
DISSERTATION

P Automata

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Ao. Univ.-Prof. Mag.rer.nat. Dipl.-Ing. Dr.techn. Rudolf Freund
E 185/2

Institut für Computersprachen

eingereicht an der technischen Universität Wien
Fakultät für technische Naturwissenschaften und Informatik

von

Dipl.-Ing. Marion Oswald
9003484

1040 Wien, Große Neugasse 44/11

Wien, am 23.11.2003

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

P Systeme sind unkonventionelle Berechnungsmodelle, welche von der
Funktionsweise biologischer Zellen abstrahiert sind. Dabei werden die fun-
damentalen Eigenschaften von lebenden Zellen im theoretischen Modell er-
fasst: in einer Membranstruktur, wo die Membranen als Separatoren sowie
Kommunikationskanäle fungieren, entwickelt sich eine Vielzahl von Objek-
ten gemäß vorgegebener Evolutionsregem. In der Basisklasse von P Systemen
findet diese Entwicklung in einer non-deterministischen, maximal parallelen
Weise statt. Seit 1998 wurden verschiedene Varianten dieses Modells unter-
sucht und deren computationale Vollständigkeit bewiesen. Hier befassen wir
uns jedoch nur mit akzeptierenden Varianten, welche 2002 unter dem Namen
P Automaten bekannt wurden.

Nach formalen Definitionen und einem kurzen Literaturüberlick werden
in dieser Arbeit verschiedene Varianten im Hinblick auf deren Akzeptierungs-
mächtigkeit erforscht. Wir beginnen mit rein kommunizierenden Systemen,
bei welchen die Objekte nicht verändert werden, sondern nur die Membranen
passieren, sogenannten analysierenden P Systemen mit Antiport Regeln, P
Automaten mit Membrankanälen sowie akzeptierenden Varianten von P Sys-
temen mit an die Membran gebundenen bedingten Kommunikationsregeln.

Darauf folgend werden katalytische sowie rein katalytische Systeme
präsentiert. Von Interesse ist auch die Akzeptierung unendlicher Wörter,
welche hier mittels P Automaten mit Membrankanälen untersucht wird.
Schließlich wird der neue Begriff des k—Determinismus vorgestellt, welcher ef-
fizientere Simulationen von verschiedensten P Automaten auf herkömmlichen
Computern ermöglichen soll. Eine kurze Zusammenfassung und Diskussion
offener Probleme in den untersuchten Gebieten beschließen die vorhegende
Arbeit.

Abstract

P systems axe unconventional models of computation that are abstracted
from cell functioning, capturing the fundamental properties of alive cells: In
a membrane structure, where the membranes act as separators as well as
communication channels, multisets of objects evolve according to prescribed
evolution rules. In the basic class of P systems, the evolution takes place in a
maximally parallel, non-deterministic way. Since their introduction in 1998,
many variants have been investigated most of which have been proved to be
computationally universal. Yet we here consider only the accepting variants,
introduced as P automata in 2002.

After some formal definitions and a brief literature review, we investigate
several variants of such P automata with respect to their recognizing power.
We start by considering three purely communicating systems, where the ob-
jects are only moved across the membranes without being affected by the
use of the rules: Analysing P systems with antiport rules, P automata with
membrane channels and an accepting variant of P systems with conditional
communication rules assigned to membranes.

We then shortly leave the area of purely communicating systems and
present catalytic as well as purely catalytic variants of accepting P systems.
Computations on infinite words by means of P automata with membrane
channels are the subject of investigations in the sequel. Finally we introduce
the new notion of A;—determinism allowing for more efficient simulations of
various kinds of accepting P systems on conventional computers. Some final
remarks and open problems conclude this work.

Contents

1 Introduction 1

2 Preliminary Definitions 3
2.1 Formal Language Prerequisites 3
2.2 Register Machines 5

2.2.1 Definition 5

2.2.2 Results 6

3 P Automata - a Brief Literature Review 10
3.1 The Original Model, a Variant and Improvements 11
3.2 Inducing an Infinite Hierarchy 12
3.3 Some Further Remarks 14

4 Analysing P Systems with Antiport Rules 15
4.1 Definitions 16
4.2 Results 17
4.3 Conclusion 19

5 P Automata with Membrane Channels 20
5.1 Definitions 21
5.2 Results 22
5.3 (Finite) P automata with Antiport Rules 26
5.4 Conclusion 29

6 P Automata with Conditional Communication Rules As-
signed to Membranes 30
6.1 PACCRAM - Definition 31
6.2 Results 33
6.3 Conclusion 36

7 Accepting P systems / P Automata with Catalysts 37
7.1 Definitions 38
7.2 Register Machines and Counter Automata 38
7.3 The Standard Model of P Systems and Variants 40
7.4 Results 44
7.5 Conclusion 52

8 w-P Automata with Communication Rules 53
8.1 Preliminary Definitions 54
8.2 u;-Turing Machines 54

8.2.1 Variants of Acceptance 54
8.2.2 w-Turing Machines - Definitions 55
8.2.3 a;-languages Accepted by a>-Turing Machines 56
8.2.4 Finite w-automata 57

8.3 co-P Automata 57
8.3.1 tu-P Automata with Antiport Rules 58
8.3.2 Finite o P Automata 61

8.4 Conclusion 63

9 On "Weak" Determinism in P Automata 64
9.1 Preliminary Definition and Example 65
9.2 A;—Determinism 66
9.3 Results 67
9.4 Conclusion 75

10 Final Remarks 76

Acknowledgements 78

Bibliography 78

Curriculum Vitae 84

Chapter 1

Introduction

In 1998, P systems were introduced by Gheorghe Päun [48] as a new model
of unconventional computation inspired by biochemical reactions that take
place in living cells.

Cells are the basic units for the structure and function of all organisms.
They can be divided by membranes into a system of interconnected cavi-
ties and separate compartments in which chemical reactions take place. But
membranes not only compartmentalize cells and regulate traffic between com-
partments, their functions also involve energy transformation and informa-
tion processing, often interpreted as computing processes (see, e.g., [7] and
the references there).

P systems are computing devices abstracted from cell functioning and are
based on the notion of a membrane structure. A membrane structure con-
sists of membranes hierarchically embedded in the outermost skin membrane;
every membrane encloses a region possibly containing other membranes; the
region outside the skin membrane is called outer region or environment. In
the membranes, multisets of objects can be placed, which evolve according
to given evolution rules. Depending on the model, these rules can be applied
in parallel across all membranes or in a rather sequential manner. In any
way, the rules to be applied are non-deterministically chosen by the system,
hence if an object can evolve according to more than one evolution rule at
the same time, any one is chosen.

A configuration can be illustrated by putting the objects and rules in
the corresponding compartments of the membrane structure. In this way,
a computing device is obtained in the following sense: Starting from an
initial configuration, the system evolves by passing from one configuration to
another one, thereby performing a computation. If the system halts, i.e., no
rule can be applied anymore, the computation is called successful. Instead
of going into more details here, we refer to [51] for motivations and examples

1

(also see [44]).
On the other hand, P systems can also be used as accepting devices. The

notion of P Automata was introduced by Erzsébet Csuhaj-Varjü and Györgi
Vaszil in [14] as purely communicating accepting P system with one-way
communication, which will be shortly presented in a brief literature review
in Chapter 3.

What follows is an investigation of various models of such accepting de-
vices starting with some purely communicating variants: In Chapter 4 we
present the work from [28] on analysing P systems with antiport rules, Chap-
ter 5 is about P automata with membrane channels, that partly appeared in
[46] and [33]. In Chapter 6 we investigate the accepting variant of P systems
with conditional communication rules assigned to membranes as they were
introduced in [29]. In Chapter 7 we shortly leave the area of purely com-
municating systems and present parts of the work from [31], dealing with
(purely) catalytic variants of accepting P systems. We go back to P au-
tomata with membrane channels in Chapter 8, but this time, far away from
biological motivation, considering computations on infinite words. We there
present results obtained in [33]. In Chapter 9 we introduce the new notion
of A;—determinism allowing for more efficient simulations of various kinds of
accepting P systems. Some final remarks and acknowledgements conclude
this work.

But before starting with notions and notations from formal language the-
ory, also presenting some results on register machines that have appeared in
[26], we should like to remark the following: Other than for generating P sys-
tems of whatever type, P automata sometimes also appear under the names
of accepting or analysing P systems in the literature. Therefore we here use
the original terms under which the respective systems have been introduced,
except for the accepting variant of P systems with conditional communi-
cation rules assigned to membranes, which will be called P automata with
conditional communication rules in the following.

Chapter 2

Preliminary Definitions

In this Chapter, we first recall some general definitions from formal language
theory. For more details on that subject, we refer to [18], [56], [57]. We
then define register machines, a universal model of computation that will
extensively be used in most proofs in subsequent Chapters. We conclude by
giving some results on register machines. Further definitions that are only of
local interest will be introduced when necessary.

2.1 Formal Language Prerequisites

The set of non-negative integers is denoted by N. An alphabet V is a finite
non empty set of abstract symbols. Given V, the free monoid generated by
V under the operation of concatenation is denoted by V*\ the empty string
is denoted by A. The elements of V* are called words or strings. The set of
non empty strings over V, that is V* \ {A}, is denoted by V+. Any subset of
V+ is called a X-free (string) language.

A multiset (over an arbitrary set B) is a function M : B —•> N U{oo};
M(x) is the number of occurrences of x G B in the multiset M. The set
supp(M) = {x G B | M{x) > 0} is called the support of M. Hence a usual set
S Ç B can be seen as a multiset where M{x) = 1 for x G S, and M(x) — 0
otherwise. For two multisets Mi,M2 : B —* N, their union is defined by
(Mi + M2)(x) = M\{x) + M2(x), x G B. Provided that Mx{x) > M2(x) for
all x G B, their difference is given by (Mx - M2)(x) = M^x) - M2{x). A
multiset M with finite support is represented by a set of pairs (x, M(x)}, for
x G supp(M). An empty multiset, i.e., a multiset M with empty support, is
denoted by 0.

Finite multisets over B can also be represented as strings over B (e.g., the
multiset of five objects a\ and two objects a2 is denoted by ((ai, 5) + (02, 2))

and can be represented by strings like a\a\, a\a%a\, and any of their per-
mutations) or by the corresponding Parikh vectors (e.g., the multiset of five
objects ai and two objects 02 can be represented by the Parikh vector (5,2)).
A subset M of the set of non-negative integers N can be represented as the
formal language L = \a\ \ k G M} ; by | x | we denote the length of the word
x over V as well as the number of elements in the multiset represented by x.

A (string) grammar is a quadruple G = (VN, VT, P, A), where VN and VT
are finite sets of nonterminal and terminal symbols, and VN D VT = 0, P is a
finite set of productions a —> ß with a G V+and ß G V*, where V = V+UV*,
and A G VN is the axiom. For x, y G V* we say that y is directly derivable
from x in G, denoted by x =>a V, if and only if for some a —» ß in P and
u, v G V* we get x = uav and y = ußv. Denoting the reflexive and transitive
closure of the derivation relation =>G by =>G, the language generated by G
is L(G) = {w G Vf I A =>Q W}. A production a —• ß is called context-
free if a G V/v. If G contains only context-free rules it is called a context-free
grammar. The family of recursively enumerable languages is denoted by RE.

We will also use the following more general notion of a grammar:
A grammar is a quadruple G = (B, BT, P, A), where B and BT are sets

of objects and terminal objects, respectively, with BT Q B, P is a finite set
of productions, and A G B is the axiom. A production p in P in general is a
partial recursive relation Ç B x B, where we also demand that the domain
of p is recursive (i.e., given w G B it is decidable if there exists some v G B
with (w, v) G P) and, moreover, that the range for every w is finite, i.e., for
any w G B, card({v G B | (w, v) G p}) < 00. As for string grammars above,
the productions in P induce a derivation relation =>B o n the objects in B
etc. The language generated by G is L(G) = {w G BT | A =$>Q W}.

For example, a string grammar (VN, VT, P, A) in this general notion is
now written as ((VN U VT)*, Vf, P, A).

A finite automaton (FA for short) is a quintuple M = (Q,TM,5, qo, F)
where Q is the finite set of states, T is the input alphabet, 5 : Q x T —• 2Q is
the state transition function, qç, G Q is the starting state and F Ç Q is the set
of final states. A finite automaton is called deterministic if card (5 (q, a)) = 1
for all g G Q and a G T. The transition function 5 can be extended in a
natural way to a function S : Q x T+ —> Q. The language accepted by the
DFA M is the set of all strings w G T+ that are accepted by M in such a
way that 5 (q0, w) G F.

2.2 Register Machines

When considering multisets of symbols, a simple universal computational
model are register machines (see [43] for some original definitions and [26],
[58] for definitions like that we use here).

2.2.1 Definition

An n-register machine is a construct RM = (n, R, i, h) where

• n is the number of registers,

• R is a set of labelled instructions of the form j : (op (r) ,k,l), where
op (r) is an operation on register r of RM, j , k, I are labels from the set
Lab (RM) (which numbers the instructions in a one-to-one manner),

• i is the initial label, and

• h is the final label.

The machine is capable of the following instructions:

(A (r), k, I) : Add one to the contents of register r and proceed to in-
struction k or to instruction / (in the deterministic variants usually
considered in the literature we demand k = I).

(S (r) ,k,l) : If register r is not empty, then subtract one from its contents
and go to the instruction k, otherwise proceed to instruction /.

Halt : Stop the machine. This additional instruction can only be assigned
to the final label h.

In their deterministic variant, such n-register machines can be used to
compute any partial recursive function / : N a —• N^; starting with an input
vector (ni,..., na) G N a in registers 1 to a, M has computed / (nl5..., na) =
(r\,...,rp) if it halts in the final label h with registers 1 to ß containing ri to
rß. If the final label cannot be reached, / (n1;..., na) remains undefined.

A deterministic n-register machine can also analyse an input (n1;..., na) G
N a in registers 1 to a, which is recognized if the register machine finally stops
by the halt instruction with all its registers being empty. If the machine does
not halt, the analysis was not successful.

In their non-deterministic variant, n-register machines can compute any
recursively enumerable set of natural numbers (or of vectors of natural num-
bers). Starting with all registers being empty, we consider a computation
of the n-register machine to be successful, if it halts with the result being
contained in the first (ß) register(s) and with all other registers being empty.

2.2.2 Results

The following theorem was already established in [26], based on results from
[43] and [36]:

Theorem 1 Let L Ç Nn be a recursively enumerable set of vectors of non-
negative integers. Then L can be accepted by a deterministic m-register ma-
chine with m < n + 2 registers.

Proof (sketch). For the m-register machine, we consider the restricted model
(see [43]) that uses the following labeled program instructions:

• k : A(i) corresponds to (A(i), k + 1, k + 1);

• k : S(i, m) corresponds to (S(i), m,k+ 1).

1. Start with the vector (fci,..., kn) in the first n registers.

2. Encode this vector (k\,..., kn) as 2kl3k2...p^n in register n + 1 :

h : A(n + 1)
h + 1: 5 (n + 2,Zi)

As long as register i, 1 < i < n, is not empty, delete 1 from its contents
and proceed with the according instruction qt + pi to multiply the con-
tents of register n +1 with pf, when registers 1 to n are empty, proceed
to instruction l^.

h + 2: S(l,qi+Pl)

h + n + l: S(n,qn+ pn)
h + n + 2: A(n + 1)
h + n + 3: S(n + l,l2)

For each pi we have the following sequence of instructions to multiply
the contents of register n + 1 with p{, where 1 < i < n :

q{ : A(n + 2)

qt+Pi-1: A{n + 2)

Recopying to register n + 1 is done by instructions l\ and l\ + 1.

3. Copy 2kl3k2...pk
l
n into register 1 :

l2 : 5r(n+l,Z2 + l)

h + 4
h + 5

A(n + 2)
S(n + l,
A(n + 1)

4. Simulate the computation of the original register machine ML only in
registers n + 1 and n + 2 (the start label for this simulation of ML is
£3, the stop label of ML has to be identified with label I4):

• k : (A(i),l) is simulated by:
S (n+l,rrik + 1)

1 : A(n + 2)

mfc
mfc

m j t

rrik

+
+
+
+

Pi •

Pi + "i
Pi + '<
Pi + ;

A{n
I: S(n
I: A(n
Î : S (n

+
+
+

2)

1)
2, mjt

Thus, adding 1 to register i in the original register machine is
simulated by multiplying the contents of register n + 1 with pi.

k : {S(i), I, m) is simulated by:
First, we subtract pi from the contents of register n + 1 as often
as possible and each time add 1 in register n + 2:

xk :

Xfc + 1 :
xk + 2:
xk + 3:

(
S(n + l,xk
A(n + 1)

<r, _|_ ^i" _ 9 • <? (n 4- 1

xk + 3j - 1 : A(n + 1)

xk + 3pi - 3 :
xk + 3pi - 2 :

A(n + 1)
S (n + 1, xk +
A(n + 2)

{ + 3)

If the contents of register n + 1 was divisible by pi without re-
mainder (i.e., 1 could be subtracted form register i in the original
register machine), we move the contents of register n + 2 back into
register n + 1 and proceed with instruction x\ :
xk + 3pi : A(n + 1)
xk + 3pi + 1 : S (n + 2, xk + 3p*)
xk + 3pi + 2: S(n + l,xi)

If the contents of register n+1 was not divisible by pi (i.e., register
i in the original register machine was empty), we jump to an
instruction between xk + 3pi + 3 and xk + 4pi + 1 to add the
corresponding remainder and, if necessary (i.e., if register n + 2
is not empty), we add the contents of register n + 2 multiplied
by pi to the contents of register n + 1, before finally jumping to
instruction xm:
a:fc +

Xk + '
Xk + '
Xk+'
Xk + '
Xk+'

xk + *
xk + >

i + 1
i + 2
i + 3
i + 4
i + 5

i + A
i + 5
i + 6

A(n + 1)

A(n + 1)
A(n + 1)
S (n + 2, xk +
o (n + 1, xmj
A(n + 1)

+ 5)

S (n + 2, xk + Api + 5)
S(n+l,xm)

5. If the simulated register machine halts in the label we identify with /4,

8

the first register contains the encoding 2fcl3fc2...p£n of the original input
vector (ki,..., fcn), whereas all other registers are zero.

Thus we have proved that L can be accepted by the n+2-register machine
described above, which in addition halts in the final state with 2fcl3fc2...p£n

in register 1 when started with the vector (k\,..., kn) in its first n registers.
Moreover, it is worth mentioning that the actions of the original register
machine can be simulated with only two registers in the new register machine
when using the encoding described above (compare with [43]). •

Prom the above result we can immediately conclude the following:

Proposition 2 For any recursively enumerable set of vectors of natural
numbers L Ç Nk there exists a deterministic (k + 2)-register machine M
recognizing L.

Moreover, for sets of strings we have a similar result (also see [36]):

Proposition 3 For any recursively enumerable set of strings L over the al-
phabet T with card (T) — z—\ there exists a deterministic 3-register machine
M recognizing L in such a way that, for every w € T*, w G L if and only
if M halts when started with gz (w) in its first register, where gz (w) is the
z-ary representation of the word w.

Chapter 3

P Automata -
a Brief Literature Review

What about using P systems as accepting devices?

This question was raised by Gheorghe Päun as Problem Q32 in [51], and
maybe even before the book was printed, a first answer was given by Erzsé-
bet Csuhaj-Varjü and György Vaszil in [14] by using purely communicating
rules. This kind of rules was introduced in [47] by formalizing the way two
chemicals cross the membrane in a collaborating manner: Either they pass
through in the same direction (which is called symport) or in opposite direc-
tions (antiport). In systems that use only communication rules of this type,
the objects are just moved within the regions without being affected by the
application of the rules.

In this chapter we briefly introduce this first model in a rather informal
way, also summarizing related results from [42] and improvements given in
[24]. What follows is a brief presentation of the award-winning answer to
another interesting question proposed in [50], which was provided by Oscar
Ibarra in [39]. We conclude this Chapter by pointing out related literature.

10

3.1 The Original Model, a Variant and Im-
provements

The notion of a P automaton was introduced in [14] as a purely communicat-
ing accepting P system with one-way communication. That is, under some
given conditions, a multiset of objects can be imported into membrane i only
from the membrane immediately outside of i, which is the outer region (also
called environment) in case of the skin membrane.

A one-way P automaton with n membranes is defined in [14] as a con-
struct

T = (V,ß,(w1,P1,F1),...,(wn,Pn,Fn))

where

• V is an alphabet of objects,

• /i is a membrane structure consisting of n membranes (regions), with
the membranes labelled in a one-to-one manner by natural numbers

• Wi, 1 < i < n, are finite multisets over V representing the initial
contents (state) of membrane i,

• Pi, 1 < i < n, are finite sets of communication rules associated to
region i, with the rules having the form x : y —> in, where x and y are
finite multisets over V,

• Fi, 1 < i < n, are finite sets of multisets over V, called the set of final
states of region i.

The top-down communication is performed by conditional symport rules
of the form indicated above. Such a rule, in [16] and [24] also written as
(y,in) \x, can be applied, provided region i contains the multiset x and the
multiset given by y is present in the region immediately outside of i. Starting
from an initial configuration (also called initial state), which consists of an
n—tuple of multisets of objects initially present in the n regions of the system,
a computation is performed by a sequential rule application: At each step,
exactly one rule is applied in each membrane until either the system aborts
(if there is at least one membrane where no rule can be applied) or it reaches
a final configuration, where for every non-empty set of multisets Fi assigned
to region i the contents of this region exactly coincides with an element of

11

The sequence of multisets of objects that enter the skin membrane can
be considered as input sequence, corresponding to a word read from an input
tape. The regions and objects represent both storage tapes and states of an
automaton. An input sequence is accepted by a P automaton as described
above, if it reaches a final state.

It was shown in [14] that any language which can be recognized by a two-
counter machine can also be obtained as an /—projection of the language
accepted by some one-way P automaton consisting of seven membranes.

A variant of the above system was investigated in [42], where both objects
and states are considered: Rules are of the form (qy, in) \px, where p as well as
q are states and x, y are multisets of objects. One state-object is associated
with each region. A multiset that enters the system during a computation is
accepted, if the system halts in a final state. This type of systems equipped
with only two membranes was proved to accept all recursively enumerable
sets of natural numbers in [42].

In [24], the results from [14] and [42] were significantly improved: It was
shown that one-way P automata can recognize all recursively enumerable
languages in only two membranes, moreover reducing the size of promoters
from 4 to 2 as well as the size of the moved multisets from 6 to 2, while
the result from [42] could be extended to languages, even for systems with
restricted forms of rules.

Moreover, a new mode of introducing the strings into the system was
proposed, the so-called initial mode: In the first steps of a computation, the
string x (consisting of symbols from a terminal alphabet) to be recognized
is introduced into the system symbol by symbol. After this procedure, the
computation may continue, eventually bringing other symbols in, but without
allowing any symbol from the original string to leave the system. If the
system halts, x is accepted. For the systems from [14] and [42] working in
the initial mode, the same improved results hold true for languages over a
one-letter alphabet.

3.2 Inducing an Infinite Hierarchy
Another interesting model was introduced in [39] as a restricted variant of
communicating P systems (see [58]), called restricted communicating P sys-
tems, or RCPS for short.

Such an RCPS consists of an alphabet of objects V including a distin-
guished object o, and a membrane structure \i with m > n membranes, n

12

of them being designated input membranes. Initially, the regions may con-
tain multisets of objects, whereas the objects o may only be put into the
input membranes. Moreover, each region has a set of evolution rules u —• v
associated with it, that can be of the following forms:

1. a —• aT or

2. ab —> aTlbT2 or

O. 0,0 • 0,T1UT

where a,b,c G V and r,T\,TI € {here,out} U {irij | 1 < j < n}. For an
object being in membrane k, if it appears in an evolution rule with subscript
out or irij, respectively, then it is transported out to the surrounding region
or into membrane j , respectively, provided that j is directly contained in
(adjacent to) k. The subscript here means that the corresponding objects
have to stay in the same place. Evolution rules of the third type can only
be placed in the skin membrane, having the meaning that the object c is
imported from the environment. In one transition step, all possible rules are
applied in a maximally parallel way. In contrast to the systems introduced
in [58], the environment of an RCPS initially does not contain any object at
all. Only objects transferred out of the skin membrane during a computation
can later be imported again. Hence, the objects present in the system and
its environment are the same in each step of the computation.

An RCPS can now be seen as an acceptor of n—tuples of non-negative
integers in the following way: Let a = (ii,...,in) £ Nn- The RCPS is said
to accept a, if it eventually halts after being started with (o*1,..., oln) in the
designated input membranes, but no objects o in other membranes. It is
worth noting that the objects from V \ {o} have fixed numbers and their
distribution across the membranes is initially given, too, independent of a.

It is then shown that RCPSs as defined above are equivalent to two-way
multihead finite automata over bounded languages. Moreover, an answer to
another question raised by Gheorghe Päun in [50] (for which even a prize was
offered, see [63]) is provided: The number of membranes in RCPSs induces
an infinite hierarchy. That is, for every r, there is an s > r and a unary
language I accepted by an RCPS with s membranes that cannot be accepted
by an RCPS with r membranes.

Other variants of RCPSs are investigated, showing that they form an
infinite hierarchy with respect to the number of membranes, too. For more
details, we refer to [39].

13

3.3 Some Further Remarks

Still using purely communicating rules only, variants of P automata as in-
troduced in [14], [15] are investigated in [16], this time using symport and
antiport rules, with and without promoters. Another model closely related
to the original one, but using priorities among the rules, is studied in [10].
So-called evolution communication P automata (using both evolution and
communication rules) are explored in [1]. Another approach is made in [40],
[41], where the input symbols exist on a tape which is transferred across
the membranes during the computation. Yet another class of P automata
is introduced in [4], using the features of membrane dissolution and creation
and applying these so-called active P automata to the parsing of (natural
language) sentences into dependency trees.

For more variants and results we refer to the well maintained up-to-date
bibliography of this area at [63].

14

Chapter 4

Analysing P Systems with
Antiport Rules

In contrast to various other models of P systems, where the objects them-
selves can be transformed during a computation, here we consider purely
communicating systems (as already done for the first time in [47], also see
[35]), and, moreover, we use these systems for analysing an input sequence
of terminal symbols (for a first variant of P automata see [14]).

We show that analysing P systems with only one membrane and antiport
rules of radius (1,2) and (2,1), can already recognize any recursively enumer-
able language of strings; the proof is based on the fact that P systems with
antiport rules quite easily can simulate n-register machines, which result was
already established, independently, both in [27] as well as in [38].

What follows has been published in [28], yet here we additionally consider
analysing P systems with antiport rules that we call initial. We will show
that these systems, where the multiset of terminal objects to be analysed is
initially put into a specified membrane, can recognize any recursively enu-
merable set of (vectors of) non-negative integers.

15

4.1 Definitions

An analysing P system with antiport rules is a construct II of the following
form:

U = (V,T,ß,w1,...,wn,Ru...,Rn)

where

• V is an alphabet of objects;

• T Ç V is the terminal alphabet;

• 11 is a membrane structure (with the membranes labelled by natural
numbers 1,..., n in a one-to-one manner);

• uii,...,wn are multisets over V associated with the regions 1,..., n of /*;

• Ri,...,R„, are finite sets of antiport rules associated with the regions
(membranes) 1, ...,n; an antiport rule is of the form (x,out;y,in),
where x, y € V+, which means that the multiset x is sent out of the
membrane and y is taken into the membrane region from the surround-
ing region. The radius of the antiport rule (x, out; y, in) is defined as
(kl, M)-

Starting from the initial configuration, which consists of /j, and
Wi,...,wn, the system passes from one configuration to another one by non-
deterministically in a maximally parallel way applying rules from Ri. A se-
quence of transitions is called a computation; it is successful, if and only if
it halts. A string w over an alphabet T is recognized by the analysing P
system II if and only if there is a successful computation of II such that the
(sequence of) terminal symbols taken from the environment is exactly w. (If
more than one terminal symbol is taken from the environment in one step,
then any permutation of these symbols constitutes a valid subword of the
input string.)

On the other hand, we might also consider systems for accepting (vectors
of) non-negative integers, where the multiset over T to be analysed is initially
put into a specified membrane together with possibly some other symbols
from V. Such a system will be called initial analysing P system with antiport
rules in the following.

Remark 4 We here do not demand the membrane where the multiset of ter-
minal symbols is put initially to be an elementary membrane. But of course,
we could also consider to use an additional elementary input membrane, as
this is the case for generating P systems having an elementary output mem-
brane.

16

4.2 Results

Based on the proof techniques used, e.g., in [26], [36], we can immediately
show the following results using Proposition 3.

Theorem 5 Let L Ç T* be a recursively enumerable set. Then L can be
recognized by a P system with antiport rules in only one membrane using
antiport rules of the forms (x, out; y, in) with radius (\x\, |y|) E {(1,2), (2,1)}
only.

Proof (sketch). According to Proposition 3, we only have to elaborate how
we can read the input string w, generate the encoding gz (w) and then how to
simulate the instructions of a 3-register machine; in fact, the main emphasis
lies on the simulation of an n-register machine:

• An Add-instruction j : (A (i), k, I) can be simulated by the rules

(j, out; kat, in) and (j, out; lai, in).

• A conditional Subtract-instruction j : (5 (i), A;, /) is simulated by the
following rules:

(jcii, out; k, in)
()
(j'ai, out; f, in) (f, out; f'f", in) and (/'/", out; f, in)

(j'" f", out; j"", in)
iff", out; I, in)

The condition of maximal parallelism guarantees that (f ai, out; f, in)
is applied in parallel with the rule (j",out;j'"j"",in), which leads to
a non-halting computation by the introduction of the failure symbol
(trap symbol) / . Only if in the current configuration no symbol a* is
present in the skin membrane, the object f can wait two steps for
being used in the rule (j'j"",out;l,in) together with the symbol j""
introduced by the rule (f"j"", out;j"", in).

• The halting instruction h : HALT is simulated by just doing nothing
with the halting symbol h anymore.

Now let us start with the singleton q in the initial configuration. For
every a G T we take (q, out; qaa, in). Let us assume we have represented the
encoding of the input sequence v taken in so far by gz (v) symbols A. The
encoding of gz (va) obviously is given by z * gz (v) + gz (a). This encoding

17

step is accomplished by the following subprogram of a register machine; its
first part represents the multiplication by z:

qa: (S(l),qa,uq'a)
qa,i : (A (2), qa,i+u Qa,i+i) for 1 < z < z
qa<z : (A (2), qa, qa)
<L' (S (2) ,< : ,<:)
Q'ay- (A(l),q'a,q'a)

Now let k = gz(a); then we finish with the following instruction:
C,i : (A (1), < i + 1 , < i + 1) for 1 < i < k - 1

The input of the next terminal symbol starts with the antiport rule

Obviously, the instructions of the subprogram above can be translated
into antiport rules as already elaborated at the beginning of the proof. The
numbers of symbols A and B, respectively, correspond with the contents of
registers 1 and 2, respectively.

If no further input symbols should be taken in, we use the following
antiport rules to start the simulation of the 3-register machine indicated in
Proposition 3:

(q, out; q'q", in)
{q'q",out;q0,in)

where Co corresponds to the initial label of the register machine.
Obviously, the halting symbol h (representing the halting instruction h :

HALT) appears in the skin membrane of the analysing P system if and only
if the register machine accepts the input gz (w). Q

Observe that, in contrast to P systems with antiport rules as defined
in [47], we need not specify the environment, because we assume every symbol
to appear in an unlimited number there.

The string to be recognized is given by the sequence of terminal symbols
a taken from the environment by antiport rules of the form (q, out; qaa, in).

Considering initial analysing P systems with antiport rules, we obtain
a similar result for recursively enumerable multisets over T (and the corre-
sponding sets of vectors of natural numbers, respectively):

Corollary 6 Let L Ç Nfc, k > 1, be a recursively enumerable set of (vectors
of) non-negative integers. Then L can be accepted by an initial analysing P
system with antiport rules of radius (1,2) or (2,1), in only one membrane.

Proof (sketch). Other than in the previous proof, we now do not have to
take care of how to read the input, as it is already contained in the skin

18

membrane. Thus we can immediately start the (k + 2) —register machine
from Proposition 2, where the multiset over T initially present represents
the contents of the first k registers. We only have to show how we can
simulate the instructions of the register machine by antiport rules of radius
(1,2) or (2,1), which is done exactly in the same way as in the proof of
Theorem 5. •

4.3 Conclusion
We have investigated (initial) analysing P systems with antiport rules which
surprisingly already obtain their maximal recognizing power with the sim-
plest membrane structure and rules with radius (1,2) or (2,1). According
to the features of the 3-register machine constructed in Proposition 3 a suc-
cessful computation of an analysing P system recognizing the string w ends
up in a final configuration with only the halting symbol h in the skin mem-
brane, which in some sense corresponds to the situation of an automaton
accepting by a final state (also compare with the definition of acceptance by
P automata as defined in [14]). On the other hand, we could also "accept
by empty membrane" using the symport rule (h, out) (for the definition of a
symport rule see [47]).

19

Chapter 5

P Automata with Membrane
Channels

In this Chapter (that has partly appeared in [46] and [33]), we give the def-
inition of a P automaton with membrane channels and its specific variants,
especially using only antiport rules, as well as a very restricted variant char-
acterizing regular languages. Again, we consider the initial variant of these
systems as well.

In the model presented here, objects can cross the membranes by passing
through corresponding channels that have been opened by means of activa-
tors, unless the channel is blocked by a prohibitor. Applying an activating
rule means that an activator multiset (or a single activator symbol) opens
input and output channels for specific objects. In the following substep, each
object can pass through the surrounding membrane provided there is no
prohibitor active, which prevents the object from passing through the corre-
sponding channel. Whereas P systems with activated / prohibited membrane
channels used as computing and generating devices have been investigated
in [27], we here consider such systems as accepting devices, using them for
analysing an input sequence of terminal symbols, as done for the first time
in [14]. According to usual notations in formal language theory we will call
such devices P automata with membrane channels.

20

5.1 Definitions
A P automaton with membrane channels is a construct II of the following
form:

U=(V,T:ß,w1,...,wn,R1,...,Rn,F)

where

1. V is an alphabet of objects;

2. T Ç V is the terminal alphabet;

3. /i is a membrane structure (with the membranes labelled by natural
numbers 1,..., n in a one-to-one manner);

4. u>i,..., wn are multisets over V associated with the regions 1,..., n of n;

5. R\,...,Rn are finite sets of rules associated with the compartments
1,..., n, which can be of the following forms:

• activating rules: (P; x, out; y, in), where x, y G V* and P is a
finite multiset over V,

• prohibiting rules: (b, out; Q) or (b, in; Q), where b E V and <5 is a
finite multiset over V.

6. F is a finite set of final states.

A final state is a function / assigning a finite multiset with each membrane
region (see [14]); the empty set (in the following we shall use the special
symbol A instead of 0 for specifying this case) indicates that we do not care
about the contents of the corresponding region, whereas for every non-empty
multiset assigned to a membrane region the contents of this region must
coincide with this finite multiset; in this case we say that the underlying
configuration has reached the final state / .

Starting from the initial configuration, which consists of fi and
ui\, ...,wn, the system passes from one configuration to another one by non-
deterministically in a maximally parallel way applying rules from Ri in
the following sense: Let x = x\...xm and y = yx—Vk- An activating rule
(P;x,out;y,in) means that by the activator multiset P an output channel
for each symbol Xi, 1 < i < m, is activated, and for each y^ 1 < j < k, an
input channel is activated. In the following substep of a derivation (compu-
tation), each activated channel allows for the transport of one object Xi and

21

yj, respectively, provided there is no prohibitor multiset Q active by a pro-
hibiting rule (xi,out;Q) or (yj,in;Q), respectively (which means that the
multiset Q can be found in the underlying compartment). The activating
multisets P in the activating rules have to be chosen in a maximally parallel
way.

A system that uses only activating rules is called a P automaton with
activated membrane channels in the following.

A sequence of transitions is called a computation. For a multiset or a
string w over an alphabet T, a computation usually is called successful, if and
only if it halts (i.e., no rule can be applied anymore); yet following the idea
of final states introduced in [14], in this Chapter we shall call a computation
successful, if and only if it reaches a final state / from F. A multiset or a
string w over an alphabet T is recognized by the P automaton with membrane
channels II if and only if there is a successful computation of II such that
the (sequence of) terminal symbols taken from the environment is exactly
w. (If more than one terminal symbol is taken from the environment in one
step, then any permutation of these symbols constitutes a valid subword of
the input string.)

Again we will also consider initial P automata with activated membrane
channels able to eventually accept (vectors of) non-negative integers, when
being initially supplied with the multiset over T to be analysed in the skin
membrane together with possibly some other symbols from V.

5.2 Results

The main result established in [43] is that the actions of a deterministic
Turing machine can be simulated by a 2-register machine. Based on this
result and the proof techniques used, e.g., in [26] and [36], we can immediately
show the following results using Proposition 3.

Theorem 7 Let L Ç T* be a recursively enumerable set. Then L can be
recognized by a P automaton with membrane channels in only one membrane
using only singleton activators and prohibitors.

Proof (sketch). According to Proposition 3, we only have to elaborate how
we can read the input string w, generate the encoding gz (w) and then how to
simulate the instructions of a 3-register machine; in fact, the main emphasis
lies on the simulation of an n-register machine:

1. An Add-instruction j : (A (i), k, k) is simulated by the activating rule
(j; j , out; koi, in).

22

2. A conditional Subtract-instruction j : (S (i), k, I) is simulated by the
following rules:

(j; ja.i, out; kfj, in) (/_,-, in; a^
(j;j, out; j'j", in) (j", in; a{)
(/; j'j", out; lfj,in) (fj, in; j")
(fj-Jj,out;fj,in)

The construction of the rules in the P automaton with membrane chan-
nels guarantees that rules sending out another object together with the
activating symbol can only be used without introducing a failure symbol
(trap symbol) if also this other object is present in the skin membrane.

3. The halting instruction h : HALT is simulated by just taking the
halting symbol h as final state.

Now let us start with the singleton q in the initial configuration. For
every a G T we take (q; q, out; qaa, in). Let us assume we have represented
the encoding of the input sequence v taken in so far by gz (v) symbols A. The
encoding of gz (va) obviously is given by z * gz (v) + gz (a). This encoding
step is accomplished by the following subprogram of a register machine; its
first part represents the multiplication by z:

instruction simulated by
qa : (S(l),qa,uq'a) (qaiqad-i^u^q'J^in) (fqa,in;ai)

(qa; qa, out; q'aq%, in) (£, in;a{)
<i; qWâ, °ut; Qafqa, in) (fqa, in; fi)
(fqa'Jga,out;fqa,in)

qa,i • [A (2) , qa,i+i, qa,i+\) (qa,%; qa,i, out; ça,i+ia2, in) for 1 < i < z
qa,z • (A (2) , qa, qa) (qay, qUtZ, out; qaa2,in)
qa : (S (2), 9a,i, 9a,i) (qa; qaa2, out; q'aAfqa,in) (fa, in; o2)

(qa;qa,out;q'aq'â,in) (q'^,i
(fa K > out; q'alfqa, in) (fa, in;
(fa; fa, out; fa, in)

qa,i- (A(l),qa,qa) (Ço,ii9a,i, out; qaau in)

Now let k = gz(
a)\ then we finish with the following instruction:

(
The input of the next terminal symbol starts with the activating rule

)
The numbers of symbols A and B, respectively, correspond with the con-

tents of registers 1 and 2, respectively.
If no further input symbols should be taken in, we have to compute 29z^

before using the following activating rule to start the simulation of the 3-
register machine indicated in Proposition 3:

23

(q; q, out; q0, in)

where Co corresponds to the initial label of the register machine.
Obviously, the P automaton halts if and only if the register machine

accepts the input gz (w). •

The string to be accepted is given by the sequence of terminal symbols a
taken from the environment by activating rules of the form (q; q, out; qaa, in).

If considering now the acceptance of sets of vectors of natural numbers by
initial P automata with activated membrane channels, we obtain a similar
result.

Corollary 8 Let L Ç N*, k > 1, be a recursively enumerable set of (vectors
of) non-negative integers. Then L can be accepted by an initial P automaton
with activated membrane channels in only one membrane using only singleton
activators and prohibitors.

Proof (sketch). As already explained in the proof of Corollary 6, we only
have to show how the instructions of the register machine from Proposition
2 are simulated, which is done as in the proof of Theorem 7. •

With respect to the size of the activator and prohibitor multisets the
above results are already optimal. But if we here define the radius of an
activating rule (P; x, out; y, in) as the pair of numbers (\x\, \y\), then we still
can improve the above result:

Theorem 9 Let L Ç T* be a recursively enumerable set. Then L can be
recognized by a P automaton with membrane channels in only one membrane
using only singleton activators and prohibitors with the activating rules hav-
ing radius (1, 2) or (2,1).

Proof. Now we only have to make sure that all activating rules have a radius
of (1,2) or (2,1). The activating rule for the simulation of an Add-instruction
from the proof of Theorem 7 already fulfills this condition. We only have to
change the rules that are needed for the simulation of the Subtract-instruction
to fit our needs:

A conditional Subtract-instruction j : (S (i), k, I) is now simulated by the
following rules:

24

(j ; j , out; j'fj, in) (fj ,in;ai)
(f '; j'ai, out; k, in)
(j ; j , out; j"f", in) (j'", in; a{)

Again we now start with the singleton q in the initial configuration. For every
a € T we take the activating rule (q; q, out; qaa, in). Let us assume we have
represented the encoding of the input sequence v taken in so far by gz (v)
symbols A. The encoding of gz (va) obviously is given by z * gz (v) + gz (a).
This encoding step is accomplished by the following subprogram of a register
machine:

qa : (S(l),qaA,q'a)
qaA : (A (2) , ça>i+1, <?a,i+i) for 1 < i < z
qa>z: (A(2),qa,qa)

(4
Q'ay- (A(l),q'a,q'a)

Now let A; = gz(a); then we finish with the following instruction:
Cy- (A (i) , < i + 1) < i + 1) f o r i < i < f c - i

The input of the next terminal symbol starts with the activating rule

If no further input symbols should be taken in, we have to compute 29z^
before using the following activating rules to start the simulation of the 3-
register machine indicated in Proposition 3:

(q; q, out; q"q'", in)
(q"; q"q'", out; q0, in)

where qo corresponds to the initial label of the register machine. Obviously,
the halting symbol h (representing the halting instruction h : HALT) ap-
pears in the skin membrane of the analysing P system if and only if the
register machine accepts the input gz (w). •

We now establish a similar result to Corollary 8 for recursively enumerable
multisets over T (and the corresponding sets of vectors of natural numbers,
respectively):

Corollary 10 Let L Ç Nfc, k > 1, be a recursively enumerable set of (vectors
of) non-negative integers. Then L can be accepted by an initial P automaton
with membrane channels in only one membrane using only singleton activa-
tors and prohibitors vnth the activating rules having radius (1, 2) or (2,1).

25

On the other hand, we can also get rid of the prohibiting rules by allowing
the size of the activator multisets being greater than one:

Theorem 11 Let L Ç T* be a recursively enumerable set. Then L can be
recognized by a P automaton with activated membrane channels in only one
membrane with the activating rules having radius (1,2) or (2,1).

Proof. Again we use the same construction as in the proof of Theorem 7,
only that now we have to replace the rules to simulate conditional Subtract-
instruction by the following ones:

t; k,in)
(j j j j)
(j'ai; j'ai, out; fr, in) {fr; fr, out; fjfjf, in) (/j; f'.f'j, out; fr, in)
(f;f,out;f"j"",in)

The condition of maximal parallelism guarantees that {j'a^j'ai, out; fr, in) is
applied in parallel with the rule (j";j", out;j'"j"", in), which leads to a non-
halting computation by the introduction of the failure symbol (trap symbol)
fr. Only if in the current configuration no symbol a; is present in the skin
membrane, the object f can wait two more steps until being used in the rule
0'""; //'"> out; I, in) together with the symbol /" ' . D

And of course again we can immediately conclude the following:

Corollary 12 Let L Ç Nfc, k > 1, be a recursively enumerable set of (vectors
of) non-negative integers. Then L can be accepted by an initial P automaton
with activated membrane channels in only one membrane using only activat-
ing rules with radius (1,2) or (2,1).

5.3 (Finite) P automata with Antiport Rules

In this last proof, we sometimes used rules of the form (x; x, out; y, in), where
x, y £ V+, thereby "forcing" all output channels to be used, i.e., for the ap-
plication of such a rule, all objects x have to be present in the skin membrane
and pass through the opened channels in the subsequent step. (Remember
that input channels are always used, as due to our definition, the environment
contains all objects in an arbitrary number.)

Hence, writing these special rules in a shorter way as (x, out; y, in), we
get antiport rules as explained in the previous Chapter. In the following,
we will call this special variant of a P automaton with activated membrane

26

channels a P automaton with antiport rules. Here again, we define the radius
of the rule (x, out; y, in) as the pair of numbers (|x|, \y\).

In Chapter 4, it was shown that analysing P systems with antiport rules of
radius (2,1) or (1, 2), consisting of only one membrane can already recognize
any recursively enumerable language of multisets and strings, respectively;
in fact, this was proved for halting computations, but obviously the same is
true for computations accepting by final states, too:

Theorem 13 Let L Ç £* be a recursively enumerable language. Then L can
be accepted by a P automaton with antiport rules that consists of the simplest
membrane structure and only uses rules of the form (x, out; y, in) with the
radius of the rules being (2,1) or (1,2).

When considering P automata with antiport rules that consist of the
simplest membrane structure, i.e., only the skin membrane, and use only
rules of very specific forms, we obtain characterizations of regular languages
which is shown in the following:

A finite P automaton with antiport rules is a P automaton with antiport
rules

n = (V,T,[1]uw1,R1,F)

with only one membrane such that

1. the axiom ui\ is a non-terminal symbol (in the case of finite P automata
with antiport rules simply called "state"), i.e., w\ € V \ T;

2. antiport rules in Ri are of the forms (q, out;pa, in) and (pa, out; r, in),
where a is a terminal symbol in T and p, q, r are non-terminal symbols
(states) in V \ T;

3. for any rule (q, out;pa, in) in Ri, the only other rules in Rx containing
p are of the form (pa, out; r, in);

4. F Ç V \ T (more precisely, each multiset in F consists of exactly one
"state").

The following example shows the importance of the third condition given
above for finite P automata, which guarantees that every terminal symbol
taken into the skin membrane is immediately sent out again in the next step.

Example 14 Consider the P automaton with antiport rules

27

with Ri containing the rules

(p, out; pa, in), (p, out; qa, in), (qa, out; r, in), (r, out; sb, in), (sb, out; q, in).

Then the rule (p, out; pa, in) imports an arbitrary number n of symbols a,
finally at least one symbol a is taken in by the rule (p, out; qa, in). Every
application of the sequence of the rules (qa, out; r, in), (r, out; sb, in), and
(sb, out; q, in) sends out one of the symbols a while at the same time "ac-
cepting" one symbol b by importing it and sending it out immediately in the
succeeding step. Hence, the computation halts successfully in the final state q
after having accepted the string anbn; hence, L (Hi) = {anbn \ n > 1} , which
is a well-known linear, but non-regular language.

Theorem 15 Let L Ç T+. Then L is regular if and only if L is accepted by
a finite P automaton.

Proof. Let L be a regular (string) language accepted by the FA M =
(Q,T,5,qo, FM). Then we can construct a finite P automaton

that accepts L with

1. V = Ql> {(q, a,r)\reö (q, a) for some q, r e Q, a € T} U T;

2. Tn = T;

3. w/i = g0;

4. Ri = {(p, out; (q, a, r) a, in), ((q, a, r) a, out; r, in) |
p,q,r € Q,a£T and r e ö (q, a)};

5. F = FM.

Every step in M using the transition (q, a, r) is simulated by two steps in
FT using the rules (p, out; (q, a, r) a, in), ((q, a,r) a, out; r, in) via the interme-
diate configuration where the skin membrane contains (q, a, r) a.

On the other hand, if the regular (string) language L is recognized by a
finite P automaton II = (V, T, [i]i,wi, Ri, F), then it is also accepted by the
finite automaton M = (Q, TM, S, ÇO> FM) with

I- Q = V\T;

2. TM=T;

28

3. go = wi]

4. 5 = {((q, a), {r G Q \ (q, out; pa, in), (pa, out; r, in) G R\
for some p G Q}) \q G Q,aeT};

5.

Every application of a sequence (q, out; pa, in), (pa, out; r, in) of rules in
Ri is simulated by only one transition (q,a,r) in M; as the intermediate
contents pa of the skin membrane cannot appear as final state, in a suc-
cessful computation of M the application of the rule (q, out; pa, in) must be
followed by the application of a rule (pa, out; r, in) for some r G Q, hence the
transitions constructed in S correctly simulate the rules in Rx. •

5.4 Conclusion
We have investigated some variants of P automata with membrane chan-
nels and initial P automata with membrane channels which already obtain
their maximal recognizing power with the simplest membrane structure. We
have shown that by using singleton activators and prohibitors, the radius of
the activating rules can be reduced to (1, 2) or (2,1), whereas when using
activating rules only, the size of the activating multisets has to be slightly
increased.

A very restricted variant using only special activating rules (in this case
antiport rules) allows for the characterization of regular languages.

29

Chapter 6

P Automata with Conditional
Communication Rules
Assigned to Membranes

In contrast to all models of P systems and P automata investigated so far,
where the evolution rules are placed within a region, in this Chapter we con-
sider P automata where the purely communicating rules are directly assigned
to the membranes (PACCRAMs for short): Depending on promoting and in-
hibiting multisets inside and outside the membrane, one multiset of objects
has to leave the region surrounded by the membrane and another multiset of
objects has to enter this region coming from the region outside the membrane
(for the skin membrane, this is the environment, which we assume to contain
all objects in arbitrarily many copies).

Whereas in [29], the universal computational power of P systems with con-
ditional communication rules with only one membrane and singleton multi-
sets used as promoters and inhibitors as well as singleton objects transported
through the skin membrane was shown by means of graph-controlled gram-
mars, we here investigate the accepting variant.

After giving the definition of PACCRAMs, we point out the similarities
and differences between the model presented here and related ones with re-
spect to the idea that the rules are directly assigned to the membranes.

We show that PACCRAMs already obtain their maximal recognizing
power with only one membrane and the size of the promoting and inhibiting
multisets as well as the size of the multisets of objects transported through
the skin membrane not exceeding 1.

Note that other than in the original paper ([29]), we here use the notion
of P automata with conditional communication rules assigned to membranes.

30

6.1 PACCRAM - Definition
A P automaton with conditional communication rules assigned to membranes
(a PACCRAM for short) is a construct II of the following form:

n = (V, T, /i, wu wn, Ru ..., Rn, F)

where

• V is an alphabet of objects;

• T Ç V is the alphabet of terminal objects;

• ß is a membrane structure (with the membranes labelled by natural
numbers 1,..., n in a one-to-one manner);

• wi, ...,wn are multisets over V associated with the regions 1,..., n of /j;

• Ri, ...,Rn are finite sets of ru/es associated with the membranes 1,..., n,
which are of the form

(Pin, Qin, Pout, Qout', V, W, X, Out)

where x, y and Pin, Qin, P^t, Q^ are finite multisets over V.

In a more depictive way, a rule

(Pin, Qin, Pout, Qcmù V, in; x, out)

can be written in the following form:

P,out Pir

y
X

Qout

Moreover, if Pout = Q^t = A, then the rule

Pin
y

<— x
Qin

will be represented by (Pin, Qin; y, in; x, out) thus omitting the multisets
Pout, Qout', this is the only form of rules relevant for the skin membrane,
as we assume the environment to contain all objects in arbitrarily many
copies (therefore, the condition given by a multiset Pout is always ful-
filled and the condition given by a multiset Qout can only be fulfilled
for the empty multiset).

31

• F is a finite set of final states.

Starting from the initial configuration, which consists of \i and
Wi,..., wn, the system passes from one configuration to another one by non-
deterministically choosing one rule from some Ri and applying it in the fol-
lowing sense (observe that here we consider a sequential model of applying
the rules (as, e.g., done in [22], [21], [25], [45]) instead of choosing rules in a
maximally parallel way as it is often required in P systems):

Let x = xi...xm and y = y\...yk- A rule (Pin,Qin,Pcmt,Qouùy,i'n;x,out)
means that in the presence of the promoting multisets Pin and P^t inside
and outside the membrane and provided that the inhibiting multisets Q{n and
Qout are not present inside respectively outside the membrane, the objects
Xi, 1 < i < m, are sent out and the objects Vj, I < j < k, are taken into
the membrane; the objects forming the promoting multisets P{n and Pout,
respectively, cannot be part of the multisets x and y, respectively.

Again we call a computation successful, if and only if it reaches a final
state / from F. A multiset or a string w over an alphabet T is recognized by
the PACCRAM II if and only if there is a successful computation of II such
that the (sequence of) terminal symbols taken from the environment is ex-
actly w. (If more than one terminal symbol is taken from the environment in
one step, then any permutation of these symbols constitutes a valid subword
of the input string.)

To obtain a model for accepting sets of vectors of non-negative integers,
which here will be called initial PACCRAM, we again do not consider an
input sequence, but in the beginning put the multiset of terminal symbols to
be analysed into a specified region.

We should like to mention that rather similar ideas like those used in
PACCRAMs can be found in [5], where communication rules of the form
xx'[iyy' —> xy'[ix'y for x, x', y, y' G V*, 1 < i < n, are used, allowing for the
transfer of the objects x' and y' across the membrane provided the multisets
x and y are present outside and inside, respectively, of membrane i. But in
contrast to the systems used in this paper, in [5] these rules are applied in a
non-deterministic, maximally parallel manner. Moreover, the skin membrane
cannot interact with the environment, and the objects sent out of the system
are lost.

Another model resembling the ideas of our new model is that of P systems
with promoters/inhibitors introduced in [6], where rules of the forms u —> v\a

and u —* v\^a are used where the presence respectively absence of the object
a in the corresponding region controls the applicability of the rules.

32

In contrast to P systems with antiport rules as defined in [47], we need
not specify the environment, because we assume every symbol to appear in
an unlimited number there.

Comparing the notions introduced for P automata with membrane chan-
nels as defined in Chapter 5 with the definitions of PACCRAMs we should
like to emphasize once more that the objects forming the promoting multi-
sets Pin and P^t inside and outside the membrane cannot be transported
through the membrane when the corresponding rule is applied.

To give a first impression of how a PACCRAM works, we consider the
following example (compare with Example 14):

Example 16 Consider the PACCRAM

n2 = ({a,b,p,q,r} ,{a,

where

pa
V

qa

qa

sb

P
U

sb

Then the rule (A, A; pa, in; p, out) imports an arbitrary number n of sym-
bols a, finally at least one symbol a is taken in by the rule (A, A; qa, in;p, out).
Every application of the sequence of (A, A; r, in; qa, out), (A, A; sb, in; r, out),
and (A, A; q, in; sb, out) sends out one of the symbols a while at the same time
"accepting" one symbol b by importing it and sending it out immediately in
the succeeding step. Hence, the computation halts successfully in the final
state q after having accepted the string anbn; thus, L (II2) = {anbn \n > 1}.

6.2 Results

We use the same proof idea as in previous Chapters to show the main result
for PACCRAMs:

33

Theorem 17 Let L ÇT* be a recursively enumerable string language. Then
L can be accepted by a PACCRAMU in only one membrane using only single-
ton promoting and inhibiting multisets as well as singleton objects transported
through the skin membrane.

Proof (Sketch.) According to Proposition 3, we only have to elaborate how
we can read the input string w, generate the encoding gz (w) and then how to
simulate the instructions of a 3-register machine; in fact, the main emphasis
lies on the simulation of an n-register machine:

1. To simulate an Add-instruction j : (A (i), k, k) we need the following
rules:

2. For the simulation of a conditional Subtract-instruction j : (S (i), k, I)
we include the following rules:

I

ai

k'

. as well as

*"
k'

k"

k"
k

k' k" •
k'

3. The halting instruction h : HALT is simulated by just taking the
halting symbol h as final state.

Let us start with the singleton q in the initial configuration. For every a G T
we take the rules

q» a

q"

Now we assume that we have represented the encoding of the input sequence
v taken in so far by gz (v) symbols A. The encoding of gz (va) obviously is
given by z*gz (v)+gz (a). This encoding step is accomplished by the following

34

subprogram of a register machine; its first part represents the multiplication
by z:

qa: (S(l),qaA,q'a)
qa,i •• {A (2) , qa>i+1, qa,i+i) for 1 < i < z - 1
Qa,z • (A (2) , qa, qa)
l'a'- (S (2) , q'aA,q:A)

Now let k = gz(a)\ then we finish with the following instructions:
q'Ly- 04(i),<i+1)fori<z<fc-i

The input of the next terminal symbol starts with the membrane rule

Obviously, the instructions of the subprogram above can be translated
into rules assigned to membranes as already elaborated at the beginning of
the proof.

In case no further input symbols should be taken in, we have to compute
29* M before starting the simulation of the 3-register machine indicated in
Proposition 3. Obviously, the P automaton halts in the final state h if and
only if the register machine accepts the input gz (w). Q

A similar result also holds true for initial PACCRAMs accepting recur-
sively enumerable set of (vectors of) non-negative integers:

Corollary 18 Let L Ç Nfc, k > 1, be a recursively enumerable set of (vectors
of) non-negative integers. Then L can be accepted by a PACCRAMU in only
one membrane using only singleton promoting and inhibiting multisets as well
as singleton objects transported through the skin membrane.

Remark 19 The size of the multisets used in the rules of the PACCRAMs
can be considered as a complexity measure for this type of P automata. With
respect to this complexity measure, the PACCRAMs constructed in the proofs
of this Section are already optimal, as we only had to use multisets of size 1,
i.e., in the rules (Pin,Qin;y,in;x,out) the multisets Pin, Qin, y, x either are
empty or consist of exactly one symbol.

35

6.3 Conclusion
We have investigated (initial) P automata with conditional communication
rules assigned to membranes (PACCRAMs), and we have shown that already
with the simplest membrane structure and only singleton promoters and in-
hibitors as well as singleton objects transported through the skin membrane,
PACCRAMs can be used as accepting devices for recursively enumerable
string languages, whereas initial PACCRAMs allow for accepting recursively
enumerable sets of (vectors of) non-negative integers. The results obtained
in this Chapter are already optimal with respect to the number of mem-
branes as well as with respect to the size of the multisets used as promoters,
inhibitors, and strings transported across a membrane (see Remark 19).

The new idea of assigning the evolution rules directly to the membranes
of a membrane system is also used in [23] together with splicing rules and
cutting/recombination rules (these rules involve several strings and are often
used in the area of DNA computing, see [52]). There again the interplay
between the objects inside the skin membrane as well as in the environment
through the skin membrane allows for universal computational systems with
only one membrane.

36

Chapter 7

Accepting P systems /
P Automata with Catalysts

In the original paper in [48] introducing membrane systems (P systems) as
a symbol manipulating model, catalysts as well as priority relations on the
rules were used to prove them to be computationally universal; in [60] it was
shown that a priority relation on the rules is not necessary to obtain this
universality result. In [30] the number of catalysts was reduced by one for
the variants of P systems with two membranes considered there; moreover,
the number of catalysts could even be reduced by one more when considering
computations reaching some finitely specified final states as in the model of
P automata introduced in [15] instead of halting computations. In [31] it is
shown that even two catalysts are already sufficient for all these variants.

Other than in [31], we here only consider the accepting variants, accepting
by halting computations as well as by final states. Moreover, we investigate
all these systems having catalytic rules only.

In the following Section, after some prerequisites we describe a special
variant of counter automata that we use for proving our results about P
automata accepting string languages. Then we define the specific variants of
P automata considered in this Chapter. In the further parts of the Chapter
we show how we can reduce the number of catalysts in P systems with specific
stopping conditions by using new proof techniques for simulating register
machines. Using well-known results for two-counter automata we prove our
universality results for P automata accepting string languages.

37

7.1 Definitions

By NaRE we denote the family of recursively enumerable sets of a-vectors
{yiT--,ya) of non-negative integers. Two sets of a-vectors are considered to
be equal if they only differ at most by the zero-vector (0,..., 0).

Let ra > 2 and let k, I be two positive integers not greater than m; then
we define:

_ f Z - f c for l> k
' © m K '.—

7.2 Register Machines and Counter Au-
tomata

The results proved in [26] (see also Chapter 2) as well as in [36] and [37]
immediately lead us to the following results which differ from the original
ones mainly by the fact that the result of a computation is stored in registers
that must not be decremented:

Proposition 20 For any partial recursive function f : Na —• N? there
exists a deterministic (a + 2 + ß)-register machine M computing f in such
a way that, when starting with (ni, ...,na) G N a in registers 1 to a, M has
computed f (ni,..., na) = (ri,..., r^) if it halts in the final label h with registers
a + 3 to a + 2 + ß containing ri to Tß, and all other registers being empty; if
the final label cannot be reached, f (ni, ...,na) remains undefined.

The following Corollary is an immediate consequence of the preceding
proposition (by taking ß — 0):

Corollary 21 For any recursively enumerable set L Ç N a of vectors of
non-negative integers there exists a deterministic (a+ 2)-register machine
M accepting L in such a way that M halts with all registers being empty if
and only if M starts with some (ni, ...,na) 6 L in registers 1 to a and the
registers a + 1 to a+ 2 being empty.

For dealing with strings, we introduce the following (quite restricted)
model of an n-counter automaton, which can be seen as an n-register machine
having an additional input tape for the input string to be analysed; we assume
this input tape to contain the letters of the input string in the correct order
followed by an arbitrary (infinite) number of blank symbols B:

38

An n-counter automaton is a construct

M=(n,ZB,P,i,h)

where

• n is the number of registers,

• E is the input alphabet and B is a special symbol not in S, S =
{bt I 1 < t < s}, s > 1, £ ß = S U {B} ,

• P is a set of labelled instructions of the form j : (op(r) ,k,l), where
op (r) is an operation on register r of M, j , k, I are labels from the set
Lab (M) (which numbers the instructions of the program of M repre-
sented by P), or of the form j : (read, k\,..., ks, I), where j , fc1}..., k3,1
are labels from the set Lab (M),

• i is the initial label, and

• h is the final label.

As an n-register machine, an n-counter automaton is capable of the following
instructions on its registers:

(A (r), k, I) Add one to the contents of register r and proceed to instruc-
tion k or to instruction I; in the deterministic variant we demand k = I.

(S (r) ,k,l) : If register r is not empty, then subtract one from its contents
and go to instruction k, otherwise proceed to instruction /.

Moreover, we again have the i7a/t-operation:

Halt : Stop the machine. This additional instruction can only be assigned
to the final label h.

In addition, we now also have operations on the input tape which allow
for reading the (letters of the) input string:

j : (read, h\,..., ks, I) : Read the symbol under the read-only head of the
input tape and move the read-only head of the input tape one position
to the right; if this symbol equals bt, 1 < t < s, then go to instruction
kt, otherwise (if the read symbol equals B) proceed to instruction /.

39

Given a string w € E+ , we say that M accepts w if and only if M, when
started with w on its input tape and all counters being empty, finally halts in
the final label. Without loss of generality, we may assume that all counters
are empty when M halts; moreover, we also assume that after reading the
first blank symbol B on the input tape, M never accesses the input tape
any more (because then only some more blank symbols would be read). The
string language L Ç E+ accepted by M is the set of all strings w 6 E+

accepted by M.

We know from the results proved in [43] that two counters are sufficient
to simulate the actions of a Turing machine, hence, the following result can
easily be derived even for the special model of rc-counter automata defined
above:

Proposition 22 For any recursively enumerable X-free string language L Ç
E+ there exists a (deterministic) 2-counter automaton M accepting L.

7.3 The Standard Model of P Systems and
Variants

The standard type of membrane systems (P systems) has been studied in
many papers and several monographs; we refer to [8], [19], [48], [49], [53]
and [51] for motivation and examples. In the definition of the P system below
we omit some ingredients (like priority relations on the rules) not needed in
the following.

A P system (of degree d, d > 1) is a construct

U=(V,C,n,wi,...twd,Ri,..., Rd, io),

where:

(i) V is an alphabet; its elements are called objects;

(ii) C Ç V is a set of catalysts;

(iii) /A is a membrane structure consisting of d membranes (usually labelled
with i and represented by corresponding brackets [i and]{, 1 < i < d);

(iv) Wi, 1 < i < d, are strings over V associated with the regions 1,2,..., d
of \x; they represent multisets of objects present in the regions of \i
(the multiplicity of a symbol in a region is given by the number of
occurrences of this symbol in the string corresponding to that region);

40

(v) B4, 1 < i < d, are finite sets of evolution rules over V associated with
the regions 1,2,..., d of fi; these evolution rules are of the forms a —• v
or ca —» cv, where c is a catalyst, a is an object from V \ C, and v is a
string from ((V \ C) x {here, out, in})*;

(vi) io is a number between 1 and d and it specifies the input membrane of

n.
The membrane structure and the multisets represented by u>i, 1 < i < d,

in n constitute the initial configuration of the system. A transition between
configurations is governed by the application of the evolution rules which is
done in parallel: all objects, from all membranes, which can be the subject
of local evolution rules have to evolve simultaneously.

The application of a rule u —» v in a region containing a multiset M results
in subtracting from M the multiset identified by u, and then in adding the
multiset identified by v. The objects can eventually be transported through
membranes due to targets in and out (we usually omit the target here). We
refer to [8] and [51] for further details and examples. According to [17], the
P system II is called catalytic, if every evolution rule involves a catalyst.

The system continues parallel steps until there remain no applicable rules
in any region of II; then the system halts.

Here we only consider accepting P systems where the multiset to be
analysed is put into region i0 together with Wi0 and accepted by a halting
computation. The classes of all sets of a-vectors (y\,..., ya) of non-negative
integers accepted in that way by halting computations in P systems of this
type with at most d membranes and the set of catalysts containing at most
m elements are denoted by

NaOPacc{d, catm,halt).

If we specify a set of terminal objects E, and only take into account the
terminal symbols in the specified membrane i0, we obtain extended (accept-
ing) P systems of the form

II = (V, E, C,n,Wi,...,wd,Ri,..., Rd, io),

and the corresponding class

NaEPacc(d,catm,halt).

In [15] accepting P systems were introduced as P automata using finite
states as accepting conditions, i.e., instead of the halting condition an input

41

is accepted if the P system reaches a configuration where the contents of
(specified) membranes coincides with the multisets given by a finite state. In
more detail, for a P system as defined above a final state over V is of the
form (fi, ••-, fd) where each fi, 1 < i < d, either is a final multiset over V or
(a special symbol denoted by) A; then the P system accepts its input (given
in io) by this final state if during the computation a configuration is reached
such that the contents of every membrane i with / ; ^ A coincides with / j .
The special symbol A indicates that we do not care about the contents of
membrane i if fi = A. Hence, a P system accepting by final states is a
construct of the form

n = (V, C, ß, toi,..., wd, Ru ..., Rd, i0, F),

where V, C, ß, IÜI, . . . , Wd, Ri,..., Rd, io are defined as above and F is a finite
set of final states over V. The class of all sets of a-vectors (yi,...,ya) of non-
negative integers accepted in P systems with at most d membranes and the
set of catalysts containing at most m elements by computations reaching a
final state is denoted by

NaOPacc (d, catm, final state).

If we again specify a set of terminal objects S and only take into account
the terminal symbols in the specified membrane io, we obtain extended P
(accepting by final states) of the form

n = (V, E, C, fi,wlt..., wd, Ru..., Rd, i0, F),

and the corresponding class

NaEPacc (d, catm, final state).

If in the variants of accepting P systems defined above only catalytic rules
are used, we add the superscript cat thus obtaining the classes

l(d, catm,Y), Y e {halt,final state}

and
No

aEP^ {d, catm, Y),Y e {halt, final state] .

Remark 23 Note that due to the notations used in the preceding Chapters
the above systems would be called initial.

42

We now also consider accepting P systems analysing a sequence of let-
ters taken from the environment during a halting computation or during a
computation stopping by reaching a final state:

A P automaton (of degree d, d>\) with final states is a construct of the
form

U = (V,E,C,ß,Wl,... ,wd,Ru ...,Rd,F),

where V, E, C, //, w\,..., wa, Ri,..., Rj, F are defined as above, only the cat-
alytic rules in the skin membrane may also contain the target indication come
for terminal symbols, i.e., they are of the form ca —> cv, where c is a catalyst,
a is an object from V \ C, and v is a string from

(((V \C)x {here, out, in}) U (S x {come}))*.

The target indication come (compare with the P systems introduced in [59])
for a terminal symbol bt means that such a symbol is taken in from the
environment (in some sense like reading it from an external input tape).

We now consider the sequence of terminal symbols taken in from the en-
vironment during a computation having reached a final state as the accepted
string(s). Then the class of all languages Ç E+ accepted by P automata with
final states having at most d membranes and the set of catalysts containing
at most m elements is denoted by

Pace {d, catm, final state).

If we again consider halting computations instead of computations reach-
ing a final state, we obtain a P automaton (of degree d, d > 1) as a construct
of the form

U = (y,H,C,fi,wi,...1 wd, Ri,..., Rd),

where V, S, C, /i, u>\,..., Wd, R\, •.., Rd are defined as above, we only omit
the set of final states. Then the class of all languages Ç E+ accepted (in
halting computations) by such P automata having d membranes and the set
of catalysts containing at most m elements is denoted by

Pacc (d, catm, halt).

If in the variants of P automata defined above only catalytic rules are
used, we add the superscript cat thus obtaining the classes

P%£ (d, catm, Y),Ye {halt, final state} .

43

All the (catalytic) P automata taking their input from the environment as
defined above can also be considered as devices for accepting sets of (vectors
of) non-negative integers by interpreting the strings as representations of
these (vectors of) non-negative integers; in that way we obtain the classes

NaIPacc(d, catm,Y), Y G {halt,final state}

and
(d, catm, Y), Y G {halt, final state] .

7.4 Results

Although for P automata we have the minimal number of only one membrane,
the number of catalysts depends on the number a of components of the vector
of non-negative integers to be analysed.

For a register machine M with m registers, m > 1, let P be the program
for M with n instructions h,i2, ••• ,in accepting L G NaRE. Informally, each
register a is represented by objects oa playing the rôles of counter elements.
The value of register a at each moment corresponds to the number of symbols
oa in the system.

There are also special objects Pj, 1 < j < n; they play the rôle of pro-
gram labels and their marked variants guide the simulation of the instruction
labelled by Pj within the P automaton. The presence of the marked vari-
ants Pj1', 1 < h < m, of the object pj - for each catalyst there has to be
such a marked variant to keep it busy - starts the sequence of operations
corresponding to the instruction j . In contrast to the proofs given in [60]
and then in [30] we now need only one catalyst for each register, because we
use the concept of "paired catalysts": Together with the catalyst ca associ-
ated with register a we also associate ("pair") another catalyst (we shall take
caQml) which together with ca will do the correct simulation of an instruc-
tion j : (S (a) ,k,l) G P in four steps; the remaining catalysts caQmh with
2 < h < m are occupied by the marked variants of pj, pj , 1 < / < 4, during
these four steps, and the pf'4' are eliminated in the fourth step, before in

the next step the new multiset p[--.p™ or p\f'1' ...pf1'1' of (marked) pro-
gram labels appears. The simulation of an instruction j : (.4 (a) ,k,k)eP
needs only one step. Finally, if the multiset pit7 •••Pn representing the
final label n appears, these objects are also eliminated in one step, where
after the computation halts if and only if it has been successful, i.e., no trap
symbol # is present (after having been generated during the simulation of
some subtract-instruction).

44

T h e o r e m 2 4 N a R E = N a O P a C c (d, cata+2, halt) for d>l.

Proof. Consider a (deterministic) register machine M as defined above with
m registers (from the result stated in Corollary 21 we know that m = a + 2
is sufficient). Now let P be a program which accepts a set L e NaRE such
that the initial instruction has the label 1 and the halting instruction has the
label n. The input values x\,..., xa are expected to be in the first a registers.
Moreover, without loss of generality, we may assume that at the beginning of
a computation all the registers except eventually the registers 1 to a contain
zero.

We construct the P system

where

V = {#}U{ci,c'i,c
//|l <i<m}U{ok\ 1 < k<m}U

[p{n'l) | 1 < h < m} U {pjM> | 1 < h < m, j : (A (a), k, k) e P } U

p j M > | l<h<m, j:(S(a),k,l)eP}u

pf'l) \2<h<m, 1 < / < 4, j : (S (a) , Jfc, l) G p } U

{ti,ti,P3,i?j,i?j,Pj,%,Pj\j • (S(a),k,l) e P } ,
C = {ci 11 < i < m} ,

W = C i - .

R = {x _ # | x e v\

(CU K I 1 < * < m'} U {^..^ I i : (5 (a) , * , /) € P})}U

| t 11 < h < mj U

j:(A(a),k,k)eP}U

'1)oa | 1 < a < m, j : (A (a), *, A;) € P } U

\2<h<m, 1 < a < m,

Fi I 2 < h < m,

j:(S(a),k,l)eP}U

45

/ ("1,1)
Pj, Cap)

°a * caCa, CaCa • CaCa,

P * C

l<a<m, j:(S(a),k,l)eP}\J

y

Then for an arbitrary (xi, ...,xa) € NQ the axiom of the corresponding
system II(Xli...fXa) is

C\ . . . CmPx ...px Ox . . . Oa .

The contents of register a, 1 < a < m, is represented by the sum of the
number of symbols oa and conditional decrementing actions on this register
are guarded by the pair of catalysts ca and coQmi-

The set of rules R depends on the instructions of P; the halting instruc-
tion as well as each add-instruction is simulated in one step, whereas each
subtract-instruction is simulated in four steps; in more detail, the simulation
works as follows:

1. Every simulation of a rule starts with the program labels p\ ' ,..., px .
The halting instruction eliminates the final labels pn ,...,ph" by
using the rules cmQm/lpi'l>1> —> CmQrnh, 1 < h < m; if the input is
accepted, then only the catalysts remain in the skin membrane.

2. Each add-instruction j : (A (a), k, k) G P, 1 < a < m, is simulated in

one step by using the catalytic rules cmQmhpf'V> -»• CmQmh, 1 < h < m,

as well as Cmpf""^ -> cmpi1>1>-P*m>1>Oa- Observe that by definition
a Qm m = a for all a with 1 < a < m.

3. Each subtract-instruction j : (S (a), k, l) G P is simulated in four steps.
We have to distinguish between two cases depending on the contents of
register a; in both cases the catalysts caQmh, 2 < h < m, are busy with
the objects Pj ', 1 < I < 4; the objects pf1'4' finally are eliminated in
the fourth step. The main part of the simulation is accomplished by
the catalyst ca and its "paired companion" caQmi, which is also shown
in the following table (where the rules in the brackets ((cap'j —* c a #)

46

as well as (caoa —*• cada)) are those which should not be applied at that
stage of the simulation; their application (only the application of the
rule (cap'j —• c a #) may even be forced due to maximal parallelism)
leads to the introduction of the failure symbol # (directly or one step
later) and therefore to a non-halting computation):

simulation of the subtract-
a. register a is not empty

caoa —> cada

Ir r>'. —• C 4k\

ca0mlPj ""* ca9ml
CaCf —> cad'a

-// (1,1) (m,l)

instruction 7 : (51 (0), k, I) if
b . register a is empty

caQmlyj ' ca.ernlPj
caP? "~* caP; •••Pj

(a) We non-deterministically assume that the contents of register a is
not empty; we start with the rules capj —> capjpj together with

caQmiPj ' —> cOQmi. In the second step, the number of symbols
oa is decremented by using the rule caoa —• cac4; if in contrast to
our choice, no such symbol oa is present (i.e., the contents of the
register represented by the number of symbols oa is empty), then
by the enforced application of the rule capj —• c a # the trap symbol
is introduced, which causes a non-halting computation due to
the rule # —> # . If p'j could wait until being used in the third
step by the rule c a Q m l ^ —* caQmxp", then the simulation will be
successful: In the second step, caQmi is used in the rule caQrnxPj —>
coQmi, and in the third step ca is used in the rule cada

finish with the application of the rules cap" —• CP

• cad'a. We

.p™ and

(b) For the other case, we non-deterministically assume that the con-

tents of register a is empty; we start with the two rules capj' —»•
/I 1 \

Capjp'jp" and caQmip] ' ; —> coemi- In the second step, we are forced
to use the two rules capj —> ca and caQmlp" —> caemip" in order
not to introduce the trap symbol # . In the third step, we only
use caQmip" —> caQmip'j and finish with applying the two rules
caPj —• Cop)1'1'...^"1'1' and Ca9mipj —• caQrni in the fourth step. In

47

the third step the catalyst ca is not used if our non-deterministic
choice has been correct, i.e., if there is no symbol oa present in the
skin membrane; otherwise, the rule caoa —* cada has to be applied
in the third step, but in this case both c'a and pfj would need the
catalyst ca in the fourth step of the simulation in order not to be
sent to the trap symbol # .

Any other behavior of the system as the one described above for the
correct simulation of the instructions of P by the rules in R leads to the
appearance of the trap object # within the system, hence, the system never
halts.

(We should like to mention that at any time ca can be used in the rule
caoa —* cac.a, but carried out at the wrong time, the application of this rule
will immediately cause the introduction of the trap symbol #.)

It follows from the description given above that after each simulation of
an instruction the number of objects oa equals the contents of register a,
1 < a < m. Hence, after having simulated the instruction Halt and halting
the system, the only objects remaining within the system are the m catalysts
in the skin membrane; according to the result about register machines stated
in Proposition 21, m = a + 2 and therefore a + 2 catalysts are enough. •

For accepting P systems with final states, we can immediately take over
the construction given in the preceding proof:

Corollary 25 NaRE = NaOPacc (d, cata+2, final state) for d > 1.

Proof. The only difference to the P system constructed in Theorem 24 is that
we have to define the final state for successful computations, which simply
is the contents of the skin membrane at the end of a halting computation,
i.e., Ci. ..Cm. Hence, taking F = {(ci...Cm)} we obtain the P system with
final states 11' is (II, {(ci.. .c™)}), where II is the P system constructed in
the proof of Theorem 24. g

In catalytic systems we only need one more catalyst for the rules handling
the trap symbol # :

Corollary 26 For every d > 1 we have

Na RE = Na OP^C (d, catQ+3, halt)
= Na0Pc^ {d, cata+z, final state)

Proof. Consider the

48

1. (halting) catalytic accepting P system

2. as well as the catalytic accepting P system with final states

UcF = (V U {co} , C U {co} , [i]i, w, Re, 1, F),

respectively, with at most a + 3 catalysts and with the objects oa G V satis-
fying the following conditions: For any arbitrary (xi, ...,xa) G N a , denote

1- ng , a) = (F U {co} , C U {co} , Wi, ti/oî1...^-, Ac, 1) and

2- H g Xa) = (V U {co} , C U {co} , Ua, uiop...o£-, Ac, 1, F) ,

respectively. The system

1. n?f r , halts,

2. 11/^ I aj reaches a final state,

respectively, if and only if (xi,..., xa) is accepted and

1. in the halting computation or

2. in the final state

respectively, in the skin membrane only the catalysts remain.
Then the rules in Re are obtained from the rules in R constructed in the

proof of Theorem 24 by just replacing the rules in

{x -» # | x eV\(Cu{jfj,% | j : (S(o) ,M) e P} U{ofc| 1 < k < m})}

with the rules in

{coz -* co# | x G V \ (C U {$, pj | i : (5 (a), A;, /) G P} U {ofc | 1 < k < m})}

using the additional catalyst Co. •

The proofs of the following results immediately follow from preceding
proofs:

Theorem 27 For every d > 1, we have

49

NaRE = NaXPacc (d, cata+2, Y)
= NaXPc£(d,cata+3,Y)

for every X G {E, 1} and Y 6 {halt, final state} .
For the simplest case of a = 1, therefore the maximal number of catalysts

needed for accepting languages from NaRE by P automata is 3 and by
catalytic P automata is 4.

Theorem 28 For every d > 1, we have

RE = Pacc(d,cat2,halt)
— Pace (d, cat2, final state).

Proof. We first prove the inclusion RE Ç Pacc (1, cat2, halt). In the same
way as in the proof of Theorem 24 we simulated the operations on the two
registers allowing for decrementation we now simulate the operations on the
two counters of the 2-counter automaton from Proposition 22:

M=(n,EB,P,i,h),

where E = {bt \ 1 < t < s} , s > 1. Hence, let us define

where R is constructed in a similar way as R' in the proof of Theorem 24,
except that now we also have to consider instructions j : (read, k\,..., ks, I),
which are simulated (in a non-deterministic way) by the following rules:

> ci, cibt-* cx

c2pj -»• c2p'jtt (bt, come), c2p'jtt -> c2pktpkt, 1 < t < s,
c2pj —> c2pip[.

In sum, we obtain the following P automaton II:

V = {#}U{c1,c
/
1,ci/,c2,c

/
2)c

/
2

/}U{o1,o2}U

{P3>Mj,Pi,Pj,PÎ,P3>ffjrfjrfi,t\i : 0 s » . M € P}U
{pj,^] j : (A(a) ,k,l) e P} UEU {B} ,

C = {ci,c2},

W = C1C2P1P1,

50

R = {x^#\xeV\{CU{o1,o2}u{p'j,p'j\j:(S(a),k,l)eP})}\J

(a) ,k,l)eP}U

C2PkPk0a, C2Pj —• C2Plpl0a I

a€{l,2}, i:(A(a),fc,O€P}U
{cop., -> CapjP^CaPj -+ Capjp'jp'j,

CaOa -> Q,f4, CaC^ -»• Ca^', C3_a<' -»• C3_a ,

CaPj- - » C a # , C3_aPj- -*• C^ap'^CaP] -* Capkpk,

CaPj - » Ca, C 3 _ a ^ ' -> C3_ap^', C 3 _ a ^ ' - > C3_a^-,

cap^ -» CaP/Ä I a € {1, 2} , j : (5 (a) , k, I) € P } U

{c3_ay -» c3_a | y G {Pj,p,-,pj-} , a £ {1, 2} ,

| j : (read, fci,..., A;s, 0 € P } U

j i t (become), c2p'jt -+ c2pktpkt, Cibt -> ca

j : (read, fci,..., ks,l) £ P, 1 <t < s, }U
i : (read, A*,..., fcfl, J) € P } .

For the corresponding P automata with final states we use the final state
cic2, which immediately proves RE Ç Pacc (1, cat2, final state). Q

For the catalytic variants we need one more catalyst (compare with Corol-
lary 26):

Corollary 29 For every d > 1, we have

RE = P££ (d, cat3, halt)

= P%£ (d, cat3, final state).

Proof. As in the proof of Corollary 26 we replace the rules in

{x - # | x eV\{Cu{ouo2} U {#.,#• I j : (S(a},k,l) G P})}

in the sets of rules constructed in Theorem 28 with the rules in

{cox -> co# | x eV\(CU{Ol,o2} U {#• ,# | j : (S(a) , A:,/) G P }) }

using the additional catalyst CQ. •

51

7.5 Conclusion
We have considered accepting P systems where the multiset to be analysed is
put into a designated input region together with the axiom. In extended (ac-
cepting) P systems we specified a terminal alphabet and only considered the
terminal symbols contained in the input membrane (in effect this means that
we ignored the catalysts, which of course can never be eliminated). Although
for accepting P systems of the above types we have the minimal number of
only one membrane, the number of catalysts depends on the number a of
components of the vector of non-negative integers to be analysed.

We then investigated P automata accepting string languages; we proved
that every recursively enumerable string language can be accepted by these
systems (by halting or by final state) with two catalysts in only one mem-
brane.

For the purely catalytic variants of all these systems, one more catalyst
is necessary.

52

Chapter 8

CÜ-P Automata with
Communication Rules

In this Chapter we consider u-P automata based on the model of P systems
with membrane channels, especially for the special variant using only an-
tiport rules of specific types. The main problem we face when dealing with
w-words is the fact that usually in P systems successful computations are
assumed to be the halting computations, whereas failing computations are
made non-halting by introducing a failure symbol together with rules allowing
for infinite computations. On the other hand, computations analysing infinite
words have to be infinite and, in contrast to the case of finite words, failing
computations have to stop. We shall show that for any well-known variant
of acceptance mode for a;-Turing machines we can effectively construct an
ui-P automaton simulating the computations of the cj-Turing machine.

After some preliminary definitions we give a short introduction to UJ-
words and a;-Turing machines, especially focussing on the different accep-
tance modes to be found in the literature. In the following Section we intro-
duce uj-P automata (with membrane channels or with antiport rules only)
and then prove our main result showing that for any well-known variant of
acceptance mode for cj-Turing machines we can effectively construct an u-P
automaton with two membranes simulating the computations of the a;-Turing
machine; moreover, LJ-P automata of a very restricted form (with only one
membrane) exactly characterize the family of cu-regular languages. A short
summary of results and an outlook on future research topics conclude the
Chapter which was presented in [33] (also see [32], [34]).

53

8.1 Preliminary Definitions
Given a word w ET+, a sequence ço(7i---9n is called a run of M on w if and
only if w = ai...on, a; G T, 1 < i < n, and ç; G 5 (çi_i, a*) ; the run Ço9i---9n
on w is called successful if and only if qn G F. The (A-free) language accepted
by M is the set of all strings w G T+ which allow for a successful run of M
on w.

Remark 30 Based on the results established in [43], we know that the ac-
tions of a Turing machine can be simulated by a register machine in only
two registers using a z-ary representation (where z + 1 is the cardinality of
the tape alphabet) of the left- and right-hand side of the Turing tape with
respect to the current position of the read/write-head on the working tape of
the Turing machine. Using a prime number encoding in the two registers,
even all necessary operations for the simulation of a Turing machine can be
simulated by a register machine with only two registers. For the purposes
of this Chapter, we need a more "relaxed" representation of the actions and
the contents of the working tape of a Turing machine: We only store the
contents of the left- and right-hand side of the working tape with respect to
the current position of the read/write-head and simulate the actions on the
working tape in these two registers; on the other hand, the current state of
the Turing machine is stored in a separate additional register using a unary
encoding.

8.2 cj-Turing Machines

We consider the space X" of infinite strings (a;-words) on a finite alphabet
of cardinality > 2. For w G X* and b G X" let w • b be their concatenation.
This concatenation product extends in an obvious way to subsets W Ç X*
and B Ç Xu. Subsets of X" are called o;-languages. For an a/-word £ and
every n G N, Ç/n denotes the prefix of £ of length n.

8.2.1 Variants of Acceptance

In the models found in most papers in the literature (e.g., see the recent
surveys [20] or [61]), the acceptance of o;-languages by Turing machines is
determined by the behaviour of the Turing machines on the input tape as
well as by specific final state conditions well-known from the acceptance of
w-languages by finite automata.

54

For Turing machines accepting infinite strings (a;-words), in literature
different variants of acceptance, can be found:

Type 1 The approach described in [61] and [62] does not take into considera-
tion the behaviour of the Turing machine on its input tape. Acceptance
is based solely on the infinite sequence of internal states the machine
runs through during its infinite computation. Thus the machine may
base its decision on a finite part of the whole infinite input.

Type 2 For AT-automata Engelfriet and Hoogeboom (see [20]) require that,
in addition to the fulfillment of certain conditions on the infinite se-
quence of internal states in order to accept an input, the machine has
to read the whole infinite input tape. Thus, besides blocking as for
Type 1, machines have a further possibility to reject inputs.

Type 3 The most complicated type of acceptance for Turing machines was
introduced by Cohen and Gold (see [12] and [13]). In addition to Type 2
they require that the machine scans every cell of the input tape only
finitely many times; this behaviour is termed as having a complete non-
oscillating run.

8.2.2 a;-Turing Machines - Definitions

In order to be in accordance with the X-automata of Engelfriet and Hooge-
boom we consider Turing machines M = (X, T,Q,qo, P) with a separate
input tape on which the read-only-head moves only to right, a working tape,
X as its input alphabet, F as its worktape alphabet, Q the finite set of
internal states, ço the initial state, and the relation

P Ç Q x X x F x Q x { O , + l } x F x {-1,0, +1}

defining the next configuration.
Here (q, rr0, xi;p, yo, 2/1,2/2) £ P means that if M is in state q € Q, reads

XQ G X on its input tape and xi G F on its worktape, M changes its state to
p £ Q, moves its head on the input tape to the right if yo = +1 or if yo = 0
does not move the head, and for yx e F and yi 6 {—1,0, +1} the machine
M writes yx instead of X\ in its worktape and moves the head on this tape
to the left, if yi = —1, to the right, if yi — +1, or does not move it, if yi = 0.

Unless stated otherwise, in the sequel we shall assume that our accepting
devices be fully defined, i.e., for every situation (q,xo,Xi) in Z x X2 the
transition relation R has to contain at least one (exactly one, if the device is
deterministic) move (q,x0,x^p,y0,yi,y2).

55

For some sequence x G Xu, let x be the input of the Turing machine M.
We call a sequence z G Qw of states a run of M on x if z is the sequence of
states the Turing machine runs through in its (some of its, if the machine is
non-deterministic) computation(s) with input x.

8.2.3 ü>languages Accepted by a>-Turing Machines

We say that an input sequence x G X" is accepted by M according to
condition (mode) C if there is a run z of M on x such that z satisfies C.
In the sequel we shall consider the following conditions using the notation of
Engelfriet and Hoogeboom:

Let a : Qu —• 29 be a mapping which assigns to every cu-word £ G Qw a
subset Q' Ç Q, and let R Ç 2Q x 2Q be a relation between subsets of Q. We
say that a pair (M, Y) where Y Ç2® accepts an cu-word x G X" if and only
if

3Q'3z (Q' G Y A z is a run of M on x A (a (z), Q') G R).

If Y consists of only one subset of Q, i.e., Y = {F} for some F Ç Q, then
we usually write (M, F) instead of (M, {F}).

For an w-word z e Qw let

ran (2) := {u | v G Q A 3i [i G iV \ {0} A z (i) = v)}

be the range of 2; (considered as a mapping z : N \ {0} —• Q), that is, the
set of all letters occurring in z, and let

inf (z) :— {f I v G Q A .z"1 (i>) is infinite}

be the infinity set of z, that is, the set of all letters occurring infinitely often
in z. As relations R we shall use =, Ç and l~l (Z' (1 Z" means Z' D Z" ̂ 0).

We obtain the six types of acceptance presented in the following table:

(a,R)
(ran, fl)
(ran, Ç)
(ran, =)
(inf, n)
(w/.C)
(m/,=)

type of acceptance
1-acceptance
l'-acceptance

2-acceptance
2'-acceptance
3-acceptance

meaning
at least once
everywhere

infinitely often
almost everywhere

Theorem 31 (e.g., see [20]) For all a G {ran, inf} and all R G {Ç,n,=}
the class of ui-languages accepted according to type 2 in the (a, R) -mode by
non-deterministic to-Turing machines collapses and coincides with the class
of T\-definable co-languages over X.

56

An w-language F is referred to as T\ -definable provided

F = {£ | 3r] (77 G X" A Vn3m ((n, 77/m, £/m) G MF))}

for some recursive relation Mp Ç N x X* x X*.

8.2.4 Finite a;-automata
A regular ui-language is a finite union of o;-languages of the form UVU, where
U and V are regular languages.

A finite tu-automaton is an o;-Turing machine using only the input tape.
The class of a»-languages 3-accepted by deterministic finite w-automata co-
incides with the class of u;-regular languages; w-languages 2-accepted by
non-deterministic finite o;-automata give another characterization of the
family of regular cu-languages, too. In fact, such a (non-deterministic) fi-
nite o;-automaton can be described as (non-deterministic) finite automaton
M = (Q,TM,ö,q0,F).

Given an tu-word £ G Tj^, £ = a^..., o, G TM for all i > 1, a run of
M on £ is an infinite sequence s G Q", s = Ço9i?2---, of states such that
Qi G 5(çi_i,aj) for all i > 1; the run s is called successful (in the sense of
2-acceptance) if inf (s) OF ̂ 0. The w-language of M is the set of all £ G T^
which allow for a successful run of M on £.

8.3 uj-P Automata

In the case of w-words, we not only have to take care of the (now infinite)
sequence of terminal symbols taken from the environment, yet we also have
to check the acceptance condition defined via the final states (which is done
using the second membrane and turns out to be much more complicated than
using the halting condition in the case of string languages).

An UJ-P automaton is a construct

Il = (V,T,ß,w1,...,wn,R1,...,Rn,F)

as defined in Section 5.1, but now used for analysing infinite sequences of
terminal symbols and accepting these a;-words according to specific accepting
conditions as defined in Subsection 8.2.3 with respect to a given set Y Ç.2®
of sets of final states F.

57

8.3.1 Lj-P Automata with Antiport Rules

An u-P automaton with antiport rules is an UJ-P automaton as specified above
but using only antiport rules (compare with the definitions in Subsection 5.3).

The main result of this Chapter is established in the following Theorem
and its proof is based on the observations described in Remark 30:

Theorem 32 Let L Ç S" be an u>-language accepted by an u-Turing ma-
chine in the acceptance mode (a, R), for some a G {ran, inf} and some
Re{c,n,=}.

Then we can effectively construct an u-P automaton with antiport rules
in two membranes that simulates the actions of the Turing machine and
accepts L in the same acceptance mode (a, R) and only uses rules of the
form (x, out; y, in) with the radius of the rules only being (2,1) or (1,2).

Proof (sketch). Let L Ç S u be an cu-language accepted by an u-Turing
machine

M=(E,r,Q,qo,P)

together with Y Ç. 2® in the acceptance mode (a, R). We now elaborate the
main ideas for constructing an CJ-P automaton

n = (V,E,[1[2]2]1,q'0Jg,R1,R2,Y')

with antiport rules in two membranes that simulates the actions of the Turing
machine and accepts L in the same acceptance mode (a, R) and only uses
rules of the form (x, out; y, in) with the radius of the rules only being (2,1)
or (1,2).

In fact, we use the register machine representation of the o;-Turing ma-
chine M as described in Remark 30, i.e., the actions of M are simulated by a
register machine RM in only two registers using a 2-ary representation (where
z +1 is the cardinality of the tape alphabet) of the left- and right-hand side of
the Turing tape with respect to the current position of the read/write-head
on the working tape of M; the current state of M is stored in a separate
additional register using a unary encoding. The more complex steps of M
can be simulated by II in several substeps:

Reading a new symbol b G E on the input tape of M can be simulated
by rules of the form (q, out; (q, b, r) b, in) and ((q, b, r) b, out; r, in) in the u-P
automaton II, where q, r 6 V \ T. Modifying the left- and right-hand side of
the Turing tape as well as changing the current state of M is simulated by
actions of the register machine RM- The actions of the simulating register
machine RM itself can easily be simulated by rules of the following types in
region 1 (i.e., by rules in Ri), the contents of register i being represented by
the corresponding number of symbols a* in region 1 of II:

58

• An Add-instruction j : (A(i), k, I) is simulated by the two rules

(j, out; kdi, in) and (j, out; la^, in).

• A conditional Subtract-instruction j : (S(i),k,l) is simulated by the
following rules:

(jai, out; k, in)
(j, out; j'j", in)
(j'ai, out; # , in)

j " , out;]]', in*

j']", out; I, in)

In the case where the decrementation of register i is possible, we simply
use the rule (jai, out; k, in). In the other case, the rules (j, out; j'j", in),
(j", out; jj', in), (jj',out;j",in), and (j'j", out; I, in) should be used;
the condition of maximal parallelism guarantees that the antiport rule
(j'ai, out; #, in) is applied in parallel with (j", out; jj', in), if a sym-
bol a» is present although we have assumed the contrary, which leads
to a halting computation, because then the symbol j ' needed in the
rule (j'j", out; I, in) is missing. Only if in the current configuration no
symbol ai is present in the skin membrane, the object j ' can wait the
two steps where we apply the rules (j", out;jj', in) and (jj', out;j", in)
for being used in the rule (j'j", out; I, in) together with the symbol j"
appearing after these two intermediate steps.

• Observe that as we consider only infinite computations, we shall never
reach the halt instruction of RM-

Whenever the ui-P automaton FI has simulated one step of the w-Turing
machine M in the way described above, before continuing with the simulation
of the register machine instruction labelled by r, II starts an intermediate
procedure for exposing an object that represents the current state of M in
region 2 by importing an object f instead of the object r, which then will
only appear at the end of this intermediate procedure:

We start with the rule (f, out; f^f', in) in region 1 and then check the
current state of M represented in the register machine simulation by the num-
ber of symbols a3, i.e., we apply the rules (f^~^a3,out;f^,in) , 1 < i < m
(where m is the number of states in M), until we have sent out all sym-
bols as and may continue with the rule (f (n\ out; h [n], in) . Then in re-
gion 2 the rule (fg, out; [n], in) has to be used taking in the object [n],

59

which represents the current state of M; hence, in region 2 now only the
object [n] representing a state of M is present. Then the correct way to
continue (in region 1) is to use only the rule (ßh,out;h! ,in) ; if we also
have to use the rule (fa^,out;i^,in) (indicating that we have used the
rule (?(n\ out; h [n], in) too early and thus chosen an incorrect value for
the state) then the symbol / will be missing in some further steps to con-
tinue the computation in II. After having used the rule (h1, out; hh", in) in
region 1, in region 2 the rule ([n] ,out;fh,in) can be used (provided that
the symbol / is still present in region 1). Then we continue in region 1
with regaining the number of symbols 03 representing state [n] by using
the rules (f'[n], out; f^, in) and (f^\out;f('l~1^a3,in) , 1 < i < m, as well

as (f^h",out;r,in), (f,out;f'h",in) , and f h",out;hh',in) . Now by us-

ing the rules (h, out;hh',in) in region 2, (f'h,out;f",in), (f",out;f"g,in)

in region 1 and (hh',out;g, in) again in region 2, the original contents fg

in region 2 is regained. Finally, by applying the rules (f"h',out;f,in) and

(fh,out; r, in) in region 1, we get the object r representing the label of the
register machine where we have to continue our simulation of M.

In sum, for this special subprocedures for expressing the state [n] in re-
gion 2 we have the following rules in membrane 1 and membrane 2:

rules in Ri rules in i?2

m

f, out; f^f, in)
Hl~1^a3, out; ?(%\ in) , 1 < i <

n\ out; h [n], in), 1 < n < m
(fg, out; [n], in), 1 < n < m

gh, out; h\ in) , (/a3, out; #, in)
h', out; hh", in)

([n], out; fh, in), 1 < n < m
f' [n] ,out;r(n\in)
W,owi;f(i~1)a3,m) , 1 < i < m

fWh", out; r, in)

f,out;f'h",in)

h", out;hh',in)

60

(h, out; hh',in)

(r'h, out; f", in)
(f", out; f"g, in)

(hh1, out; g, in)

f"h!', out;r,in)

rh, out; r, in)

In order to obtain the corresponding set of final states F' in Y' for the
u-P automaton with antiport rules II from a given set F G y of final
states for M, we observe that in region 2 of the u-P automaton II only
the multisets fg, fh, fhh', and the symbols [n] for some states of M may
appear. Hence, for the acceptance modes (ran, Fl) and (inf, l~l) we may sim-
ply take F' = {(A, /) | l G F} ; for the other acceptance modes we also have
to take into account the "constants" fg, fh, and fhh', i.e., we have to take

F' = |(A, /) | I E F U ifg, fh, fhh'\\. These constructions for the sets of

final states depending on the accepting mode conclude the proof. •

8.3.2 Finite UJ-P Automata

As in the case of P automata, very special restrictions on u-P automata
yield the concept of finite oo-P automata (compare with the definition given
in Subsection 5.3):

A finite u-P automaton is an u-P automaton

with only one membrane such that

1. the axiom ui\ is a non-terminal symbol (in the case of finite u-P au-
tomata simply called "state"), i.e., u>i G V \ T;

2. the rules in R\ are of the forms (q, out; pa, in) and (pa, out; r, in), where
a is a terminal symbol in T and p, q, r are non-terminal symbols (states)
inV\T;

3. for any rule (q, out;pa, in) in R\, the only other rules in Ri containing
p are of the form (pa, out; r, in);

4. F Ç V \ T.

61

Finite u)-P automata yield a characterization of regular w-languages:

Theorem 33 Let L Ç S w be an u-language. Then L isu-regular if and only
if L can be accepted in the 2-acceptance mode by a finite LJ-P automaton.

Proof. Consider the same constructions as in the proof of Theorem 15;
then the interpretation of the finite automata and the finite P automata
considered there as finite cu-automata and finite u>-P automata, respectively,
already yield the desired results. •

As for finite P automata (see Example 14), more relaxed conditions on
the forms of the rules in finite tu-P automata would yield a>-languages which
are not tu-regular:

Example 34 Consider the u-P automaton

n2 = ({a,b,p,q,r} ,{a,b} ,{1}1,p,R2,{p})

with R2 containing the rules (p, out; pa, in), (p, out; qa, in), (ça, out; r, in),
(r,out;sb,in), (sb,out;q,in), and (sb,out;p,in). The UJ-P automaton W2

differs from the P automaton III from Example 14 only by the additional
rule (sb,out;p,in), which is necessary to restart a computation with "state"
p and in that way allows for infinite computations, and by taking p as the
final state instead of q. Yet the ui-language 2-accepted by II2 now is of a more
complicated structure than the string language accepted by the P automaton
III.- The condition that the state p has to be reached infinitely often only
guarantees that infinitely often the number of symbols a and the number of
symbols b analysed so far is just the same, but it does not guarantee that
this condition has to be fulfilled whenever we change again back to "state" p
from "states" q and s, respectively. Hence, we do not obtain L(r i i) w , where
L (III) = {anbn I n > 1} , but instead the u-language 2-accepted by Yi2 is 1%,
where

{ k k

anibm\..ankbmk I k > 1, £ n{ = £ rm,
i=l i=l

I I \

and ^2ni> Ylvrti for all / < k > ;
i= l i= l J

obviously, L^ is not an u-regular language.

62

8.4 Conclusion
We have investigated one specific model of P automata (based on commu-
nication rules) allowing for the simulation of the actions of Turing machines
on infinite words. The way we effectively constructed the corresponding
uj-P automaton from a given w-Turing machine for each of the well-known
modes of acceptance would also work for deterministic variants of tu-Turing
machines/cj-P automata as well as for o;-Turing machines describing func-
tions on cu-languages. With respect to the number of membranes, the results
elaborated in this Chapter are already optimal.

As there exist a lot of other models of P systems, it may be an interesting
task to use these models as basis for other variants of u-P automata. The
main challenge seems to lie in the fact that many proof ideas in the literature
rely on the use of a trap symbol to make computations non-halting, whereas
in the case of UJ-P automata failing computations should stop instead.

63

Chapter 9

On "Weak" Determinism in P
Automata

Quite a few variants of P systems have already been implemented (e.g., see
[3], [11]). But so far, only generating P systems have been taken into account,
dealing with their inherent non-determinism, which is hard to implement
on deterministic machines, i.e., conventional computers. Moreover, usual
algorithms (like, e.g., backtracking) to find possible solutions which lead
to halting computations are not very efficient. On the other hand, when
thinking of implementing accepting P systems, we can define a kind of "weak"
determinism leading to more efficient computations, that is, under certain
conditions, we can limit the number of possible intermediate configurations
to examine until the simulation of a computation in a P automaton eventually
terminates successfully. In this Chapter we will show how this can be done
for accepting P systems and P automata as considered in previous Chapters
without taking into account the infinite case, i.e., u—P automata. As a
computation in a P automaton can also be seen as a hierarchy of choices
to be made, it can be represented in a more pictorial way by a tree. We
start this Chapter by giving the definition of a computation tree that will
be used in the following and continue by illustrating this with an example.
We will then define the new term of A;—determinism, which is followed by a
syntactic study of the systems investigated in previous Chapters under the
point of view of their k—deterministic behaviour. Some final remarks and
open problems conclude this Chapter.

64

9.1 Preliminary Definition and Example

To represent a computation in a P automaton we will now, following the
definition given in [51], use the notion of a computation tree:

The computation tree of a P automaton is a rooted labelled maximal tree,
where the root node of the tree corresponds to the initial configuration of the
system. The children of a node are configurations that follow in a one-step
transition. Nodes are labelled by configurations and edges are labelled by
multisets of applicable rules. We say that a computation halts if it represents
a finite branch in the computation tree.

Example 35 Consider the P automaton from Example 14

with Ri containing the rules
1 : (p, out; pa, in), 2 : (p, out; qa, in), 3 : (ça, out; r, in), 4 : (r, out; sb, in),
5 : (sb, out; q, in).
(For sake of simplicity we have labelled the rules by natural numbers and will
use the number of a rule to mark the corresponding edge.)

Then we can build the following computation tree:

Figure 9.1: Computation tree of the P automaton IIi.

We start with the initial configuration containing one object p, thus la-
belling the root node with [ip]i- Then, in the first step, the system can already
choose between the following two rules to be applied:

65

1. Applying rule 2, i.e., (p,out;qa,in), leads to the configuration [iqa]i,
from where rules 3, 4, 5 have to be applied consecutively until reaching
the final state [iq]i- This can also be seen in the computation tree in
figure 9.1 by following the leftmost branch from the root to the leave
node [\q]\.

2. The application of (p, out; pa, in) on the other hand yields a configura-
tion [ipa]i, where again the system can choose to apply

(a) rule 2, hence starting to send out the symbols a and importing the
same number of symbols b (this time using the sequence of rules
3, 4, 5 twice until reaching the final state [iq]i),

(b) rule 1 again, in order to import an additional symbol a, hence
following the rightmost branch of the computation tree shown in
figure 9.1 and so on.

Hence, the computation halts successfully in the final state q after having
accepted the string anbn, n > 1. Speaking in terms more related to the tree
structure, the system has accepted the string anbn whenever a leave node is
reached.

9.2 k—Determinism
To be more efficient in possible implementations of any type of accepting P
systems or P automata, we do not want to expand the complete computation
tree during the simulation, but rather "look ahead" in the computation tree
as little as possible to be able to exclude the paths which would lead to an
infinite loop and choose the path which leads to a continuation of possible
acceptance.

Thus, we say that an accepting P system or P automaton has a level of
look-ahead k, or shorter, is k-deterministic if the following condition holds:

For every run on an initial configuration, if at any moment going
at most k steps further for any arbitrary choice of productions to
be applied, it can be decided (i.e., syntactically checked) which
might be the only reasonable continuation that possibly may lead
to successful acceptance.

Remark 36 In all proofs for analysing / accepting P systems / P automata
with initial input considered in this thesis (without taking into account the

66

infinite case here), this condition holds: We only used simulations of de-
terministic register machines, hence, in the case of acceptance there is only
one path through the computation tree which is finite. But of course, at a
certain point, we have to deal with non-determinism, i.e., in the conditional
subtract instructions. Whenever such an instruction has to be simulated, the
system has to guess non-deterministically, if there is a corresponding symbol
present or not and thus can act accordingly. Yet it is always guaranteed that
if the wrong choice has been made, a trap symbol is introduced after a certain
number of steps, hence the condition is fulfilled.

Remark 37 Note that for the system from Example 35, the condition stated
above does not hold, because in each step, a non-deterministic choice concern-
ing the input sequence has to be made. Hence, there is no way to syntactically
check which might be the only reasonable continuation that possibly may lead
to successful acceptance.

Broadening the above definition to terms specific for implementations,
we define a k—deterministic procedure as a recursive procedure that has to
consider at most k further steps down the computation tree yielding the
maximal set of productions which is uniquely determined to be applied in
the next step for the computation to continue successfully. This production
set can also be empty, which is the case when the system halts.

9.3 Results

What follows is a syntactic investigation of the systems considered in this
work with respect to their /c-deterministic behaviour.

Remark 38 As already pointed out in Remark 37, we have to deal with
non-determinism when considering systems that accept an input sequence of
terminal symbols, as there is always a choice to be made. The only chance
to get rid of this inherent non-determinism is to assume that for each run
on the respective system, the input stream sequence, i.e., the sequence of
terminal symbols, is deterministically given in the environment so that the
choice which rule has to be applied depends on the actual terminal symbol.
Only with this assumption, the results in this section would also hold true for
the respective non-initial systems.

We start with initial analysing P systems as defined in Chapter 4:

67

Theorem 39 For every recursively enumerable set of vectors of natural
numbers there exists a 2—deterministic initial analysing P system with an-
tiport rules with radius (2,1) or (1,2).

Proof. Going into the details of the proof of Corollary 6, it can be determined,
following Remark 36, that the only choices that have to be made are in the
simulation of a conditional subtract instruction:

1 : (jcii,out; k, in)
2 : (j, out; j'j", in)
3 : O X out; f, in) (/, out; f'f", in) and (/'/", out; f, in)

(
5 : (f"f", out; j " " , in)

(
The only situation where a trap symbol / could be introduced into the

system is, when there is at least one symbol ai present, but instead of
(jai,out;k,in), the rule (j, out; j'j", in) is chosen. Then, in the next step,
the rule (j'ai, out; f, in) (together with (j", out;j'"j"", in)) has to be applied,
bringing in the symbol / which prevents the system from halting by using
(/, out; f'f", in) and (f'f", out; f, in) without ever coming to an end.

Figure 9.2: Computation subtree of the initial analysing P system.

This situation is also shown as a "computation subtree" in Figure 9.2,
where no other symbols are taken into account except for the ones described
here, hence the root node only represents the configuration containing the
objects j and a". Whenever the 2—deterministic procedure reaches the root
node of the subtree from Figure 9.2, there are two possibilities:

68

1. n = 0, i.e., no symbol Oj is present. Then there is no choice, only
the edge labelled by 2 can be followed, which means applying the rule
(j, out; j'j", in) and yielding the configuration [\j'j"]\- Prom that point,
again no choice is to be made, the only possibility to proceed is going
down the edge labelled by 4 (applying (j", out;j"'j"", in)) and so on.

2. n > 0 : In this case, already in the root node there are two possibilities:

(a) Applying (ja», out; k, in) (going down edge 1) and continue the
computation successfully, or

(b) applying (j, out; j'j", in) (edge 2). In the sequel, edge 3 has to be
followed, meaning the application of the rules (j'ai, out; f, in) and
(j",out;j'"j"",in) (as the system works in a maximally parallel
way), which introduces the trap symbol / , hence leading to a non-
halting computation.

Prom the explanations given above, as well as from the tree in Figure 9.2, it
can easily be determined that initial analysing P systems with antiport rules
with radius (2,1) or (1,2) have a level of look-ahead 2. Q

If we now consider initial P automata with membrane channels, again we
deal with systems that have a level of look-ahead 2 :

Theorem 40 For every recursively enumerable set of vectors of natural
numbers there exists a 2—deterministic initial P automaton with membrane
channels.

Proof. Looking at the proof of Corollary 8, it can easily be seen that there
is only one crucial point in the register machine simulation, i.e., when simu-
lating the conditional subtract instruction by the following rules:

(j; jot, out; kfj, in) (fj,in; a{)
(j; j , out; j'j", in) {j", in; a{)

fjJn) </,-,«»;/)
j j ^ j)

Being in any configuration that contains the objects j as well as a", then,
depending on n, we have to distinguish the following cases:

1. n = 0 allows for two possible next configurations:

(a) Applying (j;j, out; j'j", in) sends out the object j and brings into
the system j ' and j " . Then the application of (j'; j'j", out; Ifj, in)
sends out j ' and j " while importing /. (fj is not introduced to the
system because of the presence of / ') ;

69

(b) If, on the other hand, (j;ja,i,out;kfj,in) is applied, then a trap
symbol is introduced after one step only, as the inhibitor a; is not
present to prevent /_,- from coming in by (fj,in;a,i). This branch
does not have to be followed further, because after one step only
it is already clear that under the given circumstances the wrong
choice was made.

The computation subtree of this situation is shown in Figure 9.3, where
for sake of simplicity, the configurations are limited in the sense that
they only contain the objects mentioned above.

(j; j, out; fj", in) / \\j; ja{, out; kfj, in)

ill

Figure 9.3: Computation subtree for the case n = 0.

2. n > 0 allows for the following next configurations:

(a) the application of (j; ja,i, out; kfj, in) lets the system continue suc-
cessfully, because there is at least one object a; which can act as
prohibitor for fj to come in;

(b) but finally, if (j;j,out;j'j",in) is applied while there is at least
one ai in the system, then j " cannot enter, and so in the next step,
when applying (j';j'j", out; lfj,in), fj has to be imported.

This situation is now shown as a computation subtree in Figure 9.4,
where again the configurations only contain the relevant objects.

Hence, as at least in one case there are two transitions to be made un-
til the trap symbol occurs, we can conclude that initial P automata with
activated/prohibited membrane channels have a level of look-ahead 2. •

70

(j; jah out; kfj, in)/ \ (j; ;, out; j'j", in)

Figure 9.4: Computation subtree for the case n > 0

Looking at the working mode of P automata with membrane channels,
where not for all the channels opened an object for passing through in either
direction has to be present, we could also think of another variant. If during
the computation of a P automaton with membrane channels a rule can be
applied only if all opened channels are used in the succeeding step, we will
call such a system a restricted P automaton with membrane channels.

Theorem 41 Let L C T* be a recursively enumerable set. Then L can be
recognized by a restricted P automaton with membrane channels in only one
membrane using only singleton activators and prohibitors.

Proof. We use exactly the same construction as in the proof of Theorem 7
except for the simulation of the conditional subtract instruction. Because of
the restricted working mode, an instruction j : (S (i), k, I) is now simulated
by:

(j;jai,out;k, in)
(()

This simulation is straightforward: The rule (j;jai,out;k,in) can only
be used if an object aj is present, hence no prohibitor is needed here. On
the other hand, (j;j, out; I, in) can only be applied if no object a* is present.
Observe that this rule cannot be applied, if there is an object ai in the
system, because in this case the object / would be prohibited to enter, which
in consequence makes the use of this rule impossible. Q

The same result holds true for vectors of non-negative integers when con-
sidering initial restricted P automata with membrane channels:

71

Corollary 42 Let L Ç Nfc, k > 1, be a recursively enumerable set of (vectors
of) non-negative integers. Then L can be accepted by an initial restricted P
automaton with membrane channels in only one membrane using only single-
ton promoting and inhibiting multisets as well as singleton objects transported
through the skin membrane.

Hence, using this restriction on the working mode of an initial P automa-
ton with membrane channels, we get a deterministic system:

Theorem 43 For every recursively enumerable set of vectors of natural
numbers there exists a deterministic initial restricted P automaton with mem-
brane channels.

Proof. According to the definition of an initial restricted P automaton with
membrane channels given above, at no point there is any choice to be made.
That is, whenever an object acts as a prohibitor, the corresponding activating
rule cannot be applied, as there is at least one object prevented from passing
through an opened channel. •

Looking now at initial P automata with conditional communication rules
assigned to membranes, the following result can be obtained:

Theorem 44 For every recursively enumerable set of vectors of natural
numbers there exits a deterministic initial P automaton with conditional com-
munication rules assigned to membranes consisting of only one membrane
using only singleton promoting and inhibiting multisets as well as singleton
objects transported through the skin membrane.

Proof. Going into the details of the proof of Corollary 18, it becomes clear
that (because of the inhibiting multisets) there is no point where a non-
deterministic choice has to be made, hence, the system is deterministic. •

Looking at accepting P systems with catalysts, things get a bit more com-
plex, that is, they have a higher level of look-ahead as the ones investigated
so far (observe that these systems are already initial by construction):

Theorem 45 For every recursively enumerable set of vectors of natural
numbers there exits a 4— deterministic accepting P system with catalysts.

Proof. We start by reproducing the relevant part of the proof of Theorem
24, i.e., the simulation of the instruction j : (S (i), k, I) :

72

simulation of
a. register a

Ce

Ce

Ce

Ci

cc

cc

i P j ' —• Cc

ie ip*.1'1* -

the subtract-
LS not empty
•n r/

Ca#)

>e iP"

instruction j :
b. register a

caPj * u

(CaOa —
ff

/ \]

—/

{S (a), k,
is empty

aPjPjP'j

~* CaQml

v Ca^a)

aBmlPj
A •••P/m'1

0 if

This time, we only give a schematic representation of the computation
subtree of the above situation in Figure 9.5. That is, we omit any objects that
might also be part of the respective configuration, but are not mentioned in
the explanation. We also omit to include the catalysts ca and caemi, respec-
tively, as they are contained in all configurations. Moreover, we represent
all misleading configurations by # only. (Going into the details of the proof
of Theorem 24, we can find out that using the wrong rules at any moment
leads to the introduction of a trap symbol after at most 2 steps, which is
not shown here, either. Rather, such a case is represented as one edge only
ending in a node labelled by #. As we claim the considered P automata to
be 4—deterministic, this is of no big relevance for this proof, but helps to
keep things more clear.)

We start with the configuration containing - among other objects - the
two catalysts ca and caemi, as well as the objects p™ and pf'1' (symbolised
as the root node in Figure 9.5). Already here, we have two choices to proceed.
Of course, there are more possibilities to proceed, but all other ones would
lead to the introduction of the trap symbol and therefore to an infinite loop,
which is shown in Figure 9.5 by the black vertical edge that leads to a node
labelled by # . So in the following, we will only consider the "constructive"
cases:

1. Let us first assume that there is at least one object oa present (following
the dotted branch), and therefore choosing the rules capjm'^ —> capjp'j
as well as caQmxpf'1' —• caQml. Then the next configuration contains
the objects pj and p'j. Consuming ßj by caQmiPj —• caemi is a good
choice here, as otherwise the trap symbol can immediately enter, p'j on
the other hand, is the only object that could wait until being consumed
without causing troubles. So if an object oa is currently present, then it

73

Figure 9.5: Schematic representaion of the computation subtree.

should be consumed by caoa —> cada. Only if our assumption was wrong
(there is no object oa), the catalyst ca - due to maximal parallelism - has
to be used together with p'j to introduce the object # , which in Figure
9.5 means following the plain edge. So in this case, we already know
after two steps if the non-deterministic guess concerning the presence
of objects oa was correct. Only if this is the case, we follow the dotted
edges to a configuration containing Pk •••pi™ enabling the system to
proceed with the simulation of the next instruction. (Note that from
the node labelled by pjda, if taking the "wrong" rules, it would in fact
need two further steps until the trap symbol appears.)

On the other hand, we can non-deterministically assume that there
are no objects oa present (i.e., register a is assumed to be empty). In
this case, we follow the dashed edge from Figure 9.5 by first apply-
ing in parallel capjm>1> -> Capjpjp! and caQrnipf'l) -> Coemi- The only
suitable continuation at this stage is using the rules capj —* ca and
caQmip'j —• caemiPj leading to a configuration that contains p- and
p". Here we have reached a crucial point: Only if there really was no
object oa present we can follow the dashed edges further down, hence
proceeding successfully. But if there was an object oa contained in the
system at that stage, then it has to be consumed (again due to maximal
parallelism) by the rule caoa —> cada and subsequently introducing the
symbol # . So having made the wrong guess in this case is only obvious

74

after four steps. (Note that again from the configuration containing p'-
and p'j it would take two further steps if making the wrong choice.)

It follows from the explanations given above that at most four steps are
needed until the trap symbol # finally appears after having made a wrong
non-deterministic decision. Consequently, P automata with catalysts have a
level of look-ahead 4. •

9.4 Conclusion

In this Chapter we have introduced the new concept of k—determinism con-
cerning P automata. We also have investigated some previously considered
variants with respect to their fc-deterministic behaviour.

We should like to point out that we only made a pure syntactic analy-
sis. But it seems to be worth noting that even in the syntactic studies of
the A;—deterministic behaviour of various systems, k could sometimes be re-
duced by introducing other features, for instance priority relations among the
rules, which on the other hand are not necessary to obtain computationally
complete systems [60].

It seems to be clear whatsoever that when including semantic informa-
tion, we could get better results, too. That is, when thinking of a possible
implementation (or rather simulation) of any of the systems investigated,
the current configuration of the system is known in every single step. Conse-
quently, whenever the simulation reaches a point where a non-deterministic
choice had to be made in the syntactic studies above, the situation now be-
comes different: As it can be determined whether the object to be possibly
subtracted form the system is present or not, a non-deterministic guess in this
situation becomes obsolete, thereby most of the time decreasing the number
of possible edges to "look ahead" in the computation tree.

We should like to conclude this Chapter by pointing out that there are
still some open questions. Having in mind the efficiency of possible imple-
mentations of P automata, we here have only considered how to limit the
depth of the computation tree. But what about the breadth? Can we a
priori determine the number of possible configurations that a ^-deterministic
procedure has to take into account? When for example thinking of purely
catalytic P automata, the answer seems to be definitely positive. But this
remains an interesting topic for future research.

75

Chapter 10

Final Remarks

We have made a survey of P automata, and after a brief literature review,
we have investigated several purely communicating variants of P automata:

In Chapter 4, we focused on (initial) analysing P systems, showing that
already one membrane suffices for these systems to obtain their maximal
recognizing power with rules of radius (1,2) or (2,1).

For the related model of (initial) P automata with membrane channels
some similar results were shown in Chapter 5. When using activating as
well as prohibiting rules with radius (1,2) or (2,1), we only need singleton
activators and prohibitors, whereas when omitting the prohibiting rules, the
size of the activator multiset has to be increased to be able to recognize
any recursively enumerable language of strings and multisets, respectively.
We also showed that a very restricted variant of P automata with membrane
channels using only special activating rules (in this case antiport rules) allows
for the characterization of regular languages.

Another purely communicating variant was investigated in Chapter 6.
There we could show that (initial) P automata with conditional communi-
cation rules assigned to membranes (PACCRAMs) only need one membrane
and singleton promoters and inhibitors as well as singleton objects trans-
ported through the skin membrane to accept recursively enumerable string
languages (and recursively enumerable sets of (vectors of) non-negative in-
tegers, respectively). With respect to the number of membranes as well as
with respect to the size of the multisets used as promoters, inhibitors, and
strings transported across a membrane these results are already optimal.

We then focused on the number of catalysts necessary to obtain systems
with maximal recognizing power: In Chapter 7 we showed that for the re-
spective initial variants, the number of catalysts depends on the number a
of components of the vector of non-negative integers to be analysed, hence,

76

a + 2 catalysts are necessary.
We then proved that P automata (with catalysts) can accept every re-

cursively enumerable string language (by halting or by final state) with two
catalysts in only one membrane. For the purely catalytic variants of all these
systems, one catalyst more is necessary.

In Chapter 8, we considered one specific model of P automata (based on
communication rules) allowing for the simulation of the actions of Turing
machines on infinite words. With respect to the number of membranes, the
results elaborated there are already optimal.

Finally we introduced the new notion of k—determinism. In Chapter 9
we investigated most of the initial variants mentioned before with respect to
their k—deterministic behaviour.

We have already pointed out some open problems or topics that deserve
further attention in the respective Chapters. But, of course, many more
things remain to be done. The investigations in the last Chapter have been
of a more theoretic type, but will hopefully also be useful in practice. In fact,
a simulation under this point of view is already in progress.

Another point concerning this topic is the question whether the
k—deterministic behaviour of some systems could be improved (obviously
for k > 0). We have seen that in some proofs in previous Chapters, we al-
ready obtained a maximal recognizing power with minimal ingredients. For
example, in the case of initial analysing P systems and initial P automata
with membrane channels, only one membrane is needed with the rules having
a minimal radius. And yet it turned out that they exhibit a level of look-
ahead 2. So it would be interesting to see if a reduction of k is possible in
this case. But, as for now, this remains for future research.

77

Acknowledgements

I gratefully acknowledge the enormous patience, competence and support of
my supervisor Rudolf Freund and I want to express my deep respect and
gratitude to Gheorghe Päun. I am also indebted to Erzsébet Csuhaj-Varjü,
Ludwig Staiger and Györgi Vaszil for fruitful discussions on many topics pre-
sented here. Moreover I would like to thank all my co-authors not mentioned
before.

The presentations of [23], [26], [27], [29], [30], [33] at international work-
shops and meetings were supported by MolCoNet project IST-2001-32008.

78

Bibliography

[1] A. Alhazov: Minimizing Evolution-Communication P Systems and EC
P Automata. In [9], 23-31.

[2] A. Alhazov, C. Martm-Vide, Gh. Päun (Eds.): Preproceedings of Work-
shop on Membrane Computing, WMC-2003, Tarragona, July 17-22,
2003, Rovira i Virgili Univ., Tech. Rep. No. 28, Tarragona, 2003.

[3] F. Arroyo, C. Luengo, A.V. Baranda, L.F. de Mingo: A Software Sim-
ulation of Transition P Systems in Haskell. In [54], 19-32.

[4] G. Bel-Enguix, R. Gramatovici: Active P Automata and Natural Lan-
guage Processing. In [2], 61-71.

[5] F. Bernardini, V. Manca: P Systems with Boundary Rules. In [55], 97-
102, and [54], 107-118.

[6] P. Bottoni, C. Martm-Vide, Gh. Päun, G. Rozenberg: Membrane Sys-
tems with Promoters/Inhibitors. Ada Informatica 38, 10 (2002), 695-
720.

[7] D. Bray: Protein Molecules as Computational Elements in Living Cells.
Nature 376 (1995), 307-312.

[8] C.S. Calude, Gh. Päun: Computing with Cells and Atoms. Taylor &
Francis, London (2001).

[9] M. Cavalière, C. Martin-Vide, Gh. Päun (Eds.): Brainstorming Week
on Membrane Computing, Rovira i Virgili Univ., Tech. Rep. No. 26,
Tarragona, 2003.

[10] L. Cienciala, L. Ciencialova: P Automata with Priorities. In [2], 161-
168.

[11] G. Ciobanu, D. Paraschiv: Membrane Software. A P System Simulator.
Fundamenta Informaticae 49, 1-3 (2002), 61-66.

79

[12] R.S. Cohen, A.Y. Gold: w-Computations on Turing Machines. Theoret.
Comput. Sei. 6 (1978), 1-23.

[13] R.S. Cohen, A.Y. Gold: On the Complexity of u;-Type Turing Acceptors.
Theoret. Comput. Sei. 10 (1980), 249-272.

[14] E. Csuhaj-Varjü, G. Vaszil: P Automata. In [55], 177-192.

[15] E. Csuhaj-Varjü, G. Vaszil: P Automata or Purely Communicating Ac-
cepting P Systems. In [54], 219-233.

[16] E. Csuhaj-Varjü, Gy. Vaszil: New Results and Research Directions Con-
cerning P Automata, Accepting P Systems with Communication Only.
In [9], 171-179.

[17] Z. Dang, O. Egecioglu, O.H. Ibarra, G. Saxena: Characterizations of
Catalytic Membrane Computing Systems. To appear.

[18] J. Dassow, Gh. Päun: Regulated Rewriting in Formai Language Theory.
Springer-Verlag, Berlin (1989).

[19] J. Dassow, Gh. Päun: On the Power of Membrane Comput-
ing, Journal of Universal Computer Science 5, 2 (1999), 33-49
(http://www.iicm.edu/jucs).

[20] J. Engelfriet, H.J. Hoogeboom: X-Automata on a;-Words. Theoret.
Comput. Sei. 110,1 (1993) 1-51.

[21] R. Freund, Generalized P Systems: Fundamentals of Computation The-
ory, FCT'99, Ia§i, 1999, (Ciobanu, G., Päun, Gh. Eds.), LNCS 1684,
Springer-Verlag, Berlin, 1999, 281-292.

[22] R. Freund: Sequential P Systems. Workshop on Multiset Processing,
Curtea de Arges., Romania, 2000, and Theorietag 2000 (Freund, R.,
Ed.), TU Wien, 2000, 177-183.

[23] R. Freund, F. Freund, M. Margenstern, M. Oswald, Yu. Rogozhin,
S. Verlan: P Systems with Cutting/Recombination Rules Assigned to
Membranes. In [2], 241-251.

[24] R. Freund, C. Martin-Vide, A. Obtulowicz, Gh. Päun: On Three Classes
of Automata-like P Systems. Proc. 7th Int. Conf. DLT2003 (Z. Ésik, Z.
Fülöp, Eds.), Szeged, Hungary, 2003, LNCS 2710, Springer-Verlag, 2003,
292-303.

80

[25] R. Freund, M. Oswald: Variants of GP Systems. Preproceedings of
Workshop on Membrane Computing (C. Martin-Vide, Gh. Päun, Eds.),
Curtea de Arges., Romania, 2001, Rovira i Virgili Univ., Tech. Rep. No.
17, Tarragona, 2001, 77-88.

[26] R. Freund, M. Oswald: GP Systems with Forbidding Context. Funda-
menta Informaticae 49, 1-3 (2002), 81-102.

[27] R. Freund, M. Oswald, P Systems with Activated/Prohibited Membrane
Channels. In [54], 261-268.

[28] R. Freund, M. Oswald: A Short Note on Analysing P Systems with
Antiport Rules. Bulletin EATCS, 78 (2002), 231-236.

[29] R. Freund, M. Oswald: P Systems with Conditional Communication
Rules Assigned to Membranes. In [2], 231-240.

[30] R. Freund, M. Oswald, P. Sosfk: Reducing the Number of Catalysts
Needed in Computationally Universal Systems without Priorities. In. E.
Csuhaj-Varjü, C. Kintala, D. Wotschke, Gy. Vaszil, Eds.: Fifth Inter-
national Workshop Descriptional Complexity of Formal Systems. Bu-
dapest, Hungary, July 2003. MTA SZTAKI, Budapest (2003), 102-113.

[31] R. Freund, L. Kari, M. Oswald, P. Sosïk: Computationally Universal P
Systems without Priorities: Two Catalysts Are Sufficient. To appear.

[32] R. Freund, M. Oswald, L. Staiger: P Automata on Finite and Infinite
Words. Proc. second year MolCoNet meeting, Budapest, 2002.

[33] R. Freund, M. Oswald, L. Staiger: u/-P Automata with Communication
Rules. In [2], 252-265.

[34] R. Freund, M. Oswald, L. Staiger: P Automaten und o;—P Automaten.
13. Theorietag "Automaten und Formale Sprachen" (M. Holzer, Ed.),
TU München, 2003, 35-47.

[35] R. Freund, A. Päun: Membrane Systems with Symport/Antiport: Uni-
versality Results. In [54], 270-287.

[36] R. Freund, Gh. Päun: On the Number of Non-Terminal Symbols in
Graph-Controlled, Programmed and Matrix Grammars. Proc. MCU
2001 (M. Margenstern, Yu. Rogozhin, Eds.), Chisinäu, 2001, LNCS
2055, Springer-Verlag, Berlin (2001), 214-225.

81

[37] R. Freund, C. Martin-Vide, Gh. Päun: From Regulated Rewriting to
Computing with Membranes: Collapsing Hierarchies. To appear in TCS.

[38] P. Frisco, H. J. Hoogeboom: Simulating Counter Automata by P Sys-
tems with Symport/Antiport. In [55], 237-248, and [54], 288-301.

[39] O.H. Ibarra: The Number of Membranes Matters. In [2], 273-285.

[40] K. Krithivasan: P Automata with Tapes. In [9], 216-225.

[41] K. Krithivasan, S.V. Varma: On Minimising Finite State P Automata.
Submitted, 2003.

[42] M. Madhu, K. Krithivasan: On a Class of P Automata, submitted, 2002.

[43] M. L. Minsky: Berechnung: Endliche und Unendliche Maschinen. Ver-
lag Berliner Union GmbH. Stuttgart, Verlag W. Kohlhammer GmbH.
Stuttgart (1971). Original English volume: M. L. Minsky: Computation:
Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, New Jer-
sey, USA (1967).

[44] M. Oswald: Molecular Computations with P Systems, diploma thesis,
Techn. Univ. Wien, 2001.

[45] M. Oswald: Verallgemeinerte P-Systeme mit Verbotenem Kontext. 12.
Theorietag "Automaten und Formale Sprachen" (R. Mazala, L. Staiger,
R. Winter, Eds.), Wittenberg, 2002, 40-41.

[46] M. Oswald, R. Freund: P Automata with Membrane Channels. Pro-
ceedings of the eighth Int. Symp. on Artificial Life and Robotics (M.
Sugisaka, H. Tanaka, Eds.), Beppu, Japan, 2003, 275-278.

[47] A. Päun, Gh. Päun: The Power of Communication: P Systems with
Symport/Antiport. New Generation Computing, 20, 3 (2002), 295-306.

[48] Gh. Päun: Computing with Membranes. Journal of Computer and Sys-
tem Sciences 61, 1 (2000), 108-143.

[49] Gh. Päun: Computing with Membranes: An Introduction. Bulletin
EATCS 67 (1999), 139-152.

[50] Gh. Päun, Computing with Membranes (P Systems): Twenty
Six Research Topics. CDMTCS TR 119, Univ. of Auckland, 2000
(www.cs.auckland.ac.nz/CDMTCS).

82

[51] Gh. Päun: Membrane Computing - An Introduction. Springer-Verlag,
Berün (2002).

[52] Gh. Päun, G. Rozenberg, A. Salomaa: DNA Computing. New Comput-
ing Paradigms. Springer-Verlag, Berlin (1998).

[53] Gh. Päun, G. Rozenberg, A. Salomaa: Membrane Computing with Ex-
ternal Output. Fundamenta Informaticae 41 (3), 2000, 259-266, and
TUCS Research Report No. 218, 1998 (http://www.tucs.fi).

[54] Gh. Päun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Mem-
brane Computing. International Workshop, WMC-CdeA 2002, Curtea
de Arges., Romania, August 2002. LNCS 2597, Springer, Berlin, 2003.

[55] Gh. Päun, C. Zandron (Eds.): Pre-Proceedings of Workshop on Mem-
brane Computing (WMC-CdeA2002), Curtea de Arges,, Romania, 2002.

[56] G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages. 3
Volumes, Springer-Ver lag, Berlin (1997).

[57] A. Salomaa: Formal Languages. Academic Press, New York (1973).

[58] P. Sosik: P Systems Versus Register Machines: Two Universality Proofs.
In [55], 371-382.

[59] P. Sosik: The Power of Catalysts and Priorities in Membrane Systems.
Grammars 6, 1 (2003), 13-24.

[60] P. Sosik, R. Freund: P Systems Without Priorities are Computationally
Universal. In [54], 400-409.

[61] L. Staiger: tu-Languages. In [56], Vol. 3, 339-387.

[62] K. Wagner, L. Staiger: Recursive a;-Languages. M. Karpinski (Ed.):
Fundamentals of Computation Theory. LNCS 56, Springer-Verlag,
Berlin, 1977, 532-537.

[63] The P Systems Web Page, http://psystems.disco.unimib.it

Curriculum Vitae

Marion Oswald received her master degree in computer science from the
Vienna University of Technology, Austria, in 2001. During her studies she
obtained some practical experience working as assistant of the head of de-
partment in a technical highschool in Vienna, and later joining Philips Speech
Processing, Vienna. She currently is working as student assistant at the In-
stitute for Computer Languages, Theory and Logic Group, Vienna University
of Technology, Austria. Her research interests include but are not limited to
artificial life as well as models and systems for biological computing, in which
fields she is author or co-author of more than ten scientific papers.

84

