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Kurzfassung

Zuverlässige numerische Simulationen im Ingenieurwesen setzen mathematische Modelle

zur wirklichkeitsnahen Beschreibung des Verhaltens der eingesetzten Materialien voraus.

Sie beinhalten Materialparameter, die zur quantitativen Festlegung des Materialverhaltens

gewählt werden müssen. Für die gängigsten Werkstoffe des Bauingenieurwesens, d. h. für

Stahl und Beton, wurden in den vergangenen Jahrzehnten ausgereifte Materialmodelle

entwickelt sowie die darin aufscheinenden Materialparameter bestimmt. Sie erlauben eine

zuverlässige und wirtschaftliche Dimensionierung von Stahl- und Betonkonstruktionen.

Numerische Simulationen im Grundbau sind hingegen weiterhin umstritten, obwohl

in den vergangenen Jahren durchaus wirklichkeitsnahe Materialmodelle zur Beschreibung

der unterschiedlichsten Arten von Böden entwickelt wurden. Prognosen des Strukturver-

haltens bei grundbaulichen Baumaßnahmen konnten allerdings selbst durch den Einsatz

moderner numerischer Methoden, wie z. B. der Finiten Elemente Methode, nicht ausre-

ichend zuverlässig gemacht werden. Hauptursache dafür - und somit Grundlage für die

vergleichsweise geringe Akzeptanz numerischer Simulationen im Grundbau - ist die Streu-

ung der Materialeigenschaften von Böden.

In der vorliegenden Arbeit wird die Rolle der Parameteridentifikation im Grundbau

umfassend behandelt. Aufgezeigt wird ihre Rolle als Bindeglied zwischen theoretischer

Entwicklung von Materialmodellen und deren Anwendung in der Strukturanalyse. Metho-

dischen Aspekten wird mit der Entwicklung eines neuen Parameteridentifikationsalgorith-

mus Rechnung getragen. Dabei kommen Verfahren des soft computing wie z. B. künstliche

neuronale Netze und genetische Algorithmen zum Einsatz. Die neue Methode erlaubt

eine rasche und zuverlässige sowie simultane Identifikation mehrerer Parameter. Sie wird

somit den speziellen Anforderungen von Identifikationsproblemen im Grundbau gerecht.

Konzeptionelle Aspekte der Parameteridentifikation im Grundbau werden im Rahmen der

Auseinandersetzung mit einer praktischen Problemstellung behandelt. Es wird die Belas-

tung einer mit Schotter eingeschütteten Stahlrohrleitung durch Felssturz untersucht. Die

Identifikation der Materialparameter von Schotter wird durch Auswertung von eigens en-

twickelten und durchgeführten Experimenten sowie durch Analyse von Versuchsdaten aus

der einschlägigen Fachliteratur vorgenommen. Die Verifikation eines entwickelten Struktur-

modells erfolgt anhand der Ergebnisse eines großmaßstäblichen Felssturzexperiments auf

eine eingeschüttete Rohrleitung. Es wird gezeigt, dass Identifikation von Materialparame-

tern und Verifikation eines Strukturmodells strikt zu trennen sind, wenn ein numerisches

Werkzeug entwickelt werden soll, dass zuverlässige Prognosen im Grundbau ermöglicht.



Abstract

Reliable numerical simulations in engineering require mathematical models characterizing
material behavior in a realistic manner. In order to capture quantitative aspects, respective
material parameters must be specified. In the past decades, reliable material models were
developed for the standard materials most frequently used in civil engineering, i. e. for
steel and concrete, and their material parameters were identified. Accordingly, a reliable
and economic mode of design of steel and concrete constructions became possible.

Numerical simulations in geotechnical engineering, however, are still controversial even
though realistic material models describing the behavior of the various types of existing
soils were developed. Prognoses of the structural behavior considering a geotechnical con-
struction site did not become sufficiently reliable by using modern numerical simulation-
methods such as, e.g., the Finite Element Method. The reason for this circumstance -
which is responsible for the rather small acceptance of numerical simulations in geotechnical
engineering - is the distinctive scatter of the material properties of soils.

In this thesis the role of parameter identification in geotechnical engineering is treated
in an integrated manner. Its important role as a link between theoretical material mod-
eling and structural application of such models is pointed out. Methodical aspects are
covered by proposing a new parameter-identification method resting on soft computing
such as artificial neural networks and genetic algorithms. The new algorithm permits fast,
reliable, and simultaneous identification of several parameters. Therefore, it is well suited
for parameter identification problems in geotechnical engineering. Conceptual aspects of
parameter identification in geotechnical engineering are also addressed. As an example,
the loading of a gravel-buried steel pipe subjected to rockfall is considered. Identification
of the material parameters of gravel is based on the evaluation of designed and performed
experiments as well as on test data taken from the open literature. Verification of the de-
veloped structural model rests on a real-scale rockfall experiment onto a gravel-buried steel
pipe. It is shown that identification of material parameters and verification of a structural
model must be separated strictly in order to prove whether or not a numerical simulation
tool is capable to provide reliable prognoses in geotechnical engineering.
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Chapter

Introduction and scope of the work

In the last decades, numerical simulations became a popular tool supporting decision-
making processes in geotechnical engineering. Material models were developed which are
suitable to describe the rather complex behavior of various types of existing soils and rocks.
Development of such models requires the introduction of material parameters. Therefore,
reliable numerical simulations require both, adequate material modeling and identification
of the involved material parameters. The scattering of material properties in geotechnical
engineering renders the parameter identification process a challenging task. It represents
the major contrast to material modeling of steel and - to some extent - concrete. For such
standard materials adequate material model are established and the involved material
parameters are nowadays well known for most practical applications. In geotechnical en-
gineering, parameter identification will stay an important aspect of numerical simulations,
given the various types of existing soils and rocks that are encountered at construction
sites.

Monitoring of the structural behavior at geotechnical construction sites became state-of-
the-art in the last decades. Nowadays, displacement measurements are performed routinely
at almost every construction site. Trends of measured displacements are key-features on
which experienced engineers base their risk assessments. Accordingly, structural moni-
toring supports decisions whether or not additional safety constructions must be built in
order to prevent a structure from hazardous situations. To provide engineers with even
more insight into the structural behavior, numerical analyses are carried out parallel to
structural monitoring. Such simulations are commonly performed by means of the Finite
Element (FE) method. Results of respective FE analyses allow at least for a qualitative
assessment of the structural behavior in inaccessible domains. In order to increase the
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reliability of such numerical simulations, parameter identification is performed to adjust
the model output to the monitored structural behavior. Model parameters, i. e. in most
cases material parameters, are back analyzed such that results from numerical simulations
meet the performed measurements as well as possible. In this context, parameter identifi-
cation and respective numerical analyses contribute to the documentation of construction
processes. However, they do not aim at estimating future structural behavior.

Within this thesis, parameter identification is treated in a more integrated manner.
Its role in the context of quantitative prognoses of the structural behavior in geotechnical
engineering is addressed. Such prognoses require a reliable structural model as the basis
for numerical simulations. In this context, engineering skill is required in order to choose
or develop a model which is as sophisticated as necessary but also as simple as possible.
Assuming the proper simplifying hypotheses represents the major challenge of modeling in
geotechnical engineering. This mode of model selection or development requires verification
of the chosen hypotheses. It is referred to as model verification. Results obtained by means
of the selected or developed model must meet experimental measurements satisfactorily.
If model verification is completed successfully, prognoses of the structural behavior under
investigation become possible.

As a part of this concept, material parameters must be identified prior and indepen-
dently to model verification. For the purpose of parameter identification experiments
must be performed. Preferably, these tests should refer to a single physical phenomenon.
Such experiments permit explicit parameter identification. However, some standardized
and, hence, routinely performed tests in geomechanics activate a number of physical ef-
fects. Such experiments require a parameter identification method searching for optimal
parameters in an implicit manner. In all cases parameter identification should take into
account the scattering of material parameters. This requires redundant information about
the material behavior of soils. Therefore, a situation where several independent types of
tests are available in order to back analyze material parameters is optimal for parameter
identification.

After parameter identification is completed, model verification can be tackled. In this
context, measurements referring to the structural behavior under investigation are required.
These experimental measurements must be independent from the test results used to back
analyze material parameters. Otherwise, it cannot be proved that the model is capable to
provide genuine predictions of the structural behavior.

In this thesis, parameter identification is addressed with special emphasis on the pre-
dictive capability of the involved models as outlined above. In the first part, methodical
aspects of parameter identification are considered. A brief discussion of existing PI meth-
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ods is presented in Chapter 2. It represents the motivation for the development of a new
parameter identification method. It is resting on soft computing including artificial neural
networks (ANNs). Therefore, the theoretical background of ANNs is addressed in Chap-
ter 3. It is dedicated to readers that are not familiar with ANNs. In Chapter 4 the new
parameter identification method is described. First, the proposed algorithm is outlined.
Secondly, it is shown that new proposals concerning the training of ANNs are reasonable.
Finally, it is proved that the new method fulfills the requirements defined in Chapter 2
by solving parameter identification problems related to (i) tunneling according to the New
Austrian Tunneling Method and (ii) ground improvement by means of jet-grouting. In the
second part of this thesis, the role of parameter identification as an important feature for
prognoses in geotechnical engineering is demonstrated. As an example, the loading of a
gravel-buried steel pipe subjected to rockfall is considered in Chapter 5. Subchapter 5.1
provides an introduction into the problem under consideration. In Subchapter 5.2, material
parameters of gravel are identified based on designed and performed experiments as well
as on test data taken from the open literature. In Subchapter 5.3, loading assumptions
for rockfall onto gravel are addressed. They include dimensionless estimation formulae for
penetration depth and maximum impact force representing functions of the mass of the
downfalling rock boulder, its height of fall, and the indentation resistance of gravel. In
Subchapter 5.4, the development and the verification of a three-dimensional elasto-plastic
Finite Element model for the structural analysis of rockfall onto a gravel-buried steel pipe
is presented. In Subchapter 5.5, finally, prognoses of the loading of a gravel-buried steel
pipe subjected to rockfall events that were not investigated experimentally are described.
It is shown that identification of material parameters and verification of a structural model
must be separated strictly in order to develop a numerical tool capable to provide reliable
prognoses in geotechnical engineering.



Chapter

Parameter identification (PI) in

geotechnical engineering

In the last decades, numerical simulations became a popular tool supporting decision-

making processes in geotechnical engineering. Material models were developed which are

suitable to describe the rather complex behavior of various types of existing soils and rock.

Development of such models requires the introduction of material parameters. The material

models provide a qualitative description of the behavior of soils and rock, whereas the

quantitative aspects are governed by the material parameters. Therefore, reliable numerical

simulations require both, adequate material modeling and identification of the involved

material parameters. The scattering of material properties in geotechnical engineering

renders the parameter identification process a challenging task.

In order to solve a PI problem, an error function must be defined. It represents the

difference between measurements from experiments or from the construction site and cor-

responding quantities obtained from numerical analyses. The error function depends on

the unknown parameters. It can be defined as

r=l \ Ur

where ur and v%, r — 1,2, . . .n o , are the selected measurements and the corresponding

numerical results, respectively. Obviously, u^ depends on the unknown model parame-

ters collected in the vector p. Based on the error function (2.1), back analysis aims at

determination of the absolute minimum of ̂ ( p ) , which reads in mathematical terms

-> minimum. (2.2)
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This is a challenging task since usually ^ ( p ) is a nonlinear function. Therefore, TZh(p)

may have several local minima.

There is a large number of established methods to solve PI problems. They will be

addressed in Subchapter 2.1. A comparison of the properties of these methods considering

the requirements of PI problems in geotechnical engineering will be presented in Subchap-

ter 2.2. It represents the motivation for the development of a new parameter identification

method resting on soft computing.

2.1 Brief review of established PI methods employed

in geotechnical engineering

PI as defined in (2.2) leads to an optimization problem. Therefore, established optimization

methods are commonly employed to solve PI problems. There exists a great variety of such

procedures. In the following two sections, a categorization of optimization methods will

be presented. Thereby, two key properties of such methods will be taken into account.

In Section 2.1.1, methods representing local search techniques will be distinguished from

global search techniques. Subsequently, gradient-free optimization methods and gradient-

based approaches will be addressed in Section 2.1.2.

2.1.1 Local and global search techniques

A local search technique starts with an arbitrarily chosen parameter vector p. After com-

putation of ̂ ( p ) , it searches for a new parameter vector in the vicinity of p that reduces

the value of the error function lZh. Thereby, commonly so-called line-search techniques

are employed. If such a parameter vector is found, the search for an even better solu-

tion is continued in the vicinity of this new parameter vector. Step by step, parameter

vectors will be found associated with values of 1Zh that are continuously decreasing. The

algorithm will be stopped, if a minimum of the error function is found, i.e., if continua-

tion of the algorithm does not lead to a further reduction of TZh anymore. At that stage,

a local search technique provides insight into the shape of lZh along a specific decreasing

path. However, most parts of the error function will still remain unknown. Therefore, local

search techniques suffer from the drawback that they may get trapped in a local minimum

of lZh. To overcome this problem, local search techniques must be started from different

points in the parameter space, i.e., from differently chosen initial parameter vectors. If

all these independently performed local searches for an optimal parameter vector end up

at the same point, the respective minimum of TZh will be regarded as the global mini-
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mum. Most classical optimization methods, such as Powell's method, the gradient-descent

method, conjugated-gradient methods, variable-metric methods, and Newton's method are

local search techniques (Vanderplaats, 1984).

Global search techniques are parallel solution strategies, i.e., they work with a large

number of different parameter vectors. Accordingly, at each iteration step, several values of

the error function TZh are evaluated in the entire parameter space. Therefore, such solution

strategies provide global insight in the shape of 1Zh. Purely stochastic search techniques,

for instance, determine the parameter vectors randomly. Hence, the entire parameter space

will be covered rather evenly with candidates for an optimal parameter vector. In contrast

to this property, genetic algorithms increase the density of parameter vectors in promising

domains of T&. Hence, in successive iteration steps, the chosen parameter vectors will

be concentrated in regions where TV1 takes on small values. On the other hand, only few

parameter vectors will be located in domains characterized by large values of lZh. A global

search for an optimal parameter set will be terminated, if an already found low value of

TZh cannot be outperformed in successive iteration steps.

Local search techniques are more efficient than global search techniques, i.e., local

methods require a much smaller number of computations of lZh than global methods.

However, global search techniques are more robust than local search techniques since they

do not get trapped in local minimas of 1Zh.

2.1.2 Gradient-free and gradient-based search techniques

Gradient-free PI methods do not require derivatives of lZh with respect to p. Such methods

are, e.g., Powell's method, stochastic search techniques, and genetic algorithms.

Gradient-based PI methods require derivatives of lZh with respect to p. The gradient-

descent method, for instance, requires computation of the first derivative of 1Zh with respect

to p. Newton's method requires first and second derivatives of lZh with respect to p.

Computation of these derivatives accompanying to a large FE simulation requires major

modifications of the FE code (Mahnken and Stein, 1996a; Mahnken and Stein, 1996b). This

circumstance renders gradient-based PI in geotechnical engineering a rather challenging

task.

2.2 Motivation for the development of a new PI

method resting on soft computing

In general, existing PI methods suffer from the following drawbacks:



PI in geotechnical engineering 2.2: Motivation for developing a new PI method 7

• They are either robust or efficient.

• Classical PI methods do not take into account information about the shape of 7lh ob-

tained in previous iteration steps. Only local properties of TZh influence the direction

in which the search for an optimal parameter set is continued.

• If an optimal solution was found, existing PI methods do not provide insight into

the sensitivity of the solution. Hence, commonly a separate sensitivity analysis is

required to assess an obtained solution.

Therefore, a new PI method should satisfy the following requirements:

1. It should be both efficient and robust. Accordingly, a hybrid approach must be

chosen. First, the PI method should search globally in order to provide a parameter

vector in the vicinity of the global minimum of TZh. There, starting from this near op-

timal solution, a local search technique should yield the parameter vector associated

with the global minimum of T&.

2. Information from each FE analysis that has already been performed should influence

the prognosis of an optimal parameter set. Only such an approach will allow for find-

ing the solution of a PI problem and keeping the number of required FE simulations

as small as possible.

3. The PI method should provide insight into the sensitivity of the obtained solution.

In order to meet these requirements, a new PI method is proposed. It is based on soft

computing since application of such methods allowed for promising solutions of similar

problems (Huber, 2000; Feng et al., 2000; Waszczyszyn and Ziemianski, 2001). In Chap-

ter 3, an overview over selected historical developments concerning artificial neural net-

works (ANNs) will be presented. Moreover, the state of the art of Multi Layer Perceptrons

(MLPs), which is a specific type of ANN, will be addressed. In Chapter 4, the new PI

method resting on soft computing will be presented.



Chapter

Artificial neural networks

Development of modern artificial neural networks (ANNs) dates back to the 1940s. ANNs

were designed to imitate biologic neural networks. For this purpose, the governing prop-

erties of biologic neurons were studied with special emphasis on their data processing.

Nervous systems consist of thousands up to millions of interconnected neurons. This dis-

tinctive and hierarchical cross-linkage of neurons is nowadays interpreted to be the conditio

sine qua non for consciousness and complex behavior, (Rojas, 1996).

3.1 Structure and functionality of biologic neurons

Biologic neurons are highly complex cells. For the purpose of designing artificial neurons,

four elements of biologic neurons (see Figure 3.1 (a)) are considered in a simplified manner:

dendrites, cell body, axon, and synapses. Dendrites receive chemical signals from other cells

and convert them into electrical signals (pulses) which are transmitted to the cell body.

These electrical signals cause an electrical depolarization of the surface of the cell body. If

the amount of depolarization becomes equal to the stimulus threshold of the cell, it will

become active. Therefore, a number of pulses must arrive at the same time or within a very

short time span at a certain neuron. Otherwise, the neuron will not be activated. If the

stimulus of a cell body is larger than its threshold, an activation potential, i. e. an electrical

impulse (see Figure 3.1 (b)), will be initiated. The axon carries these impulses from the

cell body to the synapses which transmit them in general chemically to the respective

innervated cell. Activation potentials have always the same shape and amplitude. Hence,

in order to document the extent of its activation, a stimulated neuron fires a series of such

impulses. The firing frequency is proportional to the activation of the cell.
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Figure 3.1: (a) Simplified anatomic struc-

ture of a neuron, and (b) shape of an acti-

vation potential

3.2 History of Artificial Neural Networks

The development of ANNs dates back to the 1940s. Warren S. McCulloch, a psychiatrist

and neuroanatomist, and Walter Pitts, a mathematician, tried to assess the capacity and

efficiency of human brains. In 1943, they developed the well known McCulloch-Pitts cell

which formally models cerebral activity. In the late 1950s, Frank Rosenblatt, a psychologist,

developed a neural network model called perceptron. It was proposed to solve problems of

recognition and classification of visual patterns. The perceptron is still widely considered

as one of the most important and influential neural network models. In the following two

sections, an overview over these two specific trend-setting models will be presented.

The historical overview is restricted to these two models, since they were the basis

for the development of the so-called Multi Layer Perceptron. This specific type of ANN

which is frequently used in civil engineering will be the only type of ANN considered

in this thesis. A more general discussion of historical developments and the theoretical

background of ANNs may be found in standard textbooks, such as, e.g., (Fausett, 1994;

Rojas, 1996; Haykin, 1999).
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3.2.1 The McCulloch-Pitts cell (1943)

The first mathematical model of cerebral activity by means of an artificial neuron was
the McCulloch-Pitts cell, (McCulloch and Pitts, 1943). Such a cell works with binary
information only, i.e., inputs and outputs can be equal either to zero or one. It contains
a stimulus threshold 9 which can be equal to an arbitrary real number, see Figure 3.2 (a).
It is assumed, that all inputs x\, x^, ... xn arrive at the cell at the same time. The sum

1

0

i output value

V

a

of cell

excitation of cell:

(a) (b)

Figure 3.2: McCulloch-Pitts cell with stimulus threshold 9: (a) structure (Min-
sky, 1967), and (b) output function, i.e., the Heaviside step-function

of all inputs represents the excitation of the cell. Hence, if there are no input signals,
the excitation of the cell will be equal to zero. In order to calculate the activation of the
cell, the stimulus threshold 9 is subtracted from the excitation. If the activation is greater
than or equal to zero, i. e., if the sum of input quantities is greater than or equal to 9, the
output of the cell will be one. In all other cases, the output of the cell is equal to zero.
Accordingly, the output function of the cell is a Heaviside step-function, see Figure 3.2 (b).

Based on a single McCulloch-Pitts cell, logic functions such as for instance AND and
OR can be modeled: In this context, the numerical values zero and one represent the
logical values false and true. An AND-cell with two inputs, for instance, will fire one, only
if both inputs are equal to one. I. e., the cell will produce true as an output, only if both
inputs are true, see Figure 3.3 (a). An OR-cell with two inputs will fire one, only if at least
one of both inputs is equal to one, see Figure 3.3 (b).

McCulloch-Pitts cells considered so far consisted of so-called stimulating input connec-
tions. Based on such cells, monotonie logical functions, i. e., a subset of all logical functions,
can be modeled (Rojas, 1996). Modeling of non-monotonic logical functions requires so-
called inhibitory input connections. If a pulse, i. e., if the numerical value one arrives along
an inhibitory input connection at a McCulloch-Pitts cell, the cell will be deactivated. In
such a case, the output of the cell is always equal to zero, no matter how much other pos-
sible connections contribute to the activation of the cell. If, however, the numerical value
zero arrives along an inhibitory input connection at a McCulloch-Pitts cell, this input will
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(a) (b) (c)

Figure 3.3: McCulloch-Pitts cells modeling logic functions: (a) AND-cell with

two inputs, (b) OR-cell with two inputs, and (c) NOT-cell with one in-

hibitory input connection

contribute regularly to the activation of the cell. Based on an inhibitory input connec-

tion, the logical function NOT, i.e., the negation, can be modeled, see Figure 3.3 (c). A

NOT-cell with one input will fire one (true), only if its input equal to zero (false). It will

produce zero (false) as an output, if the input is equal to one (true).

The presented McCulloch-Pitts cells are nowadays still of great importance in electrical

engineering. AND, OR, and NOT-gates are the most practical devices for building any

electrical circuit. In mathematical terms, the importance of McCulloch-Pitts cells is given

by the following theorem (Rojas, 1996)

Any logical function of n binary variables can be calculated based on ANNs

consisting of McCulloch-Pitts cells modeling the functions AND, OR, and NOT.

An example for such an ANN consisting of McCulloch-Pitts cells is illustrated in Figure 3.4.

input vectors x

(1 ,1 ,0 )

(0 ,1 ,0 )

all others

F(x)

1

1

0

(a) (b)

Figure 3.4: (a) Definition of a logical function F and (b) example for the real-

ization of F with an ANN consisting of McCulloch-Pitts cells

Learning algorithms for ANNs consisting of McCulloch-Pitts cells are rather compli-

cated. The only possibility to modify such a network in order to improve its performance

is to change the topology of the ANN and/or the threshold values of the McCulloch-Pitts

cells. Automatization of such learning algorithms is a very challenging task. This draw-

back was discussed by the American psychologist Frank Rosenblatt. In order to improve
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the situation, Rosenblatt proposed another type of ANNs called perceptron (Rosenblatt,

1958).

3.2.2 Rosenblatt's perceptron (1958)

A perceptron is a so-called weighted ANN. Accordingly, all input connections of a neuron

are associated with a numerical value called the weight of the connection, see Figure 3.5(a).

Each input value X{ it will be multiplied by the respective weight, W{. The sum of all

weighted inputs represents the excitation of the respective neuron. If the excitation is

equal to or larger than the stimulus threshold of the perceptron, it will produce plus one as

its output. In all other cases, the neuron will produce minus one as its output. Accordingly,

the output function of a perceptron is the signum function, see Figure 3.5 (b).

i

• 1 -

0 -

1 -

1 output value
•

of a perceptron

~̂
excitation:

(a) (b)

Figure 3.5: Perceptron with stimulus threshold 9: (a) structure with n weighted

input connections, and (b) output function (signum function)

This basic property of a perceptron allows for solution of binary classification problems.

In this context, it is assumed that every input vector x belongs to one of two mutually

exclusive classes u\ and LO-I- The weights of the input connections and the stimulus threshold

of the perceptron must be set such that (i) the output of the perceptron is +1 for any input

vector x G u\ and (ii) the output of the perceptron is —1 for any input vector x 6 UJ2-

Based on a perceptron linearly separable problems can be solved. This fact can be pointed

out by a geometrical interpretation: The equation

u>i Xi = w T x = 6 (3.1)

defines a (n-l)-dimensional hyper-plan embedded in IRn. w, representing the weight vector

of the perceptron, is equal to the normal vector of the hyper-plane. For n = 2, (3.1)

represents a line, see Figure 3.6. The hyper-plane w r x = 9 partitions lRn in two half

spaces: Hi — {x : w r x > 9} and H^ = {x : w T x < 9}. Hi and Hi are called decision

regions. Therefore, the separating hyper-plane w T x = 9 is also referred to as a linear

decision boundary.
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0 \

Figure 3.6: Geometrical interpretation of the functionality of a perceptron with

two inputs (n = 2): The decision boundary w r x — 9 = 0 is illustrated as a

dashed line; input vectors x of classes u\ and u>2 are represented by black

circles and white squares, respectively

Adjusting the network weights of a perceptron in order to solve a binary classification

problem is referred to as the perceptron learning algorithm. It is started from a randomly

initialized weight distribution. Sequentially, all input vectors are presented to the percep-

tron. If a training vector Xj G u)\ (desired output: +1) is misclassified, i.e., if wTXj < 9,

7Xj will be added to w. 7 > 0 denotes a scalar parameter referred to as the learning rate.

The described procedure moves the decision boundary towards the misclassified vector,

which can be shown as

(w 7 V7 > 0 . (3.2)

Similarly, if a training vector x^ 6 u>2 (desired output: —1) is misclassified, i. e., if wTx/c >

9, —7Xfc will be added to w. Again, the described procedure moves the decision boundary

towards the misclassified vector:

(w - 7Xfc)Txfc = wTx f c - 7 < wTx f c , V7 > 0 . (3.3)

In both cases, depending on the chosen value of 7, it is possible that other, previously

correctly-classified training vectors, will be misclassified by the new hyper-plane. However,

assuming a constant learning rate 7 and a linearly separable problem, i. e. a problem that

can be solved with a perceptron, the described algorithm will converge to the solution

(Rojas, 1996).

The equivalence of w T x = 6 and w T x — 9 = 0 was the motivation for a practical

modification of the structure of a perceptron. The stimulus threshold is pulled into the
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weight vector by introducing an additional input xo = 1 and a corresponding weight

WQ = —9, see Figure 3.7. Input vectors extended by XQ = 1 are called input vectors

(a) (b)

Figure 3.7: Perceptrons with stimulus threshold 9 (a) classical representation,

and (b) equivalent representation with input vector in homogeneous coor-

dinates

in homogeneous coordinates. Considering such a representation, the threshold value of a

perceptron is treated as the weight of an additional input connection. This is a great

advantage for the training of a perceptron, where both input weights and the stimulus

threshold should be adjusted in order to improve the performance of the perceptron.

3.3 State of the art of Artificial Neural Networks

ANNs are nowadays employed in a number of different scientific fields such as for instance

computer science, mathematics, physics, electrical engineering, civil engineering, biology,

medicine, psychology, and behavioral science. They are used to solve a great variety of

problems such as, e.g., problems of classification, regression, clustering, pattern matching,

pattern completion, noise removal, optimization, control, and simulation.

In order to solve such a spectrum of problems, three different learning procedures were

developed. They can be summarized as:

Supervised learning is employed, if the given data base comprises couples of both input

vectors and corresponding desired outputs. In such situations, ANNs are trained to

deal with unknown data, i. e., they are trained to provide interpolations and - to less

extent - extrapolations of known relations between vectors. Accordingly, supervised

learning is performed for instance for classification problems and regression purposes.

Unsupervised learning is characterized by the fact that only inputs are given. Corre-

sponding outputs are not known a priori. ANNs are trained to find a structure in

the input data. Similar input vectors should be assigned to similar output vectors.

Unsupervised learning is performed, e.g., for cluster analyses and dimensionality

reduction problems.
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Reinforcement learning is characterized by the fact that desired outputs are not known

exactly. The data basis suffices only to decide whether the output of an ANN is correct

or wrong, or better or worse, respectively.

In civil engineering nowadays different kinds of ANNs are established. The most often

chosen type of ANN are the Multi Layer Perceptron (MLP) and Radial Basis Function

(RBF) networks. So-called recurrent networks such as Elman and Hopfield networks are

further types of ANNs capable to solve civil engineering problems. However, as compared

with MLPs and RBF networks they are infrequently applied.

Within this thesis, only the first type, MLPs, will be considered. Such networks are

characterized by supervised-learning procedures. In the following sections, the state of

the art of such ANNs is presented. The principle functionality of MLPs is addressed in

Section 3.3.1. Training algorithms for MLPs are discussed in Section 3.3.2. The problem

of underfitting and overfitting, also well known as the bias-variance problem, is addressed

in Section 3.3.3.

3.3.1 The Multi Layer Perceptron (MLP)

A MLP consists of several layers of neurons and nodes. Without loss of generality, the

following considerations are restricted to a three-layer perceptron, see Figure 3.8. Such

input layer hidden layer output layer

Figure 3.8: Multi-layer perceptron with one hidden layer

a MLP consists of an input layer, a so-called hidden layer, and an output layer. These

layers contain neurons and nodes. A MLP provides a map from an rij-dimensional input

vector onto an no-dimensional output vector. Therefore, the input layer consists of n* + 1

input nodes. One of these nodes contains the value 1. This node accounts for the stimulus

threshold of the neurons of the hidden layer. All nodes of the input layer are connected

to the nh neurons of the hidden layer via weighted connections. For the hidden layer,

an additional node containing the value 1 is considered which accounts for the stimulus
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threshold of the neurons of the output layer. This node and all neurons of the hidden

layer are connected to the no neurons of the output layer via weighted connections. The

weighted connections are commonly referred to as edges of the ANN.

Traversing an input vector from the input layer of an MLP to its output layer is per-

formed according to a codified calculation scheme. This algorithm is called the feedforward

procedure: The input vector is presented to the MLP at the input layer. If a component of

the input vector, Xj, moves from node j of the input layer (index i) along an edge to neu-

ron k of the hidden layer (index h), it will be multiplied by the respective edge weight wfy.

As weighted values from different edges enter a neuron k of the hidden layer, they are

summed up. The sum <r£ represents the activation of the respective neuron of the hidden

layer:
Hi

~j Wjk •'* = 5>if8- (3-4)
j=0

Since homogeneous coordinates are used, XQ = 1 accounts for the additional node of the

input layer containing the value 1. The weights connecting this input node and the neurons

of the hidden layer can be interpreted as the negative stimulus threshold of the neurons

of the hidden layer, i. e., w1^. = —9k, k = 1, 2 , . . . n^. A transfer function1 th is applied to

the activation, yielding th(afc) which represents the output of neuron k of the hidden layer.

The output of all neurons of the hidden layer are "shot" along the edges to the neurons

of the output layer. Analogous to Eq. (3.4), the activation of neuron r of the output layer

(index o) is obtained as

fc=O

with th(o-Q) := 1 accounting for the additional node of the hidden layer containing the

value 1. The weights connecting this node and the neurons of the output layer can be

interpreted as the negative stimulus threshold of the neurons of the output layer, i.e.,

WQ° = —9r, r = l,2,...no. Application of a transfer function t° to o~° yields the r-th

output value of the ANN: or = t°(a°). Consequently, the outputs of a MLP with one

hidden layer read

/ nh / ru \ \

, r = l,2,...no. (3.6)

They are the result of the feedforward procedure. According to Eq. (3.6), a MLP can be

interpreted as a vector function. The outputs of a MLP are functions of the inputs and

of the edge weights of the ANN. The type of function represented by the MLP strongly

depends on the chosen type of transfer functions.
xThe commonly chosen types of transfer functions will be discussed subsequently.
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MLPs are commonly applied to provide approximations of vector functions or to solve
multi-dimensional regression problems. Therefore, transfer functions characterized by dis-
continuities, such as the Heaviside step-function or the signum function, are useless. Trans-
fer functions yielding continuous, i.e., smooth outputs are required. The simplest of such
transfer functions is the linear transfer function

f(a) = o, (3.7)

where a denotes the activation of the neuron, see Figure 3.9 (a) The output of a neuron
characterized by a such a transfer function will be equal to its activation.

f(a) = a

- 4 - 3 - 2 - 1 0 1 2 3 4
(a) (b)

Figure 3.9: Continuous transfer functions (a) linear transfer function f(a) = a

and (b) sigmoidal transfer function s(a) = [1 + exp(a)]"1 (a represents the
activation of a respective neuron)

A MLP with linear transfer functions only is characterized by th = f and t° = f.

Therefore, the output vector of such a MLP reads

kr i r = 1 ,2 , . . . n o (3.8)

According to Eq. (3.8), a MLP with linear transfer functions provides a linear map of an
input vector onto an output vector.

In order to provide a non-linear mapping based on a MLP, the neurons of at least one
layer have to work with a non-linear transfer function. The non-linear transfer functions
most frequently used are sigmoidal functions, see, e.g. Figure 3.9 (b). The mathematical
definition of the unipolar sigmoid, s, and of the bipolar sigmoid, tanh, read

s( a) = T~,—~ ! tanh(o) =
ea - e~a

(3.9)
e-a - ' ea _|_ e-a

In most applications, a non-linear transfer function is chosen for the neurons of the hidden
layer (th = s), whereas the neurons of the output layer operate with the linear transfer
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function (t° = / ) . The outputs of such a three-layer MLP read

nh

— V* o I V^ T inilx I nnho <r — 1 9 r) ^ 1 f\\
— 2_ s \ 2^x3wjk\ wkr > r — 1 , ^ , . . . n o . ( ^ . i u j

fc=O \ j=0

3.3.2 Training of MLPs

MLPs are ANNs that are trained by supervised learning procedures. Accordingly, learning

of MLPs requires a given data base consisting of nd couples of both input vectors and

corresponding desired outputs. The ANN can be trained to approximate the relationships

between these multi-dimensional vectors, referred to as training data sets. During training

of the ANN, each input vector of the rid training data sets, x^, d = 1, 2 . . . nd, is fed into the

network and a feedforward procedure is performed. The so-obtained output vectors of the

ANN, o(xd), are compared with the respective given output vectors oh(xd) of the training

data sets. The ANN approximation-error for the training data sets, 1Z*"*1, is evaluated as

\
K T , (3.11)

with

(3.12)

Training of the ANN is equal to minimizing TV*41 by adjusting the network weights.

There are different methods to solve the nonlinear minimization problem W^h{wfk, wk°) —>

minimum. The most popular methods commonly employed are (i) the gradient-descent

method, (ii) the so called resilient backpropagation algorithm (RPROP-algorithm), and

(iii) the Levenberg-Marquardt method. Throughout this thesis, the gradient-descent

method (GDM) is considered, which is well known as the backpropagation algorithm (Ro-

jas, 1996). In an iterative manner, the network weights are continuously updated. The

increments of network weights related to one GDM iteration step, Awfy and Awk°, are

functions of dTV^1 /'dwfy and dTZ*^ /dw^°, respectively, reading

and T^g-
(for details, see, e.g., (Rojas, 1996)). The derivatives oiTV^1 required for determination of

the increments of the unknown network weights (see Equations (3.13)) are computed as:

a n d ^ _ _ = y — — <* (3.14)
kr <i=l Ol<-d OWkr OWjk d=l °'<'d OWjk
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with

and

2or(xd)-o
h
r(xd)df(a°T)

dwh
k°r _

dor da°rdwh
k°r no

dor da°r

da°
h

ds(o$) dah
k

dah
k dw%

2 v-2.

n,o r = i dal
ds(ah

k)

dal
(3.16)

where Xjtd represents the j'-th component of x^. The subscript d = 1,2,... nd denotes the

different data sets and j = 1,2,... tii, k — 1,2,... n^, and r = 1,2,... n0. Eqs. (3.15)

and (3.16) contain the partial derivatives of the activation functions with respect to their

arguments. Considering Eqs. (3.7) and (3.9), they can be calculated as

= 1 a n d (3.17)

In the next iteration step, a feedforward procedure of all nd input vectors is performed on

the basis of the updated network weights wfy and wk°. The so-obtained updated output

vectors o(x^) allow to determine the new value of the error function TV^1, which is the

basis for a subsequent iteration step in the training process. During the training of the

ANN, VJ^1 will be decreasing continuously, i.e., step by step the performance of the ANN

to reproduce the relationships between the multi-dimensional vectors of the training data

sets will increase.

Design of MLPs and training of such ANNs has to be treated carefully, since there

exists the danger of overfitting and underfitting. This problem will be addressed in the

following section.

3.3.3 The problem of overfitting and underfitting

MLPs are trained on the basis of a given data base comprising couples of both input vectors

and corresponding output vectors, referred to as desired output vectors. The trained ANNs

are used to deal with unknown data, i. e., they are trained to provide interpolations and -

to a smaller extent - extrapolations of known relations between vectors. Therefore, MLP

training is characterized by two contending goals:

• The trained MLP should reliably map unknown input vectors onto the respective

output vectors, i.e., the trained ANN should provide a good generalization of the

information contained in the training data sets.
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Very flexible models such as MLPs with a large number of neurons in the hidden

layer(s) can minimize TV^1 to a very small value. Such networks will almost perfectly

reproduce the relations between input vectors and output vectors of the training data

sets. The provided mode of interpolation will be highly nonlinear. This situation is

known as overfitting. The trained MLPs will fail to capture the function governing

the relationship between input vectors and output vectors reliably. The performance

of such MLPs in dealing with unknown data sets will be rather poor.

• The MLP should be flexible enough to represent the underlying target function, i. e.,

the function governing the relationship between input vectors and output vectors.

A linear network, e. g., cannot represent quadratic functions. Hence, if a linear model

is used to describe a nonlinear problem, it will yield a large training error. Since the

model is too simple, the attainable value of the error function TV^1 will not be

satisfactorily small. This situation is known as underfitting.

An illustrative example pointing out this problem will be presented in the following. The

task of polynomial regression in the presence of normally distributed noise will be consid-

ered. The second-order polynomial

o = 2z2 + 10a : -28 + e (3.18)

serves as the target function, e represents normally distributed noise with mean ß = 0 and

standard deviation a = 20. A training data set is computed by evaluating Eq. (3.18) for

six values of x equally spaced in the interval [—10,10]. Accordingly, X\ = —10, Xi = —6,

£3 = —2, £4 = 2, x5 = 6, and x6 = 10. The obtained training data sets (xi,Oi), i —

1,2,... 6, are used to adjust the parameters of two models (i) a fifth-order polynomial and

(ii) a first-order polynomial.

The fifth-order polynomial fits the training data exactly, see Figure 3.10. However, its

overall shape differs significantly from the target function. The fifth-order polynomial is

too flexible which causes overfitting.

The first-order polynomial obtained by a least squares optimization is a rather poor

approximation of the target function, see Figure 3.10. The linear function is not flexible

enough to provide a useful approximation of the training data sets which causes underfit-

ting.

3.3.4 Protection of MLPs against underfitting and overfitting

Theoretically, both underfitting and overfitting could be avoided by choosing an extremely

flexible MLP and providing an infinite amount of training data. Practically, for a limited
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Figure 3.10: Polynomial regression: Approximation of a second-order polynomial

(black curve) using a fifth-order polynomial (blue curve) and a first-order

polynomial (green curve) for a training data set consisting of six equally

spaced data points afflicted with normally distributed noise

number of training data sets, the flexibility of the MLP should be adjusted accordingly.

This problem is referred to as model selection. It requires a priori knowledge about the

problem under consideration. Since MLPs are employed in situations where the governing

functional dependencies of inputs and outputs are unknown, this a priori knowledge is not

available. This fact renders model selection a challenging task.

There exists a large number of strategies to avoid underfitting and overfitting in prac-

tical applications. Independent of the problem under consideration, two recommendations

can be made. They refer to the choice of the network architecture and to a criterion for

termination of MLP training.

Definition of the architecture of MLPs

The number of layers of a MLP and the number of neurons contained in these layers

is referred to as the architecture of the MLP. The number of network weights, i.e., the

number of parameters of a MLP, is closely related to the architecture of the ANN. It must

be chosen such that the number of network weights is kept as small as possible in order to

avoid overfitting. However, at the same time this number must be as large as necessary in

order to avoid underfitting. Accordingly, MLPs with different network architectures must

be included in a study focusing on the training success of the ANNs. Results from the

respective training procedures provide evidence about the best choice for the architecture

of the MLP.
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Criterion for termination of training of MLPs

For the purpose of protecting MLPs against underfitting and overfitting, not all of the ntot

given data sets are used for training of the ANN. These sets are divided randomly into
three groups: (i) n^ training data sets, (ii) nt test data sets, and (iii) nv validation data
sets, with ntot = rid + nt + nv. As outlined in Section 3.3.2 only the n^ training data sets are
involved in the learning procedure of the ANN. Accordingly, network weight corrections are
computed resting on the training data sets only. Accompanying the training procedure, the
quality of interpolations between the training data sets provided by the MLP is assessed
by the nt test data sets: Between two subsequent training iteration steps, a feedforward
procedure is performed for each input vector of the test data sets, x^, d = 1, 2, . . . nt. The
obtained output vectors of the MLP, o(xd), are compared with the respective given output
vectors oh(x.d) of the test data sets. Consequently, the value of the MLP approximation-
error corresponding to the test data sets, TZ££t, can be evaluated on the basis of Eq. (3.12)
as

test
\ nt 7Z=\

In general, both Tl*^ and TZ^t
 a r e decreasing at the beginning of the ANN training.

Hence, both the approximation of the training data sets provided by the MLP and the
ability of the ANN to interpolate between these sets are improved. At a certain stage of
the training procedure, TV^t attains a minimum. Continuation of training results in further
improvement of the approximation of the training data sets, i.e., TZ*^1 is decreasing. The
value of the testing error TZ^t, however, will be increasing. Hence, the ability of the
network to interpolate between the training data sets is reduced. Consequently, ANN
training will be terminated when lZ^t attains a minimum. Subsequently, the validation
data sets, representing unknown data sets, are presented to the trained ANN. The MLP
approximation-error corresponding to the validation data sets. Tl^li, is computed as

\ Tir.
(3-20)

where Eq. (3.12) is considered. The attained three values of the error functions 7Z*"*1, TZ^su
and lZ*~at represent measures of the success of the training procedure and provide insight
whether or not underfitting or overfitting has occurred.

3.3.5 Operational phase of MLPs

At the end of the training procedure outlined in Section 3.3.2 and 3.3.4, the MLP is

ready for the operational phase. The trained ANN can be used to deal with unknown
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data. Thereby, the network weights will remain unchanged and feedforward procedures
are performed only. Any input vector presented to the MLP is mapped onto an output
vector representing an interpolation between the training data sets.



Chapter

Parameter identification resting on

soft computing

In this chapter, a parameter identification (PI) method for determination of unknown
model parameters in geotechnical engineering is proposed which satisfies the requirements
addressed in Subchapter 2.2. It is based on measurement data provided by experiments
or the construction site. Model parameters for finite element (FE) analyses are identified
such that the results of these calculations agree with available measurement data as well
as possible.

In order to solve a PI problem, an error function must be defined. It represents the
difference between available measurements and corresponding quantities obtained from a
numerical analysis. The error function depends on the unknown parameters. Herein, it is
defined as

" \| no ^[ \ ur

where ur and u^:, r = 1, 2,.. . no, are the measurements and the corresponding numerical
results, respectively. The values u^ depend on the unknown model parameters collected
in the vector p. Based on the error function (2.1), back analysis aims at determination
of the absolute minimum of Tlh. This minimum provides the best agreement between the
available measurements and numerical results.

In general, the solution of a PI problem requires a large number of numerical simu-
lations. This represents the major problem of PI in eeotechnical engineering, since the
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trained to provide an approximation of results from FE analyses (Figure 4.1). After the

model parameters p I model parameters p |

FEM

numerical results uh error

n*-h

approximation of

numerical results, u*

y7
hf error ft*

error

(^measurements u

*) very time consuming
2) very fast computation

Figure 4.1: Approximation of the time consuming FE analysis by a Multi Layer

Perceptron which can be evaluated very quickly (for the mathematical def-

initions of the error functions TZh, TZ*, and 1Z*"*1 see Eqs. (2.1), (4.1), and

(4.5), respectively)

training of such an ANN, it is easy to evaluate, allowing for thousands of evaluations

within a few seconds. This renders PI feasible even for problems associated with very time

consuming numerical simulations.

The MLP is trained in order to incorporate the knowledge obtained from already per-

formed FE analyses. Hence, MLP training is based on both (i) model parameters which

were chosen for already performed FE simulations and (ii) the obtained numerical results.

Vectors of model parameters p serve as input vectors for the MLP. Respective numerical

results of FE simulations collected in the vector uh represent the desired output vectors

during training of the ANN. At the end of the training procedure, the MLP reproduces the

correlation between model parameters and results from FE analyses. Moreover, it provides

a generalization of this correlation. The ANN maps parameter sets that were not used as

input for FE analyses onto interpolated values of numerical results. Accordingly, 1Zh can

be approximated by the trained MLP as

7T(p) =
\ nn

-ur

r = l ur

(4.1)

where u*, r — 1,2, ...no, are the output quantities of the ANN. The global minimum

of the error function TV corresponds to an estimate of an optimal parameter set. This

estimate is computed by means of a genetic algorithm and a gradient-descent method
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(GDM), which requires a large number of evaluations of the MLR However, since a MLP

can be evaluated very quickly, this procedure is not very time consuming. The quality

of the estimated optimal parameters is assessed by the value of the error function 1Zh,

requiring an additional FE analysis.

Subchapter 4.1 deals with the structure of the MLP, training of the ANN, and determi-

nation of an optimal parameter set. The advantages of theoretical developments concerning

both the structure and the training of the MLP will be illustrated by the identification of

material properties from experimental data in Subchapter 4.2. Finally, the performance

of the proposed PI method will be demonstrated by two problems taken from geotechni-

cal engineering. First, the PI method will be applied to a PI problem related to ground

improvement by means of jet grouting, see Subchapter 4.3. Secondly, the PI method will

be applied to back analysis of soil parameters considering tunneling according to the New

Austrian Tunneling Method (NATM), see Subchapter 4.4. The impact of back analysis

on the actual construction process will be outlined. In Subchapter 4.5 the proposed PI

method will be extended to first-order approximation neural networks.

4.1 Outline of the new PI method

In the context of the proposed PI method, a modified MLP with one hidden layer is

employed, see Figure 4.2. The input layer consists of n» input nodes, the hidden layer

scaling of input
vector p

inverse scaling of
output vector ü*

input layer hidden layer output layer

Figure 4.2: Structure of the employed MLP with one hidden layer (circles: neu-

rons; squares: nodes)

of nh neurons, and the output layer of no output neurons. Homogeneous coordinates as

defined in Section 3.2.2 are introduced. Accordingly, for the input layer and the hidden

layer an additional node containing the value 1 is considered, see Figure 4.2. The ANN

maps nj-dimensional input vectors p onto no-dimensional output vectors u*.
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Both vectors of a data set may contain values with different physical units and of

different orders of magnitude. In order to improve the situation, all components of the

input vectors of the different data sets, p, are scaled to dimensionless values within a

certain interval. Frequently, the interval [0.1,0.9] is chosen (Rojas, 1996), which is also

used herein. The vectors containing the scaled and dimensionless input values are denoted

as p, see Figure 4.2.

Traversing such a vector p from the input layer of the ANN to its output layer is

performed according to the feedforward procedure, described in Section 3.3.1. Accordingly,

the activation of the respective neuron of the hidden layer reads

i < f c , (4-2)

with po = 1 accounting for the additional node of the input layer containing the value 1,

see Figure 4.2. A unipolar sigmoid, see Eq. (3.9), is applied to this sum, yielding

*(*£)= [l + exp(-a£)]-\ (4.3)

where s(a£) represents the output of neuron A; of the hidden layer. Analogous to Eq. (4.2),

the activation of neuron r of the output layer (index o) is obtained as

& , (4-4)
fc=0

with S(<7Q) := 1 accounting for the additional node of the hidden layer containing the

value 1, see Figure 4.2. In order to increase the degree of nonlinearity provided by the

MLP, again the unipolar sigmoid is used as the activation function for the neurons of the

output layer. Accordingly, the r-th dimensionless output value of the ANN is obtained as

Ù* = s(a°). Considering Eq. (3.9), ü* G (0.0,1.0).

In order to obtain correct physical units and correct orders of magnitude, output vec-

tors ü* computed by means of the feedforward procedure are scaled. For this purpose,

the scaling operation used to scale the desired output vectors uh to dimensionless values

within the interval [0.1,0.9] is reversed. Output vectors of the ANN, characterized by

the correct physical units and the correct orders of magnitude, are denoted as u*, see Fig-

ure 4.2. They are functions of the respective input parameters pj , j = 1,2,.. .ni, and of

the network weights.

4.1.1 Training of the modified MLP

Training of the modified MLP is performed basically according to the procedure described

in Section 3.3.2. Because of the modified structure of the employed MLP, the presented
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formulae for quantification of the ANN approximation error and for computation of network

weight corrections must be extended. The ANN approximation-error for the training data

sets, 72*~Ä, is evaluated in the form

\

1

with
1 £

(4.5)

(4.6)

Training of the ANN is equal to minimizing TV41 by adjusting the unknown network

weights. The nonlinear minimization problem Tl*~h{w'llk,wk°) —> minimum is solved by

means of a gradient-descent method (GDM): the backpropagation algorithm (Rojas, 1996).

Iteratively, the network weights are continuously updated. The incremental network

weights related to one GDM iteration step, Atu^ and Aiu£°, are functions of dTZ*~h/dw^k

and dTV^1 /dwk°, reading

and
dwh

k°r

(4.7)

The derivatives of VJ^1 required for the determination of the increments of the unknown

network weights are computed as:

an*-*1 dm
d=\

and
d n *-h

d=l jk

with

and

*-h
•d

du* dü*rda°rdw£

do° 2 u*(pd)-u
h
r(pd)du*rds(o-°r)

io [u^(pd)]2 dù*r do°£

(4.8)

(4.9)

no

dw% = £ dut dût do?

du*r du*rdo-°ds(oh
k)

ds{oh
k) doh

k

dal dwt

n,•o r = i

u*r(pd)-u>!(pd)du*rds(o-°r) ,

dû;

ds{ah
k) ,

da
— VjA (4.10)

where pjtd represents the j-th component of p^. The index d = l,2,...nd denotes the

different data sets and j = 1,2,... n i ; k = 1,2,... n^, and r = 1,2,... n0. Eqs. (4.9) and

(4.10) contain the partial derivatives of the activation function with respect to its argument.

Considering Eq. (3.9), they can be calculated as

dS^] = S(O • [1 - S«)] and m± = s(4) • [1 - *(<#] •
do° dah

k

(4.11)
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In the next iteration step, a feedforward procedure of all na input vectors is performed on

the basis of the updated network weights wfy and w^°. The so-obtained updated output

vectors u*(p^) allow to determine the new value of the error function VJ1^1 (see Equation

(4.5)).

4.1.2 Treatment of the underfitting and overfitting problem

The commonly used strategy to avoid underfitting and overfitting of a MLP addressed in

Section 3.3.4 is not feasible in the case of PI involving MLPs. In the following, the reason

for this fact will be given. Moreover, an alternative way to treat the underfitting and

overfitting problem will be discussed.

In the context of the proposed PI method, the ANN is trained to approximate results

from FE analyses. Considering PI in geotechnical engineering, the required FE analyses

are, in general, characterized by comparatively high computational efforts. In order to keep

the effort for PI reasonably small, only few analyses are performed for determination of

data sets prior to PI. Training and testing of the ANN on the basis of a few data sets only is

controversial: TZ^t will attain a minimum at an early stage of the training algorithm and,

hence, training of the ANN will be stopped. At this stage, however, the obtained value

of the error function 7£*~~/l, which is based on the training data sets, is still rather large.

Consequently, the approximation of the training data sets by the ANN is poor, rendering

interpolations between these data sets by the ANN useless. Classical training of a MLP

used for PI in geotechnical engineering yields underfitting ANNs.

In order to avoid such a situation, the precomputed data sets are not divided into

training data sets, test data sets, and validation data sets. All given data sets are instead

used for training of the ANN. Hence, n^ = n toi, whereas nt = 0 and nv = 0. Since no

data sets are available for testing of the ANN, the criterion 1Z^t —> minimum used for

termination of network training is replaced by:

r = 1 ' 2 ' - - - n ° (4.12)
d = 1,2,...nd

with
C

r,d (4.13)

where E*^1 denotes a prespecified threshold value. If (4.12) is satisfied, the MLP will be

able to reproduce every output value of each available data set with a prespecified accuracy.

Hence, there is no risk to obtain an underfitting MLP.

In some cases, however, the training procedure fails to converge because of a small

number of values u*(pd) violating condition (4.12). The reasons for this situation are as
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follows:

1. The GDM used for training of the ANN approaches a local minimum of TV^1 in the

n^-dimensional network-weight space.

2. Values u*(pa) that already satisfy condition (4.12) result in contributions to the gra-

dient of W^1 (see Equations (4.9) and (4.10)) contradictory to the contributions of

values u*(pd) violating condition (4.12). Hence, the computed network-weight cor-

rections do not yield a reduction of £r^f for values u*(pd) violating condition (4.12).

In order to improve the training procedure, two modifications are proposed:

1. The probability that training of the ANN by means of the GDM approaches a local

minimum of TV^1 is reduced by employing a genetic algorithm for determination of

the initial choice of the network weights.

2. A so-called "reduced-training" algorithm is performed. It is characterized by reducing

the contributions to the gradient of TV^1 corresponding to values w*(pd) satisfying

condition (4.12).

Determination of initial network weights employing a genetic algorithm (GA)

At the beginning of the G A, a generation (see Appendix A) of 50 individuals1, i.e., of 50

different choices of initial weights, is generated randomly. Hence, 50 different networks are

obtained. For each ANN, a prespecified number of iteration steps is performed within the

framework of the GDM. Based on the so-obtained networks, a feedforward procedure of

all available input vectors is carried out. This allows to determine the value of the error

function TV^1 corresponding to each of the 50 ANNs. The error function TV^1 is related to

the fitness function T (see Appendix A) of the GA, with T = l / 7 f \ The "fittest" ANN

is characterized by the largest fitness function F and, hence, the smallest value of IV*1.

Based on the obtained values of the fitness function, a new generation of network weights

is computed by means of genetic operations as outlined in Appendix A. The fittest ANN

after a prespecified number of generations is the output of the GA. The network weights

corresponding to this ANN are the starting values for the "reduced-training" algorithm.

The "reduced-training" algorithm

Based on the network weights provided by the GA, the GDM is employed for determination

of network weights finally satisfying condition (4.12). In contrast to classical training algo-

rithms, the "reduced-training" algorithm is characterized by the reduction of contributions
xThis is a very small number for a genetic algorithm.
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corresponding to output values that already satisfy condition (4.12).to the gradient of 7

For this purpose, an exponential scaling function p(E^d
h) is introduced:

1
f 1 Ax 2 /£*~h _ £*-h \ 2"

exp l n ( a H ^ ) I - ^ ^ 1 for £T? <

ror crd >

(4.14)

where a < 1 is a constant scalar parameter. Figure 4.3 shows the scaling function p{Erd )

for two different values of a. For the "reduced training" of the ANN, the derivatives given

• P(CT

Figure 4.3: Scaling function p(£r^f ) used during "reduced training" of the ANN

for two different values of a: (a) logarithmic scale and (b) natural scale

in Equations (4.9) and (4.10), which are used in the context of the GDM, become

dü*r da°r dwh
k°r

and

E
r=l

du*r dü*r

du*r dü*r da° ds{o-h
k)

ds{ah
k) dah

k

%dah
k dw%

(4.15)

(4.16)

A contribution to the gradient of W^ corresponding to an output value w*(p<*) which

is characterized by a mapping accuracy of, e.g., E^ = E^/IO is reduced by the fac-

tor piS^) = a.. A contribution to the gradient of TV^1 corresponding to an output

value u*(pd) violating condition (4.12) is not affected by p{E^).

If, however, condition (4.12) is violated although a prespecified number of iteration

steps within the framework of the GDM was performed, the training of the ANN will

be terminated. In order to avoid underfitting, the number of network weights nw must be

increased in order to improve the approximation capability of the MLP. Considering a fixed

number of inputs and outputs of the MLP, i. e., rii = const and no = const, nw is related

to the number of neurons in the hidden layer. Accordingly, the number of neurons in the

hidden layer is increased by one. Training of the new MLP is started by the determination

of the initial network weights by means of the GA followed by the "reduced-training"

algorithm.
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Initial choice of number of neurons in the hidden layer

At the beginning of the PI process, the initial number of neurons in the hidden layer, n^,

must be specified. In order to avoid the risk of overfitting, the number of network weights

must be kept as small as possible.2 Since all available data sets are used for training of the

MLP, an upper bound for the initial number of network weights is recommended following

from the inequality

nw <^no = no-nd. (4-17)
d=\

Accordingly, the number of network weights nw must be smaller than or equal to the

number of output values no summed up over all data sets n^. The number of network

weights for a MLP with one hidden layer is obtained from

n w = (1 + Ui)-Uh + i l + n h ) - n o , (4.18)

see Figure 4.2. Substitution of Equation (4.18) in (4.17) gives an upper bound for the

initial number of neurons in the hidden layer n/j as

»„ > , 1)
1 + n{ + no

However, in order to avoid "compression" of ANN input data (Rojas, 1996), the number

of neurons in the hidden layer must be greater than the number of input nodes

nh > m . (4.20)

The initial number of neurons in the hidden layer must be chosen such that both conditions

(4.19) and (4.20) are satisfied.

4.1.3 Estimate and assessment of an optimal parameter set

The trained ANN provides an approximation of the results of the n<i performed FE analyses.

Accordingly, a parameter set belonging to the precomputed n^ data sets is mapped by the

ANN onto the corresponding FE results with an accuracy higher than or equal to E*^1.

Parameter sets which do not belong to the n^ data sets are mapped onto interpolated

values of FE results.

A parameter set yielding the smallest difference between the corresponding FE results

and the respective in situ measurements is an optimal parameter set. The ANN, providing

an approximation of the FE analysis, can be used to compute an estimate of an optimal

2Therefore, MLPs are considered that are characterized by one hidden layer only.
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parameter set. This estimate is obtained by means of minimization of the error function

TV:

\ no ^i V ur

minimum. (4-21)

The minimization problem (4.21) is solved in two steps:

1. A G A is employed to search for a near optimal solution in the entire parameter
space. 100000 different parameter combinations per generation are presented to the
network. TV is evaluated for each one of them. The parameter combination yielding
the highest value of the fitness function F, with T — I/TV and, hence, the lowest
value of the error TV within a prespecified number of generations represents the
output of the GA.

2. Starting from the near optimal solution provided by the GA, a GDM is employed
to compute the parameters associated with the absolute minimum of TV. Itera-
tively, the input parameters are continuously updated. The incremental parame-
ters related to one GDM iteration step, Apj, is a function of dTV/dpj, reading
Apj = Apj(dTV/dpj) ,j = l,2,...rii. The required derivative of the error function
with respect to the unknown parameters is given by

O-T-)* no [ pffl* Q * Q-* nh / no
U /V v—> ( y / v U UJ~ U LL- x—^ / UU „

h
k) dah

k

1 no

ETl*n,

u*r - ur du*r ds{a°) ^ , _hovoKukj_ih , ^ ^ ( 4 2 2 )

ul dülV w"r wwr k=l

with j = l,2,.. .Hi.

In general, this two-step procedure yields the parameter set associated with the absolute
minimum of TV.

An additional FE analysis on the basis of the estimated optimal parameter set yields the
respective value of the error function TZh. In general, because of measurement errors and
deficiencies of the numerical model, the attainable minimum of TZh is greater than zero.
Traditional gradient-free PI methods are considered as having converged if an obtained
minimum of TZh cannot be outperformed anymore.

In contrast to such methods, the use of an ANN in the context of the proposed PI
method yields an estimate of the attainable minimum of Tlh. The output values obtained
from traversing the estimated optimal parameter set through the ANN can be interpreted as
an estimate of attainable numerical results as close as possible to the measurements. Hence,
the computed minimum of TV is an estimate of the attainable precision of reproducing the
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measurements by an FE simulation. Consequently, the difference between 7lh and TV

corresponding to the estimated optimal parameter set, \lZh — 1Z*\, is used as an indicator

of the quality of the obtained parameter set. If \lZh — TZ*\ is smaller than a prespecified

tolerance value, i.e., if

\Uh -TV\< tolerance, (4.23)

the PI is assumed to have converged. If, on the other hand, \TZh — 7£*| > tolerance,

the PI will be restarted from the beginning. This time, however, the optimal parameter

set that has just been estimated and the respective FE results are added to the data

sets. Hence, "n^ = rid + 1" • Based on the increased number of training data sets, a

better approximation quality of the next ANN and, hence, a better estimate of optimal

parameters can be expected.

4.1.4 Graphical interpretation of the proposed PI method

Figure 4.4 provides a graphical interpretation of the proposed PI method. In order to

reduce the complexity of the illustration, a simplified problem involving a single unknown

input parameter p is considered. The circles in Figure 4.4(a) represent known values of

(a) (b) (c)

Figure 4.4: ID graphical interpretation of the PI method: error functions 1Zh(p)

and lZ*(p) for (a) the first, (b) the second, and (c) the third iteration step

of the PI

TZh. These values are computed from the difference between measurements and numerical

results obtained from three FE analyses based on the parameters pi, p2, and ̂ 3. The thick

curve represents the unknown function of Hh(p). The PI method should give the parameter

value that corresponds to the global minimum of TZh(p) within the prespecified parameter

interval. I.e., it should provide the value of p associated with the smallest possible difference

between measurements and corresponding FE results. Hereby, the algorithm should not

get trapped in a local minimum of 1Zh{p).
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The first ANN is trained to reproduce the three known values of 1Zh, i.e., 1Zh(pi),

Tlh(p2), and Kh(p3). Hence, the approximation of 1Zh{p) by the ANN, H*(p), is good at

P = Pi; P2i and pz- For other values of p, 1Z* provides an approximation of 7th (see the

thin curve in Figure 4.4(a)). The global minimum of 1Z*(p) (the square in Figure 4.4(a)) is

determined. An estimate of an optimal parameter is obtained, with p = p4. The quality of

the parameter value p4 is assessed by means of an FE simulation, giving Hh(p4). As shown

in Figure 4.4(a), the deviation of H* from 1Zh at p4 is rather large. Hence, the criterion

for terminating the PI given in Eq. (4.23) is violated. Consequently, another PI iteration

step is performed.

Training of the next ANN is based on the results from four FE analyses performed on

the basis of Pi, P2> P3, and p4. Consequently, the second approximation of ith by TV will

give a good approximation of the four known values of 1Zh, i.e., 1Zh(p\) to Tth{p4) (see

the circles in Figure 4.4(b)). In general, the quality of the approximation of 1Zh by 1Z*

will be improved as compared to the previous iteration step (compare the thin curves in

Figures 4.4 (a) and (b)). Again the global minimum of 1Z* is determined. The respective

estimate of an optimal parameter is assessed by means of another FE simulation. Again,

the difference between the values of the errors 1Zh and W is too big, indicating that another

PI iteration step must be performed.

Step-by-step, the quality of subsequent approximations of 1Zh by 1Z* is increasing.

Hence, the PI method will yield an optimal choice for the unknown parameter. The

presented algorithm can escape local minima of 1Zh. This is illustrated in Figures 4.4(b)

and 4.4(c). The PI will be completed if 72.* is sufficiently close to 1Zh at the global minimum

of Te'1.

4.2 Assessment of the new PI method: back analysis

of material properties from experimental data

In the following, the performance of the proposed mode of PI will be illustrated. The ad-

vantages of determination of initial weights by a GA and the "reduced-training" algorithm

will be assessed. Moreover, the influence of the number of neurons in the hidden layer on

the success of the ANN training will be investigated.

The mentioned characteristics of PI will be illustrated by means of identification of

material properties ("unknown model parameters") from experimental data ("available

measurements") reported in (Sterpi, 1999). The material considered in (Sterpi, 1999)

consists of cylindrical aluminum bars. The results obtained from direct-shear tests of

this artificial material are shown in Figure 4.5(a). The illustrated data refer to four tests
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Figure 4.5: Direct-shear tests of aluminum bar assemblies: (a) experimental

results and (b) one-element FE model (av: prescribed vertical pressure; u:

prescribed displacement; r: evaluated shear stress

characterized by different values of the vertical pressure av. The 42 circles in Figure 4.5(a)

indicate the data selected for back analysis. Hence, no = 42.

4.2.1 Numerical analysis of direct-shear tests

The shear tests are simulated by means of the FEM. A one-element model is subjected to

the respective vertical pressure (see Figure 4.5(b)). Thereafter, the horizontal displacement

at the top of the element is increased from 0 to 10 mm.

The material model employed for the simulation of the mechanical behavior of the

aluminum-bar assembly is based on a Drucker-Prager loading surface, given by

fo(cr, - kD) = 0 , (4.24)

where KD and ko are material parameters. They are related to the cohesion c and the angle

of internal friction <p by enforcing the Drucker-Prager meridian to coincide with the tensile

meridian of the Mohr-Coulomb criterion (see, e.g., (Regueiro and Borja, 1999)), giving

\/3(3 + sin if)
and

6c
tan (p

(4.25)

Factional hardening/softening is considered by means of a variable value of KD (Spira

et al., 2001; Marcher and Vermeer, 2001) (see Figure 4.6(a)). The initial, peak, and

residual values of KO are computed from the respective angles of internal friction according

to Eq. (4.25), reading

2 sin 2 sin 2 sin ifir

V3(3 \/3(3 + sin (pp)
(4.26)
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Figure 4.6: Material model employed for PI: (a) hardening/softening law and

(b) evolution of RD according to (Spira et al., 2001)

whereas k^ is set equal to 6c/ tan cpp. Hardening/softening is controlled by the strain-like

internal variable XD, employing a square-root function in the hardening and an exponential

function in the softening regime (see Figure 4.6(a)):

KD =
for XD < XD,m ,

for XD > XD,m •
(4-27)

The calibration parameter XD,U is obtained from setting the area under the softening branch

equal to the softening material parameter Gj divided by the characteristic length £c (see

Figure 4.6(a)):

2 Gf
-J- = / («£> - «D,T XD,U = (4.28)

£c is related to the width of the shear band (Spira et a l , 2001). In the present analysis, it

is set equal to the side length of the undeformed quadratic element.

Friction hardening/softening is connected with deviatoric deformations. Consequently,

XD is related to the deviatoric part of the plastic strain tensor, eP, as follows (see (Regueiro

and Borja, 1999; Sterpi, 1999; Vermeer and de Borst, 1984) for similar definitions):

XD= \ /g (4.29)

The evolution of the plastic strain tensor is controlled by a non-associative flow rule,

reading
r

der
- • w h e r e 9D{<T, «D) = \fji+KDhr

(4.30)

is the plastic potential, go depends on KD which is a function of the strain-like internal

variable XD (see Figure 4.6(b)). The peak value of RD is related to the peak value of the

angle of dilatancy, ijjp, giving

2 s i n ^ _
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The parameters of the employed material model can be summarized as follows:

• two material parameters describing the elastic behavior of the material: i.e., Young's

modulus E and Poisson's ratio u;

• the cohesion c;

• the initial, peak, and residual value of the angle of internal friction: </?i; ipp, and <pr;

• the peak value of the angle of dilatancy, ipp\

• the value of the strain-like variable XD referring to the peak values of KQ and Rp,

XD,m\ and

• the softening material parameter used for determination of XD,U, Gf.

According to (Sterpi, 1999), E = 3387 kPa, v = 0.18, and ipp = 8.7°. The cohesion

of the considered material can be neglected, i.e., c = 0. Hence, there are five unknown

parameters: ipu (pp, ipr, XD,m, and Gf.

4.2.2 Reduced versus classical training of ANNs

For the assessment of the ANN-training procedure, a PI problem involving three unknown

parameters is considered. For this purpose, the initial value and the peak value of the

angle of internal friction are set equal to 6° and 32.2°, respectively.3 The remaining three

unknown parameters (pr, XD,m, a n d Gf (n; = 3) are collected in the vector p, reading

P = LVr, XD,m, Gf\T . (4.32)

The intervals of these parameters are chosen based on plausibility as

tpT e [20.0°, 25.0°] ,

XD,m e [0.025, 0.075] , (4.33)

Gf e [0.10 mm, 0.15 mm] .

ANN training is based on eight pairs of parameters and respective FE results. Hence,

nd = 8. The eight parameter sets correspond to every possible combination of the limit

values of the parameter intervals given in (4.33).

3The reduction of unknowns from five to three allows for computation of validation data sets that
cover the entire parameter space with satisfactory density, see Table 4.1. The choices <pi = 6° and
ipp = 32.2° correspond to the results obtained from the solution of the PI problem involving all five
unknown parameters, see Eqs. (4.39).
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Different ANNs are considered. Hereby, the number of neurons in the hidden layer is

varied from n/, = 3 to n/, = 6. These values satisfy condition (4.19) reading:

nhe {3,4,5,6} < 6.39 =
42 • (8 - 1) = no • (nd - 1)
1 + 3 + 42 ~ 1 + rii + no

(4.34)

The input layers of the considered ANNs contain three input nodes corresponding

to three unknown parameters. The output layers of the networks consist of 42 neurons

corresponding to 42 numerically-obtained values approximating the selected measurements

depicted in Figure 4.5(a). The quality of the underlying ANN training procedure is related

to the quality of interpolations between the eight training data sets provided by the trained

ANN. To assess this property of the ANN, I I 3 = 1331 different validation data sets are

considered. They are computed from 1331 FE analyses. The input parameters for these

FE analyses correspond to every possible combination of the parameter values given in

Table 4.1. These parameter values follow from subdivision of the parameter intervals

Table 4.1: Parameter values used for determination of I I 3 = 1331 validation sets

Vr [°]

XD,m H

Gf [mm]

20.0

0.025

0.100

20.5

0.030

0.105

21.0

0.035

0.110

21.5

0.040

0.115

22.0

0.045

0.120

22.5

0.050

0.125

23.0

0.055

0.130

23.5

0.060

0.135

24.0

0.065

0.140

24.5

0.070

0.145

25.0

0.075

0.150

(4.33) into ten equidistant parts.

The initial weights for the considered networks are determined by means of a GA. For

each one of the four considered ANNs, six different GAs are performed. They differ in

the number of generations and of iteration steps in the context of the GDM (see first

and second column in Table 4.2). Moreover, starting from the initial weights obtained by

the GAs, both the "reduced-training" algorithm, with a = 0.001, and a classical training

algorithm are employed. The latter is obtained from setting p(£^) = 1.0. For termination

of the ANN training, the criterion (4.12) is used. The threshold value £ ^ is set equal

to 1.0%. Training procedures still violating criterion (4.12) after 100 000 iteration steps

within the framework of the GDM are viewed as having failed to converge. They are

marked with "NC" (No Convergence) in Table 4.2.

The quality of the approximation of FE analyses by successfully trained ANNs is as-

sessed by the 1331 validation sets. The respective values of the error function IZ^l (see

Eq. (3.20)) are listed in Table 4.2. The best result is obtained from an ANN characterized

by five neurons in the hidden layer and performing classical training: TZ^l = 10.53%.

Nevertheless, independent of the chosen properties of the GA, the most reliable results are
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Table 4.2: Values of TZ^l (in [%]) obtained from validating the trained ANNs

on the basis of 1331 validation data sets

properties

of GA*

12500

1250

250

100

10

1

1

10

50

125

1250

12500

nh

reduced

10.68

10.67

10.65

10.67

NC

10.87

= 3

classical

NC

NC

NC

NC

NC

NC

nh

reduced

13.08

11.81

11.33

12.81

11.44

12.74

= 4

classical

12.76

11.72

11.00

12.96

10.64

12.24

nh

reduced

10.58

14.01

11.61

12.51

11.03

11.85

= 5

classical

10.53

13.81

13.66

12.39

10.73

13.05

nh

reduced

12.30

10.97

12.05

11.85

12.06

13.45

= 6

classical

12.75

11.62

12.26

11.77

12.64

13.56

*.. . the first column refers to the number of generations; the second column

refers to the iteration steps in the context of the GDM

obtained from networks with nh — 3 and performing the "reduced-training" algorithm. No-

tably, no ANN with n^ = 3 that was trained classically was able to satisfy the convergence

criterion for ANN training. Hence, results from Table 4.2 show the usefulness of employing

ANNs with the smallest possible number of neurons in the hidden layer and performing

the "reduced-training" algorithm. As regards the influence of the GA for determination of

the initial network weights, however, no information could be extracted from the present

study.

4.2.3 Back analysis of unknown material properties

In order to solve the PI problem, the vector p is enlarged, containing now all five unknown

material properties:

P = [v>i, <PP, <Pr, Xo,m, Gf\T • (4-35)

The search intervals for the five unknown parameters are chosen based on plausibility as:

(Pi e [o.o°, 2O.o°],
<pp G [27.5°, 37.5°] ,

<pr e [17.5°, 27.5°] ,

XD,m e [0.010, 0.125] ,

Gf e [0.01 mm, 0.50 mm] .

(4.36)

Six FE analyses of the shear tests are performed in advance. They are based on parameter

sets containing different combinations of the limit values of the defined parameter intervals
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(4.36). These parameter sets yield the following values of the error function lZh:

Pi = L00.0, 37.5, 17.5, 0.010, 0.50jT

p 2 = L20.0, 37.5, 17.5, 0.010, 0.50j r

P3 = L00.0, 27.5, 17.5, 0.010, 0.50jT

p4 = L00.0, 37.5, 27.5, 0.010, 0.50jT

p 5 = L00.0, 37.5, 17.5, 0.125, 0.50jT

P6 = L00.0, 37.5, 17.5, 0.010, 0.01JT

nh(Pl) = 27.77%,

7£fc(p2) = 27.41%,

nh{P3) = i6 .6 i%,
h = 38.54% ,

= 34.75%,

= 41.65%.

(4.37)

Based on the six pairs of parameters and respective FE results, training of the ANN is

performed. Following the findings of the previous study, a rather small value of the initial

number of neurons in the hidden layer, n^, is chosen, namely 3, satisfying condition (4.19):

nh = 3 < 4.4 =
42 • (6 - 1) = no • (nd - 1)
1 + 5 + 42 ~ 1 + rii + no

(4.38)

It is the aim of this study to assess the influence of the GA used for the determination of

the initial network weights on ANN training. For this purpose, five different PI procedures

resting on different types of GAs are employed (see Table 4.3). Since only one generation is

Table 4.3: Properties of GA used for determination of the initial network weights

PI®
PI ©
PI ®
PI©
PI©

number of

generations

10000

1000

100

10

1

number of iteration steps

in the context of GDM

1

10

100

1000

10000

considered for PI ©, the GA reduces to a multi starting-point GDM. No genetic operations

are performed during this GA. It is noteworthy that the total number of GDM iteration

steps is equal for all five Pis.

The "reduced-training" algorithm characterized by a = 0.001 is employed. The required

mapping accuracy for each output value, S*^1, is set equal to 1.0%. The PI procedures
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will be considered as converged, if \TZh — TZ*\< 0.5 %. The following results were obtained:

PI © : P33

PI © : P30

PI ©: p24

PI ©: P24

PI ©: P20

[5.90, 32.03, 21.63, 0.0458, 0.138jT

[5.85, 32.36, 22.71, 0.0468, 0.111JT

[5.54, 32.31, 21.93, 0.0457, 0.129jT

L5.05, 32.11, 21.30, 0.0445, 0.148jT

[4.46, 32.43, 22.26, 0.0439, 0.126jT

) = 10.844%,

) = 10.843%,

) = 10.844%,

Kh(p24) = 10.842%,

Hh(pw) = 10.844% .

(4.39)

PI © required 27 iteration steps. Considering the six FE analyses performed in advance,

the total number of FE simulations required to solve the PI problem is equal to 6 + 27 =

33. The 33-rd FE analysis, resting on the parameter set P33, yields values of the error

functions TV and Hh satisfying \Uh -1Z*\< 0.5%.

Notably, with a decreasing number of generations and an increasing number of GDM

iteration steps performed for determination of initial weights, the number of FE analyses

required to solve the PI problem is decreasing. PI ©, employing a multi-starting point

GDM, yields the best results. It requires only 14 PI iteration steps and, hence, 6 +14 = 20

FE analyses.

The evolutions of the estimates for the unknown parameters and the error functions TZh

and H* obtained by PI © are shown in Figure 4.7. The vertical arrows refer to the results

8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22

Gf [mm]
0.50"

8 10 12 14 16 18 20 22

0.01
8 10 12 14 16 18 20 22 8 1012 14 1618 20 22 8 10 12 14 16 18 20 22

Figure 4.7: Estimates of unknown parameters and values of the error functions

Uh and n* obtained from PI ©

for rid = 20, i.e., to the first set satisfying [Rh — TZ*\ < 0.5%. The number of neurons in

the hidden layer of the respective ANN had to be increased step by step from 3 to 12 in

order to meet the criterion for termination of ANN training.
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The optimal parameter set, Popt, corresponding to the absolute minimum of 7lh is

computed by means of the GDM starting from the parameter set P20 obtained by PI ©,

reading

= [5.20, 32.21, 22.08, 0.0449, 0.128j: 7^(pop t) = 10.837% . (4.40)

The values of this parameter set are indicated by dashed lines in Figure 4.7.

The sensitivity of a parameter contained in the parameter set P20 of PI © can be

estimated by the error function 1Z* provided by the ANN. Figure 4.8(a) illustrates five

sections through the error function 1Z*. These sections contain the estimated minimum

R* [%] experiment
analysis

I parameter intervals parameters
(a) of p20

0 1 6 7 8 9 10
(b)

Figure 4.8: (a) ANN-estimated sensitivities of parameters (the minima of the

respective functions are indicated by circles) and (b) r-u curves obtained

from P20

of the error function, which is marked by circles in Figure 4.8(a). For each section, four

parameters were kept constant and set equal to the values of parameter set P20 of PI ©,

whereas the remaining parameter is varied over its entire interval (see (4.36)). The thick

curve, e.g., indicates that the influence of a change of ipi on the error function 1Z* is

small. Consequently, the chosen measurement values do not contain enough information

to identify ipi reliably.

The numerical results from FE analyses of the direct shear tests, based on the optimal

parameter set p ^ (see (4.40)), are shown in Figure 4.8(b). The good agreement between

numerical and experimental results indicates the adequacy of the employed material model

for the simulation of the mechanical behavior of a granular material.

4.2.4 Concluding remarks

Based on the numerical results obtained from the performed studies, the two following

conclusions can be drawn:

As regards training of the ANN,
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— choosing the smallest number of neurons in the hidden layer which allows the

training procedure to converge in the sense of the criterion (4.12) and

— employing the "reduced-training" algorithm

yields a trained ANN which provides optimal interpolations between the given data

sets.

• Regarding determination of the initial network weights for training of the ANN, the

multi starting-point GDM performs better than GAs. This is a consequence of both

(i) the large number of unknown network weights and (ii) the nonlinearity of the

error function TV"*1 characterized by numerous local minima.

In the following applications of the proposed PI method to two problems taken from

geotechnical engineering, these conclusions will be considered. Accordingly, the employed

ANNs will be trained by means of the "reduced-training" algorithm, with a — 0.001 such

as used in Sections 4.2.2 and 4.2.3. The initial network weights will be computed by means

of the multi starting-point GDM.

4.3 Application to ground improvement by means of

jet grouting

Jet grouting is a ground-improving technique used to create in situ bodies consisting of

cemented soil. A hollow drilling rod is used to produce a bore hole at the location where

the ground should be improved (see Figure 4.9 (a)). Through nozzles located at the end of

(b) i_r

2R

(c)

• completed
jet-grouted
column

drilling phase start of withdrawal phase completion of withdrawal phase
with simultaneous injection with simultaneous injection

Figure 4.9: Construction sequence of jet grouting (Henn, 1996) (R: radius of

jet-grouted column)

the drilling rod, thin high-pressure jets of cement grout are discharged laterally into the
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borehole wall (see Figure 4.9 (b)). These jets erode the surrounding soil. Consequently,
the cement grout is mixing with the in situ soil. After hydration, a jet-grouted soil,
characterized by low permeability and increased strength, is obtained. Withdrawing and
rotating the drilling rod during jet grouting, results in a column-like body of improved soil
(see Figure 4.9 (c)).

4.3.1 Statement of problem and proposed solution

The properties of jet-grouted columns depend on both the mechanical properties of the in

situ soil and grouting characteristics, such as (Henn, 1996)

• the jet grouting system (single-, double-, or triple-rod jet grouting; for details,
see (Chambosse and Kirsch, 1995; Furth and Wendland, 1998)),

• the work pressure,

• the injection time which corresponds to the rate at which the drilling rods are rotated

and withdrawn (see Figure 4.9).

These factors have an influence on the dimensions of the jet-grouted column (radius R)
and the material properties of the jet-grouted soil. The latter mainly depend on the
cement content z, i.e., the percental amount of cement mass per unit mass of the obtained
jet-grouted soil. Up to now, no mathematical or mechanical models were employed for
determination of the radius R. Still, test columns are produced in order to find out the
column radius for a specific type of soil and a specific set of grouting parameters: These
columns need to be excavated after the hydration of the injected cement. This procedure
is time-consuming and expensive. Moreover, in case of variable ground conditions, the
obtained column properties might be valid only for an area close to the test column. As
regards the cement content, no information can be extracted from the test columns.

Recently, a new approach exploiting the exothermal character of the hydration process,
i.e., the chemical reaction between cement and water, was described (Lackner et al., 2001;
Brandstätter et al., 2002). Based on in situ temperature measurements at the center of
the jet-grouted column, both the cement content z of jet-grouted soil and the column
radius R can be determined via back analysis. In the context of the proposed PI method,
both unknown parameters are collected in the vector p = [R, z\T. Selected values of the
measured temperature history are collected in the vector u.

Continuous application of back analysis during the construction process allows to as-
sess the performance of jet grouting at the construction site. It provides insight into the
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geometrical dimensions of the zones of improved soil. Based on these data, grouting pa-
rameters can be continuously adapted in order to obtain the desired width of jet-grouted
soil bodies. The number of test columns can be reduced to a minimum.

4.3.2 Numerical analysis of temperature history in jet-grouted

columns

The vector p, containing the unknown model parameters, is related to the temperature
history at the center of the jet-grouted column by means of thermochemical analysis. Ther-
mochemical analyses of cementitious materials account for both the thermally activated
nature of the hydration process and the release of latent heat. As regards thermochemical
analyses of jet-grouted columns, because of L/R 3> 1, where L denotes the length of the
column, the three-dimensional analysis model can be reduced to a plane model. Hereby,
only the cross section of the column needs to be considered. The temperature flow in the
longitudinal direction of the column is not taken into account. Moreover, the axisymmetry
of the model with respect to the drilling axis allows to consider only one segment of the
jet-grouted column and the respective soil. The remaining axisymmetric problem is solved
by means of the FEM. The respective FE formulation can be found in (Hellmich et al.,
1999a). Figure 4.10 shows the employed discretization of the jet-grouted column and the
surrounding soil.

jet-grouted soil
column.

Figure 4.10: FE mesh considering only a segment of the jet-grouted column and

the respective soil

For the description of the hydration process in jet-grouted soil, a thermochemical ma-
terial model is employed. The underlying field equation is derived from the first law of
thermodynamics. In the absence of volume heat sources and of negligible terms such as,
e.g., the heat release in consequence of deformations, this law is given as (Ulm and Coussy,

1995) :
pet - ^ £ = - d i v q , (4.41)

with p [kg/m3] as the density, c [kJ/(kg K)] as the specific heat capacity, and ^ [kJ/m3] as
the latent heat of hydration per unit volume of jet-grouted soil, q is the heat flow vector.
It is related to the temperature T via Fourier's linear (isotropic) heat conduction law,

q = - A : g r a d r , (4.42)
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with k [kJ/(m h K)] as the thermal conductivity.

In Eq. (4.41), £ represents the degree of hydration. It is denned as the mass of hydrates
formed in a unit volume of jet-grouted soil divided by the mass of hydrates at the end of the
hydration process. The evolution of £ is assumed to depend only on the mass of hydrates
formed and on the current temperature (weak couplings). The employed Arrhenius-type
evolution law reflects the thermally activated nature of the chemical reaction (Ulm and
Coussy, 1995):

é = i(Oexp(--|y , (4.43)

where T is the temperature in Kelvin, Ea is the activation energy, and R is the universal
constant for ideal gases, with Ea/R ~ 4000 K (Freiesleben Hansen and Pedersen, 1977).
The chemical affinity A is the driving force of the hydration reaction. It is different for
each type of cement and was determined for PZ 275, which is the type of cement usually
employed for jet grouting, as (Brandstätter et al, 2002)

i(0 = a
l-exp(-frg)

(4.44)

with a = 8.24 s"1, b = 13.3, c = 117.2, and d = 6.63.

4.3.3 Parameter identification

The proposed mode of PI is applied to a test column at a construction site in Vienna. The
column was produced by means of double-rod jet grouting. Hereby, the erosion capability
of the cement-grout jet was increased by an additional ring-shaped jet of air. The cement
grout used consisted of Portland cement PZ 275 and water. The water/cement-ratio was
1.0. Jet grouting started approximately 3.5 m below ground level. The rod was withdrawn
and rotated until the column has reached a length of 3 m (see Figure 4.11 (a)). Right after
jet grouting, a temperature sensor was installed at the center of the column. The measured
temperature history is plotted in Figure 4.11 (b). For back analysis of R and z, 21 discrete
values at different instants of time were selected (see Table 4.4). Hence, no = 21.

Table 4.4: Selected temperature values used for back analysis
t[h)

5

10

15

T[c

25

29

32

C]
.4

.7

.5

t\b]

20

30

40

T[c

34

36

38

C]
.1

.7

.4

t[h)

50

60

70

38

38

38

C]
.9

.9

.4

t[h]

80

90

100

T[c

37

37

36

C]
.8

.2

.5

t[h]

110

120

130

T[c

35

34

34

C]
.8

.9

.3

t[h]

140

150

160

T[c

33

32

32

C]
.7

.9

.5

t[h]
170

180

190

T[c

31

31

30

C]
.7

.3

.8
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jet-grouted
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initial temperature: 23.1°C
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(b)
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Figure 4.11: Test column at a construction site in Vienna: (a) known dimen-

sions of jet-grouted column and location of temperature sensor, and (b)

measured temperature history (temperature values used for back analysis

are indicated by circles)

Properties of the surrounding soil such as density, heat capacity, and thermal conduc-

tivity are taken from standard text books as 2000 kg/m3, 1.0 kJ/(kg K), and 3.0 kJ/(m h K),

respectively (see, e.g., (Baehr and Stephan, 1998; Özi§ik, 1985; Kakaç and Yener, 1985;

Pitts and Sissom, 1977)). The injection of cement grout into the in situ soil during jet

grouting results in an increase of the density of the soil from 2000 to 2300 kg/m3. In

order to account for the rather large heat capacity of water (c = 4.18kJ/(kgK)), the heat

capacity is increased from 1.0 to 1.3kJ/(kg K). The thermal conductivity of jet-grouted

soil is set equal to 4.0kJ/(mhK).

The search intervals for the values of the unknown parameters R and z are chosen as

R e [0.2 m, 2.0 m] ,

z G [2%, 16.7%] .
(4.45)

The radii of the columns attained in jet-grouting applications, reported in the open liter-

ature, are in the chosen interval. Regarding the interval selected for the cement content

z, the upper bound of 16.7% refers to the limit case of application of the thermochemical

material model outlined in Subsection 4.3.2. This limit case is characterized by an increase

of the temperature up to 100°C. For the present problem, this temperature increase is

equal to 100 — 23.1 = 76.9°C, where 23.1°C is the initial temperature of the improved soil

(see Figure 4.11 (b)). The latent heat resulting in an increase of the temperature to 100°C

under adiabatic conditions can be determined from Eq. (4.41), considering divq = 0:

= 76.9pc = 76.9 • 2300 • 1.3 = 229931 kJ/(m3 jet-grouted soil). (4.46)
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On the other hand, the latent heat is related to the cement content z, reading

it = 600pz [kJ/(m3 jet-grouted soil)], (4.47)

where the coefficient 600 refers to the latent heat in [kJ] of one kilogram cement (Byfors,

1980). Combining Eqs. (4.46) and (4.47) yields the aforementioned value of the upper

bound of the cement content:

On the basis of the chosen parameter intervals, four FE simulations are performed

prior to back analysis. Hence, nd = 4. The respective parameter sets are obtained from

combining the limit values given in (4.45). Hereby, the combination p = [2.0, 0.167jT

is disregarded. Because of the large dimensions of the column, this parameter set would

result in almost adiabatic conditions in the jet-grouted column. Because of the cement

content of 16.7%, an increase of the temperature of up to 100°C would be obtained. Such

an increase is not confirmed by the available temperature data, given in Figure 4.11 (b).

Therefore, an alternative parameter set containing the mean values of the interval limits

given in (4.45) is chosen:

P! = [0.20, 0.020jr

p2 = L0.20, 0.167jr =• 7*h(p2)=40.3%,

Pa = L2-00, O.O2OJT => nh(p3) = 14.5% ,

p4 = [1-10, O.O94J T

FE analyses based on the parameter sets pi to P4 do not yield results of satisfactory

accuracy (see values of the error 'R!1 in (4.49)). These four parameter sets and the respective

FE results are the basis for the first estimate of optimal parameters in the context of the

proposed PI method. Based on n, = 2, referring to the two unknown model parameters,

no = 21, and nd — 4, the initial number of neurons in the hidden layer of the ANN is

chosen as rih = 2, satisfying condition (4.19):

nh = 2 < 2,625 2 1 - ( 4 - D = n „ . ( „ , ! )
1 + 2 + 21 1 + m + no

 K J

Regarding training of the ANN, the required mapping accuracy for each output value,
l, is set equal to 1.0%. Training procedures, still violating criterion (4.12) after 250000

iteration steps within the framework of the GDM are viewed as having failed to converge,

followed by an increase of the number of neurons in the hidden layer by one. The PI is

assumed to have converged, if the indicator \TZh — TZ*\ is smaller than or equal to 0.5%. The
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estimates of the unknown parameters and the evolution of the values of the error functions

7lh and TV, obtained in the course of PI, are given as (see also Figure 4.12):

P5 =

P6 =

P7 =

P8 =

P9 =

PlO =

(.0.28,

[0.67,

L0.77,
[1.14,

[0.90,

[0.89,

O.O37JT

O.O4OJT

O.O37JT

0.035j r

O.O4OJT

0.0421T

=* 71* (p5

=> TV(pe

=> 7£*(P7

=» ^ * ( p 8

=> K*(p9

) = 3

) = 2

) =l

) = 1

) = 1

o) = l

.2%,

. 3 % ,

. 5 % ,

. 8 % ,

.9%,

.9%,

nh(p
nh{p
nh{p
7Zh(p

nh(p
7lh(P

5)

6 )

7)

8 )

9)

10

= 45

= 14

= 10

= 5

= 2

) = 2

. 5 % ,

.4%,

.9%,

. 3 % ,

. 8 % ,

.0%,

(4.51)

The parameter set pio yields values of the error functions TV and 7lh signalling convergence

of the PI by \Kh - TZ*\ = 0.1 % < 0,5 %.

nd

r-r-r=r-r-r-r?5 6 7 9 10 11 12 5 6 7 9 10 11 12

(a) (b) (c)

Figure 4.12: Results from back analysis: evolution of (a) R, (b) z, and (c) TV

and lZh obtained in the course of PI

The estimated optimal parameter sets obtained in four subsequent PI iteration-steps

do not significantly outperform the result obtained from

(4.52)

Hence, the indicator based on the difference between 1Z* and TZh (criterion (4.23)) provided

a good estimate of the quality of the obtained parameters. The small value of ^ ( p i o )

indicates good agreement between the respective numerical results and the measurement

data (see Figure 4.13(a)). The value of lZh corresponding to the identified parameter set

is a measure for the adequacy of the employed numerical model to simulate the hydration

process in jet-grouted soil. The radius of the jet-grouted column obtained by means of PI

agrees well with the radius observed at the excavated test column, see Figure 4.13(b).

Pll =

Pl2 =

Pl3 =

Pl4 =

[0.90,

L0.90,
L0.90,
[0.89,

0.

0.

0.

0.

042 J T

O43JT

O42JT

0431 r
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Figure 4.13: Results from back analysis: (a) temperature history corresponding

to the identified parameter set pio and (b) excavated test column

4.4 Application to NATM tunneling

The New Austrian Tunneling Method (NATM) has proved to be a flexible and economic

mode of construction. Basic characteristics of this method are the application of shotcrete

onto the tunnel walls immediately after the excavation of a section of the tunnel and

monitoring of the displacements at measurement cross-sections. The shotcrete shell is

comparably thin and flexible. Recently developed hybrid methods (Rokahr and Zachow,

1997; Hellmich et al., 2001; Lackner and Mang, 2001) allow for quantification of the stress

state and, hence, of the so-called level of loading of the shotcrete lining (Hellmich et al.,

2001). They combine in situ displacement measurements of the shotcrete lining and a

material model for shotcrete. The aforementioned 3D displacement measurements are per-

formed at so-called measurement points (MPs) in the measurement cross-sections (MCS),

see Figure 4.14. At the MPs small reflectors are installed at the tunnel lining right after

application of shotcrete. The displacement data obtained at the MPs are interpolated both

in space and time, yielding a time-dependent displacement field of the tunnel shell. This

displacement field represents the boundary values of the structural model. This model

represents a specific MCS of the tunnel, referred to as considered MCS (see Figure 4.14).

Hereby, longitudinal deformations may be accounted for by consideration of displacement

measurements at the adjacent MCSs (see Figure 4.14).

4.4.1 Statement of problem and proposed solution concept

Hybrid methods allow for determination of the so-called level of loading for already con-

structed and, hence, monitored parts of the shotcrete lining (Hellmich et al., 2001). How-

ever, genuine predictions of (i) future stress states in the already constructed shotcrete
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next MCS

considered MCS

previous MCS ^ / s\ i ^ ^ t t in

O MPs at considered MCS

• MPs at adjacent MCSs

Figure 4.14: Spatial interpolation of displacements between MPs in the context
of hybrid methods in tunneling

shell, and of (ii) stress states in not yet constructed parts of the tunnel are very difficult.
They require consideration of the interaction between the shotcrete shell and the surround-
ing soil/rock formations. Whereas material properties of shotcrete are well known from
laboratory tests, little is known about the material properties of the surrounding soil/rock.

In order to specify unknown soil/rock parameters, use of the presented PI method is
proposed. The numerical model employed for PI considers both the shotcrete lining and
the surrounding soil/rock formation. Hence, material parameters of soil/rock layers can be
related to different types of measurements such as displacements at MPs, surface settle-
ments, and extensometer measurements. Unknown material parameters will be determined
at specific cross sections of the tunnel, favorably at MCSs. During PI, the time span con-
sidered in the numerical analyses ranges from the time instant associated with the start
of the excavation at the considered MCS to the day at which the analysis is performed.
Based on the identified material parameters, displacements and, hence, future stress states
of the tunnel shell can be predicted. There are two different types of predictions (see Figure
4.15):

1. The first type of predictions is characterized by continuation of the numerical sim-
ulation for the considered MCS based on the identified parameters. This type of
predictions provides information about future displacements and stress states at the
considered (already installed) MCS.

2. In case of moderately changing geological conditions, the soil/rock parameters deter-
mined at already installed MCSs may still be valid a stretch ahead of the tunnel face.
Hence, based on identified parameters, numerical analyses of the tunnel excavation
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tunnel advancement

present

future MCSs

z[m]

prediction at already
time installed MCSs prediction at

future MCSs

Figure 4.15: Illustration of two types of predictions on the basis of soil/rock

parameters obtained from PI, i.e., prediction either at already installed or

at yet not installed MCSs

at future (not yet installed) MCSs are possible.

Both types of predictions would represent a significant progress in tunnel engineering.

Beside the possibility of adaptation and optimization of tunnel-driving parameters, they

would allow to assess the safety of the tunnel and, hence, reduce the risks for the construc-

tion crew.

In the following sections, the first steps towards this goal are described. By means of an

example problem, unknown material parameters of two different soil layers are identified

via back analysis.

4.4.2 Numerical analysis of the excavation process

The example presented in this paper refers to the planned excavation of the station tube

"Taborstraße" of the Vienna underground line U2. The soil in this area of Vienna consists

mainly of cohensionless material such as gravels and sands. The geological conditions and

the location of the station tube are illustrated in Figure 4.16(a). The tunnel is excavated

sequentially. The three excavation steps are as follows: top heading, bench, and invert. Af-

ter each excavation step, shotcrete is applied onto the newly excavated tunnel surface. The

numerical analyses are performed by means of the FEM. The employed FE discretization

is shown in Figure 4.16(b).

For the simulation of the mechanical behavior of the soil, the material model used in

Subchapter 4.2 is extended to viscoplasticity. As a first approximation, the evolution laws
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Figure 4.16: Underground station "Taborstraße" : (a) geometrical dimensions

(in [m]) of the numerical model and (b) FE mesh consisting of 991 finite

elements

are chosen according to the

ko — — ( « D ~
r

(4.53)

for the viscoplastic strains and the hardening parameter

law by Duvaut and Lions (Duvaut and Lions, 1972),

£ — — KJ (er — <7 j a n a

r

r is the relaxation time describing the time-dependent behavior of soil, a00 and K# cor-

respond to the solution for rate-independent plasticity, i.e., to the solution for infinitely

slow loading.

Shotcrete is modeled as a reactive porous medium. For a detailed description, see

(Hellmich et al., 1999b) and references therein. Dissipative phenomena at the microlevel

of the material are accounted for by means of (internal) state variables and energetically

conjugated thermodynamic forces, related to the state variables via state equations. The

rates of the internal state variables are related to the corresponding thermodynamic forces

by means of evolution equations.

Four dissipative phenomena govern the material behavior of shotcrete:

1. The hydration causes chemical shrinkage strains, aging elasticity, and strength

growth. The extent of the hydration process is defined by the degree of hydration £.

2. Microcracking of hydrates yields plastic strains. The state of microstructural changes

resulting from microcracking (i.e., hardening/softening) is described by hardening

variables X-

3. Stress-induced dislocation-like processes within the hydrates result in flow (or long-

term) creep strains. The state of respective microstructural changes is described by

the viscous flow.
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4. Stress-induced microdiffusion of water in the capillary pores between the hydrates

result in viscous (or short-term) creep strains.

Microcracking is described by means of a multi-surface chemoplasticity model (see Figure
4.17). It consists of the Drucker-Prager surface for description of shotcrete subjected

Drucker-Prager i

criterion
tension-cut-off
criterion

JiA/3

i

fc

•25/c <

XD

/
/

^ \
ideally-plastic

i XD

(a)
CT/V/3

(b)
XD

Figure 4.17: Multi-surface plasticity model for shotcrete: (a) yield surfaces in
the (/i/v/3)-(\/2 J2)-space and (b) strain-hardening within the framework
of the Drucker-Prager criterion (/c: uniaxial compressive strength)

to compressive loading and the tension-cut-off criterion for simulation of tensile failure,

reading

/D(<T, CD) = p2 + ah - (D(XD, 0/ß and fT(a, Cr) = h - CT(O • (4.54)

The material parameters a and ß are determined by means of the uniaxial compressive

strength fc and the biaxial compressive strength fb of shotcrete, (Lackner et al, 2000)

a =
fb/fc - and ß =

x/3(2/6//c -
(4.55)

V3(2/6//c - 1) ~~ " h/fc

Increase of the compressive strength CD from 0.25/c to fc in the context of strain hardening

is considered, see Figure 4.17(b). For the tensile strength Cr, only chemical hardening is

considered, giving CT = CT(O-

4.4.3 "Measurement

"Taborstraße"

data" of underground station

The construction of the station tube "Taborstraße" is scheduled for spring 2004. Hence,
measurement data are not available. Therefore, "measurement data" are generated by
numerical analysis prior to parameter identification. The material parameters employed
for the two soil layers in this analysis are given in Table 4.5. Similar to the material
parameters used in Subchapter 4.2, a very small value was assigned to the cohesion of
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Table 4.5: Material parameters of both soil layers (chosen based on plausibil-

ity) employed for the generation of "measurement data" by means of a

numerical analysis

Young's modulus E [N/mm2]

Poisson's ratio v [-]

angle of internal friction ip = ipi = (pp = ipr

relaxation time r [h]

sand

65

0.350

36.5°

1.0

gravel

80

0.316

42.0°

1.0

the sand and the gravel. The material properties of shotcrete are taken from (Lackner

et a l , 2000). From the obtained numerical results, histories of surface settlements and

displacements of three MPs of the shotcrete lining are recorded (see Figures 4.18 and 4.19).

Such measurements are nowadays routinely performed at every NATM construction site.

V

u
-1 -

-2 -

-3 -

-4 -

v [mm]

V i f- v

t

a cl
Id 35d 35d

Figure 4.18: "Measurement data" generated by numerical analysis: histories of

horizontal and vertical displacement component, u and v, at selected points

of shotcrete lining

Hence, they are available in the course of the construction process.

4.4.4 Parameter identification

During back analysis, five material parameters listed in Table 4.5 are assumed to be un-

known. They are collected in the vector p, reading

P = [Esand, Vsand, T, Lfgravel, Egravei\ , (4.56)
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Figure 4.19: "Measurement data" generated by numerical analysis: surface set-

tlements

where Tsand — rgTavei — r. Accordingly, U{ = 5. The intervals for the unknown parameters

are chosen based on plausibility as

Esand

T

^gravel

•'-'gravel

G [60.0 N/mm2, 80.0 N/mm2] ,

G [33.0°, 41.0°] ,

G [0.15 h, 1.50 h] ,

G [35.0°, 45.0°] ,

G [70.0 N/mm2, 100.0 N/mm2] .

(4.57)

For back analysis, the displacement histories illustrated in Figures 4.18 and 4.19 are

treated as measurement data provided by the construction site. 56 discrete values referring

to different measurement curves are selected, for PI (see circles in Figures 4.18 and 4.19).

They are collected in the vector u, yielding no = 56.

Contrary to the previous examples, the values of some of the measurement data ur, i.e.,

of displacements of the tunnel shell are close to zero. Accordingly, the definitions of the

error functions TZh and TV (see Equations (2.1) and (4.1)), characterized by relating the

error of the r-th output value to the r-th measurement data, must be adapted. An alter-

native definition of the error functions is obtained by relating the error of the r-th output

value of the c-th measurement curve to the mean value üc of all selected measurements

referred to the respective measurement curve:

1
uc =

n0
E \ucr\ . (4.58)
r = l

In Equation (4.58), no_c represents the number of selected measurements associated with

curve c. The adapted error functions are introduced as

\
(4.59)

c = i r = i
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TV
\ ;r££

n,
(4.60)

o c = i r = i

where nm is the number of measurement curves. In the present example, nm = 8.

Moreover, some numerical results for the displacements of the tunnel shell might be very

close to zero. Accordingly, the definitions of the error function TV^1 (see Equation (4.6))

and the error value used in the accuracy criterion for ANN training (4.12), characterized

by relating the error of the r-th output value to the r-th value of numerical results, must

be adapted too. By analogy, these definitions are:

2

CT,d
c*-h
°r,c,d — Ur

V

r = 1 , 2 , . . . n O t C

C — J-, Zj . . . Tljji

d = l,2,...nd.

(4.61)

(4.62)

Twelve FE analyses are performed in advance in order to provide twelve different data

sets. They are based on different parameter sets containing different combinations of the

limit values of the defined parameter intervals (4.57), reading

Pi =

P2 =

P3 =

P4 =

P5 =

P6 =

P7 =

P8 =

P9 =

PlO =

Pll =

Pl2 =

|60,

[80,
[60,
L60,
[60,
L60,
L80,
L60,
L80,
L80,
L80,
ISO,

33,

33,

41,

33,

33,

33,

41,

41,
33,

41,

41,

41,

0.15, 35, 7OJT

0.15, 35, 7OJT

0.15, 35, 7OJT

1.50, 35, 70 j r

0.15, 45, 7OJT

0.15, 35, 100j r

1.50, 45, 100jT

1.50, 45, 100jT

1.50, 45, 100jT

0.15, 45, 100j r

1.50, 35, 100j r

1.50, 45, 7OJT

=> 7eh(pi) =148.

^ 7Zh(p2) =125.

=• 7lh(p3) =116.

=• 7lh(p4) = 24.

=• nh(p5) = 86.
=> nh{pe) =124.
=> nh(P7) = 29.

=*• nh(p8) = 20.
=> nh(pg) = 23.

=• ^ h (p io )= 28.

=• ^ ( p u ) = 25.
=• nh(pl2)= 23.

8%,

9%,

9%,
00/

o/o ,
2%,

1%,

9%,

1%,

2%,

0%,
00/

//o ,
OC)/
o/o •

(4.63)

The PI is assumed to have converged if the indicator \7Zh — 71*\ is smaller than or equal to

0.5%. The required mapping accuracy for each output value, 8*"*1, is set equal to 2.5%,

which is significantly smaller than the smallest value of 7lh obtained from the FE analyses

performed in advance. Training procedures which still violate criterion (4.12) after 250000

iteration steps in the context of the GDM are viewed as having failed to converge. In

this case the number of neurons in the hidden layer is increased by one. Based on these
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settings, three prognoses for the optimal parameter set were computed, giving P13 to P15:

P13 = L65.7, 38.6, 1.122, 42.6, 79.8JT

P14 = L65.0, 35.0, 1.173, 40.2, 77.6j r

Pis = [64.9, 36.5, 1.100, 42.0, 79.1j r

TZh(p13) =

7£*(p14) =

(4.64)

Parameter set P15 yields a value of the indicator \TZh — TZ*\ that is equal to 1.1 %, which is

still larger than 0.5 %. TZh(pis) is equal to 2.2 % indicating already good agreement between

numerical results and "measurement data". Moreover, ^ ( p i s ) is smaller than the mapping

accuracy Ë*"*1 = 2.5% used for training of the ANN. In order to guarantee an adequate

approximation of FE results by the ANN, the mapping accuracy E*"*1 must be adapted

to the smallest value of the error TZh obtained so far. Accordingly, for the subsequent PI

iteration steps, S*^ is set equal to 1.5% < TZh(pi5) = 2.2%, 1.0% < TZh{pi6) = 1.5%, and

0.5% < TZh(pu) = 0.7% for determination of pi6 , P17, and pis, respectively. The results

obtained from these three PI iteration steps can be summarized as follows

P l 6 = [65.3, 36.3, 1.075, 42.0, 79.1Jr => TZ*(p16) = 0.7%, TZh(p16) = 1.5%,

Pi7 = L65.4, 36.3, 1.048, 41.8, 79.6JT => TZ*(p17) =

Pis = |65.1, 36.4, 1.007, 42.0, 80.0j TZ*{p18) =
(4.65)

Parameter set p i 7 yields values of the error functions TZ* and TZh, signalling convergence of

the PI by \Hh - H*\ = 0.3% < 0.5% (see Figure 4.20(a)). Since the "measurement data"

10 -
0

(

6 -

4 -

2 -<

0 -

U*,TZh[%]

\nh-n*\ <o.5%
1

13 14 15 16
(a)

17 18 parameters
of p1 7

Figure 4.20: Results from back analysis: (a) evolutions of TZ* and 1Zh obtained

in the course of PI and (b) ANN-estimated sensitivities of parameters (the

minima of the respective functions are indicated by circles)

were generated by means of a numerical analysis, PI should finally give the parameters

employed in this analysis listed in Table 4.5. In fact, parameter set P17 represents a

satisfactory solution of the PI problem. Hence, the indicator based on the difference

between TZ* and TZh (criterion (4.23)) provided a good estimate of the quality of the

obtained parameters.
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Figure 4.20(b) illustrates the estimated sensitivity of the parameters contained in pa-

rameter set P17. The plotted curves represent sections through the error function TV.

These sections contain the estimated minimum of the error function, which is marked by

circles. For each section four parameters were kept constant and set equal to the values

of parameter set P17, whereas the remaining parameter was varied over its entire interval

(see (4.57)). The dash-dotted curve indicates that r has the largest influence on TV. The

remaining parameters of the bottom layer, i.e., Esand and <pSandi on the other hand, show

the smallest influence on the error function TV.

4.4.5 Parameter identification based on inaccurate measurement

data

In general, measurement data provided by the construction site are afflicted with inaccu-

racies. In order to assess the influence of these inaccuracies on the performance of the

proposed PI method, the measurement data illustrated in Figures 4.18 and 4.19 are mod-

ified:

uc,r -> uCtT • (1 + ô), c = l , 2 , . . . n m , r = 1, 2 , . . . nO)C, (4.66)

where the value of 5 is related to the inaccuracy of the measurement data. A negative

value of 5, e.g., indicates that the surface settlements and displacements of the shotcrete

tunnel shell reported by the construction site are too small.

Six different values of 5 are chosen (see Table 4.6) to obtain six sets of inaccurate

measurement data. For each of them, PI is performed independently as described in

Section 4.4.4. These back analyses aim at determining parameter sets that yield numerical

results which fit to the respective measurement data as well as possible. Consequently, uc<r

needs to be replaced in Equ. (2.1) by uc%T • (1 + <5), resulting in the following condition for

an optimal parameter set:

\
"f ^ » ; ^ + * > ) _ min. (4.67)

Table 4.6 contains the percentage difference between the optimal parameters obtained

from these six Pis and the parameters listed in Table 4.5. In general, back analysis on the

basis of inaccurate settlements and displacements of the tunnel shell, which are too small

(triggered by ô < 0), result in an increase of the values for the optimal parameter set. A

positive value of 5, on the other hand, yields a decrease of the parameters. Notably, the

percentage error of Young's modulus of both soil layers and of the relaxation time r are

closely related to the value of 5. The influence of 5 on the angles of internal friction is

significantly smaller.
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Table 4.6: Influence of the value of S on the parameter values obtained from PI

PI I

PI 2

PI 3

PI 4

PI 5

PI 6

ô

-10.0%
-5.0%

-2.5 %

+2.5%

+5.0%

+10.0%

Esa

+10.
+4.

+2.

-2.

-4.

-8.

nd

3%

7%

2%

1%

7%

6%

Vsand

+0.6%

+0.3%
-0.2%

-0.1%
-0.4%

-0.9%

7

+9.

+5.
+2.

-2.

-2 .

-4.

2%

4%

8%

2%

0%

8%

Vgr

+0.

+0.

+0.

±0.

-0.

-0.

avel

4%

1%

2%

0%

4%

7%

^gravel

+11.3%
+6.0%

+2.2%

-2.4%

-5.0%

-9.3%

4.4.6 Predictions of displacements and of the level of loading of

the shotcrete tunnel shell

Based on the parameters obtained from six Pis of the previous section, PI 1 to PI 6 (see
Table 4.6), the structural behavior of the tunnel at a future MCS, i.e., of one that has
not yet been installed, will be investigated in the following. The (changed) geological
conditions and the (changed) location of the station tube at the future MCS are illustrated
in Figure 4.21. Characteristic results obtained from the FE analyses performed on the

IE
gravel
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1 1 1 1 1

-----mm419
îfzr
-h~T
T

/ / i

42.50

-top heading
-bench
-invert

Figure 4.21: Future MCS of underground station "Taborstraße" : geometrical
dimensions (in [m]) of the numerical model and FE mesh consisting of
1071 finite elements

basis of the six parameter sets computed in Section 4.4.5 are listed in Table 4.7. These

results are genuine predictions of the structural behavior at a future MCS.
In order to assess these predictions, an additional FE analysis on the basis of the

material parameters given in Table 4.5 is performed. The respective characteristic results
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Table 4.7: Prognoses of characteristic values describing the structural behavior

at a future MCS (for the definition of C2 see (Beer, 2003))

material parameters
obtained from . . .

PI1 (<J=-10%)

PI 2 (5=-5%)

PI 3 (<J=-2.5%)

PI 4 (<5=+2.5%)

PI 5 (6=+5%)

PI 6 (<J=+10%)

surface
settlements

1.72 cm

1.81cm

1.86 cm

1.95 cm

2.01cm

2.10cm

maximum values of . . .

vertical displacement at
top of the shotcrete shell

1.67 cm

1.68 cm

1.70 cm

1.72 cm

1.73 cm

1.75 cm

level of
loading £ 2

oz.Z/o

32.8%

33.5%

34.1%

34.5%

35.5%

are listed in Table 4.8.

Table 4.8: Characteristic values describing the structural behavior at a future

MCS obtained from an FE analysis based on the material parameters listed

in Table 4.5 (for the definition of £ 2 see (Beer, 2003))

surface
settlements

1.91cm

maximum values of . . .

vertical displacement at
top of the shotcrete shell

1.70 cm

level of
loading £2

33.7%

A comparison of the values listed in Tables 4.7 and 4.8 allows an assessment of the

prognoses of the structural behavior at a future MCS. Deviations of surface settlements

from the respective value given in Table 4.8 are closely related to the value of 6, whereas the

influence of ô on the maximum displacement at the top of the tunnel shell is significantly

smaller. The maximum level of loading of the shotcrete tunnel shell changes only slightly

with 8. To summarize, the characteristic values of the structural behavior at a future MCS

were well predicted, taking into account the considered range of measurement inaccuracies

of ±10 %. This result indicates that the presented mode of PI can be expected to be useful

for real-life applications even in case of inaccurate measurement data, such as frequently

provided by the construction site.
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4.5 Extension to first-order approximation neural

networks

ANNs employed for the already presented mode of PI provided a map of FE input pa-

rameters onto respective FE results. However, the sensitivities of the FE results, i.e.,

the partial derivatives of the FE results with respect to the FE input parameters were

not considered during training of the ANNs. Therefore, such ANNs can be referred to

as zero-order approximation artificial neural networks, C(o)-ANNs. In this subchapter an

extension towards ANNs providing an approximation of both FE results and their sensitiv-

ities is presented. Respective ANNs are referred to as first-order approximation artificial

neural networks, (9(i)-ANNs.

4.5.1 Outline of the extended parameter identification method

(9(i)-ANNs are trained in order to minimize both, the zero-order approximation error and

of the first-order approximation error defined as

*~h

\

I nd

*~h

d=\ \

nd

(4.68)
d=\

respectively. TZ*0^
h
d and TZ*^h

d denote the the squared zero-order approximation error and

the squared first-order approximation error referring to the d-th. data set. These two error

functions are defined as

u =
n,

(4.69)
•o r = i

and

*~h

dp. 1

(4.70)

Eq. (4.70) contains derivatives of the error functions lZh and TZ* with respect to FE input-

parameters.4 Accordingly, TV^h
d represents a measure of the differences between the sen-

sitivities of TZ*(pd), provided by the ANN, and the sensitivities of ̂ ( p ^ ) , determined by

describes the difference between in situ measurements uT and corresponding quantities obtained
from a numerical analysis u^. TZ* describes the difference between in situ measurements ur and the
corresponding output quantities of the ANN u*. ~Rh and TZ* were defined in Eqs. (2.1) and (4.1) as

7J»(p) = - ur

u
and 11* (p) =

\

1

no r = l

- UT

(4.71)
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numerical analyses. The denominator of the expression in the parentheses of Eq. (4.70)

represents the arithmetic mean value of the already computed sensitivities of 7th{pd)'.

1 1 rid ni

= --££ dnh(Pd) (4.72)

Evaluation of TZ*^h
d requires computation of the derivatives of 7lh and TV with respect

to the input parameters Pj, j = 1, 2 , . . . n», as

dPj

dn*(Pd)
dPj

dnh(pd) duh
T

duh
r dPj

dn*(Pd) du*r

dPjdu*r

duh
r{pd)

dPj

du*r(pd)

dPj

dv%(pd)/dpj and du*(pd)/dpj denote the partial derivatives of FE results and ANN output

values with respect to the input parameters. In order to avoid major modifications of the

employed FE code, dv%(pd)/dpj are approximated by finite difference expressions

, , - - 1 , 2 , . . . * . (4.74)

Accordingly, approximation of the sensitivities du^{pd)/dpj requires n* additional FE sim-

ulations. The sensitivities of ANN outputs, du*(pd)/dpj, are computed with the backprop-

agation algorithm

du*r(pd) _ du*r(pd) ds(a°r)
ho

ds(ah
k)

ih

Training of (9(i)-ANNs aims at

0 (4.76)

by iterative adaption of the network weights. Analogously to the already presented mode

of PI, a gradient descent method in weight space is performed. Hence, network weight

corrections are defined as

(4.77,

The calculation scheme for computation of the derivatives appearing in Eqs. (4.77) are

summarized in Appendix B. Training of the O^-ANN will be terminated, if all Ö(i)-ANN

output values and their sensitivities meet the respective desired values with prespecified
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accuracy. Hence, for termination of O^-ANN training the following two conditions must
be satisfied:

K(Pd) -
Ü

~3j

(4.78)

where £,0) and £(1) denote two prespecified threshold values.

4.5.2 Application to ground improvement by means of jet grout-
ing

The PI problem described in Subchapter 4.3 is revisited. In the following, the PI problem
is solved again based on both O(0j-ANNs and (D(i)-ANNs. The respective PI algorithms are
referred to as O(o)-Pl and O(i)-PI. The results of these two independently performed Pis
will be assessed taking into account the approximation of T& provided by the two ANNs.

The search intervals for the values of the unknown parameters R and z are chosen as

R e [0.2 m, 2.0 m] ,
z e [2%, 16.7%] .

(4.79)

In order to obtain deep insight into the PI problem, 51 x 51 = 2601 ther mo chemical FE
analyses were performed, resting on different input parameter combinations taken from
the intervals (4.79). The differences between the obtained temperature histories and the
selected measurements ur (r = 1,2,... 21) are quantified by means of lZh. In general, such
a comprehensive numerical study is unfeasible. In the present case of only two unknown
parameters and a rather small FE model, the computational efforts associated with 2601
FE analyses was acceptable. The obtained 2601 values of the error function TZh permit to
illustrate isolines of TZh as a function of the radius R and the cement content 2, see Figure
4.22 (a).

Both PI algorithms aim at determination of the parameter set R = 89 cm, z = 4.3%

which is associated with Tth = 1.9%, located at the bottom of banana-like shaped valley
of the error function Hh, see Figure 4.22 (a). This insight in the shape of 7& as a function
of R and z will be used to assess the two PI algorithms. However, this a priori knowledge
is not available for the two PI algorithms.

Both algorithms are started after having performed four FE analyses in advance. These
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Figure 4.22: (a) Isolines oi1lh over the entire parameter space corresponding to

the intervals given in (4.79), and (b) temperature histories obtained from

the FE analyses performed in advance (blue) and in-situ measurements

(red)

FE simulations are based on the input parameters

P! = [0.20, 0.020jT => 7£fc(pi) = 55.2%,

p 2 = L0.20, O.167JT =>• 7^/l(p2) = 40.3%,

P3 = L2-00, 0.020jr =• ^ ( p 3 ) = 14.5%,

p 4 = [1.10, 0.094jr ^> 7^(p4) = 64.2%.

Since none of these parameter sets is optimal, the obtained values of the error functions

7th are rather large. The obtained temperature histories do not meet the measurements,

see Figure 4.22 (b). The four numerical analyses performed in advance suffice to start

the (9(o)-PI- However, in order to start the O(i)-PI, eight additional FE analyses must be

performed. They are required to compute the sensitivities of TZh with respect to the radius

R and the cement content z of the jet-grouted soil column. These additional FE analyses

are resting on the input parameters

0.2m + AR,

0.2m,

M = 0.020,

i,2 = 0.020 + Az,

Ä2,i = 0.2 m + Ai?, z2,i = 0.167,

Ä2,2 = 0.2m, z22 = 0.167 + Az

(4.81)

(4.82)

3,i = 2.0 m + AR, z3J = 0.020,
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i?3,2 = 2.0m, 23,2 = 0.020 + Az, (4.83)

Ä4,i = l . lm + A-R, ^4,1 = 0.094,

i?4,2 = l . l m , z4<2 = 0.094 + Az, (4.84)

Thereby, Ai? - (2.0 - 0.2)/100 = 0.018m and Az = (0.167 - 0.020)/100 = 0.00147, i.e.,

changes in the parameters were set equal to one-hundredth of the width of the parameter

search intervals. Based on the results from the four FE simulations performed in advance

and the additional eight FE analyses, the sensitivities of 7Zh are evaluated, i.e., &R,h/dR

and dlZh/dz are computed at p = pi, p = P2, p = P3, and p = P4. They serve as input

for the O(i)-PI.

For the O(o)-Pl, the threshold value E,*^1 for the criterion controlling termination of

ANN training, see (4.12), is set equal to 1%. Both respective threshold values of the O(\y

PI, i.e., S^f and 8^ which were introduced in (4.78), are set equal to 2.5%. All three

threshold values are kept constant throughout both Pis.

Results from the first P I i teration steps

At the end of the first iteration step, both trained ANNs provide an error function 72.*.

They represent approximations of TZh. 72-* referring to the (9(o)-ANN almost coincides

with 72/1 at four points in the parameter space, see green circles in Figure 4.23 (a). These

points correspond to the parameter sets listed in (4.80). In the case of the C?(i)-ANN,

both the values of 72.* and the sensitivities 87Z*/dR and dlZ*/dz almost coincide with TZh,

d7Zh/dR, and d7Zh/dz at these four points in the parameter space, see green circles in

Figure 4.23 (b). Hence, the tangential planes of 72.* and 1Zh are almost the same at these

four points. After termination of ANN training, both a genetic algorithm and a GDM

search in the entire parameter space R € [0.2 m, 2.0 m] and z G [2%, 16.7%] for the

parameter set corresponding to the absolute minimas of both error surfaces 72.*. These

parameter sets represent prognoses for the optimal parameter set, see the red squares in

Figures 4.23 (a) and (b). In order to assess these estimates, FE analyses based on the

estimated parameter sets are performed. Resting on the results of these analyses, values

of TZh are computed. The two first iteration steps can be summarized as:

O(o)-ANN: p5 = L0.42, O.O34JT => 72*(p5) = 2.5%, 72/l(p5) = 35.5%,

O(i)-ANN: p 5 = L2-00, O.O34JT =» 72.*(p5) =5.6%,T » 7 2 * ( ) 56% fth() 105%

\Uh -72.*| is equal to 33.0 % in the O(0)-PI and equal to 4.9 % in the O(i)-PI. This indicates

that the approximation of 1Zh by 72.* provided by both the O(0)-ANN and the C(1)-ANN is

not satisfactory but rather poor. Accordingly, the (9(o)-PI and O(i)-PI cannot be viewed
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Figure 4.23: Isolines of 7Z* representing approximations of the actual error func-

tion 1Zh (see Figure 4.22 (a)) obtained at the end of the first PI iteration

step resting on a (a) O(0)-ANN and (b) O(i)-ANN

as having converged. Both PI algorithms must be continued. However, 33.0% > 4.9%

indicates the O^-ANN provides an approximation of TZh which is not as worse as it is the

case for the O(0)-ANN.

The following three conclusions were drawn without knowledge of the actual shape of

the error function TZh:

• both approximations of TZh by TZ* are rather poor,

• however, the approximation of 1Zh by TZ* resting on the 0(i)-ANN is not as worse as

is the case for the (9(0)-ANN, and

• both PI algorithms cannot be viewed as having converged.

Now, this knowledge is used a posteriori to assess these conclusions. Comparing the isolines

of TZ* illustrated in Figures 4.23 (a) and (b) with the isolines of lZh, see Figure 4.22 (a),

these conclusions are confirmed.

Results from the second PI iteration steps

The FE analyses performed to assess the first estimates of the optimal parameter set

increased the number of known data sets by one. Hence, the next O(o)-ANN is trained based

on five given data sets. In order to train the O^j-ANN, two additional FE simulations must
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be performed. The aim of these two additional analyses is to compute an approximation

of the sensitivities of TZh with respect to R and z at p = p 5 — [2.00, 0.034jT.

After training of the O(0)-ANN the provided error surface TV almost coincides with TZh

at five points, see the green dots in Figure 4.24 (a). The values of the error function TV and

2.0

16 z[%\

©
i r
14 16 z\%\

(a) (b)

Figure 4.24: Isolines of TV representing approximations of the actual error func-

tion TZh (see Figure 4.22 (a)) obtained at the end of the second PI iteration

step resting on a (a) 0(O)-ANN and (b) O(1)-ANN

its derivatives with respect to R and z provided by the trained O(i)-ANN almost coincide

with the corresponding values of TZh at five points, see the green dots in Figure 4.24 (b).

Again, a genetic algorithm and a GDM yield the two parameter sets associated with the

global minima of the two error surfaces TZ*, see the red squares in Figures 4.24 (a) and (b).

In order to assess these estimates, FE analyses based on the estimated parameter sets are

performed. Resting on the results of these analyses, values of TZh are computed. The two

second iteration steps can be summarized as:

O(o)-ANN : p6 = [1-66, 0.033jr

O(i)-ANN : p6 = LO-83, 0.043jT

= 9.4%,
(4.86)

\Uh - TV\ is equal to 5.0% in the O(0)-PI and equal to 4.7% in the O(i)-PI. This indicates

that the approximation of Tlh by TV provided by both the O(0)-ANN and the O^-ANN are

better than in the previous iteration step. However, the results are still not satisfactory.

Accordingly, the O(0)-PI and O(i)-PI cannot be viewed as having converged. Both PI

algorithms must be continued. 5.0% > 4.7% again indicates the (9(i)-ANN provides an

approximation of TZh which is not as worse as is the case for the O(o)-ANN.
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The following conclusions were drawn without knowledge of the actual shape of the

error function lZh:

• both approximations of lZh by 1Z* are better than the ones in the previous iteration

step,

• the approximation of lZh by 1Z* resting on the O(i)-ANN is again better as is the

case for the O(0)-ANN,

• however, both approximations do not represent a satisfactory result, and

• hence, both PI algorithms cannot be viewed as having converged.

Now, this knowledge is used a posteriori to assess these conclusions. Comparing the isolines

of 1Z* illustrated in Figures 4.24 (a) and (b) with the isolines of lZh, see Figure 4.22 (a),

these conclusions are again confirmed.

Results from the last PI iteration steps

The FE analyses performed to assess the second estimates of the optimal parameter set

increased the number of known data sets by one. Hence, the next O(o)-ANN is trained based

on six given data sets. In order to train the O(i)-ANN, two additional FE simulations must

be performed. The aim of these two additional analyses is to compute an approximation

of the sensitivities of lZh with respect to R and z at p = Pß = [0.83, 0.043jT.

Results of the iteration steps three and four of the O(o)-Pl lead to conclusions similar

to those drawn from iteration step two. Therefore, they are not discussed herein. Instead,

results from iteration step five of the 0(o)-PI and iteration step three of the O(i)-PI are

presented. After training of the 0(o)-ANN, the provided error surface 1Z* almost coincides

with lZh at eight points, see green dots in Figure 4.25 (a). These eight points refer to the

four FE analyses performed in advance (© to @) and four FE simulations carried out to

assess the quality of estimates from the previous four PI iteration steps (© to ®). The

error surface 1Z* and its derivatives with respect to R and z provided by the trained O(i)-

ANN almost coincide with the corresponding values of lZh at six points, see the green dots

in Figure 4.25 (b).

A genetic algorithm and a GDM yield the two parameter sets associated with the global

minima of the two error surfaces 1Z*, see the red squares in Figures 4.25 (a) and (b). In

order to assess these estimates, FE analyses based on the estimated parameter sets are

performed. Resting on the results of these analyses, values of lZh are computed. The two
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Figure 4.25: Isolines of TV representing approximations of the actual error func-

tion lZh (see Figure 4.22 (a)) obtained (a) at the end of the fifth PI iteration

step resting on a O(o)-ANN and (b) at the end of the third PI iteration step

resting on a O(i)-ANN

mentioned iteration steps can be summarized as:

O(0)-ANN : P9 =

O(i)-ANN : p 6 =

0.042jT

0.044jr
(4.87)

Hence, \1Zh — 1Z*\ < 0.1% holds in both cases. This results indicates that the approxima-

tions of TZh by TV are of good quality at least in the domain of interest, i. e., in the vicinity

of the solution of the PI. Thus, the parameter sets obtained are good estimates for the

optimal parameter set. Both PI algorithms can be viewed as having converged.

Again, the following conclusions were drawn without knowledge of the actual shape of

the error function TZk:

• both approximations of Tlh by TV are rather good at least in the vicinity of the

solution of the PI, and

• both PI algorithms can be viewed as having converged

Now, this knowledge is used a posteriori to assess these conclusions. Comparing the isolines

of TV illustrated in Figures 4.25 (a) and (b) with the isolines of TZh, see Figure 4.22 (a),

these conclusions are again confirmed.
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Comparison of the obtained results

If (9(o)-PI and O(i)-PI were assessed on the basis of the number of required iteration steps,

the algorithm involving the C?(i)-ANN would turn out to be the better one. Based on 0(i)-

ANNs, it took only three PI iteration steps to obtain a parameter set in the immediate

vicinity of the true solution, whereas it took five PI iteration steps to obtain a comparable

results based on 0(o)-ANNs. However, from the point of view of required FE analyses, the

assessment of the two Pis is different. The (9(o)-PI, on the one hand, was started after

having performed four FE analyses in advance. In the course of the O(0)-PI another five FE

analyses were carried out in order to assess the estimates of optimal parameters. Hence,

in total, nine FE simulations were required to solve the PI problem resting on 0(o)-ANNs.

The C?(i)-PI, on the other hand, was started after having performed twelve FE analyses in

advance. They include four analyses performed to determine values of the error function

1Zh, and another eight simulations required to compute the sensitivities of T& with respect

to R and z. In order to obtain the solution of the PI, another seven FE analyses were

carried out. Hence, in total, 19 FE simulations were required to solve the PI problem

resting on O(i)-ANNs. The (9(i)-PI required more than twice as many FE analyses as

compared to the C?(0)-PI.

It follows from these assessments that a PI algorithm involving (9(i)-ANNs can further

reduce the number of iteration steps required to solve a PI problem. However, the respective

number of FE analyses is significantly larger as compared to a PI algorithm involving O{oy

ANNs. Moreover, the computation time required for training of a O^-ANN is significantly

larger as compared to a O(o)-ANN. Therefore, in the investigated PI problem O(i)-PI could

not outperform O(o)-Pl.

4.6 Conclusions

An iterative parameter identification (PI) method resting on soft computing was proposed.

Artificial neural networks (ANNs) were used to approximate the underlying finite element

(FE) analysis of the problem under consideration. They were trained to map input pa-

rameters for FE analyses onto respective numerical results. Based on the trained ANN,

a GA was used for determination of an estimate of optimal parameters. Moreover, the

trained ANN provides an approximation of the sensitivity of the unknown parameters.

Hence, sensitivity analyses are no longer required to check the quality of an obtained so-

lution. The proposed algorithm combines advantages of gradient-free and gradient-based

PI methods, i.e., the entire parameter space is searched for an optimal solution and only

few FE analyses are required to find optimal parameters. The latter is essential for PI in
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geotechnical problems which, in general, are characterized by large-scale FE models.

The proposed PI method was applied to two problems taken from geotechnical engi-

neering. Based on the obtained results, the following conclusions can be drawn:

• Based on temperature measurements at the center of jet-grouted columns, the pro-

posed PI method was used to determine the column radius and the cement content

of the improved soil. A thermochemical FE analysis, which was used to simulate the

hydration process in the jet-grouted column, was approximated by an ANN. Ten FE

analyses were required in the course of PI. The identified column radius was assessed

by excavating the investigated test column. Good agreement between the identified

radius and the radius measured at the construction site was obtained.

• In the second application, the proposed PI method was employed for determination

of unknown material parameters in tunneling. The ANN was trained to approximate

the results from the FE analysis used for the simulation of the excavation of the

tunnel. Based on available measurements of the displacements of the tunnel lining

and of surface settlements, the unknown parameters were identified. 15 FE analyses

were required to solve the PI problem. So far, only a 2D model was employed in

the course of back analysis in tunneling. The tunnel excavation process, however, is

a three-dimensional problem. Future work will be directed to extend the proposed

2D model to three dimensions. In fact, the presented approach for PI is essential to

render PI feasible for large-scale 3D models.

The developed mode of PI, which involves so-called zero-order approximation neural

networks, (9(0)-ANNs, was extended to a mode of PI involving first-order approximation

neural networks, (9(i)-ANNs. They are trained (i) to map input parameters for FE anal-

yses onto respective numerical results, and (ii) to reproduce the sensitivities of the FE

results with respect to the input parameters. These sensitivities were approximated by fi-

nite difference expressions, computed on the basis of additional FE analyses. It was shown

that a PI algorithm involving (D(i)-ANNs can further reduce the number of iteration steps

required to solve a PI problem. However, the respective number of FE analyses is signifi-

cantly larger as compared to a PI algorithm involving C(o)-ANNs. Moreover, computation

time required for training of a (9(i)-ANN is significantly larger as compared to the du-

ration of O(0)-ANNtraining. Therefore, in the investigated PI problem (9(i)-PI could not

outperform O(o)-Pl.



Chapter

Loading of a gravel-buried steel pipe

subjected to rockfall

In this chapter, parameter identification from well-designed or chosen material tests is
addressed. It is emphasized that identification of material parameters and verification of
structural models should be strictly separated in order to allow for reliable prognoses of
non-tested situations.

As an example, the development of an analysis tool for the prediction of the loading of
a gravel-buried steel pipeline subjected to rockfall is described. The reliability test is based
on two physically and statistically independent sets of experiments, the first being related
to material model developments (see Subchapter 5.2) and the second to structural model
verification (see Subchapter 5.4). Experimental set © follows either from the design, per-
formance, and evaluation of a testing series of the elasticity of gravel, or from the wealth
of data on (triaxial) gravel strength and steel material properties documented in the open
literature. For verification of a structural Finite Element (FE) model of the buried steel
pipe, an experiment on a real-scale gravel-buried steel pipe was designed, performed, and
evaluated. The obtained data are collected into experimental set ©. Simulation results
obtained from a structural model based on the material parameters identified from exper-
imental set © compare very well to the results of measurements from experimental set
©. Thus, the developed model is well suited to provide insight into the structural behav-
ior of the gravel-buried steel pipe, also for rockfall events with different boulder masses
and different heights of fall, and/or for different overburdens, or for different materials
surrounding the gravel-filled trench (e.g. granite, soft soil).

Gravel is able to serve as an energy-absorbing and load-distributing protection system
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for steel pipes subjected to moderate rockfall scenarios. However, for heavy rock boul-
ders (such as investigated herein, e. g, m = 18260 kg) and heights of fall up to 100 m or
even more, the task of gravel should be restricted to energy absorption, and additional
construction elements should be buried in order to distribute and carry impact loads.

5.1 Introduction

The rapid climate change in recent years leads to thawing of former permafrost regions
in Alpine regions in general and in the Austrian Alps in particular. One consequence of
this evolution is an increased rockfall activity. This motivates closer study of protection
systems for transalpine infrastructure such as roads, railways, and pipelines.

Herein, the last type of aforementioned infrastructure is considered. The development
of an analysis tool that permits reliable predictions of the loading of a gravel-buried steel
pipeline subjected to rockfall is described. The reliability test is based on two physically
and statistically independent sets of experiments, the first being related to material model
developments (see Subchapter 5.2) and the second to structural model verification (see
Subchapter 5.4).

Experimental set © is used for the identification of material parameters for steel and
gravel, i.e., of physical quantities attached to a "representative volume element" with a
characteristic length scale of one to several-decimeters for gravel, and of less than one
millimeter for steel. This identification is possible because the related experiments are
characterized by homogeneous conditions, i.e., by the absence of spatial gradients of ma-
terial parameters and loading conditions in the aforementioned length scales. Thus, the
identified parameters are independent of structure-specific boundary conditions: they are
valid for virtually all structures made of the investigated types of steel and gravel.

The identified material parameters are then used to simulate the structural behavior
of gravel-buried steel pipes with special emphasis of the loading of such structures arising
from the impact of downfalling rock boulders. For verification of these simulations, an
experiment on a real-scale gravel-buried steel pipe was designed, performed, and evaluated.
The obtained data are collected into experimental set ©. Simulation results obtained
from a structural model based on the material parameters identified from experimental set
© are compared to the results of measurements from experimental set ©. In this way,
experimental set © allows for validation (i) whether the sophistication of the material
description based on the experimental set © is sufficient for the assessment of the loading
of a gravel-buried steel pipe subjected to rockfall, and (ii) to which extent the class of
structures "gravel-buried steel pipes" has to bè modeled by means of 3D nonlinear Finite
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Elements.
In case of a positive validation, the structural model can be used to reliably predict the

influence of the impact force and the burying height on the loading of the steel pipe. This
is an important contribution to the estimation of the safety of this type of infrastructure.

5.2 Theoretical and experimental material character-

ization

This subchapter deals with the material characterization of steel and gravel. Resting on
performed experiments as well as on test data taken from the open literature, the involved
material parameters are identified. They correspond to the elasto-plastic properties of steel
and to the elastic properties, shear failure, and the compactional behavior of gravel. The
scattering of the material parameters is especially addressed.

5.2.1 Elasto-plastic material behavior of steel

Steel is a homogeneous and isotropic recipe material. Marketable types of steel are pro-
duced under well defined conditions. Therefore, scattering of the material properties of
steel is well controlled and, as compared to gravel, insignificant.

Herein, steel is characterized by small-strain von Mises elasto-plasticity, see (Lubliner,
1990; Simo and Taylor, 1985) and references therein. In this framework, the description
of steel requires knowledge of three material parameters: Young's modulus E, Poisson's
ratio is, and the uniaxial yield strength o~y. These material parameters are taken from the
inspection certificate referring to the pipe-steel under investigation (EUROPIPE, 1993):

£ = 210GPa, i/ = 0.3, ay = 514MPa. (5.1)

5.2.2 Elasto-plastic material behavior of gravel

Wide-range grained gravel is commonly used to bury pipelines. Such a material shows a
rather complex behavior: (i) It is not able to carry tensile loads, (ii) a linear elastic behavior
can be observed only under moderate loading conditions and in the case of unloading, (iii)
it shows shear failure under distinctive deviatoric loading, and (iv) it is characterized by a
hardening behavior associated with compaction under predominantly volumetric loading.

The elasto-plastic cap model (DiMaggio and Sandier, 1971; Sandier and Rubin, 1979;
Hofstetter et al., 1993) suitably represents the material behavior of gravel, whereby the
elastic domain follows the isotropic linear generalized Hooke's law (Mang and Hofstetter,
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2000):

a = C : (e - e"), (5.2)

where cr denotes the Cauchy stress tensor, and e and ep stand for the linear strain tensor

and the plastic strain tensor, respectively. C represents the isotropic elasticity tensor which

can be expressed as a function of the bulk modulus K and the shear modulus G reading

( \ ) (5.3)

where I and ÏÏ denote the 2nd-order unity tensor and the 4th-order unity tensor, respec-

tively. The latter is defined as

($ 5 Ö S ) (5-4)

with ôik, ôji, Ou, and ôjk denoting the coordinates of the Kronecker tensor in R3, which is

defined as
1 ° r Z = J ' (5.5)
0 for i ^ j .

The relations between the two independent components Cnn and C1212 and the elastic

constants shear modulus G, bulk modulus K, Young's modulus E, and Poisson's ratio v

read

G = C1212, E = [(3Cini — 4C1212) Ci2i2]/(Cmi — C1212) >
4 (5.6)

K = C1111 — x C1212 , ^ = (Cmi — 2Ci2i2)/[2 ( C a n — C1212)] •

In the principle stress space, the elastic domain is bounded by three surfaces, see Figure

5.1 (a): (i) a tension cut-off accounts for tensile failure, (ii) a Drucker-Prager surface defines

shear failure under distinctive deviatoric stress states, and (iii) an ellipsoidal cap represents

the hardening of the material associated with compaction. In mathematical terms, these

functions read (Kropik, 1994; Kropik and Mang, 1996)

h(a) = h-T = 0,
/2(<r) = ||s||-Fc(/i) = 0 for T > h > Ç, (5.7)

/ 3 ( < T , C ) = FciMJuO-FeiO = 0 for C > A > * ( C ) ,

with

(5.8)

and
C lf C < 0 ' (5.9)
0 if C > 0 .
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Figure 5.1: Cap model for gravel: (a) elastic domain and direction of plastic flow,

respectively, in a meridional plane of the principal stress and the plastic

strain space, respectively; (b) exponential hardening law for compaction

based on D = 0.05 MPa"1 and W = 0.28

The direction of plastic flow is given by an associated flow rule (Kropik, 1994; Kropik and

Mang, 1996)
dfadep = d\c da

(5.10)

where consistency parameters are denoted as d\a and Jact stands for the set of active yield

surfaces, defined as Jact = {a G [1,2,3] | fa(c, Ç) = 0}. Loading in the cap mode leads

to compaction, whereas loading in the failure-surface mode or in the tension cut-off mode

leads to plastic volume dilatation, see Figure 5.1 (a). While the tension cut-off and the

Drucker-Prager surface are fixed in the stress space, the ellipsoidal cap expands if activated,

reflecting material compaction in terms of

= -W(l-exp[DX(0}),

with

(5.11)

(5.12)

where Ç denotes the hardening state variable. For a graphical representation of Eq. (5.11)

see Figure 5.1 (b). Algorithmic issues of this model can be found in (Hofstetter et al., 1993;

Kropik, 1994; Kropik and Mang, 1996).

The loading surfaces presented are defined by seven material parameters: T, a, tf,

W, D, R, and Çimi the initial value of the hardening state variable £• T refers to the

failure of gravel under tensile loading, a and -d correspond to shear failure of gravel. They

can be calculated from the Mohr-Coulomb parameters: cohesion c and angle of internal

friction (p. Enforcing, e. g., the Drucker-Prager meridian to coincide with the compressional



Gravel-buried steel pipe subjected to rockfall 5.2: Material characterization 79

Mohr-Coulomb meridian yields the relationships (Kropik, 1994)

a = V2À c cos tp / (3 — simp) and i9 = Js/3 sin ip / (3 — sin ip). (5.13)

W and D govern the hardening law (5.11). W is equal to the maximum attainable com-

paction of gravel; D is a shape parameter for the relationship between X(Ç) and sp
voU see

Figure 5.1 (b). R and Qni define the shape and the initial size of the cap. R is the ratio of

the major diameters of the ellipsoidal cap; C,ini refers to the initial center point of the cap.

In the following, these seven plastic parameters as well as two constants defining

isotropic elasticity will be determined. Identification of the plastic parameters is based

on the wealth of triaxial experiments documented in the literature. Elasticity of gravel is

characterized by very large scattering, as is mentioned in standard textbooks (Studer and

Ziegler, 1986), where values of Young's modulus range between 50 and 1000 MPa. This

was the motivation to conduct a test series on the gravel used for the protection of the

considered steel pipe, as will be described in the following.

5.2.3 Identification of gravel elasticity

Stiffness of gravel is often determined by the static load platen test (Terzaghi et al., 1996).

This test, however, gives access to only one stiffness parameter, which, in addition, is

not necessarily related to elasticity, but rather to a combined elasto-plastic loading. The

unloading path of such a test does refer to elasticity, but still does not provide access to

both constants of isotropic elasticity.

As a remedy, dynamic tests are performed, allowing for identification of gravel elasticity

on the basis of the theory of wave propagation in elasto-plastic solids (Kolsky, 1953; Kolsky

and Prager, 1964). In such media, elastic and plastic waves are encountered, the first ones

being faster than the second ones. Therefore, the elastic waves, which are of interest herein,

are easily detectable. The respective velocities of longitudinal waves, vi, and those of shear

waves, vs, give access to both constants of isotropic elasticity, via

ve=J—, vs = J—. (5.14)

where Cmi and C1212 are components of the 4-th order tensor C defined in Eq. (5.3), and

p denotes the mass density of gravel.

For determination of wave velocities in gravel, the following test set-up was realized: In

a quarry a trench of 25 m length, 4 m width, and 2 — 3 m depth was filled with wide-range-

grained gravel, see Figure 5.2. The volume fraction of fine-, medium-, and coarse-gravel

(diameters from 2 - 6 3 mm) was equal to 60 %. The remaining volume fraction of 40 %
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Figure 5.2: Test trench filled with gravel, positions of accelerometers A, B, C,

and locations of impact of both the bucket of a dredger and rock boulders,

respectively
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consisted of edged stones (diameters from 63 - 200 mm). The gravel was filled into the

trench in layers of 25 cm thickness. Each layer was densified by hand-guided compaction

units. The mass density of the material was equal to 1800 kg/m3 . Three accelerometers,

denoted as A, B, and C, were installed at weli-defined locations, see Figure 5.2, and buried

during the filling process of the testing trench. Before that, the accelerometers were fixed

to steel bodies of dimensions 30 cm x 30 cm x 30 cm, see Figure 5.3. They ensure that the

accelerometers detect the acceleration history of a representative volume element of gravel

rather than that of single stones.

(a) (b)

Figure 5.3: Steel body linking an accelerometer to a representative volume ele-

ment of gravel: (a) position in buried condition (b) view from the bottom

side showing the box containing the accelerometer

Signals are produced by hitting the bucket of a dredger vertically onto the surface

of the gravel body built into the trench. They lead to propagation of both longitudinal

and shear waves through the gravel. The fronts of these waves spread though the gravel

hemi-spherically with direction-dependent intensity. The maximum intensity of longitu-

dinal waves occurs in the vertical axis through the impact location. The intensity of the

longitudinal waves decreases rapidly with increasing angle from this axis. In contrast, the

intensity of the shear waves is zero in the vertical direction, and increases with increasing

deviation from this direction.

The surface locations at which the signals are transmitted by hitting the bucket onto the

gravel are indicated in Figure 5.2. The time instant of the signal transmission is recorded

by a fourth accelerometer which is placed in the immediate vicinity of the respective hitting

locations, see Figure 5.2.3 (a). The signal is recognized by the occurrence of accelerations

which are by orders of magnitude larger than the oscillation width of measurement noise,

related to gravel in a state of rest, see Figure 5.2.3 (b). The first acceleration value lying

outside the interval of the measurement noise indicates the onset of dynamic excitation.

In the same way, the time instants at which the waves reach the buried accelerometers are
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surface accelerometer
buried accelerometers

(a)

vertical acceleration in A
time instant at which the wave arrived in

8.965 8.97
t[s]

(c)

8.975 8.98

0.15

0.1

0.05
2

• co
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-0.1.

- o - acceleration at the surface
D time instant of impact
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(b)

Figure 5.4: Experimental acceleration mea-

surements allowing for determination of the

travel time of elastic waves in the gravel: (a)

experimental setup, (b) determination of the

time instant of the impact of the bucket onto

the gravel (t = 8.9744 s), and (b) determina-

tion of the time instant at which the wave

arrives at the buried accelerometer A (t =

8.9774 s). The travel time of the elastic wave

follows as At = 8.9774 - 8.9744 = 0.0030 s.

determined, see Figure 5.2.3 (c). Wave velocities are determined as the ratio of the distance

d between the accelerometer at the surface and the buried accelerometers and of the time

span needed for this travel, see Figure 5.2.3 (a). This time span is the difference between

the time instants of bucket impact and of wave arrival at the buried accelerometers.

It follows from the aforementioned wave intensities that the buried accelerometer de-

tects a signal related to a longitudinal wave, if it lies directly underneath the location of

the bucket impact. In the same experiment, all other buried accelerometers detect signals

related to shear waves. In this way, a total of 25 experiments allows for determination of 19

values for longitudinal wave velocities, and of 66 values for shear wave velocities. Insertion

of these values and of p = 1800 kg/m3 into Eqs. (5.14) delivers the values for Cim and

Ci2i2) listed in Appendix C.

From a statistical perspective the elasticity values given in Appendix C are samples for

and C1212, respectively. In the following, they will be used to estimate characteristics
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of the populations of Cnn and Ci2i2- Considering the necessary positiveness of the values

for Cnn and C1212 and assuming the distributions of these stiffnesses to be results of

multiplicative mechanisms of a number of influence factors (Benjamin and Cornell, 1970),

implies the choice of lognormal distributions for characterization of Cnn and Ci2i2- The

value m referring to the maximum of the probability density function of a lognormally

distributed population is given as:

m = exp(// — a2), (5.15)

where ß and a are the expected value and the standard deviation, respectively, of the

logarithmized population, which is normally distributed. The population parameters ß

and a can be estimated by analyzing samples (Bortz, 1999; Benjamin and Cornell, 1970).

The following considerations deal with such an analysis of a sample Sj, % = 1, 2 , . . .n,

of a normally distributed E-population. The mean value x and the empirical standard-

deviation s of a sample are given as

1 A „
x = - 2^ -i ' s = \

1

n —
(s-16)

i = l

where n denotes the sample size. The sample parameters x and s can be interpreted as

the most probable estimates for ß and a of the E-population. Moreover, based on x and s,

a two-sided confidence interval of the expected value ß of the E-population, [ßimu, ßUpp], IS

determined as

S • tn-ii-a/2 _ S • <n-l,l-a/2 /r 17>
ßlmu = X -j= — < II < X H -= '— = ß u p p , (5.17)

where £n-i,i-a/2 denotes the t-value that cuts an area equal to 1 — a/2 of the Student's

t distribution with n — 1 degrees of freedom, a stands for the significance level which is

equal to 5% for a 95%-confidence interval, see e.g. (Bortz, 1999; Benjamin and Cornell,

1970), such as employed herein. A two-sided confidence interval for the standard deviation

a of the E-population, [o7ou,,<7UpP], is determined as:

O~low —
\

(n - 1) • s2

< a <
\

(n - 1) • s2

(5.18)

where Xn-i,i-a/2 denotes the x2-value that cuts an area equal to 1 — a/2 of the chi-squared

distribution with n — 1 degrees of freedom, see e. g. (Bortz, 1999; Benjamin and Cornell,

1970). Inserting \x = x and a = s in Eq. (5.15), yields the most probable estimate of the

value m referring to the maximum of the probability density function of the lognormally

distributed population as m = exp(x — s2). Evaluation of Eq. (5.15) with (i) ß = ßi^
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and a = Ox^ and (ii) fj, = ßupp and a = aupp yields an upper and a lower bound for m as

and C1212

and mupp = exp(ßupp - alpp).

The corresponding statistical analyses of the logarithmized samples of

(given in Appendix C) yield

Cjfft = 178 MPa < d m < 511 MPa =

= 46.3 MPa < C m 2 < 100 MPa =
= 340 MPa ,

Ci2i2 = 71.7 MPa,

see also Figure 5.5. According to the Eqs. (5.6), the bounds for

(5.19)

and Ci2i2 can also

O lower bound for most probable value of Cl111
A most probable value of Cl 111
O upper bound for most probable value of Cl 111

ACUll = 340 MPa

D Cllll = 511 MPa

. x l < T

O lower bound for most probable value of C1212
A most probable value of C1212
D upper bound for most probable value of C1212

1 1.5
Cllll of gravel [Pa]

O C1212 = 46.3 MPa

A C1212 = 71.7 MPa

D C1212 = 100 MPa

2 3
C1212 of gravel [Pa] xlO"

(a) (b)

Figure 5.5: Lognormal probability distribution functions obtained from statis-

tical analyses of the experimentally determined samples for (a) Cmi and

(b) C1212

be given in terms of the shear and the bulk modulus, G and K, or in terms of the Young's

modulus and the Poisson's ratio, E and v.

G = 72 MPa,

K = 244 MPa,

Ë = 196MPa,

v = 0.366 ,

upp )Glow = 46 MPa < G < 100 MPa = G

Kiow = 116 MPa < K < 378 MPa = Kupp,

Elow = 123 MPa < E < 276 MPa = Eupp,

vlow = 0.324 < v < 0.378 = uupp.

(5.20)

5.2.4 Identification of inelastic behavior of gravel

Identification of the parameters governing shear failure of gravel

Over the last decades a wealth of experimental data referring to the shear strength of gravel

has been published in the literature, see, e.g., (Penumadu and Zhao, 1999) and references

therein. Commonly, triaxial compression tests were carried out on cylindrical specimens:
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First, hydrostatic compression is applied up to a specific confinement pressure p. Whereas p

is subsequently kept constant, the specimens are subjected to additional uniaxial loading in

the direction of the cylinder axis, up to shear failure. Penumadu and Zhao (Penumadu and

Zhao, 1999) give detailed information on ten triaxial tests published originally in (Marachi

et al., 1969; Al-Hussaini, 1971; Leslie, 1975; Alva-Hurtado and Selig, 1981); the tested

gravels differed in grain shape, grain size, grain distribution, mineral hardness, and void

ratio. The applied confinement pressures p ranged from 103 kPa to 4481 kPa. Penumadu

and Zhao document each experiment by two diagrams referring to the second phase of the

triaxial test: A (a\—o-z)-eaxi diagram shows the relation between the additionally applied

uniaxial stress1 over the axial strain of the cylindrical specimen. An eaxi-evoi diagram shows

the evolution of volumetric strain as a function of the axial strain.

The experimental results are illustrated herein in an /i- | |s | | diagram, i. e., in a meridional

plane of the principal stress space, see Figure 5.6. There, all stress paths of hydrostatic

precompression follow the I\ axis starting from the origin of the coordinate system. The

additional uniaxial compression results in an ascending path with slope 2/3. The maximum

experimental stress paths
Drucker-Prager failure meridian

-30

12

10 Legend and original references:

-4481kPa; Marachi et al. (1969)
-2758kPa; Leslie (1975)
-2068kPa; Leslie (1975)

-861kPa; Leslie (1975)
-103kPa; Alva-Hurtado et Selig (1981)

-4481kPa; Marachi et al. (1969)
-2896kPa; Marachi et al. (1969)
-2068kPa; Al-Hussaini (1971)

-965kPa; Marachi et al. (1969)
-414kPa; Leslie (1975)

-25 -20 -10 -5

Figure 5.6: Experimental data referring to shear failure of gravel taken from

(Penumadu and Zhao, 1999) and corresponding failure meridian in a merid-

ional plane of the principal stress space

values max((7i—0-3) in the {ox— az)-eaxi diagrams of Penumadu and Zhao correspond to the

points of shear failure indicated in Figure 5.6. The corresponding coordinates as functions

*At the beginning of the second phase of the experiment, O\ = 03 = p. The 1-direction coincides with
the direction of uniaxial loading. Therefore, \ai\ increases during the second phase of the experiment,
whereas «73 stays equal to the confinement pressure p.
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of max((7i — 0-3) and p are

(/i)a/ = max(cri-a3) + 3p,

M\sf = y W ^ i -a3) + p - (JO.,/3]2 + 2 [p - (/1W/3]2 ,
(5.21)

where the indices s / stand for "shear failure". The ten tests taken from (Penumadu and

Zhao, 1999) are evaluated according to Eqs. (5.21), see the /i- | |s | | diagram illustrated

in Figure 5.6. The experimental points referring to shear failure can be approximated

(r2 = 0.995) by a linear failure meridian

||s|| - 149087 + 0.3997 h = 0 for ||s|| and h in [ Pa ] . (5.22)

Eq. (5.22) can be interpreted as a Drucker-Prager failure meridian. From a comparison

of Eq. (5.22) with Eq. (5.7)2 the Drucker-Prager parameters follow as a = 149 kPa and

ê = 0.40. Alternatively, Eq. (5.22) can be interpreted as a compressive Mohr-Coulomb

failure meridian, described mathematically by insertion of the Eqs. (5.13) into Eq. (5.7)2-

Comparing the result with Eq. (5.22), yields c = 90.8kPa and tp = 36.1°. Remarkably,

one set of c and tp satisfactorily characterizes shear failure of gravels which differ in grain

shape, grain size, grain distribution, mineral hardness, and void ratio. Thereby, c is very

small compared to the characteristic deviator stresses ||s|| encountered in the triaxial tests;

this is expressed by referring to gravel as a "cohesionless" material.

Identification of the parameters governing compaction of gravel

Identification of the material parameters, W and D, characterizing the behavior of gravel

in compaction is based on (a\ — az)-eaxi and eaxi-evoi diagrams of (Penumadu and Zhao,

1999), evaluated in the form of am-evoi diagrams, see Figure 5.7. Thereby, am = / i / 3 is

the mean normal-stress. Apparently, grain shape, grain size, grain distribution, mineral

hardness, void ratio, and hydrostatic precompression have a non-negligible influence on the

behavior of gravel in compaction.

Herein, rather small mean stresses are of interest, see also Subsection 5.4, which implies

identification of W = 0.28 and D = 0.05 MPa"1, respectively, see Figure 5.7. Obviously,

high confinement pressures are not predicted well by the cap model as far as the volumetric

strains are concerned: the model answer is too compliant. However, they have no relevance

herein.

Initial size and shape of the cap and tensile failure of gravel

The initial size and the shape of the cap is determined from constant volume tests, R = 4.4

and (ini = OkPa, see (Kropik, 1994). For numerical reasons, the material parameter
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< p = -965kPa; Marachi et al. (1969)
A p = -414kPa; Leslie (1975)

Figure 5.7: Experimental data referring to the behavior of gravel in compaction,

taken from (Penumadu and Zhao, 1999) and respective cap-model output

for D = 0.05 MPa"1 and W = 0.28

referring to tensile failure of gravel, T, is not set equal to zero. Instead, a negligibly small

positive value (100 Pa) is assigned to T.

5.2.5 Discussion and final remarks regarding the identified ma-

terial parameters of gravel

In Sections 5.2.3 and 5.2.4 the material parameters of wide-range-grained gravel were iden-

tified. Elastic properties of gravel were determined from the theory of wave propagation

in isotropic bodies. A statistical analysis yielded most probable values for the bulk mod-

ulus, the shear modulus, Young's modulus, and Poisson's ratio. Taking into account the

scattering of these parameters, a lower and an upper bound of these elastic parameters

were calculated based on 95 %-confidence intervals of the governing statistical parameters.

The results indicated that the elastic properties of gravel scatter significantly. Analyzing

the inelastic properties of gravel, it was found that the Mohr-Coulomb failure criterion

based on one specific choice of the cohesion and the angle of internal friction is well suited

to describe shear failure of various types of gravel. However, a non-negligible influence

of grain shape, grain size, grain distribution, mineral hardness, void ratio, and confine-

ment pressure on the behavior of gravel in compaction was encountered. Nevertheless, the

hardening law proposed by DiMaggio, Sandier, and Rubin in the 1970s, (DiMaggio and

Sandier, 1971; Sandier and Rubin, 1979), is a reasonable approach to describe compaction

of a specific type of gravel. The nine material parameters of gravel are listed in Table 5.1.
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Table 5.1: Material parameters of gravel

elastic behavior [Hooke's law]: K = 244 MPa, G = 72MPa,

shear failure [Drucker-Prager criterion]: a — 149kPa, ê = 0.40,

behavior in compaction [DiMaggio-Sandler model]: W = 0.28, D = 0.05 MPa"1,

(initial) shape of the cap [approach by Kropik]: R = 4 . 4 , Qni — OkPa,

tensile-loading behavior [tension cut-off]: T = O. lkPawO.

5.3 Estimation of penetration depth and impact force

arising from rockfall onto gravel

Numerical modeling of rockfall events requires knowledge about the penetration depths of

rock boulders into gravel and about the dynamic forces resulting from the impact. Lack of

a standard procedure for estimation of these quantities has motivated penetration experi-

ments for rocks impacting onto gravel. A dimensional analysis of the underlying physical

problem will be described in in Section 5.3.1. Together with pertinent contributions to the

impact of projectiles onto concrete and soil in the literature (Forrestal et al., 1994; Forre-

stal et al., 1996; Li and Chen, 2003; Forrestal et al., 2003) this analysis is the basis for the

design of experiments described in Section 5.3.2. Experimental results will be evaluated

and discussed in Section 5.3.3 which contains the desired estimation of the penetration

depth and the impact force as a function of the height of fall, the boulder mass, and the

indentation resistance of the gravel.

5.3.1 Impact of rocks onto gravel — Dimensional analysis

For engineering design of rockfall protection systems, impact of rocks is commonly char-

acterized by three relevant physical quantities (Labiouse et al., 1996): the penetration

depth X, the impact duration Ai;, and the impact force F. In the following, the rock

boulders are treated as rigid impactors which do not break into pieces during impact.

Therefore, X, A.U, and F do not depend on the deformational behavior of the rock. Based

on well-accepted physical assumptions concerning the impact of projectiles onto soil and

concrete targets (Forrestal et al., 1994; Forrestal et a l , 1996; Li and Chen, 2003) X, Att,

and F are assumed to be governed by the boulder mass m, the impact velocity of the boul-

der, i/o, the characteristic length of the boulder nose, d, and the dimensionless sharpness of

the boulder nose, N*; moreover, X, AU, and F are assumed to depend on the mass density

of the gravel, pg> and the strength-like indentation resistance of the gravel, R. Formally,
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these dependencies can be written as

X = fi(m,vo,dtN*;pg,R),

At* = h(m,vo,d,N*-pg,R), (5.23)

F = Mm,vo,d,N*;pg,R).

The present work is restricted to geometrically similar rock boulders impacting onto gravel

in an identical manner. Hence, N* is a constant. Similarly, a specific type of gravel is

considered, which is commonly used for energy-absorbing layers. This renders also pg as a

constant. The indentation resistance R for one and the same value of pg is characterized

by significant scattering. Therefore, R is not treated as a constant, but as a probabilistic

variable which will be analyzed statistically. Writing the Eqs. (5.23) for pg = const, and

N* — const, yields

X = fi(m,vo,d,R),

AU = f2(m,vo,d,R), (5.24)

F = f3(m,VQ,d,R).

The basis of dimensional analysis is (Barenblatt, 1996; Jones, 1989; Buckingham, 1914)

that physical laws do not depend on arbitrarily chosen units of measurements. This implies

that functions describing physical laws such as, e.g., fi, /2 , and /3 in the Eqs. (5.24),

must possess a fundamental property, called generalized homogeneity, which allows for the

reduction of the number of arguments in these functions. For this purpose, the dimension

functions of the involved physical quantities are introduced. In the present case they read

[X] = OM0!0, [At,] = L ^ T 1 , [F] = I ^ M 1 ! - 2 ,

[d] = I^M0!"0, [m] = L° Mx T°, [v0] = I^M0!""1 , [R] = L"1 M1 T~2,

(5.25)

where L, M, and T are abstract positive numbers related to arbitrary changes of the chosen

units of measurements (Barenblatt, 1996). They are called base dimensions of length,

mass, and time, respectively. The next step in dimensional analysis is to divide the N

governing parameters, here d, m, vç>, and R, (N = 4), into k dimensionally independent

and (N — k) dimensionally dependent quantities. Dimensionally independent quantities

have a dimension function which cannot be expressed in terms of a product of powers

of the dimensions of the remaining quantities. The number of dimensionally independent

quantities is equal to the rank of the so-called exponent matrix of dimension. For problems

described by the Eqs. (5.24) this matrix reads as

[d] [m] M ' [R] [X] [AU] [F]

(5.26)
L
M
T

1

0

0

0

1

0

1

0

-1

-1

1

-2

1

0

0

0

0

1

1

1

-2
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with a rank of three, indicating that k = 3. Accordingly, three of the four governing
parameters in the Eqs. (5.24) are dimensionally independent (e.g. d, m, and VQ), whereas
one of the four governing parameters (N — k = 4 — 3 = 1) is dimensionally dependent
(e.g. R). The Pi-Theorem (Buckingham, 1914) states that each one of the relationships
in the Eqs. (5.24) can be written as a relationship between a dimensionless parameter and
(N — k) dimensionless products, yielding

}C ( m tP'\
nx = ~T — 3~\ I KR = „ ,o I , (5-27)

d \ Rd6 J

(5.28)- ft [nR = j ,

) , (5.29)

J
where T\% F2, and T% are dimensionless functions which do not depend on units of mea-
surements. Hence, they are invariant with regard to changes of the chosen unit system.
Remarkably, dimensional analysis has allowed for the reduction of the number of argu-
ments in the functions /1, /2, and f$ from four to one, see the Eqs. (5.24) and (5.27)
- (5.29), reducing the efforts required to analyze these physical laws by three orders of
magnitude. The functions T\, Ti, and Tj, will be determined subsequently in a hybrid
(analytical-experimental) approach.

5.3.2 Design of experiments

The experimental investigation consisted of impact tests performed to determine the in-
dentation characteristics of different rock boulders impacting onto gravel. The tests were
performed with the help of a truck-mounted crane. The available crane restricted the
rock-boulder mass to 20000 kg and the height of fall to 20 m. According to geologists,
representative heights of fall in real-life situations are by far larger than 20 m. Hence, the
test design had to be defined such that the obtained results allow for an extrapolation
to rockfall scenarios that could not be investigated experimentally. In order to provide
such an extrapolation, existing formulae for the estimation of the penetration depth of
non-deformable impactors were applied to the present problem of rockfall onto gravel. In
particular, Forrestal's formulae (Forrestal et al., 1994; Forrestal et al., 1996) describing
penetration depth of non-deformable projectiles onto concrete and soil targets turned out
to be well suited for interpolations between experimental data. They were presented in
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dimensionless form by Li and Chen (Li and Chen, 2003), reading as

= \

X
~d

kir/AN Ak

(l + I/N)
for — < k ,

a

d ~ n U for — > k.
d

(5.30)

(5.31)

X denotes the penetration depth, d is the diameter of the projectile, see Fig. 5.8 (b), N

is a geometry function characterizing the sharpness of the impactor nose, / is the impact

function describing the intensity of the impact, and k is the dimensionless depth of a surface

crater. The geometry function N is defined as

T

y

Figure 5.8: (a) cubic impactor with pyramidal nose and (b) equivalent impactor

with conical nose

m
( 5 ' 3 2 )

where m denotes the mass of the impactor, ps is the mass density of the target material,

B is a dimensionless compressibility parameter of the impacted material, and iV* is the

nose shape factor. B is equal to 1.2 for soil targets (Forrestal et al., 1994). The impact

function / is defined as

/ =
TUVQ

(5.33)

where ô denotes the impact velocity and R is a strength-like parameter, which can be

interpreted as the indentation resistance of the target material (Forrestal et al., 2003).
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The impact function I is equal to the argument TTR of the dimensionless functions T\, Ti,

and ^ 3 , see Eq. (5.27), I = TVR. Finally, k is defined as (Li and Chen, 2003)

k = 0.707 + ^ , (5.34)
d

where H stands for height of the impactor nose, see Fig. 5.8 (b).

Li and Chen (Li and Chen, 2003) investigated the validity of the Eqs. (5.30) and (5.31)

on the basis of the results of 82 different impact tests (Li and Chen, 2003). For all experi-

ments (i) the dimensionless penetration depth (X/d)test was calculated from the measured

values Xtest and dtest, and (ii) the functions N and / were evaluated according to Eq. (5.32)

and Eq. (5.33), respectively. Thereby, large intervals for (X/d)test, N, and / were covered,

see Table 5.2. The evaluation of the Eqs. (5.30) and (5.31) with the experimental values for

N and / yielded 82 values of estimated dimensionless penetration depths X/d. They agreed

well with the corresponding 82 values of (X/d)test. Hence, the validity of the Eqs. (5.30)

and (5.31) was proved in (Li and Chen, 2003) for the intervals of (X/d)test, N, and / given

in Table 5.2.

Table 5.2: Intervals of (X/d)test, N, and / for which the validity of Eqs. (5.30)

was proved in (Li and Chen, 2003)

validity interval of (X/d)test validity interval of N validity interval of /

[0.04 ; 5.80] [0.53 ; 96.63] [0.03 ; 10.97]

In the present research, rock boulders of approximately cubic shape are considered to

be relevant for rockfall scenarios. Cubes can be dropped such that they hit the ground with

a face, an edge, or a tip. Thereby, the largest penetration depth, considered to be relevant

for design purposes, will be obtained, if a cubic boulder impacts onto the ground with a

tip. For this case, the dimensionless model of the Eqs. (5.30) - (5.34) will be specialized in

the following.

The pyramidal nose of a cubic rock boulder is approximated by an equivalent conical

nose such that the same amount of target volume is displaced at equal penetration depths.

Hence, the area Ao of the circular base of a conical nose is set equal to the area A& of the

triangular base BCD of the pyramid ABCD, see Fig. 5.8:

AO A A =• d = ß ^ i = 1.050 VV, (5.35)
4 2 V 7T

where V denotes the volume of the cube, with i = \/V as its side length. Furthermore,

the height H of the conical nose is set equal to the height of the pyramid ABCD, i. e., the
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distance of points A and E, see Fig. 5.8, yielding

i 7 = £ v ? = 0.5774 y/V. (5.36)

The nose shape factor N* for conical impactors is defined as (Li and Chen, 2003)

N' = TVW with * " f - (5'37)

Inserting the Eqs. (5.35) and (5.36) into the Eqs. (5.34) and (5.37), yields k = 1.257,

ip = 0.5498, and N* = 0.4527. Inserting the latter result, Eq. (5.35), and m = V pr (where

pr denotes the mass density of granite) into Eq. (5.32) yields the expression for N for the

special case of cubic impactors of granite,

" = M W = 2 * ' (5'38)

In Eq. (5.38) pr and pg = ps were set equal to 2700 kg/m3 and 1800 kg/m3, respectively.

N = 2.385 lies within the interval [0.53 ; 96.63] for which the validity of the Eqs. (5.30) and

(5.31) was proved by Li and Chen (Li and Chen, 2003), see Table5.2. Inserting N = 2.385

and k = 1.257 into the Eqs. (5.30) and (5.31) yields an expression of Forrestal's formulae

for the special case of granite boulders of approximately cubic shape impacting with a tip

onto a material with the mass density ps = 1800 kg/m3:

f
4 = 1-518 In
a

1 + 1 / 2 . 3 8 5 ] , 1OKf7 f _ X
+ 1.257 for — > 1.257. (5.40)

1.414 d

The Eqs. (5.39) and (5.40) represent the dimensionless function J-\(IÏR = I) appearing in

Eq. (5.27) (for a graphical representation see Fig. 5.9).

In order to specify rock boulder masses and heights of fall for the experimental

setup, / is specialized for cubic impactors of granite: Therefore, Eq. (5.35), m = V pr

(pr = 2700 kg/m3), and VQ = J2ghf (where g = 9.81 m/s2 stands for the gravitational

acceleration and hf for the height of fall) are inserted into Eq. (5.33), yielding

Remarkably, the factor m/d3 = pr/1.0503 turns out to be constant for cubic granite boul-

ders falling onto a tip, rendering / to be a function of hj and R only. Inserting Eq. (5.41)

into Eq. (5.39), yields

g = D
A W U " " 7 , for ^ < 1.257 . . . hf in [m] and Ä i n [ P a ] , (5.42)

d \ R + 19180 /i/ d



Gravel-buried steel pipe subjected to rockfall 5.3: Loading assumptions 94

0.2 0.4 2 0.6 , 0.8 1
impact function I = m . v / ( R . a ) [-]

Figure 5.9: Dimensionless penetration depth X/d as a function of / for ap-

proximately cubic granite-boulders with mass m and characteristic length

d, impacting at velocity VQ with a tip onto a material with indentation

resistance R and mass density pg = 1800 kg/m3

According to Eq. (5.42), the estimation of the penetration depth X for the impact of a

granite boulder with a characteristic length d falling from the height hf onto gravel, requires

knowledge about the indentation resistance R of gravel, which can be obtained by means of

back analysis from experimental results. Based on Eq. (5.42), three different rock boulder

masses and three different heights of fall were defined for the impact experiments. Thereby,

m < 20000 kg and hf < 20 m had to be taken into account. The sign of equality refers

to the limiting values depending on the available type of crane. Rock-boulder masses and

heights of fall were chosen such that equally-spaced penetration depths could be expected

according to Eq. (5.42): For constant R and hf, this relation yields X oc d. Together

with Eq. (5.35) and m = V pr, this results in X oc ^/m. Therefore, masses of three

granite boulders were chosen such that ^/m is approximately equally-spaced resulting in

m e {4380 kg; 10160 kg; 18260 kg}. For specification of three different heights of fall, it

was assumed that 19180hf, with hf E [0m; 20m], can be neglected in comparison with

R in Eq. (5.42) which yields X oc Jhf for constant R and d. This assumption was justified

a posteriori, since back-analyzed values for R are of the order of magnitude 107 Pa, see

Table 5.3 and Section 5.3.3. Based on X oc Jhf, three heights of fall were chosen such
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that Jhj is equally-spaced. Mathematical results were rounded to the nearest integer

resulting in hj G { 2 m ; 9 m ; 20 m }.

In a quarry a trench of 25 m length, 4 m width, and 2 m depth was filled with wide-

range-grained gravel: the volume fraction of fine-, medium-, and coarse-gravel (diameters

from 2 - 6 3 mm) was equal to 60 %. The remaining volume fraction of 40 % consisted of

edged stones (diameters from 63 - 200 mm). The gravel was filled into the trench in layers

of 25 cm thickness. Each layer was densified by hand-guided compaction units. The mass

density of the gravel was equal to 1800 kg/m3 .

Each rock boulder was equipped with an accelerometer PCB-353B03

(PCB PIEZOTRONICS Inc., 2002), allowing to measure the acceleration of the

rock in the vertical direction.

(a) (b) (c)

Figure 5.10: (a) 4380 kg granite boulder, (b) 10160 kg granite boulder, (c)

18260 kg granite boulder

5.3.3 Evaluation of experimental results

Penetration depths X were measured as a function of the mass m of the rock boulders and

the height of fall hf. This was done by means of a stadia rod after the rocks had been lifted

out of the crater, see Table 5.3. In some cases, the granite boulders tipped over immediately

after the impact. Thereby, the tip of the rock dug the flank of the crater, rendering mea-

surement of the penetration depth with the stadia rod useless. Consequently, penetration

depths were calculated by integrating the accelerometer measurements twice. Since these

measurements were afflicted with inaccuracies, this analysis did not yield realistic values

for the penetration depths. Hence, for further evaluation of test results for penetration

depths, only five experimental results are available. The dimensionless penetration depths

X/d obtained from these five tests lie within the interval [0.16; 0.43]. Remarkably, this

interval is part of the interval [0.04; 5.80], for which the validity of the Eqs. (5.30) and

(5.31) was proved by Li and Chen (Li and Chen, 2003), see Table5.2.
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Table 5.3: Penetration depths measured by means of a stadia rod after lifting
the rocks out of their crater, characteristic length d of the rock boulders,
and results from back analysis of the indentation resistance R according to
the Eq. (5.42)

mass

(m)

4380 kg

4380 kg

4380 kg

10160 kg

10160 kg

10160 kg

18260 kg

18260 kg

18260 kg

18260 kg

height of fall

(hf)
2.03 m

8.94m

19.30 m

2.00 m

8.55 m

18.75 m

2.05 m

8.62 m

18.67 m

18.85 m

penetration
depth
(X)

0.14m

0.21m

0.37 m

0.26 m

0.51m
0.53 m

0.34 m

0.65 m

0.82 m

0.85 m

remark

tipped over

tipped over

tipped over

tipped over

tipped over

characteristic
length

(d)

1.63m
1.63 m

1.99 m

1.99 m

1.99 m

indentation
resistance

(R)

8.13-106 Pa

8.91-106 Pa

8.16-106 Pa

10.98 • 106 Pa

10.29 • 106 Pa

Estimation of penetration depth

Material parameters of soil, in general, and of gravel, in particular, are characterized by a
large scattering (Terzaghi et al., 1996). Hence, the scatter of the indentation resistance R
is expected to be by far larger than possible measurement inaccuracies concerning m, hf,
and X. This allows for back analysis of R for each of the five considered tests. For this
purpose, considering m = Vpg, pg = 1800kg/m3, and Eq. (5.35), the characteristic length
d of the respective rock boulders is calculated first (see Table5.3). Secondly, Eq. (5.42)
allows for calculation of the indentation resistance of gravel, R, from the values for X, d,
and hf given in Table 5.3. The back-analyzed values for R are ranging between 8.13 MPa
and 10.98 MPa. They constitute a sample of the statistical population of the strength-like
indentation resistance, with sample size n = 5.

According to commonly used standards such as, e.g., the EUROCODE (CEN-EVN-
1991-1, 1994), the design of structures should be based on 5%-quantiles of strengths. A
respective small value for the indentation resistance will yield large penetration depths
but small impact forces. Since both penetration depths and impact forces are relevant
for the design of rockfall protection systems, not only the 5 %-quantile of R, but also its
95 %-quantile is calculated. The respective high value of indentation resistance will yield
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relatively small penetration depths but large impact forces.

The strength-like indentation resistance can only take positive values. Taking this into
account and assuming that the distribution of the indentation resistance represents the
result of a multiplicative mechanism of a number of influence factors, (Benjamin and Cor-
nell, 1970), the lognormal distribution is suitable to describe the statistical characteristics
of the Ä-population. Consequently, the sample of the logarithms of the back-analyzed val-
ues, log[(R)i/R*], i = 1,2,... 5 , can be considered as normally distributed. The constant
R* is introduced in order to provide a dimensionless argument for the natural logarithm.
Since R* does not influence the final results, it is set equal to an arbitrary value; herein
R* = 1 Pa.

The expected value and the variance of a normally distributed population, denoted as
ß and <T, respectively, permit evaluation of the 5 %- and 95 %-quantiles of the population.
These values are estimated analogously to the procedure described by König et al. (König
et al., 1998) for compressive strengths of concrete. I. e., first the mean value x and the em-
pirical standard-deviation s of the logarithmic sample with the size n = 5 are determined.
This gives

x = - f > g (^) = 16.04 for R* = 1 Pa, (5.43)

and
2 ^ [ ( § ) ] 2 =» 5 = 0.1362, (5.44)

respectively. Based on these quantities, a two-sided confidence interval for the expected

value ß of the log[Ä/Ä*]-population, [ßiow, ßuPP], is determined as follows:

S • £ l l Q / 2 ^ ^ - , s ' tn-1 ,l-a/2 (CAK\
'— < ß < x H 7=—— = ßupp , (5.45)

where in-i,i-a/2 denotes the lvalue that cuts an area equal to 1 — a/2 of the Student's
t distribution with n — 1 degrees of freedom, a stands for the significance level which is
equal to 5% for a 95% confidence interval, see e.g. (Bortz, 1999). Inserting Eqs. (5.43)
and (5.44), n = 5, a = 5 %, and £4,0.975 = 2.776 into (5.45), yields

ßiaw = 15.87 < ß < 16.21 = ßupp for iT = lPa . (5.46)

In order to obtain an upper bound of the standard deviation a of the log[i?/i?*]-population,

a one-sided confidence interval is determined,

a <
\

( r c - 1 ) - * 2 ^ (547)
Xn-l,a
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where Xn-i a denotes the x2~v a lu e that cuts an area equal to a of the chi-squared distri-

bution with n — 1 degrees of freedom, see e.g. (Bortz, 1999). Inserting Eq. (5.44), n = 5,

a = 5%, and ^4,0.05 = 0.7107 into (5.47) yields

(5.48)a < 0.3230 = o,upp •

Probability distribution functions of the indentation resistance resting on x, Hupp,

aupp according to Eqs. (5.43), (5.46), and (5.48) are illustrated in Fig. 5.11. The 5%- and

(a) (b)

pdf with n=15.87; 0=0.323
see Eqs. (5.46) and (5.48)

- " pdf with u=16.04; <T=0.323
see Eqs. (5.43) and (5.48)

- pdf with u=16.21; 0=0.323
see Eqs. (5.46) and (5.48)
estimate of 5% quantile
see Eq. (5.49)
estimate of expected value
see Eq. (5.43)

O estimate of 95% quantile
see Eq. (5.49)

14.5 15 15.5 16" 16.5 17 17.5 18 18.5
logarithmic indentation resistance of gravel, logffi/R ) [-]

pdf with n=15.87; o=0.323
see Eqs. (5.46) and (5.48)

- - pdf with n=16.04; o=0.323
see Eqs. (5.43) and (5.48)
pdf with n=16.21; a=0.323
see Eqs. (5.46) and (5.48)
estimate of 5% quantile
see Eq. (5.50)
estimate of 50% quantile
(i.e. median) see Eq. (5.50)
estimate of 95% quantile
see Eq. (5.50)

5 10 15 20 25
indentation resistance of gravel, R [MPa]

Figure 5.11: Probability distribution functions (pdfs) of the indentation resis-

tance providing estimates of the 5 %-quantile and the 95 %-quantile of the

indentation resistance (shaded areas are equal to 5%): (a) pdfs of nor-

mally distributed log(R/R*)-Tpopu\ation (b) pdfs of lognormally distributed

A-population; (both diagrams are equivalent representations)

95 %-quantiles of the log[i?/i?*]-population are calculated on the basis of 95 % confidence

intervals for the expected value ß and the standard deviation u of the \og[R/R*] population

as
7? s

-5- ) =
R J 5%

r> N

-5- )

- ^0.025 • o-upp = 15 .34,

+ upp
= 16.74,

for

for

R* = lPa ,

R* = 1 Pa,
(5.49)

M*JQ5%

with the numerical values of ßiow, ßupp and aupp from the Eqs. (5.46) and (5.48). 20.025 =

1.6449 denotes the z-value that cuts an area equal to 95% of the standardized normal

distribution. Application of the exponential function to x, \og(R/R*)$% and \og(R/R*)Q$%,

see Eqs. (5.43) and (5.49), and multiplication of the obtained results with R* = 1 Pa finally

yields

R50% = 9.22 • 106Pa, R5% = 4.58 • 106Pa, and R95% = 18.58 • 106 Pa, (5.50)
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where i?so% = R* • exp(a;), R5%, and Rg5% denote the median (i.e., the 50%-quantile),

the 5 %-quantile and the 95 %-quantile of the Ä-population, respectively. Penetration

depth - height of fall diagrams based on R$% and RQS% (Fig. 5.12) show wide bounds

for the probability-based estimates of penetration depths. These bounds follow from the

1.5
(a) /« = /S260kg (d= 1.99m)

&
G
O

0.5

5%-quantile of the indentation resistance
- - median of the indentation resistance

95%-quantile of the indentation resistance
+ experimental values

1

0.9

0.8

I 0.7

a.
•8 0.5
c
o
§ 0.4

S 0.3
a.

0.2

0.1

(b) m = 10160 kg (d =1.63m)

- 5%-quantile of the indentation resistance
- - median of the indentation resistance

95%-quantile of the indentation resistance
+ experimental values

10
i h

15
ft [height of fall h [m]

20 25 10
]5 10

height of fall ft [m]
15

Figure 5.12: Comparison of model results (Eq. (5.42) with R = R5%, R = Rso%,

R = RQ5%) and experimental results (see Table 5.3) for (a) the 18260 kg

rock boulder and (b) the 10160 kg rock boulder

scatter of the material properties of gravel but also from the statistically small number

of performed tests. Nevertheless, the model results based on the estimate of the median

of the indentation resistance, i?5o%, show very good agreement (r2 = 0.982) with the

experimentally obtained penetration depths (see also Fig. 5.12 and Table 5.3). This fact

underlines the usefulness of the presented approach.

Estimation of impact duration and impact force

The design of protection systems for rockfall requires estimates of both the penetration

depths and the dynamic forces acting onto the system during the impact. Newton's second

law for a rock boulder reads: Fr(t) = m • a(t), where Fr{t) denotes the resultant of the

forces acting on a rock boulder with mass m at time t, moving with the total acceleration

a(t). Consideration of Newton's third law - "Actioni contrariam semper et aequalem esse

reactionem" - permits calculation of the force Fg acting onto the hit material (gravel) as:

= m-[g-a{t)}, (5.51)

where g stands for the gravitational acceleration. Consequently, the estimation of impact

forces requires a model for the description of the deceleration of the rock boulder during
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impact. The following kinematic conditions at the beginning (t = 0) and at the end

(t = Ati) of the impact are considered:

t = 0 : a = g... (5.52.a), v = vo = ^2ghf ... (5.52.b), w = 0 ... (5.52.c),

t = AU: a = 0 . . . (5.52.d), v = 0 (5.52.e), w = X ... (5.52.f),

(5.52)

where v and w denote the indentation velocity and the indentation depth, respectively. X

stands for the penetration depth according to the Eqs. (5.42), which is determined for a

specific rockfall event characterized by specific values m, hf, and R.

Information on the deceleration history of rock boulders is obtained from measurements

of the aforementioned PCB-353B03 accelerometer. Although these measurements suffer

from quantitative inaccuracies, they provide qualitative insight into the impact kinematics,

see, e.g. Fig. 5.13. The measured acceleration histories can be approximated by a bell-

(b)

. -100-

-150-

-250.

; ü start of impact
O maximum deceleration
A end of impact

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
t[s]

D start of impact
O maximum deceleration
A end of impact

0.02 0.04
t [s]

0.06 0.08

Figure 5.13: (a) Typical acceleration history (suffering from quantitative inac-

curacies) recorded by the PCB-353B03 accelerometer (PCB PIEZOTRON-

ICS Inc., 2002) for a rock boulder with mass m = 10160kg falling from a

height hf = 8.55 m and (b) qualitatively equivalent acceleration history for

this rockfall experiment (X = 0.51 m), according to the Eqs. (5.52), (5.53),

and (5.56)

shaped curve. As a first approximation, the acceleration histories will be described as a

cosine-like function

2-ïït

~ÄTi
(5.53)

Definition (5.53) satisfies the conditions a(0) = g and a(AU) = 0. The function v(t) is
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obtained by integrating the Eq. (5.53):

The function w(t) is obtained by integrating the Eq. (5.54):

t2

( 5 - 5 5 )

The integration constants are specified such that the Eqs. (5.54) and (5.55) satisfy the

conditions v(0) — vQ and w(0) = 0. Moreover, Eq. (5.54) satisfies the condition v(Ati) = 0.

Consideration of the boundary condition w(Ati) = X, see Eq. (5.52.f), finally yields:

g = 9.81 m/s2 is generally smaller by at least one order of magnitude than the maximum

deceleration during impact, e.g. max \a\ = 340m/s2, see Fig. 5.13(b). Therefore, to keep

the following developments as simple as possible, the condition a(0) = g, see Eq. (5.52.a),

may be approximated by setting a(0) equal to 0. This results in the omission of the second

term on the right-hand side of Eq. (5.56), yielding

x=AUvo ^ ^ = 2 ^ . (5.57)
2 da

Insertion of Eq. (5.57) into the Eqs. (5.27) and (5.28) allows to identify the relation Ti =

2 T\. Hence, a diagram for the dimensionless impact duration Atj vo/d can be obtained by

rescaling the ordinate of the (X/d)-I diagram of Fig. 5.9 representing TTX = ^(TTÄ = / ) ,

by the factor 2, see Fig. 5.14.

In order to assess the validity of Eq. (5.57), the impact duration of the experimentally

investigated rock boulder with a mass of 18260 kg, falling down from a height of 18.85 m,

is analyzed. For the respective values of Table 5.3, Eq. (5.57) yields

= 0.088 s. (5.58)
5V2 • 9.81 • 18.85

This value of AU is compared with experimentally obtained data. For this purpose, images

of the impact, recorded by a SONY DCR-PC120 video camera, are analyzed (Fig. 5.15).

The recording frequency of the camera was equal to 25 Hz. Therefore, the time span

between two following images was equal to 0.04 s. The time instant of the first contact

of the rock boulder and the gravel lay between the time instants at which Img. 2 and

Img. 3 were recorded. The end of the impact lay between the time instants at which Img. 4

and Img. 5 were recorded. Therefore, the actual impact duration must lie between 0.04 s
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Figure 5.14: Dimensionless penetration depth X/d, impact duration AUvo/d,

and impact force mvQ/(Fd) as functions of / for granite boulders of ap-

proximately cubic shape (mass density pr — 2700 kg/m3) with mass m and

characteristic length d, impacting at the velocity VQ with a tip onto gravel

with indentation resistance R and mass density pg = 1800 kg/m3

and 0.12 s. Hence, the value for the impact duration according to the approximation of

Eq. (5.57), Ati = 0.088 s, does not contradict experimental results.

Specialization of Eq. (5.53) for g <C max \a\ and satisfaction of the condition da/dt = 0

renders the time instant £max|a| at which the deceleration of the rock boulder takes on a

maximum:

£max|a| = —^ • (5.59)

Substituting this result into Eq. (5.53) with g <g; max \a\ yields the maximum deceleration

of the rock boulder max \a\ as

max|a| = —- . (5.60)

The maximum impact force F acting onto the gravel is obtained by insertion of Eq. (5.60)

into Eq. (5.51). Neglecting again g in comparison to max \a\, yields

F =
At-

(5.61)

Multiplication of the reciprocal representation of Eq. (5.61) by mv^/d and consideration
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Img. 1 Img.2 Img. 3

Img. 4 Img. 5 Img. 6

Figure 5.15: Images recorded by a SONY DCR-PC120 video camera of the

impact of the 18260 kg rock boulder falling down from 18.85 m; the time

span between two following images is equal to 0.04 s

of Eq. (5.57) leads to the dimensionless relation

m Vn Aii Vc X_

1'Fä 2ä a' (5'62)

Insertion of Eq. (5.62) into the Eqs. (5.27) and (5.29) allows to identify the relation T^ =

\/J-\. Hence, a diagram for the dimensionless impact force rnvQ/(Fd) can be obtained by

adding an additional label to the ordinate of the (X/d)-I diagram of Fig. 5.9 representing

TTX = J-\{KR = I), see Fig. 5.14.

From the dimensionless three-in-one diagram illustrated in Fig. 5.14, several dimen-

sional diagrams can be derived, such as the ones shown in Fig. 5.16. For design purposes,

where the penetration depth is relevant, diagrams obtained with the 5 %-quantile of the

indentation resistance should be considered, see Figs. 5.16(a) and (b). For cases where

impact forces are of interest, diagrams obtained with the 95 %-quantile of the indentation

resistance are relevant, see Figs. 5.16(c) and (d). The dimensional diagrams show that the

penetration depth is a strongly nonlinear function of the height of fall and the mass of the

rock boulder, see Figs. 5.16(a) and (b). The maximum impact force depends also strongly

on hf and m. However, the nonlinearities are not so pronounced as for X, see Figs. 5.16(c)

and (d). Remarkably, the impact duration does not vary significantly with the height of

fall, whereas the rock boulder mass is a governing factor for Aij, see Figs. 5.16(e) and (f).
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Figure 5.16: Dimensional diagrams derived from the dimensionless diagram in

Fig. 5.14 concerning the penetration depth X, see (a) and (b), the maximum

impact force F, see (c) and (d), and the impact duration AU, see (e) and

(f), as a function of the height of fall hf, the rock boulder mass m, and the

indentation resistance of gravel, R
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5.3.4 Summary and Conclusions

In this subchapter rockfall events characterized by rock boulders of approximately cubic

shape impacting with a tip onto gravel, were analyzed. Based on dimensional analysis, it

was found that three dimensionless parameters, representing the penetration depth, the

impact duration, and the impact force, are functions of only one single dimensionless pa-

rameter which includes the strength-like indentation resistance of gravel and the height of

fall. These findings may be considered as an extension of formulae for dimensionless pen-

etration depth, reported by Li and Chen (Li and Chen, 2003). These formulae, which are

based on Forrestal's relationships (Forrestal et al., 1994; Forrestal et al., 1996) describing

the penetration depth of non-deformable projectiles onto concrete and soil targets, were

adopted for rockfall scenarios. This adaption was the basis for the design of rockfall ex-

periments comprising different heights of fall (< 20 m) and different rock boulder masses

(< 20000 kg). Results from these experiments allow for identification of the indentation

resistance of gravel, which is characterized by a significant scatter as is typical for material

parameters in geotechnical engineering. In order to quantify this scatter, back-analyzed

values for the indentation resistance were evaluated statistically, allowing for the estimation

of the 5 %- and 95 %-quantiles of the indentation resistance of gravel. Insertion of these

values into the aforementioned dimensionless functions leads to bounds for the penetration

depth, the impact duration, and the impact force, as functions of the height of fall and

the mass of the rock boulders. These bounds are consistent with the probability-based

philosophy of commonly used standards such as, e. g. the EUROCODE (CEN-EVN-1991-

1, 1994). Given the wide range of dimensionless parameters for which Li and Chen have

validated their dimensionless formulae, the aforementioned bounds even comprise rockfall

events that could not be investigated experimentally.

5.4 Development and assessment of a structural

model

This subchapter deals with the experimental and numerical realization and verification of

a structural model that provides reliable estimates of the loading of a gravel-buried steel

pipe subjected to rockfall. In more detail, a pipeline with an outer diameter da = 1016 mm

and a wall thickness s = 11.13 mm is considered. It is buried in the middle of a trench

of 3 m width, resting on a 50 cm thick layer of sand. The tube is laterally buried up to a

height of 40 cm by sand, and the rest of the trench is filled by wide-range-grained gravel,

see Figure 5.17 (a). The volume fraction of fine-, medium-, and coarse-gravel (diameters
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Figure 5.17: Geometric dimensions of the problem under consideration, and
simplified structural model of the buried pipeline used for the preliminary
Finite Element analysis

from 2 - 6 3 mm) is equal to 60 %. The remaining volume fraction of 40 % consists of edged
stones (diameters from 63 - 200 mm). The gravel is filled into the trench in layers of 25 cm
thickness, which are densified by hand-guided compaction units. The mass density of the
material is equal to 1800 kg/m3.

If a downfalling rock boulder impacts onto the overburden of the pipe, the kinetic
energy of the rock boulder is transformed into other types of energy. The gravel acts as
an energy-absorbing and load-distributing system. Most of the impact energy is dissipated
such that inelastic deformations in the overburden are produced, i.e., an impact crater is
caused. Other parts of the impact energy are transmitted by elasto-plastic waves through
the gravel to the buried pipeline. The latter represents a rather stiff component of the
statically overdetermined load-carrying system.
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5.4.1 Preliminary investigation of structural behavior - design

of experimental setup

In order to obtain reliable insight into the structural behavior of a gravel-buried pipeline

subjected to rockfall, real-scale experiments are very beneficial. Obviously, such tests

cannot be performed along the track of an existing pipeline which is in full service. Real-

scale rockfall tests require the production of an experimental pipeline track. For definition

of (i) the minimum length of such a track required for representative experimental results

and of (ii) an adequate measurement system recording the loading of the pipe during the

impact, a preliminary Finite Element analysis (PFEA) was performed.

For this analysis, a simplified, but nevertheless reasonable representation of the loads

arising from rockfall was chosen. Instead of modeling the almost completely inelastic in-

dentation process of the rock boulder, the overburden of the FE model was reduced by the

mean indentation depth wm (see Figure 5.17 and Appendix D). Spatially constant normal

stresses with a time-dependent amplitude were applied to the surface of the FE model.

Assuming that an approximately cubic rock boulder impacts with a face onto the over-

burden, a quadratic area of the impact was considered; with side length I = \/V, where

V denotes the volume of the rock boulder. Consequently, the prescribed normal stresses

a follow from the impact force history F(t) as a(t) = F{t)/f. For the PFEA, F(t) was

approximated by a polynomial, see Appendix D. As a first approximation, all phenomena

except for the indentation of the rock boulder were assumed to be of isotropic and linear

elastic nature. Accordingly, transient-dynamic linear-elastic analyses were performed, and

a comprehensive parameter study was carried out. As far as the properties of the impact

are concerned, the penetration depth was set equal to 60 cm. This assumption corresponds

to a rockfall event that took place in September 2001 in the Austrian Alps, where a down-

falling rock boulder caused a 60 cm deep crater into the overburden of a mountain-crossing

pipeline. Corresponding to this choice of the penetration depth, the mean indentation

depth wm (see Figure 5.17 (b)) was set equal to 40 cm. Rock boulder masses were chosen

out of the interval [21200 kg; 53000 kg] (these data correspond to rock boulder volumes out

of [8 m3; 20 m3]), and heights of fall were chosen out of the interval [5 m; 30 m]. The height

of overburden of the pipeline, H (see Figure 5.17 (b)), was set equal to 1.2 m, 1.6 m, and

2.4 m, respectively. Values chosen for Young's modulus, Poisson's ratio, and mass den-

sity of steel, gravel, sand, and the soil surrounding the trench containing the pipeline are

summarized in Table 5.4. The PFEA comprised two types of two-dimensional structural

simulations: The first model was developed to study the behavior of the pipe beneath

the impact location. For this purpose plane strain FE simulations referring to the cross-

sectional plane of the pipe were performed. The second model was developed to study the
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Table 5.4: Young's modulus, Poisson's ratio, and mass density of steel, gravel,

sand, and soil chosen for the PFEA

material Young's modulus E Poisson's ratio v mass density p

steel 210 GPa 0.3 7850 kg/m3

gravel, sand [0.05 GPa; 1.00 GPa] 0.3 2000 kg/m3

soil* [0.5GPa;50GPa] [0.17 ; 0.3] [2000kg/m3 ; 2650kg/m3]

* E = 50 GPa, v = 0.17, and p = 2650 kg/m3 refer to granite

load-carrying mode of the pipe idealized as an elastically-supported truss.

The following results of the PFEA, providing insight into the structural behavior of

a gravel-buried steel pipe subjected to rockfall, are remarkable: (i) dead load results in

stresses in the pipe, which are by two orders of magnitude smaller than the stresses caused

by the investigated types of impact, see, e. g., Figure 5.18 (a). Hence, dead load does not

have to be taken into account in the case of a numerical analysis considering rockfall, (ii)

the load-carrying behavior of the (almost) infinitely long pipe is governed by both a local

and a global loading effect. The local effect is observed in the vicinity of the impact location

only. It arises from the concentrated impact load and is referred to as ovalization of the

pipe. The global effect corresponds to the load distribution in the direction of the axis of the

cylindrical tube. In this context, the structural behavior of the pipe refers to an (almost)

infinitely long elastically-supported truss subjected to a single, rather concentrated load,

(iii) Results of dynamic FE simulations were compared with results obtained by quasi-static

analyses. In the latter simulations, the maximum dynamic impact-force was applied to the

numerical model in a quasi-static manner. Both types of analyses yielded similar results,

i.e., the obtained maximum von Mises stresses differ by less than 5%, see e.g. Figure

5.18 (a). This is an acceptably small deviation for technical design purposes. Accordingly,

the propagation of elastic waves resulting from the impact are not important for the loading

of the pipe. This follows from two circumstances: (a) elastic waves resulting from the

impact propagate through the entire structure during a time span. much shorter than

the duration of the impact, (b) Reflected waves do not contribute significantly to the

loading of the pipe, because they produce a loading which is much more diffuse than the

concentrated loading resulting from the impact. Therefore, quasi-static analyses can be

performed instead of dynamical analyses. This reduces the required numerical efforts by

orders of magnitude. Moreover, the discretized domain for the analysis of rockfall does not

need to be larger than the domain to be considered in static analyses. This is different

for vibration problems in soil-dynamics, see, e.g., (Studer and Ziegler, 1986). Vibration
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Figure 5.18: Results from the PFEA: (a) ovalization of the cross-section of the

pipe: distribution of von Mises stress along the inner surface of the pipe

resulting from dead load and from rock boulder impact, obtained from

a dynamic and a quasi-static analysis, respectively, and (b) load-carrying

mode of the pipe idealized as an elastically-supported truss: deflection of

the pipe axis as a function of the distance from the axis of the impact and

bending stresses of the pipe obtained beneath the impact axis (analysis

parameters: height of overburden: H = 1.2 m; investigated rockfall event:

hf = 10m, V = 15m3, X — 0.6m [see Appendix D]; material properties

[see also Table 5.4]: (i) gravel and sand: E = 0.5 GPa, (ii) surrounding soil

[limiting case]: rigid)

problems are characterized by oscillation periods which are comparable to or even smaller

than the characteristic time span required for waves to pass through the structures.

The following two results of the PFEA allow for definition of the experimental setup

for a real-scale test: (i) Both load-carrying modes of the pipe, i. e., ovalization of the tube

and loading of the pipe as an elastically-supported truss, cause stresses of the same order

of magnitude, Figures 5.18 (a) and (b). As far as ovalization of the cross-section of the pipe

is concerned, the maximum loading of the tube in terms of the von Mises stress appears

at the inner surface of the pipe slightly above 3h and 9h respectively.2 Moreover, a local

loading-maximum is encountered at 12h on the outer surface of the pipe. The maximum

von Mises stresses obtained in the simulation as an elastically-supported truss appears at

I2h and 6/i, respectively. They correspond to bending of the tube. Based on these results,

strain gauges (SG) were applied at positions of maximum stress: in two measurement

cross-sections (MCS), one directly beneath the impact location, and one at a distance of

2Positions in a cross-section of a pipe are addressed similar to a clock face: 12ft refers to the top of
the cross-section, 6h corresponds to the bottom of the pipe, and 3h and 9/i refer to lateral points of the
cross-section on the same height as the axis of the tube, see Figure 5.19.
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6 m from this location (see Figure 5.19), SG were fixed at 12/i on the outer surface of the

pipe and on 3/i, 6h, and 9h at the inner surface of the pipe, see Figure 5.19. (ii) Bending

(circumferential direction)

MCS I: location beneath the impact
(axis direction) z

Figure 5.19: Locations of measurement cross-sections (MSC) along the axis of the

pipe, application positions of strain gauges (SG) at a MSC, and orientation

of strain gauges at each application point

of the pipe acting as an elastically-supported truss is significant only within a distance up

to 8 m from the impact location. Therefore, the experimental pipeline track must have at

least a length of 16 m. The investigated type of steel pipe is commonly produced piecewise

(length of pieces l l m ) . Two pieces were welded together, resulting in tube of 22 m length

for the experimental setup.

5.4.2 Real-scale rockfall test: performance and results

In a quarry, in an area used as a disposal for excavation material, the steel pipe was buried

with wide-range-grained gravel as illustrated in Figure 5.17 (a). Thereby, the height of

overburden H was equal to 2 m. At a distance of 8 m from each end of the tube MCSs were

installed, referred to as MCS I and MCS II, respectively. They were equipped with four SG

as illustrated in Figure 5.19. A granite boulder of approximately cubic shape with a mass

m = 18260 kg (see Figure 5.10 (c)) was dropped vertically from height hf = 18.85 m onto

the buried pipeline such that it impacted with a tip. The intersection of the axis of impact

with the axis of the pipe coincided with MSC I. The impact of the rock boulder caused a

crater of 85 cm depth. The impact energy was equal to 3.53 MJ. During the impact, the

loading of the pipe was measured by means of the SG, with a frequency of 4800 Hz.

These strain histories were converted into stress histories by means of ideal elasto-

plasticity of von Mises type (see e. g. (Lubliner, 1990) and Figures 5.4.2) assuming plane

stress conditions. The corresponding material parameters for the steel pipe are given in

Eq. (5.1). The plane stress assumption is obviously reasonable for the SG at 3/i, 6/i, and 9h,
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since these three SG were located at the inner free surface of the pipe. SG 12/i, however, was
located on the outer surface of the pipe. There, the stress state is characterized by a non-
vanishing radial stress component ar violating the assumption of a plane stress condition.
Nevertheless, since the pipe is thin walled, i.e., s/da = 0.011 <C 1, the assumption of a
plane stress state is reasonable even for SG 12/i, (Timoshenko, 1959). Accordingly, ar was
neglected with respect to the stress components in the circumferential direction, a^, and
in the axial direction, o~z.

At SG 12h in MCSI, the pipe steel yielded, (see Eq. (5.1)3 and Figure 5.4.2 (a)). There,
a$ and az were compressive stress components of the same order of magnitude, whereas
the shear stress TZ$ was negligibly small. At SG 2>h and SG 9/i, virtually the same stress
histories were obtained (Figure 5.4.2 (b)). This result, together with T2I9 « 0 at all SG,
indicates that the tip of the rock boulder impacted indeed directly above the axis of the
tube in MCSI. The maximum von Mises stress at SG 3h and SG 9h reached 75% and
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77 % of the yield stress, respectively. a$ was responsible for this situation. The histories of

a# at SG 12/i, 3/i, and 9/i correspond to ovalization of the pipe. At SG 6/i, the maximum

von Mises stress reached only 40% of the yield stress (Figure 5.4.2 (b)). Hence, the loading

at the bottom of the pipe was significantly smaller than the one at the top.

The stresses at MCSII, located at a distance of 6 m from the axis of impact, were

mainly caused by bending. The only stress components that exceeded ±20 MPa were the

axial stress components o~z at 12/i and at 6/i. At the top of the pipe, maxaz(t) = 100MPa,

and at the bottom, min<72(£) = —60MPa. This indicates that, at MCSII, the pipe was

subjected to bending and a tensile normal force.

5.4.3 3D Finite Element structural model

The 3D load-carrying behavior, revealed by the PFEA, requires a 3D FE model for the

prediction of the loading of gravel-buried steel pipes subjected to rockfall. Making use

of symmetry conditions, it suffices to discretize one fourth of the entire structure, see

Figure 5.21. The axis of symmetry coincides with the impact axis. In a quasi-static

analysis, which, following from the PFEA, is adequate (see Section 5.4.1), the maximum

impact force, max[F(t)], is applied to the surface of the FE model, the overburden of which

is reduced by the mean penetration depth wm with respect to the real overburden in the

real-scale experiment, see Figure 5.21. For the magnitude and the location of the maximum

impact force, max[F(t)] and wm, respectively, the kinematic model for the penetration of

rock boulders described in Subchapter 5.3 is used. For this purpose, the gravitational

acceleration is again neglected in comparison to the maximum deceleration of the rock

boulder during impact, i. e., g is set equal to zero in Eq. (5.51) and Eqs. (5.53) to (5.55). It

follows from the Eqs. (5.51) and (5.53) that the maximum impact force occurs at t = Ati/2.

Specializing Eq. (5.55) for t = Ati/2 yields

wm = w(Ati/2) = vo AU (il + J L ) = 0.72 m, (5.63)

considering v0 = ^2ghf = 19.2 m/s and Eq. (5.58). Accordingly, the height of overburden

of the pipe considered in the FE model is reduced by 0.72 m, yielding an FE-modeled

height of overburden of 1.28 m, see Figure 5.21. The corresponding maximum impact force

follows from Eq. (5.61) as

max[F(t)] = ^ ^ = 7.94 MN, (5.64)

considering Eq. (5.58), v0 — 19.2 m/s, and m = 18260 kg. This force is applied at the

surface of the FE model. The stress distribution resulting from the penetration of the tip
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1.28 m

Figure 5.21: FE discretization used for the simulation of the performed experi-
ment: the mesh consists of 8634 three-dimensional brick elements and 426
bar elements simulating linear springs

of the rock boulder is computed by means of an axisymmetric linear-elastic FE model,
comprising the gravel and the tip of the granite boulder - approximated as a conical
indenter at a penetration depth wm = 72 cm, see Figure 5.22. The FE mesh consists of
16200 axisymmetric elements with triangular cross-sections. The maximum impact force
max[F(t)] is applied to the conical indenter as spatially constant surface stresses a, see
Figure 5.22 (a) The material parameters for gravel are taken from Table 5.1, and those for
granite from Table 5.4. The vertical stresses obtained for the axisymmetric FE model in a
horizontal section through the model at the tip of the rock boulder (Figure 5.22 (b)) serve
as surface loads for the 3D FE model of Figure 5.21.

Since dead load is not considered in the 3D FE analysis, the overburden of the pipe is
only discretized to simulate the load distribution. In this context, it is noteworthy that
the stresses arising from the impact are rather concentrated, i.e., they are restricted to
the vicinity of the impact axis. Therefore, discretization of the overburden at a distance of
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Figure 5.22: (a) Axisymmetric analysis performed to obtain the distribution of
surface loads applied to the 3D FE model, depicted in (b).

more than 3.4 m from the impact axis is not necessary. In this part of the structure, only
the material beside and beneath the tube is discretized, see Figure 5.21. This reduction of
the FE model allows for a speed-up of the computation time by approximately 50 %. The
material beside and beneath the trench, i. e., wet and, hence, rather soft clay, is represented
by a Winkler foundation, modeled by bar elements representing linear springs. The coeffi-
cient for the sub-grade reaction ks characterizing the elastic foundation of the trench is set
equal to 18MN/m3, which is the mean value of the interval [12MN/m3;24MN/m3] rec-
ommended for soft clay in (Joint Departments of the Army and the Air Force, 1983). The
material parameters for steel and gravel were taken from the Eqs. (5.1) and from Table 5.1,
respectively. Finite elements with bilinear shape functions for the displacements are used.
The non-linear elasto-plastic FE simulation is performed in an incremental iterative way
based on consistent tangent moduli (Hofstetter et al., 1993; Simo and Hughes, 1998).

The computed stresses in the pipe at MCSI are compared to the corresponding ex-
perimental results, see Table 5.5 (for a graphical representation of the obtained von Mises
stresses along the inner surface of the pipe in MCSI see the thick solid line in Figure
5.23 (a)). In general, the simulated behavior of the steel pipe reflects the experimentally
observed behavior of the tube in a satisfactory manner both qualitatively and quantita-
tively. In MCS I, at 12h and 3h, very good agreement between the numerical predictions
and the experiments is observed, The largest relative error between the numerical simu-
lation and the experiment is obtained in MCSI at 6h. There, the numerically predicted
loading of the pipe is by 49.5 % too large as compared to the experimentally obtained value.
This deviation arises from the fact that gravel and sand (see Figure 5.17) were assumed to
have the same material parameters. In fact, sand is characterized by a lower compressible
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Table 5.5: von Mises stresses referring to the maximum loading of the pipe
subjected to rockfall: experimental results, numerically obtained values,
and relative errors

position experimental result (a^) FE result (cr^f ) relative error*

MCSI 12/i Ö 514 MPa 514 MPa 0.0%
MCSI 3h Q 386 MPa 357 MPa 7.5%
MCSI 6h O 204MPa 305MPa 49.5%
"The relative error is evaluated as \ae

v
x^ - cr^l/a^.

strength as gravel. Therefore, the material beneath the pipe considered numerically is too
stiff as compared to the sand which was part of the real-scale experiment. This causes an
increase of the predicted maximum von Mises stress at the bottom of the pipe. Since this
effect is rather local, the influence on the results at Ylh and 3h is insignificant.

In regions where the highest loading of the steel pipe occurs, the developed structural
model yields satisfactory results. Consequently, the developed FE model possesses pre-
dictive capabilities, i.e., model verification is accomplished successfully. In this context,
it is noteworthy, that the material parameters serving as input for axisymmetric and 3D
FE models were independent of the real-scale rockfall test. Hence, these parameters were
not adjusted such that the FE model output agrees with the experimental results of the
real-scale rockfall test as well as possible. In contrast, such a fitting of material parameters
would not allow for a prediction of the behavior of the same type of structure with different
boundary conditions or structural dimensions. To provide such prognoses, however, is the
aim of this research.

5.5 Prognoses of the structural behavior

It was shown in the previous section that the developed FE model possesses predictive
capabilities. Hence, it is well suited to provide estimates of the loading of a gravel-buried
steel pipe for different loading conditions, boundary conditions, and structural dimensions.
Such prognoses are addressed in the following: (i) The influence of different coefficients of
sub-grade reaction on the loading of the pipe is studied (change of boundary conditions).
First, ks is set equal to 100 MN/m3 as recommended for dense sand in (Joint Departments
of the Army and the Air Force, 1983). Secondly, ks is set equal to 500 MN/m3 in order to
investigate the limiting case of an almost rigid bedding. In both cases, the height of the
overburden and the intensity of the impact remain those of the FE simulation performed



Gravel-buried steel pipe subjected to rockfall5.5: Prognoses of the structural behavior 116

for the verification of the model, see Section 5.4.3. (ii) The influence of different heights

of overburden (H = 2.5 m and H — 3.0 m) on the loading of the pipe is studied (change of

structural dimensions). In these two simulations, the coefficient of sub-grade reaction and

the intensity of the impact remain those of the FE simulation performed for the verification

of the model, see Section 5.4.3. Results in terms of the von Mises stress distribution along

the inner surface of the pipe in the cross-section beneath the impact are illustrated in

Figures 5.23 (a) and (b).

Avon-Mises stress avM [MPa]

500

400..

500-:

Ylh 6/i s 12/» 6h s

Figure 5.23: Prognoses of the distribution of the von Mises stress along the inner

surface of the pipe in the cross-section beneath the impact as a function of

(a) the coefficient of sub-grade reaction, and of (b) the height of overburden

For increased values of the coefficient of sub-grade reaction, the FE-predicted maximum

von Mises stress of the pipe does not reach the yield stress. An increase of ks from

18MN/m3 to 100MN/m3 and 500MN/m3 results in a loading of the pipe reduced by

approximately 25% and 30%, respectively. It is noteworthy that the von Mises stress

decreases more or less uniformly throughout the entire cross-section beneath the impact

location. This is the consequence of two effects: on the one hand, a suffer elastic foundation

of the pipe trench results in smaller bending moments of the tube, which causes smaller

von Mises stresses at the I2h and at the 6/i position. On the other hand, the decreased

stiffness ratio between the pipe steel and the bedding material results in a unloading of

the pipe and in a smaller ovalization of the cross-section of the pipe beneath the impact

location. This effect implies smaller von Mises stresses at the 3h position.

Also for increased heights of overburden, the maximum von Mises stress of the pipe,

predicted by the FE simulation, does not reach the yield stress. An increase of H from

2.0 m to 2.5 m and 3.5 m results in a reduction of the loading by approximately 20% and

30 %, respectively. The reduction of the von Mises stress at the 12h and at the 3/i position
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is larger than the one at the 6h position. This indicates that the increased height of

overburden results in a more distributed loading of the pipe, caused by the combination of

(i) significantly smaller contact stresses between the pipe and the gravel at the top of the

pipe, resulting in significantly less ovalization, and of (ii) an only slightly reduced overall

loading of the pipe resulting in only slightly smaller bending moments. It is noteworthy that

the loading of the pipe decreased less than linearly with increasing height of overburden H.

Therefore, an increase of the burying height is not a very efficient means for increasing the

safety of a pipeline subjected to rockfall, see Figure 5.24. On the other hand, a decrease of

500
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Figure 5.24: Effectiveness of an increase of the overburden on the protection

of the steel pipe (reduction of characteristic steel stresses): FE-predicted

von Mises stress at the 3h position on the inner surface of the pipe beneath

the impact axis as a function of the height of overburden

H leads to a dramatic increase of the loading of the pipe. Hence, one would expect that a

reduction of the height of overburden to 1.5 m or even to 1.0 m yields large zones of yielding

of the steel in case of a rockfall event characterized by m = 18260 kg and hf = 18.85 m.

5.6 Summary and conclusions

In this subchapter, the loading of a steel pipe located in a gravel-buried trench and sub-

jected to rockfall was analyzed by means of axisymmetric and 3D FE structural models.

Based on a preliminary Finite Element analysis, a real-scale experiment was designed, and

requirements concerning the numerical model were defined. It was found that propagation

of waves resulting from the impact are not important for the loading of the pipe. This

renders a quasi-static FE simulation with application of the maximum impact force onto

a FE model with an overburden reduced by the mean indentation depth adequate for nu-

merical analyses of pipe loading caused by rockfall. This simplified representation of the
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impact loads does not allow for the analysis of displacements in the immediate vicinity of

the indenting rock boulder. However, remarkably, the loading of the buried steel pipe as a

function of the height of overburden H and the supporting boundary conditions (Winkler

foundations) can be predicted with satisfactory precision, both qualitatively and quantita-

tively. The developed model is well suited to provide insight into the structural behavior

of the pipe subjected to different rockfall events, covered by overburdens of different thick-

ness, and/or located in a trench surrounded by adjacent materials of different stiffness

that were not investigated experimentally. The concentrated surface loads, representing

the maximum impact force, cause ovalization of the cross-section of the pipe under the

impact location. This local structural effect is mainly governed by the material behavior

of the gravel. On the other hand, the loading of the pipe in the axial direction, which is a

global structural effect, is governed by the coefficient of sub-grade reaction, characterizing

the material surrounding the trench. Since there exists a non-negligible coupling of the

two effects, "ovalization of the tube" and "loading of the pipe as an elastically-supported

truss", a three-dimensional mode of analysis is indispensable.

It was shown that gravel may efficiently serve as an energy-absorbing and load-

distributing protection system for steel pipes subjected to moderate rockfall scenarios.

However, gravel is not an efficient protection system in case of rockfall events character-

ized by heavy rock boulders (such as investigated herein, e. g, m = 18260 kg) and heights

of fall up to 100 m or even more. In this context, an efficient protection system for a steel

pipe subjected to rockfall must satisfy two requirements:

1. Damping of the impact in order to keep the forces arising from rockfall at a reasonably

small level.

2. Load distribution and load carriage in order to reduce the loading of the steel pipe.

In case of the investigated type of protection system, both tasks must be performed by

gravel. However, the flexibility of gravel required for the damping of the impact is contra-

dictory to the stiffness of gravel required for the task of load distribution and the carrying

of the load. Consequently, such a protection system is not very effective.

In order to provide a highly effective protection system for a steel pipe subjected to

rockfall, the aforementioned two tasks must be performed by two separate structural ele-

ments. Such a system could consist, e.g., of (i) gravel acting as an energy-absorbing and,

hence, impact-damping system, and (ii) additionally buried construction elements, made,

e.g., of reinforced concrete acting as a structural component allowing for the distribution

and for carrying of the load.



Chapter

Summary and conclusions

In this thesis efforts were made to treat parameter identification in geotechnical engineer-
ing in an integrated manner. Methodical aspects were considered by developing a new,
iterative parameter identification method resting on soft computing. Artificial neural net-
works (ANNs) were used to approximate the underlying finite element (FE) analysis of the
problem under consideration. They were trained to map input parameters for FE analyses
onto respective numerical results. Based on the trained ANN, a genetic algorithm was
used for determination of an estimate of optimal parameters. Moreover, the trained ANN
provides an approximation of the sensitivity of the unknown parameters. Hence, sensitivity
analyses are no longer required to check the quality of an obtained solution. The proposed
algorithm combines advantages of gradient-free and gradient-based PI methods, i.e., the
entire parameter space is searched for an optimal solution and only few FE analyses are
required to find optimal parameters. The latter is essential for PI in geotechnical problems
which, in general, are characterized by large-scale FE models.

Conceptual aspects of parameter identification were presented considering numerical
modeling of the loading of a gravel-buried steel pipe subjected to rockfall. Identification
of the material parameters of gravel was based on results from designed and performed
experiments as well as on testing data taken from the open literature. This data set per-
mitted identification of physical quantities of gravel attached to a "representative volume
element" which has a characteristic length of one to several decimeters. Since the experi-
ments were free of spatial gradients of material parameters and loading conditions in that
length scale, the identified parameters are independent of any structure-specific boundary
conditions. Hence, they are valid for virtually all structures made of gravel, including
the overburden of a steel pipeline. The identified material parameters were the basis for
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the simulation of the loading of a gravel-buried steel pipe subjected to rockfall by means

of a three-dimensional elasto-plastic Finite Element analysis. For verification purposes,

a real-scale rockfall experiment was designed and performed. It is noteworthy that the

results from this structural experiment had no influence on the identification of the mate-

rial parameters of gravel. Therefore, a comparison of the numerically obtained structural

behavior with results from the real-scale rockfall event allowed for an assessment of the

usefulness of the chosen mode of structural modeling. In this way, model verification could

be accomplished successfully. It was demonstrated, that the developed FE model is able to

provide reliable prognoses of the loading of a gravel-buried steel pipe subjected to rockfall

events that were not investigated experimentally.

The obtained results have shown that numerical simulations in geotechnical engineering

are useful. In order to develop a numerical tool capable to provide prognoses of the

structural behavior, identification of material parameters and verification of a structural

model must be based on two independent sets of experiments. This is the only way to

further increase the acceptance of numerical simulations in geotechnical engineering.
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Appendix

Genetic algorithm (GA)

A GA imitates the evolution of a population of biologic individuals (Goldberg, 1989)

following DARWIN'S principle of the survival of the fittest (Darwin, 1995). In the context

of the proposed PI method, an individual represents a set of parameters.1 The quality, i.e.,

the fitness of each individual of a certain generation is described by the respective value

of the fitness function T. Based on the fitness of the individuals of a generation, a new

generation is computed by means of the following genetic operators:

Reproduction: Individuals are selected probabilistically and put in a so-called mating

pool. Hereby, the probability to be selected is higher for individuals characterized by

an above-average fitness. Hence, such individuals may be represented twice or even

more times in the mating pool. Individuals characterized by a below-average fitness,

on the other hand, might not be included in the mating pool. Hence, they will die

out. Reproduction is terminated when the number of individuals in the mating pool

is equal to the number of individuals in a generation.

Crossover: Individuals in the mating pool are arranged randomly in couples, so-called

parents. Each couple is designated to yield two offsprings from exchanging some

of the parental parameters. In case of two-point crossover, two crossing sites are

determined randomly for each couple. These crossing sites subdivide the parental sets

of parameters and represent borderlines. In between these borderlines the parameters

Usually, individuals of GAs are represented as binary strings. According to (Gupta and Sexton, 1999),
the basic sequence of a GA is the same for binary-coded individuals and for individuals represented as
a set of real numbers. Hence, the use of binary-coded individuals is not necessary in the context of the
proposed PI method.
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of the two parents get exchanged, yielding two new individuals, i.e., two offsprings

(see Table A.I).

Mutation: The mutation operator is used in artificial genetic systems in order to protect

the generations of losing some potentially useful genetic material (Goldberg, 1989).

With small probability, parameters of offsprings get changed. E.g., one out of thou-

sand parameters is modified. The size of this modification is determined randomly.

parent © : P\ \ P\ P\ \ P\ P\ offspring © : p\ 'p\ vï P\ P\

parent © : p\ \ p% p\ \ p\ p\ offspring © : p\ p\ p\ 'p\ p\

it t
randomly determined crossing sites

Table A.I: Two-point crossover for a couple of parameter sets consisting of five

parameters pj , j = 1, 2 , . . . 5

0

After reproduction, crossover, and mutation, the individuals of the new generation are

obtained. Finally, a randomly selected individual is replaced by the fittest individual of

the old generation. Hence, the largest fitness value obtained in the new generation is at

least equal to the largest fitness value of the old generation. In general, new generations

are characterized by an increased average fitness of the population.

For the proposed PI method, GAs are employed twice: for determination of the initial

network weights and of the estimates of optimal model parameters. Hence, the parameter

set, which was represented by an individual throughout this Appendix, is either a set of

network weights or a set of model parameters. The properties of these two GAs differ

in the number of individuals per generation, the fitness function J-, and the number of

generations. The respective variables are specified in Subchapter 4.1.



Appendix

Backpropagation algorithm for

first-order approximation ANNs

Training of first-order approximation ANNs, O(i)-ANNs, aims at

by iterative adaption of the network weights. The zero-order approximation error TV(ä\h

and the first-order approximation error TZ^\h are defined in Eqs. (4.68). A gradient descent

method in the weight space is performed. Thereby, the incremental changes of the network

weights are calculated according to

Aw% = Aw% I " L " ^ 'ih'
wl ] , Awt = Awt ( - l " ^ •ho^" ) • (B.2)

In this Appendix, the derivatives required for computation of the network-weight correc-

tions according to Eqs. (B.2) are presented.

Computation of the partial derivatives of TVIQ-!1 with respect to the network weights is

performed as described in Sections 4.1.1 and 4.1.2. The derivatives of 7Z*rüh with respect

to the network weights read:

,*-h

IT-/ E- vr and Y~ = Y ^r ^ (B.3)

with

&n*(pd) dn^(pd) ^ ^

* ' P * " ' ) - , (B.4)
nd n, ^ U [mean,d
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dn*(Pd) dnh(pd)
dPj d2TV{pd)

ho (B.5)

Accordingly, computation of dTl*^h
d/dwfl. and dlZ*^h

d/dw^° require the second, mixed

derivatives of W with respect to the input parameters and the network weights. Consid-

ering the second one of the two Eqs. (4.73), these derivatives read:

d2n*(pd)

dPj dw%

d

nn

2, u* - ur du*

|2„.*

du*r dur dur

^*(Pd) no fr[ü2dwfkdPj

n

d2u

d

Pi dwt

ih '
•o r = i « - • • ; •_

1 \ _1_ yv U* - Ur du*
(Pd) / nn

(B.6)

du*r du*r

u* - ur (B.7)

Eqs. (B.6) and (B.7) contain the following partial derivatives with respect to network

weights:

d 1 d 1 du*r du*r
:2„.*d2u:

dw% ' dwî°

The first two derivatives (B.8) can be calculated considering Eq. (4.1) as

9 V , (B.8)

d 1
dw%

d

nn

- ury
Ur

1 £ («r_«r>) * ^ f ( B i 9 )

1
71,•o r = i Ur

Û2

"5 1 Ä (u*T-uT\ du*
no fri V wz / awfcr

The second two derivatives (B.8) which also appear in Eqs. (B.9) and (B.10) can be calcu-

lated as

du*r _ ^ \du*dü* da°

(B.12)
7fcr OÙ; do°dùrda°dwh

k
o

The fifth term in (B.8) is a second mixed derivative of u* with respect to the input pa-

rameters and the network weights linking the input layer and the hidden layer. It can be

evaluated as follows:

d

dwftWi.
du; d (ds(a°r)\ g

do°
Ho ds(ah

k)
ih

dp)
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du^ds{aï) ^
dul~dVl k-\

du*r ds(a°) *L

dü*r dal E

w]hoJ_(ds(4y\wih
kr o_ ih \ a _/i / ]k

M ds{ah
k) dw%

kT da\ dp)

The underlined terms in Eq. (B.13) can be written as:

d fds(a°)\ d2s(a°) da° ds^) dah
t

dp)
(B.13)

d2s(a°r) ,o ds{ah
e) .

dwfe dal d{a°)2 ds(a%) dah
e dwfe d{a°r)

2

d2s(ah
k) d2ah

k d2s(al)^x

Wir

~dwfe
 = 5kl>

where 5ki denotes the Kronecker symbol defined as

V Ä =

(B.14)

(B.15)

(B.16)

(B.17)

Considering Eqs. (B.14) - (B.16), Eq. (B.13) can be written as

du; d2s(a°) ,0
o\2dp)dw% dû; d(a°r)

, du; ds(a°r) g
da)

HO
Wkr dal

du*r da°

du*r ds{a°r)

dü*r da° E

W
ho
kr ' •Pr

W%

dp)

ds(al)
dal dp)

dp)

(B.18)

Considering the definition of the Kronecker symbols (see Eq. (B.17)), finally yields

du; d2s(a°r) ho

W°?dp)dw$ dû; d(a°r)

du*r ds(a°r)
+ dût dal

er j

„ho

dal • * > %

VPj^

dp)

dp)
(B.19)

; ds(a°r) ho ds(ah
k

dü*r da° lT dah
k dp)

The last term in (B.8) is a second mixed derivative of u*T with respect to the input pa-

rameters and the network weights linking the hidden layer and the output layer. It can be
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evaluated as

d (dul du*r d (ds(a°ry

[dül da° E 'ho ds(ah
k) ih

Wkr ~daT lk
dp)

âu*r ds(a°r) ^

dü*r da°r fctî
dwï

dal h
h Wjk dp)

The underlined terms in Eq. (B.16) can be written as:

d fds(a°r)\ d2s(a°r) da°r d2s(a°r)

dal dw ho

ho

dw ho

Considering Eqs. (B.21) and (B.22), Eq. (B.20) can be written as

|2„.*d2u.

dp) dwi°
du*r d2s(a°r)

dû; d(a°r)
2 s{a

du*r ds{a°) ^

fc=i

w

dût dal

E
fc=i

ds{ah
k)

ho
kr dp)

dp)

(B.20)

(B.21)

(B.22)

(B.23)

Considering the definition of the Kronecker symbols according to Eq. (B.17), finally yields

:2„.*d2u.

l°dp) dw%

du*r d2s{a°r)

dül d(a°f

dul ds{a°)
dû* da°

s(°}) E

ih

l Wjeda

,ho

dp)

dp)

ds(ah
k) ,.ih

dy

(B.24)



Appendix

Experimentally obtained values of

and C1212 of gravel

Table C.I: 19 values of Cnn m [MPa] back analyzed based on longitudinal-wave

velocities evaluated from accelerometer measurements

153.81 162.47 256.09 292.63 365.55 368.21 390.88 393.76 504.75 508.47

508.47 514.28 514.28 558.05 689.51 861.29 972.32 1106.3 1106.3

Table C.2: 66 values of C1212 m [MPa] back analyzed based on shear-wave

velocities evaluated from accelerometer measurements

21.120 26.912 30.867 40.327 46.021 50.190 52.213 52.213 55.858 59.267

59.908 61.233 63.996 65.975 69.221 69.369 71.908 72.957 80.233 81.370

82.343 83.575 86.311 87.262 88.022 88.022 93.412 106.14 108.55 109.44

110.17 113.00 118.32 131.71 132.33 134.97 142.03 145.78 149.62 150.03

169.17 178.55 178.55 178.90 181.04 190.08 200.01 202.33 228.65 229.06

237.02 252.46 252.49 254.26 254.26 261.20 264.33 266.63 270.52 272.16

345.29 376.51 380.63 416.77 676.68 730.53



Appendix

Kinematic model of the impact used

for the PFEA

Estimates of the impact-force history F(t) requires information on the kinematics of the
rock boulder during impact. This kinematic behavior is characterized by six boundary
conditions. Three of them refer to the time instant when the boulder gets in contact
with the hit surface at time instant t — to = 0: (i) The indentation depth w(to) = 0,
(ii) the impact velocity v(to) = J2ghf, where g = 9,81 m/s2 represents the gravitational
acceleration and hf stands for the height of fall, which is assumed to be known, (iii)
the acceleration of the boulder a(to) = g. During the impact, the indentation depth
continuously increases. The force acting from the hit soil onto the impactor decelerates
the boulder. At the end of the impact, characterized by the unknown time instant AU,
the rock boulder rests in the produced crater. This state of the boulder, at t = Atj, is
characterized by: (iv) the indentation depth w(AU) is equal to the final penetration depth
X, which is assumed to be known, (v) the impact velocity v(AU) = 0; (vi) zero acceleration
of the boulder, a(AU) — 0.

A fifth-order polynomial is chosen for the description of the indentation depth w as
a function of time t. This polynomial, denoted as w(t), together with its derivatives up
to the third-order, comprising the impact velocity v(t) and the impact acceleration a(t),
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reads as

w(t) = c5t
5 + c4t

4 + c3t
3 + c 2 t 2 + c i i + c o ,

9W. = v(t) = 5c5t
4 + 4c4t

3 + 3c3t
2 + 2c2t +a,

d2w(t) î0 '1)^ = a(t) = 20 c5t
3 + 12 c4t

2 + 6 c3t +2c 2 )at
d3w(t) da(t) „ n ,o , r>A , , c^ — — ^ = 60 c5 r + 24 c41 + 6 c3.

The coefficients Co, ci, C2, C3, C4, and C5 are set such that the conditions (i) - (vi) are met:

c0 = 0, c3 = (-14,715 Ai,2- 26,5756 Jh~fAU + 10 X)/At3,

a = y/2ghf = ^19.62 hf, c4 = (+14,715 Ai2 + 35,4356 yjhf Att - 15

c2 = p/2 = 4.905m/s2, c5 = ( -4,905 Ai2 - 13,2883 Jhf AU + 6X)/At5
i.

(D.2)
The Eqs. (D.I) together with the Eqs. (D.2) provide estimates of the impact kinematics
of a rock boulder for an arbitrarily chosen duration of the impact Aij Physical plausibility
allows for determination of a lower bound of AU. For too small values chosen for AU,

the acceleration of the rock boulder will increase at the beginning of the impact. This
contradicts the actual behavior of the rock boulder, where the force of the soil acting onto
the rock boulder decelerates the motion of the impactor. Therefore, a lower bound for the
impact duration is obtained by setting

d3w(t)
dt3

da(t)

£=0 dt
- 0 . (D.3)

4=0

Eq. (D.3) and Eqs. (D.l)4 imply that c3 = 0. Insertion of this result into the expression
for c3 taken from Eqs. (D.2) yields a quadratic equation for AU. The physically sound
solution reads

min(AU) = -0,90305 yfhf + ^0,81549/*/ + 0,67958 X. (DA)

In the PFEA, min(Ati) was chosen such as to be an estimate of the actual impact duration,
because a comparatively short impact duration yields a comparably large impact force and,
hence, provides a conservative loading assumption. The force acting onto the soil during
the impact of a mass m as a function of time, F(t), reads

F(t) = m[g- a(t)} . (D.5)

The mean indentation depth wm by which the overburden of the FE model was reduced,

is denned as
min(A«j)

wm= . * fw(t)dt. (D.6)
mm(A£j) J
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