Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology

(http://www.ub.tuwien.ac.atfenglweb/). . lj

WIEN

DIPLOMARBEIT

Smute: A Programming Language for
Processing Recursively Structured Data

ausgefuhrt am Institut fr Informationssysteme

der Technischen Universitat Wien

unter Anleitung vorAo. Univ-Prof. Dr. Hans Tompits

durch
Norbert Pfaffinger

BahnhofstralRe 4
A-2412 Wolfsthal

darder@gmx.net

Datum Unterschrift

Contents

Introduction 3
Conception and Realisation of Smute 6
2.1 OVEIVIEW e e 6
2.2 TheSmutelLanguage @ i i i i e 8
2.2.1 Smute Functions, Smute Modules and Smute Packages. 10
2.3 Datal/lOConception e 11
2.3.1 Textual Input Data Specifications in Context-Freeduages 11
2.3.2 Datal/O iCARGOTREExchange Format 16
2.3.3 Visualisation Output in the Graph Description Larggia. 18
2.4 The Smute Interpreter e e 18
241 TechnicalNotes. 91
25 TheSmute Assembler 19
251 TechnicalNotes. 12
2.6 Discussion of Alternativeso e 21
2.7 Related Solutions 23
Invoking Smute Functions 26
3.1 Step-by-Step Smute FunctionUsage 26
3.2 Smute Launch File Documentation, 30
3.2.1 SmuteLaunch FileSyntax 31
Writing Smute Functions 33
41 TheSmutelLanguage i 33
4.1.1 \Virtual Machine Characteristics 33
4.1.2 RESOUICES o i e e e e 34
4.1.3 Instructions 73
4.2 CARGOTREBchemes 64
43 Datal/lO e 65
4.3.1 CARGOTREExchange Format 65
4.3.2 Data Input through an LALR-language C 66
4.4 Core Functions and Wrapper Functions «.u.... 68
45 Smute AssemblerUsage 68
Support for the Interaction of External Applications with Smute 71
5.1 File Layout for theCARGOTREExchange Format 71
Reductions-to-QBFs Background 74
6.1 Propositional Logic e e 74
6.2 Quantified BooleanFormulas 75
6.3 Nonmonotonic Reasoning Formalisms 77
6.3.1 DefaultLogic 77

6.3.2 Classical Abduction 78

6.3.3 EquilibriumLogic 87
6.3.4 Paraconsistent Reasoning via Signed Systems 80
6.3.5 Paraconsistent Reasoning via Three-Valued Logic. 81
6.4 An Example Reduction-to-QBF 82
7 Smute Interpreter Logic Edition 86
7.1 Logic Edition Launch File Syntax 86
7.2 Logic Edition Preprocessing Functions BAIRGOTREEBchemes 87
8 Reduction-to-QBF Smute Package Documentation 94
8.1 OVerview e e 94
8.2 Smute Function Invocation Example 95
8.3 The Smute Function Interfaces 96
9 Details on the Implementation of Reductions-to-QBFs 145
9.1 Documented Source Code of a Reduction-to-QBF 145
9.2 Technical Notes e 153
10 Conclusion and Discussion 154

Chapter 1

Introduction

SAT, the satisfiability problem of classical propositionalitgds known to be NP-complete. This
means that any problem which is in NP, i.e., any problem taathe solved by a nondeterminis-
tic Turing machine working in polynomial time, is expredsilasSAT-instance with polynomial
effort. Several knowledge representation tasks (KR-taslshort) are in NP. This allows for a
uniform principle of KR-task-solver realisation: To repggss the task aSAT-instance and in-
voke an existingSAT-solver. Constrained-based planning problems [18] arexample where
this principle has been successfully deployed.

An analogous method can be applied to problems beyond NPartitplar, many KR-tasks
have been shown to be & or I, (cf. [11, 12, 13, 16]). For tasks with this computational
complexity it is possible to express them in polynomial tiase Quantified Boolean Formulas
(QBFs). Efficient solvers for QBFs do exidbqole [2], Decide [28], QSolve [14], etc.)
and get further developed. A KR-task-solver could thusqrerfa reduction-to-QBF, i.e., a re-
expression as QBF, and then execute one of the existing QBEFs.

Several polynomial reductions-to-QBFs have been predentecent years ([6, 7, 9, 10, 22]).
The implementation of such reductions, i.e., the develaogrogprograms performing the reduc-
tions, raises several difficulties, among them the follayvin

e The KR-task data instances are recursively structured amy meduction-to-QBF functions
are recursively defined. This poses several problems: Fonpbe, in most programming
languages the implementation of recursively defined réohstto-QBFs via recursive func-
tion calls should be deprecated, as static stacks limitebarsive depth and for high-level
programming languages there is an uncontrollable wast@ok-space (for local variables
of functions). Another difficulty is the implementation afaursive data structures such
that both memory-efficiency and the support of typical oplens, like the concatenation of
formulas, are provided.

e For many KR-tasks there are task-specific types of data. ,Tloughe implementation
a specification format must be devised, and functions fadingaand writing files in the
respective format must be written. This often turns out téaberious.

QUIP [10], a program developed at the Vienna University of Tedbgy implements several
reductions-to-QBFs. IIQUIP, the reductions-to-QBFs are realised individually ancetage-
neously, without a general solution of the aforementionéitdities.

The goal for this thesis was to simplify and automate redunetd-QBF implementation via a
uniform approach, namely by designing a language with theviing essential properties:

e The language should be expressive enough to support thificgian of any reduction-to-
QBF, existing ones as well as ones that might yet be devised.

e Specifications in the language should be as simple and @asigossible, relieving the
author of caring about implementation details.

3

e For functions specified in that language it should be possdbhutomatically generate their
implementation.

e The function implementations should not be restricted itgalr data instances, i.e., with
regard to the data instances’ size and recursive depth shexdd be as few limitations as
possible.

The language introduced in this thesis is calledute Languagend meets all the criteria. Itis
a language for the specification of functions working witbuesively structured data. This means
a great generalisation: Functions written in the Smute Liagg, so-calle@mute Functionsdo
not need to be related to reductions-to-QBFs at all. Thevielig are examples for the diversity
of tasks that can be perfomed with Smute Functions:

e Manipulation/evaluation of arithmetic expressions;
e Compilation of programming-language source-codes;
e Extraction/Conversion of data from files in structured fatsnsuch as XML.

This generalisation has of course not been an arbitrarysideci In fact, there are no common
properties of reductions-to-QBFs which would allow for armepecialised custom-tailored solu-
tion.

The Smute Language is a new abstract layer—specificatiottisianguage are platform-
independent and there is no interrelationship with exgstirogramming languages. The language
is optimised for direct interpretability. There is an iqgiegter for Smute Language code, the so-
calledSmute InterpreterA compiler does not exist.

Among the key ideas in the development of the Smute Language the following:

e A resource calledCARGOTREE, on the one hand primitive, on the other hand versatile, is
used for the representation of any recursively structuage.dwith this uniform represen-
tation a few primitiveCARGOTREImstructions allow to perform arbitrary operations on
recursively structured data instances, plus it enablesanesgfficient implementation, to-
gether with a second resource call@dRGOTREEMEM Furthermore, due to the uniform
representation, functions working with arbitrary recuesy structured data can be written.
A trivial example is a function creating a copy of a data instg independently of its actual
recursive structure. This function is readily providedrasriuction of the Smute Language.

o All stack-operations at the Smute Language level, inclgdialling-stack operations (func-
tion calls and returning from functions) are implementetigh dynamic stacks and all
stack-usage is explicit. The dynamic stacks permit to stpgeta instances of arbitrary
recursive depth, only limited by the host-machine’s (thepater running the Smute Func-
tion) available memory—uwhich thanks to virtual memory aettures usually is huge. Fur-
thermore, the explicit stack usage allows for recursivetion calls in the Smute Language
due to stack memory efficiency.

e Most failure conditions, like insufficient memory, are héfdfrom the Smute Language
level. They are correctly treated at the implementatioellby aborting the whole top-level
Smute Function. This can be regarded as default exceptiudiihg. It should be observed
that without this automated treatment code specificatiomddwither have to be much more
intricate, or incorrect (for example, crashing if data @amstes become too large).

Smute also handles the difficulty of input data processirdyarnput data generation. For the
author of Smute Functions, so-call8thute Function Developerthis comprises two tasks: The
specification of formats (or the reuse of existing formaas)] the processing/generation of data
in the respective format. Both tasks are automated, moabhoeéven in the case of textual input
processing.

Apart from Smute, this thesis also presents the implementatf numerous reductions-to-
QBFs, grouped together in tHeeduction-to-QBF Smute Packagd@hese reductions-to-QBFs
can be regarded as test cases, proving the serviceabil®ynote. The Smute Functions of the
Reduction-to-QBF Smute Package are largely based on redttotQBF specifications presented
in[6, 7, 10, 22].

The thesis is laid out as follows: In Chapter 2 the basic cptimes of Smute and important
aspects of its realisation are outlined. It includes a disitun of alternatives and a comparison
with related solutions. As the user-interface of Smute Eans is to a large extent provided by
Smute, the invocation of Smute Functions follows a uniforttgrn, which is described in Chap-
ter 3. Chapter 4 documents how to write Smute Functions. rtaioes the detailed descriptions
of the Smute Language, explaining each of its instructioBmute supports the interaction of
Smute Functions with external applications. The respeddutions are documented in Chap-
ter 5. Chapter 6 presents the background to reduction®BtesQincluding propositional logic,
Quantified Boolean Formulas, and an example-reduction. t&mmterpreter Logic Edition has
special support for the specification of logic-related dastances and is documented in Chap-
ter 7. Chapter 8 documents the Reduction-to-QBF Smute Baclkeand includes the description
of all the Smute Functions of this Smute Package. Detailsosnreductions-to-QBFs have been
implemented in the Reduction-to-QBF Smute Package ara giv€hapter 9. It contains docu-
mented Smute Language source-code for a complete reddotiQBF Smute Function, serving
as illustration for function-implementation. Finally, @bter 10 concludes the thesis. It includes a
summary of Smute’s features and a discussion of potentiahsions.

Chapter 2

Conception and Realisation of Smute

An overview of the Smute conception is given in Section 2.ksdhtial constituent parts are
the Smute Language, the Data I/O Conception, the Smutepheter, and the Smute Assembler,
which are introduced in Sections 2.2, 2.3, 2.4, and 2.5 misjedy. Finally, Section 2.7 contains

a comparison of Smute with related solutions.

2.1 Overview

The Smute Languagés a programming language for the specification of functiprscessing
structured data, with special support for the case of ramlysstructured data. A programming
language is of course not self-contained: For example, itenor interpreter is required. The
Smute Language and these related components are subsuedites

Example 2.1 (Function working with recursively structugtata) A prototypical example for re-
cursively structured data are arithmetic expressions,tlike following:

e 17+26x(15/(8 —3));
o 22+ 3xy + 312

A function for the simplification of arithmetic expressigonserforming the replacements listed
below, is thus a trivial example for a function working wittcursively structured dataq’ stands
for an arbitrary sub-expression):

Exlandl x E — B
E+0andO+FE — E;
Ex0and0x E — 0O
EY — 1
E! — E;
etc. O

The main purpose of the Smute Language is the simplified ingitgation of functions work-
ing with recursively structured data (compared to an imgetation via an existing programming
language). Short and concise specifications are possitdagh a high level of abstraction. For
example, the Smute Language is completely platform inddgmtn The abstraction is however
only provided to an extent that does not conflict with impleta¢ion efficiency. Thus, the Smute
Language does not impose any restrictions on the size orsieewepth of data instances.

A function written in the Smute Language is callBthute FunctionAuthors of Smute Func-
tions are calledsmute Function DeveloperdJsers of Smute Functions, i.e., those who invoke
Smute Functions, are call&géimute Function UsersThe basic principle of a Smute Function is
depicted in Figure 2.1. Smute provides support to expose @eSFunction’s functionality to

6

Data Data

(possibly (possibly
recursively recursively
structured) structured)

Smute Function

Figure 2.1: Smute Function principle

Smute Function

Smute Interpreter

Data
(possibly
recursively
structured)

Figure 2.2: Smute Function invocation

a Smute Function User. This is why—as opposed to most otlegraimming languages—the
term “program” is not used here: There is no need to developea interface for the intended
functionality—the user interface to Smute Functions is targe extent provided by Smute. Of
course, in analogy to programs, a Smute Function can cadirfial” Smute Functions, i.e., Smute
Functions that are invisible to Smute Function Users.

Smute Functions can be executed by interpretation vi&thate InterpreterA Smute Func-
tion User invokes a Smute Function with specific input datgéssing both the function and the
data to the Smute Interpreter, as illustrated in Figure Zt#® Smute Language is optimised for
interpretability. It can thus be seen as low-level language as machine language for the virtual
machine which is implemented by the Smute Interpreter.

A Smute Modulés a file containing Smute Language code. Smute FunctionsSrhate
Module can be&xported which means that they are made accessible. A Smute Fuiatiegloper
can do so for two reasons: To expose the function to Smutetibaridsers, or to make the function
available for calling it from other Smute Functions. An dttation of Smute Modules is given in
Figure 2.3

The Smute Interpreter expects Smute Modules in binary forAk&mute Function Developer
creates binary Smute Modules by passing textual mnemanite Smute Assembleas depicted
in Figure 2.4.

A Smute Function User specifies input to Smute Functionshéfd is any) in files, and re-
ceives the output (if there is any) in files. For Smute Fumcbevelopers there is various support
for reading input and for writing output. This is subsumedSasute Data 1/0O Conceptioand
explained in Section 2.3.

01101110...

1011001010. .

= 0110011010110

E 1001001011001 rms e [EhereaFomres

£ 1100101110100

2 1101001001001 (@rman i [En nrm s

2 0101100110101

© 0100010010011 Conitbn Crvimmbinm

= 1100110110110 t .

£ 0010010011101 exports Smute Function

£ 0010101101010

(77 S

Figure 2.3: Smute Module
Label(Alpha); 01101110...
Move(RO0,R01); 1011001010. .

= BSR(Beta); =~ 0110011010110
X . E 1001001011001
E . 8 1100101110100
o Return; 9 1101001001001
3 Label(Beta); Smute Assembler 2 0101100110101
o .. © 0100010010011
= = 1100110110110
2 Return; £ 0010010011101
2 Export(Alpha); £ 0010101101010
N - 7)) cococococococoocoooo

Figure 2.4: Smute Assembler

2.2 The Smute Language

The Smute Language provides a seinstructions Smute Language code is a sequence of Smute
Language instructions. The majority of Smute Languageunsbns is of one of the following
two types: Either general-purpose instructions (likehanietic instructions) or instructions for
recursively structured data. Some additional instrustiare provided for data input and data
output. A list of all instructions can be found in the Smuten&lion Developer Manual.

“Implementation” refers to computer code carrying out SeriLanguage code. Itis, on the one
hand, an important principle of the Smute Language to bectethfrom the implementation layer,
i.e., specifications in the Smute Language are made witlegatrd of implementation details. An
example are conditions of insufficient memory, which arated within the implementation layer
(by aborting the whole top-level Smute Function) and areeffloee invisible to Smute Function
Developers. On the other hand, the language is designetbto falr efficient implementations.
Some implementation aspects are therefore more or les$patéid, as deviations would result in
reduced efficiency. An example is memory requirement okstgerations. The Smute Language
allows to very efficiently implement these operations. Qfrse this efficiency is anticipated, even
if all the details remain undetermined by the Smute Langiiizg¥.

Most Smute Language instructions operate wébisters the main data storage locations.
Currently there are 64 registers, each with a width of 32 bits

There are various types oésourcesin the Smute LanguageCARGOTREE is one of them.
It is used to represent recursively structured data. lostnmis working withCARGOTREE-nodes
allow to specify operations on those data instanceEARGOTRELE one of the following:

e an integer-leaf where one 32-bit integer value can be stored
e a string-leaf where one string, i.e., byte-array, can beedto

e an inner node with a non-empty array of (SARGOTREE

8

Figure 2.5:CARGOTRE¥#sualisations

All these nodes provide so-calleds. These are integer values allowing to encode structural
information. The simplicity of this format allows to prowddnstructions that work with arbi-
trary CARGOTREE and hence are independent of the data instance’s actuaéine structure.
For example, instructions for creating copies dCARGOTREERre provided. There ar€AR-
GOTREEode instructions for reading/setting a node’s childfenreading/setting a leaf’s value,
for creating a new node, etc.

Example 2.2 CARGOTREE) In Figure 4.1 visualisations of GARGOTREEepresenting proposi-
tional formulap A (p — (¢Vr)) are shown. The two visualisations are of the S@ARGOTREE
In the right oneCARGOTRERBRode-ids are replaced with symbols for better readability O

A Smute Function Developer must define a convention (or ustimx conventions) laying
down how data with a specific structure (for example, arittierexpressions) is represented with
CARGOTREE Such a convention is call€@ARGOTREE-Scheme Currently this is an informal
specification.

Resources, such &ARGOTRERodes, require machine resources of the computer a Smute
Function is executed on. For exampleCARGOTRERode obviously requires memory for stor-
ing its associated data. Smute Function Developers musardisesources that are not required
any longer. For implementation efficiency reasons, sevesaurces cannot be created and dis-
carded separately, but only as parts of other resourceanpartant example for this principle are
CARGOTRERodes, which are always part of a so-call&8RGOTREEMEM-instance. When cre-
ating a newCARGOTRERode, aCARGOTREEMEMtance must be specified wherein the node
is allocated. Individual discarding @ARGOTRERodes is not possible. Instead, by discarding
aCARGOTREEMEMtance all associat€d@dARGOTRERodes are automatically discarded. This
conception is essential for memory-efficient implementai For any block of memory which
can be deallocated separately there is a memory overheadisTfi course crucial when there are
thousands of mini-allocations, as is the case WkRGOTRERodes. To quantify the benefit of
the CARGOTREEMEythitecture: On typical computer systems the overheadipde decreases
from 8 bytes to less than 0.02 bytes. Thus, f&EARGOTRE®ith 100000 nodes the overhead
shrinks from 800000 bytes (781KB) to less than 2000 bytesthEtmore, a large number of al-
locations via the operating system’s memory managementaase drastic slow-downs. This is
prevented with th€ ARGOTREEME®source. Apart from its implementation efficiency besefit
CARGOTREEMBEMOo aids in writing short and concise code. For example,deXbARGOTREE
whatever its size, can be discarded with a single instmgdfiall the nodes are allocated from the
sameCARGOTREEMHiMtance.

There are twdStackresources provided: Aalling-stackand adata-stack For the Smute
Language there is no resource-usage which is not explgithcified by the Smute Function De-
veloper. This also holds for the Stack-resources: For thimgastack only a branch-to-subroutine
consumes stack-space and only a return-from-subroutinengestack-space. For the data-stack

9

it is data explicitly pushed onto or popped off the stack. lenmmentation comes in the form of
dynamic stacks. Dynamic means there is no fixed size—thas&sstan grow as long as there
is memory available. The dynamic implementation is esakrats stack-requirements are usually
proportional to the recursive depth of the data processé Srnute Functions. Any limitation
of stack-size would hence impose a limitation of the dattaimses’ recursive depth. The explicit
stack-usage and the dynamic implementation ensures tha éne no disadvantages or restric-
tions for recursive function-calls in the Smute LanguaghisTs an essential feature, which sets
the Smute Language apart from most existing languagesidimg) all machine languages and all
the common high-level-languages, such as C. Recursiveidmacalls in those languages can for
the following reasons not be regarded as proper solutionmaehine languages (processor code)
there is the problem of static calling-stacks. For higleeel languages there is an additional grave
disadvantage, namely implicit uncontrollable stack usager example, a C-compiler reserves
stack-space for a function’s local variables. This is tlesbme insofar, as wasted stack-space
cumulates with each (recursive) level of function-calls.

The functionality of the so-calledashresources is as follows: A Hash-resource is an initially
empty collection othash-entries A hash-entry is composed of an integer or string, the sledal
hash-key plus optional additional data. Any integer or string canuscat most once as a hash-
entry’s key in a Hash-resource. For any integer or string jitdssible to tell if it occurs as key in a
Hash-resource, and if so, to access the according hastisesgsociated data-fields. Any number
of hash-entries can be added to a Hash-resource. Thesesardiglsoperations for all Smute
Functions operating on recursively structured data witniiliers, like propositional variable-
identifiers in formulas of propositional logic. Most types lesh-entries cannot be discarded
individually. This is the same as witBARGOTRERodes, and has got the same reasons. The
name—Hash-resource—comes from the typical way of impl¢atiem, namely with hash-tables.

Support for array-operations comes with &ieRAY resource. Itis especially useful for Smute
Functions working with arrays of recursively structuredagahere such arrays are not part of the
recursive data structure itself.

2.2.1 Smute Functions, Smute Modules and Smute Packages

A Smute Modulés a file containing Smute Language code. label is a string identifying a
position in a Smute Module. Labels are used with the flow @bmbistructions in order to specify
positions, e.g., to specify where to branch to.

Now the termSmute Functioran be clarified: It is a position in a Smute Module where it is
possible taBSR(branch-to-subroutine) to. The shortest possible Smutetin is thus a single
Return instruction.

Labels can bexportedfrom a Smute Module. This means they are made “visible” to the
outside, i.e., they can be referenced from outside the SMatkule. The functionality provided
by a Smute Module is thus given by its exports. Smute Modulie @an contain branches (usually
BSRs) toexternallabels, i.e., to exports of other modules. A full referencenother modules’
export—calledmport—consists of a (module-name, label-name)-tuple.

References to Smute Module-internal positions via labelsiaed for convenient specification
of Smute Language code with its textual mnemonics. Theyasgetived by the Smute Assembler,
i.e., when creating the binary Smute Module. In the binarjufnModule hence only exported
labels are stored.

If code of Smute Modulé references an export of Smute Modulethenb is said todirectly
dependon a. b is said todependon q, if either

e b directly depends on or

¢ there is a Smute Moduledirectly depending on, andb depends o.

10

A dependency graph for Smute Modules is generated as follBash Smute Module is a node.
Each direct dependency is a (directed) edge. For propereSkhadules the dependency graph is a
tree—although circular dependencies are of course pessitdy must be considered poor Smute
Module design. This is why in the rest of this document thentdependency treill be used.

Obviously the import/export-architecture is destinedrfmdularity. Different functions, even
if completely independent of each other, often require comrsubroutines. Instead of redun-
dantly including common subroutines in each of the indepah&mute Modules, these functions
can be imported.

Publishing and distribution of Smute Functions is usuatinelviaSmute Package#\ Smute
Package consists of one or more Smute Modules and relateddite, documentation.

2.3 Data l/O Conception

According to the design of the Smute Language, VBIRRGOTREEas one of the fundamental
concepts, a function with recursively structured input angbut could be implemented as follows:

1. Input data instances are read in order to cre&@RGOTREEepresentation. The following
cases need to be distinguished:

(&) Input data instances are provided in binary format.
(b) Input data instances are provided through textual fipations.

2. The function processing the data gets executed. Thisifumis independent of input/output-
formats and works with recursively structured data onltSICARGOTREEepresentation.

3. ResultingfCARGOTREEare saved in the desired output format. Again there is idiigtn
between:

() Output is provided in binary format.
(b) Output is provided in a textual format.

Proper support is as yet “only” provided for point 1b, i.extual input specification. Com-
pared to the difficulty of points 1a, 3a, and 3b, this was ofrseuhe real tough nut to crack. The
missing points are of course subject to further Smute dpvedmt.

Smute introduces a new standardised binary file format foursively structured data, the
CARGOTREE Exchange FormatAny CARGOTREEan be saved t€ARGOTREExchange For-
mat with a single instruction of the Smute Language. Funtioee Smute can automatically create
aCARGOTREIOom a file inCARGOTREExchange Format. This new file format serves multiple
purposes. For example, it makes it possible to write apjidica that seamlessly work together
with Smute Functions.

2.3.1 Textual Input Data Specifications in Context-Free Laguages

This section is divided into two parts. The first is a compatbiduction to languages, grammars,
and parsers. For a more comprehensive discussion of thesetant topics of computer science
refer to [4]. The second part explains the Smute Data I/O @ginfor textual input specification
and processing. It is of course based on the theoreticalgbagikd of the first part.

Background

Let A be a set. Astring over A is a (possibly empty) finite sequence of elements ftdmThe
empty string denotede, is defined as empty sequence of elements. deod, the string solely
consisting ofa is denoted:. Thelengthof a stringu, denotedu/|, is defined as follows:

11

o If u = ethen|ul:=0;
o If u = av, whereac A andv is a string, thenu|:=|v| + 1.

Theconcatenatiorof stringsu andv, denoteduv, is obtained by appending the sequence of string
v to the sequence of string A string z is calledsubstringof stringy, if there are strings andv
such thaty = uzv. A string z is calledprefix of stringy, if there is a stringy such thaty = zv. A
string z is calledsuffixof stringy, if there is a string: such thaty = ux. For a set4, theKleene
closureof A, denotedA4*, is the set of all strings ovet, includinge.

Let A be a set. Aormal languageL over A is a (possibly empty) set of strings ovédy i.e.,
LCA*. Ais called thealphabetof L.

A formal grammarG is a quadruplé N, T', P, S) of

e a finite setV of nonterminals
e afinite setl” of terminalsthat is disjoint fromV;
¢ afinite setP of productions where a production is of the form—s, with

- s1,8,€(TUN)* and
— s; contains at least one nonterminal.

sy is referred to as the productiorisft side s, as the production’sight side

e asymbolSeN designated astart symbal

Let s1, s9, 51, s, €(TUN)* be strings ands;— s, be a production. Theapplyinga production
s;— s, t0 a strings;s;so means to replace it with the strings,s,. In this cases; s,.s, is said
to bederivedfrom s;s;s5 in one stepdenoteds;s;so = s1s,s2. A stringre(TUN)* derivesa
strings€(TUN)*, denoted-=s, if s can be generated fromby repeatedly (zero or more times)
applying productions fron®. A sequence of such replacements is calledvation Thelanguage
of a formal grammar, denoteld), is defined as the set of terminal-strings, i.e., stringsfid’,
that can be derived from the start symbol. A formal grammaaited unambiguousf for each
string of its language there is exactly one derivation.

A context-free grammaé€ is a formal grammafN, T, P, S), where each production’s left
side consists of a single nonterminal only. A formal languagcalledcontext-free languagef
it is the language of a context-free grammar (i.e., if it cargkenerated with the productions of a
context-free grammar). A derivation with productions obatext-free grammar is calldeftmost
if in each replacement step the leftmost nonterminal ggtlaced with a production’s right side.
It is calledrightmost if in each replacement step the rightmost nonterminal iggtiaced.

Example 2.3 (Context-free gramma&r the following context-free grammar the set of nontermi-
nals is{S, T, F'}, the start symbol i$, and the set of terminals s+, —, x, (,), z,y, z}. Usually
these are not explicitly specified, but implicitly givendlgh the set of productions, which are
listed below.

S—S+ 1T,
S—S — T,
S—T;
T—T x I,
T—F;
F—(S);
F—uz;
F—y;
F—z.

12

“xxy*(y+ z)"is a string of the context-free grammar’s language, asahevfing rightmost
derivation from the start symbol shows:

S=T
=T F
=T % (S5)

=T (S+1T)

=T x*(S+F)

=T (S +2)

=T (T + 2)

=T (F+ 2)

=T x (y+ 2)

=T Fx(y+z)

=T xyx* (y+2)

=Fx*xyx(y+2)

=szrxy*(y+ 2). O

A Backus-Naur forms a convention for the specification of context-free gramsma text-
files. Character-strings within angular brackets, suckfasmula> , are used to specify and
identify nonterminals. Strings delimited with quotatiorarks, such asf , are used to specify
terminals. For productions the left side and the right sidesgparated with the string: ", as
illustrated below:

<stmt> .= 'if <expr> 'then’ <stmt>

Multiple productions with an equal left side nonterminahdae grouped together with thé
character as illustrated below:

<expr> = <expr> * <expr> | - <expr> | <expr> '+ <expr>

The analysis of the grammatical structure of an input wipeet to a given formal grammar
is calledparsing A top-downparser creates a derivation by starting with the start syrabd
trying to recreate the input with repeated application aidoictions. Abottom-upparser creates
a derivation by repeated inverse application of produstimnthe input until only the start symbol
is left. Common types of top-down parsers are so-cdllegharsers andecursive descergarsers.
See [4] for a description. A common type of bottom-up pargetseLR-parser-type. LR-parsers
are introduced in the following paragraphs.

A shift-reduceparser is a bottom-up parser for context-free grammarshwharks as follows:
It implements a stack where terminals and nonterminals eastdred. It reads the input from the
left to the right. The parsing is done via 2 actions caédt andreduce

¢ In ashiftaction the parser shifts the next input terminal onto thpedfothe stack.

¢ In areduceaction a certain number of symbols (terminals and nonteaite) on top of the
stack correspond to the right side of a production which @applied in the derivation of
the input. The symbols are thus popped from the stack andaeglwith the nonterminal
from the production’s left side.

A shift-reduce parser usés input-terminals not yet used for shifting/reducing, thecadled
lookahead-symbaldo decide on whether to shift or reduce, and in the lattee @&sording to
which production to reduce. The following errors can ocawstiift-reduce parsers: ghift/reduce-
conflict(knowing the stack content and the lookahead-symbols @tipossible to decide whether
to shift or reduce), andeduce/reduceonflicts (knowing the stack content and the lookahead-
symbols it is not possible to elect one of several reduc}ions

13

An LR(k) parser(the ‘L’ stands for reading input from the left to the righket‘R’ stands
for creating rightmost derivations) is a shift-reduce pamith £ symbols of lookaheadlLR is
an abbreviation for LR(1). Here only the LR(1)-parser ailgpon is introduced in full detail.
The relevance of LR(1)-parsers and their superiority t@othell-known parsing algorithms are
discussed in [4].

An LR-parser determines the next action (shift or reducanfa so-called_R-parsing-table
the next input-symbol, and its currestate The algorithm is best explained with a simple example:

Example 2.4 (LR-parser)

(1) <expr> ::= <expr> '+ <bool>
(2) <expr> ::= <bool>

(38) <bool> ::= 0

(4) <bool> = "'1

The LR-parsing-table for this grammar is as follows:

action goto
statel 0 1 + $ <expr> <bool>
0|s3 ¢4 1 2
1 s5 acc
2 r2 r2
3 r3 r3
4 r4 r4
5|s3 s4 6
6 ri rl

The $-terminal serves as end-of-input identification. Thigies in the action-table have the fol-
lowing meaning:

e s(i): Shift and continue with state
e r(i): Reduce according to rule
e acc: Accept the input.

The numbers in the goto-table refer to the state in which tdicoe after a reduction with the
specified left-hand side nonterminal has been performed.

The parsing-algorithm uses a stack in which it rememberstéiies. The top-of-the-stack is
its current state. Its initial state is 0. For each shifieacthe new state is shifted onto the stack.
For a reduction the number of right-hand side symbols (moriteals and terminals) determines
the number of states to walk back, i.e., to pop from the stabk. new state is then determined by
this state’s goto-table entries.

The following is an illustration of the algorithm for inputrg “0+1":

stack input action
(stepl) [O] 0 (—0+1) s3
(step2) [0 3] + (0—+1) r3
(step3) [0 2] + (0—+1) r2
(step4) [0 1] + (0—+1) sb5
(step5) [0 1 5] 1 (0+—1) s4
(step6) [0 1 5 4] $ (0+1<=) r4
(step7) 01 56] $ (0+1<=) rl
(step8) [0 1] $ (0+1—) acc

Thus, the following derivation is returned (reductionsénerse order):

14

<expr> 2 <expr> '+ <bool>
Z <expr> '+ 1
2 <pool> '+ 1’
R

In (stepl) the current state s and the current input symbol i®". The according action-table
entry is “s3”". Thus, staté is shifted onto the stack (and hence made the current steié)jnput
processing continues with symbal’: This is displayed in (step2). Here the action-table eigry
“r3”, i.e., reduction according to rulebool> ::= 0’ . This rule has got one right-hand-side
symbol. Hence one state is popped from the stack (8)atehich means that stateis the top
of the stack. For the continuation after applying the reiducit is hence necessary to go to the
state stored in the goto-table for statand nonterminakbool> (the rule’s left-hand-side), i.e.,
state2. This is displayed in (step3). The other steps follow theesgattern.

All empty action-table entries correspond to parsing+str&or example, when parsing string
“0++1", the next input-symbol when the parser reaches $tage+'. The action-table entry for
this configuration is empty, the parser would thus corregport an unexpected-*terminal. O

There are context-free grammars that cannot be parsed witliRgparser—even unambigu-
ous ones. This is because the decision whether to shift aiceetbr which reduction to apply
respectively) could depend on other input symbols than teedine, but only the first one is taken
into account. Those context-free grammars which can beegasith an LR-parser are called
LR-grammarsIn practice, e.g., for most programming languages, LRngnars are sufficient.

The algorithm which for a given LR-grammar calculates thepa®sing-table is beyond the
scope of this document. Refer to [4] for a comprehensivergaim.

An LALR-parser(lookahead-LR pars@mworks like an LR-parser, but instead of an LR-parsing-
table uses ahALR-parsing-table As LR-parsing-tables are becoming quite large for nonéti
grammars, such as programming-language grammars, thegebban various attempts for size-
reduction. The most widespread solution are LALR-parsaiges. Their structure is exactly the
same as the LR-parsing-table structure. Though certaigsstdan LR-parsing table are “merged”
into just one state in an LALR-parsing-table. Of course daisnot be done in a lossless way (oth-
erwise the LR-parsing-tables would be constructed reduthga-the “loss” is as follows:

e Some parsing-errors are not detected when they occur, lautaéer point of time (in this
case LALR-parsers cannot tell the original cause of a pgrsiror).

e For some LR-grammars it is not possible to generate an LAaRipg-table, because it
would contain reduce/reduce-conflicts.

LALR-grammarsi.e., grammars that can be parsed with LALR-parsers, aedlproper subset of
LR-grammars. Nevertheless LALR-grammars are usuallygefft. For example, most compilers
for programming languages parse with LALR-parsers. Fordéils of LALR-parsing-table
construction refer to [4].

The Smute Solution

In principle the processing of recursively structured dgtecified in a text-file (in a specific lan-
guage) is the task of a Smute Function Developer. For exantpieould be sufficient if the
Smute Language permits to write parsers. This is howeveatheatase. Instead, Smute offers full
automation—a Smute Function Developer never needs to a/paser.

The Smute solution works as follows:

1. The Smute Function Developer specifies an LALR-grammawhting a Backus-Naur
form.

15

2. The Smute Function Developer passes the Backus-Naur tioamutility program which
creates the LALR-parsing-table. This parsing-table isrithisted together with the Smute
Modules.

3. A Smute Function User specifies input in the respectivguage and references the appro-
priate LALR-parsing-table. The parsing of the source idgrered by Smute. If success-
ful, a CARGOTREEepresenting the input in an LALR-grammar-dependeARGOTREE
Scheme is created.

4. The Smute Function Developer provides Smute Functionkimg with CARGOTREHN
the LALR-grammar depende@ARGOTREBcheme. The recommended way is to develop
aPreprocessing Functioim the Smute Language. A Preprocessing Function createsdro
CARGOTRER an LALR-grammar-depende@ARGOTREEcheme £ARGOTREEep-
resentation in a grammar-independ@®RGOTREEcheme. Typically a core Smute Func-
tion works with CARGOTREEN the independent scheme. A “wrapper” Smute Function
performs preprocessing (by invoking the Preprocessingtin), and then calls the core
Smute Function.

With only two simple tasks, namely writing a Backus-Naumficeind writing a Preprocessing
Function (a typical Preprocessing Function is approxifgatendred lines long), a Smute Func-
tion Developer can support textual specifications in anyreed ALR-language. Also note the
implementation independence: Support for textual spetifins is automatically available with
all implementations, e.g., for different computer systems

The principle of textual input processing with Smute is di&gad in Figure 2.6. Here the utili-
sation of a Preprocessing Function is assumed.

Fortunately, a freely available program called GOLD Paf8¢proved to be perfectly suit-
able for the LALR-parsing-table creation. This definiteiwed some months of work. Although
several parser source codes are offered freely as well adilne tspecial requirements (like mem-
ory efficiency) and for neat integration into the other code Emute LALR-parser is an own
development.

2.3.2 Data /O in CARGOTREE Exchange Format

Smute Function code can saveCARGOTRE® a file in a new standardised binary format, the
CARGOTREExchange Format. Such files can of course be used as input aeeStunctions
again.

The purposes are the following:

e For Smute Function Users: Consecutive Translations. A 8funhction User might want
to pass the output of one Smute Function to another SmutetiBancSmute Function
Developers can support such consecutive translation malGARGOTREEXxchange File
output and input, with only a few lines of Smute Language caddependently of syntactic
input/output conventions.

¢ CARGOTREExchange Format permits to write applications that seatyl@gork together
with Smute. The following are examples:

— As mentioned on page 11, support of input from and outputhdrary binary or tex-
tual formats is not yet possible with Smute. Smute Functiewdlbpers can circum-
vent this current limitation by providing small tools contieg to/from CARGOTREE
Exchange Format.

— Where Smute Functions are used as part of a tool-chain, dathecpassed via files in
CARGOTREExchange Format.

16

ot SN
spt_acmcatlon 0110011010110
of input data » 1001001011001
(possibly @ 1100101110100
recursively E 1101001001001
~ 0101100110101

sletUred) << 0100010010011
S 1100110110110

¥ 0010010011101

3:' 0010101101010

66000000000

Smute

Data in grammar-
dependent
CARGOTREE-Scheme

<Preprocessing Function>

|

Data in grammar-
independent
CARGOTREE-Scheme

< Smute Function >

|

Figure 2.6: Textual input processing

17

2.3.3 Visualisation Output in the Graph Description Language

The recursive structure of data is best displayed in the fafrentree. From string-representations
it is however difficult to decipher the recursive structukar example, imagine a random arith-
metic expression with hundreds of variables. In the form sifrimg it is a hardly comprehensible
sequence of brackets, operator symbols, variable symdnodsnumbers. During the development
of function code, regardless of the programming langudge ai common task to display internal
data instances in order to verify their correctness. Theesanmecessary for recursively struc-
tured data instances of Smute Functions. Thus it was seléetithat Smute had to support tree
visualisations.

Smute supports the visualisation of recursively structuttata with instructions for saving
CARGOTRE#escriptions in the so-calle@raph Description LanguageThe Graph Description
Language is used by graph visualisation softwaiféee [1]. See Figure 4.1 on page 65 for an
example visualisation (aCARGOTRE#sualisations in this document are created vaitBee).

For internalCARGOTREREodes the integer id is displayed in the visualisation. éeing on
the CARGOTREEBcheme a visualisation could however be “decrypted” byldisng certain sym-
bols instead. For example, a plus-symbol (‘+') could be ldiggd for aCARGOTRERode rep-
resenting an arithmetic formulad 4+ r’. Though this requires visualisation-relat€ARGOTREE
Scheme meta-information, and is not implemented yet. ICARGOTREEN ‘QBPF-Scheme
(aCARGOTREBcheme for the representation of Quantified Boolean Fas)ig there currently
a “decrypted” visualisation output available.

2.4 The Smute Interpreter

Smute Functions can be executed via 8mute InterpreterAs the name Smute Interpreter sug-
gests, Smute Functions are executed by interpretatiorefdbde (as opposed to the compilation-
approach).

The many parameters passed to the Smute Interpreter—navhallp Smute Functions from
which Smute Modules to invoke with which parameters—havbedaspecified in a file, the so-
calledSmute Launch FileThe Smute Launch File syntax is presented in Chapter 3.

Input to Smute Functions can be specified via referenceses fik., via the specification of
file-names, in Smute Launch Files. It is an important featirhe Smute Interpreter that it can
process the input for certain types of data:

e From files iNCARGOTREExchange Format the Smute Interpreter can automaticabter
CARGOTREE

e From files in LALR-languages the Smute Interpreter can—dfvjiled with the respective
LALR-parsing-table—automatically create a grammar-teleatCARGOTREEpresenta-
tion. LALR-parsing-tables are provided by Smute Functia@vé&opers in order to support
the specification of input in an LALR-language.

For the sake of convenient input specification are thereialp8mute Interpreter Editions
They permit textual specifications of certain recursiveétyctured data directly within the Smute
Launch File. Smute Interpreter Editions come with one orer@mute Modules containing Pre-
processing Functions for the recursively structured datquiestion. An example iSmute In-
terpreter Logic Edition It allows formulas of propositional logic and other logidated data
instances to be specified directly within the Smute Laundé. FAs it requires changes in the
Smute Interpreter, a new Smute Interpreter Edition (or gharin an existing one) can only be
manufactured by the author of the Smute Interpreter, buby@&mute Function Developers.

Smute Launch File grammars are subject to changes (for dgaeiension with additional
specification syntax). Therefore data specified in Smutentladriles must be preprocessed with

18

the Preprocessing Functions that come with the respectiveeSIinterpreter Edition. Otherwise
Smute Functions are rendered useless with changes in thie &aunch File grammar.
Figure 2.7 on page 20 illustrates the Smute Interpreter.

2.4.1 Technical Notes

The Smute Interpreter is written in C. A few constructs of Chike function-templates, have been
used, but essentially it is plain C. The code has been dexelépm scratch, the only libraries
used are the ANSI Standard C libraries. Thus the Smute hatiempcan be compiled for various
platforms.

A 32-bit addressing architecture is required on the tarigagtggm (wider addresses are not sup-
ported). 16-bit datatypes are only addressed at 16-bitdaias, 32-bit values at 32-bit bound-
aries. Depending on the target platform processor suchrabgts can be required or advanta-
geous.

The Smute Interpreter is currently available for Intel RenfWindows and Intel Pentium/-
Linux platforms.

The ANSI Standard C library calls are completely encapsdlailhus the Smute Interpreter
can be easily detached from ANSI Standard C in order to ceedttferent version, for example,
a Windows-version with graphical user-interface. Cutlseno such versions are planned though.

As pointed out in Section 2.2, the Smute Language is desigmatlow for efficient imple-
mentations. All the implementation characteristics thatehbeen demanded there (for example,
dynamic stacks, efficient memory handling, etc.) are redlisith the Smute Interpreter.

For user-friendliness the Smute Interpreter applies a tative error notification technique,
i.e., multiple errors (for example, typing errors in the Senuaunch File) can be notified at once.

2.5 The Smute Assembler

For textual specifications of Smute Language codeShmite Assembles required in order to
create the binary Smute Modules. Like with existing assensblthe textual mnemonics only
serve the ease of specification.

A Smute Assembler application is not yet available. Insteélae so-calledSmute Assembler
Library can be used. The Smute Assembler Library is a static librdrighwcan be used with
C-programs, i.e., there is a C-header-file available. Shaibguage instructions can be specified
in a C source-code file via respective Smute Assembler Lylftarction-calls. Compilation of the
C source-code yields an executable, which, when execuéegrgtes the binary Smute Module.

Example 2.5 (Smute Language code specification via Smutenhks Library function-callsThe
following listing displays a small Smute Function in “na&iVSmute Language:

Label(Not);

Move(R01,R02);
NewConClsimm(1,R00,R01,0);
Plugimm(R01,R02,0);

Return;

For usage with the Smute Assembler Library it must be specifgefollows:

TMMWrite_ WLabel(ptmmw,(PuCHAR)"Not",3);

TMMWrite_ WMove(ptmmw,R01,R02);

TMMWrite_ WNewConClsimm(ptmmw,1,R00,R01,0);
TMMWrite. WPIlugimm(ptmmw,R01,R02,0);
TMMWrite_ WReturn(ptmmw);

19

<phi> := a;
<psi> := a+tb;
<pi> := 3*a+tc;

loadmodules () ;

mod:Prc (psi);
mod: Smp (phi) ;

Smute Launch File

N11N11710

10..
01101110... n110
1011001010.. ~p71
0110011010110 g
1001001011001 1
1100101110100 1
1101001001001 1
0101100110101 g
0100010010011 1
1100110110110 g
0010010011101
0010101101010

Smute Module (BIN)

Smute Interpreter

(1) The Smute Interpreter reads and analyses the Smute Launch File.

Smute Interpreter

2)
The Smute
Interpreter loads
the Smute
Modules
referenced from
the Smute Launch
File, plus possibly
additional Smute
Modules required for

Curniiba Crrinnatianm
Curniiba Criinmnatianm

CurniibtAa Crivnatianm

Smute Function

resolving imports. All references

get resolved. The Smute Functions
referenced from the Smute Launch File are now ready for being interpreted.

Data File

Smute Interpreter

<phi> := a; .
<§si> := a+b; (3) Subsequently, according
<pi> := 3*a+c; to the specifications in the

Smute Launch File, data is
loadmodules () ;

read from external files
and/or specifications in the
Smute Launch File. For
typical input format, e.g.,
textual specifications, the
Smute Interpreter passes the
data instances via
CARGOTREES.

mod:Prc (psi);
mod: Smp (phi) ;

Smute Launch File

Smute Function

Figure 2.7: Smute Interpreter

20

For the compilation with a C-compiler a few additional fragiinstructions are required. [

The Smute Assembler Library is documented in the Smute FamBteveloper Manual. The
Smute Assembler Library is only a tentative solution for tio¢ yet developed Smute Assembler
application. Throughout this document Smute Language @®dence presented in its native
form, not in the form of Smute Assembler Library functiorilea

2.5.1 Technical Notes

Like the Smute Interpreter, the Smute Assembler Libraryasidally written in plain C, with the
rare exception of using C++ extensions. Again, the onlaliles used are the ANSI Standard C
libraries. An encapsulation of ANSI Standard C library satlentical to the one of the Smute
Interpreter is implemented. The code has been written Wmighfeiture development of a Smute
Assembler in mind, i.e., in large parts the code can be refmethe development of such a
program.

2.6 Discussion of Alternatives

This section discusses the most important alternativeotiwairred in the conception of Smute.

Compiler vs. Interpreter

For a language supporting the specification of functionsessing recursively structured data
there are two implementation options: compilation andrpritation. For compilation there are
two different sub-options, namely a standard compiler, ae&ompiler creating code for a certain
microprocessor, and @ompiler-compiler i.e., a compiler generating code of a certain program-
ming language. The following is a list of disadvantages lfier tompiler-approach (some specific
for either standard compilers or compiler-compilers) imgarison to the interpretation approach:

e Recursive function calls in the specification language otbe implemented via recursive
function calls in the host programming language, due to tlekgproblem (as discussed on
page 10). This has a tremendous effect on the whole impletiemt

— For compiler-compilers this means that just one big fumcijor a few ones) with
numerous internal flow-control destinations (for the fimas of the specification lan-
guage) must be created. With C, function-internal flow-mandestination handling
is rather limited and intricate, because labels can only & Wdirectly with a few
instructions (most notablygbto "), but not be accessed as data.

— For standard compilers it has the effect that recursivelyctired functions cannot be
implemented as functions (with a return-instruction). eftative solutions are how-
ever more feasible than with compiler-compilers.

e Common functionality provided at the specification langudayer must either be redun-
dantly linked to each application, or these applications ais external common core-file.
In any case is there a certain static frame. For functionsues has the unpleasant effect
that applications compiled with different versions of tr@mpiler can differ in their user
interfaces.

e For compiler-compilers there is a general problem: Thereeig limited influence on the
second compilation step. Compilers for the second steprditbm each other. It cannot be
guaranteed that the second compilation step works flawlessl that the resulting code is
correct. Furthermore, usually certain settings for th@sd@ompilation step are required.
There are however no standardised ways for the specificaticompiler settings. In the

21

case of a faulty implementation it is difficult to detect winet the error is caused by the
second compilation step, or if the original specificatiofaiglty.

e For compiler-compilers recompilations are required fdiedent computer platforms.

e For standard compilers there is the disadvantage that teegrgte applications for one
platform only.

e For standard compilers the development effort is enormewsn more so if code optimi-
sation is performed.

The disadvantages of interpretation:

e Runtime overhead caused by interpreting. In a properlygdesi specification language
this is only a small disadvantage, as all the efficiencyieaiittasks are encapsulated in the
implementation layer and not performed via code of the $igation layer.

Smute applies interpretation. The realisation of a comgdéongside the interpreter) is not
ruled out by the Smute conception, though it is not planned Ghapter 10 for a discussion.

Static linking vs. Dynamic linking

The disadvantages of static linking are as follows:

e Smute Modules commonly used get redundantly linked. Alltthecal disadvantages of
redundancy apply: Waste of space, different versions ofctide, updates only through
re-linking, etc.

e Static linking cannot work function-wise, as this would uég program flow analysis. Thus
always a complete Smute Module gets linked, which is a wdstparce.

e For testing Smute Functions during the development of Sivlatdules it is not only nec-
essary to assemble the Smute Module, but also to link it.

The disadvantages of dynamic linking:

e |In order to invoke Smute Functions, a Smute Function Usedsa# the Smute Modules
from the dependency-tree.

Smute applies dynamic linking. Of course a static linkerlddae implemented alongside the
existing dynamic linking solution. Currently this is noaphed.

Higher-level language vs. Lower-level language

As Smute uses an interpretation approach, it was obviotdhbee had to be a language which
could be efficiently interpreted. This is realised with thaue Language, which can thus be re-
garded as lower-level language. This is however not a decejyainst a higher-level language: For
the implementation of a higher-level language a compileating Smute Language code would
be required. Currently there is no higher-level languagthnSmute framework, but it can be
considered as potential extension. This is discussed ipt€h&o0.

22

Parsing-Table Creation Alternatives

Dozens of applications to aid in parser development have texgewed, but only GOLD Parser [3]
has a strict separation between parsing-tables and paseitsis required for Smute. Most
other applications are compiler-compilers creating pacede in one of various programming
languages. GOLD Parser has grammar-testing capabilitieexcellent user-interface, it is well
documented, and publicly available. As GOLD Parser prowede sufficient for the current
purposes, its usage was preferable to the only other alteznaamely writing an own parsing-
table-creation utility. If however in the further developnmt of Smute more advanced features
are required, for example, the specification of parsingraecovery, then GOLD Parser must be
abolished.

Recursively Structured Data Visualisation Alternatives

Several programs have been reviewed with regard to theiviszalisation capabilitiesaiSee ,
CharGer , GraphViz , GVFandVGJ. aiSee [1] proved to be the by far most suitable one.
Some of its advantages:

fully configurable visualisations (colors, shapes, layett.);

excellent on-screen display, with zoom- and scrollingtfess;

various export options (for example, in Postscript- and iR-@rmat);

availability for multiple computer platforms; and
e student license conditions.

Most ofaiSee s sophisticated features, like graph layout algorithmsafitrary graphs, are not
even used WitltCARGOTRE#sualisations.

2.7 Related Solutions

Prior to the development of Smute has there been an extamesigarch with regard to existing soft-
ware suitable for the specification and implementation atfions processing recursively struc-
tured data. The existing software solutions which have lbeend and reviewed in this research
are at best partially suited for this task. This section giga overview and discusses common
insufficiencies.

Smute-related solutions have typically one of the follagviwo backgrounds:

e The solution is intended for parser-generation and is eggro provide support for the
transformation of parse-trees.

e The solution provides programming language specificati@hampilation support.

The solution which is closest to meeting the requirementsalled TXL (Transformation by
Example,www.txl.ca) [8] and belongs to the latter category. It is one of the fewugm
related solutions where transformations are entirely esged in a language designed for this
purpose. The more common case is a mixture of using a newdaegand an existing program-
ming language. One of the better-suited examples with pgesgeration background is ANTLR
(www.antlr.org) [20]. The following is a list of other software packagestthave been re-
viewed:

e AnaGram
(www.parsifalsoft.com)

23

ASHSDFMeta Environment
(www.cwi.nl/projects/MetaEnv)

ClearParse
(www.clearjump.com)

EAG(Extended Affix Grammars Project)
(www.cs.kun.nl/"kees/eag)

Elkhound
(www.cs.berkeley.edu/"smcpeak/elkhound)

Gentle
(www. first.gmd.de/gentle)

Haskell Language
(www.haskell.org)

iburg
(www.cs.princeton.edu/software/iburg)

IParse
(home.planet.nl/"faase009/MM.html)

Precc
(vl.fmnet.info/precc)

ProGrammar
(www.programmar.com)

SLK Parser Generator
(www.parsers.org)

SPIRIT
(spirit.sourceforge.net)

Stratego Language (Strategies for Program Transformation)
(www.stratego-language.org)

STYX
(www.speculate.de/styx)

SYNTAX System
(www-rocq.inria.fr/oscar/www/syntax/syntax-eng.htm)

Visual Parse++
(www.sand-stone.com)

While these software packages are related to Smute, nonidble for the specification of func-
tions processing recursively structured data as requaecdetluctions-to-QBFs. The following is
a list of typical insufficiencies:

e The package does not introduce a new language, but onlyrawdsting code of an existing
programming language. This has several severe disademtagluding the problem of
recursive function calls (as discussed on page 10).

24

e There is no support for identifier-related operations, aagthe introduction of new unused
variables or the substitution of variables. This is true dbrthe reviewed languages. It
is either not possible to implement such operations, or tiaybe implemented only via
extremely inefficient workarounds (linear search, etc.).

e The language-design makes (runtime- or memory-)efficisnglémentations impossible.
For example, there are languages following a functionat@ggh instead of a procedural
(imperative) one. For the functions typically implementeith Smute this is unnecessary
and reduces efficiency.

e The package does not distinguish between textual spewmficat data and its recursive
structure. This usually has the effect of ill-suited repraation of data during transforma-
tions.

e The language is missing modularity, e.g, all specificatioase to be provided within one
file.

e The language is not powerful enough—it only supports a teltand of operations on
recursively structured data, e.g., syntactic patterrcmegplacements. There are too many
presumptions with regard to, for example, the tree-tralers

Although in many cases aimed at different goals, Smute caisée as replacement for some of
the software packages listed above. Most of Smute’s festlike support for identifier operations
and for visualisation of recursively structured data, separt from existing solutions.

25

Chapter 3

Invoking Smute Functions

The user-interface to Smute Functions is to a large extewniged by Smute. This saves work for
Smute Function Developers, but also allows for a uniforngasa Smute Functions. This chapter
documents the uniform usage. Section 3.1 lists the negestegors for Smute Function invocation,
from obtaining the necessary files to the execution of Smutefons via the Smute Interpreter.
These steps are illustrated with a running example. A cohgrsive description of Smute Launch
Files follows in Section 3.2. It includes their Backus-Né&um.

3.1 Step-by-Step Smute Function Usage

The steps of Smute Function invocation are illustrated withfollowing trivial running exam-
ple: For arithmetic expressions a Smute Function User wantisualise the grammar-dependent
CARGOTREE Although the respective Smute Function is rather useieisswell-suited for the
illustration of general Smute Function invocation prinefp

Step 1: Gather the necessary files and read the documentation

Smute Functions are usually distributed in the form of SniRéekages. The most important
files in a Smute Package are the Smute Moduldmfh’-files) containing the desired Smute
Functions. Apart from these Smute Modules a Smute Packaimatly contains additional files
like the following:

e additional Smute Modules containing Smute Functions treatalled from within the main
Smute Functions (in other words: Smute Modules from the oidgecy tree);

e Compiled Grammar Tables.€gt ’-files) in order to support the specification of data in the
respective languages;

e example Smute Launch Files invoking Smute Functions of that8 Package;
e example data instance files in binary format or text formatt a
e documentation files.

For each Smute Module all the additional Smute Modules ieddp on (if any) are required.
Usually these additional Smute Modules are part of the Sfatkage. In some cases however,
due to copyright reasons, it might be up to the Smute Fundfieer to obtain additional Smute
Modules. Missing Smute Modules are reported to the SmutetlkumUser on Smute Function
invocation.

Most Smute Packages already contain the Smute Interpréterothers it must be obtained
separately. In the latter case care has to be taken to cho®seitrect Smute Interpreter Edition.
For Smute Packages not requiring a special Smute Intergdition, any edition suffices.

26

Here is a summary of the standard procedure for gatheringaebessary files:
1. Obtain the Smute Package (Smute Modules plus other files).
2. Find out about the following:

(a) Is the Smute Package self-contained, or are there adlalits mute Modules or Smute
Packages required? In the latter case, where can thoseéoaddifiles be obtained
from?

(b) Is the Smute Interpreter contained in the Smute Packdigeat, is a special Smute
Interpreter Edition required, and if so, which one?

According to the answers to these questions it might be sacg$o obtain additional files.
Note that it might be necessary to repeat this step for asditiSmute Packages or Smute
Modules.

Example 3.1n the running example the Smute Package consists of thafiolg files:

m_devutil.tmm
expr.cgt
smute.exe
|0000.txt
expr00.txt
readme.txt

e “mdevuti.tmm ”is a Smute Module. Smute Module-filenames always have prefix
and suffix ‘tmm’. As it is the only Smute Module of this Smute Package, it is Bmute
Module which exports the desired Smute Function creatirsgiatisations of grammar-
dependenCARGOTREE

e “expr.cgt ”is a “Compiled Grammar Table”. Compiled Grammar Tables laf¢.R-
parsing tables created by GOLD Parser Builder [3gxgr.cgt " is an LALR-parsing
table for arithmetic expressions.

e “smute.exe ”is the Smute Interpreter (Windows version).

e “l0000.txt "is an example Smute Launch File.
e “expr00.txt " is an example input specification, i.e., a specification wfasithmetic
expression.

e “readme.txt "is a documentation file. In this trivial example it just €tatthat the func-
tion for CARGOTREHRisualisation is calledumpCargoTree and that the Smute Package
is self-contained, i.e., that no additional files are regplirlt also documents the syntax for
input specifications. d

Step 2: Prepare a working directory

The Smute Interpreter is a command-line program which dspatits input files in the ‘cur-

rent directory’, and writes all output files to that diregtofThe following files are read by the
Smute Interpreter: Smute Launch Files, Smute Modulés '-files), Compiled Grammar Ta-
bles (‘cgt ’-files), and external data specification files. It is recomude to retain all these files

27

in one directory, which should be the ‘current directorytfa time of running the Smute Inter-
preter. Documentation files are of course unaffected by thetS Interpreter and can be stored in
different locations.

Example 3.2For the running example all the files as listed in Example 3elassumed to be
copied to one directory. d

Step 3: Write data specifications and a Smute Launch File

Which parameters a Smute Function takes and how they ardiegdéas explained in the Smute
Package documentation. The typical way of learning abquitidata specification syntax is to
take a look at example specifications. For the details thet&Rackage documentation should be
read: It contains the Backus-Naur forms of the accordingifipation languages.

For input data specified in a Smute Launch File, the syntardsichented with the respective
Smute Interpreter Edition.

In many cases the easiest way of writing new Smute Launch Eil® copy existing example-
Smute Launch Files and alter them.

Example 3.Fxample Smute Launch Fild0000.txt " is listed below:

(1) /I example translation launch file

(2) <expr0> = #load("expr00.txt","expr.cgt")
3

(4) loadmodules(devutil);

5)

(6) devutil:DumpCargoTree(expr0,40);

Obvserve the following structure of a Smute Launch File:
1. Data declaration and/or specification;
2. Smute Module load declaration;
3. Smute Function calls.

Line comments start with//' ”. Line (2) states that data identifieeXprO " is assigned the con-
tent of file “expr00.txt ", which is parsed with the LALR-parsing-tableXpr.cgt ”. Thus
“expr0 " identifies aCARGOTRERB a grammar-depende@ARGOTREEcheme. In lin€6)
this CARGOTREE then passed as first parameter to Smute Fun&tionpCargoTree of Smute
Module “mdevutil.tmm ”. Note that in a Smute Module reference the prefix*and the suffix
“.tmm " are omitted. The second parameter determines the filenthe output-file—for exam-
ple, for value40 a file named tree0040.gdl " is created. Ling(4) declares which Smute
Modules are used. This declaration mainly serves the awageaf which Smute Modules are
required, including potential Smute Modules from the deleercy tree. Thelbadmodules -
declaration is not handled very strictly by the Smute Intetgr: For Smute Modules missing in the
declaration only a warning-message is issued. The synt&mite Launch Files is documented
in full detail in Section 3.2.1 on pages 31ff.

Data specification fileéxpr00.txt " consists of the following line:

2*X"2+3*y

It is the specification of arithmetic expressian’ + 3y. Now it should be obvious how to specify
new input data, e.g., arithmetic expressidf>¢ + 7bc:

1The line-numbers are not part of the Smute Launch File, biytamided here for referencation purposes.

28

a"(4*b+5*c)+7*b*c

If this is saved aséxprOl.txt ", then it can be passed to the Smute FuncBampCargoTree
by altering the Smute Launch File as follows:

/I example translation launch file
<expr0> = #load("expr00.txt","expr.cgt")
<exprl> = #load("exprOl.txt","expr.cgt")

loadmodules(devutil);

devutil:DumpCargoTree(expr0,40);
devutil:DumpCargoTree(exprl,41);

g

Generally it is not necessary to be careful with specification a Smute Launch File or in
text files used as input data: For example, in the case of padtmute Module-names or Smute
Function-names a notification about their non-existenéssised. Only with the specification of
Smute Function parameters care needs to be taken, as tiereyjse-checking

I WARNING !

There is no type-checking whatsoever for parameters pass8thute Functions.
In all of the following cases the Smute Interpreter crashes:

e An INTEGERparameter is passed wher€ARGOTRELE expected.

¢ A CARGOTRERarameter does not comply with the exped@ARGOTREFR
Scheme (for example, an arithmetic expression is providethe place of ;
propositional formula).

T

e Fewer parameters than expected are specified.

Step 5: Launch the Smute Functions and view the results

A Smute Function can be invoked by passing a Smute LaunchoRihe Smute Interpreter, i.e., the
name of a Smute Launch File is the only (command-line-)patanof the Smute Interpreter. The
sequence of Smute Function calls specified in the Smute lbakiteis then executed one after an-
other. For each Smute Function messages indicate as toevlittias been successfully executed
or why execution failed. Usually each invoked Smute Fumcticeates one or more output-files. In
most cases the names of such output-files are determined bte $uanction parameters. Along-
side files in other formats many Smute Functions create tutpGraph Description Language
(GDL). GDL-files permit to visualise the output with the ghayisualisation softwaraiSee [1].

Example 3.£Dpen a command-line interface. Example for many Windowsiweas: Click “Start”,
then “Run...”, type tmd.exe ", then click “OK”. Change the current directory to the Smute
working directory. Call the Smute Interpreter and pass tinets Launch File.

>cd smutedir
>smute 10000.txt

Now successful executions, errors, and warnings are rghofthe output should be as follows:

2The implementation of parameter type-checking would negots of additional effort and is currently not planned.

29

Figure 3.1:CARGOTREIiB grammar-depende@ARGOTREEcheme

Executing function "devutil:DumpCargoTree(expr0,40)".
Done.

As explained in Example 3.3, for Smute FunctibompCargoTree the second parameter deter-
mines the output-filename, here—for a valug@tit is “tree0040.gdl ”. In this example the
output is the visualisation of the grammar-dependeARGOTREEepresenting the expression
stored in file 'expr00.txt ", namely22? 4 3y. Loading file tree0040.gdl " with aiSee
yields the visualisation of Figure 4.2. O

3.2 Smute Launch File Documentation

Smute Functions are launched by writing the appropriateipations, namely which function to
invoke with which input, in a Smute Launch File, and then pagthe Smute Launch File to the
Smute Interpreter.

Examples for Smute Launch Files have been given in SectliornT8is section provides a short
summary of Smute Launch Files. Smute Launch Files consistreé parts: Thdata declaration
part, thel oadnodul es declaration and thefunction calls In the data declaration part data
instances are assigned to variables. Currently there af®llbwing options for assignment:

e A #load -instruction with one parameter, namely the filename of aifl€EARGOTREE
Exchange Format. This file is automatically loaded in©ARGOTRERy Smute.

e A #load -instruction with two parameters, the first the filename aéxd-file in an LALR-
language, and the second the filename of a Compiled Gramniée, Tice., an LALR-
parsing-table for that language. The text-file is autonadlfidoaded into aCARGOTREE
in grammar-depende@ARGOTREBcheme by Smute.

e Various Smute Interpreter Editions allow the specificatibtext in certain LALR-languages
directly within the Smute Launch File. Such a specificat®mutomatically loaded into a
CARGOTRER grammar-dependel@ARGOTREEcheme by Smute.

30

In the loadmodules declaration the required Smute Modules are listed. All theute
Modules referenced in the function call part should bedisptus additional Smute Modules from
the dependency trees. Theadmodules declaration serves the awareness of required Smute
Modules.

The function calls part contains a sequence of Smute Functils. Instances of recursively
structured data are passed via the variables of the datardtch part.

3.2.1 Smute Launch File Syntax

Printed below is the Backus-Naur form for Smute Launch Fil8tart symbol iscomb. The
grammar is specified in the GOLD Parser [3] Backus-Naur formiax. Letter andDigit are
predefined character sets for GOLD Parser containing A®@#rk a-z, A-Z and ASCII digits 0-9
respectively. A line-comment is started withh (two slashes). Block-comments are currently
not supported, neither in Smute Launch Files, nor in dataipation files parsed by the Smute
Interpreter.

{hexdigit} = {Digit} + [abcdefABCDEF]
{id_head} = {Letter} + []

{id_tail} = {id_head} + {Digit}
{stringchar} = {any}-["]

decliteral = {Digit}+

hexliteral = Ox{hexdigit}+

id = {id_head}{id_tail}*
string = ™ {stringchar}* "™

I combined specification

<comb> .= <declarray> <modloade> <fnccallarray>

I declarations

<cmdparam> .:= decliteral
| hexliteral
| string
<cmdparamarray> = <cmdparam> ’,’ <cmdparamarray>
| <cmdparam>
<cmdparamarraye> .= <cmdparamarray>
<command> n=# id '(<cmdparamarraye>)’
<declarray> ;= <decl> <declarray>
<decl> n= < id > =’ <declrhs>

31

<declrhs> ;= <command>

I module load instruction

<modidarray> ;= id ', <modidarray>

| id
<modload> .= ’loadmodules’ '(" <modidarray> ") '’}
<modloade> := <modload>

I generic rules

<numberval> ;= decliteral
| hexliteral

I (translation) function calls

<fncref> c=id 7 id

<varspec> = id
| <fncref>
| <numberval>

<varspecarray> = <varspec> ’,’ <varspecarray>
| <varspec>
<varspecarraye> = <varspecarray>
<fnccall> =id "7 id '(<varspecarraye> ') '’}
<fnccallarray> .= <fnccall> <fnccallarray>

|
For other editions than the Standard Edition the ruledfeelrhs is:

<declrhs> :’= <command>
| <data>

The rules fordata depend on the edition.

32

Chapter 4

Writing Smute Functions

Using a text-editor, Smute Function Developers write Snkutactions as sequences of Smute
Language instructions in their textual mnemonics. Fronsehtextual specifications Smute Mod-
ules can be created with the Smute Assembler.

The Smute Language with all its instructions is documente8ection 4.1. Section 4.2 de-
scribesCARGOTREEBchemes, i.e., conventions for the representation ofwlditea specific re-
cursive structure usinGQARGOTREE Data I/O for Smute Functions is covered in Section 4.3.
Section 4.4 presents guidelines for writing modular Smubeckions. Finally, Section 4.5 docu-
ments the usage of the Smute Assembiler.

4.1 The Smute Language

As has been mentioned in the Smute Function User Manual, thgeSLanguage is a machine
language for a virtual machine. This virtual machine presidunctionality that is typically re-
quired when working with recursively structured data. ttaduces an abstract layer, where it is
possible to specifyvhat should be done with the recursively structured data, witthaving to
carehowthis is done.

4.1.1 Virtual Machine Characteristics

Almost every instruction of the Smute Language operatesoaresof the virtual machine’seeg-
isters In its current version the machine has got 64 registerd) eaih a size of 32 bits. In the
Smute Language these registers are referenced with igestR00’ to * R63". Of course the ma-
chine supports all the usual 32-bit integer (arithmeti@ragions, like ‘addition’, ‘multiplication’,
‘bitwise and’, etc. Not yet available are floating-point ogtéons. Like with common micropro-
cessors there is also a status register, its flags indicttangesults of, for example, comparisons.
The virtual machine provides several so-caltedources As indicated by the name ‘resource’,
these are of limited availability. Most of these resourceguire memory on the host machine
the translation is executed on, which means limitationsedmm the host machine’s available
memory. A (register’sjlatatyperefers to the way a value is interpreted: For examiNgd,EGER
for the interpretation as integer value, ASHINTfor the interpretation as resource identifier for
a HASHINT resource. Many implementation details are hidden from theal machine layer.
For example, adding a new node t€ARGOTREEbuld fail on the host machine due to unavail-
able memory. Though the virtual machine instruction “pnei& it could not fail. Instead, such
errors are automatically treated at the implementatioariathe whole top-level Smute Function
is aborted if one occurs.

33

4.1.2 Resources
Stack

The Stackresource is one of the key-concepts of the Smute LanguagielSmute virtual ma-
chine there are currently 2 stacks, ttalling-stackand thedata-stack Whenever a subroutine
is called, thereturn addresds pushed on the calling stack. The return-address is theesslaf
the instruction following the subroutine-call. Whenevéregurn from subroutine’ instruction is
encountered, a return address is popped from the calliog atad execution continues there. For
the data-stack there are push-/pop-instructions in thet&banguage.

The important point about the stacks is their implementase: First of all, there is no
implicit stack-usage (subroutine-calling and -returniagconsidered explicit). Thus, a Smute
Function Developer has full control over the byte-size atktrequirements in the implementa-
tion. Second, the stacks are implemented as dynamic staeks)ing their size is limited only by
the available memory on the host machine. This is esseatidhe amount of stack-space actually
required for the execution of a Smute Function is usuallypprtional to the recursive depth of
the data it processes. Especially for Smute Functions #tategursively called, unnecessary (or
unnecessarily large) stack-allocations must be avoidethey cumulate with each recursive level.

CARGOTREE

The Smute Language introduces so-call®8RGOTREE-noderesources. EverC ARGOTREE
node has @ype Additional data associated withGARGOTREBode depends on its type. There
are the following typesl8, 132, andSTRidentify datatypes, hamely 8-bit-integer, 32-bit integer
and byte-array respectively):

type full name associated data
ConCls Classic Connectorid (18), child-array
ConArr Array Connector id (18), child-array
Int Integer Leaf id (18), value(132)
Str String Leaf id (18), value(STR)
LocalCon Local Connector id (I18), child-array
Locallnt Local Integer Leaf id (18), value(132)
LocalStr Local String Leaf id (18), value(STR)

GrammarRule Grammar Rule rule-id (132), child-array

GrammarToken Grammar Token token-id(132), value(STR),
line (132), column(132)

PseudoRoot Pseudo Root child-array (of size 1)

Smute is designed to support the introduction of new nogesyin future versions. Con-
Cls, ConArr, LocalCon, GrammarRule, and PseudoRoot nogbgh are classified amner
CARGOTRERodes, have an associated array (array=sl3ef references to oth€@ ARGOTREE
nodes. ACARGOTRERode referenced from an inner node is caltddd of the inner node.
The individual children are referenced with the array-idéor » children valid indices are
0,1,...,n — 1. A CARGOTRERodeaq is calledparentof CARGOTREREodeb if b is a child
of a. CARGOTRERodes that are not inner nodes, i@EARGOTRERBodes without children, are
calledleaves A CARGOTRERodeb is calleddescendanof CARGOTRERodeq if

e b is achild ofa or
e there is a child: of a of which b is a descendant.

A CARGOTRERodeq is calledascendanbf CARGOTRERodeb if b is a descendant of.

34

If a CARGOTRERodeq is fully initialised, i.e., if all the data associated wiihis initialised,
including—in the case of an inner node—all children, andlidascendants of. are fully ini-
tialised as well, them together with all its descendants is calle@ARGOTREE, anda is called
theroot of that CARGOTREHM the Smute Language the identifier CFEARGOTREI& the identi-
fier of its root-node. As opposed @ARGOTRERode instructions, foEARGOTRERSstructions
it is essential that the node and all its descendants aregyapitialised in order to represent a
CARGOTREE

A CARGOTREgenerated by the Smute parser consists of GrammarRule amdn@rToken
nodes only, and reflects with this data structure the sytraxof the parsed sentence. Grammar-
Rule and GrammarToken nodes cannot be created with insingadf the Smute Language.

The ‘local’ nodes LocalCon, Locallnt and LocalStr are irted for local (or temporary) usage
in Smute Functions. With the local nodes a Smute Functionassign node-ids independent
of already existing ids for non-local nodes. This can be ulse$pecially for Smute Functions
working with differentCARGOTREEBchemes.

Currently there is no difference between ConCls and Conédes. However, ConCls should
be used where for a given id the number of children is fixed,ABowhere for a given id there
are multiple possibilities for the number of children. Thstigiction is made because Smute
(theoretically) does not need to store the number of chilfioe ConCls with each node, but only
once for a given id. Thus storage space could be saved.

Obviously, node-types, ids, and the tree-structure (odilgare intended for the representation
of the structure of recursively structured data instan€ée. restriction for ids to be 8-bit only has
to do with memory-efficiency of the implementation. For maoynmon recursive data structures,
like propositional formulas and arithmetic expressiohss awvailable id range is absolutely suffi-
cient. For Smute Function Developers working with reciesiata structures where 8-bit ids are
insufficient there are the following options:

e Structure information is stored in newly added Integer lesavThis option is not recom-
mended, because of more intricate access to the data andecessary increase of memory
usage on the implementation side.

e The Smute Language author is contacted, demanding thermeplation of new node-types
with 32-bit ids (a relatively simple task).

PseudoRoot nodes (which are not to be confused with Dr. Buegamachinery nodes)
are provided for Smute Functions performing node replacém#é prior to node replacement
a CARGOTREE re-rooted with a PseudoRoot, then BARGOTRE&original root can be re-
placed just like any other node (by assigning a new child eogharent node). This permits a
considerable simplification of node replacement.

Smute Functions witilCARGOTREBEput andCARGOTRE&utput might usecCARGOTREE
nodes of an inpuEARGOTREIRh an outputC ARGOTRESHT this is the case then the Smute
Function is said tautilise the inputCARGOTREor each inpuEARGOTREE& Smute Function
description must clearly state whether it is utilised or. not

CARGOTREEMEM

The CARGOTREEMHEAN important conception mainly for the implementatioyela but also
aids in writing clear and simple specifications in the Smwaduage.

Obviously nodes o€CARGOTREEequire storage locations. Each time a ©@ARGOTREE
node is created, it is allocated fromGARGOTREEMEWhat is, nodes are not allocated from
a “global memory”, but grouped to allocations froBARGOTREEMEMThe important point
is that nodes camot be deallocated fronrCARGOTREEMEMnNstead, it is always a complete
CARGOTREEMEWMiIch is discarded.

35

For Smute Function Developers this has the advantage thaeV@ARGOTREE consisting
possibly of hundreds of thousands of nodes, can be discarileane single built-in instruction
of the Smute Language (if all the nodes are allocated fronsaineeCARGOTREEMEM

As a PseudoRoot node is always of temporary nature (attdmifede applying replacement
functions, removed afterwards), PseudoRoot nodesatallocated fromCARGOTREEMEM
Instead, PseudoRoot nodes are resources of their own aaddbe discarded separately.

ARRAY

The Smute Language providesARRAY resource with the very basic array functionality: indexed
element access. MIRRAYis always an array of 32-bit-values. For tABRRAYfesource the array-
size is determined at the time of array-creation. There isuilt-in support for growing/shrinking
array-sizes. If required by Smute Function Developergjréutersions of the Smute Language
could implement such functionality with either t#dRRAYdatatype, or a new array datatype.
The ARRAYresource can, for example, be useful in Smute Functionkimgwith arrays of
recursively structured data where such arrays are not ptré secursive data structure.

Hash resources

The Hash-resources are provided for functions working wettursively structured data that in-
volves identifiers, like variable names in arithmetic esgiens. Typical identifier-operations are
illustrated with the following example expression:

X 2+3*x+5*%y
Essential tasks (required, for example, in substitutiams)

e re-identification tell that in subexpressioB*x the same variable is referenced like in
subexpressior™2 , while in subexpressioB*y it is a different one.

e collection tell that there are 2 variables occurring in the expressama that their names
arex andy.

The Hash-resources and its associated instructions of ii&eSLanguage provide these fea-
tures. The name, Hash-resources, comes from an efficieénmeptation technique, namely

hash-tables. Hash-table knowledge is not required for alenstanding of the Smute Language.
For those interested anyway, almost any computer scietetedebook features hash-tables. The
following resources are subsumedHeshresources:

HASHSTRCQL

HASHINT,

HASHINTCOL
HASHINTSTACK

The different Hash-resources are very similar, with onigrglvariations of their features. In fact,
some Hash-resources only extend other Hash-resourcasdsaAs simpler Hash-types allow for
a more efficient implementation, Smute Function Developboaild always use the Hash-resource
with minimal sufficient functionality.

For a Hash-resource there is a collection of so-caltedh-entries Upon creation, Hash-
instances are empty. An arbitrary number of Hash-entriasbeasequentially added. For every
Hash-entry there is an identifier, called #ey The crucial property of the Hash-resources is that
any key can occur only once in a Hash, i.e., at most in one ldasly: In addition to the key
arbitrary data can be stored in a Hash-Entry.

36

Those Hash-resources witBTR in their name work with string-keys, while those withNT’
in their name work with integer-keys. Each Hash-resource itaown Hash-entry-resources,
namelyHASHSTRCOLENTRMASHINTENTRYetc.

For a Hash-instance and any string or any integer respsgtitteere are two possibilities:
Either the string/integer is a key occurring in the Hash énor it does not occur. One can find
out by passing the string or integer to a ‘Find’-instructiarich returns the Hash-entry if there is
one with that key, and otherwise informs about the key’s accurrence. In the Smute Language
the instructions for adding entries to Hashes never add arkag than once. Instead, for a key
already occurring in the Hash the according existing Haghyes returned. It should be obvious
how these features can be used for re-identification.

Those Hash-resources wit@OL (abbreviating ‘collection’) in their name permit to broas
through all the Hash-entries. This can, for example, be tsedpy the keys occurring in the Hash
to an array. When browsing throughCOL-Hashes, entries appear in the order they have been
added. They can be browsed forward (starting with the firsth-entry that has been added) and
backward (starting with the last Hash-entry that has beeled)d Obviously, aCOL-Hash only
extends the original Hash’s features. For example, tharetling one can do withASHINTthat
could not be done with HASHINTCOLAs mentioned above, a Smute Function Developer should
always use the Hash-resource with minimal sufficient fumality, as simpler Hash-resources are
implemented more efficiently. FA{ASHINT and HASHINTCOLthis means that if browsing
through Hash-entries is not required, tHéASHINT should be used.

In order to describe thd ASHINTSTACKresource a detail of the previously introduced Hashes
needs to be focussed. So far only adding Hash-entries arevietj them has been mentioned.
Though there might be situations where one wants to add ay &mhporarily, which means it
must be removable again. In this context it should be knoven iththe implementation Hash-
entries are not allocated and deallocated individuallytfie same reasons this is not done with
CARGOTRERodes, namely allocation overhead. Instead, all Hastiesnare deallocated ‘at
once’ when the Hash gets discarded. So while a Hash-entig deuremoved (it is technically
possible), it would still waste memory. Thus adding and réimg of Hash-entries should not
occur at a frequent basis with these Hash-types. Currdmthetare no instructions for removing
Hash-entries from these Hash-resources anyway.

HASHINTSTACHKrovides the same featurestd8SHINTplus a special Hash-entry-removal.
With HASHINTSTACHt is possible to always remove the last Hash-entry (the aseddded to
the Hash). The removed Hash-entry daowd waste any memory and for the implementation
allocation efficiency is practically the same as WtASHINT. HASHINTSTACKs typically used
when processing identifiers of @GARGOTRE#ith the following method: Th&CARGOTREE
traversed with depth-first traversal, integer-identifeaes added on entering a subtree and removed
on leaving a subtree. Then it is always the last Hash-enatyrtbeds to be removed, which means
thatHASHINTSTACKSs sufficient.

HASHSTRandHASHSTRSTACKesources are postponed to future versions.

4.1.3 Instructions

This section lists all the Smute Language instructionstalitts with an overview and is followed
by detailed descriptions on page 42. The instructions atecby their type of functionality.

e Flow control instructions:

— Label (p.42): Declare a Smute Module position identifier (label).
— BSR(p.42): Branch To Subroutine.

lwith the other Hash-resources this is not possible, bectugse the entries can only be retrieved with their keys.
As these keys are unknown, every potential key would have tested for occurrence in the Hash. There are however
232 integer keys, and a theoretically infinite number of striegk

37

BRA(p.42):
BEQ(p.42):
BNE(p.42):
BLT (p.42):
BGT(p.43):
BLE (p.43):
BGE(p.43):

Unconditional Branch.

Conditional Branch (Equal).
Conditional Branch (Not Equal).
Conditional Branch (Less Than).
Conditional Branch (Greater Than).
Conditional Branch (Less or Equal).
Conditional Branch (Greater or Equal).

JumpTab (p.43): Conditional branches determined by a registetisea
FarBSR (p.44): Far Branch To Subroutine.

FarBRA (p.44): Far Unconditional Branch.

Return (p.44): Return From Subroutine.

e Basic data transfer instructions:

— Clear (p.44): Set a register @x00000000 .

Set (p.44):

Set a register toxFFFFFFFF.

Swap (p.44): Exchange two registers’ contents.

Move (p.44): Copy the content of one register to another register
Movelmm(p.45): Set a register to a specified integer value.

e Arithmetic instructions:

— CMR(p.45): Compare the integer values of two registers.
— TST (p.45): Test if a register contains valQg00000000 .

Add (p.45):
Sub (p.45):
Mul (p.45):
Div (p.45):
Mod (p.46):
And (p.46):

Add the integer value of one register to that of aapthgister.
Subtract the integer value of one register from ¢fiainother register.
Multiply the integer value of one register by thatobther register.
Divide the integer value of one register by that afther register.
Perform the integer modulo operation on two regsstealues.
Perform the operation “bitwise and” on two registealues.

— Or (p.46): Perform the operation “bitwise or” on two registetaues.

XOr (p.46):
Not (p.46):

Perform the operation “bitwise exclusive or” on tregisters’ values.
Perform the operation “bitwise not” on a registessue.

Addimm (p.47): Add an integer value to the integer value of a registe
Sublmm (p.47): Subtract an integer value from the integer valueregster.
— Addl (p.47): Add 1 to the integer value of a register.

— Subl (p.47): Subtract 1 from the integer value of a register.

— AndTST (p.47): CommandAnd andTST in one.

— LSL1 (p.47): Logical Shift Left (1 bit).

— LSR1 (p.48): Logical Shift Right (1 bit).

e Stack instructions:

Push (p.48): Allocate Stack-space.

Pop (p.48):

Deallocate Stack-space.

MoveToStack (p.48): Store a register to the Stack.

MoveFromStack (p.48): Store a stack-value to a register.

LSP (p.49):

Load the Stack Pointer into a register.

38

e Array instructions:

— NewArray (p.49): Create a neARRAY

— DiscardArray (p.49): Discard al\RRAY

— ArraySize (p.49): Return the size of ahRRAY
— ArraySet (p.49): Set atARRRAYelement.

— ArrayGet (p.49): Get arARRAYelement.

¢ CARGOTREEMHMtructions:

— NewCargoTreeMem (p.49): Create a ne@ARGOTREEMEM
— DiscardCargoTreeMem (p.50): Discard £LARGOTREEMEM

¢ CARGOTRERode instructions:

— NewConClslmm (p.50): Create a new ConCls-node (Classic Connector).

— NewConArrimm (p.50): Create a new ConArr-node (Array Connector).

— Newintimm (p.50): Create a new Int-node (Integer Leaf).

— NewsStrimm (p.50): Create a new Str-node (String Leaf).

— NewlIntimmSetVal (p.50): Create a new Int-node (Integer Leaf) and initialisealue.
— NewPseudoRoot (p.51): Create a new PseudoRoot node.

— DiscardPseudoRoot (p.51): Discard a PseudoRoot node.

— GetNodeType (p.51): Return the type of @GARGOTRERo0de.

— GetNodeld (p.51): Return the id of CTARGOTRERode.

— SetNodeldlmm (p.51): Set the id of CLARGOTRERode.

— SetNodeld (p.51): Set the id of CARGOTRERo0de.

— GetRuleld (p.51): Return the rule-id of a GrammarRule-node.

— GetNumChildren (p.52): Return the number of children oZARGOTRERode.
— GetChildimm (p.52): Return a child-node of@ARGOTRERode.

— GetChild (p.52): Return a child-node of@GARGOTRERo0de.

— GetRuleChildimm (p.52): Return a child-node of a GrammarRule-node.

— GetRuleChild (p.52): Return a child-node of a GrammarRule-node.

— Plugimm (p.52): Set &£ARGOTREBRode’s child node.

— Plug (p.52): Set CARGOTRERo0de’s child node.

— RefToken (p.53): Re-reference the value of a GrammarToken-node inadde.
— RefStr (p.53): Re-reference the value of a Str-node in anothen&le.

— GetVal (p.53): Return the value of an Int-node.

— SetVal (p.53): Set the value of an Int-node.

SetVallmm (p.53): Set the value of an Int-node.

¢ HASHSTRCOInstructions:

— NewHashStrCol (p.53): Create a nelASHSTRCQL

— DiscardHashStrCol (p.53): Discard &/lASHSTRCQL

— HashStrColAdd (p.54): Add a neWHASHSTRCOLENTRY return the existing one.

— HashStrColFind (p.54): For a given key find the appropridd@SHSTRCOLENTRY

— MoveToHashStrColEntry (p.54): Store a register toASHSTRCOLENTRMta-field.

— MoveFromHashStrColEntry (p.54): Store &alASHSTRCOLENTRMta-field to a
register.

— HashStrColNumEntries (p.54): Return AdlASHSTRCO& number of entries.

39

HashStrColBrowselnit (p.54): Get a handle for browsing througiHASHSTRCO&
entries.

HashStrColBrowseNext (p.54): Browse to the next entry ot dASHSTRCQL
HashStrColBrowsePrev (p.55): Browse to the previous entry o BASHSTRCQL

e HASHINTInstructions:

NewHashint (p.55): Create a neWASHINT.

DiscardHashint (p.55): Discard &dASHINT.

HashIintAddimm (p.55): Add a newHASHINTENTRor return the existing one.
HashIntAdd (p.55): Add a newHASHINTENTRYor return the existing one.
HashintFind (p.55): For a given key find the appropriddSHINTENTRY
HashIntEntryGetKey (p.56): Return the key of HASHINTENTRY
MoveToHashIntEntry (p.56): Store a register tolASHINTENTR\data-field.
MoveFromHashiIntEntry (p.56): Store dASHINTENTRdata-field to a register.
HashIintNumEntries (p.56): Return &lASHINTs number of entries.

e HASHINTCOLnstructions:

NewHashIntCol (p.56): Create a neWASHINTCOL

DiscardHashiIntCol (p.56): Discard /lASHINTCOL

HashintColAddimm (p.56): Add a newHASHINTCOLENTRWYr return the existing one.
HashIntColAdd (p.57): Add a newHASHINTCOLENTRWr return the existing one.
HashIntColFind (p.57): For a given key find the approprid#dSHINTCOLENTRY
HashIntColEntryGetKey (p.57): Return the key of HASHINTCOLENTRY
MoveToHashIntColEntry (p.57): Store a register tolASHINTCOLENTRWata-field.

MoveFromHashIntColEntry (p.57): Store d/ASHINTCOLENTRWata-field to a
register.

HashIntColNumEntries (p.57): Return &d/ASHINTCOLs number of entries.

HashiIntColBrowselnit (p.57): Get a handle for browsing througiHASHINTCOls
entries.

HashIntColBrowseNext (p-58): Browse to the next entry oftdASHINTCOL
HashIntColBrowsePrev (p-58): Browse to the previous entry of BASHINTCOL

o HASHINTSTACHKnstructions:

NewHashintStack (p.58): Create a neWASHINTSTACK

DiscardHashIntStack (p.58): Discard &d/ASHINTSTACK

HashintStackAdd (p.58): Add a neWwHASHINTSTACKENTRUYT return the existing one.
HashintStackRemove (p.58): Remove the top-of-the-stadlASHINTSTACKENTRY

HashIntStackFind (p.59): For a given key find the appropriate
HASHINTSTACKENTRY

MoveToHashIntStackEntry (p.59): Store a register toASHINTSTACKENTRY
data-field.

MoveFromHashIntStackEntry (p.59): Store AHHASHINTSTACKENTRUuata-field to a
register.

o CARGOTREiastructions:

CopyCargoTree (p.59): Create a copy of GBARGOTREE

CollectIntVval (p-59): Create a neWASHINTCOLcontaining selected Int-values of a
CARGOTREE

40

— Hashintval (p.60): Create a neWdASHINT containing selected Int-values of a
CARGOTREE

— HashintvalCont (p.60): Add selected Int-values ofGARGOTRE® aHASHINT.

— SubstintAscA (p.60): Perform substitution of selected Int-values @ARGOTREE
according to HHASHINTCOL

— CopySubstintAscA (p.60): Create a copy of @GARGOTREIR which selected Int-values
are replaced according taHASHINTCOL

— CopySubstintAscB (p.60): Create a copy of @GARGOTREIR which selected Int-values
are replaced according toHBASHINT.

— CopyColSubstintAscB (p.61): Create a copy of @ARGOTREIM which selected
Int-values are replaced according telASHINT. The hash is extended if necessary.

— CopyColSubstintAscBM (p.61): Create a copy of @GARGOTREI& which selected
Int-values are replaced according telASHINT. The hash is extended if necessary.

¢ CARGOTREE&Xport instructions:

— WriteCargoTreeCGE (p.61): Store £ARGOTREIAto a file InCARGOTREExchange
Format.

e CARGOTREHsualisation export instructions:

— WriteCargoTreeGDL (p.61): Store &£ARGOTREIAto a file in Graph Description
Language.

— WriteCargoTreeGDLImm (p.61): Store £ ARGOTREIAto a file in Graph Description
Language.

e Developer instructions:

DevDumpReg(p.62): Dump a register.

DevDumpRegNote (p.62): Dump a register and mark it with a note-character.
DevDumpRegs(p.62): Dump subsequent registers.
DevDumpHashintCollmm (p.62): Dump eHASHINTCOL

DevDumpStack (p.62): Dump entries of the main data stack.

DevDumpResourceSummary (p.62): Dump a summary of the number of resources in use.
e Smute Interpreter Logic Edition special instructions:
— WriteCargoTreeBooleRaw (p.63): Store a QBEEARGOTREIEto a file in raw ‘boole’

QBF-format.

— WriteCargoTreeBooleRawlmm (p.63): Store a QBFEARGOTREIAto a file in raw
‘boole’ QBF-format.

— WriteCargoTreeBoole (p.63): Store a QBFEARGOTREIAto a file in ‘boole’
QBF-format.

— WriteCargoTreeBoolelmm (p.63): Store a QBEEARGOTREI&to a file in ‘boole’
QBF-format.

— WriteCargoTreeGDL _QBFS(p.63): Store a QBF&ARGOTREIAto a file in Graph
Description Language.

— WriteCargoTreeGDL _QBFSImm(p.63): Store a QBFE&ARGOTREIEto a file in Graph
Description Language.

— WriteCargoTreeGDL _QBF(p.63): Store a QBEEARGOTREIAto a file in Graph
Description Language.

— WriteCargoTreeGDL _QBFImm(p.64): Store a QBFSARGOTREIAto a file in Graph
Description Language.

This concludes the overview. Following next are the ingtaucdescriptions.

41

Label

Declare a Smute Module position identifier (label).

SynopsisiLabel (label);

Declares a label. Labels are used with flow control instamdtilike (conditional or unconditional)
branchesBRA BGE ...). Labels must be module-wide unique. Functions arbingtelse than
(entry-point-)labels one caBSR(branch-to-subroutine) to. Smute Module exports are dedla
with the function’s entry-point-labellabel is a non-empty string of arbitrary length which must
comply with the following naming conventions:

e The first character is one of a-z, A-Z (lowercase or uppertstar), or U’ (underscore).
e The other characters (if any) are one of a-z, A-Z(underscore), or 0-9 (digit).

Note thatLabel is a textual mnemonic for Smute Module position specificatiad referencing,
but not a real command.

BSR

Branch To Subroutine.

Synopsis:BSRlabel);

Pushes the position following tt@SRcommand onto the calling-stack and continues execution
at the position referenced witabel. Also seeLabel andReturn .

BRA

Unconditional Branch.
Synopsis:BRAlabel);
Continues execution at the position referenced vatiel. Also seelabel .

BEQ

Conditional Branch (Equal).

Synopsis:BE(label);

Continues execution at the position referenced Wattel if the Z (Zero) condition flag is set.
Otherwise continues with the instruction followiBEQ Also seeLabel andCMP

BNE

Conditional Branch (Not Equal).

Synopsis:BNHlabel);

Continues execution at the position referenced Vatiel if the Z (Zero) condition flag is cleared.
Otherwise continues with the instruction followiBINE Also seeLabel andCMP

BLT

Conditional Branch (Less Than).

SynopsisBLT(label);

Continues execution at the position referenced Wattel if the V (Overflow) condition flag is
set and the Z (Zero) condition flag is cleared. Otherwiseinaat with the instruction following
BLT. Also seeLabel andCMP

42

BGT

Conditional Branch (Greater Than).

Synopsis:BGTlabel;

Continues execution at the position referenced \ebrel if both the V (Overflow) condition flag
and the Z (Zero) condition flag are cleared. Otherwise capsnwith the instruction following
BGT Also seeLabel andCMP

BLE

Conditional Branch (Less Or Equal).

Synopsis:BLE(label);

Continues execution at the position referenced Vaitiel if at least one of the V (Overflow) condi-
tion flag and the Z (Zero) condition flag is set. Otherwise ta@s with the instruction following
BLE. Also seelLabel andCMP

BCGE

Conditional Branch (Greater or Equal).

Synopsis:BGElabel);

Continues execution at the position referenced Wattel if the V (Overflow) condition flag is
cleared or the Z (Zero) condition flag is set. Otherwise cw@s with the instruction following
BGE Also seeLabel andCMP

JunpTab

Conditional branches determined by a register’s value.
Synopsis: JumpTab(regsrg

valO,labelQ,

valllabel],

A JumpTab has the same effect like the sequence of commands

Movelmm(valO,regcmp);
CMP(regsrc,regcmp);
BEQ(label0);
Movelmm(vall,regcmp);
CMP(regsrc,regcmp);
BEQ(labell);

wherevalQ, vall are integers. Not only is using tReimpTab command more convenient, the
Smute Interpreter also interprets it more efficiently th@ode segment like the one above: What-
ever the actual value oégsrg the execution effort is the same. However, there are puisibes
for using this command. Lefall be the lowest (unsigned integer order) aath be the highest of
the integersalQ, vall, etc. Then the prerequisites can be expressed as follows:

e It is known thatregsrctakes no value lower thawall and no value higher thawvalh. If
this condition is not met, the Smute Function crashes duhiagxecution of thdumpTab
command.

¢ valhvall is a small value, i.e., all the different values are from withrelatively small range.
This constraint is caused by storage requirement, whictojsgstional to yalh-vall). If the
range is too large the Smute Module cannot be successfidgnased.

43

Integer identifiers that could be used to determine flow cbrghould consequently always be
taken from a small range. This is especially trueG&RGOTREEBcheme node-ids, which other-
wise cannot be used dampTab-parameters.

Far BSR

Far Branch To Subroutine.

Synopsis:FarBSR(modulglabel);

Pushes the position following tHearBSR-command onto the calling-stack and continues exe-
cution at the position referenced witibel in the Smute Module referenced withodule The
modulereference is written without the prefixn’ and the suffix :tmm’ of module-filenames.
Also seelLabel andReturn .

Far BRA

Far Unconditional Branch.

Synopsis:FarBRA(modulglabel);

Continues execution at the position referenced \dtel in the Smute Module referenced with
module Themodulereference is written without the prefirt’ and the suffix :tmm’ of module-
filenames. Also sekabel .

Ret urn

Return From Subroutine.

SynopsisReturn ;

Pops a return-position from the calling-stack and consnexecution there. Also s&&SRand
FarBSR.

d ear

Set a register t6x00000000 .
SynopsisClear (regds);
Setsregdstto valueOx00000000 .

Set

Set a register tOXFFFFFFFF.
Synopsis:Set (regds);
Setsregdstto valueOXFFFFFFFF.

Swap

Exchange two registers’ contents.
Synopsis:Swap(regQregl);
Exchanges the contents of registerg0andregl

Mbve

Copy the content of one register to another register.
Synopsis:Move(regsrgregds);
Setsregdstto the content ofegsrc regsrcis left unchanged.

44

Movel mm

Set a register to a specified integer value.
Synopsis:Movelmm(val,regds);
Setsregdstto val.

CWP

Compare the integer values of two registers.
Synopsis:CMHRregQregl);
Compares the integer neglto the integer irreg0 (unsigned integer order) and sets the condition
flags Z (Zero) and V (Overflow) accordingly.
Examples (lowercase letters z and v for cleared, uppercasef):
reg0 regl condition flags

1 2 zZv (for exampleBGTwould branchBLE would not)

2 2 Zv (for exampleBEQwould branchBLT would not)

3 2 zVv (for exampleBLE would branchBGTwould not)
TST

Test if a register contains val@x00000000 .

Synopsis:TST(reg);

Sets the Z (Zero) condition flag ieg contains valu@®x00000000 , otherwise clears it. In most
cases the instruction followingST is eitherBEQor BNE

Add

Add the integer value of one register to that of another tegis

Synopsis:Add(regsrgregds);

Adds the integer ofegsrcto the integer ofregdst (the result is stored there). The addition is
performed withinZox100000000 - This command doeasot affect condition flags.

Sub

Subtract the integer value of one register from that of agratbgister.

Synopsis:Sub(regsrgregds);

Subtracts the integer oégsrcfrom the integer ofegdst(the result is stored there). The subtraction
is performed withirZox100000000 - This command doesot affect condition flags.

Mul

Multiply the integer value of one register by that of anotresgister.

Synopsis:Mul (regsrgregds);

Multiplies the integer ofegsrchy the integer ofegdst(the result is stored there). The multiplica-
tion is performed withirZox100000000 - This command doesot affect condition flags.

D v

Divide the integer value of one register by that of anothgister.

SynopsisDiv (regsrgregds);

Divides the integer ofegdstby the integer ofegsrg the result is stored iregdst The usual integer
division is applied, which means that, if the integer val@ieegsrcis called: and the integer value

of regdstis calledj, the result is@. The behaviour for aegsrcvalue of0 is undefined,
calling Div with that value must be avoided. This command doatsaffect condition flags.

45

Mod

Perform the integer modulo operation on two registers’ ealu

Synopsis:Mod(regsrgregds);

If the integer value ofegsrcis calledi and the integer value oégdstis calledj, thenj mod i is
calculated and stored in registegdst The behaviour for eegsrcvalue of0 is undefined, calling
Modwith that value must be avoided. This command dugsaffect condition flags.

And

Perform the operation “bitwise and” on two registers’ value
Synopsis:/And(regsrcregds);
“bitwise and” is defined as follows:

bitO bitl bitwiseand(bit0,bit1)

0 0 0
0 1 0
1 0 0
1 1 1

Itis applied to the 32 bits of registemgsrcandregdstand stored in registeegdst This command
doesnot affect condition flags.

O

Perform the operation “bitwise or” on two registers’ values
Synopsis:Or (regsrgregds);
“bitwise or” is defined as follows:

bitO bitl bitwiseor(bit0,bitl)

0 0 0
0 1 1
1 0 1
1 1 1

It is applied to the 32 bits of registemgsrcandregdstand stored in registeegdst This command
doesnot affect condition flags.

XO

Perform the operation “bitwise exclusive or” on two registevalues.
SynopsisXOr(regsrgregds);
“bitwise exclusive or” is defined as follows:

bit0 bitl bitwisexor(bitO,bit1)

0 0 0
0 1 1
1 0 1
1 1 0

Itis applied to the 32 bits of registemgsrcandregdstand stored in registeéegdst This command
doesnot affect condition flags.

Not

Perform the operation “bitwise not” on a register’s value.
Synopsis:Not (regds);
“bitwise not” is defined as follows:

46

bit bitwisenot(bit)

0o 1

1 0
It is applied to the 32 bits of registeegdst(and stored there). This command doed affect
condition flags.

Addl mm

Add an integer value to the integer value of a register.

Synopsis:Addimm(val,regds);

Adds the integeval to the integer ofegdst(the result is stored there). The addition is performed
within Zox100000000 - This command doesot affect condition flags.

Subl mMm

Subtract an integer value from the integer value of a registe

Synopsis:Sublmm(val,regds);

Subtracts the integefal from the integer ofegdst(the result is stored there). The subtraction is
performed withinZox100000000 - This command doeasot affect condition flags.

Add1

Add 1 the integer value of a register.

Synopsis:Add1(regds);

Adds 1 to the integer ofegdst (the result is stored there). The addition is performed iwith
Zox100000000 - This command doesot affect condition flags.

Sub1l

Subtract 1 from the integer value of a register.

Synopsis:Sub1(regds);

Subtracts 1 from the integer oégdst(the result is stored there). The subtraction is performed
within Zox100000000 - This command doesot affect condition flags.

AndTST

CommandAnd andTSTin one.
Synopsis: AndTST(regsrgregds);
Has exactly the same effects as

And(regsrc,regdst);
TST(regdst);

SeeAnd andTST for further description.

LSL1

Logical Shift Left (1 bit).

Synopsis:LSL1(regds);

Shifts the bits ofregdstto the left by 1 bit. The rightmost bit (bit 0) is cleared. Thismmand
doesnot affect condition flags.

47

LSR1

Logical Shift Right (1 bit).

SynopsisLSR1(regds);

Shifts the bits ofregdstto the right by 1 bit. The leftmost bit (bit 31) is cleared. $wommand
doesnot affect condition flags.

Push

Allocate Stack-space.

Synopsis:Push (humdat);

numdatais an integer specification determining the number of 3Ztaitage locations allocated
on the stack. Also séeop, MoveToStack andMoveFromStack .

Pop

Deallocate Stack-space.

Synopsis:Pop(numdatyg;

numdatais an integer specification determining the number of 3Ztoitage locations deallocated
from the stack. It must exactly match a previdegsh. Also seePush, MoveToStack and
MoveFromStack .

MoveToSt ack

Store a register to the Stack.

Synopsis:MoveToStack (regsrgstackidy;

Stores the registaegsrcto one of the storage locations that have been allocatedRuigh . The
storage location is selected with an indgackidx If n storage locations have been allocated with
Push (n), then available storage location indices @E. .. ,» — 1. Using an invalid storage index
causes a runtime crash (i.e., it is not detected by the Smsgembler). The data stored to the
stack can be re-retrieved wiMoveFromStack . Also seePush, Pop andMoveFromStack .

MoveFr onfst ack

Store a stack-value to a register.

Synopsis:MoveFromStack (stackidxregds);

Stores the value from the stack-location referenced stdbkidxto the registeregdst This only
makes sense if a value has been stored there beforeM®e=ToStack for an explanation of
stack storage location selection with paramstackidx Here is example code that implements a
swap, that is exchanging two registerR00 andR01) values, without affecting any other regis-
ters:

Push(1);
MoveToStack(R00,0);
Move(R01,R00);
MoveFromStack(0,R01);
Pop(1);

This example is intended for illustration. The code is najuieed, as, for example, the@wap
instruction could be used instead. Also saesh, Pop andMoveToStack .

48

LSP

Load the Stack Pointer into a register.

Synopsis.LSP(regds);

Nothing can be done with the Stack Pointer except comparifggeCMB. This can be used for
detecting a “top (bottom) of the stack reached”-situatihis instruction will rarely be required.

NewAr r ay

Create a nevARRAY

Synopsis:NewArray (regsizeregds);

Creates a new uninitialised array. The array-size is deteurby the integer value in registeag-
size an array identifierARRAYatatype) gets stored in registegdst Like all resourcesARRAS
should be discarded as soon as they are not required any AlsceseeDiscardArray

Di scar dArray

Discard alMARRAY
SynopsisDiscardArray (regarray);
Discards theARRAYreferenced via registeegarray. Also seeNewArray .

ArraySi ze

Return the size of aARRAY
SynopsisiArraySize (regarray,regds);
Stores the size of thARRAYreferenced via registeegarrayin registerregdst

Ar r ay Set

Set anARRAYelement.

Synopsis:ArraySet (regarrayregsrgregidy);

regarray is the register identifying thARRAY regsrcis the register containing the value written
to the arrayregidxis the register containing th®RRAYdestination index. For an array of size
valid array indices are, 1,...,n — 1.

ArrayGCet

Get anARRAYelement.

SynopsisArrayGet (regarray,regidxregds);

regarrayis the register identifying thARRAY regidxis the register containing tieRRAYsource
index, regdstis the register thARRAYvalue gets written to. For an array of sizevalid array
indices are), 1,...,n — 1.

NewCar goTr eeMem

Create a neWCARGOTREEMEM

Synopsis:NewCargoTreeMem(regds);

Creates a neW\CARGOTREEMEMd stores its identifier in registeegdst Like all resources,
CARGOTREEMEINhould be discarded as soon as they are not required any mdse see
DiscardCargoTreeMem

49

Di scardCar goTreeMem

Discard aCCARGOTREEMEM

Synopsis:DiscardCargoTreeMem (regmen;

Discards theCARGOTREEMEdlerenced via registeegmem All CARGOTRERodes allocated

in that CARGOTREEMEIve auto-discarded, all references to such nodes becomakdinAt-
tempts of accessing such nodes after ttBNRGOTREEMHisls been discarded is a severe pro-
gramming error, resulting in untreated runtime failureagtr). Also se®dlewCargoTreeMem.

NewCondC sl mm

Create a new ConCls-node (Classic Connector).
Synopsis:NewConClsimm(numchildregmenregdstid);

Creates a new Classic Connector within @ARGOTREEME®erenced with registaegmem
The number of at first uninitialised children is determingchbbmchild the id is set tad. numchild
must contain an integer in the range 1 to 6558%as to be an integer in the range 0 to 255. The
resulting node identifier is stored in registegdst Also seePlug andPlugimm .

NewConAr r | mm

Create a new ConArr-node (Array Connector).

Synopsis:NewConArrimm (regnumchilgregmenregdstid);

Creates a new Array Connector within ttARGOTREEME®ferenced with registelegmem

The number of at first uninitialised children is determingdlie integer in registeregnumchild

the id is set tdd. regnumchildmust contain an integer in the range 1 to 6558%as to be an
integer in the range 0 to 255. The resulting node identifistased in registeregdst Also see
Plug andPlugimm .

Newl nt | nm

Create a new Int-node (Integer Leaf).

Synopsis:NewIntimm (regmenyregdstid);

Creates a new Integer Leaf within ttRGOTREEMEMerenced with registeegmemand sets
its id toid. id has to be an integer in the range 0 to 255. The resulting naadifieér is stored in
registerregdst The Integer Leaf’s value remains uninitialised. Also Se¢val andGetVal .

NewSt r | mm

Create a new Str-node (String Leaf).

Synopsis:NewStrimm (regmenyregdstid);

Creates a new String Leaf within tiBARGOTREEMEderenced with registeegmemand sets
its id toid. id has to be an integer in the range 0 to 255. The resulting nagifiedr is stored in
registerregdst The String Leaf’s value remains uninitialised.

Newl nt | nmSet Val

Create a new Int-node (Integer Leaf) and initialise its galu

SynopsisNewIntimmSetVal (regmenyregdstid,regval);

Creates a new Integer Leaf within ttBARGOTREEMERBferenced with registelegmem and
sets its id toid. id has to be an integer in the range 0 to 255. The resulting nastdifier is
stored in registeregdst The Integer Leaf’s value is initialised with the integerefjisterregval
NewlintimmSetVal is a shortcut for using the two instructioddewIntimm and SetVval .
Also seeGetVal andSetVval .

50

NewPseudoRoot

Create a new PseudoRoot node.

Synopsis:NewPseudoRoot (regnodechilgregds);

Creates a new PseudoRoot, sets its only child to the nodenefed via registaegnodechild and
stores the PseudoRoot identifier in registgdst Note that a PseudoRoot-node is a resource of
its own and needs to be discarded when not used anymore. ddRiscardPseudoRoot

Di scar dPseudoRoot

Discard a PseudoRoot node.
Synopsis.DiscardPseudoRoot (regnodé;
Discards the PseudoRoot-node referenced via regeggande Also seeNewPseudoRoot .

Get NodeType

Return the type of CARGOTRERode.

Synopsis:GetNodeType (regnoderegds);

Returns in registeregdstthe type identifier of the node referenced via regisegnode This
instruction can be used WitBARGOTRERodes of any type.

Get Nodel d

Return the id of € ARGOTRERode.

Synopsis:GetNodeld (regnoderegds);

Returns in registeregdstthe id of the node referenced via registegnode Supported node types
are ConCls, ConArr, Int, Str, LocalCon, Locallnt, and L&tal Other types do not provide an id.

Set Nodel dl mm

Set the id of CARGOTRERode.

Synopsis:SetNodeldimm (regnodeid);

For the node referenced via registegnodethe id is set tdd. Supported node types are ConCls,
ConArr, Int, Str, LocalCon, Locallnt, and LocalStr. Othgpés do not provide an idd has to be
an integer in the range 0 to 255.

Set Nodel d

Set the id of CARGOTRERode.

Synopsis:SetNodeld (regnoderegid);

For the node referenced via registegnodethe id is set to the value of registexgid. Supported
node types are ConCls, ConArr, Int, Str, LocalCon, Localémd LocalStr. Other types do not
provide an id.regid must contain an integer in the range 0 to 255.

Cet Rul el d

Return the rule-id of a GrammarRule-node.
Synopsis:GetRuleld (regnoderegds);
Returns in registeregdstthe rule-id of the GrammarRule-node referenced via regisg;mode

51

Get NuntChi | dren

Return the number of children ofGARGOTREEode.

Synopsis:GetNumChildren (regnoderegds);

Returns in registeregdstthe number of children of the node referenced via registgnode
Supported node types are ConCls, ConArr, LocalCon, Pseamtoithd GrammarRule. Also see
GetChild andGetChildimm

Get Chi | dl mm

Return a child-node of BARGOTRERode.

Synopsis:GetChildimm (regnodeidx,regds);

Returns in registeregdstthe child with indexidx of the node referenced via registegnode
Supported node types are ConCls, ConArr, LocalCon and B&aad. For a node with children,
valid child indices aré®, 1,...,n — 1. Also seePlug andPlugimm .

Get Chi |l d

Return a child-node of BARGOTRERode.

Synopsis:GetChild (regnoderegidxregds);

Registemregidx contains valuedx. GetChild returns in registeregdstthe child with indexidx

of the node referenced via registegnode Supported node types are ConCls, ConArr, LocalCon
and PseudoRoot. For a node withchildren, valid child indices are, 1,...,n — 1. Also see
Plug andPlugimm .

Get Rul eChi | dl nm

Return a child-node of a GrammarRule-node.

Synopsis:GetRuleChildimm (regnodeidx,regds);

Returns in registeregdstthe child with indexdx of the GrammarRule-node referenced via register
regnode For a GrammarRule-node withchildren, valid child indices aré, 1,...,n — 1.

Get Rul eChi | d

Return a child-node of a GrammarRule-node.

Synopsis:GetRuleChild (regnoderegidxregds);

Registeregidxcontains valuédx. GetRuleChild returns in registeregdstthe child with index
idx of the GrammarRule-node referenced via regisdgnode For a GrammarRule-node with
children, valid child indices aré, 1,...,n — 1.

Pl ugl mm

Set aCARGOTRE#Rode’s child node.

Synopsis:Plugimm (regnodeparentegnodechilgdx);

The node referenced via registegnodechildis set theidx" child of the node referenced via
registerregnodeparen{“plugged into the parent node”). The parent node must beobrigon-
Cls, ConArr, LocalCon or PseudoRoot. For a parent node witthildren, valid indices are
0,1,...,n — 1. Also seeGetChild andGetChildimm

Pl ug

Set aCARGOTRE#Rode’s child node.
SynopsisPlug (regnodeparentegnodechilgregidy);

52

Registemegidx contains valuédx. The node referenced via registegnodechildis set theidx™"
child of the node referenced via registegnodeparen{“plugged into the parent node”). The
parent node must be one of ConCls, ConArr, LocalCon or P$eookd For a parent node with
children, valid indices ar®, 1, ...,n — 1. Also seeGetChild andGetChildimm

Ref Token

Re-reference the value of a GrammarToken-node in a Str-node

Synopsis:RefToken (regnodesrctokeregnodedsts)t

Sets the value of the Str-node referenced via regisgrodedststto the value of the Grammar-
Token referenced via registeggnodesrctokenThe string is not copied, but only re-referenced.
Care has to be taken to avoid premature discarding of thregsirhile still being referenced.

Ref Str

Re-reference the value of a Str-node in another Str-node.

Synopsis:RefStr (regnodesrcstregnodedsts)

Sets the value of the Str-node referenced via regrsgamodedststito the value of the Str-node
referenced via registeegnodesrcstr The string is not copied, but only re-referenced. Care as t
be taken to avoid premature discarding of the string whilebgting referenced.

Cet Val

Return the value of an Int-node.

Synopsis:GetVal (regnoderegds);

Returns in registeregdstthe value of the Int-node referenced via regisegnode Also see
SetVal andSetVallmm .

Set Val

Set the value of an Int-node.

Synopsis:SetVal (regvalregnode;

Sets the value of the Int-node referenced via regisgmodeto the integer in registaegval Also
seeGetVal andSetVallmm .

Set Val | rm

Set the value of an Int-node.

Synopsis:SetVallmm (val,regnode;

Sets the value of the Int-node referenced via registgnodeto val. Also seeGetVal and
SetVal .

NewHashSt r Col

Create a neWHASHSTRCQL

Synopsis:NewHashStrCol (regds);

Creates a new emplyASHSTRCO4&nd stores its identifier in registegdst Also seeDiscard-
HashStrCol

D scar dHashSt r Col

Discard aHASHSTRCQL
Synopsis.DiscardHashStrCol (reghash;
Discards theHASHSTRCOLeferenced via registeeghash Also seeNewHashStrCol .

53

HashSt r Col Add

Add a newHASHSTRCOLENTRY return the existing one.

SynopsisHashStrColAdd (reghashregnodestnumdataregds);

This instruction uses the value of the Str-node referenig@degnodestras string identifier. If a
hash-entry with this string key is found in the hash refeeeindareghashit is returned in register
regdstand the Z (Zero) condition flag is set. Otherwise a new hasty-&rith numdataadditional
data-fields is created, its identifier returned in registgdst and the Z condition flag is cleared.

HashSt r Col Fi nd

For a given key find the appropriatbASHSTRCOLENTRY

SynopsisHashStrColFind (reghashregnodestrregds);

Registeregnodestireferences a Str-node, its string-valugdé HashStrColFind tries to find

a hash-entry with keyal in the HASHSTRCOteferenced via registeeghash If such an entry is
found, its identifier is stored in registeggdstand the Z condition flags is cleared. Otherwise the
Z condition flag is set and registergdstremains unaffected.

MoveToHashSt r Col Entry

Store a register to HASHSTRCOLENTRMta-field.

Synopsis:MoveToHashStrColEntry (regentryregsrgidxdsd;

Stores the value of registezgsrcin theidxdsf" data-field of the hash-entry referenced via register
regentry For aHASHSTRCOLENTRAMth »n data-fields valid indices af¢ 1,...,n — 1. Also
seeMoveFromHashStrColEntry

MoveFr omHashSt r Col Entry

Store aHASHSTRCOLENTRMéta-field to a register.

Synopsis:MoveFromHashStrColEntry (regentryidxsrgregds);

Stores thadxsrd" data-field of the hash-entry referenced via registgentryin registerregdst
For aHASHSTRCOLENTRwth »n data-fields valid indices af® 1,...,n — 1. Also seeMove-
ToHashStrColEntry

HashStr Col NunEntri es

Return aHASHSTRCO& number of entries.

SynopsisHashStrColINumEntries (reghashregds);

Returns the number of entries (keys) of the hash referenieaegisterreghashin registerregdst
For example, upoRlASHSTRCOkLreation the number of entries is zero.

HashSt r Col Br owsel ni t

Get a handle for browsing throughHBASHSTRCO4 entries.
Synopsis:HashStrColBrowselnit (reghashregds);

Stores a handle for browsing through the entries of the hdettified with registereghashin
registerregdst This handle can then be used witlashStrColBrowseNext andHashStr-
ColBrowsePrev

HashSt r Col Br owseNext

Browse to the next entry of HASHSTRCQL
SynopsisHashStrColBrowseNext (reghashregentry);

54

regentry may either contain &{lASHSTRCOLENTRuentifier or a browse-handle as returned
by HashStrColBrowselnit . In the latter case it is attempted to return the hash’s firsyge
otherwise it is attempted to return the entry following thedfied entry. If such a hash-entry (first
or following) exists, the Z flag is cleared and the entry-tifer is returned in registeregentry
Otherwise the Z flag is set and registegentryremains unaffected.

HashSt r Col Br owsePr ev

Browse to the previous entry ol ASHSTRCQL

Synopsis:HashStrColBrowsePrev (reghashregentry);

regentrymay either contain HASHSTRCOLENTRd®entifier or a browse-handle as returned by
HashStrColBrowselnit . In the latter case it is attempted to return the hash’s laste
otherwise it is attempted to return the entry preceding pleeified entry. If such a hash-entry (last
or preceding) exists, the Z flag is cleared and the entrytifilemis returned in registeregentry
Otherwise the Z flag is set and registegentryremains unaffected.

NewHashl nt

Create a netHASHINT.

Synopsis:NewHashint (regds);

Creates a new empttASHINT and stores its identifier in registezgdst Also seeDiscard-
Hashint .

Di scar dHashl nt

Discard aHASHINT.
Synopsis.DiscardHashint (reghash;
Discards theHASHINTreferenced via registeeghash Also seeNewHashint .

Hashl nt Addl rm

Add a newHASHINTENTRYr return the existing one.

Synopsis:HashintAddimm (reghashregvalnumdataregds);

Registerregval contains integeval. If a hash-entry with keyal is found in the hash referenced
viareghash it is returned in registaregdstand the Z (Zero) condition flag is set. Otherwise a new
hash-entry withumdataadditional data-fields is created, its identifier returnedeigisteregdst
and the Z condition flag is cleared.

Hashl nt Add

Add a newHASHINTENTRYor return the existing one.

Synopsis:HashIntAdd (reghashregvalregnumdataegds);

This instruction is identical tblashintAddimm , except that the number of additional data-fields
is not specified directly but through the registegnumdata

Hashl nt Fi nd

For a given key find the appropriatlASHINTENTRY

Synopsis:HashiIntFind (reghashregvalregds);

Registemregval contains integeval. HashintFind tries to find a hash-entry with kexal in the
hash referenced via registeaghash If such an entry is found, its identifier is stored in registe
regdstand the Z condition flags is cleared. Otherwise the Z conditiey is set and registeegdst
remains unaffected.

55

Hashl nt Ent r yGet Key

Return the key of &{lASHINTENTRY

SynopsisHashIntEntryGetKey (reghashentryegds);

Retrieves the integer key from tHeéASHINTENTRYeferenced via registaeghashentryand
stores it in registeregdst This instruction will rarely be required, as the hash-gmgrusually
retrieved with its key, which hence does not need to be read the entry. This instruction is
only of relevance if the hash-entry identifier is tempoyasiiored while the key gets lost.

MoveToHashl nt Entry

Store a register to HASHINTENTR data-field.

Synopsis:MoveToHashIntEntry (regentryregsrgidxds);

Stores the value of registezgsrcin theidxdsf" data-field of the hash-entry referenced via register
regentry For aHASHINTENTRYvith n data-fields valid indices a@¢ 1,...,n — 1. Also see
MoveFromHashIntEntry

MoveFr omHashl nt Entry

Store aHASHINTENTR\data-field to a register.

Synopsis:MoveFromHashintEntry (regentryidxsrcregds);

Stores thadxsrd" data-field of the hash-entry referenced via registgentryin registerregdst
For aHASHINTENTRYvith n data-fields valid indices a® 1,...,n — 1. Also seeMoveTo-
HashIntEntry

Hashl nt NunmEntri es

Return aHASHINTs number of entries.

SynopsisHashIntNumEntries (reghashregds);

Returns the number of entries (keys) of the hash referenieettgisterreghashin registerregdst
For example, upo ASHINT-creation the number of entries is zero.

NewHashl nt Col

Create a newtHASHINTCOL

Synopsis:NewHashIntCol (regds);

Creates a new empBASHINTCOland stores its identifier in registagdst Also seeDiscard-
HashintCol

Di scar dHashl nt Col

Discard aHASHINTCOL
SynopsisDiscardHashIntCol (reghash;
Discards theHASHINTCOLreferenced via registeeghash Also seeNewHashIntCol

Hashl nt Col Addl nm

Add a newHASHINTCOLENTRUT return the existing one.

Synopsis:HashIntColAddimm (reghashregvalnumdataregds);

Registerregval contains integeval. If a hash-entry with kewal is found in the hash referenced
viareghash it is returned in registeiegdstand the Z (Zero) condition flag is set. Otherwise a new
hash-entry witmumdataadditional data-fields is created, its identifier returnedegistemregdst
and the Z condition flag is cleared.

56

Hashl nt Col Add

Add a newHASHINTCOLENTRUT return the existing one.

Synopsis:HashIntColAdd (reghashregvalregnumdataegds);

This instruction is identical tblashintColAddimm , except that the number of additional data-
fields is not specified directly, but through the regisegnumdata

Hashl nt Col Fi nd

For a given key find the appropriatbASHINTCOLENTRY

Synopsis:HashIntColFind (reghashregvalregds);

Registeregval contains integeval. HashintColFind tries to find a hash-entry with kesal in
the hash referenced via registeghash If such an entry is found, its identifier is stored in registe
regdstand the Z condition flags is cleared. Otherwise the Z conditiey is set and registeegdst
remains unaffected.

Hashl nt Col Ent r yGet Key

Return the key of #{lASHINTCOLENTRY

Synopsis:HashIntColEntryGetKey (reghashentryegds);

Retrieves the integer key from theASHINTCOLENTRMferenced via registeeghashentryand
stores it in registeregdst This instruction will rarely be required, as the hash-gmérusually
retrieved with its key, which hence does not need to be read the entry. This instruction is
only of relevance if the hash-entry identifier is tempoyasiiored while the key gets lost.

MoveToHashl nt Col Entry

Store a register to HASHINTCOLENTRYata-field.

Synopsis:MoveToHashIntColEntry (regentryregsrgidxds);

Stores the value of registezgsrcin theidxdst" data-field of the hash-entry referenced via register
regentry For aHASHINTCOLENTRWith n data-fields valid indices at@ 1,...,n — 1. Also
seeMoveFromHashIntColEntry

MoveFr omHashl nt Col Entry

Store aHASHINTCOLENTRWYata-field to a register.

Synopsis:MoveFromHashIntColEntry (regentryidxsrgregds);

Stores thadxsrd" data-field of the hash-entry referenced via registgentryin registerregdst
For aHASHINTCOLENTRWith n data-fields valid indices afe 1,...,n — 1. Also seeMove-
ToHashIntColEntry

Hashl nt Col NunEntri es

Return aHASHINTCOLs number of entries.

Synopsis:HashIntColINumEntries (reghashregds);

Returns the number of entries (keys) of the hash refereneaegistereghashin registerregdst
For example, upoRIASHINTCOLcreation the number of entries is zero.

Hashl nt Col Br owsel ni t

Get a handle for browsing throughHBASHINTCOISs entries.
Synopsis:HashIntColBrowselnit (reghashregds);
Stores a handle for browsing through the entries of the hefdrenced via registeeghashin

57

registerregdst This handle can then be used witlashintColBrowseNext andHashint-
ColBrowsePrev

Hashl nt Col Br owseNext

Browse to the next entry of AASHINTCOL

SynopsisHashIntColBrowseNext (reghashregentry;

regentrymay either be 8IASHINTCOLENTRMentifier or a browse-handle as returnedHash-
IntColBrowselnit . In the latter case it is attempted to return the hash’s fifsyeotherwise
it is attempted to return the entry following the specifiethenf such a hash-entry (first or follow-
ing) exists, the Z flag is cleared and the entry-identifieetsimed in registeregentry Otherwise
the Z flag is set and registezgentryremains unaffected.

Hashl nt Col Br owsePr ev

Browse to the previous entry ofdASHINTCOL

Synopsis:HashIntColBrowsePrev (reghashregentry;

regentrymay either be 8IASHINTCOLENTRMentifier or a browse-handle as returnedHash-
IntColBrowselnit . In the latter case it is attempted to return the hash’s latsy,eotherwise
itis attempted to return the entry preceding the specifiéy.elfisuch a hash-entry (last or preced-
ing) exists, the Z flag is cleared and the entry-identifieetsimed in registeregentry Otherwise
the Z flag is set and registeggentryremains unaffected.

NewHashl nt St ack

Create a netHASHINTSTACK

SynopsisiNewHashIntStack (regnumdataegds);

Creates a new emptlASHINTSTACKand stores its identifier in registezgdst The integer in
registerregnumdatadetermines the number of additional data-fields with eatty dmust be set
to zero if no additional data-fields are required). Also BérardHashintStack

Di scar dHashl nt St ack

Discard aHASHINTSTACK
SynopsisDiscardHashintStack (reghash;
Discards theHASHINTSTACHKeferenced via registeeghash Also seeNewHashlIntStack

Hashl nt St ackAdd

Add a newHASHINTSTACKENTRQf return the existing one.

SynopsisHashIntStackAdd (reghashregvalregds);

Registerregval contains integeval. If a hash-entry with keyal is found in the hash referenced
viareghash it is returned in registaregdstand the Z (Zero) condition flag is set. Otherwise a new
hash-entry is created, its identifier returned in registgdst and the Z condition flag is cleared.

Hashl nt St ackRenpve

Remove the top-of-the-sta¢kASHINTSTACKENTRY

Synopsis:HashIntStackRemove (reghash;

Removes the most recently added hash-entry from the hasteneed via registaeghash This
hash must be nonempty.

58

Hashl nt St ackFi nd

For a given key find the appropriattASHINTSTACKENTRY

Synopsis:HashIntStackFind (reghashregvalregds);

Registerregval contains integewal. HashIntStackFind tries to find a hash-entry with key
val in the hash referenced via registeghash If such an entry is found, its identifier is stored
in registerregdstand the Z condition flags is cleared. Otherwise the Z conditiag is set and
registerregdstremains unaffected.

MoveToHashl nt St ackEntry

Store a register to HASHINTSTACKENTRYata-field.

Synopsis:MoveToHashIntStackEntry (regentryregsrgidxds);

Stores the value of registezgsrcin theidxdsf" data-field of the hash-entry referenced via register
regentry For aHASHINTSTACKENTRWith n data-fields valid indices afe 1,...,n — 1. Also
seeMoveFromHashintStackEntry

MoveFr omHashl nt St ackEntry

Store aHASHINTSTACKENTR¥ata-field to a register.
Synopsis:MoveFromHashintStackEntry (regentryidxsrcregds);

Stores thadxsrd" data-field of the hash-entry referenced via registgentryin registerregdst
For aHASHINTSTACKENTRWith n data-fields valid indices are,1,...,n — 1. Also see
MoveToHashIntStackEntry

CopyCar goTr ee

Create a copy of EBARGOTREE

Synopsis:CopyCargoTree (regmenyegsrgregds);

A new CARGOTREE created and its identifier is stored in registgydst All nodes are allocated
from the CARGOTREEMEBEpECcIfied through registeegmem The newCARGOTREIS identical
to the one referenced via registegsrc

Col | ect | nt Val

Create a newHASHINTCOLcontaining selected Int-values ofZARGOTREE
Synopsis:CollectintVal (regtreeregintid,regds);

Creates a newHASHINTCOLand stores its identifier in registezgdst id is the integer speci-
fied in registemegintid, andtree the CARGOTREEeferenced via registeegtree The resulting
HASHINTCOLcontains all the values of Int-nodes withidfrom treetree (these values are the
keys). Each hash-entry has one additional data-field, tongathe value's occurrence-index,
resulting from depth-first left-to-right traversal. Thecacrence-indices start with 0. The follow-
ing is an example for occurrence-indices. For greater cehgnsibility occurrence-indices for
string-identifiers are given—note th@bllectintVal works with integer-identifiers: In the
arithmetic expression

c*(3*a+c 2+y+a"2+d+c"3)
the occurrence-indices af, ¢, d andy are as follows:

variable-identifier occurrence-index
a

N WO

c
d
y

59

Hashl nt Val

Create a newHASHINT containing selected Int-values ofGARGOTREE

SynopsisHashintVal (regtreeregintid,regds);

Creates a newlASHINT and stores its identifier in registezgdst id is the integer specified in
registerregintid, andtree the CARGOTREEferenced via registeegtree The resultingHASH-
INT contains all the values of Int-nodes with id from treetree (these values are the keys).
Each hash-entry has one additional data-field, contaitiagralue’s occurrence-index, resulting
from depth-first left-to-right traversal. Occurrenceiges$ start with 0. An example is given with
CollectintVal

Hashl nt Val Cont

Add selected Int-values of GARGOTRE® aHASHINT.

SynopsisHashiIntValCont (regtreeregintid,reghashregoffsey;

Letid be the integer specified in registegintid, tree the CARGOTREEeferenced via register
regtree offsetthe integer in registeregoffset and registereghashcontain an identifier for the
HASHINTto which new hash-entries are added. All the values of latesowith idid from tree
tree(these values are the keys) are added to the hash. Each mgwha&nbne additional data-field,
the value stored there is as follows: For the first entry addfetiere is one) it isoffset for the
next one it isoffset+ 1, for the next oneffset+ 2, and so on. Ifn new entries are added, then
registerregoffsetis set tooffset+ n. The most common scenario is the specification obfiset
which is identical to the number of hash-entries upon imsipn-invocation. The entry-addition
order is determined by depth-first left-to-right traversal

Subst | nt AscA

Perform substitution of selected Int-values dCARGOTRE&ccording to eHASHINTCOL
Synopsis:SubstintAscA (regtreereghashregintid,regadd;

Let id be the integer specified in registagintid, tree the CARGOTREEeferenced via register
regtree andadd the integer in registeregadd Registemreghashmust contain &eHASHINTCOL
identifier where for each entry there is at least one additidata-field. For any Int-node in tree
tree with id id, if the value occurs in the hash (there is an emttyaving the value as key) it is
replaced as follows: Let(e) denote the integer stored in data-field CeofThen the replacement
value iss(e) + add Values not appearing as hash-keys remain unaffected.

CopySubst | nt AscA

Create a copy of EARGOTREIA which selected Int-values are replaced according HASH-
INTCOL.

Synopsis:CopySubstintAscA (regmenyegtreereghashregintid,regaddregds);

This instruction is a combination @opyCargoTree andSubstintAscA .Compared to using
a sequence of those two instructicdBepySubstintAscA is more efficient, as the substitution
can be performed during copying. The parameters are the aanmethe two mentioned instruc-
tions.

CopySubst | nt AscB

Create a copy of EARGOTRER which selected Int-values are replaced accordingHA8HINT.
Synopsis:CopySubstintAscB (regmenyregtreereghashregintid,regaddregds);

This instruction is identical t€opySubstintAscA , except that instead of HASHINTCOLa
HASHINTIs used.

60

CopyCol Subst | nt AscB

Create a copy of EARGOTRER which selected Int-values are replaced accordingHA8HINT.
The hash is extended if necessary.
Synopsis:CopyColSubstintAscB (regmenregtreereghashregnumhash
regintid,regaddregds);
This instruction is very similar t€opySubstintAscB . The only difference is that values not
yet occurring as hash-keys are added. LikElashintValCnt there is one additional data-field
for each new entry, as usual containing the occurrencexirifithe integer in registeregnumhash
is denotedn, then the first new entry has valuein data-field 0, the next one + 1, etc. The
entry-addition-order is determined by depth-first lefright traversal. The registeegnumhash
is updated with value + a, wherea is the number of new hash-entries added. The other parame-
ters are identical to those @fopySubstintAscB

CopyCol Subst | nt AscBM

Create a copy of EARGOTRER which selected Int-values are replaced accordingHA8HINT.
The hash is extended if necessary.
Synopsis:CopyColSubstintAscBM (regmenyregtregreghashregnumhash
regintid,regaddregmulregds);
This instruction is identical t€opyColSubstintAscB , except that a slightly different substi-
tution is performed. Leadd be the integer in registaegaddand mul be the integer in register
regmul Furthermore,;s(e) denotes data-entry O of hash-entry If e is a matching hash-entry
for the Int-value, then irCopyColSubstintAscB the value gets replaced witt{e) + add
Here however, the replacement valuesis) * mul + add This can be useful in cases where
different arrays of corresponding identifiers get intrcgtlicThe other parameters are identical to
CopyColSubstintAscB

WiteCargoTreeCCE

Store aCARGOTREIAto a file in CARGOTREExchange Format.
Synopsis:WriteCargoTreeCGE (regtreeregnumnamg

Creates a file namedrée numcge ", wherenumis a 4-digit decimal representation of the in-
teger in registeregnumname The file contains a representation of BARGOTREEferenced
via registerregtree the representation is in the standardi€8RGOTREExchange Format. Cur-
rently aCARGOTRE#&sed with this instruction must not contain GrammarRulear@narToken-
or any of the Local-nodes. There are no other restrictionthidxCARGOTREE

WiteCargoTreeGDL

Store aCARGOTREI&to a file in Graph Description Language.

Synopsis:WriteCargoTreeGDL (regtreeregnumnampe

Creates a file namedrée numgd| ", wherenumis a 4-digit decimal representation of the in-
teger in registeregnumname This file contains a description of tttARGOTRER the Graph
Description Language. AnARGOTREE&an be used with this instruction—there are no restric-
tions. The GDL file-format is used by graph visualisationwafeaiSee [1].

WiteCargoTreeGDLI mMm

Store aCARGOTREI&to a file in Graph Description Language.
Synopsis:WriteCargoTreeGDLImm (regtreenumnamig

Creates a file namedree numgdl ", where numis a 4-digit decimal representation of the
integernumname This file contains a description of t@ARGOTRER the Graph Description

61

Language. AnyCARGOTREEan be used with this instruction—there are no restrictiohise
GDL file-format is used by graph visualisation softwaiSee [1].

DevDunpReg

Dump a register.
Synopsis:DevDumpRedreg);
The value in registaegis dumped to the developer output. Itis displayed in hexat&motation.

DevDunpRegNot e

Dump a register and mark it with a note-character.

Synopsis.DevDumpRegNote(notereg);

The value in registaegis dumped to the developer output. Itis displayed in hexat@motation.

It is preceded by the ‘note’ character. The note charactetsrmined by the integeote which
contains the ASCII-code of that character. This is usefuldigtinction if the same register is
dumped in different locations.

DevDunpRegs

Dump subsequent registers.

Synopsis:DevDumpRedregfrstnumregs;

The values of registersegfrst regfrst+l, ..., regfrstrnumregsl are dumped to the developer
output. They are displayed in hexadecimal notationmregsmust be greater or equal to 1, and
set such that the range of available registers is not exdeede

DevDunpHashl nt Col | rm

Dump aHASHINTCOL

Synopsis:DevDumpHashintCollmm (reghashnumnamg

Creates a file namedhash numtxt ", where numis a 4-digit decimal representation of the
integernumname This text file contains the decimal representations ofralinteger keys from
the entries of th&élASHINTCOLreferenced via registeeghash

DevDunpSt ack

Dump entries of the main data stack.

SynopsisDevDumpStack (numdatg;

Dumps entries 0,1,. .numdatal of the current (top-of-the-stack) stack block to developutput.
Of coursenumdatamust not exceed the number of entries of that block.

DevDunpResour ceSunmmar y

Dump a summary of the number of resources in use.

Synopsis:DevDumpResourceSummary ();

For each resource-type the number of resources in use dgetedoto developer output. This
includesCARGOTREEMEMRRAY, HASHINTS, etc. Any resource-instance which is created
but not discarded by a Smute Function must be clearly doctedeA Smute Function for Smute
Function Users must always return with no resources in ub& developer instruction can help
detecting unintended resource-loss.

62

Wit eCar goTr eeBool eRaw

Store a QBFEARGOTREIBto a file in raw ‘boole’ QBF-format.
Synopsis:WriteCargoTreeBooleRaw (regtreeregnumnampe

Creates a file namedjbf numtxt ", wherenumis a 4-digit decimal representation of the integer
in registemregnumnameThis file contains the Quantified Boolean Formula referdnda register
regtree (CARGOTREK QBF-Scheme) in the format specified by QBF-solver ‘bod¢. It
contains only the formula, without variable specificatiosis.

Wit eCargoTreeBool eRawl nm

Store a QBFEARGOTREIBto a file in raw ‘boole’ QBF-format.
SynopsisWriteCargoTreeBooleRawlmm (regtreenumnamg

This instruction is identical t&WriteCargoTreeBooleRaw , except that the name-integer is
provided directly and not within a register.

Wi teCargoTreeBool e

Store a QBFEARGOTREIMEto a file in ‘boole’ QBF-format.

Synopsis:WriteCargoTreeBoole (regtreeregnumnamgdxtermsel;

Creates a file namedibf numtxt ”, wherenumis a 4-digit decimal representation of the integer
in registeregnumnameThis file contains the Quantified Boolean Formula referdnaga register
regtree(CARGOTREIR QBF-Scheme) in the format specified by QBF-solver ‘bof#¢. It also
contains the variable specification and an instructiomtésr the formula. Thus it is complete
specification which can be passed to the ‘boole’-solver. @leree ‘boole’ instruction-terms can
be selected with the parametdktermsel O for "print’, 1 for 'sop’ and 2 for ’satisfy’.

Wit eCargoTreeBool el mm

Store a QBFEARGOTREIMEto a file in ‘boole’ QBF-format.
Synopsis:WriteCargoTreeBoolelmm (regtreenumnamegdxtermse;

This instruction is identical t&VriteCargoTreeBoole , except that the name-integer is pro-
vided directly and not within a register.

WiteCargoTreeGDL_.QBFS

Store a QBFSEARGOTREIAto a file in Graph Description Language.
SynopsisWriteCargoTreeGDL _QBFSregtreeregnumnampg

Creates a file namedibf numgdl ”, wherenumis a 4-digit decimal representation of the integer
in registerregnumnameThis file contains a description of the QBERRGOTREI& the Graph
Description Language. The output is QBEZ&RGOTREEcheme-specific.

WiteCargoTreeGDL QBFSI nm

Store a QBFSEARGOTREIAto a file in Graph Description Language.
SynopsisWriteCargoTreeGDL _QBFSImnfregtreenumnamig

This instruction is identical t&VriteCargoTreeGDL _QBFS except that the name-integer is
provided directly and not within a register.

WiteCargoTreeGDL_(QBF

Store a QBFEARGOTREIAto a file in Graph Description Language.
SynopsisWriteCargoTreeGDL _QBHKregtregregnumnamg

63

Creates a file namedjbf numgdl ", wherenumis a 4-digit decimal representation of the integer
in registerregnumname This file contains a description of the QERFARGOTREIR the Graph
Description Language. The output is QEFARGOTREEcheme-specific.

WiteCargoTreeGDL QBFI mm

Store a QBFEARGOTREIAto a file in Graph Description Language.
SynopsisWriteCargoTreeGDL _QBFImnfregtreenumnamig

This instruction is identical t¥VriteCargoTreeGDL _QBF, except that the name-integer is pro-
vided directly and not within a register.

4.2 CARGOTREE-Schemes

A CARGOTREBcheme is a convention laying downow specific recursive data structures, such
as arithmetic expressions, are represented @RRGOTREE A uniformrepresentation of data is
of great relevance for avoiding unnecessary conversiateallly, for any recursive data structure
all Smute Functions working with that structure apply thme&€ ARGOTREEcheme.

Example 4.1 CARGOTREE-Scheme)n order not to stress arithmetic expressions only, the fol-
lowing CARGOTREBcheme example is for recursively structured data knowpr@sositional
formulas Propositional formulas are defined as follov@onn= {A, Vv, —, -} is the set olog-

ical connectivesreferred to asonjunction disjunction implication and negationrespectively.
Const= {T,.L} is the set oflogical constantsreferred to agruthhood and falsehood Fur-
thermore, letP be an arbitrary set which is disjoint fro@onnand Const i.e., P N Conn =

P N Const= (). Then the set opropositional formulasover P,PROR P), is recursively defined
as follows:

1. T € PRORP) and_L € PRORP).

2. p € PRORP) for everyp € P.

3. If € PRORP), then—¢ € PRORP).

4. If 1 € PRORP) and¢s € PRORP), theng, o ¢po € PRORP) for o € {A,V,—1}.

The elements oP are called theropositional variableof PROR P).

Note that currently there is no syntax fBIARGOTREEBchemes, instead they are informal
specifications. The “propositional formul€ARGOTREEcheme defines integer identifiers for
the logical connectives, propositional variables anddalgconstants. They are used@8RGO-
TREEnNode ids.

string alias integer value represents

NOT 0 logical connective-’
OR 1 logical connectiveV’
AND 2 logical connective A’
IMPL 3 logical connective-’
PROPVAR 4 propositional variable
CONST 5 logical constant

In particular, the representation is as follows:

e Logical constant: Int-node with iI@ONSTwhere a value of 0 encodes™and a value of 1
encodesT'.

64

Figure 4.1:CARGOTRE#sualisations

e Propositional variable: Str-node with RROPVARKhe string value serves as variable iden-
tifier.

e Formula—¢: ConCls-node with ilNOT, has got 1 child which represents

e Formulag; V ¢9: ConCls-node with idDR has got 2 children, the left one (index 0) repre-
sentingy; and the right one (index L)s.

e Formula¢; A ¢2: ConCls-node with idAND has got 2 children, the left one (index 0)
representingy; and the right one (index L)s.

e Formulag; — ¢9: ConCls-node with idMPL, has got 2 children, the left one (index 0)
representings; and the right one (index)s.

Figure 4.1 displays th€ ARGOTREEepresentation of propositional formuleA (p — (qVvr)),
complying with the “propositional formulaCARGOTREEcheme. O

Node-ids for alCARGOTREEcheme should be picked from a small integer-range to stippo
querying them with thdumpTab-instruction of the Smute Language.

4.3 Datal/O

For Smute Function Developers there are currently thewatig options for data input/output:
¢ Reading and writing of files ICTARGOTREExchange Format.
e Reading of text-files in an LALR-language.

e Additional options might be provided by the respective Sminterpreter Edition.

4.3.1 CARGOTREE Exchange Format

The CARGOTREExchange Format is a convention for binary storage of réalysstructured
data. Reading input ICTARGOTREExchange Format, as well as output to this format is read-
ily supported by Smute (cf.#load -instruction in the Smute Function User Manual and the
“WriteCargoTreeCGE -instruction on page 61). Hence a Smute Function Develdoes
not need to know about the file layout of tddRGOTREExchange Format.

Whether or not a Smute Function Developer supports inpytinin CARGOTREExchange
Format should be based on the following considerations:

e If Smute Function Users want to pass the output to other Siumetions or to external
applications, then output @BARGOTREExchange Format should be supported.

65

¢ If Smute Function Users want to use input generated by ottmert&Functions or by exter-
nal applications, then input BARGOTREExchange Format should be supported.

By default, CARGOTREExchange Format input/output should be supported, bedtinsecases
a function’s versatility and the implementation requirigel effort, due to the handling by Smute.

4.3.2 Data Input through an LALR-language

The principle of Smute support for input data specificatiomiibitrary LALR-languages has al-
ready been outlined: The Smute Function Developer creapessing-table for the language in
guestion. The Smute Function User specifies data in an LAdigtiage and references the appro-
priate parsing-table. This is illustrated in Example 4.3.2

Example 4.2 (Input specification through an LALR-languaje® following Smute Launch File
instructs data to be LALR-parsed:

<formula0> .= #load("fla0000.txt","fla.cgt")
loadmodules(flamod);
flamod:Simplify(formula0);

Here the Smute FunctioBimplify is applied to the formula specified in filél40000.txt ,
which is parsed according to the LALR-parsing-table of filla.tgt ". d

Currently Smute relies on parsing-tables created by théghulavailable GOLD Parser [3].
From a Backus-Naur form GOLD Parser creates a Compiled Gearitable (:cgt ’'-file), i.e.,
an LALR-parsing table in GOLD-Parser-specific format. Fonue Function Developers this
means that in order to support input specifications in a newRAanguage, they need to write
a Backus-Naur form, load it with GOLD Parser Builder, andesthe Compiled Grammar Table.
This process is documented in the GOLD Parser documeng@jon

From specifications in LALR-languages the Smute Interprateéomatically createSARGO-
TREES in grammar-dependei@ARGOTREEchemes. Thes€EARGOTREEare composed of
GrammarRule- and GrammarToken-nodes, representing taeirdéerms of rule-ids, token-ids
and token-strings. The only difficulty in processing thi®imation is to find the correspondence
between rule-ids (token-ids) with the rules (tokens) frava Backus-Naur form. Due to using
GOLD Parser there is currently no way of assigning arbitidsywithin the Backus-Naur form.
Instead, these ids are auto-assigned array-indices. Bhetao very simple ways of finding out
which rule-id (token-id) corresponds to which rule (tokefihe first is GOLD Parser, where—
after having created the Compiled Grammar Table—the rtdd®iis) can be displayed. They are
automatically displayed with their id. Another one is to assimpleCARGOTREMsualisation
routine like the following:

Label(DumpCargoTree);
WriteCargoTreeGDL(R00,R01);
Return;

Then data instances are specified according to the grammégs and used with the DumpCar-
goTree function. The visualisation displays the rules’ toens’ ids.

Example 4.3 (Rule-ids and token-ids for the rules and tokéasBackus-Naur form}he follow-
ing listing shows a simple Backus-Naur form for arithmetipressions:

"Start Symbol" = <expr_add>
{id_head} = {Letter} + []
{id_tail} = {id_head} + {Digit}

66

Figure 4.2:CARGOTREIB grammar-depende@ARGOTREEcheme

decliteral = {Digit}+

id = {id_head}{id_tail}*

<expr_add> = <expr_add> '+ <expr_mul>
| <expr_add> - <expr_mul>
| <expr_mul>

<expr_mul> = <expr_mul> * <expr_div>
| <expr_div>

<expr_div> = <expr_exp> 'I' <expr_exp>
| <expr_exp>

<expr_exp> = <expr_bot> "’ <expr_bot>
| <expr_bot>

<expr_bot> = id
| decliteral

| 'C <expr_add>)

The visualisation of the grammar-depende€dtR GOTREEepresentation of arithmetic expression
222 + 3y, specified as2*x"2+3*y ", is shown in Figure 4.2. The rule-ids f@ARGOTREE
created according to LALR-parsing-taldepr.cgt can be concluded from this visualisation.
Examples:

id rule
3 <expr_mul> ;= <expr_mul> ™ <expr_div>
9 <expr_bot> := id

67

It must be remarked that tttARGOTREBchemes implied by LALR-grammars are usually
ill-suited for data-representation, especially if dataliered or newly created: The rules of an
LALR-grammar define how to specify data-instances in agtnvhich is not a concise reflection
of the recursive structure. The additional information ighhdoes not relate to the recursive struc-
ture, but only to the specification in strings) is superflutarsthe CARGOTREEepresentation.
Furthermore, Smute Functions working with grammar-depah@ARGOTREEBchemes are of
little versatility: Changes in the grammar require adaptet of the Smute Function, support
of different grammars is intricate. HencEARGOTREEN grammar-depende@ARGOTREE
Schemes are usually converted to grammar-indeper@idRIGOTREEBchemes before being fur-
ther processed. Smute Functions solely performing theseecsions are calle®reprocessing
Functions For the sake of the aforementioned versatility only Pregssing Functions should
work with grammar-depende@ARGOTREBchemes.

The support of new LALR-languages within Smute Launch Fixguires new Smute Inter-
preter Editions. Smute Function Developers interestedriava Smute Interpreter Edition, or in
extending a existing one, should get in touch with the autifitine Smute Interpreter.

4.4 Core Functions and Wrapper Functions

The following are recommendations for writing modular aedsatile Smute Functions.

Itis the intent of Smute Function Developers to implemerdrgain functionality, e.g, the sim-
plification of arithmetic expressions. Most Smute Funaiéor Smute Function Users will need
to read input from files and/or write output to files. The imménted functionality might how-
ever be useful as part of other Smute Functions. For exant@esimplification of an arithmetic
expression could be applied in a function before evaludtiagjexpression. In this case the input
does not need to be read from files, and the output does nottadedwritten to files. Instead, a
Smute Function wittCARGOTRERBput/output, but without file-access is required.

Therefore, it is recommended to write so-callédre FunctionsandWrapper Functions A
Core Function is a Smute Function not accessing files, i@.using the input/output-related
Smute Language instructions. Thus, a Core Function candzbrasdularly in other Smute Func-
tions. A Wrapper Function works as follows:

1. optionally read/preprocess input;
2. call one or more Core Functions;
3. optionally post-process/write output.

In step 1 Wrapper Functions working with LALR-language infypically invoke Preprocessing
Functions.

An additional advantage of the Core Function/Wrapper Ranatonception is that support
for new input-file-formats or new output-file-formats is exhely simple, as it only requires new
Wrapper Functions. The principle of Core Functions and \peag-unctions is depicted in Fig-
ure 4.3.

4.5 Smute Assembler Usage

Example 4.4 (Smute Assembler usagb source code of a Smute Module is written to file
“testmod.txt "

Label(DumpCargoTree);
WriteCargoTreeGDL(R00,R01);
Return;

68

Parameters are analysed; data is read .
and/or processed (possibly with a Wrapper Function
Preprocessing Function) and provided

to the Core Function as CARGOTREEs

in specific CARGOTREE-Schemes

%_, < Core Function > —

Resulting data (most likely CARGOTREES) l
O

is processed and/or saved to file(s) in
specific format

Figure 4.3: Core Functions and Wrapper Functions

Export(DumpCargoTree);

(TheExport -declaration is used for exporting labels.)

The Smute Modulentestmod.tmm is created by passing the source code file to the Smute
Assembler:
>assemble testmod.txt O

To date Example 4.5.4 is fictitious, as the Smute Assemblembéabeen implemented yet.
Currently Smute Function Developers need to work with aattré solution, called Smute As-
sembler Library. As the Smute Assembler Library is less-friendly than a Smute Assembler
would be, Smute Function Developers should check for théadifity of the Smute Assembler
before starting to write Smute Functions.

The Smute Assembler Library is a static C library called “mampile.lib” (currently for Intel
Pentium/Windows and Intel Pentium/Linux) and comes witraacompanying header-file. A C-
compiler and linker is needed. For each instruction of thait®@rhanguage there is a function in
the Smute Assembler Library. Smute Language code is thuifiggeas a sequence of function-
calls in C. Example 4.5.5 shows how the Smute Module of Exardf8.4 can be created with the
Smute Assembler Library:

Example 4.5 (Smute Assembler Library usafje¢ Smute Language instructions are specified in
a C-source file:

#include "modcompile.h”

uBOOL STDCALL WriteModule(TMMWrite* ptmmw)

{
TMMWrite_ WLabel(ptmmw,(PuCHAR)"DumpCargoTree",13);
TMMWrite_ WWriteCargoTreeGDL(ptmmw,R00,R01);
TMMWrite_ WReturn(ptmmw);

TMMWrite_ AddExport(ptmmw,(PUCHAR)"DumpCargoTree",13);
return(TRUE);

69

void main(int argc, char** ppstrarg)

{
compiler::CompilerData* pdata;
compiler::PFUNCPREPAREMOD PPrepareMod,;
PuCHAR pstrO;
uLONG i0;

if ((pdata=compiler::InitCompilerData()))
{
pstrO="m_testmod.tmm";
i0=13;
PPrepareMod=WriteModule;
compiler::ModCompiler(pdata,pstr0,i0,PPrepareMod);

compiler::ExitCompilerData(pdata);

The “main "-function is only a static frame, i.e., it is independentrfr the Smute Func-
tion. Compiling this file and linking it with fnodcompile.lib " generates a command-line
executable. Running the executable creates the desireteSvtndule if successful, otherwise
error-messages are issued.

A note about the number-arguments in the function-callsy@b®hese are simply the string-
lengths which have to be provided along with the charact@ydifor example, 13 is the string-
length of “DumpCargoTree”). A more convenient usage notiring string-length parameters,
but only pointers to O-terminated strings, can be facéiatia small helper routines like the fol-
lowing:

uBOOL TMMWrite_WLabel(TMMWrite* ptmmw, PuCHAR pstrlabel)

{
return(TMMWrite_WLabel(ptmmw,pstrlabel,StringLen(ps trlabel)));

}

The aboveNriteModule function is not fully correct as it ignores return-valuescévrect
version is printed below:

uBOOL STDCALL WriteModule(TMMWrite* ptmmw)

{
if ('TMMWrite_WLabel(ptmmw,(PuCHAR)"DumpCargoTree",1 3)) goto errmem;
if ('TMMWrite_ WWriteCargoTreeGDL(ptmmw,R00,R01)) goto errmem;
if ('TMMWrite_ WReturn(ptmmw)) goto errmem;

if ({'TMMWrite_AddExport(ptmmw,(PuCHAR)"DumpCargoTree ",13)) goto errmem;
return(TRUE);

errmem:
return(FALSE);

}

However, as the compiled file is usually executed only onc8maute Function Developer
might prefer to be careless and ignore the return values. O

70

Chapter 5

Support for the Interaction of External
Applications with Smute

Currently support for the interaction of Smute with extémagaplications is limited to th€ ARGO-
TREEExchange Format. There are two cases where it makes senpglyotlze CARGOTREE
Exchange Format:

e For an external application support of processing its dutuSmute Functions is desired.
This is easily achieved if the external application offentpoit generation ICARGOTREE
Exchange Format.

e For an external application support of reading Smute Fanatiutput is desired. This is
easily achieved if the external application accepts inp@ARGOTREExchange Format.

The advantages @ARGOTREExchange Format over alternative solutions are obvious:

e The CARGOTREExchange Format is a binary format which is machine readabteout
elaborate parsers that would be required for textual spatifins.

e The usual advantage of standardisation: Data can be passgddm applications that do
not need to know about each other.

e For the Smute Function Developer there is no work to d@ARGOTREEXxchange Format
input/output is readily supported by Smute.

The file-layout of CARGOTREExchange Format is documented in Section 5.1. Options for
advanced integration with external applications are dised in Chapter 10.

5.1 File Layout for the CARGOTREE Exchange Format

In CARGOTREEXxchange Files all integers are stored in big-endian-farfrigure 5.1 depicts this
storage format foBYTEs (8-bit integers) WOR® (16-bit-integers) andONG (32-bit-integers).
The respective "® rows contain the bit indices. Those bit-arrays represetegersy . 2'b;,
wheren is 7, 15, or 31 respectively.

In the following paragraphs the structure ©ARGOTREExchange Files is presented in a
bottom-up manner, i.e., starting with small sub-structur€he first isConCls , used for storing
ConCls-nodes.

ConCls:

BYTE type;

BYTE id;

WORD numchild;

LONG childidx[<numchild>];

71

Byte 0

07|06|05|O4|O3|02|Ol|00

Byte 1 Byte 0
15|14|13|12|11|10|09|08 O7|O6|05|O4|03|02|Ol|00

Byte 3 Byte 2 Byte 1 Byte 0
31|30|29|28|27|26|25|24 23|22|21|20|19|18|17|16 15|14|13|12|11|10|09|08 07|O6|05|O4|03|02|01|OO

Figure 5.1: Big Endian Integer Storage

The last line states that th§¥ORD numchild is followed by an array oEONG, with the array-
size determined by the value ntimchild . Array-entries are referencethildidx[0], ...,
childidx] numchild1] .

The contents are as followdype is the constanCNXCONCLSdefined in a header-file)
and used for distinction from other nodead. contains the node-id. The array specified through
numchild andchildidx determines the child-nodes. In tohildidx -array there can be
integers0, ...,n — 1, wheren is the total number oCARGOTRERodes. These indices refer
to the order the nodes are stored in @@RGOTREExchange File. For example, an entry with
value O refers to the first node of tBARGOTREEXxchange File.

The next structure iI€onArr :

ConAurr:

BYTE type;

BYTE id;

WORD numchild;

LONG childidx[<numchild>];

Except fortype , whereCNXCONARGRS stored, the structure contents are identical to those of
ConCls .

Int:

BYTE type;
BYTE id;
LONG val;

Here thetype -entry must contail©NXINT , and theval -entry contains the Int-node’s value.

Str:

BYTE type;
BYTE id;
WORD Istr;
BYTE str[<Istr>];

Thetype -entry must contairCNXSTR and the Str-node’s string-value is stored via the array
specified througlstr andstr .

Node:
ConCls|ConArr]|Int|Str;

72

The Node specification has the following meaningtbic|... stands for a set of options. In
the place of a\Node-structure one of the optional structurgdohCls ,ConArr ,...) is stored.
For a file-format to be meaningful it must be possible to tdfich of the optional structures is
actually used. In the case blodes, distinction is possible via thBY TEentry type , as each
of the optional structures starts with this entry. Whileréhis a similarity with unions from the
programming language C, there is also a significant difieegnamely that the size of tidode-
entry depends on the selected structure (whereas for Quutie size is always the size of the
largest optional structure).

The next structure is already tkEGEfile format:

LONG id;

LONG chksum;

LONG frmtver;

LONG numnode;
LONG sizenodearray;
Node nodes[numnode];

Theid -entry is provided for the identification of files @GEformat and for distinction from
files in other formats, its value is always 0x43474521. Thksum -entry is there to ensure the
file is in valid format. It is an 32-bit-wise ‘exclusive or’ ev the whole file, except thehksum -
entry itself, and one additional ‘exclusive or’ with the stemt CGECHECKSUMBONNHThe
frmtver -entry must always be set to O for this version of &Efile format and is there to
allow distinction from potential extended future formatsmnode contains the number of nodes
of the CARGOTRESored in that filesizenodearray contains the number of bytes taken up
by the nodes -array. nodes is the array ofCARGOTREBRodes. There is a restriction for the
array-order: Namely, for every inner node the children nigsin front of that node. In other
words: If an inner node is stored @& node in theCARGOTREExchange File, then the child-
node-index-array of this node in tlgGEfile can only contain number& 1,...,7 — 1. Smute
stores the nodes in the following order, which is recommdrfdethe creation ofCGEfiles: The
order is determined by ‘post-order left-to-right deptistfitraversal. ‘Depth-first’ says that for any
node with children the nodes are traversed subtree-wisepnly after all nodes of a subtree have
been visited can nodes of a different subtree be visitedft-toeright’ means that traversal starts
with the 0™ subtree, continues with theé!, etc. ‘Post-order’ means that a node is visited after all
child-nodes have already been visited.

73

Chapter 6

Reductions-to-QBFs Background

The background of reductions-to-QBFs is structured asviall Propositional Logic is introduced
in Section 6.1. Quantified Boolean Formulas (QBFs) are éhitced in Section 6.2. Various
reasoning formalisms are introduced in Section 6.3. Rin&lection 6.4 presents an exemplary
reduction-to-QBF for reasoning tasks in one of the preioimroduced formalisms.

The reasoning formalisms of Section 6.3 are relevant insagaSmute Language implemen-
tations of reductions-to-QBFs for these formalisms aregmeed in Chapter 8.

6.1 Propositional Logic

The syntax of propositional logic is defined as followsonn= {A,V,—, =} is the set oflog-

ical connectivesreferred to agonjunction, disjunctiort, implication- andnegationconnectives
respectively.Const= {T, L} is the set ofogical constantsreferred to asruthhoodandfalse-
hood Aux= {*(’,")’} is the set ofuxiliary symbols‘(’ is the left parenthesignd)’ is theright

parenthesis Furthermore, lef” be an arbitrary set which is disjoint fro@onn Const andAux,

i.e., PN Conn= P N Const= P N Aux= (). Then thepropositional language PRQP) over
P, also called the set @fvell formed) propositional formulagver P, is the formal languagever
P U Connu ConstJ Aux where elements are recursively defined as follows:

1. T € PRORP) andL € PRORP).

2. p € PRORP) for everyp € P.

3. If € PRORP), then(—¢) € PRORP).

4. If 1 € PRORP) and¢s € PRORP), then(¢, o ¢2) € PRORP) foro € {A,V,—}.

For convenience, parentheses in rules 3 and 4 are usualttedpsyntactic unambiguity is main-
tained by assuming operator precedence (higher first), vV, — and left-associativity of the bi-
nary operators\, V, —. The elements oP are called theropositional variableof PRORP).
PU{T, L} is called the set chtomsof PRORP). {p : p € P} U{—p : p € P} is called the
set ofliterals, denoted.it(P). Disjunctions of literals are calledlauses Binary operator symbol
— is used as shortcutp; — ¢ stands for(¢; — ¢2) A (p2 — ¢1). For operator— a lower
precedence than is assumed.

Let PROR P) be a propositional language. AmerpretationZ of P is a functionZ : P —
{t,f}, i.e., a function fromP into the set oftruth values The truth assignmenbf a formula
¢ € PROR P) under interpretatiofl, denotedZ (¢), is recursively defined as follows:

1. If ¢ = T,thenZ(¢) =t;if ¢ = L, thenZ(¢) =Tf.

1The termformal languagss defined on page 12.

74

2. If g = p € P, thenZ(¢) = Z(p).

3. If ¢ = —¢1, 0r (¢10¢2) € PRORP) foro € {A,V,—}, thenZ(¢) is determined by (¢1)
andZ(¢9) according to the tables below (rdi(¢;), columnZ(s)).

- Alt]f VIit|f — | t|f
t | f t | t]f t [ttt t t]f
f|t f|f|f flt]f f t|t

If Z(¢) = t, theng is calledtrue underZ. If Z(¢) = f, then¢ is calledfalse underZ. ¢ is called
satisfiedby Z, or, equivalently,Z is called amodelof ¢, denotedZ F ¢, if ¢ is true underl. A
formula ¢ is calledsatisfiableif at least one interpretation d? is a model ofg, otherwise it is
calledunsatisfiable A formula ¢ is calledvalid if every interpretation of? is a model of. The
truth assignment of a finite set of formulé$,, ¢», . ..}icr is defined as the truth assignment of
Nicr @i If it holds that every model of a sét” of formulas fromPROR P) is a model ofy, then
1) is called aogical consequencef W, denotediV E 1. Hence a formula is valid iff T E ¢.
With Cn(17) the set of logical consequencesiéfis denoted, i.e.Cn(WW) = {¢ € PRORP) :
W E ¢}. W is calledinconsistentf it is unsatisfiable. Otherwise, i.e., if it is satisfiabiejs
called consistent Two formulas¢; and ¢, are calledogically equivalentif every model of¢g,
is a model ofp, and every model of, is a model ofp;. In other words:¢, and¢, are called
logically equivalent ifp, is a logical consequence ¢f and¢; is a logical consequence ¢f.

6.2 Quantified Boolean Formulas

For the definition of the syntax of Quantified Boolean Forrautee seConn= {A,V, —, -} of
logical connectives, the s€onst= {T, L} of logical constants, and the s&ux = {'(",*)"}
of auxiliary symbols, get reused from the definition of thetax of propositional languages.
Additionally, a new set, the set guantifiers Quant= {3,V}, calledexistential quantifiend
universal quantifierespectively, is introduced. Ldt be an arbitrary set which is disjoint from
Conn Const Aux, andQuant i.e., P N Conn= P N Const= P N Aux = P N Quant = {.
ThenQBK(P), the language oQuantified Boolean Formulasver P, is the formal language over
P U Connu Constu AuxU Quantwhose elements are defined as follows:

1. T € QBF(P) and_L € QBF(P) .

2. p € QBF(P) for everyp € P.

3. If ¢ € QBK(P), then(—¢) € QBFP).

4. If 91 € QBF(P) and¢ps € QBF(P), then(¢; o ¢2) € PRORP) foro € {A,V,—}.
5. If € QBF(P) andp € P, thendp(¢) € QBHP) andVp(¢) € QBF(P).

Like in the definition of propositional languages, brackessn rules 3 and 4 are usually omitted,
syntactic unambiguity is maintained by the same operatecqutence and associativity assump-
tions as in the propositional language over The elements of” are called thepropositional
variablesof QBF(P).

A QBF v is calleddirect subformulaof QBF ¢ over P, if one of the following conditions
holds:

© o=
e ¢ = ¢ 01 forany QBF¢, and anyo € {A,V, —};

75

e ¢ = 1) o ¢g for any QBF¢, and anyo € {A,V, —};
e ¢ =Jp(v) foranyp € P;
e ¢ =Vp(y)foranyp € P.
A QBF v is calledsubformulaof QBF ¢ if one of the following conditions holds:
* ¢ =1
e 1 is a direct subformula of;
¢ there is a direct subformula of ¢ and is a subformula of.
For a QBF¢ over P, letN(¢) be defined as follows:
o If $ =T, thenN(¢) = 1;if ¢ = L, thenN(¢) = 1,

If =p € PthenN(¢) =1,

If $ = —¢1 thenN(¢) = N(¢1) + 1;

If $ = @10 ¢y foranyo € {A,V,—1}, thenN(¢) = N(¢1) + N(¢p2) + 1;

If & = Qp(¢y) forany@ € {3,V} and anyp € P, thenN(¢) = N(¢1) + 1;

Let ¢ be a QBF over, andi € {0,1,...,N(¢) — 1}. ThenS(i, ¢) is defined as follows:

o If p =T,thenS(i,¢) = T;if ¢ = L, thenSi, ¢) = L;
If $ =p € P, thens(i, ¢) = p;
If ¢ = —¢1, then
~ S(i,¢) = ¢if i = N(¢1), and
- i, ¢) = (i, ¢1) otherwise;
If $ = @1 0 ¢ foranyo € {A,V,—1}, then
- S(i,¢) = ¢if i = N(¢1) + N(¢2),
- S(’L,gb = S(’L',gbl) if i < N(gbl), and
— S(i,¢) = S(i — N(¢1), ¢2) otherwise;
If = Qp(¢y) forany@ € {3,V} and anyp € P, then
~ S(i,¢) = ¢if i = N(¢1), and
— (i, ¢) = (i, ¢1) otherwise.

Fora QBFp andi € {0, 1,...,N(¢)—1} it follows from the definition tha§(i, ¢) is a subformula
of ¢.

Let ¢ andi be QBFs, and € {0,1,...,N(¢) — 1}. Theny is said tooccurin ¢ at position
i if S(i,¢) = 1. Obviously, for any subformul@ of QBF ¢ there is at least one positione
{0,1,...,N(¢) — 1} wherey occurs ing.

[]
= =

Example 6.1 (Occurrence of a subformula in a formula} ¢ = (p — ¢) A (p — q). Then
subformulap — ¢ occurs at position8 and5 in ¢. Subformulap occurs at position8 and3 in ¢,
and subformula occurs at positions and4 in ¢. N(¢) is 7. O

Let ¢ be a QBF, and:t denote an occurrence of QBFin ¢ (at an arbitrary position), and
b denote an occurrence of QBFin ¢ (at an arbitrary position). Then obviously the position

76

of an occurrence: of x in ¢ is determined by the position af (in ¢) andb (in ¥), andc is
called adescendanbf b. Converselyp is called anancestorof ¢. The ancestor and descendant
relationships define partial orders on the set of occurien€subformulas in a formula.

Example 6.2 (Ancestor of a subformula occurrence) ¢ = (p — ¢q) A (p — ¢q). Then the
occurrence of subformula — ¢ at position2 is an ancestor of the occurrence of subformube
position0. 0

An occurrencea of a propositional variable in a QBF ¢ is said to bein the scope of a
quantification if for any QBF ¢ there is an occurrence of Ip(«)) or Vp(v) in ¢ which is an
ancestor ofi. An occurrence of a propositional variable in a QBF is cabbedndif it is in the
scope of a quantification, otherwise it is calfege

A QBF ¢ is calledclosedif all occurrences of propositional variablesdrare bound. Other-
wise it is calledopen

The semantics of QBFs is based on interpretations of theogitignal variables. For an
interpretationZ of P the truth value assignmefit: QBF(P) — {t,f} is defined as follows:

1. If p = T, thenZ(¢) =t;if ¢ = L, thenZ(¢) =f.
2. If =p e P, thenZ(¢) = Z(p).

3. If ¢ = =¢1, 0r¢ = ¢1 0 ¢ foranyo € {A, v, —}, theni(qﬁ)Ais determined by (¢;) and
Z(¢2) according to the tables on page 75 (16,), columnZ(¢2)).

4. 1f ¢ = Vp(é1), then (¢) = Z(é1[p/T] A énlp/L]) 2.

5. If ¢ = 3p(¢1), thenZ(¢) = L(p1[p/T]V d1[p/L]).

If Z(¢) = t, then QBF¢ is said to berue underZ. If Z(¢) = f, then is said to befalse under
Z. A QBF ¢ is calledsatisfiedby interpretationZ, and, equivalentlyZ is called amodelof ¢,

denoted’ F ¢, if ¢ is true undefZ. A QBF¢ is calledsatisfiableif at least one interpretation @?

is a model ofp, otherwise it is calledinsatisfiable A QBF¢ is calledvalid if every interpretation
of P is a model of¢. Observe that a closed QBF is always either valid or unsaiiefi A finite
set{¢; }icr of QBFs is identified with the QB ; ;.

6.3 Nonmonotonic Reasoning Formalisms

This section presents five nonmonotonic reasoning formalig-or classical abduction, equilib-

rium logic, paraconsistent reasoning via signed systemt paraconsistent reasoning via three-
valued logic this thesis presents implementations of riéolus-to-QBFs in the Smute Language,
which are documented in Chapter 8. Default logic is intredlbecause it is used in the definition
of paraconsistent reasoning via signed systems.

6.3.1 Default Logic

Default Logic has been introduced in [27]. LEtbe a set of propositional variables. Then a
defaulté over P is a triple of propositional formulas, 5,y € PRORP), denoted = % where
« is called theprerequisiteof §, 3 is called thgustificationof §, and~ is called theconsequenof
d. 75 i.e., a default rule with “empty” prerequisite, is used asational shortcut for the default
rule 2.

A default theoryover a set of propositional variablg? is a pair (W, A) of a setiW C
PROR P) of propositional formulas and a sAtof defaults overP.

2p[p1/q1, - .. pn/qn] denotes the substitution of free occurrences of propaositivariablesy; in QBF ¢ with ¢;,
foralli =1,...,n.

77

Let A be a set of defaults ovd? and.S C PRORP) a set of propositional formulas. Then
pc(A, S) is defined as followspe(A, S) == {£ - O‘Tﬂ € Aand—g ¢ S}.

Let (W, A) be a default theory oveP and.S C PRORP) a set of propositional formulas.
ThenCny(W, A, S) is defined as follows:

o Cry(W,A,S) :==Cn(W U5, Ei) where
e Fy:={y: g€ pc(A, S) andW E o} and
o Ei:={y:2 epcA,S)and(WUE;_1) F a} foralli > 1.

AsetE C PRORP) is called arextensiorof default theory(1V, A) over P if E = Cry(W, A, E).
For a default theoryIW, A) over P and a propositional formula € PROR P)

e ¢ is called abrave consequencef (W, A) if there is at least one extensidi of (W, A)
with ¢ € F;

e ¢ is called askeptical consequenad (W, A) if ¢ € E for every extensiorE of (W, A).

6.3.2 Classical Abduction

Abduction has first been studied in [23], the logic-baseduatidn has been introduced in [24].

Let W C PRORP) be a theoryH C P a set of propositional variables, which is called the
set ofhypothesesand letp € P be a designated propositional variable. Then a subset H is
called anabductive explanatiofor p from W and H if the following two conditions hold:

1. T U E'is consistent; and
2. TUEFEp.

An abductive explanatioZ for p from W and H is minimal if no proper subsef’ C FE of
hypotheses is an abductive explanationgférom W and H.
The following are typical reasoning tasks:

e GivenWW C PRORP), H C P andp € P, find out whether there is an abductive explana-
tion for p from W andH.

e Relevance ProblenGivenWW C PRORP), H C P, p € P, and a hypothesis € H, find
out whether there is a (minimal) abductive explanatiorpftnom W and H containingh.

e Necessity ProblemGiven W C PRORP), H C P, p € P, and a hypothesié € H, find
out whether every (minimal) abductive explanationgdrom W and H containsh.

6.3.3 Equilibrium Logic

Equilibrium Logic has been introduced in [21].
The following definitions are required: As usuél,denotes a set of propositional variables.
An HT-interpretatior? Z of P is an ordered paifZ;;, Z7) of interpretationsZ;; andZr with

{peP:Iylp)=t}C{peP:Ip(p) =t}

LetZ = (Zy,Zr) be an HT-interpretation oP. Then a truth value assignmeht: {H,T} x
PRORP) — {t,f} is defined as follows\(, : {t,f} — {t,f} andV,, Vi, V_, : {t,f} x {t,f} —
{t,f} are defined according to the tables on page 75):

3H’ stands for “Here” and ‘T’ stands for “There”. The logic tiere-and-there is also commonly known as Gédel's
three-valued logic [15]. It was first presented in the forntrath matrices by Heyting [17] and first axiomatised by
tukasiewicz [19].

78

o If p =T then

- I(H,¢) =t

- (T, ¢) =t,
if ¢ = 1 then

o If p =p e Pthen

- I(T, ¢) = I7(p);
e If p = —¢; then

~ Z(H,¢) = Va(VA(Z(H, 1), V-(Z(T.61)));

- I(Ta ¢) = V—‘(i—(T’ ¢1));
o If p = 1 N @2 then

— I(H,¢) = VA(Z(H,¢1),Z(H, ¢2));
— (T, ¢) = VAZ(T, ¢1), Z(T, ¢2));
o If o = 1V ¢y then
I(H,¢) = Vu(Z(H, $1), Z(H, $2));
— (T, ¢) = W(Z(T, 61), Z(T, ¢2));
o If p = 1 — ¢ then

= I(H,¢) = VA(Vo(Z(H, ¢1), I(H, $2)), V- (I(T, $1), Z(T' $2)));
- I(T,¢) = V.(Z(T, ¢1), (T’ $2)).

LetZ = (Zy,Zr) be an HT-interpretation oP and¢ € PRORP). Then¢ is said to betrue
under if Z(H, ¢) = t. ¢ is said to befalse under! if Z(H, ¢) = f. An HT-interpretationZ is
said tostatisfypropositional formulap or, equivalently,Z is called aHT-modelof ¢, if ¢ is true
underZ. If all HT-interpretations ofP are HT-models ob, theng is HT-valid.

An interpretationZ is anequilibrium modebf a formula¢ if both of the following conditions
hold:

1. (Z,7) is an HT-model ofp; and
2. for every interpretatiof; with
{fpeP:Ip) =ty C{pe P:I(p) = t},
(Zs,7) is not an HT-model of.

Let W = {¢;}icr € PRORP) be a set of propositional formulas agde PRORP) a
propositional formula. Then is anequilibrium consequenaef W if every equilibrium model of
W (i.e., every equilibrium model of\;; ¢;) is a model of.

79

6.3.4 Paraconsistent Reasoning via Signed Systems

Paraconsistent Reasoning via Signed Systems has beeatuicgbin [5].
The section starts with a few definitions. Tpelarity of an occurrenceof a subformula in a
formula is defined as follows:

e The occurrence of in 1) (note that there is only one such occurrence) is positive.

e If a is a positive (negative) occurrencefin ¢, then the corresponding occurrences/of
in —¢ and ing — x are negative (positive).

e If a is a positive (negative) occurrencefin ¢, then the corresponding occurrencesjof
inxVao, oV, x\o,dAx,andy — ¢ are positive (negative).

Let (p;)icr be a sequence of pairwise distinct propositional variakdesl P = {p; : i € I}.
Furthermore, le{p;");c; and (p;)ic; be sequences of pairwise distinct propositional variables
with the same index sdtand such that foP* = {p} : i € I} andP~ = {p; : i € I} the three
sets are disjoint, i.eP NPT = PN P~ = Pt NP~ =(. Let¢p € PRORP) be a propositional
formula. Thenpm((p;)ier, (p;_)ie[, (p;)icr, ¢) denotes a propositional formula ovEr® U P~
which is constructed from as follows: For alli € I, every positive occurrence of propositional
variablep; in ¢ gets replaced with;", and every negative occurrence gets replaced wyithFor

a setlV C PRORP) of propositional formulas,

p(ps)icr, (0])icr, 07)ier, W) = {pm((pi)ict, (0 icr, (p; Jicr, @) : ¢ € W}

With (p;)icr, (pj)icr, and(p;)icr as defined above, for eveiye I the following default is
defined:
3l)
(pi < P) A (=pi = p;)
Let A be a set of defaults ovd? and.S C PRORP) a set of propositional formulas. Then
c(A, S) is defined as follows:

5((pi)ier, (07 ier, (0)ier, 1) :=

(A, 8) == {7 : O‘T:ﬁ e Aand-g ¢ S}.

Let W C PRORP) be a set of propositional formulas apd= PROR P) a propositional for-
mula. Then with the above definitions three new consequeariagans can be defined as follows:
Let (p;)icr be a sequence of pairwise distinct propositional variablesh that? = {p; : i € I},
and |et(p;_)i€ rand(p;)ier be arbitrary sequences of pairwise distinct propositioaghbles such
that for Pt = {p : i € I} andP~ = {p; : i € I} the three sets are disjoint, i.¢2,N P+ =
PN P~ = Ptn P~ = (. Furthermore, letV* denotepm((p;)icr, (p;)ier, (p;)icr, W), and
let A denote{d((pi)ier, 0])ier, (p;)ier,i) : i € I}, and letExt((W=, A)) denote the set of
extensions of default theoyy’*, A). Then

e W E. ¢ (¢ is acredulous unsigned consequeraddl’) if

o |J cn(WEucA E));
EcEx(W=,A)

o W E, ¢ (¢ is askeptical unsigned consequerafdl’) if

o [Cn(WEUuc(A E));
EcEx(W=,A)

“Theoccurrenceof a subformula in a formula is defined on page 76.

80

o W E, ¢ (¢is aprudent unsigned consequerufell’) if

e cn<wi v N C(A,E)).

EeEx(W=,A)

Numerous additional consequence relations are defined.in [5

6.3.5 Paraconsistent Reasoning via Three-Valued Logic

The reasoning formalisms of Paraconsistent Reasoninghieetfvalued Logic have been intro-
duced in [5, 25, 26].

The following definitions are required: For a getof propositional variables tree-valued-
interpretationis defined as functiod : P — {t,f,o}. The name three-valued-interpretation is
used for distinction from interpretatior’s: P — {t,f}. For a three-valued-interpretatidhthe
truth value assignment functich: PROR P) — {t,f, o} is defined as follows:

1. If ¢ = T,thenZ(¢) =t,if ¢ = L thenZ(¢) =f.
2. If = p € P, thenZ(¢) = Z(p).

3. If ¢ = =¢1, 0rp = ¢1 0 g3 for anyo € {A, Vv, —}, thenZ(¢) is determined byZ(¢;) and
Z(¢9) according to the tables below (rdi{¢;), columnZ(¢z)).

- Alt|flo vit|f|o —|t|flo
t | f t |[t|f|o t |ttt t t{f|o
f [t f|f|f]|f fl|t|flo f t|t]|t
o|o o|lo|f]|o oflt|o|o o |[t|f]o

A three-valued-interpretatiof is said to be a@hree-valued-modedf a formulag € PRORP)
if Z(¢) =torZ(¢) = o.

For three-valued-interpretations &fthe following partial orderings are defined, the second
one depending on a sBf C PROR P) of formulas.

e Iy <m Liif{p€ P:Zo(p) =0} S {p € P:Ii(p) = o};

o Iy <, Iy if {¢p € W :To(¢) = 0} C {¢ € W : T1(¢) = 0}.
Three new consequence operators are defined as follows:

o W E3 ¢ if every three-valued-model &V is a three-valued-model of.

e W F,, o if every three-valued-model dfi” which is minimal with respect ta<,, is a
three-valued-model af.

e W E, ¢ if every three-valued-model d¥” which is minimal with respect te,, is a three-
valued-model ofp (the partial ordering<,, is constructed froni).

The reasoning formalisms based on consequence relétigrs,,, andF,, are referred to as LP,

LPm, and LR, respectively. LP and LR have been introduced by Priest in in [25] and [26],,LP
by Philippe Besnard and Torsten Schaub in [5].

81

6.4 An Example Reduction-to-QBF

This section presents reductions-to-QBFs for paracargiseasoning via three-valued logic. The
reductions are taken from [7], though represented here lightly modified way. They serve
as example for the reductions-to-QBFs which have been mmi¢ed in the Smute Language.
The other implemented reductions-to-QBFs can be found ,i®[60, 22]. For the following
reductions-to-QBFs a detailed description of its impletatons, including the Smute Language
code, is given in Chapter 9.

The following notions are required in the specification af teductions-to-QBFs. L&t be
a set. Anarray a over S is a (possibly empty) finite sequence of elementsSotthe length
of the sequence is called tiszeof arraya. An array [ao,...,a,] is called pairwise distinct
if a; # a; holds for alli,j = 0,...,n with ¢ # j. Two arraysfao,...,ay,] and b, ..., by]
are calleddistinctif a; # b; holds for alli,j = 0,...,n. For arraysA = [ay,...,a,] and
B = [by,...,b,], Ao B denotes arrayay, . .., an, b, ..., b,|, the concatenatiorof A and B.
For an arrayA = [ao,...,a,] the set of array-elementérom A, denotedAy;, is defined as
Uizo,nlai}- AnarrayAis said torepresena setS if Ay = S.

For an array of propositional variablés= [py, ..., p,] and a QBFp, the QBFYP¢ is defined
asvVpgVp: . .. Vp,¢ and3iP¢ is defined aslpgdp; . . . Ipn¢.

For an array of QBF® = [¢y, . .., ¢,,] and a propositional variable p is said tooccurin ®
if there is at least onge {0, 1,...,n} such thap occurs ing; (at an arbitrary position).

For two arrays of QBF® = [¢o,...,¢,] and ¥ = [iy,...,1,], & < ¥ denotes QBF
Nizo,...n(0i — ¢i). @ < Wdenotes QBRA,_y (¢ — i) A= Aig, (i —).

For a QBF¢ and two equally sized arrays of propositional variabfes= [po, ..., p,] and
Q = [qo,-- -, qm], 9| P/Q)] is constructed fromp by replacing all free occurrences of propositional
variablep; with ¢;, fori = 0,...,m. For an array of QBF® = [¢q, ..., ¢,] and two equally
sized arrays of propositional variabl®s= [po, ..., p,] andQ = [qo, - - ., ¢m], ®[P/Q)] is defined
as the array of QBFg[P/Q], ..., ¢n[P/Q]].

For the next definition the following is assumef: = [py,...,p,] is an array of pairwise
distinct propositional variables?’ = [p{,...,p}] is an array of pairwise distinct propositional
variables distinct fromP, Z, is a three-valued interpretation E{[}, andZ is an interpretation of
Py U P{}. ThenZ, andZ are calledassociatedwith respect toP and P’ if all of the following
conditions are true:

o for everyp; with Zy(p;) =t, Z(p;) = tandZ(p,) =t;
o for everyp; with Zo(p;) = f, Z(p;) = fandZ(p)) =f;

t.

o for everyp; with Zy(p;) = 0,Z(p;) = fandZ(p})

Note that an interpretatiah of Py U P{} has an associated three-valued interpretatioh(iff <
P =t
Let () denote a set of variables, ande N, n > 0. Then in the definition of translations the
expression
P :=nvar(Q,n)

states thaf is a new array of pairwise distinct propositional variabdéth array-sizen such that
Py N Q = 0. For an arrayb of propositional formulas, the expression
P :=var(®)

states thaf” is assigned an array of pairwise distinct propositionaiades such that’y, = {p :
p occurs ind®}. For an arrayP, the expressiosize P) is used to denote the array-size/of

With these notions and definitions the translations areipd@s follows: The specifications
are “bottom-up”, i.e., starting with smaller sub-tranglas.

82

The first function is called and expects the following parameters: An arbitrary propmsl
formula ¢, an array of pairwise distinct propositional variables= [py, ..., p,] representing
the variables occurring i (or a superset of those), an array of pairwise distinct psitiomal
variablesP’ = [py,, ..., p},] which is distinct fromP, plus a fourth parameter which is one of t,f,
or o.

7 is defined as follows:

1. (@) 7(P, P, p;t) :=p;
(b) (P, P, p;,f) := —pl;
(c) 7(P, P!, pi,t) :== —p; A pl;
2. (@7
(b) 7
(c) 7

(
(
(
(P P’ —|¢1,) T(P,P/,gbl,f);
(
(
3. @) 7(P,P,p1 A pa,t) :=7(P, P, 1,t) NT(P, P, 2, 1);
(
(
(
(
(
(
7(

PP —|¢1,): T(P,P,,gf)l,t);
P, P, ~¢1,0) :=7(P, P, ¢1,0);

~
(=)

~
2

PP)¢1/\¢25)':T(Papl)¢1)f)VT(PaP,)¢2)f);
PP Qf)l/\gbz,)Z:—|’T(P,P,,¢1/\gbz,t)/\—'T(P,P,,gZﬁl/\qbz,f);
4. (a)TPP/7¢1\/¢27) T(P7P/7¢17t)\/T(P7P/7¢27t);
(b)TPP/7¢1\/¢27) :T(P7P/7¢17f)/\T(P7P/7¢27f);
(©) 7(P, P, ¢1V ¢2,0) := =7 (P, P/, g1 V 2, 1) A =7 (P, P g1 V 2, T);
5. (a)TPP,¢1—>¢2,) :T(P,P/,qbl,f)VT(P,P/,¢2,t);
(b) PP/7¢1_>¢27):: _‘T(P7P/7¢17f)/\T(P7P/7¢27f);
(C) T(Pv Pl7¢1 - ¢27) = _‘T(P7P/7¢17f) /\T(Pv Pl7¢270)'
)

The models ofr (P, P, ¢,z
following way:

(x € {t,f,0}) correspond to three-valued interpretations in the

e Forany model : P U P’ — {t,f} of 7(P, P', ¢, x) either

- IZ(P<P)=for
— T has an associated three-valued interpretafipnP — {t,f, 0} with Zo(¢) = .

e Conversely, ifZ, is a three-valued interpretation wiff3(¢) = =, then the associated inter-
pretationZ : Py U P{’} — {t,f} is amodel ofr (P, P', ¢, z).

The parameters of the next translation, calted are as follows: There is an arrdy =
[¢0, - .., ¢yn] Of propositional formulas, an array = [po, ..., pm,] of pairwise distinct proposi-
tional variables representing the variables occurring/irfor a superset of those), and there is an
arrayP’ = [p;, . . ., pl,,] of pairwise distinct propositional variables distinctrfrd®>. m3 P, P', W)
is defined as:

n

m3P, P, W /\ (P, P', ¢;,f)

The models om3(P, P’, W) correspond to three-valued modelsitifas follows:
e Forany model : P U P’ — {t,f} of m3(P, P', W) either
-I(P<P)=for

— 7 has an associated three-valued interpretation which isea-t#alued model ofl/.

83

o Conversely, ifZ, is a three-valued model ¢, then the associated interpretation Py U
P{’} — {t,f} is a model oim3 P, P', W).

TranslationConsLPtakes two parameters. The firgt; = [¢o, . . . , ¢n], IS an array of proposi-
tional formulas and the second, is a propositional formulaConsLRW, 1)) is defined as follows:

1. P:=var(W o [¢]);

2. P = nvar(Py, sizg P)),

3. ConsLRW,) := VPVP’(((P < P') Am3P,P',W)) — myP, P',w)).
ConsLRW,) is a closed QBF, establishing the following correspondence

W k3 9 iff ConsLRW,) is valid.

For the next functionmin.m, there are 3 parameters: An arfdy = [¢, . . . , ¢,] Of proposi-
tional formulas, an array’ = [po, . .., pn) Of pairwise distinct propositional variables, represent-
ing the variables occurring i or a superset of these variables, plus an array of pairwimc
propositional variable$”’ = [p;, ..., p,,] which is distinct fromP. The function is defined as
follows:

1. Q=lqo,---,qm] = nvar(Py U Pf},size(P));

2. Q" :=nvar(Py U P{’} UQy,Ssiz€P));

3. Op :=[1(P,P',pg,0),...,7(P, P pn,o);

4. Og == [7(P, P, q0,0),...,7(P, P, gm,0)l;

5. minm(P, P, W) is given by

(P < P') A =3Q3Q((0q < Op) A (Q < Q) AMIQ, Q' WIP/Q))).

LetZ be an interpretation aPp UP’}. The models ominm(P, P’, W) correspond to certain
three-valued interpretations &%,, as given by the equivalence of the following two statements

1. ZE minm(P, P',W).

2. T has an associated three-valued interpretafipand for every three-valued modgj of
W the following is true:Z; «,, Zo (<. is defined with respect to the variables®f and
“a < b" stands for ‘o < banda # b").

For the next translatiommin.n, the set of parameters is the same as with.m: An array
W = [¢o,...,¢n] Of propositional formulas, an arra = [po,...,pm| Of pairwise distinct
propositional variables, representing the variables wowyin W or a superset of these variables,
plus an array of pairwise distinct propositional variabiés= [py, . .., p},] which is distinct from
P. The function is defined as follows:

1. Q=lqo,---,qm] :==nvar(Py U Pf},size(P));
2. Q" :=nvar(Pp U Pf} UQyy,Siz€P));
3. Op:=[r(P, P, ¢g,0),...,7(P, P dpn,0);

4. Oq = [1(P,P',¢o[P/Q],0),...,7(P, P, ¢,[P/Q],0)];

84

5. min.n(P, P', W) is given by
(P < P') A ~3Q3Q'((0q < Op) A (Q < Q) AMIQ, Q' WIP/Q))).
LetZ be an interpretation aPy; U P{’}. The models ofmin.n(P, P’, W) correspond to certain
three-valued interpretations &%,, as given by the equivalence of the following two statements
1. ZE minn(P, P',W).

2. T has an associated three-valued interpretafipand for every three-valued modgj of
W the following is true:Z¢ «,, Z, (<, is defined with respect tB/).

For the next translatiorConsLPmthere are two parameters: An ardy = [¢o, . . ., ¢,] of
propositional formulas and a propositional formulaConsLPniiW, ¢) is defined as follows:

1. P:=var(W o [¢]);

2. P':=nvar(Py,sizg P));

3. ConsLPniIV,) := VPVP’<(min_m(P, P',W) Am3P, P, W)) — m3P, P’,¢)>.
Another translationConsLPn has exactly the same parameters and is defined with thgmse ste

1. P:=var(W o [¢]);

2. P':=nvar(Pyp,sizg P));

3. ConsLPI{IV,) := VPVP’<(min_n(P, P',W)AmMIP, P, W)) — mIP, P, w)).
Both translations create closed QBFs, establishing thefolg correspondences:

o Wk, ¢ iff ConsLPni¥, 1)) is valid.

o Wk, ¢ iff ConsLPiV,v) is valid.

85

Chapter 7

Smute Interpreter Logic Edition

There are two important aspects of Smute Interpreter Loditida:
e It introducesCARGOTREEchemes for several logic-related data structures.

e It introduces a syntax according to which logic-relatedadimistances can be specified
within Smute Launch Files. Preprocessing Functions foréspective grammar-dependent
CARGOTREHare included.

The topics of Smute Interpreter Logic Edition which are valg for Smute Function Users,
namely how to specify logic-related data instances in Srhatench Files, are documented in
Section 7.1. The topics which are relevant for Smute Funddevelopers, namely whicBARGO-
TREESchemes and which Preprocessing Functions there amyfinllSection 7.2.

7.1 Logic Edition Launch File Syntax

Currently the following data-instances can be specifiethiwithe Smute Launch File for Smute
Interpreter Logic Edition:

e “formula”; Propositional formula;
e “vararray”. Array of propositional variables.

Additional grammars for data like defaults (from defaulgitr), formula arrays (for the specifica-
tion of theories), etc., are likely to be implemented in cogwersions.
The Backus-Naur form of “formula”:

<formula> = <fla_or> >’ <fla_or>
| <fla_or>

<fla_or> = <fla_or> | <fla_and>
| <fla_or> '+ <fla_and>
| <fla_and>

<fla_and> = <fla_and> " <fla_not>

| <fla_and> '& <fla_not>
| <fla_and> ™ <fla_not>
| <fla_not>

<fla_not> n= <fla_not>
| 7 <fla_not>

| <fla_bot>

86

<fla_const>

1$T’
| '$F

<fla_bot> id Ipropositional variable identifier

| <fla_const>
| 'C <formula> ')

Example specifications:

P&P&((MP>0Q) & (r> Q)
((a&(b|c))>b)&('a|!lc>$F)

The Backus-Naur form of “vararray” (start symbolidarraydef):
<idarraydef> = < <idarray> >’

<idarray> = id ' <idarray>
| id

Example specification:

<a,b,p,d,z,g>

7.2 Logic Edition Preprocessing Functions andCARGOTREE-Schemes

With Smute Interpreter Logic Edition it is possible to sfgalata-instances with the following
structures in Smute Launch Files:

e Propositional Formula;

e Variable Array.
Smute Interpreter Logic Edition also defines grammar-iededpntCARGOTREBchemes for
these data structures and comes with a Smute Module calteddrelogic " containing the

respective Preprocessing Functions.
Here is an overview of thEARGOTREEBchemes:

QBFS : For the representation of Quantified Boolean Formulas (§BFhere are string identi-
fiers for propositional variables. Note that propositiofeinulas are QBFs without quanti-
fiers. There is no separaBARGOTREBcheme for propositional formulas.

QBF : Identical toQBFS except that there are integer identifiers for propositieagables.

VARARRAYS : For the representation of propositional variable arr&ysere are string identi-
fiers for propositional variables.

VARARRAY : Identical toVARARRAY ®xcept that there are integer identifiers for proposifiona
variables.

For the sake of better comprehensibility node-ids for tHeARGOTREEBchemes are refer-
enced with string aliases. These are the ids foQB&S-Scheme

87

String alias Integer value
QBENOT 0
QBEOR 1
QBFAND 2
QBEIMPL 3
QBEEXISTS 4
5
6
7

QBFEFORALL
QBFEPROPVAR
QBECONST

With the QBFS-Scheme Quantified Boolean Formulas are edcasléollows:

e A ConCls-node with 1 child and i@BFNOTIs used to represent a QBkp. The sub-
CARGOTREEepresents.

e A ConCls-node with 2 children and @BFORis used to represent a QBf; \V ¢;. The "
subCARGOTREEpresents, the F' sub-CARGOTREEpresents;.

e A ConCls-node with 2 children and @BFANDIs used to represent a QBRy A ¢1. The
0" subCARGOTREEpresentsy, the B! subCARGOTREEpresents .

e A ConCls-node with 2 children and i@BFIMPL is used to represent a QB — ¢;. The
0" subCARGOTREEpresentsy, the B! subCARGOTREEpresents .

¢ An Int-node with idQBFCONSTis used to represent the logical constahtandT. A value
of 0 is used for the representation_bf a value of 1 for the representation of

e A Str-node with idQBFPROPVARS used to represent a logical variable. The string-value
serves as variable identifier.

e A ConCls-node with 2 children and IQBEEXISTS is used to represent a QBIp(¢).
The 0" subCARGOTREEepresents propositional variabie(and hence is always a Str-
node with idQBFPROPVARthe F' subCARGOTREEpresents.

e A ConCls-node with 2 children and IQBFEFORALLIs used to represent a QBfp(¢).
The 0" subCARGOTREEepresents propositional variabe(and hence is always a Str-
node with idQBEPROPVAR the F' sub-CARGOTREEpresents.

The QBF-Schemes identical to the QBFS-Scheme, except that Int-nodes idiBFPROP-
VARare used for the representation of propositional variainis®ad of Str-nodes. The integer-
value serves as variable identifier.

These are the node-ids fGIARGOTREEchemé/ARARRAYS

String alias Integer value
VARARRAY.INK 0
VARARRAYROPVAR 1

Propositional variable arrays are encoded as follows:

e A Str-node with idlVARARRAYROPVARS used to represent a propositional variable. The
string-value serves as variable identifier.

e A ConCls-node with 2 children and MARARRAYLINK is used to represent a variable-
array with more than 1 entry. Thé"OsubCARGOTREEepresents the array's"Oentry
(and hence is always a Str-node witiMARARRAYROPVAR The B sub-CARGOTREE
represents the sub-array consisting of all entries exbepdft.

88

TheVARARRAY-Scherngidentical to the VARARRAY S-Scheme, except that Int-rodéth
id VARARRAYROPVARIre used for the representation of propositional variabkgsad of Str-
nodes. The integer-value serves as variable identifier.

The Preprocessing Functions for Smute Interpreter Logitidedare contained in Smute Mod-
ule precorelogic . Recall that data specified in Smute Launch Files for Smuterpreter
Logic Editionmustbe preprocessed with the Preprocessing Functiopeegbrelogic . Smute
Functions not obeying this rule are rendered useless wihgds in the Smute Launch File gram-
mar for Smute Interpreter Logic Edition.

Module precorelogic

Version 0.00 (27/08/2003)

Author Norbert Pfaffinger

Description Preprocessing Functions which from grammar-dependent CAR-

GOTREEs created by Smute Interpreter Logic Edition build new
CARGOTREEepresentations complying with certain grammar-
independent CARGOTREBchemes.

Overview
PreFLA Preprocesses a CARGOTREBenerated by the Smute Interpreter
(0.00), p.90 Logic Edition according to the “formula”-syntax of the Logic Edi-
tion Launch File Grammar, creating a CARGOTREEepresenting the
same formula and complying with the QBFS-Scheme.
PreQBF Preprocesses a CARGOTRERBenerated by the Smute Interpreter
(0.00), p.90 Logic Edition according to the “gbfdef”-syntax of the Logic Edi-
tion Launch File Grammar, creating a CARGOTREEepresenting the
same QBF and complying with the QBFS-Scheme.
PreVarArray Preprocesses a CARGOTREBenerated by the Smute Interpreter
(0.00), p.91 Logic Edition according to the “idarraydef”-syntax of the Logic Edi-
tion Launch File Grammar, creating a CARGOTREEepresenting the
same variable array and complying with the VARARRAY S-Scheme.
IdxSubstC From a single input-QBF in QBFS-Scheme creates a logically
(0.00), p.91 equivalent QBF in QBF-Scheme (string identifiers are replaced with
INTEGERIdentifiers of a range starting at 0).
ldxSubst2C From two input-QBFs in QBFS-Scheme creates logically equiv-
(0.00), p.92 alent QBFs in QBF-Scheme (string identifiers are replaced with
INTEGERIdentifiers of a range starting at 0).
IdxSubst From a single input-QBF in QBFS-Scheme creates a logically
(0.00), p.92 equivalent QBF in QBF-Scheme. Integer-identifiers are determined
by a HASHSTRCQL
IdxSubstVarArray From a variable-array in VARARRAYS-Scheme creates an
(0.00), p.93 INTEGERARRAYWwhich re-identifies the original string variables.

89

PreFLA (0.00)
Synopsis
(R00=CARGOTREEME#iem =Pr.(R00=CARGOTREEMEkMmem

R01=CARGOTREE fla) R01=CARGOTREE fla);

Description

Preprocesses a CARGOTREgenerated by the Smute Interpreter Logic Edition
according to the “formula’-syntax of the Logic Edition Launch File Grammar, creating
a CARGOTREEpresenting the same formula and complying with the
QBFS-Scheme.

Parameters
ctmem Memory used to create the resulting formula within.
fla In accordance to the “formula’-syntax of the Logic Edition Launch

File Grammar.
Return Values

ctmem Passed through.

fla Resulting formula in QBFS-Scheme. Completely allocated in
ctmem. The string-values are only referenced from the input
CARGOTRE#ough.

PreQBF (0.00)

Synopsis

(R00=CARGOTREEME#nem =Pr.(R00=CARGOTREEMEiMmem
RO1=CARGOTREE fla) RO1=CARGOTREE fla);
Description

Preprocesses a CARGOTREgenerated by the Smute Interpreter Logic Edition

according to the “gbfdef’-syntax of the Logic Edition Launch File Grammar, creating

a CARGOTREEepresenting the same QBF and complying with the QBFS-Scheme.

Parameters

ctmem Memory used to create the resulting QBF within.

fla In accordance to the “gbfdef”-syntax of the Logic Edition Launch
File Grammar.

Return Values

ctmem Passed through.

fla Resulting QBF in QBFS-Scheme. Completely allocated in ctmem.
The string-values are only referenced from the input CARGOTREE
though.

90

PreVarArray (0.00)

Synopsis

(RO0=CARGOTREEMEf#imem =Pr.(R00=CARGOTREEMHMmem
R01=CARGOTREE varray) R01=CARGOTREE varray);

Description

Preprocesses a CARGOTREgenerated by the Smute Interpreter Logic Edition
according to the “idarraydef”-syntax of the Logic Edition Launch File Grammar,
creating a CARGOTREEpresenting the same variable array and complying with the
VARARRAYS-Scheme.

Parameters
ctmem Memory used to create the resulting variable array within.
varray In accordance to the “idarraydef”-syntax of the Logic Edition

Launch File Grammar.
Return Values

ctmem Passed through.

varray Resulting variable array in VARARRAYS-Scheme. Completely
allocated in ctmem. The string-values are only referenced from the
input CARGOTRE#hough.

IdxSubstC (0.00)
Synopsis
(RO0=CARGOTREEMEtMmem =Id.(R00=CARGOTREEMEnem

RO1=CARGOTREE qgbf) R01=CARGOTREE qbfs);

Description

From a single input-QBF in QBFS-Scheme creates a logically equivalent QBF in
QBF-Scheme (string identifiers are replaced with INTEGERIdentifiers of a range
starting at 0).
The replacement-method is replacement-by-occurrence. (For example, the first
string encountered is replaced with ‘0").

Parameters

ctmem Memory used to create the resulting QBF within. Note that not an
entirely new QBF is created, instead the input-QBFS gets modified.

gbfs QBF in QBFS-Scheme. Gets modified.

Return Values

ctmem Passed through.

gbf Resulting QBF in QBF-Scheme. Is a madification of the input-QBF.

91

IdxSubst2C (0.00)

Synopsis

(R00=CARGOTREEME#Mem =Id.(R00=CARGOTREEMHkiem
R01=CARGOTREE qbf0 R01=CARGOTREE qbfs0O
R02=CARGOTREE gbfl) R02=CARGOTREE qbfsl);
Description

From two input-QBFs in QBFS-Scheme creates logically equivalent QBFs in
QBF-Scheme (string identifiers are replaced with INTEGERIdentifiers of a range
starting at 0).

Identity across the two QBFs remains of course intact. The replacement-method is
replacement-by-occurrence. New nodes for both the resulting QBFs are allocated
from ctmem.

Parameters
ctmem Memory used to create the resulting QBFs within. Note that not
entirely new QBFs are created, instead the input-QBFs get
modified.
gbfsO QBF in QBFS-Scheme. Gets modified.
gbfsl QBF in QBFS-Scheme. Gets modified.
Return Values
ctmem Passed through.
gbf0 Resulting QBF in QBF-Scheme. Is a madification of the input-QBF
gbfsO.
gbfl Resulting QBF in QBF-Scheme. Is a modification of the input-QBF
gbfsl.
IdxSubst (0.00)
Synopsis
(R00=CARGOTREEME#em =Id.(R00=CARGOTREEMEfiem
R01=CARGOTREE qbf R01=CARGOTREE qbfs
R02=HASHSTRCOL hash R02=HASHSTRCOL hash
R0O3=INTEGER idxstrt) R0O3=INTEGER idxstrt);
Description

From a single input-QBF in QBFS-Scheme creates a logically equivalent QBF in
QBF-Scheme. Integer-identifiers are determined by a HASHSTRCQL
Parameters

ctmem Memory used to create the resulting QBF within. Note that not an
entirely new QBF is created, instead the input-QBF gets modified.

gbfs QBF in QBFS-Scheme. Gets modified.

hash This hash may be empty or already contain strings with their
occurrence-index in data-field O.

idxstrt The next new string is replaced with idxstrt. Is usually set to the

number of entries already stored in hash.
Return Values

ctmem Passed through.

gbf Resulting QBF in QBF-Scheme. Is a modification of the input-QBF
gbfs.

hash Passed through and possibly altered.

idxstrt Updated.

92

IdxSubstVarArray (0.00)

Synopsis

(R0O0=CARGOTREEvararray =Id.(R00=CARGOTREEvararray
R01=HASHSTRCOhash R01=HASHSTRCOhash
R02=INTEGER idxstrt RO2=INTEGER idxstrt);
R0O3=ARRAY idxarray)

Description

From a variable-array in VARARRAYS-Scheme creates an INTEGERARRAYwhich
re-identifies the original string variables.

Parameters

vararray Variable array in VARARRAYS-Scheme.

hash This hash may be empty or already contain strings with their
occurrence-index in data-field 0.

idxstrt The next new string is replaced with idxstrt. Is usually set to the

number of entries already stored in hash.
Return Values

vararray Passed through.

hash Passed through and possibly altered.

idxstrt Updated.

idxarray Contains the replacement-INTEGERarray for the

vararray -identifiers.

93

Chapter 8

Reduction-to-QBF Smute Package
Documentation

The Reduction-to-QBF Smute Package implements severattiods-to-QBFs. An overview of
the Smute Package is given in Section 8.1. An example fomtlazation of a reduction-to-QBF
Smute Function is provided in Section 8.2. Finally, Sec®0B lists the interfaces to all Smute
Functions of the Reduction-to-QBF Smute Package.

8.1 Overview

Currently reductions for reasoning tasks from the follagyimopositional nonmonotonic reasoning
formalisms are implemented:

e Classical Abduction;

e Equilibrium Logic;

e Paraconsistent Reasoning via Signed Systems;

e Paraconsistent Reasoning via Three-Valued Logic.

The reduction-to-QBF Smute Functions in this Smute Packagdased on the reductions-
to-QBFs presented in [6, 7, 10, 22]. The reductions-to-QRFdParaconsistent Reasoning via
Three-Valued Logic are presented on pages 82ff. in Chaptdfd@ a description of the other
implemented reductions-to-QBFs refer to the aforemeptigrapers.

This Smute Package requires Smute Interpreter Logic Editi@urrently all reasoning tasks
have to be specified in a Smute Launch File, i.e., the SmutkaBaadoes not include Wrapper
Functions for reading data specified externally.

It is intended to extend this Smute Package with further cednis-to-QBFs for coming re-
leases.

Currently the package contains the following Smute Modules

1. cabduction (p.96ff.)

2. equilib (p.103ff.)
3. parasigned (p.1071f.)
4. para3val (p.113ff.)
5. cabductionlaunch (p.119ff)
6. equiliblaunch (p.123ff.)
7. parasignedlaunch (p.124ff)
8. para3vallaunch (p.125ff.)
9. gbf (p.126ff.)

94

cabductionlaunch cabduction

equiliblaunch equilib
para3vallaunch para3val
parasignedlaunch parasigned
precorelogic gbf

Figure 8.1: Smute Module dependencies

Smute Modules 1-4 contain the actual reductions-to-QBsgEunctions), for the respec-
tive propositional nonmonotonic reasoning formalisms.ugn-unction Users never invoke them
directly. Smute Modules 5-8 contain Wrapper Functions fout Modules 1-4, providing inter-
faces to Smute Function Users. These functions store irgg@BFs in two formats: In so-called
‘boole ’-format, and in GDL-format. The former is a format defined@BF-solverboole [2],
the latter is defined by graph visualisation softwaiSee [1]. With these two programs it is
hence possible to solve (find models) and to visualise ieguWpBFs. The last Smute Module,
gbf , contains various utility Smute Functions for QuantifiedolBan Formulas. The reductions-
to-QBFs depend on those Smute Functions. Currentlyjtifie Smute Module is developed and
distributed as part of the Reduction-to-QBF Smute Packagét could be useful for other Smute
Functions as well, it might be distributed separately in tmnreleases. The dependencies be-
tween the Smute Modules are depicted in Figure 8.1 (noteSitmatte Moduleprecorelogic
comes with Smute Interpreter Logic Edition).

8.2 Smute Function Invocation Example

Example 8.1 (Invocation of a reduction-to-QBF Smute Famjtin this example a reduction-to-
QBF for to the consequence relation of}.Bets invoked (see [7] for a description). In particular,
for propositional formulagy = -p Ap A (p — ¢) A (r — ¢) andy = r itis assumed a Smute
Function User wants to know whether,, 1, i.e., whether) is a consequence of according
to the logic of LR,. The respective Smute Function for this reasoning taskliscc&onsLPm
and resides in Smute Modufeara3vallaunch . This function possesses three parameters,
flaleft, flaright, andstorenum The two formuladlaleft andflaright have to be specified directly
in the Smute Launch File according to the Logic Edition'srifmla’-syntax. The QBF created
by functionConsLPm has the property that it is satisfiable ffleft =, flaright. The parameter
storenunis an integer, which determines the filename of the outpes-filf, for example, a value of
27 is passed, then the resulting files are nanggd0027.gdl " and “gbf0027.txt ". These
files are created in the ‘current directory’, i.e., the dioeg the Smute Interpreter is called from.
The appropriate Smute Launch File for the reasoning task fisllws:

<phi>:="p & p & (p>0q) & (r >)

<psi> = r

loadmodules(precorelogic,qbf,para3val,para3vallaunc h);
para3vallaunch:ConsLPm(phi,psi,20);

Of course any text-editor can be used to write and edit a Shauiach File. It is recommended

to store Smute Launch Files to the “working directory” of Sen(the directory where the Smute

Interpreter is located). For this example the Smute Laurlehig-assumed to be nameldtkt .
The Smute Function can now be invoked as follows:

>smute |.txt

95

If execution is successful the two filegf0020.gdl ' and ‘qbf0020.txt ' are created.
The ‘.gdl ’-file is the graph description which can be loaded wétBee [1]in order to visualise
the resulting QBF. Thetxt ’-file is the resulting QBF represented indole '-syntax. Ifboole
is available the reasoning task can be solved by passingdhe fioole :

>boole <qbf0020.txt

The output oboole is a simple ‘0’, which stands for ‘false’ (‘true’ would be negsented by ‘1’).
The answer ‘false’ means the QBF is not valid, i.e., unsatigfi Accordingly, the answer to the
reasoning task is ‘no’; In the logic of LI, ¥ is not a consequence of Below is a listing of the
QBFin file “qbf0020.txt ™

forall [PO] (forall [P1] (forall [P2] (forall [P3] (forall [P4] (forall

[P5] ((CPO|P1)&("P2|P3)&("P4|P5)&forall [P6] (forall [P7] (forall [P8]

(forall [P9] (forall [P10] (forall [P11] ((C(CP6&PT)['P 0&P1)&("(CP8&PY)|
"P2&P3)&("("P10&P11)["P4&P5)& (("("PO&P1)|"P6&P7)&("("P2&P3)["P8&P9)&
(CP4&P5)["P10&P11))&("P6|P7)&("P8|P9)&("P10|P11)&
“(P6["P7|"P7& P9 P11& P9))))))))& (PO P1["P1&” P3[™P5&°P3))|"P5))))));

]

8.3 The Smute Function Interfaces

Module cabduction

Version 0.00 (06/10/2003)

Author Norbert Pfaffinger

Description Translations of reasoning-task instances from classical abduction

into QBFs.

Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).

The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.

The functions are based on the translations presented in [10].

Overview

AbductiveExplanation Creates an open QBF where models correspond to abductive ex-
(0.00), p.97 planations.

ExistsAbductiveExplanation Creates a closed QBF which is valid iff there is an abductive expla-
(0.00), p.98 nation.

NoSublsAbductiveExplanation Creates an open QBF where models correspond to selections of
(0.00), p.99 hypotheses such that no proper sub-selection is an abductive ex-

planation.

NecessaryHypothesis Creates a closed QBF which is valid iff the specified hypothesis is
(0.00), p.100 necessary for the abductive explanations.

RelevantHypothesis Creates a closed QBF which is valid iff the specified hypothesis is
(0.00), p.101 relevant for the abductive explanations.

96

NecessaryHypothesis_Min Creates a closed QBF which is valid iff the specified hypothesis is

(0.00), p.102 necessary for the minimal abductive explanations.
RelevantHypothesis_Min Creates a closed QBF which is valid iff the specified hypothesis is
(0.00), p.103 relevant for the minimal abductive explanations.

AbductiveExplanation (0.00)

Synopsis

(RO0=CARGOTREEME#fnem
R0O1=CARGOTREE fla

=Ab.(R00=CARGOTREEMHEem
R01=CARGOTREE fla

R02=ARRAY hypotheses R02=ARRAY hypotheses
R03=CARGOTREE flacons R03=CARGOTREE flacons
R04=INTEGER varstrtfree RO4=INTEGER varstrtfree
RO5=INTEGER varstrtbound RO5=INTEGER varstrtbound);
R06=CARGOTREE qbf)

Description

Creates an open QBF where models correspond to abductive explanations.

The abductive explanations in question are those for flacons from fla and hypotheses.
The number of free variables in the resulting QBF equals the array-size of
hypotheses. An interpretation corresponds to a hypotheses-subarray by selecting
those hypotheses for which the interpretation of the corresponding variable is TRUE
The first free variable in the specified range corresponds to the first hypothesis, the
second free variable to the second hypothesis and so forth.

Parameters

ctmem Memory used to create the resulting QBF within.

fla Formula in QBF-Scheme. Is NOT utilised.

hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT
utilised.

flacons Formula in QBF-Scheme. Is NOT utilised.

varstrtfree First element of the free-variables identifier range. Range-size is
given by the array-size of hypotheses.

varstrtbound First element of the bound-variables range. Range-size via updated

return-value.
Return Values

ctmem Passed through.
fla Passed through.
hypotheses Passed through.
flacons Passed through.
varstrtfree Passed through.
varstrtbound Updated.

gbf Resulting QBF.

97

ExistsAbductiveExplanation (0.00)

Synopsis

(RO0=CARGOTREEMEtMem =Ex.(R00=CARGOTREEMEknem

R0O2=INTEGER

R01=CARGOTREE qbf R01=CARGOTREE fla
varstrt) R02=ARRAY hypotheses
R03=CARGOTREE flacons
RO4=INTEGER varstrt);

Description

Creates a closed QBF which is valid iff there is an abductive explanation.
The abductive explanations in question are those for flacons from fla and hypotheses.

Parameters
ctmem

fla
hypotheses

flacons
varstrt

Return Values
ctmem

gbf

varstrt

Memory used to create the resulting QBF within.

Formula in QBF-Scheme. Is NOT utilised.

Array of formulas, each in QBF-Scheme. Formulas are NOT
utilised.

Formula in QBF-Scheme. Is NOT utilised.

First element of the (bound-)variables range. Range-size via
updated return-value.

Passed through.

Resulting QBF.
Updated.

98

NoSublsAbductiveExplanation (0.00)

Synopsis

(RO0=CARGOTREEMEfem =No. (R00=CARGOTREEMEkmem
R01=CARGOTREE fla R01=CARGOTREE fla
R02=ARRAY hypotheses R02=ARRAY hypotheses
R03=CARGOTREE flacons R03=CARGOTREE flacons
RO4=INTEGER varstrtfree RO4=INTEGER varstrtfree
RO5=INTEGER varstrtbound RO5=INTEGER varstrtbound);
R06=CARGOTREE qbfr)

Description

Creates an open QBF where models correspond to selections of hypotheses such
that no proper sub-selection is an abductive explanation.

In other words: An interpretation of the QBF's free variables is a model iff no
subarray (no interpretation evaluating a subarray to TRUB corresponds to an
abductive explanation (by selecting those hypotheses for which the corresponding
variable is evaluated to TRUB.

The abductive explanations in question are those for flacons from fla and hypotheses.

Parameters
ctmem

fla
hypotheses

flacons
varstrtfree

varstrtbound

Return Values
ctmem

fla
hypotheses
flacons
varstrtfree
varstrtbound
gbfr

Memory used to create the resulting QBF within.

Formula in QBF-Scheme. Is NOT utilised.

Array of formulas, each in QBF-Scheme. Formulas are NOT
utilised. The array-size must be greater or equal to 1.

Formula in QBF-Scheme. Is NOT utilised.

First element of the free-variables identifier range. Range-size is
given by the array-size of hypotheses.

First element of the bound-variables range. Range-size via updated
return-value.

Passed through.
Passed through.
Passed through.
Passed through.
Passed through.
Updated.
Resulting QBF.

99

NecessaryHypothesis (0.00)

Synopsis

(RO0=CARGOTREEMEftMem =Ne.(R00=CARGOTREEMEunem

R0O2=INTEGER

R01=CARGOTREE qbf R01=CARGOTREE fla
varstrt) R02=ARRAY hypotheses
R03=CARGOTREE flacons
R04=INTEGER varstrt
RO5=INTEGER idxhyp);

Description

Creates a closed QBF which is valid iff the specified hypothesis is necessary for the
abductive explanations.
The abductive explanations in question are those for flacons from fla and hypotheses.

Parameters
ctmem

fla
hypotheses

flacons
varstrt

idxhyp

Return Values
ctmem

gbf

varstrt

Memory used to create the resulting QBF within.

Formula in QBF-Scheme. Is NOT utilised.

Array of formulas, each in QBF-Scheme. Formulas are NOT
utilised.

Formula in QBF-Scheme. Is NOT utilised.

First element of the (bound-)variables range. Range-size via
updated return-value.

Index of the hypothesis to check necessity for. Valid indices are
0,...,arraysize(hypotheses)-1.

Passed through.

Resulting QBF.
Updated.

100

RelevantHypothesis (0.00)

Synopsis

(R0O0=CARGOTREEMHnem =Re.(R00=CARGOTREEME#em

RO2=INTEGER

R01=CARGOTREE qbf R01=CARGOTREE fla
varstrt) R02=ARRAY hypotheses
R03=CARGOTREE flacons
R04=INTEGER varstrt
RO5=INTEGER idxhyp);

Description

Creates a closed QBF which is valid iff the specified hypothesis is relevant for the
abductive explanations.
The abductive explanations in question are those for flacons from fla and hypotheses.

Parameters
ctmem

fla
hypotheses

flacons
varstrt

idxhyp

Return Values
ctmem

gbf

varstrt

Memory used to create the resulting QBF within.

Formula in QBF-Scheme. Is NOT utilised.

Array of formulas, each in QBF-Scheme. Formulas are NOT
utilised.

Formula in QBF-Scheme. Is NOT utilised.

First element of the (bound-)variables range. Range-size via
updated return-value.

Index of the hypothesis to check relevance for. Valid indices are
0,...,arraysize(hypotheses)-1.

Passed through.

Resulting QBF.
Updated.

101

NecessaryHypothesis_Min (0.00)

Synopsis

(RO0=CARGOTREEMEftMem =Ne.(R00=CARGOTREEMEunem

R0O2=INTEGER

R01=CARGOTREE qbf R01=CARGOTREE fla
varstrt) R02=ARRAY hypotheses
R03=CARGOTREE flacons
R04=INTEGER varstrt
RO5=INTEGER idxhyp);

Description

Creates a closed QBF which is valid iff the specified hypothesis is necessary for the
minimal abductive explanations.
The minimal abductive explanations in question are those for flacons from fla and

hypotheses.
Parameters
ctmem

fla
hypotheses

flacons
varstrt

idxhyp

Return Values
ctmem

gbf

varstrt

Memory used to create the resulting QBF within.

Formula in QBF-Scheme. Is NOT utilised.

Array of formulas, each in QBF-Scheme. Formulas are NOT
utilised.

Formula in QBF-Scheme. Is NOT utilised.

First element of the (bound-)variables range. Range-size via
updated return-value.

Index of the hypothesis to check necessity for. Valid indices are
0,...,arraysize(hypotheses)-1.

Passed through.

Resulting QBF.
Updated.

102

RelevantHypothesis_Min (0.00)

Synopsis

(R0O0=CARGOTREEMHnem =Re.(R00=CARGOTREEME#em

R01=CARGOTREE qbf

RO2=INTEGER

Description

R01=CARGOTREE fla

varstrt) R02=ARRAY hypotheses
R03=CARGOTREE flacons
R04=INTEGER varstrt
RO5=INTEGER idxhyp);

Creates a closed QBF which is valid iff the specified hypothesis is relevant for the
minimal abductive explanations.
The minimal abductive explanations in question are those for flacons from fla and

hypotheses.
Parameters
ctmem

fla
hypotheses

flacons
varstrt

idxhyp

Return Values
ctmem

gbf

varstrt

Module
\ersion
Author
Description

Memory used to create the resulting QBF within.

Formula in QBF-Scheme. Is NOT utilised.

Array of formulas, each in QBF-Scheme. Formulas are NOT
utilised.

Formula in QBF-Scheme. Is NOT utilised.

First element of the (bound-)variables range. Range-size via
updated return-value.

Index of the hypothesis to check relevance for. Valid indices are
0,...,arraysize(hypotheses)-1.

Passed through.
Resulting QBF.
Updated.

equilib

0.00 (02/10/2003)

Norbert Pfaffinger

Translations of reasoning-task instances from equilibrium logic into
QBFs.

Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).

The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.

The functions are based on the translations presented in [22].

103

Overview

HereThere Translates a formula to the logic of “Here-and-There”.
(0.00), p.104

HereThereB Translates a formula to the logic of “Here-and-There”. (Different
(0.00), p.105 identifier-assignment than HereThere).

HTModel Creates a propositional formula where the models correspond to
(0.00), p.106 the HT-models of the input formula.

EquiModel Creates an open QBF where the models correspond to the equilib-
(0.00), p.107 rium models of the input formula.

HereThere (0.00)

Synopsis

(RO0O=CARGOTREEMHEinem =He.(R00=CARGOTREEMEHEMmem
R01=CARGOTREE flar R01=CARGOTREE fla
R02=HASHINT hash R02=HASHINT hash
RO3=INTEGER numhash RO3=INTEGER numhash
R04=INTEGER varstrt) RO4=INTEGER varstrt);
Description

Translates a formula to the logic of “Here-and-There”.

Variables for “Here” are varstrt,varstrt+2,..., and variables for “There” are
varstrt+1,varstrt+3,... in the resulting formula. As usual the correspondence to the
original set of variables from the input formula is given by occurrence (for example,
varstrt (here) and varstrt+1 (there) correspond to the first variable occurrence in fla,
varstrt+2 (here) and varstrt+3 (there) to the second occurrence and so forth).
There is a one-to-one correspondence between (a) the models of the resulting
formula which satisfy (varstrt >varstrt+1)&(varstrt+2>varstrt+3)&... and (b) the
HT-models of the input formula.

Parameters

ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Variables with occurrence-index. Gets extended if necessary.
numhash Number of entries in hash.

varstrt See description.

Return Values

ctmem Passed through.

flar Resulting formula. QBF-Scheme. No quantifiers.
hash Passed through and altered if necessary.
numhash Passed through or updated if necessary.

varstrt Passed through.

104

HereThereB (0.00)

Synopsis

(RO0=CARGOTREEMEkMem =He. (R00=CARGOTREEME#em

R02=HASHINT
RO3=INTEGER
R04=INTEGER

R01=CARGOTREE flar R01=CARGOTREE fla
hash R02=HASHINT hash
numhash RO3=INTEGER numhash
varstrta RO4=INTEGER varstrta
varstrtb) RO5=INTEGER varstrtb);

RO5=INTEGER
Description

Translates a formula to the logic of “Here-and-There”. (Different identifier-assignment
than HereThere).

Variables for “Here” are varstrtb,varstrtb+1,..., variables for “There” are
varstrta,varstrta+1,... in the resulting formula.

There is a one-to-one correspondence between (a) the models of the resulting
formula which satisfy (varstrtb>varstrta)&(varstrtb+1>varstrta+1)&... and (b) the
HT-models of the input formula.

Parameters
ctmem

fla

hash
numhash
varstrta
varstrtb
Return Values
ctmem

flar

hash
numhash
varstrta
varstrtb

Memory used to create the resulting QBF within.
QBF-Scheme. No quantifiers. Is NOT utilised.

Variables with occurrence-index. Must contain all fla variables.
Number of entries in hash.

See description.

See description.

Passed through.
Resulting formula. QBF-Scheme. No quantifiers.
Passed through.
Passed through.
Passed through.
Passed through.

105

HTModel (0.00)

Synopsis

(R0O0=CARGOTREEMHMmem =HT. (R00=CARGOTREEMEkmem
R01=CARGOTREE flar R01=CARGOTREE fla
R02=HASHINT hash R0O2=HASHINT hash
RO3=INTEGER numhash RO3=INTEGER numhash
R04=INTEGER varstrt) RO4=INTEGER varstrt);
Description

Creates a propositional formula where the models correspond to the HT-models of
the input formula.

The variables in the resulting formula should be seen grouped to tuples
(varstrt,varstrt+1), (varstrt+2,varstrt+3), ... A model of the resulting formula
corresponds to the following HT-model: The “Here"-interpretation is given by the
assignments to varstrt,varstrt+2,varstrt+4,... The “There”-interpretation is given by
the assignments to varstrt+1,varstrt+3,varstrt+5,....

Parameters

ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Variables with occurrence-index. Gets extended if necessary.
numhash Number of entries in hash.

varstrt See description.

Return Values

ctmem Passed through.

flar Resulting formula. QBF-Scheme. No quantifiers.
hash Passed through and altered if necessary.
numhash Passed through or updated if necessary.

varstrt Passed through.

106

EquiModel (0.00)

Synopsis

(RO0=CARGOTREEMEkMem
R01=CARGOTREE

R0O2=HASHINT
R0O3=INTEGER
R04=INTEGER
RO5=INTEGER
Description

=Eq. (R00=CARGOTREEMEHkiem

gbfr R01=CARGOTREE fla

hash R02=HASHINT hash
numhash RO3=INTEGER numhash
varstrt RO4=INTEGER varstrtfree

varstrtbound) RO5=INTEGER varstrtbound);

Creates an open QBF where the models correspond to the equilibrium models of the

input formula.

The models are given by interpretations of
varstrtfree,varstrtfree+1,...,varstrtfree+numhash-1. The propositional variable
identifiers varstrtbound,varstrtbound+1,...,varstrtbound +numhash-1 are used
quantified in the resulting QBF.

Parameters
ctmem

fla

hash

numhash
varstrtfree
varstrtbound
Return Values
ctmem

gbfr

hash
numhash
varstrt
varstrtbound

Module
Version
Author
Description

Memory used to create the resulting QBF within.

QBF-Scheme. No quantifiers. Is NOT utilised.

Variables with occurrence-index. Must contain exactly the variables
of the fla-formula (but not a superset).

Number of entries in hash.

See description.

See description.

Passed through.
Resulting QBF. QBF-Scheme.
Passed through.
Passed through.
Passed through.
Passed through.

parasigned

0.00 (09/09/2003)

Norbert Pfaffinger

Translations of reasoning-task instances from paraconsistent rea-
soning via signed systems into QBFs.

Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).

The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.

The functions are based on the translations presented in [6].

107

Overview
FLACollectPolarity
(0.00), p.108
FLACollectPlus
(0.00), p.109
PolaritySubstCopyA
(0.00), p.110

PolaritySubstCopyB
(0.00), p.111

ConsUnsignedCredulous
(0.00), p.112

ConsUnsignedSkeptical
(0.00), p.112

ConsUnsignedPrudent
(0.00), p.113

FLACollectPolarity (0.00)

Synopsis
(RO0=HASHINTCOLhash
R01=CARGOTREEfla

R0O2=INTEGER numhash
RO3=INTEGER numposneg)

Description

Gathers polarity occurrence information of the formulas’ proposi-
tional variables.

Collects variables into a HASHINTCOLwith data-entries like in FLA-
CollectPolarity, but ignores polarity information.

Copies the input formula and at the same time performs polarity re-
lated substitutions. Only those variables from the premise formula
get polarity-replaced which occur both positive and negative.
Copies the input formula and at the same time performs polarity
related substitutions. Works exactly like PolaritySubstCopyA, ex-
cept that all variables from the premise input formula get polarity-
replaced, even those that occur positive or negative only.

Creates a closed QBF which is valid iff the second input formula is
a credulous unsigned consequence of the first input formula.
Creates a closed QBF which is valid iff the second input formula is
a sceptical unsigned consequence of the first input formula.
Creates a closed QBF which is valid iff the second input formula is
a prudent unsigned consequence of the first input formula.

=FL.(R00=HASHINTCOLhash

R01=CARGOTREEfla
R0O2=INTEGER numhash
RO3=INTEGER numposneg);

Gathers polarity occurrence information of the formulas’ propositional variables.

Collects all occurring variables in a HASHINTCOL.where for each entry there are 2
additional data-fields, namely (a) the occurrence-index in the input formula, and (b)
the polarity occurrence information: A value of 1 means the variable occurs positive
only, 2 means the variable occurs negative only and 3 means the variable occurs
both positive and negative.

Parameters

hash Usually empty.

fla QBF-Scheme. No quantifiers.

numhash Number of entries already in hash. Usually O.
numposneg Number of pos/neg-occurrences so far. Usually 0.
Return Values

hash Altered. See description.

fla Passed through.

numhash Updated.

numposneg Updated.

108

FLACollectPlus (0.00)

Synopsis

(ROO=HASHINTCOLhash =FL.(R00=HASHINTCOLhash
R01=CARGOTREEfla R01=CARGOTREEfla
RO2=INTEGER numhash) RO2=INTEGER numhash);

Description

Collects variables into a HASHINTCOLwith data-entries like in FLACollectPolarity,
but ignores polarity information.

New variables (if there are any) have their polarity occurrence data-field set to O.
Parameters

hash See description.

fla QBF-Scheme. No quantifiers.
numhash Number of entries already in hash.
Return Values

hash Altered. See description.

fla Passed through.

numhash Updated.

109

PolaritySubstCopyA (0.00)

Synopsis

(R0O0=CARGOTREEMHMmem =Po.(R00=CARGOTREEMEfMmem
R01=CARGOTREE flalr R01=CARGOTREE flal
R02=CARGOTREE flarr R02=CARGOTREE flar
RO3=INTEGER varstrt RO3=INTEGER varstrt);
RO4=INTEGER numvar
RO5=INTEGER numposneg)

Description

Copies the input formula and at the same time performs polarity related substitutions.
Only those variables from the premise formula get polarity-replaced which occur both
positive and negative.

A re-sorting such that positive/negative occurrences come first, and positive or
negative only occurrences come second is performed.

In the resulting formula there are variable triples

(varstrt+k,varstrt+numvar +2Kk,varstrt+numvar +2k+1) for k=0,...,numposneg-1 (there
are no such triples if numposneg is 0). varstrt+k identifies the original variable,
occurring both positive and negative in the input formula. As all such occurrences get
replaced this identifier does not actually occur in the resulting formula.
varstrt+numvar +2k identifies the replacement for positive occurrences of varstrt+k in
the input formula, while varstrt+numvar+2k+1 identifies the replacement for negative
occurrences of varstrt+k in the input formula.

Parameters

ctmem Memory used to create the resulting formulas within.

flal QBF-Scheme. No quantifiers. Is NOT utilised.

flar QBF-Scheme. No quantifiers. Is NOT utilised.

varstrt For the variable range to use. See description. The range-size is
numvar+numposneg*2.

Return Values

ctmem Passed through.

flalr Resulting transformation of formula flal.

flarr Resulting transformation of formula flar.

varstrt Passed through.

numvar Number of variables.

numposneg Number of pos/neg occurring variables.

110

PolaritySubstCopyB (0.00)

Synopsis

(RO0=CARGOTREEMEfem =Po. (R00=CARGOTREEMEfMmem
R01=CARGOTREE flalr R01=CARGOTREE flal
R02=CARGOTREE flarr R02=CARGOTREE flar
RO3=INTEGER varstrt RO3=INTEGER varstrt);
RO4=INTEGER numvar
RO5=INTEGER numposneg)

Description

Copies the input formula and at the same time performs polarity related substitutions.
Works exactly like PolaritySubstCopyA, except that all variables from the premise
input formula get polarity-replaced, even those that occur positive or negative only.
Again, as in PolaritySubstCopyA, the variables are reordered such that those
occurring both positive and negative come first, those occurring positive or negative
only come second.

Parameters
ctmem

flal

flar

varstrt

Return Values
ctmem

flalr

flarr

varstrt
numvar
numposneg

Memory used to create the resulting formulas within.
QBF-Scheme. No quantifiers. Is NOT utilised.

QBF-Scheme. No quantifiers. Is NOT utilised.

For the variable range to use. The range-size is numvar+numvar*2
(i.e., numvar*3).

Passed through.

Resulting transformation of formula flal.
Resulting transformation of formula flar.
Passed through.

Number of variables.

Number of pos/neg occurring variables.

111

ConsUnsignedCredulous (0.00)

Synopsis
(RO0=CARGOTREEMEtMem =Co.(R00=CARGOTREEMHem
R01=CARGOTREE qbfr R01=CARGOTREE flal
R0O2=INTEGER varstrtnew) R02=CARGOTREE flar
RO3=INTEGER varstrt);
Description

Creates a closed QBF which is valid iff the second input formula is a credulous
unsigned consequence of the first input formula.

In other words: flal is the premise formula, and flar the formula tested for being a
consequence.

The consequence relation considered here is based on non-indexed polarity
substitutions (W+-) and on the defaults “: (p+ <-> p-) / (p <-> p+) & (p <-> p-)”.
Parameters

ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable range of the resulting QBF.
Return Values

ctmem Passed through.

gbfr Resulting QBF. QBF-Scheme.

varstrtnew Updated varstrt.

ConsUnsignedSkeptical (0.00)

Synopsis
(R0O0=CARGOTREEMEtMem =Co.(R00=CARGOTREEMHMem
R01=CARGOTREE qbfr R01=CARGOTREE flal
R0O2=INTEGER varstrtnew) R02=CARGOTREE flar
RO3=INTEGER varstrt);
Description

Creates a closed QBF which is valid iff the second input formula is a sceptical
unsigned consequence of the first input formula.

In other words: flal is the premise formula, and flar the formula tested for being a
consequence.

The consequence relation considered here is based on non-indexed polarity
substitutions (W+-) and on the defaults “: (p+ <-> p-) / (p <-> p+) & (p <-> p-)”.
Parameters

ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable range of the resulting QBF.
Return Values

ctmem Passed through.

gbfr Resulting QBF. QBF-Scheme.

varstrtnew Updated varstrt.

112

ConsUnsignedPrudent (0.00)

Synopsis

(RO0=CARGOTREEMEfem =Co. (R00=CARGOTREEMEkmem

R01=CARGOTREE qbfr R01=CARGOTREE flal

RO2=INTEGER varstrtnew) R02=CARGOTREE flar
RO3=INTEGER varstrt);

Description

Creates a closed QBF which is valid iff the second input formula is a prudent
unsigned consequence of the first input formula.
In other words: flal is the premise formula, and flar the formula tested for being a

consequence.

The consequence relation considered here is based on non-indexed polarity
substitutions (W+-) and on the defaults “: (p+ <-> p-)/ (p <-> p+) & (p <-> p-)".

Parameters
ctmem

flal

flar

varstrt

Return Values
ctmem

gbfr
varstrtnew

Module
Version
Author
Description

Memory used to create the resulting QBF within.
QBF-Scheme. No quantifiers. Is NOT utilised.
QBF-Scheme. No quantifiers. Is NOT utilised.
For the variable range of the resulting QBF.

Passed through.
Resulting QBF. QBF-Scheme.
Updated varstrt.

para3val

0.00 (29/09/2003)

Norbert Pfaffinger

Translations of reasoning-task instances from paraconsistent rea-
soning via three-valued logic into QBFs.

Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).

The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.

The functions are based on the translations presented in [7].

113

Overview

ThreeVvalT Creates a formula with a correspondence between its models and
(0.00), p.114 those three-valued interpretations which evaluate the input formula
to ‘T’ (‘true’).
ThreeValF Creates a formula with a correspondence between its models and
(0.00), p.115 those three-valued interpretations which evaluate the input formula
to ‘F’ (‘false’).
ThreeValO Creates a formula with a correspondence between its models and
(0.00), p.116 those three-valued interpretations which evaluate the input formula
to ‘O’
Model3 Creates a formula with a correspondence between its models and
(0.00), p.117 the three-valued models of the input formula.
ConsLP Creates a closed QBF which is valid iff the second input formula is
(0.00), p.118 a consequence of the first one under the inference relation in the
logic “LP”.
ConsLPm Creates a closed QBF which is valid iff the second input formula is
(0.00), p.118 a consequence of the first one under the inference relation in the
logic “LP_m".
ThreeValT (0.00)
Synopsis
(R0O0=CARGOTREEMEHMmem =Th.(R00=CARGOTREEMHEitMmem
R01=CARGOTREE flar R01=CARGOTREE fla
R02=HASHINT hash R02=HASHINT hash
RO3=INTEGER numhashr RO3=INTEGER numhash
R04=INTEGER varstrt) RO4=INTEGER varstrt);
Description

Creates a formula with a correspondence between its models and those three-valued
interpretations which evaluate the input formula to ‘T’ (‘true”).

In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.

An interpretation of the resulting formula’s variables corresponds to a three-valued
interpretation evaluating the input-formula to ‘T’ iff (@) it is a model of the resulting
formula and (b) there is no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).
The associated three-valued interpretation to any such interpretation is given by
tuples (varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false)
corresponds to ‘F’, and (false,true) corresponds to ‘O'.

Parameters

ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values

ctmem Passed through.

flar Resulting formula. QBF-Scheme.

hash Passed through and altered.

numhashr Updated.

varstrt Passed through.

114

ThreeValF (0.00)

Synopsis

(RO0=CARGOTREEMEfem =Th.(R00=CARGOTREEMHEitMmem
R01=CARGOTREE flar R01=CARGOTREE fla
R0O2=HASHINT hash R0O2=HASHINT hash
RO3=INTEGER numhashr RO3=INTEGER numhash
R04=INTEGER varstrt) RO4=INTEGER varstrt);
Description

Creates a formula with a correspondence between its models and those three-valued
interpretations which evaluate the input formula to ‘F’ (‘false’).

The calling interface of this function is exactly like the one of ThreeValT.

In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.

An interpretation of the resulting formula’s variables corresponds to a three-valued
interpretation evaluating the input-formula to ‘F’ iff (a) it is a model of the resulting
formula and (b) there is no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).
The associated three-valued interpretation to any such interpretation is given by
tuples (varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false)
corresponds to ‘F’, and (false,true) corresponds to ‘O’.

Parameters

ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values

ctmem Passed through.

flar Resulting formula. QBF-Scheme.

hash Passed through and altered.

numhashr Updated.

varstrt Passed through.

115

ThreeValO (0.00)

Synopsis

(R0O0=CARGOTREEMHMmem =Th.(R00=CARGOTREEMHEitMmem
R01=CARGOTREE flar R01=CARGOTREE fla
R02=HASHINT hash R0O2=HASHINT hash
RO3=INTEGER numhashr RO3=INTEGER numhash
R04=INTEGER varstrt) RO4=INTEGER varstrt);
Description

Creates a formula with a correspondence between its models and those three-valued
interpretations which evaluate the input formula to ‘O’.

The calling interface of this function is exactly like the one of ThreeValT.

In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.

An interpretation of the resulting formula’s variables corresponds to a three-valued
interpretation evaluating the input-formula to ‘O’ iff (@) it is a model of the resulting
formula and (b) there is no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).
The associated three-valued interpretation to any such interpretation is given by
tuples (varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false)
corresponds to ‘F’, and (false,true) corresponds to ‘O’.

Parameters

ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values

ctmem Passed through.

flar Resulting formula. QBF-Scheme.

hash Passed through and altered.

numhashr Updated.

varstrt Passed through.

116

Model3 (0.00)

Synopsis

(RO0=CARGOTREEMEfem =Mo. (R0O0=CARGOTREEMEkinem
R01=CARGOTREE flar R01=CARGOTREE fla
R0O2=HASHINT hash R02=HASHINT hash
RO3=INTEGER numhashr RO3=INTEGER numhash
R04=INTEGER varstrt) R04=INTEGER varstrt);
Description

Creates a formula with a correspondence between its models and the three-valued
models of the input formula.

In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.

An interpretation of the resulting formula’s variables corresponds to a three-valued
model of the input-formula iff (a) it is a model of the resulting formula and (b) there is
no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).

The associated three-valued model to any such interpretation is given by tuples
(varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false) corresponds to
‘F’, and (false,true) corresponds to ‘O’.

Parameters

ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values

ctmem Passed through.

flar Resulting formula, QBF-Scheme.

hash Passed through and altered.

numhashr Updated.

varstrt Passed through.

117

ConsLP (0.00)

Synopsis
(RO0=CARGOTREEMEtMem =Co.(R00=CARGOTREEMHem
R01=CARGOTREE qbfres R01=CARGOTREE flal
R0O2=INTEGER varstrtnew) R02=CARGOTREE flar
RO3=INTEGER varstrt);
Description

Creates a closed QBF which is valid iff the second input formula is a consequence of
the first one under the inference relation in the logic “LP”.

flal is the premise formula, flar the formula tested for being a consequence. In other
words: The QBF is valid iff every three-valued model of flal is a three-valued model
of flar.

Parameters

ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable-range to use.

Return Values

ctmem Passed through.

gbfres Resulting QBF.

varstrtnew Updated varstrt.

ConsLPm (0.00)

Synopsis
(R0O0=CARGOTREEMHimem =Co.(R00=CARGOTREEMEkMmem
R01=CARGOTREE (qbfres R01=CARGOTREE flal
R02=INTEGER varstrtnew) R02=CARGOTREE flar
RO3=INTEGER varstrt);
Description

Creates a closed QBF which is valid iff the second input formula is a consequence of
the first one under the inference relation in the logic “LP_m”.

flal is the premise formula, flar the formula tested for being a consequence.
Parameters

ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable-range to use.

Return Values

ctmem Passed through.

gbfres Resulting QBF.

varstrtnew Updated varstrt.

118

Module cabductionlaunch
Version 0.00 (06/10/2003)
Author Norbert Pfaffinger
Description Wrapper Functions for calling translations related to classical abduc-
tion of Smute Module “cabduction” from within a Smute Launch File.
Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “cabduction”.
All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “gbfstorenum.txt” and
“gbfstorenum.gdl”. The firstis a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdI-
file can be loaded with “aiSee” ((c) 2000-2004 AbsInt Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.
The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.
Overview
AbductiveExplanation Wrapper Function for cabduction:AbductiveExplanation.
(0.00), p.120
ExistsAbductiveExplanation Wrapper Function for cabduction:ExistsAbductiveExplanation.
(0.00), p.120
NecessaryHypothesis Wrapper Function for cabduction:NecessaryHypothesis.
(0.00), p.121
RelevantHypothesis Wrapper Function for cabduction:RelevantHypothesis.
(0.00), p.121
NecessaryHypothesis_Min Wrapper Function for cabduction:NecessaryHypothesis_Min.
(0.00), p.122
RelevantHypothesis_Min Wrapper Function for cabduction:RelevantHypothesis Min.
(0.00), p.122

119

AbductiveExplanation (0.00)
Synopsis
Ab. (R00=CARGOTREHaleft
R01=CARGOTRERypotheses
R02=CARGOTREHaright
RO3=INTEGER storenum);
Description
Wrapper Function for cabduction;:AbductiveExplanation.
The abductive explanations in question are those for flaright from flaleft and

hypotheses.

Parameters

flaleft Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

hypotheses Variable array. Must be specified according to the Logic Edition
Launch File “idarraydef” syntax.

flaright Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

storenum See module description.

ExistsAbductiveExplanation (0.00)
Synopsis
Ex. (R00=CARGOTREHaleft
R01=CARGOTRERypotheses
R02=CARGOTREHaright
RO3=INTEGER storenum);
Description
Wrapper Function for cabduction:ExistsAbductiveExplanation.
The abductive explanations in question are those for flaright from flaleft and

hypotheses.

Parameters

flaleft Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

hypotheses Variable array. Must be specified according to the Logic Edition
Launch File “idarraydef” syntax.

flaright Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

storenum See module description.

120

NecessaryHypothesis (0.00)
Synopsis
Ne. (R0O0=CARGOTREHaleft
R01=CARGOTRERypotheses
R0O2=INTEGER idxhyp
R03=CARGOTREHaright
RO4=INTEGER storenum);
Description
Wrapper Function for cabduction:NecessaryHypothesis.
The abductive explanations in question are those for flaright from flaleft and

hypotheses.

Parameters

flaleft Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

hypotheses Variable array. Must be specified according to the Logic Edition
Launch File “idarraydef” syntax.

idxhyp Index of the hypothesis to check necessity for. Must be in the range
0,...,numberofhypotheses-1.

flaright Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

storenum See module description.

RelevantHypothesis (0.00)
Synopsis
Re. (R00=CARGOTREHaleft
R01=CARGOTRERypotheses
R0O2=INTEGER idxhyp
R03=CARGOTREHaright
RO4=INTEGER storenum);
Description
Wrapper Function for cabduction:RelevantHypothesis.
The abductive explanations in question are those for flaright from flaleft and

hypotheses.

Parameters

flaleft Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

hypotheses Variable array. Must be specified according to the Logic Edition
Launch File “idarraydef” syntax.

idxhyp Index of the hypothesis to check relevance for. Must be in the range
0,...,numberofhypotheses-1.

flaright Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

storenum See module description.

121

NecessaryHypothesis_Min (0.00)
Synopsis
Ne. (R00=CARGOTREHaleft
R01=CARGOTRERypotheses
RO2=INTEGER idxhyp
R03=CARGOTREHaright
RO4=INTEGER storenum);
Description
Wrapper Function for cabduction:NecessaryHypothesis_Min.
The minimal abductive explanations in question are those for flaright from flaleft and

hypotheses.

Parameters

flaleft Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

hypotheses Variable array. Must be specified according to the Logic Edition
Launch File “idarraydef” syntax.

idxhyp Index of the hypothesis to check necessity for. Must be in the range
0,...,numberofhypotheses-1.

flaright Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

storenum See module description.

RelevantHypothesis_Min (0.00)
Synopsis
Re. (R00=CARGOTREHaleft
R01=CARGOTRERypotheses
R0O2=INTEGER idxhyp
R03=CARGOTREH#aright
RO4=INTEGER storenum);
Description
Wrapper Function for cabduction:RelevantHypothesis_Min.
The minimal abductive explanations in question are those for flaright from flaleft and

hypotheses.

Parameters

flaleft Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

hypotheses Variable array. Must be specified according to the Logic Edition
Launch File “idarraydef” syntax.

idxhyp Index of the hypothesis to check relevance for. Must be in the range
0,...,numberofhypotheses-1.

flaright Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.

storenum See module description.

122

Module
Version
Author
Description

Overview
HTModel

(0.00), p.123

EquiModel

(0.00), p.123

HTModel (0.00)

Synopsis

equiliblaunch

0.00 (08/10/2003)

Norbert Pfaffinger

Wrapper Functions for calling translations related to equilibrium logic
of Smute Module “equilib” from within a Smute Launch File.
Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “equilib”.

All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “gbfstorenum.txt” and
“gbfstorenum.gdl”. The firstis a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdI-
file can be loaded with “aiSee” ((c) 2000-2004 AbsInt Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.

The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.

Wrapper Function for equlib:HTModel.

Wrapper Function for equlib:EquiModel.

HT.(RO0=CARGOTRE#a
RO1=INTEGER storenum);

Description

Wrapper Function for equlib:HTModel.

Parameters

fla

storenum

Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.
See module description.

EquiModel (0.00)

Synopsis

Eq.(R00=CARGOTREfa
RO1=INTEGER storenum);

Description

Wrapper Function for equlib:EquiModel.

Parameters

fla

storenum

Propositional formula. Must be specified according to the Logic
Edition Launch File “formula” syntax.
See module description.

123

Module

parasignedlaunch

Version 0.00 (08/10/2003)
Author Norbert Pfaffinger
Description Wrapper Functions for calling translations related to paraconsistent
reasoning via signed systems of Smute Module “parasigned” from
within a Smute Launch File.
Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “parasigned”.
All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “gbfstorenum.txt” and
“gbfstorenum.gdl”. The first is a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdl-
file can be loaded with “aiSee” ((c) 2000-2004 Absint Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.
The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.
Overview
ConsUnsignedCredulous Wrapper Function for parasigned:ConsUnsignedCredulous.
(0.00), p.124
ConsUnsignedSkeptical Wrapper Function for parasigned:ConsUnsignedSkeptical.
(0.00), p.125
ConsUnsignedPrudent Wrapper Function for parasigned:ConsUnsignedPrudent.
(0.00), p.125

ConsUnsignedCredulous (0.00)

Synopsis

Co. (R00=CARGOTRE#aleft
R01=CARGOTRE#Haright
RO2=INTEGER storenum);

Description

Wrapper Function for parasigned:ConsUnsignedCredulous.

Parameters
flaleft

flaright

storenum

Propositional formula representing the premise. Must be specified
according to the Logic Edition Launch File “formula” syntax.
Propositional formula which is tested for being a consequence.
Must be specified according to the Logic Edition Launch File
“formula” syntax.

See module description.

124

ConsUnsignedSkeptical (0.00)

Synopsis

Co.(R00=CARGOTRE#aleft
R01=CARGOTRE#Haright
RO2=INTEGER storenum);

Description

Wrapper Function for parasigned:ConsUnsignedSkeptical.

Parameters
flaleft

flaright

storenum

Propositional formula representing the premise. Must be specified
according to the Logic Edition Launch File “formula” syntax.
Propositional formula which is tested for being a consequence.
Must be specified according to the Logic Edition Launch File
“formula” syntax.

See module description.

ConsUnsignedPrudent (0.00)

Synopsis

Co.(R00=CARGOTRE#Haleft
R01=CARGOTRE#aright
RO2=INTEGER storenum);

Description

Wrapper Function for parasigned:ConsUnsignedPrudent.

Parameters
flaleft

flaright

storenum

Module
Version
Author
Description

Propositional formula representing the premise. Must be specified
according to the Logic Edition Launch File “formula” syntax.
Propositional formula which is tested for being a consequence.
Must be specified according to the Logic Edition Launch File
“formula” syntax.

See module description.

para3vallaunch

0.00 (08/10/2003)

Norbert Pfaffinger

Wrapper Functions for calling translations related to paraconsistent
reasoning via three-valued logic of Smute Module “para3val” from
within a Smute Launch File.

Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “para3val”.

All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “gbfstorenum.txt” and
“gbfstorenum.gdl”. The firstis a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdI-
file can be loaded with “aiSee” ((c) 2000-2004 Absint Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.

The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.

125

Overview
ConsLP
(0.00), p.126
ConsLPm
(0.00), p.126

ConsLP (0.00)

Synopsis

Wrapper Function for para3val:ConsLP.

Wrapper Function for para3val:ConsLPm.

Co. (R00=CARGOTREHaleft
R01=CARGOTRE#aright

RO2=INTEGER storenum);

Description

Wrapper Function for para3val:ConsLP.

Parameters

flaleft Propositional formula representing the premise. Must be specified
according to the Logic Edition Launch File “formula” syntax.

flaright Propositional formula which is tested for being a consequence.
Must be specified according to the Logic Edition Launch File
“formula” syntax.

storenum See module description.

ConsLPm (0.00)

Synopsis

Co. (R00=CARGOTRE#aleft
R01=CARGOTRE#aright

RO2=INTEGER storenum);
Description
Wrapper Function for para3val:ConsLPm.
Parameters
flaleft Propositional formula representing the premise. Must be specified
according to the Logic Edition Launch File “formula” syntax.
flaright Propositional formula which is tested for being a consequence.
Must be specified according to the Logic Edition Launch File
“formula” syntax.
storenum See module description.
Module gbf
Version 0.00 (03/09/2003)
Author Norbert Pfaffinger
Description Utility functions for CARGOTREE in QBF-Scheme.
Overview
FLACollectVar Collects the variables occurring in a propositional formula.
(0.00), p.128
CollectFreeVar Collects the variables occurring free in the specified QBF.
(0.00), p.128
Not Prefixes the input QBF with “NOT”.
(0.00), p.129

126

And

(0.00), p.129
Or

(0.00), p.129
Impl

(0.00), p.130
EquivVarA

(0.00), p.130
EquivVarB

(0.00), p.130
BigExistsA

(0.00), p.131
BigForAllA

(0.00), p.131
BigExistsB

(0.00), p.132
BigForAllB

(0.00), p.132
FLAValid

(0.00), p.133
FLASat

(0.00), p.133
FLAUNSat

(0.00), p.133
FLACons

(0.00), p.134

FLANotCons
(0.00), p.134

ArrayldToFLA
(0.00), p.135

SubSelectionVarA

(0.00), p.135
SubSelectionVarB
(0.00), p.136

ProperSubSelectionVarA

(0.00), p.137
SubSelection
(0.00), p.138

ProperSubSelection

(0.00), p.139
Trigger
(0.00), p.140

TriggerOmit
(0.00), p.141

ConsistentSelections

(0.00), p.142

Connects the two input QBFs with “AND”.

Connects the two input QBFs with “OR”".

Connects the two input QBFs with “IMPL”.

Creates a propositional formula expressing equivalence between
two variables.

Creates a propositional formula expressing equivalence between
two variables.

Prefixes the input QBF with existential quantifiers for all the propo-
sitional variables collected in the specified HASHINTCOL

Prefixes the input QBF with universal quantifiers for all the proposi-
tional variables collected in the specified HASHINTCOL

Prefixes the input QBF with existential quantifiers for all the propo-
sitional variables in the specified range.

Prefixes the input QBF with universal quantifiers for all the proposi-
tional variables in the specified range.

Creates a closed QBF which is valid iff the propositional input for-
mula is valid.

Creates a closed QBF which is valid iff the propositional input for-
mula is satisfiable.

Creates a closed QBF which is valid iff the propositional input for-
mula is unsatisfiable.

Creates a closed QBF which is valid iff the second of the specified
input formulas is a consequence of the first one in propositional
logic.

Creates a closed QBF which is valid iff the second of the specified
input formulas is a not a consequence of the first one in proposi-
tional logic.

From an array of INTEGER identifiers creates an array of QBF-
Scheme CARGOTREE representing those propositional variables.
Creates a propositional formula which expresses a “subselection”
condition between two ranges of propositional variables.

Creates a propositional formula which expresses a “subselection”
condition between two arrays of propositional variables.

Creates a propositional formula which expresses a “proper subse-
lection” condition between two ranges of propositional variables.
Creates a propositional formula which expresses a “subselection”
condition between two arrays of propositional formulas.

Creates a propositional formula which expresses a “proper subse-
lection” condition between two arrays of propositional formulas.
Creates a propositional formula which is a conjunction of trigger
variables triggering (i.e., implicating) formulas of an array of formu-
las (correspondence between formula selection and trigger variable
models).

Identical to Trigger, except that one formula of the passed array is
omitted.

Creates an open QBF where the models correspond to selections
of formulas that are consistent with the specified ‘theory’ formula.

127

MaxConsistentSelections
(0.00), p.143

ModellingSelections
(0.00), p.144

Creates an open QBF where the models correspond to selections
of formulas that are consistent with the input formula and that are
maximal with this property, i.e., for each such selection no proper
super-selection is consistent with the input formula.

Creates an open QBF where the models correspond to selections
of propositional formulas which together with the first input formula

model the second input formula (in propositional logic).

FLACollectVar (0.00)

Synopsis

(ROO=INTEGER numdata =FL.(ROO=INTEGER numdata
R01=CARGOTREEqbf R01=CARGOTREEqbf
R02=HASHINTCOLhash) R02=HASHINTCOLhash);
Description

Collects the variables occurring in a propositional formula.
Note that instead of FLACollectVar the Smute Language instruction ‘Collectintval
can be used.

Parameters

numdata Number of data-fields in each HASHINTCOLENTRY
gbf QBF-Scheme. No quantifiers.

hash Used to collect variables. Does not need to be empty.
Return Values

numdata Passed through.

gbf Passed through.

hash Passed through and possibly altered.

CollectFreeVar (0.00)

Synopsis

(ROO=INTEGER numdata =Co.(R00=INTEGER numdata
R01=CARGOTREEQqbf R01=CARGOTREEQqbf
R02=HASHINTCOLhash) R02=HASHINTCOLhash);

Description

Collects the variables occurring free in the specified QBF.

Parameters

numdata Number of data-fields in each HASHINTCOLENTRY

gbf QBF-Scheme.

hash Used to collect variables. Does not need to be empty.

Return Values

numdata Passed through.

gbf Passed through.

hash Passed through and possibly altered.

128

Not (0.00)

Synopsis

(R00=CARGOTREEMEtMmem =No.(R00=CARGOTREEMEiMmem
R01=CARGOTREE gbf) R01=CARGOTREE qbf);
Description

Prefixes the input QBF with “NOT".
This is a low-level routine guaranteed not to modify registers RO3++
Parameters

ctmem Memory used to create the resulting QBF within.

gbf QBF-Scheme. Gets utilised as “not” child.

Return Values

ctmem Passed through.

gbf Resulting QBF.

And (0.00)

Synopsis

(RO0=CARGOTREEMERMem =An.(R00=CARGOTREEMEfkem
R01=CARGOTREE gbf) R01=CARGOTREE qbfi

R02=CARGOTREE qbfr);
Description
Connects the two input QBFs with “AND”.
This is a low-level routine guaranteed not to modify registers RO4++
Parameters

ctmem Memory used to create the resulting QBF within.
gbfl QBF-Scheme. Gets utilised as left child in “and”.
gbfr QBF-Scheme. Gets utilised as right child in “and”.
Return Values

ctmem Passed through.

gbf Resulting QBF.

Or (0.00)

Synopsis

(R0O0=CARGOTREEMEtMmem =Or (R00=CARGOTREEMEnem
R01=CARGOTREE gbf) R01=CARGOTREE qbfl
R02=CARGOTREE qbfr);
Description
Connects the two input QBFs with “OR”.
This is a low-level routine guaranteed not to modify registers RO4++
Parameters

ctmem Memory used to create the resulting QBF within.
gbfl QBF-Scheme. Gets utilised as left child in “or”.
gbfr QBF-Scheme. Gets utilised as right child in “or”.
Return Values

ctmem Passed through.

gbf Resulting QBF.

129

Impl (0.00)

Synopsis

(R00=CARGOTREEME#em =Im.(R00=CARGOTREEMEkMmem

R01=CARGOTREE gbf) R01=CARGOTREE qbfl
R02=CARGOTREE qbfr);

Description

Connects the two input QBFs with “IMPL”.
This is a low-level routine guaranteed not to modify registers RO4++
Parameters

ctmem Memory used to create the resulting QBF within.
gbfl QBF-Scheme. Gets utilised as left child in “impl”.
gbfr QBF-Scheme. Gets utilised as right child in “impl”.
Return Values

ctmem Passed through.

gbf Resulting QBF.

EquivVarA (0.00)

Synopsis

(R00=CARGOTREEME#em =Eq.(R00=CARGOTREEMEtMmem

R01=CARGOTREE qgbf) RO1=INTEGER var0
R02=INTEGER varl)

Description

Creates a propositional formula expressing equivalence between two variables.
The resulting formula is (~var0|varl)&(varO|~varl).

This is a low-level routine guaranteed not to modify registers RO8++.
Parameters

ctmem Memory used to create the resulting QBF within.
varO Variable identifier.

varl Variable identifier.

Return Values

ctmem Passed through.

gbf Resulting QBF.

EquivVarB (0.00)

Synopsis

(R00=CARGOTREEME#em =Eq.(R00=CARGOTREEMEtMmem

R01=CARGOTREE qgbf) RO1=INTEGER var0
R02=INTEGER varl)

Description

Creates a propositional formula expressing equivalence between two variables.
The resulting formula is (varO>varl)&(varl>var0).

This is a low-level routine guaranteed not to modify registers RO8++.
Parameters

ctmem Memory used to create the resulting QBF within.
varO Variable identifier.

varl Variable identifier.

Return Values

ctmem Passed through.

gbf Resulting QBF.

130

BigEXistsA (0.00)

Synopsis

(RO0O=CARGOTREEME#em =Bi.(R00=CARGOTREEMEtMmem
R01=CARGOTREE gbfout R01=CARGOTREE qbf
R02=HASHINTCOL hash) R02=HASHINTCOL hash);

Description

Prefixes the input QBF with existential quantifiers for all the propositional variables
collected in the specified HASHINTCOL

Parameters

ctmem Memory used to create the resulting QBF within.

gbf QBF-Scheme. Gets utilised.

hash For each of the INTEGERS collected in hash an existential

guantification is created.
Return Values

ctmem Passed through.
gbfout Resulting existential-quantified QBF. QBF-Scheme.
hash Passed through.

BigForAllA (0.00)

Synopsis

(R0O0=CARGOTREEMEtMmem =Bi.(R00=CARGOTREEMEinem
R01=CARGOTREE gbfout R01=CARGOTREE qbf
R02=HASHINTCOL hash) R02=HASHINTCOL hash);

Description

Prefixes the input QBF with universal quantifiers for all the propositional variables
collected in the specified HASHINTCOL

Parameters

ctmem Memory used to create the resulting QBF within.

gbf QBF-Scheme. Gets utilised.

hash For each of the INTEGERS collected in hash a universal

guantification is created.
Return Values

ctmem Passed through.
gbfout Resulting universal-quantified QBF. QBF-Scheme.
hash Passed through.

131

BigExistsB (0.00)

Synopsis

(R00=CARGOTREEME#em =Bi.(R00=CARGOTREEMHkiem
R01=CARGOTREE gbfout R01=CARGOTREE qbf
R02=INTEGER strt R02=INTEGER strt
R0O3=INTEGER num) R0O3=INTEGER num);

Description

Prefixes the input QBF with existential quantifiers for all the propositional variables in
the specified range.

Parameters

ctmem Memory used to create the resulting QBF within.
gbf QBF-Scheme. Gets utilised.

strt Start of the variable-range.

num Number of variables, i.e., size of the variable-range.
Return Values

ctmem Passed through.

gbfout Resulting existential-quantified gbf. QBF-Scheme.
strt Passed through.

num Passed through.

BigForAlIB (0.00)

Synopsis

(R00=CARGOTREEME#em =Bi.(R00=CARGOTREEMEfiem
R01=CARGOTREE gbfout R01=CARGOTREE qbf
R02=INTEGER strt R02=INTEGER strt
R0O3=INTEGER num) RO3=INTEGER num);

Description

Prefixes the input QBF with universal quantifiers for all the propositional variables in
the specified range.

Parameters

ctmem Memory used to create the resulting QBF within.
gbf QBF-Scheme. Gets utilised.

strt Start of the variable-range.

num Number of variables, i.e., size of the variable-range.
Return Values

ctmem Passed through.

gbfout Resulting universal-quantified gbf. QBF-Scheme.
strt Passed through.

num Passed through.

132

FLAValid (0.00)

Synopsis

(RO0=CARGOTREEMERMem =FL.(R00=CARGOTREEMEkem
R01=CARGOTREE gbfout) R01=CARGOTREE fla);
Description

Creates a closed QBF which is valid iff the propositional input formula is valid.
Parameters

ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Gets utilised.
Return Values

ctmem Passed through.

gbfout Resulting QBF.

FLASat (0.00)

Synopsis

(R00=CARGOTREEMEtMmem =FL.(R00=CARGOTREEMEkMmem
R01=CARGOTREE gbfout) R01=CARGOTREE fla);
Description

Creates a closed QBF which is valid iff the propositional input formula is satisfiable.
Parameters

ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Gets utilised.
Return Values

ctmem Passed through.

gbfout Resulting QBF.

FLAUNSat (0.00)

Synopsis

(R00=CARGOTREEMEtMmem =FL.(R00=CARGOTREEMEkMmem
R01=CARGOTREE gbfout) RO1=CARGOTREE fla);
Description

Creates a closed QBF which is valid iff the propositional input formula is unsatisfiable.
Parameters

ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Gets utilised.
Return Values

ctmem Passed through.

gbfout Resulting QBF.

133

FLACons (0.00)

Synopsis
(R0O0=CARGOTREEMEfMem =FL.(R00=CARGOTREEMEem
R01=CARGOTREE gbfout) R01=CARGOTREE fla0
R02=CARGOTREE flal);
Description

Creates a closed QBF which is valid iff the second of the specified input formulas is a
consequence of the first one in propositional logic.
In other words: fla0 is the premise formula, flal the formula tested for being a

consequence.
Parameters

ctmem Memory used to create the resulting QBF within.
fla0 QBF-Scheme. No quantifiers. Gets utilised.

flal QBF-Scheme. No quantifiers. Gets utilised.
Return Values

ctmem Passed through.

gbfout Resulting QBF. Is normalised.

FLANotCons (0.00)

Synopsis
(R00=CARGOTREEME#nem =FL.(R00=CARGOTREEMEkem
R01=CARGOTREE gbfout) R01=CARGOTREE fla0
R02=CARGOTREE flal);
Description

Creates a closed QBF which is valid iff the second of the specified input formulas is a
not a consequence of the first one in propositional logic.
In other words: flaO is the premise formula, flal the formula tested for not being a

consequence.
Parameters

ctmem Memory used to create the resulting QBF within.
fla0 QBF-Scheme. No quantifiers. Gets utilised.

flal QBF-Scheme. No quantifiers. Gets utilised.
Return Values

ctmem Passed through.

gbfout Resulting QBF. Is normalised.

134

ArrayldToFLA (0.00)

Synopsis

(R0O0=CARGOTREEMHtem =Ar.(R00=CARGOTREEMEHimem
R01=ARRAY arrid R0O1=ARRAY arrid);
R02=ARRAY arrfla)

Description

From an array of INTEGERIdentifiers creates an array of QBF-Scheme
CARGOTREE representing those propositional variables.

Useful for passing a variable-array to functions which expect a formula-array.
Parameters

ctmem Memory used to create the resulting formulas within.
arrid See description.

Return Values

ctmem Passed through.

arrid Passed through.

arrfla The resulting formula array.

SubSelectionVarA (0.00)

Synopsis

(RO0=CARGOTREEMEfem =Su. (R00=CARGOTREEMEinem
RO1=INTEGER varstrta RO1=INTEGER varstrta
RO2=INTEGER varstrtb RO2=INTEGER varstrtb
RO3=INTEGER numtuples RO3=INTEGER numtuples);
R04=CARGOTREE flar)

Description

Creates a propositional formula which expresses a “subselection” condition between
two ranges of propositional variables.

The tuple identifiers are (varstrta+k,varstrtb+k) for k=0,...,numtuples-1, the resulting
formula is the conjunction of implications varstrta+k > varstrtb+k.

Consequently an interpretation of this range of variables is a model of the resulting
formula iff no tuple is evaluated to (T,F). This is also refered to as “subselection”
condition, because for any varstrta+k which is “selected” (evaluated to TRUB
varstrtb+k is selected too.

Parameters

ctmem Memory used to create the resulting formula within.
varstrta See description.

varstrtb See description.

numtuples See description. Must be greater or equal to 1.
Return Values

ctmem Passed through.

varstrta Passed through.

varstrtb Passed through.

numtuples Passed through.

flar Resulting formula. QBF-Scheme. No quantifiers.

135

SubSelectionVarB (0.00)

Synopsis

(R0O0=CARGOTREEMHMmem =Su. (R00=CARGOTREEMEinem
RO1=INTEGER varstrt RO1=INTEGER varstrt
RO2=INTEGER numtuples RO2=INTEGER numtuples);
R03=CARGOTREE flar)

Description

Creates a propositional formula which expresses a “subselection” condition between
two arrays of propositional variables.

The tuple identifiers are (varstrt+2k,varstrt+2k+1) for k=0,...,numtuples-1, the
resulting formula is the conjunction of implications varstrt+2k > varstrt+2k+1.
Consequently an interpretation of this range of variables is a model of the resulting
formula iff no tuple is evaluated to (T,F). This is also refered to as “subselection”
condition, because for any varstrt+2k which is “selected” (evaluated to TRUB
varstrt+2k+1 is selected too.

Parameters

ctmem Memory used to create the resulting formula within.
varstrt See description.

numtuples See description. Must be greater or equal to 1.
Return Values

ctmem Passed through.

varstrt Passed through.

numtuples Passed through.

flar Resulting formula. QBF-Scheme. No quantifiers.

136

ProperSubSelectionVarA (0.00)

Synopsis

(RO0=CARGOTREEMEfem =Pr. (R00=CARGOTREEMEkiem
RO1=INTEGER varstrta RO1=INTEGER varstrta
RO2=INTEGER varstrtb R0O2=INTEGER varstrtb
RO3=INTEGER numtuples RO3=INTEGER numtuples);
R04=CARGOTREE flar)

Description

Creates a propositional formula which expresses a “proper subselection” condition
between two ranges of propositional variables.

One variable range is given by varstrta+k, the other one by varstrtb+k, for
k=0,...,numtuples-1. The resulting formula is (varstrta+0 > varstrtb+0) & ... &
(varstrta+numtuples-1 > varstrtb+numtuples-1) & ~((varstrtb+0 > varstrta+0) & ...
& (varstrtb+numtuples-1 > varstrta+numtuples-1)).

Consequently an interpretation of the ranges of variables is a model of the resulting
formula iff the selection of variables from range varstrta+k is a proper subselection of
variables from range varstrtb+k. (As usual “selected” corresponds to “evaluated to
TRUE). In other words: If varstrta+k is selected, then varstrtb+k is selected too, and
the selections are unequal, i.e., there is at least one kO such that varstrta+k0 is not
selected but varstrtb+kO is.

Parameters

ctmem Memory used to create the resulting formula within.
varstrta See description.

varstrtb See description.

numtuples See description. Must be greater or equal to 1.
Return Values

ctmem Passed through.

varstrta Passed through.

varstrtb Passed through.

numtuples Passed through.

flar Resulting formula. QBF-Scheme. No quantifiers.

137

SubSelection (0.00)

Synopsis

(RO0=CARGOTREEMEftMnem =Su.(R00=CARGOTREEMHEunem
R01=ARRAY flaarrayO R01=ARRAY flaarrayO
R02=ARRAY flaarrayl R02=ARRAY flaarrayl);
R03=CARGOTREE fla)

Description

Creates a propositional formula which expresses a “subselection” condition between
two arrays of propositional formulas.

The two input arrays flaarrayO and flaarrayl are of course required to be of the same
size, which is refered to as ‘n’. The resulting formula is flaarrayO[0] > flaarray1[0] & ...
& flaarrayO[n-1] > flaarray1[n-1].

This extends the principle of subselections as applied in SubSelectionVarA and
SubSelectionVarB to arbitrary propositional formulas. See there for comments on
the principle of “subselection”.

Parameters

ctmem Memory used to create the resulting formula within. Note that the
input formulas get utilised.

flaarrayO Each entry in QBF-Scheme and without quantifiers. Entries get
utilised.

flaarrayl Each entry in QBF-Scheme and without quantifiers. Entries get
utilised.

Return Values

ctmem Passed through.

flaarrayO Passed through.

flaarrayl Passed through.

fla Resulting formula. QBF-Scheme. No quantifiers.

138

ProperSubSelection (0.00)

Synopsis

(R0O0=CARGOTREEMHEMem =Pr.(R00=CARGOTREEMEkMmem
R0O1=ARRAY flaarrayO R0O1=ARRAY flaarrayO
R02=ARRAY flaarrayl R02=ARRAY flaarrayl);
R03=CARGOTREE fla)

Description

Creates a propositional formula which expresses a “proper subselection” condition
between two arrays of propositional formulas.

The two input arrays flaarrayO and flaarrayl are of course required to be of the same
size, refered to as ‘n’. The resulting formula is (flaarray0[0] > flaarrayl[0] & ... &
flaarrayO[n-1] > flaarrayl[n-1]) & ~(flaarray1[0] > flaarrayO[0] & ... & flaarrayl[n-1] >
flaarrayO[n-1])

This extends the principle of proper subselections as applied in
ProperSubSelectionVarA to arbitrary propositional formulas. See there for
comments on the principle of “proper subselection”.

Parameters

ctmem Memory used to create the resulting formula within. Note that the
input formulas get utilised.

flaarrayO Each entry in QBF-Scheme and without quantifiers. Entries get
utilised.

flaarrayl Each entry in QBF-Scheme and without quantifiers. Entries get
utilised.

Return Values

ctmem Passed through.

flaarrayO Passed through.

flaarrayl Passed through.

fla Resulting formula. QBF-Scheme. No quantifiers.

139

Trigger (0.00)

Synopsis

(R0O0=CARGOTREEMEHiem

RO1=HASHINT
R0O2=INTEGER
R03=ARRAY

R04=INTEGER
RO5=INTEGER

R06=CARGOTREE

Description

=Tr.(R00=CARGOTREEMEHtmem

hash RO1=HASHINT hash
numhash R0O2=INTEGER numhash
flaarray R0O3=ARRAY flaarray

RO4=INTEGER
RO5=INTEGER

trigstrt
varstrt
flatrig)

trigstrt
varstrt);

Creates a propositional formula which is a conjunction of trigger variables triggering
(i.e., implicating) formulas of an array of formulas (correspondence between formula
selection and trigger variable models).

The trigger variable array is trigstrt+k for k=0,...,arraysize(flaarray)-1.

The formula’s variables are mapped to a new range starting at varstrt.

The resulting formula is (trigstrt > fla[0]) & ... & (trigstrt+n-1 > fla[n-1]), where fla[k]
results from the kth formula in flaarray through variable mapping and n is the size of

array flaarray.

This can, for example, be used to create correspondences between selections of
formulas and models (of the trigger variables).

Parameters
ctmem
hash

numhash
flaarray

trigstrt
varstrt

Return Values
ctmem

hash
numhash
flaarray
trigstrt

varstrt

flatrig

Memory used to create the resulting formula within.

Occurrence hash for the formula array. Does not need to contain
variables.

Number of entries already in hash.

Each entry in QBF-Scheme and without quantifiers. The formulas
do not get utilised.

Start of the range of trigger-variables. Range-size is the size of
array flaarray.

Start of the range of new variables to use. The range-size is
returned via the numhash return-value.

Passed through.

Passed through and possibly altered.
Updated.

Passed through.

Passed through.

Passed through.

Resulting trigger-formula. QBF-Scheme.

140

TriggerOmit (0.00)

Synopsis

(RO0=CARGOTREEMEkMem

RO1=HASHINT
RO2=INTEGER
RO03=ARRAY

R04=INTEGER
RO5=INTEGER
RO6=INTEGER

RO07=CARGOTREE

Description

=Tr.(R00=CARGOTREEMEHtmem

hash RO1=HASHINT hash
numhash RO2=INTEGER numhash
flaarray R0O3=ARRAY flaarray
trigstrt RO4=INTEGER trigstrt
varstrt RO5=INTEGER varstrt
idxomit RO6=INTEGER idxomit);

flatrig)

Identical to Trigger, except that one formula of the passed array is omitted.
If the size of array flaarray is 1, and hence everything is omitted, this function returns
the propositional formula ‘T’ (constant ‘true’).

Parameters
ctmem
hash

numhash
flaarray

trigstrt
varstrt
idxomit

Return Values
ctmem

hash
numhash
flaarray
trigstrt

varstrt

idxomit

flatrig

Memory used to create the resulting formula within.

Occurrence hash for the formula array. Does not need to contain
variables.

Number of entries already in hash.

Each entry in QBF-Scheme and without quantifiers. The formulas
do not get utilised.

Start of the range of trigger-variables. Range-size is size of array
flaarray. trigstrt+idxomit is omitted.

Start of the range of new variables to use. The range-size is
returned via the numhash return-value.

Selects which array-entry to omit. Must be in the range
[0,arraysize-1].

Passed through.

Passed through and possibly altered.
Updated.

Passed through.

Passed through.

Passed through.

Passed through.

Resulting trigger-formula. QBF-Scheme.

141

ConsistentSelections (0.00)

Synopsis

(R0O0=CARGOTREEMEHiem

R01=CARGOTREE fla

R02=ARRAY
RO3=INTEGER
R04=INTEGER

flaarray
trigstrt
varstrtnew

RO5=CARGOTREE qbf

R06=INTEGER
Description

varstrt)

R02=ARRAY
RO3=INTEGER
RO4=INTEGER

=Co.(R00=CARGOTREEMEH#nem
R01=CARGOTREE

fla
flaarray
trigstrt
varstrt);

Creates an open QBF where the models correspond to selections of formulas that

are consistent with the specified ‘theory’ formula.
The variables occurring free in the resulting QBF are

trigstrt,trigstrt+1,...,trigstrt+arraysize(flaarray)-1. A model evaluating
trigstrt+k0,trigstrt+k1,...,trigstrt+km to TRUEand the other variables to FALSE
corresponds to the selection of formulas flarray[kO]....,flaarray [km].

A selection flaarray [k0],...,flaarray[km] is called consistent with the input formula fla

iff fla & flaarray[kO] & ... & flaarray[km] is satisfiable.

Parameters
ctmem

fla

flaarray

trigstrt
varstrt

Return Values
ctmem

fla

flaarray
trigstrt
varstrtnew

gbf

varstrt

Memory used to create the resulting QBF within.

QBF-Scheme. No quantifiers. Does not get utilised.

Each entry in QBF-Scheme and without quantifiers. The formulas
do not get utilised.
Start of the range of trigger-variables.

Start of the range of new variables to use. Range-size via

return-value.

Passed through.
Passed through.
Passed through.
Passed through.
Updated varstrt.

Resulting QBF.

Passed through.

142

MaxConsistentSelections (0.00)

Synopsis

(RO0=CARGOTREEMEkMem

R01=CARGOTREE fla

R02=ARRAY
RO3=INTEGER
R04=INTEGER

flaarray
trigstrt
varstrtnew

R0O5=CARGOTREE qbf

R06=INTEGER
Description

varstrt)

R02=ARRAY
RO3=INTEGER
RO4=INTEGER

=Ma. (R00=CARGOTREEMEHifem
R01=CARGOTREE

fla
flaarray
trigstrt
varstrt);

Creates an open QBF where the models correspond to selections of formulas that
are consistent with the input formula and that are maximal with this property, i.e., for
each such selection no proper super-selection is consistent with the input formula.
This function is identical to ConsistentSelections, except for the maximality

property. See there for a more detailed description.

Parameters
ctmem

fla

flaarray

trigstrt
varstrt

Return Values
ctmem

fla

flaarray
trigstrt
varstrtnew

gbf

varstrt

Memory used to create the resulting QBF within.

QBF-Scheme. No quantifiers. Does not get utilised.

Each entry in QBF-Scheme and without quantifiers. The formulas
do not get utilised.
Start of the range of trigger-variables.

Start of the range of new variables to use. Range-size via

return-value.

Passed through.
Passed through.
Passed through.
Passed through.
Updated varstrt.

Resulting QBF.

Passed through.

143

ModellingSelections (0.00)

Synopsis

(R0O0=CARGOTREEMEHiem

R01=CARGOTREE fla

R02=ARRAY
RO3=INTEGER
R04=INTEGER

R05=CARGOTREE

flaarray
trigstrt
varstrtnew
flaright

R06=CARGOTREE qbf

RO7=INTEGER
Description

varstrt)

R02=ARRAY
RO3=INTEGER
RO4=INTEGER

R05=CARGOTREE

=Mo. (R0O0=CARGOTREEMEiiem
R01=CARGOTREE

flaleft
flaarray
trigstrt
varstrt
flaright);

Creates an open QBF where the models correspond to selections of propositional

formulas which together with the first input formula model the second input formula
(in propositional logic).
The correspondence between models of the resulting QBF and selections from
flaarray is as usual, cf. ConsistentSelections.
In other words: The models correspond to those selections k0,...,km where the
propositional formula (flaleft & flaarray[k0] & ... & flarray[km]) > flaright is valid.

Parameters
ctmem
flaleft
flaarray

trigstrt
varstrt

flaright

Return Values
ctmem

fla

flaarray
trigstrt
varstrtnew
flaright

gbf

varstrt

Memory used to create the resulting QBF within.

QBF-Scheme. No quantifiers. Does not get utilised.

Each entry in QBF-Scheme and without quantifiers. The formulas
do not get utilised.
Start of the range of trigger-variables.

Start of the range of new variables to use. Range-size via

return-value.

QBF-Scheme. No quantifiers. Does not get utilised.

Passed through.
Passed through.
Passed through.
Passed through.
Updated varstrt.
Passed through.

Resulting QBF.

Passed through.

144

Chapter 9

Details on the Implementation of
Reductions-to-QBFs

This chapter contains additional information on the Reidueto-QBF Smute Package. This in-
formation is not required for using the Smute Functions efReduction-to-QBF Smute Package.
Instead, it is intended to illustrate the implementatiofusictions working with recursively struc-
tured data via the Smute Language. It serves as showcaseefattilisation of various Smute-
and Smute Language-components. Section 9.1 lists and @mtsrthe Smute source-code of a
reduction-to-QBF. Technical remarks on the Reductio@BF Smute Package are given in Sec-
tion 9.2.

9.1 Documented Source Code of a Reduction-to-QBF

This section lists and explains the source-code of a Smutetiem implementing a reduction-

to-QBF for the consequence relation in the logic,-PThis reduction has been introduced in
Section 6.4 on pages 82ff. As the Smute Language is very igener, not designed with regard

to a specific kind of functions, there are manifold variars the implementation of functions

working with recursively structured data. Thus it must béedahat for the implementation of

new functions different approaches might be more suitdida to closely stick to the example-
code presented in this section.

Smute Functions ThreeValT, ThreeValF, and ThreeValO, impementing 7(P, P’, ¢, z) (as
defined on page 83)

For the sake of simplicity and efficiency,(P, P’, ¢, x) is specified via three different Smute
Functions, namedhreeValT, ThreeValF, andThreeValO, for (P, P’, ¢,t), 7(P, P, ¢,f) and
7(P, P’, ,0) respectively.

The recursively structured input, propositional formdijas expected in the form of@BARGO-
TREEinstance in the so-called QBEARGOTREEBcheme. The QBF-Scheme is defined by
Smute Interpreter Logic Edition (cf. pages 87ff.). As theneasuggests, the QBF-Scheme is
a convention for the representation of Quantified Booleaimiletas. Propositional formulas are a
special case of QBFs, namely QBFs without quantifiers. leiotal avoid the necessity of conver-
sion and distinction, there is thus no sepa@fdRGOTREEBcheme for propositional formulas. In
the QBF-Scheme 32-bit integers serve as variable idemstifier

Instead of using two array® and P’ of propositional variables a different approach is fol-
lowed: INTEGERIidentifier ranges. In the resulting propositional formuia tariable identifiers
are integers of a certain range, determined by paranveistrt Propositional variable identi-
fiersvarstrt, varstrt+2, ... correspond to the input formula’s variabld?®),(whereasvarstrt+1,
varstrt+3, ... correspond to the second array of distinct variabi¢$. Note that it would

145

Figure 9.1: Occurrence-indices and Identifier Replacement

also have been possible to use a ramgestrta, varstrtatl, ... for P and a rangevarstrtb,
varstrtb+1, ... for P’. But then, in order to avoid overlapping ranges, the numibeadables
in P would have to be known, i.e., prior to calling the Smute Fiomst the number of variables
occurring ing would have to be counted. Thus, for the sake of efficiencydhmaér “interwoven”
variable identifier approach has been preferred.

The correspondence between variable identifi@rstrtvarstrt+2,. .. and the input formula’s
original variables is the so-callecbrrespondence-by-occurrenceérhe principle is depicted in
Figure 9.1. The leftmost visualisation is of an originaluhformula. The visualisation in the mid
shows this formula with variable-integers replaced by #spective occurrence-indices. In the
rightmost visualisation the variable identifier mappingjgplied with avarstrt-value of 4.

Each of the three Smute Functiofi$ireeValT, ThreeValF, andThreeValO has the following
interface:

e Parameters:

— RO0 CARGOTREEMIENMem memory used to create the resulting formula within;

— R01 CARGOTREHa: formula in QBF-Scheme, without quantifiers, does not get
utilised;

— R02 HASHINThash hash with occurrence-indices, may be empty on calling;
— R0O3 INTEGERnumhashnumber of entries in the occurrence-index hash;
— R0O4 INTEGERvarstrt: lowestINTEGEROof the range variable identifiers are mapped
to.
e Return-values:

— RO0 CARGOTREEMEhem passed through;
— R01 CARGOTREfar: resulting formula in QBF-Scheme;

— R02 HASHINThash passed through and possibly altered (new variable-oecoes
added);

— R0O3 INTEGERnumhashupdated;
— RO4 INTEGERvarstrt passed through.

The resulting formula is allocated froatmem Nodes from the input-formula are not used as part
of the resulting formula, as indicated by the “does not giétat”-description of thdla parameter.
For variable correspondence-by-occurrend¢A&SHINT-resource gets used. For each hash-entry
one additional data-field is expected, containing the ageawe-index of the according variable.
Thenumhaskparameter specifies the initial number of hash-entriesnaadbe zero.

146

The following listing shows the Smute Language coddlafeeValT. A description is given
thereafter. The code dthreeValF andThreeValO is very similar to the one ofhreeValT and
not printed here.

000 Label(ThreeVvalT);
001 GetNodeld(R01,R07);
002 JumpTab(RO7,

003 QBF_NOT,I00_gbfnat,

004 QBF_OR,I00_gbfor,

005 QBF_AND,I00_gbfand,

006 QBF_IMPL,I00_gbfimpl,

007 QBF_PROPVAR,I00_gbfvar,
008 QBF_CONST,I00_gbfconst);
009

010 //100_gbfconst

011 Label(l00_gbfconst);

012 GetVal(R01,R07);

013 NewlntimmSetVal(R00,R01,QBF_CONST,R07);
014 Return;

015 //100_qgbfvar

016 Label(I00_gbfvar);

017 GetVal(R01,R07);

018 HashintAddimm(R02,R07,1,R08);

019 BEQ(IO0_gotit);

020 MoveToHashintEntry(R08,R03,0);

021 Move(R03,R08); /loccurrence-index
022 Add1(RO3);

023 BRA(I00_occidx);

024 Label(I00_gotit);

025 MoveFromHashIntEntry(R08,0,R08); //occurrence-ind ex
026 Label(I00_occidx);

027 LSL1(RO08);

028 Add(R04,R08); /ladd varstrt
029 NewlintimmSetVal(R00,R01,QBF_PROPVAR,R08);
030 Return;

031 //100_gbfnot

032 Label(I00_gbfnot);

033 GetChildimm(R01,0,R01);
034 BRA(ThreeValF);

035 //100_qgbfor

036 Label(I00_gbfor);

037 Push(1);

038 MoveToStack(R01,0);
039 GetChildimm(R01,0,R01);
040 BSR(ThreeValT);

041 MoveFromStack(0,R05);
042 MoveToStack(R01,0);
043 GetChildimm(R05,1,R01);
044 BSR(ThreeValT);

045 Move(R01,R05);

046 NewConClsimm(2,R00,R01,QBF_OR);
047 Plugimm(R0O1,R05,1);

147

048 MoveFromStack(0,R05);
049 Pop(l);

050 Plugimm(R01,R05,0);
051 Return;

052 //100_gbfand

053 Label(I00_gbfand);

054 Push(1);

055 MoveToStack(R01,0);
056 GetChildimm(R01,0,R01);
057 BSR(ThreeValT);

058 MoveFromStack(0,R05);
059 MoveToStack(R01,0);
060 GetChildimm(R05,1,R01);
061 BSR(ThreeValT);

062 Move(R01,R05);

063 NewConClsimm(2,R00,R01,QBF_AND);
064 Plugimm(R01,R05,1);
065 MoveFromStack(0,R05);
066 Pop(L);

067 Pluglmm(R01,R05,0);
068 Return;

069 //100_gbfimpl

070 Label(I00_gbfimpl);

071 Push(1);

072 MoveToStack(R01,0);
073 GetChildimm(R01,0,R01);
074 BSR(ThreeValF);

075 MoveFromStack(0,R05);
076 MoveToStack(R01,0);
077 GetChildimm(R05,1,R01);
078 BSR(ThreeValT);

079 Move(R01,R05);

080 NewConClsimm(2,R00,R01,QBF_OR);
081 Plugimm(R01,R05,1);
082 MoveFromStack(0,R05);
083 Pop(L);

084 Plugimm(R01,R05,0);
085 Return;

A note about the labels: They are prefixed (in this case W@ ") because labels are visible
Smute Module-wide. In order to avoid label-collisions (adhlike “gbfnot " is likely to be used
in multiple Smute Functions of a Smute Module), it is recomdesl to use function-dependent
label-prefixes.

In line 002 the different input formula cases get distinguished (isftrmula a logical con-
stant, a propositional variable, a formuta, etc.). TheJumpTable -instruction branches to
the respective label. Node-i@3BFEXISTS and QBFEFORALLare ignored, because the input-
CARGOTRERust represent a propositional formula, i.e., a QBF witlguatntifiers.

For each of the different cases the treatment is very sinffdeexample, if a logical constant
is encountered, then the resulting formula is just a copyaf tonstant. The code for this oper-
ation is printed in line®11 ++. The value of the Int-node is read in li0&2 (recall that logical
constants are represented with Int-nodes in the QBF-Scleewadue of O represents, a value of
1 representS’). A new Int-node is created, its value is set to the previpushd value.

148

In the case of a propositional variable the occurrencexirafehat variable is required. It is
retrieved by trying to add a new hash-entry with the variathmtifier used as key. If a hash-
entry with that key already exists, the occurrence-indexlmaread from the entry’s data-field O.
Otherwise the occurrence-index is the current valuruwhhashand stored as data-field O of the
new hash-entry. Thenumhashmust be updated, i.e., incremented by 1. Once the occurence
index is available—here it is stored in regisR®@8—the replacement value can be calculated. It
depends on whethes or p) is required. As outlined above, in the first case the appatgrialue is
varstrt+(occidx2), in the latter case it isarstri+1+(0ccid®2). Within ThreeValT only the first
case is required. The multiplication by 2 is here performiedanLSL1-instruction in line027 .

Now to the more interesting cases of logical connectivescBonective- recall the following
definition:

T(P, P,,ﬁ(ﬁl,t) = T(P, Pl,¢1,f).

The appropriate specification is the code in [i0882, 0033, and0034 . In line 0033 the child-
node is retrieved—it is the root-node of tAARGOTREEepresentingy;. It is used as input to
ThreeValF. This is a case of (distributed) recursive function-catlscause functioi hreeValF
could callThreeValT again. If this actually happens depends of course on thé tofinreeValF.

Observe that the following two code-fragments have exabtlysame effect, though the left
one is shorter and executed faster (and thus used i9844:

(1) BRA(ThreeValF); (2) BSR(ThreeVvalF);
Return;

For logical connective\ the following function must be implemented:
T(P, Pl, o1 A\ (bg,t) = T(P, P,, (bl,t) A T(P, Pl, ¢2,t)

Basically this works the same as with connectivel hough here two subformulas must be trans-
lated (instead of one), and then be connected withOf course each of the two subformula
translations is performed with the appropriate Smute Fandall, i.e., a recursive call tdhree-
ValT. Here data preservation is required: After the first subfdaennas been translated, it must be
possible to access the second subformula, in order to atanislas well. After the second subfor-
mula has been translated, it must be possible to accessatigation of the first subformula, in
order to connect it with the translation of the second subfda. The appropriate answer to data
preservation during function-calls is of course a stackisecture. ThreeValT uses the Smute
Data Stack resource for this purpose: In I0®4 a block holding one register is pushed onto the
stack. In line055 the root-node-identifier of thEARGOTREIEpresentingy; A ¢ is stored to the
stack. In line056 the root-node of the left subformula is retrieved. With thigle as parameter
ThreeValT recursively calls itself in lin®57 . Then the root-node af; A ¢- is retrieved from the
stack in line058 . The stack-place gets used for storing the translateddbfosmula in line059.
The root-node of the right subformula is retrieved in [D@0. This formula again needs to be
translated vid hreeValT, which happens via lin661. In line 065 the translated left subformula
is retrieved from the stack in order to be used within the lteguformula. Then the stack-space
is not needed anymore and popped in G .

The treatment of the other binary logical connectives fedldhe same pattern.

Smute Function Model3 implementingm3(P, P’, ¢) (as defined on page 83)

The Smute FunctiomModel3 expects a single propositional formula, whereas in the itiefin
of m3an arraylV of propositional formulas has been used. There are twormpfiar applying the
translation to an array of propositional formulas:

e ForarrayW = [¢g, ¢1,. .., dn], passi\;_, ¢; to Model3.

e Write another Smute Function which accepts an array of @itipnal formulas.

149

When applied to a single propositional formula functintakes the following form:
m3 P, P, ¢) := ~7(P, P, ¢,f).

This can be implemented rather simple: FuncfidmeeValF is called, and the resultinARGO-
TREEis then plugged into a ConCls-node representing a negdtimrthe ease of implementation,
the interface of functioModel3 is almost identical to the interface of functidmreeValF:

e Parameters:

— R0O0 CARGOTREEMENMhem memory used to create the resulting formula within;

— R01 CARGOTREHa: formula in QBF-Scheme, without quantifiers, does not get
utilised;

— R02 HASHINThash hash with occurrence-indices, may be empty on calling;

— R03 INTEGERnumhashnumber of entries in the occurrence-index hash;

— R04 INTEGERvarstrt lowestINTEGEROof the range variable identifiers are mapped
to.

e Return-values:

— RO0O CARGOTREEMIENMem passed through;

— R01 CARGOTREfar: resulting formula in QBF-Scheme;
— R02 HASHINThash passed through and possibly altered;
— RO3 INTEGERnumhashupdated;

— RO4 INTEGERvarstrt passed through.

The following is the code:

000 Label(Model3);

001 BSR(ThreeValF);

002 Move(R0O1,R05);

003 NewConClsimm(1,R00,R01,QBF_NOT);
004 Plugimm(R01,R05,0);

005 Return;

Smute Function ConsLP implementing reduction-to-QBFConsLP (as defined on page 84)

Like m3 function ConsLPis implemented for a single premise formula only, not for enayaof
propositional formulas as in the definition on page &bnsLPis comprised of the previously
implemented functions, plus two additional operationsivensal quantification and the creation
of formulaP < P’. In the Reduction-to-QBF Smute Package general-purpodeiQictions like
these have been collected in a separate Smute Module cgléd.“The universal quantification
occurring in functionConsLPcan be performed with Smute Functi@gForAllB , the formula
P < P’ can be created with Smute FunctiBabSelectionVarB Both Smute Functions are ex-
ported from Smute Modulgbf . Refer to the Smute Module documentation (pages 126ff.) for
the documentation of these functions, and for an overvieth@fvailablegbf Smute Functions.
Obviously, Smute FunctiofonsLP just needs to call Smute FunctioModel3, SubSelection-
VarB andBigForAlIB with the appropriate parameters and plug the results tegetttording to
the definition ofConsLP The interface oConsLPis laid out as follows:

e Parameters:

— RO0 CARGOTREEMENMem memory used to create the resulting QBF within;

150

— R01 CARGOTRESHal: formula in QBF-Scheme, without quantifiers, does not get
utilised;

— R02 CARGOTRES#far: formula in QBF-Scheme, without quantifiers, does not get
utilised;

— R0O3 INTEGERuvarstrt lowestINTEGEROof the range variable identifiers are mapped
to.

e Return-values:

— RO0 CARGOTREEMEhem passed through;
— RO1 CARGOTRESgDfr: resulting QBF in QBF-Scheme;

— R0O2 INTEGERuvarstrtnew updatedvarstrt (determines the range-size of the result-
ing QBF'sINTEGERIdentifiers).

Following next is the code:

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

Label(ConsLP);

Il stack:

/I 0 = CARGOTREE gbfmod3r
/I 1 = CARGOTREE gbfr

Il 2 = CARGOTREE gbfmod3l
Push(3);

MoveToStack(R02,1);

Move(R03,R04);
NewHashInt(R02);

Clear(R03);

BSR(Model3);

// RO0O = CARGOTREEMEM ctmem

/I RO1 = CARGOTREE flar (resulting formula)

// RO2 = HASHINT hash (passed through and altered)
/I RO3 = INTEGER numhash (updated)

// R0O4 = INTEGER varstrt (passed through)

MoveToStack(R01,2);
MoveFromStack(1,R01);

BSR(Model3);

// RO0O = CARGOTREEMEM ctmem

/I RO1 = CARGOTREE qbfr (resulting formula)

// RO2 = HASHINT hash (passed through and altered)
/l RO3 = INTEGER numhash (updated)

/l R0O4 = INTEGER varstrt (passed through)

DiscardHashInt(R02);
MoveToStack(R01,0);

Move(R04,R01);

151

036 Move(R03,R02);

037

038 FarBSR(gbf,SubSelectionVarB);

039

040 // ROO = CARGOTREEMEM ctmem (passed through)
041 /I RO1 = INTEGER varstrt (passed through)

042 [/l RO2 = INTEGER numtuples (passed through)
043 /I RO3 = CARGOTREE gbfr (resulting QBF)
044

045 NewConClsimm(2,R00,R04,QBF_AND);

046 Pluglmm(R04,R03,0);

047 MoveFromStack(2,R03);

048 Pluglmm(R04,R03,1);

049 Move(R02,R03);

050 Move(R01,R02);

051 NewConClsimm(2,R00,R01,QBF_IMPL);

052 Plugimm(R01,R04,0);

053 MoveFromStack(0,R04);

054 Plugimm(R01,R04,1);

055 LSL1(RO3);

056

057 FarBSR(qgbf,BigForAllB);

058

059 // ROO=CARGOTREEMEM ctmem (passed through)
060 // RO1=CARGOTREE gbfout (universal-quantified QBF)
061 // RO2=INTEGER strt (passed through)
062 /I RO3=INTEGER num (passed through)
063

064 Add(RO3,R02);

065 Pop(3);

066 Return;

For better readability a Smute Function’s return-valuesiaserted as comment after function-
calls. As the functionConsLP is not called recursively, a lax stack usage is applied,rvesg
space for each of the values that needs to be preserved timaiupe function, even if they do not
need to be preserved at the same time. The three valuesya@skroughoutConsLP are:

e gbfr , an identifier of the second input formuEARGOTREE

e gbfmod3l , an identifier of theaCARGOTREEepresenting the formula where models cor-
respond to three-valued models of the first input formula.

e gbfmod3r , an identifier of theaCARGOTREEepresenting the formula where models cor-
respond to three-valued models of the second input fornfoitahe type of correspondence
seeModel3).

It is important to note how thelASHINT-resource created in lingll gets used as parameter to
functionModel3in line 013, and then reused &8odel3-parameter in lin®24 . Only by reusing
the hash are identical variables of the first and second iimportula correctly re-identified in the
resulting formulas. After the call to functiddodel3 in line 024 the return-valueumhashi.e.,
registerR03, contains the number of variables occurring in both the tifiptmulas. This at the
same is the number of tuplés;, p,) used in formulaP < P’, and is hence passed as parameter to
SubSelectionVarB For the universal quantification all the variables fréhand P’ are used. If2

152

is used to denote the aforementioned number of tuples, tisemumber of variables in both and
P’ is 2n, which explains the multiplication by 2 in lin@55. 2n is also the number of different
variables occurring in the resulting closed QBF. The idams are taken from thitNTEGER
range starting avarstrt (varstrtvarstrt+1varstrt+2,...). Thus return-valugarstrtnewis set to
varstrt+ 2n.

Lines 035 and 036 show a typical phenomenon of Smute Function calls: Data \¢ed
be moved to the appropriate registers before the functionbeacalled. Although the effort for
moving data to the appropriate registers can be reduceddigrileg “compatible” Smute Function
interfaces (expecting parameters in the same registeis)pi course not possible to fully avoid
such parameter preparation.

This concludes the reduction-to-QBF example specificatiorhe other Smute Functions of
the Reduction-to-QBF Smute Package apply exactly the saimegles asThreeValT, Model3
andConsLP.

9.2 Technical Notes

Except where otherwise noted, all Smute Functions of theugtexh-to-QBF Smute Package can
freely use all of the registers. Consequently, any data faréserved during function-calls needs
to be stored elsewhere (the typical solution is stack-g&)ra Parameters are usually passed in
registersR00, R0O1, etc. The task of finding new, unused variable identifiersipsrted by using
integer identifier ranges. Many Smute Functions create dtaswhere variables are identified
via integers of a specified range, i.e., from within a certafarval. If necessary, original variable
identifiers are “mapped” into the range. This mapping is Ugwone by correspondence-by-
occurrence, as depicted in Figure 9.1. Most Wrapper Fumetmeate QBFs with an integer
identifier range starting at 0. This is true for all tranglas creating closed QBFs.

The Smute Functions of the Reduction-to-QBF Smute Packilgge (CARGOTRERarame-
ters only where explicitly stated, by default there is ndisation.

153

Chapter 10

Conclusion and Discussion

The Smute Languagés a programming language for writing functions processiagursively
structured dataSmuteis the generic term for the Smute Language and related apipls and
conceptions. The functions implemented via Smute Langeade, so-calle®&mute Functions
are directly exposed to users, so-calfadute Function Usersvith the user-interface provided by
Smute. Thus terms like “program” or “application”, whiclearsed with many other programming
languages, are not used with Smute.

Currently there is one interpreter for Smute Language dbd<smute InterpreterThere is no
compiler to date.

For authors of Smute Language code, so-caBetlte Function Developerthere are many
advantages over using alternative solutions. The follgwgia summary of important Smute
features:

e Predefined functionality: For many of the operations tyfpycaccurring in functions pro-
cessing recursively structured data there are predefirsttlitions and datatypes in the
Smute Language. Examples are data instance manipulatmh&lentifier-related opera-
tions.

e Abstraction from the implementation: Many specificatiorelievant implementation details,
like the layout of data structures and the handling of erooditions, are hidden from the
Smute Language layer.

e Efficiency: Smute Language code can be efficiently execuwtétl, respect to runtime and
memory-requirements. The Smute Interpreter establisheefficiency.

e Non-restrictiveness: The Smute Language has a powerfertape of instructions. The
Smute Interpreter implements the functionality in a nostiietive way. For example, the
size and recursive depth of recursively structured datariegs is only limited by the com-
puter’s available memory and 32-bit integers/32-bit adsire.

e Function user interfaces: Reading and analysis of paramisteovered by Smute. On the
one hand this guarantees uniform usage of Smute Functionkemther hand it saves work
for Smute Function Developers.

e Data I/O Support: Data I/O is covered by Smute where posskie example, in order for
a Smute Function to support textual input in arbitrary LAlZRguages no parser needs to
be written—the parsing is automatically performed by Smute

e Recursive function-calls: Unlike most other programmiagguages there are no restric-
tions, problems, or disadvantages for recursive funatias. This is important insofar, as
recursive function-calls are “natural” in the processifigezursively structured data.

154

Modularity: Smute Language-code can be used in a modularresundant way, based on
(dynamic) linking.

Auxiliary features for function development: There areesaV instructions in the Smute
Language helping to debug or test functions. The most resbdgkfeature is a built-in
tree-visualisation for arbitrary recursively structudsta.

Platform independence of Smute Language code: The Smumpitater is written in C,
using only the ANSI Standard C library. It can thus be madélabl@ for most computer
platforms. Smute Language code can be executed on any & pfetforms, without any
adaptations.

The Reduction-to-QBF Smute Packagea collection of Smute Functions implementing re-
ductions for reasoning tasks from Classic Abduction, Howilm Logic, Paraconsistent Rea-
soning via Signed Systems, and Paraconsistent Reasomnbhwee-Valued Logic. It includes
Smute Functions for generic QBF-operations, which can bgee for the implementation of new
reductions-to-QBFs. The Reduction-to-QBF Smute Packageep that the Smute Language al-
lows for a concise and straightforward implementation diiaions-to-QBFs.

Although Smute is fully usable, some of the solutions are trdative nature. For all these
solutions either the fully developed solution is of littigrsficance or its realisation would have
been too laborious (or a combination of these two factordieg)p

A Smute Assembler does not yet exist. A slightly less coremtrgolution is provided with
the Smute Assembler Library.

Currently there is no support for reading arbitrary binangut formats and to generate ar-
bitrary output formats with Smute Functions. Though by gghe CARGOTREExchange
Format this can already be circumvented.

Block comments are not supported by the Smute parser, dae togatment of block com-
ments in GOLD Parser Builder.

Furthermore there are features which can be regarded agdhaktensions” of Smute and should
be considered for implementation:

HASHSTResource in the Smute Language (the equivalent oHIASHINTresource, with
string-keys instead of integer keys).

HASHSTRSTACKsource in the Smute Language (the equivalent oHIREHINTSTACK
resource).

ResourceSTRINGandSTRINGMENMlus a set of Smute Language instructions for string-
operations.

Support for floating-point data-types and their accordipgrations in the Smute Language,
including newCARGOTRERodes for these data-types.

FormalCARGOTREEcheme related specifications, including string-alifsesteger iden-
tifiers to be used in Smute Language code (most notably rdsje-iThis feature should
be considered only after the Smute Assembler is realisedhifihe same specification
could there be visualisation-related information in ortteesupportCARGOTREEcheme-

dependent visualisations.

Another set of obvious extensions, with less relevance tihembove mentioned ones:

Type-checking for Smute Function parameters specifiederstinute Launch File.

155

e Support of passing Smute Function results as input to othart& Functions “directly”,
according to appropriate specifications made in the SmutedtaFile.

e Preprocessing Function and data-storage specificatiottseismute Launch File (could
supersede the Wrapper Functions, which currently perfoese tasks).

e Currently the parser of the Smute Interpreter is not redogerom parsing-errors, i.e., it
cannot continue parsing after a parsing-error occurs (gxat aborts). This means that
multiple errors in the source can only be detected one aftethar, i.e., only after one
such error gets corrected is the next one reported. Parsrsemor-recovery are more
user-friendly, as they can report multiple parsing-ermgiraultaneously. Thus the imple-
mentation of error-recovery is an option for ongoing depeient. It is however the author
of languages and Backus-Naur forms who needs to specifyateng-error-recovery be-
haviour. As a result, GOLD Parser could not be used any lgagdt does not provide such
features. A completely new parsing-table generation systeuld have to be developed.
For the small benefit of parsing-error-recovery this seeandlir worthwhile.

e The functions implemented by Smute Function Developerdiagetly used by Smute Func-
tion Users. There is a related task, where functions proagsecursively structured data
are used within an application, such as formula manipuiatim mathematics software.
Smute is not designed for writing application-functionshotligh it can be abused for this
task: Currently an application would have to externallycese the Smute Interpreter. This
is of course a rather dilettantish solution. Thus the suppioapplication-internal usage of
Smute Functions is another potential extension of Smute.riimimal effort solution is to
provide a library and interfaces for Smute Function intetgtion. Though an application
internally interpreting functions can be rightly regardesdpeculiar. The best solution is a
compiler for the Smute Language.

Due to its optimised direct interpretability the Smute Laage must be regarded as lower-level
language. Though a higher-level language is of course ted ut by the Smute conception. In
fact, the Smute Language could serve as base for a highedrideguage, such that specifications
in the higher-level language are compiled to the Smute LagguThe following is a summary of
important considerations for assessing the value and sigce$ a higher-level language:

e Ease of function specification: Comparable to C, the usagaridbles instead of registers,
and the support of compound statements would definitelylgynfpnction-specification.

e Readability/suitability for the publishing of specifiaatis: For reductions-to-QBFs the situ-
ation is as follows: There is a specification with optimiseddability which gets published.
The implementation is based on this specification. Due t@abstraction provided by the
Smute Language, the implementation-specification is djreery closely related to the
published specifications. Though it might be desirable tt these two specifications into
one: That is, specifications in the implementation languageld have to be sufficiently
readable for publishing. The Smute Language clearly doemeet this criterion. But even
for a higher-level language this is almost impossible tdea@h A shift towards readability
can usually only be made at the expense of expressivenasanyycomputer-science books
algorithms are listed ipseudo-cod@aot only to be programming-language independent, but
also because the comprehensibility of pseudo-code camnattieved with specifications
in a powerful programming language. It is thus more readertalmot demand the suitabil-
ity for the publishing of specifications from a higher-leV@hguage, but to carry on with
distinct specifications for publishing and for the impleragion respectively.

o Efficiency: The convenience provided by a higher-level laagg is achieved at the expense
of efficiency. Unnecessary loss of efficiency can only bedsiby sophisticated optimisa-
tion in the compilation. The realisation of such optimieas is however laborious.

156

e Compiler implementation: Some common compiler-pringptannot be used with Smute.
Most notably, compilers usually reserve stack-space foallpariables. As discussed on
page 10, this is inappropriate for functions which get reiwaty called.

Readers interested in obtaining the Smute software shaetldngcontact with the author,
preferably via e-mail.

157

References

[1]
[2]

[3]
[4]
[5]

[6]

[7]

aiSee.http://www.aisee.com

bdd (binary decision diagrams) library/boole. http://www.cs.cmu.edu/
“modelcheck/bdd.html . Model Checking Group at The School Of Computer
Science, Carnegie Mellon, Pittsburgh.

GOLD Parser http://www.devincook.com

Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmanCompilers, Principles, Techniques And
Tools Addison-Wesley, 1986.

Philippe Besnard and Torsten Schaub. Signed SystenPafaiconsistent Reasonirgurnal
of Automated Reasoning0:191-213, 1998.

Philippe Besnard, Torsten Schaub, Hans Tompits, anfAiSi&/oltran. Paraconsistent Rea-
soning via Quantified Boolean Formulas, I: Axiomatisingrigig Systems. lhogic in Ar-
tificial Intelligence: European Conference, JELIA 2002,s€nza, Italy, September, 23-26,
2002. Proceedingd.ecture Notes in Atrtificial Intelligence, pages 320-33frifger Verlag,
2002.

Philippe Besnard, Torsten Schaub, Hans Tompits, anfu$#&/oltran. Paraconsistent Rea-
soning via Quantified Boolean Formulas, Il: Circumscribingonsistent Theories. 18ym-
bolic and Quantitative Approaches to Reasoning with Uraiety, 7th European Confer-
ence, ECSQARU 2003, Aalborg, Denmark, July 2-5, 2003. Rrings Lecture Notes on
Artificial Intelligence, pages 528-539. Springer Verlag02.

[8] James R. Cordy, Charles D. Halpern, and Eric Promislod.:TA Rapid Prototyping System

[9]

[10]

[11]

[12]

for Programming Language Dialects. Rroceedings of The International Conference of
Computer Languages (IEEE 198@nges 280-285, 1988.

Uwe Egly, Thomas Eiter, Volker Klotz, Hans Tompits, antefan Woltran. Computing
Stable Models with Quantified Boolean Formulas: Some Exrpamtal Results. IProceed-
ings of the AAAI 2001 Spring Symposium on Answer Set Progragnpages 53-59. AAAI
Press, 2001.

Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Waoltr&olving Advanced Reasoning
Tasks using Quantified Boolean FormulasPhoceedings of the 7th Conference on Atrtificial
Intelligence (AAAI-00) and of the 12th Conference on IntigeaApplications of Artificial
Intelligence (IAAI-00)pages 417-422. AAAI Press, 2000.

Thomas Eiter and Georg Gottlob. Propositional Circarmgion and Extended Closed World
Reasoning arél}’-complete.Journal Of Theoretical Computer Sciendel4(2):315, 1993.

Thomas Eiter and Georg Gottlob. On The Computationat©@bDisjunctive Logic Program-
ming: Propositional CaseAnnals of Mathematics and Artificial Intelligenc&5(3/4):289—
323, 1995.

158

[13] Thomas Eiter and Georg Gottlob. The Complexity of LeBa&sed Abduction.Journal of
the Association of Computing Machined2(1):3-42, 1995.

[14] Rainer Feldmann, Burkhard Monier, and Stefan SchagaverA Distributed Algorithm to
Evaluate Quantified Boolean Formulas. Rroceedings of the 7th Conference on Atrtificial
Intelligence (AAAI-00) and of the 12th Conference on IntiweaApplications of Artificial
Intelligence (IAAI-00)pages 285-290. AAAI Press, 2000.

[15] Kurt Godel. Zum intuitionistischen AussagenkalkiAnzeiger der Akademie der Wis-
senschaftenpages 65-66, 1932.

[16] Georg Gottlob. Complexity Results for Nonmonotonicgias. Journal Of Logic and Com-
putation 2(3):397-425, 1992.

[17] Arend Heyting. Die formalen Regeln der intuitionistieen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschafiages 42—-56, 1930.

[18] Henry Kautz and Bart Selman. Pushing the Envelope: ridtap Propositional Logic and
Stochastic Search. IRroceedings of the Thirteenth National Conference on Aidifintel-
ligence and the Eighth Innovative Applications of Artifidiatelligence Conferencepages
1194-1201. AAAI Press, 1996.

[19] Jan tukasiewicz. Die Logik und das Grundlagenprobldras entretiens de Zurich sur les
fondements et la @thode des sciences mathatiques 6-97 (1938):82—-100, 1941.

[20] Terence J. Parr and Russell W. Quong. ANTLR: A preditdte(k) parser generatodour-
nal Of Software Practice and Experien@b(7):789-810, 1995.

[21] David Pearce. A New Logical Characterisation of Std@telels and Answer Sets. Mon-
Monotonic Extensions of Logic Programmjnglume 1216 ofLecture Notes on Atrtificial
Intelligence pages 57-70. Springer Verlag, 1997.

[22] David Pearce, Hans Tompits, and Stefan Woltran. Emgsdfor Equilibrium Logic and
Logic Programs with Nested ExpressionsPhoceedings of the 10th Portuguese Conference
on Artificial Intelligence (EPIA '01)volume 2258 of_ecture Notes in Computer Science
Springer Verlag, 2001.

[23] Charles Sanders Peirce. Abduction and Induction. &tusuBuchler, edito?hilosophical
Writings of Peirce pages 150-156. Dover Books, New York, 1955.

[24] David Poole. Explanation and prediction: An architeetfor default and abductive reason-
ing. Computational Intelligences(2):97-110, 1989.

[25] Graham Priest. Logic of Paradodournal of Philosophical Logic8:219-241, 1979.
[26] Graham Priest. Reasoning About Trutktificial Intelligence 39:231-244, 1989.
[27] Raymond Reiter. A logic for default reasonimgtificial Intelligence 13(1-2):81-132, 1980.

[28] Jussi Rintanen. Improvements to the Evaluation of @fiad Boolean Formulae. In Dean
Thomas, editorProceedings of the 16th International Joint Conference difiéial Intelli-
gence (IJCAI-99-Vol2)pages 1192-1197. Morgan Kaufmann Publishers, 1999.

159

