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Abstract

In this thesis a new technique for event data modelling for the LHCb experi-
ment at CERN will be presented.

The event model of a high energy physics experiment is one central ingredient
of the experiment specific software. A coherent event model has to be shared
between algorithms which will use it to process the data in several iterations
from the raw data, obtained from the detector, to reconstructed analysable
physics quantities. All software applications built on top of the experiment spe-
cific software will depend on a proper functioning of the event model.

It is expected that with the new Large Hadron Collider accelerator, currently
in construction at CERN, an unprecedented amount of data, in the order of
peta bytes per year, will be retrieved from the different experiments. This data
has to be stored according to the event model. Due to the long lifetime of ex-
periments over several decades the consistency and maintenance of a coherent
event model has to be guaranteed.

Requirements for the description of the event model derive from implemen-
tation language constraints, such as object oriented programming techniques,
or constraints setup by the experiment itself, like programming rules. In addi-
tion it has to be taken into account that new programming techniques or new
programming languages for the implementation of the event model may have to
be supported in the future.

To meet all the requirements a system for event object description was de-
signed. This system requires designers of event objects to provide a single file
with the description of their event objects in a high level language. From this
description it will be possible to derive the actual implementations of the event
objects and other information like their reflection information or documentation
about the objects. Several possible outputs for different object oriented imple-
mentation languages will be discussed.

A high level language for the description of the event model will be proposed.
The description language has to be defined as such, that it will be flexible enough
to enable future enhancements but also strict enough to be able to constrain
the language to a subset of the current features of object oriented programming,
as not all of them are required for the description of the event model and may
also not be provided in all implementation languages. A discussion of different
possibilities for definition languages will elaborate the advantages and short-
comings of the most popular ones.

The features of the chosen description language together with its syntax will
be presented. When using the tools, several generic and implementation specific
rules will be applied, which will be explained.

As a practical example for the extension of the event data modelling tools, a
software package which supports reflection in C++ was developed. This pack-
age is used for tasks like persistence of event data or interactive usage and will
be discussed in depth.

The tools that have been developed as part of this research work have been
evaluated both in terms of description language and usage in the experiment
and their integration into the LHCb software build procedure will be explained.
The event data modelling tools have been used successfully for several iterations
of the description of the LHCb event model.



Kurzfassung

In dieser Doktorarbeit wird eine neue Technik der Datenmodellierung für das
LHCb Experiment am CERN vorgestellt.

Das Event Modell eines Hochenergiephysik Experiments ist einer der zentralen
Bestandteile der experimentspezifischen Software. Ein einheitliches Event Mo-
dell wird von Algorithmen benutzt um Daten in mehreren Iterationen von den
Rohdaten aus dem Detektor in rekonstruierte und analysierbare physikalische
Mengen überzuführen. Alle Softwareapplikationen eines Experiments bauen auf
dem Event Modell auf und basieren auf dessem reibungslosen Funktionieren.

Es wird erwarted, dass mit dem Large Hadron Collider Beschleuniger, der zur
Zeit am CERN gebaut wird, eine noch nie dagewesene Menge von Daten, in der
Größenordung von Peta Bytes pro Jahr, von den einzelnen Experimenten pro-
duziert werden wird. Diese Daten werden gemäß dem Event Modell gespeichert.
Mit der langen Laufzeit der Experimente, über mehrere Jahrzehnte hinweg, muss
die Konsistenz und Wartbarkeit eines koherenten Event Modells garantiert sein.

Anforderungen an die Datenbeschreibung des Event Modells kommen von
Beschränkungen in der Implementationssprache, zum Beispiel objektorientierte
Programmiertechniken, oder vom Experiment selbst, wie eigene Regeln für die
Codeimplementierung. Des weiteren müssen zukünftige Programmiertechniken
und Implementationssprachen unterstützt werden.

Um alle diese Anforderungen zu erfüllen wurde ein System zur Beschreibung
von Event Objekten entwickelt. Dieses System erfordert von den Entwicklern
der Event Objekte ein einzelnes File mit der Beschreibung der Objekte in einer
höheren Sprache. Von dieser Beschreibung ist es möglich Implementationen der
Event Objekte in verschieden Implementationssprachen und weitere Informatio-
nen, wie Reflection oder Dokumentation, abzuleiten. Einige Möglichkeiten der
Implementierung in objektorientierten Sprachen werden beschrieben.

Eine höhere Sprache zur Beschreibung des Event Modells wird vorgestellt.
Diese Beschreibungssprache muss derart definiert werden, sodass sie für künftige
Erweiterungen flexible genug ist aber auch Möglichkeiten bietet die Sprache
einzugrenzen, da nur ein Teil der Charakteristika von objektorientierter Pro-
grammierung zur Implementation des Event Modells nötig ist und auch nicht
alle Eigenschaften objektorientierter Programmierung in allen Implementations-
sprachen vorhanden sind. Die populärsten Definitionssprachen mit ihren Vor-
und Nachteilen werden besprochen.

Die Eigenschaften der gewählten Definitionssprache zusammen mit ihrer Syn-
tax werden präsentiert. Bei der Verwendung des Systems werden allgemeine und
implementationsspezifische Regeln aus LHCb angewandt, die genau besprochen
werden.

Als praktisches Beispiel für die Erweiterung des Systems wurde ein spezielles
Softwarepaket für Reflection in C++ entwickelt, welches für Anwendungen wie
Datenspeicherung und interaktive Analyse verwendet. Das Paket wird im Detail
beschrieben.

Es erfolgte eine Evaluierung der im Rahmen dieser wissenschaftlichen Arbeit
entwickelten Tools, sowohl was die Beschreibungssprache als auch deren Ver-
wendung im Experiment angeht. Die Integration in die LHCb Software Build
Prozedur wird erklärt. Das System wurde erfolgreich für mehrere Iterationen
zur Beschreibung des LHCb Event Modells verwendet.
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Chapter 1

Introduction

This thesis will describe a new technique for the description of the event model
of the LHCb experiment at CERN. The event model of a high energy physics
experiment is one of its central ingredients. Algorithms will use the event model
to process data in several steps from raw data to reconstructed physics quan-
tities. Furthermore the event model has to be maintained over a long time in a
consistent and coherent way.

In chapter 2 an overview of software architectures in high energy physics
will be presented, explaining where the event model fits into the overall design.
Chapter 3 discusses the requirements of a language that will be adequate for
developing the event model. The design of a system for describing the event
model and the technical choices for such a system will be explained in chapters
4 and 5. The thesis will be concluded by a discussion of the actual implemen-
tation and an evaluation of the system in chapters 6 and 7.

The rest of this chapter will give a short introduction into the world of high
energy physics (HEP) and especially to the European Organisation for Nuclear
Research (CERN). In the first section some details about CERN and its rela-
tion to other HEP institutes will be presented, followed by a description of the
experiments in preparation and especially the LHCb detector.

1.1 CERN

The European Organisation for Nuclear Research (Conseil Europénne pour
la Recherche Nucléaire) is the worlds largest particle physics laboratory. It
is located in Geneva, Switzerland and France. CERN operates with a yearly
budget of 1.000 Mio. Swiss francs which is raised by its 20 european member
states. Furthermore CERN employs 2500 people (out of which around 1000 are
scientific personnel) and collaborates with 500 universities and institutes and
6500 people world wide.

Together with laboratories like SLAC1 or Fermilab2 in the USA and DESY3 in
Germany, CERN is one of the most important laboratories for particle physics.

1 http://www.slac.stsinford.edu
2http://www.fnal.gov
3http://www.desy.de
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Figure 1.1: Sketch of the LHC ring

CERN provides accelerators and detectors for sub-atomic particles for high
energy physics experiments to physicists around the world. The experiments are
used to study the building blocks of matter or conditions which have happened
shortly after the big bang. Besides physics another important discovery at
CERN for daily life was the invention the HTTP [30] protocol and the HTML
[29] language by Tim Berners Lee in 1989 which led to the world wide web.

1.2 The Large Hadron Collider
The particle accelerator currently in preparation at CERN is called Large

Hadron Collider (LHC) (see Figure 1.1). It will be installed in a tunnel of 27 km
length which was constructed in both Switzerland and France and lies between
50 to 175 m below surface. The LHC will accelerate hadrons, i.e. particles
which are part of the atomic nucleus, nearly to the speed of light and collisions
of these particles will happen in 4 different detectors, namely LHCb4, ALICE5,
ATLAS6 and CMS7 (see Figure 1.2). The footprints of these 4 detectors can be
seen in Table 1.1.

4http://cern.ch/lhcb
5http://cern.ch/alice
6http://cern.ch/atlas
7http://cmsinfo.cern.ch/Welcome.html
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Figure 1.2: The 4 LHC experiments
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Table 1.1: Footprints of the four LHC experiments

Width Diameter Weight
LHCb 18 m 12 x 12m 4.2701
ALICE 25 m 15 m 10.0001
ATLAS 44 m 22 m 7.0001
CMS 22 m 15 m 14.500 t

After a beam crossing, i.e. a collision of particles, their decays into other
particles will be measured in the detectors. The data from one of these collisions
is called an event. Collisions of particles in the different detectors will take
place at a rate of 40 MHz (i.e. every 25 ns). Due to this high frequency and
the expected size of data per event coming from the detectors, the volume of
data that has to be processed will be very high. It is expected that, after all
processing and filtering of data is done, the four LHC experiments will generate
several peta bytes of data per year which have to be stored onto a persistent
medium.

The design of the LHC and the four related experiments started in the 1990's.
The preparation of the accelerator machine and the 4 detectors should be fin-
ished in 2007. From the point of the inauguration of the LHC and its detectors
the data taking phase should last for around 15 years.
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Figure 1.3: The LHCb Detector
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1.3 The LHCb Detector

LHCb (see Figure 1.3) is a detector designed to study rare decays of beauty
quarks. Due to peculiarities of the decays of beauty quarks, LHCb will measure
particle decays only into one direction while the other 3 detectors with the LHC,
which are designed for other purposes, will measure decays into every direction.

The LHCb detector is divided into several parts which are responsible for
different tasks.

• The Vertex Locator will measure the point of interaction between the two
colliding particles.

• The magnet will bend the tracks of the charged particles which will ease
the task of measuring the momentum of tracks.

• The remaining parts are sub-detectors specialised to the finding and lo-
calisation of special particles which will be part of the events. These are:

- The ring imaging cherenkov light detectors (RICH1, RJCH2)

- The tracking stations (Tl - T3)

- The pre-shower station (PS)

- The calorimeter stations (ECAL, HCAL)

- The muon stations (Ml - M5)

The main challenges of LHCb are a good trigger performance which has to
filter from some 10 MHz of collisions to a few 10 Hz of fully reconstructible
decays. For this task a good particle identification will be required where the
RICH sub-detector will play a major role.



Chapter 2

Software Architecture

This chapter will give a short overview of software frameworks for HEP exper-
iments in general and the software framework used for the LHCb experiment in
detail. After this introduction the role of the event model for these frameworks
will be discussed and it will be explained why the event model is one of the
central parts of the framework software.

2.1 Software Layers in HEP Experiments

Software in an experiment will be divided into several parts. As an example
for the different layers, the pieces of software in LHCb will be explained in more
detail (see Figure 2.1):

Figure 2.1: LHCb Software Architecture

Framework SW (Gaudi)

o
X/i

• The framework software (Gaudi) at the very bottom will provide basic
functionality and services to the layers above.

• Physicists will then build the experiment specific software on top of it
(LHCb). Examples for this kind of software are the event model or the
detector description.
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• On top of the experiment specific software the different applications are
built. In LHCb these are:

— The simulation software, Gauss
— The digitisation software, Boole

— The reconstruction software, Brunei

— The analysis software, Da Vinci
— The visualisation software, Panoramix

• On every of these layers, developers may make use of external software.
This external software provides functionality which is integrated into the
framework and so does not need to be re-implemented. Examples for
external software packages are:

— Boost [10] for general purposes like implementations of smart pointers
or call-back functions

— Xerces [11] for XML parsing
— GSL [27] for mathematical functions

2.2 Software Frameworks
For experiments which are as big as the four new ones for the LHC machine

it will be necessary to provide a proper framework for the underlying software,
providing some common functionalities and services, which will ease the writing
of code for the developers of the different sub-detectors.

Software frameworks should perform the following tasks:

• Provide interfaces to basic functionalities. Interfaces will work as an ab-
straction layer which the developers will use to write their code. The
implementation of an interface may change without the developer having
to notice it.

• Insulate the programmer from underlying functionality of the software.
Developers should not be bothered e.g. which current visualisation library
or I/O library is used.

• Provide basic services, like error reporters or plug-in managers. Developers
should be able to use these services in a coherent way throughout the
software. The services should be easy to use and facilitate the writing of
the current code.

• Provide base classes from which implementation classes may be derived.
For example a base class called "DataObject" with some basic functional-
ity for event data objects like streaming will provide a coherent behaviour
of the event model of an experiment.

Also documentation and education is a major role of the software frame-
work developers. Through the framework software and the people involved,
developers from different sub-detectors should be able to learn new program-
ming techniques and get up to speed with the software provided.
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2.3 Gaudi

For the LHCb experiment the software framework is called Gaudi [13, 36].
In Figure 2.2 an overview of the architecture of the framework can be seen. In
addition to the features listed above, the following design decisions were taken
for the Gaudi framework.

Figure 2.2: The Gaudi Architecture Overview
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2.3.1 Separation between Data and Algorithms
Data and algorithms will be clearly separated in Gaudi. The functionality

of data objects such as particles or tracks will be limited to manipulations of
internal members.

Three different types of data were identified for Gaudi:

• Event data will store all kinds of data that comes from simulation or the
detector to reconstruction and analysis data (see section 2.4.2). Each of
these data types will be kept in the event data store.

• Detector data will describe the layout of the detector. This kind of data
is more static than event data. It will be read once for a run. Detector
data will be needed in all different stages of the processing of event data.

• Statistical data is all kind of data that provides information about the event
or detector data. Examples for statistical data are histograms of energy
distributions or other information of reconstructed or analysed data.

An algorithm will process data objects of a given type and may produce new
data objects.
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2.3.2 Separation of Transient and Persistent Data
Algorithms dealing with objects should only use the transient store of the

framework and not have access to the persistent representation of the data.
This decision was taken for several reasons:

• Most of the physics code should be independent of the storage technology
for objects.

• Optimisation criterias for transient and persistent stores are different.
While I/O performance and data size are important for persistence of
data, optimisation of execution time is the major goal for transient ob-
jects.

The separation of transient and persistent data should be invisible for the
user. A machinery for retrieving and storing data will provide the data no
matter whether the user just fetched it from a persistent medium (e.g. tape) or
the transient store in memory.

2.3.3 Data Store Centered Architectural Style
Data stores are an important architectural unit of the framework. The flow of

data between algorithms will proceed via the transient stores. This will minimise
the coupling between algorithms and allow their independent development.

The event data store of a software framework is responsible for storing all in-
formation about data that is acquired while simulating or running the detector.
In general the major parts of the event data store are:

• Simulation data will contain all the data that is related to the software
simulation of the detector.

• Raw data is either the output of simulation software or in real life the
output of the detector.

• Reconstruction data contains the reconstructed tracks of particles and
hints what kind of particles were involved in an event.

• Analysis data will contain the finally reconstructed particles which were
part in the event and statistical data about them.

2.3.4 Encapsulation of User Code
Physics and sub-detector specific code shall be added to the framework in two

main places:

Algorithms

The way how data will be read and stored from and to the data stores is done
through algorithms. Algorithms are encapsulated pieces of software responsible
for a special task.
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Algorithms will retrieve the data from the transient data store process it
accordingly and write new data back into the store. Algorithms are the usual
way of interaction of physicists software with the data when processing it.

The event data store is the central piece through which algorithms may com-
municate with each other. Because algorithms should encapsulate some func-
tionality they may also be concatenated to a chain which will process the data
in several stages (see Figure 2.3).

Data in the Gaudi event store is available to everybody using the framework.
For this reason data that was once written for an event to the store should not
be removed or changed anymore, because other users of the event store may
rely on it.

Figure 2.3: Usage of Algorithms in Gaudi
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The second possibility for physicists to provide code is when writing convert-
ers. Converters are pieces of software that provide the functionality of storing
and retrieving data objects between the transient and persistent stores in the
Gaudi framework.

In most cases an automatic translation between the transient and persistent
representation of the data will be provided by the framework software, never-
theless in some specific cases these default converters will need to be overwritten
and specific ones have to be provided.

In case of the event data the serialising of one object is not done by an external
converter but the converter (i.e. serialising/deserialising method) is provided
as part of the object. When an event object needs to be made persistent or
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transient the serialising/deserialising method of this object will be called which
will do the needful to either write the object onto external medium or read it
back from there.

2.3.5 Generic Component Interfaces

Each component of the framework architecture will implement a set of inter-
faces. An interface provides some generic functionality of a component which
is independent of its actual implementation. A generic interface model should
provide support for interface versioning, dynamic interface discovery and generic
component factories which will allow run-time loading of components.

2.4 Event Data

The Gaudi framework distinguishes three different kinds of data, one of them
being the event data. This data will hold all information which is related to
particles and their way through the detector.

2.4.1 Past Practices for Event Data Description

In some previous experiments the event data models were not described dir-
ectly in code but with means of a higher level description. E.g. in ALEPH, a
previous LEP experiment, the event data model was described with a software
called ADAMO [1, 44]. This software was not only responsible for the descrip-
tion of the event data model but also partly for its processing and provided
bindings to other programming languages and applications like Microsoft Ac-
cess or Matlab.

A part of a description of an event object with the DDL language used in
ADAMO can be found in Listing 2.1. The syntax for the description of event
objects was especially designed for this purpose. With a specially written parser
the files were processed and the event model was filled. Having the advantage
of an especially for this domain designed language the disadvantage was that
every tool for the processing of the data had to be written by the developers
of ADAMO and they could not use already existing tools like e.g. language
parsers.

ADAMO was not only used in the ALEPH experiment at CERN but also in
several other high energy physics experiments for data definition.

2.4.2 From Simulation to Reconstruction in LHCb

The relation between the different types of particles contained in one event
may be seen in Figure 2.4. The left part of the figure shows the simulation part
of the data while the right part shows the particles which will be used both in
simulation and real data taking. The processing of the information from the
simulation to the reconstructed data will be done in these steps:
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Listing 2.1: DDL Description of Aleph Muon Sub-Detector

SUBSCHEMA NuonRAVGALJULPOT

AUTHOR 'G. Capon, C. Taylor'
REVIEVER ' F . Loverre '
VERSIOH '4.0'

DATE '28/03/96'

DEFIBE ESET

PHHA ta (POT)\
k\

3TATIC

- (KultHlts - INTE [0.30] : -nniibar of clusters in las t \
ten plants' ,

IGeoaflag - IHTE [-1.6] : 'flag of possible dead zon«'.
EnsrDap - REAL [0.0.100.] : 'energy dsposlt in n«a

Heal storoy ',

HuabDeg - IHTE [0,23] : 'number of dvgrses of frssdon',

ITruabaapInBcal - IHTE [0,11000000] : 'obsarv«d bit aap in Heal•.
IdanFlag - INTE [-1.1] : 'prolininary idantlfication flag\

1-auon,0-not classif ,-1-hadron',
TrackNo - IHTE [1,999] : 'index of associated track ')

'noon detector HITs.
HR-O. (GAL) \
Nuabar of words / bit\

STATIC

- (TrackHoa - IHTE [1.999] : 'track < that generates the hit'.
Electronics - IHTE [1,99] : 'electronics nodule •',
StripPlane - IHTE [1,4] : 'strip plane * in this electr. aodnle•,
StrlpAddres - IHTE [0,700] : 'strip addrsss in this strip plane\

( start fron 0 )')

END ESET

END SUBSCHEMA

• GenParticles are the output of the simulation of the primary collision of
particles. This simulation will be done with special software. The most
widely used software packages for this task are called Herwig [28] and
Pythia [42].

• The results of this first step will then be fed into a software which simulates
the reaction of particles originating from this primary collision with the
materials of the detector. Particles flying through the detector in this
step are called MCParticles. The output of this simulation software is
called MCHit. An MCHit is the response of a simulated sub-detector to
an MCParticle traversing it. A popular software for this task is called
GEANT4 [24].

• The next step of the processing of the event data is called digitisation. This
will simulate the response of the detector hardware to the MCHits. An
intermediate step here is called MCDeposit which resembles the amount of
energy that a particle has left while traversing a sub-detector. The output
of this step is called MCDigit. MCDigits are the last step of the simulated
event.

• A step that is not mentioned in the picture is the trigger step. In real
life triggers will be used to reduce the amount of data that comes out of
the detector and to filter those events which are interesting for further
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Figure 2.4: Relations of Event Data Types
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investigation. Triggers will work with digitised data and also return di-
gits. There are 3 different kinds of triggers. While the level 0 trigger
is implemented in hardware, level 1 trigger and the high level trigger are
implemented in software.

• From this step on, called Digits, the processing of the simulated and real
data will be the same. Digits are the same as MCDigits but they are
needed to function as a starting point for the subsequent steps. In real life
Digits will be the output of the different trigger levels of the experiment.
A synonym for Digits is Raw Data.

• The Raw Data will be fed into a reconstruction program which will use
the information that comes from the high level trigger to reconstruct the
tracks of the different particles that were part of a given event. An in-
termediate step in this reconstruction of the tracks is called clustering.
Major problems that can occur in this step is the possibility that more
than two particles were involved in the primary collision, which is called
pile up, or that slow particles from a previous collision are overtaken by
fast ones from a subsequent one, which is called spillover.

• The reconstruction program will not only try to reconstruct the tracks of
the particles but will also give the a 'tag' which will be a first hint of the
type of the particle. The output of the tagging step is called ProtoParticle.

• In the end an analysis software will use the information that was provided
by the reconstruction program to determine the types of particles that
were involved in the interaction. Now that the analysis software knows
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what kinds of interactions took place during a given event it may put this
event into a pool of events which only stores interactions of a given type.

With each of the steps on the right side of the curve, special algorithms
are involved which will do specific tasks for a sub-detector. For example for
the reconstruction step there are specific algorithms of the different tracking
stations which will process the raw data and provide their information to the
overall finding of a track of a particle from a collision.

While simulating the experiment it is also crucial for the event model that
there will be no connection from the simulated data (on the left side of the figure)
to the 'real' data (on the right side). The only connection when processing the
data is allowed from MCDigit to Digit to ensure that the reconstruction and
analysis of the simulated data will resemble conditions of real data taking.

2.4.3 The Transient LHCb Event Store

For the transient event store (TES) in LHCb it is important that the data may
be accessed quickly and can be shared between different users of the store. The
TES is treelike organised (see Figure 2.5). Every algorithm in LHCb consuming
or writing event data will pick it up from and put it to the TES. Under the top
Event there are several subtrees:

Figure 2.5: Structure of the LHCb Transient Event Store

CD Event
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É Q MCVertices
Ö " O Rich
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£ ] Phys
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Gen will contain the output from the event generators. During the simula-
tion phase of the detector this subtree contains the output of the software
which produces simulated events.

• The MC subtree will contain the output of the simulation of the particles
running through the detector with GEANT4. This tree will for example
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contain the MCParticles and MCVertices which are the output from the
simulation software.

• The Raw subtree contains the raw information of the detector output or
its equivalent of the simulated data.

• The Trig subtree will contain the data after the Trigger has processed
them and accepted. Several levels of trigger decision are involved when
processing the data.

• The Rec subtree will contain the data after the reconstruction step. A
reconstruction program will try to reconstruct the events that where ac-
cepted after the trigger step. Data that this program produces will contain
the track of the particles and a proposal for their type.

• Finally the Phys tree contains the data that was processed by the analysis
software. The analysis software will read the reconstructed events and
also perform some statistical processing on this data.

2.4.4 The Persistent LHCb Event Store
For the persistent event store the major problem is how to store the data

in an efficient way. Storage should be efficient both in terms of compacting
information and the time needed to write and retrieve the data from the external
medium.

A problem that occurs when handling the persistent event store, is that most
of the particle informations are tiny objects which need to be grouped together
accordingly. When making data persistent a clever mechanism of compacting
the information which is stored in lists or vectors in the transient world, needs
to be found.

In LHCb a mechanism for implementing these features of compacting small
objects was implemented. If needed the objects will be serialised into binary
blobs which are passed to the database system which is responsible for the
storage of the data. Together with some meta information about the objects
stored in the database it will be possible to restore the objects properly into
memory when they are read back.

The current persistent technology for Gaudi is called ROOT [9, 48] but also
other persistent back ends will be possible like database systems (e.g. Oracle
[40]).



Chapter 3

Data Modelling
Requirements

In this chapter all the necessary requirements for the description of event
objects will be listed. Requirements arise from the people and the organisa-
tion where it is used, from the constraints of programming languages used in
the experiments and philosophies and conventions developed by people in the
experiment.

3.1 Long Lifetime

The first plans for the LHCb experiment were made in the mid 1990's [34],
data taking should start in 2007 and will last for approximately 15 years. In-
cluding the planning and construction phase, the LHCb experiment is supposed
to run for several decades. Even the preparation phase of the experiment will
last for more than a decade. In this respect the durability of the described data
is important. For the whole period of preparation and data taking the coher-
ence and the maintainability of the data described in the event model has to be
guaranteed.

3.2 Schema Evolution

In order to guarantee a coherent event model through time, a mechanism for
versioning of documents has to be implemented. This mechanism will be outside
the scope of this thesis but the object descriptions in the event model will have
to cooperate with it. This means that every document which describes an event
object will also have to include some information which will make it possible
to trace the version of it and with this information provide means to compare
it to other versions of the same object description. Schema evolution will be
important when data, that has been written several years ago with different
software and a different layout should be read back into another program and
fill objects in this program appropriately.

15
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3.3 Programming Language Independence
As the experiment software will also continue to evolve when the experiments

are running, new programming languages are likely to come up which are more
adequate with better functionality and suit better for given tasks. In order not
to re-implement the event model every time a new language is introduced it
would be important to describe the event model with a higher level language
from which concrete implementations can be derived.

This description of the event model has to be done on a higher level, as
future languages may not use features which are part of the implementation of
the model today or may implement new features. For this reason the description
has to be essentially limited and reduced to the main functionality of the model.

It has also to be kept in mind that not only the implementation language
of the event model but also the implementations of the underlying framework
software and the algorithms directly using it, may change at the same time, and
they may also evolve at a different speed.

3.4 External Dependencies
The event model per se will not be self contained. It will depend on other

pieces of software which are either provided by the framework software or are
completely external and provided by third parties. For this reason it will be
useful if the tools for handling the event model will have some knowledge about
the existence of software which is not part of the model itself and include it at
the proper places. For this purpose a database with the information about all
externally available software will have to be built and provided when the tools
for handling the event objects are executed.

3.5 Flexibility of the Software
Changing the software for the description of the event model should be pos-

sible in a flexible way. Due to the long lifetime of the experiment many different
people will be involved to maintain the functionality of the implementation of
the event objects. Changing parts of the model or implementing new features
should not be too difficult and easily adaptable.

3.5.1 Changing Implementation

During the lifetime of the experiment it will certainly occur that different
implementation techniques will evolve which for example allow a faster or more
efficient implementation of the event model. Instead of changing the implement-
ation of each object it would be useful if the overall design of the implementation
was stored in only one place were it could be changed easily. After having done
these changes one only needs to regenerate the whole model with the new func-
tionality to obtain the new features. This could be useful for example when
new techniques for object containers, which are used frequently in the model,
are designed.
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In this sense the object description techniques will function like a style sheet
which stores the overall design of the model decoupling the implementation
details from the list of objects describing the model itself.

3.5.2 Evolution to New Languages
Not only the implementation details for a given language may change but also

new implementation languages for event objects may be used in the experiment
software. In this case it should be easy to generate the object descriptions also
with these new languages which may support different features than previous
ones.

3.6 Easiness of Design
Physicists describing event data should not be bothered with complex imple-

mentation languages which are difficult to understand. The goal is to either
create a language which is easy to understand and to learn with a simple syntax
or use a language that users are already familiar with. Also the syntax with
which the event model is described should be straight forward and reflect the
layout and relations of the objects involved.

3.7 Short Descriptions
Data descriptions in concrete implementations are often verbose and so error

prone to implement. E.g. in C++ in most cases the implementation of a data
member in a class also requires declaration and definition of a set- and a get-
method. In addition information of this member may also appear in other places
of the implementation of a class, e.g. the streaming functions.

Listing 3.1 shows an object description in C++ for two data members. For
describing these two members a file of at least 120 lines will be needed. What
is not shown in this listing are all additional lines which typically also appear in
a C++ header file like the description of the class, include files, header guards
or cvs information.

Listing 3.1: Example class containing two members

public:

/// Default Constructor
ExaapleClass() : n.monentum(0.0. 0.0, 0.0. 0.0) {}

HepLorontzVector* aomantuo () ;

/ / / Retrieve Vector of pointers to decay vertices (const)
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void setEndVartices(const SmartB.tVector<BCVertex>» value);

/ / / Add rector of pointera to decay vertices

/// Remove Vector of pointers to decay vertices

/ / / Cleor Sector of pointera to decay vertices

{

}

iniin

bject for reading

o_endV«rtices.pusb_back(value);

Key.dObjeeKint >: : ser ia l ize (») ;
s << u.moaentum

<< m.endïer t icesdl i is) ;

KeyedObject<int>:: serialize(s):
s >> m,momentum

>

s << M "

)

mpl8Cl&ss::clQ&rEndV8rtices()

« . c l ea rO;
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3.8 Ability for Constraining the Language

As the LHCb software framework is written in object oriented style, the event
model should also be capable of reflecting these concepts. But not all capabilities
of current programming languages need to be reflected in such a description
language. While concepts like inheritance would be essential to implement,
other concepts like abstract interfaces are perhaps not necessary for a data
model.

In this respect it will be useful if the description of objects can be constrained
so that not all possibilities of a language can be used.

3.9 Modelling Relations

There are data modelling features that are not reflected in current object
oriented programming languages directly, for example the distinction between
data members which are holding some data of an object and relations which
link to other parts of the event model. E.g. in C++ there is no distinction
between relations between objects and members of the object.

Modelling relations may be further divided into 1 to 1 and 1 to many rela-
tions. This distinction is important for the design as different implementation
techniques for these two kinds of relations may be used.

In the object oriented world the distinction between 1 to 1 and 1 to many
relations will be done by either pointing to one instance of an object directly
or by holding a list or vector of pointers to instances, where the choice of using
what kind of container is an implementation detail.

• A 1 to 1 relation for example would be the vertex to mother particle
relation. Each vertex can only be related to one mother particle.

• An example for 1 to many relations is a vertex to decay particles relation,
where from a given decay many different particles may evolve. There will
be no further distinction on the cardinality of relating objects (i.e. it is
not important how many decay particles evolve from a given vertex as
long as they are more than one and they can be followed when traversing
the model).

In principal it should also be possible to model other kinds of relations like
many to many relations, but for the description of the event model the 1-1 and
1-many relation are enough.

The modelling of relations in the event model is a crucial part. When using
the model through algorithms or interactively, it will be important to traverse
the event structure quickly and in a transparent way. Relations between objects
will also play a special role for persistence of objects (see section 3.10).



20 CHAPTER 3. DATA MODELLING REQUIREMENTS

3.10 Persistence

It is expected that the detectors of the LHC machine will produce several
peta bytes of data every year. In this respect it will also be important to store
the intermediate data at various steps of the processing pipeline onto persistent
media, e.g. tapes. Storing the content of the event model bears several problems:

• The different objects of the event model are related to each other. It will
be crucial to store these relations between the different instances of the
objects so these relations may be restored once the data will be read back
into memory. Only relations which can be made persistent have to be
used when implementing the event model.

• Due to the huge amount of data it will also be necessary to compact the
data as much as possible once it is written onto the persistent medium.
Most of this work will be done by the mechanism which is responsible for
the persistence of the data but the layout of the event model may also
support this.

• Also due to the high amount of data it will be necessary to access and write
the data quickly. There are two main aspects for speed when accessing
data. Once the underlying hardware will be responsible for the basic speed
of the operation. On the other hand data structures may also optimise
and facilitate the access to the data. Implementing the event model with
data structures which allow fast access will be important.

3.11 Data Modelling Constructs

The means for describing the event model do not have to be sophisticated
as the underlying model is also not complex. Also concerning portability to
other languages it will be an advantage if the descriptions themselves are not
bound to specific features of a given implementation language. Principles of
data modelling for objects are described in [7, 50].

3.11.1 Objects

An object is the basic entity of a data model. An object is used for repres-
enting a concept or abstraction of a set of functionalities and states which are
inherently bound together. The way how objects are organised and grouped
together will always depend on the problem at hand. It will not make sense to
split an object into smaller pieces. Objects provide an abstraction layer of a
real world problem and the practical basis for a computer implementation.

Objects always have an identity and are distinguishable. This means that
they will be distinguished by their existence and not the properties they have.
Object may be used for either denoting a single instance or a group of similar
objects. In case of a single instance they will be called object instances in case
of a group of similar objects they will be called object class.

The concept of objects is fundamental for a the event data modelling and so
should be part of the description language.
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3.11.2 Data Members

Each object may contain a certain number of properties which are called data
members of the object. One way to distinguish data members is whether they
are part of the object or point to other objects.

• Composite data members are part of the object and the object also con-
trols their lifetime. They are initialised when an instance of an object is
constructed and deleted when the instance goes out of scope.

In most cases composite members are not accessible from outside the ob-
ject. Access is only possible through special set- and get-functions.

• Aggregate data members are not controlled by the object itself. A relation
between the object and the aggregated member exists, but when the object
will be deleted the aggregated member will not be deleted as well.

Most object oriented programming languages will not make a distinction
between composite and aggregate members. The difference between these two
types of members is crucial for the design of the event model, because it allows
to introduce means to treat composite and aggregate members differently.

Another way how to distinguish data members is in terms of complexity.

• Basic types are most times supported inherently by the language itself.
Examples are integer, floating point, boolean or character types. Usu-
ally these types will be stored within the class and the class will also be
responsible for the lifetime of the object.

• Complex types are more sophisticated than basic types, which also provide
more or special functionality. In general they are not provided by the
implementation language itself but will be built by the developers of the
event model. As these types are usually larger in size than basic types, if
used as object members, they will be stored most times outside the scope
of a class and also the class will not control their lifetime.

Data members will store the information contained in the event model, they
are another fundamental part of the description language.

3.11.3 Member Methods

Member methods provide the functionality of an object. In case of the event
model they will be used in most cases for the manipulation of data members. In
few cases methods will also be used for other tasks like serialisation of objects
or output of information about the current instance.

Many of the methods can be generated automatically by the tools supporting
the data description language. In some cases special descriptions for meth-
ods will be needed. For these special cases it will be necessary to describe
these methods in a generic way with all its arguments, return value and spe-
cial modifiers, e.g. the constness of the method or the ability to modify the
implementation of the object in subsequent classes.
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Although not always necessary in some special cases also the implementation
code of the method should be provided. This could be useful because certain
languages, e.g. C++, provide the concept of inlining of code, where the compiler
will replace the function call with the implementation code of the method, saving
a stack call and so speeding up the execution. The implementation code is of
course bound to a specific implementation language and needs to be replicated
once a new implementation language is introduced. This is one of the few cases
of the description of the event model were a binding to specific implementations
languages makes sense.

Member methods are another basic concept for the implementation of the
event model and should be part of the description language.

3.11.4 Bit Fields

To encode a set of flags which can be either true or false, bit fields should be
used. Bit fields are an efficient means to store binary information in a single data
member because the binary information is compacted to the bitwise information
it really contains. If the information was stored with other types like boolean or
integer the storage of this information would take much more space. Bit fields
also provide efficient means to get and set the information they are containing.

As there will be a lot of small information in the event model, the concept of
bit fields should be represented in the description language.

3.11.5 Enumerations

Enumerations are types that can hold a set of values specified by the user.
This concept was also introduced to make the code better readable by humans.
Enumerations will set aliases of strings to numbers. These strings may be used
in the code and will be replaced to the actual numbers by the preprocessor. An
example for an enumeration in C++ can be seen in Listing 3.2.

Listing 3.2: Example Enumeration

1 enum Quark {down=l, up, strange , charm, bottom, top};

The concept of enumerations and constraining a type to a given range of
values is useful when implementing data models. For this reason it should be a
requirement for the event modelling language.

3.11.6 Typedefs

To increase the readability of the code it will also be desirable to have some
means of typedef'ing complicated constructs of code to some aliases. These
aliases will be replaced by the compiler but will increase the readability of
the code which is crucial for large software frameworks where many different
developers are involved. Example for a typedefs in C++ can be seen in Listing
3.3.
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Listing 3.3: Example Typedef

1 typedef std::vector<std::pair<int,double> > PIDInfoVector;
2 typedef std::pair<int,double> PIDInfoPair ;

For the reason of better readability of source code, the concept of typedefs
should also be part of the description language.

3.11.7 Encapsulation

Encapsulation of members (i.e. data members and member methods) is a
usual concept of object oriented languages. For example hiding the values of
member variables in a private section of the object and only setting and getting
them through public functions or constructors is supported by every modern
object oriented language and so should also be part of the description language.

In general data members of an object may be encapsulated in three different
parts of the object:

• Private: Everything that is put in the private area may be accessed only
by the object itself. This means that for example data members in the
private section may only the retrieved, changed or set by methods which
are part of the object. In general most data members of an object are
hidden in its private section. In this case it is also usual that for each
data member there is also one public get and set function provided by the
object containing it.

• Protected: Members in the protected section may be accessed by the object
itself and all objects which are derived from it. This concept provides more
access to the functions and members but still restricts it to objects which
are related to each other.

• Public: Members in the public section are accessible from outside the
object. They are not protected by the object anymore. The functionality
of an object through its member functions is usually put into its public
section.

Encapsulation is part of every object oriented language. It increases the
security of the implemented objects and their members. For this reason it
should be used for a data modelling language.

3.11.8 Inheritance

Inheritance is part of every modern class oriented language. Inheritance
defines the relation between two different objects. A base class which provides
a given set of functionality and a sub class. The sub class will inherit all the
functionality of the base class and together with its own features provide a new
object. Inheritance will work with an arbitrary number of layers. In different
object oriented languages there are several variations of inheritance available.
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• Single inheritance is the basic type of inheritance which is provided by
every object oriented language. Single inheritance means that an object
may only inherit functionality from one base class.

• With multiple inheritance a class may derive its functionality from several
different base classes. Most object oriented languages will not support
this feature.

• The concept of virtual inheritance only makes sense in connection with
multiple inheritance. In case of several layers of inheriting objects it may
occur that a given class derives its functionality from the same base class
through more than one path of inheritance. When creating an instance
of one of these classes, with virtual inheritance the ambiguous base class
will only be instantiated once, otherwise several copies of the same class
will be kept in memory.

Single inheritance is the smallest common denominator for all object oriented
languages. As the structure of the event objects is not complicated, single in-
heritance should also be sufficient for its description and more complex concepts
like multiple or virtual inheritance shall not be used.

3.11.9 Polymorphism

A class inheriting from another one has at least the same functionality as its
base class. Polymorphism allows the inheriting class to overwrite parts of the
functionality which is provided by the base class.

Polymorphism is provided by most of the object oriented languages and so
should also be part of the description language for event objects.

3.12 Use of Coding Conventions and Rules
As there are many people contributing to the software in large experiments

it is needed to establish some conventions how source code shall be written and
organised. For the LHCb experiment this was done for example for C++ in
several technical notes [5, 12]. The tools producing the source code automat-
ically should obey the coding conventions as much as possible. There will be
some places where automatic generation of code will not be able to follow the
conventions (e.g. "use meaningful names for variables").

3.13 Uniform Layout and Readability
Readability is also an important feature of the output of the tools used for

describing the event model. HEP experiments are supposed to run over several
decades, in this time many different people will contribute to the code and also
need to understand code that was written by other collaborators. In this sense
the output of the code generation tools producing the implementation of an
event object should all be produced with an easy to understand and coherent
layout in the source files.
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This will ease the task of reading the source files and understanding their
content but also ease the task of debugging the sources if needed. Producing the
same layout for all objects will give also confidence to the software developers
when reading object source files that they can find the different parts of the
implementation at well defined places and they will not need to scroll through
the file or search for some keywords.

3.14 Distributed Development

Due to the distributed organisation of physics collaborations for large HEP
experiments also the development of the software for these collaborations will
be organised in a distributed way. Many developers around the globe will be
involved into the generation and development also of the event model. In this
respect it will be necessary to provide means to divide this development into
different parts which may be put together in the end.

The granularity of the different pieces of the event model has to be of such a
size that they may be developed by different people which are not working at
the same place. On the other hand the granularity of the objects that will be
defined should not be too fine grained, so the overhead for their development is
not too big.

3.15 Documentation

From the higher level description of objects it should also be possible to
extract some documentation information. There are two ways how this inform-
ation can be extracted.

• The information may be extracted directly from the source of the de-
scription of the objects. This involves some tools which will process the
descriptions of objects and generate some documentation. Useful output
formats are for example HTML [29] or WF$L2£[25].

• The other possibility is to produce the documentation information to-
gether with the source code in the comments that will be attached to
classes, functions or members in the concrete implementation files. In a
second step this source code can be processed by tools which will under-
stand the documentation style and then generate the desired documenta-
tion.

A well known tool for producing reference documentation from source code
for example is doxygen [18]. In many experiments tools like doxygen are
used for hand written code, so if the tools for code generation will also
obey these rules for documentation generation, the documentation of user
written and automatically written code may be combined and browsed
together.
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3.16 Generated Output

It will be useful if the amount of data for describing the model will be less
than the amount of automatically generated code. This is also important as
the physicists describing the event model should not be bothered with tedious
techniques or a large overhead in the syntax of the description language.

It can be seen in many concrete implementation languages that a file con-
taining some implementation code contains many redundant bits of information
which can be easily compacted. In C++ for example the information about a
member variable also appears in the set- and get-function, as well as the con-
structors and destructors of the object and several other places like serialisation
methods.

An example for this can be seen in Listing A.3 where for example the member
variable "m_momentum" appears 11 times in the file. It would be useful if the
variable would only appear once in the corresponding description file.



Chapter 4

Design

In this chapter the overall design of the model for describing event objects on
a higher level and generating different implementations and other information
from it will be described. In the first part a course description of the overall
design will be presented, followed by the sections describing the different parts of
the system in more detail. The chapter will be concluded by a section describing
software which is closely related to the system.

4.1 Overall Design

The overall design of the tools for developing and processing the event model
description (see Figure 4.1) was divided into three parts.

• A front end, which will parse the object model definitions. The front end
will also check whether the descriptions of the objects are syntactically
correct and issue warnings and errors if needed.

• An internal representation of the object model to the system will be filled
by the front end parser which is the central source for all subsequent steps.

• Back ends will use this memory representation to produce the required
output. These back ends will produce a representation of the data in a
given implementation language (e.g. C++) but can also produce other
information such as a meta representation of the data, used for reflection
or documentation of the objects.

4.2 Front End
The front end will parse text files of object descriptions written by the users.

These object definitions are the only input to the system that the users have
to maintain. The goal was to define a language that describes objects on a
higher level and does not need to be changed when new back ends are imple-
mented. With this technique the long lifetime of the object description will be
guaranteed.

27
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Figure 4.1: Object Description Framework Overall Design
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When filling the in memory model, the front end will do some lexical and
syntactical parsing of the description language and report when the constraints
are not met.

The front end will also be able to check additional rules which are not related
to syntactical or lexical parsing of the description language (see "LHCb rules" in
Figure 4.1). These rules are specific to the LHCb experiment and to the policy
of how the event model should be generated in a general way. An example for
these specific rules is that every class, attribute and relation should also contain
some description.

4.2.1 Parser

For checking the definition language a parser will be needed. The choices are:

• Either to write a new parser which can do a processing of the language
which is specific to the needs of the definition language. Defining a specific
language and writing all the tools will give the developers the possibility
to really tie down the language and tools to the specific needs for high level
descriptions of event objects. On the other hand all these tools need to
be designed, developed and maintained which will be an overhead which
could be avoided.

• The other possibility is to use a language and parsers which are already
defined and implemented. In this case the language needs to be flexible



4.3. INTERNAL MODEL 29

enough to be extended and adapted, to the problem domain. A drawback
in this case might be, that one depends on the development of the tools
of third parties and once bugs or flaws in the design have been spotted
it might take some time until those are resolved and new versions of the
tool will be released.

4.3 Internal Model
After all general rules have been met and the language has been parsed suc-

cessfully, a model which is internal to the tool will be filled. This model will
contain all information which was provided by the users through their object
definitions.

There are reasons for translating the information from the description files
into another model:

• The front end and the different back ends, may be better decoupled.

• The access to the model will be faster if the information is provided with
the means of the implementation language rather than parsing the object
descriptions over and over again.

A class diagram of the internal model may be found in Figure 4.2.

4.4 Back Ends
After the object descriptions have passed the step of the front end and the in

memory model of the objects descriptions has been filled, this model may serve
different back ends which will produce the desired output.

There will not be any need for developers to alter files which were generated
by the back ends. In fact automatically generated files will contain some in-
formation that suggests to change the source description file and regenerate the
output instead of changing the automatically generated file itself. This will also
be the only way how to keep the information coherent on different platforms
and compilers.

Each of the following sections will contain a description of a possible back
end to the system. Furthermore an implementation of a sample object will be
shown to illustrate the capabilities of the language. This sample object has the
following characteristics:

• Single inheritance from a class "KeyedObject"

• Two attributes ("momentum" and "helicity") with the appropriate set
and get functions

• One relation "originVertex" with a set and a get function

• Serialising and deserialising functions

• A function which dumps the content of the object to a stream
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Figure 4.2: The internal model
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4.4.1 C++
As C++ is the most widely used implementation language in high energy

physics for large software projects at the moment, it is also the most important
back end to implement. This back end will produce a representation of the
objects in C++. Implementations of objects in C++ are normally divided into
two parts:

• Header files which contain the declaration of the classes that will be expor-
ted to the outside world. Those files contain the description of the objects
but in most cases no implementations. (Only short functions, typically
in-lined may be implemented in header files)

Implementation files which contain the source code for member functions
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which were not implemented in the header file.

In most cases no implementation files for event objects will be needed because
all the functions needed are short and so may be generated inline in the header
file itself. For this reason the aim of this back end is to only produce the object
descriptions in header files but not in implementation files.

While producing the header-files this back end should be capable of perform-
ing the following tasks:

• Produce class declarations

• Generate accessor methods for attributes and relations

• Include C++ header files automatically when appropriate

• Generate documentation with the implementation code

• Obey the LHCb coding conventions for C++

The capabilities of the C++ back end are limited in the sense of C++, as
the full functionality of C++ was not needed for representing the event model
in this language. The main functionality needed was to represent attributes
of objects and relations between these objects. The attributes are translated
into class members of C++ classes. The relations are handled by an internal
mechanism of the LHCb software which resembles C++ smart pointers [39].

The back end will also produce implementations of simple functions like ac-
cessors to members or serialising and streaming functions automatically. If there
is a method missing in a class the users may either only put the declaration of
the method into the class or also implement it with the means of the definition
language if they want to. This can be useful in case of 'inline' functions. In
the case of only declaring the function the actual implementation of the method
will be left to the user in an extra implementation file.

A compilation unit in C++ is never self contained, it will always depend on
other pieces of software. The event model will be split into different parts which
are developed by different people. These parts will depend on each other and
the information about other pieces of the event model will be included by the
back end automatically whenever this is needed. For this reason the back end
will contain a database of all types which should be known for the compilation
of the event model. While parsing the definition language the tool will look for
types of e.g. members of a class or argument and return types of functions and
include the proper types into the header file when generating it.

If the automatic inclusion works this will facilitate the life of object designers
because they do not have to bother where the right types are located and how to
include them properly. If the automatic inclusion of types fails for some reason,
the syntax of the description language provides means to force the inclusion of
the proper type which is missing.
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In LHCb there exist some coding guidelines for the implementation of C++
code. The goal of this back end is not only to reflect the structure of the objects
but also meet these guidelines.

In addition to the source code also some documentation for the classes and
objects will be generated. In a subsequent step it is though possible to extract
this information and generate some general description about the event objects
from it.

An example for the output of this back end may be found in Listing 4.1. This
example only contains two members and one relation. The length of the listing
should also document the redundancy of C++ code.

Listing 4.1: Example back end - C++ description

public:

MCParticlaC) : m.monentun(0.0. 0.0, 0.0. 0.0). m_h«licity(0) {>
virtual -MCP.rticl.O <)

HepLorentzVectorfe momentum () ',

void satHelicity(doubla value);

MCVert«- origlaV.rt.iC);

privat«:

double m_helicity;

SmartRef<MCV«rtex> m.originVertex;

>;

alue ;

n_helicity - valu«;

iginVertex() {

K«yedGbject<int>:: serialize(s);
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Kaja.iObJact<iiit>::a«riallz«<B>;
s >> m.momantun

>> l .ha l ic i ty
>> B_originVartax(thia):

m_halicity • l_hal ic i ty;

inlin« atd::oatr«anfc KCPart icla : : f tUStraaa (atd : : oatraam* a) const {
a << •{ •

« • H . l i e l t j : \ f <<"( 1 l e t ) D.b.licity « • } - ;

4.4.2 C++ Reflection
Today many modern compiled object oriented and scripting languages (e.g.

Java, Python) provide reflection capabilities on their objects. Reflection is the
ability to query the internal structure of objects at runtime and also interact
with them (i.e. set or get values of members or call functions). Reflection
is essential for generic tasks like persistence of objects or interactive usage, for
example when working with objects from a terminal prompt through a scripting
language. The reflective information capabilities of the C++ language (RTTI)
are limited and not suitable for the tasks mentioned above. For this reason
a software package was especially designed to support reflection in C++ (see
Appendix B).

This back end will produce appropriate source files which contain all the
information to fill the reflection structure. These descriptions are C++ classes
which contain the needed meta information about the objects which will be
compiled in a later step into libraries and then can be loaded by the reflection
software to provide the meta information about these objects.

The goal of this back end is to provide reflection information on:

• All namespaces which are used in the model reflecting their names and
short descriptions.

• All classes of the event model containing their names and some short
documentation.

• The inheritance tree between classes. This also contains the relative
memory offset of one class to another one.

• All fields of a class. This information contains the name, the type, a
description, the memory offset of the field relative to the beginning of the
class and the modifiers of the field.

• All methods containing information like return type, name of the method,
argument types and a description.

With the information produced by this back end it will be possible to traverse
the event model on a meta level, i.e. without knowing the concrete implemen-
tation it will be possible to query from an object instance what kind of class
it is what are the members of this class and its methods etc. It will also be
possible to get and set values of members and to invoke member functions and
retrieve their return values.
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Because the C++ header files and their reflection information will always be
produced from the same source file it will also be guaranteed that the informa-
tion is coherent and up to date. Also for this reason the developers of the event
model are asked to not alter either the header nor the reflection files which are
generated by the two back ends because otherwise incoherences between the
representation of an object and its meta representation could occur.

An output of this back end for the example object may be found in Listing
4.2.

Listing 4.2: Example back end - C++ reflection

y<>;

t [0] ) ;

MCVertex* rat • ((MCParticle«)v>->origiuVertei () ;

i
public:

MCParticle.dict(>;

erticle<) ;

delete c l ;

l - aev HCParticle();

( ( ( i u t ) cD- (C in t ) CCKeyedObject<int >

ill);

"double",
"Helici ty".

M.taModifleriisetPrivaCeO);

t [0] ) ;

ass CMCParticlB" ,
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Offa*tOf(MCParticl« , m_originV*rt*x).
M.tflKodlfi.r: :a.tprivat* () ) ;

argTypaa .

argTyp.a,
HCParticla.s«tKon«atum_4 ) ;

hod("h*liclty",
•H«licity-.
"doubl*- .
MCParticl*_h*licity_9>;

,_back("doubl«"> ;

•Halicity",
argTypas,
KCParticla_aetHalicity_10 ) ;

•MCV«rt«x",
MCParticl«_originV«rt*x_ll )

argTypss.

MetaPropertyLiet* pi • new KetaPropertyLiat ();
pl~^setPropflrty("Author", "Gloria Corti");
pl->aatProp«rty("ClaasID", "210");

4.4.3 Java

Java is another object oriented implementation language. At the moment it
is not used in the LHCb framework software, so there is no urgent need for
generating a back end for this language at the moment. This back end should
generate the Java representations of the event objects.

A problem with the definitions in Java is, that there is only one file allowed
for the definition and declaration of an object. This file will contain all the code,
including the function bodies which belong to a given class. In most cases the
back end will produce functions automatically (e.g. set- and get-methods), but
the language also allows users to provide self defined functions. If they want to
do this they have either the choice to only declare the function, which will only
generate the signature of the function or to define it. When defining a function
also the implementation code of the function has to be provided.

If the function is only declared but no function body is provided it may be
difficult for the tool to generate the functions correctly. In case of Java where
there is only one file allowed per object definition, several solutions to this
problem are possible:

• It could be a requirement for the generation of the Java output that the
self defined functions always have also to contain the function body, so
the tool may produce the full output and no user changes are necessary.
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• The tool could do some post processing, concatenating the user provided
hand written functions with the ones which were created automatically.

• The problem could also be solved programatically when the user provides
his handwritten functions in a class which inherits from the one which is
generated by the tools and so extending its functionality.

As Java already inherently provides reflection information at compile time
there is no need to generate this information explicitly.

An implementation of the example event object in Java may be found in
Listing 4.3.

Listing 4.3: Example backed - Java description

implements Serializ

private double m_helicity;

public void initC) {
HepLorentzVector(0.0,0.0,0.0,0.0);

m helicity • 0;

c double helicityO {
eturn m^heliclty;

ut.HriteObject(m_aomeutum);

ut.writeObject(m_originVertex);

n.halicity - (doubl«) in.readDouble C);
m_origiaV«rtex • (MCVertex) in.readObjactC);

•(•.BOB«atnm.toString());
e(" h e l i c i t y : " ) ;
efiavfl» 1 ftQE . Double toStiriDB^Di hvilicity)) ï



4.4. BACK ENDS 37

4.4.4 C#

C# may be a successor of C++ in the future. C# is similar to C++ and
also the generation of the event model in this language will be similar. An
advantage of C# is, that it also already contains the means to generate the
reflection information about its object when compiling the source code.

Although C# was originally written only for the windows platform, there
are already compilers developed also for other platforms. (The sample code in
this section was checked and compiled with cscc [22] the C# compiler for linux
developed by the free software foundation)

Two important tasks when generating the source code for the event objects
will be facilitated when using C#:

• The capability for serialising objects will be provided inherently by the
programming language together with the reflection information about the
object. A keyword [Serial izable] will provide a hint to the compiler
that the object can be made persistent. (The keyword [NonSerialized]
may be used in conjunction with certain object members to indicate that
they should not be written out)

• The explicit set- and get-functions for attributes and relations will be
replaced by the concept of properties. Properties will encapsulate the
object member inside the class and provide the capabilities of retrieving
and/or setting its value.

An example for an implementation of the example event object in C# may
be found in Listing 4.4.

Listing 4.4: Example back end - C# description

r ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;

"MCParticla C) O
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.VriteLineCf") ;

.WriteLineCheliclty : {0}", this.m.helicity);

.»rit.Lin.(-)•);

.Closet) ;

4.4.5 Python

One may also imagine to generate the information not only in object oriented
compiled languages but also in scripting languages like Python [43] as it is a
strong component in the Gaudi framework.

In the case of interactive scripting it could make sense to generate the in-
formation of the event model also in Python and then access the model directly
instead of indirect access through a python binding to the main implementation
language of the software framework. The implementation of the sample event
object in Python may be found in Listing 4.5.

Listing 4.5: Example back end - Python description

m momentum « (0.0,0.0,0.0,0.0)
m.helicity « 0
m.originVertex - 0

def momentum(salf):

def helicity(self):

def originV«rtex(self):

def setOriginVertex(self, value):
self.D originVertex • value

def BcrializeOut(self, s):

• • I ' * self.m.helicity

def seralizelntself . s):
slist - string.split(s,'|')
self .m.momentum - slisttO]
self .m.helicity - slist[l]
salf.m_originVertex.pars Info " slist [2]

def fillStreamCself, s):

* ' hellcity:\f * self. m.hel ici ty + ' }'
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4.4.6 Other Back Ends

The data description language itself is probably not designed for browsing
and displaying it in a human readable form. For this reason it will be necessary
to also process this information so that it can be viewed with some standard
tools like HTML browsers or text editors. This back end should perform the
following tasks:

• Show the information in several "information levels". Depending on the
level of information the users wants to see, the back end should be capable
of displaying either the full information about an object or only parts of
it. It could be useful e.g. to only display names and types of attributes
when displaying the object for general use while for debugging it could be
also useful to display informations like modifiers of the attribute or the
initialisation value when the object gets instantiated.

Another use case could be, that the information only for a specific back
end will be displayed. This could be useful in case of self defined methods
which can also contain some implementation code which will be long if
the implementation for all different back end languages will be shown at

This back end should also provide means to traverse the event model.
As the different objects of the model are related to each other, an online
version could be capable to follow links between the different pieces and
so to walk through the model.

4.5 Related Parts

There are some parts which are not directly part of the system but which also
have to be taken into account and are strongly related to the overall design. The
most important of these tasks are persistence and interactivity.

4.5.1 Object Persistence

As already mentioned, the data volume that will be produced with the de-
tector will be huge and a big amount of this data produced will be needed to
store onto persistent media. The task of making the data, obtained from the
detector and processed by different pieces of software, persistent is a non trivial
one. Due to the high volume of data it has to be optimised both for speed and
compression of data. The design of the event model may support these tasks.

For the first task of speed it will be necessary that the information contained
in the model may be accessed quickly. For this reason the get and set functions
have to work as quick as possible. For instance in C++ this may be achieved
by inlining the function and saving a stack call when processing the data. In
some cases special containers will be needed to store collections of small events.
Although these containers also have to serve other tasks, the access time to
these containers will also be crucial.
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The compression of the data is also an important aspect. The tools for per-
sistence of the data will try to compress the data as much as possible. If the
data is already compressed when read by these tools it will be of course better
also for the speed of the processing of the data. As already mentioned before
there are many small objects in the model and collections of those. The com-
pression of those objects will be either done inside special containers or if the
information is only bitwise the compression will be done through bit fields.

4.5.2 Interactivity
For the task of interactivity speed and compression are not so important.

It will be more important to access the data through some interfaces which
provide translations to scripting languages. These converters also need to know
the content of the event model. In order to do this, introspection information of
the data contained is necessary. In the cases where reflection information is not
provided intrinsically by the implementation language it has to be maintained
externally. This means that the meta information about objects needs to be
generated by some tools that process the event model.



Chapter 5

Technical Choices

After defining the logical structure of the model, the decision about the usage
of the concrete languages have to be taken. The first part of this chapter will
discuss the possible choices for the language which can be used for the descrip-
tion of the event objects. Each section containing a proposal for a language
will start with a short introduction into the language, followed by a description
of its advantages and shortcomings. Each section will be concluded by a table
listing advantages and disadvantages.

In the second part the possible implementation languages for the tools and
parsers for the language will be discussed in more depth. Each of the sections
also contains a description of the language, a discussion and a table summar-
ising its advantages and disadvantages.

Both parts will be concluded by a section which compares the different ap-
proaches and chooses one of them.

5.1 Data Description Language
The most important decision that had to be taken was the one about the

data model description language itself which will be used for describing the
event data. Several choices were possible.

5.1.1 Homegrown Language

When using a homegrown language, first the syntax for this language has to
be created. It has to be guaranteed that the syntax of this language is complete
and enough for the description of the event objects. The development of tools
for parsing and handling the language will be completely left to the developers.

In previous experiments at CERN such as ALEPH this approach was used.
A language, called DDL, and a set of tools for its handling (ADAMO) were
implemented (see section 2.4.1).

The advantage of this approach would be the easiness of creation of such files,
as no special environment, such as editors or compilers, would be needed. Every
text editor will be enough to create such an object description.

41
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A drawback to this freedom is, that creators of such files will not have im-
mediate feedback whether they built syntactically correct files until the data is
read with the tool.

Homegrown language also means freedom for the designers of the language
because there are no constraints whatsoever. They may design a language syn-
tax which is especially tied down to the specific needs of event models of HEP
experiments or even to the constraints of one specific experiment. On the other
hand no constraints also means that every tool for parsing and processing the
event descriptions will have to be written from scratch.

Table 5.1: Advantages/Disadvantages Homegrown Languages

object descriptions are easy to Q parsers have to be written ex-
produce plicitly

no extra tools required for pro- 0 maintenance of the tools com-
duction pletely in the hands of the de-

velopers

G display of the information is
only possible with special tools
or reading sources directly

6 syntax of the language has to
be defined

5.1.2 C++
C++ has been one of the most important languages in object oriented pro-

gramming for several years. It is a powerful language with a complex syntax
which is standardised since 1998 [52].

An advantage of C++ is its strong syntax which can be checked easily with
many different compilers. Although the language has been standardised for
some time, no compiler completely implements it, hence the checking of the
object descriptions with different compilers could result in different responses.

With the C++ syntax all requirements for the description of event objects will
be met. On the other hand the syntax of C++ is too powerful for the description
of the event objects and there are no means to constrain the language to a
certain subset. Designers of event objects may be tempted to use concepts of
C++ which will bind the description too much on the special features of C++.
If this happens, object descriptions might not be portable to other languages
anymore.
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C++ is also difficult to learn. At the moment it is popular as a programming
language in the HEP community and people will not have problems to use it
for object descriptions. Nevertheless it may phase out at some time and then
designers will be forced to learn a difficult language for the only purpose of
describing a simple event object model.

As C++ is a complex language and difficult to maintain it should be the goal
of the tools processing the data to produce output in this language rather than
urging the users to provide descriptions with it.

Table 5.2: Advantages/Disadvantages C++

© strong syntax © difficult syntax

© currently popular language 0 redundant syntax

0 should be target not definition
language

© no means for constraining

5.1.3 IDL
IDL [38] is the interface definition language of the Common Object Re-

quest Broker Architecture (CORBA) of the Object Management Group (OMG).
CORBA aims to provide inter-operability between different programming lan-
guages and platforms. It tries to simplify heterogeneous distributed computing
systems and to be independent of the language and platform where software is
produced.

IDL is a language which has been developed for several years. The CORBA
project provides already bindings to many different implementation languages
which proves that the language per se is complete. IDL is exactly what is needed
for the task of describing interfaces in an language independent way, but there
are some drawbacks to this solution.

The major drawback of IDL is, that it is only suitable for defining interfaces.
Interfaces by definition, do not contain data. It is also incompatible with the
requirement that in some special cases the developers of the event object may
also provide some implementation code for self-defined functions. Extending the
language in such a way that it will also accept pieces of implementation code
will be difficult.

As IDL is designed for the description of interfaces it will also be difficult to
integrate concepts like attributes or relations to other objects. IDL also does
not care how data is structured internally.
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Other experiments at CERN have tried to produce language independent
descriptions for event objects using IDL with some extensions [3, 4].

Table 5.3: Advantages/Disadvantages IDL

© well known language 0 difficult to extend

© independent of platform and 0 restricted to interface defini-
language tion

5.1.4 UML
UML [20, 49] is a widely used graphical language to describe object models.

It has a strict syntax and is often used to describe large software projects. Out
of the many possibilities to describe actions and situations in software using
UML the class diagrams and package diagrams should be used. While the class
diagrams describe objects, their ingredients and the relations between them, the
package diagrams will describe relations between packages.

The way how UML is used, is to generate graphical representations of ob-
jects, their content and their relations with special editors. These editors also
provide language bindings with which the implementation code for objects may
be generated in an automatic way.

If a language binding is needed but not available by the chosen tool which in
turn is needed as an implementation language in the LHCb collaboration one
has to wait until the new binding will be developed.

UML is standardised only on its graphical representations, there is no stand-
ard for a written language which describes UML diagrams. Every tool may
generate a written description of the diagrams but they will be different. This
means that the development of the event model will be bound to one single tool
which will allow the exchange of the object information.

The best tool for modelling with UML, Rational Rose [6, 45, 46], is not a free-
ware tool and buying licenses for it quite expensive, which may not be feasible
for all institutes collaborating in LHCb.

Running the tools on different platforms is also sometimes difficult. For ex-
ample the native platform for Rational Rose is windows. While it provides also
the possibility to run on Linux the operability on this platform is restricted
and execution time much slower. Freeware tools for handling UML are mostly
implemented for one platform only.
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Table 5.4: Advantages/Disadvantages UML

© widely used language

© strict syntax

e
e

e

difficult to extend

most modelling tools are not
free-ware

only limited choice of language
bindings

5.1.5 XML
The Extensible Markup Language (XML) [54] is a simple and flexible text

format, originally designed to meet the challenges of large scale electronic data
publishing. Nowadays XML is also used in many other environments for data
definition and exchange. XML is also a wide spread and well known language
in the computing environment for which several tools such as browsers, editors,
parsers and language bindings exist.

The syntax of an XML document can either be described in so called DTDs
or XML Schemas. While DTD provides a limited functionality, XML Schema
is a complex language which gives the developer of the syntax a lot of means to
go to a detailed level of description.

XML consists of two main entities, namely elements and attributes. Elements
define the objects of the language while attributes are always parts of elements
and specify their behaviour. As the developer of the language is also the creator
of its syntax, extending it with new features is simple and straightforward.

The advantage of this will be, that the definition of the language is completely
free and in the hands of the developer. It will though be possible to start with a
small set of language constraints and extend them whenever needed. Of course
the surrounding environment has also to support such a flexible way of dealing
with new features which have to be introduced into the language.

A drawback of XML is, that it is a verbose language and that for some special
characters which are part of the syntax escape sequences have to be used if they
are part of the data (e.g. "felt;" for "<"). To overcome the disadvantage of
verbosity default values in the syntax can be used which will not have to be
typed in most cases by the developers of the event objects.

5.1.6 Comparison
There are many choices of description languages. There are already some

projects and frameworks which aim to provide object descriptions on a language
and/or platform independent level (e.g. IDL, UML). Although these languages
are adaptable they will not provide the flexibility that is needed by the language
for the object descriptions. Although a syntax which is suitable for describing
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Table 5.5: Advantages/Disadvantages XML

© flexible language 0 verbose language

© easy definition of syntax avail- 0 escape sequences
able (DTD)

© sophisticated syntax definition
possible (XML Schema)

© widely used

© use of default values possible

© many parsers available

most of the cases may be developed in a short time and will be stable for some
more time, the expectation was, that due to the long lifetime of the experiment,
implementation languages and constraints will evolve which will change the
requirements to the description language. In that respect a description language
which may adapt to a changing environment will be the best choice.

C++ and UML are also very powerful languages which provide much more
functionality than is actually needed for the task of describing event objects.
There are no means in these languages to restrict the syntax and as it should
be tried to keep the language for the object description as simple as possible
the power of these two languages is considered a disadvantage in this case.

Also the fact that the development and evolution of the language and tools
should be fully in the hands of the experiment developers was a point that was
important. For example in case of UML this is not completely the case and
with evolution of the languages or upcoming new languages one has to wait for
the providers of the tools and languages to provide the proper bindings and
facilities.

In case of XML the whole development will be in the hands of the developers
at CERN which will be more work but also provides the flexibility to change the
syntax on the short term. Also in case of text files the development would be
in charge of the local developers, but in contrast to XML several general tools
like parsers or editors would have to be written from scratch which are already
available in a wide variety for XML for different platforms and implementation
languages.

Because of its ability of easy extension and its strict syntax XML with a
specific DTD was chosen as the language for the description of the objects.

XML was also chosen because it was already used in LHCb, e.g. for the
detector description. So it was hoped that people are already used to working
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with this language and it will not take a lot of time for them to get up to speed
with it.

5.2 Implementation Language

It was also necessary to decide on the implementation language for the tools
which would be used for the parsing of the description language and the differ-
ent back ends of the system. In general any language that would be capable of
parsing a given description language and producing some output would be suffi-
cient for this choice. Possible choices in this case were compiled object oriented
languages such as C++ or Java as well as scripting languages like Python or
Perl.

Another constraint that was set up by the Gaudi environment was that the
language chosen had to work on two different platforms, namely windows and
linux, which is done to ensure the platform/compiler independence of the source
code.

5.2.1 Scripting Languages

It would be possible to implement the tools needed with scripting languages
like Perl [41] or Python [43]. Scripting languages in general have the advantage
to allow faster prototyping of code. Python especially has also the advant-
age that it supports object oriented programming features, which will enhance
the usability and readability of the code. For big software projects scripting
languages will not be optimal because, as they are only interpreted, they will
run slower than compiled languages which can be optimised to the machine
hardware. Although there are some features in scripting languages to produce
so-called byte-code which resembles compiled code closely.

Both Perl and Python are well known and well supported languages, for which
there exist also a lot of external tools. For Python e.g. there are several XML
parsers which understand both DTDs and XML Schemas. So an implementation
with a scripting language should also be possible.

Table 5.6: Advantages/Disadvantages Scripting Languages

© fast prototyping possible 0 slower execution of code

© good documentation available

© many modules and extensions
available

© Python and Perl widely used
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5.2.2 Compiled Languages

Compiled languages have the advantage to be faster but on the other hand
the development phase will take more time because of recompilation of code.
C++ [52] and Java [31] are two compiled languages which also support features
of modern object oriented programming. Although Fortran was the dominant
language in high energy physics until recently, it was not taken into account,
because it does not support object oriented programming and is phasing out for
software in high energy physics.

It has also to be chosen, with which tools one would like to parse the object
description code (XML). For C++ and Java the dominant XML parser at the
moment is called Xerces [11], which was developed as open source software in
the apache project.

Table 5.7: Advantages/Disadvantages Compiled Languages

fast execution of code 0 Java proprietary language

many modules and extensions © design and implementation will
available take longer

C++ and Java rather up to 0 recompilation after every code
date languages change

C++ and Java support object
oriented programming

Good documentation available

C++ standardised by ISO

5.2.3 Comparison

Although the tool itself is completely independent of Gaudi, C++ was chosen
for the implementation language. The reasons for choosing C++ were, that
execution time of the tools will be faster which may play a role when parsing
several hundreds of definition files. Another reason was, that C++ is already
used in the framework as the main implementation language which will also
speed up the maintenance and readability by other developers, who are already
used to the language.

As a tool for parsing the description language, Xerces-C [11] was chosen as
there existed a CH—h implementation of this parser and it was also already used
in Gaudi for the detector description part. Xerces has been developed for several
years and is already in a stable phase. It is also able to verify XML documents
either with DTD or XML Schema.
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Implementation

In this section the concrete implementation that was used in LHCb will be
explained in more detail. The first section will give a short introduction into
XML, followed by the description language which was developed. The next
section will give an explanation of the rules which were applied when running the
different tools. The chapter will be concluded by an explanation how the tools
were integrated into the Gaudi software framework and used to automatically
produce the source code.

6.1 Introduction into XML

XML [54] is a simple and flexible text format which was derived from the
SGML standard [51]. XML is standardised by the world wide web consortium1

(W3C). The current recommendation of the W3C for XML is available at [8].

The main parts of an XML document are its elements and attributes. Ele-
ments describe the objects of the document and may be nested into each other.
Attributes are always attached to an element and describe its behaviour. In the
example in Listing 6.1 the elements are <package>, <class> and <attribute>,
the attributes are name, author, id, serializers, type and init.

Listing 6.1: Example XML document

<package name=
<class name =

1'Event " >

''HCParticle'' author
serializers =

<attribute
</class >

</package >

name='
''FALSE''>
'particlelD''

=''Gloria Corti''

type=''ParticlelD

id=''210''

• ' init = ''0'•/>

XML documents may be either well-formed or valid. Well-formed is the
weaker statement for checking the correctness of an XML document. A well-
formed document follows the rules of the XML specification that for example
the elements are correctly nested. Valid documents also contain a syntax de-
scription to which they have to adhere.

1 http://www.w3c.org

49
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The syntax of the LHCb object description language is currently described
with a DTD. The two main elements for DTD descriptions are < !ELEMENT> and
< ! ATTLIST> which describe the elements and their attributes.

In a DTD the possible sub elements are given in the parenthesis behind the
element name. The cardinality of each sub-element is specified by a character
after the element name as follows:

• ?: 0 or 1 occurrence of the element

• *: 0 or more occurrences of the element

• +: 1 or more occurrences of the element

Each element has a list of attributes attached. Each line of the listing contains
the attribute name, the possible values of the attribute and a possible keyword
to specify whether the attribute is required or not. Possible values for attributes
are:

• CD ATA specifies that the attribute may contain any text.

• It is also possible to specify a pool of possible values inside parenthesis.
If this is done, only one of the specified values may be used as a value for
the attribute. After the parenthesis a default value inside quotes may be
given.

Keywords to specify whether an attribute is required or not, are:

• »REQUIRED means that a value for this attribute has to be provided by
the developer of the language. For some attributes it is obvious that they
are required by the language, e.g. name of a class. Other attributes are
required due to conventions in the LHCb collaboration (e.g. descriptions).

• »IMPLIED means that a value for the attribute may be provided. If no
value will be provided the description of the object will be still correct.

• #FIXED was used to attach a given attribute to an element. Users of the
language are not allowed to change the values for these attributes.

A part of the DTD describing the example XML document in Listing 6.1 can
be found in Listing 6.2.

Listing 6.2: Example DTD

<!ELEMENT package ((import*,class*,namespace*)*)>
<!ATTLIST package

name CDATA «REQUIRED

<!ELEMENT class (attribute*)>
«MATTLIST class

name CDATA «REQUIRED
author CDATA «REQUIRED
id CDATA «IMPLIED
serializers (TRUE I FALSE) "TRUE"
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6.2 Gaudi Object Description Language
As described in the previous chapter, XML was chosen as description lan-

guage. The Gaudi Object Description language (GOD) consists of 19 elements
which should allow developers to define their event objects with enough detail.

For the GOD language it was decided to start the description of the language
syntax with a DTD and switch to XML Schema if the language reaches a level
of complexity that DTD is not able to handle anymore. As the event object
description only requires a simple syntax it is still possible to describe the whole
language with a DTD (see Listing A.I).

6.2.1 Element Description
In this section the different elements of the GOD language (see Figure 6.1) will

be explained in more detail. In mean each XML element of the GOD language
has 4 attributes. As the description of all the attributes will be too much detail
only the most important ones will be explained. The rest can be looked up in
the DTD of the language in Listing A.I.

Figure 6.1: Elements in the Gaudi Object Description Language

<destructor> <cons(ructor>

r-1

1

<me(hod>

\ T

<attribute> <enum>

!

<arg> <code> <return> <bitfield>



52 CHAPTER 6. IMPLEMENTATION

• <gdd>

— Sub elements: <import>, <package>

— Attributes: version

<gdd> is the top level element. Elements in XML are arranged in a tree
and the top level element is the only root of the tree.

The only attribute of this element contains the version number which
could be used for versioning of the syntax of the XML document. So far
there were no backward incompatible changes to the syntax definition of
the event object language and so this version attribute was not used so
far.

• <import>

— Sub elements: none

— Attributes: name, std, soft, ignore

In general external units of source code which are required for the com-
pilation will be included automatically whenever they are needed. If this
fails for some reason, <import> will introduce the dependency to another
source code unit of the software which this one depends on. The <import>
element can be used in several levels of the syntax. It may be used as a
sub-element of <gdd> which means that the import unit will appear in
every package and subsequently every class. Or it may also only be sub-
element of <package> or <class> and appear down the tree accordingly
to these objects.

Attributes of <import> define whether it should be treated as a unit that
is provided by the language itself (std) or it should be treated as a decla-
ration unit only which will declare an object but not import it, to avoid
cyclic dependencies (soft).

• <package>

— Sub elements: <import>, <class>, <namespace>

— Attributes: name

<package> may contain <class>, <namespace> and <import> elements.
Together they build a set of objects and declarations which inherently
belong together (e.g. for a given sub-detector).

• <class>

— Sub elements: <constructor>, <destructor>, <base>, <desc>,
<location>, <attribute>, <relation>, <method>, <import>,
<typedef>, <enum>

— Attributes: name, author, desc, filename, id, location, stdVectorTy-
peDef, keyedContTypeDef, templateVector, templateList, serializers
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As <class> is the central object in the description framework. It resembles
the objects that have to be described (e.g. a MCVertex or MCParticle).
Sub elements of <class> contain all the information that a given object
has, e.g. its members or its relations to other objects. As classes are
the central piece of software in object oriented languages they also play a
central role in the event description language. They support inheritance to
other classes and will encapsulate their members in the different sections
of the object. Most of the elements of the event description syntax are
direct or indirect sub-elements of the <class> element.

<class> is an important element it also has a lot of attributes. A name
and an id which will make it unique, an author and a description used for
documentation purposes, a location which will describe the location of the
class in the transient event store.

• <desc>

- Sub elements: #PCDATA

- Attributes: xml:space

<desc> contains a description of a class. Although <class> has an at-
tribute for its description, <desc> may be used if a long and in depth
description for a class is necessary.

• <location>

- Sub elements: none

- Attributes: name, place, noQuote

Every event object needs to specify its location in the transient event
store. The primary place of the object will be specified with the location
attribute of <class>. If the object may appear in more than one place
the <location> element may be used to define these places.

• <namespace>

- Sub elements: <desc>, <enum>, <class>, <method>, <import>,
<attr ibute>, <typedef>

- Attributes: name, author, desc

<namespace> is an element on the same level as <class>. Nevertheless it
may contain <class> elements, furthermore other elements like <typedef >
or <enum>. The difference between <class> and <namespace> is that the
latter is only a container from which no instances can be derived. It only
makes a given set of objects unique, so they will not clash with others.

<namespace> also has several attributes like author and description for
documentation purposes.

• <base>

- Sub elements: none
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— Attributes: name, virtual, access

<base> is a sub-element of <class>. <base> will be used to describe the
inheritance between objects. In the Gaudi framework only single inherit-
ance between real objects is allowed.

The attributes of <base> describe the name of the base object and the
way the inheritance to this other object is done.

• <enum>

— Sub elements: none

— Attributes: name, desc, value, access

The <enum> element is a child element of both <class> and <namespace>.
It consists of a set of variables which will be given some numbers. This
setting of numbers can be either done automatically, starting at 0, or
explicitly.

<enum> has a value attribute which will hold a comma separated list of
variables which are the items of the enumeration. Each variable may be
followed by an equal sign and a value giving a variable a value.

• <typedef>

— Sub elements: none

— Attributes: desc, type, def, access

The <typedef > element is a way of increasing readability in a program.
Typedefs are aliases to other constructs in a program.

Besides the usual attribute for a description the two main attributes of
this element are type which holds the original type and def which stores
the name with the alias for this type.

• <constructor>

— Sub elements: <arg>, <code>

— Attributes: desc, argList, arglnOut, initList

In object oriented languages constructors are responsible for creating a
new instance of an object. Constructors are able to assign values to the
members of the new instance of the object and also may execute some
further code which may be necessary at creation time of the instance. The
allocation of memory will be done automatically when the constructor is
called.

Besides the usual description attribute, the constructor also accepts an
argList attribute with which one may specify arguments in a simple way.

• <destructor>

— Sub elements: <arg>, <code>



6.2. GAUDI OBJECT DESCRIPTION LANGUAGE 55

— Attributes: desc, argList, arglnOut

The <destructor> element will destroy elements and free the memory
that was allocated for them. Destructors are, as well as constructors, spe-
cific to object oriented programming. Although not all modern languages
work with destructors (some also use garbage collection instead), it is a
crucial part for languages which do use them.

<destructor> will accept a desc attribute for documentation and and
argList attribute for simple description of arguments.

• <method>

— Sub elements: <arg>, <return>, <code>

— Attributes: name, desc, template, access, const, virtual, static, in-
line, friend, type, argList, arglnOut

Most of the methods that are needed for the event objects, e.g. set-
and get-methods for attributes or relations will be generated automatic-
ally. Nevertheless it will also be necessary in some cases to define and
declare methods which are not generated automatically. These methods
may either be special set or get methods, e.g. treating the arguments in a
special way, or do something special related to the object. Possible sub-
elements of <method> are <code> which will take some language specific
implementation code and <arg> which will describe an argument with
more detail than the attribute argList could do. It is also possible to
only declare a method and implement it in another place, in that case the
<code> element will not be needed.

The method element accepts several arguments. Besides the ones for doc-
umentation purposes, i.e. name and desc, it also accepts an argList which
describes simple arguments of the method. A return attribute describes
the return type of the method. The access attribute specifies in which
section of the object the <method> resides (public, protected, private).

• <arg>

— Sub elements: none

— Attributes: type, name, const, inout

The <arg> element is a sub-element of <constructor>, <destructor> and
<method>. While all these three elements also have an attribute to declare
simple arguments, sometimes it may be necessary to define arguments with
more complex definitions. There are some special rules inside the system
how arguments should be treated by default. The <arg> element in most
cases has to be used when these rules have to be overwritten.

Arguments of the <arg> element are type and name which denote the
language type and the name of the argument.
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• <return>

— Sub elements: none

— Attributes: type, const

The <return> element is a sub-element of <method>. It specifies the return
value of the method. Its arguments specify the type and the constness of
the returned type.

• <code>

— Sub elements: #PCDATA

— Attributes: lang, xml:space

The <code> element is a sub-element of <constructor>, <destructor>
and <method>. It will contain language specific implementation code of
these functions if necessary. This is the only case were an introduction of
language dependencies into the event model is needed. The only important
attribute of the <code> element describes the language that it uses.

• <attribute>

— Sub elements: <bitf ield>

— Attributes: type, name, desc, init, array, access, compression, seri-
alize, setMeth, getMeth

The <attribute> element is one important piece of content of an object.
Attributes are the member variables of a class which will be stored within.
Examples for attributes are the energy of a particle or its id. Types of
attributes may be any simple but also complex type which is aggregated
into the object.

The <attribute> element has several XML attributes, type and name
for the basic description. An init attribute describes the initialisation
value it should take when the object is constructed. The setMeth and
getMeth denote whether the set- and get-method for this attribute should
be constructed automatically or not. The default for these methods is, that
they will be created by default, the users only have to set this attribute to
false if they do not want these methods or want to overwrite them. The
access attribute specifies whether the attribute should reside in the public,
protected or private section of the object. The serialize attribute specifies
whether the attribute should be written on a persistent medium when the
object will be made persistent.

• <relation>

— Sub elements: none

— Attributes: type, name, desc, access, multiplicity, serialize, setMeth,
getMeth, addMeth, remMeth, clrMeth
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<relation> is another important part for describing an event object. Re-
lations are connections to other objects of the event model. There will be
the possibility of a 1 to 1 or a 1 to many relation. Both kinds of relations
will be treated with special containers in LHCb.

The <relation> element has similar attributes like the <attribute>. Ad-
ditionally there is an attribute multiplicity, which specifies 1 to 1 or 1
to many relations and some attributes which denote whether an add-,
remove- or clear-method should be created in case of a 1 to many relation.
The default for the accessor methods is true, which means that they will
be created by default.

• <bitfield>

— Sub elements: none

— Attributes: name, length, desc, startBit, setMeth, getMeth

<bitf ield> is a special sub-element of <attribute>. A reason for using
bit fields will be the compact storage of bitwise information. This set may
be stored in such a bitfield. The length of the bitfield may also be specified
explicitly for each implementation language.

Attributes of <bitf ield> are the usual name and description, a length
attribute to describe how long the field is and a setMeth and getMeth
attribute to specify whether this bitfield should have an explicit setter or
getter method.

6.3 Rules

The rules that were implemented may be divided into two parts. First there
are general rules which will apply to all back ends of the system. These rules
include e.g. general coding conventions. Second there are specific rules which
only apply to a given back end. In the LHCb software framework there are for
example some specific rules which only apply to the C++ language. Specific
rules that are implemented also imply the automatic behaviour of the tool for
this back end, which is special dealing with elements and triggering the output
on the existence of combinations of elements. The different levels of rules and
their input can also be seen in Figure 4.1.

6.3.1 LHCb Rules
As these rules apply to every back end of the system they may be checked at

an early stage of processing, e.g. while running the parser over the description
language. The following list will give a short overview and description of some
of these rules:

• Every class, method, attribute and relation has to have a description. For
this reason the desc attribute is required for each of the elements in the
description language.

• Classes have to be contained in a package.
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• Each package should have a unique name and start with a capital letter

• Concatenated names should be built without underscores, each first letter
being uppercase

• Member variables of classes should consist of "m." and the variable name,
starting with a lowercase letter.

• Static variable should start with a "s_" concatenated with the variable
name.

• Names of get functions shall be the variable name starting with a lower
letter, e.g.the get function for the attribute m-particleID will be

const ParticlelDft par t ic le lDO const;

• Set functions shall be concatenated with "set" and the variable name
starting with a uppercase letter, e.g.

void setParticlelD(const ParticlelDft value);

• The length of every line should not exceed 80 characters.

6.3.2 Specific Rules for C++
For the time being there exist only coding rules for C++ in the LHCb col-

laboration. There are some rules which were applied from the LHCb coding
conventions for C++ [5, 12]:

• Every class shall have a function which returns a "ClassID". The ClassID
is a unique number which is a shortcut to the current class. This will
speed up the access to classes.

• Each class should have a header-file and an implementation-file. The
default file name is the class name concatenated with '.h'

• Standard includes should look like

#include <vector>

All other includes should look like

«include ' ' Pa th to / Inc lude f i l e .h ' '

• Each header file should contain one class. If a class has an inner class it
may be part of the same header-file.

• Every header file has a "header guard" to avoid multiple inclusions, e.g.

#ifndef PACKAGE_NAME_H
»define PACKAGE_NAME_H 1

. . . class body . . .
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• Forward declarations should be used whenever possible to avoid cyclic
dependencies

• A class should start with the public declarations, followed by the protected
and private ones.

• For clarification typedefs are allowed. They should be placed at the be-
ginning of the public section of the class.

• There shall be no implementations of functions inside the class body. In-
line functions should be implemented after the class body in the header
file, e.g.

class MCParticle
{

double virtualMassO const;
>;

inline double MCParticle::virtualMassO const
{

return m_momentum.m();
}

• The constructor should initialise all variables and objects of a class at
creation time.

• A virtual destructor is mandatory for every class.

• The const modifier should be used for functions which do not change the
object (e.g. get-methods) or arguments and return values which will not
change or are not allowed to be changed.

• In general objects should be passed by const reference. Small objects (e.g.
basic types) can also be passed by value.

• When declaring functions, each argument should be put on a separate line.

• Comments should be compliant to the doxygen rules e.g.

/** Sclass MCParticle MCParticle.h Event/MCParticle.h.

* The Monte Carlo par t ic le kinematics information
*
* Oauthor Gloria Corti
* Qdate 17/07/2003
*

*/

• Every method should be prepended by a description in doxygen style e.g.

/ / / Pointer to parent particle
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In addition to the official coding conventions some more rules were applied
which were thought to be useful for the implementation of the event objects in
C++:

• attributes, relations, enumerations and typedefs are put into the private
section of the class by default.

• methods are created by default in the public section of the object.

• access methods (set, get, add, ...) for attributes, relations and bit fields
will be created by default.

• If the <class> element has an attribute id, the class is treated as an event
class for which the accessor methods for the class ID will be generated.

• For the <class> element either the attribute desc or the sub-element
<desc> which contain the description of the class, have to exist. If both
are provided they will be concatenated.

• If no <constructor> element with 0 arguments was provided, a standard
constructor will be created.

• Initialisation of <attribute>s will only be done in the standard con-
structor by default.

• If no <destructor> with 0 arguments was provided, a default destructor
will be created.

• If an attribute type is complex, the set- and get-methods for it will use
const references when using it as an argument. Otherwise the argument
will be passed by value.

• For the accessor methods for <relation> the type will always be embed-
ded into a smart pointer type which was developed for this purpose.

• Types which are forward declared before the class will be imported after-
wards.

• Relation types are forward declared by default. No include is necessary
for the class declaration.

• If no sub element <code> was provided for <constructor>, <destructor>
or <method>, only the declarations of these functions will be generated.
Implementations are supposed to be provided externally.

• The default for the return type of self defined methods is void.

These rules will only be met for the code that will be generated by the back
ends for the C++ header files and their corresponding reflection information.
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6.3.3 Not Verifiable Rules
Unfortunately there are some rules in the LHCb coding conventions which

are difficult to check or cannot be met easily.

• Every variable or class should have a meaningful name.

• Class names shall be nouns or noun phrases.

• Function names shall be verbs or verb phrases

• Functions that create a new object should start with "make" or "create"

The first three items heavily rely on the use of a dictionary system to check
the created names and their sense, but even with the use of a dictionary it will
not be clear whether this could be successful, because sometimes developers will
create words which are well introduced in the community and understood but
not part of a dictionary (e.g. "persistency" ) .

It will though be easier to check these rules after the files have been created
with some specific tools which are specialised on the checking of coding rules.
In the LHCb software framework such tools exists which, by default, will check
the implementation code and complain if the coding rules are not met.

6.4 C++ Tools
The minimal requirements for LHCb using C++ as implementation language

were two tools:

• GODWriteCppHeader: This tool will create a representation of the event
objects in C++ header files. The tool has several options which can be
passed to it (see Listing 6.3). Most of the options were introduced to ease
the integration of the tool into the build procedure (see Section 6.4.2).

• GODWriteCppDict: This tool will create the corresponding reflection in-
formation source code for the event objects for the C++ language. The
tool will accept the same options as GODWriteCppHeader (except the en-
vironment variable 'GODDOTHOUT' will be called 'GODDICTOUT').

Listing 6.3: Usage statement of GODWriteCppHeader.exe

Usag«: GODWriteCppHeadtr.ixa {-h] [-v] [-ij t-o [path]] [-1 [path]] snl-fila(s)

-o path us« 'path'
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6.4.1 Build Procedure
The whole procedure how event packages in C++ are built in LHCb is shown

in Figure 6.2.

• The developer of the event package will provide at most two types of files:

— The XML description of the event package
— If necessary the implementations of member methods which were only

declared in the description files.

• GOD will generate both the C++ header files for the event objects and
their dictionary information.

• The header files and the handwritten implementation files will be compiled
into the event library.

• The dictionary information will be compiled into a separate library and
linked against the event library

Figure 6.2: Build Procedure for the C++ Implementation

6.4.2 Integration with the Build System
The source code of the packages of the LHCb software is stored with the

concurrent versions system (cvs) [17]. If developers want to modify a package,
they will check it out from the cvs server and use a tool for the configuration and
building of the package, which is called cmt [2, 16]. Cmt generates automatically
the configuration, makefiles and environment settings for a given package on a
given platform.

In case of the packages which contain the sources for the event objects, only
the XML descriptions of the objects will be stored on cvs. When checking out an
event package, cmt will be used to automatically call GODWriteCppHeader and
GODWriteCppDict to generate the source code and the reflection information
for the event objects. After this step the sources will be compiled into libraries.

Integrating the generation of the source code into an automatic procedure
when building packages facilitates both the life of developers when using a pack-
age and of release managers when a new version of the LHCb software will be
produced.
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Evaluation and Outlook

This chapter contains the evaluation of the code generation tools and a short
outlook to future developments and possible improvements of the tools.

7.1 Evaluation of Gaudi Object Description

7.1.1 Description Language

Although having the drawback to be a verbose language it turned out that
XML was a good choice for the description language for several reasons.

Language Enhancements

Describing the syntax of the description language with a DTD allowed to
start with a minimal subset of elements and enhance the language when new
functionalities were requested by the user community. Examples for enhance-
ments to the language were bit fields or the location element which were added
to the GOD language later.

To enhance the tools with some new functionality three steps need to be
carried out:

• The syntax of the description language has to be changed

• The front end has to be made aware of the new concept

• The back ends need to retrieve the new information and produce the
corresponding output

This three steps allowed short development cycles and produce quickly new
versions of the GOD tools with new functionalities.

Language Independence

The Gaudi framework and the LHCb software on top of it are currently im-
plemented in C++ using object oriented features. The design of the GOD tools
was done, with the probability in mind, that implementation techniques or even
languages may change to which the tools need to be adapted.
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In case of new implementation techniques the different back ends will be
changed accordingly. An example for a new implementation technique was the
introduction of a new container class for event objects to which the GOD tools
were adapted.

In case of new implementation languages they will also have to adhere to
object oriented programming concepts, because Gaudi is based on them and
also the LHCb software. As the common denominator of the currently available
object oriented languages is reflected in the object description language it should
be possible to describe the LHCb event model with any language which also
complies to concepts of object oriented programming. In chapter 4 it can be
seen that the implementation of one object in different object oriented languages
is very similar and that these implementations can be fulfilled with the language
at hand.

7.1.2 Tools

Execution Time

On an average machine (800 Mhz) running a GOD tool to produce C++
header files or reflection information for an event package takes less than 1
second. As compilation of an event package takes much more time, the in-
troduction of GOD into LHCb was not slowing down the build procedure of
software.

Produced Output

One important requirement when designing the tools, was that the users will
have to write a factor less code to describe the event objects, than what will be
automatically produced by the generation tools.

The ratio between input and output code is calculated on the basis of lines
of XML code and its generated C++ code. For the current implementation
of the LHCb event model (version 13.0) the input-output ratio of XML code
to generated C++ header files is 1:4. The overall ratio from XML code to all
generated C++ code is 1:12.

Apart from the direct ratio of a description file to one implementation the
amount of all code that was produced by the code generation tools in respect
to the rest of the software written in LHCb can be taken into account.

The different pieces of software in LHCb can be seen in Figure 2.1. The lines
of code (in thousands) of each of the applications and libraries can be found in
Table 7.1.

The event model is part of the general LHCb software and contains around
75.000 lines of code which is around 40 % of the experiment specific code
(LHCb). In total LHCb software consists of 854.000 lines of code, out of which
the 75.000 lines from the event model are around 9%.
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Table 7.1: Libraries and applications in LHCb

Project kloc
Gaudi
LHCb
Gauss
Boole
Brunei
DaVinci
Panoramix

152
178
110
71

122
199
22

Produced Versions of LHCb Software

The usage of the object description tools by the users in LHCb started in
December 2001. Since that time 24 iterations of the LHCb event model were
produced. This seems to be a high number, but has to be seen in connection to
the fact that the start of the usage of the tools was also the start of the redesign
of the LHCb event model which was an urgent task at that time.

7.2 Future Improvements and Outlook

The software for object description was developed with the long lifetime of
the experiment in mind. From this point of view the flexibility and extensibility
of the software was a major concern. Extensions in the following fields can be
carried out.

• Extensions to the Language: If needed new concepts for the object descrip-
tion language itself will be introduced. During the development phase of
the package it was already proven that extending the language and the
depending software is feasible in short development cycles which allow
flexible adaptation to upcoming needs of the user community.

• New Back ends: Not only changes to the language itself but also new back
ends for new languages could be needed in the future that may become
important. In that case a new tool will be created. It will make use of the
already existing front end and the model that is filled with it. Walking
through this model it will output the descriptions of the event model in
the syntax of the new language.

• Integration with LCG software: The LHC Computing Grid (LCG) is a new
project at CERN which aims to provide hard- and software computing
facilities for the 4 upcoming experiments. Concerning the LCG software
there are already some projects [19, 21, 37]. In the future LHCb will adopt
these software packages and integrate them into the Gaudi framework.
This will also require changes to the C++ and reflection back end of the
GOD tools.
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Chapter 8

Conclusion

In this thesis a new technique for the description of event data objects for the
LHCb experiment has been presented.

A high level description language for event objects using XML and a DTD
was introduced. With a description of the complexity of the underlying event
data model, it was shown that a subset of object oriented modelling techniques
will be sufficient to implement an event model with enough detail. It was also
shown that the requirements of the LHCb experiment for the implementation of
an event model can be sufficiently met with the description language proposed.

A system using this high level description language producing concrete im-
plementations of objects was described. It was shown that the system supports
the production of different implementations of event objects. Due to the design
of the system for handling the event object descriptions, enhancements to the
description language can be achieved and implemented in short development
cycles. Examples for enhancements are introduction of new functionalities or
adaptations of the implementations of the event objects to new programming
techniques.

Together with the implementation of the system producing C++ objects, a
package which provides reflection information for CH—h objects was introduced.
It was shown that reflection is important for tasks like persistence of objects
or interactive programming and that the reflection information about the C++
event objects in LHCb is already used for these tasks.

It was also shown that it is possible to describe the event model of LHCb with
a concise high level description language which is easy to use and produce. As
a result of the compressed definition of objects the factor of description code to
automatically generated source code for the C++ implementation of the LHCb
event model is 1:12. Furthermore the automatic generation of the LHCb event
model in C++ together with its reflection information is 40 % of the total
amount of source code of the common LHCb software. The object description
language and description tools have been used for the generation of the LHCb
event model since 2001.

The overall goal of describing the event model for the LHCb experiment in
an implementation language independent way throughout the lifetime of the
experiment should be achievable with these tools and techniques.

67



Appendix A

LHCb Event Model

This appendix contains the DTD of the description language explaining the
syntax that was used for describing the event objects and an example XML
description of a class with its corresponding output of the C++ and reflection
back end of the system.

A.I DTD

The DTD (see Listing A.I) contains the syntax description of the Gaudi
object description language. The DTD describes in total 19 elements and 93
attributes which is enough for the description of the event model.

Listing A.I: Event Model DTD

<!ELEMENT
<!ATTLIST

>

ig

>

<!ATTLIST

d«
f i
id

ka
t«

<!ELEMENT
<!ATTLIST

Pi

gdd
gdd

C(iop

me CDATA
d (TRUE I
ft (TRUE

cla
me

.c

CDATA

sa
CDATA

CDATA

ort«.package*)*)>

«REQUIRED
FALSE) "FALSE"
1 FALSE) "FALSE"

tREQUIRED

tREQUIRED

«REQUIRED

yedContTypeD«f (TRUE 1 FALSE) "FALSE"
mplateVector (TRUE 1 FALSE) "TRUE"

d«s
des

ace

c («PCDATA)>

CDATA «REQUIRED
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<!ATTLIST namespace
nm* CDATA «REQUIRED
author CDATA «IMPLIED
desc CDATA «REQUIRED

<!ELEMENT base EMPTY>
<!ATTLIST bas«

Din« CDATA (REQUIRED
virtual (TRUE I FALSE) "FALSE"

<!ELEMENT «nun EMPTY>
<!ATTLIST «nus

nan« CDATA »REqUIRED
desc CDATA «REQUIRED
value CDATA «REqUIREO

>
<!ELEMENT typedef EHPTY>
<>ATTLIST typedef

d«sc CDATA iREQUIRED
typ« CDATA «REQUIRED
def CDATA «REQUIRED
access (PUBLIC I PROTECTED I PRIVATE) "PRIVATE1

>
<!ELEMENT constructor (arg*, code?, arg-)>
<!JLTTLIST constructor

desc CDATA «REQUIRED
argList CDATA «IMPLIED

initList CDATA »IMPLIED
>

<!ATTLIST destructor

(arg«, code?, arg«, return?, arg«))>
<!ATTLIST method

name CDATA «REQUIRED

template CDATA «IMPLIED
access (PUBLIC I PROTECTED I PRIVATE) "PUBLIC"
const (TRUE I FALSE) "FALSE"
virtual (TRUE I FALSE I PURE) "FALSE"

inline (TRUE I FALSE) "FALSE"
friend (TRUE I FALSE) "FALSE"

argList CDATA »IMPLIED

<>ATTLIST arg

name CDATA »IMPLIED
const (TRUE I FALSE) "FALSE"
inout (BYVALUE I INPUT | INC-UT I BOTH) "INPUT"

<!ATTLIST return
type CDATA »REQUIRED
const (TRUE | FALSE) "FALSE"

<!ELEMENT code («PCDATA)>
<!ATTLIST coda

<!ELEMENT attribute (bitfield«)>

typo CDATA «REqUIRED
name CDATA «REQUIRED
desc CDATA »REQUIRED
init CDATA »IMPLIED

compression (TRUE I FALSE) "TRUE"
serialize (TRUE | FALSE) "TRUE"
setMeth (TRUE | FALSE) "TRUE"
getMeth (TRUE I FALSE) "TRUE"

>

<!ATTLIST relation

desc CDATA »REQUIRED

multiplicity ( 1 | N | n | M | m) "1 "
serialize (TRUE I FALSE) "TRUE"
setMeth (TRUE I FALSE) "TRUE"
getMeth (TRUE I FALSE) "TRUE"
addMeth (TRUE I FALSE) "TRUE"
remMeth (TRUE I FALSE) "TRUE"
clrMeth (TRUE I FALSE) "TRUE"
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nan* CDATA •REQUIRED
langth CDATA «REQUIRED
dasc CDATA »REQUIRED

satMath (TRUE I FALSE) 'TRUE'

A.2 Example Class
To demonstrate parts of the capabilities of the system the current implement-

ation of the MCParticle class was chosen. In Listing A.2 the XML description
of the MCParticle class is shown. The MCParticle class is a typical class of
the event model. It describes 1 base class, 3 attributes, 3 relations and 3 self-
defined methods, one containing the implementation code while the other two
are implemented in an external file.

Listing A.2: MCParticle.xml

id-"210"

in i t - "0 .O , 0 .0 . 0 .0 , 0.0"

nan«""particleID"

type""Part icl«ID"

i n i t - " 0 "

type-"doublBB

<m«thod

conat-"TRUE-

<mathod

<cod«> r«turn m .momentum . perpO ; </code>
</mathod>
<method

typ«-"co
>

<cod«>

• Isa {

}
</coda>
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ultiplicity-"»!"

</clas8>
</packaga >

Running the C++ back end on the description file above will produce the
C++ header file in Listing A.3. This file contains 374 lines of automatically
generated C++ code which reflects the description in Listing A.2.

The automatically generated C++ header file contains the following items:

• Some warning for the developers to not alter this file

• The header guards which prevent multiple inclusion of the header file

• The include files needed for compilation of this file

• The forward declarations for types which don't need to be included im-
mediately

• The class id of the object

• A declaration where to find the object in the transient store

• A description of the class

• The class with:

— The public part which contains declarations of:

* The constructor with all initialisation values for attributes

* The default destructor

* Some methods to retrieve the class ID

* The get- and set-methods for attributes

* The get-, set-, add-, remove- and clear-methods for relations

* The self defined methods

* Methods for serialisation of the object

* A method to dump the information of the object to a stream

— An empty protected part

— A private part which contains

* The attributes of the object

* The relations of the object

• Some more include files which are put after the class
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• The implementations of the functions declared in the public part of the

class

• A typedef which is used for access of the object in the transient store

• The second part of the header guard

Listing A.3: MCParticle.h

1'fATTEIfTIOH!!!

If you
x.l-fi

ticl«_H
ticl«_H 1

// Include file

// Forward declar
class Collision;

«author Gloria Corti

/// Default Constructo
HCParticl«O

a.h«licity(0.0) {}

/// Destructor
virtual "MCPartici.<) {)

/// Ketri«»« pointer to class de/i,
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/// Coin

/ / / Retrieve 4-

/// Retrieve 4-momentvm-vectoT

HapLorentzV«ctor* nonantnn();

/ / / Opiate 4-

/// Retrieve

/// Retrieve

/// Update describe if a particle h

/// Ret'

/// Up a

/// Retrieve P

/// Retrieve V

/// Remove Vec

/// Clear Vect

vertex (const)

lW«t CV»rtex t value).

/ / / Re

/// Re

/// Up 1
void si

/ / / Se,
virtu»]

/ / / Se:

/ / / Fi;

protected :

private:

HepLorentzVector m.momenturn ; ///< 4 -momentum-victor

ParticloID m.particlalD; ///< Particle ID

bool m_hasOscillBt«d; ///< Describe if a particle has oscill

doubla n_helicity; ///< Heiicity

SmartR«f<MCV«rt«> a.originVerte* ; ///< Point er to origin vertex

SnartfUfVBCtor<MCVertex> m_endVBrtices ; ///< Vector of pointera to decay vrtcs

SiuartRei^CollisLon^ m v co l l i s iou î / / / ^ P o tn t c T* to Collision to wti\ ch . . .
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lnlina const C U D * HCPart ici« : : clID () const
<

raturn KCParticla : : cl.JSlD () ;

«<> i

rpO ;

xO ) (

als« {
raturn 0;

m_b«llclty - value;

rparticlelD()

lus)

iginV«rt«x()

iginVart«xCconst SaartBai<MCVartex>t valua)
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inlin
{

>

inlin

.particlelD

a,Collision(thi5);

float l.helicity;

hi«)
is)

..collision(this);

//Defintion of keyed container for NCParticle

#endif ///Event,MCParticIe_H
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The dictionary information of the MCParticle class described in Listing A.2,
can be found in the subsequent Listing A.4.

Listing A.4: MCParticle.dict.cpp

i ' f Â T T E S T I O S l f l

If y.« »
xml -file

•>!'>•

//Include file

ublic:

MCParticle.dict();

et - C(MCParticl«*)v)->virtualMaas(>;

rat - <(MCParticl««)v>->pt();

raturn CMCParticla•) ( (HCPartici«*)v)->nothar<) ;

HapLorantzVactor t rat • { (MCParticle •) v) ->tnomeiitum ( ) ;

conat Par t i c la lDt rat - C(MCPart ic le - )v ) ->part ic le lD( ) ;
return (vo id*)krat ;
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i. r.t - (<BCP.rtici..),)^orlginV.rt.«(> ;
(void.)r.t;

return (void«)ftret;

(void«)ret;

rgList[0]);



«-t»

• (M

• <.)*

U O "

•(()«»«»lid»»«: :i.TJIPOK«»»«
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"Partiel« ID",

"Particl«ID",

HCP.rticl..p.rtlcl.ID.5);

argTypas.claar();

argTypas.push backCParticlalD");

mataC->addMethod<"s«tParticleIO" ,

argTypea ,

HCParticle_aetParticleID_6 );

"Describe if a pa:

"bool".

argTypes,

"Helicity".
"double" .
MCParticl«_helicity_9);

hodCsetHelicity",
"H«licity",
argTypa»,
MCPBrt ic l . . i . tH.l ic l ty . lO);

"MCVartax",

HCParticl«.originVertex.il);

argTyp«B.cl«ar<);

BetaC->addM«thod("setOriginV«rtex" .

argTypes ,

HCParticX«_8»t0riginV«rte]c_12 ) ;

MCParticle.endVertices_13);

r () ;
.backCMCVertax");

argTypas ,

«CParticle_setEndVerticas_14) ;

HCParticla_clearEndV«rtic«s_15);

ergTypas, 6 ) ;

argTypes.clearO;
argTypas . push_back CKCVertex" ) ;

rgTypa»,
ICParticla.raaovaFroDEadVartices.t? ) ;

•Collision" ,
MCParticle_colliBion_18);

r O ;
.backCCollision") ;

argTypao,
HCParticle.sacCollision.19);

M«taPropertyList* pi " niv HecaPropartyLiatO;

pi->satProperty("ClassID" , "210") ;
(



Appendix B

Reflection in C++

In this chapter an approach for reflection in C++ will be presented. After
an introduction into the problem of reflection in C++, some of the technical
details of the model in conjunction with examples how to build and use the
reflection system will be discussed. This will be followed by a list of current
and envisaged implementations which give an insight about the usability of the
model. The chapter will be concluded by an outlook to a new approach on how
to implement C++ reflection.

B.I Introduction

Computational Reflections is the ability of a system to maintain informa-
tion about its internal state and the possibility to change it. Reflection in a
programming-language enables it to:

• Retrieve information about classes that were loaded before

• Retrieve information about fields or methods of a given object, like their
type or name

• Interact with the fields of these objects e.g. getting or setting its values

• Interact with methods of a given object like calling methods and retrieving
their return-values

• Construct new instances of classes

There are already several languages like Java available which provide reflection
information. E.g. with the java.lang.reflect [32, 33] package it is possible to
accomplish all the tasks listed above.

Other examples of languages using reflection information are Smalltalk, Lisp,
Scheme, Prolog, Python or Tcl/Tk.
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The C++ language itself has only limited means of reflection about its objects
which is called the runtime type information (RTTI) [53]. RTTI is used for
example for tasks like dynamic casting of objects to check whether objects are
compatible or not. The typeidQ function will return the internal type_name
object which represents an object type in C++. The possibilities of querying
this type_name object are limited to getting its internal name as a string. It is
further only possible to retrieve RTTI information about an object if the class
describing the object contains virtual functions.

In the last years there were several approaches to introduce reflection also to
C++ [14, 15, 26, 35]. These approaches were either only implemented as a proof
of concept and so not complete enough to be used in a concrete application or
are part of a system which would needed to be integrated into the application
software. In the next sections a general stand alone way of generating meta
information about objects will be introduced together with an explanation on
how to load and use it with a proposed API.

B.2 The Model

B.2.1 Current Implementation
The first version of the model was implemented with the java.lang.reflect

model in mind. This was done for two reasons, mainly because of the easiness
of the Java approach and also because Java is similar to C++ and so no major
adaptations were expected in subsequent iterations. In Figure B.I an object-
model of this first implementation can be seen. The model is split into two
packages called 'Reflection' and 'ReflectionBuilder'. While 'Reflection' is the
API to provide the information to the users, the 'ReflectionBuilder' is capable
of filling the model with the information needed. This split was done because of
security-reasons and also because of the possibility to develop the two packages
in a more independent way.

The basic type of this model is the item class. All C++ concepts of this class
are derived from it. The introduction of the PropertyList class allows to store all
information that is not part of the C++ ISO standard [52]. This PropertyList
can be attached to every meta item during the building process of the model
(see section B.2.2). Examples for properties are the author name or class ID.

B.2.2 Generation and Use of the Reflection
After explanation of the model that was designed and implemented so far the

chain for obtaining reflection information is the following:

• First the meta information about the objects needs to be generated.

• This information will be compiled into a library and loaded into the sys-
tem.

• After the loading was completed the meta-information about the objects
is available and users may access them through the reflection API.
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Figure B.I: First Implementation of the Reflection Model

Namespace

Property-List

ReflectionBuilder

MetbodBuilder

Dictionary Generation

For a given example class (see Listing B.I) the corresponding meta infor-
mation (see Listing B.2) may be currently generated using the ReflectionBuilder
interface in three different ways.

Listing B.I: Example Class

class MyClass : public MyBaseClass •{
public :

int myMethod() const ;
private :

5 int myVar;
6 };

The dictionary information may be deduced from some high level descrip-
tion of objects. This approach was chosen for the event model in LHCb
[47]. From an XML description of event objects the C++ header files and
their corresponding reflection descriptions are produced.

If no high level description of objects is available it is possible to parse the
C++ header files [37]. The command internally uses a front end of the gcc
compiler called gcc_xml [23]. This front end extracts information about
the classes in XML format. A python script then interprets the XML and
generates the source code of the reflection information.

The last possibility is to generate the dictionary information by hand. The
syntax for dictionaries was designed with the possibility in mind that they



84 APPENDIX B. REFLECTION IN C++

will also be writable and readable by humans and so the writing of such
files should not be difficult.

Listing B.2: Meta Information for the Example Class

1 class MyClass.dict {
2 public :

3 MyClass.dictO ;
4
5 static void* MyClass.myMethod(void* v) {
6 static int ret = ((MyClass*)v)->myMethod ();
7 return Jtret ;
8 }
9 >;
10
11 MyClass_dict::MyClass.diet() {
12 ClassBuilder C(''MyClass••, ''description of MyClass1',
13 typeid(MyClass), sizeof(MyClass));
14 C.addField(''myVar' ' , ''int'' , ''description of myVar'' ,
15 OffsetOf(MyClass ,m.myVar)) ;
16 C.addMethod(''myMethod'', ''desc of myMethod'', ''int'',
17 MyClass_myMethod);
18 C.buildO;
19 };

The meta information about classes which is generated contains also private
members and functions. The reflection model was designed in a way that also
this private information about classes will be accessible from the user side. If
this feature is not desired there are two ways to disable it. The simplest way is
just not to generate the information about the private part of the class so it will
also not be accessible from the user side. If one wants to disable this private
access only in a few cases it will also be able to distinguish on the user API
whether a member or function of a class is private or not. A thin layer above
the reflection can then trigger the access to this private information.

Another choice that has to be made is whether the generation of dictionary
information is intrusive or not, i.e. whether the original C++ code describing
the objects needs to be changed or not. The whole problem boils down to the
fact that at load time of the dictionary the software needs to have access to the
private members of the classes to calculate their offsets.

• Intrusive approaches will modify the original classes in a way that the
reflection software gains access to the private areas of the objects. This
can be done with friendship between classes.

• The implemented approach to this problem is the more user friendly way
to generate dictionary information in a non intrusive way. This can be
achieved with some modifications to C++ outside the class which contains
the original object. They are mainly based on redefinition of modifiers (e.g.
#define private public) before including the header file containing the
class in order to gain access to its private (and protected) members. After
the class was included the modifiers will be undefined. The prerequisite
that is needed for this approach is that every class has the modifiers set



B.2. THE MODEL 85

(this is absolutely necessary, as members of a class are private by default
if no modifiers are present).

Loading and Filling the Dictionary

After the dictionary-information was generated it will be compiled into a
dynamic library. This library when loaded will fill the meta model using the
ReflectionBuilder component. While loading, the reflection will keep track of
unresolved types. This enables users to check whether the model is already
complete or some other libraries with meta information about other types need
to be loaded.

Using the Dictionary

After the dictionary information has been loaded successfully users may start
interrogating its objects. A simple program illustrating what can be done may
be found in Listing B.3. The first thing that needs to be done is entering
the model through retrieving an instance of a meta class (Listing B.3, line
1). This instance of the meta class can be either retrieved through the string
representation of the class or its typeJnfo. After this instance has been obtained
it may be e.g. queried:

• whether it is a basic type (Listing B.3, line 3)

• whether it is a container-like type (Listing B.3, line 3)

• to return a list of fields of this class (Listing B.3, line 6-7)

• to return a list of methods of this class (Listing B.3, line 8-9)

• to return a list of base-classes of this class (Listing B.3, line 10-11)

Listing B.3: Using the Dictionary - Retrieving Basic Information

1 const Class* me = Class::forName(''MyClass'');
2
3 bool isBasic = me->isPrimitive();
4 bool isContainer = me->isContainer();
5
6 const std::vector<const Field*> fields =
7 mc->fields(NOMODIFIER);
8 const std::vector<const Method*> methods =
9 mc->methods(NOMODIFIER);
10 const std::map<const Class*,std::pair<int,int(*)(void»)>>
11 baseClasses = mc->superClasses();

One may now interrogate fields of a class further. First one has to retrieve its
meta representation (see Listing B.4, line 1), then it is possible e.g. to print the
name and the name of the type of the field (see Listing B.4, lines 2-3). Given
that there is an instance of the class, it is also possible to get or set values of
fields (see Listing B.4, lines 5-7). The type of a field itself is again a class which
may be queried further in the way described above.
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Listing B.4: Using the Dictionary - Querying and Modifying Fields

1 const Field* mf = mc->field(''myVar•',NOMODIFIER);
2 std::cout << mf->name() << '' ''
3 << mf->type->name() << std: :endl;
4
5 void* baseOfClass = new MyClass();
6 int val = mf->get (baseOf Class , intO);
7 mf->set(baseOfClass , 4711);

Also the methods of a class can be queried further, e.g. the list of arguments
or the return value which are again meta classes (see Listing B.5, lines 1-12).
It is also possible to invoke a method and retrieve its return value (see Listing
B.5, lines 14-15).

Listing B.5: Using the Dictionary - Querying and Calling Methods

1 const std::vector<const Method•>::const.iterstor mit;
2 const std::vector<const Class*>::const.iterator clt ;
3 for (mit = methods . begin O ; mit != methods . end (); + + mlt) {
4 const std::vector<const Class*> args =
5 (*mlt)->argumentTypes();
6 std: :cout << (*mlt)->returnType ()->name() << '• ''
7 << (»mit)->nameO << ''('';
8 for (clt = args.begin(); clt != args.end(); ++clt) {
9 std::cout << (* clt ) ->name () << '• ••;
10 }
11 std::cout << std::endl;
12 }
13
14 const Method* mm = me->method(''myMethod'') ;
15 int ret = mm-> invoke(baseOfClass , int());

B.3 Applications Using the Reflection
In the context of LHC several applications make already use of the dictionary

system.

B.3.1 LCG Persistence Framework
The persistence project (POOL) [19] of the LHC Computing Grid (LCG) pro-

ject uses the dictionary information to store and retrieve objects from persistent
media. When writing, the Storage Service [21] of POOL will access the data
members of the objects directly and write the values to the persistent medium.
When reading back the dictionary information about the objects is used to cre-
ate an instance of a transient class and then fill the object appropriately. POOL
will also be used in Gaudi for persistence of objects.

B.3.2 Interactive Scripting Environment
Another possibility for using the reflection information is in interactive script-

ing environments. A python binding to the reflection packages was already de-
veloped which can be used to interactively work with objects from the python
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interpreter. An example for usage of this package are the experiment software
frameworks, where it may be used to work e.g. with events from the python
prompt.

B.3.3 Event Data Browser
A prototype of an event data browser was also developed. This browser will

display the transient event objects currently loaded into memory. In order to
do that the browser needs to know the layout of objects in memory which it
should display using the reflection.

B.3.4 Other Possible Applications
One may think of many other possible applications and language bindings to

the reflection packages. A language binding that is currently thought of is the
binding to Java which will then allow Java applications to use the reflection
information loaded.

B.4 Outlook and Summary

After the implementation of the first approach which showed the technical
feasibility a second approach was designed which resembles more the charac-
teristics of C++. For this approach specific C++ concepts like pointers or
references were taken into account. Figure B.2 shows the user-side API of the
new Reflection model. What was the class type in the previous model is now
split into more different types. Some of these types also have an explicit scope
(e.g. Class or Enum). The PropertyList for storing information outside the
C++ standard was also retained in this model.

Figure B.2: Second Implementation of the Reflection Model
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Currently there are attempts to standardise reflection in C++. This attempt
is the extended type information (XTI). Unfortunately it seems to be too early
to discuss the outcomes of this project as only some design proposals were
available so far. XTI also tries to resemble the C++ ISO standard [52]. It is
expected that it will take some more time until the XTI model is implemented,
standardised and adopted by different compilers so it can be used in a broad
range.

When XTI is standardised and adopted it is the plan to also use the XTI model
from within LCG software. As the model also resembles the C++ standard
closely the changeover to the new model is not expected to be difficult.
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Glossary

ADAMO

ALEPH

ALICE

ATLAS

CERN

CMS

CORBA

DTD

GEANT4

HEP

IDL

OMG

Perl

Python

A software framework for event data handling in HEP ex-
periments.1

One of four LEP experiments2

One of four LHC experiments3

One of four LHC experiments4

European Organisation for Nuclear Research located in
Geneva, Switzerland and France.5

One of four LHC experiments6

The Common Object .Request Broker Architecture of the
OMG group

Document Type Definition, a syntax definition language
for XML documents

Software for simulation of the passage of particles through
matter7

üfigh .Energy Physics

The interface Definition .Language, used in CORBA

The Object Management Group8

Practical .Extraction and .Report .Language, a scripting
language9

A scripting language10

1 http://adamo.web.cern.ch/Adamo
2http://www.cern.ch/aleph
3http://alice.web.cern.ch/Alice/
4http://atlas. web. cern.ch/Atlas/Welcome. html
5http://www.cern.ch
6http://cmsinfo.cern.ch/Welcome.html
7http://geant4.web.cern.ch/geant4
8http://www. omg.org
9http://www.cpan.org

lohttp://www. python.org
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Gaudi

LEP

LHC

LHCb

ROOT

TES

UML

XML

The software framework for the LHCb and ATLAS
experiments.11

The Zarge .Electron Positron collider. A particle ac-
celerator in operation at CERN from 1989 to 2000.

The .Large ifadron Collider. A new particle acceler-
ator at CERN, due to completion in 2007.

One of four LHC experiments12

An object oriented data analysis framework developed
at CERN13

Transient i?vent Store

The C/hified Modelling .Language14

The Extensible .Markup .Language15

XML Schema A syntax description ianguage for XML16

11 http://proj-gaudi.web.cern.ch/proj-gaudi
12 http://lhcb.web.cern.ch/lhcb
13http://root.cern.ch/
14http://www.omg.org/uml
15http://www. w3.org/XML
16http://www. w3c.org/XML/Schema
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