
the aid of stride permutations, the order of factors can be reverted.

Theorem A.1 (Commutation) If A € C™*™ and B € C™2*"2 then

L™ (A® B) = (B® A)Ln"2.
Proof: Johnson et al. [65].

Several special cases are worth noting.

140 A. The Kronecker Product Formalism

Corollary A.4 If A € C™*™ and B € C™*" then
AR B=L"(BRA)L™ = (B® A"

Application of this relation leads to

[n®B=L"(B®IL,) L™ = (B®IL,)"",

AR, =L"(, ®A) L™ = ([, @A)\".
Stride permutations interchange parallel and vector Kronecker factors. The read-
dressing prescribed by L;"™ on input and L™ on output turns the vector Kro-
necker factor A ® I,, into the parallel Kronecker factor I, A and the parallel

Kronecker factor 1,, ® B into the vector Kronecker factor B ®]1,,. Continuing this
way, it is possible to write

A B=(A®L,)(1,.®B)

=L (I, @A) L (1, ®B), (A.3)

which can be used to compute the action of A ® B as a sequence of two parallel
Kronecker factors. It also holds that

A®B=(A®L)L™[B®IL,) L™, (A.4)

which can be used to compute the action of A ® B as a sequence of two vector
Kronecker factors. The stride permutations intervene between computational
stages, providing a mathematical language for describing the readdressing.

Occasionally it will be necessary to permute the factors in a tensor product
of more than two factors.

Frequently used properties which can be traced back to those before are stated
in the following,.

Property A.14 If A € C™*™ and B € C"*" then
A® B =L"(1,®A) L (1, ®B).
Property A.15 If N = kmn then
Ly = (Ly" ® L) (L ® L"),
Property A.16 If N = kmn then
L' = (I @ L") (LE" @ Ln).
Property A.17 If N = kmn then

(L ®La) = (In @ L") L™

A 4 Stride Permutations 141

Proof: Using Properties A.12 and A.16 lead to
(LhreL) = L@ L") L, L) (L o) = oLy Ly O

Property A.18 If N = kmn then
(L@ L)L @ L") L™ = (Ly @ L") (L ® L) -
Proof: Using Property A.17 leads to
(I, @ LE™) LE™(T, @ L™ L™ = (1, @ L)L @ I.). ad

The following two properties show, how the mixed Kronecker product can be
decomposed. Property A.19 shows the more general case and Property A.20
shows the full factorization.

Property A.19
(Lt @ Amexn) L™ = (L O L (Amorn ® 1)) (L* @ L)
Property A.20

(Tt @Amewn) LiE* = (18 (L7* O1L,) (Ln O L) (Amoxn ® 1)) (L ©1L)

A.4.2 Digit Permutations
The following permutation generalizes the stride permutation.

Definition A.13 (Digit Permutation) Let N = NiN;--- N, and let o be a
permutation of the numbers 1,2, ..., k. Then the digit permutation is defined by

Noq1)

: Na(k))
(1)

L((TNl,...,Nk)(ef\ljl ® . ® ef:k) = (e ig(k)

®®e

Theorem A.2 (Permutation) Let Ag, A;,...,Ax be N; X N; matrices and let
o be a permutation of the numbers 1,2, ..., k, then

Proof: Johnson et al. [65].
Digit reversal is a special permutation arising in FFT algorithms.

Definition A.14 (Digit Reversal Matrix) The k-digit digit reversal permu-
tation matrix

R(V1,Nz,...,Ni)
of size N = N3Ny - -+ Ny is defined by

(N1,..sNg) [, N1 .. Ny . _Ng . Ny
R (e, ®- ®eik)—eik® - ®e

The special case when Ny = Ny = - -+ = N = p is denoted by R.

142 A. The Kronecker Product Formalism

Theorem A.3 The digit reversal matrix R« satisfies recursion

k

Rpr = [[@i @ LE).

1=2

Proof: Johnson et al. [65].

A.5 Twiddle Factors and Diagonal Matrices

An important class of matrices arising in FFT factorizations are diagonal matrices
whose diagonal elements are roots of unity. Such matrices are called twiddle factor
matrices.

This section collects useful properties of diagonal matrices, especially twiddle
factor matrices.

Definition A.15 (Twiddle Factor Matrix) Let wy = €™/ denote the Nth
root of unity. The twiddle factor matrix, denoted by T}.", is a diagonal matrix
defined by

Tﬁ"(e?@e?)zwgn(e?‘@)e?), i=0,1,....m—1,7=0,1,...,n—1,

m—~1n—1 m—1

Tﬂn = @ @wgn = @ Qn,’i(wm'n)a

=0 j=0 i=0
where 0, x(a) = diag(1, ..., a™ 1),

The following corollary shows how to conjugate diagonal matrices with a permu-
tation matrix. It holds for all diagonal matrices, but is particularly useful when
calculating twiddle factors in FFT algorithms. .

Corollary A.5 (Conjugating Diagonal Matrices) Let
D= diag(do, dl, e 7dN—1)

be an arbitrary N x N diagonal matrix and P, the permutation matrix according
to the permutation o of (0,1,..., N —1). Conjugating D by P, results in a new
diagonal matrix whose diagonal elements are permuted by o, i.e.,

N-1
D> = P;' D P, = diag(do(0), dor), - - - » do(nv—1)) = @ Ao (i)-
1=0

Corollary A.6 (Conjugating Twiddle Factors) Conjugating T,." by L;"
results in T)'", i. e.,
(TR =T,

A5 Twiddle Factors and Diagonal Matrices 143

Tensor bases are a useful tool to compute the actual entries of conjugated twiddle
factor matrices.

Property A.21 (Twiddle Factor I, @ T]"™)

LRTR"(e] ® e @ ep) = wiv (€] @ ' ® €}),

r-1 m-1n-1 r-1 m—1
mn ik
L @Th" = @ Whin = Qn,j (W)
i=0 j=0 k=0 1=0 ;=0

(I, ® T"™)P is the form of twiddle factor matrices as found in FFT algorithms.
The following example shows how to compute with twiddle factors in this form.

Example A.11 (Conjugation of Twiddle Factors) Consider the construct
(LTHS =121, 0TS LR,
Thus, I; ® T§ is conjugated by ng. Computation of the result yields

CELRTHLE) (el el ®el) = (LPELRTH)(E @i ®el)
L wf(ef @ ef @)
= Wwiel® e‘; ®e?)

1 3

3 3
LPLeTHLY = PP Puws =P P %0;ws)

3
i=0 j=0 k=0 i=0 j=0

= dlag(lv 17 1aw8,17w§a 1,&]3, 1, lu 17w8a lngv nga
1,1,1,ws, 1, w8, L,wd, 1,1, 1,ws, 1,wi, 1,wd).

Appendix B

Compiler Techniques

B.1 Register Allocation and Memory Accesses

To access variables residing in physical registers is highly desirable because (4) reg-
ister accesses are generally much faster than memory accesses, and (i¢) most in-
structions in current hardware have been devised to carry out register-to-register
operations. But there is an obstacle to be overcome: Physical registers are a very
scarce and precious resource. As computational data initially resides in memory,
the two main tasks to be tackled are (¢) the minimization of data traffic between
the few but fast registers and the larger but much slower memory, and (i) the
maximization of the reuse of data residing in registers.

These optimization tasks are crucial for improving the performance of assem-
bly code. They are addressed by special register allocation techniques.

B.1.1 Register Allocation

The purpose of register allocation is the assignment of an arbitrary but finite
number of temporary variables to a hardware limited number of physical registers
during program execution. In the following, some definitions are given to enable
a detailed description of the register allocation process.

Variable Conflicts. When assigned to the same physical register, a temporary
variable is in conflict with another temporary variable if one of them is used both
before and after the other one’s usage within a short period of time.

Register Spilling. A register spill occurs when there are more temporary
variables to be loaded than the target hardware’s number of free registers. Spill
code has to be generated to transfer or spill the content of a physical register
to a specified stack location in order to make room for the desired data. The
register allocator’s heuristic strategy determines the best register to be spilled,
the “victim”, depending on its further usage.

Registers whose content is not accessed anymore can be overwritten without
being kept on the stack and therefore are preferred to be such victims.

Register Reloading. The reload of a register content always occurs after a
preceding spill. The spilled content is reloaded into register from the relevant
stack location.

Typically, there are far more temporary variables than physical registers. There-
fore many temporary variables are to be assigned to one physical register which

B.2 Instruction Scheduling 145

evokes variable conflicts and thus imposes a negative impact on a code’s per-
formance. The register allocator’s goal, besides the tasks already stated above,
is to make these assignments such that conflicts and resulting register spills are
avoided as much as possible.

As the preceding higher optimization steps like vectorizer and Optimizer I
made all integer address computation for accessing array elements in implicit
form, i.e., not carrying out explicit address computation in the code, register
allocation is carried out as low-level optimization in order to take integer address
computation code into account in the assignment process of integer registers.

B.2 Instruction Scheduling

Instruction scheduling is a low-level optimization technique aiming at the rear-
rangement of the pipeline executed instructions’s micro-operations to maximize
the number of function units operating in parallel and to minimize the time they
spend waiting for each other [69]. To accommodate a pipeline’s delay or latency
that is necessary between an instruction and its dependent successor, adjacent
instructions have to be made independent, e.g., to be transformed into one in-
struction which writes a register and into another one which reads from it. If such
a reordering of instructions is not carried out, pipelines would have to stall on
unresolved dependencies resulting in unsatisfying pipeline utilization. To max-
imize a program’s overall performance, it is essential that the respective code
is scheduled in a way to take best advantage of the pipelines provided by the
architecture [91].

B.2.1 Constraints for Instruction Scheduling

It is a highly demanding task to find a good execution order of instructions
while (i) preserving data dependencies, and (i) utilizing execution units, and
(¢73) taking multiple instruction issue properties into account. Considering this,
instruction scheduling algorithms must identify the instructions which can be
executed in parallel.

Data Dependencies

If two instructions read from and write to one variable, there may be a data de-
pendency between them. Three different types of data dependencies, i. e., (i) true,
(i7) anti, and (ii1) output will be described in detail using the following exemplary
instruction sequence:

I1 t0 = x[3];
I2 t1 = 0.7071067811865476%t0;
I3 t0 = t3 -~ t4;

x
t

146 B. Compiler Techniques

True Dependency—RAW. A true dependency exists between instructions I1
and I2. I2 has tO as one of its source operands which is written by the preceding
instruction I1. To resolve true dependencies, each consumer of a temporary
variable has to be issued after its producer, i.e., read after write (RAW).

Anti Dependency—WAR. An anti dependency exists between I2 and 13. I2
has t0 as source operand and the following instruction I3 writes t0. To resolve
anti dependencies, a new producer of a temporary variable has to be issued after
it has been read by its consumers before, i.e., write after read (WAR).

Output Dependency—WAW. An output dependency exists between I1 and
13. The order in which producers I1 and I3 write the temporary variable t0 has
to be preserved. To resolve output dependencies, a new producer of a temporary
variable has to be issued after its preceding producer has written it before, i.e.,
write after write (WAW).

Anti dependencies and output dependencies are also referred to as false depen-
dencies as they arise due to the reuse of the same register variables.

Appendix C

Performance Assessment

The assessment of scientific software requires the use of numerical values, which
may be determined analytically or empirically, for the quantitative description of
performance. As to which parameters are used and how they will be interpreted
depends on what is to be assessed. The techniques discussed in this appendix
have a strong impact on the experimental results presented in Chapter 10. A
detailed discussion of performance assessment for both serial and parallel scientific
software can be found in Gansterer and Ueberhuber [40].

The user of a computer system who waits for the solution of a particular
problem is mainly interested in the time it takes for the problem to be solved.
This time depends on two parameters, workload and performance:

workload workload

time = = - .
performanceege.ive periormance,, x efficiency

The computation time is therefore influenced by the following quantities:

1. The amount of work (workload) which has to be done. This depends on the
nature and complexity of the problem as well as on the properties of the
algorithm used to solve it. For a given problem complexity, the workload
is a characteristic of the algorithm. The workload (and hence the required
time) may be reduced by improving the algorithm.

2. Peak performance characterizes the computer hardware independently of
particular application programs. The procurement of new hardware with
high peak performance usually results in reduced time requirements for the
solution of the same problem.

3. Efficiency is the percentage of peak performance achieved for a given com-
puting task. It tells the user as to what share of the potential peak per-
formance is actually exploited and thus measures the quality of the imple-
mentation of an algorithm. Efficiency may be increased by optimizing the
program.

The correct and comprehensive performance assessment requires answers to a
whole complex of questions: What limits are imposed, independently of specific
programming techniques, by the hardware? What are the effects of the differ-
ent variants of an algorithm on performance? What are the effects of specific
programming techniques? What are the effects on efficiency of an optimizing
compiler 7

148 C. Performance Assessment

CPU Time

The fact that only a small share of computer resources are spent on a particular
job in a multiuser environment is taken into account by measuring CPU time.
This quantity specifies the amount of time the processor actually was engaged
in solving a particular problem and neglects the time spent on other jobs or on
waiting for input/output.

CPU time itself is divided into user CPU time and system CPU time. User
CPU time is the time spent on executing an application program and its linked
routines. System CPU time is the time consumed by all system functions required
for the execution of the program, such as accessing virtual memory pages in the
backing store or executing I/O operations.

Peak Performance

An important hardware characteristic, the peak performance Ppax of a computer,
specifies the maximum number of floating-point (or other) operations which can
theoretically be performed per time unit (usually per second).

The peak performance of a computer can be derived from its cycle time T,
and the maximum number N, of operations which can be executed during a clock
cycle:

N,
P max — 'qT:
If Phax refers to the number of floating-point operations executed per second,
then the result states the floating-point peak performance. It is measured in

flop/s (floating-point operations per second)

or Mflop/s (10% flop/s), Gflop/s (10° flop/s), or Tfop/s (10'2 flop/s). Unfortu-
nately, the fact that there are different classes of floating-point operations, which

take different amounts of time to be executed, is neglected far too often (Ueber-
huber [108]).

Notation (flop/s) Some authors use the notation flops, Mflops, Gflops etc. instead of flop/s,
Mflop/s, Gflop/s etc.

It is most obvious that no program, no matter how efficient, can perform better
than peak performance on a particular computer. In fact, only specially op-
timized parts of a program may come close to peak performance. One of the
reasons for this is that, in practice, address calculations, memory operations, and
other operations which do not contribute directly to the result are left out of the
operation count. Thus, peak performance may be looked upon as a kind of speed
of light for a computer.

C.1 Short Vector Performance Measures 149

C.1 Short Vector Performance Measures

Short vector SIMD operation is small-scale parallelism. The speed-up of compu-
tations depends on the problem to solve and how its fits on the target architecture.
In the context of this thesis, the speed-up is the most important measure of how
efficient the available parallelism is used. The speed-up describes, how many
times a vectorized program is executed faster on an n-way short vector SIMD
processors than on the scalar FPU.

Definition C.1 (Speed-up) Suppose, program A can be vectorized in the way
that it can be computed on an n-way short vector SIMD processors. 7 denotes
the time, the scalar program needs when using 1 processor, 7,, denotes the time
of the n-way vectorized program. Then, the speed-up is defined to be:

I
Sp = —.
n Tn
In most cases, S, will be higher than 1. However, sometimes, when the problem
is not vectorizable efficiently, vectorization overhead will cause T;, to be higher
than T7.

Speed-up S, :=T1T,/T,
Speed-up is the ratio between the run time 7} of the scalar algorithm (prior
to vectorization) and the run time of the vectorized algorithm utilizing an
n-way short vector SIMD processor.

Efficiency F, :=5,/n <1
Concurrent efficiency is a metric for the utilization of a short vector SIMD
processor’s capacity. The closer E, gets to 1, the better use is made of the
potentially n-fold power of an n-way short vector SIMD processor system.

C.2 Empirical Performance Assessment

In contrast to analytical performance assessment obtained from the technical
data from the computer system, empirical performance assessment is based on
experiments and surveys conducted on given computer systems or abstract models
(using simulation).

Temporal Performance

In order to compare different algorithms for solving a given problem on a single
computer, either the ezecution time

T:= tend — Tstart

150 C. Performance Assessment

itself or its inverse, referred to as temporal performance Pr :=T~!, can be used.
To that end, the execution time is measured. The workload is normalized by
AW =1, since only one problem is considered.

This kind of assessment is useful for deciding which algorithm or which pro-
gram solves a given problem fastest. The execution time of a program is the
main performance criterion for the user. He only wants to know how long he has
to wait for the solution of his problem. For him, the most powerful and most
efficient algorithm is determined by the shortest execution time or the largest
temporal performance. From the user’s point of view the workload involved and
other details of the algorithm are usually irrelevant.

Empirical Floating-Point Performance

The floating-point performance characterizes the workload completed over the
time span T' as the number of floating-point operations executed in 7"

Wr number of executed floating-point operations

Pr(fl = =
r [flop/s] T time in seconds

This empirical quantity is obtained by measuring executed programs in real life
situations. The results are expressed in terms of Mflop/s, Gflop/s or Tflop/s as
with analytical performance indices.

Floating-point performance is more suitable for the comparison of different
machines than instruction performance, because it is based on operations instead
of instructions. This is because the number of instructions related to a pro-
gram differs from computer to computer but that the number of floating-point
operations will be more or less the same.

Floating-point performance indices based simply on counting floating-point
operations may be too inaccurate unless a distinction is made between the differ-
ent classes of floating-point operations and their respective number of required
clock cycles. If these differences are neglected, a program consisting only of
floating-point additions will have considerably better floating-point performance
than a program consisting of the same number of floating-point divisions. On
the POWER processor, for instance, a floating-point division takes around twenty
times as long as a floating-point addition.

C.2.1 Interpretation of Empirical Performance Values

In contrast to peak performance, which is a hardware characteristic, the empirical
floating-point performance analysis of computer systems can only be made with
real programs, i.e., algorithm implementations. However, it would be misleading
to use floating-point performance as an absolute criterion for the assessment of
algorithms.

A program which achieves higher floating-point performance does not neces-
sarily achieve higher temporal performance, i. e., shorter overall execution times.

C.2 Empirical Performance Assessment 151

In spite of a better (higher) flop/s value, a program may take longer to solve the
problem if a larger workload is involved. Only for programs with equal workload
can the floating-point performance indices be used as a basis for assessing the
quality of different implementations.

For the benchmark assessment of computer systems, empirical floating-point
performance is also suitable and is frequently used (for instance in the LINPACK
benchmark or the SPEC! benchmark suite).

Pseudo Flop/s

In case of FFT algorithms an algorithm specific performance measure is used
by some authors. The arithmetic complexity of 5N log, N operations for a FFT
transform of size NV is assumed This is an upper bound for the FFT computation
and motivated by the fact that different FFT algorithms have slightly differ-
ent operation counts ranging between 3N log, N and 5N log, N when all trivial
twiddle factors are eliminated (see Appendix A.5). As a complication, some im-
plementations do not eliminate all trivial twiddle factors and the actual number
has to be counted. Thus, pseudo flop/s, (5N log N)/T (a scaled inverse of run
time), is a easier comparable performance measure for FFTs and an upper bound
for the actual performance (Frigo and Johnson [35]).

Empirical Efficiency

Sometimes it is of interest to obtain information about the degree to which a
program and its compiler exploit the potential of a computer. To do so, the ratio
between the empirical Hloating-point performance and the peak performance of
the computer is considered.

This empirical efficiency is usually significantly lower than 100 %, a fact which
is in part due to simplifications in the model for peak performance.

C.2.2 Run Time Measurement

The run-time is the second important performance index (in addition to the
workload). To determine the performance of an algorithm, its run-time has to be
measured. One has to deal with the resolution of the system clock. Then, most
of the time not the whole program, but just some relevant parts of it have to be
measured. For example, in FF'T programs the initialization step usually is not
included, as it takes place only once, and the transform is executed many times.

The following fragment of a C program demonstrates how to determine user
and system CPU time as well as the overall elapsed time using the predefined
subroutine times.

ISPEC is the abbreviation of Systems Performance Evaluation Cooperative.

152 C. Performance Assessment

#include <sys/times.h>

/* period is the granularity of the subroutine times */
period = (float) 1/sysconf(_SC_CLK_TCK);

start_time = times(&begin_cpu_time);
/* begin of the examined section */

/* end of the examined section */

end_time times(&end_cpu_time) ;

user_cpu period*(end_cpu_time.tms_utime
- begin_cpu_time.tms_utime);

system_cpu = period*(end_cpu_time.tms_stime

- begin_cpu_time.tms_stime);

period*(end_time - start_time);

I non

n

elapsed

The subroutine times provides timing results as multiples of a specific period
of time. This period depends on the computer system and must be determined
with the UNIX standard subroutine sysconf before times is used. The subroutine
times itself must be called immediately before and after that part of the program
to be measured. The argument of times returns the accumulated user and system
CPU times, whereas the current time is returned as the function value of times.
The difference between the respective begin and end times finally yields, together
with scaling by the predetermined period of time, the actual execution times.

Whenever the execution time is smaller than the resolution of the system
clock, different solutions are possible: (i) Performance counters can be used to
determine the exact number of cycles required, and (i7) the measured part of
a program can be executed many times and the overall time is divided by the
number of runs.

This second approach has a few drawbacks. The resulting time may be too
optimistic, as first-time cache misses will only occur once and the pipeline might
be used too efficiently when executing subsequent calls. A possible solution is to
empty the cache with special instructions.

Calling in-place FFT algorithms repeatedly has the effect that in subsequent
calls the output of the previous call is the input of the next call. This can result,
when repeating this process very often, in excessive floating-point errors up to
overflow conditions. This would not be a drawback by itself, if processors handled
those exceptions as fast as normal operations. But some processors handle them
with a great performance loss, making the timing results too pessimistic.

The solution to this problem is calling the program with special vectors (zero
vector, eigenvectors) or restoring the first input between every run. The second
solution leads to higher run times, but measuring this tiny fraction and subtract-
ing it finally yields the correct result.

C.2 Empirical Performance Assessment 153

C.2.3 Workload Measurement

In order to determine the empirical efficiency of a program, it is necessary to
determine the arithmetic complexity. This can be done either “analytically”
by using formulas for the arithmetic complexity or “empirically” by counting
executed floating-point operations on the computer systems used. Estimating
the number of floating-point operations analytically has the disadvantage that
real implementations of algorithms often do not achieve the complexity bounds
given by analytical formulas.

In order to determine the number of executed floating-point operations, a
special feature of modern microprocessors can be used: the Performance Mon-
itor Counter (PMC). PMCs are hardware counters able to count various types
of events, such as cache misses, memory coherence operations, branch mispredic-
tions, and several categories of issued and graduated instructions. In addition to
characterizing the workload of an application by counting the number of floating-
point operations, PMCs can help application developers for gaining deeper insight
into application performance and for pinpointing performance bottlenecks.

PMCs were first used extensively on Cray vector processors, and appear in
some form in all modern microprocessors, such as the MIPS R10000 [39, 83,
84, 117], Intel IA-32 processors and Itanium processor family [54, 57, 82|, IBM
PowgR PC family [111], DEC Alpha [19], and HP PA-8x00 family [48]. Most
of the microprocessor vendors provide hardware developers and selected perfor-
mance analysts with documentation on counters and counter-based performance
tools.

Hardware Performance Counters

Performance monitor counters (PMCs) offer an elegant solution to the counting
problem. They have many advantages:

(i) They can count any event of any program. (i) They provide exact num-
bers. (i) They can be used to investigate arbitrary parts of huge programs.
(v) They do not affect program speed or results, or the behavior of other pro-
grams. (v) They can be used in multi-tasking environments to measure the
influence of other programs. (vi) They are cheap to use in resources and time.

They have disadvantages as well: () Only a limited number of events can
be counted, typically two. When counting more events, the counts have to be
multiplexed and they are not exact any more. (i¢) Extra instructions have to
be inserted, re-coding and re-compilation is necessary. (i) Documentation is
sometimes insufficient and difficult to obtain. (iv) Usage is sometimes difficult
and tricky. (v) The use of the counters is different on any architecture.

Performance Relevant Events. All processors, which provide performance
counters, count different types of events. There is no standard for implementing
such counters, and many events are named differently. But one will find most of

154 C. Performance Assessment

the important events on any implementation.

Cyecles: Cycles needed by the program to complete. This event type depends
heavily on the underlying architecture. It can be used, for instance, to
achieve high resolution timing.

Graduated Instructions, Graduated Loads, Graduated Stores: In-
structions, loads and stores completed.

Issued Instructions, Issued Loads, Issued Stores: Instructions started,
but not necessarily completed. The number of issued loads is usually far
higher than the number of graduated ones, while issued and graduated
stores are almost the same.

Primary Instruction Cache Misses: Cache misses of the primary instruction
cache. High miss counts can indicate performance deteriorating loop struc-
tures.

Secondary Instruction Cache Misses: Cache misses of the secondary in-
struction cache. Usually, this count is very small and is therefore not a
crucial performance indicator.

Primary Data Cache Misses: One of the most crucial performance factors is
the number of primary data cache misses. It is usually far higher than the
number of instruction cache misses.

Secondary Data Cache Misses: When program input exceeds a certain
amount of memory, this event type will dominate even the primary data
cache misses.

Graduated Floating-point Instructions: Once used as main performance in-
dicator, the floating-point count is together with precise timing results still
one of the most relevant indicators of the performance of a numerical pro-
gram.

Mispredicted Branches: Number of mispredicted branches. Affects memory
and cache accesses, and thus can be a reason for high memory latency.

Platform Independent Interfaces

Every processor architecture has its own set of instructions to access its perfor-
mance monitor counters. But the basic PMC operations, i. e., selecting the type
of event to be measured, starting and pausing the counting process, and reading
the final value of the counters, are the same on every computer system.

This lead to the development of application programming interfaces (APIs)
that unify the access behavior to the PMCs on different operating systems. Ba-
sically, the APIs provide the same library calls on every operating system—then

C.2 Empirical Performance Assessment 155

the called functions transparently access the underlying hardware with the pro-
cessor’s specific instruction set.

This makes the usage of PMCs easier, because the manufacturers interfaces
to the counters were designed by engineers, whose main goal was to gain raw
performance data without worrying of an easy-to-use interface.

Then, PMCs finally can be accessed the same way on every architecture. This
makes program packages, which include PMC access, portable and their code gets
more readable.

PAPI. The PAPI project is part of the PTools effort of the Parallel Tools Con-
sortium of the computer science department of the University of Tennessee [90].
PAPI provides two interfaces to PMCs, a high-level and a low-level interface.
Recently, a GUI tool was introduced to measure events for running programs
without recompilation.

The high-level interface will meet most demands of the most common per-
formance evaluation tasks, while providing a simple and easy-to-use interface.
Only a small set of operations are defined, like the ability to start, stop and read
specific events. A user with more sophisticated needs can rely on the low-level
and fully programmable interface in order to access even seldomly used PMC
functions.

From the software point of view, PAPI consists of two layers. The upper layer
provides the machine independent entry functions—the application programming
interface.

The lower layers exports an independent interface to hardware dependent
functions and data structures. These functions access the substrate, which can
be the operating system, a kernel extension or assembler instructions. Of course,
this layer heavily relies on the underlying hardware and some functions are not
available on every architecture. In this case, PAPI tries to emulate the missing
functions.

A good example for such an emulation is PAPI’s capability of multiplexing
several hardware events. Multiplexing is a PMC feature common to some pro-
cessors as the MIPS R10000, which allows for counting more events than the
usual two. This is done by switching all events to be counted periodically and
estimating the final event counts based on the partial counts and the total time
elapsed. The counts are not exact any more, but in one single program run more
than the usual two events can be measured.

On processors which do not provide this functionality, PAPI emulates it.

Another PAPI feature is its counter overflow control. This is usually not pro-
vided by hardware registers alone and can produce highly misleading data. PAPI
implements 64 bit counters to provide a portable implementation of this advanced
functionality. Another feature is asynchronous user notification when a counter
value exceed some user defined values. This makes histogram generation easy,
but even allows for advanced real-time functionality far beyond mere performance

156 C. Performance Assessment

evaluation.

PCL. The Performance Counter Library (PCL) is a common interface for access-
ing performance counters built into modern microprocessors in a portable way.
PCL was developed at the Central Institute for Applied Mathematics (ZAM) at
the Research Centre Juelich [13]. PCL supports query for functionality, start
and stop of counters, and reading the current values of counters. Performance
counting can be done in user mode, system mode, or user-or-system mode.

PCL supports nested calls to PCL functions to allow hierarchical performance
measurements. However, nested calls must use exactly the same list of events.
PCL functions are callable from C, C++, Fortran, and Java. Similar to PAPI,
PCL defines a common set of events across platforms for accesses to the memory
hierarchy, cycle and instruction counts, and the status of functional units then
translates these into native events on a given platform where possible. PAPI
additionally defines events related to SMP cache coherence protocols and to cycles
stalled waiting for memory access.

Unlike PAPI, PCL does not support software multiplexing or user- defined
overflow handling. The PCL API is very similar to the PAPI high-level API and
consists of calls to start a list of counters and to read or stop the counter most
recently started.

Appendix D

Short Vector Instruction Set

This appendix summarizes the intrinsic API provided for SSE 2 by the Intel C++
compiler.

The semantics of the intrinsics provided by the compilers is expressed using
the C language, but the displayed code is pseudo code. Vector elements are
denoted using braces {}.

D.1 The Intel Streaming SIMD Extensions 2

This section summarizes the relevant part of the SSE 2 API provided by the Intel
C++ compiler and the Microsoft Visual C compiler. The GNU C compiler 3.x
provides a built-in function interface with the same functionality. The SSE 2
instruction set is described in the IA-32 manuals [55, 56].

Short Vector Data Types

A new data type is introduced. The 128 bit data type __m128d maps a XMM
register in two-way double-precision mode. Variables of type __m128d are 128 bit
wide and 16 byte aligned. __m128 is a vector of two double variables. Although
these components cannot be accessed directly in code, in the pseudo code the
components of variable __m128d var will be accessed by var{0} and var{1}.

Components of variables of type __m128d can only be accessed by using
double variables. To ensure the correct alignment of double variables, the ex-
tended attribute __declspec(align(16)) for qualifying storage-class informa-
tion has to be used.

_.declspec(align(16)) double{2] var = {1.0, 2.0};
_.m128d *pvar = &var;

Arithmetic Operations

The arithmetic operations are implemented using intrinsic functions. For each
supported arithmetic instruction a corresponding function is defined. In the con-
text of this thesis only vector addition, vector subtraction and pointwise vector
multiplication is required.

The Pointwise Addition .mm_add_pd. The intrinsic function _mm_add_pd
abstracts the addition of two XMM registers in two-way double-precision mode.

158 D. Short Vector Instruction Set

_m128d _mm_add_pd{(__m128d a, __m128d b)
{

_.m128d c;

c{0} = a{0} + b{0};

c{1} = a{1} + b{1};

return c;

The Pointwise Subtraction _mm_sub_pd. The intrinsic function
_mm_sub_pd abstracts the subtraction of two XMM registers in two-way double-
precision mode.

__m128d _mm_add_pd{(__m128d a, __m128d b)

{
__ml128d c;
c{0} = a{0} - b{0};
c{1} = a{1} - b{1};

return c;

The Pointwise Multiplication _mm_mul_pd. The intrinsic function
_mm_mul_pd abstracts the pointwise multiplication (Hadamard product) of two
XMM registers in two-way double-precision mode.

__m128d _mm_add_pd(__m128d a, __m128d b)
{

_.m1284d c;

c{0} = a{0} * b{0};

c{1} = a{1} * b{1};

return c;

Vector Reordering Operations

SSE 2 features three vector reordering operations: _mm_shuffle_pd,
_mm_unpacklo_pd, and _mm_unpackhi_pd. They have to be used to build the
required permutations. All three operations feature certain limitations and thus
no general recombination can be done utilizing only a single permutation in-
struction. These intrinsics recombine elements from their two arguments of type
__m128d into one result of type __m128d.

The Shuffle Operation _.mm_shuffle_pd. This operation is the most general
permutation supported by SSE 2. The first two elements of the result variable can
be any element of the first parameter and the second two elements of the result
variable can be any element of the second parameter. The choice is done according
to the third parameter. The SSE 2 API provides the macro _MM_SHUFFLE2 to
encode these choices into i.

D.1 The Intel Streaming SIMD Extensions 2 159

_.mi28d _mm_shuffle_pd(__mi128d a, __m128d b, int 1)
{

__m128d c;

c{0} = a{i & 1};

c{1} = b{(i>>1) & 1};

return c;

The Unpack Operation _-mm_unpacklo_pd. This operation is required for
easy unpacking of complex numbers and additionally appears in different contexts
in SSE 2 codes. The first two elements of the result variable are the zeroth element
of the input variables and the second half is filled by the first elements of the input
variables.

_.m128d _mm_unpacklo_pd(__m128d a, __m128d b)
{

_.m128d c;

c{0} = a{0};

c{1} = b{0};

return c;

The Unpack Operation _.mm_unpackhi_pd. This operation is required for
easy unpacking of complex numbers and additionally appears in different contexts
in SSE 2 codes. The first two elements of the result variable are the second element
of the input variables and the second half is filled by the third elements of the
input variables.

__m128d _mm_unpackhi_ps(__m128d a, __m128d b)

{
__m128d c;
c{0} = a{1};
c{1} = v{1};

return c;

Memory Access Functions

Although SSE 2 also features unaligned memory access (introducing a penalty),
in this thesis only aligned memory access is used. SSE 2 features aligned access
for 128 bit quantities (a full XMM register).

128 bit Memory Operations. The SSE API provides intrinsic functions for
loading and storing XMM registers in two-way double-precision mode. The target
memory location has to be 16 byte aligned. XMM loads and stores are implicitly
inserted when __m128d variables which do not reside in registers are used.

160 D. Short Vector Instruction Set

_.m128d4 _mm_load_pd(__m128d *p)
{

__mi28d c;

c¢{0} = *p{0};

c{1} = *p{1};

return c,;

}

void _mm_store_pd{__m128d *p, __m128d a)
{

*p{0} = a{0};

*p{1} = a{1};

}

Initialization Operations. The SSE 2 API provides intrinsic functions for ini-

tializing __m128 variables. The intrinsic _mm_setzero_pd sets all components to

zero while _mm_set1_pd sets all components to the same value and _mm_set_pd .
sets each component to a different value. '

__m128d _mm_setzero_ps()

{
..mi28 c;
c{0} = 0.0;
c{1} = 0.0;
return c¢;

}

__mi28d _mm_setl_ps(double f)

{
__mi128 c;
c{0} = £;
c{1} = £;
return c¢;

}

void _mm_set_pd(double f1, double f0)
{

_.mi128 c¢;

¢{0} = £0;

c{1} = f1;

return c¢;

)

Appendix E
The Portable SIMD API

This appendix contains the definition of the portable SIMD API for SSE 2, both
for the Intel C compiler and the Microsoft Visual C compiler.

This appendix contains the definition of the portable SIMD API for SSE 2—for
the Intel C compiler and the Microsoft Visual C compiler—and for BlueGene/L’s
PowerPC 440 FP2 as provided by the IBM VisualAge 6.0 for BG/L XL C com-
piler.

E.1 Intel Streaming SIMD Extensions 2

/*
map_sse2.h
MAP runtime header for SSE 2
Intel C++ compiler

*/

#include "emmintrin.h"
#include "rdtsc.h"

#pragma warning (disable:167)
#pragma warning (disable:144)

#define USE_XOR
/* —- Spiral prototypes —=——-————=—-=—m—mr e */
#define SCALAR_PTR(ptr) double *(ptr)

#define DECLARE_SCALAR_ARRAY_ALIGNED(var, i) \
—_declspec(align(16)) double varl[i]

#define DECLARE_SPIRAL_FUNC(name, y, x) \
void (name) (SCALAR_PTR(y), SCALAR_PTR(x))

#define DECLARE_SPIRAL_INIT_FUNC(name) \
void (name) (void)

#define SPIRAL_FUNC(name, y, x) \
void (name)(SCALAR_PTR(y), SCALAR_PTR(x))

#define SPIRAL_INIT_FUNC(name) \

E. The Portable SIMD API

void (name) (void)
/* == Data type —————m—mmmmmm e */
#define DECLARE_VEC(vec) __m128d vec
/* -- Constant handling —----—--—=—=-=—=————m—m oo */

#define DECLARE_CONST(c,v) \

static const __declspec(align(16)) double (c) [2]={v,v}
#define DECLARE_CONST_2(c, v0, v1) \

static const __declspec(align(16)) double (c¢) [2]={v0, vi}

/* -- Arithmetic operations -—---——-—=--————-m-o——m——o—eo */

#define VEC_ADD(c,a,b) \

(¢) = _mm_add_pd(a,b)
#define VEC_SUB(c,a,b) \

(¢) = _mm_sub_pd(a,b)
#define VEC_MUL(c,a,b) \

(¢) = _mm_mul_pd(a,b)
#define VEC_MUL_CONST(c,a,b) \

(¢) = _mm_mul_pd(_mm_load_pd(a), b)
#define VEC_MUL_MEM(c,a,b) \

(¢) = _mm_mul_pd(_mm_seti_pd(a), b)
#define VEC_MADD(d,a,b,c) \

(d) = _mm_add_pd(_mm_mul_pd{(a,b),c)
#define VEC_MSUB(d,a,b,c) \

(d) = _mm_sub_pd(_mm_mul_pd(a,b),c)

#define VEC_MULCONST2(trg, cst, src) \
(trg) = _mm_mul_pd(src, _mm_load_pd(cst))

/* -- Initialization operations ------------—=-------—-————-o— */

#ifdef USE_XOR
#define VEC_CHS_HI(trg, src) \

(trg) = _mm_xor_pd(src, _mm_set_pd(-0.0,0.0))
#define VEC_CHS_LO(trg, src) \

(trg) = _mm_xor_pd(src, _mm_set_pd(0.0,~0.0))
#telse
#define VEC_CHS_HI(trg, src) \

(trg) = _mm_mul_pd(src, _mm_set_pd(-1.0,1.0))
#define VEC_CHS_LO(trg, src) \

(trg) = _mm_mul_sd(src, _mm_set_pd(1.0,-1.0))
#endif

/* -- Reordering operations -------------=-~———-moomeoeooo */
#define VEC_UNPACK_HI(trg, srcl, src2) \

(trg) = _mm_unpackhi_pd(srcl, src2)
#define VEC_UNPACK_LO(trg, srcl, src2) \

E.2 BG/L Double FPU SIMD Extensions 163

(trg) = _mm_unpacklo_pd{(srcl, src2)
/* swap -> shuffle 01 */
#define VEC_SHUFFLEO1(trg, srcil, src2) \
(trg) = _mm_shuffle_pd(srcl, src2, _MM_SHUFFLE2(0, 1));

/* -- Load operations —-———=——-—=—===————m—————o oo */

#define VEC_LOAD_Q(src, trg) \
(trg) = _mm_load_pd((double *)(src))

#define VEC_LODAD_D_LO(trg, src) \

(trg) = _mm_loadh_pd (trg, (double *)(src));
#define VEC_LOAD_D_HI(trg, src) \

(trg) = _mm_loadl_pd (trg, (double *)(src));

/* -- Store Operations —-—---=====————=-—==—---——o-—oooo */

#define VEC_STORE_Q(src, trg) \
_mm_store_pd((double *)(trg), src)

#define VEC_STORE_D_LO(trg, src) \
_mm_storeh_pd((double *)trg, src)

#define VEC_STORE_D_HI(trg, src) \
_mm_storel_pd((double *)trg, src)

E.2 BG/L Double FPU SIMD Extensions

/* spl_bgl_XLC.h

SPL. SIMD runtime header for BG/L Double FPU
IBM VisualAge 6.0 for BG/L XL C compiler

*/

#ifndef __SPL_BGL_XL\,C_H
#define __SPL_BGL_XL\,C_H

/* —- Data type ==——=m=—mm o e 74
/*
if SPLIT_LOAD is defined, 1fd and 1fsdx are used instead of
lfpdx for INTERLEAVED and TRANSPOSED LOADS
*/
#define SPLIT_LOUAD
#define DECLARE_VEC(vec) _Complex double vec

#define DECLARE_SCALAR(s) double s

164 E. The Portable SIMD API

#define SCALAR_PTR(ptr) double *(ptr)

#define DECLARE_SCALAR_ARRAY_ALIGNED(var, i) \
double var[i];__alignx(16,var)

/* -- Spiral prototypes —-——-—=—===-—————--—————— o */

#define DECLARE_SPIRAL_FUNC(name, y, x) \
void (name) (SCALAR_PTR(y), SCALAR_PTR(x))

#define DECLARE_SPIRAL_INIT_FUNC(name) void (name) (void)

#define SPIRAL_FUNC(name, y, X) \
void (name) (SCALAR_PTR(y), SCALAR_PTR(x))

#define SPIRAL_INIT_FUNC(name) void (name) (void)
/* -- Constant handling --------=--==~=—---——-—-————mm— */ ‘1

#define DECLARE_CONST(c,v) \
static const _Complex double __align(16) c

() + __I % (v)

#define DECLARE_CONST_2(c, v0, v1) \
static const _Complex double __align(16) ¢

(vO) + __I % (v1)
/* -- Arithmetic operations ——-—=---==——=--—————mmmm— oo */

#define VEC_ADD(c,a,b) \
(c) = __fpadd(a,b)

#define VEC_SUB(c,a,b) \
(¢) = __fpsub(a,b)

#define VEC_MUL(c¢,a,b) \

(¢) = __fpmul(a,b)
#define VEC_MADD(d,a,b,c) \ .
(@) = __fpmadd(c,a,b)

#define VEC_MSUB(d,a,b,c) \
(d) = __fpmsub(c,a,b)

#define VEC_UMINUS(b, a) (b) = -(a)

#define VEC_MUL_CONST(c,a,b)\ {\
DECLARE_VEC(ar) ;\
VEC_LOAD_Q(&(a), ar);\
VEC_MUL(c,ar,b);\

>

#define VEC_MUL_MEM(c,a,b)\ {\
DECLARE_VEC(ar);\

E.2 BG/L Double FPU SIMD Extensions

ar = __cmplx((a), (a));\
VEC_MUL(c,ar,b);\
}

#define VEC_MULCONST2(c,a,b)\ {\
DECLARE_VEC(ar) ;\
VEC_LOAD_Q(&(a), ax);\
VEC_MUL(c,ar,b);\

#define VEC_FMCA(d,a,b,c)\ {\
DECLARE_VEC(ar) ;\
VEC_LOAD_Q(&(a), ar);\
VEC_MADD(d,ar,b,c);\

}

#define VEC_FMCS(d,a,b,c)\ {\
DECLARE_VEC(ar) ;\
VEC_LOAD_Q(&(a), ar);\
VEC_MSUB(d,ar,b,c);\

}

/* -- Initialization operations ---—-------=—----—--—-

#define VEC_CHS_HI(trg, src) \
(trg)=__cmplx(__creal(src),-__cimag(src))

#define VEC_CHS_LO(trg, src) \
(trg)=__cmplx(~__creal(src),__cimag(src))

/* -- Reordering operations ----—-—=-——--=-——-———————-—-

#define VEC_UNPACK_HI(trg, srcl, src2) \
(trg)=__cmplx(__cimag(srcl),__cimag(src2))

#define VEC_UNPACK_LO(trg, srcl, src2) \
(trg)=__cmplx{(__creal(srcl),__creal(src2))

#define VEC_SHUFFLEO1(trg, srcl, src2) \
(trg)=__cmplx(__cimag(srcl),__creal(src2))

#define VEC_SWAP(trg, src) \
(trg) = __fxmr(src)

#define C99_TRANSPOSE(d1, 42, si, s2)\ {\
dl = __cmplx (__creal(sl), __creal(s2));\

d2 = __cmplx (__cimag(s1), __cimag(s2));\
}
/* —- Load operation ——-—--==—---——-—me——m e

#define VEC_LOAD_Q(src, trg) \

165

166 E. The Portable SIMD API

(trg) = __1lfpd((double *)(src))
/* == Store Operation ~—===—--=—=-——=——=—ooe o m oo */

#define VEC_STORE_Q(reg, mem) \
__stfpd{(double *)(mem), reg)

#tendif

Appendix F
SPIRAL Example Code

This appendix displays a scalar and a short vector SIMD code example for the
DFTi¢ which was obtained by utilizing the scalar SPIRAL version and the newly
developed short vector SIMD extension for SPIRAL. In addition, the respective
SPL program is displayed.

F.1 Scalar C Code

This section shows the scalar single-precision code of a DFTg generated and
adapted on an Intel Pentium 4.

Scalar C Program

void DFT_16(float *y, float *x)

{

float £91;

float £92;

float £93;

float £230;

91 = x[2] - x[30];
£92 = x[3] - x[31];
£93 = x[2] + x[30];
94 = x[3] + x[31];
£95 = x[4] - x[28];
96 = x[5] - x[29];
97 = x[4] + x[28];
98 = x[5] + x[29];
£99 = x[6] - x[26];
£100 = x[7] - x[27];
£101 = x[6] + x[26];
£102 = x[7] + x[27];
103 = x[8] - x[24];
£104 = x(9] - x[25];
£105 = x[8] + x[24];
£106 = x[9] + x[25];
£107 = x[10] - x[22];
£108 = x[11] - x[23];
£109 = x[10] + x[22];
£110 = x[11] + x[23];
f111 = x[12] - x[20];

168

f112 =
f113 =
f114 =
f115 =
f116 =
£117
£118
f119
£120
£121
£122
£123 =
f124 =
£125 =
£126 =
£127 =
£128 =
£129 =
£130 =
£131
£132 =
£133
£f134
f135
£136
£137
£138
£139

£140

f141

£142
£143
£144
f145
£146
y[16]
y[17]
y (0]

y[1]

f151 =
f152
£153 =
£154
f155 =
£156
£157
£158
£159
£160 =
f161 =
f162 =
£163 =

x[13
x[12
x[13
x[14
x[15
x[14
x[15

]
]
1
]
]
]
]

- x[21]);
+ x[20];
+ x[211;
- x[18];
- x[19];
+ x[18];
+ x[19];

x[0] - x[16];
x[1] - x[17];
x[0] + x[16];
x[1] + x[17];

f93 - £117;
f94 - £118;
£93 + £117;
f94 + £118;
£97 - £113;
£98 - f114;
£97 + £113;
98 + f114;
£101 - £109;
£102 - £110;
£101 + £109;
£102 + £110;
£121 - £105;
£122 - £106;
£121 + £105;
£122 + £106;
£126 - £133;
£126 - £134;
£125 + £133;
£126 + £134;
£137 - £129;
£138 ~ £130;
£137 + £129;
£138 + £130;
= £145 - f141,;
= £146 - £142;
£145 + f141;
£146 + £142;

0.7071067811865476
0.7071067811865476

£135 -~ £1561;
£136 ~ £152;
£135 + £151;
£136 + £152;

0.7071067811865476
0.7071067811865476

£119 ~ £157;
£120 - £158;
£119 + £157;
£120 + £158;
£123 + £131;

*

* ¥

£139;
£140;

£127;
£128;

F. SPIRAL Example Code

F.1 Scalar C Code

f164
£165
£166
£167
£168
£169
£170
171
£172
£173
£174
£175
£176
£177
£178
£179
£180
f181
£182
£183
£184
£185
£186
£187
£188
£189
£190
f191
£192
£193
£194
£195
196
£197
£198
£199
£200
£201
£202
£203
£204
£205
£206
£207
£208

1209 =

£210
£211

212 =
213 =
214 =

£215

f124 +

1.3065629648763766
1.3065629648763766
0.9238795325112866
0.9238795325112866
0.5411961001461967
0.5411961001461967

£165 -
f166 -
£167 -
£168 -
f161 -
£f162 -
f161
£162
f159 -
£160 -
f159 +
£160 +
91 +

£92 +

91
£92
£99 +

£100 +
£107 -
108 -
£185 -
186 -
£185 +
186 +

0.7071067811865476
0.7071067811865476

£132;

£167,;
£168;
£169;
£170;
£173;
£174;
£173;
£174;
£171;
£172;
£171;
£172;
f115;
£116;
£115;
£116;
£107;
£108;
£99;
£100;
£189;
£190;
£189;
£190;

£123;
£124;
£163;
f164;
£131;
£132;

£191;

* £192;

£183 - £187;

£184 - £188;
1.3065629648763766
.3065629648763766
.92387956325112866
.9238795325112866
.5411961001461967
0.5411961001461967
£199 - £201;

£200 - £202;

£201 + £203;

£202 + £204;

£96 - f111;

£96 - £112;

£95 + f111;

£96 + £112;
0.7071067811865476 * £211;
0.7071067811865476 * £212;
£213 - £103;

£183;
£184;
£197;
£198;
£187;
£188;

O O O =
LR R B 2k 2R

169

170 F. SPIRAL Example Code
£216 = £214 - £104;
£217 = £213 + £103;
£218 = £214 + £104;
£219 = £205 - £217;
£220 = £206 - £218;
£221 = £205 + £217;
£222 = £206 + £218;
£223 = £195 - £209;
£224 = £196 - £210;
£225 = £195 + £209;
£226 = £196 + £210;
£227 = £215 - £207;
£228 = £216 - £208;
£229 = £215 + £207;
£230 = £216 + £208;
y[30] = £177 + £222;
y[31] = £178 - £221;
y[2] = £177 - £222; ®
y[3] = £178 + £221;
y[28] = £155 + £226;
y[29] = £156 - £225;
y[4] = £f155 - £226;
y[5] = f156 + £225;
y[26] = £181 + £230;
y[27] = £182 - £229;
y[6] = f181 - £230;
y(7] = £182 + £229;
y[24] = £143 + £194;
y[25] = £144 - £193;
y[8] = £143 - £194;
y(9] = f144 + £193;
y[22] = £179 - £228;
y[23] = £180 + £227;
y[10] = £179 + £228;
y[11] = £180 - £227;
y[20] = £153 + £224;
y[21] = £154 - £223; 9
y[12] = £153 - £224;
y[13] = £154 + £223;
y[18] = £175 + £220;
y[19] = £176 - £219;
y[14] = £175 - £220;
y[15] = £176 + £219;

}

F.2 Short Vector Code

This section shows the two-way short vector SIMD code for a DFT'¢ vectorized
by the MAP Vectorizer for an Intel Pentium 4. The respective C program using
the portable SIMD API is displayed.

F.2 Short Vector Code 171

#include "map_sse2.h"

DECLARE_SPIRAL_FUNC(DFT_16,y,x);
DECLARE_SPIRAL_INIT_FUNC(init_DFT_16);

DECLARE_CONST(VEC_CONST1, -1.0000000000000000000000000,
+1.0000000000000000000000000) ;
DECLARE_CONST(VEC_CONST2, +0.7071067810000000000000000,
+0.7071067810000000000000000) ;
DECLARE_CONST(VEC_CONST3, +0.9238795320000000000000000,
+0.3826834320000000000000000) ;
DECLARE_CONST(VEC_CONST4, +0.3826834320000000000000000,
+0.9238795320000000000000000) ;

SPIRAL_FUNC(DFT_16,y,x){

DECLARE_VEC(t1018);
DECLARE_VEC(t1019);
DECLARE_VEC(t1120);

DECLARE_VEC(t1271);

VEC_LOAD_Q(x+16, t1024);
VEC_LOAD_Q(x+0, t1023);

VEC_ADD (1122, t1023, t1024);
VEC_SUB(t1018, t1023, t1024);
VEC_LOAD_Q{(x+24, t1030);
VEC_LOAD_Q(x+8, t1029);
VEC_ADD(t1123, t1029, t1030);
VEC_SUB(t1028, 1029, t1030);
VEC_SHUFFLEO1(t1019, t1028, t1028);
VEC_CHS_LO(t£1020, t1019);
VEC_SUB(t1117, t1122, t1123);
VEC_ADD(t1191, t1122, t1123);
VEC_LOAD_Q(x+28, t1046);
VEC_LOAD_Q(x+12, t1045);
VEC_SUB(t1042, t1045, t1046);
VEC_ADD(t1131, t1045, t10486);
VEC_MULCONST2(t1034, VEC_CONST2, t1042);
VEC_LOAD_Q(x+4, t1040);
VEC_SHUFFLEO1(t1038, t1040, t1040);
VEC_LOAD_Q(x+20, t1041);
VEC_SHUFFLEO1(t1039, t1041, t1041);
VEC_SUB(t1035, t1038, t1039);
VEC_ADD(t1128, t1038, t1039);
VEC_MULCONST2(t1033, VEC_CONST2, t1035);
VEC_SHUFFLEO1(t1193, t1128, t1128);
VEC_SHUFFLEO1(t1129, t1131, t1131);
VEC_ADD(t1192, t1131, t1193);
VEC_SUB(t1118, t1128, t1129);
VEC_CHS_LO(t1119, t1118);
VEC_UNPACK_L0(t1245, t1033, t1034);

172

VEC_UNPACK_HI(t1244, t1033, t1034);
VEC_SHUFFLEO1(t1047, t1033, t1033);
VEC_CHS_LO(t1243, t1244);

VEC_SUB(t1031, t1245, t1243);
VEC_UNPACK_LO(t1260, t1047, t1034);
VEC_UNPACK_HI(t1259, t1047, t1034);
VEC_CHS_L0(%1258, t1259);

VEC_ADD (1032, t1258, t1260);
VEC_LOAD_Q(x+22, t1093);

VEC_LOAD_Q(x+6, t1092);

VEC_ADD(t1146, t1092, t1093);
VEC_SUB(t1091, t1092, t1093);
VEC_SHUFFLE01(£1085, t1091, t1091);
VEC_LOAD_Q(x+30, t1097);
VEC_LOAD_Q(x+14, +1096);

VEC_SUB(t1086, 1096, t1097);
VEC_ADD(t1147, 1096, t1097);
VEC_CHS_L0O(+1087, t1086);

VEC_SUB(t1143, t1146, t1147);
VEC_ADD(t1200, t1146, t1147);
VEC_MULCONST2(t1135, VEC_CONST2, t1143);
VEC_ADD(t1075, 1085, t1087);
VEC_SUB(t1168, t1085, t1087);
VEC_LOAD_Q(x+2, t1069);
VEC_SHUFFLEO1(t1067, t1069, t1069);
VEC_LOAD_Q(x+18, t1070);
VEC_SHUFFLEO1(t1068, t1070, t1070);
VEC_LOAD_Q(x+26, t1074);
VEC_LOAD_Q(x+10, t1073);

VEC_SUB(t1063, t1073, t1074);
VEC_ADD(t1142, t1073, t1074);
VEC_SHUFFLE01(t1140, t1142, t1142);
VEC_CHS_LO(t1064, t1063);

VEC_ADD (%1139, t1067, t1068);
VEC_SUB(t1062, t1067, t1068);
VEC_SUB(t1136, t1139, t1140);
VEC_ADD(t1197, t1139, t1140);
VEC_MULCONST2(t1134, VEC_CONST2, t1136);
VEC_ADD(t1052, 1062, t1064);
VEC_SUB(t1166, t1062, t1064);
VEC_MULCONST2(t1164, VEC_CONST3, t1166);
VEC_SHUFFLE01(t1172, t1166, t1166);
VEC_MULCONST2(t1170, VEC_CONST3, t1172);
VEC_MULCONST2(t1165, VEC_CONST4, t1168);
VEC_SHUFFLEO1(t1173, t1168, t1168);
VEC_MULCONST2(t1171, VEC_CONST4, t1173);
VEC_UNPACK_LO(t1231, t1164, t1165);
VEC_UNPACK_HI(t1230, t1164, t1165);
VEC_ADD(t1162, 1230, t1231);
VEC_UNPACK_LO(t1242, 1170, t1171);
VEC_UNPACK_HI(t1240, t1170, t1171);
VEC_SUB(t1163, t1242, t1240);

F. SPIRAL Example Code

F.2 Short Vector Code 173

VEC_SHUFFLEO1(t1150, t1134, t1134);
VEC_UNPACK_HI(t1250, t1134, t1135);
VEC_CHS_LD(t1249, t1250);
VEC_UNPACK_LO(t1251, t1134, t1135);
VEC_SUB(t1132, t1251, t1249);
VEC_UNPACK_HI(t1265, t1150, t1135);
VEC_UNPACK_LO(t1266, t1150, t1135);
VEC_CHS_LO(t1264, t1265);
VEC_ADD(t1133, t1264, t1266);
VEC_MULCONST2(t1099, VEC_CONST4, t1075);
VEC_MULCONST2(t1051, VEC_CONST3, t1075);
VEC_SHUFFLEO1(t1100, t1052, t1052);
VEC_MULCONST2(t1050, VEC_CONST4, t1052);
VEC_MULCONST2(t1098, VEC_CONST4, t1100);
VEC_UNPACK_L0O(t1236, t1098, t1099);
VEC_UNPACK_HI(t1234, t1098, t1099);
VEC_SUB(t1049, t1236, t1234);
VEC_UNPACK_LO(t1229, t1050, t1051);
VEC_UNPACK_HI(t1228, t1050, t1051);
VEC_ADD(t1048, t1228, t1229);
VEC_SHUFFLEO1(t1225, t1197, t1197);
VEC_SHUFFLEO1(t1198, t1200, t1200);
VEC_SUB(t1187, t1197, t1198);
VEC_ADD(t1224, t1200, t1225);
VEC_CHS_LO(t1188, t1187);
VEC_SUB(t1186, t1191, t1192);
VEC_ADD(t1223, t1191, t1192);
VEC_ADD(t1176, t1186, t1188);
VEC_SUB(t1201, t1186, t1188);
VEC_STORE_Q(t1176, y+8);
VEC_STORE_Q(t1201, y+24);
VEC_ADD(t1220, t1223, t1224);
VEC_SUB(t1227, t1223, t1224);
VEC_STORE_Q(t1220, y+0);
VEC_STORE_Q(t1227, y+16);
VEC_ADD(t1159, t1018, £1020);
VEC_SUB(t1006, t1018, t1020);
VEC_UNPACK_LO(t1269, t1032, t1031);
VEC_UNPACK_HI(t1268, t1032, t1031);
VEC_CHS_LO(t1267, t1268);

VEC_ADD (t1160, t1267, t1269);
VEC_UNPACK_LO(t1233, t1163, t1162);
VEC_UNPACK_HI(t1237, t1162, t1163);
VEC_UNPACK_HI(t1232, t1163, t1162);
VEC_ADD(t1218, t1232, t1233);
VEC_UNPACK_LO(t1239, t1162, t1163);
VEC_SUB(t1156, t1239, t1237);
VEC_CHS_LO(t1157, t1156);
VEC_ADD(t1217, t1159, t1160);
VEC_SUB(t1155, t1159, t1160);
VEC_ADD(t1215, t1217, t1218);
VEC_SUB(t1219, t1217, t1218);

174

}

VEC_STORE_Q(t1215, y+2);
VEC_STORE_Q(t1219, y+18);
VEC_ADD(t1153, t1155, t1157);
VEC_SUB(t1174, t1155, t1157);
VEC_STORE_Q(t1153, y+10);
VEC_STORE_Q(t1174, y+26);
VEC_SUB(t1105, t1117, t1119);
VEC_ADD(+1211, t1117, t1119);
VEC_UNPACK_LO(t1263, t1132, t1133);
VEC_UNPACK_HI(t1271, t1133, t1132);
VEC_CHS_LO(t1270, t1271);
VEC_UNPACK_HI(t1262, t1132, t1133);
VEC_UNPACK_LO(t1272, t1133, t1132);
VEC_ADD(t1212, t1270, t1272);
VEC_CHS_LO(t1261, t1262);
VEC_ADD(t1106, t1261, t1263);
VEC_CHS_LO(t1107, t11086);
VEC_ADD(+1103, t1105, t1107);
VEC_SUB(t1151, t1105, t1107);
VEC_STORE_Q(t1103, y+12);
VEC_STORE_Q(t1151, y+28);
VEC_ADD(£1209, t1211, t1212);
VEC_SUB (%1214, t1211, t1212);
VEC_STORE_Q(t1209, y+4);
VEC_STORE_Q(t1214, y+20);
VEC_UNPACK_LD(t1257, t1031, t1032);
VEC_UNPACK_HI(t1256, t1031, t1032);
VEC_CHS_LO(t1255, t1256);

VEC_ADD (1007, t1255, t1257);
VEC_CHS_LO(t1008, t1007);
VEC_UNPACK_LO(t1248, t1048, t1049);
VEC_UNPACK_HI(t1253, t1049, t1048);
VEC_CHS_LO(t1252, t1253);
VEC_UNPACK_HI (1247, t1048, t1049);
VEC_UNPACK_LO(t1254, t1049, t1048);
VEC_SUB(t1206, t1254, t1252);
VEC_CHS_LO(t1246, t1247);
VEC_SUB(t1003, t1248, t1246);
VEC_CHS_LO(t1004, t1003);
VEC_SUB(t1002, t1006, t1008);
VEC_ADD(+1205, t1006, t1008);
VEC_ADD (t1000, t1002, t1004);
VEC_SUB(t1101, t1002, t1004);
VEC_STORE_Q(t1000, y+14);
VEC_STORE_Q(t1101, y+30);

VEC_ADD (1203, t1205, t1206);
VEC_SUB(t1208, t1205, t1206);
VEC_STORE_Q(t1203, y+6);
VEC_STORE_Q(t1208, y+22);

SPIRAL_INIT_FUNC(init_DFT_16){};

F. SPIRAL Example Code

Appendix G
FFTW Example Code

This appendix displays a scalar and the respective short vector SIMD no-twiddle
codelet of size four.

G.1 Scalar C Code

This section shows a standard FFTW no-twiddle codelet of size 4.

void fftw_no_twiddle_4 (const fftw_complex * input, fftw_complex
xoutput, int istride, int ostride)
{
fftw_real tmp3;
fftw_real tmpli;
fitw_real tmp9;
fftw_real tmplh;
fftw_real tmp6;
fftw_real tmplO;
fftw_real tmpil4;
fftw_real tmpl6;
{
fftw_real tmpil;
fftw_real tmp2;
fftw_real tmp7;
fftw_real tmp8,;
tmpl = c_re (input[0]);
tmp2 = c_re (input[2 * istride]);
tmp3 = (tmpl + tmp2);
tmpll = (tmpl - tmp2);
tmp7 = c_im (input[0]);
tmp8 = c_im (input[2 * istride]);
tmp9 = (tmp7 - tmp8);
tmpl5 = (tmp7 + tmp8);

fftw_real tmp4;

fftw_real tmpb;

fftw_real tmpl2;

fftw_real tmpi3;

tmp4d = c_re (input[istride]);
tmp5 = c_re (input[3 * istride]);
tmp6 = (tmp4 + tmp5);

tmpl0 = (tmp4 - tmp5);

tmpl2 = c_im (input[istridel);

176

tmpl3 = c_im (input[3 * istridel);

tmpl4 = (tmpl2 - tmpl3);

tmpl6 = (tmpl2 + tmpl3);
}
c_re (output[2 * ostride]l) = (tmp3 - tmp6);
c_re (output[0]) = (tmp3 + tmpS);
c_im (output[ostride]) = (tmp9 - tmpl0);
c_im (output[3 * ostride]) = (tmpl0 + tmp9);
c_re (output[3 * ostride]) = (tmpll - tmpl4d);
c_re (output[ostride]) = (tmpil + tmpl4d);
c_im (output[2 * ostridel) = (tmpl5 - tmpil6);
c_im (output[0]) = (tmpl5 + tmpl6);

}

G.2 Short Vector Code

The following sections show a two-way SIMD vectorized FFTW no-twiddle codelet

of size 4.

G. FFTW Example Code

MAP provides the vectorized FFTW codelet either (i) via a source-to-assembly
transformation utilizing the MAP backend (see G.2.1) and (i) via a source-to-
source transformation producing macros compliant with the portable SIMD API

(see G.2.2).

G.2.1 FFTW Codelet Transformed with the MAP
Vectorizer and Backend

To generate a no-twiddle codelet of size 4 using the MAP Vectorizer and the
MAP Backend, map is called using

map -notwiddle 4 -output-2-asm

resulting in the following code:

.section .rodata

.text

.balign 64
chs_lo: .double -1.0, +1.0

.balign 64
.globl fftw_no_twiddle_4
.type fftw_no_twiddle_4, @function

fftw_no_twiddle_4:

/* promise simd cell size = 16 */
movl 12(%esp), %ecx

movl 4(%esp), %eax

sall $4, Yecx

movapd (Yeax), Y%xmml

leal (Yecx,%ecx,2), %edx

movapd (%eax,%ecx), Yxmmd

G.2 Short Vector Code 177

movapd (%eax,%ecx,2), %xmmO
movl 16 (%esp), %hecx

movapd (%eax,%edx), %xmm3
movl 8(%esp), %edx

/* simd data load/store barrier */
movapd %xmml, %xmm2

sall $4, Yecx

movapd %xmmé4, %xmm5

subpd %xmm0, %xmmi

leal (Yecx,%ecx,2), %eax
addpd %xmm0O, %xmm2

movapd %xmml, %xmm7

movapd %xmm2, %xmm6

subpd %xmm3, %xmm5

addpd %xmm3, %xmméd

shufpd $9, %xmm5, %xmm5
addpd %xmmé4, %xmm6

subpd %xmmé4, %xmm2

mulsd chs_lo, Yxmm5

movapd %xmm6, (%edx)
movapd %xmm2, (%edx,%ecx,2)
subpd Yxmm5, ¥%xmm7

addpd %xmm5, %xmmi

movapd %xmm7, (%edx,%ecx)
movapd %xmml, (%edx,%eax)
ret

.section .rodata

.globl fftw_no_twiddle_4_desc

.balign 32
fftw_no_twiddle_4_desc:
/* descr_str_ptr */ .long .LCO
/* codelet_ptr */ .long fftw_no_twiddle_4
/* n *x/ .long 4
/* cdir_int */ .long -1
/* ctype_int */ .long O
/* signature */ .long 89
/* num_twiddles */ .long 0
/* twiddle_order */ .long 0
.LCO: .string "fftw_no_twiddle_4"

G.2.2 FFTW Codelet Transformed with the MAP Vector-
izer

To generate a no-twiddle codelet of size 4 using the MAP Vectorizer and the
MAP Backend, map has to be called using

map -notwiddle 4 -—output-2-c

178 G. FFTW Example Code

resulting in the following C code (using the portable SIMD API described in
Appendix E):

DECLARE_CONST(VECT_CONST1, -1.0000000000000000000000000,
+1.0000000000000000000000000) ;

void fftw_no_twiddle_4(const fftw_complex *inC,
fftw_complex *outC,
int istride, int ostride)

const fftw_simd2 *input = (const fftw_simd2 *) inC;
fftw_simd2 *output = (fftw_simd2 *) outC;

DECLARE_VEC(t1001) ;
DECLARE_VEC(t1002) ;
DECLARE_VEC(t1003) ;

DECLARE_VEC(t1014) ;

VEC_LOAD_Q{input+istridex2, t1004);
VEC_LOAD_Q(input+0, t1003);
VEC_ADD(t1001, t1003, t1004);
VEC_SUB(t1009, t1003, t1004);
VEC_LOAD_Q(input+istride*3, t1006);
VEC_LOAD_Q(input+istride, t1005);
VEC_SUB(t1013, t1005, t1006);
VEC_SHUFFLE01(+1010, t1013, t1013);
VEC_ADD(t1002, t1005, t1006);
VEC_CHS_LO(t1011, t1010);
VEC_SUB(t1000, t1001, t1002);
VEC_ADD(t1007, t1001, t1002);
VEC_STORE_Q(t1000, output+ostride*2);
VEC_STORE_Q(t1007, output+0);
VEC_SUB(t1008, t1009, t1011);
VEC_ADD(t1014, t1009, t1011);
VEC_STORE_Q(t1008, output+ostride);
VEC_STORE_Q(t1014, output+ostride*3);

fftw_codelet_desc fftw_no_twiddle_4_desc = {
"fftw_no_twiddle_4",

(void (*)()) fftw_no_twiddle_4,

4,

FFTW_FORWARD,

FFTW_NOTW,

89,

O,

(const int *) 0,

Appendix H
ATLAS Example Code

This appendix displays a scalar and the respective short vector SIMD ATLAS
kernel of size 4 x 4.

H.1 Scalar C Code

This section shows a standard ATLAS matmul kernel of size 4 x 4.

void ATL_dJIK4x4x4NN4x4x4_al_b1l

(const int M, const int N, const int K, const double alpha,
const double *A, const int lda,

const double *B, const int 1db, const double beta,

double *C, const int 1ldc)

/*
* matmul with TA=N, TB=N, MB=4, NB=4, KB=4,
* lda=4, 1ldb=4, ldc=4, mu=2, nu=2, ku=4
*/
{
const double *stM = A + 4;
const double *stN = B + 16;
#define incAk 16
const int incAm
#define incBk 4
const int incBm = -4, incBn = 8;
#define incCm 2
#define incCn 4
double *pC0=C;
const double *pAl0=A;
const double *pB0O=B;
register int k;
register double rA0, rAl;
register double rBO, rBi;
register double rC0_0, rC1_0, rCO_1, rCi_1;
do /* N-loop */

[}
N

- 16, incAn = -4;

{
do /* M-loop */
{
rC0_0 = *pCO;
rCi_0 = pCO[1];
rCO_1 = pCO[4];
rCi_1 = pCo[5];

rA0 = *pAQ;

180

rBO = *pBO;
rAl = pAO[1];
rBi = pBO[4];
rCO_0 += rAO *
rC1_0 += rAl *
rCo_1 TAO *
rC1_1 += rAl *
rA0 = pAO[4];
rBO = pBO[1];
rAl = pAO[5];
rBi = pBO[5];
rCO_0 += rAQO *
rC1_0 raAl *
rCo_1 rA0 *
rC1_1 += rAl *
rA0 = pAO(8];
rBO = pBO[2];
rAl = pAO[9];
rBi = pBO[6];
rCO_0 += rAQ =*
rC1_0 += rAl *
rCO_1 += rAQ *
rCi_1 += rAl *
rA0 = pAO[12];
rBO = pBO[3];
rAl = pAO[13];
Bl = pBO[7];
rCO_0 += rAQ *
rCi_0 += rAl *
rCo_1 TAO *
rCi_1 rAl *
pAO += incAk;
pBO += incBk;
*pCO = rCO_0;
pCO(1] = xC1_0;
pCo[4] = rCO_1;
pCo[8] = rCi_1;
pCO += incCm;
pAO += inchAm;
pBO += incBm;

+
It

+ 4+
nou

+ +
i

}
while(pAO != stM);
pCO += incCn;
pAO += inchAn;
pBO += incBn;
¥
while(pBO != stN);
}

#ifdef incAm
#undef incAm
#endif #ifdef incAn

rBO;
rB0O;
rBi;
rBi;

rBO;
rBO;
rB1;
rB1;

rBO;
rBO;
rBi;
rBi;

rBO;
rBO;
rB1;
rB1;

H. ATLAS Example Code

H.2 Short Vector Code

H.2 Short Vector Code

#undef incAn
#endif #ifdef incAk
#undef incAk
#endif #ifdef incBm
#undef incBm
#tendif #ifdef incBn
#undef incBn
#endif #ifdef incBk
#undef incBk
#endif #ifdef incCm
#undef incCm
#tendif #ifdef incCn
#undef incCn
#endif #ifdef incCk
#undef incCk

#endif #ifdef Mb
#undef Mb
#endif #ifdef Nb
#undef Nb
#endif #ifdef Kb
#undef Kb
#endif

181

MAP provides the vectorized ATLAS kernel either (i) via a source-to-assembly
transformation utilizing the MAP backend (see H.2.1) and (¢%) via a source-to-
source transformation producing macros compliant with the portable SIMD API
(see G.2.2).

H.2.1 ATLAS Kernel Transformed with the MAP
Vectorizer and Backend

To automatically generate an ATLAS vector matmul kernel of size 4 x 5 using the

MAP Vectorizer and the MAP Backend, map has to be called using

resulting in the following code:

~
*

* ¥ X ¥ ¥ K

*
~

map -input-atlas-c atl_dmm4x4.c -output-2-asm

ATLAS Level 3 BLAS

unrolling: mu=2, nu=2, ku=4

leading dims :

lda=4, 1db=4, ldc=4

inner block: mb=4, nb=4, kb=4

182 H. ATLAS Example Code

.text
.balign 64
.globl _ATL_dJIK4x4x4NN4x4x4_al_bl
.def _ATL_dJIK4x4x4NN4x4x4_al_bi; .scl 2; .type 32; .endef

_ATL_dJIK4x4x4NN4x4x4_al_bil:
subl $16, Yesp
movl 40(%esp), %eax
movl 48(%esp), %hecx
movl %ebx, 12(%esp)
movl %esi, 8(lesp)
movl 64 (%esp), %edx
leal 128(%eax), %ebx
leal 128(%ecx), %esi
.p2align 4,,7

.NMLOOP:
/* promise simd cell size = 16 */
movapd (%eax), %xmmi
movapd 32(%eax), %xmm3
movapd (%ecx), %xmmO
movapd 16 (%eax), ¥%xmm7
movapd 32(%ecx), %xmmb
movapd 48(%ecx), ¥%xmm6
movapd %xmml, %xmm2
movapd %xmm3, %xmmd
mulpd %xmmO, %xmm2
mulpd %xmmO, %xmm4
movapd %xmm7, %xmmO
mulpd %xmm5, %xmml
mulpd %xmmé, %xmm0
mulpd %xmm3, %xmm5
movapd 16 (%ecx), %xmm3
addpd %xmm0O, %xmmi
movapd 48(%eax), %xmmO
addl $64, Yeax
/* simd data load/store barrier */
addl $0, Y%ecx
mulpd %xmm3, %xmm7
mulpd %xmm0, %xmm6
mulpd %xmm3, %xmmO
addpd %xmm7, %xmm2
movapd %xmml, %xmm7
addpd %xmm6, %xmmb
movapd %xmm2, %xmm3
addpd Yxmm0, %xmmé
unpckhpd Yxmm5, %xmmi
unpckhpd %xmmé4, %xmm3
unpcklpd %xmm5, %xmm7
unpcklpd %xmm4, %xmm2
addpd %xmm7, %xmmil
addpd %xmm2, %xmm3
movapd %xmml, 32(%edx)

H.2 Short Vector Code

movapd %xmm3, (%edx)
addl $16, %edx

cmpl Yebx, %eax

jne .NMLOOP

addl $32, %edx

addl $-128, Y%eax
addl $64, Yecx

cmpl Yesi, %ecx

jne .NMLOOP

movl 12(%esp), %ebx
movl 8(%esp), %esi
addl $16, Yesp

ret

183

H.2.2 Atlas Kernel Transformed with the M AP Vectorizer

To automatically generate an ATLAS vector matmul kernel of size 4 x 4 using the

MAP Vectorizer, map has to be called using

map -input-atlas-c atl_dmmé4x4.c -output-

2~-c

resulting in the following C code (using the portable SIMD API described in

Appendix E):
#include "map_sse2.h"

void ATL_dJIK4x4x4NN4x4x4_al_bl

(const int M, const int N, comst int K, const double alpha,

const double *A, const int lda, const double *B, const int 1db,
const double beta, double *C, const int 1dc)

const double *stM = A + 4;
const double *xstN = B + 16;
#define incAk 16
const int incAm
#define incBk 4
const int incBm = -4, incBn = 8;
#define incCm 2

#define incCn 4

double *pC0=C;

const double *pA0=A;

const double *pBO=B;

register int k;
DECLARE_VEC(t1324) ;
DECLARE_VEC(t1363);
DECLARE_VEC(£1365) ;

1]
\o]

- 16, incAn

DECLARE_VEC(t1403);

do /* N-loop */
{

= —4;

184

do /* M-loop */

{

VEC_LOAD_Q(pBO+4, t1368);
VEC_LOAD_Q(pAO+0, t1367);

H. ATLAS Example Code

VEC_MUL(t1365, t1367, t1368);

VEC_LDAD_Q(pBO+0, t1396);

VEC_MUL(t1394, t1367, t1396);

VEC_LOAD_Q(pA0+4, t1373);

VEC_MUL(t1398, t1373, t1396);
VEC_MUL(t1371, t1368, t1373);

VEC_LOAD_Q(pBO+6, t1370};
VEC_LDAD_Q(pA0O+2, t1369);

VEC_MUL(t1366, t1369, t1370);
VEC_ADD(t1363, t1365, t1366);

VEC_LOAD_Q(pBO+2, t1397);

VEC_MUL(t1395, t1369, t1397);
VEC_ADD(t1392, t1394, t1395);

VEC_LOAD_Q(pAO+6, t1374);

VEC_MUL(t1399, t1374, t1397);
VEC_ADD(t1393, t1398, t1399);
VEC_MUL(t1372, t1370, t1374);
VEC_ADD(t1364, t1371, t1372);
VEC_UNPACK_L0(t1401, 1363, t1364);
VEC_UNPACK_HI(t1400, t1363, t1364);
VEC_ADD(t1324, t1400, t1401);

VEC_STORE_Q(t1324, pCO0+4);

VEC_UNPACK_LO(t1403, t1392, t1393);
VEC_UNPACK_HI(t1402, t1392, t1393);
VEC_ADD(t1375, t1402, t1403);

VEC_STORE_Q(t1375, pCO+0);

pAO

pBO

pCO

pAO

pBO
}

+=
+=
+=
+=
+=

incAk;
incBk;
incCm;
incAm;
incBm;

while(pAO != stM);
pCO += incCn;
pAO += incAn;
pBO += incBn;

}
while(pBO != stN);
}

#ifdef incAm
#undef incAm

#endif

#ifdef incAn
#undef incAn

#endif

#ifdef incAk
#undef incAk

®

H.2 Short Vector Code

#endif
#ifdef incBm
#undef incBm
#endif
#tifdef incBn
#undef incBn
#endif
#ifdef incBk
#undef incBk
#endif
#ifdef incCm
#undef incCm
#tendif
#ifdef incCn
#undef incCn
#tendif
#ifdef incCk
#undef incCk
#endif
#ifdef Mb
#undef Mb
#tendif
#ifdef Nb
#undef Nb
#endif
#ifdef Kb
#undef Kb
#endif

185

Table of Abbreviations

AGI
AGU
API
AEOS
BLAS
CIsC
CPI1
CPU
DAG
DCT
DFID
DFT
DRAM
DSp
FFT
FMA
FPU
GUI
ISA
LRU
PMC
RAM
RAW
ROM
RISC
SIMD
SPL
SRAM
SSA
SSE
TLB
VLIW
WAR
WAW
WHT

Address generation interlock
Address generation unit
Application programming interface
Automatical empirical optimization of software
Basic linear algebra subprograms
Complex instruction set computer
Cycles per instruction

Central processing unit

Directed acyclic graph

Discrete cosine transform
Depth-first iterative deepening
Discrete Fourier transform
Dynamic random access memory
Digital signal processing, digital signal processor
Fast Fourier transform

Fused multiply-add
Floating-point unit

Graphical user interface
Instruction set architecture

Least recently used

Performance monitor counter
Random access memory

Read after write

Read-only memory

Reduced instruction set computer
Single instruction, multiple data
Signal processing language

Static random access memory
Static single assignment
Streaming SIMD extension
Transaction lookaside buffer

Very long instruction word

Write after read

Write after write
Walsh-Hadamard transform

Bibliography

[1]

[10]

[11]

[12]

D. Aberdeen, J. Baxter: Emmerald: a fast matrix-matrix multiply using
Intel’s SSE instrictions. Concurrency and Computation: Practice and Ex-
perience 13 (2001)(2), pp. 103-119.

A.V. Aho, R. Sethi, J. D. Ullman: Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

G. Almasi, R. Bellofatto, J. Brunheroto, C. Causcaval, J. G. Castanos, L.
Ceze, P. Crumley, C. C. Erway, J. Gagliano, D. Lieber, X. Martorell, J. E.
Moreira, A. Sanomiya, K. Strauss: An Overview of the BlueGene/L System
Software Organization. In Proceedings of the Euro-Par ‘03 Conference on
Parallel and Distributed Computing LNCS 2790.

AMD Corporation: 3DNow! Technology Manual, 2000.

AMD Corporation: 3DNow! Instruction Porting Guide Application Note,
2002.

AMD Corporation: AMD Athlon Processor x86 Code Optimization Guide,
2002.

AMD Corporation: AMD Extensions to the 3DNow! and MMX Instruction
Sets Manual, 2002.

AMD Corporation: AMD x86-64 Architecture Programmers Manual, Vol-
ume 1: Application Programming. Order Number 24592, 2002.

AMD Corporation: AMD x86-64 Architecture Programmers Manual, Vol-
ume 2: System Programming. Order Number 24593, 2002.

A.W. Appel: Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

Apple Computer: vDSP Library, 2001.
http://developer.apple.com/

M. Auer, R. Benedik, F. Franchetti, H. Karner, P. Kristofel, R. Schachinger,
A. Slateff, W.U. C. Performance Evaluation of FFT Routines — Machine
Independent Serial Programs. AURORA Technical Report TR1999-05, Insti-
tute for Applied Mathematics and Numerical Analysis, Vienna University
of Technology, 1999.

188 BIBLIOGRAPHY

[13] R. Berrendorf, H. Ziegler: PcL, 2002.
http://www.fz-juelich.de/zam/PCL

[14] J. Bilmes, K. Asanovié, C. Chin, J. Demmel: Optimizing Matrix Multiply
Using PHiPAC: a Portable, High-Performance, ANSI C Coding Methodol-
ogy. In Proceedings of the 1997 International Conference on Supercomput-
ing, ACM Press, New York, pp. 340-347.

[15] CodePlay Software Limited: VECTOR C, 2002.
www.codeplay.com

[16] J. W. Cooley, J. W. Tukey: An Algorithm for the Machine Calculation of
Complex Fourier Series. Math. Comp. 19 (1965), pp. 297-301.

[17] R. Crandall, J. Klivington: Supercomputer-Style FFT Library for the Ap-
ple G4. Advanced Computation Group, Apple Computer, 2002.

[18] D. DeVries: A Vectorizing SUIF Compiler, 1997.
citeseer.nj.nec.com/devries97vectorizing.html

[19] Digital Equipment Corporation: PFM—The 21064 Performance Counter
Pseudo-Device. DEC OSF/1 Manual pages, 1995.

[20] J.J. Dongarra, I.S. Duff, D. C. Sorensen, H. A. van der Vorst: Numerical
Linear Algebra for High-Performance Computing. SIAM Press, Philadel-
phia, 1998.

[21] J.J. Dongarra, F.G. Gustavson, A. Karp: Implementing Linear Algebra
Algorithms for Dense Matrices on a Vector Pipeline Machine. SIAM Review
26 (1984), pp. 91-112.

[22] S. Egner, M. Piischel: The AREP WWW Home Page, 2000.
www.ece.cmu.edu/"smart/arep/arep.html

(23] S. Egner, M. Piischel: Symmetry-Based Matrix Factorization. Journal of
Symbolic Computation, to appear.

[24] F. Franchetti: Performance Portable Short Vector Transforms. Ph.D. the-
sis, Institute for Applied Mathematics and Numerical Analysis, Vienna
University of Technology, 2003.

[25] F. Franchetti, S. Kral, J. Lorenz, M. Piischel, C. W. Ueberhuber: Auto-
matically Optimized FFT Codes for the BlueGene/L Supercomputer. Sub-
mitted to 6th International Meeting on High Performance Computing for
Computational Science.

BIBLIOGRAPHY 189

[26]

[27]

[28]

[29]

[30]

[31]

[32]

F. Franchetti, S. Kral, J. Lorenz, C. W. Ueberhuber: Domain Specific Com-
piler Techniques. In IEEE Proceedings Special Issue on Program Genera-
tion, Optimization, and Platform Adaptation.

F. Franchetti, M. Piischel: Automatic Generation of SIMD DSP Code.
AURORA Technical Report TR2001-17, Institute for Applied Mathematics
and Numerical Analysis, Vienna University of Technology, 2001.

F. Franchetti, M. Plischel: A SIMD Vectorizing Compiler for Digital Signal
Processing Algorithms. In In Proceeding of the International Parallel and
Distributed Processing Symposium (IPDPS’02), pp. 20-26.

F. Franchetti, M. Piischel: Short Vector Code Generation and Adaptation
for DSP Algorithms. In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing. Conference Proceedings (ICASSP
’03), IEEE Comput. Soc. Press, Los Alamitos, USA, Vol. 2, pp. 537-540.

F. Franchetti, M. Piischel: Short Vector Code Generation for the Discrete
Fourier Transform. In Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS’03), Comp. Society Press, Los
Alamitos, USA.

F. Franchetti, M. Puschel: Top Performance SIMD FFTs. AURORA Tech-
nical Report TR2003-31, Institute for Applied Mathematics and Numerical
Analysis, Vienna University of Technology, 2003.

F. Franchetti, C. W. Ueberhuber: An Abstraction Layer for SIMD Exten-
sions. AURORA Technical Report TR2003-06, Institute for Applied Mathe-
matics and Numerical Analysis, Vienna University of Technology, 2003.

M. Frigo: A Fast Fourier Transform Compiler. In Proceedings of the ACM
SIGPLAN ’99 Conference on Programming Language Design and Imple-
mentation, ACM Press, New York, pp. 169-180.

M. Frigo, S. G. Johnson: The Fastest Fourier Transform in the West. Tech.
Report MIT-LCS-TR-728, MIT Laboratory for Computer Science, Cam-
bridge, 1997.

M. Frigo, S.G. Johnson: FrTw: An Adaptive Software Architecture for
the FFT. In ICASSP 98, Vol. 3, pp. 1381-1384.

M. Frigo, S. G. Johnson: FFTW: An adaptive software architecture for the
FFT. In Proceedings of the ACM SIGPLAN ’99 conference on Programming
language design and implementation, pp. 169—-180.

190 BIBLIOGRAPHY

[37] M. Frigo, S. G. Johnson: The Design and Implementation of FFTw. IEEE
Special Issue on Program Generation, Optimization, and Platform Adap-
tation (2003).

[38] M. Frigo, S. Kral: The Advanced FFT Program Generator GENFFT. Au-
RORA Technical Report TR2001-03, Institute for Applied Mathematics and
Numerical Analysis, Vienna University of Technology, 2001.

[39] M. Galles, E. Williams: Performance Optimizations, Implementation, and
Verification of the SGI Challenge Multiprocessor. In Proceedings of the 27th
Annual Hawaii International Conference on System Sciences, 1994.

[40] W.N. Gansterer, C.W. Ueberhuber: Hochleistungsrechnen mit HPF.
Springer-Verlag, Berlin Heidelberg New York Tokyo, 2001.

[41] K.S. Gatlin, L. Carter: Faster FF'Ts via Architecture-Cognizance. In Pro-
ceedings of the International Conference on Parallel Architectures and Com-
pilation Techniques (PACT’00), IEEE Comp. Society Press, Los Alamitos,
CA, pp. 249-260.

[42] G.H. Golub, C.F. VanLoan: Matrix Computations, 2nd edn. Johns Hop-
kins University Press, Baltimore, 1989.

[43] T.G. Group: The GAP (Groups, Algorithms and Programming) WWW
Home Page. www-gap.dcs.st-and.ac.uk/"“gap/.

[44] J. Guo, M. J. Garzardn, D. Padua: The Power of Belady’s Algorithm in
Register Allocation for Long Basic Blocks. In Proceedings of the LCPC
2003.

[45] S.K.S. Gupta, Z. Li, J. H. Reif: Synthesizing Efficient Qut-of-Core Pro-
grams for Block Recursive Algorithms using Block-Cyclic Data Distribu-
tions. Technical Report TR-96-04, Dept. of Computer Science, Duke Uni-
versity, Durham, USA, 1996.

[46] G. Haentjens: An Investigation of Cooley-Tukey Decompositions for the
FFT. Master thesis, Electrical and Computer Engineering Department,
Carnegie Mellon University, Pittsburgh, PA, 2000.

[47] H. Hlavacs, C. W. Ueberhuber: High-Performance Computers — Hardware,
Software and Performance Simulation. SCS-Europe, Ghent, 2002.

[48] D. Hunt: Advanced Performance Features of the 64-bit PA8000. COMP-
CON’95, 1995.

[49] Intel Corporation: AP-808 Split Radix Fast Fourier Transform Using
Streaming SIMD Extensions, 1999.

BIBLIOGRAPHY 191

[50]

51

52)

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Intel Corporation: AP-833 Data Alignment and Programming Issues for
the Streaming SIMD Extensions with the Intel C/C++ Compiler, 1999.

Intel Corporation: AP-833 Data Alignment and Programming Issues for
the Streaming SIMD Extensions with the Intel C/C++ Compiler, 1999.

Intel Corporation: AP-931 Streaming SIMD Extensions—LU Decomposi-
tion, 1999.

Intel Corporation: Intel Architecture Optimization—Reference Manual,
1999.

Intel Corporation: Intel Architecture Software Developer’s Manual, 1999.

Intel Corporation: Intel Architecture Software Developer’s Manual—
Volume 1: Basic Architecture, 1999.

Intel Corporation: Intel Architecture Software Developer’s Manual—
Volume 2: Instruction Set Reference, 1999.

Intel Corporation: Intel Architecture Software Developer’s Manual—
Volume 3: System Programming, 1999.

Intel Corporation: Desktop Performance and Optimization for Intel Pen-
tium 4 Processor, 2002.

Intel Corporation: Intel Itanium Architecture Software Developer’s Manual
Vol. 1 rev. 2.1: Application Architecture, 2002.

Intel Corporation: Intel Itanium Architecture Software Developer’s Manual
Vol. 2 rev. 2.1: System Architecture (2002).

Intel Corporation: Intel Itanium Architecture Software Developer’s Manual
Vol. 3 rev. 2.1: Instruction Set Reference, 2002.

Intel Corporation: Math Kernel Library, 2002.
http://www.intel.com/software/products/mkl

Intel Corporation: Prescott New Instructions Software Developer’s Guide.
App. Note, 2004.

Intel Corporation: The Microarchitecture of the Intel Pentium 4 Processor
on 90nm Technology. Intel Technology Journal 8 (2004)(1).

J. Johnson, R. W. Johnson, D. Rodriguez, R. Tolimieri: A Methodology for
Designing, Modifying, and Implementing Fourier Transform Algorithms on
Various Architectures. Circuits Systems Signal Process 9 (1990), pp. 449~
500.

192

BIBLIOGRAPHY

[66] J.R. Johnson, R. W. Johnson, C.P. Marshall, J. E. Mertz, D. Pryor, J. H.

Weckel: Data Flow, the FFT, and the CRAY T3E. In Proc. of the Ninth
SIAM Conference on Parallel Processing for Scientific Computing.

[67] R.W. Johnson, C.H. Huang, J. Johnson: Multilinear Algebra and Parallel

[68]

[69]

[70]

[72]

[73]

[76]

Programming. J. Supercomputing 5 (1991), pp. 189-217.

S. Joshi, P. Dubey: Radix-4 FFT Implementation Using SIMD Multi-Media,
Instructions. In Proceedings of the ICASSP 99, pp. 2131-2135.

N.P. Jouppi, D. W. Wall: Available Instruction-Level Parallelism for Su-
perscalar and Superpipelined Machines. WRL Research Report 7, Digital
Western Research Laboratory Palo Alto, California, 1989.

S. Kral, F. Franchetti, J. Lorenz, C. Ueberhuber: Practical Assessment
of SIMD Vectorization. Technical Report AURORA TR2003-12, Institute

for Applied Mathematics and Numerical Analysis, Vienna University of
Technology, 2003.

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: Backend Optimization
for Straight Line Code. AURORA Technical Report TR2003-11, Institute
for Applied Mathematics and Numerical Analysis, Vienna University of
Technology, 2003.

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: Compiler Technol-
ogy for the SIMD Vectorization of Straight Line Code. AURORA Technical
Report TR2003-07, Institute for Applied Mathematics and Numerical Anal-
ysis, Vienna University of Technology, 2003.

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: Optimization Tech-
niques for SIMD Vectorized Straight Line Code. AURORA Technical Report
TR2003-10, Institute for Applied Mathematics and Numerical Analysis, Vi-
enna University of Technology, 2003.

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: SIMD Vectorization
of Straight Line FFT Code. In Proceedings of the Euro-Par 03 Conference
on Parallel and Distributed Computing LNCS 2790, pp. 251-260.

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: SIMD Vectorization
Techniques for Straight Line Code. AURORA Technical Report TR2003-02,
Institute for Applied Mathematics and Numerical Analysis, Vienna Univer-
sity of Technology, 2003.

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber, P. Wurzinger: FFT
Compiler Techniques. 13th International Conference on Compiler Construc-
tion.

BIBLIOGRAPHY 193

[77]

[78]

[79]

[80]

[81]

82]
[83]
[84]

[85]

[36]

[88]

[89]

[90]

A. Krall, S. Lelait: Compilation Techniques for Multimedia Processors.
International Journal of Parallel Programming 28 (2000)(4), pp. 347-361.
citeseer.ist.psu.edu/krallOOcompilation.html

S. Lamson: SCIPORT, 1995.
http://www.netlib.org/scilib/

S. Larsen, S. Amarasinghe: Exploiting Superword Level Parallelism
with Multimedia Instruction Sets. ACM SIGPLAN Notices 35 (2000)(5),
pp. 145-156.

R. Leupers, S. Bashford: Graph-based code selection techniques for em-
bedded processors. ACM Transactions on Design Automation of Electronic
Systems. 5 (2000)(4), pp. 794-814.
citeseer.nj.nec.com/leupers00graph.html

M. Lorenz, L. Wehmeyer, T. Drger: Energy aware Compilation for DSPs
with SIMD instructions, 2003.
citeseer.nj.nec.com/lorenz02energy.html

T. Mathisen: Pentium Secrets. Byte 7 (1994), pp. 191-192.
MIPS Technologies Inc. : R10000 Microprocessor Technical Brief, 1994.

MIPS Technologies Inc. : Definition of MIPS R10000 Performance Counter,
1997.

Motorola Corporation: AltiVec Technology Programming Environments
Manual, 1998.

Motorola Corporation: AltiVec Technology Programming Interface Manual,
1998.

J.M.F. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna,
M. Pischel, M.M. Veloso: SPIRAL: Automatic Library Gen-
eration and Platform-Adaptation for DSP Algorithms, 1998.
http://www.ece.cmu.edu/~spiral.

J.M.F. Moura, J. Johnson, R. W. Johnson, D. Padua, V. Prasanna, M.
Piischel, M. M. Veloso: SPIRAL: Portable Library of Optimized Signal Pro-
cessing Algorithms, 1998. http://www.ece.cmu.edu/ spiral.

J.M. F. Moura, J. Johnson, D. Padua, M. Piischel, M. Veloso: SPIRAL. Spe-
cial Issue on Program Generation, Optimization, and Platform Adaptation
(2003).

P. Mucci, S. Browne, G. Ho, C. Deane: PapI1, 2002.
http://icl.cs.utk.edu/projects/papi

194 BIBLIOGRAPHY

[91] S.S. Muchnick: Advanced Compiler Design and Implementation. Morgan
Kaufman Publishers, San Francisco, 1997.

[92] I. Nicholson: LIBSIMD, 2002.
http://libsimd.sourceforge.net/

[93] A. Norton, A.J. Silberger: Parallelization and Performance Analysis of
the Cooley-Tukey FF'T Algorithm for Shared-Memory Architectures. IEEE
Trans. Comput. 36 (1987), pp. 581-591.

[94] M.C. Pease: An Adaptation of the Fast Fourier Transform for Parallel
Processing. Journal of the ACM 15 (1968), pp. 252-264.

[95] N.P. Pitsianis: The Kronecker Product in Optimization and Fast Trans-
form Generation. Phd thesis, Department of Computer Science, Cornell
University, 1997. ‘

[96] M. Piischel: Decomposing Monimial Representations of Solvable Groups.
Symbolic Computation 34 (2002)(6), pp. 561-596.

[97] M. Piischel, B. Singer, M. Veloso, J. M. F. Moura: Fast Automatic Genera-
tion of DSP Algorithms. In Proceedings of the ICCS 2001, Springer, LNCS
2073, pp. 97-106.

[98] M. Piischel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua, M. Veloso,
R. Johnson: SPIRAL: A Generator for Platform-Adapted Libraries of Sig-
nal Processing Algorithms. Journal of High Performance Computing and
Applications, submitted, 2002.

[99] M. Piischel, B. Singer, J. Xiong, J. M.F. Moura, J. Johnson, D. Padua,
M. Veloso, R. W. Johnson: SPIRAL: A Generator for Platform-Adapted
Libraries of Signal Processing Algorithms. To appear in Journal of High
Performance Computing and Applications.

(100] K.R. Rao, J.J. Hwang: Techniques & Standards for Image, Video and
Audio Coding. Prentice Hall PTR, 1996.

[101] P. Rodriguez: A Radix-2 FF'T Algorithm for Modern Single Instruction
Multiple Data (SIMD) Architectures. In Proceedings of the ICASSP 2002.

[102) See homepage for details: ATLAS homepage. Http://math-
atlas.sourceforge.net/.

[103] B. Singer, M. Veloso: Stochastic Search for Signal Processing Algorithm
Optimization. In Proceedings of the Supercomputing 2001.

BIBLIOGRAPHY 195

[104] N. Sreraman, R. Govindarajan: A Vectorizing Compiler for Multimedia Ex-
tensions. International Journal of Parallel Programming 28 (2000), pp. 363—
400.

[105] Y.N. Srikant, P. Shankar: The Compiler Design Handbook. CRC Press
LLC, Boca Raton London New York Washington D.C., 2003.

[106] C. Temperton: Fast Mixed-Radix Real Fourier Transforms. J. Comput.
Phys. 52 (1983), pp. 340-350.

[107] The GAP Group: GAP—Groups, Algorithms, and Programming, Version
4.2, 2000.
www-gap.dcs.st-and.ac.uk/~gap

[108] C.W. Ueberhuber: Numerical Computation. Springer-Verlag, Berlin Hei-
delberg New York Tokyo, 1997.

[109] C. Van Loan: Computational Frameworks for the Fast Fourier Transform,
Vol. 10 of Frontiers in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 1992.

[110] Z. Wang: Fast Algorithms for the Discrete W Transform and for the Dis-
crete Fourier Transform. IEEE Trans. on Acoustics, Speech, and Signal
Processing ASSP-32 (1984)(4), pp. 803-816.

[111] E.H. Welbon, C.C. Chan-Nui, D. J. Shippy, D. A. Hicks: POWER 2 Perfor-
mance Monitor. POWER PC and POWER 2: Technical Aspects of the New
IBM RISC System/6000. IBM Corporation SA23-2737 (1994), pp. 55-63.

[112] R.C. Whaley, J. Dongarra: Automatically Tuned Linear Algebra Soft-
ware. Technical Report UT-CS-97-366, University of Tennessee, 1997. URL
:http://wuw.netlib.org/lapack/lawns/lawni31.ps.

[113] R.C. Whaley, J. Dongarra: Automatically Tuned Linear Algebra Software.
In SuperComputing 1998: High Performance Networking and Computing.
CD-ROM Proceedings. Winner, best paper in the systems category.
URL: http://www.cs.utk.edu/"rwhaley/papers/atlas_sc98.ps.

[114] R.C. Whaley, J. Dongarra: Automatically Tuned Linear Algebra Software.
In Ninth SIAM Conference on Parallel Processing for Scientific Computing.
CD-ROM Proceedings.

[115] R.C. Whaley, A. Petitet, J.J. Dongarra: Automated Empiri-
cal Optimization of Software and the ATLAS Project. Parallel
Computing 27 (2001)(1-2), pp. 3-35. Also available as University
of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

196 BIBLIOGRAPHY

[116] J. Xiong, J. Johnson, R. Johnson, D. Padua: SPL: A Language and Com-
piler for DSP Algorithms. In Proceedings of the PLDI 2001, pp. 298-308.

[117] M. Zagha, B. Larson, S. Turner, M. Itzkowitz: Performance Analysis Using
the MIPS R10000 Performance Counters. In Proceedings of the Supercom-
puting’96, IEEE Computer Society Press, 1996.

CURRICULUM VITAE

Name: Juergen Lorenz

Title: Dipl.-Ing.

Date and Place of Birth: 8 September 1977, Neunkirchen, Lower Austria
Nationality: Austria

Home Address: Talgasse 19, A-2620 Neunkirchen, Austria

Affiliation
Institute for Analysis and Scientific Computing
Vienna University of Technology (TU Wien)
Wiedner Hauptstrasse 8-10/101, A-1040 Vienna
Phone: +43 1 58801 11524
Fax: +43 1 58801 11599
E-mail: juergen.lorenz@aurora.anum.tuwien.ac.at
Education
1995 High School Diploma (Matura)
1995 - 2002 Studies in Computer Sciences at the
Vienna University of Technology
2002 Dipl.-Ing. (Computer Science)
2002 — 2004 PhD studies
Employment
1998 Summer internship with
JENOPTIK Systemhaus Wr. Neustadt
2002 — Research Assistant at the Institute for

Analysis and Scientific Computing (TU Wien),
funded by the SFB AURORA

Selected Project Experience

2002 — Participation in the SFB AURORA

Publications

1.

10.

F. Franchetti, S. Kral, J. Lorenz, M. Piischel, C. W. Ueberhuber: Automati-
cally Optimized FF'T Codes for the BlueGene/L Supercomputer. Submitted to
6th International Meeting on High Performance Computing for Computational
Science.

. F. Franchetti, S. Kral, J. Lorenz, C. W. Ueberhuber: Domain Specific Compiler

Techniques. In IEEFE Proceedings Special Issue on Program Generation, Opti-
mization, and Platform Adaptation.

. F. Franchetti, J. Lorenz, C. W. Ueberhuber: Low Communication FFTs. Tech

Report AURORA TR2002-27, Institute for Applied Mathematics and Numerical
Analysis, Vienna University of Technology, 2002.

. F. Franchetti, J. Lorenz, C. W. Ueberhuber: Latency Hiding Parallel FFTs. Au-

RORA Technical Report TR2002-30, Institute for Applied Mathematics and Nu-
merical Analysis, Vienna University of Technology, 2002.

. S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: Backend Optimization for

Straight Line Code. AURORA Technical Report TR2003-11, Institute for Applied
Mathematics and Numerical Analysis, Vienna University of Technology, 2003.

. S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: Compiler Technology for the

SIMD Vectorization of Straight Line Code. AURORA Technical Report TR2003-
07, Institute for Applied Mathematics and Numerical Analysis, Vienna University
of Technology, 2003.

. S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: SIMD Vectorization of

Straight Line FFT Code. In Proceedings of the Euro-Par ‘03 Conference on
Parallel and Distributed Computing LNCS 2790, pp. 251-260.

. S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber: SIMD Vectorizatioh Tech-

niques for Straight Line Code. AURORA Technical Report TR2003-02, Institute
for Applied Mathematics and Numerical Analysis, Vienna University of Technol-
ogy, 2003.

S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber, P. Wurzinger: FFT Com-
piler Techniques. 13th International Conference on Compiler Construction, to
appear.

F. Franchetti, S. Kral, J. Lorenz, C. W. Ueberhuber: Domain Specific Compiler
Techniques. In IEEFE Proceedings, Special Issue on Program Generation, Opti-
mization, and Platform Adaptation, to appear.

