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Kurzfassung

Das Design von Bewegungen eines starren Körpers wird in verschiedenen wis-
senschaftlichen Disziplinen untersucht. Viele Beiträge zur Bewegungsplanung
stammen aus der Robotik, der algorithmischen Geometrie und dem computer-
unterstützten geometrischen Entwerfen (CAGD). Die Planung von Bewegungen
bei gegebenen Hindernissen war bis dato vor allem ein Thema in der Robotik
und in der algorithmischen Geometrie. Dabei wurden meist ebene, stückweise
lineare Bewegungen verwendet. Algorithmen zur Berechnung von energie-mini-
mierenden Bewegungen mit Hilfe von Quaternionen — ohne Hindernisse zu
berücksichtigen — wurden in der Computergrafik untersucht. In der vorliegen-
den Dissertation

• führen wir eine neue Metrik zum Design von Bewegungen eines starren
Körpers ein, welche die Massenverteilung desselbigen berücksichtigt,

• studieren wir Bewegungsplanung als ein Kurvendesign-Problem auf der
Fläche der Euklidischen Kongruenztransformationen, welche wir in den
Raum der affinen Transformationen einbetten,

• leiten wir interessante theoretische Ergebnisse betreffend Bewegungspla-
nung und energie-minimierende Kurven auf Flächen her,

• formulieren wir die Bewegungsplanung als ein Variationsproblem und min-
imieren aus der geometrischen Modellierung bekannte Energiefunktionale
auf Flächen,

• präsentieren wir einen sehr universell einsetzbaren geometrischen Opti-
mierungsalgorithmus für die numerische Lösung der Aufgabenstellungen
und diskutieren diesen für die speziellen Fälle der Bewegungsplanung und
der Bewegungsplanung bei gegebenen Hindernissen,

• berücksichtigen wir die Vermeidung von Hindernissen bei der Planung von
energie-minimierenden Bewegungen eines starren Körpers.

Wir studieren das folgenden Problem der Bewegungsplanung: Gegeben sind ein
starrer Köper in einer Anzahl von Eingabepositionen und eine Anzahl von Hin-
dernissen, wobei die Eingabepositionen nicht mit den Hindernissen kollidieren.
Das Ziel ist die Berechnung einer energie-minimierenden glatten Bewegung des
starren Körpers, welche die gegebenen Positionen interpoliert und die vorhan-
denen Hindernisse vermeidet. Im Gegensatz zu existierenden Beiträgen zum
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Bewegungsdesign arbeiten wir nicht mit der Einheitskugel des vierdimension-
alen Raumes zur Darstellung des Drehanteils der Bewegung mittels Quaternio-
nen, sondern wir planen die gesamte Bewegung in der Gruppe der euklidischen
Kongruenztransformationen eingebettet in die affine Gruppe.

In Kapitel 2 führen wir den kinematischen Bildraum und die verwendete
Metrik ein. Wir formulieren die orthogonale Projektion in dieser Metrik und
zeigen den Zusammenhang dieser zu einer bekannten Computer Vision Auf-
gabenstellung, nämlich der Registrierung mit bekannten Korrespondenzen. Wir
diskutieren zwei der view bekannten expliziten Lösungsmethoden.

In Kapitel 3 präsentieren wir eine Methode, mit Hilfe derer sich ein be-
liebiger Algorithmus zum Design einer Kurve auf das Design einer Bewegung
übertragen lässt. Wir beweisen, dass sich dabei die Glattheit des verwendeten
Kurvenschemas auf die Glattheit der berechneten Bewegung überträgt. Der
Algorithmus ist einfach zu implementieren und besonders schnell, wenn das ver-
wendete Kurvenschema linear ist, was für die meisten bekannten Algorithmen
zum Design von Kurven gilt. Energie-minimierende Eigenschaften übertragen
sich nicht vom Kurvenschema auf die Bewegung. Trotzdem ist der Algorith-
mus hervorragend geeignet, um schnell eine gute Startlage für die Planung von
energie-minimierenden Bewegungen (in Kapitel 5) zu berechnen.

Kapitel 4 dient dem Studium von energie-minimierenden Kurven auf ge-
krümmten Flächen. Wir erweitern die Definition von kubischen Splines und
Splines in Tension auf gekrümmte Flächen und leiten eine geometrische Kennze-
ichnung her. Für die numerische Lösung präsentieren wir einen geometrischen
Optimierungsalgorithmus, welcher iterativ die Energie von Kurven auf Flächen
beliebiger Dimension und Kodimension minimiert. Diser Algorithmus arbeitet
mit einer Diskretisierung der Kurve und einer Diskretisierung des verwendeten
Energiefunktionais. Der sehr allgemeine Ansatz erlaubt die Berechnung von
energie-minimierenden Bewegungen in Kapitel 5 und die Planung von energie-
minimierenden Bewegungen bei gegebenen Hindernissen in Kapitel 6.

In Kapitel 5 wenden wir die Ergebnisse aus Kapitel 4 auf die Bewegungspla-
nung an. Zuerst übertragen wir die theoretischen Ergebnisse und dann disku-
tieren wir einen numerischen Algorithmus zum Design von Bewegungen, welche
die Summe der Energien von Punktbahnen minimieren.

In Kapitel 6 diskutieren wir zuerst das Design von energie-minimierenden
Kurven bei gegebenen Hindernissen. Kombiniert mit den Ergebnissen der
vorigen Kapitel führt dies zu einem ersten konservativen Algorithmus zur Berech-
nung energie-minimierender Bewegungen bei gegebenen Hindernissen. Dazu
wird der starre Körper durch eine ihn umschliessende Kugel ersetzt und die
Vermeidung der Hindernisse erreicht, indem die Schwerpunktsbahn so berechnet
wird, dass sie von den Hindernissen einen genügend großen Abstand hat. Ein
zweiter Algorithmus berücksichtigt die Form des starren Körpers viel genauer
und nützt alle für die Berechnung vorhandenen Freiheitsgrade. Wir verwenden
wieder den geometrischen Optimierungsalgorithmus aus Kapitel 4 mit einer
geeigneten Mannigfaltigkeit.

In Kapitel 7 fassen wir die im Rahmen dieser Dissertation gewonnenen
Ergebnisse zusammen und geben einen Ausblick auf zukünftige Forschungsziele.
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Chapter 1

Introduction

Motion design is a well-studied problem in various areas of scientific research
including Robotics, Computational Geometry, and Computer Aided Geometric
Design. Motion design in the presence of obstacles has mostly been studied in
the areas of Robotics and Computational Geometry. Variational motion design
has received some attention for example in the Computer Graphics community.
In this PhD thesis we

• introduce a new metric for motion design where the mass distribution of
the moving body enters the calculation via a set of sample points,

• derive interesting theoretic results concerning motion design and energy-
minimizing splines in manifolds,

• use a variational approach to motion design and minimize the counter-
parts on surfaces of well-known energy functionals of geometric modeling,

• present a very general geometric optimization algorithm for the compu-
tation of energy-minimizing spline curves in manifolds, and show how to
employ it for the solution of the motion design problems we consider,

• include the avoidance of obstacles in the design of energy-minimizing rigid
body motions via appropriate barrier manifolds.

The motion design problem we study is the following: given input positions
of a moving body and obstacles to be avoided, compute a smooth energy-
minimizing rigid body motion which interpolates or approximates the given key
or control positions and avoids the given obstacles. Unlike most contributions
to motion design, we do not use the quaternion unit sphere as a model of
the special orthogonal group, but consider the group of Euclidean congruence
transformations as a manifold embedded in the affine group. Our motion design
problem is a curve interpolation or approximation problem in this manifold.

In Chapter 2 we explain how the group of Euclidean motions is embedded
in the affine group and introduce a new metric in the kinematic image space.
Furthermore, we study orthogonal projection in this metric in the kinematic
image space and show its relation to a well-known problem in Computer Vision,
namely registration with known correspondences.
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2 CHAPTER 1. INTRODUCTION

In Chapter 3 we show how to transfer any curve design algorithm to motion
design and prove that the smoothness of the generated rigid body motion is the
same as the smoothness of the employed curve scheme. The presented motion
design algorithm — coined the CMD algorithm — is simple to implement and
especially fast if a linear curve design algorithm is used (this is not a drawback
since most known curve schemes are linear anyway). However, the CMD al-
gorithm does not transfer energy-minimizing properties from the curve scheme
to the computed motion. Nevertheless, it will provide us with a good initial
motion for variational motion design discussed in Chapter 5.

Variational interpolation in curved geometries is introduced in Chapter 4.
We extend the definition of the familiar cubic spline curves and splines in tension
to their counterparts in manifolds and derive interesting theoretic results. For
the numerical solution we propose a geometric optimization algorithm, which
minimizes the chosen energy of curves on surfaces of arbitrary dimension and
codimension. This general approach allows not only variational motion design
— discussed in Chapter 5 — but also the treatment of obstacles via barrier
surfaces presented in Chapter 6.

In Chapter 5 we apply the general results on splines in manifolds to present
a characterization of motions which are analogous to known energy-minimizing
spline curves, such as cubic splines or splines in tension. We use the numerical
algorithm discussed in Chapter 4 for variational motion design, i.e., to compute
rigid body motions that minimize a certain energy expressed with help of the
energies of trajectories of points on the moving body.

Finally, in Chapter 6 we discuss variational motion design in the presence of
obstacles. We begin with variational curve design in the presence of obstacles.
This leads to a first algorithm where the moving body avoids the given fixed
obstacles via a single enclosing ball. In a second algorithm we capture the shape
of the moving body more precisely and use all available degrees of freedom for
variational motion design in the presence of obstacles.

We conclude this PhD thesis with an outlook towards future research in
Chapter 7.

1.1 Previous Work

Good starting points for the tremendous amount of literature dealing with mo-
tion design are the book [LatOl] by Latombe (robot motion planning), the
article [Sha97] of Sharir (motion planning in Computational Geometry), and
the survey article [JW02] of Jiittler and Wagner (motion design rooted in Kine-
matics and Computer Aided Geometric Design). In the following overview we
only cite literature from the field of motion design (motion planning) that is
related to the present work.

Spatial rotations and rigid body motions in Euclidean three-space have been
formulated in the literature as time-parameterized loci in non-Euclidean spaces
by using (unit) quaternions [FHK+98, GR94b, GR94a, JW96, KN95, Sho85]
and (unit) dual quaternions [Jiit94]; see also the references in [Rös98]. Kine-
matic mappings proved to be a useful tool for these approaches. Invariant
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interpolation of rotations has been studied by [PR97], and interpolation meth-
ods for rigid body motions by [ZK98, BKOO, BK02]. Smooth motions that make
use of NURBS techniques were investigated by e.g. [JW96]. To describe rigid
body motions it is necessary to use rational rather than polynomial representa-
tions. However, rational representations are much less suitable for variational
design and efficient optimization techniques than polynomial ones. Therefore,
[HJK01] investigated the construction of affine spline motions with minimal
distortion. Motion design based on the quaternion representation of the spher-
ical component and nonlinear extensions of spline constructions in affine spaces
to the sphere (see the references in [Rös98]), are also difficult to deal with
for optimization purposes. Algorithms for motion fairing using the quaternion
representation have been proposed by [FHK+98]. The design of smooth inter-
polating motions has also been formulated as a variational problem on the Lie
group SE(3) of spatial rigid body displacements [ZK98, BKOO]. In these pa-
pers mainly the generation of a rigid body motion between two positions with
specific boundary conditions has been studied.

While energy-minimizing curves in Euclidean spaces have been studied ex-
tensively in the literature, variational design of curves on surfaces has received
much less attention. A substantial amount of research focuses on the quater-
nion 3-sphere because of its well-known relationship with rigid body motions
[BCGH92, BC94, JW02, PR97, RB97]. A series of contributions addresses
intrinsically cubic splines in manifolds, i.e., the minimizers of the covariant ac-
celeration [CLC01, GK85, NHP89, Noa03]. An extrinsic formulation of energy-
minimizing curves in parametric surfaces in 3-dimensional Euclidean space is
the topic of H. Bohl's thesis [Boh99], who proves the existence of a solution and
computes it by quasi-Newton iteration.

Obstacles are well studied for a certain class of motion design problems,
cf. [dBvKOSOO, LatOl]. There, the main focus is on efficient free motions be-
tween two positions, rather than collision free spline-type motions which in-
terpolate or approximate given intermediate positions and minimize an energy
functional. One basic approach is the configuration space method [Per83]. As
Canny [Can86, Can88] has shown, the fundamental restrictions imposed by
moving polyhedral objects and polyhedral obstacles become especially simple
in configuration space when using a quaternion representation of motions. The
configuration space approach is also used in the fast marching method for ef-
ficient collision free motions between two positions according to Kimmel and
Sethian (see [Set99]). Obstacle avoidance can also be performed by building a
potential field around an obstacle, which assumes high values close to it. Incor-
porating this into a problem formulation as an optimization problem avoids that
the moving object gets too close to the given obstacles (see e.g. [LatOl]). The
singularities of motions constrained by a contacting surface pair were studied
by [PROO]. [HPR03] presented an algorithm for the design of a gliding motion
for the entire motion cycle rather than around singularities. Near Euclidean
near gliding motions were studied by [WalO4b].



Chapter 2

The Kinematic Image Space

Motion design of rigid bodies has received a considerable amount of attention
over the last two decades. In the literature, the moving body is usually replaced
by a reference coordinate frame and then the motion of that coordinate frame
is designed as follows: First compute the path of the barycenter, and then
separately compute the linear part of the motion, e.g. using quaternions. The
replacement of the moving body by a coordinate frame has the disadvantage,
that the designed motion is independent of the shape and mass distribution of
the moving body: If two very differently shaped rigid bodies are replaced by
the same coordinate frame, the computed motion will be the same.

We propose a new approach that includes the mass distribution of the mov-
ing rigid body in the design process. Furthermore, we do not separate the
computation of position and orientation of the moving body. For that purpose
we use as kinematic image space the 12-dimensional space of affine maps, in
which the 6-dimensional manifold M6 of Euclidean maps is embedded. To apply
our concepts we define an appropriate metric in R12. This metric depends on
the mass distribution of the rigid body in consideration. It turns out that the
orthogonal projection from a point in R12 onto M6 is related to a well-studied
problem in Computer Vision - the registration of two points sets with known
correspondences. Let us begin with the embedding of the group of Euclidean
displacements in the group of affine displacements.

2.1 The Group of Euclidean Maps Embedded in the
Affine Group

Consider a rigid body B moving in Euclidean three-space E3. We use Cartesian
coordinates and denote points of the moving system E° by x° ,y 0 , . . . , and
points of the fixed system E by x, y, and so on.

A one-parameter motion S°/E is a smooth family of Euclidean congruence
transformations depending on a parameter u which can be thought of as time.
A point x° of E° is, at time u, mapped to the point

x(u) = A{u) • x° + ao(u) (2.1)
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Figure 2.1: The kinematic image space: affine maps A are points in M. ; Eu-
clidean maps Ai , . . . , Aô are points of M6 C R12; a rigid body motion B(u) in
R3 is a curve C(M) C M6.

of £, where A(u) € 50(3) and ao(u) G R3. If we do not impose any restriction
to the matrix A in (2.1), we get, for each u, an affine map.

In the following, we will use a kinematic mapping that views affine maps
as points in 12-dimensional space R12. For that, consider the affine map x =
a(x°) = ao + -A-x°. Let us denote the three column vectors of A as ai, a2, a3.
They describe the images of the basis vectors of S° in S. Of course, we have
x = ao + xÇai + £<2a2 + xîa3- Now we associate with the affine map a in R3 a
point in 12-dimensional space R12, represented by the vector A = (ao,...,a3).
The images of Euclidean maps a € SE(3) form a 6-dimensional manifold M6 C
R12. Its 6 equations are given by the orthogonality conditions of the matrix A
in (2.1), i.e., a* • a, = ôij, i = 1,2,3.

A one-parameter motion (rigid body motion) B(u) in R3 can be seen as a
curve c(u) C M6 in M12. If the rigid body motion interpolates given input
positions, defined by Euclidean maps a*, then the curve c(u) interpolates the
points Aj € M6 that correspond to OJJ, see Fig. 2.1. Whenever we speak of a
position of the moving body B this means that we consider all parameters of the
affine (Euclidean) map applied to it. In some literature, position only describes
the translational part of the applied map while the linear part is referred to as
orientation.

2.2 Metric in the Kinematic Image Space

We introduce a meaningful metric in M12 with help of a collection X of points
x°, x° , . . . , XJC in the moving system, sampled from the moving body B, see
Fig. 2.3. The squared distance between two affine maps a and ß is now defined
as sum of squared distances of sample point positions after application of a and
ß, respectively, (see Fig. 2.2)

*,ß) = ||A - B||2 := (2.2)

With A = (ao,. . . , a3), B = (b 0 , . . . , b3), C := A - B = (c 0 , . . . , c3), and
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a(X)

Figure 2.2: Visualization of distance between two affine maps a and ß.

c° = (2:°!,s:^)3^) the distance (2.2) becomes

|| A - B||2 = ||C||2 = £ > o + x^c i + xJ2C2 + z°3c3]2 = CT • M • C, (2.3)

where the symmetric positive definite 12 by 12 matrix M is given as

r „ O r „ O r J r \
1 xi,l1 xi,21 xi,3l \

(x® ) 2 / x® x® I Ï ? 1? / (2.4)

Here / denotes the 3 by 3 unit matrix. Taking a look at the entries of the
matrix M reveals the following: First, the upper left 3 by 3 diagonal matrix
KI only depends on the number K of sample points. Second, the entries of the
3 by 3 diagonal matrices ^ i x? •/, j = 1,2,3 only depend on the barycenter

(2.5)

of the sample points. Third, the lower right 9 by 9 submatrix of M only contains
entries of the inertia tensor J,

\2 „0 „0 „0 „0
) xi,lxi,2 xi,lxi,3

(„0 \2 „0 „0
\xi,2) xi,2xi,3 (2.6)

which is itself a symmetric positive definite 3 by 3 matrix. We summarize the
derived facts about the metric in the following lemma.

Lemma 1. The metric (2.2) in the space of affine maps only depends on the
number K, on the barycenter sx, and on the inertia tensor J of the set of
sample points xÇ,..., x^- of the moving body. R12 equipped with this metric is
a Euclidean space E12.
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Figure 2.3: (Left) Example moving body B. (Right) Sample points
ellipsoid and the principal axis of inertia.

inertia

We also see that we need not use unit point masses at a discrete number
of sample points. We could instead work with another positive measure on a
domain of interest D (the moving body) in £°, e.g. the Lebesgue measure times
the characteristic function Xd of D. Of course, we then replace summation in
(2.2) by integration. By a well-known result from mechanics, we can replace
the points xÇ,..., x^ by the six special points

s-± j = 1,2,3, (2.7)

without changing the barycenter and the inertia tensor of X. There, Ai, A2, A3
and e1, e2, e3 are the eigenvalues and corresponding unit eigenvectors of the
matrix J described in (2.6). Let us choose the barycenter as origin in the moving
system and the eigenvectors of J as coordinate axes. Then the six points (2.7)
have coordinates (±/i , 0,0), (0, ±/ 2 , 0), (0,0, ±/3) with fj := y/\j/2,j = 1,2,3,
and the norm in E12 becomes

(2.8)
i=l

with the positive definite 12 by 12 diagonal matrix M,

KI

M =
2 / 2 /

)

(2.9)

Remark 2.1. Analogously we can embed the three dimensional manifold M3

of orthogonal maps into the group of linear maps A9. Then the matrix of the
corresponding metric is given by the lower right 9 by 9 block of the matrix M
defined in (2.9), and thus only depends on the inertia tensor of the point cloud.
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2.3 Tangent Spaces of M6 and Orthogonality to M6

Later on we will need tangent spaces at points A C M6 and a characterization
of orthogonality to these tangent spaces. A tangent vector at an arbitrary
point A G E12 can be interpreted in R3 as a velocity vector field of an affine
motion. In particular, a tangent vector of M6 belongs to a velocity vector field
of a Euclidean motion, which is of the form v(x) = c + c x x. The coordinate
representation of this tangent vector in E12, attached to A = (ao,.. . , a3) G M6,
reads

T = (c + c x ao, c x ai, c x a?, c x 33). (2-10)

We would like to express orthogonality of an arbitrary vector D = (do, di, d2,
dß) e E12 to the tangent space at A. If we align origin and axes of the coor-
dinate system in E° with center and axes of the inertia ellipsoid of the moving
body B, then the inner product is expressed in view of (2.8) as

(D,T) = Kd0 • (c + c x ao) i- (ex a*).

This equation may also be written as

(D, T) = Kd0 • c + Kc • (ao x d0) + 2c
t = i

(2.11)

D

E 12

Figure 2.4: (Left) Tangent space of and orthogonality to M6. (Right) Force
system acting on the moving body.

Let us attach to the six point positions ao ± fiat, i = 1,2,3, the vectors of
the linear vector field determined by D € M.12. These vectors are do±/tdi, and
shall be interpreted as forces (for such concepts from statics, see e.g. [PW01],
pp. 191-194). The moments of these forces are

(ao ± fiai) x (do ± fidi).

The sums of force vectors and moment vectors is the screw
3

(sd, sd) = {Kd0, Kao x d0 + 2 Y] fhai x d (2.12)
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We call the screw resulting from the action of an instantaneous affine motion
(linear vector field) on the sample points the screw or force system S<2 induced
by the linear vector field D. The inner product (2.11) between T and D is now
expressed as

(D,T) = c - s d + c - s d . (2.13)

This is the virtual work done by the force system Sj, on the body which moves
instantaneously with the velocity field determined by T. Orthogonality between
D and all T requires (s^, s^) = 0, i.e., balance of the induced force system S^.
Thus, we have proved the following result.

Theorem 1. A vector D 6 E12, attached to a point A 6 M6 , is orthogonal to
M6 C E12 if and only if the force system Sd induced by D is in balance.

2.4 Orthogonal Projection onto M6

The orthogonal projection of a point A € E12 onto a point M G M6 in the
metric defined in Sect. 2.2 can be formulated in R3 as follows. Given an affine
map a (with kinematic image A) we seek a Euclidean map m (with kinematic
image M),

m : x- = t + R • Xj, (2.14)

such that the squared distance between m and a,

K

d2(m,a) = J]||m(x i)-a(x i)||2, (2.15)
i=\

is minimized in the metric (2.2).

Registration with known correspondences. The orthogonal projection
of a point A G E12 onto M6 in the metric (2.2) is related to a well-known
problem in Computer Vision, coined registration with known correspondences
or the absolute orientation problem. It is a more general problem where one
seeks the Euclidean map m that aligns a point cloud X = {x i , . . . , x^} to an
arbitrarily deformed copy Y = {y 1 ( . . . , y^-} of X such that the sum of squared
distances between corresponding points Xj and Vj, i = 1 , . . . , K is minimized,

K
2 (2.16)

We will see that the optimal translation vector t and the optimal rotation
matrix R of the Euclidean map m can be computed separately. The optimal
translation is easy to solve as we will see in Sect. 2.4.1. The optimal rotation
is a little bit more involved, however four distinct closed form solutions have
been found by researchers of the Computer Vision community between 1983
and 1991. Some of them were discovered several times independently. Before
that, iterative solutions can be found in the photogrammetry and psychology
literature of the 1950s and 1960s. An iterative solution for the simultaneous
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registration of more than two systems has been described by [PLH02, PHYH04].
The closed form solution methods for the optimal rotation R of the Euclidean
map minimizing (2.16) are based on

• unit quaternions (UQ), see [FH83, Hor87]

• singular value decomposition (SVD), see [AHB87, WalO2]

• orthonormal matrices, see [SS87, HHN88, Ume91]

• dual quaternions, see [WSV91].

A comparison of these four algorithms with respect to numerical accuracy, sta-
bility, and efficiency has been performed by [ELF97]. They conclude that the
differences are small, with SVD and UQ being slightly more stable than the
other two methods. In this thesis we only discuss the UQ and SVD method
and refer the reader to the above cited literature for the other two approaches.
We first discuss the more general problem (2.16), and then we present a com-
putationally efficient solution for (2.15).

Remark 2.2. Registration with known correspondences is a problem that
has to be solved repeatedly in the Iterative Closest Point (ICP) algorithm,
cf. [BM92, CM92, RL01].

2.4.1 Optimal Translation

Let us begin with the derivation of the optimal translation vector t.

Lemma 2. The Euclidean map m minimizing (2.16) maps the barycenter sx :=
Tc Ylf=i x i °f X to the barycenter sy := '•% J2i=i v i ofY.

Proof. We seek the minimizer of the quadratic function

F(t, R) = £ ( x j - y,)2 = Ç ( t + R • x* - y j 2 . (2.17)

The necessary conditions for a minimum of (2.17) include the three scalar equa-
tions

^ J R . x i - y i ) = 0. (2.18)

If the Euclidean displacement maps sx to sy, then sy — t + R • sx, i.e.,

t = sy-Rsx. (2.19)

If we plug (2.19) into (2.18) we get

Y^(sy -R-sx + R-XLi-yi) = £ > y - y j + R • ̂ ( X i - sx) = 0, (2.20)
i i i

since sx and Sj, satisfy

This proves that the optimal transformation maps the barycenter s^ of X to
the barycenter sy of Y. D
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2.4.2 Optimal Rotation — Preliminaries

Finding the optimal rotation R using unit quaternions or singular value decom-
position involves a first manipulation step which is identical for both cases: To
the point cloud X we apply the translation s^ i—> sy, see Lemma 2. Then we
choose Sy as new origin and denote the such translated point cloud X' of points
x£ again by X and Xj, respectively. To compute the rotation around the origin
O, x' = R- x (with an orthogonal matrix R), such that the quadratic objective
function F is minimized, we rearrange the terms in the following way:

• RT • R • x - v T • R • x - x T • RT • v + v? • v•)JX n A.J y, J<- Ai Jt, n y , t Vj yl)

• Xj + yj • y} — 2yf • R • Xj) —> min . (2.22)

The first two terms in the sum (2.22) are given by the input points and are thus
fixed. Thus, in order to minimize (2.22) we have to find the orthogonal matrix
R maximizing

^yf.Ä-Xi-max. (2.23)
i

The difference of the unit quaternion method and the singular value decom-
position method is in the maximization of (2.23). We derive these methods in
Sect. 2.4.3 and Sect. 2.4.4 respectively.

2.4.3 Optimal Rotation Using Unit Quaternions

Computing the optimal rotation using unit quaternions leads to the solution of
a general eigenvalue problem. The most cited article for this solution is [Hor87],
while the first solution is due to [FH83] in 1983.

Lemma 3. The optimal rotation R maximizing (2.23) is computed via the unit
eigenvector q G M4 corresponding to the largest eigenvalue of the symmetric 4
by 4 matrix

+ 522 + 533 523 ~ 532
Sn-N :=

\
531 — 5i3 5i2 — 523
5i2 + 52i 53i + 5i3 ^ ,2Ms

—5n + 522 — 533 £23 + 532
—5n — 522 + 533 /



2.4. ORTHOGONAL PROJECTION ONTO M6 13

where Sjk,j, k = 1 , . . . , 3 are the nine entries of the matrix

Su S12

S31 S32

(2.25)

From the unit vector q = (qo, <?i, <?2, q$)T we compute the rotation matrix R via
(A.22) of Prop. 1.

Proof. By Prop. 1 of Appendix A we can use a unit quaternion q to rewrite the
rotation Xj 1—> R • XJ to Xi 1—• q o XJ o q. Furthermore we use properties (A.14),
(A. 19) and (A.20) of Appendix A to rewrite

= q • 11 • Aj • q. {A.zo)

Using (2.26) we rewrite (2.23) to get a quadratic form we have to maximize,

'J • R • Xi = ^ qT • KT • Xi • q = q T • N • q -> max. (2.27)
i

Note that Xj and yj are vectors and thus embedded into quaternion space as
(0, Xiti,Xit2,Xits) and (0,2/̂ 1,2/1,2.2/1,3) respectively. Using (A.19) and (A.20) we
see that the symmetric 4 by 4 matrix J ^ Y? • Xi is exactly the matrix N of
(2.24):

Y1 X =

0 yi 2/2 2/3 \

-2 /1 0 y3 -y2

-2 /2 -2 /3 0 y i

V -2/3 2/2 - 2 / 1 0 )

+ X22/2 + a;32/3

0 —X\ —X2 —3:3 \

X\ 0 X3 —X2

•**2i o 1

\ X3 X2 —Xi 0

3:22/3 - 3:32/2

-3:12/1 + 3:22/2 - 3:32/3

3:12/2 - 3:22/1 N

a;i2/3 + 3:32/1

3:22/3 + 3:32/2
- X22/2 + 3:32/3 /

. (2.28)

The quadratic side condition for the maximization of the quadratic form qT-JV-q
in (2.27) is

l|q||2 = q T - q = q T - / - q = i - (2.29)

It is well-known that the minimization of a quadratic form with a quadratic
side condition leads to the solution of a general eigenvalue problem. However,
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in the present problem the matrix of the quadratic side condition is the 4 by
4 unit matrix / — thus we only have to solve a standard eigenvalue problem
det(N — XI) = 0. The largest eigenvector q € M4 of the matrix N, normalized
according to (2.29), gives the desired solution. D

2.4.4 Optimal Rotation Using Singular Value Decomposition

Computing the optimal rotation R using a singular value decomposition has
been introduced by [AHB87], whose derivation we follow here. Again we want to
maximize the quadratic objective function (2.23). For that purpose we rewrite
it as

[ ) (2.30)

where tr A := £V- ajj denotes the trace of a square matrix A and H = £^ Xj • yj
is the matrix defined in (2.25).

Lemma 4. For any positive definite matrix A • AT and any orthogonal matrix

Q,
tr(A-AT)>tv(Q-A-AT). (2.31)

Proof. Let â  be the i-th column of A. Using the fact that the trace of a product
of two square matrices is independent of the order of the multiplication we derive

tr(Q • A • AT) = tx(AT • Q • A) = J^ a? • (Q • * ) . (2.32)
i

Using the Cauchy-Schwarz inequality and the orthogonality of Q we get

af • (Q • a*) < ̂ /(af.aiKaf-Qr-Q.aO = af • &i. (2.33)

Thus, tr(Q • A • AT) < ]T^ af • â  = tr(.A • AT), which completes the proof. D

Lemma 5. Let H be the matrix defined in (2.25) with the singular value de-
composition (SVD)

H = U-E-VT. (2.34)

Then, among all orthogonal matrices, the matrix

R = V -UT (2.35)

maximizes (2.23). If det(R) = +1, then R describes the optimal rotation.

Proof. The 3 by 3 matrices U and V are orthogonal and the 3 by 3 diagonal
matrix E contains the nonnegative singular values of H. As a product of two
orthogonal matrices R is itself orthogonal. Using the orthogonality of U we
derive

R • H = V • UT • U • S • VT = V • E • VT, (2.36)

which is a symmetric and positive definite matrix. Therefore, it follows from
Lemma 4 that for any 3 by 3 orthogonal matrix Q,

tr(R-H)>tr(QR-H). (2.37)
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Thus R maximizes the objective function (2.23), and if det(Ä) = +1, then the
orthogonal matrix R describes the optimal rotation. •

Remark 2.3. If det(-R) = —1, then R is a reflection and not a rotation. Follow-
ing [AHB87] we can deal with it as follows. Geometrically, this case corresponds
to Y being a set of coplanar points. Then there is a unique reflection and a
unique rotation, and one of the singular values of the matrix H is zero, say CT3.
As explained in [AHB87], one can change the sign of the third column of the
matrix V = [vi, V2, V3] to get a matrix V = [vi, V2, — V3]. Then R = V • UT is
the desired rotation.

2.4.5 Optimal Rotation in the Affine Case

Now that we have solved the more general problem (2.16) of finding the opti-
mal rigid transformation that aligns a Euclidean copy of a point cloud to an
arbitrarily deformed version of it, we return to the special case (2.15), where
the deformation is described by a nonsingular affine map.

We have seen that the matrix H defined in (2.25) contains the essential in-
formation that is used to compute the best-fit Euclidean transformation. This
holds for both, the unit quaternion and the singular value decomposition so-
lution. Later on in our motion design algorithms we will have the case that
the point cloud y, is an affine copy of Xj, and that we need to compute the
matrix H repeatedly. Therefore it is advantageous to know that in the affine
case H can be computed efficiently with just 9 multiplications, instead of the
9K multiplications involved in the definition (2.25) of H (where K could be
quite large).

Lemma 6. / / the point cloud yt results from x; by applying a linear map with
matrix A, ŷ  = A • Xj for i = 1, . . . , K, then the matrix H = ̂  Xj • yf defined
in (2.25) is given by

H = JAT, (2.38)

where J = ^ i Xj • XjT is the symmetric inertia tensor defined in (2.6).

Proof. Transposing yi = A-iq, gives yf = xf • AT and plugging this into (2.25)
results in

i . x i
r ) . A T = J . A T . (2.39)

D

Since the point cloud Xj is such that its barycenter is in the origin and
the principal axes of inertia are aligned with the coordinate axes, the inertia
tensor J is actually a diagonal matrix. In our applications, J only needs to
be computed once in a preprocessing step. The affine maps will arise from the
motion design algorithm. Since J is a diagonal matrix the matrix H = J • AT

can be computed with only 9 multiplications.
We summarize the main result of Sect. 2.4 in the following algorithm for

the orthogonal projection of a point A € E12 onto a point M G M6:
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Algorithm 1 (Orthogonal projection onto M6). Let A be a given point
in E12, corresponding to a nonsingular affine map in M.3. Then the orthogonal
projection of A onto M6 corresponds to the Euclidean map m of (2.14) that
minimizes (2.15) in the metric of Sect. 2.2. We compute m as follows:

1. The optimal translational part t maps barycenter to barycenter.

2. For the optimal rotation R we first compute the matrix H via (2.38), and
then we compute R from H either using the unit quaternion approach of
Sect. 2.4-3 or the singular value decomposition approach of Sect. 2.4-4-

Remark 2.4. If det(A) = 0, then there is no unique best-fit orthogonal matrix.
For a derivation of the medial axis of the orthogonal group O(3) and the special
orthogonal group SO(3) in the metric of Sect. 2.2 we refer the reader to [WalO2].



Chapter 3

From Curve Design
Algorithms to the Design of
Rigid Body Motions

In this chapter we present a motion design algorithm that can be considered
as a transfer principle from curve design algorithms to the design of rigid body
motions. We abbreviate this algorithm, which has been introduced by Hofer,
Pottmann and Ravani [HPR02, HPR04], as the CMD algorithm (from Curve
design algorithms to Motion Design). At the same time completely indepen-
dent, a similar method has been published by Belta and Kumar [BK02]. The
difference to their method is the derivation of the results and that the CMD al-
gorithm is more general in the sense that it can be used to compute the best-fit
Euclidean motion to arbitrarily deformed motions, and not only to affine ones.

The CMD algorithm is used in Chapter 5 to find an initial value for the
iterative optimization algorithm used to compute energy-minimizing motions.
In the present chapter we prove that the smoothness of the generated motion
is the same as the smoothness of the used curve design algorithm, and we show
examples of interpolating and approximating rigid body motions using several
different curve design algorithms.

The motion design problem Given N positions Bi := B(ui) of a moving
body ß C M3 at time instances U{, compute a smooth rigid body motion B{u)
that interpolates (or approximates) the given N positions B{iii), such that
chosen sample points of the moving system run on smooth paths.

Outline of the CMD algorithm

1. Use the curve design algorithm to create a deformed motion, which is an
affine motion in the case of a linear curve design scheme.

2. Compute the best-fit Euclidean motion to the deformed motion. This is
done via registration with known correspondences discussed in Sect. 2.4.

17
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We first present the CMD algorithm in Sect. 3.1 in full generality, and
afterwards, in Sect. 3.2 we show how the algorithm simplifies if a linear curve
design algorithm is employed.

3.1 The CMD Algorithm

As introduced in Sect. 2.2 we represent the moving body B by K > 4 sample
points xÇ,..., yPK. Given are Euclidean maps m, = (Ri, tj) of N input positions
Bi := B(ui) of the moving body B at time instances U{.

Homologous points are the different locations of a single sample point as
the moving body takes different positions. By applying the Euclidean maps
rrii to the sample points x° , . . . , yPK we get their locations x̂ . at the given time
instances Ui, which results in K sequences of homologous points.

Step 1: Deformed motion via the curve design algorithm. In the first
step of the CMD algorithm we apply to each of the K sequences of homolo-
gous points the chosen Ck curve design algorithm. This results in K curves
xi(u), . . . , xjf(u) which we refer to as sample curves, see Fig 3.1. For each u
the K points xi(n) , . . . , Xß-(u) may be considered as image points of x° , . . . , x^
under some deformation Fu(x.®) = Xj(w).

In fact, the deformation Fu is not determined on all points of the moving
body B, but just on the sample points. However, it will be convenient to speak
of a deformed copy B'(u) of the moving body. By applying the same curve
design algorithm to all sample points we obtain a time dependent family of
deformed copies B'(u) of the body B, a so-called deformed motion.

Step 2: Best-fit Euclidean motion. In the second step of the algorithm
we use the methods of Sect. 2.4 to compute to the deformed motion derived
in step one, the closest Euclidean motion in the least squares sense using the
metric of Sect. 2.2. In other words, at every time step of the motion, we perform
registration with known correspondences of a Euclidean copy B° of the moving
body to the deformed copy B'(u).

3.1.1 Smoothness of Motion for General Curve Schemes

Although the registration usually only results in small corrections, we get the
following theoretical problem. If we use a curve design algorithm that produces
a Ck curve for each sample point, does our motion design algorithm produce a
Ck motion? We formulate the following theorem.

Theorem 2. // we use a Ck curve design algorithm, then our motion design
algorithm generates a Ck motion, provided that the maximal eigenvalue Am(u)
of the matrix N(u) in Equ. (2.24) has multiplicity one.

Proof. The first step of our algorithm generates for all « a deformed copy B'(u)
of the moving body B. For the deformed motion every sample point runs on
a Ck path by construction. Then, for all u we register the rigid moving body
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Y

(a)

(b)

(c)

(d)

Figure 3.1: Steps of the CMD algorithm: (a) Sample points in their homologous
input positions; (b) Sample curves computed by the curve design algorithm; (c)
Deformed motion by curve design algorithm; (d) Best-fit Euclidean motion.
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B° to B'(u). We have to prove that the registration, described in Sect. 2.4,
is a Ck operation. In order to find the Euclidean motion that performs the
registration we have to compute the eigenvector xm(u) corresponding to the
maximal eigenvalue Xm(u) of the matrix N(u) described by (2.24).

The eigenvalues of N(u) are the zeros of the quartic polynomial det(iV(u) —
X(u) • I), with the identity matrix / . Eigenvectors xm(u) corresponding to the
maximal positive eigenvalue Xm(u) are found by solving the homogeneous linear
system of equations (N(u) — Am(iu) • /) • xm(u) = 0. Prom a unit eigenvector
xm(^) w e find the rotation matrix R(u), see (A.22). We have to show that all
these operations are Ck, from which we can then conclude that we get a Ck

motion.
The symmetric matrix N(u) consists of entries that are polynomial in the

coordinates of the points Xj and Vj. Thus the function N(u) is clearly Ck.
Similarly, the computation of R from (ÜQ, a\,ü2,0,3) is polynomial. The maximal
eigenvalue of N(u) is smoothly dependent on N(u) if we can solve the equation

det(N(u) - Am(u) • / ) = 0 (3.1)

locally for Xm. By the implicit function theorem this is possible if

— det(N - A • /) ± 0 for A = Am, (3.2)
ÖX

i.e., if Xm is a single zero of the polynomial p(X) = det(iV(u) — A • / ) . Next we
have to show the following lemma:

Lemma 7. Suppose that A{u) and X(u) are Ck functions. If for all u in some
interval [a,b], X(u) is a single eigenvalue of the matrix A(u), then there is a Ck

function x(u), defined in the same interval, which is a unit eigenvector of A(u)
to the eigenvalue X(u).

Proof, (of Lemma 7) Note that differentiability is a local property. We consider
M in a neighborhood of some UQ- The rank of the matrix (A — X • I) equals n — 1.
Thus, by removing one row and one column of this matrix we get a (n — 1) by
(n — 1) matrix B with det(5) ^ 0. Since det(i?(u)) is continuous it does not
vanish in a neighborhood of UQ- Hence, for all UQ there is a neighborhood where
the same submatrix B is regular. Now we use this matrix B to solve the linear
system of equations (A — X • I) • x = 0. Without loss of generality let B consist
of the first n — 1 rows and the first n — 1 columns of (A — A • /) =: (c^). We
first solve for (x i , . . . , xn) with xn = 1 which means that we have to solve

B(xi,..., xn-i)
T = ( -c i« , . . . , -Cn_i>n)T. (3.3)

Hence the solution vector is found to be

(xi , . . . , x n _ i ) r = B-l(-cln,..., -Cn-hn)
T. (3.4)

This computation did not use the n-th equation of the linear system, but that
one is automatically fulfilled, since we know that (A — X • I) has rank n — 1.
The cofactor formula for computation of B~l shows that B~l is Ck if B is
Ck. Thus, the eigenvector (x i , . . . ,xn-\, 1) is Ck. By normalizing we get a Ck
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Figure 3.2: The CMD algorithm with a linear curve scheme generates in step 1
an affine motion, which is determined by the paths of four non-coplanar points.

unit eigenvector. This was a local construction, and it could happen that the
ambiguity in the normalization x t—• ±x/||x|| yields locally denned unit vectors
x(ii) which do not fit together. This is easily repaired by replacing a finite
number of locally defined X(M)'S by their opposites —x(u). D

This completes the proof of Theorem 2, i.e., that by using a Ck curve design
algorithm, the CMD algorithm generates a Ck motion. D

3.2 The CMD Algorithm for Linear Curve Schemes

If we use the same linear curve design algorithm for all sample points, then it
is not necessary to apply it to all sequences of homologous points, but only to
four non-coplanar ones. This is so, since we obtain affine copies of the moving
body as intermediate positions, and thus the deformed motion is actually an
affine motion.

Lemma 8. If we use one linear curve design algorithm to generate the paths
of all sample points, then the resulting deformed motion is an affine motion.

Proof. A proof of this property relies on the linearity of the used curve design
algorithm. The j-th homologous input position x.Jk results from an initial po-
sition x£ by applying an affine map with matrix Aj and translational part &j,

x>k = a,- + Aj • xg. (3.5)

Using a linear curve design algorithm means that each intermediate position
Xfc(tt) is a linear combination of the N homologous positions x£, . . . , x^ of the
fc-th sample point x£,

N

Xfc(u) = J2 H(&3 + A3 • Xfc). H e R - (3-6)

After reordering, we obtain

xfc(u) = Yl ^ a i + E M i ) • 4 =• » + A • 4- (3-7)
3 3

We see that the inserted position results from the initial one by application of
an affine map with matrix A and translational part a. D
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E12

Figure 3.3: Motions as curves in the kinematic image space: an affine motion
corresponds to a curve c'(u) in E12 and the best-fit Euclidean motion is a curve
c(u) C M6 obtained as the orthogonal projection of c'(ti) onto M6.

Step 1: Affine motion via the linear curve scheme. Lemma 8 allows
us to apply the curve design algorithm to only four sequences of non-coplanar
homologous points. From these four sequences we can then derive the affine
maps. Since we can choose any four non-coplanar homologous points to de-
termine the affine maps, we use the homologous input positions of the four
points ao = (0,0,0)T,ai = (l,0,0)T ,a2 = (0,l ,0)T ,a3 = (0,0, l )T . Then we
apply the curve design algorithm and we immediately get the affine maps at
every time instant u: ao(u) gives the translational part (this is the path of the
barycenter of the moving body) and the columns of the matrix A describing
the linear part are ai(u) — ao('u), a2(it) — ao(u), and a.3(u) — ao(u).

Step 2: Best-fit Euclidean motion. The computation of the closest Eu-
clidean maps depends on all sample points. However, by using Lemma 2 and
Lemma 6 of Sect. 2.4 there is no need to compute the intermediate positions of
all the remaining sample points using the affine maps. We can directly compute
the closest Euclidean motion to the affine motion in the metric of our kinematic
image space by using the affine maps, see Algorithm 1.

3.2.1 Smoothness of Motion for Linear Curve Schemes

By applying the same linear curve design algorithm to all sample points we
obtain a time dependent family of affine copies B'(u) of the body B, a so-called
affine motion. This special case allows a nice geometric interpretation and an
even simpler derivation of our smoothness result.

To each affine map in 3-space, or equivalently to each affine image of the
body B, we associate a point in 12-dimensional space E12 as introduced in
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Sect. 2.1. The image points of Euclidean maps form a 6-dimensional subman-
ifold M6 C E12. The input positions B(ui) correspond to points Aj on M6.
The affine motion B'(u) corresponds to a curve c'(u) which interpolates or
approximates the points Aj, but does not lie on M6 (see Fig. 3.3).

We can measure the distance between two affine maps in the Euclidean
metric in E12, introduced in Sect. 2.1. Thus, we also have an orthogonality in
E12. The way in which we compute a rigid body motion B[u) from the affine
motion B'(u) via registration corresponds to an orthogonal projection of the
curve c' to a curve c C M6 . Depending on the multiplicity of the eigenvalues of
N(u) (and therefore the dimension of the eigenspaces) there are four different
footpoints from a point c'{u) on the manifold M6 or infinitely many.

J. Wallner [WalO2] has proved that the medial axis of M6 is given by the
singular affine maps. Thus, if the matrix A of the affine map which generates
B'(u) and has c'(u) as image point in E12 has a positive determinant det A > 0,
then we can be sure that the conditions of Theorem 2 are fulfilled. Geometrically
det A > 0 means that c'(u) is not on the medial axis of M6 and thus it possesses
a unique closest point c(u) on M6. We have proven again that by using a Ck

curve design algorithm we generate a Ck rigid body motion.

3.3 Examples and Limitations

The implementation of the CMD algorithm is straightforward. For linear curve
design algorithms, i.e., where the deformed motion is an affine motion, one
proceeds as summarized in the following algorithm.

Algorithm 2 (CMD). The algorithm consists of one preprocessing and two
main steps:

1. Preprocessing: Choose sample points representing the rigid body B.
Then align the rigid body such that the barycenter is in the origin of
the coordinate system and that the three principal moment axes are in
direction of the coordinates axes.

2. Affine motion via curve design algorithm: Apply to the N homolo-
gous positions of the four points (0,0,0), (1,0,0), (0,1,0), (0,0,1) the same
linear curve scheme to get the affine maps x(tt) = a(u) + A(u) • x°.

3. Best-fit Euclidean motion: The path of the origin is a(u) and the
best-fit rotation matrices R(u) to A(u) are computed using Algorithm 1.

Thus we only need an implementation of the curve design algorithm we
want to use, and either an eigenvalue solver or a SVD solver. The remaining
code is then a mere 100 lines. We have implemented the CMD algorithm using
Matlab 6.5. For the computation of the best-fit Euclidean motion we have tested
both Matlab's 'eig' routine for computing the eigenvalues and eigenvectors of
the matrix H, and the 'svd' routine of Matlab for the computation of the
singular value decomposition of the matrix H. Our experience is that the 'eig'
routine seems to be a bit more stable for almost degenerate cases (det .A « 0).
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The total computation time (with the Matlab implementation on a Pentium 4
with 1.8 GHz), is for each motion shown in Figs. 3.4, 3.6-3.11 less than 0.1s.
Since we only compute the motion at a discrete number of positions, the CMD
algorithm is very well suited for the use of a subdivision scheme as the curve
design algorithm.

Remark 3.1. We use an approximation of the rigid body by a triangular mesh
with uniformly distributed vertices on the surface of the rigid body. Then
these vertices are taken as sample points that we use for our computations. An
algorithm for the computation of polyhedral mass properties such as barycenter
and inertia tensor can be found in a paper by B. Mirtich [Mir96].

In the following we present examples of interpolating and approximating mo-
tions and show how to achieve motion modifications — such as tension effects
— using the CMD algorithm. Figure 3.4 shows an open and closed interpolat-
ing rigid body motion of the Stanford bunny computed using the variational
subdivision algorithm of [Kob96].

Figure 3.4: The CMD algorithm with interpolating variational subdivision:
(left) motion from start position B\ to end position BQ; (right) cyclic motion.

In Fig. 3.6 we compare Euclidean motions computed with the CMD algo-
rithm to the same input positions (i.e., the same Euclidean maps Aj 6 M6),
using three different rigid bodies — the bunny, the window, and the gripper.
In a preprocessing step all of them are translated such that their barycenter is
in the origin, scaled such that they fit into a unit cube, and aligned such that
their principal axes of inertia coincide with the coordinate axes. Then we use
the same linear curve design algorithm in the CMD algorithm to compute the
three motions. Linearity of the curve design algorithm implies that the paths
of the barycenters of all motions coincide. However, because the inertia tensors
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J are not equal, see Fig. 3.5 for inertia ellipsoids scaled by a factor of 0.02,

•/bunny = diag(34.3006,17.0387,11.0698),
./window = diag(44.7291,30.0250,0.8846),
./gripper = diag(37.4229,7.2722,0.7893),

the linear parts of the best-fit Euclidean motions are different as well. We
visualize the computed linear parts by converting the rotation matrices into
their corresponding unit quaternions q and then plotting the vector parts
of q for the motions of the bunny, the window, and the gripper as curves
cw, and cg in M3, see Fig. 3.6 (d).

Figure 3.5: Inertia ellipsoids: (left) bunny, (middle) window, (right) gripper.

Figures 3.7,-3.10 show for the same five input positions Bi,...,Bs the
affine and Euclidean motions generated by the CMD algorithm using linear,
quadratic, cubic, and quartic B-spline curves. Figure 3.11 shows five Euclidean
motions, interpolating the same input positions, computed with the CMD algo-
rithm using f-splines with v = 0,12,25,50,99. Figure 3.12 shows 1185 positions
of the best-fit Euclidean motion of the Utah teapot interpolating 38 input po-
sitions, computed in 0.6s.

One limitation of the CMD algorithm is that if the affine motion — seen as
a curve in E12 — gets too close to the medial axis, then det A «a 0 and the algo-
rithm might fail to compute the best-fit orthogonal matrix to an almost singular
affine matrix. Another limitation of the CMD algorithm is, that it does not pre-
serve energy minimization. That means that if we use a variational curve design
algorithm, then best-fit Euclidean motion is not an energy-minimizing motion.
However, we generate a sufficiently good initial motion for the iterative opti-
mization algorithm that we will use in Chapter 5 to compute energy-minimizing
motions.

The focus of the CMD algorithm is the design of a rigid body motion with
certain desired properties such as interpolating, approximating, smoothness,
fairness, tension, etc. The strength of the CMD algorithm is that the properties
of the employed curve design algorithm are transferred to the rigid body motion
in a straightforward way. If necessary, one can use the computed dense set of
discrete positions of the moving body and interpolate it with standard motion
design techniques to get the desired motion representation e.g. in NURBS form.
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(a) (b)

(c) (d)

Figure 3.6: The CMD algorithm for the same input positions Bi,...,B& (en-
larged) using different moving bodies: (a) bunny, (b) window, (c) gripper,
(d) visualizes the different linear parts of the motions of bunny, window, and
gripper using the curves c^, c^,, and cg respectively.
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(a)

(b)

Figure 3.7: The CMD algorithm with linear B-splines: (a) affine motion; (b)
best-fit Euclidean motion.

(a)

(b)

Figure 3.8: The CMD algorithm with quadratic B-splines: (a) affine motion;
(b) best-fit Euclidean motion.
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(a)

(b)

Figure 3.9: The CMD algorithm with cubic B-splines: (a) affine motion; (b)
best-fit Euclidean motion.

(a)

(b)

Figure 3.10: The CMD algorithm with quartic B-splines: (a) affine motion; (b)
best-fit Euclidean motion.
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(a)

(b)

(c)

(d)

(e)

Figure 3.11: The CMD algorithm using i/-splines: best-fit Euclidean motion
with (a) v = 0, (b) v = 12, (c) v = 25, (d) v = 50, (e) v = 99.
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Figure 3.12: Euclidean motion computed with the CMD algorithm interpolating
38 input positions.



Chapter 4

Energy-Minimizing Splines in
Manifolds

We formulate variational design of rigid body motions as variational design of
a curve on the 6-dimensional manifold M6 of Euclidean maps embedded into
12-dimensional space of affine maps. This is one special instance of the more
general problem of computing an energy-minimizing spline on a m-dimensional
regular surface S, embedded in Euclidean Rn, m <n. Moreover, a sequence of
points Pi E S, i = 1, . . . , N and real numbers ui < • • • < UN are given. We are
seeking a curve c(«) on 5, which interpolates the given data, C(UJ) = Pj, and
minimizes some energy functional.

In Section 4.1 we characterize parametric curves in S, which interpolate or
approximate a sequence of given points Pj G S and minimize a given energy
functional. As energy functionals we study familiar functionals from spline
theory, which are linear combinations of I? norms of certain derivatives. The
characterization of the solution curves is similar to the well-known unrestricted
case. The counterparts to cubic splines on a given surface, defined as interpo-
lating curves minimizing the L2 norm of the second derivative, are C2; their
segments possess fourth derivative vectors, which are orthogonal to S; at an end
point, the second derivative is orthogonal to S. Analogously, we characterize
counterparts to splines in tension. A characterization of quintic C4 splines and
smoothing splines can be found in [PH05].

Only on very special surfaces, some spline segments can be determined ex-
plicitly. In general, the computation has to be based on numerical optimization.
In Section 4.2 we present a geometric optimization algorithm, which minimizes
an energy of curves on surfaces of arbitrary dimension and codimension [HP04].
The concept is very general and can be applied for the computation of energy-
minimizing spline curves on parametric surfaces, level sets, triangle meshes, and
point set surfaces. It includes variational motion design, which we will study
in Chapter 5, and the treatment of obstacles via barrier surfaces, the topic of
Chapter 6.

31
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4.1 Characterization of Energy-Minimizing Splines
in Manifolds

Spline curves in Euclidean spaces which minimize the L2 norm of the second
derivative and related functionals are well understood and comprise one of the
basics of Geometric Modeling. For a comprehensive discussion of the theory and
computational issues we refer to [HL93]. The classical energy functionals are
quadratic, which makes minimization easy. Geometric functionals which require
nonlinear minimization techniques and their application to curve design have
been studied e.g. by [BHS93] and [MS93]. Variational curve design has also
been performed within the framework of subdivision [KS98], an approach we
only touch briefly in Remark 6.

Variational design of curves on surfaces has received much less attention. A
substantial amount of research focuses on the quaternion 3-sphere because of
its well-known relationship with rigid body motions [BCGH92, BC94, JW02,
PR97, RB97]. Minimizing the L1 or L2 norm of the first derivative of curves
is a classical problem of Differential Geometry and leads to the geodesic lines
of surfaces. Applications of this in Computer Vision and Image Processing
are given in [CKS97, KMG98, MalO2, MS01, SapOl]. A series of contributions
addresses intrinsically cubic splines in manifolds, i.e., the minimizers of the
covariant acceleration [CLC01, GK85, NHP89, Noa03].

We concentrate on an extrinsic formulation of energy-minimizing curves
in embedded manifolds; its definition uses the ambient space. We minimize
classical quadratic energy functionals involving first and second derivatives,
but with the nonlinear side condition that the solution curves are confined
to surfaces. For parametric surfaces in M3, this is the topic of H. Bohl's thesis
[Boh99], who proves the existence of a solution and computes it by quasi-Newton
iteration.

In view of the applications we have in mind, it is necessary to work on
surfaces of arbitrary dimension and codimension. Thus, we consider a m-
dimensional surface 5 in Euclidean M.n, m < n. Moreover, a sequence of points
Pj 6 S, i = 1 , . . . , N and real numbers ui < • • • < upj shall be given. We are
seeking interpolating splines on the surface S. Sometimes we will also call S a
manifold; if not stated otherwise, we work with a manifold without boundary.
Thus, we have closed or unbounded surfaces. As we will point out in Chapter 6,
the computation of energy-minimizing splines which respect patch boundaries
or holes in a surface, can be reduced to the computation of a spline on (another)
surface without boundary.

4.1.1 Cubic Splines Revisited

Let us recall the situation, where we are not confined to a surface. Readers
familiar with the derivation of interpolating cubic C2 splines in M.n can jump
to the next section.

Theorem 3. Among all curves x(u) c W1, whose first derivative is absolutely
continuous, x 6 AC (I), and whose second derivative satisfies x € L2(I) on
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/ = [ui,wjv]> and which interpolate the given points, X(UJ) = pil the unique
minimizer of

E2(x) = / \\x(u)fdu, (4.1)

is the interpolating C 2 cubic spline c(u).

Proof. Step 1: Energy minimizing property.
We assume the existence of a solution c and prove that for any other admis-

sible interpolating curve x we have £?2(x) > ^ ( c ) . We define an inner product
of two curves x(u) and y(u) as

ruN

( x , y ) : = / x(u)-y(«)du. (4.2)

Then (•, •) is a symmetric positive semidefinite bilinear form which satisfies
(x, x) = E%{x). Bilinearity implies that

(x — c, x — c) + 2(c, x — c) = (x, x) — (c, c). (4.3)

We want to show that (c, x — c) = 0, because then we can use (x — c, x — c) > 0
to conclude that (x, x) — (c, c) > 0. We calculate

(c, x — c) = / c • (x — c) du. (4-4)
Jui

Consider for the moment only the integral for u 6 [ui,Uj+i]. We integrate by
parts twice to get

/ c - (x -c )d« -c - (x -c ) | " : + 1 - / c ( 3 )-(x-c)du

= c • (x - c)|::+1 - c<3) • (x - c)|";+1 + / c(4) • (x - c) du. (4.5)
Jui

Using the interpolation conditions c(ui) = p i ; and the fact that for a cubic c
the fourth derivative vector vanishes, c'4) = 0, we rewrite (4.5) as

/•Ui+l

/ c • (x - c) du = c_(u i+i) • (x(ui+i) - c(ui+i)) - c+(ui) • (x(tti) - c(ui)).
JUi

We now calculate (c, x — c),

( c , x - c ) = - c+(ui) • (x(ui) - c(ui))
N-l

+ c-(uN) • (x(u/v) - c(uN)). (4.6)

Now (4.6) vanishes exactly if the following conditions hold

c+(ui) = 0,

( c _ ( W i ) - c + ( t t i ) ) = 0, z = 2 , . . . , A T - l , (4.7)

c-(uN) = 0.
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These are exactly the conditions of an interpolating cubic C2 spline with natural
end conditions, if the solution exists.
Step 2: Uniqueness of the solution.

To show uniqueness of the solution of the variational problem let us as-
sume that there are two solutions c, ci. Prom the discussion above we see that
(c, c) = (ci, Ci). Equation (4.3) implies that (ci — c, Ci — c) = 0. This means
that Ci — c is piecewise linear. Because of the interpolation conditions it follows
that (ci — c)(iij) = 0 for i = 1,. . . , N. Thus we have that ci — c = 0, which
proves the uniqueness of the solution curve c.
Step 3: Existence of a solution.

The existence of a solution c follows from the explicit computation of c.
The idea is to construct between each two adjacent points Pj = c(u{) and
Pj+ 1 = c(ui+i) a cubic Bézier curve Ci with derivative vectors m* and mj+i
at the end points such that adjacent cubic segments Cj_i and Cj fulfill the C2

conditions at c(itj),

c+(«i) -c_(«j) = 0 <* Ci_i(«i)-Ci(«i) = 0. (4.8)

In the following we denote by Aj := Ui+\ — Ui the first forward difference. Note
that the solution curve c also has to fulfill the C1 condition, i.e., that the first
derivatives at c(tij) are equal. Using the derivative formula for Bézier curves,
the C1 condition can be written as

3 3
c(ut) = "Ä (b3i ~ b3i_i) = — (b3 i+i - b3i) = m;. (4.9)

From that we derive the Bézier points of the cubic segments Cj,

b3i = Pi,

b3i+i = Pi + Y m >)

b3i+2 = Pi+l ^-mi+l,

b3i+3 = Pi+i-

Note that the unknowns we have to determine are the derivative vectors mj.
Since the mj also have to fulfill the C2 condition (4.8), we make again use of
the derivative formula for Bézier curves to get

• • • \ " • • • n.-m t \

Ci-i(iii) = -TJ—(b3i_2 -2b 3 i _ i + b3j).
A i -1

The above two equations need to be equal in order for the solution curve c
to be C2 at c(«j). Plugging in the Bézier points from the C1 condition and
rearranging the terms yields the following expression

Aimi_1+2(Ai_i+Ai)mi+Ai_1mi+1 = 3 ( - ^ - A p ^ ! + APi ) . (4.10)
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The natural end conditions c+(ui) = 0 and C_(UTV) = 0 yield the conditions

3 3
2m! + m2 = — Pi and m^r-i + 2mjv = -r—p^. (4.11)

Ai A

Thus we have N equations (4.10) and (4.11) for the N unknown vectors m*
which we can write in matrix notation as

A • (mi , . . . , mN)T = ( n , . . . , rN)T, (4.12)

where the coefficient matrix A is

/ 2 1 \
A2 2(Ai + A2) Ai

A= •.. •.. •-. , (4.13)

L 2(AjV-2 + A;v_i) AJV-2

1 2

and the vectors r̂  of the right hand side are

ri = ^ - P i , (4.14)

rt = 3 f —^-Api_l + —^-Apj J , i = 2, ...,N-1, (4.15)

TJV = ~z—Pjv* (4.16)

The coefficient matrix A is strictly diagonally dominant and thus it is regular.
Therefore the linear system of equations (4.12) has a unique solution. This
proves the existence (and again the uniqueness) of the solution of the posed
variational problem. D

Remark 4.1. The explicit solution for closed curves is easily derived from the
above linear system of equations.

4.1.2 The Counterparts to Cubic Splines on Surfaces

We would like to extend the well-known result of Sect. 4.1.1 to the case where
the admissible curves x(u) are restricted to a given surface S C M.n. We are not
changing the functional i?2 of (4.1), whose interpretation requires an embedding
space. We are considering the restriction to the surface as a constraint, rather
than formulating the problem in terms of the intrinsic geometry of the manifold.
As we will see later, this is a suitable formulation for the problems we would
like to solve.

Theorem 4. Consider real numbers ui < • • • < u?{ and points p l t . . . , p ^ on
an m-dimensional C 4 surface S in Euclidean space M.n. We let I = [UI,UN].

Then among all Cl curves x : / —> 5 C M.n, which interpolate the given
data, i.e., x(ttj) = pil i = 1,...,N, and whose restrictions to the intervals
[ui,Ui+i],i = l,...,N — 1 are C4 , a curve c which minimizes the functional
E2 of (4-1) is C2 and possesses segments c\[ui,ut+i], whose fourth derivative
vectors are orthogonal to S. At the end points P! = c(u\) and pN = C(UN) of
the solution curve, the second derivative vector is orthogonal to S.
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Proof. If a solution curve c exists, the first variation of the energy functional
must vanish there [GF63]. To express this condition, we consider neighboring
curves x(u) C S, written as

x(u,e) = c(u) + h(u, e). (4.17)

For any fixed û 6 / , the curve h(tt, e) is a curve in S with h(û, 0) = 0. Its
Taylor expansion at e = 0 reads

h(û, e) = ehe(û, 0) + -hee(ù, 0) + . . . ,

where the subscripts indicate differentiation. Note that he(û, 0) =: t(ü) is a tan-
gent vector of S at c(ù). The displacement curves h to the given interpolation
points vanish, h(itj, e) = 0, for all e. In particular, we have h£(uj, 0) = t(ui) = 0.

Figure 4.1: Displacement of the solution curve for deriving the first variation
of the energy.

For the following, it is important to see that the mixed partial derivative
vector heu(ui, 0) = tu{ui) is a tangent vector of S at c(ui) = Pj. Geometrically,
this follows from the fact that the curve c(u) + t(«) is a curve on the ruled
surface r(u,v) = c(u) + vt(u), which touches S along c. This curve passes
through each interpolation point Pj = c(ui) + t(«i), and thus its derivative
vector cu(ui) + tu(ui) is a tangent vector of S. Together with the tangency of
Cu(v>i) this implies tangency of tu(ui).

Whatever field of displacement curves h(u,e) we have chosen, the energy
functional must assume a stationary value at e = 0,

(4.18)

In view of

E2(x.(u, e)) = / [c(u) + huu(u, e)]2du = / [c + etuu + e2(- • • )]2du,
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this is equivalent to

• tuu du = 0. (4.19)

Integration by parts (twice) on each segment yields

rui+\ fui+l
/ c • tuu du = c • tu

 Ui+l - c<3) • t Ui+l + / c<4) • t du.

We first note that the middle term vanishes, since t(ui) = 0. Summing up
over all intervals and denoting left and right derivatives at the knots u* by a
subscript — and +, respectively, the condition for a solution c reads,

N-l

0 = — C+(MI) • tu(ui) + y j [(c-(uj) — c+(ui)) • tu{ui)]
i=2

+ C_(UAT) • tu{uN) + I c(4) • t du. (4.20)

Since t(u) is an arbitrary tangent vector field along c, and tu(u,) are arbitrary
tangent vectors at the given interpolation points, a solution curve c(u) must
satisfy the following orthogonality conditions to the surface S. To formulate
them, we denote by tpr the orthogonal projection of a vector at a point p G S
onto the tangent space of S at p,

tpr c+(«i) = tpr C_(UJV) = 0, (4-21)
tpr (c_(«i) - c+(ui)) = 0, t = 2 , : . . , J V - l , (4.22)
tpr c^4'(u) = 0 on each interval [tii,Uj+i]. (4.23)

Exactly these conditions are stated in Theorem 4. Equation (4.21) means that
the second derivative vector at the end points is orthogonal to the surface;
this implies (but is not equivalent to) vanishing geodesic curvature at the end
points. Equation (4.22) shows that the tangential component of the second
derivative is continuous along c; we call this behaviour tangentially C2 or briefly
TC2. It will be shown later that in view of the C4 manifold 5 this implies C2.
Finally, by Equ. (4.23), the fourth derivative vectors of the curve (which may
be discontinuous at the interpolation points) are orthogonal to the manifold
S. Vanishing fourth derivative characterizes a cubic curve; since here only the
tangential component vanishes, we speak of a tangentially cubic curve in the
following. To complete the proof, we show the following result:

Lemma 9. On an m-dimensional Ck manifold S C W1, m < n, we consider a
curve c(u), which is Ck (k > 2) everywhere except at a point c(uo). At c(uo),
all derivatives up to order k have a continuous tangential component, i.e.,

= 0, i = 1, . . . , k. (4.24)

Then, the curve is also Ck at C(UQ).
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\

Figure 4.2: Geometric characterization of a minimizer: For a minimizer of (left)
E\ and (right) E2, the second respectively fourth derivative vectors (yellow) are
orthogonal to the surface.

Proof. We may represent the manifold at least in a neighborhood of c(ito) as
an intersection of n — m hypersurfaces, whose implicit representations shall be

Since the curve lies in all these hypersurfaces, we have the identity Fj(c(u)) = 0
in u. By differentiation, we obtain VFj(c) • c = 0, and for the i-th derivative
we find an expression of the form

Gi_i(c,..., + « = 0. (4.25)

Here, Gi_i(c,. . . , c^ ^) abbreviates a function, which depends on Fj, up to dif-
ferentiation order i, and on c, but only up to differentiation order i — 1. At C{UQ)
this holds for the left and right derivatives. The first derivative is tangential,
and thus c is G1 at UQ. This is the basis of an induction on the differentiation
order i. Assuming continuity of the derivative c^-1^ at UQ, Equ. (4.25) ex-
presses that the components VFj(c) • c ^ of the i-th derivative are continuous
at uo, since they equal Gj_i(c,..., c^"1)), which is continuous by the induction
hypothesis. Since the vectors Vi^(c(uo)), j = 1,.. .,n — m, span the normal
space of S at c(uo), we have shown that the normal component of the i-th
derivative is continuous. The tangential component is continuous by (4.24) and
thus we have shown continuity of c^ . This completes the proof of Lemma 9
and thus also the proof of Theorem 4. Note that the case k = 2 follows also
immediately by Meusnier's theorem. D
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The minimizers of the energy functional E2 in (4.1) on surfaces possess a
characterization which is very similar to the familiar cubic C2 splines (revisited
in Sect. 4.1.1). The minimizers on surfaces are C2 and tangentially cubic.
However, the problem is nonlinear and the minimizers can in general not be
computed explicitly. In Sect. 4.2 we present a numerical optimization algorithm
to compute such energy-minimizing curves. Existence of the solution follows
from the work of Bohl [Boh99] and Wallner [WalO4a]. Uniqueness cannot be
expected, as will be clear from the following considerations.

—-^

Figure 4.3: Geodesic between two points p1 and p2.

4.1.3 Geodesic Curves on Surfaces

Let us replace the energy in (4.1) by the L2 norm of the first derivative,

||x(u)||2du. (4.26)

Moreover, we just prescribe the two end points px and p2 . Then we find
with the same approach as in the proof of Theorem 4 that the curve's second
derivative vectors c are orthogonal to S. In particular, c and c are orthogonal,
and hence ||c||2 = const. This proves, that the curve is parameterized by a
constant multiple of its arc length. Moreover, it shows that c represents the
principal normal, and orthogonality of the principal normal to S characterizes
a geodesic (a shortest path on S). Thus we find the known result that the
minimizers of E\ are geodesies in a scaled arc length parameterization. Note
that the functionals we are considering are also optimizing the parameterization.
There are no simple global uniqueness results for geodesies, so we cannot expect
such results for the more involved case of splines.

4.1.4 The Counterparts to Splines in Tension on Surfaces

A linear combination of energies (4.26) and (4.1) leads in the unrestricted case
to the well known splines in tension as minimizers [Sch66]. The counterpart on
manifolds is characterized in the following theorem, whose proof can be omitted
since it is completely analogous to that of Theorem 4.
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Theorem 5. Consider data points, parameter values and admissible curves on
a surface S as in Theorem 4- Then, a minimizer of the functional

E
ru

(x)= /
Jui

= const >0, (4.27)

is a C2 curve which satisfies

tpr (c(4)(n) - uic(u)) = 0 (4.28)

on all segments. The end conditions are tprc+(ui) = tpr'c-(uN) = 0.

Increasing w brings the solution closer to the curve which minimizes E\,
i.e., the curve composed by geodesic segments between the interpolation points.
Hence, the parameter w controls the tension of the curve, see Fig. 4.4.

Figure 4.4: Spline curves ci, et, C2 on a surface S, interpolating the same points
p l t . . . , p4 and minimizing energies E\, Et, and Ei, respectively.

Remark 4.2. One can provide analogous results (see [PH05]) for the surface
counterparts of quintic C4 splines (minimizers of the L2 norm of the third
derivative) and smoothing splines. The latter approximate the given points and
are related to C2 cubic splines in the following way. Reinsch [Rei67] relaxed
the interpolation conditions x(«j) — Pj = 0 by adding the sum of squared
interpolation errors as a penalty term to

r

Ju

UN
N

(4.29)
i = l

The minimizers, called smoothing splines, found a variety of applications in the
analysis of observational data [Wah90]. The choice of the smoothing parameter
A : /i in this method for data approximation is not a simple problem. Often
one uses statistical methods for this critical task [Wah90]. We should also
mention that an analogous functional is used for freeform surface fitting in
reverse engineering applications [VM02].
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The numerical optimization procedure (Algorithm 4) presented in Sect. 4.2
can handle the counterparts of quintic splines and smoothing splines on surfaces
as well, but we concentrate on the counterparts of cubic splines and splines in
tension on surfaces. In the following we will thus mainly work with the energy
functionals E<i of (4.1), Et of (4.27), and for comparison reasons also with Ei
of (4.26).

4.2 Computation of Energy-Minimizing Splines in
Manifolds

We are minimizing quadratic functionals such as E% or Et. After discretization
we obtain quadratic functions. The restriction of the curves to a surface yields
constraints, and thus the numerical computation of splines in manifolds requires
an algorithm for the constrained minimization of a quadratic function. For this
purpose we propose a projected gradient algorithm, whose stepsize control is
guided by a geometric interpretation of an error estimate. The optimization
procedure we present is related to research on active curves [BI98, KWT87],
geometric flows of curves on surfaces [CBMO02]), and snakes on surfaces [LL02].

4.2^1 The Basic Geometric Optimization Algorithm

Consider minimization of a quadratic function

F : RD -> R, F(x) = xT • Q • x + 2qT • x + q, (4.30)

with a symmetric positive definite matrix Q, under the constraint that x lies
in some surface <& C RD. We assume that $ has dimension m and that it is
smooth in the area we work in.

The geometric approach to this minimization problem views the matrix Q
as matrix of the inner product (x, y) := x r • Q • y, of a Euclidean metric in
M.D. F assumes its minimum in the point p = — Q~l • q. Up to an unimportant
additive constant, F then equals

F(x) = (x-p)r-Q-(x-p). (4.31)

This is the squared distance ||x — p||2 of points p and x in the Euclidean norm
mentioned above. Here, and in this entire section, 'distance', 'orthogonality',
and related concepts refer to the metric denned by the matrix Q. The minimum
of F on the surface $ is attained at the point p*, which is closest to p, see
Fig. 4.5. The point p* is the normal footpoint of p on <&.

We propose the following iterative procedure to compute p*. It consists of
repeated application of the following two steps (see Fig. 4.5): xc (the current
point) is initialized with an initial guess xo for the minimizer.

1. Compute the tangent space Tm of $ at the current iterate xc and project
the point p orthogonally into Tm, which results in the point pT.

2. Compute an appropriate stepsize s and project x s := xc + s(pT — xc)
onto $; this yields the next iterate x + .
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Figure 4.5: (Left) Footpoint computation with a projected gradient algorithm.
(Right) Footpoint cone.

4.2.2 Convergence Analysis

The choice of the stepsize s requires a discussion of error estimates. We briefly
summarize results here and omit proofs, which can be found in [PH04].

Under the assumption that <& has derivatives up to third order, the current
error ec := xc — p* and the error at the next iteration step e+ = x + — p* are
related via

||ec|| + C ||ec||
2. (4.32)

d equals the distance of p and p*. Kmax is the largest (in the sense of absolute
values) normal curvature of the surface $ in the point p*, with respect to the
normal vector n := p — p*. C is a constant.

Since p — xc is the negative gradient of ^||x — p||2 (the squared distance
function to p) at xc, the method is a projected gradient algorithm.

Remark 4.3. The normal curvature K of a curve c/ in <& through p*, with
respect to the normal vector n, has the following interpretation: Connecting
p with Cf yields a cone Vf (see Fig. 4.5). By developing this cone into the
plane, c/ is transformed into a planar curve c^, whose (ordinary) curvature is
precisely K [dC76, Spi75].

Remark 4.4. The projection xs »-> x+ is of marginal importance as regards
local convergence. A sufficiently smooth projection only influences the constant
factor C in Equ. (4.32). For motion design the projection is the orthogonal
projection onto M6 (discussed in Sect. 2.4) which meets this condition. Other
projections discussed in [HP04] also meet this condition.

We proceed with the discussion of (4.32). Convergence of the algorithm
depends on the constant

C\ := |1 — s + sdKmax\.

We have linear convergence if C\ < 1. The goal is a strategy for selecting the
stepsize s such that C\ becomes as small as possible.
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The normal vector n has been chosen such that it points from p* to p.
We have d > 0, but we cannot assume that Kmax > 0. Two cases have to be
discussed:

(a) d,Kmax > 1: Then 1 + s(dKmax — 1) > 1, i-e., C\ > 1, and no choice of s
would guarantee convergence. Fortunately, this case does not arise in our
setting: it can be shown to occur only if p* is a local minimizer, but not
a global one.

(b) dKmax < 1 : In this case any choice of s with

2
0 < s <

11
(4.33)

gives a constant C\ < 1, i.e., linear convergence.

Note that d = 0 together with s = 1 yields the optimal situation C\ = 0, i.e., a
quadratically convergent algorithm.

4.2.3 Stepsize Selection

To show the idea behind our selection of stepsize, we first look at the simple
case that $ is a curve with curvature K = Kmax (in the sense of Remark 4.3) at
the footpoint p*. If we choose

s = (4.34)

we get C\ = 0 in (4.32), which means quadratic convergence.
In practice, however, we do not know d and K. In the following we show

how to extend this idea from the curve to the surface case, and how to estimate
the unknown values d and « from data collected at previous iteration steps.

Remark 4.5. Equation (4.34) becomes intuitively clear for a planar curve,
which for purposes of second order analysis is replaced by its osculating circle
of radius 1/K at the footpoint (Fig. 4.6). The point xs is chosen as close as
possible to p*, but still on the tangent T at xc. It is elementary to verify
Equ. (4.34) for this choice of xs.

Figure 4.6: Visualization of stepsize selection.
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In order to utilize the curve case for a general surface <&, we consider a curve
c/ on $, containing the individual iterates in our projected gradient algorithm.
Computing p's footpoint in c/ yields the same point p* as computing the
footpoint on <&. This means that we could just as well have applied the entire
iteration to Cf, which however is not known.

In view of Remark 4.3, we now estimate the stepsize s via developing the
footpoint cone Tj, which connects p and Cf. An approximation of this devel-
opment in a neighborhood of the current iterate xc can be computed from the
mutual distances of the three points xc, the previous iterate x_, and p.

Algorithm 3 (Stepsize). Estimate the stepsize s via an approximate planar
development of a part of the footpoint cone F y (see Fig. 4-V:

1. Using the distances \\pT — xc | |, | | p T — p| | , ||x_ — p| | , ||x_ — xc|| we
develop the triangles p x c p T and px c x_ into a plane as shown by Fig. 4-7.
Development is indicated by a tilde.

2. In the planar coordinate system of Fig. 4-7, let x_ have coordinates (Ç,rj).
The circle k, which passes through x_ and touches the line x.cpT at xC;

has center m = (0, g) and radius g = (£2 + T]2)/(2^). We let K := 1/g
and d := \ ||p — m|| — \g\ \. We plug these values into (4-34) to get the
stepsize s.

Note that there are two ways to attach the triangles px c p T and pxcx_ to
each other. One way is shown by Fig. 4.7. The other possibility is obtained by
reflecting the triangle pxcx_ in the line pxc . Of course, we take the possibility
which gives the smaller distortion of the spatial distance \\pT — x_||.

Figure 4.7: (Left) Distances in M.D. (Right) Approximate planar development
of a part of the footpoint cone.
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4.2.4 Summary of the Optimization Algorithm

Algorithm 4 (Compute constrained minimizer). Compute the minimizer
p* of a quadratic function with positive definite matrix Q (and unconstrained
minimizer p) under the constraint that p* lies on a given m-dimensional surface
$ C M.D : Starting with an initial guess xo for the minimizer, iteratively apply
the following two steps.

1. Compute a basis {c\,..., cm} of $ 's tangent space at the current iterate
xc, and the Gramian matrix G = {gij) = ((ci, Cj)) of that basis with
respect to the inner product (x, y) := x r • Q • y. Further compute the
vector r = (ji,... ,rm) with rj = (p — xc, Cj). Define the tangent vector
t = ^2iViCi where v = (v\,... ,vm) is the solution of the linear system
G • v = r.

2. With distance computations based on the norm ||x — y||2 = (x — y, x — y)
and the stepsize strategy of Algorithm 3, compute a stepsize s and the
point xs = xc + st. Project xs onto <fr to obtain the next iterate x+.

The projection in step 2 depends on the chosen representation of $. In the
motion design case the projection is the orthogonal projection summarized in
Algorithm 1. In the very first iteration step, Algorithm 3 does not work and we
must be content with a safely small stepsize s, whose validity can be tested with
a standard strategy, e.g. the Armijo rule [Kel99]. Such a strategy should be
added to each step anyway, in particular if large curvature changes unbalance
our stepsize selection. In the applications shown later, such changes have been
detected by means of the footpoint cone: we observe the change of curvature
as iteration progresses. Later during iteration, points x_ and xc will be too
close to be used for curvature estimation; in such a case we revert to the last
available valid estimate for K.

The optimization algorithm presented here is very well suited for high di-
mensional applications, since it reduces curvature related computations (Algo-
rithm 3) to the minimum which is necessary to achieve fast convergence.

Remark 4.6. The stepsize selection (4.33) can be seen as one step in a Newton
iteration for computing p's footpoint on a circle, which approximates the foot-
point curve Cf at xc. Other curves can be used for that purpose as well, e.g. a
method proposed by Hartmann [Har99] for computing footpoints on paramet-
ric and implicit surfaces in R3 uses a certain parabola. The difference to our
method is that the auxiliary curve used by [Har99] in each round of iteration
does not use the approximate footpoints computed in previous rounds. It turns
out that the performance of Hartmann's method is similar to ours, but it is
stable only for small d.

4.2.5 Splines in Manifolds

Computing energy-minimizing curves on surfaces requires discretization. We
describe a solution to the interpolation problem: The unknown curve c must
pass through given points, so we assume that we are given parameter values
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x

Figure 4.8: (Left) Polygon P on low-dimensional surface S. (Right) Polygon P
viewed as one point X on the high-dimensional surface <I>.

ui,..., UN and points p 1 , . . . , pN on an m-dimensional surface 5 in M.n, such
that c(ui) = p^. The curve itself is represented by a point sequence which
contains the points Pj (see Fig. 4.8 and Fig. 4.9):

Pi» *ll,l» Ql.2» • • • ' Ql,Mi> P2» *l2,l» • • • ' PiV>

with Mi new points in between pj and Pj+i- We assume that evaluating the
unknown curve c at parameter values ui + j(u»+i "" ui)/{Mi + 1) yields q^-. In
our implementation, the parameter values Ui of the data points p^ are estimated
such that Aui equals the arc length of the segment between p^ and p i + 1 on the
initial curve. In case of heavy changes of the length of certain segments during
the optimization, we recompute the parameters.

The new points q4 ,• are the unknowns in the minimization problem. Their
number equals M := Mi + • • • + Mjy-i for an open curve. We rename them
( X I , . . . , X M ) in order to establish the connection with the previous section
and collect them in a new point X E. M.D with D = Mn. Thus a polygon
P = (x i , . . . , XM) 6 5 in En corresponds to a point X G $ in RD, see Fig. 4.8.
The constraint manifold $ is the set of X's, such that the single x^'s are
contained in the given surface S. Thus $ is a surface whose dimension equals
Mm, i.e., the number of unknowns M times the dimension m of the surface S.

Our optimization procedure (Algorithm 4 described in the previous section)
employs <&'s tangent spaces and orthogonal projection onto them. It is therefore
necessary to give bases of these spaces. Suppose that for each point x^, the
original surface's 5 tangent space is spanned by vectors Ckj. Then the long
vector (0, . . . , 0, c^j, 0, . . . , 0) with cĵ j in the place of x^ is tangent to $; and
$'s tangent space is spanned by those vectors, as k runs in 1, . . . , M and I runs
in 1,.. . ,n.

The next step is to describe the quadratic function F. We use the difference
of successive points as a discrete first derivative, and a difference of such differ-
ences as a discrete second derivative. By replacing integration by summation,
any of the functionals E\, Ei-, Et is thus converted into a quadratic function,
and we directly apply Algorithm 4.

Note that this essentially means projecting gradients of an energy function,
where the projection is defined via the orthogonality given by the energy it-
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Figure 4.9: (Left) Notation for the discretized spline. (Right) Elementary view
of an iteration step of the optimization algorithm.

self. This is a discrete version of a Sobolev gradient. The efficiency of Sobolev
gradient methods for geometric optimization problems has been pointed out by
Renka and Neuberger (see [Neu97]).

An elementary view of the algorithm is the following: We displace the (non
fixed) vertices Xfcc of the polygon to the current iterate in their respective
tangent spaces of S, such that the displaced polygon minimizes the chosen
energy E; then these displacement vectors are scaled by the stepsize s, and the
resulting points x^]S are projected to points Xfc,+ of S (see Fig. 4.9).

Two possible ways to compute an initial position of the spline are:

1. Compute the unrestricted energy-minimizing spline through the given
points Pj (with estimates for their parameter values Ui as suggested in
the literature [HL93]) and project it onto the surface S. The projection
has to be performed efficiently and therefore depends on the representa-
tion of S. For the motion design case, which is the topic of this thesis, an
efficient projection is derived in Sect. 2.3 and summarized in Algorithm 1.

2. Use an approximation to a piecewise geodesic curve.

In the motion design case discussed in Chapter 5 we will use the CMD
algorithm (Algorithm 2) of Chapter 3 to compute an initial motion.

Figure 4.10: Energy-minimizing splines on a parametric surface, a level set
surface, a triangle mesh, and a point set surface.
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4.2.6 Examples of Energy-Minimizing Splines in Manifolds

The presented geometric optimization algorithm is sufficiently general so as to
work for various representations of the surface 5, and for any dimension and
codimension of 5. In [HP04] the computation of splines on two-dimensional
surfaces S C I 3 given in various representations is discussed. Figures 4.10
and 4.11 show examples of energy-minimizing splines on parametric surfaces,
level set surfaces, triangle meshes, and point set surfaces. We will use the
geometric optimization procedure (Algorithm 4) in Chapter 5 for variational
motion design, and in Chapter 6 for variational curve and motion design in the
presence of obstacles.

Figure 4.11: Curve minimizing E2 on a point set surface (left), and level set
(right).

Remark 4.7. The presented geometric optimization algorithm can also be
used for smoothing or fairing of a curve c° on a surface S, see Fig. 4.12: First
fix some points of c°, then define c° as initial position and run a few steps
in the optimization to get a smoothed curve c. Of course, this works for any
representation of S and any of the possible applications. An example for motion
smoothing is shown in Fig. 5.4 of Chapter 5.

Figure 4.12: Smoothing of a curve on a surface.
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Remark 4.8. Inserting only one point qj € 5 between two consecutive points
Pi) Pi+i c a n De s e e n ^ o n e round of variational curve subdivision in a manifold.
This is a generalization of the variational subdivision algorithm [KS98] to sur-
faces. In Fig. 4.13 we compare two curves on a surface 5 interpolating 12 given
points p x , . . . , p12: a spline C2 minimizing E<i computed with the algorithm of
this chapter, and a variational subdivision curve cv computed with the algo-
rithm described in [HPR03]. For the curve C2 we use a polygon with 31 points
between each two given points P| and Pj+i- For the curve C2 the positions
of all 341 = 31-11 points are optimized simultaneously. Using 5 subdivision
steps to generate the curve cv we also get 31 intermediate points between each
two given ones Pj and Pj+i- However, the positions of the points inserted in
each subdivision step are fixed in the later subdivision steps. This explains
the difference between the two curves C2, c„ and accounts for the better result
obtained with Algorithm 4 described in the present chapter.

Figure 4.13: Comparison on a parametric surface 5 of a spline C2 computed with
Algorithm 4 and minimizing E2, to the curve c,, computed with the variational
subdivision algorithm described in [HPR03].

Remark 4.9. The presented geometric optimization algorithm can also be used
for feature sensitive design of curves on surfaces. One can use the concept of
image manifolds [KMSOO], that makes it possible to develop image sensitive
drawing tools. Such an approach includes images defined on surfaces. Instead
of color or texture information we use the surface normals as the image. Then
design in the image manifold means feature-sensitive design in the original sur-
face. This type of image manifold has been employed in [PSH+04] for the
development of feature sensitive morphological operators on surfaces.

Figure 4.14 compares geodesies connecting two points on a surface, com-
puted in the standard surface metric and in the feature sensitive metric. The
latter geodesies follow the features of the surface, while the former ones are just
the shortest connecting curves of the two given points. Figure 4.15 compares
two spline curves interpolating the same 6 input points on a parametric sur-
face. Again the curve computed in the feature sensitive metric nicely follows
the features of the surface.
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Figure 4.14: Adding feature sensitivity to energy-minimizing curve design on
surfaces: Comparison of geodesies connecting two points computed in the stan-
dard metric and in the feature sensitive metric.

Figure 4.15: Adding feature sensitivity to energy-minimizing curve design on
surfaces: Comparison of spline on a surface minimizing E<i computed in the
standard metric and in the feature sensitive metric.



Chapter 5

Variational Motion Design

In this chapter we study the following motion design problem: Given are N
positions B(u{) of a moving body B° C M3 at time instances Uj. We want to
compute a smooth rigid body motion B(u) which interpolates the given key or
control positions B(ui) and minimizes a certain energy. The energy is expressed
with help of the energies of trajectories of points on the moving body.

We view a Euclidean one-parameter motion as a curve on the manifold
M6 C E12. Recall that the CMD algorithm of Chapter 3 does not preserve
minimum energy properties. Thus, we are now dealing with the problem of
constructing energy-minimizing interpolating spline curves on M6. In this way,
we are computing energy-minimizing Euclidean rigid body motions in M? which
interpolate given positions. For contributions to variational motion design in
the literature (via the quaternion 3-sphere) see [BCGH92, PR97, RB97].

In the present chapter we apply the geometric optimization procedure (Al-
gorithm 4) introduced in Chapter 4 to the variational design of rigid body
motions. We abbreviate this motion design algorithm as the VMD algorithm
(Variational Motion Design). To find an initial motion for the iterative op-
timization algorithm, the CMD algorithm of Chapter 3 is employed with an
energy-minimizing curve scheme, such as interpolating C2 cubic splines.

Section 5.1 is devoted to the characterization of energy-minimizing motions,
which are analogous to known energy-minimizing spline curves, such as C2 cubic
splines or splines in tension. We do this by using the theoretic results obtained
in Chapter 4 and interpreting them in the motion case.

Section 5.2 discusses computational aspects. The numerical solution is a
special case of the computation of splines in manifolds presented in Chapter 4.
We present illustrative examples of energy-minimizing motions.

5.1 Characterizing Energy-Minimizing Motions

Variational motion design is seen as curve design with energy-minimizing splines
on M6 C E12, using the metric (2.2). For motions, the meaning of minimizing
one of the functionals E\, Ei, or Et is that the total energy of the sample point
trajectories is minimized. It makes sense to base motion design on trajectories
of points on the moving body. We view this as an advantage over the known

51
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Figure 5.1: Variational motion interpolating 7 positions and minimizing

purely intrinsic formulations, which are neglecting shape and mass properties
of the moving body.

For a geometric characterization of the motions which are computed in this
way, we use the concept of a balanced force system from statics, see Section 2.3.
A system of forces fi, attached to points pj, is in balance, if both, the sum of
force vectors and the sum of moment vectors, vanish, i.e., ^ fj = 0, and ^ Pj x
fi = 0. At an arbitrary time instant «of a sufficiently smooth motion, the fc-th
derivative vectors at the sample point positions define the fc-th derivative force
system S^.

We are viewing u\ as given time instances, at which given positions B(ui) of
the rigid body, i.e., points Aj 6 M6, have to be interpolated. The energy (4.1)
of a curve X(u) C E12 uses the norm induced by (2.2) and thus it may also
be interpreted as sum of the corresponding energies (L2 norms of the second
derivatives) of the sample point trajectories.

According to Theorem 4, the solution curve C(u) C M6 has 4-th derivative
vectors Ö4\u), which are orthogonal to M6. The force system S4(«) induced by
C ^ ( M ) consists of the fourth derivative vectors of the sample point trajectories
at a given instant u. Using Theorems 1 and 4, we obtain the following result.

Theorem 6. Consider N input positions, corresponding time instances ui and
differentiability assumptions as in Theorem 4- Then, an interpolating motion
minimizing the sum of energies (L2 norms of the second derivatives) of the sam-
ple point trajectories is characterized as follows. The motion is C2, has at each
time instant u ^ u^ a balanced 4-th derivative force system S^(u), and at the end
positions balanced force systems S2(«i), S2(UN) of second derivatives. In par-
ticular, the trajectory of the barycenter of the sample points is an interpolating
cubic C2 spline.
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Figure 5.2: A motion with only C2 cubic spline trajectories is translational.

The result on the trajectory of the barycenter follows from the vanishing of
the force components s^ of the involved A;-th derivative systems Sk = (sfc,Sfc).
We see that these motions somehow balance the deviations of the point trajec-
tories from C2 cubic splines; there the 4-th derivatives would vanish everywhere.
Note that a motion with only C2 cubic spline trajectories must be translational
(the image curve lies in a 3-dimensional affine subspace contained in M6 and is
a cubic spline itself), see Fig. 5.2.

It is also quite natural that the moving body via its mass distribution
(barycenter and inertia tensor) enters the variational formulation and the inter-
pretation of the solution. That the present approach is natural from the view-
point of mechanics and kinematics, is also nicely seen if we replace the energy in
(4.1) by the L2 norm of the first derivative, see (4.26), £i(x) = f"f \\x(u)\\2du.
Moreover, we just prescribe the two end positions. Then, one finds with a
known counterpart of Theorem 4 a curve C(u) C M6, whose second derivative
vectors C are orthogonal to M6. From this we conclude immediately that the
minimizers of E\ are geodesies on M6 in a scaled arc length parameterization,
i.e., ||C|| = const. This proves the following theorem.

Theorem 7. Motions which join two given positions and arise from minimiza-
tion of (4-26) correspond to geodesies on M6, parameterized by a constant mul-
tiple of arc length. At any time instant, such a geodesic motion possesses a bal-
anced force system S2 (u) of second derivatives. The trajectory of the barycenter
of the sample point set on the moving body is a straight line traced with constant
speed. These motions are free motions of a body in the sense of mechanics.

Figure 5.3 compares shortest motions between two positions B\ and #2 in
the sense of the metric (2.2) and in the quaternion sense. The former is the free
motion of a rigid body and tends to generate shorter paths for points close to
the moving object.

Note that a helical motion is a geodesic motion between two positions B{u{)
and B(u2), if the positions of the inertia ellipsoids share a common axis, and if
this is the axis of the helical motion joining the two positions. For more results
on free motions, we refer to [Arn89].
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B

Figure 5.3: Comparing shortest motions between two positions B\ and B^'.
(blue) in the sense of the metric (2.2) and (orange) in the quaternion sense.
The former is the free motion of a rigid body and tends to generate shorter
paths c for points close to the moving object.

By minimization of a combination Et := E<i + wE\ with a constant positive
factor w one obtains the counterparts of splines in tension for motions. These
are characterized as in Theorem 6, but instead of a balanced 4-th derivative
force system, the linearly combined force system S4 — WS2 is in balance. A
proof follows from results in Chapter 4. Various other energy-minimizing spline
types such as smoothing splines or quintic splines (minimizing the L2 norm of
the third derivative) can be transferred to motion design within the present
setting.

Note that the functionals we are considering are also optimizing the param-
eterization. This is useful for motion design where the time u as parameter
plays an important role for applications.

5.2 Computing Energy-Minimizing Motions

Although the presented spline motions possess nice geometric characterizations,
the problem is still nonlinear and does not admit an explicit solution as in the
unrestricted curve design case. Thus, we have to use numerical algorithms based
on a discretization. Geometrically this means that we replace the curve on M6

by a sufficiently dense polygon with vertices in M6. These vertices represent
positions of the motion at discrete time instances.

Recall from Chapter 4 that the numerical computation of energy-minimizing
splines on surfaces is based on a discretization. This means that the final
motion is discretely resolved by a certain number of positions, including the
input positions. The optimization algorithm in each step computes a tangent
vector st and requires projecting xs = xc + st onto <&. Actually both xc and
xs are sequences of positions, and the tangent vector t is a sequence of tangent
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vectors to M6 . We project the sequence x s by projecting each single position
orthogonally onto M6. The projection of such a single position is performed
using Algorithm 1 of Sect. 2.4.

A basis of the 6-dimensional tangent space at a point A = (ao, ai , a2, aß) 6
M6 C E12 is given by the six vectors T i , . . . , T6 6 E12 derived from (2.10). Let
ai = (aii,ai2,ai$)T € R3 for i = 0,1,2,3, then we get

Ti = (0,-003,002,0,-ai3, 012,0,-023,^22, 0,-033, O32)T,

T2 = (ao3,0,—aoi,ai3,O,—aii,O23,0,—021,033,0,—031) ,

T3 = (—ao2,aoi,0,—012,an,0,—022,^21,0,—032,031,0) ,

T4 = (l,0,0,0,0,0,0,0,0,0,0,0)T ,

T5 = (0,l ,0,0,0,0,0,0,0,0,0,0) r ,

T6 = (0,0,l,0,0,0,0,0,0,0,0,0)T .

The spline property of the barycenter trajectory implies that motion compu-
tation in E12 can be decomposed into the computation of this special trajectory
(in R3) and the computation of the rotational part (on the 3-dimensional mani-
fold M 3 in R9, see Remark 2.1). A basis of the 3-dimensional tangent space at a
point A = (ai, a2, a.3) G M 3 C R9 is given by the three vectors Ti, T2, T3 6 R9,

Ti = (0,-013,012,0,-023,022,0,—033, a32)T,

T2 = (013)0,-011,023,0,-021,033,0,-O3i)T,

T3 = (—012, «11, 0, -022,021,0,-032, O3i,0)T.

Note that we use the same notation Tj for the basis vectors of M 3 and M6 . This
does not lead to any confusion since we will always mention in which manifold
we currently work. We summarize variational motion design in the following
algorithm.

Algorithm 5 (VMD). The algorithm employs the following steps:

1. Choose an energy functional E € {E\,E2, Et}.

2. Run the CMD algorithm (Algorithm 2) with a curve scheme minimizing
E to get an initial Euclidean motion. This already determines the path of
the barycenter (because of the spline property mentioned above).

3. Employ the geometric optimization procedure of Chapter 4 (Algorithm 4)
to compute an energy-minimizing spline curve on the manifold M 3 (M6).

The presented motion design algorithm can also be used for motion smooth-
ing. An example of the disturbed motion and the corresponding smoothed
motion minimizing E2 is shown in Fig. 5.4. The smoothed motion is obtained
by first fixing some input positions and then applying a few steps of the itera-
tive optimization algorithm. Note that the smoothed motion is determined by
the chosen fixed positions.



56 CHAPTERS. VARIATION AL MOTION DESIGN

Figure 5.4: (Left) Noisy input motion. (Right) Smoothed motion.

Remark 5.1. Another computational approach directly uses the characteriza-
tion of the motions in a discretized way. For example, a motion minimizing
E2 has a balanced 4-th central difference screw at any instance in the time dis-
cretization. This results in a system of nonlinear equations, which can be solved
with a Newton iteration. In view of the bad global behavior of a pure Newton
algorithm, we used the quasi-Newton approach (Algorithm 4) introduced in
Sect. 4.2.

5.3 Examples of Energy-Minimizing Motions

We implemented our algorithm for variational motion design in Matlab and
tested it on several examples using a PC with 1.8GHz. Figure 5.5 compares
two Euclidean rigid body motions Bc(u) (computed using the CMD algorithm)
and By (u) (computed using the VMD algorithm). As curve design algorithm we
used C2 cubic splines, i.e., the energy functional Ei- The resulting Euclidean
motion Bc{u) of the CMD algorithm is the initial Euclidean motion for the
iterative VMD algorithm. After a few iteration steps we get the final energy-
minimizing motion By(u).

The affine motion A{u) computed with the CMD algorithm is the uncon-
strained energy-minimizing motion interpreted as a point p in high-dimensional
space. The Euclidean motions Bc{u) and By{u) are seen as points p 0 and p*,
respectively, in the high-dimensional manifold <I>. The point p* is the footpoint
of p onto $ in the Euclidean norm described in Sect. 4.2.1. If we use the func-
tion F of Equ. (4.31) to measure the distances .F(p*) = ||p* - p|| = 0.2284
and F(p0) = ||p0 — p|| = 0.8034 we see, that in this example the energy of the
motion By(u) is only about a quarter of the energy of Bc(u).

The energy-minimizing motion Bv(u) is also visually more pleasing. Fur-
thermore, if we study animations of our motions we see the following effect: If
two adjacent input positions of the moving body B have almost opposite ori-
entation, then the CMD algorithm tends to deal with that via a rather sudden
movement in the 'middle' between the two adjacent positions. The VMD algo-
rithm distributes this huge change in orientation over the whole transition area
and thus generates visually more pleasant and practically more useful motions.

The example of Fig. 5.6 has been computed using the energy i?2- We have
chosen the input situation such that two adjacent positions Bi and B3 are
much closer to each other than the remaining adjacent ones. Here we see the
advantage of choosing the number of intermediate positions that are inserted
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Figure 5.5: Rigid body motions interpolating the same input positions com-
puted using energy E2: (top) CMD algorithm; (bottom) VMD algorithm.

between two adjacent input positions Bi and Bi+\ in dependence of the spatial
position. In this example the numbers of intermediate positions between B\
and B2, B2 and #3, B3 and B4, B4 and B5 are 46, 5, 36, and 25, respectively.

Figure 5!7 shows an example where we have employed the VMD algorithm
(as curve design on M6 C E12) with two different initial Euclidean motions.
For the variational motion shown in Fig. 5.7 (left) we used the result of the
CMD algorithm as initial value, for the variational motion shown in Fig. 5.7
(right) we used the result of the CMD algorithm and disturbed the path of the
barycenter by some random error. In this example, starting from the CMD
output leads to the variational motion with a lower energy level.

The example shown in Fig. 5.8 compares energy-minimizing cyclic motions
that interpolate the same input positions and minimize E2, Et, and E]_, respec-
tively. It further shows the paths C2, Ct, and ci of a selected point during those
motions. The comparison of C2 to the C2 cubic spline c shows that the two
curves differ from each other by different amounts, depending on how much the
motion deviates from a pure translations! motion minimizing E2 (for which all
point paths would be cubic splines c).

The example shown in Fig. 5.9 compares energy-minimizing cyclic motions
that interpolate the same input positions and minimize E2, Et, and E\, re-
spectively. This example illustrates how the weight w in the formulation of
the energy Et can be used by a designer to influence the shape of a rigid body
motion. By adjusting w one can design to the same input positions the whole
range of rigid body motions from minimizing energy E2 till minimizing energy
Ei (for a large value of w).

Figure 5.10 shows 18 different views of the energy-minimizing motion de-
picted in Fig. 5.9 (top). Figure 5.11 shows 485 positions of a rigid body motion
computed with the VMD algorithm that interpolates 38 input positions.
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Figure 5.6: Rigid body motions interpolating the same input positions com-
puted using energy Ei'- (top) CMD algorithm; (bottom) VMD algorithm.
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Figure 5.7: Two Euclidean motions computed with the VMD algorithm. Using
different initial motions the algorithm reached two different minima (note the
difference of the motions between B\ and B2) with nearly the same energy level.

(c) (d)

Figure 5.8: Cyclic motion of a robot gripper interpolating 5 positions /?i , . . . ,
and one point path: Motion minimizing (a) E\, (b) Et with w — 0.05, (c) E
(d) Point path C2 compared to cubic spline c interpolating the same points.



60 CHAPTER 5. VARIATION AL MOTION DESIGN

Figure 5.9: Energy minimizing cyclic motions of a golf club model: (top)
(middle) Et, (bottom) E\.
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Figure 5.10: Different views of the same Euclidean motion of a golf club model
interpolating 5 input positions and minimizing the cubic spline energy i?2-
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Figure 5.11: Euclidean motion computed with the VMD algorithm interpolating
38 input positions.



Chapter 6

Variational Motion Design
in the Presence of Obstacles

In this Chapter we study in Section 6.1 variational curve design in the presence
of obstacles and present examples for obstacle avoiding curves in R2 and R3.
Then we continue in Section 6.2 with a conservative solution for variational
motion design in the presence of obstacles. In Section 6.3 we discuss a second
algorithm for variational motion design in the presence of obstacles which fully
employs the available degrees of freedom. We illustrate the algorithms at hand
of several examples.

6.1 Variational Curve Design in the Presence of Ob-
stacles

Although this problem has a variety of practical applications, there are not
many contributions dealing with it. We point to work on interpolation with
cubic spline functions under linear inequality constraints [0088], CAD related
work on constrained curve design without energy minimization [MOW03], and
in particular to Bohl's contribution to splines on parametric surfaces [Boh99].
We will see that we can get rid of the obstacle constraints by introducing an
appropriate unbounded auxiliary surface M and working with that.

Let us start with curve design in the plane R2. As a geometric interpretation
of the barrier method from constrained optimization [Fle87], we embed R2 as the
plane z = 0 into M.3 and remove the interior of each obstacle O{. We now attach,
to each obstacle boundary bj, a cylindrical surface with z-parallel rulings and
smooth out the edge along bj which is generated by this procedure. This results
in a smooth surface M. Given input points p.-, which do not lie in any obstacle,
are lifted onto M in ^-direction; only points near obstacle boundaries will be
changed by this lifting.

Now we design an interpolating curve c on M; its projection onto z = 0 is
the desired curve. During the optimization, M is not kept fixed. The blending
radius is reduced so that it tends to zero, see Fig. 6.1. Therefore, the final curve
c is a minimizer of the chosen energy under the given constraints. The general
results of Chapter 4 imply that c is C2 and piecewise cubic where it does not
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Figure 6.1: Spline computation on barrier surface with decreasing rounding
radius during the iteration.

Figure 6.2: Energy-minimizing planar spline curves: The dotted curve is com-
puted without consideration of the obstacles, the solid curve avoids them.

lie in a boundary curve. There can be parts of c along a boundary curve b^; the
parametrization of c along bj has its 4-th derivative vectors orthogonal to bj.

In view of the obvious extension to M3, we construct the blending areas
of M with help of distance fields to the obstacles. We use an algorithm from
[TsaO2] for distance field computation, since it stores the normal footpoints;
this is helpful for the projection onto M. Let di(x,y) be the signed distance of
the point (x,y) from the obstacle O{. Then, the corresponding blending surface
is given implicitly by the equation f(di(x,y),z) = 0, where / describes the
shape of the blend profile (Fig. 6.1).

Note that the initial curve already determines the combinatorial type of the
final spline curve. For an automatic determination we suggest to use an initial
curve composed of geodesies (in the presence of obstacles) between consecutive
points Pj, Pj+i- These are computed by propagating the distance field originat-
ing in p^ within M. As soon as the propagating wave reaches Pj+i and Pj_i,
we trace back with a gradient descent method, see Fig. 6.3. The distance prop-
agation is done with an adapted version of Zhao's sweeping algorithm [ZhaO4],
where grid nodes inside obstacles get a flag and are not used for the propagation.

The spline through the channel shown by Fig. 6.4, right, also shows that
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Figure 6.3: Computing the initial curve piecewise via backward gradient flow
on the distance field to a point that respects the given obstacles.

Figure 6.4: Variational curve design in the presence of obstacles is also a com-
binatorial problem. The path through the channel is shorter but has higher
energy than the minimum energy curve passing the two obstacles on the left.
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corners do not cause problems: at a convex corner, the blend is smooth; at a
concave corner, a blend as defined above would have a sharp edge, but a smooth
spline never reaches a concave corner. Moreover, this figure also illustrates a
second, combinatorially different solution; it is longer than the path through
the channel, but has a smaller energy Ei.

The extension from 2D to 3D is completely straightforward. Figure 6.5
shows 3D examples of spline curves in the presence of obstacles.

Figure 6.5: Variational curve design in the presence of obstacles in 3D.

We summarize the algorithm for Variational Curve Design in the Presence
of Obstacles (VCDPO):

Algorithm 6 (VCDPO). The algorithm employs the following steps:

1. Given are N points p^ outside the obstacles Oi and an energy functional
Ee{EuE2,Et}.

2. Compute an initial curve connecting the input points that avoids the ob-
stacles: First, for every second point P2.P4, •••, compute the distance
field to this point that respects the obstacles (with the modified sweeping
algorithm of Zhao [ZhaO4])- Then with a gradient backward flow connect
the two adjacent points pl and p 3 to p2 , P3 and p 5 to p 4 and so forth.

3. Compute the distance function to the obstacles with the sweeping algorithm
of Tsai [TsaO2].

4- Use a profile function f(d) to compute from the distance function of step
3 the family of barrier manifolds M.

5. Lift the initial curve onto the barrier manifold with the largest rounding
radius.

6. Run the iterative geometric optimization procedure (Algorithm 4 of Chap-
ter 4) for the curve on the barrier manifold M. During the iteration
reduce the rounding radius of the blending part of M till it vanishes.

7. The resulting planar spline curve is the output of the algorithm.
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6.2 Variational Motion Design in the Presence of
Obstacles I

In this section we describe how to compute an energy-minimizing motion where
the moving body B avoids given obstacles via a single enclosing ball Be centered
in the barycenter of the moving body. The enclosing ball Be itself avoids the
obstacles; since it is centered in the barycenter of B, the problem can be split
into the computation of the trajectory of the ball's center and the computation
of the rotational part. In this way we combine the methods from Chapter 5 and
Sect. 6.1. Only the first part of the computation needs to consider the obstacles:
we compute the path such that it does not come closer to the obstacles than the
radius r of the enclosing ball Be. This approach is rather conservative and does
not fully exploit the available degrees of freedom. Figure 6.7 shows an example
for Variational Motion Design in the Presence of Obstacles. In the following we
abbreviate this algorithm as VMDPO I.

t \ f ' t /f is > \ I i \ 7 i

i

Figure 6.6: Motion design in the presence of obstacles I: (left) collision free input
positions of the moving body; (middle) obstacle avoiding path of barycenter;
(right) obstacle avoiding rigid body motion.

Algorithm 7 (VMDPO I). The algorithm employs the following steps:

1. Given are N collision free input positions B(UJ) at time instances Uj,
obstacles Oi, and an energy functional E G {E\,E2,Et}.

2. Replace the moving body B by a minimum enclosing ball Be with radius r
centered in the barycenter s of B, see Fig. 6.6 (left).

3. Using Algorithm 6 compute the path of the barycenter s(u) such that it
minimizes E and avoids the given obstacles with a minimum distance r,
see Fig. 6.6 (middle).

4- Separately compute the rotational part of the motion using step 3 of Al-
gorithm 5 (the VMD algorithm) such that the energy E of a curve on
M3 C M9 is minimized, see Fig. 6.6 (right).
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In Fig. 6.7 we compare energy-minimizing motions interpolating the same
input positions. Fig. 6.7 (left) shows the motion computed without considera-
tion of the present obstacles. Fig. 6.7 (right) shows the motion computed with
VMDPO I such that the given obstacles are avoided in a conservative way.

Figure 6.7: Motion design in the presence of obstacles I: Motion minimizing
(left) unconstrained, (right) avoiding the 5 obstacles.

6.3 Variational Motion Design in the Presence of
Obstacles II

So far, we have only described how to compute an energy-minimizing motion
where the moving body B avoids given obstacles via a single enclosing ball
Be. The enclosing ball Be itself avoids the obstacles; since it is centered in the
barycenter of B, the problem can be split into the computation of the trajectory
of the ball's center and the computation of the rotational part. Only the first
part of the computation needs to consider the obstacles. This approach is rather
conservative and does not fully exploit the available degrees of freedom. In the
present section we capture the shape of the moving body B more precisely. For
the theoretic considerations we consider the moving body B and the obstacle
O to be smooth solid bodies. Again we use the embedding of the Euclidean
motion group as a manifold M6 in the space E12 of affine maps and the metric
in El<1 is computed with the mass distribution of the moving body introduced
in Chapter 2.

6.3.1 Definition of the Barrier Manifold

The moving body B is a solid. A position ct(B) of the body corresponds to some
displacement a, seen as a point A in M6. In the following, we speak of a single
obstacle Ö, but note that it may contain several components. For simplicity,
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Figure 6.8: (Left) Rigid body motion B(u) in M3 interpolating 5 given positions
with shortest distances to the obstacles. (Right) Forbidden region F and the
curve c corresponding to B(u) on the manifold M6 C E12.

we assume right now that both B and O have smooth boundary surfaces. In
our implementation we use triangle meshes to represent both, B and Ö.

Those positions a(B), which penetrate O, have to be avoided. One may
view these forbidden positions as points in some subset F of M6, see Fig. 6.8.
Like Ö, it may have several components. In order to stay away from F, we build
a barrier manifold against it, according to the concept presented in Sect. 6.1, see
Fig. 6.9. To do so, we use a distance function d. The distance d(a) = d(A) =: do
is the shortest distance between the corresponding position a(B) of B and the
obstacle Ö, see Fig. 6.10. Note that we view d as a function defined on M6.

In case of penetration, we define d(A) = — 1. Of special interest is the zero
level set of d, since it is the boundary dF of F. It contains exactly those posi-
tions in which a(B) is tangent to O, but not penetrating the obstacle. Likewise,
any other level set to a constant distance value do contains the positions, where
a(B) is in contact with the offset O of Ö at distance do, see Fig. 6.10.

As in Sect. 6.1, we use a function f(d) (blending profile function) which is
supported on some interval [0,.D]. It describes a smooth blend between /-axis
and d-axis, and thus it has a positive value h and infinite derivative at 0, and
satisfies f(D) = f'(D) = 0, see Fig. 6.9.

The barrier manifold MB is a 6-dimensional manifold, embedded in IK13.
Part of it can be parameterized over M6: If d(A) > 0, the corresponding point
on MB is (A,/(d(A))). This surface contains a part in M6 (for d > D), and a
blending part which reaches height h in the 13-th coordinate, when A reaches
the boundary dF of the forbidden region F. There, the surface is joined with
a cylinder surface defined over dF. Let P be a parametrization of dF (over an
appropriate subset of R5), then we obtain with an additional parameter v > h
a parametrization (P,v) of this 6-dimensional cylindrical part.

6.3.2 Tangent Spaces of the Barrier Manifold

Tangent spaces of M6 follow from velocity vector fields v(x) = c + c x x in
M3. According to Equ. 2.10 of Sect. 2.3, the corresponding tangent vector at a
position A = (ao,. . . , aß) is given by

T = (c + c x ao, c x ai, c x a2, c x a.3). (6.1)
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Figure 6.9: (Left) Blending profile function f(d). (Right) Forbidden region F
with boundary dF and cylindric parts of barrier manifold Mß.

Case 1: d(A) > D. Equation (6.1) suffices to compute the tangent space
of MB for d(A) > D; we just have to add a zero as 13-th coordinate.

Case 2: 0 < d(A) < D. This is the case of main interest. Let Nc be
the common normal between a(B) and Ö, along which the shortest distance
do = d(A) occurs, see Fig. 6.10. Nc meets a(B) at a foot point p^. There, we
consider two straight lines T\,T2 which are orthogonal to the contact normal
iVc and thus tangent to the position a(B) of the body B, see Fig. 6.10. We
may assume orthogonal Ti's and then T\, T2, Nc define a Cartesian frame at the
foot point Pf. At first, we derive those tangent vectors of Mß, whose 13-th
coordinate is zero. These are characterized by vanishing directional derivative
of the function d. Clearly, they belong to velocity fields of gliding motions
along the offset O of O at distance do- Note that p* is the contact point and
Nc is the contact normal for such a gliding motion. By a well known result
from kinematical geometry [PW01], these velocity fields are characterized by
an equation

nc • c + nc • c = 0. (6.2)

Here, (nc, nc) are the Pliicker coordinates of Nc. This says that the common
normal iVc is contained in the linear complex of instantaneous path normals.

It is easy to derive five independent velocity fields of gliding motions: We
use instantaneous rotations about T\, T2, Nc and translations parallel to T\, Ti-
With (tj, tj) as Pliicker coordinates of Tî, the corresponding velocity fields (c, c)

are

and

(c2,c2) = (t2 , t2) , (c3)c3) = (nc, nc), (6.3)

(c4) c4) = (0, ti) , (c5, c5) = (0, t2). (6.4)

To verify equation (6.2) for these velocity fields, one uses the condition g • h +
g- h = 0 for two intersecting lines G = (g, g) and H = (h, h). Thus, we obtain
with (6.1) five tangent vectors of Mß at the point (A, /(d(A))),

x a o , C j X a i ,Cj x a2 ,Cj x a3,0) , i = 1 , . . . , 5 . (6.5)
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Figure 6.10: Shortest distance do between the moving body position a(B) and
the obstacle O.

We assume that nc is normalized and points outside the obstacle, i.e., in direc-
tion of increasing d. Displacing a(B) by a translation with vector Anc changes
the distance value to do + A, since the contact normal remains the same for suf-
ficiently small A. In other words, d(/K\) = do + A at A,\ = (ao + Anc, ai, a2, aß).
This leads to a curve C in the barrier manifold, parameterized with help of A,

C(A) = (ao + Anc, ax, a2, a3, /(do + A)). (6.6)

The tangent of this curve at A = 0 gives us the 6-th tangent vector,

T6 = (nc, 0,0,0,/'(do)). (6.7)

Case 3: d(A) = 0. To each point A in the boundary dF of the forbidden
region, i.e., do = d(A) = 0, we have an infinite number of points in M&,
namely in its cylindrical part, see Fig. 6.9. However, at all points of such a
cylinder ruling, the tangent space is the same. It is spanned by the five vectors
(6.5) to instantaneous gliding motions of the body along the obstacle and by
(0 n l i e M13

As mentioned earlier, one should not use a graph representation of the
profile. If (ii, ̂ 2) is a tangent vector of the profile curve at do, i.e., (£1,̂ 2) is
parallel to (l,/'(do)), we use

T6 = (tinc,0,0>0>t2). (6.8)

This representation also holds for do = 0, since then we have (ti,*2) = (0,1).

6.3.3 Projection Onto the Barrier Manifold

In the previous section we have derived basis vectors of the 6-dimensional tan-
gent space at a point (A, /(d(A))) of the barrier manifold MB C M13. This
allows us to compute the tangent space of the high-dimensional surface $ used
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in Algorithm 4, the geometric optimization algorithm presented in Chapter 4.
Once we have computed the stepsize of the current iteration step, we apply the
displacement in the tangent space of $. Then we need an admissible projection
from a point in the tangent space of $ onto <&. One possibility is to perform
the projection in the low-dimensional space for each position As C M13 of the
moving body separately. First we project the point As orthogonally onto M6

by setting the 13-th coordinate equal to zero. The new translation of the Eu-
clidean displacement in M3 is given by the first three coordinates of the point
As, and the new rotation matrix in R3 is the best-fit orthogonal matrix to the
affine matrix given by the 4-th till 12-th coordinate of As, computed with the
methods presented in Sect. 2.4. Then we compute the distance of each new
position of the moving body to the obstacle Ö to get the new 13-th coordi-
nate, i.e., all together the new position on the barrier manifold MB- In case of
penetration we translate the moving body position in direction of the common
normal out of the obstacle.

Algorithm 8 (VMDPO II). The algorithm employs the following steps:

1. Compute an initial variational motion that avoids the given obstacles with
Algorithm 7 (VMDPO I).

2. Farther optimize the Euclidean motion of step 1 by using the iterative
geometric optimization (Algorithm 4) and the barrier manifold

6.3.4 Examples of Energy-Minimizing Motions Avoiding Ob-
stacles

The example illustrated in Fig. 6.11 shows 4 obstacles and 3 different Euclidean
motions that interpolate the same 5 given positions of the rigid body B. All mo-
tions minimize the energy functional E-z, but using different algorithms: The
unconstrained Euclidean motion computed with Algorithm. 5 (VMD) pene-
trates two of the four obstacles, see Fig. 6.11 (left). An energy-minimizing
motion that avoids the given obstacles in a conservative way is computed with
Algorithm 7 (VMDPO I), see Fig. 6.11 (middle). Algorithm 8 (VMDPO II)
gives a better result since it uses all available degrees of freedom in the opti-
mization procedure, see Fig. 6.11 (right).

In the implementation, the computation time for all optimization parts is
in sum a few seconds. The distance computations with the algorithms form the
literature [TsaO2, ZhaO4] are a bit more time consuming.

In Fig. 6.12 we use the same input situation, i.e., the same obstacles and the
same input positions as in the example shown in Fig. 6.11. The only difference
is that now we compute cyclic motions. Again we compare the results of VMD
(the unconstrained case) with the resulting obstacle avoiding motions computed
with VMDPO I and VMDPO II. The energy level of the rigid body motion
computed with VMDPO II is lower than the one computed with VMDPO I.

Figures 6.13 and 6.14 show another example of an open and a cyclic energy-
minimizing motion in the presence of obstacles, where the same 4 input positions
are interpolated and one obstacle with a hole is avoided.
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The final example of this thesis is illustrated in Fig. 6.15. We compare
two unconstrained energy-minimizing motions penetrating two obstacles with
the energy-minimizing motions computed with VMDPO II that avoid the given
obstacles. Each of the two motions interpolates three given collision free input
positions. Figure 6.16 shows 18 different views of the example illustrated in
Fig. 6.15 (bottom). Figure 6.17 shows three more views of the two motions
computed with VMDPO II shown in Fig. 6.15 (bottom) and is the final figure
of this thesis.

/ / I ! ,"'V)

Figure 6.11: Comparison of energy-minimizing Euclidean motions: (left) VMD,
(middle) VMDPO I, (right) VMDPO II.

Figure 6.12: Comparison of cyclic energy-minimizing Euclidean motions: (left)
VMD, (middle) VMDPO I, (right) VMDPO II.
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Figure 6.13: Comparison of energy-minimizing Euclidean motions: (left) VMD,
(middle) VMDPO I, (right) VMDPO II.
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Figure 6.14: Comparison of cyclic energy-minimizing Euclidean motions: (left)
VMD, (middle) VMDPO I, (right) VMDPO II.

Figure 6.15: Two energy-minimizing Euclidean motions: (top) unconstrained,
(bottom) avoiding the two obstacles.
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Figure 6.16: Different views of the same obstacle avoiding Euclidean motions.
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Figure 6.17: Three different views of two energy-minimizing motions that avoid
two given obstacles.



Chapter 7

Conclusions and Outlook

In this thesis a kinematic image space is used where Euclidean maps in three
dimensional space are viewed as points of a six dimensional manifold M6, em-
bedded in 12-dimensional Euclidean space E12. The latter space corresponds
to affine maps, and the metric therein is defined naturally with help of sam-
ple points (a mass distribution) of the moving body. A first motion design
algorithm (the CMD algorithm) is a transfer principle from curve design algo-
rithms to the design of rigid body motions. Since it does not preserve energy-
minimizing properties we only use it to find a good initial Euclidean motion
for the iterative VMD algorithm, that computes an energy-minimizing motion
in the unconstrained case. We have studied energy-minimizing splines in man-
ifolds as the counterparts on surfaces to well known energy-minimizing splines
of geometric modelling such as C2 cubic splines or splines in tension. Theoretic
results and a geometric optimization algorithm have been derived for splines
on surfaces of arbitrary dimension and codimension. Variational motion design
and variational motion design in the presence of obstacles are special instances
of this general setting, and are thus transferred to variational curve design on
an appropriate manifold. In the unconstrained case the manifold is the group
of Euclidean congruence transformations, in the obstacle case we have derived
an appropriate barrier manifold on which we perform our computations. We
studied two algorithms for variational motion design in the presence of obsta-
cles. The first one is a conservative approach that reduces the motion design
problem to a curve design problem in the presence of obstacles. The second
one fully employs the available degrees of freedom.

Future research concerns fair webs in manifolds, i.e., curve networks that
minimize a chosen energy-functional. The generalization from the curve to
the surface case leads to the study of energy-minimizing surfaces in higher-
dimensional manifolds and also variational surface design in the presence of
obstacles. In this thesis energy-minimizing one-parametric motions in the pres-
ence of obstacles were studied. A possible extension of this work is also to study
k-parametric energy-minimizing motions, also in the presence of obstacles. The
avoidance of obstacles has further applications in the area of numerically con-
trolled machining. Finally, to include the avoidance of obstacles in a combi-
nation of registration and surface fitting algorithms is a promising direction of
future research.
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Appendix A

Quaternions and Kinematics

We include some basic facts about quaternions and their relation to spatial
kinematics that are used in Sect. 2.4.3. Quaternions have been introduced in
1853 by Hamilton. A modern primer on quaternions is the book by Kuipers
[KuiO2]. A quaternion q can be considered as the extension of a complex
number to four components,

q = qo + iqi + jqi + kq3, (A.I)

with qo,... ,Q3 € M.. The symbols i, j , k are called imaginary units and fulfill
the following rules

i o i = j o j = k o k = — 1 (A.2)

i o j = k = — j o i (A.3)

j o k = i = — k o j (A.4)

k o i = j = — i o k. (A.5)

We denote by HI = R4 the set of all quaternions. There is a straightforward
way to embed vectors x = (xi,X2,xs) G M3 into H = M4 as (0,:ri,£2,0:3) =
i%i + 3x2 + kx3. For a quaternion q = qo + iqi + jq2 + kq$ one refers to

5(q) := qo, V(q) := % + jq2 + kq3 (A.6)

as the scalar part S'(q) and vector part V(q) respectively. Quaternion addition
+ : H x HI —> El of two quaternions p, q is defined componentwise,

p + q := (po + qo) + i(pi +qi)+ j(P2 + 92) + k(p3 + 93)- (A.7)

Quaternion multiplication o : H x HI —> HI follows from the above multiplication
rules for the imaginary units,

P o q := \poqo ~ V(p) • V(q)} + [po^(q) + <ZO^(P) + V(p) x F(q)]. (A.8)

Thereby • and x denote the scalar product and vector product of vectors in K3.
Quaternion multiplication is for ̂ (p) x V (̂q) / 0 not commutative, since

(A.9)

79



80 APPENDIX A. QUATERNIONS AND KINEMATICS

It follows that (H, +, o) is a skew field. For a quaternion q its conjugate quater-
nion q is defined as

Similar to the real and imaginary part of a complex number, which can be
computed using the complex number and its conjugate, the scalar and vector
part of a quaternion can be computed from the quaternion and its conjugate
as follows:

= ^ ( q + q ) , (A.11)

= -(q-q)- (A.12)

For each two quaternions q, p the conjugate of their quaternion product equals
the quaternion product of their conjugates in reversed order, i.e.,

q o p = p o q.
The norm N(q) of a quaternion q is defined by

= q°q-

The multiplicative inverse q"1 of a nonzero quaternion q is given by

(A.13)

(A.14)

(A.15)

The scalar product of two quaternions q, p is the scalar product of two vectors
inR4,

(q, P) := QoPo + QiPi + <?2P2 + 93P3, (A.16)

and can also be written as

(q»p) = 2( (A.17)

For three quaternions p, q, r we have the following property of the scalar prod-
uct,

(qop , r) = (p ,qor ) . (A.18)

Quaternion multiplication of a quaternion x by a quaternion q from the left
can be written in matrix notation as

/ 9o ~9i —92 —93 \ / i o \
91 9o —93 92
92 93 90 —9i

\ 93 - 9 2 9 i 90 / V £3 /

Note that if iV(q) = q\ + • • • + 93 = 1, then the matrix Q is orthogonal with
detQ = 1. Quaternion multiplication of a quaternion x by a quaternion q from
the right can be written in matrix notation as

90 - 9 1 - 9 2 - 9 3 \ /

91 9o 93 - 9 2

qo x = =:Qx. (A.19)

xoq =
92 - 9 3 90 91

93 92 - 9 1 90 /

Xi

X2

\ X3

=: Q • x. (A.20)
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The matrix Q differs from Q only in the lower right 3 by 3 submatrix, which
is the transpose of the corresponding submatrix of Q. Again we have that Q is
orthogonal if iV(q) = 1. The following proposition shows the relation between
unit quaternions and rotations in M3.

Proposition 1. Let x 6 M3 be a vector and let q € H be a fixed unit quaternion,
i.e., iV(q) = 1. Then the map

x':= q o x o q (A.21)

describes a rotation x' = R • x with the rotation matrix

o + qï-Q2- 93 2(9i92 - 9093) 2(<ji<?3 + 9092)
2(9192 + 9093) 9o - 9i + 92 " 93 2(92g3 - 9o9i) • (A.22)
2(9i93 - 9092) 2(9293 + 9o9i) 9o ~ 9i ~ 92 + 93

This gives an explicit parametrization of the group of orthogonal matrices with
parameters 90, 9i, 92,93 •

Proof. If we embed x G M3 into H we have seen above that the scalar part
of such a quaternion vanishes, i.e., S(x) = 0. In order to show that x' =
q o x o q maps vectors x € R3 to vectors x' € M3, we need to show that also
the scalar part of x' vanishes. Manipulating (A.ll) by using property (A. 13)
of quaternions, we see that the scalar part of x' vanishes,

25(x') = x' + x'

= qoxoq+qoxoq

= qoxoq+qoxoq

= qoxoq—qoxoq

= 0.

Thus the image x' is again a vector in M3. If N(q) = q o q = q o q = l , then

AT(x') = x ' o x ' = q o x o q o q o x o q = iV(x), (A.23)

which means that the map (A.21) preserves the length of vectors.
To get a matrix representation of the map q o x o q , we use the matrix

representation (A.19) for quaternion multiplication, qo x = Q • x and qo x =
QTx. We abbreviate y := qox and use (A.20) to get the matrix representation
y o q = QT • y. Altogether we have

q o x o q = y o q

= QTy

This reveals that the map x' = q o x o q has the matrix representation QT • Q,

( 1 0 0 0 \

0 R • <A'24)
0 /
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where R is the matrix (A.22). As a product of two orthogonal matrices, (A.24)
is itself orthogonal with det(QT • Q) = 1. This implies that R is a 3 by 3
orthogonal matrix with det R = 1. Thus x' = q o x o q i s a linear map which
maps vectors to vectors and preserves lengths. Hence it describes a rotation
x' = R • x. D

Remark A.I (Rotation matrix from axis and angle of rotation). Using
the normalized direction vector g of the axis of rotation and the angle of rotation
<p, one computes a unit quaternion q describing this rotation as follows:

q = cos ̂  + sin ^ g. ( A.25)

Then one can use Prop. 1 to derive the rotation matrix R from the unit quater-
nion q. Note that R describes a rotation around an axis passing through the
origin. Further note that q and — q represent the same rotation, and that q is
unchanged if we modify the orientation of g and the sign of (p simultaneously.
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sity Meets Public), for continuing education courses of high school teachers of
Mathematics and Geometry, and for high school students.

Scientific Talks

06. Dec. 2004: Energy-minimizing splines in manifolds and applications, Berlin
Colloquium for Scientific Visualization, Zuse Institute Berlin, Germany.

30. Nov. 2004 Variational motion design in the presence of obstacles, Institute
for Automation, University of Leoben, Austria.

09. Aug. 2004: Energy-minimizing splines in manifolds, ACM SIGGRAPH Con-
ference, Los Angeles, USA.



Curriculum Vitae III

01. Jul. 2004: Variational motion design, Conference on Advances in Robot
Kinematics, Sestri Levante, Italy.

28. May 2004: A feature sensitive metric with applications in geometric com-
puting, Advanced Computer Vision Colloquium, Vienna, Austria.

24. Mar. 2004: A feature sensitive metric with applications in geometric com-
puting, Dagstuhl Seminar on 'Geometric Properties from Incomplete Data',
Dagstuhl, Germany.

11. Feb. 2004: Energy-minimizing splines in manifolds and applications, Pure
Math Seminar, The University of Western Australia, Perth, Australia.

16. Jan. 2004: Splines in manifolds. Advanced Computer Vision Colloquium,
Vienna, Austria.

13. Nov. 2003: Variational curve design in the presence of obstacles, 8th SIAM
Conference on Geometric Design and Computing, Seattle, USA.

24. Sep. 2003: Registrierungsalgorithmen in der SD-Technik, Continuing Edu-
cation 'Laserscanning', Vienna University of Technology, Vienna, Austria.

28. May 2003: Recognition and Reconstruction of Special Surfaces from Scat-
tered Data, SampTA03 Conference, Strobl, Austria.

07. Nov. 2002: Geometric Positioning Problems, Duke University Algorithms
Seminar, Durham, USA.

30. May 2002: Subdivision algorithms for motion design based on homologous
points, Geometrie Tagung, Vorau, Austria.

16. Apr. 2002: Geometric Positioning Problems, Geometry Seminar, University
of Linz, Austria.

07. Nov 2001: Designing Smooth Motions in the Presence of Obstacles, 7th
SIAM Conference on Geometric Design and Computing, Sacramento, USA.

31. Oct. 2001: Optimal Geometric Positioning, Computer Science Seminar,
California Institute of Technology, Pasadena, USA.

23. Nov. 2000: Reconstruction of Rotational and Helical Surfaces for Reverse
Engineering, CMP Seminar, Prague Technical Univ., Prague, Chech Republic.

Scientific Publications

[1] M. Hofer, H. Pottmann, and B. Ravani. Subdivision algorithms for motion
design based on homologous points. In J. Lenarcic and F. Thomas, editors,
Advances in Robot Kinematics, pages 235-244. Kluwer Academic Publ., 2002.

[2] H. Pottmann, S. Leopoldseder, and M. Hofer. Approximation with active B-
spline curves and surfaces. In S. Coquillart, S.-M. Hu, and H.-Y. Shum, editors,
10th Pacific Conference on Computer Graphics and Applications (Tsinghua
University, Beijing), pages 8-25. IEEE Press, 2002.

[3] H. Pottmann, S. Leopoldseder, and M. Hofer. Simultaneous registration of
multiple views of a 3D object. ISPRS Archives, 34(3A):265-270, 2002.



IV Curriculum Vitae

[4] H. Pottmann and M. Hofer. Geometry of the squared distance function to
curves and surfaces. In H.-C. Hege and K. Polthier, editors, Visualization and
Mathematics III, pages 223-244. Springer, 2003.

[5] M. Hofer, H. Pottmann, and B. Ravani. Geometric design of motions
constrained by a contacting surface pair. Computer Aided Geometric Design,
20:523-547, 2003.

[6] M. Hofer and H. Pottmann. Orientierung von Laserscanner-Punktwolken.
Vermessung & Geoinformation, 91:297-306, 2003.

[7] H. Pottmann, M. Hofer, B. Odehnal, and J. Wallner. Line geometry for 3D
shape understanding and reconstruction. In T. Pajdla and J. Matas, editors,
Computer Vision — ECCV 2004, Part I, volume 3021 of Lecture Notes in
Computer Science, pages 297-309. Springer, 2004.

[8] H. Pottmann, T. Steiner, M. Hofer, C. Haider, and A. Hanbury. The
isophotic metric and its application to feature sensitive morphology on surfaces.
In T. Pajdla and J. Matas, editors, Computer Vision — ECCV 2004, Part IV,
volume 3024 of Lecture Notes in Computer Science, pages 560-572. Springer,
2004.

[9] M. Hofer, H. Pottmann, and B. Ravani. From curve design algorithms to
the design of rigid body motions. The Visual Computer, 20(5):279-297, 2004.

[10] H. Pottmann, M. Hofer, and B. Ravani. Variational motion design. In
J. Lenarcic and C. Galletti, editors, On Advances in Robot Kinematics, pages
361-370. Kluwer, 2004.

[11] H. Pottmann, S. Leopoldseder, and M. Hofer. Registration without ICP.
Computer Vision and Image Understanding, 95(1):54-71, 2004.

[12] M. Hofer and H. Pottmann. Energy-minimizing splines in manifolds. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2004), 23(3):284-
293, 2004.

[13] H. Pottmann, S. Leopoldseder, M. Hofer, T. Steiner, and W. Wang. In-
dustrial Geometry: recent advances and applications in CAD. Computer-Aided
Design Appl., 1:513-522, 2004 (short conference version).

[14] H. Pottmann and M. Hofer. A variational approach to spline curves on
surfaces. Computer Aided Geometric Design, to appear.

[15] H. Pottmann, S. Leopoldseder, M. Hofer, T. Steiner, and W. Wang. In-
dustrial geometry: recent advances and applications in CAD. Computer-Aided
Design, to appear (extended journal version).

Vienna, November 2004


