Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

DISSERTATION

Fundamentale Parameter der quantitativen Röntgenanalytik - das Röntgenröhrenspektrum

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der Technischen Wissenschaften

unter der Leitung von

O. Univ.Prof. Dipl.-Ing. Dr. techn. Horst Ebel Institutsnummer: E 138 Institut für Festkörperphysik der Technischen Universität Wien

eingereicht an der Technischen Universität Wien Fakultät für Technische Naturwissenschaften und Informatik

von

Dipl.-Ing. Asghar Ghassemi

3

A. Ghassen

Wien, im Mai 2003

Diese Arbeit widme ich meinem Sohn Armin, der mit seiner Geburt am 3. Juni 2002 ein neues Kapitel in meinem Leben eröffnet hat.

Kurzfassung

Die vorliegende Arbeit befasst sich mit der quantitativen Röntgenfluoreszenzanalyse (RFA). Die quantitative RFA wird zur Bestimmung der Konzentrationen verschiedener Elemente in einer Probe herangezogen. Dabei wird für die Berechnung der Zusammensetzung der vorkommenden Elemente in der Probe neben den sogenannten fundamentalen Parametern, die zur Beschreibung der Fluoreszenz und der Abschwächung der Röntgenstrahlung in der Materie dienen, auch noch das gemessene Röntgenröhrenspektrum benötigt.

In einer Abhandlung mit dem Titel "X-ray Tube Spectra" [1] wurde anhand der fundamentalen Parameter und verschiedener Konstanten (Proportionalitäts- und Formfaktoren) ein Algorithmus zur Berechnung elektronenangeregter Röntgenröhrenspektren von Reinelementen angegeben. Der Algorithmus besteht aus je einem Teil zur Beschreibung des kontinuierlichen und des charakteristischen Röntgenspektrums. Die vorkommenden Konstanten im Algorithmus, die nur durch den Vergleich mit den gemessenen Röntgenspektren bestimmt werden können, sind *const, x* und *Constjk*.

Das Ziel dieser Arbeit war es, den Einfluß der Elektronenrückstreuung zu quantifizieren und eine Darstellung für die Konstanten zu finden, damit eine möglichst geringe Toleranzbreite und somit eine kleine Standardabweichung ihrer Zahlenwerte für verschiedene Elemente und Beschleunigungsspannungen erreicht wird. Zu diesem Zweck wurden gemessene, elektronenstrahlangeregte Spektren von 22 Reinelementen bei verschiedenen Beschleunigungspannungen herangezogen.

Mit Hilfe von Ausgleichsrechnungen in einem Auswertungsprogramm für das kontinuierliche Röntgenspektrum wurden die Konstanten so berechnet, dass eine möglichst gute Übereinstimmung zwischen den gemessenen und den gerechneten Spektren erreicht werden konnte. Dabei wurden die Berechnungen jeweils mit und ohne Berücksichtigung der Rückstreuung durchgeführt, um zu untersuchen ob es bei Berücksichtigung der Rückstreuung zu einer noch kleineren Standardabweichung der Zahlenwerte kommt.

Für die Konstante *Constjk* des charakteristischen Teils der Röntgenspektren liefert der Auswertungsvorgang für jede einzelne ionisierte Elektronenschale ein Ergebnis. In dieser Arbeit wurde nur der K α -Übergang (laut IUPAC: KL-Übergang) behandelt.

Somit wurden für verschiedene Elemente in einem weiten Bereich des Periodensystems und bei verschiedenen Beschleunigungspannungen die Werte der empirischen Faktoren für die Spektrenbeschreibung ermittelt.

Anhand dieser ermittelten Konstanten ermöglicht dann der Algorithmus eine theoretische Berechnung der Röntgenröhrenspektren für die Anwendung in fundamental-Parameter-Programmen der quantitativen RFA.

Für die Konstanten des kontinuierlichen Teiles des Algorithmus werden in der Abhandlung [1] folgende Zahlen empfohlen und eine Standardabweichung dieser Zahlen zu den experimentellen Ergebnissen unterhalb 30% angegeben. Diese Angaben gelten für Elemente Z = 12 (Mg) bis Z = 82 (Pb).

 $const = 1.35 \cdot 10^9 \text{ sr}^{-1} \text{ mA}^{-1} \text{ keV}^{-1} \text{ s}^{-1}$ $x = 1.109 - 0.00435 \text{ Z} + 0.00175 E_0$

In der vorliegenden Arbeit wurden folgende Zahlen für *const* und *x* in Abhängigkeit von der Ordnungszahl Z und Quantenenergie E_0 ausgewertet. Diese Angaben gelten für die Elemente Z = 12 (Mg) bis Z = 83 (Bi).

 $const_{mit} = 1.491755 + 5.260791^{\cdot}10^{-3}Z - 2.366738^{\cdot}10^{-2}E_0 + 2.004699^{\cdot}10^{-7}Z^2 + 3.831164^{\cdot}10^{-4}E_0^{-2} - 5.252222^{\cdot}10^{-7}ZE_0 + 2.008t_{ohne} = 1.415663 - 5.222491^{\cdot}10^{-4}Z - 2.186924^{\cdot}10^{-2}E_0 + 1.758832^{\cdot}10^{-7}Z^2 + 3.879170^{\cdot}10^{-4}E_0^{-2} - 3.537931^{\cdot}10^{-7}ZE_0 + 1.758832^{\cdot}10^{-7}Z^2 + 3.879170^{\cdot}10^{-4}ZE_0^{-2} + 3.879170^{\cdot}$

Achtung: Die Einheit von *const* ist hier $sr^{-1}pA^{-1}keV^{-1}s^{-1}$.

 $x_{\text{mit}} = 1.091 - 2.765326 \ 10^{-3} \text{Z} + 9.093198 \ 10^{-3} \text{E}_0 - 1.316554 \cdot 10^{-8} \text{Z}^2 - 1.748029 \cdot 10^{-4} \text{E}_0^{-2} + 1.465876 \cdot 10^{-7} \text{Z} \text{E}_0$ $x_{\text{ohne}} = 1.08758 - 4.299615 \ 10^{-3} \text{Z} + 1.096302 \ 10^{-2} \text{E}_0 + 1.650234 \ 10^{-10} \text{Z}^2 - 2.026983 \ 10^{-4} \text{E}_0^{-2} + 1.283945 \cdot 10^{-7} \text{Z} \text{E}_0$

Für die Standardabweichungen dieser Zahlenwerte zu den Messergebnissen fand sich in allen Fällen ein Wert unterhalb von 10%. Durch diese Verbesserung wurde ein merkbarer Fortschritt bei der Darstellung des kontinuierlichen Spektrums erreicht.

Ein wesentlicher Fortschritt der vorliegenden Arbeit ist die deutlich verbesserte Darstellung der charakteristischen K-Spektren der Elemente Z = 12 (Mg) bis Z = 47 (Ag).

Während die Konstante *Const-K* bisher mit einem allgemein gültigen Zahlenwert von $6.10^{13} \text{ s}^{-1} \text{ sr}^{-1} \text{ mA}^{-1}$ angegeben wurde, ergaben die vorliegenden Untersuchungen einen empirischen Zahlenwert in Abhängigkeit vom Überspannungsverhältnis U_0 und der Ordnungszahl Z.

Z = 10 bis 21: Const-K = $4.68733 + 0.147334U_0 - 3.19659 \, 10^{-3} (U_0)^2$ Z = 22 bis 47: Const-K = $A + e^{(2+B \cdot \ln \sqrt{U_0})}$

 $A = 3.831254 + 0.3063265 \cdot U_0 - 9.107244 \cdot 10^{-3} \cdot U_0^2$ $B = -89.03529 + 7.320119 \cdot Z - 0.2069547 \cdot Z^2 + 1.958593 \cdot 10^{-3} \cdot Z^3$

Const-K ist jeweils mit 10^4 zu multiplizieren. Die Einheit ergibt sich dann zu pA⁻¹sr⁻¹s⁻¹.

Abstract

This thesis deals with Quantitative X-Ray-Fluorescence Analysis (XRFA). The method XRFA is used for determination of concentrations from different elements in a specimen. To calculate the composition of the elements in the specimen, so-called fundamental parameters are necessary as well as the measured X-ray tube spectra. The fundamental parameters are used to describe the fluorescence and absorption of X-rays in matter.

In a paper on "X-ray Tube Spectra" [1] an algorithm for calculation of electron exited Xray spectra of pure elements by means of fundamental parameters and different constants (proportionality factors) under neglection of electron **backscattering** has been proposed. This algorithm consists of two parts, one for white tube spectra and the second one for characteristic radiations. The constants are *const*, *x* and *Constjk*, which can only be determined by comparison with measured x-ray spectra.

The aim of this work was to find the best suitable numerical values for the constants in order to achieve the minimum standard deviation between measured and computed spectra for different elements and acceleration voltages. For this purpose electron exited X-ray spectra of 22 elements measured with different acceleration voltages were used.

By means of least squares fits in a computer program for the white X-ray spectra the constants were calculated in such a way that a best fit between the measured and calculated spectra could be achieved. These calculations were performed with and without consideration of back scattering in order to find out if backscattering will cause an improved value of standard deviation.

For the constant *Const-K* of characteristic X-ray spectra there is a result for every ionized electron shell by computer program. In this thesis only the $K\alpha$ transition (according to IUPAC: KL transition) is treated.

Thus, the values of empirical factors were determined for different elements over a wide range in the periodic system of elements and for different acceleration voltages.

By means of these new constants the X-ray spectra can be described for an application in fundamental parameters programs of quantitative X-ray fluorescence analysis.

For the constants of the continuum in [1] the following numerical values have been recommended and a standard deviation of these numbers to the experimental results below 30% is mentioned. These data are valid for elements Z = 12 (Mg) to Z = 82 (Pb).

 $const = 1.35 \ 10^9 \ sr^{-1} \ mA^{-1} \ keV^{-1} \ s^{-1}$ $x = 1.109 - 0.00435 \ Z + 0.00175 \ E_0$

In this thesis the following numerical values for *const* and *x* as a function of Z and quantum energy E_0 were determined. These data apply to elements Z=12(Mg) to Z=83 (Bi).

 $const_{mit} = 1.491755 + 5.260791 \cdot 10^{-3}Z - 2.366738 \cdot 10^{-2}E_0 + 2.004699 \cdot 10^{-7}Z^2 + 3.831164 \cdot 10^{-4}E_0^2 - 5.252222 \cdot 10^{-7}ZE_0 + 2.008t_{ohne} = 1.415663 - 5.222491 \cdot 10^{-4}Z - 2.186924 \cdot 10^{-2}E_0 + 1.758832 \cdot 10^{-7}Z^2 + 3.879170 \cdot 10^{-4}E_0^2 - 3.537931 \cdot 10^{-7}ZE_0 + 2.008t_{ohne} = 1.415663 - 5.222491 \cdot 10^{-4}Z - 2.186924 \cdot 10^{-2}E_0 + 1.758832 \cdot 10^{-7}Z^2 + 3.879170 \cdot 10^{-4}E_0^2 - 3.537931 \cdot 10^{-7}ZE_0 + 2.008t_{ohne} = 1.415663 - 5.222491 \cdot 10^{-4}Z - 2.186924 \cdot 10^{-2}E_0 + 1.758832 \cdot 10^{-7}Z^2 + 3.879170 \cdot 10^{-4}E_0^2 - 3.537931 \cdot 10^{-7}ZE_0 + 2.008t_{ohne} = 1.415663 - 5.222491 \cdot 10^{-4}Z - 2.186924 \cdot 10^{-2}E_0 + 1.758832 \cdot 10^{-7}Z^2 + 3.879170 \cdot 10^{-4}E_0^2 - 3.537931 \cdot 10^{-7}ZE_0 + 2.086924 \cdot 10^{-2}E_0 + 1.758832 \cdot 10^{-7}Z^2 + 3.879170 \cdot 10^{-4}E_0^2 - 3.537931 \cdot 10^{-7}ZE_0 + 2.086924 \cdot 10^{-2}E_0 + 1.758832 \cdot 10^{-7}Z^2 + 3.879170 \cdot 10^{-4}E_0^2 - 3.537931 \cdot 10^{-7}ZE_0 + 2.086924 \cdot 10^{-2}E_0 + 1.758832 \cdot 10^{-7}Z^2 + 3.879170 \cdot 10^{-4}E_0^2 - 3.537931 \cdot 10^{-7}ZE_0 + 2.086924 \cdot 10^{-2}E_0 + 2.086924 \cdot 10^{-2}E_0 + 2.086924 \cdot 10^{-7}ZE_0 + 2.086924 \cdot$

Attention: The unit of const is $sr^{-1}pA^{-1}keV^{-1}s^{-1}$.

 $x_{\text{mit}} = 1.091 - 2.765326 \cdot 10^{-3} \text{Z} + 9.093198 \cdot 10^{-3} \text{E}_0 - 1.316554 \cdot 10^{-8} \text{Z}^2 - 1.748029 \cdot 10^{-4} \text{E}_0^{-2} + 1.465876 \cdot 10^{-7} \text{Z} \text{E}_0$ $x_{\text{ohne}} = 1.08758 - 4.299615 \cdot 10^{-3} \text{Z} + 1.096302 \cdot 10^{-2} \text{E}_0 + 1.650234 \cdot 10^{-10} \text{Z}^2 - 2.026983 \cdot 10^{-4} \text{E}_0^{-2} + 1.283945 \cdot 10^{-7} \text{Z} \text{E}_0$

For the standard deviations of these numerical values to the results of measurement follows a value below 10% when compared to the mentioned value of 30%. This improvement demonstrates the quality of the new description of continuous spectra.

A substantial progress of this thesis is however the remarkable improvement of the representation of the characteristic K-spectra of the elements Z = 12 (Mg) to Z = 47 (Ag).

While for the *Const-K* a general numerical value of 6.10^{13} s⁻¹ sr⁻¹ mA⁻¹ has been proposed, the new empirical description of *Const-K* is given in dependence on the overvoltage relation U_0 and the atomic number Z.

Z = 10 til 21: Z = 22 til 47: Const-K = $4.68733 + 0.147334U_0 - 3.19659 \ 10^{-3}(U_0)^2$ Const-K = $A + e^{(2+B \cdot \ln \sqrt{U_0})}$

 $A = 3.831254 + 0.3063265 \cdot U_0 - 9.107244 \cdot 10^{-3} \cdot U_0^2$ $B = -89.03529 + 7.3201 \ 19 \cdot Z - 0.2069547 \cdot Z^2 + 1.958593 \cdot 10^{-3} \cdot Z^3$

Const-K has to be multiplied by 10^4 . The unit is then **pA⁻¹sr⁻¹s⁻¹**.

Danksagung

Herrn Prof. Dr. Horst **Ebel** gilt mein besonderer Dank für die interessante Themenstellung, die vielen wertvollen Hinweise, Anregungen und Unterstützung bei der Ausführung meiner Arbeit. The second second

Herrn Robert Svagera danke ich für seine Hilfsbereitschaft und ihm sowie Frau Monika Waas für die Durchführung von Messungen.

Herrn Prof. Dr. Johann Wernisch danke ich ebenfalls für die Durchführung von Messungen.

Meinem Sohn Armin möchte ich meinen besonderen Dank aussprechen für die Freude und Motivation, die er mir mit seinem Dasein zur Vollendung dieser Arbeit geschenkt hat.

Meiner Frau Mag.pharm. Dr. Claudia Zyka möchte ich für das Verständnis und die Unterstützung während meiner Arbeit danken.

Meinem Bruder Herrn Dipl. Ing. Elyass Ghassemi möchte ich für die wertvolle Zusammenarbeit, die das Schreiben dieser Dissertation erleichterte danken.

Asghar Ghassemi Wien, Mai 2003

Inhaltsverzeichnis

ı

2 Röntgenstrahlung. 3 2.1 Grundlage und Theorie. 3 2.2 Die Erzeugung von Röntgenstrahlung. 4 2.2.1 Die kontinuierliche Strahlung. 5 2.2.2 Die charakteristische Strahlung. 8 2.2.3 Das Röntgenröhrenspektrum von Cu. 10 3 Die quantitative Röntgenfluoreszenzanalyse (RFA). 11 3.1 Wechselwirkung von Röntgenstrahlung mit Materie 11 3.2 Abschwächung von Röntgenstrahlung in Materie 14 3.3 Primäranregung 20 3.5 Tertiäranregung 20 3.6 Konzentrationsberechnung 25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 4.3 Detektor. 32 4.3 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse. 35 5 Berechnung des Röntgenröhrenspektrums. 40 5.1.1 Die Ermittlung der Parameter const und x 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
2.1 Grundlage und Theorie 3 2.2 Die Erzeugung von Röntgenstrahlung 4 2.2.1 Die kontinuierliche Strahlung 5 2.2.2 Die charakteristische Strahlung 8 2.2.3 Das Röntgenröhrenspektrum von Cu 10 3 Die quantitative Röntgenfluoreszenzanalyse (RFA) 11 3.1 Wechselwirkung von Röntgenstrahlung mit Materie 11 3.2 Abschwächung von Röntgenstrahlung in Materie 14 3.3 Primäranregung 20 3.5 Tertiäranregung 20 3.6 Konzentrationsberechnung 25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 27 4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1.1 Die Ermittlung der Parameter const und x 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
2.2 Die Erzeugung von Röntgenstrahlung 4 2.2.1 Die kontinuierliche Strahlung 5 2.2.2 Die charakteristische Strahlung 8 2.2.3 Das Röntgenröhrenspektrum von Cu 10 3 Die quantitative Röntgenfluoreszenzanalyse (RFA) 11 3.1 Wechselwirkung von Röntgenstrahlung mit Materie 11 3.2 Abschwächung von Röntgenstrahlung in Materie 14 3.3 Primäranregung 17 3.4 Sekundäranregung 20 3.5 Tertiäranregung 24 3.6 Konzentrationsberechnung 25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 27 4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.3.1 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
2.2.1 Die kontinuierliche Strahlung52.2.2 Die charakteristische Strahlung82.2.3 Das Röntgenröhrenspektrum von Cu10 3 Die quantitative Röntgenfluoreszenzanalyse (RFA)
2.2.2 Die charakteristische Strahlung 8 2.2.3 Das Röntgenröhrenspektrum von Cu. 10 3 Die quantitative Röntgenfluoreszenzanalyse (RFA) . 11 3.1 Wechselwirkung von Röntgenstrahlung mit Materie 11 3.2 Abschwächung von Röntgenstrahlung in Materie 14 3.3 Primäranregung 17 3.4 Sekundäranregung 20 3.5 Tertiäranregung 20 3.6 Konzentrationsberechnung 25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 27 4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.2 Die Optimierung der Parameter const und x 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
2.2.3 Das Röntgenröhrenspektrum von Cu 10 3 Die quantitative Röntgenfluoreszenzanalyse (RFA) 11 3.1 Wechselwirkung von Röntgenstrahlung mit Materie 11 3.2 Abschwächung von Röntgenstrahlung in Materie 14 3.3 Primäranregung 17 3.4 Sekundäranregung 20 3.5 Tertiäranregung 24 3.6 Konzentrationsberechnung 25 4 Messung der elektronenstrahlangeregten Röntgenspektren 27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 27 4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.3.1 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
3 Die quantitative Röntgenfluoreszenzanalyse (RFA)
3.1 Wechselwirkung von Röntgenstrahlung mit Materie113.2 Abschwächung von Röntgenstrahlung in Materie143.3 Primäranregung173.4 Sekundäranregung203.5 Tertiäranregung243.6 Konzentrationsberechnung25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode274.2 Elektronenstrahlmikrosonde als Meßgerät304.3 Detektor324.3.1 Detektoreffizienz334.4 Die gemessenen Elemente344.5 Messgeometrie344.6 Messparameter und Messergebnisse35 5 Berechnung des Röntgenröhrenspektrums 405.1 Zählratenberechnung des kontinuierlichen Spektrums405.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
3.2 Abschwächung von Röntgenstrahlung in Materie 14 3.3 Primäranregung 17 3.4 Sekundäranregung 20 3.5 Tertiäranregung 24 3.6 Konzentrationsberechnung 25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 27 4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.3.1 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch 43
3.3 Primäranregung173.4 Sekundäranregung203.5 Tertiäranregung243.6 Konzentrationsberechnung25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode274.2 Elektronenstrahlmikrosonde als Meßgerät304.3 Detektor324.3.1 Detektoreffizienz334.4 Die gemessenen Elemente344.5 Messgeometrie344.6 Messparameter und Messergebnisse35 5 Berechnung des Röntgenröhrenspektrums 405.1 Zählratenberechnung des kontinuierlichen Spektrums405.1.1 Die Ermittlung der Parameter const und x435.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
3.4 Sekundäranregung203.5 Tertiäranregung243.6 Konzentrationsberechnung25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode274.2 Elektronenstrahlmikrosonde als Meßgerät304.3 Detektor324.3.1 Detektoreffizienz334.4 Die gemessenen Elemente344.5 Messgeometrie344.6 Messparameter und Messergebnisse35 5 Berechnung des Röntgenröhrenspektrums 405.1 Zählratenberechnung des kontinuierlichen Spektrums405.1.1 Die Ermittlung der Parameter const und x435.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
3.5 Tertiäranregung243.6 Konzentrationsberechnung25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode274.2 Elektronenstrahlmikrosonde als Meßgerät304.3 Detektor324.3.1 Detektoreffizienz334.4 Die gemessenen Elemente344.5 Messgeometrie344.6 Messparameter und Messergebnisse35 5 Berechnung des Röntgenröhrenspektrums 405.1 Zählratenberechnung des kontinuierlichen Spektrums405.1.1 Die Ermittlung der Parameter const und x435.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
3.6 Konzentrationsberechnung25 4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode274.2 Elektronenstrahlmikrosonde als Meßgerät304.3 Detektor324.3.1 Detektoreffizienz334.4 Die gemessenen Elemente344.5 Messgeometrie344.6 Messparameter und Messergebnisse35 5 Berechnung des Röntgenröhrenspektrums 405.1 Zählratenberechnung des kontinuierlichen Spektrums405.1.1 Die Ermittlung der Parameter const und x435.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
4 Messung der elektronenstrahlangeregten Röntgenspektren27 4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 27 4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.3.1 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch 43
4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode 27 4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.3.1 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.1 Die Ermittlung der Parameter const und x 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
4.2 Elektronenstrahlmikrosonde als Meßgerät 30 4.3 Detektor 32 4.3.1 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.1 Die Ermittlung der Parameter const und x 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
4.3 Detektor324.3.1 Detektoreffizienz334.4 Die gemessenen Elemente344.5 Messgeometrie344.6 Messparameter und Messergebnisse35 5 Berechnung des Röntgenröhrenspektrums40 5.1 Zählratenberechnung des kontinuierlichen Spektrums405.1.1 Die Ermittlung der Parameter const und x435.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
4.3.1 Detektoreffizienz 33 4.4 Die gemessenen Elemente 34 4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.1 Die Ermittlung der Parameter const und x 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
4.4 Die gemessenen Elemente. 34 4.5 Messgeometrie. 34 4.6 Messparameter und Messergebnisse. 35 5 Berechnung des Röntgenröhrenspektrums. 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums. 40 5.1.1 Die Ermittlung der Parameter const und x 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
4.5 Messgeometrie 34 4.6 Messparameter und Messergebnisse 35 5 Berechnung des Röntgenröhrenspektrums 40 5.1 Zählratenberechnung des kontinuierlichen Spektrums 40 5.1.1 Die Ermittlung der Parameter <i>const</i> und <i>x</i> 43 5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
4.6 Messparameter und Messergebnisse35 5 Berechnung des Röntgenröhrenspektrums40 5.1 Zählratenberechnung des kontinuierlichen Spektrums405.1.1 Die Ermittlung der Parameter const und x435.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch
5 Berechnung des Röntgenröhrenspektrums
 5.1 Zählratenberechnung des kontinuierlichen Spektrums
5.1.1 Die Ermittlung der Parameter <i>const</i> und <i>x</i>
5.1.2 Die Optimierung der Zahlenwerte von $const(Z, EO)$ und $x(Z, EO)$ durch
Anpassung an eine Fläche51
5.1.2.1 Die Zahlenwerte
5.1.2.2 Berechnung der Standardabweichung
5.1.2.3 Graphische Darstenung der Zahlen werte von constjund xirtur Beschleunigungssnannungen von 10–20 und 30kV 66
5.1.3 Annassung des gemessenen Spektrums an das gerechnete Spektrum 73
5.2 Zählratenberechnung der charakteristischen Linien 77
5.2.1 Die Berechnung des Proportionalitätsfaktors Constik
6 Literaturverzeichnis

l Einleitung

Die energiedispersive Röntgenfluoreszenzanalyse ermöglicht eine genaue und zerstörungsfreie qualitative und quantitative Analyse der chemischen Elemente in einer Probe. Somit bezieht sich die Analyse einerseits auf die Erkennung (qualitativ) und andererseits auf die Bestimmung der quantitativen Zusammensetzung der chemischen Elemente in der Probe. Dies ist möglich, weil zwischen dem Spektrum der Fluoreszenzstrahlungen und der chemischen Zusammensetzung der Probe ein direkter Zusammenhang besteht.

Maßgebend sind dabei die Photonenenergie und die Zählrate der gemessenen charakteristischen Strahlungen der Probe. die beispielsweise durch einen energiedispersiven Detektor erfasst werden können. Im Detektorvolumen werden Einzelereignisse, also die Photoabsorption eines Quants, in der Form eines Zählimpulses registriert und die jeweilige Quantenenergie dem Zählereignis in der Form eines, hinsichtlich der Impulshöhe definierten Impulses zugeordnet. Der Standardbegriff in der Analytik ist die Zählrate, die die je Zeiteinheit gemessene Impulszahl beschreibt.

Die unterschiedliche Größe der Photonenenergie der charakteristischen Strahlungen verschiedener Elemente lässt auf die in der Probe befindlichen Elemente schließen. Die Konzentration eines bestimmten Elements in der Probe wird dann unter Verwendung der Zählrate der charakteristischen Strahlungen mittels fundamentaler Parameterrechnung bestimmt.

Ein wesentlicher Fortschritt der vorliegenden Arbeit soll die Verbesserung der Darstellung der charakteristischen K-Spektren der Elemente Z = 12 (Mg) bis Z = 47 (Ag) sein.

Man geht davon aus, dass sich die Konzentrationen c_i und die Zählrate der charakteristischen Strahlung eines Elements i in einem theoretisch formulierbaren und durch die fundamentalen Parameter bestimmten Zusammenhang beschreiben lassen. Die fundamentalen Parameter sind jene Kenngrößen, die die theoretische Berechnung der Fluoreszenzsignalstärke ermöglichen. Damit lässt sich in einem Programm die Messung der Zählraten anhand dieser Berechnung simulieren. Diese Kenngrößen sind der Photoabsorptionskoeffizient T, der Absorptionskantensprung S, die charakteristische Energie E_{iik} , die Absorptionskantenenergie E_{ii} , die Fluoreszenzausbeute (0, die Übergangswahrscheinlichkeit *P*, die spektrale Dichteverteilung χ(E) und die Detektoreffizienz e.

Für die quantitative Analyse wird anhand eines analytischen Programms eine Messung simuliert, indem zuerst die zu erwartenden Zählraten unter Verwendung der fundamentalen Parameter berechnet werden. Bei ausreichend hoher Genauigkeit der fundamentalen Parameter sind sehr genaue Ergebnisse zu erwarten. Durch Einführung von Korrekturfaktoren werden dann die Konzentrationsverhältnisse schrittweise geändert und dadurch die berechneten Zählraten an die gemessenen angepasst. Die Übereinstimmung der Zählraten führt dann zwangsläufig zu jenen Konzentrationen, die als Ergebnis dienen. Die Auswahl der Quelle der fundamentalen Parameter spielt für die analytische Auswertung der Ergebnisse eine wichtige Rolle.

Die erwähnten Korrekturfaktoren zweier aufeinanderfolgender Schritte unterscheiden sich immer weniger voneinander, sodass sie gegen eine gesuchte Konstante *Const*, die bei der theoretischen Berechnung vorkommt, konvergieren. Diese Konstante beinhaltet ausschließlich Daten aus der Messgeometrie und somit der Gerätebeschreibung und ist neben den gesuchten Konzentrationen c_i ebenfalls zu bestimmen. Sie dient als optimierter Wert für eine bessere Anpassung der Simulation an die Messung.

Es gibt verschiedene Berechnungsalgorithmen zur Simulation einer Messung. Bei allen diesen Modellen ist die Anwendung der fundamentalen Parameter unerlässlich. Die hier beschriebene Methode basiert auf den Gleichungen von J. Sherman [3] und T. Shiraiwa und N. Fujino[4].

2 Röntgenstrahlung

2.1 Grundlage und Theorie

Wilhelm C. Röntgen entdeckte am 8. November 1895 in Würzburg eine "neue Art von Strahlen", die er X-Strahlen nannte. Als X-Strahlen, die man ihrem Entdecker zu Ehren auch Röntgenstrahlen nennt, werden elektromagnetische Wellen in einem Wellenlängenbereich von 0,01 bis ca. 10 nm bezeichnet (Abb. 2.1).

Unter elektromagnetischer Wellen selbst versteht man die Gesamtheit der Erscheinungen von den langen Radiowellen bis zu den kürzesten bekannten Wellen der γ -Strahlung.

Bei einer noch kurzwelligeren Strahlung unter 0,01 nm spricht man von γ -Strahlung, die beispielsweise beim radioaktiven Zerfall entsteht. Im längerwelligen Bereich schließt sich das Spektrum der Röntgenstrahlen dem Spektrum der Ultraviolett-Strahlung (unsichtbares Licht im Bereich unterhalb von 400nm) und dem des sichtbaren Lichts an.

Abb. 2.1: Das Spektrum der Röntgenstrahlung

Die Beziehung zwischen den kennzeichnenden Grossen einer Strahlung, nämlich der Energie E, der Wellenlänge λ und der Frequenz v wird durch die folgende Gleichung beschrieben.

$$E = h \cdot v = \frac{h \cdot c_0}{\lambda}$$
(2.1)

$$h = 6,6260755.10^{-34} \qquad Js \qquad Die Plancksche Konstante
$$c_0 = 2,99792458.10^8 \qquad ms^{-1} \qquad Die Lichtgeschwindigkeit im Vakuum$$$$

Durch Umformen der Gl. 2.1 erhält man die folgenden zwei Gleichungen.

$$\lambda(nm) = \frac{10^6 \cdot h \cdot c}{e \cdot E(keV)}$$
(2.2)

$$\mathbf{v}(s^{-1}) = \frac{10^3 \cdot e \cdot E(keV)}{h}$$
(2.3)
$$\mathbf{e} = 1.60217733.10^{-19} \,\mathrm{C}$$
Die elektrische Ladung des Elektrons

 $1 \text{ eV} = 1,602.10^{-19} \text{ J}$ ist dabei jene Energie, die ein Elektron beim Durchlaufen einer Potentialdifferenz von 1 V gewinnt, oder verliert.

2.2 Die Erzeugung von Röntgenstrahlung

Die Röntgenstrahlung lässt sich in einer Röntgenröhre (Abb. 2.2) durch Beschüß von Metall mit schnellen Elektronen erzeugen. Hierbei entstehen zwei verschiedene Arten von Röntgenstrahlung, zum einen die Bremsstrahlung, auch kontinuierliche oder weiße Strahlung genannt, und zum anderen die charakteristische Strahlung.

Abb. 2.2: Schematischer Aufbau einer Röntgenröhre

Im Hochvakuum der Röntgenröhre wird ein Filament (Glühwendel) erhitzt, wobei durch die thermische Emission Elektronen austreten. Die Elektronen werden in einem starken elektrischen Feld beschleunigt und treffen dann auf eine Anode, das sogenannte Target, das z.B aus Cr, Cu oder Rh bestehen kann. Die Elektronen werden beim Aufprall auf die Anode stark abgebremst und geben ihre kinetische Energie in Form von Wärme und kurzwelliger elektromagnetischer Strahlung ab. Je nachdem, ob ein Elektron im Feld eines Atomkerns im Anodenmaterial abgebremst oder abgelenkt wird oder mit seiner kinetischen Energie ein

anderes Elektron des Atoms aus seiner Bahn wirft, wird kontinuierliche bzw. charakteristische Röntgenstrahlung emittiert.

2.2.1 Die kontinuierliche Strahlung

Die kontinuierliche Strahlung entsteht durch Beschüß einer Anode mit einem Elektronenstrahl. Gerät ein Elektron bei seinem Weg durch das Anodenmaterial in das Coulombfeld eines Atomkerns, so wird es von diesem angezogen und in seiner Bahn abgelenkt. Dabei verliert es Energie, die infolge des Energie-erhaltungssatzes in Energie eines Röntgenphotons umgewandelt und emittiert wird (Abb. 2.3).

Abb. 2.3: Abbremsvorgang eines Elektrons im Coulombfeld eines Atomkerns mit Emission eines Photons

Unmittelbar bevor die Elektronen auf die Anode auftreffen besitzen sie die Energie

$$\mathbf{E}_{\mathbf{e}} = \mathbf{e}.\mathbf{U} \tag{2.4}$$

U

Die Potentialdifferenz (die Spannung), die das Elektron auf seinem Weg von der Kathode bis zur Anode durchlaufen hat

die sie durch Beschleunigung im elektrischen Feld der Röntgenröhre gewonnen haben.

Die Energie E_e des Elektrons und die Grenzwellenlänge λ_{min} der Röntgenstrahlung stehen in einem Zusammenhang, der von der Planckschen Gleichung beschrieben wird.

$$E_e = h.c_0 / \lambda_{\min}$$
 (2.5)

Aus Gleichungen 2.4 und 2.5 folgt:

 $\mathbf{E}_{\mathbf{e}} = \mathbf{h} \cdot \mathbf{c}_0 / \lambda_{\min} = \mathbf{e} \cdot \mathbf{U}$ (2.6)

Da die Elektronen beim Auftreffen auf die Anode nicht mehr Energie in ein Photon der Röntgenstrahlung verwandeln können als sie vorher beim Durchlaufen der Spannungsdifferenz AU gewonnen haben, erstreckt sich das gemessene Röntgenspektrum nur bis zur kleinstmöglichen Wellenlänge λ_{min} .

$$\lambda_{\min} = h.c_0 / e.U = 1,24 / \Delta U$$
 (U in kV) (2.7)

Diese Gleichung gibt die kürzeste Wellenlänge an, die erzeugt werden kann wenn ein Elektron in einem einzigen Schritt abgebremst wird. Die meisten Elektronen geben ihre Energie nicht in einem Schritt sondern in einer großen Anzahl von unterschiedlichen Schritten ab. Dadurch entsteht nicht eine einzige Wellenlänge, sondern ein kontinuierliches Spektrum an Röntgenphotonen, das aufgrund seiner unterschiedlichen Wellenlängen polychromatisch ist.

Die Intensitätverteilung des kontinuierlichen Spektrums I_{λ} in Abhängigkeit von der Wellenlänge A (Abb. 2.4) wird durch die Kramerssche Verteilungsfunktion beschrieben.

$$I_{(\lambda)} = KiZ\left(\frac{\lambda}{\lambda_{\min}} - 1\right)\left(\frac{1}{\lambda^2}\right)$$
(2.8)
I Intensität in cps

- λ Wellenlänge in **nm**
- K Kramerssche Konstante
- i Röhrenstrom in **mA**
- Z Ordnungszahl der Röhrenanode (Targetmaterial)

Abb. 2.4: Kontinuumsstrahlung von Röntgenröhren mit verschiedenen Anoden; Graphik (Philips Analytical)

Aus Gleichung 2.7 und der Kramersschen Verteilungsfunktion 2.8 lassen sich folgende wichtige Aussagen ableiten:

- Eine Erhöhung der an der Röntgenröhre anliegenden Spannung *U* bei konstanter Stromstärke *i* führt zu einer Verringerung der minimalen Wellenlänge λ_{\min} .
- Es besteht eine lineare Abhängigkeit zwischen der Ordnungszahl des Anodenmaterials und der Intensität der erzeugten Kontinuumsstrahlung.
- Es besteht ebenfalls eine lineare Abhängigkeit zwischen der Stromstärke *i*, mit der die Röntgenröhre betrieben wird, und der Intensität / der Kontinuumsstrahlung. Mit zunehmender Stromstärke werden mehr Elektronen vom Filament freigesetzt, sodaß mehr Elektronen ihre Energie in Form von Bremsstrahlung abgeben.

Abbildung 2.5 veranschaulicht diese Aussagen.

Abb. 2.5: Abhängigkeit der Intensität der Kontinuumsstrahlung vom Röhrenstrom (links), von der Röhrenspannung (Mitte) und von der Ordnungszahl des Anodenmaterials (rechts); aus Bertin (1970).

Die Kramerssche Verteilungsfunktion ergibt sich unter Anwendung der Gl. 2.6 zu

$$\chi_E = KiZ\left(\frac{E_0}{E} - 1\right). \tag{2.9}$$

χ_E Die spektrale Dichteverteilung (Anzahl der Röntgenquanten)
 E₀ Die durch die Röntgenröhrenspannung U definierte Maximalenergie

Damit erhält man die spektrale Dichteverteilung der entstehenden Röntgenquanten in Abhängigkeit von Quantenenergie.

2.2.2 Die charakteristische Strahlung

Durch Bestrahlung eines Elements mit energiereichen Elektronen oder energiereicher Strahlung (Röntgen- oder Gamma-Strahlung) und deren Wechselwirkung mit Elektronen der Atome im Element entsteht die charakteristische Röntgenstrahlung des betreffenden Elements. Die Elektronen der inneren Schalen können durch Absorption der Energie von Photonen (Quanten) der einfallenden Strahlung oder der einfallenden Elektronen das Atom verlassen. Ein Elektron kann nur dann aus seiner Schale herausgeschlagen werden, wenn die Energie der anregenden Strahlung größer ist als seine Bindungsenergie in der Schale. Die entstehenden Löcher können dann durch Elektronen der weiter außen liegenden Schalen nachbesetzt werden. Die Energiedifferenz zwischen den beiden Besetzungsniveaus wird dann unter Emission charakteristischer Röntgenstrahlung diskreter Wellenlänge frei. Dabei unterscheiden wir K-Strahlung, L-Strahlung, M-Strahlung usw. je nachdem, ob ein Hüllenelektron auf die K-Schale, L-Schale, M-Schale usw. nachrückt.

Die möglichen Energieübergänge zwischen den einzelnen Schalen eines Atoms sind in der Abbildung 2.7 schematisch dargestellt.

Mit steigender Ordnungszahl eines Elements steigt auch die Wahrscheinlichkeit für die Entstehung der charakteristischen Strahlung stark an.

Ein in eine innere Schale nachrückendes Elektron verursacht nicht immer die Emission eines Röntgenphotons. In diesem Fall erfolgt das Nachrücken des Elektrons durch einen strahlungslosen Übergang, wobei anstatt eines Röntgenphotons ein Elektron emittiert wird. Dieser Effekt wird als Auger-Effekt und die emittierten Elektronen werden als Auger-Elektronen bezeichnet.

Im Falle der Bestrahlung eines Probenmaterials durch das Spektrum der Röntgenröhre muß zwischen der charakteristischer Strahlung des Anodenmaterials, die durch das Herausschlagen der inneren Elektronen des Anodenmaterials unter Beschüß von vorher im elektrischen Feld der Röntgenröhre beschleunigten Elektronen, zustande kommt, und der charakteristischen Strahlung der Probe selbst unterschieden werden.

Das kontinuierliche Spektrum der Röntgenröhre wird von der charakteristischen Strahlung des Anodenmaterials überlagert.

Abb. 2.7: Schematische Darstellung der Energieübergänge bei charakteristischer Röntgenstrahlung (Schalenmodell)

2.2.3 Das Röntgenröhrenspektrum von Cu

Als Beispiel zeigt das nachstehende Diagramm das bei 30 kV Röntgenröhrenspannung gemessene Spektrum von Cu. Wie aus dem Diagramm ersichtlich ist, besteht das Spektrum aus dem kontinuierlichen Teil und den charakteristischen Linien.

Abb. 2.6: Das gemessene kontinuierliche Spektrum und die charakteristischen Linien von Cu bei einer Röntgenröhrenspannung von 30 kV

3 Die quantitative Röntgenfluoreszenzanalyse (RFA)

3.1 Wechselwirkung von Röntgenstrahlung mit Materie

Wird Materie der Röntgenstrahlung ausgesetzt emittiert sie zwei verschiedene Arten von Strahlung, zum einen die Streustrahlung und zum anderen die charakteristischen Strahlungen der Probenelemente.

Die Streustrahlung selbst entsteht durch kohärente (elastische) Streuung und inkohärente (inelastische) Streuung.

Nach der klassischen Elektrodynamik entsteht die kohärente Streuung dann, wenn es zwischen dem einfallenden Röntgenphoton und der gesamten Elektronenhülle eines Atoms als Einheit zu einem elastischen Stoß kommt. Das Röntgenphoton verläßt die Materie mit einer Richtungsänderung aber aufgrund des elastischen Stoßes ohne Energieverlust.

Nach der Quantentheorie entsteht die kohärente Streuung dann, wenn das einfallende Röntgenphoton ein äusseres Elektron eines Atoms in der Materie zur Schwingung anregt. Diese Schwingung führt zur Emission eines Photons mit der selben Frequenz aber in eine andere Richtung als jene des einfallenden Röntgenphotons (Abb. 3.1).

Abb. 3.1: Kohärente (elastische) Streuung

Da die Energie hv des emittierten Photons gleich der Energie hv des einfallenden Photons ist, ist diese Art der Streustrahlung von der einfallenden Strahlung nur durch seine geänderte Richtung zu unterscheiden.

Wenn die Energie hv des einfallenden Röntgenphotons groß genug ist um die Bindungsenergie eines äusseren Elektrons zu überwinden und es aus seiner Bahn zu werfen, kommt es zur inkohärenten Streuung. Es handelt sich dabei um einen Zweiteilchenprozeß, bei dem das Röntgenphoton einen Teil seiner Energie hv und seines Impulses hv/c an das Elektron abgibt und unter dem Winkel 0 zur Einfallsrichtung mit einer kleineren Energie hv' gestreut wird (Abb. 3.2).

Abb. 3.2: Inkohärente (inelastische) Streuung

Die Größe der Anteile der gestreuten Intensität zu jener der charakteristischen Strahlungen hängt vom Material und von der Energie der einfallenden Strahlung ab, d.h. die Streuung ist element- und energieabhängig. Bei schweren Elementen ist die Streuung größer als bei leichten.

Die Intensität der Streustrahlung ist nicht in alle Richtungen gleich verteilt. Die Intensität in einer bestimmten Richtung I_{θ} mit einem Winkel 9 zur Ausbreitungsrichtung der einfallenden Strahlung ergibt sich zu

$$I_{\theta} = I_{\pi/2} \left(l + \cos^2 \theta \right). \tag{3.1}$$

Bei $\theta < 30^{\circ}$ gibt es große Abweichungen zwischen experimentellen und theoretischen Werten.

Die neben der Streustrahlung entstehende charakteristische Strahlung unterscheidet sich deutlich von der einfallenden Strahlung und kann nur dann angeregt werden, wenn die Energie der einfallenden Strahlung höher oder zumindest gleich der Bindungsenergie der jeweiligen Elektronen ist, d.h. die charakteristischen Elementspektren bedürfen zu ihrer Anregung einer Mindestenergie der anregenden Quantenstrahlung. Ein einfallendes Quant kann dann die Bindungsenergie eines Elektrons in der entsprechenden Schale überwinden und somit das Elektron aus dem Atom herausschlagen. Das entstehende Loch wird durch ein anderes Elektron aus einer äußeren Schale unter Emission eines Röntgenquants nachbesetzt (vgl. Punkt 2.2.2). Abbildung 3.3 zeigt die Anregung der charakteristischen Röntgenphotonen.

Abb. 3.3: Die Anregung der charakteristischen Röntgenstrahlung durch einfallende Röntgenphotonen

Jene Fluoreszenzstrahlung, die von Elementen emittiert wird, deren Atomgewicht sich in der Umgebung von Fe (26) und Cu (29) befindet, ist die homogenste, d.h. die überlagerte Streustrahlung ist sehr gering.

Durch diese unterschiedlichen Absorptions- und Streuprozesse wird die einfallende Röntgenstrahlung entlang ihres Weges durch die Materie abgeschwächt, d.h. die Intensität der charakteristischen und gestreuten Strahlung ist insgesamt geringer als die der einfallenden Strahlung. Das Ausmaß der Abschwächung wird durch entsprechende Koeffizienten beschrieben, die im nächsten Punkt erläutert werden.

3.2 Abschwächung von Röntgenstrahlung in Materie

Ein paralleles und monoenergetisches Röntgenstrahlbündel a der Intensität I_0 'und der Energie E_0 möge einen ebenen homogenen Absorber b der Dicke D und der Dichte pparallel zum Flächenlot durchsetzen (Abb. 3.4). Dabei erfährt der Röntgenstrahl a entlang seines Weges im Absorber b infolge von Absorptions- und Streuprozessen eine Abschwächung, die durch den Gesamtschwächungskoeffizienten μ beschrieben wird.

Abb. 3.4: Abschwächung der Röntgenstrahlung in einem Absorber

Der Gesamtschwächungskoeffizient μ erhält zu seiner Kennzeichnung zwei Indizes *a* und *b*, von denen der erste die Röntgenstrahlung und der zweite den Absorber definiert. Die Strahlung *a* kann auch durch ein Zahlentripel *ijk* charakterisiert werden. Es steht dann *i* für das Element, *j* für das ionisierte Niveau und *k* für jenes Atomniveau, von dem die Vakanz in *j* aufgefüllt wird.

Die Intensität I\ der abgeschwächten Röntgenstrahlung ergibt sich zu

$$I_1 = \mathbf{V}^{-\overline{\mu}_{a,b} \cdot D} \tag{3.2}$$

wobei $\mu_{a,b}$ (cm⁻¹) der lineare Gesamtschwächungskoeffizient ist.

Durch Einführung des Massenschwächungskoeffizienten

$$\mu_{a,b} = \frac{\overline{\mu}_{a,b}}{\rho_b} \quad (\text{cm}^2/\text{g}) \tag{3.3}$$

ergibt sich die Intensität I\ zu

$$A = \sqrt{-\mu_{a,b} \cdot \rho_{b} \cdot D}$$
(3.4)

Der Massenschwächungskoeffizient $\mu_{a,b}$ setzt sich additiv aus dem Photoabsorptionskoeffizienten $\tau_{a,b}$, dem kohärenten (elastischen) Streukoeffizienten σ_{coh} und dem inkohärenten (inelastischen) Streukoeffizienten σ_{inc} zusammen.

$\mu_{a,b} \sim \tau_{a,b} + fcoha.b + Ginca,b$

Die Abb. 3.5 zeigt für das Element Palladium die Abhängigkeit der einzelnen Schwächungskoeffizienten von der Energie und veranschaulicht ihre relative Größenordnung zueinander.

Abb. 3.5: Energieabhängigkeit der Schwächungskoeffizienten von Palladium

Wie aus der Abbildung ersichtlich, beträgt der Anteil der gestreuten Strahlung etwa 1% der photoabsorbierten Strahlung. Bei einem so geringen Anteil der gestreuten Strahlung gehen wir bei den folgenden Betrachtungen von der Annahme aus, daß der aus der Richtung zum Detektor herausgestreute Anteil der Strahlung annähernd gleich groß ist wie der in die

(3.5)

Detektorrichtung hineingestreute. Aufgrund des geringen Einflusses der Streuung und der Annahme einer teilweisen Kompensation des durch Streuung in Verlust geratenen Quantenflusses werden die Streuanteile vernachlässigt und der Gesamtschwächungskoeffizient μ mit dem Koeffizienten τ der photoelektrischen Absorption gleich gesetzt.

Man sieht auch, daß die Photoabsorption in dem für RFA interessanten Energiebereich von weniger als 100 keV den höchsten Beitrag zum Gesamtschwächungskoeffizienten μ leistet. In der Abbildung ist auch zu erkennen, daß der Photoabsorptionskoeffizient mit steigender Energie innerhalb bestimmter Bereiche, deren Grenzen durch die Absorptionskanten gegeben sind, abnimmt. Die drei Sprünge der L-Schale, zu der die Unterschalen L1, L2 und L3 gehören und der Sprung der K-Schale sind zu erkennen. Erst beim Erreichen der Kantenenergie einer Schale setzt die Photoionisation in dieser Schale ein, wodurch die Unstetigkeit der Absorptionskurve bei den Kantenenergien zustande kommt.

Das Verhältnis des Photoabsorptionskoeffizienten an beiden Seiten einer Kante wird als Absorptionskantensprung *Sij* bezeichnet, wobei i das Element und j die Kante bezeichnen.

$$S_{ij} = \frac{\tau_{E_{ij}+dE}}{\tau_{E_{ij}-dE}} > 1$$
(3.6)

Jener Anteil der Gesamtabsorption, der für ein bestimmtes Energieintervall von einer bestimmten Schale herrührt, lässt sich durch den Absorptionskantensprung S_{ij} berechnen und wird als Absorptionskantensprungfaktor M_{ij} bezeichnet (Tabelle 3.1).

<u></u>		
Schale	Energie oberhalb der K-Kante	Energie zwischen L3- und der K-Kante
К	$M_{iK} = \frac{S_{iK} - 1}{S_{iK}}$	
LI	$M_{iL1} = \frac{1}{\mathbf{S}_{iK}} \cdot \frac{S_{iL1} - 1}{S_{iL1}}$	$M_{iL1} = \frac{S_{iL1} - 1}{S_{iL1}}$
L2	$M_{iL2} = \frac{1}{S_{iK}} \cdot \frac{1}{S_{iL1}} \cdot \frac{S_{iL2} - 1}{S_{iL2}}$	$\mathcal{M}_{iL2} \sim \frac{1}{S_{iL2}} - \frac{1}{S_{iL2}} - \frac{1}{S_{iL2}}$
L3	$M_{iL3} = \frac{1}{3_{iK}} \cdot \frac{1}{3_{iL1}} \cdot \frac{1}{S_{iL2}} \cdot \frac{S_{iL3} - 1}{S_{iL3}}$	$M_{iL3} = \frac{1}{S_{iL1}} + \frac{1}{S_{iL2}} + \frac{S_{iL3} - 1}{S_{iL3}}$

 Tabelle 3.1:
 Absorptionskantensprungfaktor My

Der Photoabsorptionskoeffizient eines Absorbers b aus n chemischen Elementen (Mehrelementprobe) für die Quantenenergie *E* ergibt sich zu

$$\mathcal{T}_{E,c} = \sum_{q=1}^{n} c_q \cdot \mathcal{T}_{E,q}$$
(3.7)

wobei c_q die Konzentration des Elements q in Gewichtsteilen und $\tau_{E,q}$ der Elementphotoabsorptionskoeffizient sind. Für die Gesamtkonzentration aller in der Probe vorkommenden Elemente gilt

$$\sum_{q=1}^{n} c_{q} = 1.$$
(3.8)

3.3 Primäranregung

Durch Primäranregung entsteht jener Anteil der insgesamt angeregten Fluoreszenzstrahlung, der direkt durch das Anregungsspektrum der Röntgenröhre zustande kommt.

Um die Gleichung für die Berechnung der Zählraten durch Primäranregung herzuleiten wird von einer homogenen Probe mit einer ebenen Oberfläche (Abb. 3.6) ausgegangen.

Abb. 3.6: Geometrie zur Zählratenberechnung durch Primäranregung

Die Probe wird von pseudomonochromatischen Röntgenquanten der spektralen Verteilung χ_E aus dem Quantenenergieintervall von *E* bis *E*+*dE* unter einem mittleren Winkel *a* zum Flächenlot bestrahlt. Der Öffnungswinkel des Strahlenbündels ergibt sich zu

$$\frac{A \cdot \cos \alpha}{d^2} \quad (sr) \tag{3.9}$$

mit d als mittlerer Abstand zwischen der Röntgenröhrenanode und der getroffenen Probenfläche A.

Somit treffen bei einem Röntgenröhrenstrom *i* auf der Fläche A je Zeiteinheit insgesamt

$$\chi_E dE \cdot \frac{A \cdot \cos \alpha}{d^2} \cdot i \tag{3.10}$$

Quanten auf. Um die in einem in der Tiefe t befindlichen differentiell kleinen Volumen A.dt im chemischen Element i photoabsorbierten Röntgenquanten angeben zu können, muss die Schwächung des Signals von der Probenoberfläche entlang des Weges $t/cos\alpha$ berücksichtigt werden.

$$e^{-\tau_{E,e}\cdot\rho_{c}\cdot\frac{l}{\cos\alpha}}$$
(3.11)

 $\tau_{E,c}$ ist der Photoabsorptionskoeffizient für Röntgenstrahlung mit der Quantenenergie *E* in der durch den Index *c* gekennzeichneten Mehrelementprobe. Die Dichte des Probenmaterials ist ρ_c in g.cm^{"3}.

Die ankommenden Röntgenquanten durchsetzen das Volumenelement *A.dt* entlang des Weges $dt/\cos\alpha$ und erfahren im statistischen Mittel

$$\chi_{E} dE \cdot \frac{A \cdot \cos \alpha}{d^{\frac{1}{2}}} i \cdot e^{\frac{-\tau_{E,c} \cdot \rho_{c} \cdot \frac{t}{\cos \alpha}}{COSa}} \rho_{C} \cdot \tau_{E,c}$$
(3.12)

Photoabsorptionen. Der Photoabsorptionskoeffizient $\tau_{E,c}$ errechnet sich aus den Elementphotoabsorptionskoeffizienten $\tau_{E,g}$ gemäß Gleichung 3.7.

Im Element *i* werden $c_i \cdot \tau_{E,i} / \tau_{E,c}$ der Röntgenquanten photoabsorbiert, wobei c_i die in Gewichtsteilen ausgedrückte Konzentration und $\tau_{E,i}$ der Photoabsorptionskoeffizient der Röntgenstrahlung mit der Quantenenergie *E* im Element i sind.

Folgende Faktoren müssen noch berücksichtigt werden:

- ω_{ij} Ionisationsprozentsatz des Niveaus *j* im Element *i*, der unter Emission von Fluoreszenzstrahlung relaxiert (Fluoreszenzausbeute).
- **p**_{iik} Übergangswahrscheinlichkeit zur Auffüllung der Vakanz *j* aus dem Niveau *k*.
- $\Omega/4\pi$ Der in den Detektionsraumwinkel £2 gelangende Anteil der Fluoreszenzstrahlung.
- **E**_{ijk} Detektoreffizienz für den detektierten Anteil der Fluoreszenzquanten.
- \mathbf{M}_{ij} Faktor zur Angabe der Photoabsorption in einem bestimmten Atomniveau *j* des Elements *i*.

Schließlich muss noch die Schwächung entlang des Weges t / $\cos\beta$ berücksichtigt werden

$$e^{-\tau}_{ijk,c} \cdot \rho_c \cdot \frac{t}{\cos\beta}$$
(3.13)

mit
$$\mathcal{T}_{ijk,c} = \sum_{q=1}^{n} c_q \cdot \mathcal{T}_{ijk,q}$$
 (3.14)

als Photoabsorptionskoeffizient in der Probe c, wobei $\mathcal{T}_{ijk,q}$ der Elementabsorptionskoeffizient des Elements q ist.

Somit beträgt der vom pseudomonochromatischen Primärstrahlungsanteil χ_{E} .dE im Volumenelement *A.dt* herrührende Beitrag $dn_{ijk}(prim)$ zur insgesamt gemessenen Fluoreszenzzählrate n_{ijk}

Durch zweimalige Integration über die Volumenelemente A.dt von t = 0 bis $t = \infty$ und über den Quantenenergiebereich von E_{ij} bis E_0 (Maximalenergie e. U des Röntgenkontinuums) des Röntgenröhrenspektrums ergibt sich für den Anteil der Primäranregung zur insgesamt gemessenen Fluoreszenzzählrate

$$n_{ijk}(prim) = \frac{A \cdot \cos \alpha}{d^2} i \cdot \frac{1}{\cos \alpha} \cdot C_i \cdot M_{ij} \cdot \omega_{ij} \cdot p_{ijk} \cdot \frac{\Omega}{4 \cdot \pi} \cdot \mathcal{E}_{ijk} \int_{E=E_{ij}}^{E_0} \frac{X_E \cdot \mathcal{T}_{E,i}}{\cos a} \cdot \frac{\nu_{ijk,c}}{\cos \beta} dE$$
(3.16)

Mit den Abkürzungen

$$Const = \frac{A.\cos\alpha}{d} i \cdot \frac{1}{\cos\alpha} \cdot \frac{\Omega}{4\pi}$$
(3.17)

und
$$B_{ijk} = M_{ij} \cdot \omega_{ij} \cdot p_{ijk}$$
 (3.18)

folgt dann für die Zählrate

$$n_{ijk}(prim) = Const.B_{ijk} \cdot \varepsilon_{ijk} \cdot c_i \cdot \int_{E=E_{ij}}^{E_0} \frac{\gamma}{\tau_{E,c}} \frac{\tau}{\cos \alpha} \cdot \frac{\tau_{ijk,c}}{\cos \beta} dE$$
(3.19)

3.4 Sekundäranregung

In einer Probe, die zwei oder mehr Elemente enthält (Mehrelementprobe), kann es zusätzlich zur Primäranregung auch zu einer Sekundäranregung kommen. Dies ist möglich, wenn die Energien der durch Primäranregung entstehenden charakteristischen Strahlungen eines Elements größer sind als die Kantenenergie einer oder mehrerer charakteristischer Linien eines anderen Elements. Die betreffenden Linien des anderen Elements werden durch primär angeregte charakteristische Strahlung zusätzlich zur Primäranregung angeregt (enhancement).

Der Beitrag der Sekundäranregung zur gemessenen Gesamtzählrate wird anhand der Abbildungen 3.7 und 3.8 hergeleitet.

Abb. 3.7: Geometrie zur Herleitung des von der Sekundäranregung herrührenden Beitrages zur gesamten Fluoreszenzzählrate (Anteil 1)

Abb. 3.8: Geometrie zur Herleitung des von der Sekundäranregung herrührenden Beitrages zur gesamten Fluoreszenzzählrate (Anteil 2)

Wie bei der Primäranregung wird ein Volumen $A.d\xi$ betrachtet, in welchem die von der Röntgenröhre kommende Strahlung eine charakteristische Fluoreszenzstrahlung anregt.

Die in $A.d\xi$ erzeugte xyz-Fluoreszenzstrahlung (zur Unterscheidung von ijk-Strahlung) breitet sich gleichmäßig in alle Richtungen aus. Ein kleiner Anteil pflanzt sich unter dem Winkel γ zum Flächenlot in Richtung A.dt fort. In einem Winkelbereich von γ bis $\gamma+d\gamma$ beträgt dieser Anteil

$$\frac{2.r.\sin\gamma\pi.r.d\gamma}{4\pi r^2} = \frac{\sin y.dy}{2}$$
(3.20)

Sodann ist die Schwächung der xyz-Strahlung entlang des Weges r und die Absorption in dr zu quantifizieren. r und dr folgen aus der Abbildung 3.7 zu

$$r = \frac{t - \xi}{\cos y} \tag{3.21}$$

$$dr = \frac{dt}{\cos y}.$$
(3.22)

Urn die Integration über eine Singularität zu umgehen, wird die Sekundäranregung, wie aus den Abbildungen 3.7 und 3.8 zu ersehen ist, in zwei Anteile zerlegt. In Analogie zur Primäranregung wird dann die entlang *dr* erzeugte ijk-Fluoreszenzstrahlung berechnet. Der erste Anteil gemäß Abb. 3.7 errechnet sich zu

$$d^{4}n_{ijk}(sek, xyz)_{1} = \chi_{E}.dE.\frac{A.\cos\alpha}{d^{2}}.i.e^{-\tau_{E,c}.\rho_{c}.\frac{\xi}{\cos\alpha}}.\frac{d\xi}{\cos\alpha}.\rho_{c}.c_{x}.\tau_{E,x}.M_{x,v}.p_{xvz}$$

$$.\omega_{xv}.\frac{\sin\gamma.d\gamma}{2}.e^{-\tau_{xr,x}.\rho_{c}.\frac{t-\xi}{\cos\gamma}}.\frac{dt}{\cos\gamma}.c_{i}\rho_{c}.\tau_{xyz,i}.M_{ij}.\omega_{ij}.p_{ijk}.\frac{\Omega}{4\pi}.e^{-\tau_{ik,c}.\rho_{c}.\frac{t}{\cos\beta}}\varepsilon_{ijk}$$
(3.23)

dabei sind

 $e^{-\tau_{P,c} \, \sigma_c \frac{\xi}{\cos \alpha}}$ die Abschwächung von der Oberfläche zu *A.d\xi*,

 $\tau_{E,x} \qquad \text{der Photoabsorptionskoeffizient für die Anregungsstrahlung im Element } x, \\ e^{-\tau_{yx,x}\cdot p_{e}\cdot \frac{1-\xi}{\cos\gamma}} \qquad \text{die Abschwächung entlang } r,$

 $\tau_{xyz,i}$ der Photoabsorptionskoeffizient für die E_{xyz} -Linie im Element i und $e^{-\tau_{ijk,c},\rho_{c},\frac{i}{\cos^{2}\rho}}$ die Abschwächung *A.dt* auf dem Weg zur Probenoberfläche.

Die Gleichung ergibt sich mit den bereits eingeführten Abkürzungen für Primäranregung zu

$$d^{4}n_{ijk}(sek, xyz)_{1} = \frac{1}{2}Const \cdot B_{ijk} \cdot B_{xyz} \cdot c_{i} \cdot c_{x} \cdot \tau_{E,x} \cdot \tau_{xyz,i} \cdot \varepsilon_{ijk} \cdot \rho_{c}^{2}$$

$$x_{E} \cdot \frac{\operatorname{sm} \gamma}{\cos \gamma} \cdot e^{\operatorname{u}\left(\frac{\tau_{ijk,c}}{\cos p^{\rho} \cos \gamma}\right)^{2} \rho_{c} \cdot t} e^{\left(\frac{\tau_{E,c}}{\cos \alpha} \cdot \frac{\tau_{xy2,c}}{\cos \gamma}\right)^{2} \rho_{c} \cdot \xi} \cdot dE \cdot d\gamma \cdot dt \cdot d\xi$$
(3.24)

Um die Beiträge aller Volumenelemente zu dem ersten Anteil der Sekundärstrahlung zu erfassen, wird die Gleichung über ξ von 0 bis t, über t von 0 bis ∞ und über γ von 0 bis $\pi/2$ integriert. Anschließend wird über E von E_{xy} bix E_0 integriert, um den Beitrag des xy-Überganges zur ij-Fluoreszenzstrahlung zu erhalten.

Aus der Abb. 3.8 folgen für r und dr

$$r = \frac{\xi - t}{\cos \gamma} \tag{3.25}$$

$$dr = \frac{-dt}{\cos\gamma} \tag{3.26}$$

und damit für den zweiten Anteil der Sekundärstrahlung $d^4 n_{ijk}(sek,xyz)_2$

$$d^{4}n_{ijk}(sek, xyz)_{2} = \frac{1}{2}Const.B_{ijk}.B_{xyz}.c_{i}.c_{x}.\tau_{xyz,i}.\varepsilon_{ijk}.\rho_{c}^{2}$$

$$.x_{E}.\frac{\sin\gamma}{\cos\gamma}e^{-\left(\frac{\tau_{ok,e}}{\cos\beta}-\frac{\tau_{oyt,e}}{\cos\gamma}\right)\rho_{e}.t}.e^{-\left(\frac{\tau_{E,e}}{\cos\gamma}+\frac{\tau_{oyt,e}}{\cos\gamma}\right)\rho_{e}.\xi}.dE.d\gamma.dt.d\xi$$
(3.27)

Die Integrationsintervalle entsprechend der in Abb. 3.8 gezeigten Geometrie lauten für ξ von *t* bis ∞ , für *t* von 0 bis ∞ , für y von 0 bis n/2 und für *E* wieder von E_{xy} bix E_0 .

Schließlich werden die beiden Sekundäranregungsanteile $d^4 n_{ijk}(sek,xyz)_1$ und $d^4 n_{ijk}(sek,xyz)_2$ summiert. Somit ergibt sich für die Sekundäranregung die folgende Gleichung

$$n_{ijk}(sek, xyz) = \frac{1}{2} Const B_{ijk} \cdot B_{xyz} \cdot c_i \cdot c_x \cdot \tau_{xyz,i} \cdot \mathcal{E}_{ijk} \cdot \int_{E=E_{xl}}^{E_n} \frac{x_E \cdot \tau_{E,x}}{\tau_{E,c} + \tau_{ijk,c}} \cdot \frac{1}{\tau_{ijk,c}} \cdot \frac{1}$$

Diese Gleichung enthält ebenso wie die Gleichung für Primäranregung den Faktor

$$Const \cdot B_{ijk} \cdot \varepsilon_{ijk} \cdot c_i \,. \tag{3.29}$$

Wenn in einem Element n Linien (mehr als eine Linie) in der Lage sind, eine Linie eines anderen Elements anzuregen, müssen alle Beiträge berechnet und aufsummiert werden. Für die insgesamt gemessene Zährate, herrührend von der Primäranregung und allen Sekundäranregungsbeiträgen ergibt sich damit die folgende endgültige Gleichung.

$$n_{ijk}(gemessen) = n_{ijk}(prim) + \sum_{u=1}^{n} n_{ijk}(sek, x_u, y_u, z_u)$$
(3.30)

3.5 Tertiäranregung

Wenn die in einer Mehrelementprobe durch Sekundäranregung entstehende charakteristische Strahlung wiederum in der Lage ist eine weitere charakteristische Strahlung in einem anderen Element anzuregen, spricht man von Tertiäranregung.

Der Aufwand an Rechenzeit beim Übergang von Primär- zu Sekundär- und Teritäranregung nimmt um annähernd eine Größenordnung zu während die Beiträge zur insgesamt resultierenden Fluoreszenzzählrate umgekehrt proportional dazu abnehmen.

Als Beispiel beträgt bei dem tertiären System Cr-Fe-Ni (unter verschiedener prozentueller Zusammensetzung der drei Elemente) der von Tertiäranregung herrührende Beitrag maximal 2,4%. Da die fundamentalen Parameter eine Ungenauigkeit mindestens in derselben Größenordnung besitzen und unter Berücksichtigung des hohen Rechenaufwandes und der damit erforderlichen Rechenzeit, scheint es als nicht gerechtfertigt, die Tertiäranregung in die Auswertung miteinzubeziehen.

3.6 Konzentrationsberechnung

Um nun aus den gemessenen Fluoreszenzzählraten auf die Konzentration der einzelnen Elemente in der Probe schliessen zu können, werden folgende Überlegungen angestellt.

Wir gehen von einer homogenen Probe, die aus drei chemischen Elementen besteht, aus. Es wird angenommen, dass die gemessenen Fluoreszenzzählraten durch Primär- und Sekundäranregungsbeiträge zustande kommen.

In den Gleichungen 3.20 und 3.29 sind die gesuchten Konzentrationen zuzüglich zu c_i und c_x auch noch in $\tau_{E,c}$, $\tau_{ijk,c}$ und $\tau_{xyz,c}$ enthalten.

In einem Iterationsverfahren werden mit den drei gemessenen Zählraten die folgenden Gleichungen aufgestellt.

$$\begin{array}{ll} n_{1jk}(gemessen) = n_{1jk}(gerechnet) & (3.31a) \\ n_{2jk}(gemessen) = n_{2jk}(gerechnet) & (3.31b) \\ n_{3jk}(gemessen) = n_{3jk}(gerechnet) & (3.31c) \end{array}$$

Zunächst gilt
$$\sum_{i=1}^{3} c_i = 1$$
 (3.32)

Den 4 Gleichungen stehen 4 Unbekannte c1, C2, c3 und Const gegenüber. In der Gleichung

$$n_{ijk}(prim + sek) = n_{ijk}(prim) + \sum_{u=1}^{n} n_{ijk}(sek, x_{u}y_{u}z_{u})$$
(3.33)

mit n als Anzahl der Sekunderanregungsbeiträge wird der Wert von Const zunächst willkürlich gleich 1 gesetzt. Da man die gemessenen Fluoreszenzzählraten näherungsweise proportional zu den jeweiligen Konzentrationen annehmen kann, errechnen sich die gesuchten Konzentrationen in 1. Näherung zu

$$c_{i}(1.N\ddot{a}herung) = \frac{.n_{ijk}}{\sum_{q=1}^{3} n_{qik} (gemessen)} \qquad i = 1 \text{ bis } 3 \qquad (3.34)$$

Berechnet man unter Verwendung dieser Konzentrationswerte n_{ijk}(prim+sek), so erhält man

$$n_{iik}$$
(prim+sek, 1. Näherung) $i = 1$ bis 3 (3.35)

Aus diesen Zahlenwerten werden durch Vergleich mit den gemessenen Zählraten n_{ijk} (gemessen) Korrekturfaktoren k_i (1.Näherung) errechnet.

$$k_i(1.N\ddot{a}herung) = \frac{n_{ijk} (gemessen)}{n_{iik} (prim + sek, 1.N\ddot{a}herung)} i = 1 \text{ bis } 3$$
(3.36)

Unter Verwendung dieser drei Korrekturfaktoren $k_i(1. \text{N"aherung})$ wird eine zweite N"aherung (m = 2) der gesuchten Konzentrationswerte berechnet.

$$c_{i}(2.N\ddot{a}herung) = -\frac{k_{i}(1.N\ddot{a}herung).c_{i}(1.N\ddot{a}herung)}{\sum_{q=1}^{k}k_{q}(1.N\ddot{a}herung).c_{q}(1.N\ddot{a}herung)}$$

$$i = 1 \text{ bis } 3 \qquad (3.37)$$

Unter Verwendung der Konzentrationswerte $c_i(2.N"aherung)$ werden analog zu $n_{ijk}(prim+sek,1.N"aherung)$ nunmehr die Zahlenwerte von $n_{ijk}(prim+sek,2.N"aherung)$ und aus diesen die Korrekturfaktoren $k_i(2.N"aherung)$ berechnet, aus denen sich die neuerlich korrigierten Konzentrationswerte $c_i(3.N"aherung)$ berechnen lassen (m = 3). Man kann so bis zur m-ten N"aherung fortfahren. Mit steigender Zahl m der Iterationsschritte unterscheiden sich die Konzentrationswerte und die Konzentrationsfaktoren zweier aufeinanderfolgender Schritte immer weniger voneinander, so dass

$$\lim_{m \to \infty} \Delta c = c. (m - te \ N\ddot{a}herung) - c. ((m-1) - te \ N\ddot{a}herung)| = 0$$
(3.38)

$$\lim_{m \to \infty} \Delta k_i = k_i (m - te \ N\ddot{a}herung) - k_i ((m-1) - te \ N\ddot{a}herung) = 0$$
(3.39)

 $k_1(\mathbf{m}), k_2(\mathbf{m})$ und fcj(m) streben im Grenzfall m $\rightarrow \infty$ gegen die 4. gesuchte Größe nämlich Const.

Die Güte der durch die Iteration erzielten Annäherung äußert sich in Δc_i und definiert somit die Abbruchbedingung der Iterationsschleife in einem Rechenprogramm zur Berechnung der Konzentrationen.

$$|c_i(m) - c_i(m-1)| \le \Delta c_i \tag{3.40}$$

4 Messung der elektronenstrahlangeregten Röntgenspektren

4.1 Elektronenstrahlmikroanalyse (ESM) als Messmethode

Die Elektronenstrahlmikroanalyse ist ein **spektrometrisches** Verfahren der **Röntgenanalytik**, das **für** die Messungen herangezogen wurde. Bei diesem Verfahren wird die Oberfläche einer Feststoffprobe mit Elektronen, deren Energie üblicherweise zwischen 10 keV und 30 keV gewählt wird, beschossen. Die dabei entstehende Röntgenstrahlung wird mit einem Detektor erfasst und der Spektralanalyse zugeführt.

Die unterschiedlichen Wechselwirkungen zwischen den eingestrahlten Primärelektronen und den Atomen des Festkörpers sind in der Abb. 4.1 schematisch zusammengefasst.

Charakteristische Röntgenstrahlung

Durch Ionisation der Probenatome in inneren Schalen werden diese zur Emission von Röntgenstrahlung angeregt. Die unterschiedlichen Wellenlängen, die dabei ausgestrahlt werden, sind charakteristisch für das strahlende Element. Für die K_{α} -Strahlung (Übergang eines L-Elektrons auf die K-Schale) ergibt sich nach dem Moseleyschen Gesetz:

$$\frac{1}{\lambda_{K_{\alpha}}} = \frac{3}{4} R (Z - 1)^2 \tag{4.1}$$

R Rydberg-Konstante

Z Kernladungszahl bzw. Atomnummer

Die Intensität einer emittierten Linie ist ein Maß für den Massenanteil des entsprechenden Elements im Probenvolumen, das zur Röntgenemission angeregt wurde.

Bremsstrahlung

Die eingestrahlten Primärelektronen können im Kernfeld der Probenatome abgebremst werden. Der Energieverlust wird als sogenannte Röntgenbremsstrahlung in Photonenenergie umgewandelt. Bei völliger Abbremsung eines Elektrons durch einen einmaligen Zusammenstoß entsteht ein Photon maximaler Energie (Vgl. Kapitel 2.2.1).

$$E = e_0 U = h v_{\text{max}} = \frac{hc_0}{A_{\text{min}}} \quad \text{(bei U} = 25 \text{ kV}: \lambda_{\text{min}} = 50 \text{ pm}\text{)}$$
(4.2)

Die Intensitätsverteilung der Röntgenbremsstrahlung als Funktion der Wellenlänge hängt von der Kernladungszahl Z und von der Beschleunigungsspannung der eingestrahlten Primärelektronen ab.

$$I(\lambda) = \frac{ZC(\lambda - \lambda_{\min})}{\lambda^3 \lambda_{\min}} + \frac{BZ^2}{\lambda^2}$$
 (C und B: Konstanten) (4.3)

<u>Kathodolumineszenz</u>

Elektronen aus dem Valenzband der Probe können durch die eingestrahlten Primärelektronen in das Leitungsband gehoben werden. Bei der anschließenden Relaxation kommt es zur sogenannten Kathodolumineszenz, d.h. zur Emission von Photonen, deren Energie der Energielücke EG zwischen Leitungsband und Valenzband entspricht. Bei Halbleiterverbindungen wie CdSe ($E_G = 174eV$), CdS ($E_G = 2,42eV$) oder ZnS ($E_G =$ **3,54eV**) entsprechen solche Übergänge dem optischen Spektralbereich (Leuchtdioden, Solarzellen), bei Halbleiterverbindungen wie PbS ($E_G = 0,37eV$) oder PbTe ($E_G = 0,25eV$) liegen diese Übergänge im Infrarotbereich (IR-Detektoren, IR-Laser).

Backscatter-Elektronen

Ein erheblicher Anteil der Primärelektronen wird von den Probenatomen elastisch reflektiert und verläßt ohne wesentlichen Energieverlust als sogenannte "Backscatter-Elektronen" die Probe in Rückstreurichtung. Der Bruchteil der Primärelektronen, der eine Rückstreuung erfährt, hängt von der Kernladung des rückstreuenden Atoms und der Auftreffenergie E_0 ab und läßt sich durch den backscatter-Koeffizienten η beschreiben.

Der backscatter-Koeffizient T) ist das Verhältnis der Anzahl der zurückgestreuten Elektronen zur Gesamtzahl der auftreffenden Elektronen.

 $\eta = n / no$

(4.4)
Es gibt in der Literatur eine Darstellung für den backscatter-Koeffizienten η nach Hunger und Küchler [5], die für den in unserem betrachteten Energiebereich von 5-30 keV gut geeignet ist.

$$\eta = E_0^m \exp(c) \tag{4.5}$$

$$m = 0.1382 - \frac{0.9211}{\sqrt{Z}} \tag{4.6}$$

$$\exp(c) = 0.1904 - 0.22361n(Z) + 0.1292(\ln(Z))^{2} - 0.0149(\ln(Z))^{3}$$
(4.7)

Diese Beschreibung gilt für einen Eintrittswinkel von $a = 90^{\circ}$. Für flachere Eintrittswinkel gilt die folgende Relation.

$$\eta_w = 0.891 \left(\frac{\eta}{0.891}\right)^{\sin\alpha} \tag{4.8}$$

Sekundärelektronen und Auger-Elektronen

Außer den energiereichen Backscatter-Elektronen treten noch Sekundärelektronen aus der Probe aus, deren Energie einige 10 eV beträgt. Zum größten Teil sind die Sekundärelektronen solche, die aus inneren oder äußeren Schalen der Probenatome herausgeschlagen wurden. Zu den Sekundärelektronen werden auch die Auger-Elektronen gezählt, die bei strahlungslosen Übergängen eines ionisierten Atoms entstehen.

Cup-Strom und Proben-Strom

Durch Stoßprozesse verliert ein Teil der eingestrahlten Elektronen kinetische Energie und wird von der Probe absorbiert. Die absorbierten Elektronen werden von der Probe gegen Masse abgeleitet und als sogenannter Probenstrom registriert.

Jener Anteil der Elektronen, der zurückgestreut wird, hat **keinen** Beitrag zur Entstehung des Probenstromes. Um diesen Anteil auch zu berücksichtigen definiert man den sogenannten Cupstrom, der die Stärke des insgesamt auftreffenden Stromes angibt.

i cup - i Probe + i Reflection

Ein Teil des reflektierten Stromes $i_{Reflektion}$ trägt vor dem Austritt aus der Probe ebenfalls zur Erzeugung von Röntgenquanten bei, d.h. der reflektierte Strom wird nicht nur an der Oberfläche zurückgeworfen sondern auch unterhalb der Oberfläche.

Der Backscatter-Faktor η gibt den Zusammenhang zwischen Cup- und Proben-Strom an.

$$\mathbf{i}_{Probe} = (1 - \eta) \mathbf{i}_{cup} \tag{4.10}$$

Die Abbildung 4.2 zeigt in einer Meßanordnung die Entstehung und Messung der beiden Ströme.

Abb. 4.2: Meßanordnung zur Probenstrom- und Cupstrom-Messung

4.2 Elektronenstrahlmikrosonde als Meßgerät

Die Messungen am Institut waren mit einem Raster-Elektronenmikroskop XL30 E SEM (scanning electron microscope) der Marke Philips durchgeführt worden.

Der Aufbau einer Elektronenstrahlmikrosonde erfordert zunächst ein Vakuumsystem, in dem sich die Elektronenquelle, das elektronenoptische System, die verschiedenen Detektoren und natürlich die zu untersuchende Probe befinden. Das Vakuumsystem ist einerseits nötig, um die geheizte Glühkathode vor Oxidation zu schützen, zum anderen, um eine genügend große mittlere freie Weglänge der Elektronen zu gewährleisten und die Absorptionsverluste der emittierten Röntgenstrahlung möglichst klein zu halten.

Die Elektronenquelle, deren Funktionsweise aus Abb. 4.3 hervorgeht, besteht aus einer direkt geheizten Wolfram-Haarnadel-Kathode (ca. 3000 K; Elektronenemission: Richardsonsches Gesetz), dem Wehneltzylinder und einer Lochanode. Im Potentialgefälle zwischen der Glühkathode und der Anode werden die aus der Kathode emittierten Elektronen beschleunigt ($F = e_0 E$). Der Wehneltzylinder ist gegen die Kathode negativ vorgespannt (variabel zwischen 10 V und 100 V), so daß die emittierten Elektronen im sogenannten "cross-over-Bereich" konvergieren. Der cross-over-Bereich ist der eigentliche Gegenstandspunkt, der durch die nachfolgende Elektronenoptik auf der Probe abgebildet wird.

Abb. 4.3: Vereinfachter Aufbau einer Elektronenstrahlmikrosonde

Die Elektronenoptik, die aus elektromagnetischen Linsen besteht, lenkt den Elektronenstrahl ab bzw. fokussiert ihn an einem in gewissen Grenzen beliebigen Punkt. Auf diese Art und Weise wird die Probenoberfläche mit dem gebündelten Elektronenstrahl entlang der x- und y-Achse rasterförmig abgetastet (scanning). Beim Eintritt des Elektronenstrahles in die Probe entstehen neben der Röntgenstrahlung auch Sekundär- und Rückstreuelektronen, die mit einem Detektor gemessen werden. Mit der Signalstärke und der jeweiligen x- und y-Position des Elektronenstrahls lässt sich dann von einem Computer ein Bild der Probenoberfläche berechnen.

Wegen des rasterförmigen Abtastens trifft der Elektronenstrahl nicht immer den Punkt, in dem die Röntgen-Detektorachse und die Probenfläche zusammenkommen. Damit der Strahl auf einen engen Umkreis um die Nullachse beschränkt bleibt wurde das Mikroskop auf eine starke Vergrößerung ($20\mu m \times 20\mu m$) eingestellt. Durch diese Maßnahme bleiben die Messungen reproduzierbar. Der Flächenausschnitt der Probe, der die Röntgenstrahlung emittiert, kann immer wieder gefunden werden damit bei einer Neumessung die geometrischen Verhältnisse gleich bleiben. Das Quadrat von $20\mu m$ sollte nicht kleiner gewählt werden damit eine allfällige kleine Unregelmäßigkeit der Probenoberfläche wie etwa Verunreinigungen oder eine unterschiedliche Oberflächenbeschaffenheit keinen großen Einfluss auf das Messergebnis bewirken.

4.3 Detektor

Ein energiedispersives Detektorsystem, das bei den Messungen verwendet wurde, besteht, wie die Abb. 4.4 zeigt, aus einem Fenster und einem Halbleiterkristall.

Abb. 4.4: Aufbau des Detektorsystems (Fenster und Halbleiterkristall)

Der Detektor ist eine in Sperrichtung vorgespannte Silizium-Diode, die als Ionisationskammer anzusehen ist. Die Röntgenstrahlung wird durch einen ihrer Energie proportionalen elektrischen Impuls nachgewiesen. Das auftreffende Röntgenquant erzeugt in der aktiven Siliziumschicht Elektronen-Loch Paare, die die Signalumwandlung bewirken. Die Anzahl der Elektronen-Loch-Paare ist proportional der Energie des Röntgenquantes. In einem Vielkanalanalysator wird die Energieverteilung analysiert, indem die Elektronen durch eine Hochspannung einer Meßelektronik zugeführt werden, die ihren Impuls dem entsprechendem Energiekanal zuordnet.

4.3.1 Detektoreffizienz

In einer Arbeit von K.F.J. Heinrich et al mit dem Titel "Energy Dispersive X.Ray Spectrometry" ist eine Formel zur Berechnung der Detektoreffizienz e(E) angegeben.

$$e(E) = \exp(-\tau(E)\rho d)_{inaktiv}[1 - \exp(-\tau(E)\rho d)]_{aktiv}$$
(4.11)

- $\tau(E)$ Der Abschwächungskoeffizient in cm².g⁻¹
- p Die Dichte in $g.cm^3$
- d Die Dicke der betrachteten Schicht in cm

Alle Schichten außer Si-aktiv gehören zu dem inaktiven Teil der Formel. Somit ergibt sich

 $\begin{array}{l} e(E) = exp(-\tau_{Polymer}(E)\rho_{Polymer} \ \mathbf{d}_{Polymer}).exp(-\tau_{Al}(E)\rho_{Al}d_{Al}).[0.8+0.2exp(-\tau_{Si-Gitter}(E)\rho_{Si-Gitter}d_$

(4.12)

Der mit dieser Gleichung berechnete energieabhängige Verlauf der Detektoreffizienz ist im folgenden Diagramm dargestellt.

Abb. 4.5: Detektoreffizienz in Abhängigkeit von der Photonenenergie

4.4 Die gemessenen Elemente

Für die vorliegende Arbeit wurden die Messungen an 22 Elementen herangezogen. Um die Gültigkeitsgrenzen der untersuchten theoretischen Modellen zu erkennen, waren die Elemente so ausgewählt, damit sie einen weiten Bereich des Periodensystems abdecken. Für jedes Element gab es jeweils mindestens eine Messung bei 10, 20 und 30 kV Beschleunigungsspannung. Für Ti, Ni, Cu, Ge und Mo lagen auch Messungen bei anderen Beschleunigungsspannungen vor. Tabelle 4.1 zeigt die 22 Elemente, die nach Ordnungszahl angeordnet sind.

Elementname	SYMBOL	ORDNUNGSZAHL Z
Magnesium	Mg	12
Aluminium	Al	13
Silizium	Si	14
Titan	Ti	22
Vanadium	V	_23
Chrom	Cr	24
Mangan	Mn	25
Eisen	Fe	26
Kobalt	Со	27
Nickel	Ni	28
Kupfer	Cu	29
Zink	Zn	30
Germanium	Ge	32
Molybdän	Mo	42
Rhodium	Rh	45
Silber	Ag	47
Zinn	Sn	50
Gadolinium	Gd	64
Erbium	Er	68
Wolfram	W	_74
Gold	Au	79
Wismut	Bi	83

Tabelle 4.1: Die gemessenen Elemente

4.5 Messgeometrie

Bei den Messungen wurde jeweils in der Elektronenstrahlmikrosonde die Oberfläche der zu messenden Probe mit Elektronen beschossen und die Röntgenspektren gemessen. Die Eindringtiefe der Elektronen beträgt 2 μ m. Damit die Probenoberflächen nicht verunreinigt oder mit einer Oxydschicht bedeckt waren, wurden sie mit feinstem Schleifpapier poliert

und danach in das Hochvakuum des Mikroskops gegeben. Die Abbildung 4.6 zeigt die verwendetete Messgeometrie.

Abb. 4.6: Die Messgeometrie

4.6 Messparameter und Messergebnisse

Die gerätespezifischen Größen und die Messparameter waren für die einzelnen Messungen und Elemente zum Teil unterschiedlich. Folgende Messparameter sind für alle Messungen gleich geblieben.

Vakuum	10 ⁻⁵ Torr	
Abnahmewinkel	35°	
Eintrittswinkel der Elektronen	90°	
Amplifier-Time	10 µs	(Parameter der Detektor-Meßelektronik)

Die nachstehende Tabelle beinhaltet die bei einzelnen Messungen unterschiedlichen Messparameter und auch die integrale Zählrate jeder einzelnen Messung.

	1						
	Ord	Beschl.	Messzeit	Cup-	Proben-	Zählrate	Raum-
Element	Zahl	Sp.		strom	strom	ca.	Winkel
		(kV)		_(PA)	<u>(pA)</u>	(cps)	(msr)
1	12	10	1000	1775	1348	5370	2.4726
Mg	12	20	1000	833_	677	5758	2.4726
	12	30	1000	634	535	5803	2.4726
	13	10	1000	1064	760	4449	3.6674
	13	10	300	889	657	4147	3.6674
	13	20	1000	434	344	4725	3.6674
Al	13	20	300	387	307	4335	3.6674
	13	20	300	393	312	4402	3.6674
	13	30	1000	348	285	5178	3.6674
	13	30	300	275	224	4287	3.6674
	14	10	1000	1978	1423	5278	2.4726
Si	14	20	1000	861	614	5422	2.4726
	14	30	1000	560	454	5601	2.4726
	22	5.1	300	6882	3558	4053	3.6674
	22	5.3	300	7159	3775	4431	3.6674
	22	5.5	300	6447	3441	4241	3.6674
	22	5.8	300	5743	3131	4124	3.6674
	22	6.5	300	4718	2597	4064	3.6674
m:	22	8	300	2960	1697	3972	3.6674
11	22	10	300	2052	1271	4174	3.6674
	22	10	300	2117	1272	4418	3.6674
	22	10	300	2259	1344	4649	3.6674
	22	20	300	570	386	4053	3.6674
	22	20	300	579	391	4121	3.6674
	22	30	300	327	230	4285	3.6674
	23	10	300	1915	1104	4079	3.6674
τ7	23	20	300	572	374	4055	3.6674
V	23	20	300	560	366	3974	3.6674
	23	30	300	320	219	4234	3.6674
	24	10	1000	1613	960	3061	3.6674
Cr	24	20	1000	671	444	4354	3.6674
	24	30	1000	444	310	5352	3.6674
	25	10	300	1892	1041	3964	3.6674
Mm	25	20	300	638	404	4127	3.6674
1411.1	25	20	300	651	406	4224	3.6674
	25	30	300	323	211	3923	3.6674
Fe	26	10	1000	1858	1140	3785	3.6674

	26	20	1000	806	537	4901	3.6674
	26	30	1000	556	310	6199	3.6674
	27	10	300	1522	784	3893	3.6674
ĺ	27	20	300	610	365	3924	3.6674
Co	27	20	300	605	369	3908	3.6674
	27	20	300	602	366	3890	3.6674
	27	30	300	365	231	4215	3.6674
	28	9	300	1624	855	4012	3.6674
	28	9	300	1661	879	4107	3.6674
:	28	10	300	1553	842	4308	3.6674
į	28	10	300	1582	859	4356	3.6674
	28	11	300	1373	750	4103	3.6674
	28	12	300	1251	704	4205	3.6674
Ni	_28	14	300	1076	626	4329	3.6674
INT	28	16	300	818	487	3878	3.6674
	28	18	300	741	449	4071	3.6674
	28	20	300	597	368	3825	3.6674
	28	20	300	642	396	4052	3.6674
	28	20	300	645	399	4069	3.6674
	28	20	300	592	362	3780	3.6674
	28	30	300	357	232	3980	3.6674
	29	10	300	1184	637	4239	3.6674
	29	10	1000	1088	564	3632	3.6674
	29	12	300	948	528	4120	3.6674
	29	14	300	827	472	4226	3.6674
	29	16	300	689	403	4042	3.6674
Cu	29	18	300	631	379	4217	3.6674
Cu	29	20	300	543	329	4076	3.6674
	29	20	300	648	398	4883	3.6674
	29	20	300	547	331	4098	3.6674
	29	_20	1000	666	406	4935	3.6674
	29	30	300	336	215	3998	3.6674
 	29	30	1000	422	273	4863	3.6674
	30	10	300	981	510	4108	3.6674
7n	30 30	10 20	300 300	981 496	510 297	4108 4276	3.6674 3.6674
Zn	30 30 30	10 20 20	300 300 300	981 496 518	510 297 309	4108 4276 4468	3.6674 3.6674 3.6674
Zn	30 30 30 30	10 20 20 30	300 300 300 300 300	981 496 518 304	510 297 309 191	4108 4276 4468 4009	3.6674 3.6674 3.6674 3.6674
Zn Ge	30 30 30 30 30 32	10 20 20 30	300 300 300 300 300	981 496 518 304 892	510 297 309 191 456	4108 4276 4468 4009 4034	3.6674 3.6674 3.6674 3.6674 3.6674
Zn Ge	30 30 30 30 32 32	10 20 20 30 10 11	300 300 300 300 300 300	981 496 518 304 892 861	510 297 309 191 456 453	4108 4276 4468 4009 4034 4298	3.6674 3.6674 3.6674 3.6674 3.6674 3.6674

	32	12	300	748	400	4076	3.6674
	32	13	300	713	390	4214	3.6674
	32	13	300	713	390	4214	3.6674
	32	14	300	656	365	4174	3.6674
	32	14	300	656	365	4174	3.6674
	32	16	300	574	327	4192	3.6674
	32	16	300	574	327	4192	3.6674
	32	18	300	506	295	4147	3.6674
	32	18	300	506	295	4147	3.6674
	32	20	300	402	234	3664	3.6674
	32	20	300	428	251	3901	3.6674
	32	20	300	402	234	3664	3.6674
	32	30	300	283	175	3811	3.6674
	42	10	1000	1145	545	4227	3.6674
-	42	10	300	975	418	4006	3.6674
	_ 42	20	1000	586	324	5153	3.6674
	42	20	300	453	. 233	4265	3.6674
	42	21	300	429	226	4264	3.6674
	42	22	300	402	213	4162	3.6674
Mo	42	23	300	381	204	4119	3.6674
140	42	24	300	369	202	4213	3.6674
	42	_ 25	300	361	200	4286	3.6674
	42	26	300	348	193	4267	3.6674
	42	28	300	324	180	4277	3.6674
	42	30	1000	409	238	5326	3.6674
	42	30	300	280	158	3938	3.6674
	42	30	300	281	155	3984	3.6674
	45	10	1000	1313	687	4797	3.6674
Rh	45	20	1000	496	296	4457	3.6674
	45	30	1000	427	257	5672	3.6674
	47	10	1000	1333	601	4085	3.6674
Ag	47	20	1000	652	343	5568	3.6674
	47	30	1000	442	255	5719	3.6674
	50	10	1000	2609	1255	5388	2.4726
Sn	50	20	1000	958	501	5310	2.4726
	50	30	1000	633	352	5620	2.4726
	64	10	1000	2723	1236	5524	2.4726
Gd	64	20	1000	1116	540	5652	2.4726
	64	30	1000	635	323	5554	2.4726
Er	68	10	1000	2436	1018	5448	2.4726

	68	20	1000	1086	510	5858	2.4726
	68	30	1000	635	311	5757	2.4726
	74	10	1000	1139	408	4793	3.6674
W	74	20	1000	492	221	4954	3.6674
	. 74	30	1000	400	191	6185	3.6674
	79	10	1000	1763	670	5123	2.4726
	79	10	300	885	244	4060	3.6674
	79	10	300	887	262	4063	3.6674
711	79	20	1000	861	371	5856	2.4726
Au	79	20	300	379	141	4058	3.6674
	79	20	300	383	139	4093	3.6674
	79	30	1000	501	235	5513	2.4726
	79	30	300	250	101	4200	3.6674
	83	10	1000	1910	746	5062	2.4726
Bi	83	20	1000	717	301	5711	2.4726
	83	30	1000	565	257	5782	2.4726

 Tabelle 4.2: Die Messparameter und Messergebnisse

5 Berechnung des Röntgenröhrenspektrums

Die folgenden zwei Gleichungen aus der Arbeit "X-ray Tube Spectra" [1], die zur Berechnung der kontinuierlichen Spektren und der charakteristischen Linien der Reinelemente sehr gut geeignet sind, werden hier kurz erläutert.

$$dn = \Omega \cdot i \cdot Const \cdot Z \cdot \left(\frac{\underline{\Gamma}_0}{E} - 1\right)^x_{I} \quad \frac{1 - e^{-\tau_{E,J} \cdot 2\overline{\rho z} \sin \varphi/\sin t}}{\tau_{E,J} \cdot 2\overline{\rho z} \sin \varphi/\sin \varepsilon} dE$$
(5.1)

$$N_{ijk} = \Omega \cdot \iota \cdot Const_{jk} \cdot \frac{1}{\mathfrak{Z}_{ij}} \cdot R\omega_{ij} P_{ijk} f(\boldsymbol{\chi}_{ijk})$$
(5.2)

Die Gleichung 5.1 gilt für kontinuierliche und 5.2 für charakteristische Spektren. Bei diesen Gleichungen sind die Faktoren const, x und $Const_{jk}$ nur anhand von gemessenen Spektren zu bestimmen. Die durch diese Gleichungen berechneten Spektren werden entsprechend einer Ausgleichsfunktion an die gemessenen Spektren angepasst. Somit erhält man die Werte dieser Faktoren und die Messergebnisse können dann unter Anwendung dieser Zahlenwerte durch nochmalige Berechnung bestmöglich optimiert und wiedergegeben werden.

5.1 Zählratenberechnung des kontinuierlichen Spektrums

Die Anzahl dn der Röntgenquanten mit einer Quantenenergie im Intervall E bis E+dE, die beim Eindringen eines Elektronenstrahls in die Anode entstehen, wird durch folgende Gleichung berechnet.

$$dn = \Omega \cdot i \cdot \sigma_{K,E} \cdot f(\boldsymbol{\chi}_E) \cdot dE$$
(5.3)

mit
$$\sigma_{K,E} = const \cdot Z \cdot \left(\frac{E_0}{E} - 1\right)^{V}$$
 (5.4)

als Kramersscher Wirkungsquerschnitt

und
$$f(\chi_E) = \frac{-e^{-\tau_{E,L} \cdot 2\overline{\rho z} \sin \varphi / \sin E}}{\tau_{E,L} \cdot 2\overline{\rho z} \sin \varphi / \sin E}$$
 (5.5)

als Absorptionsterm, der die Eigenabsorption der Röntgenstrahlung in der Anode beschreibt. Für χ_{E} gilt die folgende Beziehung.

- $\tau_{\rm EJ}$ Photoabsorptionskoeffizient in cm²g⁻¹
- (*p* Einfallswinkel der Elektronen
- e Austrittswinkel der Strahlung

Die in den Gleichungen 5.3-5.5 vorkommenden Größen werden wie folgt definiert.

£2 <u>Raumwinkel der Messung in Steradiant (sr)</u>

Die Emission der Röntgenstrahlung ist räumlich gleichverteilt und kann nicht zur Gänze vom Detektor erfasst werden. Ein kleiner Anteil der emittierten Röntgenquanten gelangt in den Detektor. Um aus diesem Anteil auf die Anzahl aller im ganzen Raum verteilten Röntgenquanten zu schließen, wird Ω als Raumwinkel der Messung in die Gleichung eingeführt.

i <u>Anoden-Strom in mA</u>

Der auftreffende Elektronenstrahl verursacht in der Anode einen Anregungsstrom, der in Analogie zur Röntgenröhre als Anoden-Strom bezeichnet wird.

const Proportionalitätsfaktor in sr⁻¹ mA⁻¹ keV⁻¹ s⁻¹

Der Zahlenwert des Proportionalitätsfaktors wird experimentell bestimmt und besitzt nach den bisherigen Überlegungen den Wert

$$const = 1.35 \ 10^9 \, \text{sr}^{-1} \, \text{mA}^{-1} \, \text{keV}^{-1} \, \text{s}^{-1}.$$
(5.7)

Z Ordnungszahl des Anodenmaterials

*E*₀ <u>Die maximale Energie der Elektronen in keV</u>

 E_0 stellt die maximale Energie der in der Röntgenröhre durch Röhrenspannung U_0 beschleunigten Elektronen dar.

$$E_0 = e \ U_0 \tag{5.8}$$

E <u>Die jeweilige Energie der Röntgenquanten in keV</u>

x <u>Ein dimensionsloser Exponent</u>

Zur besseren Anpassung der experimentellen an die theoretischen Daten wird der Exponent x eingeführt. Nach den bisherigen Untersuchungen kann x wie folgt beschrieben werden.

$$x = 1.109 - 0.00435Z + 0.00175E_0 \tag{5.9}$$

In der Gleichung 5.5 steht der Ausdruck \overline{pz} für die mittlere Eindringtiefe der Elektronen in die Anode und wurde von Love and Scott [6] durch Verwendung der Monte Carlo-Methode für die Simulation der Wechselwirkung von Elektron und Festkörper hergeleitet.

$$\overline{pz} = \rho z_m \frac{0.49269 - 1.0987\eta + 0}{0.70256 - 1.09865\eta + 1.0046\eta^2 + \ln U_0} \ln U_0$$
(5.10)

Dabei ist

$$\rho z_m = \frac{A}{Z} \left(0.787 \cdot 10^{-5} \sqrt{J} E_0^{3/2} + 0.735 \cdot 10^{-6} \cdot E_0^2 \right)$$
(5.11)

die maximale Eindringtiefe der Elektronen mit A als relative Atommasse und

$$J = 0.0135 Z$$
 (5.12)

als Ionisationspotential in keV.

In der Gleichung 5.10 steht

1

$$\eta = E_0^m \cdot e^c \tag{5.13}$$

 $\mathbf{m} = 0.1382 - 0.9211 \mathbf{Z}^{-1/2}$ (5.14)

$$e^{\circ} = 0.1904 - 0.2236 \ln Z + 0.1292 (\ln Z)^{\circ} - 0.0149 (\ln Z)^{\circ}$$
 (5.15)

als Rückstreufaktor und

$$U_0 = \frac{E_0}{E} \tag{5.16}$$

als Überspannungsverhältnis.

5.1.1 Die Ermittlung der Parameter const und x

Die Messungen an den 22 Elementen wurden herangezogen um die Parameter *const* und *x* in der Gleichung 5.4 bestmöglich zu ermitteln. Die Elemente waren so ausgewählt, dass sie einen weiten Bereich des Periodensystems abdecken, um die Grenzen der Gültigkeit dieses theoretischen Algorithmus zu erkennen. Für jedes Element gab es Messungen mit verschiedenen Beschleunigungsspannungen.

Es besteht die Möglichkeit durch verschiedene Ausgleichsalgorithmen das theoretisch berechnete Spektrum an das gemessene anzupassen. Hier wurde eine Ausgleichung mit der absoluten Abweichung vorgenommen. Das Verfahren basiert auf der Minimierung der Summe der absoluten Fehlerquadrate und wurde hier durch ein **QB-Programm** realisiert.

$$\sum_{E} v_{E}^{2} = \sum_{E} \left(dn_{E,gem} - dn_{E,theor} \right)^{2} \to \min$$
(5.17)

Im Programm wird zuerst das Spektrum mit $const = 1 \text{ sr}^{-1} \text{ mA}^{-1} \text{ keV}^{-1} \text{ s}^{-1}$ und x = 0.5 berechnet und dann gemäß der Ausgleichsfunktion an die Messwerte angepasst. Die Anpassung erfolgt durch die Minimierung (Null setzen) der partiellen Ableitungen der Ausgleichsfunktion und daraus die Neuberechnung der Parameter *const* und *x*.

$$\frac{\partial \left(\sum_{E} v_{E}^{2}\right)}{\partial (const)} = 2\sum_{E} \left(dn_{E,gem} - dn_{E,theor} \right) dn_{E,theor} = 0$$
(5.18)

$$const_{neu} = const_{alt} \frac{\sum_{E} dn_{E,gem} dn_{E,theor}}{\sum_{E} \left(\overline{dn_{E,theor}} \right)^{T}}$$
(5.19)

$$\frac{\partial \left(\sum_{E} v_{E}^{2}\right)}{\partial x} = 2\sum_{E} \left(dn_{E,gem} - dn_{E,sheor} \right) dn_{E,sheor} \log \left(\frac{E_{0}}{E} - 1 \right) = 0$$
(5.20)

So wird das best mögliche *const* analytisch im ersten Schritt berechnet. Da die Gleichung für x nicht analytisch lösbar ist, wird bei festgehaltenem neuen *const* der Zahlenwert von x um 0.05 erhöht. Mit diesen neuen Werten von *const* und x wird wieder ein neues Spektrum berechnet, durch das Ausgleichsverfahren wieder an die Messwerte angepasst und der Vorgang beginnt wieder von vorne.

So lange die Summe der Fehlerquadrate abnimmt läuft der Iterationsschritt $x_{neu} = x_{alt} + 0.05$ weiter. Bei der ersten Zunahme dieser Summe gilt als Iterationsschritt $x_{neu} = x_{alt} - 0.05 / 3$ und so bald die Summe wieder steigt gilt $x_{neu} = x_{alt} + 0.05 / 9$. Bei einer nochmaligen Abnahme gilt $x_{neu} = x_{alt} - 0.05 / 27$ und bei nochmaliger Zunahme gilt $x_{neu} = x_{alt} + 0.05 / 81$. Die letzten ermittelten Zahlenwerte der Konstanten vor einer abermaligen Znahme der Summe gelten als endgültige Werte. Für die auf diese Weise ermittelten Konstanten liefert die Ausgleichsfunktion die beste erreichbare Übereinstimmung mit den Messwerten.

Zur Auswertung der gemessenen Spektren mussten die charakteristischen Linien, die dem kontinuierlichen Spektren überlagert waren, herausgeschnitten werden. Die gemessenen Spektren beinhalteten auch Linien, die von Probenverunreinigungen oder vom Detektionssystem herrührten, die ebenfalls herausgeschnitten werden mussten. Solche Energiebereiche, die in die Auswertung nicht einzubeziehen waren, wurden durch Eingabe der unteren und oberen Grenzen im Programm eliminiert. Somit wurden die gemessenen Spektren erst den Erfordernissen der Auswertung angepasst.

Als Beispiel wird für das Element Cu die Vorgehensweise durch die nachstehenden Tabellen und Diagramme veranschaulicht. Die Zahlenwerte von *x* und *const* werden am Schluß gemeinsam mit einigen anderen Ergebnissen und Messparametern in eine Ergebnis-Datei geschrieben und abgespeichert.

Für jedes gemessene Spektrum wurde eine Datei angelegt, die beispielsweise für Cu bei 30 kV Beschleunigungsspannung wie folgt aussieht.

336.484 215.049 3.6674 300 35 90 -0.010 -0.000 0.010 0.020 0.030 0.040 0.050	31 16 11 13 8 16 26	
, 	• • • • • • • • •	
29.930 29.940 29.950 29.960 29.970 29.980	0 0 0 0 0	

Tabelle 5.1: Struktur einer Spektrendatei (Cu30.dat)

Ab der Zeile sieben ist die erste Spalte die Energie in keV und die zweite die Zählrate (counts). Die Zeilen eins bis sechs stellen nach der Reihenfolge die Zahlenwerte der Parameter Cup-Strom (pA), Proben-Strom (pA), Raumwinkel (msr), Messdauer (s), Beobachtungswinkel (°) und Eintrittswinkel (°) dar.

Diese Dateien dienen als Eingabe-Datei und werden einzeln vom Programm eingelesen. Im ersten Schritt wird das gesamte gemessene Spektrum dargestellt. Die Abbildung 5.1 zeigt das Beispiel für Cu bei 30 kV Beschleunigungsspannung.

Abb. 5.1: Das vom Programm dargestellte Spektrum anhand der Messwerte für Cu bei 30 W

Im nächsten Schritt werden die auszuklammernden Bereiche angefordert. Für Cu sind die Bereiche in der Tabelle 5.2 angegeben.

Element: Cu							
Z = 29							
Beschleunigungsspannung: 30 keV							
Ausgeklammerte Bereiche: 4							
Untere Grenze Obere Grenze							
0.0	2.0						
6.0	6.7						
7.4	9.5						
15.5	16.5						

Tabelle 5.2: Die auszuklammernden Bereiche für Cu bei 30 kV Beschleunigungsspannung

Die Bereiche werden nach der Eingabe zum Vergleich auf das gemessene Spektrum gelegt und dargestellt (Abb. 5.2).

Abb. 5.2: Darstellung der ausgeklammerten Bereiche

Nach der Bestätigung der Richtigkeit der Bereiche fängt das Programm an, die endgültigen Zahlenwerte für *const* und x nach dem bereits beschriebenem Ausgleichsverfahren zuerst ohne und dann mit der Berücksichtigung der Rückstreuung iterativ zu ermitteln. Mit den neuen Zahlenwerten für die Konstanten und den eingelesenen Messparametern aus der

Datei Cu30.dat werden zwei Spektren berechnet und auf das gemessene Spektrum gelegt (Abb. 5.3).

Abb.5.3: Die berechneten Spektren ohne und mit Berücksichtigung der Rückstreuung für Cu

Es ist aus der Abb. 5.3 ersichtlich, daß die mit Hilfe der ermittelten Zahlenwerte für *const* und *x* berechneten kontinuierlichen Spektren sehr gut an das gemessene angepasst sind. So ermöglicht das Ausgleichsverfahren mit den ermittelten Zahlenwerten für die Konstanten die Messungen beinahe perfekt durch berechnete Spektren zu simulieren.

Im nächsten Schritt wird der Bereich der charakteristischen K-Linie eingegeben, der bei Cu zwischen 7 und 10 keV gewählt wird. Nachdem durch das Programm der vom kontinuierlichen Spektrum verursachte Untergrund eliminiert wird, wird die charakteristische K-Linie (K α und K β) dargestellt (Abb. 5.4).

Es ist zu beachten, dass die im Vergleich mit der Abb. 5.1 gestiegene Signalhöhe der K-Linie dadurch zustande kommt, daß die Detektoreffizienz nicht berücksichtigt wurde.

Abb.5.4: Das charakteristische Spektrum der K-Linie für Cu

Nach der Bestätigung der Richtigkeit des charakteristischen K-Bereiches fangt das Programm an die endgültigen Zahlenwerte für $Const_{KL}$ (K α) und $Const_{KM}$ (K β) anhand des Ausgleichsverfahrens unter Berücksichtigung der Rückstreuung iterativ zu ermitteln. Mit den neuen Zahlenwerten für die Konstanten und den eingelesenen Messparametern aus der Datei Cu30.dat wird das charakteristische Spektrum der K-Linie berechnet und auf das gemessene charakteristische Spektrum gelegt (Abb. 5.5).

Abb.5.5: Das berechnete und gemessene charakteristische Spektrum der K-Linien für Cu

Es gibt bei dem charakteristischen Spektrum der K-Linie auch eine sehr gute Übereinstimmung des mit den ermittelten Zahlenwerten Const-K berechneten Spektrums mit dem gemessenem Spektrum.

Alle Ergebnisse, Eingaben und die ermittelten Zahlenwerte der Konstanten wurden jeweils in einer eigenen Datei abgespeichert. Für das Beispiel Cu bei 30 kV Beschleunigungsspannung lautet der Datei-Name CU30.RES. Diese Datei ist in der nachstehenden Tabelle zu sehen. cu Beschleunigungsspannung 30 i - cup 336.4844 i-Probe 215.0493 Raumwinkel* 10^3 3.6674 Messdauer 300 Beobachtungswinkel 35 Eintrittswinkel 90 Integral 1199339 Anzahl der ausgeklammerten Bereiche und Bereichsgrenzen 4 0 2 6 6.7 7.4 9.5 15.5 16.5 ohne Rückstreuung const-w 1.062878 Х 1.125926 svi^2 62533.54 mit Rückstreuung const-w 1.246571 Х 1.140741 svi^2 58824.63

charakteristischer K-Bereich und Grenzen 7 10 shift 5.000002E-03 Quantenenergie K-alpha 8.048625 Halbwertsbreite K-alpha .16 Quantenenergie K-beta 8.908586 Halbwertsbreite K-beta .1770001 Const-alpha 5.298736 Const-beta 5.095493 Überspannungsverhältnis 3.341129 Ordnungszahl 29

Tabelle 5.3: Die Struktur der Ergebnis-Datei CU30.RES für Cu bei 30 kV Beschleunigungsspannung

5.1.2 Die Optimierung der Zahlenwerte von const(Z, EO) und x(Z, EO) durch Anpassung an eine Fläche

Wir gehen von den Flächengleichungen

$$const(Z, E_0) = a + bZ + cE_0 + dZ^2 + eE_0^2 + fZE_0$$
(5.21)

$$\mathbf{x}(Z, E_0) = a + bZ + cE_0 + dZ^2 + eE_0^{(1)} + fZE_0$$
(5.22)

aus und berechnen nach einer Ausgleichsfunktion (Minimierung der Fehlerquadrate) unter Verwendung der jeweiligen gemessenen Zahlenwerte von const(Z, EO) und x(Z, EO) die Variablen a, b, c, d, e und f. Dabei wird eine Indizesschreibweise benützt, in der i für die Anzahl der vorhandenen Zahlenwerte (Messungen) steht.

$$const_i = a + bZ_i + cE_{0,i} + dZ_i^2 + eE_{0,i}^2 + fZ_iE_{0,i}$$
(5.23)

$$\mathbf{x}_{,.} = a + bZ_i + cE_{0,i} + dZ_i^2 + eE_{0,i}^2 + fZ_iE_{0,i}$$
(5.24)

Der absolute Fehler ist mit $v_i = \text{const}_{i,gem} - \text{const}_{i,theor}$ bzw. $v_i = x_{i,gem} - x_{i,theor}$ und die Ausgleichsfunktion nach absolutem Fehler, mit $\sum_{i=1}^{n} v_i^2 \rightarrow \text{min gegeben}$.

$$\sum_{i}^{n} v_{i}^{2} = \sum_{i}^{n} (\text{const}_{i} - a - bZ_{i} - cE_{0,i} - dZ_{i}^{2} - eE_{0,i}^{2} - fZ_{i}E_{0,i})^{2} \to \min$$
(5.25)

$$\sum_{i}^{n} v_{i}^{2} = \sum_{i}^{n} (x_{i} - a - \text{fc}Z_{i} - cE_{0,i} - dZ_{i}^{2} - eE_{0,i}^{2} - fZ_{i}E_{0,i})^{2} \rightarrow \min$$
(5.26)

Es wird hier fur **const**_i hergeleitet, wie die Variablen durch die Ausgleichsfunktion zu berechnen sind. Analog dazu können auch die Variablen für Xj bestimmt werden.

Die partielle Ableitung nach a ergibt sich zu

$$\frac{\partial \sum_{i}^{n} v_{i}^{2}}{\partial a^{r}} = -2 \sum_{i}^{n} (\text{const}_{i} - a - bZ_{i} - cE_{0,i} - dZ_{i}^{2} - eE_{0,i}^{2} - fZ_{i}E_{0,i}) = 0$$
(5.27)

$$\sum_{i}^{n} \text{const}_{i} -na - b \sum_{i}^{m} Z_{i} - c \sum_{j}^{n} E_{0,i} - d \sum_{i}^{n} Z_{i}^{2} - e \sum_{i}^{n} Z_{0,i}^{2} - f \sum_{i}^{n} Z_{i} E_{0,i} = 0$$
(5.28)

Für die weiteren partiellen Ableitungen nach b, c, d, e und f ist lediglich die obige Gleichung mit $Z_i, E_{0,i}, Z, E_{0,i}^2$ bzw. $Z_i E_{0,i}$ zu multiplizieren. Nach einem einfachen Umformen erhält man dann das folgende Gleichungssystem.

$$na + \sum_{i}^{n} Z_{i} \cdot b + \sum_{i}^{n} E_{0,i} \cdot c + \sum_{i}^{n} Z_{i}^{2} \cdot d + \sum_{i}^{n} E_{0,i}^{2} \cdot e + \sum_{i}^{n} Z_{i}E_{0,i} \cdot f = \sum_{i}^{n} \text{const}_{i}$$

$$\sum_{i}^{n} Z_{i} \cdot a + \sum_{i}^{n} Z_{i}^{2} \cdot b + \sum_{i}^{n} Z_{i}E_{0,i} \cdot c + \sum_{i}^{n} Z_{i}^{3} \cdot d + \sum_{i}^{n} Z_{i}E_{0,i}^{2} \cdot e + \sum_{i}^{n} Z_{i}^{2}E_{0,i} \cdot f = \sum_{i}^{n} \text{const}_{i}Z_{i}$$

$$\sum_{i}^{n} E_{0,i} \cdot a + \sum_{i}^{n} Z_{i}E_{0,i} \cdot b + \sum_{i}^{n} E_{0,i}^{2} \cdot c + \sum_{i}^{n} Z_{i}^{2}E_{0,i} \cdot d + \sum_{i}^{n} E_{0,i}^{3} \cdot e + \sum_{i}^{n} Z_{i}E_{0,i}^{2} \cdot f = \sum_{i}^{n} \text{const}_{i}E_{0,i}$$

$$\sum_{i}^{n} Z_{i}^{2} \cdot a + \sum_{i}^{n} Z_{i}^{3} \cdot b + \sum_{i}^{n} Z_{i}^{2}E_{0,i} \cdot c + \sum_{i}^{n} Z_{i}^{4} \cdot d + \sum_{i}^{n} Z_{i}^{2}E_{0,i}^{2} \cdot e + \sum_{i}^{n} Z_{i}^{3}E_{0,i} \cdot f = \sum_{i}^{n} \text{const}_{i}Z_{i}^{2}$$

$$\prod_{i}^{n} Z_{i}E_{0,i} \cdot a + \sum_{i}^{n} Z_{i}E_{0,i}^{2} \cdot b + \sum_{i}^{n} E_{0,i}^{3} \cdot c + \sum_{i}^{n} Z_{i}^{2}E_{0,i}^{2} \cdot d + \sum_{i}^{n} E_{0,i}^{4} \cdot e + \sum_{i}^{n} Z_{i}E_{0,i}^{3} \cdot f = \sum_{i}^{n} \operatorname{const}_{i}E_{0,i}^{2}$$

$$\sum_{i}^{n} Z_{i}E_{0,i} \cdot a + \sum_{i}^{n} Z_{i}^{2}E_{0,i} \cdot b + \sum_{i}^{n} Z_{i}E_{0,i}^{2} \cdot c + \sum_{i}^{n} Z_{i}^{3}E_{0,i} \cdot d + \sum_{i}^{n} Z_{i}E_{0,i}^{3} \cdot e + \sum_{i}^{n} Z_{i}^{2}E_{0,i}^{2} \cdot f = \sum_{i}^{n} \operatorname{const}_{i}Z_{i}E_{0,i}$$

$$(5.29)-(5.34)$$

Mit den Abkürzungen

$$\begin{aligned} A_{11} &= n \,, \qquad A_{12} - \sum_{i}^{n} Z_{i} \,, \qquad A_{13} = \sum_{i}^{n} E_{0,i} \,, \qquad A_{14} = \sum_{i}^{n} Z_{i}^{2} \,, \qquad A_{15} = \sum_{i}^{n} E_{0,i}^{2} \,, \qquad A_{16} = \sum_{i}^{n} Z_{i}E_{0,i} \,, \\ A_{17} &= \sum_{i}^{n} \text{const}_{i} \quad A_{21} = \sum_{i}^{n} Z_{i} \,, \qquad A_{22} = \sum_{i}^{n} Z_{i}^{2} \,, \qquad A_{23} = \sum_{i}^{n} Z_{i}E_{0,i} \,, \qquad A_{24} = \sum_{i}^{n} Z_{i}^{3} \,, \qquad A_{25} = \sum_{i}^{n} Z_{i}E_{0,i}^{2} \,, \\ A_{26} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i} \,, \qquad A_{27} = \sum_{i}^{n} \text{const}_{i} Z_{i} \,, \qquad A_{31} = \sum_{i}^{n} E_{0,i} \,, \qquad A_{32} = \sum_{i}^{n} Z_{i}E_{0,i} \,, \qquad A_{33} = \sum_{i}^{n} E_{0,i}^{2} \,, \\ A_{34} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i} \,, \qquad A_{35} = \sum_{i}^{n} E_{0,i}^{3} \,, \qquad A_{36} = \sum_{i}^{n} Z_{i}E_{0,i}^{2} \,, \qquad A_{37} = \sum_{i}^{n} \text{const}_{i} E_{0,i} \,, \qquad A_{41} = \sum_{i}^{n} Z_{i}^{2} \,, \\ A_{42} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i} \,, \qquad A_{35} = \sum_{i}^{n} Z_{i}^{2} F_{0,i} \,, \qquad A_{44} = \sum_{i}^{n} Z_{i}^{4} \,, \qquad A_{45} = \sum_{i}^{n} Z_{i}^{2} F_{0,i}^{2} \,, \qquad A_{46} = \sum_{i}^{n} Z_{i}^{3} E_{0,i} \,, \\ A_{47} &= \sum_{i}^{n} \text{const}_{i} Z_{i}^{2} \,, \qquad A_{51} = \sum_{i}^{n} E_{0,i}^{2} \,, \qquad A_{52} = \sum_{i}^{n} Z_{i} E_{0,i}^{2} \,, \qquad A_{53} = \sum_{i}^{n} Z_{i}^{2} E_{0,i} \,, \qquad A_{62} = \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{2} \,, \\ A_{55} &= \sum_{i}^{n} Z_{i} E_{0,i}^{2} \,, \qquad A_{56} = \sum_{i}^{n} Z_{i} E_{0,i}^{3} \,, \qquad A_{57} = \sum_{i}^{n} \text{const}_{i} E_{0,i}^{2} \,, \qquad A_{61} = \sum_{i}^{n} Z_{i} E_{0,i}^{2} \,, \qquad A_{62} = \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{2} \,, \\ A_{63} &= \sum_{i}^{n} Z_{i} E_{0,i}^{2} \,, \qquad A_{64} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{3} \,, \qquad A_{65} = \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{2} \,, \qquad A_{66} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{2} \,, \qquad A_{67} &= \sum_{i}^{n} \text{const}_{i} Z_{i}^{2} E_{0,i}^{2} \,, \qquad A_{67} &= \sum_{i}^{n} \text{const}_{i} Z_{i}^{2} E_{0,i}^{2} \,, \qquad A_{67} &= \sum_{i}^{n} \text{const}_{i} Z_{i}^{2} E_{0,i}^{2} \,, \\ A_{63} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{2} \,, \qquad A_{65} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{3} \,, \qquad A_{66} &= \sum_{i}^{n} Z_{i}^{2} E_{0,i}^{2} \,, \qquad A_{67} &= \sum_{i}^{n} \text{const}_{i} Z_{i}^{2} E_{0,i}^{2} \,, \end{aligned}$$

ergibt sich das folgende Gleichungssystem

 $\begin{array}{l} A_{11}.a + A_{12}.b + A_{13}.c + A_{14}.d + A_{15}.e + A_{16}.f = An \\ A_{21}.a + A_{22}.b + A_{23}.C + A_{24}.d + A_{25}.e + A_{26}.f = A_{27} \\ A_{31}.a + A_{32}.b + A_{33}.c + A_{34}.d + A_{35}.e + A_{36}.f = A_{37} \\ A_{41}.a + A_{42}.b + A_{43}.c + A_{44}.d + A_{45}.e + A_{46}.f = A_{47} \\ A_{51}.a + A_{52}.b + A_{53}.c + A_{54}.d + A_{55}.e + A_{56}.f = A_{57} \\ A_{61}.a + A_{62}.b + A_{63}.c + A_{64}.d + A_{65}.e + A_{66}.f = A_{67} \end{array}$ (5.35a, b,c d, e, f)

von 6 linear voneinander unabhängigen inhomogenen Gleichungen mit 6 Variablen, das nach einem Eliminationsverfahren (Gauß-Algorithmus) in das folgende äquivalente Gleichungssystem übergeführt wird.

$$\begin{array}{l} \textbf{B_{11.a} + B_{12.b} + B_{13.c} + B_{14.d} + B_{15.e} + B_{16.f} = B_{17} \\ B_{22.b} + B_{23.c} + B_{24.d} + B_{25.e} + B_{26.f} = B_{27} \\ B_{33.c} + B_{34.d} + B_{35.e} + B_{36.f} = B_{37} \\ B_{44.d} + B_{45.e} + B_{46.f} = B_{47} \\ B_{55.e} + B_{56.f} = B_{57} \\ B_{66.f} = B_{67} \end{array} \tag{5.36a, b, c, d, e, f}$$

Die Variablen lassen sich folgendermaßen berechnen.

 $\begin{array}{l} f & -B_{67} / B_{66} \\ e & = (B_{57} - B_{56}.f) / B_{55} \\ d & = (B_{47} - B_{45}.e - B_{46}.f) / B_{44} \\ c & = (B_{37} - B_{34}.d - B_{35}.e - B_{36}.f) / B_{33} \\ b & = (B_{27} - B_{23}.c - B_{24}.d - B_{25}.e - B_{26}.f) / B_{22} \\ a & = (B_{17} - B_{12}.b - B_{13}.c - B_{14}.d - B_{15}.e - B_{16}.f) / B_{11} \end{array}$ (5.37a, b, c d, e, f)

Durch Einsetzen dieser Variablen und der Zahlenwerte für Z_i und $E_{0,i}$ in die jeweilige Flächengleichung erhält man die optimierten Werte von const_i bzw. x_i .

5.1.2.1 Die Zahlenwerte

Die nachstehende Tabelle enthält die durch Messungen gewonnenen Zahlenwerte von $const_i$ und x_i (i = 1,2,3,...,133), jeweils mit und ohne Berücksichtigung der Rückstreuung.

Element	Zi	E _{0,i}	const _{i, mit}	const _{i, ohne}	X _{i,mit}	X _{i, ohne}
	12	10	1.255996	1.170521	1.146296	1.137037
Mg	. 12	20	1.043858	0.980941	1.190741	1.185185
	12	30	0.967857	0.918292	1.190741	1.187037
Al	13	10	1.242371	1.152350	1.125926	1.112963
	13	10	1.344265	1.246843	1.135185	1.122222
	13	20	1.059453	0.990480	1.192593	1.185185
	13	20	1.108911	1.036730	1.174074	1.166667
	13	20	1.113152	1.040704	1.168518	1.161111

I	13	30	0.950639	0.897675	1.200000	1.194444
	_13	30	0.997342	0.941831	1.192593	1.187037
1	14	10	1.322134	1.218923	1.077778	1.062963
Si	14	20	1.028774	0.957014	1.133333	1.124074
	14	30	1.036959	0.974566	1.146296	1.138889
	22	5.1	1.533254	1.335376	1.109259	1 .085185
	22	5.3	1.525969	1 .329739	1.105556	l .081482
	22	5.5	1.513221	1.319343	1.112963	1.088889
	22	5.8	1.510752	1.315942	1.112963	l .090741
	22	6.5	1.490744	1.295669	1.109259	1 .090741
тi	22	8	1.515548	1 .315326	1.107407	1.092593
	22	10	1.513986	1.315479	1.105556	1.092593
	22	10	1.590541	1.385603	1.074074	1.059259
	22	10	1.424356	1.240330	1.116667	l .101852
	22	20	1.247650	1.096405	1.166667	l .157407
	22	_20	1.270241	1.120405	1.155555	1.144444
	22	30	1.157627	1.032663	1.190741	l .181481
	23	10	1.502133	1.291443	1.116667	l .105556
v	_23	20	1.232070	1.074112	1.188889	1.179630
	23	20	1.174712	1.024048	1.222222	1.212963
	23	30	1.165955	1.031836	1.194444	1.185185
	24	10	1.364982	1.179486	1.098148	1.074074
Cr	24	20	1.269580	1.107471	1.131482	1.116667
	24	30	1.236107	1.089070	1.131482	1.120370
	25	10	1.465798	1.244813	1.133333	1.120370
Mn	25	20	1.225482	1.051381	l .188889	1.179630
	25	20	1.233955	1.062236	1 .183333	1.172222
	25	30	1.181021	1.028702	I .183333	1.174074
	26	10	1.342547	1.145087	1.112963	1.087037
Fe	26	20	1.243780	1.070245	l .138889	1.122222
	26	30	1.210564	1.056931	1.133333	1.118518
i	27	10	1.537740	1.304755	1.087037	1.059259
	27	20	1.347085	1.153544	1.120370	1.101852
Co	27	20	1.335326	1.140243	1.127778	1.111111
	27	20	1.350105	1.156133	1.122222	1.103704
	27	30	1.292074	1.115202	1.127778	1.114815
Ni	28	9	1.534662	1.296546	1.079630	1.046296
	28	9	1.548319	1.308083	1.072222	1.038889
	28	10	1.532693	1.293624	1.075926	1.046296
	_ 28	10	1.503455	1.270933	1.090741	1.059259

55

.

	28	11	1.453854	1.227391	1.087037	1.059259
	28	12	1.463575	1.233365	1.092593	1.068519
	28	14	1.425940	1.206401	1.096296	1.072222
	28	16	1.399997	1.186618	1.098148	1.075926
	28	18	1.369405	1.162414	1.105556	1.085185
	28	20	1.382563	1.174938	1.103704	1.085185
	28	20	1.343415	1.141647	1.112963	1.094445
	28	20	1.344578	1.145795	1.111111	1.090741
	28	20	1.354630	1.151187	1.112963	1.094445
	28	30	1.299185	1.116487	1.124074	1.109259
	29	10	1.600048	1.346140	1.033333	1.000000
	29	10	1.391559	1.170139	1.094445	1.061111
	29	12	1.472509	1.236930	1.096296	1.068519
	29	14	1.429596	1.200674	1.105556	1.081482
	29	16	1.392510	1.171380	1.109259	1.087037
	29	18	1.362487	1.147649	1.118518	1.098148
Cu	29	20	1.340104	1.130014	1.124074	1.105556
	29	20	1.358317	1.145371	1.118518	1.100000
	29	20	1.331091	1.125448	1.125926	1.105556
	29	20	1.266919	1.065367	1.146296	1.129630
	29	30	1.246571	1.062878	1.140741	1.125926
	29	30	1.209852	1.031397	1.137037	1.122222
	30	10	1.527394	1.271494	1.125926	1.098148
70	30	20	1.309833	1.092119	1.162963	1.148148
<u>-777</u>	30	20	1.312688	1.097719	1.161111	1.144444
	30	30	1.291301	1.090198	1.148148	1.135185
Ge	32	10	1.581774	1.307356	1.081482	1.044445
	32	11	1.523698	1.262115	1.103704	1.066667
	32	12	1.482733	1.226788	1.116667	1.083333
	32	12	1.381499	1.168648	0.935185	0.911111
	32	13	1.439209	1.191035	1.133333	1.101852
	32	13	1.458162	1.230782	0.992593	0.968519
	32	14	1.411465	1.165721	1.137037	1.109259
	32	14	1.461858	1.229273	1.007408	0.979630
	32	16	1 .381772	1.140327	1.138889	1.114845
	32	16	1.486187	1.244308	1.046292	1.009259
	32	18	1.346420	1.109704	1.144444	1.124074
	32	18	1.472819	1.233504	1.081482	1.038889
	32	20	1.346810	1.110883	1.146296	1.127778
	32	20	1.311261	1.081541	1.159259	1.140741

.

	32	20	1 .507970	1.266087	1.185185	1.140741
	32	30	1.271256	1.062873	1.157407	1.140741
	42	10	1 .520675	1.194675	0.968519	0.909259
ĺ	42	10	1 .663234	1.307269	0.979630	0.918519
	42	20	1 .514377	1.203359	1.050000	1.003704
	42	20	l .426791	1.133744	1.050000	1.003704
	42	21	1.506528	1.197330	1.057407	1.012963
ľ	42	22	1.498640	1.191161	1.057407	1.014815
Mo	42	23	1.493017	1.186581	1.057407	1.016667
1010	42	24	1.501709	1.193241	1.061111	1.022222
	42	25	1.489565	1.183236	1.064815	1.027778
	42	26	1.482944	1.179945	1.062963	1.025926
1	42	28	1.478685	1.175422	1.066667	1.033333
	42	30	1.473828	1.172689	1.066667	1.035185
	42	30	1.504359	1.197092	1.066667	1.035185
	42	30	1.380160	1.098112	1.055556	1.024074
	45	10	1.547041	1.196625	0.953704	0.890741
Rh	45	20	1.461955	1.148320	1.033333	0.979630
	45	30	1.447918	1.142673	1.027778	0.987037
	47	10	1.389062	1.067279	0.927778	0.862963
Ag	47	20	1.445845	1.125902	1.011111	0.950000
	47	30	1.454213	1.142252	0.998148	0.950000
1	50	10	1.462573	1.114622	0.868519	0.816667
Sn	50	20	1.460332	1.124803	0.987037	0.916667
	50	30	1.549822	1.207911	0.953704	0.894445
	64	10	1.397357	0.992912	1.109259	1.027778
Gd	64	20	1.420287	1.029799	1.059259	0.992593
	64	30	1.506197	1.102161	1.050000	0.996296
	68	10	1.464552	1.036205	1.100000	1.000000
Er	68	20	1.453705	1.041285	1.079630	1.003704
:	68	30	1.567785	1.139291	1.048148	0.985185
	74	10	1.477289	1.035177	1.003704	0.881482
W	74	20	1.470287	1.021153	1.044445	0.966667
	74	30	1.548992	1.115598	1.005556	0.925926
Au	79	10	1.532660	1.059767	0.948148	0.822222
	79	10	1.610927	1.114240	0.950000	0.822222
	79	10	1.610442	1.113909	0.957408	0.829630
	79	20	1.513588	1.037717	0.998148	0.911111
1	79	20	1.561059	1.068148	1.022222	0.937037
l	79	20	1.559696	1.069394	1.016667	0.929630

.

.

-	79	30	1.637958	1.175364	0.975926	0.881482
	79	30	1.559995	1.114726	1.033333	0.942593
	83	10	1.441975	0.995642	0.916667	0.792593
Bi	83	20	1.743293	1.197999	1.031482	0.924074
	83	30	1.575613	1.117151	0.944445	0.838889

 Tabelle 5.4: Gemessene Zahlenwerte von const_i und x_ijeweils mit und ohne Berücksichtigung der Rückstreuung

Die jeweils 133 Zahlenwerte von $const_{i,mit}$, $const_{i,ohne}$, $x_{i,mit}$ und $x_{i,ohne}$ wurden gemeinsam mit den Zahlenwerten von $E_{0,i}$ und Zj herangezogen um die Variablen a, b, c, d, e und f des jeweiligen Gleichungssystems A_{ij} (i = 1,2, ..., 6; j = 1,2, ..., 7) zu bestimmen. Die nachstehende Tabelle zeigt die durch ein Programm errechneten Zahlenwerte der Variablen.

Variablen	const _{i,mit}	const _{i,ohne}	X _{i,mit}	Xi,ohne
а	1.491755E+00	1.415663E+00	1.091000E+00	1.087580E+00
b	5.260791E-03	-5.222491E-04	-2.765326E-03	-4.299615E-03
с	-2.366738E-02	-2.186924E-02	9.093198E-03	1.096302E-02
d	2.004699E-07	1.758832E-07	-1.316554E-08	1.650234E-10
e	3.831164E-04	3.879170E-04	-1.748029E-04	-2.026983E-04
f	-5.252222E-07	-3.537931E-07	1.465876E-07	1.283945E-07

Tabelle 5.5: Die Zahlenwerte der Variablen der jeweiligen Flächengleichung

Durch das Einsetzen der Zahlenwerte der Variablen in die jeweilige Flächengleichung wurden erneut die optimierten Zahlenwerte von $const_{i,mit}$, $const_{i,ohne}$, $x_{i,mit}$ und $x_{i,ohne}$ und damit auch die optimierten Flächen berechnet. Die nachstehende Tabelle zeigt die durch ein Programm errechneten optimierten Zahlenwerte.

Element	Zi	E _{0,i}	const _{i, mit}	const _{i,ohne}	X _{i, mit}	X _{i, ohne}
	12	10	1.356488	1.229478	1.131283	1.125360
Mg	12	20	1.234687	1.127118	1.169792	1.174196
	12	30	1.189508	1.102342	1.173340	1.182493
Al	13	10	1.361749	1.228957	1.128519	1.121062
	13	10	1.361749	1.228957	1.128519	1.121062
	13	20	1.239942	1.126593	1.167029	1.169899
	13	20	1.239942	1.126593	1.167029	1.169899

					•••••	
	13	20	1.239942	1.126593	1.167029	1.169899
	13	30	1.194758	1.101814	1.170579	1.178197
	13	30	1.194758	1.101814	1.170579	1.178197
	14	10	1.367010	1.228436	1.125755	1.116764
Si	14	20	1.245198	1.126069	1.164266	1.165602
	14	30	1.200009	1.101286	1.167817	1.173901
	22	5.1	1.496792	1.302776	1.072001	1.043642
	22	5.3	1.492853	l .299207	1.073457	1.045414
	22	5.5	1.488945	l .295670	1.074899	1 .047169
	22	5.8	1.483140	l.290421	1.077035	1.049772
	22	6.5	1.469863	1.278448	1.081897	1.055702
тi	22	8	1.442678	1.254069	1.091740	1 .067743
**	22	10	1.409112	1.224280	1.103640	1.082377
	_ 22	10	1.409112	1.224280	1.103640	1.082377
:	22	10	1.409112	1.224280	1.103640	1.082377
	22	20	1.287258	1.121885	1.142164	1.131226
	22	20	1.287258	1.121885	1.142164	1.131226
	22	30	1.242026	1.097073	1.145726	1.139535
	23	10	1 .414377	1.223762	1.100876	1.078079
v	23	20	1 .292517	1.121364	1.139400	1.126929
•	23	20	1 .292517	1.121364	1 .139400	1.126929
	23	30	30 1.194758 1.101814 1.170579 30 1.367010 1.228436 1.125755 20 1.245198 1.126069 1.164266 30 1.200009 1.101814 1.170579 5.1 1.496792 1.302776 1.072001 5.3 1.492853 1.299207 1.073457 5.5 1.488945 1.295670 1.074899 5.8 1.442678 1.254069 1.091740 10 1.409112 1.224280 1.103640 10 1.409112 1.224280 1.103640 10 1.409112 1.224280 1.103640 10 1.409112 1.224280 1.103640 20 1.287258 1.121885 1.142164 20 1.287258 1.121885 1.142164 20 1.292517 1.121364 1.39400 20 1.292517 1.121364 1.39400 20 1.292517 1.121364 1.39400 20 1.297777	1.135239		
	24	10	1.419642	1.223245	1.098111	1.073780
Cr	24	20	1.297777	1.120843	I .136637	1.122632
V Cr Mn Fe	24	30	1.252535	1.096024	1.140203	1.130944
	25	10	1.424907	1.222728	1.095347	1.069482
Mn	25	20	1.303037	1.120322	1.133874	1.118335
1411	25	20	1.303037	1.120322	1.133874	1.118335
	25	30	1.257790	1.095500	1.137442	1.126648
	26	10	1.430173	1.222211	1.092582	1.065184
Fe	26	20	1.308297	1.119802	1.131111	1.114038
	26	30	1.263045	1.094976	1.134680	1.122352
	27	10	1.435439	1.221694	1.089818	1.060886
	27	20	1.313558	1.119282	1.128348	1 .109741
Co	27	20	1.313558	1.119282	1.128348	1 .109741
	27	20	1.313558	1.119282	1.128348	1.109741
	27	30	1.268301	1.094452	1.131918	1.118057
Ni	28	9	1.457108	1.235687	1.081277	1.049472
	28	9	1.457108	1.235687	1.081277	1.049472
	28	10	1.440705	1.221178	1.087053	1.056587

	28	10	1.440705	1.221178	1.087053	1.056587
	28	11	1.425069	1.207445	1.092479	1.063297
	28	12	1.410198	1 .194488	1.097556	1.069602
	28	14	1.382756	1 .170902	1.106661	1.080995
	28	16	1.358379	l .150418	1.114368	1.090766
ĺ	28	18	1.337067	1 .133038	1.120676	l .098916
	28	20	1.318820	1.118762	1.125585	1.105444
	28	20	1.318820	1.118762	1.125585	1.105444
	28	20	1.318820	1.118762	1.125585	1.105444
	28	20	1.318820	1.118762	1.125585	1.105444
	28	30	1.273557	1.093929	1.129157	1.113761
	29	10	1.445972	1.220662	1.084288	1.052289
	29	10	1.445972	1.220662	1.084288	1.052289
	29	12	1.415464	1.193972	1.094792	1.065304
	29	14	1.388021	1.170384	1.103897	1.076697
	29	16	1.363643	1.149900	1.111604	1.086468
Cu	29	18	1.342330	1.132520	1.117912	1.094618
0,0	29	20	1.324081	1.118243	1.122822	1.101147
	29	20	1.324081	1.118243	1.122822	1.101147
	29	20	1.324081	1. <u>118</u> 243	1.122822	1.101147
	29	20	1.324081	1.118243	1.122822	1.101147
	29	30	1.278813	1.093406	1.126395	1.109465
	29	30	1.278813	1.093406	1.126395	1.109465
	30	10	1.451240	1.220147	1.081524	1.047991
7n	30	20	1.329343	1.117724	1.120059	1.096850
Lυ	30	20	1.329343	1.117724	1.120059	1.096850
	30	30	1.284070	1.092884	1.123633	1.105169
	32	10	1.461776	1.219117	1.075994	1.039394
	32	11	1.446137	1.205383	1.081421	1.046104
	32	12	1.431264	1.192424	1.086499	1.052409
	32	12	1.431264	1.192424	1.086499	1.052409
Ge	32	13	1.417158	1.180242	1.091227	1.058309
	32	13	1.417158	1.180242	1.091227	1.058309
	32	14	1.403818	1.168835	1.095605	1.063803
	32	14	1.403818	1.168835	1.095605	1.063803
Ga	32	16	1.379437	1.148349	1.103312	1.073576
Ω¢.	32	16	1.379437	1.148349	1.103312	1.073576
	32	18	1.358120	1.130966	1.109622	1.081726
	32	18	1.358120	1.130966	1.109622	1.081726
	32	20	1.339869	1.116687	1.114532	1.088256

	32	20	1.339869	1.116687	1.114532	1.088256
	32	20	1.339869	1.116687	1.114532	1.088256
	32	30	1.294585	1.091840	1.118110	1.096578
	42	10	1.514479	1.213989	1.048346	0.996411
	42	10	1.514479	1.213989	1.048346	0.996411
	42	20	1.392520	1.111524	1.086899	1.045285
	42	20	1.392520	1.111524	1.086899	1.045285
	42	21	1.384538	1.105544	1.088831	1.047943
	42	22	1.377323	1.100340	1.090414	1.050195
Mo	42	23	1.370874	1.095913	1.091647	1.052042
140	42	24	1.365191	1.092261	1.092531	1.053484
	42	25	1.360274	1.089384	1.093065	1.054520
	42	26	1.356123	1.087284	1.093249	1.055151
	42	28	1.350121	1.085411	1.092569	1.055196
	42	30	1.347184	1.086641	1.090491	1.053620
	42	30	1.347184	1.086641	1.090491	1.053620
	42	30	1.347184	1.086641	1.090491	1.053620
:	45	10	1.530298	1.212458	1.040051	0.983516
Rh	45	20	1.408323	1.109982	1.078608	1.032394
	45	30	1.362971	1.085088	1.082205	1.040733
	47	10	1.540846	1.211439	1.034521	0.974919
Ag	47	20	1.418861	1.108955	1.073081	1.023800
	47	30	1.373498	1.084055	1.076680	1.032142
	50	10	1.556671	1.209913	1.026225	0.962024
Sn	50	20	1.434670	1.107419	1.064790	1.010909
	50	30	1.389292	1.082508	1.068394	1.019254
	64	10	1.630569	1.202832	0.987510	0.901848
Gđ	64	20	1.508494	1.100289	1.026095	0.950751
	64	30	1.463042	1.075328	1.029720	0.959114
	68	10	1.651697	1.200822	0.976448	0.884655
Er	68	20	1.529601	1.098264	1.015039	0.933563
	68	30	1.484128	1.073290	1.018669	0.941931
	74	10	1.683401	1.197817	0.959854	0.858865
W TAT	74	20	1.561273	1.095238	0.998453	0.907780
	74	30	1.515769	1.070242	1.002092	0.916157
	79	10	1.709832	1.195323	0.946024	0.837373
Au	79	10	1.709832	1.195323	0.946024	0.837373
	79	10	1.709832	1.195323	0.946024	0.837373
	79	20	1.587678	1.092726	0.984631	0.886295
	79	20	1.587678	1.092726	0.984631	0.886295
-						

·

	79	20	1.587678	1.092726	0.984631	0.886295
	79	30	1.542148	1.067713	0.988278	0.894678
	79	30	1.542148	1.067713	0.988278	0.894678
	83	10	1.730984	1.193334	0.934960	0.820180
Bi	83	20	1.608809	1.090723	0.973573	0.869107
	83	30	1.563258	1.065695	0.977225	0.877495

 Tabelle 5.6: Optimierte Zahlenwerte von constj und x_ijeweils mit und ohne Berücksichtigung der Rückstreuung

Jeweils anhand eines Mathematika-Programms wurden dann die Flächen mit den optimierten Zahlenwerten von const_{i,mit}, const_{i,ohne}, $x_{i,mit}$ und $x_{i,ohne}$, mit den jeweiligen Variablen a, b, c, d, e und f im Bereich Z = [10-90] und E₀ = [10-30] graphisch dargestellt. Die ursprünglich durch Messungen gewonnenen Zahlenwerte wurden in Form von Strichen an die jeweilige Fläche herangeführt, um das Ausmaß der Optimierung zu veranschaulichen. Dort wo die Striche (Messungen) einander überdecken wurden nur diejenigen dargestellt, die die größte Abweichung zu ihren optimierten Werten aufweisen. Die nachstehenden Diagramme zeigen die dreidimensionalen Flächen.

Abb. 5.6: Gemessene (Striche) und optimierte (Fläche) Zahlenwerte von const mit Berücksichtigung der Rückstreuung

Abb. 5.7: Gemessene (Striche) und optimierte (Fläche) Zahlenwerte von const ohne Berücksichtigung der Rückstreuung

Abb. 5.8: Gemessene (Striche) und optimierte (Fläche) Zahlenwerte von x mit Berücksichtigung der Rückstreuung

Abb. 5.9: Gemessene (Striche) und optimierte (Fläche) Zahlenwerte von x ohne Berücksichtigung der Rückstreuung
5.1.2.2 Berechnung der Standardabweichung

Anhand der Standardabweichung wird die Qualität der Ausgleichung überprüft. Ebenso wird versucht zu klären ob die Berücksichtigung der Rückstreuung eine Verbesserung der Spektrenbeschreibung bewirkt.

Die Gleichung zur Berechnung der Standardabweichung o lautet

$$\mathbf{T} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(5.38)

- *n* die Anzahl der jeweiligen Daten (= 133)
- x_i die jeweiligen Zahlenwerte von const_{i,mit}, const_{i,ohne}, $x_{i,mit}$ bzw. $x_{i,ohne}$
- *x* der jeweilige Mittelwert der Zahlenwerte

Die Mittelwerte der gemessenen Zahlenwerte ergeben sich zu

$\overline{const}_{gem,mit} = 1.398101$	$\bar{x}_{gem,mit} = 1.089334$
$\overline{const}_{gem,ohne} = 1.148489$	${X gem, ohne} = 1.053927$

Daraus lassen sich die Zahlenwerte der jeweiligen absoluten Fehler

$V_{i,gem,mit} = const gem,mit$ - $const_{i,gem,mit}$	(5.39)
$V_{i,gem,ohne} = \overline{const_{gem,ohne}} - const_{i,gem,ohne}$	(5.40)

 $V_{i,gem,mit} \sim \overline{x_{gem,mit}} \sim x_{i,gem,mit}$ $V_{i,gem,ohne} = \frac{1}{gem,ohne} \qquad (5.41)$ (5.42)

berechnen. Aus diesen Daten läßt sich die jeweilige Standardabweichung für die gemessenen Zahlenwerte berechnen.

const:	$\sigma_{gem,mit} = 0.151573$	x: $\sigma_{gem,mit} = 0.069827$
	$\sigma_{gem,ohne} = 0.098327$	$\sigma_{gem,ohne} = 0.094302$

Um das Ausmaß der Optimierung zu ermitteln wird nun die Standardabweichung der gemessenen Zahlenwerte bezogen auf die optimierten, bestimmt.

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i,gem} - x_{i,op})^2}$$
(5.43)

n Anzahl der jeweiligen Daten (= 133)

 $x_{i,gem}$ Gemessene Zahlenwerte von const_{i,mit}, const_{i,ohne}, $x_{i,mit}$ bzw. $x_{i,ohne}$

 $x_{i,op}$ Optimierte Zahlenwerte von const_{i,mit}, const_{i,ohne}, $x_{i,mit}$ bzw. $x_{i,ohne}$

Die Zahlenwerte der absoluten Fehler

$v_{i,gem,mit}$ - $const_{i,gem,mit}$ - $const_{i,op,mit}$	(5.44)
$V_{i} = const_{i,gem,ohne} - const_{i,op,ohne}$	(5.45)
$\overline{v}_i = X_{i,gem,mit} \sim X_{i,op,mit}$	(5.46)
V _i i,gem,ohne i,op,ohne	(5.47)

wurden berechnet und daraus die jeweilige Standardabweichung bestimmt.

$\sigma_{\text{const,mit}} = 0.0982691$	$\sigma_{x,mit} = 0.044628$
$\sigma_{\text{const,ohne}} = 0.078491$	$\sigma_{x,ohne} = 0.046392$

Man sicht überall eine Verbesserung der Standardabweichung (gerundet auf drei Nachkommastellen):

const _{mit} :	von 0.151 auf 0.098	x _{mit} :	von 0.070 auf 0.045
const _{ohne} :	von 0.098 auf 0.078	x _{ohne} :	von 0.094 auf 0.046

Die ursprüngliche Frage nach **Sinnhaftigkeit** der Optimierung durch eine Ausgleichsfläche kann in allen Fällen bejaht werden. Für x ist ersichtlich, dass die Berücksichtigung der Rückstreuung auch eine Verbesserung bringt, hingegen bringt die Berücksichtigung der Rückstreuung für const keine Verbesserung.

5.1.2.3 Graphische Darstellung der Zahlenwerte von const_i und x_i für Beschleunigungsspannungen von 10, 20 und 30kV

Die nachstehenden Diagramme zeigen die gemessenen Zahlenwerte von **const**_{i,mit}, **const**_{i,ohne}, $x_{i,mit}$ und $x_{i,ohne}$ in Abhängigkeit von der Ordnungszahl Z, die jeweils für die Beschleunigungsspannungen 10, 20 und 30 kV getrennt dargestellt sind. Die Diagramme zeigen auch die Ausgleichskurve, die mit den jeweiligen optimierten Zahlenwerten ermittelt wurde.

Abb. 5.10: const in Abhängigkeit von Z unter Berücksichtigung der Rückstreuung (10 W)

Abb. 5.11: const in Abhängigkeit von Z ohne Berücksichtigung der Rückstreuung (10 kV)

Abb. 5.12: x in Abhängigkeit von Z unter Berücksichtigung der Rückstreuung (10 kV)

Abb. 5.13: x in Abhängigkeit von Z ohne Berücksichtigung der Rückstreuung (10 W)

Abb. 5.14: const in Abhängigkeit von Z unter Berücksichtigung der Rückstreuung (20 W)

Abb. 5.15: const in Abhängigkeit von Z ohne Berücksichtigung der Rückstreuung (20 kV)

Abb. 5.16: x in Abhängigkeit von Z unter Berücksichtigung der Rückstreuung (20 kV)

Abb. 5.17: x in Abhängigkeit von Z ohne Berücksichtigung der Rückstreuung (20 kV)

Abb. 5.18: const in Abhängigkeit von Z unter Berücksichtigung der Rückstreuung (30 kV)

Abb. 5.19: const in Abhängigkeit von Z ohne Berücksichtigung der Rückstreuung (30 kV)

Abb. 5.20: x in Abhängigkeit von Z unter Berücksichtigung der Rückstreuung (30 kV)

Abb. 5.21: x in Abhängigkeit von Z ohne Berücksichtigung der Rückstreuung (30 kV)

5.1.3 Anpassung des gemessenen Spektrums an das gerechnete Spektrum

Um zu untersuchen ob die Berücksichtigung der Rückstreuung eine bessere Anpassung des gemessenen Spektrums zu dem gerechneten zufolge hat gehen wir von den Summen der Fehlerquadrate

$$\sum_{i} v_{i,mit}^{2} \sim \sum_{i} \left(n_{i,gem} - n_{i,theorl} \right)^{2}$$
(5.48)

$$\sum_{i} v_{i,ohne}^{2} \sim \sum_{i} \left(n_{i,gem} \sim n_{i,theor} \right)^{2}$$
(5.49)

aus und bilden deren Verhältnis r zueinander

$$r = \frac{\sum_{i} \boldsymbol{v}_{i,mit}^{2}}{\sum_{i} \boldsymbol{v}_{i,ohne}^{2}}$$
(5.50)

Der Zahlenwert für *r* wird für jede Messung berechnet und daraus der Mittelwert $\langle r \rangle$ ermittelt. Die nachstehende Tabelle zeigt alle Zahlenwerte und auch den daraus gewonnenen Mittelwert von $\langle r \rangle = 0.939554$. Wie aus der Tabelle ersichtlich ist, fuhrt die Berücksichtigung der Rückstreuung nicht bei allen Messungen zu einer Verbesserung des gerechneten Spektrums. Aber aufgrund des Zahlenwertes 0.939554 vom Mittelwert $\langle r \rangle$ sieht man, dass die Berücksichtigung der Rückstreuung insgesamt zu einer verbesserten Beschreibung des berechneten Spektrums fuhrt.

Element	Z	Beschl sp. (kV)	$\sum_{i} v_{i,ohne}^2$	$\sum_i v_{i,mit}^2$	$r - rac{\displaystyle\sum_{i} v_{i,mit}^2}{\displaystyle\sum_{i} v_{i,ohne}^2}$
	12	10	678,5002	674,3633	0,993903
Mg .	12	20	2486,2780	2451,3670	0,985959
	12	30	5111,7510	4973,2080	0,972897
	13	10	1023,7190	1032,3260	1,008408
	13	10	1754,9620	1754,5790	0,999782
	13	20	2730,3550	2710,8580	0,992859
AI	13	20	10259,3300	10264, <u>3700</u>	1,000491
	13	20	9788,9600	9822,1450	1,003390
	13	30	6926,9010	6743,3550	0,973503
	13	30	21229,3400	21322,2100	1,004375

	14	10	368,1091	378,6767	1,028708
Si	14	20	2033,0620	2099,0640	1,032464
	14	30	5761,2550	5624,5020	0,976263
	22	10	6752,5200	6760,1410	1,001129
	22	10	15353,6600	15043,5800	0,979804
	22	10	21094,9300	20817,7600	0,986861
	22	20	33567,9400	33353,2800	0,993605
	22	20	26623,3800	26546,4100	0,997109
. դ։	22	30	72755,1600	72173,0800	0,992000
11	22	5,1	1025,4970	1009,5990	0,984497
	22	5,3	1080,4210	1076,4140	0,996291
	22	5,5	1292,7780	1290,5300	0,998261
	22	5,8	1286,3410	1281,2030	0,996006
	22	6,5	1538,0280	1511,9710	0,983058
	22	8	4974,6570	4759,2790	0,956705
	23	10	9022,4550	9047,7320	1,002802
77	23	20	37091,1400	35618,0700	0,960285
v	23	20	159318,3000	157113,7000	0,986162
	23	30	68128,4100	65818,8000	0,966099
	24	10	400,0023	379,5626	0,948901
Cr	24	_ 20	3067,1680	2826,7760	0,921624
	24	30	13384,6000	11744,9200	0,877495
	25	10	4539,9690	4370,7310	0,962723
Mn	25	20	28892,1600	26243,2100	0,908316
	25	20	28338,5000	25683,7100	0,906319
	25	30	80088,4500	75635,4000	0,944398
	26	10	429,1138	417,1695	0,972165
Fe	26	20	4958,4500	3960,5760	0,798753
	26	30	30011,7900	25909,1300	0,863299
	27	10	2136,1100	2100,1680	0,983174
	27	20	16437,7100	15210,2000	0,925324
Co	27	20	16593,2400	15197,5600	0,915889
	27	20	15997,8800	14760,1200	0,922630
	27	30	46726,9300	43438,8600	0,929632
Ni	28	9	1670,7930	1656,8680	0,9917
	28	9	1407,5340	1392,6300	0,9894
	28	10	2043,9010	1982,7890	0,970100
	28	10	1997,9400	1943,0780	0,972541
	28	11	2716,7080	<u>26</u> 09,3750	0,960492
	28	12	3645,0320	3442,3100	0,944384
	28	14	6980,3440	6545,6880	0,937731
	28	16	10729,9400	10153,5200	0,946279

٩.

	28	20	25497,5200	24746,3600	0,970540
	28 20 28 20		19394,3800	18435,0600	0,950536
			20306,1900	19461,5400	0,958404
	28	20	17429,4000	16534,7600	0,948671
	28	30	64396,5900	63317,6600	0,983246
	29	10	37440,2300	37337,0200	0,997243
	29	10	943,2511	887,8803	0,941298
	29	12	5004,0790	4776,1420	0,954450
	29	14	8609,1460	79 <u>79,7670</u>	0,926894
	29	16	14756,1400	13716,0300	0,929514
	29	18	21372,0900	19758,4900	0,924500
	29	20	25153,6200	23422,7500	0,931188
	29	20	28067,8600	26261,0900	0,935629
	29	20	22164,7900	20517,7900	0,925693
	29	20	10813,8400	8725,2710	0,806862
	29	30	62533,5400	58824,6300	0,940689
	29	30	50716,8600	43452,8900	0,856774
	30	10	7909,7600	7282,2680	0,920669
7n	30	20	39451,8900	35763,0000	0,906497
2	30	20	32807,3400	29486,8400	0,898788
	30	30	85436,2300	78154,2200	0,914767
	32	10	5224,5900	5106,1110	0,977323
	32	11	7500,9900	7077,1160	0,943491
	32	12	9660,9310	9174,9280	0,949694
	32	12	291,8307	292,5534	1,002476
	32	13	10576,0000	9957,2780	0,941498
	32	13	365,2370	366,4660	1,003365
	32	14	12994,3000	12201,1400	0,938961
Ge	32	14	667,1191	668,2642	1,001716
	32	16	19610,3700	18082,5300	0,922090
	32	16	1317,4350	1329,1410	1,008885
	32	18	25567,2700	23396,7600	0,915106
	32	18	2079,0110	2094,5010	1,007451
	32	20	39555,5900	36565,7900	0,924415
	32	20	36702,7300	33660,1500	0,917102
	32	20	5012,4300	5067,7300	1,011033
	32	30	87848,5100	79841,9500	0,908860
	42	10	978,5317	1018,8200	1,041172
	42	10	3387,1480	3458,7980	1,021154
	42	20	8090,2950	7798,7060	0,963958
Мо	42	20	22219,7100	22128,7600	0,995907
ł	42	21	26563,6400	25689,8700	0,967107
i	42	22	30772,9200	29915,0200	0,972122

.

75

..........

I

1	42	23	33914,6100	32418,8100	0,955895
Мо	42	24	39143,0000	36929,2500	0,943445
	42	25	41594,8800	38918,8400	0,935664
	42	26	46872,1300	43764,6900	0,933704
	42	28	55615,8600	51109,2000	0,918968
	42	30	37405,7200	30395,1500	0,812580
	42	30	76628,1700	69949,1900	0,912839
	42	30	68173,9200	64012,3500	0,938957
	45	10	376,0056	404,1839	1,074941
Rh	45	20	5204,7450	4867,0770	0,935123
	45	30	34702,1600	26225,2100	0,755723
7	47	10	391,5027	403,7382	1,031253
Ag	47	20	4301,8220	4399,7240	1,022758
	47	30	28190,6300	21781,0900	0,772636
	50	10	137,6258	141,5698	1,028657
Sn	50	20	2159,9920	2232,7720	1,033695
	50	30	18751,9800	14556,6600	0,776273
	64	10	3591,3270	2930,4210	0,815972
Gd	64	20	53741,3900	35702,7400	0,664343
	64 30		227075,7000	164831,6000	0,725888
	68	10	2159,9870	1564,9020	0,724496
Er	68	20	82998,6800	57187,9200	0,689022
	68	30	272077,3000	203743,1000	0,748843
	74	10	1479,4860	1543,4040	1,043203
W	74	20	33284,2200	19662,9600	0,590759
	74	30	167206,6000	109306,0000	0,653718
	79	10	1590,7760	2271,5960	1,427980
	79	10	5733,9730	6428,1110	1,121057
	79	10	5284,6080	5978,6660	1,131336
711	79	20	15511,9600	10397,9200	0,670316
Au	.79	20	30787,5300	25752,5700	0,836461
	79	20	30069,6700	25851,1600	0,859709
	79	30	104251,2000	62594,1300	0,600416
	79	30	116502,3000	88228,2800	0,757309
	83	10	809,1932	1206,8330	1,491403
Bi	83	20	13805,8400	13488,7600	0,977033
	83	30	51363,5500	30567,4600	0,595120
				Summe:	124,960706
				Mittelwert:	0,939554

Tabelle 5.7: Zahlenwerte von $\sum_{i} v_{i}^{\gamma}$ (mit und ohne Berücksichtigung der Rückstreuung) und r (ratio)

5.2 Zählratenberechnung der charakteristischen Linien

Die Gleichung 5.2, die für die Zählratenberechnung der charakteristischen Linien der Reinelemente verwendet wird, wird hier erläutert.

$$N_{ijk} = \Omega \cdot \iota \cdot Const_{jk} \cdot \frac{1}{s_{ij}} \cdot R\omega_{ij} P_{ijk} f(\chi_{ijk})$$

Das Tripel ijk ist eine Indizes-Schreibweise. In diesem Tripel steht i für das Element, j für das ionisierte Niveau und k für jenes Atomniveau, von dem die Vakanz in j aufgefüllt wird.

Die Bedeutung der in der Gleichung vorkommenden Größen:

£2 <u>Raumwinkel der Messung</u> *i* <u>Anoden-Strom</u>

Siehe Punkt 5.1

Const_{ik} Proportionalitätsfaktor in s⁻¹ sr⁻¹ mA⁻¹

Die Konstante besitzt nach den bisherigen Überlegungen für K α - und L α -Linie den gleichen Wert, der durch das gemessene charakteristische Spektrum bestimmt wird.

 $Const_{ik} = 6 \ 10^{13} \text{ s}^{-1} \text{ sr}^{-1} \text{ mA}^{-1}$

*l/S*_i <u>Intensitätsfaktor</u>

Der Intensitätsfaktor ist proportional der Anzahl der durch ein auftreffendes Elektron erzeugten Löcher in den Targetatomen wenn das Elektron seine ganze Energie abgibt und ist gegeben durch

$$\frac{1}{S_{ij}} = \frac{z_k b_k}{Z} \left(U_0 \ln U_0 + 1 - U_0 \right) \left[1 + 16.05 \sqrt{\frac{J}{E_{jk}}} \frac{\sqrt{U_0} \ln U_0 + 2\left(1 - \sqrt{U_0}\right)}{U_0 \ln U_0 + 1 - U_0} \right]$$
(5.51)

mit z_k als Anzahl der Elektronen in der ionisierten Schale (ZK = 2 und z_L = 8), b_k als Faktor für K- oder L-Linie (b_K = 0.35 und b_L = 0.25) und E_{ij} als Kantenenergie der charakteristischen Linie in keV.

U₀ Das Überspannungsverhältnis

$$U_0 = \frac{E_0}{E_{ij'}} \tag{5.52}$$

beschreibt hier das Verhältnis von Elektronenenergie E₀ zur Kantenenergie Ey.

R <u>Der Elektronenrückstreufaktor</u>

Durch den Elektronenrückstreufaktor R wird die Energie jener Elektronen berücksichtigt, die die Probe wieder verlassen und nicht ihre gesamte Energie zur Ionisation beitragen.

 $R = 1 - 0.0081517Z + 3.613 \quad 10^{-5} Z^{2} + 0.009583Ze^{-U0} + 0.001141E_{0}$ (5.53)

ω_{ij} Die Fluoreszcnzausbeute

Das Nachrücken eines Elektrons in eine innere Schale kann auch durch einen strahlungslosen Übergang erfolgen (Auger-Effekt) und muss nicht immer mit der Emission eines Röntgenquants verbunden sein. Die Fluoreszenzausbeute gibt in diesem Zusammenhang die Wahrscheinlichkeit zur Emission eines Röntgenquantes für einen bestimmten Übergang an.

*p*_{iik} <u>Die Übergangswahrscheinlichkeit</u>

 p_{ijk} ist die Wahrscheinlichkeit zur Auffüllung der Vakanz j aus dem Niveau k. Das Auffüllen einer Vakanz kann aus verschiedenen Schalen erfolgen. Die Wahrscheinlichkeit eines bestimmten Überganges hängt vom Element i, dem Ursprungszustand des nachrückenden Elektrons k und der Vakanz j ab und entspricht dem Verhältnis der Intensitäten der betrachteten Linie zur Gesamtintensität der charakteristischen Strahlung derselben Vakanz.

Um ein Beispiel zu nennen ergibt sich die Übergangswahrscheinlichkeit p_{ijk} für die L $\alpha_{1,2}$ -Strahlung zu

$$p_{L\alpha 1,2} = \frac{I_{L\alpha 1} + I_{L\alpha 2}}{I_{L\alpha 1} + I_{L\alpha 2} + I_{L\beta 5} + I_{L\beta 5} + I_{L\beta 7} + I_{L\beta 7} + I_{L\beta 7} + I_{U\beta 7}}.$$
 (5.54)

 $L\alpha_1$ und $L\alpha_2$ sind die stärksten Linien aus der gesamten L-Serie und können durch ein energiedispersives System mit einem Auflösungsvermögen von 160 eV nicht voneinander getrennt werden. Beide haben ihren Grundterm in L3, sodaß sämtliche Linien mit j = L3 in die Berechnung der Übergangswahrscheinlichkeit einzubeziehen sind.

$f(\chi_{ijk})$ Absorptionsterm

 $f(\chi_{ijk})$ steht hier auch wie bei der kontinuierlichen Röntgenstrahlung für die Eigenabsorption der Röntgenstrahlung in der Anode und wird analog (siehe Gl. 5.5) berechnet, wobei hier die Energie *E* keine laufende Variable in % ist, sondern den jeweiligen Wert der entsprechenden charakteristischen Quantenenergien E_{ijk} annimmt.

5.2.1 Die Berechnung des Proportionalitätsfaktors Const_{ik}

In der Gleichung 5.2 zur Beschreibung des charakteristischen Spektrums

$$N_{ijk} = \mathrm{fl} \cdot i \cdot Const_{jk} \cdot \frac{1}{S_{ij}} \cdot R\omega_{ij}P_{ijk}f(\chi_{ijk})$$

wurde bisher für die Konstante Constjk der Wert $6 \, 10^{13} \, \text{s}^{-1} \text{sr}^{-1} \text{mA}^{-1}$ angegeben. Dieser Wert ist durch Anpassung der experimentellen Ergebnisse an den Berechnungsalgorithmus ermittelt worden. Für jede Linie lässt sich die Konstante Constjk als das Verhältnis der gemessenen zu der gerechneten Zählrate angeben.

 $Const_{jk} = n_{jk,gemessen} / n_{jk,gerechnet}$

(5.55)

Als Beispiel zeigt das nachstehende Diagramm für das Element Cu die gemessene und nach Gl. 5.2 die gerechnete charakteristische K-Linie. Die Beschleunigungsspannung bei dieser Messung beträgt 20 kV.

Abb. 5.22: Gemessene und gerechnete charakteristische K-Linie von Cu bei 20kV Beschleunigungsspannung

Es soll hier anhand der **Messergebnisse** und deren Anpassung an den Algorithmus der Zahlenwert für die Konstante Constjk neu bestimmt werden. **Anschliessend** wird verglichen inwieweit der ermittelte Wert mit dem bisherigen übereinstimmt.

Theoretisch liefert, wie die Indizes j und k in Constjk andeuten, jede Energiekante einen anderen Zahlenwert für die Konstante Constjk. Somit liefert auch der Berechnungsalgorithmus für jede einzelne charakteristische Linie die Zährate. Wir befassen uns in dieser Arbeit lediglich mit der K-Kante, die die stärksten charakteristischen Linien, nämlich die K-Linien bewirkt. Mit steigender Ordnungszahl der Elemente steigt auch die Energie der K-Kante.

Bei den Messungen wurde zur Linienbeschreibung auch die Halbwertsbreite der K-Linien bestimmt. Da bei den Messungen erst ab einem Überspannungsverhältnis von 1.3 akzeptable Werte existierten, wurden nur diese Werte berücksichtigt. Diese Zahlenwerte befinden sich gemeinsam mit den optimierten Werten zur Darstellung der Ausgleichskurve in der nachstehenden Tabelle. Das jeweilige Überspannungsverhältnis ist in der letzten Spalte angegeben.

		Beschl				
Element	Z	sp.	Energie	Halbwertsb	reite (keV)	Ubersp Verhältnig
(kV)		(kV)	(keV)	gemessen	Optimiert	VEIMAICHIS
	12	10	1.257764	9.000001E-02	9.240524E-02	7.674597
Mg	12	20	1.257764	8.900001E-02	9.240524E-02	15.349190
	12	30	1.257764	8.900001E-02	9.240524E-02	23.023790
	13	10	1.490587	9.400001E-02	9.501475E-02	6.414368
	13	10	1.490587	9.800002E-02	9.501475E-02	6.414368
	13	20	1.490587	9.300001E-02	9.501475E-02	12.828740
AI	13	20	1.490587	9.7000 <u>2E-02</u>	9.501475E-02	12.828740
	13	20	1.490587	9.700002E-02	9.501475E-02	12.828740
	13	30	1.490587	9.300001E-02	9.501475E-02	19.243100
	13	30	1.490587	9.700002E-02	9.501475E-02	19.243100
	14	10	1.743691	9.70002E-02	9.782946E-02	5.437738
Si	14	20	1.743691	9.700002E-02	9.782946E-02	10.875480
	14	30	1.743691	9.600002E-02	9.782946E-02	16.313210
	22	10	4.524032	0.129	0.1272329	2.014099
	22	10	4.524032	0.131	0.1272329	2.014099
	22	10	4.524032	0.13	0.1272329	2.014099
Ti	22	20	4.524032	0.129	0.1272329	4.028197
	22	20	4.524032	0.129	0.1272329	4.028197
	22	30	4.524032	0.129	0.1272329	6.042296
	22	6.5	4.524032	0.133	0.1272329	1.309164
	22	8	4.524032	0.131	0.1272329	1.611279
	23	10	4.96429	0.133	0.1316339	1.829826
V	23	20	4.96429	0.133	0.1316339	3.659652
, v	23	20	4.96429	0.133	0.1316339	3.659652
	23	30	4.96429	0.133	0.1316339	5.489478
	24	10	5.420612	0.135	0.136122	1.669728
Cr	24	20	5.420612	0.135	0.136122	3.339456
	24	30	5.420612	0.134	0.136122	5.009183
	25	10	5.9105	0.142	0.1408569	1.529286
Mn	25	20	5.9105	0.141	0.1408569	3.058572
	25	20	5.9105	0.14	0.1408569	3.058572
	25	30	5.9105	0.14	0.1408569	4.587857
	26	10	6.409752	0.145	0.1455936	1.406074
Fe	26	20	6.409752	0.144	0.1455936	2.812149
	26	30	6.409752	0.142	0.1455936	4.218223
	27	20	6.934768	0.15	0.150478	2.59437
C-0	27	20	6.934768	0.149	0.150478	2.59437
	27	20	6.934768	0.149	0.150478	2.59437
	27	30	6.934768	0.148	0.150478	3.891555

,

•

	28	11	7.483415	0.158	0.1554763	1.320053
	28	12	7.483415	0.156	0.1554763	1.440058
	28	14	7,483415	0.156	0.1554763	1.680067
Ni	28	16	7.483415	0.156	0.1554763	1.920077
	28	18	7.483415	0.155	0.1554763	2.160086
	28	20	7.483415	0.156	0.1554763	2.400096
	28	20	7.483415	0.155	0.1554763	2.400096
	28	20	7.483415	0.155	0.1554763	2.400096
	28	20	7.483415	0.156	0.1554763	2.400096
	28	30	7.483415	0.156	0.1554763	3.600144
	29	12	8.048625	0.163	0.1605124	1.336452
	29	14	8.048625	0.162	0.1605124	1.559194
29 29 Cu 29 29 29 29	29	16	8.048625	0.161	0.1605124	1.781936
	29	18	8.048625	0.16	0.1605124	2.004678
	29	20	8.048625	0.16	0.1605124	2.22742
	29	20	8.048625	0.161	0.1605124	2.22742
	29	20	8.048625	0.161	0.1605124	2.22742
	29	20	8.048625	0.157	0.1605124	2.22742
	29	30	8.048625	0.16	0.1605124	3.341129
	29	30	8.048625	0.156	0.1605124	3.341129
	30	20	8.638328	0.163	0.1656443	2.070608
Zn	30	20	8.638328	0.163	0.1656443	2.070608
	30	30	8.638328	0.162	0.1656443	3.105911
	32	16	9.88438	0.177	0.1760769	1.441052
	32	16	9.88438	0.176	0.1760769	1.441052
	32	18	9.88438	0.178	0.1760769	1.621184
Co	32	18	9.88438	0.177	0.1760769	1.621184
Ge	32	20	9.88438	0.176	0.1760769	1.801315
	32	20	9.88438	0.177	0.1760769	1.801315
	32	20	9.88438	0.176	0.1760769	1.801315
	22	30	9,88438	0.176	0.1760769	2.701972
	32	50	2100100			
	32 42	26	17.43272	0.228	0.2273423	1.3
<u></u>	32 42 42	26 28	17.43272 17.42772	0.228	0.2273423 0.2273151	<u> </u>
Mo	42 42 42 42	26 28 30	17.43272 17.42772 17.43772	0.228 0.229 0.227	0.2273423 0.2273151 0.2273695	1.3 1.4 1.5
Мо	42 42 42 42 42	26 28 30 30	17.43272 17.42772 17.43772 17.44772	0.228 0.229 0.227 0.227	0.2273423 0.2273151 0.2273695 0.2274238	1.3 1.4 1.5 1.5

i

 Tabelle 5.8: Die aus den Messungen gewonnenen Zahlenwerte der Halbwertsbreiten und die optimierten Werte zur Darstellung der Ausgleichskurve

Das nachstehende Diagramm zeigt anhand der graphischen Darstellung der berechneten Halbwertsbreiten aus der Tabelle 5.8 die mit zunehmender Quantenenergie ansteigende Halbwertsbreite der K-Linien.

Abb. 5.23: Graphische Darstellung der Halbwertsbreiten in Abhängigkeit von der Quantenenergie

Die Konstante für die Gesamtheit der K-Linien wird hier als *Const-K* bezeichnet. Die Messungen, die für die Ermittlung der Konstante *Const-K* herangezogen wurden, sind aus Elementen mit einer Ordnungszahl zwischen 12 bis 47 ausgewählt. Die nachstehende Tabelle enthält die aus diesen Messungen gewonnenen Zahlenwerte für *Const-K* und das zugehörige Überspannungs Verhältnis.

Element	Z	Beschl sp. (kV)	Const-K	Überspannungs- verhältnis
Mg	12	10	5.6006	7.674597
	12	20	6.0013	15.349190
	12	30	6.1559	23.023790
AI	13	10	5.4728	6.414368
	13	10	6.0930	6.414368
	13	20	6.2600	12.828740
	13	20	6.4166	12.828740

	13	20	6.4070	12.828740
	13	30	6.2740	19.243100
	13	30	6.5446	19.243100
Si	14	10	5.7914	5.437738
	14	20	5.6313	10.875480
	14	30	6.3008	16.313210
	22	10	4.2702	2.014099
	22	10	4.3809	2.014099
	22	10	4.2351	2.014099
	22	20	4.8368	4.028197
	22	20	4.8575	4.028197
mi	22	30	5.0285	6.042296
11	22	5.1	8.2548	1.027190
	22	5.3	5.2438	1.067472
	22	5.5	4.8155	1.107754
	22	5.8	4.5555	1.168177
	22	6.5	4.4220	1.309164
	22	8	4.2444	1.611279
	23	10	4.7273	1.829826
77	_ 23	20	4.8825	3.659652
v	23	20	4.9375	3.659652
	23	30	5.1116	5.489478
	24	10	4.5086	1.669728
Cr	24	20	4.7708	3.339456
	24	30	4.8759	5.009183
	25	10	5.0067	1.529286
Mn	25	20	4.9341	3.058572
14111	25	20	5.0248	3.058572
	· 25	30	5.1513	4.587857
	26	10	4.8658	1.406074
Fe	26	20	4.8025	2.812149
	26	30	4.9198	4.218223
Со	27	10	5.7562	1.297185
	27	20	5.0682	2.594370
	27	20	5.1743	2.594370
	27	20	5.1566	2.594370
	27	30	5.2622	3.891555
Ni	28	9	8.3093	1.080043
	28	9	8.0516	1.080043
	28	10	6.0840	1.200048
	28	10	5.8828	1.200048
	28	11	5.2185	1.320053
	28	12	5.0518	1.440058

	28	14	4.8986	1.680067
	28	16	4.8272	1.920077
	28	18	4.8280	2.160086
	28	20	4.9541	2.400096
	28	20	4.8749	2.400096
	28	20	4.8799	2.400096
	28	20	5.0190	2.400096
	28	30	5.1208	3.600144
	29	10	7.0165	1.113710
	29	10	7.3442	1.113710
	29	12	5.6385	1.336452
	29	14	5.2233	1.559194
	29	16	5.0711	1.781936
Ċ.	29	18	5.0867	2.004678
Cu	29	20	5.1152	2.227420
	29	20	5.1258	2.227420
	29	20	5.1428	2.227420
	29	20	5.1267	2.227420
	29	30	5.2987	3.341129
	29	30	5.1005	3.341129
	30	10	17.1502	1.035304
7n	30	20	5.4618	2.070608
	30	20	5.5284	2.070608
	30	30	5.6062	3.105911
	32	12	9.7452	1.080789
	32	12	8.7632	1.080789
	32	13	7.2050	1.170855
	32	13	6.9573	1.170855
	32	14	6.3212	1.260921
	32	14	6.2115	1.260921
Ge	32	16	5.7694	1.441052
96	. 32	16	5.7201	1.441052
	32	18	5.5725	1.621184
	32	18	5.5362	1.621184
	32	20	5.2856	1.801 <u>315</u>
	32	20	5.5003	1.801315
	32	20	5.2662	1.801315
	32	30	5.6116	2.701972
Мо	42	21	13.0959	1.050000
	42	22	9.7266	1.100 <u>000</u>
	42	23	8.6317	1.150000
	42	24	8.1832	1.200000
	42	25	7.9267	1.250000

	42	26	7.5091	1.300000
	42	28	7.3508	1.400000
	42	30	7.1536	1.500000
	42	30	7.1723	1.500000
	42	30	6.8325	1.500000
Rh	45	30	8.5518	1.291990
Ag	47	30	10.5697	1.175825

Tabelle 5.9: Die aus den Messungen gewonnenen Zahlenwerte für Const-K

Im nachstehenden Diagramm sind diese Zahlenwerte für *Const-K* in Abhängigkeit vom Überspannungsverhältnis $U_0 = EO l E_{iK}$ als Punkte dargestellt. Das Diagramm zeigt auch die berechnete Ausgleichskurve.

Abb. 5.24: Die graphische Darstellung der aus den Messungen gewonnenen Zahlenwerte für *Const-K* in Abhängigkeit vom Überspannungsverhältnis und der Ausgleichskurve

Man sieht, dass der im Algorithmus angegebene Wert von 6.10^{13} s⁻¹sr⁻¹mA⁻¹ für die Konstante keine allgemeine Gültigkeit besitzt. Die Konstante ist vielmehr eine Funktion des Überspannungsverhältnisses und der Ordnungszahl. Im besten Fall kann der Wert 6.10^{13} s⁻¹sr⁻¹mA⁻¹ bei einem Überspannungsverhältnis zwischen 11 und 14 Verwendung finden.

Wie aus dem Diagramm ersichtlich ist, kann man die Zahlenwerte für die Konstante bezüglich des Überspannungsverhältnisses in zwei Bereiche teilen. Ab einem Überspannungsverhältnis größer als 7 sind die Zahlenwerte so nahe beieinander, dass eine einzige Ausgleichskurve über alle Messwerte für verschiedene Elemente einen akzeptablen Wert für *Const-K* ergibt. Diese Kurve ist in der Abbildung 5.24 eingetragen. Bei einem Überspannungs Verhältnis kleiner als 7 liegen die Zahlenwerte für verschiedene Elemente so weit auseinander, dass eine einzige Ausgleichskurve über alle Messungen dieser Elemente kein brauchbares Ergebnis liefert. In diesem Fall sind wir gezwungen für jedes Element eine Ausgleichskurve anzugeben.

Die Ausgleichskurven für die Elemente Ti, Ni, Cu, Ge und Mo wurden für Überspannungsverhältnisse kleiner als 7 berechnet und in den beiden nachstehenden Bildern dargestellt.

Abb. 5.25: Ausgleichskurven für Ti, Ni, Cu, Ge und Mo für ein Überspannungsverhältnis kleiner als 7

Abb. 5.26: Ausgleichskurven für Ti, Ni, Cu, Ge und Mo für ein Überspannungsverhältnis kleiner als 7

Das nächste Diagramm zeigt die Ausgleichskurven für ein Uberspannungsverhältnis kleiner als 7 für weitere sechs Elemente V, Cr, Mn, Fe, Co und Zn.

Abb. 5.27: Die Ausgleichskurven für die Elemente V, Cr, Mn, Fe, Co und Zn für ein Überspannungsverhältnis kleiner als 7

Für die drei verbliebenen Elemente Mg, Al und Si mit niedrigeren Ordnungszahlen 12, 13 und 14 zeigt das nächste Diagramm die Zahlenwerte für *Const-K* und die berechnete Ausgleichskurve.

Abb. 5.28: Ausgleichskurven für die Elemente Mg, Al, Si für alle Werte des Überspannungsverhältnisses

Ein Überspannungsverhältnis größer als 7 kommt in den Messungen nur bei den Elementen Mg, Al und Si mit niedrigeren Ordnungszahlen 12, 13 und 14 vor. Wie die Abbildung 5.28 zeigt, nimmt der Wert von *Const-K* bei diesen Elementen mit steigendem Überspannungsverhältnis zu.

Die Recherchen haben gezeigt, dass der Wert von Const-K für die Elemente, deren Ordnungszahl zwischen 12 und 21 liegt mit steigendem Überspannungsverhältnis kontinuierlich bis zu einer gewissen Grenze zunimmt, während er für Elemente, deren Ordnungszahl zwischen 22 und 42 liegt, zuerst stark fallt und dann leicht steigt. Aus diesem Sachverhalt heraus wurden die folgenden zwei Gleichungen als Basis für den gültigen Zahlenwert der Konstante empirisch entwickelt.

Für Elemente mit einer Ordnungszahl zwischen 12 und 21 gilt

$$Const-K = 4.68733 + 0.147334U_0 - 3.19659 \, 10^{-3} (U_0)^2$$
(5.56)

und für Elemente mit einer Ordnungszahl zwischen 22 und 42 gilt

$$Const-K = A + e^{\left(2+B \cdot \ln \sqrt{U_0}\right)}$$
(5.57)

mit $U_0 = E_0 l E_{jk}$ als Überspannungsverhältnis.

Die Faktoren A und B in der Gleichung 5.51 sind wie folgt definiert.

$$A = 3.831254 + 0.3063265 \cdot U_0 - 9.107244 \cdot 10^{-3} \cdot U_0^2$$
(5.58)

$$B = -89.03529 + 7.320119 \cdot Z - 0.2069547 \cdot Z^{2} + 1.958593 \cdot 10^{-3} \cdot Z^{3}$$
(5.59)

Const-K ist jeweils mit 10^{$^{\circ}}$ zu multiplizieren ist. Die Einheit von *Const-K* ergibt sich dann zu pA⁻¹sr⁻¹s⁻¹.</sup>

6 Literaturverzeichnis

- H.Ebel;
 X-Ray Tube Spektra
 X-Ray Spectrometry 28, 255-266 (1999)
- [2] H.Ebel; Angewandte RöntgenphysikI, Wien (1999)
- [3] J. Sherman; Spectrochim. Acta 7, 283 (1955)
- [4] T. Shiraiwa und N. Fujino; Jpn. J. Appl. Phys. 5, 886 (1966)
- [5] H.L.Hunger und L.Küchler; *Phys. Stat. Sol. (a)* 56 (1979)
- [6] G.Love and V.D.Scott; J.Phys.D: Appl Phys. Vol.11 (1369-76) (1978)
- [7] W.Dietrich; Dissertation Techn. Universität Wien (2001)
- [8] B.Bröcker; *dtv-Atlas zur Atomphysik Tafeln und Texte*, 5. Auflage, München (1993)
- [9] F.Najmabadi The Physics of radiation & radiology, Tehran (2000)
- [10] E.P.Bertin; *Principles and Practice of X-Ray Spectrometric Analysis Plenum, New York (1970)*
- W.H.McMaster, N.K.del Grande, J.H.Mallet und JH.Hubbel; *Compilation of X-RaysCross Section, UCRL-50174, Sectioon II, Revision I Lawrence Radiation Laboratory, University of California, Livermore (1969)*
- [12] H.Ebel, H. Wiederschwinger, J.Wernisch, and P.A.Pella; An Algorithm for the Description of white and Characteristic Tube Spectra, Advances in X-Ray Analysis, Volume 35, 721, (1992)

- [13] B.Schoßman, H. Wiederschwinger, H.Ebel, J.Wernisch; Comparisation of various Descriptions of X-RayTube Spectra, Advances in X-Ray Analysis (1995)
- [14] J.A.Bearden and J.S.Thomson; X-Ray Wavelength and Atomic Energy Levels, American Institute of Physics Handbook, p. 7-96 to 7-167McGraw-Hill, 1972
- [15] H.A.Kramers; Phil.Mag. 46; 836 (1923)