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Chapter 1

Introduction

Using mathematical methods in modern physics is a great and successfull
story. The most important turning-point was the development of the dif-
ferential calculus (Fluxionsrechnung) and its application to the theory of
celestial movement by Isaac Newton in his famous work (Newton, 1687).
Within this calculus it was possible to formulate problems of dynamical sys-
tems and predict the systems movement for the future. Prediction implies
the possibility of refutation by experimental data. One well known example
is the refutation of the classical laws of Newton by Einsteins relativistic laws.
This is the most used example for the strength of the natural sciences method
(see e. g. Popper, 1935/1989). As the relation between (theoretical) physics
and mathematics was that successfull, it is not surprising that the axiomatic
method first introduced to geometry by Euklid and strongly formalized in
the 19th century, found its counterpart in physics. Where the laws of me-
chanics are stated as axioms. The strenght of mathematical formalism and
logic seems to be carried over to physics a science describing natural phe-
nomena. This is a very rough outline of the intimate union of mathematics
and physics, but it helps to understand, when Ledn Walras formulates in his
work (Walras, 1874/1954 S.71):

pure mechanics surely ought to precede applied mechanics.
Similarly, given the pure theory of economics, it must precede
€conomics ...

where he is arguing for a strict mathematical formulation of (pure) economics.
One should be able to deduce the economics systems behaviour if only the
initila conditions are known. That Walras could argue in that way was

viii




CHAPTER 1. INTRODUCTION ix

foundec on his conviction of the existence of economic laws comparable to
natural laws (Walras, 1874/1954 S.69):

This does not mean that we have no control over prices. Because
gravity is a natural phenomena and obeys natural laws, it does
not follow that all we can do is to watch it operate. We can either
resist it or give it free rein, whichever we please, but we cannot
change its essence or laws.

In his view the laws describing economic processes cannot be deceived but
understanding and formulating them as (mathematical) laws includes the
possibility to use them for his own sake.

In a more recent work Oskar Morgenstern rates the axiomisation of
economics as an aim although not the most important one (see Morgenstern,
1963 S. 15):

Die Axiomatisierung wurde erst in jiingster Zeit und nur in be-
schranktem Ausmaf in die Wirtschaftswissenschaften eingefiihrt,
und zwar deswegen, weil die meisten wirtschaftswissenschaftli-
chen Theorien noch nicht die Strenge aufweisen, die notwendig
ist, bevor iitberhaupt eine Axiomatisierung vorgenommen werden
kann.

But he also refers to the difference of mathematical axioms and axioms in
empirical sciences (Morgenstern, 1963 S. 35):

Wird ein Bereich der Mathematik axiomatisiert, dann werden die
Axiome mathematische Sétze sein, ... Wenn es sich dagegen um
ein empirisches Gebiet handelt, so werden die Axiome Behaup-
tungen tiber einen Bereich der Wirklichkeit sein. ... In keinem Fall
kommt den Axiomen irgendeine hohere Wahrheit zu.

This can be seen as the attempt to clarify the relation between a mathemat-
ical model and its application to real processes.

When Kenneth J. Arrow formulates his hope that social behaviour
can be expressed in mathematical terms (see Arrow, 1951):

“Mathematics, ... is a language.” If this be true, any meaningful
proposition can be expressed in a suitable mathematical form,
and any generalizations about social behavior can be formulated
mathematically.
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than he regards the clarity of mathematical language as a great advantage:
In the first place, clarity of thought is still a pearl of great price.

These examples show the economists hope finding answers for economical and
sociological problems within a mathematical framework. When the authors
of an economic textbook (see e. g. Felderer & Homburg, 2003) formulate the
basic assumptions as axioms, generations of economists learn to think within
these formal concepts.

Whatever the advantage of mathematics in sociological and economic
sciences may be, one has to note that the mathematical language is per se
not historical. Mathematical truth does not depend on time and place. The
consequent elimination of empirical argumentations in mathematical proofs
gave mathematics the strenght it is known for (see e. g. Mehrtens, 1990).
But trying to copy this strategy must fail. In economics it is a weakness
to formulate assumptions as axioms and trying to remove them in this way
from a historical reflection. Concepts formulated as formal axioms loose their
association to their historical origin. Using rather a formal language than an
infomal is not only a question of taste. The used metaphers and concepts
have direct influence to the areas of research and problems to be considered
as Evelyn Fox Keller studied e. g. for biology (see Keller, 1998).

The importance of wrestling with meanings of terms and concepts
should not be underestimated for a science which gives terms like value and
utility the impression of neutrality. But that the usage of these terms has
to be clarified for every different case becomes clear when we read Joan
Robinson (Robinson, 1962 S. 46):

Among all the various meanings of wvalue, there has been one
all the time under the surface, the old concept as Just Price ...
Prices ought to be such (subject to political expediencey) that a
day’s work in the country and in the town brings in about the
same income. But even when this is granted as an ideal there
still remains the problem of calculating what is to be considered
an equivalent income for individuals leading quite different kinds
of live in different environments. Value will not help. It has no
operational content. It is just a word.

As 1 stated befor mathematics succeded in emptying the used terms from
its meaning, the meaning of words has to be strengthend in empirical par-
ticularly sociological sciences. Within this context I want to give a short
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comment about the used diction of this thesis. The informal parts are con-
sidered from the authors personal point of view and therefor it is written
in the first person. Whereas in the mathematical chapters the unpersonal
third persons form is used. This diction reflects the aspect concerning the
differences of the underlying concepts of truth. On the one side the ability
to argue reasonable, convincing and tempting with the better, stronger or
subtle arguments (see e. g. Feyerabend, 1976). On the other side the uncom-
promising power of logical deduction (see e. g. Mehrtens, 1990). But this
power cannot be transformed from mathematics to its application.

What is the reason to state this remarks at the beginning of my thesis,
although the considered problems are beyond the scope of this thesis? To
answer this question I first have to explain what this thesis is all about.

One of the main attempts of this work is to clarify the concepts of
so-called Dechert-Nishimura-Skiba (DNS) points. These points are not only
of mathematical but also of economical interest. At a DNS point point a
decision maker has multiple optimal choices. He/She is free in choosing one,
all of them are equal from the point of optimality. It was of principal interest
to find models as simple as possible, possessing the potential structure for
the occurence of DNS points. Under these aspects three models were estab-
lished, “A Model of Moderation” (MoM), “A Generalized Model of Moder-
ation” (GMoM) and “A Model of Bridge Building” (MoBB), as promising
candidates. Two of these models MoM and MoBB have also though very
simple economic interpretations. Simplicity has the advantage that it was
possible to do the analysis to a great extent analytically. Therefore ana-
lytic expressions of the systems steady states and bifuraction lines could be
given. Hencefor the optimal policies are completely classified and related to
regions seperated by the bifurcation lines. This gives complete insight to the
models optimal behaviour, when for example changing a system’s parame-
ter. Phenomena like bifurcating DNS points were detected, regions with the
same dynamical but different optimal behaviour and vice versa have been
found. Moreover consise interpretations within the simplicity of its assump-
tions could be given.

On studying DNS points in more detail, points were detected, where
it was not clear if the definiton of a DNS point does fit or not. Initially
starting at such a point one has no different optimal choices but has to stay
there forever. Nevertheless moving only an infinitesimally small distance
to the left or to the right leads to different long run optimal states. The
question about the nature of such points and if it is optimal to stay at such
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a point arises. Then Prof. Vladimir Veliov, whom I will thank at this place,
proposes to study the local optimality of these points. This entailed myself
to the concept of local optimality and subsequently to a new and important
topic for my thesis.

Local optimality, at first a more mathematical concept as it is re-
lated to the solutions of differential equations of Riccati type and needs in
general highly sophisticated mathematics, has a reasonable economic inter-
pretation.Once again the simplicity of the models had the advantage to find
explicit solutions of the Riccati differential equations, at least for the steady
states. For the general case numerical solutions have been calculated and
hencefor a complete classifiacation of the models local optimal behaviour
had been given.

For local optimal solutions regions are found where up to three local
optimal policies exist. Comparing these regions with the regions where DNS
points exist, shed new light on the DNS points too.

Summarizing it can be said that the main idea of this thesis is the
opposition of the two different optimality concepts, where one is searching
for local optimal solutions while on the other hand one is searching for global
optimal solutions. Under this point of view DNS points and regions with
multiple local optimal solutions are studied. The mathematical results are
stated at first formally and furthermore interpreted under the aspect of op-
timal policies.

But now back to the question about the relation of the introdutctory
remarks and my thesis. The models are thus simple that terms like decision
maker, optimality and utility do not become very problematic, they can be
naivly interpreted. Therefore one can concentrate on the relation between
the usage of mathematical tools to solve the problem and the economic inter-
pretation. As the models behaviour is rich enough these models can serve as
simple examples for the modeling of economic processes and its interpretation
and the influence of different mathematical concepts to the interpretation.
From this point of view these models serve as a first starting point for fur-
ther investigations, where the problems stated at the beginning are of more
relevance.

The second reason for these statements is a personal one, because this
critical point of view in using mathematical methods in the context of social
sciences is my main motivation to work on these issues.

Furthermore I want to mention another important aspect of this work
and for research done in general on this field. It was necessary to do numer-
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ically calculations by the computer, where I used the software MATLABO.
Without help of a computer this work could not have been done, this rela-
tivizes the meaning of simplicity of these models. But what is realy worth
to be noted is the usage of a “new” kind of mathematics, contrary to math-
ematics practised with “a pencil and a sheet of paper”. When for example
a differential equation is soved numerically and one plots the solution to a
figure one is to take this representation as the solution itself. This impression
will be destroyed if the figure is zoomed in up to the machines precision level.
What looks continuous from the distant is discontinuous in “reality” and one
has to accept that this is not the “real” exact solution of the given problem.
This example shall only emphasis that we are arguing in a highly theoretical
burdend system which has the power to seduction. Under this aspect inter-
pretations often try to blur these dependences on underlying theories and
concepts.

For the dayly work forgetting these dependencies is necessary but not
to be aware of the presence of these conceptions seems negligent to me.

At the end I want to give a short outline about the structure of this
work. In the first chapter I introduce the main concepts and the class of
models I am going to analyse for three special cases. These three models
are arranged in three chapters. Each chapter is of the same structure what
facilitates comparison among the different models. Every of these chapters
counsists of sections, where at first a motivation, of the specified model is given.
In this motivation the functional forms are defined, thereafter the models are
analysed by the Pontryagins minimum principle. Furthermore second order
conditions, that is the corresponding Riccati differential equation is stated.
Subsequent to this section the existence of steady states is analysed and
following the properties of these steady states are inspected. Following the
second order conditions are analysed at the steady states and along the paths
sufficing the necessary conditions. Then the occuring bifurcation lines and
regions of different stability are described. After that the optimal strategies
are classified and related to the regions of stability in the parameter space.
Another section treats the different local optimal strategies and relates these
strategies to the global optimal strategies. In a last section the change of
optimal behaviour is described in a more descriptive way, when parameters
vary. Each of these chapters contain figures with the different regions of
the parameter space and phase portraits depicting the main global and local
optimal solutions. In Tables the properties of stability and occurence of DNS
thresholds are summarized.




Chapter 2

General Concepts and Models

One of the main interests of this work is focused on the interesting phenom-
ena of multiple optimal solutions. This phenomena is known as so-called
Dechert-Nishimura-Skiba (DNS) points or in another context shock. Where
DNS thresholds are related to a global concept of optimality the term shock
has its origin in the investigation of local optimal behaviour. The concept and
motivation of local optimality in an economic context (multiple locally opti-
mal solutions) was first introdueced in a talk given at the Institute of Econo-
metrics, Operations Research and System Theory (Technical University of
Vienna) by Vladimir Veliov in 2003. This chapter gives a short informal
introduction to these different concepts of optimality and its interpretations
in an economic framework. Furthermore the class of models I am going to
analyse for three different specifications is defined. Another section contains
the explication of necessary and sufficient conditions for this class of models.

2.1 Global Versus Local Optimality

The abstract idea behind using optimal control theory in an economic frame-
work has the conception from a decision maker, who can influence an eco-
nomic system by applying control(s) over some timespan. The term optimal
assumes that there exists a measure to value the system at any instant. Find-
ing the optimal control is the demand on the decision maker choosing at any
time a control such that the summed measure of the system is optimal, where
optimal means minimal or maximal depending on the model. As optimality
is the crucial aspect in this context the underlying concepts behind choosing
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optimal controls have to be clarified.

Therefore I want to give a more informal than formal definition of
the terms global and local optimality, DNS point versus DNS threshold and
shock. As optimality can be defined as well in a static as in a dynamic
framework, I want to emphasize, that in the following I only refer to dy-
namic models as is implicite assumed, when noting that the decision maker
chooses a control at any instant. Hencefor this control can vary over time
and is therefore essentially dynamic. Especially time varies continuously and
the state(s) dynamic describing the systems behaviour are formulated as dif-
ferential equations. For the beginning I have chosen a heuristic approach to
grasp the main ideas. Therefore terms are used within their naive mean-
ing, which is opposed to a rigour mathematical treatment, where one has to
abstract from the naive context of terms and exact definitions have to be
given. At the intersection line between strict mathematical formulation and
real world applications this can lead to terminological problems, as will be
explored in more detail considering the problem of finding a comprehensive
definition of the term DNS point and DNS threshold (see Appendix D). But
in the following these problems are neglected and terms are used in their
colloquial context. Strict definitions are given in the Appendices A and C.
There one can also find references treating these topics in more detail.

Concept 1 A global optimal policy is the policy minimizing (maximizing)
the criterion of the system over all admissible policies.

A locally optimal policy is the policy minimizing (maximizing) the value
measure of the system within a certain range of admissible policies.

The terms “admissible”, “within a certain range” and “minimizing (maximiz-
ing) the value measure” have to be strictly defined within the mathematical
theory of optimal control (see Appendix A).

The terms DNS point and DNS threshold have their origin in the
works of Dechert and Nishimura (1983) and Skiba (1978). For a compre-
hensive literature survey concerning this topic see e. g. Deissenberg et al.
(2004). These terms are restricted to the one dimensional case, where the
modeled system is described by one state variable. In the following I give
a definition of a DNS point and threshold, which are restricted to the one
dimensional case. These definitions are not strictly mathematical but suffi-
cies to understand the underlying idea. For the difficulties finding consistent
mathematical definitions see Appendix D.
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Concept 2 A DNS threshold separates regions of different global optimal
policy.

The following definition of a DNS point is more restrictive than that of a
DNS threshold although both have the same idea in mind.

Concept 3 At a DNS point exist at least two different globally optimal
policy.

Both definitions are used in economic literature, but they are not equiva-
lent. As Con. 2 accentuate the DNS character as a threshold, where one is
interested what follows from starting left or right from this point. Concept 3
describes what happens if one starts exactly at this point. Examples of the
difference between Con. 2 and Con. 3 can be found for all analysed models.

Anyhow for both definitions one has to find the global optimal solu-
tion, that is DNS pont and threshold are related to the concept of global
optimality.

Contrary to the global optimality the term shock is based on the con-
cept of local optimality (see Appendices A and C). A descriptive definition
of shock is given by

Concept 4 A shock happens if there exist at least two different extremal
policies.

Where an extremal policy sufficies only the necessary Pontryagins conditions.
For a rigorous treatment of shocks see (Caroff & Frankowska, 1996). As will
be seen in the analysis of the models of Chapter 3, 4, 5 the occurence of
shocks give an indication for the existence of multiple local optimal policies.

In economy the question if using a local or global concept is often cir-
cumvented by assuming convex (concave) models. For in this case the unique-
ness of an optimal solution, if any exists, can be shown. But if the assumption
of convexity (concavity) is dropped the question of local or global optimality
gets into account. Using convex (concave) models is more a question of easier
mathematical handling than a theoretical compelling one and many “realis-
tic” models lack this sort of mathematical property (see e. g. Skiba, 1978),
at least in the field of Operations Research. But it should not be concealed
that using convex (concave) models in mathematical economy is a principal
issue in discussion. Therefore to strengthen my argument for general models
in mathematical economy a more detailed investigation would be necessary.
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" Nevertheless as stated before in the field treated by this thesis non-concave

(non-convex) models are of great importance.

The concept of global optimality demands of the decision maker to
choose the optimal policy among all possible ones. The local concept of op-
timality can be interpreted in a twofold manner. First the decision maker
knows the optimality measure for all possible policies, but decides to choose
the one which takes lesser effort, where this effort is not considered explicitely
in the model. This interpretation grants the decision-maker more freedom
in choosing an optimal policy. Hencefor it is more flexible in reacting under
different circumstances. Although these different circumstances could prin-
cipally be modeled explicitly the basic approach is different. In a second
interpretation the decision maker is not interested in a policy differing too
much from his actual position. He is searching for an optimal solution only
in a certain range of possible optimal policies. I think both interpretations
can be found in real economic decision strategies and give justification for
studying the models local optimal strategies of models.

2.2 Class of Models

As mathematics becomes quickly complex if one attempts to model realistic
problems, it was tried to find as simple models as possible but with an in-
teresting solution structure as described before. Therefore the models were
restricted to one state variable x, one control u and only two external pa-
rameters 7 and c. Simplicity had the advantage that every possible optimal
solution has been classified corresponding to deiiferent regions in parameter
space. Most of the occuring bifurcation lines have been calculated as ex-
plicit analytical functions. Therefore the regions with different optimal and
dynamical behaviour were explicitly specified.

Within the mentioned restrictions a class of simple models with com-
plex mathematical behaviour was defined. This general class of models is
given as

min/ e " (g(z) + cu®) dt
v Jo

st. z=f(z)+u

and z(0) = xy,
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where = denotes the state variable, u the control variable and r > 0 is a
discounting rate, while ¢ > 0 is interpreted as the cost of control u. As well
state variable z as control variable u depend explicitly on time ¢ and should
therefore be written as z(t) and «(t). In order not to overload notation the
functional argument ¢ is omitted whenever there is no ambiguity to expect.
The function g(z) > 0 denotes the cost of being at state z. Whereas f(z)
reflects the uncontroled state dynamic. Both functions g(z) and f(z) are
analytic functions and therefore arbitrarily often differentiable. Under these
general assumptions for f(z) and g(z) convexity for the Hamiltonian H can-
not be assumed, which is a basic requirement for the occurence of multiple
optimal solutions.

In the following chapters three special models within (GM) are spec-
ified. And at least two of these models have also an concistent economic
interpretation within the limitations of simplicity.

2.3 Analysis of the General Model

This section consists of two subsections. In the first subsection the necessary
optimality conditions are stated, whereas in the next subsection sufficient
second order condtions for local optimality are stated. The analysis of the
general model is done as far as possible to avoid that it has to be done for
every specific model in the sequel.

2.3.1 Necessary Optimality Conditions

The optimal control problem persuted above is given by

mgn /000 e (g(z) + cu®) dt
st. = f(z)+u (2.1)

and z(0) = o,

with state variable x, control variable u, discount rate r and costs c¢. To
solve this problem by applying Pontryagin’s minimum principle (see, e. g. ,
Feichtinger & Hartl, 1986) we consider the current value Hamiltonian

H =X (9(z) + cu’) + A(f(z) +u) (2:2)
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where A denotes the costate variable in current value terms and XAy > 0 is
a real value. For infinite time horizon problems it cannot be excluded, that
Ao = 0. Although Ay = 0 is considered as an anomalous case (see Leonard &
Long, 1992) it has to be shown explicitly. But for the class (GM) of models
it is easy to show that Ag = 0 can be excluded.

For assume A9 = 0, then H = A (f(z) + »). Minimizing H in respect
to u we get H, = A = 0. But for (Mg, \) = (0,0) the necessary optimality
conditions are violated (see, e. g. , Feichtinger & Hartl, 1986), which refutes
the assumption Ag = 0.

From now on A¢g = 1 can be assumed and Eq. 2.2 can be written as

H = g(z) + cu? + A (f(z) + u) (2.3)

Following the standard methods of optimal control theory we derive the
necessary optimality condition

u* = argmin H,
u
Since H is differentiable in © and no control constraints have to be considered,
minimizing H is equal to setting H,, = 0. As H, = 2cu + A this implies

A
A= 2ecuesu=——o07: 2.4
cu & u 5 (2.4)

Since H,, = 2¢ > 0 the Legendre-Clebsch condition is satisfied. Fur-
thermore, considering that

H, =¢'(z) + M\f'(z)

the adjoint equation is given by

A = rA—H, (2.5)
= Ar—g'(z) - Af'(z)
= Ar— f(z)) — ¢ (2). (2.6)

Considering Eq. 2.4 and therefore A = —2ct we derive the differential equa-
tion for the control variable u

—2cu = =2cu(r— f'(z)) — ¢'(z)

v = u(r— fl(z))+ 9—12%2 (2.7)




CHAPTER 2. GENERAL CONCEPTS AND MODELS 7

State equation Eq. 2.1 and the adjoint equation Eq. 2.6 or Eq. 2.7 for control
u, yield the canonical system as necessary optimality conditions for (GM).

Furthermore as these special class of models is given in autonomous
form that is g; = 0, fy = 0 and f > 0 together with 0 € {f(Z,u) | v € R}
the transversality condition

lim e ™ \(t) =0 (2.8)
t—oo
has to hold (see, e. g., Michel, 1982). Therefore possible candidates for
optimal solutions are the stable manifolds of steady states of saddle type.

Since we made no assumptions on f and g nothing can be said in
general about the usual (Mangasarian) sufficiency conditions.

For the sequel I give some notational remarks. Paths sufficing the
necessary conditions Eqgs. 2.1, 2.6 or 2.7 and 2.8 are referd to as extremal
paths (see Definiton in Appendix A). Evaluating a function F(z, ) along
an extremal path (£, \) is abbreviated by F' = F(&, ).

In the following chapters equilibria of the canonical systems are de-
noted by capital E. In order not to get confused by the term equilibria,
which has different meaning in context of economic interpretations and dy-
namical systems, throughout this thesis the term steady state is used instead
of equilibrium.

2.3.2 Sufficient Optimality Conditions

As was noted in the last section no sufficiency conditions for a global optimum
can be given in this general case. Nevertheless as is shown in Appendix
A, second order sufficient conditions for local optimality can be stated. A
sufficient local optimality condition is the existence of a bounded solution of
the following Riccati differential equation

p=—€"Hy,p—pHy\ — pH}p — e 17, (2.9)
where H° is the minimized Hamiltonian H in respect to v and evaluated along
an extremal path. The matrix function R(z, ) of Eq. A.21 in Appendix A
reduces to a scalar function p(z, \).

For the class (GM) of models the minimized Hamiltonian H° is cal-
culated considering the Hamiltonian H Eq. 2.3 and the minimum condition
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Eq. 2.4 as
H = g@)+ cf; A (f(a:) - 2%)
= @+ -5 )
= g(z)— i\g + Af(z). (2.10)

Considering the partial derivatives of the minimized Hamiltonian H°

HY = (s)+Af(z) and
A
H; = _§E+f(x)7

the second order partial derivatives are derived as
Hp, = ¢"(z) +Af"(z)
o = [flz)=Hy,
1
H -
AX 2%
Substituting these formulae in Eq. 2.9 the Riccati differential equation is
written as
. w1 - vt [ A
p=e'sp —2f(zx)p—e (g”(w) + Af”(ﬂf)) :
or substituting A by Eq. 2.4

1 A A
p= el = 2f ()p — e (§(x) — 2euf"(x) )

As it is shown in Appendix A these equations simplify to

i = 50— (2 ()~ g = §"(2) = \]'(@),

i = 50— 2 (@)~ g - (@) + 200" (o), (211)

-1t

on setting ¢ =e™""p.

In general it is not possible to find analytic solutions to these Riccati
differential equations, because the extremal paths are only numerically given.
Nevertheless it is possible to study the sufficient second order conditions
analytically for steady states, as is shown in Appendix A. In this case the
coefficients of the Riccati differential equation are reduced to simple scalars.




Chapter 3

A Model of Moderation

A simple model is considered that rewards "moderation” - finding the right
balance between sliding down either of two ”slippery slopes”. Optimal so-
lutions are computed as a function of two key parameters: (1) the cost of
resisting the underlying uncontrolled dynamics and (2) the discount rate.
Analytical expressions are derived for bifurcation lines separating regions
where it is optimal to fight to stay balanced, to give in to the attraction of
the "left” or the "right”, or to decide based on one’s initial state. The lat-
ter case includes situations both with and without DNS points or thresholds
respectively defining optimal solution strategies. The model is unusual for
having two DNS points in a one-state model, having a single DNS point that
bifurcates into two DNS points, and for the ability to explicitly graph regions
within which DNS points occur in the 2-D parameter space. The latter helps
give intuition and insight concerning conditions under which these interest-
ing points occur. Furthermore the concept of local optimality as is described
by second order conditions is applied and interpreted for this model.

3.1 Motivation

It is often both difficult and advantageous to maintain a position of modera-
tion between two opposing factions, both of which seek to win the allegiance
of those who remain uncommitted. Such situations present an interesting
challenge: When and how should one remain unaligned if that is indeed the
best option? More colloquially, how does one stay on top of a slippery slope?
The solution to a simple model of this problem proves insightful both for the
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original context and as a window into quite interesting behaviour concerning
multiple DNS points (Dechert & Nishimura, 1983; Skiba, 1978) within a one-
dimensional model. We motivate the problem by sketching its application in
three disparate contexts.

?Swing Voters”

Consider a legislature debating an issue for which there will be an up or down
vote and for which the vote will be close. Both the ”yes” and ”"no” lobbies
court "uncommitted” representatives, and these uncommitted ”swing voters”
can trade (log roll) their cooperation for considerable benefit (cf. Ordeshook,
1986; Schickler & Rich, 1997). Politicians who are already firmly in the
"yes” or "no” camp - e. g. , because they have made public commitments
to their constituency about their vote - do not have similar leverage, and
those who begin to lean one way or the other may quickly come to be known
(" pigeon-holed”) as belonging to that camp and not the other. In terms of
conventional power indices (e. g. , the Shapley-Shubik or Banzhaf index) one
can think of this as having most others ”vote first” and cancel (balance out)
each others’ votes, leaving those few in the middle to determine the winning
coalitions. Similar arguments apply to Supreme Court Justices (Blasecki,
1990) and blocks of voters in general elections. Of course, independents do
not always reap rewards; in "machine politics” parties dole out favors to
loyalists and independents are disadvantaged. The claim here is only that
there are some situations in which unaligned moderates have leverage, not
that it is always the case. Dixit and Londregan (1996) characterize when
each situation pertains.

” Arbitration” - both Formal and Less Formal

Formal arbitrators wield considerable power, regularly resolving multi-million
dollar commercial disputes, particularly in labor-management relations. Ar-
bitrators jeopardize their ability to obtain that power if they become tainted
by bias (Kaufman & Duncan, 1992). For example, the neutrality of the arbi-
trator is a non-negotiable precondition mentioned explicitly in the National
Arbitration Forum’s ” Arbitration Bill of Rights”. Less formally, a neutral
third party can command respect in a partisan dispute. Statements from
either side of the dispute are given little credence; they are perceived as mere
posturing. In contrast, the opinions of an unaligned third party who has
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protected a reputation for impartiality are taken seriously. Consultants are
sometimes hired to obtain such an independent perspective, and however
poor the methodology (Clarke, 2002), US News and World Report rankings
of universities are taken more seriously than individual school’s own self-
serving claims to offer the best education. At a macro level, India sought
leadership among third world nations by remaining unaligned in the Cold
War (Willetts, 1978). In highly charged contexts such that "he who is not
my friend is my enemy”, third parties may find it hard to resist becoming
aligned with one side or the other, but may preserve a unique power if they
can do so.

”Preserving a Balanced World View”

A more abstract example is an individual seeking to maximize intellectual
honesty by remaining open-minded. Psychologists have shown that people
often suffer from a ”confirmation bias” (Gilovich, 1991). Once we begin to
believe one thing, we are most attentive to evidence that reinforces that prior
belief and are more skeptical toward contrary evidence. So with respect to
any issue - e.g., "public schools are (or are not) doing a good job” - if one
does not exert effort to avoid it, any bias in one direction or another may
tend to be amplified over time.

What these situations have in common is that maintaining a " middle
ground” is valuable but difficult. IL.e., it can require effort, which presumably
is costly. Visually, one can imagine this as standing on top of a narrow hilltop,
with ”slippery slopes” leading off to the left and to the right. Remaining
atop the hill confers benefit, and at the peak the pulls from either side are
balanced. However, if one moves a bit to the left or to the right, one has to
fight (gravity) to keep from slipping further. If one falls, one does not fall
forever. That is, the cross-section of the hill looks more like a bell-curve than
an upside down U. Once one has moved from the middle all the way to one
side or the other, there is little pressure to move beyond that point. E.g.,
there is not in general a force that would tend to push a Congressperson to
be more conservative (or liberal) than the conservative (liberal) party whip
wants that Congressperson to be.

A stylized model of this has a state variable z denoting the decision
maker’s position, with —1 and 1 representing the positions of the two op-
posing sides and z = 0 being the sought-for middle ground. If the state is
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currently between —1 and 1 there is tendency to be pulled out to the end
of that range that is closest. If for some reason the decision maker moved
beyond —1 or 1 (i.e.,|z| > 1), there would be a tendency to drift back to the
nearest pole. Those tendencies could, however, be moderated by exerting
effort (control variable u) to adjust the state, but at a (convex) cost. Various
functional forms might be suitable. One that is analytically convenient is

U

min/ e Tt (:U2+cu2) dt
0

MoM
st. 2=z—x°+u (Mo )

and z(0) = zo,

where r > 0 is a discount rate and parameter ¢ governs the cost of adjusting
one’s position.

3.2 Analysis of the Model

This section consists of five subsections. In the first subsection the optimality
conditions are specified for model (MoM). After that the Riccati differential
equation as sufficient second order condition is stated. Following an analysis
of the existence and properties of steady states is given. Thereafter the
regions of stability and the separating bifurcation lines are studied. In the
last subsection the second order conditions for the occuring extremal paths
are analysed.

3.2.1 Necessary Optimality Conditions

For model (MoM) the cost function g and the uncontrolled state dynamic f
are specified as

g(x)=2* and f(z) =z - 2°

with derivatives
¢d(x)=2z and f'(z)=1-32%

Following the analysis of Subsection 2.3.1 the current value Hamilto-
nian H is written as

H(z,u,\) = 2% + cu+ A (z —2° +u),
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where A denotes the costate variable in current value terms.
Substituting the concrete functional forms of f, f/, g and ¢’ in Eqgs. 2.6-
2.7 the adjoint differential equation is

A=X(r+(32%-1)) -2z (3.1)

or for control state u

b=u(r+ (3> - 1)) + % (32)
Together with the state dynamics

t=z—1%4u, (3.3)

the transversality condition Eq. 2.8 and initial starting position z(0) = zg
these equations yield the necessary optimality conditions for (MoM).

Since the Hamiltonian H is not convex with respect to the state vari-
able the usual (Mangasarian) sufficiency conditions are not satisfied.

3.2.2 Sufficient Optimality Condition

Considering the analysis of Subsection 2.3.2 and the special forms of f and
g the Riccati differential equation Eq. 2.9 is given by

Tt

p= eQ—p2 —2(1 = 3z%)p — e (2 - 6Az),
c

or by setting ¢ = e "'p we get

= % — (2(1 = 32%) +1r)g — (2 — 6)x).

For the state control space Eq. 2.11 can be written as

Tt

5= 9?21 - 3a%)p— e (2 + 120ua), (3.4

or by the usual transformation

qg= g; — (2(1 = 32%) +r)g — (2 + 12cux). (3.5)
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3.2.3 Existence of Steady States

Considering the dynamical system

i = z—28+4u
= u(r+3z2-1)+%

the steady states must satisfy

$3*CE
T

C(r+322—1)

14

(3.6)

Setting these expressions for u equal to each other and assuming z # 0, we

get

-1 = c(r—l— (3562—1)) (a:2—1)
0 = ¢c(Bz'"+(r—4)z®+1-1)+1
0 = c(3+(r—4y+1-r)+1,

a quadratic in y = z*®, whose solutions are

4—r+4/(r+2)°-12/c

y= 6

setting y = z?

(3.7)
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Abbreviating w = /(r + 2)? — 12/c the formal solutions of Eq. 3.7
together with z = 0 are

T
E, 0

B fA—r+w | _ /4—%+w<r+%—w)

Es _\/4—1‘+w \/4—r+w(r+2—w)
6 6 §

B \/m _\/W(rﬁ—%—l—w)

B |-y | i ()

Table 3.1: Steady states of the canonical system 3.6.

33

o

Comparing the z values of Ey-Ej5 it is obvious that in absolute values the x
coordinates of Fy and FEs are always larger then Fy and E5. This justifies
referring to F, respectivly F3 as outer steady states, wheras we refer to
E, and Fs as inner steady states. Furthermore it can be shown that for

the outer steady states & < 1 holds. Considering w = /(r +2)? — 12/c <
(r+2) Ve>0 we get

i_\/4—r+w<\/4—r+r+2_1
- 6 6 -

which proofs the assertion.

Now we determine the regions of existence for the steady states. Con-
sidering Eq. 3.7 and noticing that y = z? the existence of steady states is
determined by the two conditions ¥y > 0 and w € R. These conditions can
be written as

(r+2°-12/c > 0 (3-8)
4—r+w > 0. (3.9

Setting these conditions to zero, we get two boundary curves delimiting the
regions to be considered. After a short calculation we get ¢ = 12/(c + 2)2
and ¢ = 1/(r — 1) from Eqs. 3.8-3.9. These two curves are tangent to each
other at r = 4. Now every different case given by these solutions has to be
analysed to prove the existence of the steady states. To cover every region
with a different number of steady states we have to distinguish eight cases.




CHAPTER 3. A MODEL OF MODERATION 16

The solution is summarized in Tab. 3.2. In the following derivations we only
consider the inner and outer steady states.

Case 1: ¢ < 12/(c+ 2)? = w < 0 and therefore w is not real, and no steady
states exist apart from the origin.

Case 2: From ¢ = 12/(c+ 2)? and 7 < 4 we get w = 0. This implies that
inner and outer steady states coincide.

Case 3: For r = 4 and ¢ = 1/3 all steady states coincide with the origin.

Case 4: Considering r > 4 and ¢ < 1/(r — 1) we see that 4 — 7 — w < 0 and
therefore we only have to find the sign of 4 — r + w. But for that case
the following equivalence relation holds

1
< — & 12r—12—2<0
r—1 c
o 12 2
(r+2)°—-—<r*—8r+16
c
w? < (r —4)? r > 4l
w<r—4
d—r+w=y<0,

to ¢ 0

and so no real solutions for y = z? exist and therefore we have no

steady states apart from the origin in this case.

Case 5: For ¢ > 12/(r+2)? and r < 1weget w > 0 and w < 1/3(3 — 4/c) <
3 <4 —rimplying 4 — r + w > 0, therefore all five steady states exist

and are distinct.

Case 6: Assuming ¢ > 12/(r +2)% ¢ < 1/(r — 1) for 1 < r < 4, yields
3—1/c>w>0and 4—r >3—1/c. Therefore 4 —r +w > 0, and as
in the latter case all five steady states exist and are distinct.

Case 7: For r < 4 and ¢ = 1/(r — 1) the following equation holds

12
c

Vr2 —8r 4+ 16
= |r—4 (3.10)

= 4-r,

w = 4/(r+2)2-—
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this yields y =4 —r —w =0and y = 4 —r +w > 0. Therefore
the inner steady states coincide with the origin, while the outer steady
states exist and differ from the origin.

Case 8: For r > 4 and ¢ = 1/(r — 1) considering Eq. 3.10, y =4 —74+w =0
and y = 4 —r —w < 0 holds. This means the outer steady states
coincide with the origin but no inner steady states exist.

Case 9: ¢ > 1/(r—1) implies w > |r — 4| which in turn implies 4 —r +w > 0
and 4 — r — w < 0. Therefore only the outer steady states exist.

Character of Steady States at:

Region/Curve Origin Inner Steady States | Outer Steady States

# of DNS
I saddle - - —
IIa saddle unstable focus saddle —
II'b saddle unstable focus saddle 2p
II1a saddle unstable node saddle —
I1Ib saddle unstable node saddle 2p
ITIc saddle unstable node saddle 2t
v unstable node - saddle 1t

Table 3.2: Number and properties of steady states. See Fig. 3.1 for definitions of regions
and bifurcation curves.

t denotes a DNS threshold.

p denotes a DNS point.

3.2.4 Stability Properties

Knowing the number of steady states for the different regions, we analyse
now their stability properties. The characterization of the steady state be-
haviour ensues from calculating the determinante, trace and discriminant of
the Jacobi matrix J.

We get the common form of J, by linearizing the system of differential
equations Eq. 3.6

1— 322 1
I(w,u) = ( 6zu+1/c r+3z2—1 ) (3.11)
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calculating A, 7 and D gives

A = -8z —=1)(r+32%-1)— (6zu+1/c)

D = r?—4(3z® - 1)(r+32z% — 1) — (6zu + 1/c))
with

T ... tr(J)

A ... det(J)

D ... TP—4A.

In the following subsections these formal results will be analysed for the
different steady states.

Origin
At the origin the Jacobi matrix Eq. 3.11 simplifies to

1 1
J(0,0)=<1/C r—l)’ (3.12)
and so we get
T =7 (3.13)
A = r—-1-1/c (3.14)
D = r*—4r+444/c (3.15)

The stability properties are completely determined by the signs of the three
parameters A, 7 and D. As 7 = r > 0 always holds we only have to consider
the occurrence of A = 0 and D = 0. Furthermore it can be seen immediatly
that D >0 Vr,c > 0. Therefore only equation A = 0 has to be analysed.

We distinguish three cases for sgn(A) and therefore three regions in
parameter space.

Case 1: A <04 r <1+ 1/ctogether with 7 > 0 and D > 0 characterizes
a saddle point.

Case 2: A =0« r =1+ 1/c gives the critical case of a non-isolated steady
state at the origin.
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Case 3: A >0« r > 1+ 1/cis associated with an unstable node.

Considering the division of the parameter space given in Fig. 3.1 we see that
the origin is a saddle in regions I, II and III, a non-isolated steady state at
v, and an unstable node in region IV.

Inner Steady States

In case of an inner steady state the Jacobi matrix Eq. 3.11 becomes

J_l 3(r+w—2) 6
e\ w2l —-rw—-2r—8+6/c 3(r—w+2)
and
T =7
A = 11—2-(—5w2+4(4—r)w+(7‘+2)2)—-%
2
D = %(5102—4(4—7’)w+2r2—2r—2)+1—. (3.16)
¢

Finding the regions where sgn(A) differs we have to solve A = 0, which
implies

1 9 2 1
0 = 12( 5w + 4(4 r)w+(r+2))—g
! 2
0 = 12(—411) +4(4 — r)w)

0 = w—(@d-r)w
0 = ww—4+r)

and therefore the following equations must hold
w=4—-r or w=0.

Since inner steady states only exist for » < 4 the inequality w > 0 holds and
we get

A=0&
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Next we analyse the case D = (0. Starting from equation 3.16 we get

1 12
D = 3 <5w2+4(r—4)w+2r2—4r—4+——>
c

1 12
= g(511)2+4(7’—4)w+37"2—7"2—4r—4-+—?>

= % (4w? + 4(r — Hw + 3r?).

This is a quadratic in w with solutions

W = % (4 /20t A — 8)) . (3.17)

As w > 0 is demanded we have to make sure that the right side of Eq. 3.17
is real and positive. Finding the zeros of 72 + 4r — 8

Ti2 = Q(i\/g— 1),

it is obvious that the solutions of Eq. 3.17 for 0 < r < 2(\/?; — 1) are real.
Next we have to show the positivity of 3.17. Since r < 2(\/§ — 1) we get
7 < 4 and so positivity is given for the positive root. Therefore only the case
of the negative root has to be analysed. But in this case we get the following
equivalence

4—1r—/-202+4r—-8)>0 & 4—1r> /202 +4r —8)
& 16—8r+71°>—2r" —8r+16
s >0,

which holds since 4 — r > 0.

As we have found now the domain where equation Eq. 3.17 holds, we
can start finding the solution curves explicitly. Replacing w by its definition
yields to equation

-2 = Hamre )
4<<r+2>2—%) = (4-revTE D)

4
5r2+32r—16—?8 = 42(4—1)\/=2(r2 + 4r — 8).
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Expressing ¢ explicitly we get

48
T 5 3o —16+2(4—1)/ 202 1 dr _9)

48 (512 + 82 — 16 F 2(4 — 1)y/=2( +4r ~ 5) )
2 = 33r% + 28873 + 672r% — 768

16 <5r2 4 32r — 16 F 2(4 — r)/—2(r2 + 47 — 8))
cla = .

(r+4)%(11r2 + 87 — 16)

These are rational functions continuously connected at r = 2(v/3 — 1) and
can therefore be treated as one curve §. As this curve is given by ratio-
nal functions we have to find the singularities and the behaviour at these
singularities. Setting 11r% 4 8 — 16 = 0 gives the solutions

_4 (1&2\/5),

11
as we are only interested in positive values, the only interesting solution is
4
- (1 - 2\/§> . (3.18)

Readily it can be seen that Eq. 3.18 is the only candidate for a singularity,
because (r + 4)? has no positive solution. Considering the two curves at this
singularity it can easily be proven that in case of ¢; it is a real singularity,
while in case ¢ the singularity can be lifted. ‘

We have proved now, that the domain where § exists is part of the
domain where the inner steady states exist. Therefore § is delimiting regions
with different sgn(D) and therefore different stability properties, for the inner
steady states. Evaluating D at points for the two different regions, we get
D > 0inside region Il and D < 0 inside region II1. Combining this result with
Eq. 3.18 the inner steady states are unstable saddles in region ITI, unstable
nodes in region II, and degenerated nodes on the curves §. (See Tab. 3.2.)

Outer Steady States

Similar to the case of the inner steady states the Jacobi matrix Eq. 3.6
becomes

Jo ! 3(r+w—2) 6 )

6( (W?+2(1—r)w—2r—8)+6/c 3(r+2+w)
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and

T =7
1
—5w? —4(4—r)w+ (r+2)%) - =

13 ( p

1 1
D = §(Sw2+4(4—7")w+27“2—2r—2) +-
Solving A = 0 leads to

0= L (—4w? + 4(r — Hw) .
12
Therefore the following equations must hold

w=r—4 or w=0.

Since w > 0 has to be guaranteed we get

_ 1
cC = _T‘)"— r>4
A=0«
c ——712 Vr
(r+2)

Analogous to the case of the inner steady states the following equation for
D = 0 holds. ]
3 (4w’ + 44 —rw+3r*) =0

This is a quadratic in w with solutions

1
w1,2=§(7‘—4:t\/—2(7"2+4r—8)).

We have the same constraints on r as for the inner steady states. Therefore
the right side is always negative, and the quadratic has no solution. This
means D does not change sign for the outer steady states. Evaluating D for
an arbitrary point shows D > 0. Summarizing the results of this subsection,
the outer steady states are saddles in Regions II, III and IV as well as on the
curves 3 and 7y, and they are non isolated steady states at curves a and ~,.
(See Tab. 3.2.)




CHAPTER 3. A MODEL OF MODERATION 23

3.2.5 Regions of Stability

We next examine the steady states of the canonical system as functions of
its two parameters r» and ¢ and determine their stability properties. As
we can see in Fig. 3.1, the parameter space is divided into four regions, with
different numbers of steady states and different stability properties. (See also
Tab. 3.2.) The exact computations of the steady states and their properties
for these regions can be found in Sections 3.2.3 and 3.2.4, respectively. The
origin is always a steady state. There are in addition up to two pairs of
steady states on either side of the origin. The two pairs are referred to as
the inner and outer steady states based on their distance from the origin.

30 _ ] \ i
[l Ty
! Ve - 12
IIa“‘ \‘ ‘\ — « with C-("—‘*‘T)Z 0STS4
2.5 B @ \ \® 16(51'2+32r—16i2(4~1-) —2(1-2+4r—8))
i o —— B with c= )
D13 I\
2.0 4 “\. \ \ — - v with cz;é—l for 1<r<4
c \‘\ [V —- 2 with c=1—,1—1 for >4
o \,\ \ &\ -—- & numerically computed
% 1.5 4 ’ "‘\ \\ ''''' 1 numerically computed
5 .III \ ® r=1.5
c \_) ¢ \\ X =25
1.0
I
0.5+
0.0 | T 1 T |
0 1 2 3 4 )

discount rate r

Figure 3.1: Regions of different stability and optimality divided by bifurcation lines
a, 3, and DNS bifurcation line ¢ and line p. To avoid cluttering the figure Regions I11a
and I1Tb are not marked in Fig. 3.1.

® and X mark different positions of models depicted in Fig. 3.3 and Fig. 3.2.

® mark different positions of models depicted in Fig. 3.2 and Fig. 3.4.
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Region I

For parameters lying in Region I the only steady state is at the origin. This
steady state is a saddle, and the region is delimited by the positive r and ¢
axes and the curve (labeled o) defined by ¢ = 12/(r + 2)2, for 7 < 4 and by
c=1/(r—1) forr > 4.

Region II

In Region II there are five steady states. The origin and outer steady states
are saddles, and the two inner steady states are unstable foci. The curve
labeled @ forms the boundary of Region II. It is defined by two rational
functions whose exact formulae are found in Section 3.2.4. As will be seen
shortly, Region II is split into two subregions with different behaviour of
optimality.

Region III

Region III also has five steady states with saddles at the origin and two outer
steady states, but the inner steady states have mutated into unstable nodes.
Region III lies between the curves a, § and v, where the latter is defined by
c=1/(r=1)for1 <r <4

Region IV

The big difference between Region IV and the other regions is that the origin
is an unstable node, not a saddle. No inner steady states exist, but the outer
steady states remain saddles. Region IV lies above the curve vy, defined by
c=1/(r—1) forr>1.

3.2.6 Bifurcation Lines

These four regions are divided by bifurcation curves. (See Fig. 3.1.) Crossing
these curves can mean a dramatic change in the system’s behaviour. New
steady states can emerge while others disappear or change their stability
properties. As the possibility of such limiting cases is zero, they are of no
vital importance for applications, but they nevertheless give insight into the
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mathematical formulations of radical changes in the model behaviour as pa-
rameters vary. At these lines, catastrophes can take place, and even models
near such bifurcation lines can show some strange behaviour.

Bifurcation Line «

For models with parameters lying on this line, the origin is a saddle, and the
inner and outer steady states coincide at non-isolated fixed points. When
moving from Region I onto this line, the saddle at the origin in Region I
trifurcates into one saddle and two non-isolated fixed points. Continuing by
moving on into Region II, each non-isolated fixed point bifurcates further
into a saddle and an unstable node.

Bifurcation Line [

This line separates region II, where the inner steady states are nodes, from
region 111, where the inner steady states are unstable foci. Lying on 8 they
take on an intermediate state as degenerated nodes. Curve (3 lies above line
« and they intersect at 7 = 0 and ¢ = 3.

Bifurcation Line 7y

Bifurcation line « is split into v; for 1 < r < 4 and v, for r > 4. On 7y
the origin changes from a saddle to a non-isolated fixed point. This is the
intermediate state between being a saddle in region III and an unstable node
in region IV. The outer steady states are unchanged as saddles, while the
inner steady states cease to exist at ;.

On 7y, the origin is also a non-isolated fixed point, but no other steady
states exist. To be exact the outer steady states coincide with the origin for
r > 4, while for r = 4 all steady states coincide at the origin. So for this
case no saddle exists and therefore the standard methods to find an optimal
(extremal) solution are not applicable. Heuristically this strange behaviour
can be understood by considering that v, divides region I and IV which have
very different optimal behaviour, as we will be elaborated in Section 3.3.

Bifurcation Line ¢

Unlike to the bifurcation lines described so far, which split regions into parts
with different stability properties, bifurcation line ¢ induces a change in the
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topology of the stable manifolds for the outer steady states and the origin.
It is a so-called heteroclinic bifurcation line, where for parameters exactly on
line & the saddles are connected by heteroclinic paths. Such a bifurcation can
indicate the existence of DNS points, as it does in our case (see, e. g. Wagener,
2003).

Bifurcation line § was computed numerically by searching for hetero-
clinc connections. It separates Regions IT and III into two parts with quite
different optimal startegies as we will now elaborate.

3.2.7 Analysis of Local Optimality

In the following subsections the solutions for the Riccati differential equation
Eq. 3.5 at the steady states and along extremal paths are analysed. As is
shown in Section B.4 the solutions behaviour at steady states only depend
on the steady states nature.

Origin
For (z,u) = (0,0) Eg. 3.5 reduces to
e
j= — —2)qg— 2.
§=5-+(r—2)q

Noticing that the origin is always a saddel or unstable node (see Tab. 3.2)
it follows from the results of section B.4 that staying at the origin is always
locally optimal.

Inner Steady States

As the inner steady states are given by

4 —r—w 4d—r—w (r+24+w
Fos=| <
2,3 ( \/ 6 7:F\/ 6 ( 6 )))

where w = \/(r + 2)? — 12/c Eq. 3.5 has to be written as

i %+(2_w)2q_ (2- 4-r w)g(r—i-2+w)c).
In Region II the inner steady states are unstable foci, whereas they are
unstable nodes in Region III (see Tab. 3.2). Therefore E; 3 are only locally
optimal at Region III.

q2
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Outer Steady States

As the outer steady states are given by

4—r+w 4d—r4+w (r+2—-w
E4,5— <:|:\/7 6 7:F\/ 6 ( 6 ))1

where w is defined as before, the Riccati differential equation Eq. 3.5 is given
by

2
1
i= -+ @+wg- 36— (=T u)r+2-wo).
Infering from Tab. 3.2 that the outer steady states are unstable nodes it is
confirmed that persisting at the outer steady states is always locally optimal

for all regions, where they exist.

Region I and IV

For Region I numerical integration of the corresponding Riccati differential
equation for the only stabel manifold confirmed the local optimality of this
solution.

The same holds true for Region IV where the local optimality for the
two occuring stable manifolds has been established. Together with the result
of Section 3.2.7 it has been proven that staying exactly at the origin is also
locally optimal.

Region II and III

As well in Region II as in Region III we can distinguish two regions respectivly
with different global optimal behaviour. Bifurcation line § seperates these
different regions. Whereas in Regions II/I11a the stable manifold of the origin
dominates the one of the outer steady states, we found a DNS threshold for
Regions II/IIIb. Not surprisingly the local optimality of these solutions has
been confirmed by numerical integration of the Riccati differential equation.
But furthermore these numerical calculations showed that the stable mani-
folds of the outer steady states in Regions II/IIla are also locally optimal.
For Region Ila (Fig. 3.4a) this holds true als long as the stable manifold does
not intersect the z-isocline and a shock occurs (see Appendix C). For Region
IIla (Fig. 3.4b) the whole stable manifolds of the outer steady states up to
the unstable nodes are locally optimal. These considerations correspond also
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to the results of 3.2.7, where we the local optimality of the unstable nodes
has been shown, whereas the unstable foci even are not locally optimal.

At Region IIb the stable manifolds are locally optimal up to the point,
where a shock occures on crossing the & isocline. For Region IIIb the local
optimality of the extremal was confirmed.

Summarizing these results we have shown, that for Regions II and
III, a whole interval exist, where different optimal solutions for (MoM) have
been found. At least from a local point of view.

3.3 Interpretation of the Results

This section consists of three subsections. In the first subsection an interpre-
tation of the global optimal strategies derived from the mathematical analysis
of Section 3.2 is given. In the next subsection a more informal description of
the change in optimal policies is given, when parameters vary. While in the
last subsection the optimal strategies are reconsidered from a local point of
view. In this section and the analogue sections for the other models for the
interpretation of the occurence of DNS thresholds the property of continuous
optimal policy is used. For critical remarks on the usage of this concept see
Remark 5 in Appendix D.

3.3.1 Optimal Strategies

Having analysed the dynamic systems in terms of steady states and their
properties, we next explore when various strategies are optimal. It turns out
that there are essentially three strategies that may be optimal depending on
the values of parameters r and ¢: (1) always move to the middle (origin),
(2) (almost) always fall off to one side or the other, and (3) decide based on
one’s initial position.

The stability regions and bifurcation lines play an important role in
defining when the various strategies are optimal, but the correspondence is
not one for one. In particular, stability Region II, which is defined by two
rational functions continuously connected at r = 2(v/3 — 1), is divided into
two subregions (Region Ila and Region IIb) by the bifurcation line 6. (See
Section 3.2.4 for details.) So different strategies are optimal in different parts
of a single stability region (namely Region II}, and the same strategy may
be optimal for different stability regions (e. g. , Regions I and Ila).
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Strategy A: Always Move to the Middle

In stability Regions I, I1a and IIIa, it is always optimal to move to the origin,
regardless of the starting position (z(0)). This makes intuitive sense because
in these regions r and ¢ are small. Hence the cost of exerting effort is modest
(c small) and the low discount rate (7 small) implies that the decision maker
weighs the long-run future benefits of being in a position of moderation (at
the origin) heavily relative to the short-run costs of exerting effort to get
there.

Strategy B: (Almost) Always Fall Off to One Side or the Other

Stability Region IV represents the opposite case. If the starting position
is exactly at the origin, it is optimal to stay there, balanced precariously
between the attractions of aligning with the left or right positions. Otherwise,
parameters r and ¢ are so large that if the decision maker ever deviates even
slightly from the origin, the decision maker is so short-sighted and the costs
of control so great that the benefits of returning to the origin are not worth
the effort. That does not mean that the optimal strategy is to be utterly
passive. It is still optimal to exert some effort to slow the slide down the
slippery slope, but not enough to alter the end result.

Strategy C: Move to the Middle if and only if One Starts Nearby

Regions IIb and IIIb/c present an intermediate case, whose prescription could
be summarized ”Maintain a position of moderation in the long run only if
one initially holds a fairly moderate position”. Or, as Polonius instructed
Laertes, ”"To thine own self be true.” If the decision maker’s initial position
is not too far from the origin, it is optimal to move back to the middle. But
if the initial position is too far from the origin, moving to the origin is not
worth the effort, although again some effort should be exerted to slow the
slide. In between there are points of indifference, one on either side of the
origin, from which the decision maker is equally happy moving left or right.

The character of the indifference points differs, however, in Regions ITb
and I1lc. In Region IIIc where the inner steady states are unstable nodes and
the stable manifolds do not intersect the i-isocline, the indifference points
occur at the inner (unstable) steady states, and the initial level of effort
(v*(0)) is only infinitesimally different whether one (arbitrarily) chooses to
move left or right from that point.
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In Region IIb/IIIb, where Region IIIb is separated by the lines £ and
14, the indifference points do not necessarily correspond to the inner steady
states. Furthermore, from the indifference point, if one chooses (arbitrarily)
to move back to the origin the initial level of effort (v*) is noticeably greater
(in absolute value) than is optimal if one chooses instead to move out to the
outer steady states. In both cases, the indifference points are so-called DNS
points (cf. Tragler, Caulkins, & Feichtinger, 2001).

3.3.2 Change in Optimal Strategy as Parameters Vary

This section examines in more detail how the optimal strategy varies as one
of the two parameters in turn is increased.

Increasing ¢ for Fixed Values of the Discount Rate r

Figure 3.3 shows phase portraits when » = 1.5 and the cost parameter c
is 0.5,12/3.52,1.75, and 2.5, respectively. When costs are low (¢ = 0.5;
Fig. 3.3a) it is always optimal to move to the origin. As ¢ increases further
toward the bifurcation line ¢, the £ = 0 and v = 0 isoclines begin to converge
creating a bottleneck through which trajectories originating further outside
have a hard time passing. This visually corresponds to the increasing cost of
climbing up a slippery slope when one starts near the bottom.

When c reaches the bifurcation line (¢ = 12/3.5%; Fig. 3.3b) the iso-
clines touch creating non-isolated fixed points. This is the critical case, where
the origin is optimal for states starting inside the inner steady states and stan-
dard methods cannot be used to analyze cases outside this interval, because
no saddles except the origin exist and therefore no extremal paths can be
computed.

Increasing ¢ beyond this bifurcation line splits the non-isolated fixed
points into a saddle (outside steady state) and an unstable node (inside
steady state), and the origin is only the optimal endpoint for initial conditions
inside the indifference points, i. e. the inner steady states (Fig. 3.3c). Outside
that range, the extreme positions (outer steady states) are optimal. As ¢
increases further, the range of initial conditions for which it is optimal to
converge to the origin shrinks until at bifurcation line ~y, the inner steady
states (thresholds) coincide with the origin, and the origin becomes a non-
isolated fixed point, and the optimal strategy is to move out to the extremes
unless one begins precisely on the origin.
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Increasing ¢ with r fixed at 0.5 gives slightly different results (figures
not shown). The cost parameter can become very large before it is no longer
optimal to always converge to the origin, and there is no critical change when
crossing bifurcation curve «. From a heuristic point of view, this means the
decision maker is far-sighted enough to want to reach the origin even when
there are strong alternatives (the outer steady states exist). In mathematical
terms the difference can be found in the relationship between the stable
manifold and the emerging outer steady states. While for > 1 these steady
states lie on the stable manifold, that is not the case for r < 1. So driving to
the origin remains always optimal until ¢ reaches the DNS-bifurcation line 4.
Numerical calculations show that there is no r small enough to make going
to the origin universally optimal, without regard to both the cost parameter
¢ and the initial position. Rather § crosses the y axis. Extrapolation of the
bifurcationline é and direct calculations suggests this crossing point in about
¢ = 55. (Le., for high enough costs, the origin is never universally optimal.)

Increasing ¢ with r > 4 gives a simple but quite different pattern.
Strategy A (always going to the origin) is optimal for ¢ < v, and Strategy B
(almost always not going to the origin) is optimal for ¢ > «y. There is never
an intermediate case (Strategy C) when r > 4. Thus, oddly, when one is
very present-oriented (r > 4) one’s initial state stops having any impact on
the final outcome.

Increasing r for Fixed Values of the Cost Parameter c

When ¢ = 2.5 and r is small i is always optimal to converge to the origin.
That remains true until r reaches bifurcation line § even though between
lines o and ¢ two other sets of steady states emerge, because those steady
states are bypassed by the optimal solution. (See Fig. 3.2a.) Between ¢ and
B there are two DNS points, one on either side of the origin. For initial
conditions between the DNS points it is optimal to converge to the origin;
for initial conditions outside the DNS points, it is optimal to converge to the
nearer of the two outer steady states. (See Fig. 3.2b.) Two things happen as
7 increases within these DNS regions (Region Il and Region [lb/c). First,
the DNS points move inward. Second, the gap shrinks between the optimal
initial control level when one moves right and the optimal initial control level
when one moves left. That gap shrinks to zero when 7 reaches bifurcation line
B that separates Region IIb, where the inner steady states are unstable foci,
from Region IIIb/c, where they are unstable nodes. Decisive and dramatic
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actions that rapidly propel the decision maker toward the long run steady
state are initially costly and, hence, are only recommended for far-sighted
(smaller r) decision makers.

As r increases further in Region IIIb/c those inner steady states (un-
stable nodes) continue to converge until they collapse into the origin at bi-
furcation line 7. Le., the decision maker becomes so present-oriented, that
it is never worth working to get back to the origin or position of moderation.

When c is somewhat smaller (e. g. , ¢ = 1) the sequence as 7 increases
is similar except that crossing bifurcation line o takes one directly to the
condition of two unstable foci (inner steady states) separating regions where
it is optimal to converge to the origin from those where it is optimal to
approach the outer steady states.

When ¢ is very small such an intermediate region does not exist. To
the left of v it is always optimal to converge to the origin; to the right, for
any initial position other than the origin, it is optimal to slide out to the
outer steady states. Note that when control costs are extremely small, the
7 curve occurs for very large values of the discount rate (r > 4) and so may
not be practically relevant.

3.3.3 Local Optimal Strategies

Whereas in Section 3.3.1 the global optimal strategies were analysed, this
section gives insight to the interpretation of the concept of local optimal
strategies. The idea behind this concept was treated in Section 2.1. The
three global strategies have their correspondence to the local optimal strate-
gies. This means three different strategies depending on the values of pa-
rameters r and ¢ can be distinguished: (A) move to the boundary (1), (B)
(almost) always fall off from the boundary to the origin or a state outside the
boundaries, and (C) move either to the origin or the boundaries depending
on one’s initial position.

For the global situation multiple optimal solutions only occur at sin-
gular starting positions z(0), the so-called DNS points. Whereas for the local
situation entire intervals (finite and infinite) exist where the decision maker
can choose between multiple local optimal decisions.

Again the bifurcation lines form the borders of different optimal strate-
gies. But as in the global case there is no one for one correspondence between
regions and strategies. To avoid repetition for the formulation of the opti-
mal strategies, the local optimal strategies are only explained in contrast to
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global optimal strategies.

Strategy A: Always Move to the Middle

Moving always to the middle, regardless of ones starting position z(0) was
now proven to be locally optimal only for Region I, contrary to the global
strategies, where this behaviour was also optimal for Region IIa.

Strategy B: (Almost) Always Fall Off to One Side or the Other

No difference between local and global optlmahty This strategy is optimal
for the whole Region IV.

Strategy C: Move to the Middle if and only if One Starts Nearby

Not surprisingly this is the most interesting case, as there have been multiple
optimal solutions (DNS points) even for the global optimal case. In Region
ITa and Illa moving to the middle is always a local optimal strategy. But
in addition to that this strategy is only unique for an interval in the state
space between the outer steady states at —1 and 1. This interval is given
by the crossing points of the z-isocline and the extremals (see Appendix C)
converging to the outer steady states (see Fig. 3.4a). Outside this interval
moving to the outer steady states gives another local optimal solution. This
makes intuitively sense, for starting positions x(0) near the outer steady
states one has to exert a great effort to move back to the middle, even if this
is optimal in the long run, one can choose the second best possibility and
fall off to the left or right side. Also for starting positions outside the outer
steady states a great effort is necessary to move back to the middle. And
although the decision maker is far sighted enough (r small) to know that this
would be optimal in the long run, one can choose the easier way and end at
the outer steady states.

We find a similar situation in Region IIb. But contrary to the case
before, for starting positions z(0) outside the interval [—1,1] falling off to
one side is the only optimal choice. Only for starting positions in an interval
around the z—value of the unstable foci at the inner steady states, the two
strategies, moving to the middle or falling off to one side, are locally optimal
(see Fig. 3.4b). Within the global sight of optimality there was only one
initial position, namely the DNS point, where one had two choices. Now
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there exists an entire interval where different local optimal solutions have
been proven.

At Region IIIb these intervals shrink to a singular point (unstable
nodes at the inner steady states) and the global optimal behaviour is equal
to the local optimal strategy.
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Figure 3.2: For constant cost ¢ = 2.5 and different discount rates r the system dynamics
is shown together with its optimal behaviour and direction. On the left (case a) r = 0.32

on the right (case b) r = 0.8.

The given caption is valid for all following figures describing the global optimal behaviour.
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Figure 3.3: For constant discount rate r = 1.5 and different costs ¢ the system dynamics
is shown together with its optimal behaviour and direction, starting in the upper left and
moving clockwise the four cost parameters are
a)c=05b)c=12/352¢)c=1.75d) ¢ =25
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Figure 3.4: For constant cost ¢ = 2.5 and different discount rates r the system dynamics
is shown together with its local optimal behaviour and direction. On the left (case a)
7 = (.32 on the right (case b) r = 0.8.

The given caption is valid for all following figures describing the local optimal behaviour.




Chapter 4

A Generalized Model of
Moderation

This model introduces a generalized version of (MoM) presented in Chapter 3.
On an interval the state dynamic and cost function are of the same shape as in
(MoM). But as well the state dynamic as the cost function are periodically
continued. As in (MoM) the optimal solutions are computed as functions
of two extern parameters r the discounting rate and ¢ a cost parameter.
The optimal and dynamical behaviour of the solutions are classified for the
whole parameter space. Analytical expressions of the occuring bifurcation
lines allow the explicit identification of regions with different (local) optimal
behaviour. Regions with different number of DNS points in the interval
[, 7] have been identified and by periodicity we constructed a model with
an infinite number of DNS points.

4.1 Motivation

In Chapter 3 the model (MoM) was motivated by the idea standing atop
of a hill with “slippery” slopes on the left and right side. A quite natural
generalization of this idea is to assume the existence of many hills along the
z-axis. In an idealization an infinite number of hills ranging over the whole
real line exist. In a further simplification all hills are assumed to be equally
shaped.

Back to the interpretation of (MoM) a control variable v was intro-
duced which stands for the effort to fight gravity to return atop if one slips

38
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down the steep slope. To measure the costs of exerting effort a costfunc-
tion was introduced. For our generalized model, having this interpretation
in mind, we also define a cost function, but as we have an infinte number of
equally shaped hills, this cost function is also periodic with the same period
as the hills. The reason for that assumption is that costs for the exerting
effort are assumed equal for every hill.

A simple model realizing this generalization, where the state variable
z denoting the decision makers position, with z = (2k + 1) where k = ko
or k = kg — 1 and ky € Z representing the positions of the two opposing
sides (valleys) and z = 2km being the sought-for middle ground (top). There
is tendency to be pulled down to the closest valley. This tendency could,
however, be moderated by the exerting effort (control variable u) to adjust
the state, but at a cost ¢. A simple functional form reflecting these properties
would be

>
min/ e’ (1—cosz + cu?) dt
U
0

st. z=smnz4+u (GMOM)

and z(0) = o,

where r > 0 is a discount rate and parameter ¢ governs the cost of adjusting
one’s position.

4.2 Analysis of the Model

This section consists of seven subsections. In the first two subsections the
necessary and sufficient optimality conditions are formulated. After that
the existence and properties of steady states are derived. In the following
subsections the regions of stability and bifurcation lines are analysed. While
in the last subsection the locally optimal solutions are summarized.

4.2.1 Necessary Optimality Conditions

For the special case (GMoM) the cost function g and state dynamic f are
2m-periodic functions

g(z) =1—cos(z) and f(z)=sin(z),
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with derivatives
¢'(z) =sin(z) and f'(z) = cos(z).

Following the usual optimal control analysis of Section 2.3 with the specified
functional forms of f and g the current value Hamiltonian becomes

H(z,u,\) =1~ cos(z) + cu® + X (sin(z) + u)

where A denotes the costate variable in current value terms.
The state equation

I=snz-+u

and adjoint equation

A=rX— H, = X(r — cos(z)) —sin(x).

or for control variable u

sin(z)

% =u(r — cos(x)) + 90

yield the canonical system. The transversality condition Eq. 2.8 and the

canonical system form the necessary optimality conditions for (GMoM).
Since the Hamiltonian H is not convex with respect to the state vari-

able x, the usual (Mangasarian) sufficiency conditions are not satisfied.

4.2.2 Sufficient Optimality Conditions

For the special choice of the functions f and g we get the following Riccati
differential equation derived in Section 2.3
Tt
p= 2—p2 —2pcosx — e "(cosz — Asinz),
c
or considering Eq. 2.11 for control variable u
ert

p= 2—p2 — 2pcosx — e " (cosx — Asinz).
c

For the usual transformation ¢ = e~"*p these equations become
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2
qg= gz + (r — 2cosz)q — (cosx — Asinz),
or in the state control space

2

q= g _ (r~2cosz)q — (cosz + 2cusin ).

2c

4.2.3 Existence of Steady States

Considering the canonical system

& = sin(z)+u
o = u(r—cos(z))+

sin(x)
2c

the steady states must satisfy
u = —sin(zx)

sin(z)

U = ——
2¢ (r — cos(z))
Setting these expressions for u equal to each other we get

sin(x)

sin(a:) = m,

with the following solutions for x:

Tepr1 = 2km ke€Z

1
L5p+25k+3 = 2kw + arccos(r — —2—c~) keZ

Tspta = (21{2 + 1)71' keZ

41

(4.1)

(4.2)

(4.3)

and therefore abbreviating w = r—1/2 ¢! the formal solutions of the steady

states are

Having in mind the interpretation of the states as top and valley we refer to
steady states Fsi41 as top steady states, whereas the steady states Fyy 4 are
called valley steady states. As the steady states Fsg1o and Fsiis lay between

FEsi+1 and Fsiiq they will be called inner steady states.
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| & | @
E5k+1 2k 0
Fspyo | 2km + arccos(w) | —v1 — w?
Espys | 2k — arccos(w) | v/1 —w?.
E5k+4 (2/{} -+ 1)7{' 0

Table 4.1: Steady states of the canonical system 4.2.

While Fsp.; and Ejgy4 are global solutions for Eq. 4.3, whe have to
determine the regions of existence for the steady states Esri2 and Fsgys. As
they only depend on w we have to consider the case where |w| < 1 is fullfilled,

implying

1
. c > 1) Vr
r— % <ls (4.4)
1

That is for ¢ sufficing Eq. 4.4 the steady states Esiyo and s 3 exist.
At least we determine the cases where these steady states coincide
with other steady states.

Case 1: w= 1< c¢=2/(r+ 1) the inner steady states coincide with the top
steady states.

Case 2: w= —1< c¢=2/(r—1) inner steady states and valley steady states
coincide.

These results are summarized in Tab. 4.2.

4.2.4 Stability Properties

Knowing the regions of existence for the steady states, we now analyse their
stability properties. The characterization of the steady state behaviour en-
sues from calculating the determinante, trace and discriminant of the Jacobi
matrix J.

We get the common form of J, by linearizing the canonical system

Eq. 4.2
S ) = cos(z) 1 (45)
, usin(z) + & — cos(z) .
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calculating A, 7 and D gives

T = r
A = cos(z)r — cos’(z) — usin(z) — Eo—zi—ml
D = 1% —4cos(z)r+4 cos®*(z) + 4vsin(z) + 2 COSC(:E)
with
T ... tr(J)
A ... det(J)
D ... TP —4A.

In the following paragraphes these formal results will be analysed for the
different steady states.

Top Steady States

At the top steady states the Jacobi matrix Eq. 4.5 simplifies to

we get
T =7 (4.7
1
A =r71r—-1-— 4
T 5 (4.8)
2
D = r?—4(r-1)+= (4.9)
c

The stability properties are completely determined by the signs of the three
parameters A, 7 and D. As 7 = r > 0 always holds we only have to consider
the occurrence of A = 0 and D = 0. Solving these equations we get

1

D=0 & c=- <0 (4.11)

(r— 2)2

As ¢ > 0 Eq. 4.11 is never fullfilled we only have to consider Eq. 4.10.
Distinguishing the cases where the sign of A changes we get two regions in
parameter space and a bifurcation line given by Eq. 4.10.
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Case 1: ¢>0forr<lorc<1/2(r—1)forr > 1= D < 0 characterizes
a saddle.

Case2: ¢ >1/2(r—1)forr>1= A >0AD > 0 gives the case of an
unstable node.

Valley Steady States

In case of valley steady states the Jacobi matrix Eq. 4.5 becomes

-1 1
J—< 512 r+1>

and
T =T
A = r+1 !
- 2c
2
D = r2+4(r+1)—z. (4.12)

Setting A and D to 0 we get the following equations

1

2

o 2)2 (4.14)

D=0 & c¢c=

Combining the regions with different signs of A and D three distinc-
tive regions are found.

Case 1: ¢ < ﬁ = A > 0 A D < 0 characterizes unstable foci.

Case 2: (T—fzyg <ec< Tlﬂi = A > 0A D > (0 and hencefor gives the case of

unstable nodes.

Case 3: For ¢ > '2?1_1) = A < 0 the valley steady states become saddles.
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Inner Steady States

In case of inner steady states the Jacobi matrix Eq. 4.5 becomes

1

T — 1
J:(—Hr(f—i) —)

and
T =T
1\2
A = 1—(7‘——2—0) (4.15)
1\ 2
D = r2—4+4(7'——) .
2c

Setting A = 0 we find the solutions

c= 5
A=0& )
T )
Finding the solutions for D = 0 is straight forward finding the roots
of the quadratic in ¢

D=0 & 02(5r2—4)——4rc+1=0

becoming
_ArE2v4—r?
2T TG —gy

These solutions ¢; and ¢z form two curves in the parameter space which are
continuously connected at r = 2. As the polynom in the denominator of
Eq. 4.16 has a positive real root at r = \/4/_5 the solutions have a singularity
at this point, which can be lifted in the case of ¢y, while it is a real singularity
in the case of ¢;.

Summarizing these considerations we can distinguish two different re-
gions concerning the properties of the steady states, where Region IV denotes
the enclosed region by the curves ¢; and cs.

(4.16)

Case 1: For c lying in Region IV A > 0A D < 0 entails that the inner steady
states can be characterized as unstable foci.
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Case 2: For ¢ lying outside Region IV and ﬁ <ec< 2(71_5 we find A >

0 A D > 0 implying that the steady states are unstable nodes.

These results are summarized in Tab. 4.2.

4.2.5 Regions of Stability

In this subsection the different regions of stability for (GMoM) are consid-
ered. In Fig. 4.1 we can see that the parameter space is divided into five
main regions with different stability properties of the occuring steady states.
Furthermore in Fig. 4.2 and Fig. 4.3 characteristic phase portraits for these
regions are depicted. In Tab. 4.2 the steady states and their stability prop-
erties are summarized.

Character of Steady States at:

Region | Top Steady S. | Valley Steady S. | Inner Steady S. | # of DNS in|[—m 7)
I saddle unstable focus — 1p
IIa saddle unstable node - 1p
IIb saddle unstable node — 1t
ITIa saddle saddle unstable node 1p
IIIb saddle saddle unstable node 2t
IVa saddle saddle unstable focus 1p
IVb saddle saddle unstable focus 2p
A% unstable node saddle — 1t

Table 4.2: Number and properties of steady states. See Fig. 4.1 tor definitions of regions
and bifurcation curves.

t denotes a DNS threshold.

p denotes a DNS point.

Region 1

Bifurcation line « given by the explicit formula ¢ = (rT22)7 and the r and ¢
axes form the boundary of Region I. In this case the top steady states are
saddles, wheras the valley steady states at (2k + 1)7, k € Z are unstable

foci.
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Figure 4.1: Regions of different stability and optimality divided by bifurcation lines
o, 8,7,6 and the heteroclinic bifurcation line p.

Regions II and IIT are separated into two parts Region [1a and IIb as well as IITa and I1Ib
by 4 . To avoid cluttering the figure Regions ITa and IIla are not marked in Fig. 4.1.

® and X indicate different parameter sets for models depicted in Fig. 4.2 and Fig. 4.3.

@ mark different positions of models depicted in Fig. 4.2 and Fig. 4.4.

® mark different positions of models depicted in Fig. 4.3 and Fig. 4.4.
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Region II

Region II lying between bifurcation line o and bifurcation line § with ¢ =
2_(715 differs from Region I insofar as the valley steady states at (2k+1)7, k €
Z are now unstable nodes. The top steady states remain saddels.

Region 111

The three bifurcation lines labled as (8, v and § delimit Region 1II. The
functional form for v is ¢ = %, whereas 6 is given by ¢ = E(TITU
Inside this region all steady states exist, where the top steady states still
remain saddles, the valley steady states now become saddles, and the inner

steady states are further on saddles.

Region IV

Region IV is enclosed by bifurcation line  and all steady states exist inside
this region. Where the top steady states and valley steady states have the
same properties as in Region III, the inner steady states change to unstable
foci.

Region V

The last Region V lies above bifurcation line § and for this region the inner
steady states cease to exist. Furthermore that the top steady states are now
unstable nodes, whereas the valley steady states are saddles.

4.2.6 Bifurcation Lines

These five regions are divided by bifurcation lines (see Fig. 4.1), which are
now studied into more detail.

Bifurcation Line «

Crossing bifurcation line « from Region I to Region II leaves the saddels at
the top steady states unchanged, whereas the unstable nodes at the valley
steady states mutate from unstable foci to unstable nodes. Exactly at the
curve « the valley steady states become degenerated nodes.
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Bifurcation Line

Moving from Region II to Region III we observe a saddle node bifurcation.
Where the unstable nodes at 2kw, k € Z bifurcate into a saddle, which
replaces the unstable node and an unstable node at the inner steady states,
which come to existence. The saddles at the top steady states do not change.

Bifurcation Line vy

Bifurcation line 7 is given by ¢ = %— ;:)T. Crossing curve +y changes only

the inner steady states form unstable nodes to unstable foci. Leaving the
valley steady states and the top steady states unchanged.

Bifurcation Line §

On crossing bifurcation line § a saddle node bifurcation takes place. Where
the inner steady states (unstable nodes) and top steady states (saddles) co-
incide exactly at the curve ¢ and the inner steady states cease to exist at
Region V and the top steady states change their stability properties and
become unstable nodes.

Bifurcation Line p

Bifurcation line i has different meanings in the various regionsof its oc-
curence. In Region IV and V a heteroclinc bifurcation takes place on crossing
curve p and can therefor be called a heteroclinc bifurcation line. In Region
IT it seperates Region Ila, where the stable manifolds approaching the nodes
at (2k + 1)w, k € Z (for reversed time) have an overlapping interval in
common in projection onto the state space and Region IIb, where there is
no such overlapping interval. As there exist no method describing the phe-
nomena of heteroclinic bifurcations and the existene of overlapping intervals
analytically, this bifurcation line has been computed numerically.

4.2.7 Analysis of Local Optimality

In the following sections we analyse the local optimal behaviour of the so-
lutions for Eq. 4.2.2 when the extremals are the steady states. Furthermore
the local optimal behaviour for the extremal of the different regions are de-
scribed.
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Top Steady States
For (z,u) = (2k7,0), k € Z Eq. 4.1 reduces to

q2
= — 4 (2 4.
q 2C+(+’r)q+

As the top steady states are saddles or unstable nodes (see Tab. 4.2) it is
always locally optimal to persist at these steady states.

Valley Steady States
In the case of valley steady states the Riccati differential equation is of the

form
2

. q
= —4)g—8.
q 2c+(7" )q

In Region I, the valley steady states are unstable foci and hencefor it is even
not locally optimal to stay there. In all other regions the steady states are
saddels or unstable nodes and therefore become local optimal solutions (see
Tab. 4.2).

Inner Steady States

As the inner steady states are given by

Esiyasers = (w,w(l — w?)),

where w = —3—3, /1471 — %, the Riccati differential equation is given by
j= % — (2(3w? = 1) — r)q — (12w? — 4 + —12cw?(1 — w?)).

Looking at Tab. 4.2 it can be seen that staying at the inner steady states is
locally optimal for Region III (unstable nodes), whereas it is not for Region
IV (unstable foci).

Region I and 11

For Region I and Region Il numerical calculations have shown the local opti-
mality of the stable manifolds of the top steady states up to some threshold
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+x. + 2km, k € Z. For Regions I and Ila this threshold corresponds to a
shock, which occurs on crossing the z- isocline. As can be seen in Fig. 4.4a/b
in the interval (—z. + 2k, z. + 2kn), k € Z the extremals converging to the
top steady states at the left and on the right are locally optimal. For Region
IIb this intervall reduces to the state value of the unstable nodes at the valley
steady states. Therefore the entire stable manifolds of the top steady states
are local optimal but no overlapping interval, where two of them are locally
optimal, exist.

It has to be noted that for the entire Region II the valley steady states
are locally optimal.

Region III and IV

In Region III and Region IV as well the stable manifolds of the top steady
states as the stable manifolds of the valley steady states have been numer-
ically proven to be locally optimal at least up to some thresholds, given by
the occuring shocks of the corresponding Riccati differential equation. Two
different cases can be distinguished (see Fig. 4.4c and Fig. 4.4d). For Regions
I1Ia and IVa intervals enclosing the top steady states exist, where it is locally
optimal to move either to the top steady states or the adjacent valley steady
states. Furthermore there exist small regions outside these intervals, where
it is not optimal to move to the top steady states but to move to one of
the adjacent valley steady states. Outside these regions it is only optimal to
move to the nearest valley steady state.

For Region IIIb no interval exist where three states are locally op-
timal in the long run. But there exist small intervals where the extremals
converging to the top steady states or the nearest valley steady state is locally
optimal.

Region V

The stable manifolds of the valley steady states have been proven to be locally
optimal but no overlapping interval, where two extremals are together locally
optimal, exist. '
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4.3 Interpretation of the Results

This section consists of three subsections, where in the first subsection the
optimal strategies are analysed. In the next subsection the change of optimal
strategies are studied, when the external parameters r and c are increased.
In the last subsection the local optimal strategies compared to the global
optimal strategies are treated.

4.3.1 Optimal Strategies

After having analysed the different regions of stability we shed light on the
connection between the stability properties of the steady states and the re-
sulting optimal strategies. We can distinguish between three different opti-
mal strategies: (A) always move to the nearest top, (B) always fall off to an
adjacent valley and (C) move to the top or fall off depending on one’s initial
starting position.

Although we can relate different regions to optimal strategies this
correspondence is not one-to-one. There are regions with the same stability
properties but different optimal strategies (e. g. Region IVa/b) or regions
where the same strategy is optimal but with different stability properties
(e. g. Region I and IVa). The heteroclinic bifurcation line p plays a crucial
role for these differences.

Strategy A: Always Move to the Nearest Top

In stability Regions I, II, Illa and IVa it is always optimal to move to the
nearest top, regardless of the starting position (z(0)). In all of these regions
except Region IIb we have DNS points at the valley steady states, where one
can choose to move to the left or right top steady state. This makes sense as
r and ¢ are small and as the state dynamics and cost function are periodic
and moving to the left or right is symmetric.

In Region IIb the optimal policy is continuous at the valley steady
states and hencefor the state values of the valley steady states become DNS
thresholds.

Strategy B: (Almost) Always Fall Off to Adjacent Valleys

In Region V we find the opposite to strategy A. In this case it is never optimal
to move to the top. Only in the hairline case when one starts exactly at the
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top it is optimal to stay there forever. For every other starting position it is
not worth the effort to move back, but falls off to the nearest valley steady
state. In this case the top steady states are DNS thresholds.

Strategy C: Move to the Top if and only if One Starts Nearby

Strategy C is the case inbetween the foregoing strategies A and B. It is related
to Region IIIb and IVb. For this strategy the initial starting position z(0)
is crucial. There exist a threshold separating regions in the state space with
different optimal behaviour. If one starts between the valley steady states
and the threshold it is optimal to move to the valley steady states, whereas it
is optimal to move to the top if one starts between the threshold and the top.
For Region IVb the threshold is a real DNS point, whereas in Region IIIb
starting at a valley steady state means staying there forever and hencefor
these points are DNS thresholds.

4.3.2 Change in Optimal Strategy as Parameters Vary

This section examines in more detail how the optimal strategy varies as one
of the two parameters in turn is increased.

Increasing ¢ for Fixed Values of the Discount Rate r

Figure 4.2 shows the phase portraits for fixed r = 1.7 and varying ¢. If ¢ is
small (¢ < 1/3.7?) than moving to the top steady states is always optimal
(see Fig. 4.2a). Increasing c above the threshold ¢ = 2/3.7%2 does not change
the optimal behaviour except for the hairline case, without any practical
interest, that one starts exactly at the xz-state of one of the boundary steady
states. As the optimal policy is continuous at these steady states, one has
to stay at this steady state, if one starts there (see Fig. 4.2b). Letting ¢
increase furthermore above ¢ = 1/2.7 a saddle node bifurcation takes place
and the valley steady states bifurcate into a saddle and an unstable node
respectively. Now the costs ¢ are thus high, that moving to the top steady
states is not always optimal. For initial starting positions z(0) between the
valley steady states and the z-value of the unstable node at the inner steady
states the optimal policy is moving back to the valley steady states (see
Fig. 4.2c). Only for starting positions between two successive unstable nodes
it is optimal to move to the top steady states. As the optimal policy is
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continuous at the unstable nodes, it has to be considered that one has no
choice if starting exactly at the z-value of the unstable nodes. One has to
remain there forever. Increasing c further on the unstable nodes loose this
status and the optimal policy becomes discontinuous (see Fig. 4.2d). This
is the classical case of a DNS point. Where the decision maker is indifferent
choosing to move to the nearest valley steady state or back to the top steady
states. Both strategies are equally optimal. The interval, where it is optimal
to move to the top steady states shrinks with increasing ¢ until bifurcation
line ¢ is crossed. There a saddel node bifurcation takes place and the saddles
at the top steady states are replaced by unstable nodes. This is the case,
where falling off to one side or the other is always optimal (see Fig. 4.3d)
except when starting exactly at the top steady states.

For fixed but smaller r it has to be noted, that the optimal policy
becomes discontinuous at the valley steady states on crossing bifurcation line
o, contrary to the case described above. Furthermore the optimal policy,
of moving always back to the top steady states does not change even c¢ is
increased further on and one crosses bifurcation line 4. Only when c is
increased above bifurcation line u DNS points emerge and moving to the
valley steady states becomes optimal too if one starts nearby. If r < 1 this
optimal policy does not change with increasing ¢. Indeed the interval, where
it is optimal to move to the top steady states, shrinks but remain of finit
length.

Increasing r for Fixed Values of the Cost Parameter ¢

Figure 4.3 shows phase portraits for different discount rates r if the costs ¢
are held fixed at 0.6. If the discount rate r is small, that is if future costs
play an important role for the current decision, it is always optimal to move
to the nearest top steady states (see Fig. 4.3a). If one starts exactly at the
a valley steady state one is indifferent to choose the top steady state lying
on the left or lying on the right. Therefore the valley steady states are DNS
points. If r is increased and the decision maker is getting more myopic, the
gap at the valley steady states for the effort moving to the left or right top
steady states shrinks until it coincide exactly at the heteroclinic bifurcation
line 1 (see Fig. 4.3b). Increasing r further leads to a bifurcation of the DNS
points at the valley steady states. For starting values near the valley steady
states, inside an interval given by the DNS points to the left an rigth side of
the valley steady states, it is now optimal to move back to the valley steady
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states. Whereas outside this interval it is optimal to move to the nearest
top steady state (see Fig. 4.3c). Letting r increase further on the interval,
where it is optimal to move to the top steady states shrinks, until the inner
steady states coincide with the top steady states (r lying on bifurcation line
d). This collision leaves unstable nodes at the top steady states behind, and
now falling off to one or the other side is the only optimal choice.

This kind of optimal behaviour does not change even for smaller or
larger costs c.

4.3.3 Local Optimal Strategies

Having analysed the global optimal strategies of the model from a descriptive
(Sec. 4.3.1) and a dynamic (Sec. 4.3.2) point of view, we now consider the
concept of local optimality. Within this concept we detect an even finer sub-
structure of optimal strategies. This structure has also been observed for
the global strategies. But within global strategies this details have only been
hairline cases, like continuous or discontinuous optimal policies at unstable
nodes, without importance for real applications. Within the locally optimal
framework some effects can now be found along entire intervals.

Nevertheless the main strategies remain unchanged, which are: (A)
always move to the nearest top, (B) always fall off to the adjacent valley and
(C) move to the top or fall off.

But now some regions, e. g. Region IVa, do not longer belong to the
same strategy as they have done using global optimality. Others remain
completely unchanged within the two concepts (e. g. Region V).

Strategy A: Always Move to a Top

Contrary to global strategy A, where it was always optimal to move to the
nearest top in Region I and Ila, this is only true for local strategies near a
top. Because starting inside an interval enclosing the z-value of an valley
steady state, one has the choice to move to a top steady state at the left
side or at the right side (see Fig. 4.4a). Both strategies are locally optimal.
Note that the unstable nodes at the valley steady states of Region Ila are
also local optimal strategies (see Fig. 4.4b). '
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Figure 4.2: For constant cost ¢ = 0.6 and different discount rates r the system dynamics
is shown together with its optimal behaviour and direction, starting in the upper left and
moving clockwise the four cost parameters are
a)r=0.2b)r=04c)r=167d)r=22
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Figure 4.3: For constant discount rate r = 1.7 and different costs ¢ the system dynamics
is shown together with its optimal behaviour and direction, starting in the upper left and

moving clockwise the four cost parameters are
a)c=008b)c=0.17¢c)c=0.2d) c=0.6
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Strategy B: (Almost) Always Fall Off to One Side or the Other
No change to the global optimal strategy.

Strategy C: Move to A Top Or Fall Off

As this strategy is more detailed for locally optimal strategies we distinguish
two substrategies.

Substrategy C’

In Region IIla and IVa the local optimal strategy for staying at the unstable
node of Region Ila, is extended to an entire interval I3, bounded by the
shocks of the corresponding Riccati differential equation along the extremal
paths leading to the valley steady states (see Fig. 4.4c). Moreover an interval
I5 containing I1, bounded by the shocks appearing along the extremal paths
leading to the top steady states, exists, where it is locally optimal to move
to the top steady states on the left or right side. Therefore inside intervals
I one has three possible choices, each of which are locally optimal, namely
moving to the valley steady state or moving to the left or to the right top
steady state.

Substrategy C”: Move to the Nearest Top or Fall Off

In Region IVb and IIIb the phase portrait change qualtitativly and neither
interval I; nor interval I5 exist in this case. Nevertheless an interval enclosing
the z-value of the inner steady states can be observed, which is bounded from
the left and right by shocks occuring along extremals leading to the valley
steady states (see Fig. 4.4d). Starting inside this interval one can choose
between moving to the nearest top or moving to the nearest valley steady
state. Remaining only Region Illc, where this interval of multiple locally
optimal solutions is reduced to a single point at the inner steady states. In
this case no multiple optimal choices exist. If one starts left of the inner
steady states moving to the nearest valley steady state is optimal, otherwise
moving to the top is optimal.
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Figure 4.4: For different costs ¢ and discount rates r the locally optimal behaviour and

direction is shown for parameters (r ¢) with

a) (1.7 0.08) b) (0.7 0.28) c) (0.2 0.6) d) (0.7 0.6)




Chapter 5

A Model of Bridge Building

A simple optimal control model is introduced, where “bridge building” posi-
tions are rewarded. The optimal solutions can be classified in regards of the
two extern parameters, (1) costs for the control staying at such an exposed
position and (2) the discount rate. A complete analytical description of the
bifurcation lines in parameter space is derived, which seperates regions with
different optimal behaviour. These are resisting the influence from inner and
outer forces, always fall off from the boundaries or decide based on ones’s
initial state. This latter case gives rise to the emergence of DNS points and
thresholds respectively describing optimal solution strategies. Furthermore
the bifurcation from a single DNS point into two DNS points has been anal-
ysed in parameter space. Within the concept of local optimality regions with
up to three different local opti,al strategies have been identified. All these
strategies have a funded interpretation within the limits of the model.

5.1 Motivation

Connectors that tie together disparate objects are often under stress, but they
are crucially important, whether the objects are physical or social. Welding
joints and metal fasteners are common failure points in mechanical structures,
and they are appropriately the focus of design effort. Social networks can be
similar.

People who straddle two groups or organizations may be pulled in
competing directions, but they can also exploit their position to control in-
formation flows and create value. For example, they can market their home

60
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organization to the outside world and serve as a conduit for ideas and in-
formation flowing into the organization from the outside. It takes effort to
maintain connections with diverse audiences; it is usually easier to estab-
lish relationships with people who are similar and to maintain relationships
with people one sees routinely than to do so with outsiders. Yet people who
manage to be bridge builders are rewarded for their special position.

Social network researchers have found that being ”in the middle” of
an organization (known as ”centrality”) confers advantages, including power
(Krackhardt, 1990; Brass & Burkhardt, 1992). They distinguish among (at
least) three types of centrality (Freeman, 1979). ”Degree centrality” refers
to the number of people to whom one is connected. ”Closeness” is self-
explanatory; individuals connected to many others by relatively direct paths,
with few intermediaries, score high on closeness measures. ”Betweenness”
centrality refers to the extent to which an actor falls between pairs of other
actors on the shortest paths (geodesics) connecting them.

The focus here is on betweenness. Its value is intuitive. If one per-
son is the sole connection between two others, that intermediary has unique
bargaining power with respect to any beneficial exchanges among those so
connected. In effect, he or she has a monopoly over brokerage services be-
tween those powers. When the intermediary connects not just individuals but
distinct groups each with multiple internal connections but with no overlap
between groups the bridging person benefits all the more.

This idea is at least as old as Medieval Venice profiting by connecting
Western Europe with the Orient, but in modern social network theory it
is closely associated with Mark Granovetter’s classic (1973) article on ”The
Strength of Weak Ties.” Subsequent authors (e. g. , Burt, 1992) have argued
that the key is not that the ties are weak, but that they be nonredundant
“information bridges” that overcome ”structural holes” in the organizational
network. ”Information benefits are expected to travel over all bridges, strong
or weak. ... The task for a strategic player building an efficient-effective
network is to focus resources on the maintenance of bridge ties.” (Burt, 1992,
p.75)

This paper introduces a very simple model that reflects the challenges
and benefits of building bridges by standing at the edge of one’s home orga-
nization and reaching out to the external world. It describes when various
professional strategies are preferred as a function of one’s level of patience
(discount rate) and the cost of adjusting one’s social position. For many
sets of parameter values, the solution is characterized by DNS points and
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thresholds. In particular, as the rate of time preference varies, a single DNS
point bifurcates into two, a phenomenon not previously observed in applied
model of this sort.

The Model

Consider an individual who exerts effort to create value for an organization.
The organization is abstracted as a ball of unit radius. The effort-minimizing
path is for individuals within the organization to interact with and build re-
lationships with others within the organization and for people outside the
organization to interact with and build relationships with others outside the
organization. So, in the absence of conscious effort, people outside the or-
ganization will tend to lose touch with what the organization is doing and
people inside the organization will become more and more inwardly focused
(cf, DeGroot, 1974).

In such circumstances, organizations can become too incestuous, re-
cycling ideas that were ”invented here” and overlooking developments in the
wider world. So it can be valuable for some people to stand at the ”"edge” of
the organization, connected to it but also strategically positioned as a bridge
between the organization and the outside world.

For simplicity, assume the individual optimising his or her position vis
a vis the organization does so along a single dimension z. Generalizations
to multiple dimensions would be of interest, but even this one-dimensional
case proves insightful. Let the origin denote the "center of gravity” of the
organization on this dimension and -1 and 1 denote its boundaries. As a
further simplification, we will consider here a case in which the organization
is symmetric about its center of gravity, but asymmetric cases could also be
considered.

Our model of the natural evolution of social interaction is that the
boundary is unstable. People within the organization gravitate toward its
center. Those outside it are drawn toward other organizations and activities.
Thus, the uncontrolled state dynamics might be take a form such as:

=z —z,

so & = 0 at both boundaries, the state converges toward the origin for |z| < 1,
and it diverges for |z| > 1.

The individual can modify this trajectory in either direction by ex-
erting some effort, denoted by the control variable u. It is conventional




CHAPTER 5. A MODEL OF BRIDGE BUILDING 63

to assume that costs are a convex function of effort, and we will assume
a quadratic dependence for simplicity. Ideally the individual would like to
stand on the boundary between the organization and the outside world. We
presume no distinctive benefit to being on the left-hand boundary vs. the
right-hand boundary, but do assume that it is better for an individual to be
a little too ”close” to his or her own organization than a little too far. That
is, we are imagining a situation in which the individual is an ”employee” or
otherwise receives compensation from the organization that is centered at
the origin, so the individual is better off being "inside” the organization’s
boundary rather than a similar distance outside the boundary. Perhaps the
simplest cost function satisfying these comsiderations is (z2 — 1)2, so our
overall optimisation problem becomes

mgn/e_” ((x2 — 1)2 + cuz) dt

3 (MoBB)

st. z=2"—x+u

and z(0) = zo,

where 7 is the individual’s discount rate, and ¢ is a positive constant reflecting
the cost of adjusting one’s position.

5.2 Analysis of the Model

Analogous to the analysis of the preceding models this section is parted into
the following subsections. First the usual necessary optimality conditions
and the Riccati differential equation as a sufficient second order condition
are stated. After that the models steady states are analysed. In the sequel
the regions of stability seperated by the bifurcation lines are summarized.
Whereas in the last subsection the second order conditions are studied for
extremal paths.

5.2.1 Necessary Optimality Conditions

To solve model (MoBB) we follow the outline given in Section 2.3 for the
special functions f and g given by

9(z) = (z° - 1)2 and f(z) =2° — =,
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and derivatives
g(z)=4z (z*-1) and f(z)=32-1

Substituting these functions in Eq. 2.3 of Section 2.3 the current value Hamil-
tonian is

H(z,u,\) = (z* - 1)2 + cu? + Mz® — 2 + u),

where A denotes the costate variable in current value terms.
Following the derivations of Section 2.3 it can be seen that the adjoint
equation is written as

XzTA—HZ=A(1—3x2+T) —43:(:r2—1).
while for the the differential equation of the control variable u we get
2
ﬂzu(1—3:v2+7“)+—cx—(:r2~1).

Equation 5.2.1 or Eq. 5.2.1 and state dynamic

S_z4u

L=z
yield the canonical system. Together with the transversality condition Eq. 2.8
this canonical system give the necessary conditions for the optimal control
problem (MoBB).
Since the Hamiltonian is not convex with respect to the state variable,
the usual (Mangasarian) sufficiency conditions are not satisfied.

5.2.2 Sufficient Optimality Conditions

As was stated in Section 2.3 the second order condition demands the solv-
ability of a Riccati differential equation Eq. 2.11. Substituting f and ¢ in
Eq. 2.11 the Riccati differential equation is given as

ert

p= %pz —2(32% — 1)p — e7"(122% — 4 + 6)2).

When using the control variable u this equation can be written as
ev‘t

b= 2_p2 ~(2(32% = 1) — r)p — e (122% — 4 — 12¢uz).
C
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Or by setting ¢ = e "'p we get

2
j= gE — (2322 — 1) — r)q — (122% — 4 — +6)a),
and for control variable u
2

§ =1~ (202" ~ 1) = r)g - (12 — 4 — 12cuz). (5.1)

5.2.3 Existence of Steady States

Considering the dynamical system

i = ¥ —z+u

4 o= u(1—3$2+r)+27$(x2—1).

the steady states must satisfy

u = T—2°
2z (1 — z?)

v c(1—3z2+7r)

Setting these expressions for u equal to each other we get the following solu-
tions for z:

xr = 0
23 = +1

[1+r—2
T = £/ —7o0°
4,5 3 P

2
and therefore abbreviating w = 1/ 1+; < the formal solutions of the steady

states are

Having in mind the interpretation of -1 and 1 as the boundary states, we
refer to F» and F3 as the boundary steady states. While F;-E3 are global
solutions for Eq. 5.3, whe have to determine the regions of existence for the
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z )
E, 0 0
Byl 1 0
Ey i -1 0
Eil w | w(l-w?)
Es | —w | —w (1 —uw?).

Table 5.1: Steady states of the canonical system 5.2.

steady states F4 and Fs. As they only depend on w we have to consider the
case where w is real, implying

2
14r——= >0
c
2
r+1
That is for ¢ sufficing Eq. 5.3 the steady states F4 and Fs exist.

At least we determine the cases where these steady states coincide
with the other steady states.

c >

(5.3)

Case 1: w= 0<% c=2/(r + 1) the equilibira coincide with the origin.

Case 2: w =1 & ¢ = 2/(r —2) Ey, Fy and E3, Ej5 respectively coincide.
Beneath this curve the value of the state variable of F4 and Es are
smaller than 1, while above this curve the steady states are lying outside
the boundary steady states.

These results are summarized in Tab. 5.2. g

5.2.4 Stability Properties

Knowing the number of steady states for the different regions, we analyse
now their stability properties. The characterization of the steady state be-
haviour ensues from calculating the determinante, trace and discriminant of
the Jacobi matrix J.

We get the common form of J, by linearizing the system of differential
equations Eq. 5.2

3x2 -1 1
J(z,u) = ( —6zu + % (322 —1) 1-32%+r ) (5.4)
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calculating A, 7 and D gives

T = T

2

A = (3x2—1)<1—3x2+r—z)+6xu

2 2 2 2
D = r ——4((33; -1) (1—3x +r—z)+6xu)

with

T ... tr(J)
A ... det(J)
D ... 7 —4A.

In the following subsections these formal results will be analysed for the
different steady states.

Origin
At the origin the Jacobi matrix Eq. 5.4 simplifies to

-1 1
100 =( S 141 ). (5.5
and so we get
T =7 (5.6)
A = —r—1+4+2/c
D = r?+4r+4-8/c (5.8)

The stability properties are completely determined by the signs of the three
parameters A, 7 and D. As 7 = r > 0 always holds we only have to consider
the occurrence of A = 0 and D = 0. Solving these equations we get

A=0 & c=

r+1

8

D=0 & c=—w=
(r+2)

Distinguishing the cases where the sign of A and D change whe get
five regions in parameter space.
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Case 1: ¢ <8/(r+2)>= A >0A D < 0 characterizes an unstable spiral.

Case 2: ¢ = 8/(r+2)2 = A > 0A D = 0 gives the limiting case of a
degenerated node at the origin.

Case 3: 8/(r+2)2 < c<2/(r+1) = A > 0D > 0 is associated with an
unstable node.

Cased: ¢ = 2/(r+1) = A = 0A D > 0 implies the critical case of a
non-isolated fixed point.

Case 5: While for ¢ > 2/(r +1) = A < 0A D > 0 the origin is a saddle.

Boundary Steady States

[n case of a boundary steady states the Jacobi matrix Eq. 5.4 becomes

J=<4i ri2>

and
T =T
4
= 2r—4-2=
C
16
D:=ﬂ—&+m+?. (5.9)

As Eq. 5.9 has no real root for ¢ > 0, D does not change sign and hence
D > 0 in the whole parameter space. Therefore only the regions where
sgn(A) differs have to be considered.

Bt A=0&c= ﬁi’ so we can distinguish three different regions

Case 1: ¢ < 2/(r+ 2) & A < 0 characterizes a saddle.

Case 2: ¢ = 2/(r+2) & A = 0 gives the critical case of non-isolated fixed
points.

Case 3: ¢> 2/(r+2) & A > 0 is associated with an unstable node.
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Steady States F, and FEj

In case of steady states Fy and Es the Jacobi matrix Eq. 5.4 becomes

J = 3w? — 1 1
T\ 6w (1—w?) +2@Buwr—1) r—3uwi+1
and

T =T

A = (3w?-1) (1 - 3w +r— %) + 6w® (1 — w?) (5.10)

2
D = r*—4(3uw*-1) (1—3w2—|—7"——) + 24w (1 — w?).
c
Resubstituting w in Eq. 5.10 the factor 1 — 3w® + r — 2 = 0 and
therefore A and D reduce to

A = 6w (1—w?)
D = r2—24w2(1—w2)

Setting A = 0 we find the solutions

c = —1-7,_?_ Yr

A=0s

2 T > 2.

R )

Finding the solutions for D = 0 is straight forward.
D=0 & r*—24?(1-v?) =0

r2
s wi-wr+r—=0

24
1 6 — r?
2
& wi=-4
YTy 24
r+1-2/c 1 6 — 72
A i A
3 2 24

For notational simplicity we set k£ = 2/c¢ and get

6 — r?

wr—1-2k = +6
r 24
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(2r —1—2k)° = ;(6—7«2)

1172 — 8r — 16

B +k(1-2r) = 2

a quadratic in k and after resubstituting 2/c for k£ we find the solutions

1(4r—2% /66— 1))

1172 — 8r — 16 (5.11)

C12 =

These solutions ¢; and ¢y form a curve in the parameter space which are
continuously connected at 7 = v/6. As the polynomial in the denominator
of Eq. 5.11 has a positive real root at r = 1‘11- (1 + 2\/§) the solutions have a
singularity at this point, that can be lifted in the case of ¢y, while it is a real
singularity in the case of ¢;.

Summarizing these considerations we can distinguish six different re-
gions, for the properties of the steady states.

Case 1: ¢=2/(1+7)= A =0AD > 0 entails that F; and Ej coincide with
the origin and can be characterized as non-isolated fixed points.

Case 2: 2/(1 +7) < ¢ < 2/(r — 2) and ¢ not inside Region III then the
inequality A > 0 A D > 0 implies that the steady states are unstable
nodes.

Case 3: ¢ € v gives the limiting case of a degenerated node.

Case 4: If ¢ lies in Region III then A > 0 A D < 0 is associated to the case
of unstable foci.

Case 5: ¢ =2/(r—2) = A = 0AD > 0 let the steady states coincide with the
boundary steady states and have the properties of non-isolated fixed
points

Case 6: ¢>2/(r —2) = A <0A D > 0 gives the case of saddles.

These results are summarized at Tab. 5.2.
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5.2.5 Regions of Stability and Bifurcations

We next examine the steady states of the canonical system as functions of its
two parameters 7 and ¢ and determine their stability properties. As we can
see in Fig. 5.1, the parameter space is divided into five main regions, with
different numbers of steady states and different stability properties. (See
also Tab. 5.2.) The origin and the boundary states 1 are always steady
states. One additional pair of steady states can emerge. These additional
steady states are between the origin and the boundary steady states when the
boundary steady states are saddles; otherwise they are outside the boundary
steady states.

These five regions are divided by bifurcation lines. (See Fig. 5.1.)
Crossing these curves can mean a change in the system’s dynamic or optimal
behaviour. New steady states can emerge while others disappear or change
their stability properties. As the possibility of such limiting cases is zero,
they are of no vital importance for applications, but they nevertheless give
insight into the mathematical formulations of radical changes in the model
behaviour as parameters vary. While finding explicit formulae for the bifur-
cation lines was not surprising it was furthermore also possible to formulate
the explicit solution for the heteroclinic bifurcation line p. Whereas changes
in the model’s dynamic behaviour can take place at the other bifurcation
lines, a change in the model’s optimal behaviour is given at the continuous
policy bifurcation line v and the heteroclinic bifurcation line p.

Region I

For parameters lying in Region I the only steady states are at the origin and
at the boundaries £1. While the origin is an unstable focus the boundaries
are saddles, and the region is delimited by the positive r and ¢ axes and the
curve (labeled a) defined by ¢ = 8/(r + 2)2.

Region 11

The only difference between Region I and Region II is the nature of the
steady state at the origin, which in this case is an unstable node. As can be
expected, there is an intermediate state of the origin at bifurcation line «,
where the origin becomes a degenerate node.

Region II is bounded by the bifurcation line o and 3, defined by
c=2/(r+1).
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B - o« with c=782—2-
3.0 | \ \ —-. 8 with czf,%)
‘ VvV a(ar—2,f5(6-2)
25 e \é " \‘ ® \" o 7V czlﬁ:"\/s"'(_ﬁ—)l
\ \\ \ —eee & with c=-2;
Iva \ IVb \‘ '\\ - with c=;l:

O OO

discount rate r

Figure 5.1: Regions of different stability and optimality divided by bifurcation lines
«, 8,7, 6 the heteroclinic bifurcation line i and line v.

Region III is separated into three parts Region ITla-Illc by p and the line v. The line v in
Region II, divides Region II into two parts Region Ila and Region IIb. To avoid cluttering
the figure Regions Ila, IIla and IIIb are not marked in Fig. 5.1.

® and X indicate different parameter sets for models depicted in Fig. 5.2 and Fig. 5.3.

® mark different positions of models depicted in Fig. 5.2 and Fig. 5.4.

= mark different positions of models depicted in Fig. 5.3 and Fig. 5.4.
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Character of Steady States at:

Region/Curve Origin Boundary S. S.| E4 and FEjs | # of DNS
I unstable focus saddle — 1p
IT a unstable node saddle — 1p
IIb unstable node saddle — 1t
IIT a saddle saddle unstable node 1p
IIIb saddle saddle unstable node 2p
IIIc saddle saddle unstable node 2t
IV a saddle saddle unstable focus 1p
IVb saddle saddle unstable focus 2p
A% saddle unstable node saddle 2t

Table 5.2: Number and properties of steady states. See Fig. 5.1 for definitions of regions

and bifurcation curves.
t denotes a DNS threshold.
p denotes a DNS point.

Region 111

Region III has five steady states. The unstable node at the origin trifurcates
into a saddle at the origin and two unstable nodes, while the boundary steady
states remain saddles. Moving from Region II to Region III, bifurcation
line # has to be crossed. As the origin trifurcates into a saddle and two
unstable nodes we have the important case of a saddle-node bifurcation.
As an intermediate state the origin becomes a non-isolated fixed point. Its
importance is indicated by the change in the optimal solution strategy as
will be investigated in the next section.

Region 111 lies between the curves 3, § and v, where the exact formulae
for the latter is derived in Appendix 5.2.4.

Region IV

Moving to Region IV the steady states lying between the origin and the
boundary steady states, mutate from unstable nodes (Region III) to unstable
foci. The properties of the other steady states remain unchanged. The
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bifurcation line ~y forms the boundary of this region, and the inner steady
states become degenerate nodes when crossing this curve.

Region V

While the saddle at the origin does not change in Region V, the boundary
steady states become unstable nodes and the other pair of equlibria, now
outside the boundary, change from unstable nodes to saddles. The curve
labeled § defined by ¢ = 2/(r — 1) delimits Region V.

At curve ¢ a substantial change in the boundary steady states takes
place. Below this curve they were saddles. As parameter ¢ increases, ap-
proaching § from below, the steady states lying inside the boundary approach
the boundary steady states, until they collide with the outer steady states at
the bifurcation line . The collision of the steady states produces non-isolated
fixed points at the boundary. Moving on into Region V leaves unstable nodes
behind at the boundary, whereas the former inner steady states lie now out-
side the boundary and become saddles. This change has a considerable effect
on the optimal solution. (See section “Optimal Strategies”).

Bifurcation Lines p and v

While the bifurcation lines mentioned so far separate regions with different
properties and/or number of steady states the heteroclinic bifurcation line p
and continuous policy line v lie inside such regions. A heteroclinic bifurcation
occurs, when two steady states previously not connected by any orbit are now
connected by a so called heteroclinic orbit (see cf. Guckenheimer & Holmes,
1983). Investigating such heteroclinic bifurcations is very interesting as they
may give rise to DNS thresholds (see Wagener, 2003), which is the case for our
model. Crossing bifurcation line i produces a dramatic change for the global
optimal policy. Line v separates regions with only a slightly different local
optimal behaviour, viz the continuity of the optimal policy at the occuring
unstable nodes, that is regions with DNS points from regions with DNS
thresholds as defined in Section 2.1. In contrast, when crossing the part of
v lying in Region II, the optimal behaviour at the origin changes, while for
the part lying in Region III the inner steady states are affected.
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5.2.6 Analysis of Local Optimality

In the following sections we analyse the behaviour of the solutions for the
Riccati differential equation Eq. 5.1 at the steady states and the extremals
of the different regions.

Origin
For (z,u) = (0,0) Eq. 5.1 reduces to

2

G=+(@+n)g+4 (5.12)

Finding the region in parameter space, where this differential equation has
a bounded solution reduces to find the region, where the origin becomes an
unstable node or saddle. Considering Tab. 5.2 we see that the origin is a
local optimal solution for parameters in every region except region I, where

it becomes an unstable focus.

Boundary Steady States

In the case of boundary steady states the Riccati differential equation Eq. 5.1

is of the form )

. q
=2 —4)g— 8. 1
q 2C+(T )q (5.13)

Furthermore the boundary steady states are saddles or unstable nodes re-
spectively therefore staying at the boundary steady states is always locally
optimal.

Steady States E, and FEjy
As the steady states £y and FEj are given by

Ey5 = (2w, +w(l —w?)),

where w = 133, /1+71— %, the Riccati differential equation Eq. 5.1 is given
by
2

§= % —(203w? — 1) — r)p— (12w? — 4 + —12cw?*(1 — w?)).  (5.14)
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Inspecting Tab. 5.2 we see that persisting in steady state E4 or Fs is only
locally optimal for parameters in Region III or V, whereas it is even not
locally optimal to stay there in Region I'V.

Region I and 11

As well as for Region I as for Region II there exist an entire interval around
state 0 where the stable manifolds emerging from the unstable steady states
at the origin have been numerically proven to be locally optimal (see Fig. 5.4b
and Fig. 5.4c). But whereas in region I the origin is an unstable focus and
therefore not locally optimal, it is an unstable node in region II and hencefor
staying there is locally optimal (see Appendix B.3).

Region IV and III

In Regions IV and III a quite interesting phenomenon occurs. While in
Regions IV /Illa three different local optimal solutions exist on an entire in-
terval around state 0. These are the three stable manifolds for the origin
and the outer steady states (see Fig. 5.4a). In Regions IV/IIIb only two
separated intervals around the state values of the inner steady states (unsta-
ble foci/nodes) have been proven to possess the property that two different
locally optimal solutions (Fig. 5.4c) exist. In the hairline case, where pa-
rameters r and c lie exactly on bifurcation line p the two separated intervals
are connected and on the entire interval two different locally optimal solu-
tions have been found. This kind of behaviour is the same for Regions IVa/b
and IIla/b. The difference concerns the inner steady states, where they are
locally optimal solutions if they are unstable nodes in Region III and they
are not locally optimal for Region IV. Furthermore in Region Illc the sta-
ble manifolds have been proven to be locally optimal and connected by the
unstable nodes, which are also locally optimal.

Region V

For region V all occuring stable manifolds and steady states have been at
least numerically proven to be locally optimal.
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5.3 Interpretation of the Results

This section consists of three subsections, where the mathematical results
are interpreted in a more informal manner. In the first subsection the op-
timal strategies are worked out from the mathematically analysed optimal
behaviour. In the next subsection the connection between the change of op-
timal strategies and varying the parameter values is formulated. In the last
subsection the problem of optimal strategies is once again considered but
now from the point of view of local optimality.

5.3.1 Optimal Strategies

Having analysed the dynamic systems in terms of steady states and their
properties, we next explore when various strategies are optimal. It turns out
that there are essentially three strategies that may be optimal depending
on the values of parameters r and ¢: (A) move to the boundary (£1), (B)
(almost) always fall off from the boundary to the origin or a state outside the
boundaries, and (C) move either to the origin or the boundaries depending
on one’s initial position.

The stability regions and bifurcation lines play an important role in
defining when the various strategies are optimal. Bifurcation line y in partic-
ular separates regions with different optimal behaviour but the same dynamic
behaviour. In particular p separates stability Region IV into two subregions,
with that falling on the left of i denoted IVa, respectively, and that to the
right denoted IVb. In addition Region I1I is subdivided into three subregions
by i and v, with Region Illa to the left of line i, Region IIIb between p and
line v, and Region IIlc to the right of v.(See Section 5.2.4 for details.) So
different strategies are optimal in different parts of a single stability region
(namely Regions II, III and IV), and the same strategy may be optimal for
different stability regions (e. g. , Regions I, Ila, IIla and IVa).

Strategy A: Always Move to the Boundary

In stability Regions I, Ila, ITla and IVa, it is always optimal to move to one
of the boundary states +1, depending only on the sign of the initial starting
position zo. That is for o > 0 it is optimal to tend to state 1, while state -1 is
the long run optimal state for o < 0. Only in the case when starting exactly
at 2o = 0 both options, moving to the left or right boundary, are equally
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optimal, whereas staying at the origin would be more expensive and hence
be suboptimal. Therefore the origin is a so called DNS point (cf. Tragler
et al., 2001). Note that, in contrast to the situation when substrategy A’
pertains, an infinitesimally small deviation from the starting position zy = 0
leads to a finite change in the optimal initial level of effort u, that is to say
the optimal policy is discontinuous at zg = 0.

Moving to the boundaries makes intuitive sense because in these re-
gions parameters r and/or c are small. Clearly the boundary points are the
most advantageous points. If the discount rate is small (decision maker is
far sighted) and/or the cost of adjusting one’s position is low enough, it is
always worth investing the effort needed to reach one of these advantageous
points.

Substrategy A’: Continuous Policy at the Origin

Models with parameters r and ¢ lying either exactly at p or in Region IIb
show slightly different optimal behaviour at zo = 0. Moving to the boundary
continues to be optimal for starting positions z¢ # 0, but if 2o = 0 it is
optimal to remain at the origin. Moreover, deviating an infinitesimal distance
from a starting position at zo = 0 leads only to an infinitesimally small
change in the optimal initial level of effort vj. That is, the optimal policy
is continuous at zp = 0 and hencefor a DNS threshold. This stands in
contrast to strategy A, where we observed a discontinuous optimal policy
(DNS point). The continuity of optimal policy means moving to one of
the boundaries optimally from zy ~ 0 involves only an infinitesimally small
exertion of effort and the cost for such a policy differs only infinitesimally
from that of staying at the origin.

Strategy B: (Almost) Always Fall Off from the Boundary

Stability Region V represents the opposite case to strategy A. If the starting
position is exactly at the boundary, it is optimal to stay there. Otherwise,
parameters r and c are large enough that if the decision maker deviates even
from the boundary, the decision maker is short-sighted to such a degree and
the costs of control are so high that the benefits of returning to the boundary
are not worth the effort. So for starting positions inside the boundary (|zo| <
1) it is optimal to tend to the origin, while for starting positions outside the
boundary it is optimal to move to the steady states outside the boundaries.
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The optimal policy at the boundary steady states is continuous and therefore
starting exactly at this steady states means staying put (DNS threshold).
Therefore the long run optimal behaviour is sensitive to the exact initial
starting position near the boundary steady states.

Strategy C: Move to the Origin if One Starts Nearby; Otherwise
move to the boundary

Regions IIIb and IVb present an intermediate case to some extent. If the de-
cision maker’s initial position is inside the boundary and close to the origin,
then it is optimal to move to the origin. But if the initial position is inside
the boundaries (|zo| < 1) but farther from the origin, it is optimal to move
out to a boundary, specifically the closer one. In between there are points of
indifference, one on either side of the origin, from which the decision maker
is equally happy moving left or right. Note that the optimal policy is dis-
continuous at these points of indifference (especially for Region IIIb, where
the inner steady states are unstable nodes) in contrast to substrategy C’.
Therefore these points of indifference are DNS points. If one starts outside
the boundaries returning to the boundaries is always worth the effort, pre-
sumably because of the heavy penalty in the objective function for being far
from the boundary, and the cubic term in the state dynamics that tends to
drive states that are outside the boundary further away from the boundary
at an ever increasing rate.

Substrategy C’: Continuous Policy at the Inner Steady States

Models with parameters r and ¢ lying in Region IIlc show a slightly different
optimal behaviour at the inner steady states (unstable nodes). In contrast
to strategy C the optimal policy is continuous at these steady states. Hence
staying at these points become optimal and they are no longer DNS points
but DNS thresholds.

5.3.2 Change in Optimal Strategy as Parameters Vary

This section examines in more detail how the optimal strategy varies as one
of the two parameters in turn is increased.
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Increasing r for Fixed Values of the Cost Parameter ¢

Figure 5.2 shows how the optimal solution changes for a given cost parameter
¢ as the discount rate parameter r increases, i.e., as the decision maker gets
more and more myopic. In particular, Figures 5.2a-d show phase portraits
when ¢ = 2.5 and the discount rate parameter r is 0.2, 0.4, 2.5 and 3.5
respecgtively.

When ¢ = 2.5 and r is small it is always optimal to converge to
a boundary, specifically the closer one. If one starts at the origin moving
left or right generates the same costs while remaining at the origin is more
expensive. Therefore a decision has to be made arbitrarily between moving
to the left or right boundary. (See Fig. 5.2a). This statement holds true
for every parameter r and c¢ lying below bifurcation lines « or p. Increasing
T leads the stable manifolds of the boundary steady states at the w-axis to
approach the origin, until the origin lies precisely on the stable manifolds
for r = 1/2.5. This is the case of a heteroclinic orbit. For this hairline case
the origin becomes a point with continuous optimal policy at zo = 0. (See
Fig. 5.2b). If r increases further the DNS threshold at the origin bifurcates
into two DNS thresholds. Starting between these thresholds moving to the
origin is optimal, while converging to the boundary is optimal for initial
starting positions outside the DNS thresholds. This optimal behaviour does
not change upon crossing bifurcation line -y, however the steady states inside
the boundaries change from unstable foci to unstable nodes and the inner
steady states become points with a continuous policy function. (See Figs.
5.2c and 5.3d) Le. to the left of x (in Region IVb) a decision maker -
starting at the inner steady states - should choose (arbitrarily) to move left
or right. To the right of x (in Region Illc) a decision maker should stay put.
Letting r grow further, the equlibria inside the boundaries move towards
the boundary steady states. Reaching bifurcation line § these steady states
coincide leaving non-isolated fixed points behind at £1. At this limiting case
the optimal behaviour can only be analysed with standard methods for initial
starting positions inside the boundaries, where the optimal paths converge
to the boundary steady states. For discounting rates r above bifurcation
line ¢ the optimal behaviour changes dramatically. As the boundary steady
states become unstable nodes, it is never optimal to converge to these steady
states. Instead the origin becomes optimal for every state starting inside the
boundary, while outside the boundaries the optimal solution paths converge
to steady states with absolute state values greater than 1. (See Fig. 5.2d.)
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For ¢ < 1 two other cases can occur as r increases. Lettinge. g. ¢ =
0.8, a small 7 implies optimal paths converging to the boundaries and zy = 0
becoming a DNS threshold where the costs for moving to the left or to the
right steady states are the same. Crossing bifurcation line o the optimal
behaviour at the origin remains unchanged until bifurcation line v is reached.
As long as we are in Region II there is no change in the global optimal
behaviour as described in the section “Regions of Stability” for bifurcation
line v. But for starting positions at zy = 0 the possible optimal solutions
change. Below bifurcation line v it is optimal to exert a finite initial effort
ug to move to the boundary. That means if the decision maker is farsighted
enough he or she accepts a higher initial effort and moves to one of the
boundaries. Getting more myopic the decision maker no longer invests in a
high initial effort, and staying at the origin becomes optimal. This is the
case when the Policy function at the origin becomes continuous as described
in the section “Optimal Strategies”.

Increasing r further and crossing bifurcation line 3 the unstable node
at the origin trifurcates into two unstable nodes at the inner steady states and
a saddle at the origin. For our choice of ¢ we get a continuous policy function
at the unstable nodes. Therefore if one starts near the origin, one returns
to the origin. For all initial starting positions outside the unstable nodes
moving to the boundary steady states is worth the effort. While starting
exactly at the unstable nodes, means staying put.

Increasing ¢ for Fixed Values of the Discount Rate r

Figure 5.3 shows phase portraits when r = 0.8 and the cost parameter c is
0.5,1.05,1.15, and 2.5, respectively. When costs are low (¢ = 0.5; Fig. 5.3a)
starting left (right) from the origin it is optimal to move to the left (right)
boundary, while if starting at xp = 0 the decision maker can choose arbi-
trarily between moving to the left or right boundary. As ¢ increases further
towards the bifurcation line v, the initial level of effort uj for starting po-
sitions deviating only slightly from zy = 0, shrinks to 0, while the optimal
behaviour remains the same as before. This is clear from the decision maker’s
point of view as the effort is getting more and more costly. (See Fig. 5.3b.)
Crossing p the stable manifolds coincide at the origin and the difference in
the initial level effort is 0. Therefore the optimal policy becomes continu-
ous at the origin and we achieve the hairlinecase where staying at the origin
becomes optimal. Crossing p the region where moving towards the origin is
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optimal expands and two DNS thresholds appear. To the left (right) of the
left (right) DNS threshold it is optimal to converge to the left (right) steady
state, while between the DNS thresholds moving to the origin becoms opti-
mal. Now the costs are so high that it is not worth moving to the boundaries
when starting near the origin. (See Fig. 5.3d.)

The cases described before characterize the behaviour for all models
with » < 1, while two slight differences take place for » > 1. Whereas u
make up the limiting case for the emergence of two DNS thresholds for r < 1
the continuation of p (part of v lying in region II) only divides regions with
different local optimal behaviour at the origin for r > 1 as described in the
section “Regions of Stability”. Increasing the costs ¢ leads to a shrinking gap
between the initial level effort uj for starting positions on either side of zy = 0.
Nevertheless costs are low enough to be worth the effort of moving to one of
the boundaries, even if one starts at zo = 0. As the costs get higher (above
v) moving to the closer boundary is only infinitesimally more expensive then
staying at the origin and therefor staying at the origin becomes optimal. If
one starts near the origin it is optimal to stay near the origin for a while
and not move away too quickly. The higher the costs are increasing the
longer the duration for staying near the origin. Crossing bifurcation line &
the movement near the origin comes to a stillstand. This is the case where
the origin becomes a non-isolated fixedpoint. Raising the costs above the
bifurcation line 4 the movement near the origin is reversed and moving to
the origin becomes optimal when starting nearby. As a consequence, two
starting positions zo become points of indifference between moving to the
origin and moving to the boundary. Augmenting the costs further moves
these points of indifference out toward the outer steady states. But for r < 2
the outer steady states still remain optimal at least for starting positions with
|Zo] > 1 and in a shrinking neighbourhood inside the boundaries. If r > 2
the situation changes and crossing bifurcation line é the boundary steady
states are only optimal in the case of starting exactly at +1. For every other
case the origin is optimal, starting inside the boundaries |zo| < 1, and steady
states outside the boundaries become optimal for starting positions meeting
|£170| > 1.

5.3.3 Local Optimal Strategies

As we have seen for the models analysed so far, there exists a strong connec-
tion between the local optimal behaviour and the various regions separated




CHAPTER 5. A MODEL OF BRIDGE BUILDING 83

Figure 5.2: For constant cost ¢ = 2.5 and different discount rates r the system dynamics
is shown together with its optimal behaviour and direction, starting in the upper left and
moving clockwise the four cost parameters are

a)r=02b)r=04¢)r=25d)r=35
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Figure 5.3: For constant discount rate r = 0.8 and different costs ¢ the system dynamics
is shown together with its optimal behaviour and direction, starting in the upper left and
moving clockwise the four cost parameters are
a)c=05b)c=105¢c)c=115d)c=25
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by the bifurcation lines. The term bifurcation line is used here in a wider
sense. Because it includes also the case, where regions with a different kind of
behaviour near an unstable node are distinguished (e. g. bifurcation line v in
Fig. 5.4). As it was possible to find all bifurcation lines at least numerically
every possible local optimal strategy has been assigned to an unique region.

Once again the main strategies retain the same but with a more differ-
entiated sub-structure. Recapitulating the main optimal strategies we find:
(A) move to the boundary (£1), (B) (almost) always fall off from the bound-
ary to the origin or a state outside the boundaries, and (C) move either to
the origin or the boundaries depending on one’s initial position.

Note that the dependence on one’s starting position for strategy (C)
has not this strict interpretation like for the global optimality. That is there
exists an entire interval where all three long run states £1 and 0 can become
locally optimal. Furthermore whereas Region Ila and IVa were assigned to
Strategy (A) underlying a global concept, these regions are now assigned to
Strategy (C).

In the following paragraphs only the differences between global and
local optimal solutions are worked out. Arguments which are equal for both
concepts are omitted.

Strategy A: Always Move to the Boundary

This is the main strategy for Region I and II. Nevertheless small deviations
have to be considered.

For Regions I and Ila exist an interval I, = (—z¢, z.) (see Fig. 5.4b),
such that starting inside this interval one can choose to move to —1 or 1. The
value z, is calculated as the state value of at the conjugate point of the Riccati
differential equation along the extremals converging to the boundary steady
states. Both decisions are locally optimal. If one starts outside the interval
1. it is optimal to move to the nearest boundary. This can be interpreted
quite well, as in some situations it may make sense to choose the suboptimal
strategy if the initial effort for the optimal strategy is that large and one
considers costs not modeled explicitly (see Section 2.1).

Although neglectable for real application it can be noticed, that while
in Region I the steady state at the origin is even not locally optimal, it
becomes locally optimal in Region I1a (see Fig. 5.4c). This can be interpreted
as the first appereance of a new local optimal strategy, which is expanded to
an interval as will be seen for strategy (C).
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At last Region IIb remains, where the global optimal strategy coin-
cides with the local strategy. In this case the costs ¢ are small enough and
the decision maker is far sighted enough to move to the boundaries, but ¢
and 7 are too high to let a sub optimal choice even become locally optimal.

Strategy B: (Almost) Always Fall Off from the Boundary

Global and local optimal strategies are the same. It has been proven that
staying at the outer steady states is locally optimal.

Strategy C: Move to the Origin or Move to the Boundary

All the strategies considered in this paragraph have in common that it is
locally optimal to move to one of the boundaries or to move to the origin.

For Region IIla and IVa all three strategies are locally optimal. That
is for initial positions inside an interval I, = (—z., z.), where z. is calculated
as before (see Fig. 5.4a), moving to one of the boundaries +1 or moving to
the middle is locally optimal. Outside this interval there is a small range of
initial states where moving to one of the boundaries but not moving to the
middle is locally optimal. Not till one starts outside this range moving to
the nearest boundary is the only local optimal choice.

In Region IIIb an IVb the interval I. is splitted into two disjunct
intervals I; and Iy (see Fig. 5.4d), where the boundaries of the intervals
are given by the state values of the conjugate points for the extremal paths
converging to the boundary or to the middle. Inside these intervals one has
the choice to move to the middle or move to the nearest boundary. For
starting positions between these intervals the only choice is to move to the
middle. Whereas outside the intervals only moving to the nearest boundary
is optimal. One subtle difference between Region IIIb and IVb, respectively
[ITa and IVa has to be considered, while the inner steady states are even not
locally optimal for Region IV, they become locally optimal at Region III.

For Region Illc global optimal strategies and local optimal strategies
are the same.
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Figure 5.4: For different discount rates r and different costs ¢ the system dynamics is
shown together with its locally optimal behaviour and direction, starting in the upper left
and moving clockwise the four pairs of parameter (r, c) are

a) (0.2,2.5) b) (0.8,0.5 ¢) (0.8,1.05) d) (0.8,2.5)




Conclusion

Even though this "model of moderation” is very simple (one state, one co-
state, and just two parameters), from a mathematical point of view very
interesting features emerge. Despite the model’s simplicity, the existence of
multiple DNS points has been shown. Moreover, we found a region in pa-
rameter space split by a DNS bifurcation line. Even though the number of
steady states and their properties are the same throughout this region, DNS
points exist on one side of this bifurcation line but not on the other. Fur-
thermore, precisely because of the model’s simplicity, analytical expressions
can be written for this and the model’s other various bifurcation lines and
associated regions.

The model’s optimal solutions have consistent and sensible interpre-
tations, even in the critical extreme cases, and a variety of intriguing ex-
tensions can be envisioned. To begin with, other functional forms for the
state dynamics could be investigated representing different ”curvatures” of
the ”slippery slope”. Also, the model is essentially separable at the origin
because trajectories involving positive state values never become negative
and vice versa. Hence, there is no reason why investigations need to be re-
stricted to cases that are symmetric about the origin. Furthermore, in this
paper the one-dimensional state space can be thought of as reflecting the
cross-section of a hill. That is appropriate when the ”issue space” in ques-
tion is one-dimensional with two opposing camps. Sometimes, however, the
neutral position is not intermediate between just two alternatives but rather
is central relative to a large number of alternatives that can not neatly be
arrayed along a line. Hence, two-dimensional versions of the model could
be of interest, and their investigation might yield closed two-dimensional
DNS thresholds, which to the best of our knowledge have never before been
discovered in applied models.

In this model, positioning oneself as a bridge between one’s own orga-
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nization and the outside world yields benefits but also takes effort. Whether
moving to a bridging position is worthwhile depends on how costly it is to
alter one’s position and on how far sighted one is. Individuals who are suffi-
ciently myopic and for whom such movement is sufficiently painful should not
bother. Those who are sufficiently far-sighted and/or flexible should always
become bridges. For others, the optimal strategy depends on whether one is
initially close to or far from being such an organizational bridge.

Because of the relative simplicity of this model, the model’s structure
and resulting optimal behaviour could be fully characterized in the param-
eter space. In particular, it was possible to find explicit solutions for every
bifurcation line, including the heteroclinic bifurcation at the origin. Further-
more the lines where the optimal policy becomes continuous at the relevant
unstable nodes were numerically calculated.

This solution yielded quite a number of mathematically interesting
structures. Even though it is a one state model, varying a single parameter
generates instances of zero, one, or two DNS thresholds and even instances
in which a single DNS threshold trifurcates into two DNS thresholds and
a saddle point. More generally we found regions with the same number
and properties of steady states but different optimal behaviour, divided by
a heteroclinic bifurcation line, and regions where the optimal solution was
sensitive to the exact starting position

This simple model may have interesting extensions. One would re-
place the one-dimensional (one-state) model of the organization with a two-
dimensional or even n-dimensional model. The unit circle or unit sphere,
respectively, could still denote the boundaries of the organization. The state
dynamics could still be taken such that people within the organization grav-
itate toward its center at the origin whereas those outside the boundary are
drawn further away. And the cost function could still reflect the ideal of
staying at the boundary or some selected points along that boundary. Con-
sidering such a model, one could expect to find two-dimensional DNS curves
and a DNS point at the origin with an arbitrarily large number of alternative
optimal strategies available.

Another variation would recognize that people can be members of
more than one organization simultaneously, so the objective function could
be the sum of distances from the centers of several different organizations.
Again, in a two- or higher-dimensional model, this might likewise yield rather
complex and interesting solutions.
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Appendix A

Local Optimality

This chapter consists of five sections, where in the first section the first
order necessary conditions are restated and some fundamental definitions are
given. In the next section the corresponding accessory problem is introduced
together with the necessary second order conditions. In the third section the
Riccati differential equaiton is derived from the concept of conjugate points.
Whereas the next section adresses the relation between conjugate points as
defined in (Zeidan, 1994) and shocks as treated in (Caroff & Frankowska,
1996). The last section considers sufficient second order conditions.

At the beginning I want to give some general remarks concerning
this chapter. First I have to admit that this approach is thought for as an
attempt to give a compact sketch of the basic ideas, therefore it lacks the
mathematical strength in formulating all technical details. Furthermore all
the theorems can be stated for models with path constraints, but were of no
interest for this thesis and therefor omitted. For a rigorous mathematical
treatment I refer to (Zeidan, 1994; Caroff & Frankowska, 1996; Maurer &
Pickenhain, 1995).

The underlying problem is modeled as

V(a:,u)z/D g(z,u,t)dt (A1)

Juin V(z, u) (F)
st @ = f(z,u,t) (A.2)

and z(0) = o, z(T) = z1, (A.3)
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where z : [0,T7] — R™ is absolutely continuous (AC), u : [0,7] — R™ is
piecewise continuous, and it is assumed that f,g € C?, where it has to be
noted that this assumption can be weakend, but sufficies for our purpose.
In order not, to overload notation the functional argument ¢ is omitted
whenever there is no ambiguity to expect. Morevover most of the conditions
asserted have to hold only almost everywhere which is not stated explicitly.

A.1 Necessary Conditions and Definitions

First some definitions are introduced

Definition 1 A pair (z,u) is admissible for (F) if z € AC, u is piecewise
continuous and the constraints Eqs. A.2-A.3 are satisfied by (z,u).

Definition 2 An admissible pair (Z, %) is a weak local minimum for (F) if for
some ¢ > 0, (£, %) minimizes J(z,u) over all admissible pairs (z, ) satisfying

lz—-2|w<e and [[u—1ilw<e.

Now Pontryagin’s minimum priniple for problem (F) can be proven
as (see, e.g., Zeidan, 1994 Theorem 3.1)

Theorem 1 (Pontryagin’s Principle (1962)) Let (Z,4) be an weak local
minimum for (F). Then a constant Ao > 0 and an AC (costate) function
A(t) € R™ exist, such that

(R0, A(2)) # (0,0) 'Vt (A.4)
Hu(:iaﬂa /\Oa)‘7t) =0 (AS)
A= —H,(&,4, X, A\, t) (A.6)
where
H(a:7 u) )\07>\7 t) = >\Og($, u’ t) + A-f(a:7 u7 t)7
is the usual Hamiltonian. o

Definition 3 An admissible pair (Z, @) for (F) satisfying the necessary con-
ditions A.4-A.6 is an extremal.

Definition 4 An extremal (£, ) is normal if Ay > 0 holds.
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Furthermore a definiton strengthening the usual Legendre-Clebsh con-
dition H,, > 0 is given

Definition 5 We say that the strengthend Legendre-Clebsh condition is sat-
isfied at an extremal (Z,4) if for some o > 0 we have

~

Huu Z alm- (A7)

A.2 Accessory Problem

In accordance with the second order conditions in the calculus of variation
(see, e.g., Sagan, 1969) and using the calculus of Fréchet derivatives (see, e.g.,
Warga, 1972; Gilbert & Bernstein, 1983) the so called accessory problem can
be stated. Denoting the Fréchet derivative by § it can be shown that for the
second derivative of V (see Eq. A.1)

1 /T A . .
P (V) = 7 / (n* wa] + 21" Hoyw + w* ww) dt = Va(n,w)  (A.8)
0
holds, with n € AC and w piecewise continuous, satisfying
n= fzn + fuw
z  7(0) =0, n(T) =0,

where * denotes matrix transposition.
Now the accessory problem (AP) corresponding to (F) can be stated

Jmin Vs (n, w)
= fntfaw (A9) (AP)

and n(0) =0, n(T) =0. (A.10)

Remark 1 In context with necessary second order conditions the term strong
normality has to be introduced, which insures normality of both problem (F)
and the accessory problem (AP) and uniqueness of the costate 1. As strong
normality is more a technical term, at least at this level of consideration, it
is omitted here and the interested reader is refered to (Zeidan, 1994). Nev-
ertheless the term is used in stating the theorems.
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Using the Pontryagin’s principle the necessary conditions for an ex-
tremal of (AP) becomes

Proposition 1 Let (1, W) be an extremal for (AP) then the following condi-
tions have to be satisfied

§=— (I:Iun + Hpw + f;«p) (A.12)
[m]

PROOF For the proof one only has to consider the Hamiltonian H of (AP),
which becomes

H = woé (U*szn + 20" How + w*ffuuw> + " <fz77 + fuw> . (A13)

As is explained in Remark 1 9o can be set to 1.
For minimizing H in respect to w we set H,, = 0 yielding

I:qurn + ﬁuuw + f;¢ =0,

and therefore Eq. A.11 follows. Whereas differentiating H in respect to i
and considering

~

'lﬁ' = —Hn
yields Eq. A.12. n
Considering problem (AP) one would expect that if (Z, %) is a minimal

solution of (F) (n,w) = (0,0) is a minimizer of (AP), what can be confirmed
by the following Theorem.

Theorem 2 (Zeidan, 1994 Theorem 3.2) If (z,4) is a strongly normal
weak local minimum of (F) then Va(n,w) > 0 and the minimum value of
(AP) is zero. D
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A.3 Conjugate Points and Riccati Equation

Analogous to the calculus of variation the definition of a conjugate point (to
T) along an extremal (Z,4) can be given

Definition 6 A point ¢ € (0,7T) is conjugate to T along (£, @) if there exists
a nonzero (n,¥,w) € AC x AC x L*[0,T] satisfying Egs. A.9-A.12 and

n(c) = 0.

This definition of a conjugate point can be rephrased in terms of the
solution of a linear system of differential equations in (7, ), which will lead
directly to a Riccati differential equation, therefore the following Proposition
has to be stated

Proposition 2 (Zeidan, 1994 Proposition 5.1) Assuming that the strength-

ened Legendre-Clebsh condition holds, then c is conjugate to T if and only if
(n,¢) # 0 and

i = (fom FuBR Hu) n = FAZA Y (A14)
= (Mo = HaBIZH )+ (fi — B2 o) 0 (A15)

I

with

and X X R
w= Hu_ul (Huzn + f:"p) .
ProoF It is only a rough sketch, details can be found in (Zeidan & Zezza,
1988; Zeidan, 1994). Considering Eq. A.11 we get
0 = ﬁuxn + Hypw + f,’jw hencefor
wo= Hu"ul (ﬁumn + f;‘w) holds.

Substituting this formula for w in Eq. A.9 and Eq. A.12 yields Eq. A.14
and Eq. A.15. [

Now a necessary condition involving the conjugate point can be stated
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Theorem 3 (Zeidan, 1994 Theorem 5.1) Let (£,4) be a weak local min-
imum of (F). Assume that (Z,4) is strongly normal on [0, T|, and the strengh-
tend Legendre-Clebsh condition holds then there is no point in (0,T) conju-
gate to T'. o

Associating the following matrix system to the linear differential system
Eqs. A.14-A.15

0 = (Ha— AoBHZH L) X+ (f - B IZLS) ®, (ALT)
with boundary conditions
X(0) =0,
leads to the following Corollary.

Corollary 1 (Zeidan, 1994 Corollary 5.2) Under the conditions of Th. 8,
there exists a Lipschitz continuous matriz function R satisfying on (0,T) the
equation

R+ fIR+ Rfy+ Hyp — (Rfu + Hm) bz iyt (f;R + Hw> =0. (A18) o
PROOF (A short sketch) Define on (0,7)

R=UX"1

where (X, ¥) solves Egs. A.16-A.17. under strong normality assumptions it
can be shown that R is symmetric and X ~! exists. What remains to be shown
is that R is a solution of Eq. A.18, but for this we only have to calculate the
time derivative of R

R = X '-0x1XxXx!
= (Feo — Hoigt Hoe) XX = (2 = LW IG0f) 0XC
Lo ( Fom fuﬁ;}Hm) XX~'+ L froxt
= = (Flaa = FouHZ ) = (2 = AT R
R (fo = FuHLl ) + R IR
= —fiR=Rfp~ A+ (Bt ) B3 (R4 Ha) . m
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A.4 Conjugate Point and Shock

As the term shock has different meaning in economic applications it has to
be pointed out, that shock in this context is understood as a critical point,
where the solution of a differential equation becomes unbounded. This term
arises from physical applications, where e. g. shock waves of fluids or gases
are considered.

But at the beginning a somewhat different definition of shock, as it
can be found in (Caroff & Frankowska, 1996), is given. Therefore we consider
the canonical system of (F)

T = A (CS)
)\ - _Hza

with boundary conditions z(0) = zo, A(T") = Ar. Then a shock is defined as

Definition 7 The system (F) has a shock at time ¢ € (0,7) if there exist
two solutions (z;,p;),i = 1,2, of (CS) such that

z1(c) = z2(c) and A1(c) # Aa(c)

In (Caroff & Frankowska, 1996 Theorem 2.3 and Theorem 5.1) it has
been proven that this definition of shock is equivalent (under convenient
assumptions like the existence of an optimal solution and the strengthended
Legendre-Clebsh condition) to the statement, that the Riccati differential
equation Eq. A.18 has an unbounded solution in c.

Therefore we can give a new definiton of a shock at time ¢,

Definition 8 Let the pair (Z,4) be an extremal for (F). Then (F) has a
shock at time ¢ with

— . - ] T .
c tel(I(},f:Z‘){R is bounded on [¢, T}, (A.19)

where R is a solution for the Riccati differential equation Eq. A.18 along the
path (Z,4).

Having in mind the results of Corollary 1 the relation to a conjugate
point can be analysed. Noting that if ¢ is conjugate to 7', then det (X (c)) =0
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(Def. 6) and considering Corollary 1 we know that X is continuous and as ¥
can be assumed bounded,

tgrgr det (R(t)) = tl_l’lg-l*— det (¥(¢)) det (X '(¢)) = oo,

therefore R is unbounded at ¢ satisfying Def. 8. Hencefor it has been shown
that every conjugate point is a shock.

A.5 Sufficient Second Order Conditions

Within the concept of local optimality sufficient conditions can be given.
These sufficient conditions are stated as second order conditions and are
related to the Riccati differential equation Eq. A.18 in matrix form. In the
sequel I give a short summary of the main results of sufficient second order
conditions as far as they are important for this thesis. For further details see
e. g. (Zeidan, 1994), (Caroff & Frankowska, 1996) or (Maurer & Pickenhain,
1995).

Now the following theorem of sufficiency results for weak and strong
local minimality of (F) can be stated

Theorem 4 (Zeidan, 1994) Let (Z,4) be an normal extremal. Suppose in
addition that

1. Hy, satisfies the strenghtend Legendre-Clebsch condition

2. there exists a symmetric bounded matriz function R satisfying on [0, T)
the Riccati matriz differential equation

R+ 'R+ Rfys + Hyy — (Rfu + Hu) Az ( R+ Hm) =0 (A.20)

holds. Then (£,4) is a weak local minimum for (F). o

Considering Def. 8 then Condition 2 of Th. 4 can be stated as the
non-existence of a shock (see, e.g., Caroff & Frankowska, 1996).
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A.5.1 Restating the Riccati Differential Equation

The Riccati differential equation Eq. A.20 can be written in a more compact
form for state z and costate A (see, e.g., Caroff & Frankowska, 1996) as

R+ H,R+ RHS, + RH}, R+ H2, =0, (A.21)

where H® is the minimized Hamiltonian H.

In the sequel I use the Riccati matrix differential equation in the
representation of Eq. A.21, therefore the equivalence of both representation
has to be shown.

Lemma 1 Let H°(z,%, A, t) = mingey H(z,u, A, t) be the minimized Hamil-
tonian, such that H takes its minimum for 4 with H,(z,4, )\, t) =0 o

PROOF Applying the implicite function theorem we get

He(z, A\ t) = H(z,4(z, A), \ t)
with  Hy(z,a,A,t) =0. (A.22)

The derivatives of u, and uy can therefore be calculated as

Uy = —H 'Hy, (A.23)
Uy = —HJJHU)‘Z —H;}fu (A24)

Next we have to calculate the second order partial derivatives of H°
in respect to x and A.

Using Egs. A.22-A.24 and omitting the functional arguments for no-
tational clearness we get

H: = gz+guuz+/\(fw+fuuz)
H3 Gutix + f 4+ Afuun

il

and

:)\ = GeuU) + JuuUrUg + Gulizy + f:c + fuuz + )\(fzuu/\ + fuuu/\uz' + fuua:/\)
= Hamu/\ + Huuuzug + Huuz/\ + fz + fuuz
= _H:cuHJulfu - fu'u'z + fx + fuua: (A25)
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= —HuHpl fut fa
Guztir + Gultre + fo + A(fuztis + futiag)
Huyzux + Hyuye + fz
= —HuHy fut fo
HYy = guauaun + gutiax + futn + fuur + A(fuutiatn + futinn)
Hyuzuy + Hyupy + 2 fuuy
— fuur + 2fuun
— fuHoy! fu
Hyy = Gor + Goulie + Guzlz + Juulizlz + Gulles +
Afoz + foulls + fustiz + fuutizts + futlss)
= Hpp+ Hpytp + HygUy + HyuUgUy + Hylizy
Hyy — HowHopy Hug + HugUy — Hypug
= Hyp — HouHyl Hug,

o
H)\z

Substituting this formulas in Eq. A.21 we get

R+ (—HuwHy) fu+ fo) R+ R(—HuHg! fu+ ) +

what had to be shown.
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Appendix B

Riccati Equation in Economic
Models

This chapter consists of four sections, where the first section contains an ex-
tension of the sufficient second order Th. 4, for infinite time horizon problems.
In the next section the Riccati differential equation is introduced for current
value terms. In the third section the solutions of the Riccati differential
equation are studied at steady states. While in the last section the solutions
behaviour at steady states are related to the corresponding Jacobian for the
associated canonical system of the optimal control model.

Furthermore [ restate the class of models this thesis is dealing with
and which is introduced in Sec.2.2. This general class of models is given as

min/ e (g(z) + cu®) dt
v Jo

s.t. £=f(z)+u

and z(0) = xo,

(GM)

which is an infinite horizon problem, where z denotes the state variable, u the
control variable and r > 0 is a discounting rate, while ¢ > 0 is an exogenous
parameter.

For notational simplicity we denote the Hamiltonian evaluated along
an extremal (&,4) by H instead of H.

105
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B.1 Sufficiency for Infinite Time

As we are interested in the infinite time horizon problem (GM) the following
slightly modified version of theorem Th. 4 can be stated. It is assumed that

1. the optimal pair (£,) converges to a stationary point (z*,u*), where
such a convergence is often met in autonomous control problems (see
e. g. Feichtinger & Hartl, 1986).

2. f,g€ C2
Then the theorem can be stated as

Theorem 5 Let (Z,1) be a normal extremal of (GM), sufficing conditions
1) and 2) of Th. 4 and conditions 1) and 2) stated before. Then (%,40) is a
weak local minimum for the infinite time horizon problem (GM). o

PRrROOF First we note that (z*,u*) is a saddle (see e. g. Wagener, 2003) and
(Z,4) a saddle path. Furthermore (z*,u*) itself is a locally optimal solution.
Therefore we have to consider Eq. A.26, Eq. B.17 (see Sec. B.4) and the
characterization of a saddle, which has to satisfy the following condition (see
Sec. B.4

(r—2H2\)? — 4H H3, > 0. (B.1)

From Eq. A.26 we conclude that Hj, < 0 as the Legendre-Clebsh condition
H,,, > 0 holds. As Eq. B.1 has to be positiv this yields H;, > 0, which is a
sufficient condition for a local minimum (see e. g. Feichtinger & Hartl, 1986,
Theorem 2.4).

Now we have proven the local optimality of (z*, u*), we can conclude
the local optimality of the stable manifold in a small neighbourhood of the
saddle. This can be seen on considering that f,g € C? and hencefor H2, > 0
holds also in a sufficient small neighbourhood around (z*, u*).

Let £ denote a point on the part of the stable path, which has been
proven to be locally optimal, and Tg the time, reaching # from #(0). But
as (z,4) is locally optimal for every finite time under end constraint z(T') =
Z(t) = T we have shown the local optimality for the whole stable path and
hencefor for the infinite time problem (GM). »
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B.2 Current Value Riccati Equation

In this section an optimal control problem of the following type, which often
occurs in economic applications, is given

min /00 e "g(z,u, t)dt

L (E)
s.t. t = f(z,u,t) (B.2)
and z(0) = zo, (B.3)

where f, g,z and u satisfy the usual conditions.

To avoid confusion I have to make some notational remarks. In the
last section H denoted the usual Hamiltonian as is used for optimal con-
trol problems of type (F). In economic models like those of type (E) the
same letter H denotes the current value Hamiltonian. To properly distin-
guish between these two types of Hamiltonian. H denotes the present value
Hamiltonian while H is used for the current value Hamiltonian. Given this
notational convenience the following relations can be stated

= g(CU, u, t) + /\f(xa U, t)
e "g(z,u,t) + Mf(z,u,t) = He™™ with
Ae™"E (B.4)

s T

Lemma 2 For the current value Hamiltonian H the Riccati differential equa-
tion becomes

R+ Hy R+ RHS, + e RHS\ R+ e ™HS, =0, (B.5)
where H® is the minimized current value Hamiltonian. o

PROOF As the factor e™" does not depend on u, H° = H°e™"* holds.
Using Eq. B.4 the following equations hold

2_2 =e" (B.6)
2
ox _ 0 (B.7)

axe
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Hencefor

5, - 20
A\ O
- 9 OH D)
A\ OX OX
6°H 0)
OA2 H)\
— ertH/\/\
f{a::\ = Hm/\

Hyy = e——rtsz
Substituting into Eq. A.21 leads to
R+ Hy R+ RH?, + " RH\R+ e " HS, =0,

what had to be shown. -

B.3 Local Optimality at Steady States

In general the Riccati differential equation cannot be solved analytically.
Nevertheless in the special one state case of staying exactly at a steady state
(z*,u*), which is always an extremal, one can find an explicit solution of
Eq. B.5. Although this seems only a trivial degenerated case of marginal in-
terest, it gives insight to the locally optimal strategies as analysed in Sections
3.2.7,4.2.7 and 5.2.6.

Setting a = Hy,(z*,u*), b = 2H2,(z*,u*) and ¢ = H2 (z*,u*) and
substituting in Eq. B.5 the Riccati differential equation is reduced to

P =e"ap® + bp + e, (B.8)

with a,b,c € R.
Without loss of generality it can be assumed that a > 0. In case of
a < 0 we substitute p by —p which yield

p: _eTtap2+bp_e—th

)

and setting @ = —a and ¢ = —c we get Eq. B.8. In the following part
we analyse the possible explicit solutions for this kind of Riccati differential
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equation. Furthermore Eq. B.8 can be simplified by setting ¢ = pe™, which
leads to (¢ — 7q)e™" = p. Hencefor Eq. B.8 is replaced by

¢g=ag’ + (b+r)qg+c (B.9)

Rewriting this equation we obtain

dq _
a?+(b+r)g+c

dt,

which can be solved analytically.

The solution of this differential equation depends on the factorization
of the quadratic polynomial ag® + (b+ 7)g + c. The possibly complex roots
of this quadratic equation are given by

—(b+7r)£+/(b+71)?—4ac
AL Y (B.10)

q12 =

v/ (b+7)2—4ac . .
with v; = %:T) and v = ——Q-Fm)l—ém. The crucial part for the solutions
behaviour depends on the discriminant D = (b + r)? — 4ac. Depending on
the sign of D three cases can be distinguished.

B.3.1 Positive Discriminant D

For (b+7)%—4ac > 0 we have two different real valued solutions and Eq. B.9
is solved by

¢ = alg—m—7)g—mn+7%)

dq
dt
alg—m—7)@—m+r)
1 —y —
lnq T — Y2 - t1C

202 g—m+ "

Under boundary condition ¢(T) = ¢r the integration constant C can be
specified by
1 v —
_ In ar—n — 72 T
202 gr—mt7
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Abbreviating I' = &L=1=22 we find the explicit solution
qr—m+7y2

d—n—-—7" _ [elt-T)2ar2
g—"71+ 72
q(1— pe(t—T)2a72) = n+n+ (- ,Yl)e(t—T)mmF
(72 —m) (1 + Delt=T202) 4 2,
7= 1 — De(-T)2an

Resubstitution of p for ¢ leads to

_(r—-m) (14 Det-D2e2) 4 2y
- 1 — Tet-T)2ev2o—rt :

(B.11)

The solution of this equation is bounded as long as the denominator of
Eq. B.11 is unequal zero and hencefor

1
In=+T.
2ays nI‘+

t
As t € [0,T] and 75,4 > 0 by definition we only have to prove that

ln% > 0. This condition is accomplished for I' > 1. This can always be
achieved by choosing the boundary condition pr such that pr — v +v2 < 0.

B.3.2 Zero Discriminant D

For (b4-1)%2 —4ac = 0 the quadratic equation has a double root at y; = ;(12’;‘_’")
and therefor Eq. B.9 reduces to
q = a’(q - 71)27
which is solved by
g = alg—m)
d
___q_2 = di
a{g —m)
1
— = t+C, B.12
a(g — ) ( )

for the boundary condition ¢(7') = g7 the integration constant can be calcu-

lated as 1
C=—-T
al’ ’
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with I' = gp + 71.
Equivalence transformation of Eq. B.12 and substitution of the C
leads to

1 1
SR S
a(g —m) al
1T TdE-mFi M
_ q(al(t—-T)+1)-T
¢ = ab(t—T)+1 '

and after resubstituting ¢ = e ™p we get the explicit solution

with p = ye™.
This solution is bounded as long as the denominator does not become
zero, which is characterized by

1
t#£T — —.
7 al’

Noticing that t € [0,7] this is accomplished for aI' < 0. This can always be
guaranteed as we are free in choosing the boundary condition pr .

B.3.3 Negative Discriminant D

In the case of a negative discriminant (b + 7)? — 4ac < 0 the quadratic
equation cannot be factorized to real linear factors. Therefore Eq. B.9 has
to be written as

¢g = ag®+(+r)g+c

dg
= dt
ag® + (b+r)g+c
2 2 b
arctan —eaod totr t+C. (B.14)

dac — (b+r)? dac — (b+r)?
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For the boundary condition ¢(T") = ¢r and setting D = y/4ac — (b+ r)?
the integration constant is equal to

2G(JT+b+T_T

2
C= D arctan i) :

and hencefor the explicit solution for Eq. B.14 is given by

arctan —a—q—i—Di = (t— T)B + arctan &E—-ﬂ
P — (6= 1) + anctan o tber)
2ag+b+r  tan((t-T)%) + Zagrtbtr
D 1 — 204047 pan ((t — T) Z)
2 tan ((t — T) %) (D* + (b + 1) + (b +)2aqr) + 2Dagr
aq =

D — —~———2aqT;b+T tan ((t — T)%—)
Considering that D? + (b + r)? = 4ac we get

_tan ((t —=T)3) (2+ (b+7)gr) + Dgr
T Do EE (- )3)

At last resubstituting ¢ = e "'p the solution can be written as
: g4q 4

_tan ((t —=T)3) (2+ (b +)pr) + Dpr
(D - 2apr+b+r)tan (t—17)3%)

e, (B.15)

where p; = € Tqr.

As we are interested in bounded solutions of Eq. B.15 we have to
investigate the behaviour at the poles of Eq. B.15. Setting the denominator
equal to zero we get the following equation

D — (2apr + b+ ) tan <(t—T)%> =0,

which can be solved for ¢

t—T—k2 arct D
- D \ et b+r+2apr) )
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Taking into account that the tangens function is periodic with periodicity =
this equation hold for every t with

2 D
t=T4+ — t - |-k
+D (arc an (b+r—+—2apT) 7r) ke N

Choosing now kg as the minimal integer such that

2 tan D — ko } <0
D are b+r+ 2apr 0

holds for 0 <t < T we can conclude that if

2 arctan D — kom
D b+ 71+ 2apr 0

the solution of Eq. B.15 goes to infinity in finite time. Therefore no bounded
solution of Eq. B.15 with T' = oo exists.

T>

B.4 Local Optimality and Jacobian

After having found a characterization for the boundedness of the solution
of the Riccati differential equation for one state models staying at a steady
state, we can analyse this characterization in respect to the models Jacobian
J. The Jacobian J can be written in terms of the Hamiltonian H as

H:c)\ _sz
J= . (B.16)
Hy r— Hp

To classify the different types of steady states, we have to determine the
trace 7, determinante A and discriminant D, which can be calculated from
Eq. B.16 as

T =7
A = Hu(r— Hp\) + Hyp Hyy
D/ = 1"2 — 4H:t/\(7‘ - HJ;,\) - 4Hz:zH/\)\-

Rewriting D we get

D' = r’—4H,r +4HZ%) — 4H, H))
(r — 2H,3)? — 4H, Hyy.
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For the one dimesional case Eq. B.5 simplifies to
R=—e"H\R?— 2H, R~ e " H,,
and in current value notation
Q= —H\\Q* — (2Hzx — 1)Q — Ha,.

In the last section B.3 it has been shown that the crucial term for the bound-
edness of the solution for this differential equation is the term

D = (b+71)* — dac,

which becomes
D= (r—2H,)" —4AH Hyy = D', (B.17)

in terms of the Hamiltonian. D’ and hencefor D discriminate between un-
stable foci and unstable nodes or saddles, combining this with the results of
the last Section B.3 we have shown, that for infinte time 7" the only possible
candidates for local optimal solutions at steady states are unstable nodes and
saddles.




Appendix C

Numerical Methods

In this chapter the numerical methods and its theoretical foundations are
described as they were used to analyse the different models. The first section
states the Theorem (Michel, 1982), which provides the theoretical tools to
find the extremals and the corresponding objective value function. These
extremal will be identified as the stable manifolds of saddles, hencefor in
the next section an algorithm is presented for calculating stable manifolds at
least for the one dimensional case. In the third section this algorithm is used
to show how to find DNS points and thresholds respectively.

C.1 Necessary Conditions for Extremals

The crucial point for analysing an optimal control problem is of course finding
the extremals (Z, %) and the calculation of the objective function along these
paths. For models of class (GM) the following theorem gives the decesive
hint for finding these extremals:

Theorem 6 (Michel, 1982) Given a control problem of the form.:

V(m,u)=/ e "tg(x, u)dt
0

Zneilrll Viz,u) (1)
s.t. == f(z,u)
and z(0) = .
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Let the pair (Z,1) be an optimal solution, then there exist a constant scalar
Ao and a continuous costate variable A, such that the following conditions are
satisfied:

lim e " H (%, 4, Ao, A) = 0 (C.1)

t—oo

e P H (%, 4, Mg, \) = r/\o/ e gz, u)ds, (C.2)
t

where H is the current value Hamiltonian.
If additionally g > 0 for all admissible (x,u) and for t large enough O lies
inside the set
: E)={uvelU: f(i,u)},
then A satisfies the transversality condition
lim e " A(t) = 0. (C3) o

t—o00

As for models of class (GM) all assumptions for Th. 6 are satisfied the stated
conditions are necessary condtions for an optimal path (Z,4). Furthermore
it was shown in Section 2.3 that Ag = 1 holds true.

From the Pontryagins minimum priciple a canonical system (CS) of
differential equations (see Section 2.3) was derived. Considering transversal-
ity condition Eq. C.3 it can easily be seen that the stable manifolds M? of
saddles (z*, u*)

M(*, ) = {(z,u)  Jim ¢z, u) = (%0},

where ¢ is the flow associated to (CS), are candidates for optimal paths.

Furthermore Th. 6 provides together with Eq. C.2 a formula to cal-
culate the objective function V(z,u) fo ~"g(z,u)dt without integrating
along the extremal (Z,@). For if t 0 in Eq Cl this equation reduces
to H(Z(0),%(0), Ao, A(0)) = 7)Ao J;~ e "*g(Z, @)ds. Noting that along an ex-
tremal path the minimized Hamﬂtoman He(%,4) = H(Z,4, ) and hencefor
we get for \g =1

v (2(0),5(0)) = - H°((0), 5(0)) (C4)

Having these theoretical results in mind all we have to do is finding
the steady states of the canonical system picking out the saddles, getting
the corresponding stable manifolds and in light of Eq. C.4 calculating the
objective function values.
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C.2 Calculating the Stable Manifolds

The theoretical background for the calculation of the stable manifold of a
saddle (z*, u*) is given by the Local Stable Manifold Theorem, which is stated
here for the sake of completeness. A comprehensive treatment of this topic
can be found e. g. in (Kuznetsov, 1998).

Let the dynamical sytem (in our case the canonical system) be denoted
by

t=f(x) zeR" (C.5)

where f is differentiable. Let 2* be a hyperbolic steady state of saddle type.
Furthermore the stable manifold M? is defined by

M¥(a*) = {z - lim ¢(x) = =*}, (C6)

where ¢' is the flow associated to Eq. C.5. If n_ denotes the number of
eigenvalues with negative real part of the Jacobian J(z*) then the following
theorem can be stated

Theorem 7 (Local Stable Manifold) Let z* be a hyperbolic steady state.
Then the intersection of M*(z*) with a sufficiently small neighborhood of =*
contain smooth submanifolds M _(z*) of dimension n_.

Moreover, Mg (x*) is tangent at z* to T°, where T* is the generalized
eigenspace corresponding t othe union of all eigenvalues p of J with Rey <
0. o

Applied to our two dimensional canonical system this theorem states
that in a small neighborhood of a saddle (z*,u*), the local stable manifold
can be written as

Migo(z*,u*) = {{z,u) : (z,u) = (27, u") + Kes, | 5 |< e},

where e; is the eigenvector for the eigenvalue p with Rep < 0 and ¢ small.
Noting that starting on the stable manifold one will end for some fi-
nite time in a small neighbourhood of (z*,u*) and therefore in M (z*,u*).
Hencefor starting at a point inside Mj (z*,u*) and following the resulting
flow in reversed time gives the stable manifold. That is we solve the canoni-
cal system for an initial starting point (zg, ug) with (zg, ug) = (z*, u*) + Kees,
where kg is small enough, in reversed time. This provides us a numerical
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algorithm, where we only have to specifiy a small xq and starting a differen-
tial equation solver, as provided for example in MATLAB\Y, for the initial
starting point (zg,up) as specified before for negative time. Doing this for
Ko and —kg we get the two branches of the stable manifold, connecting them
at (z*,u*) the stable manifold is computed. A good presentation of this
algorithm and how to choose kg properly is give in (Parker & Chua, 1989).

Having now calculated the stable manifold, we obtain the objective
function values V(z,u) for every point of the stable manifold by using equa-
tion Eq. C.4.

Although this algorithm is also applicable to the higher dimensional
case it has some drawbacks, like a strong dependence of the flows velocity
starting from different initial positions and the problem of reconstructing a
higher dimensional manifold from onedimensional paths. To overcome these
problems other algorithms have been tested. One algorithm, which does in
principle not depend on the manifolds dimension is presented in (Krauskopf
& Osinga, 1998) and (Krauskopf & Osinga, 1999). But as it lacks an efficient
algorithm sorting the detected points it is only usable for two dimensional
manifolds. A completely different concept is given by (Dellnitz & Hohmann,
1997), where the manifolds are calculated using a set theoretical approach.
For these algorithms exist a MATLAB®O toolbox GAIO, for more information
see http://www-math.uni-paderborn.de/ agdellnitz/gaio. The applicability
of these algorithms to optimal contrrol problems will be tested in the near
future.

C.3 Finding DNS Points and Thresholds

DNS points are defined as points where multiple optimal solutions exist (see
Section 2.1). This means that the objective function values for different
extremals have to be the same at this point. But as we have identified
the extremals as the stable manifolds all we have to do is to find crossing
points for the corresponding objective value functions. As the objective value
functions are provided by the algorithm described in the last section it is no
great effort to extend this algorithm for finding DNS points.

Actually my algorithm does not search for crossing points directly.
Moreover every objective value function is numerated by the index (arbitrar-
ily numeration of the occuring stable manifolds) of its corresponding stable
manifold. A possible DNS point is now detected if the number of the objec-
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tive value function changes on searching for the optimal path (see Fig. C.1a/b
). Within this algorithm one do not only receive DNS points but also DNS
thresholds (see Fig. C.1c). Because although there is no crossing of the ob-
jective value functions, there is a change of optimal solution. By construction
different optimal solutions correspond to different stable manifolds and this
is what my algorithm is actually searching for.

C.4 Finding Shocks

Given Def. 8 of a shock and reminding of Th. 4 it has been shown that an
extremal (Z,%) is locally optimal as long as no shock occurs. Furthermore
if a shock occurs the solution of the Riccati differential equation becomes
unbounded. In the proof of Th. 5 the infinite time horizon problem was ap-
proximated by a finite time problem. For numerical calculations the method
of this proof can be used to find shocks. Therefore time T has to be chosen
to come close enough to the steady state (saddle), then the Riccati differen-
tial equation is integrated numerically along (£,4) for time 7" and while the
integration process the norm of the solution is screened. Exceeding a given
threshold a shock is assumed and the integration process is stopped.

This method is straight forward but depends critically on the integra-
tion time T'. As the integration process near a shock is ill conditioned the
detection of a shock can fail. Therefore one is interested in another criterion
when a shock can occur.

At least for the one dimensional case a (heuristic) argument for the
existence of a shock can be given. Although no mathematical proof has been
found so far.

Considering Def. 7 of a shock, searching for shocks reduces to find
critical points, where at least two solutions of the canonical system of problem
(GM) exist. These critical points can be identified as the crossing points of
the extremal (£,4) and the z-isocline. The argument for this conjecture
works the following way. Denoting this crossing point as (z., Ac) we conclude
that there exist two solutions (z., A\ £ d\) (where dA is infinitesimally small)
of the canconical system, with the same initial state z, but different costates
At = Ac +dA and Ay = A, — dA, which suffices Def. 7. Although only a
heuristic argument we have found an confirmation for what has been proven
numerically (see Fig. C.1d).
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Figure C.1: Depicts the case of a DNS point at an a) unstable focus b) an unstable node,
c¢) a DNS threshold and d) shocks along locally optimal paths.




Appendix D

The Clash of Definitions

When Skiba (1978) and Dechert and Nishimura (1983) explored the phe-
nomenon of points of indifference, they considered a special class of eco-
nomic models formulated as optimal control problems, namely the classical
one-sector problem of optimal growth with a non-convex production func-
tion. There was no need to investigate this phenomenon in a very general
and extended context. Relating on these studies the term Skiba point and
DNS point respectively was introduced for points of indifference, where the
objective value of different paths was equal and hencefor the decision maker
indifferent which to choose. The most important case, where such a be-
haviour can be expected in the one dimensional case is a focus lying between
two steady states of saddle type. But while this constellation does not nec-
essarily imply the occurence of points of indifference (see e. g. Region Ila
in MoM or Region IVa in GMoM and MoBB) this property can also occur
in case of an unstable node (see e. g. Illb in MoM and MoBB), lying be-
tween two saddles. Aside from the possibility that there exists an unique
optimal solution (see e. g. Illa in MoM and MoBB), one has to distinguish
a different optimal behaviour for models with an unstable node. In most
instances the optimal paths are continuously connected at the unstable node
and the steady state itself becomes a global optimal solution (see e. g. Illc
in MoM and MoBB). A point of indifference can only occur if there exists an
overlap near the unstable node for the projection of two extremals into the
state space. So far no analytical argument can be given for the occurence of
such an overlap, therefore one has to do numerical calculations for detecting
points of indifference near an unstable node (see Appendix C). Refering to
points of indifference as DNS points and having the three different cases in
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mind one is in favour defining a DNS point in the following way, where it
is assumed that the extremals considered in the following definition are the
only possible candidates for optimal paths.

Definition 1 A point in the state space is called a DNS point if there exist
at least two different extremals with the same objective value and a discon-
tinuity of the control in this point.

But this definition is problematic, because continuity and discontinuity of
the control is not inherent to the formulation of the optimal control problem
and depends on the underlying norm.

Considering Def. 1 more closely it can be seen that the added property
of discontinuity for the control is neither necessary to distinguish the two
possible cases at an unstable node nor even adapted to the the property of
a point of indifference as will be seen in the following example.

This example is a one-dimensional modification of a two-dimensional
problem stated by Vladimir Veliov, but as he pointed out it is rather different
from what he actually meant. The problem stated here is more pathologic
than the original one, as the solution set is not closed. Nevertheless it is very
interesting as it allows to show the limitations of the hitherto given definition
of a DNS point. Assuming the subsequent problem

min/ et (332 (1 — u2)2 uz) dt
v oJo

st. 2=kx O0<k<l (D.1)
and z(0) = zo,

(P)

it can be seen immediately that the minimal costs are 0 and therefore in
case of xp = 0, the control u can be choosen arbitrarily, while zy # 0 yields
u = 0,%£1. On the other hand we can also use the principle of Pontryagin to
state the necessary conditions for problem (P). Hence the Hamiltonian H is
given by :
H =2 (1-u?)"u? + Mz,
The minimum condition for u leads to the equations
H, = 2* (6u5 —8u® + 2u)
Hy = o* (30u" — 240° +2)

which proofs our assertion that u is arbitrary for o = 0 and has the minimum
solutions u© = 0, %1 in case of zy # 0.
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Using H, = 2z (1 — u?)* 42 + Mk and the property (1 — u2)* u? = 0 for
a minimal v the costate equation is given by

A=A1-k). (D.2)

As the canonical system of (P) defined by Eqs. D.1-D.2 is decoupled, the
explicit solutions for z and A can be written as

z(t) = zoe (D.3)
/\(t) = Age(l_k)t‘

Since the transversality condition for the admissible & is satisfied for every
initial Ag no further necessary conditions can be stated for extremals. In
Fig. D.1a the phase portraits of possible extremals for different initial starting
positions xg and g are shown. But as we can see in Fig. D.1a or deduce from
Eq. D.3 the projection into the state space remains unaffected by the choice
of r. Furthermore the extremals provide no information how to choose an
optimal control u(t). Since u() hast to be absolutely continuous only almost
everywhere, we can build up any optimal control as a step function with the
possible values +1 and 0. Valid realisations are shown in Fig. D.1b. Trying
now to apply Def. 1 to problem (P) we get into troubles. First the usage
of the term extremals in Def. 1 is not well adapted for problem (P) since
the costate dynamic is of no importance for the optimal behaviour. Only
the projection into the state space is of interest and determinate the optimal
solutions behaviour. Second if we assume the difference in the controls as
critical demanding a discontinuity at the initial control we would fail to notice
a DNS point. Consider for example two controls with the same value for the
timespan [0, tp], but differing in some interval for ¢t > 3. These would give
two different optimal solutions starting from the same initial position zy but
they are not discontinuous at the initial controls. Therefore the condition of
discontinuity in Def. 1 has to be replaced by another criterion.

As this example has shown the critical term in our definition of a
DNS point are the “different extremals” or “different optimal solutions”.
Thus “different” has to be specified and the definition will depend on what
cases we want to distinguish. If different controls leading to the same optimal
behaviour of the state variable are wanted to be differentiated, the controls
have to be considered. If only the projection into the state space counts the
controls will not be considered in the definition of a DNS point. One could
say that this example is degenerated and under stronger constraints such




APPENDIX D. THE CLASH OF DEFINITIONS 124

6 a) 1.5 - b) - 1
: . = optimal path
3 \ / 10+ -- —_— . ogtﬁmal goints
| 0.5 - - ; ceJ:t:‘rennilvalues
v od \b\ ///ﬁ—' v oo L
5 ,/ \\\ 0.5 - ~
10— m——
-6 T 1 | 1 -1.5 —— | .
A0 50 0 40 5 0 5 10
T T

Figure D.1: a) depicts some of extremals and its directions of problem (P), while in d)
two possible optimal solutions are shown for zy = £0.5.

decoupling behaviour could be prevented. Doubtless the stated constraints
are of great importance for the given definitions and although in a somewhat
different context this problem (among many others) of the relation between
constraints, definitions and proofs is covered by the classic book of late Imre
Lakatos (1976/1999). But the usage of this example can easily be justified
even in the case of rather “normal” applied models. If we consider the slightly
different version of state dynamic Eq. D.3

z(t) = zoe + pu, (D.4)

the decoupling behaviour is abolished. Now it could happen that p becomes
zero or almost zero, which leads to the considered problem (P). In this case
one has to decide if this “degenerated” model is meaningful in the given
context or not. But nevertheless the definition of a DNS point has to account
for this problem.
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Summing up these considerations the following definitions can be
given, where the model under consideration is given by

T
min/ gz, u)dt
v Jo
st. == f(z,u)
and z(0) = z,,

(A)

Definition 2 A point z, in the state space is called a DNS point if there
exist at least two optimal solutions (z1(¢), u1(¢)) and (z2(¢),us(t)) for model
(A), with ||lz1(-) — z2(-)I| > 0.

Remark 2 From Def. 2 it is clear that the optimal solutions (z1(¢),u1(t))
and (z2(t), u2(t)) have the same objective value at t = 0.

Remark 3 These definitions are stated without refering to the dimension
of the considered model. Hencefor in higher dimensions sets of DNS points
could be classified as DNS curves or DNS manifolds. Nevertheless questions
concerning properties, like e. g. continuity of DNS curves/manifolds, arise in
higher dimensions which have no counterpart in the one-dimensional case.

Remark 4 In the light of Def. 2 one is only interested in deviations of the
state variable x. Therefore applying Def. 2 to problem (P) there exist no
DNS point, as for every initial poisition zo the corresponding optimal state
variable is uniquely determined by x(t) = zge*t.

An alternative definition can be stated

Definition 3 A point z in the state space is called a DNS point if there exist
at least two optimal solutions for model (A) where the following condition

holds || (z1(-), u1(-)) — (za(-), u2(:)) || > 0.

Remark 2 clearly remains valid for Def. 3.

Remark 5 Although it has been shown that the property of (dis)continuous
opimal control is not well adpated to give a rigour mathematical definition
of a DNS point and in the following for a DNS threshold it is used in the
descriptions of the optimal policies for the models of this thesis. This can
be done as it has a meaningful interpretation and coincide with the given
definitions for the considered models.
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Remark 6 Applying Def. 3 to problem (P) every point of the state space
is a DNS point, as for every initial position zq at least two different controls
u1(t) and uy(t) can be specified (see e. g. Fig. D.1b).

For the majoritiy of “normal” cases Def. 2 and Def. 3 will describe an identic
set of DNS points. Nevertheless they can produce very different results as
was shown within model (P).

In the following we are concentrating on the threshold property of
a DNS point. This is motivated by the example of an unstable node with
continuous optimal paths at the steady state. For this special case the unsta-
ble node can not be classified as DNS point, noticing that the only optimal
solution when starting at such an unstable node is to stay put. Neverthe-
less it has the property of a threshold as it seperates regions in the state
space with different optimal behaviour. This property is of general interest
as it indicates critical points where slight differences in the starting positions
can lead to very different optimal behaviour. In the light of the preceding
considerations the following definitions can be given.

Definition 4 A point xy in the state space is called a DNS threshold if
there exist £ > 0 such that for every open interval I around z, there exist
at least two optimal solutions (z;(t),u1(t)) and (z2(t), ua(t)) for model (A)
with z1(0), 22(0) = z2 € I and ||z1(-) — z2(-)|| > €

Remark 7 Applying Def. 4 to problem (P) only the origin is a DNS thresh-
old.

Remark 8 Principally this definition could be generalized for higher dimen-
sions on using the term neighbourhood instead of interval. I rwstricted this
defintion to the one-dimensional case as for higher dimensions this is an open
discussion.

Analogue to Def. 3 a second definition for a DNS threshold can be given

Definition 5 A point x4 in the state space is called a DNS threshold if
there exist € > 0 such that for every open interval I around zy there exist
at least two optimal solutions (z1(t),u1(t)) and (z2(¢), u2(t)) for model (A)
with z1(0),22(0) = zp € I and || (z1(-),u1 (")) — (z2(-),ua(:)) || > .

Remark 9 Applying Def. 5 to problem (P) every point in the state space is
a DNS threshold. ‘
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Remark 10 The given Defs. 2-5 are in the line of a definition given by
Vladimir Veliov, who defined a mapping S : X — O, where X is the state
space and O the set of optimal solutions, with S(zg) := {optimal solutions
with z(0) = zp}. If this mapping is multivalued at zy we have the case of a
DNS point at zg (Def. 3), whereas a DNS threshold is equal to discontinuity of
S at g (Def. 5). Definitions Def. 2 and 4 strengthen the argument considering
only the optimal behaviour in the state space as is motivated by problem (P).

Remark 11 In all of these definitions the property of beeing a DNS point or
threshold critically dependes on the used norm at least in the case of infinite
time. But as this consideration once more is motivated by Vladimir Veliov,
who is working on a paper treating this topic among other things in a more
general framework, I don’t go into further details.

I restricted these definitions to the one-dimensional case, as finding
the right formulation is an open discussion. For higher dimensions the pos-
sible behaviour is more complex (see e. g. Haunschmied et al., 2003) and
as a mathematical definition should also embrace extreme cases such as the
one given in model (P), it is not an easy task to generalize the stated con-
cepts. Nevertheless the intuition behind these ideas is clear. It concerns the
existence of points where the mathematical theory alone gives no hint which
optimal solution the decision maker has ideally to choose. But this is not
only of theoretical interest, the existence of points of indifference can entail
serious consequences e. g. in physical applications. Near such a point mea-
surement errors can lead to a chattering behaviour of the calculated optimal
control. For another example in an environmental model see Wagener (2003)
where it is of great importance for the decision maker to realize the existence
of a DNS point and to know the precisie position.

Summing up this example sheds light on the struggle on expressions
in the tension of formal rigour and heuristic intuition. Outside the formal
strenght of mathematical formulation a term obtains the power of its mean-
ing not only from the exactness, clearness and generality but also from the
ideas it provides to explain the underlying phenomenon. At the best math-
ematical rigour and explanatory intuition coincide, but in most cases one
has to decide where to lay stress upon more on formal strength or more on
intuitive explanation. A serious discussion on this topic has to clarify among
other things this point.
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