
D I P L O M A R B E I T

Smute: A Programming Language for
Processing Recursively Structured Data

ausgeführt am Institut für Informationssysteme

der Technischen Universität Wien

unter Anleitung vonAo. Univ-Prof. Dr. Hans Tompits

durch

Norbert Pfaffinger

Bahnhofstraße 4
A-2412 Wolfsthal

darder@gmx.net

Datum Unterschrift

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Contents

1 Introduction 3

2 Conception and Realisation of Smute 6
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The Smute Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

2.2.1 Smute Functions, Smute Modules and Smute Packages . . .. . . . . . . 10
2.3 Data I/O Conception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11

2.3.1 Textual Input Data Specifications in Context-Free Languages . . . . . . . 11
2.3.2 Data I/O inCARGOTREEExchange Format . . . . . . . . . . . . . . . . 16
2.3.3 Visualisation Output in the Graph Description Language . . . . . . . . . 18

2.4 The Smute Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 18
2.4.1 Technical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 The Smute Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19
2.5.1 Technical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Discussion of Alternatives . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 21
2.7 Related Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 23

3 Invoking Smute Functions 26
3.1 Step-by-Step Smute Function Usage . . . . . . . . . . . . . . . . . .. . . . . . 26
3.2 Smute Launch File Documentation . . . . . . . . . . . . . . . . . . . .. . . . . 30

3.2.1 Smute Launch File Syntax . . . . . . . . . . . . . . . . . . . . . . . . .31

4 Writing Smute Functions 33
4.1 The Smute Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

4.1.1 Virtual Machine Characteristics . . . . . . . . . . . . . . . . .. . . . . 33
4.1.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 CARGOTREE-Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Data I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 CARGOTREEExchange Format . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Data Input through an LALR-language . . . . . . . . . . . . . . .. . . 66

4.4 Core Functions and Wrapper Functions . . . . . . . . . . . . . . . .. . . . . . 68
4.5 Smute Assembler Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68

5 Support for the Interaction of External Applications with Smute 71
5.1 File Layout for theCARGOTREEExchange Format . . . . . . . . . . . . . . . . 71

6 Reductions-to-QBFs Background 74
6.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 74
6.2 Quantified Boolean Formulas . . . . . . . . . . . . . . . . . . . . . . . .. . . . 75
6.3 Nonmonotonic Reasoning Formalisms . . . . . . . . . . . . . . . . .. . . . . . 77

6.3.1 Default Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1



6.3.2 Classical Abduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
6.3.3 Equilibrium Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.4 Paraconsistent Reasoning via Signed Systems . . . . . . .. . . . . . . . 80
6.3.5 Paraconsistent Reasoning via Three-Valued Logic . . .. . . . . . . . . . 81

6.4 An Example Reduction-to-QBF . . . . . . . . . . . . . . . . . . . . . . .. . . 82

7 Smute Interpreter Logic Edition 86
7.1 Logic Edition Launch File Syntax . . . . . . . . . . . . . . . . . . . .. . . . . 86
7.2 Logic Edition Preprocessing Functions andCARGOTREE-Schemes . . . . . . . . 87

8 Reduction-to-QBF Smute Package Documentation 94
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Smute Function Invocation Example . . . . . . . . . . . . . . . . . .. . . . . . 95
8.3 The Smute Function Interfaces . . . . . . . . . . . . . . . . . . . . . .. . . . . 96

9 Details on the Implementation of Reductions-to-QBFs 145
9.1 Documented Source Code of a Reduction-to-QBF . . . . . . . . .. . . . . . . . 145
9.2 Technical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153

10 Conclusion and Discussion 154

2



Chapter 1

Introduction

SAT, the satisfiability problem of classical propositional logic, is known to be NP-complete. This
means that any problem which is in NP, i.e., any problem that can be solved by a nondeterminis-
tic Turing machine working in polynomial time, is expressible asSAT-instance with polynomial
effort. Several knowledge representation tasks (KR-tasksin short) are in NP. This allows for a
uniform principle of KR-task-solver realisation: To re-express the task asSAT-instance and in-
voke an existingSAT-solver. Constrained-based planning problems [18] are an example where
this principle has been successfully deployed.

An analogous method can be applied to problems beyond NP—in particular, many KR-tasks
have been shown to be inΣp

2 or Πp
2 (cf. [11, 12, 13, 16]). For tasks with this computational

complexity it is possible to express them in polynomial timeas Quantified Boolean Formulas
(QBFs). Efficient solvers for QBFs do exist (boole [2], Decide [28], QSolve [14], etc.)
and get further developed. A KR-task-solver could thus perform a reduction-to-QBF, i.e., a re-
expression as QBF, and then execute one of the existing QBF-solvers.

Several polynomial reductions-to-QBFs have been presented in recent years ([6, 7, 9, 10, 22]).
The implementation of such reductions, i.e., the development of programs performing the reduc-
tions, raises several difficulties, among them the following:

• The KR-task data instances are recursively structured and many reduction-to-QBF functions
are recursively defined. This poses several problems: For example, in most programming
languages the implementation of recursively defined reductions-to-QBFs via recursive func-
tion calls should be deprecated, as static stacks limit the recursive depth and for high-level
programming languages there is an uncontrollable waste of stack-space (for local variables
of functions). Another difficulty is the implementation of recursive data structures such
that both memory-efficiency and the support of typical operations, like the concatenation of
formulas, are provided.

• For many KR-tasks there are task-specific types of data. Thus, for the implementation
a specification format must be devised, and functions for reading and writing files in the
respective format must be written. This often turns out to belaborious.

QUIP [10], a program developed at the Vienna University of Technology, implements several
reductions-to-QBFs. InQUIP, the reductions-to-QBFs are realised individually and heteroge-
neously, without a general solution of the aforementioned difficulties.

The goal for this thesis was to simplify and automate reduction-to-QBF implementation via a
uniform approach, namely by designing a language with the following essential properties:

• The language should be expressive enough to support the specification of any reduction-to-
QBF, existing ones as well as ones that might yet be devised.

• Specifications in the language should be as simple and concise as possible, relieving the
author of caring about implementation details.
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• For functions specified in that language it should be possible to automatically generate their
implementation.

• The function implementations should not be restricted to trivial data instances, i.e., with
regard to the data instances’ size and recursive depth thereshould be as few limitations as
possible.

The language introduced in this thesis is calledSmute Languageand meets all the criteria. It is
a language for the specification of functions working with recursively structured data. This means
a great generalisation: Functions written in the Smute Language, so-calledSmute Functions, do
not need to be related to reductions-to-QBFs at all. The following are examples for the diversity
of tasks that can be perfomed with Smute Functions:

• Manipulation/evaluation of arithmetic expressions;

• Compilation of programming-language source-codes;

• Extraction/Conversion of data from files in structured formats such as XML.

This generalisation has of course not been an arbitrary decision. In fact, there are no common
properties of reductions-to-QBFs which would allow for a more specialised custom-tailored solu-
tion.

The Smute Language is a new abstract layer—specifications inthis language are platform-
independent and there is no interrelationship with existing programming languages. The language
is optimised for direct interpretability. There is an interpreter for Smute Language code, the so-
calledSmute Interpreter. A compiler does not exist.

Among the key ideas in the development of the Smute Language were the following:

• A resource calledCARGOTREE, on the one hand primitive, on the other hand versatile, is
used for the representation of any recursively structured data. With this uniform represen-
tation a few primitiveCARGOTREEinstructions allow to perform arbitrary operations on
recursively structured data instances, plus it enables memory-efficient implementation, to-
gether with a second resource calledCARGOTREEMEM. Furthermore, due to the uniform
representation, functions working with arbitrary recursively structured data can be written.
A trivial example is a function creating a copy of a data instance, independently of its actual
recursive structure. This function is readily provided as instruction of the Smute Language.

• All stack-operations at the Smute Language level, including calling-stack operations (func-
tion calls and returning from functions) are implemented through dynamic stacks and all
stack-usage is explicit. The dynamic stacks permit to support data instances of arbitrary
recursive depth, only limited by the host-machine’s (the computer running the Smute Func-
tion) available memory—which thanks to virtual memory architectures usually is huge. Fur-
thermore, the explicit stack usage allows for recursive function calls in the Smute Language
due to stack memory efficiency.

• Most failure conditions, like insufficient memory, are hidden from the Smute Language
level. They are correctly treated at the implementation level by aborting the whole top-level
Smute Function. This can be regarded as default exception handling. It should be observed
that without this automated treatment code specifications would either have to be much more
intricate, or incorrect (for example, crashing if data instances become too large).

Smute also handles the difficulty of input data processing and output data generation. For the
author of Smute Functions, so-calledSmute Function Developers, this comprises two tasks: The
specification of formats (or the reuse of existing formats),and the processing/generation of data
in the respective format. Both tasks are automated, most notably even in the case of textual input
processing.
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Apart from Smute, this thesis also presents the implementation of numerous reductions-to-
QBFs, grouped together in theReduction-to-QBF Smute Package. These reductions-to-QBFs
can be regarded as test cases, proving the serviceability ofSmute. The Smute Functions of the
Reduction-to-QBF Smute Package are largely based on reduction-to-QBF specifications presented
in [6, 7, 10, 22].

The thesis is laid out as follows: In Chapter 2 the basic conceptions of Smute and important
aspects of its realisation are outlined. It includes a discussion of alternatives and a comparison
with related solutions. As the user-interface of Smute Functions is to a large extent provided by
Smute, the invocation of Smute Functions follows a uniform pattern, which is described in Chap-
ter 3. Chapter 4 documents how to write Smute Functions. It contains the detailed descriptions
of the Smute Language, explaining each of its instructions.Smute supports the interaction of
Smute Functions with external applications. The respective solutions are documented in Chap-
ter 5. Chapter 6 presents the background to reductions-to-QBFs, including propositional logic,
Quantified Boolean Formulas, and an example-reduction. Smute Interpreter Logic Edition has
special support for the specification of logic-related data-instances and is documented in Chap-
ter 7. Chapter 8 documents the Reduction-to-QBF Smute Package, and includes the description
of all the Smute Functions of this Smute Package. Details on how reductions-to-QBFs have been
implemented in the Reduction-to-QBF Smute Package are given in Chapter 9. It contains docu-
mented Smute Language source-code for a complete reduction-to-QBF Smute Function, serving
as illustration for function-implementation. Finally, Chapter 10 concludes the thesis. It includes a
summary of Smute’s features and a discussion of potential extensions.
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Chapter 2

Conception and Realisation of Smute

An overview of the Smute conception is given in Section 2.1. Essential constituent parts are
the Smute Language, the Data I/O Conception, the Smute Interpreter, and the Smute Assembler,
which are introduced in Sections 2.2, 2.3, 2.4, and 2.5 respectively. Finally, Section 2.7 contains
a comparison of Smute with related solutions.

2.1 Overview

The Smute Languageis a programming language for the specification of functionsprocessing
structured data, with special support for the case of recursively structured data. A programming
language is of course not self-contained: For example, a compiler or interpreter is required. The
Smute Language and these related components are subsumed asSmute.

Example 2.1 (Function working with recursively structureddata)A prototypical example for re-
cursively structured data are arithmetic expressions, like the following:

• 17 + 26 ∗ (15/(8 − 3));

• x2 + 3xy + 3y2.

A function for the simplification of arithmetic expressions, performing the replacements listed
below, is thus a trivial example for a function working with recursively structured data (‘E’ stands
for an arbitrary sub-expression):

E ∗ 1 and1 ∗E → E;
E + 0 and0 + E → E;
E ∗ 0 and0 ∗E → 0;
E0 → 1;
E1 → E;
etc. �

The main purpose of the Smute Language is the simplified implementation of functions work-
ing with recursively structured data (compared to an implementation via an existing programming
language). Short and concise specifications are possible through a high level of abstraction. For
example, the Smute Language is completely platform independent. The abstraction is however
only provided to an extent that does not conflict with implementation efficiency. Thus, the Smute
Language does not impose any restrictions on the size or recursive depth of data instances.

A function written in the Smute Language is calledSmute Function. Authors of Smute Func-
tions are calledSmute Function Developers. Users of Smute Functions, i.e., those who invoke
Smute Functions, are calledSmute Function Users. The basic principle of a Smute Function is
depicted in Figure 2.1. Smute provides support to expose a Smute Function’s functionality to
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Figure 2.1: Smute Function principle
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Figure 2.2: Smute Function invocation

a Smute Function User. This is why—as opposed to most other programming languages—the
term “program” is not used here: There is no need to develop a user interface for the intended
functionality—the user interface to Smute Functions is to alarge extent provided by Smute. Of
course, in analogy to programs, a Smute Function can call “internal” Smute Functions, i.e., Smute
Functions that are invisible to Smute Function Users.

Smute Functions can be executed by interpretation via theSmute Interpreter. A Smute Func-
tion User invokes a Smute Function with specific input data bypassing both the function and the
data to the Smute Interpreter, as illustrated in Figure 2.2.The Smute Language is optimised for
interpretability. It can thus be seen as low-level language, i.e., as machine language for the virtual
machine which is implemented by the Smute Interpreter.

A Smute Moduleis a file containing Smute Language code. Smute Functions of aSmute
Module can beexported, which means that they are made accessible. A Smute FunctionDeveloper
can do so for two reasons: To expose the function to Smute Function Users, or to make the function
available for calling it from other Smute Functions. An illustration of Smute Modules is given in
Figure 2.3

The Smute Interpreter expects Smute Modules in binary format. A Smute Function Developer
creates binary Smute Modules by passing textual mnemonics to theSmute Assembler, as depicted
in Figure 2.4.

A Smute Function User specifies input to Smute Functions (if there is any) in files, and re-
ceives the output (if there is any) in files. For Smute Function Developers there is various support
for reading input and for writing output. This is subsumed asSmute Data I/O Conceptionand
explained in Section 2.3.
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2.2 The Smute Language

The Smute Language provides a set ofinstructions, Smute Language code is a sequence of Smute
Language instructions. The majority of Smute Language instructions is of one of the following
two types: Either general-purpose instructions (like arithmetic instructions) or instructions for
recursively structured data. Some additional instructions are provided for data input and data
output. A list of all instructions can be found in the Smute Function Developer Manual.

“Implementation” refers to computer code carrying out Smute Language code. It is, on the one
hand, an important principle of the Smute Language to be detached from the implementation layer,
i.e., specifications in the Smute Language are made without regard of implementation details. An
example are conditions of insufficient memory, which are treated within the implementation layer
(by aborting the whole top-level Smute Function) and are therefore invisible to Smute Function
Developers. On the other hand, the language is designed to allow for efficient implementations.
Some implementation aspects are therefore more or less anticipated, as deviations would result in
reduced efficiency. An example is memory requirement of stack operations. The Smute Language
allows to very efficiently implement these operations. Of course this efficiency is anticipated, even
if all the details remain undetermined by the Smute Languageitself.

Most Smute Language instructions operate withregisters, the main data storage locations.
Currently there are 64 registers, each with a width of 32 bits.

There are various types ofresourcesin the Smute Language.CARGOTREE is one of them.
It is used to represent recursively structured data. Instructions working withCARGOTREE-nodes
allow to specify operations on those data instances. ACARGOTREEis one of the following:

• an integer-leaf where one 32-bit integer value can be stored;

• a string-leaf where one string, i.e., byte-array, can be stored;

• an inner node with a non-empty array of (sub-)CARGOTREEs.
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Figure 2.5:CARGOTREEvisualisations

All these nodes provide so-calledids. These are integer values allowing to encode structural
information. The simplicity of this format allows to provide instructions that work with arbi-
trary CARGOTREEs, and hence are independent of the data instance’s actual recursive structure.
For example, instructions for creating copies of aCARGOTREEare provided. There areCAR-
GOTREE-node instructions for reading/setting a node’s children,for reading/setting a leaf’s value,
for creating a new node, etc.

Example 2.2 (CARGOTREE) In Figure 4.1 visualisations of aCARGOTREErepresenting proposi-
tional formulap ∧ (p → (q∨r)) are shown. The two visualisations are of the sameCARGOTREE.
In the right oneCARGOTREE-node-ids are replaced with symbols for better readability. �

A Smute Function Developer must define a convention (or use existing conventions) laying
down how data with a specific structure (for example, arithmetic expressions) is represented with
CARGOTREEs. Such a convention is calledCARGOTREE-Scheme. Currently this is an informal
specification.

Resources, such asCARGOTREE-nodes, require machine resources of the computer a Smute
Function is executed on. For example, aCARGOTREE-node obviously requires memory for stor-
ing its associated data. Smute Function Developers must discard resources that are not required
any longer. For implementation efficiency reasons, severalresources cannot be created and dis-
carded separately, but only as parts of other resources. An important example for this principle are
CARGOTREE-nodes, which are always part of a so-calledCARGOTREEMEM -instance. When cre-
ating a newCARGOTREE-node, aCARGOTREEMEM-instance must be specified wherein the node
is allocated. Individual discarding ofCARGOTREE-nodes is not possible. Instead, by discarding
aCARGOTREEMEM-instance all associatedCARGOTREE-nodes are automatically discarded. This
conception is essential for memory-efficient implementations: For any block of memory which
can be deallocated separately there is a memory overhead. This is of course crucial when there are
thousands of mini-allocations, as is the case withCARGOTREE-nodes. To quantify the benefit of
theCARGOTREEMEM-architecture: On typical computer systems the overhead-per-node decreases
from 8 bytes to less than 0.02 bytes. Thus, for aCARGOTREEwith 100000 nodes the overhead
shrinks from 800000 bytes (781KB) to less than 2000 bytes. Furthermore, a large number of al-
locations via the operating system’s memory management cancause drastic slow-downs. This is
prevented with theCARGOTREEMEM-resource. Apart from its implementation efficiency benefits,
CARGOTREEMEMalso aids in writing short and concise code. For example, a wholeCARGOTREE,
whatever its size, can be discarded with a single instruction if all the nodes are allocated from the
sameCARGOTREEMEM-instance.

There are twoStack-resources provided: Acalling-stackand adata-stack. For the Smute
Language there is no resource-usage which is not explicitlyspecified by the Smute Function De-
veloper. This also holds for the Stack-resources: For the calling-stack only a branch-to-subroutine
consumes stack-space and only a return-from-subroutine returns stack-space. For the data-stack
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it is data explicitly pushed onto or popped off the stack. Implementation comes in the form of
dynamic stacks. Dynamic means there is no fixed size—these stacks can grow as long as there
is memory available. The dynamic implementation is essential, as stack-requirements are usually
proportional to the recursive depth of the data processed with Smute Functions. Any limitation
of stack-size would hence impose a limitation of the data instances’ recursive depth. The explicit
stack-usage and the dynamic implementation ensures that there are no disadvantages or restric-
tions for recursive function-calls in the Smute Language. This is an essential feature, which sets
the Smute Language apart from most existing languages, including all machine languages and all
the common high-level-languages, such as C. Recursive function-calls in those languages can for
the following reasons not be regarded as proper solution: For machine languages (processor code)
there is the problem of static calling-stacks. For higher-level languages there is an additional grave
disadvantage, namely implicit uncontrollable stack usage. For example, a C-compiler reserves
stack-space for a function’s local variables. This is troublesome insofar, as wasted stack-space
cumulates with each (recursive) level of function-calls.

The functionality of the so-calledHash-resources is as follows: A Hash-resource is an initially
empty collection ofhash-entries. A hash-entry is composed of an integer or string, the so-called
hash-key, plus optional additional data. Any integer or string can occur at most once as a hash-
entry’s key in a Hash-resource. For any integer or string it is possible to tell if it occurs as key in a
Hash-resource, and if so, to access the according hash-entry’s associated data-fields. Any number
of hash-entries can be added to a Hash-resource. These are essential operations for all Smute
Functions operating on recursively structured data with identifiers, like propositional variable-
identifiers in formulas of propositional logic. Most types of hash-entries cannot be discarded
individually. This is the same as withCARGOTREE-nodes, and has got the same reasons. The
name—Hash-resource—comes from the typical way of implementation, namely with hash-tables.

Support for array-operations comes with theARRAY resource. It is especially useful for Smute
Functions working with arrays of recursively structured data, where such arrays are not part of the
recursive data structure itself.

2.2.1 Smute Functions, Smute Modules and Smute Packages

A Smute Moduleis a file containing Smute Language code. Alabel is a string identifying a
position in a Smute Module. Labels are used with the flow control instructions in order to specify
positions, e.g., to specify where to branch to.

Now the termSmute Functioncan be clarified: It is a position in a Smute Module where it is
possible toBSR(branch-to-subroutine) to. The shortest possible Smute Function is thus a single
Return instruction.

Labels can beexportedfrom a Smute Module. This means they are made “visible” to the
outside, i.e., they can be referenced from outside the SmuteModule. The functionality provided
by a Smute Module is thus given by its exports. Smute Module code can contain branches (usually
BSRs) toexternallabels, i.e., to exports of other modules. A full reference to another modules’
export—calledimport—consists of a (module-name, label-name)-tuple.

References to Smute Module-internal positions via labels are used for convenient specification
of Smute Language code with its textual mnemonics. They get resolved by the Smute Assembler,
i.e., when creating the binary Smute Module. In the binary Smute Module hence only exported
labels are stored.

If code of Smute Moduleb references an export of Smute Modulea, thenb is said todirectly
dependona. b is said todependona, if either

• b directly depends ona or

• there is a Smute Modulec directly depending ona, andb depends onc.

10



A dependency graph for Smute Modules is generated as follows: Each Smute Module is a node.
Each direct dependency is a (directed) edge. For proper Smute Modules the dependency graph is a
tree—although circular dependencies are of course possible, they must be considered poor Smute
Module design. This is why in the rest of this document the term dependency treewill be used.

Obviously the import/export-architecture is destined formodularity. Different functions, even
if completely independent of each other, often require common subroutines. Instead of redun-
dantly including common subroutines in each of the independent Smute Modules, these functions
can be imported.

Publishing and distribution of Smute Functions is usually done viaSmute Packages. A Smute
Package consists of one or more Smute Modules and related files, e.g., documentation.

2.3 Data I/O Conception

According to the design of the Smute Language, withCARGOTREEs as one of the fundamental
concepts, a function with recursively structured input andoutput could be implemented as follows:

1. Input data instances are read in order to create aCARGOTREE-representation. The following
cases need to be distinguished:

(a) Input data instances are provided in binary format.

(b) Input data instances are provided through textual specifications.

2. The function processing the data gets executed. This function is independent of input/output-
formats and works with recursively structured data only in its CARGOTREE-representation.

3. ResultingCARGOTREEs are saved in the desired output format. Again there is a distinction
between:

(a) Output is provided in binary format.

(b) Output is provided in a textual format.

Proper support is as yet “only” provided for point 1b, i.e., textual input specification. Com-
pared to the difficulty of points 1a, 3a, and 3b, this was of course the real tough nut to crack. The
missing points are of course subject to further Smute development.

Smute introduces a new standardised binary file format for recursively structured data, the
CARGOTREE Exchange Format. Any CARGOTREEcan be saved toCARGOTREEExchange For-
mat with a single instruction of the Smute Language. Furthermore Smute can automatically create
aCARGOTREEfrom a file inCARGOTREEExchange Format. This new file format serves multiple
purposes. For example, it makes it possible to write applications that seamlessly work together
with Smute Functions.

2.3.1 Textual Input Data Specifications in Context-Free Languages

This section is divided into two parts. The first is a compact introduction to languages, grammars,
and parsers. For a more comprehensive discussion of these important topics of computer science
refer to [4]. The second part explains the Smute Data I/O concept for textual input specification
and processing. It is of course based on the theoretical background of the first part.

Background

Let A be a set. Astring overA is a (possibly empty) finite sequence of elements fromA. The
empty string, denotedε, is defined as empty sequence of elements. Fora∈A, the string solely
consisting ofa is denoteda. Thelengthof a stringu, denoted|u|, is defined as follows:
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• If u = ε then|u|:=0;

• If u = av, wherea∈A andv is a string, then|u|:=|v| + 1.

Theconcatenationof stringsu andv, denoteduv, is obtained by appending the sequence of string
v to the sequence of stringu. A stringx is calledsubstringof stringy, if there are stringsu andv
such thaty = uxv. A stringx is calledprefixof stringy, if there is a stringv such thaty = xv. A
stringx is calledsuffixof stringy, if there is a stringu such thaty = ux. For a setA, theKleene
closureof A, denotedA∗, is the set of all strings overA, includingε.

Let A be a set. Aformal languageL overA is a (possibly empty) set of strings overA, i.e.,
L⊆A∗. A is called thealphabetof L.

A formal grammarG is a quadruple(N,T, P, S) of

• a finite setN of nonterminals;

• a finite setT of terminalsthat is disjoint fromN ;

• a finite setP of productions, where a production is of the formsl→sr with

– sl, sr∈(T∪N)∗ and

– sl contains at least one nonterminal.

sl is referred to as the production’sleft side, sr as the production’sright side;

• a symbolS∈N designated asstart symbol.

Let s1, s2, sl, sr∈(T∪N)∗ be strings andsl→sr be a production. Thenapplying a production
sl→sr to a strings1sls2 means to replace it with the strings1srs2. In this cases1srs2 is said
to bederivedfrom s1sls2 in one step, denoteds1sls2 ⇒ s1srs2. A string r∈(T∪N)∗ derivesa
strings∈(T∪N)∗, denotedr

∗

⇒s, if s can be generated fromr by repeatedly (zero or more times)
applying productions fromP . A sequence of such replacements is calledderivation. Thelanguage
of a formal grammar, denotedL(G), is defined as the set of terminal-strings, i.e., strings from T ∗,
that can be derived from the start symbol. A formal grammar iscalledunambiguousif for each
string of its language there is exactly one derivation.

A context-free grammarG is a formal grammar(N,T, P, S), where each production’s left
side consists of a single nonterminal only. A formal language is calledcontext-free language, if
it is the language of a context-free grammar (i.e., if it can be generated with the productions of a
context-free grammar). A derivation with productions of a context-free grammar is calledleftmost,
if in each replacement step the leftmost nonterminal gets replaced with a production’s right side.
It is calledrightmost, if in each replacement step the rightmost nonterminal getsreplaced.

Example 2.3 (Context-free grammar)For the following context-free grammar the set of nontermi-
nals is{S, T, F}, the start symbol isS, and the set of terminals is{+,−, ∗, (, ), x, y, z}. Usually
these are not explicitly specified, but implicitly given through the set of productions, which are
listed below.

S→S + T ;
S→S − T ;
S→T ;
T→T ∗ F ;
T→F ;
F→(S);
F→x;
F→y;
F→z.
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“x ∗ y ∗ (y+ z)” is a string of the context-free grammar’s language, as the following rightmost
derivation from the start symbol shows:

S⇒T
⇒T ∗ F
⇒T ∗ (S)
⇒T ∗ (S + T )
⇒T ∗ (S + F )
⇒T ∗ (S + z)
⇒T ∗ (T + z)
⇒T ∗ (F + z)
⇒T ∗ (y + z)
⇒T ∗ F ∗ (y + z)
⇒T ∗ y ∗ (y + z)
⇒F ∗ y ∗ (y + z)
⇒x ∗ y ∗ (y + z). �

A Backus-Naur formis a convention for the specification of context-free grammars in text-
files. Character-strings within angular brackets, such as<formula> , are used to specify and
identify nonterminals. Strings delimited with quotation marks, such as’if’ , are used to specify
terminals. For productions the left side and the right side are separated with the string “::= ”, as
illustrated below:

<stmt> ::= ’if’ <expr> ’then’ <stmt>

Multiple productions with an equal left side nonterminal can be grouped together with the “| ”
character as illustrated below:

<expr> ::= <expr> ’*’ <expr> | ’-’ <expr> | <expr> ’+’ <expr>

The analysis of the grammatical structure of an input with respect to a given formal grammar
is calledparsing. A top-downparser creates a derivation by starting with the start symbol and
trying to recreate the input with repeated application of productions. Abottom-upparser creates
a derivation by repeated inverse application of productions to the input until only the start symbol
is left. Common types of top-down parsers are so-calledLL-parsers andrecursive descentparsers.
See [4] for a description. A common type of bottom-up parsersis theLR-parser-type. LR-parsers
are introduced in the following paragraphs.

A shift-reduceparser is a bottom-up parser for context-free grammars which works as follows:
It implements a stack where terminals and nonterminals can be stored. It reads the input from the
left to the right. The parsing is done via 2 actions calledshift andreduce.

• In a shift-action the parser shifts the next input terminal onto the top of the stack.

• In a reduce-action a certain number of symbols (terminals and nonterminals) on top of the
stack correspond to the right side of a production which can be applied in the derivation of
the input. The symbols are thus popped from the stack and replaced with the nonterminal
from the production’s left side.

A shift-reduce parser usesk input-terminals not yet used for shifting/reducing, the so-called
lookahead-symbols, to decide on whether to shift or reduce, and in the latter case according to
which production to reduce. The following errors can occur in shift-reduce parsers: Ashift/reduce-
conflict(knowing the stack content and the lookahead-symbols it is not possible to decide whether
to shift or reduce), andreduce/reduce-conflicts (knowing the stack content and the lookahead-
symbols it is not possible to elect one of several reductions).
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An LR(k) parser(the ‘L’ stands for reading input from the left to the right, the ‘R’ stands
for creating rightmost derivations) is a shift-reduce parser with k symbols of lookahead.LR is
an abbreviation for LR(1). Here only the LR(1)-parser algorithm is introduced in full detail.
The relevance of LR(1)-parsers and their superiority to other well-known parsing algorithms are
discussed in [4].

An LR-parser determines the next action (shift or reduce) from a so-calledLR-parsing-table,
the next input-symbol, and its currentstate. The algorithm is best explained with a simple example:

Example 2.4 (LR-parser)

(1) <expr> ::= <expr> ’+’ <bool>
(2) <expr> ::= <bool>
(3) <bool> ::= ’0’
(4) <bool> ::= ’1’

The LR-parsing-table for this grammar is as follows:

action goto
state 0 1 + $ <expr> <bool>

0 s3 s4 1 2
1 s5 acc
2 r2 r2
3 r3 r3
4 r4 r4
5 s3 s4 6
6 r1 r1

The $-terminal serves as end-of-input identification. The entries in the action-table have the fol-
lowing meaning:

• s〈i〉: Shift and continue with statei.

• r〈i〉: Reduce according to rulei.

• acc: Accept the input.

The numbers in the goto-table refer to the state in which to continue after a reduction with the
specified left-hand side nonterminal has been performed.

The parsing-algorithm uses a stack in which it remembers itsstates. The top-of-the-stack is
its current state. Its initial state is 0. For each shift-action the new state is shifted onto the stack.
For a reduction the number of right-hand side symbols (nonterminals and terminals) determines
the number of states to walk back, i.e., to pop from the stack.The new state is then determined by
this state’s goto-table entries.

The following is an illustration of the algorithm for input string “0+1 ”:

stack input action
(step1) [0] 0 (↪→0+1 ) s3
(step2) [0 3] + (0↪→+1) r3
(step3) [0 2] + (0↪→+1) r2
(step4) [0 1] + (0↪→+1) s5
(step5) [0 1 5] 1 (0+↪→1) s4
(step6) [0 1 5 4] $ (0+1 ↪→) r4
(step7) [0 1 5 6] $ (0+1 ↪→) r1
(step8) [0 1] $ (0+1 ↪→) acc

Thus, the following derivation is returned (reductions in reverse order):
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<expr>
r1
⇒ <expr> ’+’ <bool>
r4
⇒ <expr> ’+’ ’1’
r2
⇒ <bool> ’+’ ’1’
r3
⇒ ’0’ ’+’ ’1’

In (step1) the current state is0, and the current input symbol is ‘0’. The according action-table
entry is “s3”. Thus, state3 is shifted onto the stack (and hence made the current state),and input
processing continues with symbol ‘+’. This is displayed in (step2). Here the action-table entryis
“r3”, i.e., reduction according to rule<bool> ::= ’0’ . This rule has got one right-hand-side
symbol. Hence one state is popped from the stack (state3), which means that state0 is the top
of the stack. For the continuation after applying the reduction it is hence necessary to go to the
state stored in the goto-table for state0 and nonterminal<bool> (the rule’s left-hand-side), i.e.,
state2. This is displayed in (step3). The other steps follow the same pattern.

All empty action-table entries correspond to parsing-errors. For example, when parsing string
“0++1 ”, the next input-symbol when the parser reaches state5 is ‘+’. The action-table entry for
this configuration is empty, the parser would thus correctlyreport an unexpected ‘+’-terminal. �

There are context-free grammars that cannot be parsed with an LR-parser—even unambigu-
ous ones. This is because the decision whether to shift or reduce (or which reduction to apply
respectively) could depend on other input symbols than the first one, but only the first one is taken
into account. Those context-free grammars which can be parsed with an LR-parser are called
LR-grammars. In practice, e.g., for most programming languages, LR-grammars are sufficient.

The algorithm which for a given LR-grammar calculates the LR-parsing-table is beyond the
scope of this document. Refer to [4] for a comprehensive description.

An LALR-parser(lookahead-LR parser) works like an LR-parser, but instead of an LR-parsing-
table uses anLALR-parsing-table. As LR-parsing-tables are becoming quite large for non-trivial
grammars, such as programming-language grammars, there have been various attempts for size-
reduction. The most widespread solution are LALR-parsing-tables. Their structure is exactly the
same as the LR-parsing-table structure. Though certain states of an LR-parsing table are “merged”
into just one state in an LALR-parsing-table. Of course thiscannot be done in a lossless way (oth-
erwise the LR-parsing-tables would be constructed redundantly)—the “loss” is as follows:

• Some parsing-errors are not detected when they occur, but ata later point of time (in this
case LALR-parsers cannot tell the original cause of a parsing error).

• For some LR-grammars it is not possible to generate an LALR-parsing-table, because it
would contain reduce/reduce-conflicts.

LALR-grammars, i.e., grammars that can be parsed with LALR-parsers, are thus a proper subset of
LR-grammars. Nevertheless LALR-grammars are usually sufficient. For example, most compilers
for programming languages parse with LALR-parsers. For thedetails of LALR-parsing-table
construction refer to [4].

The Smute Solution

In principle the processing of recursively structured dataspecified in a text-file (in a specific lan-
guage) is the task of a Smute Function Developer. For example, it would be sufficient if the
Smute Language permits to write parsers. This is however notthe case. Instead, Smute offers full
automation—a Smute Function Developer never needs to writea parser.

The Smute solution works as follows:

1. The Smute Function Developer specifies an LALR-grammar bywriting a Backus-Naur
form.
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2. The Smute Function Developer passes the Backus-Naur formto a utility program which
creates the LALR-parsing-table. This parsing-table is distributed together with the Smute
Modules.

3. A Smute Function User specifies input in the respective language and references the appro-
priate LALR-parsing-table. The parsing of the source is performed by Smute. If success-
ful, a CARGOTREErepresenting the input in an LALR-grammar-dependentCARGOTREE-
Scheme is created.

4. The Smute Function Developer provides Smute Functions working with CARGOTREEs in
the LALR-grammar dependentCARGOTREE-Scheme. The recommended way is to develop
aPreprocessing Functionin the Smute Language. A Preprocessing Function creates from a
CARGOTREEin an LALR-grammar-dependentCARGOTREE-Scheme aCARGOTREErep-
resentation in a grammar-independentCARGOTREE-Scheme. Typically a core Smute Func-
tion works withCARGOTREEs in the independent scheme. A “wrapper” Smute Function
performs preprocessing (by invoking the Preprocessing Function), and then calls the core
Smute Function.

With only two simple tasks, namely writing a Backus-Naur form and writing a Preprocessing
Function (a typical Preprocessing Function is approximately hundred lines long), a Smute Func-
tion Developer can support textual specifications in any desired LALR-language. Also note the
implementation independence: Support for textual specifications is automatically available with
all implementations, e.g., for different computer systems.

The principle of textual input processing with Smute is depicted in Figure 2.6. Here the utili-
sation of a Preprocessing Function is assumed.

Fortunately, a freely available program called GOLD Parser[3] proved to be perfectly suit-
able for the LALR-parsing-table creation. This definitely saved some months of work. Although
several parser source codes are offered freely as well, due to the special requirements (like mem-
ory efficiency) and for neat integration into the other code the Smute LALR-parser is an own
development.

2.3.2 Data I/O inCARGOTREE Exchange Format

Smute Function code can save aCARGOTREEto a file in a new standardised binary format, the
CARGOTREEExchange Format. Such files can of course be used as input to Smute Functions
again.

The purposes are the following:

• For Smute Function Users: Consecutive Translations. A Smute Function User might want
to pass the output of one Smute Function to another Smute Function. Smute Function
Developers can support such consecutive translation callsby CARGOTREEExchange File
output and input, with only a few lines of Smute Language code- independently of syntactic
input/output conventions.

• CARGOTREEExchange Format permits to write applications that seamlessly work together
with Smute. The following are examples:

– As mentioned on page 11, support of input from and output to arbitrary binary or tex-
tual formats is not yet possible with Smute. Smute Function Developers can circum-
vent this current limitation by providing small tools converting to/fromCARGOTREE
Exchange Format.

– Where Smute Functions are used as part of a tool-chain, data can be passed via files in
CARGOTREEExchange Format.

16



 Textual
 specification
 of input data
 (possibly
 recursively
 structured)

01101110...
1011001010..
0110011010110
1001001011001
1100101110100
1101001001001
0101100110101
0100010010011
1100110110110
0010010011101
0010101101010
.............L

A
L

R
/D

F
A

-T
a
b

le
s

Smute

Smute Function

Preprocessing Function

Data in grammar-
dependent
CARGOTREE-Scheme

Data in grammar-
independent
CARGOTREE-Scheme
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2.3.3 Visualisation Output in the Graph Description Language

The recursive structure of data is best displayed in the formof a tree. From string-representations
it is however difficult to decipher the recursive structure.For example, imagine a random arith-
metic expression with hundreds of variables. In the form of astring it is a hardly comprehensible
sequence of brackets, operator symbols, variable symbols,and numbers. During the development
of function code, regardless of the programming language, it is a common task to display internal
data instances in order to verify their correctness. The same is necessary for recursively struc-
tured data instances of Smute Functions. Thus it was self-evident that Smute had to support tree
visualisations.

Smute supports the visualisation of recursively structured data with instructions for saving
CARGOTREEdescriptions in the so-calledGraph Description Language. The Graph Description
Language is used by graph visualisation softwareaiSee [1]. See Figure 4.1 on page 65 for an
example visualisation (allCARGOTREEvisualisations in this document are created withaiSee ).

For internalCARGOTREE-nodes the integer id is displayed in the visualisation. Depending on
theCARGOTREE-Scheme a visualisation could however be “decrypted” by displaying certain sym-
bols instead. For example, a plus-symbol (‘+’) could be displayed for aCARGOTREE-node rep-
resenting an arithmetic formula ‘l + r’. Though this requires visualisation-relatedCARGOTREE-
Scheme meta-information, and is not implemented yet. Only for CARGOTREEs in ‘QBF’-Scheme
(aCARGOTREE-Scheme for the representation of Quantified Boolean Formulas) is there currently
a “decrypted” visualisation output available.

2.4 The Smute Interpreter

Smute Functions can be executed via theSmute Interpreter. As the name Smute Interpreter sug-
gests, Smute Functions are executed by interpretation of their code (as opposed to the compilation-
approach).

The many parameters passed to the Smute Interpreter—namelywhich Smute Functions from
which Smute Modules to invoke with which parameters—have tobe specified in a file, the so-
calledSmute Launch File. The Smute Launch File syntax is presented in Chapter 3.

Input to Smute Functions can be specified via references to files, i.e., via the specification of
file-names, in Smute Launch Files. It is an important featureof the Smute Interpreter that it can
process the input for certain types of data:

• From files inCARGOTREEExchange Format the Smute Interpreter can automatically create
CARGOTREEs.

• From files in LALR-languages the Smute Interpreter can—if provided with the respective
LALR-parsing-table—automatically create a grammar-dependentCARGOTREErepresenta-
tion. LALR-parsing-tables are provided by Smute Function Developers in order to support
the specification of input in an LALR-language.

For the sake of convenient input specification are there special Smute Interpreter Editions.
They permit textual specifications of certain recursively structured data directly within the Smute
Launch File. Smute Interpreter Editions come with one or more Smute Modules containing Pre-
processing Functions for the recursively structured data in question. An example isSmute In-
terpreter Logic Edition: It allows formulas of propositional logic and other logic-related data
instances to be specified directly within the Smute Launch File. As it requires changes in the
Smute Interpreter, a new Smute Interpreter Edition (or changes in an existing one) can only be
manufactured by the author of the Smute Interpreter, but notby Smute Function Developers.

Smute Launch File grammars are subject to changes (for example, extension with additional
specification syntax). Therefore data specified in Smute Launch Files must be preprocessed with
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the Preprocessing Functions that come with the respective Smute Interpreter Edition. Otherwise
Smute Functions are rendered useless with changes in the Smute Launch File grammar.

Figure 2.7 on page 20 illustrates the Smute Interpreter.

2.4.1 Technical Notes

The Smute Interpreter is written in C. A few constructs of C++, like function-templates, have been
used, but essentially it is plain C. The code has been developed from scratch, the only libraries
used are the ANSI Standard C libraries. Thus the Smute Interpreter can be compiled for various
platforms.

A 32-bit addressing architecture is required on the target platform (wider addresses are not sup-
ported). 16-bit datatypes are only addressed at 16-bit boundaries, 32-bit values at 32-bit bound-
aries. Depending on the target platform processor such alignments can be required or advanta-
geous.

The Smute Interpreter is currently available for Intel Pentium/Windows and Intel Pentium/-
Linux platforms.

The ANSI Standard C library calls are completely encapsulated. Thus the Smute Interpreter
can be easily detached from ANSI Standard C in order to createa different version, for example,
a Windows-version with graphical user-interface. Currently no such versions are planned though.

As pointed out in Section 2.2, the Smute Language is designedto allow for efficient imple-
mentations. All the implementation characteristics that have been demanded there (for example,
dynamic stacks, efficient memory handling, etc.) are realised with the Smute Interpreter.

For user-friendliness the Smute Interpreter applies a cumulative error notification technique,
i.e., multiple errors (for example, typing errors in the Smute Launch File) can be notified at once.

2.5 The Smute Assembler

For textual specifications of Smute Language code theSmute Assembleris required in order to
create the binary Smute Modules. Like with existing assemblers, the textual mnemonics only
serve the ease of specification.

A Smute Assembler application is not yet available. Instead, the so-calledSmute Assembler
Library can be used. The Smute Assembler Library is a static library which can be used with
C-programs, i.e., there is a C-header-file available. SmuteLanguage instructions can be specified
in a C source-code file via respective Smute Assembler Library function-calls. Compilation of the
C source-code yields an executable, which, when executed, generates the binary Smute Module.

Example 2.5 (Smute Language code specification via Smute Assembler Library function-calls)The
following listing displays a small Smute Function in “native” Smute Language:

Label(Not);
Move(R01,R02);
NewConClsImm(1,R00,R01,0);
PlugImm(R01,R02,0);
Return;

For usage with the Smute Assembler Library it must be specified as follows:

TMMWrite_WLabel(ptmmw,(PuCHAR)"Not",3);
TMMWrite_WMove(ptmmw,R01,R02);
TMMWrite_WNewConClsImm(ptmmw,1,R00,R01,0);
TMMWrite_WPlugImm(ptmmw,R01,R02,0);
TMMWrite_WReturn(ptmmw);
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<phi> := a;
<psi> := a+b;
<pi> := 3*a+c;

loadmodules();

mod:Prc(psi);
mod:Smp(phi);
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<phi> := a;
<psi> := a+b;
<pi> := 3*a+c;

loadmodules();

mod:Prc(psi);
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Figure 2.7: Smute Interpreter
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For the compilation with a C-compiler a few additional framing instructions are required. �

The Smute Assembler Library is documented in the Smute Function Developer Manual. The
Smute Assembler Library is only a tentative solution for thenot yet developed Smute Assembler
application. Throughout this document Smute Language codeis hence presented in its native
form, not in the form of Smute Assembler Library function-calls.

2.5.1 Technical Notes

Like the Smute Interpreter, the Smute Assembler Library is basically written in plain C, with the
rare exception of using C++ extensions. Again, the only libraries used are the ANSI Standard C
libraries. An encapsulation of ANSI Standard C library calls identical to the one of the Smute
Interpreter is implemented. The code has been written with the future development of a Smute
Assembler in mind, i.e., in large parts the code can be reusedfor the development of such a
program.

2.6 Discussion of Alternatives

This section discusses the most important alternatives that occurred in the conception of Smute.

Compiler vs. Interpreter

For a language supporting the specification of functions processing recursively structured data
there are two implementation options: compilation and interpretation. For compilation there are
two different sub-options, namely a standard compiler, i.e., a compiler creating code for a certain
microprocessor, and acompiler-compiler, i.e., a compiler generating code of a certain program-
ming language. The following is a list of disadvantages for the compiler-approach (some specific
for either standard compilers or compiler-compilers) in comparison to the interpretation approach:

• Recursive function calls in the specification language cannot be implemented via recursive
function calls in the host programming language, due to the stack problem (as discussed on
page 10). This has a tremendous effect on the whole implementation:

– For compiler-compilers this means that just one big function (or a few ones) with
numerous internal flow-control destinations (for the functions of the specification lan-
guage) must be created. With C, function-internal flow-control destination handling
is rather limited and intricate, because labels can only be used directly with a few
instructions (most notably “goto ”), but not be accessed as data.

– For standard compilers it has the effect that recursively structured functions cannot be
implemented as functions (with a return-instruction). Alternative solutions are how-
ever more feasible than with compiler-compilers.

• Common functionality provided at the specification language layer must either be redun-
dantly linked to each application, or these applications use an external common core-file.
In any case is there a certain static frame. For function users this has the unpleasant effect
that applications compiled with different versions of the compiler can differ in their user
interfaces.

• For compiler-compilers there is a general problem: There isvery limited influence on the
second compilation step. Compilers for the second step differ from each other. It cannot be
guaranteed that the second compilation step works flawlessly and that the resulting code is
correct. Furthermore, usually certain settings for the second compilation step are required.
There are however no standardised ways for the specificationof compiler settings. In the
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case of a faulty implementation it is difficult to detect whether the error is caused by the
second compilation step, or if the original specification isfaulty.

• For compiler-compilers recompilations are required for different computer platforms.

• For standard compilers there is the disadvantage that they generate applications for one
platform only.

• For standard compilers the development effort is enormous,even more so if code optimi-
sation is performed.

The disadvantages of interpretation:

• Runtime overhead caused by interpreting. In a properly designed specification language
this is only a small disadvantage, as all the efficiency-critical tasks are encapsulated in the
implementation layer and not performed via code of the specification layer.

Smute applies interpretation. The realisation of a compiler (alongside the interpreter) is not
ruled out by the Smute conception, though it is not planned. See Chapter 10 for a discussion.

Static linking vs. Dynamic linking

The disadvantages of static linking are as follows:

• Smute Modules commonly used get redundantly linked. All thetypical disadvantages of
redundancy apply: Waste of space, different versions of thecode, updates only through
re-linking, etc.

• Static linking cannot work function-wise, as this would require program flow analysis. Thus
always a complete Smute Module gets linked, which is a waste of space.

• For testing Smute Functions during the development of SmuteModules it is not only nec-
essary to assemble the Smute Module, but also to link it.

The disadvantages of dynamic linking:

• In order to invoke Smute Functions, a Smute Function User needs all the Smute Modules
from the dependency-tree.

Smute applies dynamic linking. Of course a static linker could be implemented alongside the
existing dynamic linking solution. Currently this is not planned.

Higher-level language vs. Lower-level language

As Smute uses an interpretation approach, it was obvious that there had to be a language which
could be efficiently interpreted. This is realised with the Smute Language, which can thus be re-
garded as lower-level language. This is however not a decision against a higher-level language: For
the implementation of a higher-level language a compiler creating Smute Language code would
be required. Currently there is no higher-level language inthe Smute framework, but it can be
considered as potential extension. This is discussed in Chapter 10.
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Parsing-Table Creation Alternatives

Dozens of applications to aid in parser development have been reviewed, but only GOLD Parser [3]
has a strict separation between parsing-tables and parsersas it is required for Smute. Most
other applications are compiler-compilers creating parser-code in one of various programming
languages. GOLD Parser has grammar-testing capabilities,an excellent user-interface, it is well
documented, and publicly available. As GOLD Parser proved to be sufficient for the current
purposes, its usage was preferable to the only other alternative, namely writing an own parsing-
table-creation utility. If however in the further development of Smute more advanced features
are required, for example, the specification of parsing-error-recovery, then GOLD Parser must be
abolished.

Recursively Structured Data Visualisation Alternatives

Several programs have been reviewed with regard to their tree visualisation capabilities:aiSee ,
CharGer , GraphViz , GVFand VGJ. aiSee [1] proved to be the by far most suitable one.
Some of its advantages:

• fully configurable visualisations (colors, shapes, layout, etc.);

• excellent on-screen display, with zoom- and scrolling-features;

• various export options (for example, in Postscript- and in GIF-format);

• availability for multiple computer platforms; and

• student license conditions.

Most ofaiSee ’s sophisticated features, like graph layout algorithms for arbitrary graphs, are not
even used withCARGOTREEvisualisations.

2.7 Related Solutions

Prior to the development of Smute has there been an extensiveresearch with regard to existing soft-
ware suitable for the specification and implementation of functions processing recursively struc-
tured data. The existing software solutions which have beenfound and reviewed in this research
are at best partially suited for this task. This section gives an overview and discusses common
insufficiencies.

Smute-related solutions have typically one of the following two backgrounds:

• The solution is intended for parser-generation and is extended to provide support for the
transformation of parse-trees.

• The solution provides programming language specification and compilation support.

The solution which is closest to meeting the requirements iscalled TXL (Transformation by
Example,www.txl.ca ) [8] and belongs to the latter category. It is one of the few Smute-
related solutions where transformations are entirely expressed in a language designed for this
purpose. The more common case is a mixture of using a new language and an existing program-
ming language. One of the better-suited examples with parser-generation background is ANTLR
(www.antlr.org ) [20]. The following is a list of other software packages that have been re-
viewed:

• AnaGram
(www.parsifalsoft.com )
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• ASF+SDFMeta Environment
(www.cwi.nl/projects/MetaEnv )

• ClearParse
(www.clearjump.com )

• EAG(Extended Affix Grammars Project)
(www.cs.kun.nl/˜kees/eag )

• Elkhound
(www.cs.berkeley.edu/˜smcpeak/elkhound )

• Gentle
(www.first.gmd.de/gentle )

• Haskell Language
(www.haskell.org )

• iburg
(www.cs.princeton.edu/software/iburg )

• IParse
(home.planet.nl/˜faase009/MM.html )

• Precc
(vl.fmnet.info/precc )

• ProGrammar
(www.programmar.com )

• SLK Parser Generator
(www.parsers.org )

• SPIRIT
(spirit.sourceforge.net )

• Stratego Language (Strategies for Program Transformation)
(www.stratego-language.org )

• STYX
(www.speculate.de/styx )

• SYNTAX System
(www-rocq.inria.fr/oscar/www/syntax/syntax-eng.htm )

• Visual Parse++
(www.sand-stone.com )

While these software packages are related to Smute, none is suitable for the specification of func-
tions processing recursively structured data as required for reductions-to-QBFs. The following is
a list of typical insufficiencies:

• The package does not introduce a new language, but only aids in writing code of an existing
programming language. This has several severe disadvantages, including the problem of
recursive function calls (as discussed on page 10).
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• There is no support for identifier-related operations, suchas the introduction of new unused
variables or the substitution of variables. This is true forall the reviewed languages. It
is either not possible to implement such operations, or theycan be implemented only via
extremely inefficient workarounds (linear search, etc.).

• The language-design makes (runtime- or memory-)efficient implementations impossible.
For example, there are languages following a functional approach instead of a procedural
(imperative) one. For the functions typically implementedwith Smute this is unnecessary
and reduces efficiency.

• The package does not distinguish between textual specification of data and its recursive
structure. This usually has the effect of ill-suited representation of data during transforma-
tions.

• The language is missing modularity, e.g, all specificationshave to be provided within one
file.

• The language is not powerful enough—it only supports a certain kind of operations on
recursively structured data, e.g., syntactic pattern-match replacements. There are too many
presumptions with regard to, for example, the tree-traversal.

Although in many cases aimed at different goals, Smute can beused as replacement for some of
the software packages listed above. Most of Smute’s features, like support for identifier operations
and for visualisation of recursively structured data, set it apart from existing solutions.
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Chapter 3

Invoking Smute Functions

The user-interface to Smute Functions is to a large extent provided by Smute. This saves work for
Smute Function Developers, but also allows for a uniform usage of Smute Functions. This chapter
documents the uniform usage. Section 3.1 lists the necessary steps for Smute Function invocation,
from obtaining the necessary files to the execution of Smute Functions via the Smute Interpreter.
These steps are illustrated with a running example. A comprehensive description of Smute Launch
Files follows in Section 3.2. It includes their Backus-Naurform.

3.1 Step-by-Step Smute Function Usage

The steps of Smute Function invocation are illustrated withthe following trivial running exam-
ple: For arithmetic expressions a Smute Function User wantsto visualise the grammar-dependent
CARGOTREEs. Although the respective Smute Function is rather useless, it is well-suited for the
illustration of general Smute Function invocation principles.

Step 1: Gather the necessary files and read the documentation

Smute Functions are usually distributed in the form of SmutePackages. The most important
files in a Smute Package are the Smute Modules (‘.tmm ’-files) containing the desired Smute
Functions. Apart from these Smute Modules a Smute Package typically contains additional files
like the following:

• additional Smute Modules containing Smute Functions that are called from within the main
Smute Functions (in other words: Smute Modules from the dependency tree);

• Compiled Grammar Tables (‘.cgt ’-files) in order to support the specification of data in the
respective languages;

• example Smute Launch Files invoking Smute Functions of the Smute Package;

• example data instance files in binary format or text format; and

• documentation files.

For each Smute Module all the additional Smute Modules it depends on (if any) are required.
Usually these additional Smute Modules are part of the SmutePackage. In some cases however,
due to copyright reasons, it might be up to the Smute FunctionUser to obtain additional Smute
Modules. Missing Smute Modules are reported to the Smute Function User on Smute Function
invocation.

Most Smute Packages already contain the Smute Interpreter.For others it must be obtained
separately. In the latter case care has to be taken to choose the correct Smute Interpreter Edition.
For Smute Packages not requiring a special Smute Interpreter Edition, any edition suffices.
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Here is a summary of the standard procedure for gathering thenecessary files:

1. Obtain the Smute Package (Smute Modules plus other files).

2. Find out about the following:

(a) Is the Smute Package self-contained, or are there additional Smute Modules or Smute
Packages required? In the latter case, where can those additional files be obtained
from?

(b) Is the Smute Interpreter contained in the Smute Package?If not, is a special Smute
Interpreter Edition required, and if so, which one?

According to the answers to these questions it might be necessary to obtain additional files.
Note that it might be necessary to repeat this step for additional Smute Packages or Smute
Modules.

Example 3.1In the running example the Smute Package consists of the following files:

m_devutil.tmm
expr.cgt
smute.exe
l0000.txt
expr00.txt
readme.txt

• “mdevutil.tmm ” is a Smute Module. Smute Module-filenames always have prefix‘m ’
and suffix ‘.tmm ’. As it is the only Smute Module of this Smute Package, it is this Smute
Module which exports the desired Smute Function creating visualisations of grammar-
dependentCARGOTREEs.

• “expr.cgt ” is a “Compiled Grammar Table”. Compiled Grammar Tables areLALR-
parsing tables created by GOLD Parser Builder [3]. “expr.cgt ” is an LALR-parsing
table for arithmetic expressions.

• “smute.exe ” is the Smute Interpreter (Windows version).

• “ l0000.txt ” is an example Smute Launch File.

• “expr00.txt ” is an example input specification, i.e., a specification of an arithmetic
expression.

• “ readme.txt ” is a documentation file. In this trivial example it just states that the func-
tion for CARGOTREE-visualisation is calledDumpCargoTree and that the Smute Package
is self-contained, i.e., that no additional files are required. It also documents the syntax for
input specifications. �

Step 2: Prepare a working directory

The Smute Interpreter is a command-line program which expects all its input files in the ‘cur-
rent directory’, and writes all output files to that directory. The following files are read by the
Smute Interpreter: Smute Launch Files, Smute Modules (‘.tmm ’-files), Compiled Grammar Ta-
bles (‘.cgt ’-files), and external data specification files. It is recommended to retain all these files

27



in one directory, which should be the ‘current directory’ atthe time of running the Smute Inter-
preter. Documentation files are of course unaffected by the Smute Interpreter and can be stored in
different locations.

Example 3.2For the running example all the files as listed in Example 3.1 are assumed to be
copied to one directory. �

Step 3: Write data specifications and a Smute Launch File

Which parameters a Smute Function takes and how they are specified is explained in the Smute
Package documentation. The typical way of learning about input data specification syntax is to
take a look at example specifications. For the details the Smute Package documentation should be
read: It contains the Backus-Naur forms of the according specification languages.

For input data specified in a Smute Launch File, the syntax is documented with the respective
Smute Interpreter Edition.

In many cases the easiest way of writing new Smute Launch Files is to copy existing example-
Smute Launch Files and alter them.

Example 3.3Example Smute Launch File “l0000.txt ” is listed below1:

(1) // example translation launch file
(2) <expr0> := #load("expr00.txt","expr.cgt")
(3)
(4) loadmodules(devutil);
(5)
(6) devutil:DumpCargoTree(expr0,40);

Obvserve the following structure of a Smute Launch File:

1. Data declaration and/or specification;

2. Smute Module load declaration;

3. Smute Function calls.

Line comments start with “// ”. Line (2) states that data identifier “expr0 ” is assigned the con-
tent of file “expr00.txt ”, which is parsed with the LALR-parsing-table “expr.cgt ”. Thus
“expr0 ” identifies aCARGOTREEin a grammar-dependentCARGOTREE-Scheme. In line(6)
thisCARGOTREEis then passed as first parameter to Smute FunctionDumpCargoTree of Smute
Module “mdevutil.tmm ”. Note that in a Smute Module reference the prefix “m ” and the suffix
“ .tmm ” are omitted. The second parameter determines the filename of the output-file—for exam-
ple, for value40 a file named “tree0040.gdl ” is created. Line(4) declares which Smute
Modules are used. This declaration mainly serves the awareness of which Smute Modules are
required, including potential Smute Modules from the dependency tree. The “loadmodules ”-
declaration is not handled very strictly by the Smute Interpreter: For Smute Modules missing in the
declaration only a warning-message is issued. The syntax ofSmute Launch Files is documented
in full detail in Section 3.2.1 on pages 31ff.

Data specification file “expr00.txt ” consists of the following line:

2*xˆ2+3*y

It is the specification of arithmetic expression2x2 + 3y. Now it should be obvious how to specify
new input data, e.g., arithmetic expressiona4b+5c + 7bc:

1The line-numbers are not part of the Smute Launch File, but only added here for referencation purposes.
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aˆ(4*b+5*c)+7*b*c

If this is saved as “expr01.txt ”, then it can be passed to the Smute FunctionDumpCargoTree
by altering the Smute Launch File as follows:

// example translation launch file
<expr0> := #load("expr00.txt","expr.cgt")
<expr1> := #load("expr01.txt","expr.cgt")

loadmodules(devutil);

devutil:DumpCargoTree(expr0,40);
devutil:DumpCargoTree(expr1,41);

�

Generally it is not necessary to be careful with specifications in a Smute Launch File or in
text files used as input data: For example, in the case of mistyped Smute Module-names or Smute
Function-names a notification about their non-existence isissued. Only with the specification of
Smute Function parameters care needs to be taken, as there isno type-checking2:

! WARNING !

There is no type-checking whatsoever for parameters passedto Smute Functions.
In all of the following cases the Smute Interpreter crashes:

• An INTEGER-parameter is passed where aCARGOTREEis expected.

• A CARGOTREE-parameter does not comply with the expectedCARGOTREE-
Scheme (for example, an arithmetic expression is provided in the place of a
propositional formula).

• Fewer parameters than expected are specified.

Step 5: Launch the Smute Functions and view the results

A Smute Function can be invoked by passing a Smute Launch Fileto the Smute Interpreter, i.e., the
name of a Smute Launch File is the only (command-line-)parameter of the Smute Interpreter. The
sequence of Smute Function calls specified in the Smute Launch File is then executed one after an-
other. For each Smute Function messages indicate as to whether it has been successfully executed
or why execution failed. Usually each invoked Smute Function creates one or more output-files. In
most cases the names of such output-files are determined by Smute Function parameters. Along-
side files in other formats many Smute Functions create output in Graph Description Language
(GDL). GDL-files permit to visualise the output with the graph visualisation softwareaiSee [1].

Example 3.4Open a command-line interface. Example for many Windows-versions: Click “Start”,
then “Run. . . ”, type “cmd.exe ”, then click “OK”. Change the current directory to the Smute
working directory. Call the Smute Interpreter and pass the Smute Launch File.

>cd smutedir
>smute l0000.txt

Now successful executions, errors, and warnings are reported. The output should be as follows:

2The implementation of parameter type-checking would require lots of additional effort and is currently not planned.
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Figure 3.1:CARGOTREEin grammar-dependentCARGOTREE-Scheme

Executing function "devutil:DumpCargoTree(expr0,40)". ..
Done.

As explained in Example 3.3, for Smute FunctionDumpCargoTree the second parameter deter-
mines the output-filename, here—for a value of40—it is “ tree0040.gdl ”. In this example the
output is the visualisation of the grammar-dependentCARGOTREErepresenting the expression
stored in file “expr00.txt ”, namely2x2 + 3y. Loading file “tree0040.gdl ” with aiSee
yields the visualisation of Figure 4.2. �

3.2 Smute Launch File Documentation

Smute Functions are launched by writing the appropriate specifications, namely which function to
invoke with which input, in a Smute Launch File, and then passing the Smute Launch File to the
Smute Interpreter.

Examples for Smute Launch Files have been given in Section 3.1. This section provides a short
summary of Smute Launch Files. Smute Launch Files consist ofthree parts: Thedata declaration
part, theloadmodules declaration, and thefunction calls. In the data declaration part data
instances are assigned to variables. Currently there are the following options for assignment:

• A #load -instruction with one parameter, namely the filename of a filein CARGOTREE
Exchange Format. This file is automatically loaded into aCARGOTREEby Smute.

• A #load -instruction with two parameters, the first the filename of a text-file in an LALR-
language, and the second the filename of a Compiled Grammar Table, i.e., an LALR-
parsing-table for that language. The text-file is automatically loaded into aCARGOTREE
in grammar-dependentCARGOTREE-Scheme by Smute.

• Various Smute Interpreter Editions allow the specificationof text in certain LALR-languages
directly within the Smute Launch File. Such a specification is automatically loaded into a
CARGOTREEin grammar-dependentCARGOTREE-Scheme by Smute.
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In the loadmodules declaration the required Smute Modules are listed. All the Smute
Modules referenced in the function call part should be listed, plus additional Smute Modules from
the dependency trees. Theloadmodules declaration serves the awareness of required Smute
Modules.

The function calls part contains a sequence of Smute Function calls. Instances of recursively
structured data are passed via the variables of the data declaration part.

3.2.1 Smute Launch File Syntax

Printed below is the Backus-Naur form for Smute Launch Files: Start symbol iscomb. The
grammar is specified in the GOLD Parser [3] Backus-Naur form syntax.Letter andDigit are
predefined character sets for GOLD Parser containing ASCII letters a-z, A-Z and ASCII digits 0-9
respectively. A line-comment is started with ‘// ’ (two slashes). Block-comments are currently
not supported, neither in Smute Launch Files, nor in data specification files parsed by the Smute
Interpreter.

{hexdigit} = {Digit} + [abcdefABCDEF]
{id_head} = {Letter} + [_]
{id_tail} = {id_head} + {Digit}
{stringchar} = {any}-["]

decliteral = {Digit}+
hexliteral = 0x{hexdigit}+
id = {id_head}{id_tail}*
string = ’"’ {stringchar}* ’"’

!-------------------------------------------------- --------------
! combined specification
!-------------------------------------------------- --------------

<comb> ::= <declarray> <modloade> <fnccallarray>

!-------------------------------------------------- --------------
! declarations
!-------------------------------------------------- --------------

<cmdparam> ::= decliteral
| hexliteral
| string

<cmdparamarray> ::= <cmdparam> ’,’ <cmdparamarray>
| <cmdparam>

<cmdparamarraye> ::= <cmdparamarray>
|

<command> ::= ’#’ id ’(’ <cmdparamarraye> ’)’

<declarray> ::= <decl> <declarray>
|

<decl> ::= ’<’ id ’>’ ’:=’ <declrhs>
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<declrhs> ::= <command>

!-------------------------------------------------- --------------
! module load instruction
!-------------------------------------------------- --------------

<modidarray> ::= id ’,’ <modidarray>
| id

<modload> ::= ’loadmodules’ ’(’ <modidarray> ’)’ ’;’

<modloade> ::= <modload>
|

!-------------------------------------------------- --------------
! generic rules
!-------------------------------------------------- --------------

<numberval> ::= decliteral
| hexliteral

!-------------------------------------------------- --------------
! (translation) function calls
!-------------------------------------------------- --------------

<fncref> ::= id ’:’ id

<varspec> ::= id
| <fncref>
| <numberval>

<varspecarray> ::= <varspec> ’,’ <varspecarray>
| <varspec>

<varspecarraye> ::= <varspecarray>
|

<fnccall> ::= id ’:’ id ’(’ <varspecarraye> ’)’ ’;’

<fnccallarray> ::= <fnccall> <fnccallarray>
|

For other editions than the Standard Edition the rule fordeclrhs is:

<declrhs> ::= <command>
| <data>

The rules fordata depend on the edition.
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Chapter 4

Writing Smute Functions

Using a text-editor, Smute Function Developers write SmuteFunctions as sequences of Smute
Language instructions in their textual mnemonics. From these textual specifications Smute Mod-
ules can be created with the Smute Assembler.

The Smute Language with all its instructions is documented in Section 4.1. Section 4.2 de-
scribesCARGOTREE-Schemes, i.e., conventions for the representation of datawith a specific re-
cursive structure usingCARGOTREEs. Data I/O for Smute Functions is covered in Section 4.3.
Section 4.4 presents guidelines for writing modular Smute Functions. Finally, Section 4.5 docu-
ments the usage of the Smute Assembler.

4.1 The Smute Language

As has been mentioned in the Smute Function User Manual, the Smute Language is a machine
language for a virtual machine. This virtual machine provides functionality that is typically re-
quired when working with recursively structured data. It introduces an abstract layer, where it is
possible to specifywhat should be done with the recursively structured data, without having to
carehow this is done.

4.1.1 Virtual Machine Characteristics

Almost every instruction of the Smute Language operates on some of the virtual machine’sreg-
isters. In its current version the machine has got 64 registers, each with a size of 32 bits. In the
Smute Language these registers are referenced with identifiers ‘R00’ to ‘ R63’. Of course the ma-
chine supports all the usual 32-bit integer (arithmetic) operations, like ‘addition’, ‘multiplication’,
‘bitwise and’, etc. Not yet available are floating-point operations. Like with common micropro-
cessors there is also a status register, its flags indicatingthe results of, for example, comparisons.
The virtual machine provides several so-calledresources. As indicated by the name ‘resource’,
these are of limited availability. Most of these resources require memory on the host machine
the translation is executed on, which means limitations come from the host machine’s available
memory. A (register’s)datatyperefers to the way a value is interpreted: For example,INTEGER
for the interpretation as integer value, orHASHINTfor the interpretation as resource identifier for
a HASHINT resource. Many implementation details are hidden from the virtual machine layer.
For example, adding a new node to aCARGOTREEcould fail on the host machine due to unavail-
able memory. Though the virtual machine instruction “pretends” it could not fail. Instead, such
errors are automatically treated at the implementation layer—the whole top-level Smute Function
is aborted if one occurs.
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4.1.2 Resources

Stack

TheStack-resource is one of the key-concepts of the Smute Language. In the Smute virtual ma-
chine there are currently 2 stacks, thecalling-stackand thedata-stack. Whenever a subroutine
is called, thereturn addressis pushed on the calling stack. The return-address is the address of
the instruction following the subroutine-call. Whenever a‘return from subroutine’ instruction is
encountered, a return address is popped from the calling stack and execution continues there. For
the data-stack there are push-/pop-instructions in the Smute Language.

The important point about the stacks is their implementation side: First of all, there is no
implicit stack-usage (subroutine-calling and -returningis considered explicit). Thus, a Smute
Function Developer has full control over the byte-size of stack-requirements in the implementa-
tion. Second, the stacks are implemented as dynamic stacks,meaning their size is limited only by
the available memory on the host machine. This is essential,as the amount of stack-space actually
required for the execution of a Smute Function is usually proportional to the recursive depth of
the data it processes. Especially for Smute Functions that get recursively called, unnecessary (or
unnecessarily large) stack-allocations must be avoided, as they cumulate with each recursive level.

CARGOTREE

The Smute Language introduces so-calledCARGOTREE-node-resources. EveryCARGOTREE-
node has atype. Additional data associated with aCARGOTREE-node depends on its type. There
are the following types (I8, I32, andSTRidentify datatypes, namely 8-bit-integer, 32-bit integer,
and byte-array respectively):

type full name associated data
ConCls Classic Connector id (I8), child-array
ConArr Array Connector id (I8), child-array
Int Integer Leaf id (I8), value(I32)
Str String Leaf id (I8), value(STR)
LocalCon Local Connector id (I8), child-array
LocalInt Local Integer Leaf id (I8), value(I32)
LocalStr Local String Leaf id (I8), value(STR)
GrammarRule Grammar Rule rule-id (I32), child-array
GrammarToken Grammar Token token-id(I32), value(STR),

line (I32), column(I32)
PseudoRoot Pseudo Root child-array (of size 1)

Smute is designed to support the introduction of new node-types in future versions. Con-
Cls, ConArr, LocalCon, GrammarRule, and PseudoRoot nodes,which are classified asinner
CARGOTREE-nodes, have an associated array (array-size≥1) of references to otherCARGOTREE-
nodes. ACARGOTREE-node referenced from an inner node is calledchild of the inner node.
The individual children are referenced with the array-index, for n children valid indices are
0, 1, . . . , n − 1. A CARGOTREE-nodea is calledparent of CARGOTREE-nodeb if b is a child
of a. CARGOTREE-nodes that are not inner nodes, i.e.,CARGOTREE-nodes without children, are
calledleaves. A CARGOTREE-nodeb is calleddescendantof CARGOTREE-nodea if

• b is a child ofa or

• there is a childc of a of which b is a descendant.

A CARGOTREE-nodea is calledascendantof CARGOTREE-nodeb if b is a descendant ofa.
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If a CARGOTREE-nodea is fully initialised, i.e., if all the data associated witha is initialised,
including—in the case of an inner node—all children, and if all descendants ofa are fully ini-
tialised as well, thena together with all its descendants is called aCARGOTREE, anda is called
theroot of thatCARGOTREE. In the Smute Language the identifier of aCARGOTREEis the identi-
fier of its root-node. As opposed toCARGOTREE-node instructions, forCARGOTREE-instructions
it is essential that the node and all its descendants are properly initialised in order to represent a
CARGOTREE.

A CARGOTREEgenerated by the Smute parser consists of GrammarRule and GrammarToken
nodes only, and reflects with this data structure the syntax-tree of the parsed sentence. Grammar-
Rule and GrammarToken nodes cannot be created with instructions of the Smute Language.

The ‘local’ nodes LocalCon, LocalInt and LocalStr are intended for local (or temporary) usage
in Smute Functions. With the local nodes a Smute Function canassign node-ids independent
of already existing ids for non-local nodes. This can be useful especially for Smute Functions
working with differentCARGOTREE-Schemes.

Currently there is no difference between ConCls and ConArr nodes. However, ConCls should
be used where for a given id the number of children is fixed, ConArr where for a given id there
are multiple possibilities for the number of children. The distinction is made because Smute
(theoretically) does not need to store the number of children for ConCls with each node, but only
once for a given id. Thus storage space could be saved.

Obviously, node-types, ids, and the tree-structure (children) are intended for the representation
of the structure of recursively structured data instances.The restriction for ids to be 8-bit only has
to do with memory-efficiency of the implementation. For manycommon recursive data structures,
like propositional formulas and arithmetic expressions, this available id range is absolutely suffi-
cient. For Smute Function Developers working with recursive data structures where 8-bit ids are
insufficient there are the following options:

• Structure information is stored in newly added Integer Leaves. This option is not recom-
mended, because of more intricate access to the data and an unnecessary increase of memory
usage on the implementation side.

• The Smute Language author is contacted, demanding the implementation of new node-types
with 32-bit ids (a relatively simple task).

PseudoRoot nodes (which are not to be confused with Dr. Buesam’s p-machinery nodes)
are provided for Smute Functions performing node replacement. If prior to node replacement
a CARGOTREEis re-rooted with a PseudoRoot, then theCARGOTREE’s original root can be re-
placed just like any other node (by assigning a new child to the parent node). This permits a
considerable simplification of node replacement.

Smute Functions withCARGOTREEinput andCARGOTREEoutput might useCARGOTREE-
nodes of an input-CARGOTREEin an output-CARGOTREE. If this is the case then the Smute
Function is said toutilise the input-CARGOTREE. For each input-CARGOTREEa Smute Function
description must clearly state whether it is utilised or not.

CARGOTREEMEM

The CARGOTREEMEMis an important conception mainly for the implementation layer, but also
aids in writing clear and simple specifications in the Smute Language.

Obviously nodes ofCARGOTREEs require storage locations. Each time a newCARGOTREE-
node is created, it is allocated from aCARGOTREEMEM. That is, nodes are not allocated from
a “global memory”, but grouped to allocations fromCARGOTREEMEMs. The important point
is that nodes cannot be deallocated fromCARGOTREEMEMs, instead, it is always a complete
CARGOTREEMEMwhich is discarded.
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For Smute Function Developers this has the advantage that whole CARGOTREEs, consisting
possibly of hundreds of thousands of nodes, can be discardedwith one single built-in instruction
of the Smute Language (if all the nodes are allocated from thesameCARGOTREEMEM).

As a PseudoRoot node is always of temporary nature (attachedbefore applying replacement
functions, removed afterwards), PseudoRoot nodes arenot allocated fromCARGOTREEMEMs.
Instead, PseudoRoot nodes are resources of their own and have to be discarded separately.

ARRAY

The Smute Language provides anARRAY resource with the very basic array functionality: indexed
element access. AnARRAYis always an array of 32-bit-values. For theARRAYresource the array-
size is determined at the time of array-creation. There is nobuilt-in support for growing/shrinking
array-sizes. If required by Smute Function Developers, future versions of the Smute Language
could implement such functionality with either theARRAYdatatype, or a new array datatype.
The ARRAY-resource can, for example, be useful in Smute Functions working with arrays of
recursively structured data where such arrays are not part of the recursive data structure.

Hash resources

The Hash-resources are provided for functions working withrecursively structured data that in-
volves identifiers, like variable names in arithmetic expressions. Typical identifier-operations are
illustrated with the following example expression:

xˆ2+3*x+5*y

Essential tasks (required, for example, in substitutions)are:

• re-identification: tell that in subexpression3*x the same variable is referenced like in
subexpressionxˆ2 , while in subexpression5*y it is a different one.

• collection: tell that there are 2 variables occurring in the expression, and that their names
arex andy .

The Hash-resources and its associated instructions of the Smute Language provide these fea-
tures. The name, Hash-resources, comes from an efficient implementation technique, namely
hash-tables. Hash-table knowledge is not required for an understanding of the Smute Language.
For those interested anyway, almost any computer science related book features hash-tables. The
following resources are subsumed asHash-resources:

• HASHSTRCOL,

• HASHINT,

• HASHINTCOL,

• HASHINTSTACK.

The different Hash-resources are very similar, with only slight variations of their features. In fact,
some Hash-resources only extend other Hash-resource’s features. As simpler Hash-types allow for
a more efficient implementation, Smute Function Developersshould always use the Hash-resource
with minimal sufficient functionality.

For a Hash-resource there is a collection of so-calledHash-entries. Upon creation, Hash-
instances are empty. An arbitrary number of Hash-entries can be sequentially added. For every
Hash-entry there is an identifier, called thekey. The crucial property of the Hash-resources is that
any key can occur only once in a Hash, i.e., at most in one Hash-entry. In addition to the key
arbitrary data can be stored in a Hash-Entry.
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Those Hash-resources with ‘STR’ in their name work with string-keys, while those with ‘INT ’
in their name work with integer-keys. Each Hash-resource has its own Hash-entry-resources,
namelyHASHSTRCOLENTRY, HASHINTENTRY, etc.

For a Hash-instance and any string or any integer respectively, there are two possibilities:
Either the string/integer is a key occurring in the Hash (once), or it does not occur. One can find
out by passing the string or integer to a ‘Find’-instruction, which returns the Hash-entry if there is
one with that key, and otherwise informs about the key’s non-occurrence. In the Smute Language
the instructions for adding entries to Hashes never add a keymore than once. Instead, for a key
already occurring in the Hash the according existing Hash-entry is returned. It should be obvious
how these features can be used for re-identification.

Those Hash-resources with ‘COL’ (abbreviating ‘collection’) in their name permit to browse
through all the Hash-entries. This can, for example, be usedto copy the keys occurring in the Hash
to an array1. When browsing through ‘COL’-Hashes, entries appear in the order they have been
added. They can be browsed forward (starting with the first Hash-entry that has been added) and
backward (starting with the last Hash-entry that has been added). Obviously, a ‘COL’-Hash only
extends the original Hash’s features. For example, there isnothing one can do withHASHINTthat
could not be done with aHASHINTCOL. As mentioned above, a Smute Function Developer should
always use the Hash-resource with minimal sufficient functionality, as simpler Hash-resources are
implemented more efficiently. ForHASHINT and HASHINTCOLthis means that if browsing
through Hash-entries is not required, thenHASHINTshould be used.

In order to describe theHASHINTSTACK-resource a detail of the previously introduced Hashes
needs to be focussed. So far only adding Hash-entries and retrieving them has been mentioned.
Though there might be situations where one wants to add an entry temporarily, which means it
must be removable again. In this context it should be known that in the implementation Hash-
entries are not allocated and deallocated individually, for the same reasons this is not done with
CARGOTREE-nodes, namely allocation overhead. Instead, all Hash-entries are deallocated ‘at
once’ when the Hash gets discarded. So while a Hash-entry could be removed (it is technically
possible), it would still waste memory. Thus adding and removing of Hash-entries should not
occur at a frequent basis with these Hash-types. Currently there are no instructions for removing
Hash-entries from these Hash-resources anyway.

HASHINTSTACKprovides the same features asHASHINTplus a special Hash-entry-removal.
With HASHINTSTACKit is possible to always remove the last Hash-entry (the one last added to
the Hash). The removed Hash-entry doesnot waste any memory and for the implementation
allocation efficiency is practically the same as withHASHINT. HASHINTSTACKis typically used
when processing identifiers of aCARGOTREEwith the following method: TheCARGOTREEis
traversed with depth-first traversal, integer-identifiersare added on entering a subtree and removed
on leaving a subtree. Then it is always the last Hash-entry that needs to be removed, which means
thatHASHINTSTACKis sufficient.

HASHSTR- andHASHSTRSTACK-resources are postponed to future versions.

4.1.3 Instructions

This section lists all the Smute Language instructions. It starts with an overview and is followed
by detailed descriptions on page 42. The instructions are sorted by their type of functionality.

• Flow control instructions:

– Label (p.42): Declare a Smute Module position identifier (label).

– BSR(p.42): Branch To Subroutine.

1With the other Hash-resources this is not possible, becausethere the entries can only be retrieved with their keys.
As these keys are unknown, every potential key would have to be tested for occurrence in the Hash. There are however
232 integer keys, and a theoretically infinite number of string keys.
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– BRA(p.42): Unconditional Branch.

– BEQ(p.42): Conditional Branch (Equal).

– BNE(p.42): Conditional Branch (Not Equal).

– BLT (p.42): Conditional Branch (Less Than).

– BGT(p.43): Conditional Branch (Greater Than).

– BLE (p.43): Conditional Branch (Less or Equal).

– BGE(p.43): Conditional Branch (Greater or Equal).

– JumpTab (p.43): Conditional branches determined by a register’s value.

– FarBSR (p.44): Far Branch To Subroutine.

– FarBRA (p.44): Far Unconditional Branch.

– Return (p.44): Return From Subroutine.

• Basic data transfer instructions:

– Clear (p.44): Set a register to0x00000000 .

– Set (p.44): Set a register to0xFFFFFFFF.

– Swap (p.44): Exchange two registers’ contents.

– Move (p.44): Copy the content of one register to another register.

– MoveImm(p.45): Set a register to a specified integer value.

• Arithmetic instructions:

– CMP(p.45): Compare the integer values of two registers.

– TST (p.45): Test if a register contains value0x00000000 .

– Add (p.45): Add the integer value of one register to that of another register.

– Sub (p.45): Subtract the integer value of one register from thatof another register.

– Mul (p.45): Multiply the integer value of one register by that ofanother register.

– Div (p.45): Divide the integer value of one register by that of another register.

– Mod(p.46): Perform the integer modulo operation on two registers’ values.

– And (p.46): Perform the operation “bitwise and” on two registers’ values.

– Or (p.46): Perform the operation “bitwise or” on two registers’ values.

– XOr (p.46): Perform the operation “bitwise exclusive or” on tworegisters’ values.

– Not (p.46): Perform the operation “bitwise not” on a register’svalue.

– AddImm (p.47): Add an integer value to the integer value of a register.

– SubImm (p.47): Subtract an integer value from the integer value of aregister.

– Add1 (p.47): Add 1 to the integer value of a register.

– Sub1 (p.47): Subtract 1 from the integer value of a register.

– AndTST (p.47): CommandsAnd andTST in one.

– LSL1 (p.47): Logical Shift Left (1 bit).

– LSR1 (p.48): Logical Shift Right (1 bit).

• Stack instructions:

– Push (p.48): Allocate Stack-space.

– Pop (p.48): Deallocate Stack-space.

– MoveToStack (p.48): Store a register to the Stack.

– MoveFromStack (p.48): Store a stack-value to a register.

– LSP (p.49): Load the Stack Pointer into a register.
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• Array instructions:

– NewArray (p.49): Create a newARRAY.

– DiscardArray (p.49): Discard anARRAY.

– ArraySize (p.49): Return the size of anARRAY.

– ArraySet (p.49): Set anARRAYelement.

– ArrayGet (p.49): Get anARRAYelement.

• CARGOTREEMEMinstructions:

– NewCargoTreeMem (p.49): Create a newCARGOTREEMEM.

– DiscardCargoTreeMem (p.50): Discard aCARGOTREEMEM.

• CARGOTREE-node instructions:

– NewConClsImm (p.50): Create a new ConCls-node (Classic Connector).

– NewConArrImm (p.50): Create a new ConArr-node (Array Connector).

– NewIntImm (p.50): Create a new Int-node (Integer Leaf).

– NewStrImm (p.50): Create a new Str-node (String Leaf).

– NewIntImmSetVal (p.50): Create a new Int-node (Integer Leaf) and initialiseits value.

– NewPseudoRoot (p.51): Create a new PseudoRoot node.

– DiscardPseudoRoot (p.51): Discard a PseudoRoot node.

– GetNodeType (p.51): Return the type of aCARGOTREE-node.

– GetNodeId (p.51): Return the id of aCARGOTREE-node.

– SetNodeIdImm (p.51): Set the id of aCARGOTREE-node.

– SetNodeId (p.51): Set the id of aCARGOTREE-node.

– GetRuleId (p.51): Return the rule-id of a GrammarRule-node.

– GetNumChildren (p.52): Return the number of children of aCARGOTREE-node.

– GetChildImm (p.52): Return a child-node of aCARGOTREE-node.

– GetChild (p.52): Return a child-node of aCARGOTREE-node.

– GetRuleChildImm (p.52): Return a child-node of a GrammarRule-node.

– GetRuleChild (p.52): Return a child-node of a GrammarRule-node.

– PlugImm (p.52): Set aCARGOTREE-node’s child node.

– Plug (p.52): Set aCARGOTREE-node’s child node.

– RefToken (p.53): Re-reference the value of a GrammarToken-node in a Str-node.

– RefStr (p.53): Re-reference the value of a Str-node in another Str-node.

– GetVal (p.53): Return the value of an Int-node.

– SetVal (p.53): Set the value of an Int-node.

– SetValImm (p.53): Set the value of an Int-node.

• HASHSTRCOLinstructions:

– NewHashStrCol (p.53): Create a newHASHSTRCOL.

– DiscardHashStrCol (p.53): Discard aHASHSTRCOL.

– HashStrColAdd (p.54): Add a newHASHSTRCOLENTRYor return the existing one.

– HashStrColFind (p.54): For a given key find the appropriateHASHSTRCOLENTRY.

– MoveToHashStrColEntry (p.54): Store a register to aHASHSTRCOLENTRYdata-field.

– MoveFromHashStrColEntry (p.54): Store aHASHSTRCOLENTRYdata-field to a
register.

– HashStrColNumEntries (p.54): Return aHASHSTRCOL’s number of entries.
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– HashStrColBrowseInit (p.54): Get a handle for browsing through aHASHSTRCOL’s
entries.

– HashStrColBrowseNext (p.54): Browse to the next entry of aHASHSTRCOL.

– HashStrColBrowsePrev (p.55): Browse to the previous entry of aHASHSTRCOL.

• HASHINTinstructions:

– NewHashInt (p.55): Create a newHASHINT.

– DiscardHashInt (p.55): Discard aHASHINT.

– HashIntAddImm (p.55): Add a newHASHINTENTRYor return the existing one.

– HashIntAdd (p.55): Add a newHASHINTENTRYor return the existing one.

– HashIntFind (p.55): For a given key find the appropriateHASHINTENTRY.

– HashIntEntryGetKey (p.56): Return the key of aHASHINTENTRY.

– MoveToHashIntEntry (p.56): Store a register to aHASHINTENTRYdata-field.

– MoveFromHashIntEntry (p.56): Store aHASHINTENTRYdata-field to a register.

– HashIntNumEntries (p.56): Return aHASHINT’s number of entries.

• HASHINTCOLinstructions:

– NewHashIntCol (p.56): Create a newHASHINTCOL.

– DiscardHashIntCol (p.56): Discard aHASHINTCOL.

– HashIntColAddImm (p.56): Add a newHASHINTCOLENTRYor return the existing one.

– HashIntColAdd (p.57): Add a newHASHINTCOLENTRYor return the existing one.

– HashIntColFind (p.57): For a given key find the appropriateHASHINTCOLENTRY.

– HashIntColEntryGetKey (p.57): Return the key of aHASHINTCOLENTRY.

– MoveToHashIntColEntry (p.57): Store a register to aHASHINTCOLENTRYdata-field.

– MoveFromHashIntColEntry (p.57): Store aHASHINTCOLENTRYdata-field to a
register.

– HashIntColNumEntries (p.57): Return aHASHINTCOL’s number of entries.

– HashIntColBrowseInit (p.57): Get a handle for browsing through aHASHINTCOL’s
entries.

– HashIntColBrowseNext (p.58): Browse to the next entry of aHASHINTCOL.

– HashIntColBrowsePrev (p.58): Browse to the previous entry of aHASHINTCOL.

• HASHINTSTACKinstructions:

– NewHashIntStack (p.58): Create a newHASHINTSTACK.

– DiscardHashIntStack (p.58): Discard aHASHINTSTACK.

– HashIntStackAdd (p.58): Add a newHASHINTSTACKENTRYor return the existing one.

– HashIntStackRemove (p.58): Remove the top-of-the-stackHASHINTSTACKENTRY.

– HashIntStackFind (p.59): For a given key find the appropriate
HASHINTSTACKENTRY.

– MoveToHashIntStackEntry (p.59): Store a register to aHASHINTSTACKENTRY
data-field.

– MoveFromHashIntStackEntry (p.59): Store aHASHINTSTACKENTRYdata-field to a
register.

• CARGOTREEinstructions:

– CopyCargoTree (p.59): Create a copy of aCARGOTREE.

– CollectIntVal (p.59): Create a newHASHINTCOLcontaining selected Int-values of a
CARGOTREE.
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– HashIntVal (p.60): Create a newHASHINTcontaining selected Int-values of a
CARGOTREE.

– HashIntValCont (p.60): Add selected Int-values of aCARGOTREEto aHASHINT.

– SubstIntAscA (p.60): Perform substitution of selected Int-values of aCARGOTREE
according to aHASHINTCOL.

– CopySubstIntAscA (p.60): Create a copy of aCARGOTREEin which selected Int-values
are replaced according to aHASHINTCOL.

– CopySubstIntAscB (p.60): Create a copy of aCARGOTREEin which selected Int-values
are replaced according to aHASHINT.

– CopyColSubstIntAscB (p.61): Create a copy of aCARGOTREEin which selected
Int-values are replaced according to aHASHINT. The hash is extended if necessary.

– CopyColSubstIntAscBM (p.61): Create a copy of aCARGOTREEin which selected
Int-values are replaced according to aHASHINT. The hash is extended if necessary.

• CARGOTREEexport instructions:

– WriteCargoTreeCGE (p.61): Store aCARGOTREEinto a file inCARGOTREEExchange
Format.

• CARGOTREEvisualisation export instructions:

– WriteCargoTreeGDL (p.61): Store aCARGOTREEinto a file in Graph Description
Language.

– WriteCargoTreeGDLImm (p.61): Store aCARGOTREEinto a file in Graph Description
Language.

• Developer instructions:

– DevDumpReg(p.62): Dump a register.

– DevDumpRegNote (p.62): Dump a register and mark it with a note-character.

– DevDumpRegs(p.62): Dump subsequent registers.

– DevDumpHashIntColImm (p.62): Dump aHASHINTCOL.

– DevDumpStack (p.62): Dump entries of the main data stack.

– DevDumpResourceSummary (p.62): Dump a summary of the number of resources in use.

• Smute Interpreter Logic Edition special instructions:

– WriteCargoTreeBooleRaw (p.63): Store a QBF-CARGOTREEinto a file in raw ‘boole’
QBF-format.

– WriteCargoTreeBooleRawImm (p.63): Store a QBF-CARGOTREEinto a file in raw
‘boole’ QBF-format.

– WriteCargoTreeBoole (p.63): Store a QBF-CARGOTREEinto a file in ‘boole’
QBF-format.

– WriteCargoTreeBooleImm (p.63): Store a QBF-CARGOTREEinto a file in ‘boole’
QBF-format.

– WriteCargoTreeGDL QBFS(p.63): Store a QBFS-CARGOTREEinto a file in Graph
Description Language.

– WriteCargoTreeGDL QBFSImm(p.63): Store a QBFS-CARGOTREEinto a file in Graph
Description Language.

– WriteCargoTreeGDL QBF(p.63): Store a QBF-CARGOTREEinto a file in Graph
Description Language.

– WriteCargoTreeGDL QBFImm(p.64): Store a QBF-CARGOTREEinto a file in Graph
Description Language.

This concludes the overview. Following next are the instruction descriptions.
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Label

Declare a Smute Module position identifier (label).
Synopsis:Label (label);
Declares a label. Labels are used with flow control instructions like (conditional or unconditional)
branches (BRA, BGE, . . . ). Labels must be module-wide unique. Functions are nothing else than
(entry-point-)labels one canBSR(branch-to-subroutine) to. Smute Module exports are declared
with the function’s entry-point-label.label is a non-empty string of arbitrary length which must
comply with the following naming conventions:

• The first character is one of a-z, A-Z (lowercase or uppercaseletter), or ‘ ’ (underscore).

• The other characters (if any) are one of a-z, A-Z, ‘’ (underscore), or 0-9 (digit).

Note thatLabel is a textual mnemonic for Smute Module position specification and referencing,
but not a real command.

BSR

Branch To Subroutine.
Synopsis:BSR(label);
Pushes the position following theBSR-command onto the calling-stack and continues execution
at the position referenced withlabel. Also seeLabel andReturn .

BRA

Unconditional Branch.
Synopsis:BRA(label);
Continues execution at the position referenced withlabel. Also seeLabel .

BEQ

Conditional Branch (Equal).
Synopsis:BEQ(label);
Continues execution at the position referenced withlabel if the Z (Zero) condition flag is set.
Otherwise continues with the instruction followingBEQ. Also seeLabel andCMP.

BNE

Conditional Branch (Not Equal).
Synopsis:BNE(label);
Continues execution at the position referenced withlabel if the Z (Zero) condition flag is cleared.
Otherwise continues with the instruction followingBNE. Also seeLabel andCMP.

BLT

Conditional Branch (Less Than).
Synopsis:BLT(label);
Continues execution at the position referenced withlabel if the V (Overflow) condition flag is
set and the Z (Zero) condition flag is cleared. Otherwise continues with the instruction following
BLT. Also seeLabel andCMP.
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BGT

Conditional Branch (Greater Than).
Synopsis:BGT(label);
Continues execution at the position referenced withlabel if both the V (Overflow) condition flag
and the Z (Zero) condition flag are cleared. Otherwise continues with the instruction following
BGT. Also seeLabel andCMP.

BLE

Conditional Branch (Less Or Equal).
Synopsis:BLE(label);
Continues execution at the position referenced withlabel if at least one of the V (Overflow) condi-
tion flag and the Z (Zero) condition flag is set. Otherwise continues with the instruction following
BLE. Also seeLabel andCMP.

BGE

Conditional Branch (Greater or Equal).
Synopsis:BGE(label);
Continues execution at the position referenced withlabel if the V (Overflow) condition flag is
cleared or the Z (Zero) condition flag is set. Otherwise continues with the instruction following
BGE. Also seeLabel andCMP.

JumpTab

Conditional branches determined by a register’s value.
Synopsis: JumpTab(regsrc,

val0,label0,
val1,label1,
. . . ,. . . );

A JumpTab has the same effect like the sequence of commands

MoveImm(val0,regcmp);
CMP(regsrc,regcmp);
BEQ(label0);
MoveImm(val1,regcmp);
CMP(regsrc,regcmp);
BEQ(label1);
...

whereval0, val1 are integers. Not only is using theJumpTab command more convenient, the
Smute Interpreter also interprets it more efficiently than acode segment like the one above: What-
ever the actual value ofregsrc, the execution effort is the same. However, there are prerequisites
for using this command. Letvall be the lowest (unsigned integer order) andvalh be the highest of
the integersval0, val1, etc. Then the prerequisites can be expressed as follows:

• It is known thatregsrc takes no value lower thanvall and no value higher thanvalh. If
this condition is not met, the Smute Function crashes duringthe execution of theJumpTab
command.

• valh-vall is a small value, i.e., all the different values are from within a relatively small range.
This constraint is caused by storage requirement, which is proportional to (valh-vall). If the
range is too large the Smute Module cannot be successfully assembled.
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Integer identifiers that could be used to determine flow control should consequently always be
taken from a small range. This is especially true forCARGOTREE-Scheme node-ids, which other-
wise cannot be used asJumpTab-parameters.

FarBSR

Far Branch To Subroutine.
Synopsis:FarBSR(module,label);
Pushes the position following theFarBSR-command onto the calling-stack and continues exe-
cution at the position referenced withlabel in the Smute Module referenced withmodule. The
module-reference is written without the prefix ‘m ’ and the suffix ‘.tmm ’ of module-filenames.
Also seeLabel andReturn .

FarBRA

Far Unconditional Branch.
Synopsis:FarBRA(module,label);
Continues execution at the position referenced withlabel in the Smute Module referenced with
module. Themodule-reference is written without the prefix ‘m ’ and the suffix ‘.tmm ’ of module-
filenames. Also seeLabel .

Return

Return From Subroutine.
Synopsis:Return ;
Pops a return-position from the calling-stack and continues execution there. Also seeBSRand
FarBSR.

Clear

Set a register to0x00000000 .
Synopsis:Clear (regdst);
Setsregdstto value0x00000000 .

Set

Set a register to0xFFFFFFFF.
Synopsis:Set (regdst);
Setsregdstto value0xFFFFFFFF.

Swap

Exchange two registers’ contents.
Synopsis:Swap(reg0,reg1);
Exchanges the contents of registersreg0andreg1.

Move

Copy the content of one register to another register.
Synopsis:Move(regsrc,regdst);
Setsregdstto the content ofregsrc. regsrcis left unchanged.
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MoveImm

Set a register to a specified integer value.
Synopsis:MoveImm(val,regdst);
Setsregdstto val.

CMP

Compare the integer values of two registers.
Synopsis:CMP(reg0,reg1);
Compares the integer inreg1 to the integer inreg0(unsigned integer order) and sets the condition
flags Z (Zero) and V (Overflow) accordingly.
Examples (lowercase letters z and v for cleared, uppercase for set):
reg0 reg1 condition flags
1 2 zv (for example,BGTwould branch,BLE would not)
2 2 Zv (for example,BEQwould branch,BLT would not)
3 2 zV (for example,BLE would branch,BGTwould not)

TST

Test if a register contains value0x00000000 .
Synopsis:TST(reg);
Sets the Z (Zero) condition flag ifreg contains value0x00000000 , otherwise clears it. In most
cases the instruction followingTST is eitherBEQor BNE.

Add

Add the integer value of one register to that of another register.
Synopsis:Add(regsrc,regdst);
Adds the integer ofregsrc to the integer ofregdst (the result is stored there). The addition is
performed withinZ0x100000000 . This command doesnot affect condition flags.

Sub

Subtract the integer value of one register from that of another register.
Synopsis:Sub(regsrc,regdst);
Subtracts the integer ofregsrcfrom the integer ofregdst(the result is stored there). The subtraction
is performed withinZ0x100000000 . This command doesnot affect condition flags.

Mul

Multiply the integer value of one register by that of anotherregister.
Synopsis:Mul (regsrc,regdst);
Multiplies the integer ofregsrcby the integer ofregdst(the result is stored there). The multiplica-
tion is performed withinZ0x100000000 . This command doesnot affect condition flags.

Div

Divide the integer value of one register by that of another register.
Synopsis:Div (regsrc,regdst);
Divides the integer ofregdstby the integer ofregsrc, the result is stored inregdst. The usual integer
division is applied, which means that, if the integer value of regsrcis calledi and the integer value
of regdstis calledj, the result isj−(j mod i)

i
. The behaviour for aregsrcvalue of0 is undefined,

calling Div with that value must be avoided. This command doesnot affect condition flags.
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Mod

Perform the integer modulo operation on two registers’ values.
Synopsis:Mod(regsrc,regdst);
If the integer value ofregsrcis calledi and the integer value ofregdstis calledj, thenj mod i is
calculated and stored in registerregdst. The behaviour for aregsrcvalue of0 is undefined, calling
Modwith that value must be avoided. This command doesnot affect condition flags.

And

Perform the operation “bitwise and” on two registers’ values.
Synopsis:And(regsrc,regdst);
“bitwise and” is defined as follows:
bit0 bit1 bitwiseand(bit0,bit1)
0 0 0
0 1 0
1 0 0
1 1 1

It is applied to the 32 bits of registersregsrcandregdstand stored in registerregdst. This command
doesnot affect condition flags.

Or

Perform the operation “bitwise or” on two registers’ values.
Synopsis:Or(regsrc,regdst);
“bitwise or” is defined as follows:
bit0 bit1 bitwiseor(bit0,bit1)
0 0 0
0 1 1
1 0 1
1 1 1

It is applied to the 32 bits of registersregsrcandregdstand stored in registerregdst. This command
doesnot affect condition flags.

XOr

Perform the operation “bitwise exclusive or” on two registers’ values.
Synopsis:XOr(regsrc,regdst);
“bitwise exclusive or” is defined as follows:
bit0 bit1 bitwisexor(bit0,bit1)
0 0 0
0 1 1
1 0 1
1 1 0

It is applied to the 32 bits of registersregsrcandregdstand stored in registerregdst. This command
doesnot affect condition flags.

Not

Perform the operation “bitwise not” on a register’s value.
Synopsis:Not (regdst);
“bitwise not” is defined as follows:
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bit bitwisenot(bit)
0 1
1 0

It is applied to the 32 bits of registerregdst (and stored there). This command doesnot affect
condition flags.

AddImm

Add an integer value to the integer value of a register.
Synopsis:AddImm(val,regdst);
Adds the integerval to the integer ofregdst(the result is stored there). The addition is performed
within Z0x100000000 . This command doesnot affect condition flags.

SubImm

Subtract an integer value from the integer value of a register.
Synopsis:SubImm(val,regdst);
Subtracts the integerval from the integer ofregdst(the result is stored there). The subtraction is
performed withinZ0x100000000 . This command doesnot affect condition flags.

Add1

Add 1 the integer value of a register.
Synopsis:Add1(regdst);
Adds 1 to the integer ofregdst (the result is stored there). The addition is performed within
Z0x100000000 . This command doesnot affect condition flags.

Sub1

Subtract 1 from the integer value of a register.
Synopsis:Sub1(regdst);
Subtracts 1 from the integer ofregdst(the result is stored there). The subtraction is performed
within Z0x100000000 . This command doesnot affect condition flags.

AndTST

CommandsAnd andTST in one.
Synopsis:AndTST(regsrc,regdst);
Has exactly the same effects as

And(regsrc,regdst);
TST(regdst);

SeeAnd andTST for further description.

LSL1

Logical Shift Left (1 bit).
Synopsis:LSL1(regdst);
Shifts the bits ofregdstto the left by 1 bit. The rightmost bit (bit 0) is cleared. Thiscommand
doesnot affect condition flags.
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LSR1

Logical Shift Right (1 bit).
Synopsis:LSR1(regdst);
Shifts the bits ofregdstto the right by 1 bit. The leftmost bit (bit 31) is cleared. This command
doesnot affect condition flags.

Push

Allocate Stack-space.
Synopsis:Push (numdata);
numdatais an integer specification determining the number of 32-bitstorage locations allocated
on the stack. Also seePop, MoveToStack andMoveFromStack .

Pop

Deallocate Stack-space.
Synopsis:Pop(numdata);
numdatais an integer specification determining the number of 32-bitstorage locations deallocated
from the stack. It must exactly match a previousPush . Also seePush , MoveToStack and
MoveFromStack .

MoveToStack

Store a register to the Stack.
Synopsis:MoveToStack (regsrc,stackidx);
Stores the registerregsrcto one of the storage locations that have been allocated withPush . The
storage location is selected with an indexstackidx. If n storage locations have been allocated with
Push (n), then available storage location indices are0,1,. . . ,n− 1. Using an invalid storage index
causes a runtime crash (i.e., it is not detected by the Smute Assembler). The data stored to the
stack can be re-retrieved withMoveFromStack . Also seePush , Pop andMoveFromStack .

MoveFromStack

Store a stack-value to a register.
Synopsis:MoveFromStack (stackidx,regdst);
Stores the value from the stack-location referenced withstackidxto the registerregdst. This only
makes sense if a value has been stored there before. SeeMoveToStack for an explanation of
stack storage location selection with parameterstackidx. Here is example code that implements a
swap, that is exchanging two registers’ (R00 andR01) values, without affecting any other regis-
ters:

Push(1);
MoveToStack(R00,0);
Move(R01,R00);
MoveFromStack(0,R01);
Pop(1);

This example is intended for illustration. The code is not required, as, for example, theSwap
instruction could be used instead. Also seePush , Pop andMoveToStack .
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LSP

Load the Stack Pointer into a register.
Synopsis:LSP(regdst);
Nothing can be done with the Stack Pointer except comparing it (seeCMP). This can be used for
detecting a “top (bottom) of the stack reached”-situation.This instruction will rarely be required.

NewArray

Create a newARRAY.
Synopsis:NewArray (regsize,regdst);
Creates a new uninitialised array. The array-size is determined by the integer value in registerreg-
size, an array identifier (ARRAYdatatype) gets stored in registerregdst. Like all resources,ARRAYs
should be discarded as soon as they are not required any more.Also seeDiscardArray .

DiscardArray

Discard anARRAY.
Synopsis:DiscardArray (regarray);
Discards theARRAYreferenced via registerregarray. Also seeNewArray .

ArraySize

Return the size of anARRAY.
Synopsis:ArraySize (regarray,regdst);
Stores the size of theARRAYreferenced via registerregarray in registerregdst.

ArraySet

Set anARRAYelement.
Synopsis:ArraySet (regarray,regsrc,regidx);
regarray is the register identifying theARRAY, regsrc is the register containing the value written
to the array,regidx is the register containing theARRAYdestination index. For an array of sizen
valid array indices are0, 1, . . . , n − 1.

ArrayGet

Get anARRAYelement.
Synopsis:ArrayGet (regarray,regidx,regdst);
regarray is the register identifying theARRAY, regidx is the register containing theARRAYsource
index, regdst is the register theARRAY-value gets written to. For an array of sizen valid array
indices are0, 1, . . . , n− 1.

NewCargoTreeMem

Create a newCARGOTREEMEM.
Synopsis:NewCargoTreeMem(regdst);
Creates a newCARGOTREEMEMand stores its identifier in registerregdst. Like all resources,
CARGOTREEMEMs should be discarded as soon as they are not required any more. Also see
DiscardCargoTreeMem .
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DiscardCargoTreeMem

Discard aCARGOTREEMEM.
Synopsis:DiscardCargoTreeMem (regmem);
Discards theCARGOTREEMEMreferenced via registerregmem. All CARGOTREE-nodes allocated
in that CARGOTREEMEMare auto-discarded, all references to such nodes become invalid. At-
tempts of accessing such nodes after theirCARGOTREEMEMhas been discarded is a severe pro-
gramming error, resulting in untreated runtime failure (crash). Also seeNewCargoTreeMem.

NewConClsImm

Create a new ConCls-node (Classic Connector).
Synopsis:NewConClsImm(numchild,regmem,regdst,id);
Creates a new Classic Connector within theCARGOTREEMEMreferenced with registerregmem.
The number of at first uninitialised children is determined by numchild, the id is set toid. numchild
must contain an integer in the range 1 to 65535,id has to be an integer in the range 0 to 255. The
resulting node identifier is stored in registerregdst. Also seePlug andPlugImm .

NewConArrImm

Create a new ConArr-node (Array Connector).
Synopsis:NewConArrImm(regnumchild,regmem,regdst,id);
Creates a new Array Connector within theCARGOTREEMEMreferenced with registerregmem.
The number of at first uninitialised children is determined by the integer in registerregnumchild,
the id is set toid. regnumchildmust contain an integer in the range 1 to 65535,id has to be an
integer in the range 0 to 255. The resulting node identifier isstored in registerregdst. Also see
Plug andPlugImm .

NewIntImm

Create a new Int-node (Integer Leaf).
Synopsis:NewIntImm (regmem,regdst,id);
Creates a new Integer Leaf within theCARGOTREEMEMreferenced with registerregmem, and sets
its id to id. id has to be an integer in the range 0 to 255. The resulting node identifier is stored in
registerregdst. The Integer Leaf’s value remains uninitialised. Also seeSetVal andGetVal .

NewStrImm

Create a new Str-node (String Leaf).
Synopsis:NewStrImm (regmem,regdst,id);
Creates a new String Leaf within theCARGOTREEMEMreferenced with registerregmem, and sets
its id to id. id has to be an integer in the range 0 to 255. The resulting node identifier is stored in
registerregdst. The String Leaf’s value remains uninitialised.

NewIntImmSetVal

Create a new Int-node (Integer Leaf) and initialise its value.
Synopsis:NewIntImmSetVal (regmem,regdst,id,regval);
Creates a new Integer Leaf within theCARGOTREEMEMreferenced with registerregmem, and
sets its id toid. id has to be an integer in the range 0 to 255. The resulting node identifier is
stored in registerregdst. The Integer Leaf’s value is initialised with the integer ofregisterregval.
NewIntImmSetVal is a shortcut for using the two instructionsNewIntImm and SetVal .
Also seeGetVal andSetVal .
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NewPseudoRoot

Create a new PseudoRoot node.
Synopsis:NewPseudoRoot (regnodechild,regdst);
Creates a new PseudoRoot, sets its only child to the node referenced via registerregnodechild, and
stores the PseudoRoot identifier in registerregdst. Note that a PseudoRoot-node is a resource of
its own and needs to be discarded when not used anymore. Also seeDiscardPseudoRoot .

DiscardPseudoRoot

Discard a PseudoRoot node.
Synopsis:DiscardPseudoRoot (regnode);
Discards the PseudoRoot-node referenced via registerregnode. Also seeNewPseudoRoot .

GetNodeType

Return the type of aCARGOTREE-node.
Synopsis:GetNodeType (regnode,regdst);
Returns in registerregdst the type identifier of the node referenced via registerregnode. This
instruction can be used withCARGOTREE-nodes of any type.

GetNodeId

Return the id of aCARGOTREE-node.
Synopsis:GetNodeId (regnode,regdst);
Returns in registerregdstthe id of the node referenced via registerregnode. Supported node types
are ConCls, ConArr, Int, Str, LocalCon, LocalInt, and LocalStr. Other types do not provide an id.

SetNodeIdImm

Set the id of aCARGOTREE-node.
Synopsis:SetNodeIdImm (regnode,id);
For the node referenced via registerregnodethe id is set toid. Supported node types are ConCls,
ConArr, Int, Str, LocalCon, LocalInt, and LocalStr. Other types do not provide an id.id has to be
an integer in the range 0 to 255.

SetNodeId

Set the id of aCARGOTREE-node.
Synopsis:SetNodeId (regnode,regid);
For the node referenced via registerregnodethe id is set to the value of registerregid. Supported
node types are ConCls, ConArr, Int, Str, LocalCon, LocalInt, and LocalStr. Other types do not
provide an id.regid must contain an integer in the range 0 to 255.

GetRuleId

Return the rule-id of a GrammarRule-node.
Synopsis:GetRuleId (regnode,regdst);
Returns in registerregdstthe rule-id of the GrammarRule-node referenced via register regnode.
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GetNumChildren

Return the number of children of aCARGOTREE-node.
Synopsis:GetNumChildren (regnode,regdst);
Returns in registerregdst the number of children of the node referenced via registerregnode.
Supported node types are ConCls, ConArr, LocalCon, PseudoRoot and GrammarRule. Also see
GetChild andGetChildImm .

GetChildImm

Return a child-node of aCARGOTREE-node.
Synopsis:GetChildImm (regnode,idx,regdst);
Returns in registerregdst the child with indexidx of the node referenced via registerregnode.
Supported node types are ConCls, ConArr, LocalCon and PseudoRoot. For a node withn children,
valid child indices are0, 1, . . . , n − 1. Also seePlug andPlugImm .

GetChild

Return a child-node of aCARGOTREE-node.
Synopsis:GetChild (regnode,regidx,regdst);
Registerregidxcontains valueidx. GetChild returns in registerregdstthe child with indexidx
of the node referenced via registerregnode. Supported node types are ConCls, ConArr, LocalCon
and PseudoRoot. For a node withn children, valid child indices are0, 1, . . . , n − 1. Also see
Plug andPlugImm .

GetRuleChildImm

Return a child-node of a GrammarRule-node.
Synopsis:GetRuleChildImm (regnode,idx,regdst);
Returns in registerregdstthe child with indexidx of the GrammarRule-node referenced via register
regnode. For a GrammarRule-node withn children, valid child indices are0, 1, . . . , n− 1.

GetRuleChild

Return a child-node of a GrammarRule-node.
Synopsis:GetRuleChild (regnode,regidx,regdst);
Registerregidxcontains valueidx. GetRuleChild returns in registerregdstthe child with index
idx of the GrammarRule-node referenced via registerregnode. For a GrammarRule-node withn
children, valid child indices are0, 1, . . . , n− 1.

PlugImm

Set aCARGOTREE-node’s child node.
Synopsis:PlugImm (regnodeparent,regnodechild,idx);
The node referenced via registerregnodechildis set theidxth child of the node referenced via
registerregnodeparent(“plugged into the parent node”). The parent node must be oneof Con-
Cls, ConArr, LocalCon or PseudoRoot. For a parent node withn children, valid indices are
0, 1, . . . , n− 1. Also seeGetChild andGetChildImm .

Plug

Set aCARGOTREE-node’s child node.
Synopsis:Plug (regnodeparent,regnodechild,regidx);
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Registerregidx contains valueidx. The node referenced via registerregnodechildis set theidxth

child of the node referenced via registerregnodeparent(“plugged into the parent node”). The
parent node must be one of ConCls, ConArr, LocalCon or PseudoRoot. For a parent node withn
children, valid indices are0, 1, . . . , n− 1. Also seeGetChild andGetChildImm .

RefToken

Re-reference the value of a GrammarToken-node in a Str-node.
Synopsis:RefToken (regnodesrctoken,regnodedststr);
Sets the value of the Str-node referenced via registerregnodedststrto the value of the Grammar-
Token referenced via registerregnodesrctoken. The string is not copied, but only re-referenced.
Care has to be taken to avoid premature discarding of the string while still being referenced.

RefStr

Re-reference the value of a Str-node in another Str-node.
Synopsis:RefStr (regnodesrcstr,regnodedststr);
Sets the value of the Str-node referenced via registerregnodedststrto the value of the Str-node
referenced via registerregnodesrcstr. The string is not copied, but only re-referenced. Care has to
be taken to avoid premature discarding of the string while still being referenced.

GetVal

Return the value of an Int-node.
Synopsis:GetVal (regnode,regdst);
Returns in registerregdst the value of the Int-node referenced via registerregnode. Also see
SetVal andSetValImm .

SetVal

Set the value of an Int-node.
Synopsis:SetVal (regval,regnode);
Sets the value of the Int-node referenced via registerregnodeto the integer in registerregval. Also
seeGetVal andSetValImm .

SetValImm

Set the value of an Int-node.
Synopsis:SetValImm (val,regnode);
Sets the value of the Int-node referenced via registerregnodeto val. Also seeGetVal and
SetVal .

NewHashStrCol

Create a newHASHSTRCOL.
Synopsis:NewHashStrCol (regdst);
Creates a new emptyHASHSTRCOLand stores its identifier in registerregdst. Also seeDiscard-
HashStrCol .

DiscardHashStrCol

Discard aHASHSTRCOL.
Synopsis:DiscardHashStrCol (reghash);
Discards theHASHSTRCOLreferenced via registerreghash. Also seeNewHashStrCol .
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HashStrColAdd

Add a newHASHSTRCOLENTRYor return the existing one.
Synopsis:HashStrColAdd (reghash,regnodestr,numdata,regdst);
This instruction uses the value of the Str-node referenced via regnodestras string identifier. If a
hash-entry with this string key is found in the hash referenced viareghashit is returned in register
regdstand the Z (Zero) condition flag is set. Otherwise a new hash-entry with numdataadditional
data-fields is created, its identifier returned in registerregdst, and the Z condition flag is cleared.

HashStrColFind

For a given key find the appropriateHASHSTRCOLENTRY.
Synopsis:HashStrColFind (reghash,regnodestr,regdst);
Registerregnodestrreferences a Str-node, its string-value isval. HashStrColFind tries to find
a hash-entry with keyval in theHASHSTRCOLreferenced via registerreghash. If such an entry is
found, its identifier is stored in registerregdstand the Z condition flags is cleared. Otherwise the
Z condition flag is set and registerregdstremains unaffected.

MoveToHashStrColEntry

Store a register to aHASHSTRCOLENTRYdata-field.
Synopsis:MoveToHashStrColEntry (regentry,regsrc,idxdst);
Stores the value of registerregsrcin theidxdstth data-field of the hash-entry referenced via register
regentry. For aHASHSTRCOLENTRYwith n data-fields valid indices are0, 1, . . . , n − 1. Also
seeMoveFromHashStrColEntry .

MoveFromHashStrColEntry

Store aHASHSTRCOLENTRYdata-field to a register.
Synopsis:MoveFromHashStrColEntry (regentry,idxsrc,regdst);
Stores theidxsrcth data-field of the hash-entry referenced via registerregentryin registerregdst.
For aHASHSTRCOLENTRYwith n data-fields valid indices are0, 1, . . . , n − 1. Also seeMove-
ToHashStrColEntry .

HashStrColNumEntries

Return aHASHSTRCOL’s number of entries.
Synopsis:HashStrColNumEntries (reghash,regdst);
Returns the number of entries (keys) of the hash referenced via registerreghashin registerregdst.
For example, uponHASHSTRCOL-creation the number of entries is zero.

HashStrColBrowseInit

Get a handle for browsing through aHASHSTRCOL’s entries.
Synopsis:HashStrColBrowseInit (reghash,regdst);
Stores a handle for browsing through the entries of the hash identified with registerreghashin
registerregdst. This handle can then be used withHashStrColBrowseNext andHashStr-
ColBrowsePrev .

HashStrColBrowseNext

Browse to the next entry of aHASHSTRCOL.
Synopsis:HashStrColBrowseNext (reghash,regentry);
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regentry may either contain aHASHSTRCOLENTRYidentifier or a browse-handle as returned
by HashStrColBrowseInit . In the latter case it is attempted to return the hash’s first entry,
otherwise it is attempted to return the entry following the specified entry. If such a hash-entry (first
or following) exists, the Z flag is cleared and the entry-identifier is returned in registerregentry.
Otherwise the Z flag is set and registerregentryremains unaffected.

HashStrColBrowsePrev

Browse to the previous entry of aHASHSTRCOL.
Synopsis:HashStrColBrowsePrev (reghash,regentry);
regentrymay either contain aHASHSTRCOLENTRYidentifier or a browse-handle as returned by
HashStrColBrowseInit . In the latter case it is attempted to return the hash’s last entry,
otherwise it is attempted to return the entry preceding the specified entry. If such a hash-entry (last
or preceding) exists, the Z flag is cleared and the entry-identifier is returned in registerregentry.
Otherwise the Z flag is set and registerregentryremains unaffected.

NewHashInt

Create a newHASHINT.
Synopsis:NewHashInt (regdst);
Creates a new emptyHASHINTand stores its identifier in registerregdst. Also seeDiscard-
HashInt .

DiscardHashInt

Discard aHASHINT.
Synopsis:DiscardHashInt (reghash);
Discards theHASHINTreferenced via registerreghash. Also seeNewHashInt .

HashIntAddImm

Add a newHASHINTENTRYor return the existing one.
Synopsis:HashIntAddImm (reghash,regval,numdata,regdst);
Registerregval contains integerval. If a hash-entry with keyval is found in the hash referenced
via reghash, it is returned in registerregdstand the Z (Zero) condition flag is set. Otherwise a new
hash-entry withnumdataadditional data-fields is created, its identifier returned in registerregdst,
and the Z condition flag is cleared.

HashIntAdd

Add a newHASHINTENTRYor return the existing one.
Synopsis:HashIntAdd (reghash,regval,regnumdata,regdst);
This instruction is identical toHashIntAddImm , except that the number of additional data-fields
is not specified directly but through the registerregnumdata.

HashIntFind

For a given key find the appropriateHASHINTENTRY.
Synopsis:HashIntFind (reghash,regval,regdst);
Registerregvalcontains integerval. HashIntFind tries to find a hash-entry with keyval in the
hash referenced via registerreghash. If such an entry is found, its identifier is stored in register
regdstand the Z condition flags is cleared. Otherwise the Z condition flag is set and registerregdst
remains unaffected.
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HashIntEntryGetKey

Return the key of aHASHINTENTRY.
Synopsis:HashIntEntryGetKey (reghashentry,regdst);
Retrieves the integer key from theHASHINTENTRYreferenced via registerreghashentryand
stores it in registerregdst. This instruction will rarely be required, as the hash-entry is usually
retrieved with its key, which hence does not need to be read from the entry. This instruction is
only of relevance if the hash-entry identifier is temporarily stored while the key gets lost.

MoveToHashIntEntry

Store a register to aHASHINTENTRYdata-field.
Synopsis:MoveToHashIntEntry (regentry,regsrc,idxdst);
Stores the value of registerregsrcin theidxdstth data-field of the hash-entry referenced via register
regentry. For aHASHINTENTRYwith n data-fields valid indices are0, 1, . . . , n − 1. Also see
MoveFromHashIntEntry .

MoveFromHashIntEntry

Store aHASHINTENTRYdata-field to a register.
Synopsis:MoveFromHashIntEntry (regentry,idxsrc,regdst);
Stores theidxsrcth data-field of the hash-entry referenced via registerregentryin registerregdst.
For aHASHINTENTRYwith n data-fields valid indices are0, 1, . . . , n − 1. Also seeMoveTo-
HashIntEntry .

HashIntNumEntries

Return aHASHINT’s number of entries.
Synopsis:HashIntNumEntries (reghash,regdst);
Returns the number of entries (keys) of the hash referenced via registerreghashin registerregdst.
For example, uponHASHINT-creation the number of entries is zero.

NewHashIntCol

Create a newHASHINTCOL.
Synopsis:NewHashIntCol (regdst);
Creates a new emptyHASHINTCOLand stores its identifier in registerregdst. Also seeDiscard-
HashIntCol .

DiscardHashIntCol

Discard aHASHINTCOL.
Synopsis:DiscardHashIntCol (reghash);
Discards theHASHINTCOLreferenced via registerreghash. Also seeNewHashIntCol .

HashIntColAddImm

Add a newHASHINTCOLENTRYor return the existing one.
Synopsis:HashIntColAddImm (reghash,regval,numdata,regdst);
Registerregval contains integerval. If a hash-entry with keyval is found in the hash referenced
via reghash, it is returned in registerregdstand the Z (Zero) condition flag is set. Otherwise a new
hash-entry withnumdataadditional data-fields is created, its identifier returned in registerregdst,
and the Z condition flag is cleared.
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HashIntColAdd

Add a newHASHINTCOLENTRYor return the existing one.
Synopsis:HashIntColAdd (reghash,regval,regnumdata,regdst);
This instruction is identical toHashIntColAddImm , except that the number of additional data-
fields is not specified directly, but through the registerregnumdata.

HashIntColFind

For a given key find the appropriateHASHINTCOLENTRY.
Synopsis:HashIntColFind (reghash,regval,regdst);
Registerregvalcontains integerval. HashIntColFind tries to find a hash-entry with keyval in
the hash referenced via registerreghash. If such an entry is found, its identifier is stored in register
regdstand the Z condition flags is cleared. Otherwise the Z condition flag is set and registerregdst
remains unaffected.

HashIntColEntryGetKey

Return the key of aHASHINTCOLENTRY.
Synopsis:HashIntColEntryGetKey (reghashentry,regdst);
Retrieves the integer key from theHASHINTCOLENTRYreferenced via registerreghashentryand
stores it in registerregdst. This instruction will rarely be required, as the hash-entry is usually
retrieved with its key, which hence does not need to be read from the entry. This instruction is
only of relevance if the hash-entry identifier is temporarily stored while the key gets lost.

MoveToHashIntColEntry

Store a register to aHASHINTCOLENTRYdata-field.
Synopsis:MoveToHashIntColEntry (regentry,regsrc,idxdst);
Stores the value of registerregsrcin theidxdstth data-field of the hash-entry referenced via register
regentry. For aHASHINTCOLENTRYwith n data-fields valid indices are0, 1, . . . , n − 1. Also
seeMoveFromHashIntColEntry .

MoveFromHashIntColEntry

Store aHASHINTCOLENTRYdata-field to a register.
Synopsis:MoveFromHashIntColEntry (regentry,idxsrc,regdst);
Stores theidxsrcth data-field of the hash-entry referenced via registerregentryin registerregdst.
For aHASHINTCOLENTRYwith n data-fields valid indices are0, 1, . . . , n − 1. Also seeMove-
ToHashIntColEntry .

HashIntColNumEntries

Return aHASHINTCOL’s number of entries.
Synopsis:HashIntColNumEntries (reghash,regdst);
Returns the number of entries (keys) of the hash referenced via registerreghashin registerregdst.
For example, uponHASHINTCOL-creation the number of entries is zero.

HashIntColBrowseInit

Get a handle for browsing through aHASHINTCOL’s entries.
Synopsis:HashIntColBrowseInit (reghash,regdst);
Stores a handle for browsing through the entries of the hash referenced via registerreghashin
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registerregdst. This handle can then be used withHashIntColBrowseNext andHashInt-
ColBrowsePrev .

HashIntColBrowseNext

Browse to the next entry of aHASHINTCOL.
Synopsis:HashIntColBrowseNext (reghash,regentry);
regentrymay either be aHASHINTCOLENTRYidentifier or a browse-handle as returned byHash-
IntColBrowseInit . In the latter case it is attempted to return the hash’s first entry, otherwise
it is attempted to return the entry following the specified entry. If such a hash-entry (first or follow-
ing) exists, the Z flag is cleared and the entry-identifier is returned in registerregentry. Otherwise
the Z flag is set and registerregentryremains unaffected.

HashIntColBrowsePrev

Browse to the previous entry of aHASHINTCOL.
Synopsis:HashIntColBrowsePrev (reghash,regentry);
regentrymay either be aHASHINTCOLENTRYidentifier or a browse-handle as returned byHash-
IntColBrowseInit . In the latter case it is attempted to return the hash’s last entry, otherwise
it is attempted to return the entry preceding the specified entry. If such a hash-entry (last or preced-
ing) exists, the Z flag is cleared and the entry-identifier is returned in registerregentry. Otherwise
the Z flag is set and registerregentryremains unaffected.

NewHashIntStack

Create a newHASHINTSTACK.
Synopsis:NewHashIntStack (regnumdata,regdst);
Creates a new emptyHASHINTSTACKand stores its identifier in registerregdst. The integer in
registerregnumdatadetermines the number of additional data-fields with each entry (must be set
to zero if no additional data-fields are required). Also seeDiscardHashIntStack .

DiscardHashIntStack

Discard aHASHINTSTACK.
Synopsis:DiscardHashIntStack (reghash);
Discards theHASHINTSTACKreferenced via registerreghash. Also seeNewHashIntStack .

HashIntStackAdd

Add a newHASHINTSTACKENTRYor return the existing one.
Synopsis:HashIntStackAdd (reghash,regval,regdst);
Registerregval contains integerval. If a hash-entry with keyval is found in the hash referenced
via reghash, it is returned in registerregdstand the Z (Zero) condition flag is set. Otherwise a new
hash-entry is created, its identifier returned in registerregdst, and the Z condition flag is cleared.

HashIntStackRemove

Remove the top-of-the-stackHASHINTSTACKENTRY.
Synopsis:HashIntStackRemove (reghash);
Removes the most recently added hash-entry from the hash referenced via registerreghash. This
hash must be nonempty.
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HashIntStackFind

For a given key find the appropriateHASHINTSTACKENTRY.
Synopsis:HashIntStackFind (reghash,regval,regdst);
Registerregval contains integerval. HashIntStackFind tries to find a hash-entry with key
val in the hash referenced via registerreghash. If such an entry is found, its identifier is stored
in registerregdstand the Z condition flags is cleared. Otherwise the Z condition flag is set and
registerregdstremains unaffected.

MoveToHashIntStackEntry

Store a register to aHASHINTSTACKENTRYdata-field.
Synopsis:MoveToHashIntStackEntry (regentry,regsrc,idxdst);
Stores the value of registerregsrcin theidxdstth data-field of the hash-entry referenced via register
regentry. For aHASHINTSTACKENTRYwith n data-fields valid indices are0, 1, . . . , n− 1. Also
seeMoveFromHashIntStackEntry .

MoveFromHashIntStackEntry

Store aHASHINTSTACKENTRYdata-field to a register.
Synopsis:MoveFromHashIntStackEntry (regentry,idxsrc,regdst);
Stores theidxsrcth data-field of the hash-entry referenced via registerregentryin registerregdst.
For a HASHINTSTACKENTRYwith n data-fields valid indices are0, 1, . . . , n − 1. Also see
MoveToHashIntStackEntry .

CopyCargoTree

Create a copy of aCARGOTREE.
Synopsis:CopyCargoTree (regmem,regsrc,regdst);
A newCARGOTREEis created and its identifier is stored in registerregdst. All nodes are allocated
from theCARGOTREEMEMspecified through registerregmem. The newCARGOTREEis identical
to the one referenced via registerregsrc.

CollectIntVal

Create a newHASHINTCOLcontaining selected Int-values of aCARGOTREE.
Synopsis:CollectIntVal (regtree,regintid,regdst);
Creates a newHASHINTCOLand stores its identifier in registerregdst. id is the integer speci-
fied in registerregintid, andtree the CARGOTREEreferenced via registerregtree. The resulting
HASHINTCOLcontains all the values of Int-nodes with idid from treetree (these values are the
keys). Each hash-entry has one additional data-field, containing the value’s occurrence-index,
resulting from depth-first left-to-right traversal. The occurrence-indices start with 0. The follow-
ing is an example for occurrence-indices. For greater comprehensibility occurrence-indices for
string-identifiers are given—note thatCollectIntVal works with integer-identifiers: In the
arithmetic expression

c*(3*a+cˆ2+y+aˆ2+d+cˆ3)

the occurrence-indices ofa, c , d andy are as follows:

variable-identifier occurrence-index
a 1
c 0
d 3
y 2
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HashIntVal

Create a newHASHINTcontaining selected Int-values of aCARGOTREE.
Synopsis:HashIntVal (regtree,regintid,regdst);
Creates a newHASHINTand stores its identifier in registerregdst. id is the integer specified in
registerregintid, andtree theCARGOTREEreferenced via registerregtree. The resultingHASH-
INT contains all the values of Int-nodes with idid from tree tree (these values are the keys).
Each hash-entry has one additional data-field, containing the value’s occurrence-index, resulting
from depth-first left-to-right traversal. Occurrence-indices start with 0. An example is given with
CollectIntVal .

HashIntValCont

Add selected Int-values of aCARGOTREEto aHASHINT.
Synopsis:HashIntValCont (regtree,regintid,reghash,regoffset);
Let id be the integer specified in registerregintid, tree the CARGOTREEreferenced via register
regtree, offset the integer in registerregoffset, and registerreghashcontain an identifier for the
HASHINTto which new hash-entries are added. All the values of Int-nodes with idid from tree
tree(these values are the keys) are added to the hash. Each new entry has one additional data-field,
the value stored there is as follows: For the first entry added(if there is one) it isoffset, for the
next one it isoffset+ 1, for the next oneoffset+ 2, and so on. Ifn new entries are added, then
registerregoffsetis set tooffset+ n. The most common scenario is the specification of anoffset
which is identical to the number of hash-entries upon instruction-invocation. The entry-addition
order is determined by depth-first left-to-right traversal.

SubstIntAscA

Perform substitution of selected Int-values of aCARGOTREEaccording to aHASHINTCOL.
Synopsis:SubstIntAscA (regtree,reghash,regintid,regadd);
Let id be the integer specified in registerregintid, tree the CARGOTREEreferenced via register
regtree, andadd the integer in registerregadd. Registerreghashmust contain aHASHINTCOL
identifier where for each entry there is at least one additional data-field. For any Int-node in tree
tree with id id, if the value occurs in the hash (there is an entrye having the value as key) it is
replaced as follows: Lets(e) denote the integer stored in data-field 0 ofe. Then the replacement
value iss(e) + add. Values not appearing as hash-keys remain unaffected.

CopySubstIntAscA

Create a copy of aCARGOTREEin which selected Int-values are replaced according to aHASH-
INTCOL.
Synopsis:CopySubstIntAscA (regmem,regtree,reghash,regintid,regadd,regdst);
This instruction is a combination ofCopyCargoTree andSubstIntAscA . Compared to using
a sequence of those two instructionsCopySubstIntAscA is more efficient, as the substitution
can be performed during copying. The parameters are the sameas in the two mentioned instruc-
tions.

CopySubstIntAscB

Create a copy of aCARGOTREEin which selected Int-values are replaced according to aHASHINT.
Synopsis:CopySubstIntAscB (regmem,regtree,reghash,regintid,regadd,regdst);
This instruction is identical toCopySubstIntAscA , except that instead of aHASHINTCOLa
HASHINTis used.
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CopyColSubstIntAscB

Create a copy of aCARGOTREEin which selected Int-values are replaced according to aHASHINT.
The hash is extended if necessary.
Synopsis:CopyColSubstIntAscB (regmem,regtree,reghash,regnumhash,

regintid,regadd,regdst);
This instruction is very similar toCopySubstIntAscB . The only difference is that values not
yet occurring as hash-keys are added. Like inHashIntValCnt there is one additional data-field
for each new entry, as usual containing the occurrence-index. If the integer in registerregnumhash
is denotedn, then the first new entry has valuen in data-field 0, the next onen + 1, etc. The
entry-addition-order is determined by depth-first left-to-right traversal. The registerregnumhash
is updated with valuen+ a, wherea is the number of new hash-entries added. The other parame-
ters are identical to those ofCopySubstIntAscB .

CopyColSubstIntAscBM

Create a copy of aCARGOTREEin which selected Int-values are replaced according to aHASHINT.
The hash is extended if necessary.
Synopsis:CopyColSubstIntAscBM (regmem,regtree,reghash,regnumhash,

regintid,regadd,regmul,regdst);
This instruction is identical toCopyColSubstIntAscB , except that a slightly different substi-
tution is performed. Letadd be the integer in registerregaddandmul be the integer in register
regmul. Furthermore,s(e) denotes data-entry 0 of hash-entrye. If e is a matching hash-entry
for the Int-value, then inCopyColSubstIntAscB the value gets replaced withs(e) + add.
Here however, the replacement value iss(e) ∗ mul + add. This can be useful in cases where
different arrays of corresponding identifiers get introduced. The other parameters are identical to
CopyColSubstIntAscB .

WriteCargoTreeCGE

Store aCARGOTREEinto a file inCARGOTREEExchange Format.
Synopsis:WriteCargoTreeCGE (regtree,regnumname);
Creates a file named “tree num.cge ”, wherenum is a 4-digit decimal representation of the in-
teger in registerregnumname. The file contains a representation of theCARGOTREEreferenced
via registerregtree, the representation is in the standardisedCARGOTREEExchange Format. Cur-
rently aCARGOTREEused with this instruction must not contain GrammarRule-, GrammarToken-
or any of the Local-nodes. There are no other restrictions for theCARGOTREE.

WriteCargoTreeGDL

Store aCARGOTREEinto a file in Graph Description Language.
Synopsis:WriteCargoTreeGDL (regtree,regnumname);
Creates a file named “tree num.gdl ”, wherenum is a 4-digit decimal representation of the in-
teger in registerregnumname. This file contains a description of theCARGOTREEin the Graph
Description Language. AnyCARGOTREEcan be used with this instruction—there are no restric-
tions. The GDL file-format is used by graph visualisation softwareaiSee [1].

WriteCargoTreeGDLImm

Store aCARGOTREEinto a file in Graph Description Language.
Synopsis:WriteCargoTreeGDLImm (regtree,numname);
Creates a file named “tree num.gdl ”, where num is a 4-digit decimal representation of the
integernumname. This file contains a description of theCARGOTREEin the Graph Description
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Language. AnyCARGOTREEcan be used with this instruction—there are no restrictions. The
GDL file-format is used by graph visualisation softwareaiSee [1].

DevDumpReg

Dump a register.
Synopsis:DevDumpReg(reg);
The value in registerreg is dumped to the developer output. It is displayed in hexadecimal notation.

DevDumpRegNote

Dump a register and mark it with a note-character.
Synopsis:DevDumpRegNote(note,reg);
The value in registerreg is dumped to the developer output. It is displayed in hexadecimal notation.
It is preceded by the ‘note’ character. The note character isdetermined by the integernote, which
contains the ASCII-code of that character. This is useful for distinction if the same register is
dumped in different locations.

DevDumpRegs

Dump subsequent registers.
Synopsis:DevDumpReg(regfrst,numregs);
The values of registersregfrst, regfrst+1, . . . , regfrst+numregs-1 are dumped to the developer
output. They are displayed in hexadecimal notation.numregsmust be greater or equal to 1, and
set such that the range of available registers is not exceeded.

DevDumpHashIntColImm

Dump aHASHINTCOL.
Synopsis:DevDumpHashIntColImm (reghash,numname);
Creates a file named “hash num.txt ”, where num is a 4-digit decimal representation of the
integernumname. This text file contains the decimal representations of all the integer keys from
the entries of theHASHINTCOLreferenced via registerreghash.

DevDumpStack

Dump entries of the main data stack.
Synopsis:DevDumpStack (numdata);
Dumps entries 0,1,. . . ,numdata-1 of the current (top-of-the-stack) stack block to developer output.
Of coursenumdatamust not exceed the number of entries of that block.

DevDumpResourceSummary

Dump a summary of the number of resources in use.
Synopsis:DevDumpResourceSummary ();
For each resource-type the number of resources in use gets printed to developer output. This
includesCARGOTREEMEMs, ARRAYs, HASHINTs, etc. Any resource-instance which is created
but not discarded by a Smute Function must be clearly documented. A Smute Function for Smute
Function Users must always return with no resources in use. This developer instruction can help
detecting unintended resource-loss.
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WriteCargoTreeBooleRaw

Store a QBF-CARGOTREEinto a file in raw ‘boole’ QBF-format.
Synopsis:WriteCargoTreeBooleRaw (regtree,regnumname);
Creates a file named “qbf num.txt ”, wherenumis a 4-digit decimal representation of the integer
in registerregnumname. This file contains the Quantified Boolean Formula referenced via register
regtree (CARGOTREEin QBF-Scheme) in the format specified by QBF-solver ‘boole’[2]. It
contains only the formula, without variable specifications, etc.

WriteCargoTreeBooleRawImm

Store a QBF-CARGOTREEinto a file in raw ‘boole’ QBF-format.
Synopsis:WriteCargoTreeBooleRawImm (regtree,numname);
This instruction is identical toWriteCargoTreeBooleRaw , except that the name-integer is
provided directly and not within a register.

WriteCargoTreeBoole

Store a QBF-CARGOTREEinto a file in ‘boole’ QBF-format.
Synopsis:WriteCargoTreeBoole (regtree,regnumname,idxtermsel);
Creates a file named “qbf num.txt ”, wherenumis a 4-digit decimal representation of the integer
in registerregnumname. This file contains the Quantified Boolean Formula referenced via register
regtree(CARGOTREEin QBF-Scheme) in the format specified by QBF-solver ‘boole’[2]. It also
contains the variable specification and an instruction-term for the formula. Thus it is complete
specification which can be passed to the ‘boole’-solver. Oneof three ‘boole’ instruction-terms can
be selected with the parameteridxtermsel: 0 for ’print’, 1 for ’sop’ and 2 for ’satisfy’.

WriteCargoTreeBooleImm

Store a QBF-CARGOTREEinto a file in ‘boole’ QBF-format.
Synopsis:WriteCargoTreeBooleImm (regtree,numname,idxtermsel);
This instruction is identical toWriteCargoTreeBoole , except that the name-integer is pro-
vided directly and not within a register.

WriteCargoTreeGDL QBFS

Store a QBFS-CARGOTREEinto a file in Graph Description Language.
Synopsis:WriteCargoTreeGDL QBFS(regtree,regnumname);
Creates a file named “qbf num.gdl ”, wherenumis a 4-digit decimal representation of the integer
in registerregnumname. This file contains a description of the QBFS-CARGOTREEin the Graph
Description Language. The output is QBFS-CARGOTREE-Scheme-specific.

WriteCargoTreeGDL QBFSImm

Store a QBFS-CARGOTREEinto a file in Graph Description Language.
Synopsis:WriteCargoTreeGDL QBFSImm(regtree,numname);
This instruction is identical toWriteCargoTreeGDL QBFS, except that the name-integer is
provided directly and not within a register.

WriteCargoTreeGDL QBF

Store a QBF-CARGOTREEinto a file in Graph Description Language.
Synopsis:WriteCargoTreeGDL QBF(regtree,regnumname);
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Creates a file named “qbf num.gdl ”, wherenumis a 4-digit decimal representation of the integer
in registerregnumname. This file contains a description of the QBF-CARGOTREEin the Graph
Description Language. The output is QBF-CARGOTREE-Scheme-specific.

WriteCargoTreeGDL QBFImm

Store a QBF-CARGOTREEinto a file in Graph Description Language.
Synopsis:WriteCargoTreeGDL QBFImm(regtree,numname);
This instruction is identical toWriteCargoTreeGDL QBF, except that the name-integer is pro-
vided directly and not within a register.

4.2 CARGOTREE-Schemes

A CARGOTREE-Scheme is a convention laying downhowspecific recursive data structures, such
as arithmetic expressions, are represented withCARGOTREEs. A uniformrepresentation of data is
of great relevance for avoiding unnecessary conversions. Ideally, for any recursive data structure
all Smute Functions working with that structure apply the sameCARGOTREE-Scheme.

Example 4.1 (CARGOTREE-Scheme)In order not to stress arithmetic expressions only, the fol-
lowing CARGOTREE-Scheme example is for recursively structured data known aspropositional
formulas. Propositional formulas are defined as follows:Conn= {∧,∨,→,¬} is the set oflog-
ical connectives, referred to asconjunction, disjunction, implication and negationrespectively.
Const = {>,⊥} is the set oflogical constants, referred to astruthhood and falsehood. Fur-
thermore, letP be an arbitrary set which is disjoint fromConn and Const, i.e., P ∩ Conn =
P ∩ Const= ∅. Then the set ofpropositional formulasover P,PROP(P ), is recursively defined
as follows:

1. > ∈ PROP(P ) and⊥ ∈ PROP(P ).

2. p ∈ PROP(P ) for everyp ∈ P .

3. If φ ∈ PROP(P ), then¬φ ∈ PROP(P ).

4. If φ1 ∈ PROP(P ) andφ2 ∈ PROP(P ), thenφ1 ◦ φ2 ∈ PROP(P ) for ◦ ∈ {∧,∨,→}.

The elements ofP are called thepropositional variablesof PROP(P ).
Note that currently there is no syntax forCARGOTREE-Schemes, instead they are informal

specifications. The “propositional formula”CARGOTREE-Scheme defines integer identifiers for
the logical connectives, propositional variables and logical constants. They are used asCARGO-
TREE-node ids.

string alias integer value represents
NOT 0 logical connective ‘¬’
OR 1 logical connective ‘∨’
AND 2 logical connective ‘∧’
IMPL 3 logical connective ‘→’
PROPVAR 4 propositional variable
CONST 5 logical constant

In particular, the representation is as follows:

• Logical constant: Int-node with idCONST, where a value of 0 encodes ‘⊥’ and a value of 1
encodes ‘>’.
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Figure 4.1:CARGOTREEvisualisations

• Propositional variable: Str-node with idPROPVAR, the string value serves as variable iden-
tifier.

• Formula¬φ: ConCls-node with idNOT, has got 1 child which representsφ.

• Formulaφ1 ∨ φ2: ConCls-node with idOR, has got 2 children, the left one (index 0) repre-
sentingφ1 and the right one (index 1)φ2.

• Formulaφ1 ∧ φ2: ConCls-node with idAND, has got 2 children, the left one (index 0)
representingφ1 and the right one (index 1)φ2.

• Formulaφ1 → φ2: ConCls-node with idIMPL, has got 2 children, the left one (index 0)
representingφ1 and the right one (index 1)φ2.

Figure 4.1 displays theCARGOTREE-representation of propositional formulap ∧ (p → (q∨r)),
complying with the “propositional formula”CARGOTREE-Scheme. �

Node-ids for aCARGOTREE-Scheme should be picked from a small integer-range to support
querying them with theJumpTab-instruction of the Smute Language.

4.3 Data I/O

For Smute Function Developers there are currently the following options for data input/output:

• Reading and writing of files inCARGOTREEExchange Format.

• Reading of text-files in an LALR-language.

• Additional options might be provided by the respective Smute Interpreter Edition.

4.3.1 CARGOTREE Exchange Format

The CARGOTREEExchange Format is a convention for binary storage of recursively structured
data. Reading input inCARGOTREEExchange Format, as well as output to this format is read-
ily supported by Smute (cf.#load -instruction in the Smute Function User Manual and the
“WriteCargoTreeCGE ”-instruction on page 61). Hence a Smute Function Developerdoes
not need to know about the file layout of theCARGOTREEExchange Format.

Whether or not a Smute Function Developer supports input/output in CARGOTREEExchange
Format should be based on the following considerations:

• If Smute Function Users want to pass the output to other SmuteFunctions or to external
applications, then output inCARGOTREEExchange Format should be supported.
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• If Smute Function Users want to use input generated by other Smute Functions or by exter-
nal applications, then input inCARGOTREEExchange Format should be supported.

By default,CARGOTREEExchange Format input/output should be supported, becauseit increases
a function’s versatility and the implementation requires little effort, due to the handling by Smute.

4.3.2 Data Input through an LALR-language

The principle of Smute support for input data specification in arbitrary LALR-languages has al-
ready been outlined: The Smute Function Developer creates aparsing-table for the language in
question. The Smute Function User specifies data in an LALR-language and references the appro-
priate parsing-table. This is illustrated in Example 4.3.2.

Example 4.2 (Input specification through an LALR-language)The following Smute Launch File
instructs data to be LALR-parsed:

<formula0> := #load("fla0000.txt","fla.cgt")
loadmodules(flamod);
flamod:Simplify(formula0);

Here the Smute FunctionSimplify is applied to the formula specified in file “fla0000.txt ”,
which is parsed according to the LALR-parsing-table of file “fla.cgt ”. �

Currently Smute relies on parsing-tables created by the publicly available GOLD Parser [3].
From a Backus-Naur form GOLD Parser creates a Compiled Grammar Table (‘.cgt ’-file), i.e.,
an LALR-parsing table in GOLD-Parser-specific format. For Smute Function Developers this
means that in order to support input specifications in a new LALR-language, they need to write
a Backus-Naur form, load it with GOLD Parser Builder, and save the Compiled Grammar Table.
This process is documented in the GOLD Parser documentation[3].

From specifications in LALR-languages the Smute Interpreter automatically createsCARGO-
TREEs in grammar-dependentCARGOTREE-Schemes. TheseCARGOTREEs are composed of
GrammarRule- and GrammarToken-nodes, representing the data in terms of rule-ids, token-ids
and token-strings. The only difficulty in processing this information is to find the correspondence
between rule-ids (token-ids) with the rules (tokens) from the Backus-Naur form. Due to using
GOLD Parser there is currently no way of assigning arbitraryids within the Backus-Naur form.
Instead, these ids are auto-assigned array-indices. Thereare two very simple ways of finding out
which rule-id (token-id) corresponds to which rule (token). The first is GOLD Parser, where—
after having created the Compiled Grammar Table—the rules (tokens) can be displayed. They are
automatically displayed with their id. Another one is to usea simpleCARGOTREEvisualisation
routine like the following:

Label(DumpCargoTree);
WriteCargoTreeGDL(R00,R01);
Return;

Then data instances are specified according to the grammar’srules, and used with the DumpCar-
goTree function. The visualisation displays the rules’ andtokens’ ids.

Example 4.3 (Rule-ids and token-ids for the rules and tokensof a Backus-Naur form)The follow-
ing listing shows a simple Backus-Naur form for arithmetic expressions:

"Start Symbol" = <expr_add>

{id_head} = {Letter} + [_]
{id_tail} = {id_head} + {Digit}
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Figure 4.2:CARGOTREEin grammar-dependentCARGOTREE-Scheme

decliteral = {Digit}+
id = {id_head}{id_tail}*

<expr_add> ::= <expr_add> ’+’ <expr_mul>
| <expr_add> ’-’ <expr_mul>
| <expr_mul>

<expr_mul> ::= <expr_mul> ’*’ <expr_div>
| <expr_div>

<expr_div> ::= <expr_exp> ’/’ <expr_exp>
| <expr_exp>

<expr_exp> ::= <expr_bot> ’ˆ’ <expr_bot>
| <expr_bot>

<expr_bot> ::= id
| decliteral
| ’(’ <expr_add> ’)’

The visualisation of the grammar-dependentCARGOTREE-representation of arithmetic expression
2x2 + 3y, specified as “2*xˆ2+3*y ”, is shown in Figure 4.2. The rule-ids forCARGOTREEs
created according to LALR-parsing-tableexpr.cgt can be concluded from this visualisation.
Examples:

id rule
3 <expr_mul> ::= <expr_mul> ’*’ <expr_div>
9 <expr_bot> ::= id
. . . . . . �
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It must be remarked that theCARGOTREE-Schemes implied by LALR-grammars are usually
ill-suited for data-representation, especially if data isaltered or newly created: The rules of an
LALR-grammar define how to specify data-instances in a string, which is not a concise reflection
of the recursive structure. The additional information (which does not relate to the recursive struc-
ture, but only to the specification in strings) is superfluousfor the CARGOTREE-representation.
Furthermore, Smute Functions working with grammar-dependent CARGOTREE-Schemes are of
little versatility: Changes in the grammar require adaptations of the Smute Function, support
of different grammars is intricate. Hence,CARGOTREEs in grammar-dependentCARGOTREE-
Schemes are usually converted to grammar-independentCARGOTREE-Schemes before being fur-
ther processed. Smute Functions solely performing these conversions are calledPreprocessing
Functions. For the sake of the aforementioned versatility only Preprocessing Functions should
work with grammar-dependentCARGOTREE-Schemes.

The support of new LALR-languages within Smute Launch Filesrequires new Smute Inter-
preter Editions. Smute Function Developers interested in anew Smute Interpreter Edition, or in
extending a existing one, should get in touch with the authorof the Smute Interpreter.

4.4 Core Functions and Wrapper Functions

The following are recommendations for writing modular and versatile Smute Functions.
It is the intent of Smute Function Developers to implement a certain functionality, e.g, the sim-

plification of arithmetic expressions. Most Smute Functions for Smute Function Users will need
to read input from files and/or write output to files. The implemented functionality might how-
ever be useful as part of other Smute Functions. For example,the simplification of an arithmetic
expression could be applied in a function before evaluatingthat expression. In this case the input
does not need to be read from files, and the output does not needto be written to files. Instead, a
Smute Function withCARGOTREE-input/output, but without file-access is required.

Therefore, it is recommended to write so-calledCore FunctionsandWrapper Functions. A
Core Function is a Smute Function not accessing files, i.e., not using the input/output-related
Smute Language instructions. Thus, a Core Function can be used modularly in other Smute Func-
tions. A Wrapper Function works as follows:

1. optionally read/preprocess input;

2. call one or more Core Functions;

3. optionally post-process/write output.

In step 1 Wrapper Functions working with LALR-language input typically invoke Preprocessing
Functions.

An additional advantage of the Core Function/Wrapper Function-conception is that support
for new input-file-formats or new output-file-formats is extremely simple, as it only requires new
Wrapper Functions. The principle of Core Functions and Wrapper Functions is depicted in Fig-
ure 4.3.

4.5 Smute Assembler Usage

Example 4.4 (Smute Assembler usage)The source code of a Smute Module is written to file
“ testmod.txt ”:

Label(DumpCargoTree);
WriteCargoTreeGDL(R00,R01);
Return;
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Core Function

Wrapper Function
Parameters are analysed; data is read
and/or processed (possibly with a
Preprocessing Function) and provided
to the Core Function as CARGOTREEs
in specific CARGOTREE-Schemes

Resulting data (most likely CARGOTREEs)
is processed and/or saved to file(s) in

specific format

Figure 4.3: Core Functions and Wrapper Functions

Export(DumpCargoTree);

(TheExport -declaration is used for exporting labels.)
The Smute Modulemtestmod.tmm is created by passing the source code file to the Smute

Assembler:
>assemble testmod.txt �

To date Example 4.5.4 is fictitious, as the Smute Assembler has not been implemented yet.
Currently Smute Function Developers need to work with a tentative solution, called Smute As-
sembler Library. As the Smute Assembler Library is less user-friendly than a Smute Assembler
would be, Smute Function Developers should check for the availability of the Smute Assembler
before starting to write Smute Functions.

The Smute Assembler Library is a static C library called “modcompile.lib” (currently for Intel
Pentium/Windows and Intel Pentium/Linux) and comes with anaccompanying header-file. A C-
compiler and linker is needed. For each instruction of the Smute Language there is a function in
the Smute Assembler Library. Smute Language code is thus specified as a sequence of function-
calls in C. Example 4.5.5 shows how the Smute Module of Example 4.5.4 can be created with the
Smute Assembler Library:

Example 4.5 (Smute Assembler Library usage)The Smute Language instructions are specified in
a C-source file:

#include "modcompile.h"

uBOOL STDCALL WriteModule(TMMWrite* ptmmw)
{

TMMWrite_WLabel(ptmmw,(PuCHAR)"DumpCargoTree",13);
TMMWrite_WWriteCargoTreeGDL(ptmmw,R00,R01);
TMMWrite_WReturn(ptmmw);

TMMWrite_AddExport(ptmmw,(PuCHAR)"DumpCargoTree",13 );
return(TRUE);

}
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void main(int argc, char** ppstrarg)
{

compiler::CompilerData* pdata;
compiler::PFUNCPREPAREMOD PPrepareMod;
PuCHAR pstr0;
uLONG i0;

if ((pdata=compiler::InitCompilerData()))
{

pstr0="m_testmod.tmm";
i0=13;
PPrepareMod=WriteModule;
compiler::ModCompiler(pdata,pstr0,i0,PPrepareMod);

compiler::ExitCompilerData(pdata);
}

}

The “main ”-function is only a static frame, i.e., it is independent from the Smute Func-
tion. Compiling this file and linking it with “modcompile.lib ” generates a command-line
executable. Running the executable creates the desired Smute Module if successful, otherwise
error-messages are issued.

A note about the number-arguments in the function-calls above: These are simply the string-
lengths which have to be provided along with the character array (for example, 13 is the string-
length of “DumpCargoTree”). A more convenient usage not requiring string-length parameters,
but only pointers to 0-terminated strings, can be facilitated via small helper routines like the fol-
lowing:

uBOOL TMMWrite_WLabel(TMMWrite* ptmmw, PuCHAR pstrlabel )
{

return(TMMWrite_WLabel(ptmmw,pstrlabel,StringLen(ps trlabel)));
}

The aboveWriteModule function is not fully correct as it ignores return-values. Acorrect
version is printed below:

uBOOL STDCALL WriteModule(TMMWrite* ptmmw)
{

if (!TMMWrite_WLabel(ptmmw,(PuCHAR)"DumpCargoTree",1 3)) goto errmem;
if (!TMMWrite_WWriteCargoTreeGDL(ptmmw,R00,R01)) goto errmem;
if (!TMMWrite_WReturn(ptmmw)) goto errmem;

if (!TMMWrite_AddExport(ptmmw,(PuCHAR)"DumpCargoTree ",13)) goto errmem;
return(TRUE);

errmem:
return(FALSE);

}

However, as the compiled file is usually executed only once, aSmute Function Developer
might prefer to be careless and ignore the return values. �
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Chapter 5

Support for the Interaction of External
Applications with Smute

Currently support for the interaction of Smute with external applications is limited to theCARGO-
TREEExchange Format. There are two cases where it makes sense to apply theCARGOTREE
Exchange Format:

• For an external application support of processing its output via Smute Functions is desired.
This is easily achieved if the external application offers output generation inCARGOTREE
Exchange Format.

• For an external application support of reading Smute Function output is desired. This is
easily achieved if the external application accepts input in CARGOTREEExchange Format.

The advantages ofCARGOTREEExchange Format over alternative solutions are obvious:

• TheCARGOTREEExchange Format is a binary format which is machine readable, without
elaborate parsers that would be required for textual specifications.

• The usual advantage of standardisation: Data can be passed between applications that do
not need to know about each other.

• For the Smute Function Developer there is no work to do, asCARGOTREEExchange Format
input/output is readily supported by Smute.

The file-layout ofCARGOTREEExchange Format is documented in Section 5.1. Options for
advanced integration with external applications are discussed in Chapter 10.

5.1 File Layout for the CARGOTREE Exchange Format

In CARGOTREEExchange Files all integers are stored in big-endian-format. Figure 5.1 depicts this
storage format forBYTEs (8-bit integers),WORDs (16-bit-integers) andLONGs (32-bit-integers).
The respective 2nd rows contain the bit indices. Those bit-arrays represent integers

∑n
i=0 2ibi,

wheren is 7, 15, or 31 respectively.
In the following paragraphs the structure ofCARGOTREEExchange Files is presented in a

bottom-up manner, i.e., starting with small sub-structures. The first isConCls , used for storing
ConCls-nodes.

ConCls:
BYTE type;
BYTE id;
WORD numchild;
LONG childidx[<numchild>];
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 00 01 02 03 04 05 06 07

Byte 0

 00 01 02 03 04 05 06 07

Byte 0

 08 09 10 11 12 13 14 15

Byte 1

 00 01 02 03 04 05 06 07

Byte 0

 08 09 10 11 12 13 14 15

Byte 1

 16 17 18 19 20 21 22 23

Byte 2

 24 25 26 27 28 29 30 31

Byte 3

Figure 5.1: Big Endian Integer Storage

The last line states that theWORD numchild is followed by an array ofLONGs, with the array-
size determined by the value ofnumchild . Array-entries are referencedchildidx[ 0] , . . . ,
childidx[ numchild-1] .

The contents are as follows:type is the constantCNXCONCLS(defined in a header-file)
and used for distinction from other nodes.id contains the node-id. The array specified through
numchild andchildidx determines the child-nodes. In thechildidx -array there can be
integers0, . . . , n − 1, wheren is the total number ofCARGOTREE-nodes. These indices refer
to the order the nodes are stored in theCARGOTREEExchange File. For example, an entry with
value 0 refers to the first node of theCARGOTREEExchange File.

The next structure isConArr :

ConArr:
BYTE type;
BYTE id;
WORD numchild;
LONG childidx[<numchild>];

Except fortype , whereCNXCONARRis stored, the structure contents are identical to those of
ConCls .

Int:
BYTE type;
BYTE id;
LONG val;

Here thetype -entry must containCNXINT , and theval -entry contains the Int-node’s value.

Str:
BYTE type;
BYTE id;
WORD lstr;
BYTE str[<lstr>];

The type -entry must containCNXSTR, and the Str-node’s string-value is stored via the array
specified throughlstr andstr .

Node:
ConCls|ConArr|Int|Str;
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TheNode specification has the following meaning:a|b|c|... stands for a set of options. In
the place of aNode-structure one of the optional structures (ConCls ,ConArr ,. . . ) is stored.
For a file-format to be meaningful it must be possible to tell which of the optional structures is
actually used. In the case ofNodes, distinction is possible via theBYTE-entry type , as each
of the optional structures starts with this entry. While there is a similarity with unions from the
programming language C, there is also a significant difference, namely that the size of theNode-
entry depends on the selected structure (whereas for C-unions the size is always the size of the
largest optional structure).

The next structure is already theCGEfile format:

LONG id;
LONG chksum;
LONG frmtver;
LONG numnode;
LONG sizenodearray;
Node nodes[numnode];

The id -entry is provided for the identification of files inCGE-format and for distinction from
files in other formats, its value is always 0x43474521. Thechksum -entry is there to ensure the
file is in valid format. It is an 32-bit-wise ‘exclusive or’ over the whole file, except thechksum -
entry itself, and one additional ‘exclusive or’ with the constantCGECHECKSUMBONNET. The
frmtver -entry must always be set to 0 for this version of theCGEfile format and is there to
allow distinction from potential extended future formats.numnode contains the number of nodes
of theCARGOTREEstored in that file.sizenodearray contains the number of bytes taken up
by thenodes -array. nodes is the array ofCARGOTREE-nodes. There is a restriction for the
array-order: Namely, for every inner node the children mustbe in front of that node. In other
words: If an inner node is stored asith node in theCARGOTREEExchange File, then the child-
node-index-array of this node in theCGE-file can only contain numbers0, 1, . . . , i − 1. Smute
stores the nodes in the following order, which is recommended for the creation ofCGE-files: The
order is determined by ‘post-order left-to-right depth-first’ traversal. ‘Depth-first’ says that for any
node with children the nodes are traversed subtree-wise, i.e., only after all nodes of a subtree have
been visited can nodes of a different subtree be visited. ‘Left-to-right’ means that traversal starts
with the0th subtree, continues with the1st, etc. ‘Post-order’ means that a node is visited after all
child-nodes have already been visited.
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Chapter 6

Reductions-to-QBFs Background

The background of reductions-to-QBFs is structured as follows: Propositional Logic is introduced
in Section 6.1. Quantified Boolean Formulas (QBFs) are introduced in Section 6.2. Various
reasoning formalisms are introduced in Section 6.3. Finally, Section 6.4 presents an exemplary
reduction-to-QBF for reasoning tasks in one of the previously introduced formalisms.

The reasoning formalisms of Section 6.3 are relevant insofar, as Smute Language implemen-
tations of reductions-to-QBFs for these formalisms are presented in Chapter 8.

6.1 Propositional Logic

The syntax of propositional logic is defined as follows:Conn = {∧,∨,→,¬} is the set oflog-
ical connectives, referred to asconjunction-, disjunction-, implication- andnegation-connectives
respectively.Const= {>,⊥} is the set oflogical constants, referred to astruthhoodand false-
hood. Aux= {‘ (’ , ‘ )’} is the set ofauxiliary symbols. ‘(’ is the left parenthesisand ‘)’ is theright
parenthesis. Furthermore, letP be an arbitrary set which is disjoint fromConn, Const, andAux,
i.e.,P ∩ Conn= P ∩ Const= P ∩ Aux = ∅. Then thepropositional language PROP(P ) over
P, also called the set of(well formed) propositional formulasover P, is the formal language1 over
P ∪ Conn∪ Const∪ Aux, where elements are recursively defined as follows:

1. > ∈ PROP(P ) and⊥ ∈ PROP(P ).

2. p ∈ PROP(P ) for everyp ∈ P .

3. If φ ∈ PROP(P ), then(¬φ) ∈ PROP(P ).

4. If φ1 ∈ PROP(P ) andφ2 ∈ PROP(P ), then(φ1 ◦ φ2) ∈ PROP(P ) for ◦ ∈ {∧,∨,→}.

For convenience, parentheses in rules 3 and 4 are usually omitted, syntactic unambiguity is main-
tained by assuming operator precedence (higher first)¬,∧,∨,→ and left-associativity of the bi-
nary operators∧,∨,→. The elements ofP are called thepropositional variablesof PROP(P ).
P∪{>,⊥} is called the set ofatomsof PROP(P ). {p : p ∈ P} ∪ {¬p : p ∈ P} is called the
set ofliterals, denotedLit(P). Disjunctions of literals are calledclauses. Binary operator symbol
↔ is used as shortcut:φ1 ↔ φ2 stands for(φ1 → φ2) ∧ (φ2 → φ1). For operator↔ a lower
precedence than→ is assumed.

Let PROP(P ) be a propositional language. AninterpretationI of P is a functionI : P →
{t, f}, i.e., a function fromP into the set oftruth values. The truth assignmentof a formula
φ ∈ PROP(P ) under interpretationI, denoted̄I(φ), is recursively defined as follows:

1. If φ = >, thenĪ(φ) = t; if φ = ⊥, thenĪ(φ) = f.

1The termformal languageis defined on page 12.
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2. If φ = p ∈ P , thenĪ(φ) = I(p).

3. If φ = ¬φ1, or (φ1 ◦φ2) ∈ PROP(P ) for ◦ ∈ {∧,∨,→}, thenĪ(φ) is determined bȳI(φ1)
andĪ(φ2) according to the tables below (row̄I(φ1), columnĪ(φ2)).

¬
t f
f t

∧ t f
t t f
f f f

∨ t f
t t t
f t f

→ t f
t t f
f t t

If Ī(φ) = t, thenφ is calledtrue underI. If Ī(φ) = f, thenφ is calledfalse underI. φ is called
satisfiedby I, or, equivalently,I is called amodelof φ, denotedI � φ, if φ is true underI. A
formulaφ is calledsatisfiableif at least one interpretation ofP is a model ofφ, otherwise it is
calledunsatisfiable. A formulaφ is calledvalid if every interpretation ofP is a model ofφ. The
truth assignment of a finite set of formulas{φ1, φ2, . . .}i∈I is defined as the truth assignment of
∧

i∈I φi. If it holds that every model of a setW of formulas fromPROP(P ) is a model ofψ, then
ψ is called alogical consequenceof W , denotedW � ψ. Hence a formulaφ is valid iff > � φ.
With Cn(W ) the set of logical consequences ofW is denoted, i.e.,Cn(W ) = {φ ∈ PROP(P ) :
W � φ}. W is called inconsistentif it is unsatisfiable. Otherwise, i.e., if it is satisfiable,it is
calledconsistent. Two formulasφ1 andφ2 are calledlogically equivalentif every model ofφ1

is a model ofφ2 and every model ofφ2 is a model ofφ1. In other words:φ1 andφ2 are called
logically equivalent ifφ2 is a logical consequence ofφ1 andφ1 is a logical consequence ofφ2.

6.2 Quantified Boolean Formulas

For the definition of the syntax of Quantified Boolean Formulas the setConn= {∧,∨,→,¬} of
logical connectives, the setConst = {>,⊥} of logical constants, and the setAux = {‘ (’ , ‘ )’}
of auxiliary symbols, get reused from the definition of the syntax of propositional languages.
Additionally, a new set, the set ofquantifiers Quant= {∃,∀}, calledexistential quantifierand
universal quantifierrespectively, is introduced. LetP be an arbitrary set which is disjoint from
Conn, Const, Aux, andQuant, i.e., P ∩ Conn = P ∩ Const = P ∩ Aux = P ∩ Quant = ∅.
ThenQBF(P ), the language ofQuantified Boolean FormulasoverP , is the formal language over
P ∪ Conn∪ Const∪ Aux∪ Quantwhose elements are defined as follows:

1. > ∈ QBF(P ) and⊥ ∈ QBF(P ) .

2. p ∈ QBF(P ) for everyp ∈ P .

3. If φ ∈ QBF(P ), then(¬φ) ∈ QBF(P ).

4. If φ1 ∈ QBF(P ) andφ2 ∈ QBF(P ), then(φ1 ◦ φ2) ∈ PROP(P ) for ◦ ∈ {∧,∨,→}.

5. If φ ∈ QBF(P ) andp ∈ P , then∃p(φ) ∈ QBF(P ) and∀p(φ) ∈ QBF(P ).

Like in the definition of propositional languages, bracketsfrom rules 3 and 4 are usually omitted,
syntactic unambiguity is maintained by the same operator precedence and associativity assump-
tions as in the propositional language overP . The elements ofP are called thepropositional
variablesof QBF(P ).

A QBF ψ is calleddirect subformulaof QBF φ overP , if one of the following conditions
holds:

• φ = ¬ψ;

• φ = φ1 ◦ ψ for any QBFφ1 and any◦ ∈ {∧,∨,→};
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• φ = ψ ◦ φ2 for any QBFφ2 and any◦ ∈ {∧,∨,→};

• φ = ∃p(ψ) for anyp ∈ P ;

• φ = ∀p(ψ) for anyp ∈ P .

A QBFψ is calledsubformulaof QBFφ if one of the following conditions holds:

• φ = ψ;

• ψ is a direct subformula ofφ;

• there is a direct subformulaχ of φ andψ is a subformula ofχ.

For a QBFφ overP , let N(φ) be defined as follows:

• If φ = >, thenN(φ) = 1; if φ = ⊥, thenN(φ) = 1;

• If φ = p ∈ P thenN(φ) = 1;

• If φ = ¬φ1 thenN(φ) = N(φ1) + 1;

• If φ = φ1 ◦ φ2 for any◦ ∈ {∧,∨,→}, thenN(φ) = N(φ1) + N(φ2) + 1;

• If φ = Qp(φ1) for anyQ ∈ {∃,∀} and anyp ∈ P , thenN(φ) = N(φ1) + 1;

Let φ be a QBF overP , andi ∈ {0, 1, . . . ,N(φ) − 1}. ThenS(i, φ) is defined as follows:

• If φ = >, thenS(i, φ) = >; if φ = ⊥, thenS(i, φ) = ⊥;

• If φ = p ∈ P , thenS(i, φ) = p;

• If φ = ¬φ1, then

– S(i, φ) = φ if i = N(φ1), and

– S(i, φ) = S(i, φ1) otherwise;

• If φ = φ1 ◦ φ2 for any◦ ∈ {∧,∨,→}, then

– S(i, φ) = φ if i = N(φ1) + N(φ2),

– S(i, φ) = S(i, φ1) if i < N(φ1), and

– S(i, φ) = S(i− N(φ1), φ2) otherwise;

• If φ = Qp(φ1) for anyQ ∈ {∃,∀} and anyp ∈ P , then

– S(i, φ) = φ if i = N(φ1), and

– S(i, φ) = S(i, φ1) otherwise.

For a QBFφ andi ∈ {0, 1, . . . ,N(φ)−1} it follows from the definition thatS(i, φ) is a subformula
of φ.

Let φ andψ be QBFs, andi ∈ {0, 1, . . . ,N(φ) − 1}. Thenψ is said tooccur in φ at position
i if S(i, φ) = ψ. Obviously, for any subformulaψ of QBF φ there is at least one positioni ∈
{0, 1, . . . ,N(φ) − 1} whereψ occurs inφ.

Example 6.1 (Occurrence of a subformula in a formula)Let φ = (p → q) ∧ (p → q). Then
subformulap→ q occurs at positions2 and5 in φ. Subformulap occurs at positions0 and3 in φ,
and subformulaq occurs at positions1 and4 in φ. N(φ) is 7. �

Let φ be a QBF, anda denote an occurrence of QBFψ in φ (at an arbitrary position), and
b denote an occurrence of QBFχ in ψ (at an arbitrary position). Then obviously the position
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of an occurrencec of χ in φ is determined by the position ofa (in φ) and b (in ψ), and c is
called adescendantof b. Conversely,b is called anancestorof c. The ancestor and descendant
relationships define partial orders on the set of occurrences of subformulas in a formula.

Example 6.2 (Ancestor of a subformula occurrence)Let φ = (p → q) ∧ (p → q). Then the
occurrence of subformulap → q at position2 is an ancestor of the occurrence of subformulap at
position0. �

An occurrencea of a propositional variablep in a QBFφ is said to bein the scope of a
quantification, if for any QBFψ there is an occurrenceb of ∃p(ψ) or ∀p(ψ) in φ which is an
ancestor ofa. An occurrence of a propositional variable in a QBF is calledbound if it is in the
scope of a quantification, otherwise it is calledfree.

A QBF φ is calledclosedif all occurrences of propositional variables inφ are bound. Other-
wise it is calledopen.

The semantics of QBFs is based on interpretations of the propositional variables. For an
interpretationI of P the truth value assignmentÎ : QBF(P ) → {t, f} is defined as follows:

1. If φ = >, thenÎ(φ) = t; if φ = ⊥, thenÎ(φ) = f.

2. If φ = p ∈ P , thenÎ(φ) = I(p).

3. If φ = ¬φ1, or φ = φ1 ◦ φ2 for any◦ ∈ {∧,∨,→}, thenÎ(φ) is determined bŷI(φ1) and
Î(φ2) according to the tables on page 75 (rowÎ(φ1), columnÎ(φ2)).

4. If φ = ∀p(φ1), thenÎ(φ) = Î(φ1[p/>] ∧ φ1[p/⊥]) 2.

5. If φ = ∃p(φ1), thenÎ(φ) = Î(φ1[p/>] ∨ φ1[p/⊥]).

If Î(φ) = t, then QBFφ is said to betrue underI. If Î(φ) = f, thenφ is said to befalse under
I. A QBF φ is calledsatisfiedby interpretationI, and, equivalently,I is called amodelof φ,
denotedI � φ, if φ is true underI. A QBFφ is calledsatisfiableif at least one interpretation ofP
is a model ofφ, otherwise it is calledunsatisfiable. A QBFφ is calledvalid if every interpretation
of P is a model ofφ. Observe that a closed QBF is always either valid or unsatisfiable. A finite
set{φi}i∈I of QBFs is identified with the QBF

∧

i∈I φi.

6.3 Nonmonotonic Reasoning Formalisms

This section presents five nonmonotonic reasoning formalisms. For classical abduction, equilib-
rium logic, paraconsistent reasoning via signed systems, and paraconsistent reasoning via three-
valued logic this thesis presents implementations of reductions-to-QBFs in the Smute Language,
which are documented in Chapter 8. Default logic is introduced because it is used in the definition
of paraconsistent reasoning via signed systems.

6.3.1 Default Logic

Default Logic has been introduced in [27]. LetP be a set of propositional variables. Then a
defaultδ overP is a triple of propositional formulasα, β, γ ∈ PROP(P ), denotedδ = α:β

γ
, where

α is called theprerequisiteof δ, β is called thejustificationof δ, andγ is called theconsequentof
δ. :β

γ
, i.e., a default rule with “empty” prerequisite, is used as notational shortcut for the default

rule >:β
γ

.
A default theoryover a set of propositional variablesP is a pair (W,∆) of a setW ⊆

PROP(P ) of propositional formulas and a set∆ of defaults overP .

2φ[p1/q1, . . . pn/qn] denotes the substitution of free occurrences of propositional variablespi in QBF φ with qi,
for all i = 1, . . . , n.
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Let ∆ be a set of defaults overP andS ⊆ PROP(P ) a set of propositional formulas. Then
pc(∆, S) is defined as follows:pc(∆, S) := {α

γ
: α:β

γ
∈ ∆ and¬β /∈ S}.

Let (W,∆) be a default theory overP andS ⊆ PROP(P ) a set of propositional formulas.
ThenCnd(W,∆, S) is defined as follows:

• Cnd(W,∆, S) := Cn(W ∪
⋃

i≥0Ei) where

• E0 := {γ : α
γ
∈ pc(∆, S) andW � α} and

• Ei := {γ : α
γ
∈ pc(∆, S) and(W ∪ Ei−1) � α} for all i ≥ 1.

A setE ⊆ PROP(P ) is called anextensionof default theory(W,∆) overP if E = Cnd(W,∆, E).
For a default theory(W,∆) overP and a propositional formulaφ ∈ PROP(P )

• φ is called abrave consequenceof (W,∆) if there is at least one extensionE of (W,∆)
with φ ∈ E;

• φ is called askeptical consequenceof (W,∆) if φ ∈ E for every extensionE of (W,∆).

6.3.2 Classical Abduction

Abduction has first been studied in [23], the logic-based abduction has been introduced in [24].
LetW ⊆ PROP(P ) be a theory,H ⊆ P a set of propositional variables, which is called the

set ofhypotheses, and letp ∈ P be a designated propositional variable. Then a subsetE ⊆ H is
called anabductive explanationfor p fromW andH if the following two conditions hold:

1. T ∪ E is consistent; and

2. T ∪ E � p.

An abductive explanationE for p from W andH is minimal if no proper subsetE′ ⊂ E of
hypotheses is an abductive explanation forp fromW andH.

The following are typical reasoning tasks:

• GivenW ⊆ PROP(P ), H ⊆ P andp ∈ P , find out whether there is an abductive explana-
tion for p fromW andH.

• Relevance Problem: GivenW ⊆ PROP(P ), H ⊆ P , p ∈ P , and a hypothesish ∈ H, find
out whether there is a (minimal) abductive explanation forp fromW andH containingh.

• Necessity Problem: GivenW ⊆ PROP(P ), H ⊆ P , p ∈ P , and a hypothesish ∈ H, find
out whether every (minimal) abductive explanation forp fromW andH containsh.

6.3.3 Equilibrium Logic

Equilibrium Logic has been introduced in [21].
The following definitions are required: As usual,P denotes a set of propositional variables.

An HT-interpretation3 I of P is an ordered pair(IH ,IT ) of interpretationsIH andIT with

{p ∈ P : IH(p) = t} ⊆ {p ∈ P : IT (p) = t}.

Let I = (IH ,IT ) be an HT-interpretation ofP . Then a truth value assignmentĪ : {H,T} ×
PROP(P ) → {t, f} is defined as follows (V¬ : {t, f} → {t, f} andV∧, V∨, V→ : {t, f} × {t, f} →
{t, f} are defined according to the tables on page 75):

3‘H’ stands for “Here” and ‘T’ stands for “There”. The logic ofhere-and-there is also commonly known as Gödel’s
three-valued logic [15]. It was first presented in the form oftruth matrices by Heyting [17] and first axiomatised by
Łukasiewicz [19].
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• If φ = > then

– Ī(H,φ) = t;

– Ī(T, φ) = t;

if φ = ⊥ then

– Ī(H,φ) = f;

– Ī(T, φ) = f;

• If φ = p ∈ P then

– Ī(H,φ) = IH(p);

– Ī(T, φ) = IT (p);

• If φ = ¬φ1 then

– Ī(H,φ) = V∧(V¬(Ī(H,φ1)), V¬(Ī(T, φ1)));

– Ī(T, φ) = V¬(Ī(T, φ1));

• If φ = φ1 ∧ φ2 then

– Ī(H,φ) = V∧(Ī(H,φ1), Ī(H,φ2));

– Ī(T, φ) = V∧(Ī(T, φ1), Ī(T, φ2));

• If φ = φ1 ∨ φ2 then

– Ī(H,φ) = V∨(Ī(H,φ1), Ī(H,φ2));

– Ī(T, φ) = V∨(Ī(T, φ1), Ī(T, φ2));

• If φ = φ1 → φ2 then

– Ī(H,φ) = V∧(V→(Ī(H,φ1), Ī(H,φ2)), V→(Ī(T, φ1), Ī(T, φ2)));

– Ī(T, φ) = V→(Ī(T, φ1), Ī(T, φ2)).

Let I = (IH ,IT ) be an HT-interpretation ofP andφ ∈ PROP(P ). Thenφ is said to betrue
underI if Ī(H,φ) = t. φ is said to befalse underI if Ī(H,φ) = f. An HT-interpretationI is
said tostatisfypropositional formulaφ or, equivalently,I is called aHT-modelof φ, if φ is true
underI. If all HT-interpretations ofP are HT-models ofφ, thenφ is HT-valid.

An interpretationI is anequilibrium modelof a formulaφ if both of the following conditions
hold:

1. (I,I) is an HT-model ofφ; and

2. for every interpretationIs with

{p ∈ P : Is(p) = t} ⊂ {p ∈ P : I(p) = t},

(Is,I) is not an HT-model ofφ.

Let W = {φi}i∈I ⊆ PROP(P ) be a set of propositional formulas andφ ∈ PROP(P ) a
propositional formula. Thenφ is anequilibrium consequenceof W if every equilibrium model of
W (i.e., every equilibrium model of

∧

i∈I φi) is a model ofφ.
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6.3.4 Paraconsistent Reasoning via Signed Systems

Paraconsistent Reasoning via Signed Systems has been introduced in [5].
The section starts with a few definitions. Thepolarity of an occurrence4 of a subformula in a

formula is defined as follows:

• The occurrence ofψ in ψ (note that there is only one such occurrence) is positive.

• If a is a positive (negative) occurrence ofψ in φ, then the corresponding occurrences ofψ
in ¬φ and inφ→ χ are negative (positive).

• If a is a positive (negative) occurrence ofψ in φ, then the corresponding occurrences ofψ
in χ ∨ φ, φ ∨ χ, χ ∧ φ, φ ∧ χ, andχ→ φ are positive (negative).

Let (pi)i∈I be a sequence of pairwise distinct propositional variables, andP = {pi : i ∈ I}.
Furthermore, let(p+

i )i∈I and (p−i )i∈I be sequences of pairwise distinct propositional variables
with the same index setI and such that forP+ = {p+

i : i ∈ I} andP− = {p−i : i ∈ I} the three
sets are disjoint, i.e.,P ∩ P+ = P ∩ P− = P+ ∩ P− = ∅. Letφ ∈ PROP(P ) be a propositional
formula. Thenpm((pi)i∈I , (p

+
i )i∈I , (p

−
i )i∈I , φ) denotes a propositional formula overP+ ∪ P−

which is constructed fromφ as follows: For alli ∈ I, every positive occurrence of propositional
variablepi in φ gets replaced withp+

i , and every negative occurrence gets replaced withp−i . For
a setW ⊆ PROP(P ) of propositional formulas,

pm((pi)i∈I , (p
+
i )i∈I , (p

−
i )i∈I ,W ) := {pm((pi)i∈I , (p

+
i )i∈I , (p

−
i )i∈I , φ) : φ ∈W}.

With (pi)i∈I , (p+
i )i∈I , and(p−i )i∈I as defined above, for everyi ∈ I the following default is

defined:

δ((pi)i∈I , (p
+
i )i∈I , (p

−
i )i∈I , i) :=

: p+
i ↔ ¬p−i

(pi ↔ p+
i ) ∧ (¬pi ↔ p−i )

.

Let ∆ be a set of defaults overP andS ⊆ PROP(P ) a set of propositional formulas. Then
c(∆, S) is defined as follows:

c(∆, S) := {γ :
α : β

γ
∈ ∆ and¬β /∈ S}.

LetW ⊆ PROP(P ) be a set of propositional formulas andφ ∈ PROP(P ) a propositional for-
mula. Then with the above definitions three new consequence relations can be defined as follows:
Let (pi)i∈I be a sequence of pairwise distinct propositional variablessuch thatP = {pi : i ∈ I},
and let(p+

i )i∈I and(p−i )i∈I be arbitrary sequences of pairwise distinct propositionalvariables such
that forP+ = {p+

i : i ∈ I} andP− = {p−i : i ∈ I} the three sets are disjoint, i.e.,P ∩ P+ =
P ∩ P− = P+ ∩ P− = ∅. Furthermore, letW± denotepm((pi)i∈I , (p

+
i )i∈I , (p

−
i )i∈I ,W ), and

let ∆ denote{δ((pi)i∈I , (p
+
i )i∈I , (p

−
i )i∈I , i) : i ∈ I}, and letExt((W±,∆)) denote the set of

extensions of default theory(W±,∆). Then

• W �c φ (φ is acredulous unsigned consequenceof W ) if

φ ∈
⋃

E∈Ext(W±,∆)

Cn
(

W± ∪ c(∆, E)
)

;

• W �s φ (φ is askeptical unsigned consequenceof W ) if

φ ∈
⋂

E∈Ext(W±,∆)

Cn
(

W± ∪ c(∆, E)
)

;

4Theoccurrenceof a subformula in a formula is defined on page 76.
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• W �p φ (φ is aprudent unsigned consequenceof W ) if

φ ∈ Cn
(

W± ∪
⋂

E∈Ext(W±,∆)

c(∆, E)
)

.

Numerous additional consequence relations are defined in [5].

6.3.5 Paraconsistent Reasoning via Three-Valued Logic

The reasoning formalisms of Paraconsistent Reasoning via Three-valued Logic have been intro-
duced in [5, 25, 26].

The following definitions are required: For a setP of propositional variables athree-valued-
interpretation is defined as functionI : P → {t, f,o}. The name three-valued-interpretation is
used for distinction from interpretationsI : P → {t, f}. For a three-valued-interpretationI the
truth value assignment function̄I : PROP(P ) → {t, f,o} is defined as follows:

1. If φ = >, thenĪ(φ) = t, if φ = ⊥ thenĪ(φ) = f.

2. If φ = p ∈ P , thenĪ(φ) = I(p).

3. If φ = ¬φ1, or φ = φ1 ◦ φ2 for any◦ ∈ {∧,∨,→}, thenĪ(φ) is determined bȳI(φ1) and
Ī(φ2) according to the tables below (row̄I(φ1), columnĪ(φ2)).

¬
t f
f t
o o

∧ t f o
t t f o
f f f f
o o f o

∨ t f o
t t t t
f t f o
o t o o

→ t f o
t t f o
f t t t
o t f o

A three-valued-interpretationI is said to be athree-valued-modelof a formulaφ ∈ PROP(P )
if Ī(φ) = t or Ī(φ) = o.

For three-valued-interpretations ofP the following partial orderings are defined, the second
one depending on a setW ⊆ PROP(P ) of formulas.

• I0 ≤m I1 if {p ∈ P : I0(p) = o} ⊆ {p ∈ P : I1(p) = o};

• I0 ≤n I1 if {φ ∈W : Ī0(φ) = o} ⊆ {φ ∈W : Ī1(φ) = o}.

Three new consequence operators are defined as follows:

• W �3 φ if every three-valued-model ofW is a three-valued-model ofφ.

• W �m φ if every three-valued-model ofW which is minimal with respect to≤m is a
three-valued-model ofφ.

• W �n φ if every three-valued-model ofW which is minimal with respect to≤n is a three-
valued-model ofφ (the partial ordering≤n is constructed fromW ).

The reasoning formalisms based on consequence relations�3, �m, and�n are referred to as LP,
LPm, and LPn respectively. LP and LPm have been introduced by Priest in in [25] and [26], LPn

by Philippe Besnard and Torsten Schaub in [5].
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6.4 An Example Reduction-to-QBF

This section presents reductions-to-QBFs for paraconsistent reasoning via three-valued logic. The
reductions are taken from [7], though represented here in a slightly modified way. They serve
as example for the reductions-to-QBFs which have been implemented in the Smute Language.
The other implemented reductions-to-QBFs can be found in [6, 9, 10, 22]. For the following
reductions-to-QBFs a detailed description of its implementations, including the Smute Language
code, is given in Chapter 9.

The following notions are required in the specification of the reductions-to-QBFs. LetS be
a set. Anarray a over S is a (possibly empty) finite sequence of elements ofS, the length
of the sequence is called thesizeof array a. An array [a0, . . . , an] is calledpairwise distinct
if ai 6= aj holds for all i, j = 0, . . . , n with i 6= j. Two arrays[a0, . . . , an] and [b0, . . . , bn]
are calleddistinct if ai 6= bj holds for all i, j = 0, . . . , n. For arraysA = [a0, . . . , an] and
B = [b0, . . . , bn], A ◦ B denotes array[a0, . . . , an, b0, . . . , bn], the concatenationof A andB.
For an arrayA = [a0, . . . , an] the set of array-elementsfrom A, denotedA{}, is defined as
⋃

i=0,...,n{ai}. An arrayA is said torepresenta setS if A{} = S.
For an array of propositional variablesP = [p0, . . . , pn] and a QBFφ, the QBF∀Pφ is defined

as∀p0∀p1 . . . ∀pnφ and∃Pφ is defined as∃p0∃p1 . . . ∃pnφ.
For an array of QBFsΦ = [φ0, . . . , φn] and a propositional variablep, p is said tooccur in Φ

if there is at least onei ∈ {0, 1, . . . , n} such thatp occurs inφi (at an arbitrary position).
For two arrays of QBFsΦ = [φ0, . . . , φn] and Ψ = [ψ0, . . . , ψn], Φ ≤ Ψ denotes QBF

∧

i=0,...,n(φi → ψi). Φ < Ψ denotes QBF
∧

i=0,...,n(φi → ψi) ∧ ¬
∧

i=0,...,n(ψi → φi).
For a QBFφ and two equally sized arrays of propositional variablesP = [p0, . . . , pm] and

Q = [q0, . . . , qm], φ[P/Q] is constructed fromφ by replacing all free occurrences of propositional
variablepi with qi, for i = 0, . . . ,m. For an array of QBFsΦ = [φ0, . . . , φn] and two equally
sized arrays of propositional variablesP = [p0, . . . , pm] andQ = [q0, . . . , qm], Φ[P/Q] is defined
as the array of QBFs[φ0[P/Q], . . . , φn[P/Q]].

For the next definition the following is assumed:P = [p0, . . . , pn] is an array of pairwise
distinct propositional variables,P ′ = [p′0, . . . , p

′
n] is an array of pairwise distinct propositional

variables distinct fromP , Io is a three-valued interpretation ofP{}, andI is an interpretation of
P{} ∪ P

′
{}. ThenIo andI are calledassociatedwith respect toP andP ′ if all of the following

conditions are true:

• for everypi with Io(pi) = t, I(pi) = t andI(p′i) = t;

• for everypi with Io(pi) = f, I(pi) = f andI(p′i) = f;

• for everypi with Io(pi) = o,I(pi) = f andI(p′i) = t.

Note that an interpretationI of P{} ∪ P
′
{} has an associated three-valued interpretation iffĪ(P ≤

P ′) = t.
LetQ denote a set of variables, andn ∈ N, n > 0. Then in the definition of translations the

expression
P := nvar(Q,n)

states thatP is a new array of pairwise distinct propositional variableswith array-sizen such that
P{} ∩Q = ∅. For an arrayΦ of propositional formulas, the expression

P := var(Φ)

states thatP is assigned an array of pairwise distinct propositional variables such thatP{} = {p :
p occurs inΦ}. For an arrayP , the expressionsize(P ) is used to denote the array-size ofP .

With these notions and definitions the translations are specified as follows: The specifications
are “bottom-up”, i.e., starting with smaller sub-translations.
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The first function is calledτ and expects the following parameters: An arbitrary propositional
formula φ, an array of pairwise distinct propositional variablesP = [p0, . . . , pn] representing
the variables occurring inφ (or a superset of those), an array of pairwise distinct propositional
variablesP ′ = [p′0, . . . , p

′
n] which is distinct fromP , plus a fourth parameter which is one of t,f,

or o.
τ is defined as follows:

1. (a) τ(P,P ′, pi, t) := pi;

(b) τ(P,P ′, pi, f) := ¬p′i;

(c) τ(P,P ′, pi, t) := ¬pi ∧ p
′
i;

2. (a) τ(P,P ′,¬φ1, t) := τ(P,P ′, φ1, f);

(b) τ(P,P ′,¬φ1, f) := τ(P,P ′, φ1, t);

(c) τ(P,P ′,¬φ1,o) := τ(P,P ′, φ1,o);

3. (a) τ(P,P ′, φ1 ∧ φ2, t) := τ(P,P ′, φ1, t) ∧ τ(P,P ′, φ2, t);

(b) τ(P,P ′, φ1 ∧ φ2, f) := τ(P,P ′, φ1, f) ∨ τ(P,P ′, φ2, f);

(c) τ(P,P ′, φ1 ∧ φ2,o) := ¬τ(P,P ′, φ1 ∧ φ2, t) ∧ ¬τ(P,P ′, φ1 ∧ φ2, f);

4. (a) τ(P,P ′, φ1 ∨ φ2, t) := τ(P,P ′, φ1, t) ∨ τ(P,P ′, φ2, t);

(b) τ(P,P ′, φ1 ∨ φ2, f) := τ(P,P ′, φ1, f) ∧ τ(P,P ′, φ2, f);

(c) τ(P,P ′, φ1 ∨ φ2,o) := ¬τ(P,P ′, φ1 ∨ φ2, t) ∧ ¬τ(P,P ′, φ1 ∨ φ2, f);

5. (a) τ(P,P ′, φ1 → φ2, t) := τ(P,P ′, φ1, f) ∨ τ(P,P ′, φ2, t);

(b) τ(P,P ′, φ1 → φ2, f) := ¬τ(P,P ′, φ1, f) ∧ τ(P,P ′, φ2, f);

(c) τ(P,P ′, φ1 → φ2,o) := ¬τ(P,P ′, φ1, f) ∧ τ(P,P ′, φ2,o).

The models ofτ(P,P ′, φ, x) (x ∈ {t, f,o}) correspond to three-valued interpretations in the
following way:

• For any modelI : P{} ∪ P
′
{} → {t, f} of τ(P,P ′, φ, x) either

– Ī(P ≤ P ′) = f or

– I has an associated three-valued interpretationIo : P → {t, f,o} with Īo(φ) = x.

• Conversely, ifIo is a three-valued interpretation with̄Io(φ) = x, then the associated inter-
pretationI : P{} ∪ P

′
{} → {t, f} is a model ofτ(P,P ′, φ, x).

The parameters of the next translation, calledm3, are as follows: There is an arrayW =
[φ0, . . . , φn] of propositional formulas, an arrayP = [p0, . . . , pm] of pairwise distinct proposi-
tional variables representing the variables occurring inW (or a superset of those), and there is an
arrayP ′ = [p′0, . . . , p

′
m] of pairwise distinct propositional variables distinct fromP . m3(P,P ′,W )

is defined as:

m3(P,P ′,W ) :=

n
∧

i=0

¬τ(P,P ′, φi, f).

The models ofm3(P,P ′,W ) correspond to three-valued models ofW as follows:

• For any modelI : P{} ∪ P
′
{} → {t, f} of m3(P,P ′,W ) either

– Ī(P ≤ P ′) = f or

– I has an associated three-valued interpretation which is a three-valued model ofW .
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• Conversely, ifIo is a three-valued model ofW , then the associated interpretationI : P{} ∪
P ′
{} → {t, f} is a model ofm3(P,P ′,W ).

TranslationConsLPtakes two parameters. The first,W = [φ0, . . . , φn], is an array of proposi-
tional formulas and the second,ψ, is a propositional formula.ConsLP(W,ψ) is defined as follows:

1. P := var(W ◦ [ψ]);

2. P ′ := nvar(P{}, size(P ));

3. ConsLP(W,ψ) := ∀P∀P ′
(

(

(P ≤ P ′) ∧ m3(P,P ′,W )
)

→ m3(P,P ′, ψ)
)

.

ConsLP(W,ψ) is a closed QBF, establishing the following correspondence:

W �3 ψ iff ConsLP(W,ψ) is valid.

For the next function,min m, there are 3 parameters: An arrayW = [φ0, . . . , φn] of proposi-
tional formulas, an arrayP = [p0, . . . , pm] of pairwise distinct propositional variables, represent-
ing the variables occurring inW or a superset of these variables, plus an array of pairwise distinct
propositional variablesP ′ = [p′0, . . . , p

′
m] which is distinct fromP . The function is defined as

follows:

1. Q = [q0, . . . , qm] := nvar(P{} ∪ P
′
{}, size(P ));

2. Q′ := nvar(P{} ∪ P
′
{} ∪Q{}, size(P ));

3. OP := [τ(P,P ′, p0, o), . . . , τ(P,P
′, pm, o)];

4. OQ := [τ(P,P ′, q0, o), . . . , τ(P,P
′, qm, o)];

5. min m(P,P ′,W ) is given by

(P ≤ P ′) ∧ ¬∃Q∃Q′
(

(OQ < OP ) ∧ (Q ≤ Q′) ∧ m3(Q,Q′,W [P/Q])
)

.

LetI be an interpretation ofP{}∪P
′
{}. The models ofmin m(P,P ′,W ) correspond to certain

three-valued interpretations ofP{}, as given by the equivalence of the following two statements:

1. I � min m(P,P ′,W ).

2. I has an associated three-valued interpretationIo and for every three-valued modelI i
o of

W the following is true:I i
o ≮m Io (≤m is defined with respect to the variables ofP , and

“a < b” stands for “a ≤ b anda 6= b”).

For the next translation,min n, the set of parameters is the same as withmin m: An array
W = [φ0, . . . , φn] of propositional formulas, an arrayP = [p0, . . . , pm] of pairwise distinct
propositional variables, representing the variables occurring inW or a superset of these variables,
plus an array of pairwise distinct propositional variablesP ′ = [p′0, . . . , p

′
m] which is distinct from

P . The function is defined as follows:

1. Q = [q0, . . . , qm] := nvar(P{} ∪ P
′
{}, size(P ));

2. Q′ := nvar(P{} ∪ P
′
{} ∪Q{}, size(P ));

3. OP := [τ(P,P ′, φ0, o), . . . , τ(P,P
′, φn, o)];

4. OQ := [τ(P,P ′, φ0[P/Q], o), . . . , τ(P,P ′, φn[P/Q], o)];
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5. min n(P,P ′,W ) is given by

(P ≤ P ′) ∧ ¬∃Q∃Q′
(

(OQ < OP ) ∧ (Q ≤ Q′) ∧ m3(Q,Q′,W [P/Q])
)

.

Let I be an interpretation ofP{} ∪P
′
{}. The models ofmin n(P,P ′,W ) correspond to certain

three-valued interpretations ofP{}, as given by the equivalence of the following two statements:

1. I � min n(P,P ′,W ).

2. I has an associated three-valued interpretationIo and for every three-valued modelI i
o of

W the following is true:I i
o ≮n Io (≤n is defined with respect toW ).

For the next translation,ConsLPm, there are two parameters: An arrayW = [φ0, . . . , φn] of
propositional formulas and a propositional formulaψ. ConsLPm(W,ψ) is defined as follows:

1. P := var(W ◦ [ψ]);

2. P ′ := nvar(P{}, size(P ));

3. ConsLPm(W,ψ) := ∀P∀P ′
(

(

min m(P,P ′,W ) ∧ m3(P,P ′,W )
)

→ m3(P,P ′, ψ)
)

.

Another translation,ConsLPn, has exactly the same parameters and is defined with these steps:

1. P := var(W ◦ [ψ]);

2. P ′ := nvar(P{}, size(P ));

3. ConsLPn(W,ψ) := ∀P∀P ′
(

(

min n(P,P ′,W ) ∧ m3(P,P ′,W )
)

→ m3(P,P ′, ψ)
)

.

Both translations create closed QBFs, establishing the following correspondences:

• W �m ψ iff ConsLPm(W,ψ) is valid.

• W �n ψ iff ConsLPn(W,ψ) is valid.
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Chapter 7

Smute Interpreter Logic Edition

There are two important aspects of Smute Interpreter Logic Edition:

• It introducesCARGOTREE-Schemes for several logic-related data structures.

• It introduces a syntax according to which logic-related data instances can be specified
within Smute Launch Files. Preprocessing Functions for therespective grammar-dependent
CARGOTREEs are included.

The topics of Smute Interpreter Logic Edition which are relevant for Smute Function Users,
namely how to specify logic-related data instances in SmuteLaunch Files, are documented in
Section 7.1. The topics which are relevant for Smute Function Developers, namely whichCARGO-
TREE-Schemes and which Preprocessing Functions there are, follow in Section 7.2.

7.1 Logic Edition Launch File Syntax

Currently the following data-instances can be specified within the Smute Launch File for Smute
Interpreter Logic Edition:

• “formula”: Propositional formula;

• “vararray”: Array of propositional variables.

Additional grammars for data like defaults (from default logic), formula arrays (for the specifica-
tion of theories), etc., are likely to be implemented in coming versions.

The Backus-Naur form of “formula”:

<formula> ::= <fla_or> ’>’ <fla_or>
| <fla_or>

<fla_or> ::= <fla_or> ’|’ <fla_and>
| <fla_or> ’+’ <fla_and>
| <fla_and>

<fla_and> ::= <fla_and> ’ˆ’ <fla_not>
| <fla_and> ’&’ <fla_not>
| <fla_and> ’*’ <fla_not>
| <fla_not>

<fla_not> ::= ’˜’ <fla_not>
| ’!’ <fla_not>
| <fla_bot>
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<fla_const> ::= ’$T’
| ’$F’

<fla_bot> ::= id !propositional variable identifier
| <fla_const>
| ’(’ <formula> ’)’

Example specifications:

˜p & p & (p > q) & (r > q)
((a&(b|c))>b)&(!a|!c>$F)

The Backus-Naur form of “vararray” (start symbol isidarraydef ):

<idarraydef> ::= ’<’ <idarray> ’>’

<idarray> ::= id ’,’ <idarray>
| id

Example specification:

<a,b,p,d,z,g>

7.2 Logic Edition Preprocessing Functions andCARGOTREE-Schemes

With Smute Interpreter Logic Edition it is possible to specify data-instances with the following
structures in Smute Launch Files:

• Propositional Formula;

• Variable Array.

Smute Interpreter Logic Edition also defines grammar-independentCARGOTREE-Schemes for
these data structures and comes with a Smute Module called “precorelogic ” containing the
respective Preprocessing Functions.

Here is an overview of theCARGOTREE-Schemes:

QBFS : For the representation of Quantified Boolean Formulas (QBFs). There are string identi-
fiers for propositional variables. Note that propositionalformulas are QBFs without quanti-
fiers. There is no separateCARGOTREE-Scheme for propositional formulas.

QBF : Identical toQBFS, except that there are integer identifiers for propositional variables.

VARARRAYS : For the representation of propositional variable arrays.There are string identi-
fiers for propositional variables.

VARARRAY : Identical toVARARRAYS, except that there are integer identifiers for propositional
variables.

For the sake of better comprehensibility node-ids for theseCARGOTREE-Schemes are refer-
enced with string aliases. These are the ids for theQBFS-Scheme:
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String alias Integer value
QBFNOT 0
QBFOR 1
QBFAND 2
QBFIMPL 3
QBFEXISTS 4
QBFFORALL 5
QBFPROPVAR 6
QBFCONST 7

With the QBFS-Scheme Quantified Boolean Formulas are encoded as follows:

• A ConCls-node with 1 child and idQBFNOTis used to represent a QBF¬φ. The sub-
CARGOTREErepresentsφ.

• A ConCls-node with 2 children and idQBFORis used to represent a QBFφ0 ∨ φ1. The 0th

sub-CARGOTREErepresentsφ0, the 1st sub-CARGOTREErepresentsφ1.

• A ConCls-node with 2 children and idQBFANDis used to represent a QBFφ0 ∧ φ1. The
0th sub-CARGOTREErepresentsφ0, the 1st sub-CARGOTREErepresentsφ1.

• A ConCls-node with 2 children and idQBFIMPL is used to represent a QBFφ0 → φ1. The
0th sub-CARGOTREErepresentsφ0, the 1st sub-CARGOTREErepresentsφ1.

• An Int-node with idQBFCONSTis used to represent the logical constants⊥ and>. A value
of 0 is used for the representation of⊥, a value of 1 for the representation of>.

• A Str-node with idQBFPROPVARis used to represent a logical variable. The string-value
serves as variable identifier.

• A ConCls-node with 2 children and idQBFEXISTS is used to represent a QBF∃p(φ).
The 0th sub-CARGOTREErepresents propositional variablep (and hence is always a Str-
node with idQBFPROPVAR), the 1st sub-CARGOTREErepresentsφ.

• A ConCls-node with 2 children and idQBFFORALLis used to represent a QBF∀p(φ).
The 0th sub-CARGOTREErepresents propositional variablep (and hence is always a Str-
node with idQBFPROPVAR), the 1st sub-CARGOTREErepresentsφ.

TheQBF-Schemeis identical to the QBFS-Scheme, except that Int-nodes withid QBFPROP-
VARare used for the representation of propositional variablesinstead of Str-nodes. The integer-
value serves as variable identifier.

These are the node-ids forCARGOTREE-SchemeVARARRAYS:

String alias Integer value
VARARRAYLINK 0
VARARRAYPROPVAR 1

Propositional variable arrays are encoded as follows:

• A Str-node with idVARARRAYPROPVARis used to represent a propositional variable. The
string-value serves as variable identifier.

• A ConCls-node with 2 children and idVARARRAYLINK is used to represent a variable-
array with more than 1 entry. The 0th sub-CARGOTREErepresents the array’s 0th entry
(and hence is always a Str-node with idVARARRAYPROPVAR). The 1st sub-CARGOTREE
represents the sub-array consisting of all entries except the 0th.
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TheVARARRAY-Schemeis identical to the VARARRAYS-Scheme, except that Int-nodes with
id VARARRAYPROPVARare used for the representation of propositional variablesinstead of Str-
nodes. The integer-value serves as variable identifier.

The Preprocessing Functions for Smute Interpreter Logic Edition are contained in Smute Mod-
ule precorelogic . Recall that data specified in Smute Launch Files for Smute Interpreter
Logic Editionmustbe preprocessed with the Preprocessing Functions ofprecorelogic . Smute
Functions not obeying this rule are rendered useless with changes in the Smute Launch File gram-
mar for Smute Interpreter Logic Edition.

Module precorelogic
Version 0.00 (27/08/2003)
Author Norbert Pfaffinger
Description Preprocessing Functions which from grammar-dependent CAR-

GOTREEs created by Smute Interpreter Logic Edition build new
CARGOTREErepresentations complying with certain grammar-
independent CARGOTREE-Schemes.

Overview
PreFLA

(0.00), p.90

Preprocesses a CARGOTREEgenerated by the Smute Interpreter

Logic Edition according to the “formula”-syntax of the Logic Edi-

tion Launch File Grammar, creating a CARGOTREErepresenting the

same formula and complying with the QBFS-Scheme.

PreQBF

(0.00), p.90

Preprocesses a CARGOTREEgenerated by the Smute Interpreter

Logic Edition according to the “qbfdef”-syntax of the Logic Edi-

tion Launch File Grammar, creating a CARGOTREErepresenting the

same QBF and complying with the QBFS-Scheme.

PreVarArray

(0.00), p.91

Preprocesses a CARGOTREEgenerated by the Smute Interpreter

Logic Edition according to the “idarraydef”-syntax of the Logic Edi-

tion Launch File Grammar, creating a CARGOTREErepresenting the

same variable array and complying with the VARARRAYS-Scheme.

IdxSubstC

(0.00), p.91

From a single input-QBF in QBFS-Scheme creates a logically

equivalent QBF in QBF-Scheme (string identifiers are replaced with

INTEGERidentifiers of a range starting at 0).

IdxSubst2C

(0.00), p.92

From two input-QBFs in QBFS-Scheme creates logically equiv-

alent QBFs in QBF-Scheme (string identifiers are replaced with

INTEGERidentifiers of a range starting at 0).

IdxSubst

(0.00), p.92

From a single input-QBF in QBFS-Scheme creates a logically

equivalent QBF in QBF-Scheme. Integer-identifiers are determined

by a HASHSTRCOL.

IdxSubstVarArray

(0.00), p.93

From a variable-array in VARARRAYS-Scheme creates an

INTEGER-ARRAYwhich re-identifies the original string variables.
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PreFLA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Pr. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE fla ) R01= CARGOTREE fla );

Description
Preprocesses a CARGOTREEgenerated by the Smute Interpreter Logic Edition
according to the “formula”-syntax of the Logic Edition Launch File Grammar, creating
a CARGOTREErepresenting the same formula and complying with the
QBFS-Scheme.
Parameters
ctmem Memory used to create the resulting formula within.
fla In accordance to the “formula”-syntax of the Logic Edition Launch

File Grammar.
Return Values
ctmem Passed through.
fla Resulting formula in QBFS-Scheme. Completely allocated in

ctmem. The string-values are only referenced from the input
CARGOTREEthough.

PreQBF (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Pr. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE fla ) R01= CARGOTREE fla );

Description
Preprocesses a CARGOTREEgenerated by the Smute Interpreter Logic Edition
according to the “qbfdef”-syntax of the Logic Edition Launch File Grammar, creating
a CARGOTREErepresenting the same QBF and complying with the QBFS-Scheme.
Parameters
ctmem Memory used to create the resulting QBF within.
fla In accordance to the “qbfdef”-syntax of the Logic Edition Launch

File Grammar.
Return Values
ctmem Passed through.
fla Resulting QBF in QBFS-Scheme. Completely allocated in ctmem.

The string-values are only referenced from the input CARGOTREE
though.
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PreVarArray (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Pr. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE varray ) R01= CARGOTREE varray );

Description
Preprocesses a CARGOTREEgenerated by the Smute Interpreter Logic Edition
according to the “idarraydef”-syntax of the Logic Edition Launch File Grammar,
creating a CARGOTREErepresenting the same variable array and complying with the
VARARRAYS-Scheme.
Parameters
ctmem Memory used to create the resulting variable array within.
varray In accordance to the “idarraydef”-syntax of the Logic Edition

Launch File Grammar.
Return Values
ctmem Passed through.
varray Resulting variable array in VARARRAYS-Scheme. Completely

allocated in ctmem. The string-values are only referenced from the
input CARGOTREEthough.

IdxSubstC (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Id. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf ) R01= CARGOTREE qbfs );

Description
From a single input-QBF in QBFS-Scheme creates a logically equivalent QBF in
QBF-Scheme (string identifiers are replaced with INTEGERidentifiers of a range
starting at 0).
The replacement-method is replacement-by-occurrence. (For example, the first
string encountered is replaced with ‘0’).
Parameters
ctmem Memory used to create the resulting QBF within. Note that not an

entirely new QBF is created, instead the input-QBFS gets modified.
qbfs QBF in QBFS-Scheme. Gets modified.
Return Values
ctmem Passed through.
qbf Resulting QBF in QBF-Scheme. Is a modification of the input-QBF.
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IdxSubst2C (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Id. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf0 R01= CARGOTREE qbfs0

R02= CARGOTREE qbf1 ) R02= CARGOTREE qbfs1 );

Description
From two input-QBFs in QBFS-Scheme creates logically equivalent QBFs in
QBF-Scheme (string identifiers are replaced with INTEGERidentifiers of a range
starting at 0).
Identity across the two QBFs remains of course intact. The replacement-method is
replacement-by-occurrence. New nodes for both the resulting QBFs are allocated
from ctmem.
Parameters
ctmem Memory used to create the resulting QBFs within. Note that not

entirely new QBFs are created, instead the input-QBFs get
modified.

qbfs0 QBF in QBFS-Scheme. Gets modified.
qbfs1 QBF in QBFS-Scheme. Gets modified.
Return Values
ctmem Passed through.
qbf0 Resulting QBF in QBF-Scheme. Is a modification of the input-QBF

qbfs0.
qbf1 Resulting QBF in QBF-Scheme. Is a modification of the input-QBF

qbfs1.

IdxSubst (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Id. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf R01= CARGOTREE qbfs

R02= HASHSTRCOL hash R02= HASHSTRCOL hash

R03= INTEGER idxstrt ) R03= INTEGER idxstrt );

Description
From a single input-QBF in QBFS-Scheme creates a logically equivalent QBF in
QBF-Scheme. Integer-identifiers are determined by a HASHSTRCOL.
Parameters
ctmem Memory used to create the resulting QBF within. Note that not an

entirely new QBF is created, instead the input-QBF gets modified.
qbfs QBF in QBFS-Scheme. Gets modified.
hash This hash may be empty or already contain strings with their

occurrence-index in data-field 0.
idxstrt The next new string is replaced with idxstrt. Is usually set to the

number of entries already stored in hash.
Return Values
ctmem Passed through.
qbf Resulting QBF in QBF-Scheme. Is a modification of the input-QBF

qbfs.
hash Passed through and possibly altered.
idxstrt Updated.
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IdxSubstVarArray (0.00)
Synopsis
( R00= CARGOTREEvararray =Id. ( R00= CARGOTREEvararray

R01= HASHSTRCOLhash R01= HASHSTRCOLhash

R02= INTEGER idxstrt R02= INTEGER idxstrt );

R03= ARRAY idxarray )

Description
From a variable-array in VARARRAYS-Scheme creates an INTEGER-ARRAYwhich
re-identifies the original string variables.
Parameters
vararray Variable array in VARARRAYS-Scheme.
hash This hash may be empty or already contain strings with their

occurrence-index in data-field 0.
idxstrt The next new string is replaced with idxstrt. Is usually set to the

number of entries already stored in hash.
Return Values
vararray Passed through.
hash Passed through and possibly altered.
idxstrt Updated.
idxarray Contains the replacement-INTEGER-array for the

vararray-identifiers.
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Chapter 8

Reduction-to-QBF Smute Package
Documentation

The Reduction-to-QBF Smute Package implements several reductions-to-QBFs. An overview of
the Smute Package is given in Section 8.1. An example for the invocation of a reduction-to-QBF
Smute Function is provided in Section 8.2. Finally, Section8.3 lists the interfaces to all Smute
Functions of the Reduction-to-QBF Smute Package.

8.1 Overview

Currently reductions for reasoning tasks from the following propositional nonmonotonic reasoning
formalisms are implemented:

• Classical Abduction;

• Equilibrium Logic;

• Paraconsistent Reasoning via Signed Systems;

• Paraconsistent Reasoning via Three-Valued Logic.

The reduction-to-QBF Smute Functions in this Smute Packageare based on the reductions-
to-QBFs presented in [6, 7, 10, 22]. The reductions-to-QBFsfor Paraconsistent Reasoning via
Three-Valued Logic are presented on pages 82ff. in Chapter 6. For a description of the other
implemented reductions-to-QBFs refer to the aforementioned papers.

This Smute Package requires Smute Interpreter Logic Edition. Currently all reasoning tasks
have to be specified in a Smute Launch File, i.e., the Smute Package does not include Wrapper
Functions for reading data specified externally.

It is intended to extend this Smute Package with further reductions-to-QBFs for coming re-
leases.

Currently the package contains the following Smute Modules:

1. cabduction (p.96ff.)
2. equilib (p.103ff.)
3. parasigned (p.107ff.)
4. para3val (p.113ff.)
5. cabductionlaunch (p.119ff.)
6. equiliblaunch (p.123ff.)
7. parasignedlaunch (p.124ff.)
8. para3vallaunch (p.125ff.)
9. qbf (p.126ff.)
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Figure 8.1: Smute Module dependencies

Smute Modules 1–4 contain the actual reductions-to-QBFs (Core Functions), for the respec-
tive propositional nonmonotonic reasoning formalisms. Smute Function Users never invoke them
directly. Smute Modules 5–8 contain Wrapper Functions for Smute Modules 1–4, providing inter-
faces to Smute Function Users. These functions store resulting QBFs in two formats: In so-called
‘boole ’-format, and in GDL-format. The former is a format defined byQBF-solverboole [2],
the latter is defined by graph visualisation softwareaiSee [1]. With these two programs it is
hence possible to solve (find models) and to visualise resulting QBFs. The last Smute Module,
qbf , contains various utility Smute Functions for Quantified Boolean Formulas. The reductions-
to-QBFs depend on those Smute Functions. Currently theqbf Smute Module is developed and
distributed as part of the Reduction-to-QBF Smute Package.As it could be useful for other Smute
Functions as well, it might be distributed separately in coming releases. The dependencies be-
tween the Smute Modules are depicted in Figure 8.1 (note thatSmute Moduleprecorelogic
comes with Smute Interpreter Logic Edition).

8.2 Smute Function Invocation Example

Example 8.1 (Invocation of a reduction-to-QBF Smute Function) In this example a reduction-to-
QBF for to the consequence relation of LPm gets invoked (see [7] for a description). In particular,
for propositional formulasφ = ¬p ∧ p ∧ (p → q) ∧ (r → q) andψ = r it is assumed a Smute
Function User wants to know whetherφ �m ψ, i.e., whetherψ is a consequence ofφ according
to the logic of LPm. The respective Smute Function for this reasoning task is called ConsLPm
and resides in Smute Modulepara3vallaunch . This function possesses three parameters,
flaleft, flaright, andstorenum. The two formulasflaleft andflaright have to be specified directly
in the Smute Launch File according to the Logic Edition’s ‘formula’-syntax. The QBF created
by functionConsLPm has the property that it is satisfiable iffflaleft �m flaright. The parameter
storenumis an integer, which determines the filename of the output-files. If, for example, a value of
27 is passed, then the resulting files are named “qbf0027.gdl ” and “qbf0027.txt ”. These
files are created in the ‘current directory’, i.e., the directory the Smute Interpreter is called from.

The appropriate Smute Launch File for the reasoning task is as follows:

<phi> := ˜p & p & (p > q) & (r > q)
<psi> := r
loadmodules(precorelogic,qbf,para3val,para3vallaunc h);
para3vallaunch:ConsLPm(phi,psi,20);

Of course any text-editor can be used to write and edit a SmuteLaunch File. It is recommended
to store Smute Launch Files to the “working directory” of Smute (the directory where the Smute
Interpreter is located). For this example the Smute Launch File is assumed to be named “l.txt ”.

The Smute Function can now be invoked as follows:

>smute l.txt
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If execution is successful the two files ‘qbf0020.gdl ’ and ‘qbf0020.txt ’ are created.
The ‘.gdl ’-file is the graph description which can be loaded withaiSee [1] in order to visualise
the resulting QBF. The ‘.txt ’-file is the resulting QBF represented in ‘boole ’-syntax. Ifboole
is available the reasoning task can be solved by passing the file toboole :

>boole <qbf0020.txt

The output ofboole is a simple ‘0’, which stands for ‘false’ (‘true’ would be represented by ‘1’).
The answer ‘false’ means the QBF is not valid, i.e., unsatisfiable. Accordingly, the answer to the
reasoning task is ‘no’: In the logic of LPm, ψ is not a consequence ofφ. Below is a listing of the
QBF in file “qbf0020.txt ”:

forall [P0] (forall [P1] (forall [P2] (forall [P3] (forall [ P4] (forall
[P5] (˜((˜P0|P1)&(˜P2|P3)&(˜P4|P5)&forall [P6] (forall [P7] (forall [P8]
(forall [P9] (forall [P10] (forall [P11] (˜((˜(˜P6&P7)|˜P 0&P1)&(˜(˜P8&P9)|
˜P2&P3)&(˜(˜P10&P11)|˜P4&P5)&˜((˜(˜P0&P1)|˜P6&P7)&( ˜(˜P2&P3)|˜P8&P9)&
(˜(˜P4&P5)|˜P10&P11))&(˜P6|P7)&(˜P8|P9)&(˜P10|P11)&
˜(P6|˜P7|˜˜P7&˜P9|˜˜P11&˜P9))))))))&˜(P0|˜P1|˜˜P1&˜ P3|˜˜P5&˜P3))|˜˜P5))))));

�

8.3 The Smute Function Interfaces

Module cabduction
Version 0.00 (06/10/2003)
Author Norbert Pfaffinger
Description Translations of reasoning-task instances from classical abduction

into QBFs.
Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).
The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.
The functions are based on the translations presented in [10].

Overview
AbductiveExplanation

(0.00), p.97

Creates an open QBF where models correspond to abductive ex-

planations.

ExistsAbductiveExplanation

(0.00), p.98

Creates a closed QBF which is valid iff there is an abductive expla-

nation.

NoSubIsAbductiveExplanation

(0.00), p.99

Creates an open QBF where models correspond to selections of

hypotheses such that no proper sub-selection is an abductive ex-

planation.

NecessaryHypothesis

(0.00), p.100

Creates a closed QBF which is valid iff the specified hypothesis is

necessary for the abductive explanations.

RelevantHypothesis

(0.00), p.101

Creates a closed QBF which is valid iff the specified hypothesis is

relevant for the abductive explanations.
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NecessaryHypothesis Min

(0.00), p.102

Creates a closed QBF which is valid iff the specified hypothesis is

necessary for the minimal abductive explanations.

RelevantHypothesis Min

(0.00), p.103

Creates a closed QBF which is valid iff the specified hypothesis is

relevant for the minimal abductive explanations.

AbductiveExplanation (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Ab. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE fla R01= CARGOTREE fla

R02= ARRAY hypotheses R02= ARRAY hypotheses

R03= CARGOTREE flacons R03= CARGOTREE flacons

R04= INTEGER varstrtfree R04= INTEGER varstrtfree

R05= INTEGER varstrtbound R05= INTEGER varstrtbound );

R06= CARGOTREE qbf )

Description
Creates an open QBF where models correspond to abductive explanations.
The abductive explanations in question are those for flacons from fla and hypotheses.
The number of free variables in the resulting QBF equals the array-size of
hypotheses. An interpretation corresponds to a hypotheses-subarray by selecting
those hypotheses for which the interpretation of the corresponding variable is TRUE.
The first free variable in the specified range corresponds to the first hypothesis, the
second free variable to the second hypothesis and so forth.
Parameters
ctmem Memory used to create the resulting QBF within.
fla Formula in QBF-Scheme. Is NOT utilised.
hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT

utilised.
flacons Formula in QBF-Scheme. Is NOT utilised.
varstrtfree First element of the free-variables identifier range. Range-size is

given by the array-size of hypotheses.
varstrtbound First element of the bound-variables range. Range-size via updated

return-value.
Return Values
ctmem Passed through.
fla Passed through.
hypotheses Passed through.
flacons Passed through.
varstrtfree Passed through.
varstrtbound Updated.
qbf Resulting QBF.
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ExistsAbductiveExplanation (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Ex. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf R01= CARGOTREE fla

R02= INTEGER varstrt ) R02= ARRAY hypotheses

R03= CARGOTREE flacons

R04= INTEGER varstrt );

Description
Creates a closed QBF which is valid iff there is an abductive explanation.
The abductive explanations in question are those for flacons from fla and hypotheses.
Parameters
ctmem Memory used to create the resulting QBF within.
fla Formula in QBF-Scheme. Is NOT utilised.
hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT

utilised.
flacons Formula in QBF-Scheme. Is NOT utilised.
varstrt First element of the (bound-)variables range. Range-size via

updated return-value.
Return Values
ctmem Passed through.
qbf Resulting QBF.
varstrt Updated.
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NoSubIsAbductiveExplanation (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =No. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE fla R01= CARGOTREE fla

R02= ARRAY hypotheses R02= ARRAY hypotheses

R03= CARGOTREE flacons R03= CARGOTREE flacons

R04= INTEGER varstrtfree R04= INTEGER varstrtfree

R05= INTEGER varstrtbound R05= INTEGER varstrtbound );

R06= CARGOTREE qbfr )

Description
Creates an open QBF where models correspond to selections of hypotheses such
that no proper sub-selection is an abductive explanation.
In other words: An interpretation of the QBF’s free variables is a model iff no
subarray (no interpretation evaluating a subarray to TRUE) corresponds to an
abductive explanation (by selecting those hypotheses for which the corresponding
variable is evaluated to TRUE).
The abductive explanations in question are those for flacons from fla and hypotheses.
Parameters
ctmem Memory used to create the resulting QBF within.
fla Formula in QBF-Scheme. Is NOT utilised.
hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT

utilised. The array-size must be greater or equal to 1.
flacons Formula in QBF-Scheme. Is NOT utilised.
varstrtfree First element of the free-variables identifier range. Range-size is

given by the array-size of hypotheses.
varstrtbound First element of the bound-variables range. Range-size via updated

return-value.
Return Values
ctmem Passed through.
fla Passed through.
hypotheses Passed through.
flacons Passed through.
varstrtfree Passed through.
varstrtbound Updated.
qbfr Resulting QBF.

99



NecessaryHypothesis (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Ne. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf R01= CARGOTREE fla

R02= INTEGER varstrt ) R02= ARRAY hypotheses

R03= CARGOTREE flacons

R04= INTEGER varstrt

R05= INTEGER idxhyp );

Description
Creates a closed QBF which is valid iff the specified hypothesis is necessary for the
abductive explanations.
The abductive explanations in question are those for flacons from fla and hypotheses.
Parameters
ctmem Memory used to create the resulting QBF within.
fla Formula in QBF-Scheme. Is NOT utilised.
hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT

utilised.
flacons Formula in QBF-Scheme. Is NOT utilised.
varstrt First element of the (bound-)variables range. Range-size via

updated return-value.
idxhyp Index of the hypothesis to check necessity for. Valid indices are

0,...,arraysize(hypotheses)-1.
Return Values
ctmem Passed through.
qbf Resulting QBF.
varstrt Updated.
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RelevantHypothesis (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Re. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf R01= CARGOTREE fla

R02= INTEGER varstrt ) R02= ARRAY hypotheses

R03= CARGOTREE flacons

R04= INTEGER varstrt

R05= INTEGER idxhyp );

Description
Creates a closed QBF which is valid iff the specified hypothesis is relevant for the
abductive explanations.
The abductive explanations in question are those for flacons from fla and hypotheses.
Parameters
ctmem Memory used to create the resulting QBF within.
fla Formula in QBF-Scheme. Is NOT utilised.
hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT

utilised.
flacons Formula in QBF-Scheme. Is NOT utilised.
varstrt First element of the (bound-)variables range. Range-size via

updated return-value.
idxhyp Index of the hypothesis to check relevance for. Valid indices are

0,...,arraysize(hypotheses)-1.
Return Values
ctmem Passed through.
qbf Resulting QBF.
varstrt Updated.
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NecessaryHypothesis Min (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Ne. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf R01= CARGOTREE fla

R02= INTEGER varstrt ) R02= ARRAY hypotheses

R03= CARGOTREE flacons

R04= INTEGER varstrt

R05= INTEGER idxhyp );

Description
Creates a closed QBF which is valid iff the specified hypothesis is necessary for the
minimal abductive explanations.
The minimal abductive explanations in question are those for flacons from fla and
hypotheses.
Parameters
ctmem Memory used to create the resulting QBF within.
fla Formula in QBF-Scheme. Is NOT utilised.
hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT

utilised.
flacons Formula in QBF-Scheme. Is NOT utilised.
varstrt First element of the (bound-)variables range. Range-size via

updated return-value.
idxhyp Index of the hypothesis to check necessity for. Valid indices are

0,...,arraysize(hypotheses)-1.
Return Values
ctmem Passed through.
qbf Resulting QBF.
varstrt Updated.
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RelevantHypothesis Min (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Re. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf R01= CARGOTREE fla

R02= INTEGER varstrt ) R02= ARRAY hypotheses

R03= CARGOTREE flacons

R04= INTEGER varstrt

R05= INTEGER idxhyp );

Description
Creates a closed QBF which is valid iff the specified hypothesis is relevant for the
minimal abductive explanations.
The minimal abductive explanations in question are those for flacons from fla and
hypotheses.
Parameters
ctmem Memory used to create the resulting QBF within.
fla Formula in QBF-Scheme. Is NOT utilised.
hypotheses Array of formulas, each in QBF-Scheme. Formulas are NOT

utilised.
flacons Formula in QBF-Scheme. Is NOT utilised.
varstrt First element of the (bound-)variables range. Range-size via

updated return-value.
idxhyp Index of the hypothesis to check relevance for. Valid indices are

0,...,arraysize(hypotheses)-1.
Return Values
ctmem Passed through.
qbf Resulting QBF.
varstrt Updated.

Module equilib
Version 0.00 (02/10/2003)
Author Norbert Pfaffinger
Description Translations of reasoning-task instances from equilibrium logic into

QBFs.
Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).
The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.
The functions are based on the translations presented in [22].
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Overview
HereThere

(0.00), p.104

Translates a formula to the logic of “Here-and-There”.

HereThereB

(0.00), p.105

Translates a formula to the logic of “Here-and-There”. (Different

identifier-assignment than HereThere).

HTModel

(0.00), p.106

Creates a propositional formula where the models correspond to

the HT-models of the input formula.

EquiModel

(0.00), p.107

Creates an open QBF where the models correspond to the equilib-

rium models of the input formula.

HereThere (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =He. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flar R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhash R03= INTEGER numhash

R04= INTEGER varstrt ) R04= INTEGER varstrt );

Description
Translates a formula to the logic of “Here-and-There”.
Variables for “Here” are varstrt,varstrt+2,..., and variables for “There” are
varstrt+1,varstrt+3,... in the resulting formula. As usual the correspondence to the
original set of variables from the input formula is given by occurrence (for example,
varstrt (here) and varstrt+1 (there) correspond to the first variable occurrence in fla,
varstrt+2 (here) and varstrt+3 (there) to the second occurrence and so forth).
There is a one-to-one correspondence between (a) the models of the resulting
formula which satisfy (varstrt>varstrt+1)&(varstrt+2>varstrt+3)&... and (b) the
HT-models of the input formula.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Variables with occurrence-index. Gets extended if necessary.
numhash Number of entries in hash.
varstrt See description.
Return Values
ctmem Passed through.
flar Resulting formula. QBF-Scheme. No quantifiers.
hash Passed through and altered if necessary.
numhash Passed through or updated if necessary.
varstrt Passed through.
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HereThereB (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =He. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flar R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhash R03= INTEGER numhash

R04= INTEGER varstrta R04= INTEGER varstrta

R05= INTEGER varstrtb ) R05= INTEGER varstrtb );

Description
Translates a formula to the logic of “Here-and-There”. (Different identifier-assignment
than HereThere).
Variables for “Here” are varstrtb,varstrtb+1,..., variables for “There” are
varstrta,varstrta+1,... in the resulting formula.
There is a one-to-one correspondence between (a) the models of the resulting
formula which satisfy (varstrtb>varstrta)&(varstrtb+1>varstrta+1)&... and (b) the
HT-models of the input formula.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Variables with occurrence-index. Must contain all fla variables.
numhash Number of entries in hash.
varstrta See description.
varstrtb See description.
Return Values
ctmem Passed through.
flar Resulting formula. QBF-Scheme. No quantifiers.
hash Passed through.
numhash Passed through.
varstrta Passed through.
varstrtb Passed through.
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HTModel (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =HT. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flar R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhash R03= INTEGER numhash

R04= INTEGER varstrt ) R04= INTEGER varstrt );

Description
Creates a propositional formula where the models correspond to the HT-models of
the input formula.
The variables in the resulting formula should be seen grouped to tuples
(varstrt,varstrt+1), (varstrt+2,varstrt+3), ... A model of the resulting formula
corresponds to the following HT-model: The “Here”-interpretation is given by the
assignments to varstrt,varstrt+2,varstrt+4,... The “There”-interpretation is given by
the assignments to varstrt+1,varstrt+3,varstrt+5,....
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Variables with occurrence-index. Gets extended if necessary.
numhash Number of entries in hash.
varstrt See description.
Return Values
ctmem Passed through.
flar Resulting formula. QBF-Scheme. No quantifiers.
hash Passed through and altered if necessary.
numhash Passed through or updated if necessary.
varstrt Passed through.

106



EquiModel (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Eq. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfr R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhash R03= INTEGER numhash

R04= INTEGER varstrt R04= INTEGER varstrtfree

R05= INTEGER varstrtbound ) R05= INTEGER varstrtbound );

Description
Creates an open QBF where the models correspond to the equilibrium models of the
input formula.
The models are given by interpretations of
varstrtfree,varstrtfree+1,...,varstrtfree+numhash-1. The propositional variable
identifiers varstrtbound,varstrtbound+1,...,varstrtbound+numhash-1 are used
quantified in the resulting QBF.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Variables with occurrence-index. Must contain exactly the variables

of the fla-formula (but not a superset).
numhash Number of entries in hash.
varstrtfree See description.
varstrtbound See description.
Return Values
ctmem Passed through.
qbfr Resulting QBF. QBF-Scheme.
hash Passed through.
numhash Passed through.
varstrt Passed through.
varstrtbound Passed through.

Module parasigned
Version 0.00 (09/09/2003)
Author Norbert Pfaffinger
Description Translations of reasoning-task instances from paraconsistent rea-

soning via signed systems into QBFs.
Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).
The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.
The functions are based on the translations presented in [6].
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Overview
FLACollectPolarity

(0.00), p.108

Gathers polarity occurrence information of the formulas’ proposi-

tional variables.

FLACollectPlus

(0.00), p.109

Collects variables into a HASHINTCOLwith data-entries like in FLA-

CollectPolarity, but ignores polarity information.

PolaritySubstCopyA

(0.00), p.110

Copies the input formula and at the same time performs polarity re-

lated substitutions. Only those variables from the premise formula

get polarity-replaced which occur both positive and negative.

PolaritySubstCopyB

(0.00), p.111

Copies the input formula and at the same time performs polarity

related substitutions. Works exactly like PolaritySubstCopyA, ex-

cept that all variables from the premise input formula get polarity-

replaced, even those that occur positive or negative only.

ConsUnsignedCredulous

(0.00), p.112

Creates a closed QBF which is valid iff the second input formula is

a credulous unsigned consequence of the first input formula.

ConsUnsignedSkeptical

(0.00), p.112

Creates a closed QBF which is valid iff the second input formula is

a sceptical unsigned consequence of the first input formula.

ConsUnsignedPrudent

(0.00), p.113

Creates a closed QBF which is valid iff the second input formula is

a prudent unsigned consequence of the first input formula.

FLACollectPolarity (0.00)
Synopsis
( R00= HASHINTCOLhash =FL. ( R00= HASHINTCOLhash

R01= CARGOTREEfla R01= CARGOTREEfla

R02= INTEGER numhash R02= INTEGER numhash

R03= INTEGER numposneg ) R03= INTEGER numposneg );

Description
Gathers polarity occurrence information of the formulas’ propositional variables.
Collects all occurring variables in a HASHINTCOL, where for each entry there are 2
additional data-fields, namely (a) the occurrence-index in the input formula, and (b)
the polarity occurrence information: A value of 1 means the variable occurs positive
only, 2 means the variable occurs negative only and 3 means the variable occurs
both positive and negative.
Parameters
hash Usually empty.
fla QBF-Scheme. No quantifiers.
numhash Number of entries already in hash. Usually 0.
numposneg Number of pos/neg-occurrences so far. Usually 0.
Return Values
hash Altered. See description.
fla Passed through.
numhash Updated.
numposneg Updated.
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FLACollectPlus (0.00)
Synopsis
( R00= HASHINTCOLhash =FL. ( R00= HASHINTCOLhash

R01= CARGOTREEfla R01= CARGOTREEfla

R02= INTEGER numhash ) R02= INTEGER numhash );

Description
Collects variables into a HASHINTCOLwith data-entries like in FLACollectPolarity,
but ignores polarity information.
New variables (if there are any) have their polarity occurrence data-field set to 0.
Parameters
hash See description.
fla QBF-Scheme. No quantifiers.
numhash Number of entries already in hash.
Return Values
hash Altered. See description.
fla Passed through.
numhash Updated.
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PolaritySubstCopyA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Po. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flalr R01= CARGOTREE flal

R02= CARGOTREE flarr R02= CARGOTREE flar

R03= INTEGER varstrt R03= INTEGER varstrt );

R04= INTEGER numvar

R05= INTEGER numposneg )

Description
Copies the input formula and at the same time performs polarity related substitutions.
Only those variables from the premise formula get polarity-replaced which occur both
positive and negative.
A re-sorting such that positive/negative occurrences come first, and positive or
negative only occurrences come second is performed.
In the resulting formula there are variable triples
(varstrt+k,varstrt+numvar+2k,varstrt+numvar+2k+1) for k=0,...,numposneg-1 (there
are no such triples if numposneg is 0). varstrt+k identifies the original variable,
occurring both positive and negative in the input formula. As all such occurrences get
replaced this identifier does not actually occur in the resulting formula.
varstrt+numvar+2k identifies the replacement for positive occurrences of varstrt+k in
the input formula, while varstrt+numvar+2k+1 identifies the replacement for negative
occurrences of varstrt+k in the input formula.
Parameters
ctmem Memory used to create the resulting formulas within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable range to use. See description. The range-size is

numvar+numposneg*2.
Return Values
ctmem Passed through.
flalr Resulting transformation of formula flal.
flarr Resulting transformation of formula flar.
varstrt Passed through.
numvar Number of variables.
numposneg Number of pos/neg occurring variables.
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PolaritySubstCopyB (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Po. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flalr R01= CARGOTREE flal

R02= CARGOTREE flarr R02= CARGOTREE flar

R03= INTEGER varstrt R03= INTEGER varstrt );

R04= INTEGER numvar

R05= INTEGER numposneg )

Description
Copies the input formula and at the same time performs polarity related substitutions.
Works exactly like PolaritySubstCopyA, except that all variables from the premise
input formula get polarity-replaced, even those that occur positive or negative only.
Again, as in PolaritySubstCopyA, the variables are reordered such that those
occurring both positive and negative come first, those occurring positive or negative
only come second.
Parameters
ctmem Memory used to create the resulting formulas within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable range to use. The range-size is numvar+numvar*2

(i.e., numvar*3).
Return Values
ctmem Passed through.
flalr Resulting transformation of formula flal.
flarr Resulting transformation of formula flar.
varstrt Passed through.
numvar Number of variables.
numposneg Number of pos/neg occurring variables.
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ConsUnsignedCredulous (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Co. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfr R01= CARGOTREE flal

R02= INTEGER varstrtnew ) R02= CARGOTREE flar

R03= INTEGER varstrt );

Description
Creates a closed QBF which is valid iff the second input formula is a credulous
unsigned consequence of the first input formula.
In other words: flal is the premise formula, and flar the formula tested for being a
consequence.
The consequence relation considered here is based on non-indexed polarity
substitutions (W+-) and on the defaults “ : (p+ <-> p-) / (p <-> p+) & (p <-> p-)”.
Parameters
ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable range of the resulting QBF.
Return Values
ctmem Passed through.
qbfr Resulting QBF. QBF-Scheme.
varstrtnew Updated varstrt.

ConsUnsignedSkeptical (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Co. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfr R01= CARGOTREE flal

R02= INTEGER varstrtnew ) R02= CARGOTREE flar

R03= INTEGER varstrt );

Description
Creates a closed QBF which is valid iff the second input formula is a sceptical
unsigned consequence of the first input formula.
In other words: flal is the premise formula, and flar the formula tested for being a
consequence.
The consequence relation considered here is based on non-indexed polarity
substitutions (W+-) and on the defaults “ : (p+ <-> p-) / (p <-> p+) & (p <-> p-)”.
Parameters
ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable range of the resulting QBF.
Return Values
ctmem Passed through.
qbfr Resulting QBF. QBF-Scheme.
varstrtnew Updated varstrt.
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ConsUnsignedPrudent (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Co. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfr R01= CARGOTREE flal

R02= INTEGER varstrtnew ) R02= CARGOTREE flar

R03= INTEGER varstrt );

Description
Creates a closed QBF which is valid iff the second input formula is a prudent
unsigned consequence of the first input formula.
In other words: flal is the premise formula, and flar the formula tested for being a
consequence.
The consequence relation considered here is based on non-indexed polarity
substitutions (W+-) and on the defaults “ : (p+ <-> p-) / (p <-> p+) & (p <-> p-)”.
Parameters
ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable range of the resulting QBF.
Return Values
ctmem Passed through.
qbfr Resulting QBF. QBF-Scheme.
varstrtnew Updated varstrt.

Module para3val
Version 0.00 (29/09/2003)
Author Norbert Pfaffinger
Description Translations of reasoning-task instances from paraconsistent rea-

soning via three-valued logic into QBFs.
Any QBF generated by a function from this module is normalised.
Normalised means that (a) no variable occurs both free and bound
in the QBF and (b) any quantification of a variable occurs at most
once as subformula in the QBF and (c) for any subformula which is
a quantification, the quantified variable occurs in the quantification-
subformula (“no empty quantifications”).
The functions in this module generally use INTEGER identifier-
ranges. (An INTEGER identifier range is a set of identifiers
{n,n+1,...,n+k-1}.) The start of the desired range is specified as
function parameter. The size of the range is either known at the time
of the function-call or it is returned by the function.
The functions are based on the translations presented in [7].
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Overview
ThreeValT

(0.00), p.114

Creates a formula with a correspondence between its models and

those three-valued interpretations which evaluate the input formula

to ‘T’ (‘true’).

ThreeValF

(0.00), p.115

Creates a formula with a correspondence between its models and

those three-valued interpretations which evaluate the input formula

to ‘F’ (‘false’).

ThreeValO

(0.00), p.116

Creates a formula with a correspondence between its models and

those three-valued interpretations which evaluate the input formula

to ‘O’.

Model3

(0.00), p.117

Creates a formula with a correspondence between its models and

the three-valued models of the input formula.

ConsLP

(0.00), p.118

Creates a closed QBF which is valid iff the second input formula is

a consequence of the first one under the inference relation in the

logic “LP”.

ConsLPm

(0.00), p.118

Creates a closed QBF which is valid iff the second input formula is

a consequence of the first one under the inference relation in the

logic “LP m”.

ThreeValT (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Th. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flar R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhashr R03= INTEGER numhash

R04= INTEGER varstrt ) R04= INTEGER varstrt );

Description
Creates a formula with a correspondence between its models and those three-valued
interpretations which evaluate the input formula to ‘T’ (‘true’).
In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.
An interpretation of the resulting formula’s variables corresponds to a three-valued
interpretation evaluating the input-formula to ‘T’ iff (a) it is a model of the resulting
formula and (b) there is no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).
The associated three-valued interpretation to any such interpretation is given by
tuples (varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false)
corresponds to ‘F’, and (false,true) corresponds to ‘O’.
Parameters
ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values
ctmem Passed through.
flar Resulting formula. QBF-Scheme.
hash Passed through and altered.
numhashr Updated.
varstrt Passed through.
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ThreeValF (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Th. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flar R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhashr R03= INTEGER numhash

R04= INTEGER varstrt ) R04= INTEGER varstrt );

Description
Creates a formula with a correspondence between its models and those three-valued
interpretations which evaluate the input formula to ‘F’ (‘false’).
The calling interface of this function is exactly like the one of ThreeValT.
In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.
An interpretation of the resulting formula’s variables corresponds to a three-valued
interpretation evaluating the input-formula to ‘F’ iff (a) it is a model of the resulting
formula and (b) there is no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).
The associated three-valued interpretation to any such interpretation is given by
tuples (varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false)
corresponds to ‘F’, and (false,true) corresponds to ‘O’.
Parameters
ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values
ctmem Passed through.
flar Resulting formula. QBF-Scheme.
hash Passed through and altered.
numhashr Updated.
varstrt Passed through.
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ThreeValO (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Th. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flar R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhashr R03= INTEGER numhash

R04= INTEGER varstrt ) R04= INTEGER varstrt );

Description
Creates a formula with a correspondence between its models and those three-valued
interpretations which evaluate the input formula to ‘O’.
The calling interface of this function is exactly like the one of ThreeValT.
In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.
An interpretation of the resulting formula’s variables corresponds to a three-valued
interpretation evaluating the input-formula to ‘O’ iff (a) it is a model of the resulting
formula and (b) there is no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).
The associated three-valued interpretation to any such interpretation is given by
tuples (varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false)
corresponds to ‘F’, and (false,true) corresponds to ‘O’.
Parameters
ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values
ctmem Passed through.
flar Resulting formula. QBF-Scheme.
hash Passed through and altered.
numhashr Updated.
varstrt Passed through.
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Model3 (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Mo. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE flar R01= CARGOTREE fla

R02= HASHINT hash R02= HASHINT hash

R03= INTEGER numhashr R03= INTEGER numhash

R04= INTEGER varstrt ) R04= INTEGER varstrt );

Description
Creates a formula with a correspondence between its models and the three-valued
models of the input formula.
In the resulting formula varstrt, varstrt+2, varstrt+4, ... correspond to the original
formula’s variables (correspondence by occurrence), while varstrt+1, varstrt+3, ...
correspond to the “associated” ones.
An interpretation of the resulting formula’s variables corresponds to a three-valued
model of the input-formula iff (a) it is a model of the resulting formula and (b) there is
no tuple (varstrt+2k,varstrt+2k+1) interpreted to (true,false).
The associated three-valued model to any such interpretation is given by tuples
(varstrt+2k,varstrt+2k+1): (true,true) corresponds to ‘T’, (false,false) corresponds to
‘F’, and (false,true) corresponds to ‘O’.
Parameters
ctmem Memory used to create the resulting formula within.
fla QBF-Scheme. No quantifiers. Is NOT utilised.
hash Hash with occurrence-indices. May be empty.
numhash Number of entries in the occurrence-index hash.
varstrt See description. The range-size is numhashr*2.
Return Values
ctmem Passed through.
flar Resulting formula, QBF-Scheme.
hash Passed through and altered.
numhashr Updated.
varstrt Passed through.
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ConsLP (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Co. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfres R01= CARGOTREE flal

R02= INTEGER varstrtnew ) R02= CARGOTREE flar

R03= INTEGER varstrt );

Description
Creates a closed QBF which is valid iff the second input formula is a consequence of
the first one under the inference relation in the logic “LP”.
flal is the premise formula, flar the formula tested for being a consequence. In other
words: The QBF is valid iff every three-valued model of flal is a three-valued model
of flar.
Parameters
ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable-range to use.
Return Values
ctmem Passed through.
qbfres Resulting QBF.
varstrtnew Updated varstrt.

ConsLPm (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Co. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfres R01= CARGOTREE flal

R02= INTEGER varstrtnew ) R02= CARGOTREE flar

R03= INTEGER varstrt );

Description
Creates a closed QBF which is valid iff the second input formula is a consequence of
the first one under the inference relation in the logic “LP m”.
flal is the premise formula, flar the formula tested for being a consequence.
Parameters
ctmem Memory used to create the resulting QBF within.
flal QBF-Scheme. No quantifiers. Is NOT utilised.
flar QBF-Scheme. No quantifiers. Is NOT utilised.
varstrt For the variable-range to use.
Return Values
ctmem Passed through.
qbfres Resulting QBF.
varstrtnew Updated varstrt.
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Module cabductionlaunch
Version 0.00 (06/10/2003)
Author Norbert Pfaffinger
Description Wrapper Functions for calling translations related to classical abduc-

tion of Smute Module “cabduction” from within a Smute Launch File.
Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “cabduction”.
All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “qbfstorenum.txt” and
“qbfstorenum.gdl”. The first is a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdl-
file can be loaded with “aiSee” ((c) 2000-2004 AbsInt Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.
The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.

Overview
AbductiveExplanation

(0.00), p.120

Wrapper Function for cabduction:AbductiveExplanation.

ExistsAbductiveExplanation

(0.00), p.120

Wrapper Function for cabduction:ExistsAbductiveExplanation.

NecessaryHypothesis

(0.00), p.121

Wrapper Function for cabduction:NecessaryHypothesis.

RelevantHypothesis

(0.00), p.121

Wrapper Function for cabduction:RelevantHypothesis.

NecessaryHypothesis Min

(0.00), p.122

Wrapper Function for cabduction:NecessaryHypothesis Min.

RelevantHypothesis Min

(0.00), p.122

Wrapper Function for cabduction:RelevantHypothesis Min.
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AbductiveExplanation (0.00)
Synopsis
Ab. ( R00= CARGOTREEflaleft

R01= CARGOTREEhypotheses

R02= CARGOTREEflaright

R03= INTEGER storenum );

Description
Wrapper Function for cabduction:AbductiveExplanation.
The abductive explanations in question are those for flaright from flaleft and
hypotheses.
Parameters
flaleft Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
hypotheses Variable array. Must be specified according to the Logic Edition

Launch File “idarraydef” syntax.
flaright Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.

ExistsAbductiveExplanation (0.00)
Synopsis
Ex. ( R00= CARGOTREEflaleft

R01= CARGOTREEhypotheses

R02= CARGOTREEflaright

R03= INTEGER storenum );

Description
Wrapper Function for cabduction:ExistsAbductiveExplanation.
The abductive explanations in question are those for flaright from flaleft and
hypotheses.
Parameters
flaleft Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
hypotheses Variable array. Must be specified according to the Logic Edition

Launch File “idarraydef” syntax.
flaright Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.
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NecessaryHypothesis (0.00)
Synopsis
Ne. ( R00= CARGOTREEflaleft

R01= CARGOTREEhypotheses

R02= INTEGER idxhyp

R03= CARGOTREEflaright

R04= INTEGER storenum );

Description
Wrapper Function for cabduction:NecessaryHypothesis.
The abductive explanations in question are those for flaright from flaleft and
hypotheses.
Parameters
flaleft Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
hypotheses Variable array. Must be specified according to the Logic Edition

Launch File “idarraydef” syntax.
idxhyp Index of the hypothesis to check necessity for. Must be in the range

0,...,numberofhypotheses-1.
flaright Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.

RelevantHypothesis (0.00)
Synopsis
Re. ( R00= CARGOTREEflaleft

R01= CARGOTREEhypotheses

R02= INTEGER idxhyp

R03= CARGOTREEflaright

R04= INTEGER storenum );

Description
Wrapper Function for cabduction:RelevantHypothesis.
The abductive explanations in question are those for flaright from flaleft and
hypotheses.
Parameters
flaleft Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
hypotheses Variable array. Must be specified according to the Logic Edition

Launch File “idarraydef” syntax.
idxhyp Index of the hypothesis to check relevance for. Must be in the range

0,...,numberofhypotheses-1.
flaright Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.
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NecessaryHypothesis Min (0.00)
Synopsis
Ne. ( R00= CARGOTREEflaleft

R01= CARGOTREEhypotheses

R02= INTEGER idxhyp

R03= CARGOTREEflaright

R04= INTEGER storenum );

Description
Wrapper Function for cabduction:NecessaryHypothesis Min.
The minimal abductive explanations in question are those for flaright from flaleft and
hypotheses.
Parameters
flaleft Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
hypotheses Variable array. Must be specified according to the Logic Edition

Launch File “idarraydef” syntax.
idxhyp Index of the hypothesis to check necessity for. Must be in the range

0,...,numberofhypotheses-1.
flaright Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.

RelevantHypothesis Min (0.00)
Synopsis
Re. ( R00= CARGOTREEflaleft

R01= CARGOTREEhypotheses

R02= INTEGER idxhyp

R03= CARGOTREEflaright

R04= INTEGER storenum );

Description
Wrapper Function for cabduction:RelevantHypothesis Min.
The minimal abductive explanations in question are those for flaright from flaleft and
hypotheses.
Parameters
flaleft Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
hypotheses Variable array. Must be specified according to the Logic Edition

Launch File “idarraydef” syntax.
idxhyp Index of the hypothesis to check relevance for. Must be in the range

0,...,numberofhypotheses-1.
flaright Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.
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Module equiliblaunch
Version 0.00 (08/10/2003)
Author Norbert Pfaffinger
Description Wrapper Functions for calling translations related to equilibrium logic

of Smute Module “equilib” from within a Smute Launch File.
Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “equilib”.
All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “qbfstorenum.txt” and
“qbfstorenum.gdl”. The first is a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdl-
file can be loaded with “aiSee” ((c) 2000-2004 AbsInt Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.
The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.

Overview
HTModel

(0.00), p.123

Wrapper Function for equlib:HTModel.

EquiModel

(0.00), p.123

Wrapper Function for equlib:EquiModel.

HTModel (0.00)
Synopsis
HT. ( R00= CARGOTREEfla

R01= INTEGER storenum );

Description
Wrapper Function for equlib:HTModel.
Parameters
fla Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.

EquiModel (0.00)
Synopsis
Eq. ( R00= CARGOTREEfla

R01= INTEGER storenum );

Description
Wrapper Function for equlib:EquiModel.
Parameters
fla Propositional formula. Must be specified according to the Logic

Edition Launch File “formula” syntax.
storenum See module description.

123



Module parasignedlaunch
Version 0.00 (08/10/2003)
Author Norbert Pfaffinger
Description Wrapper Functions for calling translations related to paraconsistent

reasoning via signed systems of Smute Module “parasigned‘’ from
within a Smute Launch File.
Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “parasigned”.
All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “qbfstorenum.txt” and
“qbfstorenum.gdl”. The first is a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdl-
file can be loaded with “aiSee” ((c) 2000-2004 AbsInt Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.
The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.

Overview
ConsUnsignedCredulous

(0.00), p.124

Wrapper Function for parasigned:ConsUnsignedCredulous.

ConsUnsignedSkeptical

(0.00), p.125

Wrapper Function for parasigned:ConsUnsignedSkeptical.

ConsUnsignedPrudent

(0.00), p.125

Wrapper Function for parasigned:ConsUnsignedPrudent.

ConsUnsignedCredulous (0.00)
Synopsis
Co. ( R00= CARGOTREEflaleft

R01= CARGOTREEflaright

R02= INTEGER storenum );

Description
Wrapper Function for parasigned:ConsUnsignedCredulous.
Parameters
flaleft Propositional formula representing the premise. Must be specified

according to the Logic Edition Launch File “formula” syntax.
flaright Propositional formula which is tested for being a consequence.

Must be specified according to the Logic Edition Launch File
“formula” syntax.

storenum See module description.
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ConsUnsignedSkeptical (0.00)
Synopsis
Co. ( R00= CARGOTREEflaleft

R01= CARGOTREEflaright

R02= INTEGER storenum );

Description
Wrapper Function for parasigned:ConsUnsignedSkeptical.
Parameters
flaleft Propositional formula representing the premise. Must be specified

according to the Logic Edition Launch File “formula” syntax.
flaright Propositional formula which is tested for being a consequence.

Must be specified according to the Logic Edition Launch File
“formula” syntax.

storenum See module description.

ConsUnsignedPrudent (0.00)
Synopsis
Co. ( R00= CARGOTREEflaleft

R01= CARGOTREEflaright

R02= INTEGER storenum );

Description
Wrapper Function for parasigned:ConsUnsignedPrudent.
Parameters
flaleft Propositional formula representing the premise. Must be specified

according to the Logic Edition Launch File “formula” syntax.
flaright Propositional formula which is tested for being a consequence.

Must be specified according to the Logic Edition Launch File
“formula” syntax.

storenum See module description.

Module para3vallaunch
Version 0.00 (08/10/2003)
Author Norbert Pfaffinger
Description Wrapper Functions for calling translations related to paraconsistent

reasoning via three-valued logic of Smute Module “para3val‘’ from
within a Smute Launch File.
Detailed descriptions of what is encoded with the resulting QBFs can
be found in the documentation to Smute Module “para3val”.
All the routines in this Smute Module take a parameter storenum.
The resulting QBFs are saved to files “qbfstorenum.txt” and
“qbfstorenum.gdl”. The first is a representation of the QBF according
to the syntax of QBF-solver “boole”, the second is a description of
the QBF in the so-called “graph description language” (gdl). The gdl-
file can be loaded with “aiSee” ((c) 2000-2004 AbsInt Angewandte
Informatik GmbH, see http://www.aisee.com) in order to view/print a
tree-representation of the resulting QBF.
The parameters must be specified in Smute Launch Files according
to the grammar of Smute Interpreter Logic Edition. The grammar’s
elements are only referenced throughout this Smute Module docu-
mentation, for a description see Smute Interpreter Logic Edition.
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Overview
ConsLP

(0.00), p.126

Wrapper Function for para3val:ConsLP.

ConsLPm

(0.00), p.126

Wrapper Function for para3val:ConsLPm.

ConsLP (0.00)
Synopsis
Co. ( R00= CARGOTREEflaleft

R01= CARGOTREEflaright

R02= INTEGER storenum );

Description
Wrapper Function for para3val:ConsLP.
Parameters
flaleft Propositional formula representing the premise. Must be specified

according to the Logic Edition Launch File “formula” syntax.
flaright Propositional formula which is tested for being a consequence.

Must be specified according to the Logic Edition Launch File
“formula” syntax.

storenum See module description.

ConsLPm (0.00)
Synopsis
Co. ( R00= CARGOTREEflaleft

R01= CARGOTREEflaright

R02= INTEGER storenum );

Description
Wrapper Function for para3val:ConsLPm.
Parameters
flaleft Propositional formula representing the premise. Must be specified

according to the Logic Edition Launch File “formula” syntax.
flaright Propositional formula which is tested for being a consequence.

Must be specified according to the Logic Edition Launch File
“formula” syntax.

storenum See module description.

Module qbf
Version 0.00 (03/09/2003)
Author Norbert Pfaffinger
Description Utility functions for CARGOTREE-s in QBF-Scheme.

Overview
FLACollectVar

(0.00), p.128

Collects the variables occurring in a propositional formula.

CollectFreeVar

(0.00), p.128

Collects the variables occurring free in the specified QBF.

Not

(0.00), p.129

Prefixes the input QBF with “NOT”.
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And

(0.00), p.129

Connects the two input QBFs with “AND”.

Or

(0.00), p.129

Connects the two input QBFs with “OR”.

Impl

(0.00), p.130

Connects the two input QBFs with “IMPL”.

EquivVarA

(0.00), p.130

Creates a propositional formula expressing equivalence between

two variables.

EquivVarB

(0.00), p.130

Creates a propositional formula expressing equivalence between

two variables.

BigExistsA

(0.00), p.131

Prefixes the input QBF with existential quantifiers for all the propo-

sitional variables collected in the specified HASHINTCOL.

BigForAllA

(0.00), p.131

Prefixes the input QBF with universal quantifiers for all the proposi-

tional variables collected in the specified HASHINTCOL.

BigExistsB

(0.00), p.132

Prefixes the input QBF with existential quantifiers for all the propo-

sitional variables in the specified range.

BigForAllB

(0.00), p.132

Prefixes the input QBF with universal quantifiers for all the proposi-

tional variables in the specified range.

FLAValid

(0.00), p.133

Creates a closed QBF which is valid iff the propositional input for-

mula is valid.

FLASat

(0.00), p.133

Creates a closed QBF which is valid iff the propositional input for-

mula is satisfiable.

FLAUnSat

(0.00), p.133

Creates a closed QBF which is valid iff the propositional input for-

mula is unsatisfiable.

FLACons

(0.00), p.134

Creates a closed QBF which is valid iff the second of the specified

input formulas is a consequence of the first one in propositional

logic.

FLANotCons

(0.00), p.134

Creates a closed QBF which is valid iff the second of the specified

input formulas is a not a consequence of the first one in proposi-

tional logic.

ArrayIdToFLA

(0.00), p.135

From an array of INTEGER identifiers creates an array of QBF-

Scheme CARGOTREE-s representing those propositional variables.

SubSelectionVarA

(0.00), p.135

Creates a propositional formula which expresses a “subselection”

condition between two ranges of propositional variables.

SubSelectionVarB

(0.00), p.136

Creates a propositional formula which expresses a “subselection”

condition between two arrays of propositional variables.

ProperSubSelectionVarA

(0.00), p.137

Creates a propositional formula which expresses a “proper subse-

lection” condition between two ranges of propositional variables.

SubSelection

(0.00), p.138

Creates a propositional formula which expresses a “subselection”

condition between two arrays of propositional formulas.

ProperSubSelection

(0.00), p.139

Creates a propositional formula which expresses a “proper subse-

lection” condition between two arrays of propositional formulas.

Trigger

(0.00), p.140

Creates a propositional formula which is a conjunction of trigger

variables triggering (i.e., implicating) formulas of an array of formu-

las (correspondence between formula selection and trigger variable

models).

TriggerOmit

(0.00), p.141

Identical to Trigger, except that one formula of the passed array is

omitted.

ConsistentSelections

(0.00), p.142

Creates an open QBF where the models correspond to selections

of formulas that are consistent with the specified ‘theory’ formula.
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MaxConsistentSelections

(0.00), p.143

Creates an open QBF where the models correspond to selections

of formulas that are consistent with the input formula and that are

maximal with this property, i.e., for each such selection no proper

super-selection is consistent with the input formula.

ModellingSelections

(0.00), p.144

Creates an open QBF where the models correspond to selections

of propositional formulas which together with the first input formula

model the second input formula (in propositional logic).

FLACollectVar (0.00)
Synopsis
( R00= INTEGER numdata =FL. ( R00= INTEGER numdata

R01= CARGOTREEqbf R01= CARGOTREEqbf

R02= HASHINTCOLhash ) R02= HASHINTCOLhash );

Description
Collects the variables occurring in a propositional formula.
Note that instead of FLACollectVar the Smute Language instruction ‘CollectIntVal’
can be used.
Parameters
numdata Number of data-fields in each HASHINTCOLENTRY.
qbf QBF-Scheme. No quantifiers.
hash Used to collect variables. Does not need to be empty.
Return Values
numdata Passed through.
qbf Passed through.
hash Passed through and possibly altered.

CollectFreeVar (0.00)
Synopsis
( R00= INTEGER numdata =Co. ( R00= INTEGER numdata

R01= CARGOTREEqbf R01= CARGOTREEqbf

R02= HASHINTCOLhash ) R02= HASHINTCOLhash );

Description
Collects the variables occurring free in the specified QBF.
Parameters
numdata Number of data-fields in each HASHINTCOLENTRY.
qbf QBF-Scheme.
hash Used to collect variables. Does not need to be empty.
Return Values
numdata Passed through.
qbf Passed through.
hash Passed through and possibly altered.
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Not (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =No. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf ) R01= CARGOTREE qbf );

Description
Prefixes the input QBF with “NOT”.
This is a low-level routine guaranteed not to modify registers R03++
Parameters
ctmem Memory used to create the resulting QBF within.
qbf QBF-Scheme. Gets utilised as “not” child.
Return Values
ctmem Passed through.
qbf Resulting QBF.

And (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =An. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf ) R01= CARGOTREE qbfl

R02= CARGOTREE qbfr );

Description
Connects the two input QBFs with “AND”.
This is a low-level routine guaranteed not to modify registers R04++
Parameters
ctmem Memory used to create the resulting QBF within.
qbfl QBF-Scheme. Gets utilised as left child in “and”.
qbfr QBF-Scheme. Gets utilised as right child in “and”.
Return Values
ctmem Passed through.
qbf Resulting QBF.

Or (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Or ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf ) R01= CARGOTREE qbfl

R02= CARGOTREE qbfr );

Description
Connects the two input QBFs with “OR”.
This is a low-level routine guaranteed not to modify registers R04++
Parameters
ctmem Memory used to create the resulting QBF within.
qbfl QBF-Scheme. Gets utilised as left child in “or”.
qbfr QBF-Scheme. Gets utilised as right child in “or”.
Return Values
ctmem Passed through.
qbf Resulting QBF.
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Impl (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Im. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf ) R01= CARGOTREE qbfl

R02= CARGOTREE qbfr );

Description
Connects the two input QBFs with “IMPL”.
This is a low-level routine guaranteed not to modify registers R04++
Parameters
ctmem Memory used to create the resulting QBF within.
qbfl QBF-Scheme. Gets utilised as left child in “impl”.
qbfr QBF-Scheme. Gets utilised as right child in “impl”.
Return Values
ctmem Passed through.
qbf Resulting QBF.

EquivVarA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Eq. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf ) R01= INTEGER var0

R02= INTEGER var1 );

Description
Creates a propositional formula expressing equivalence between two variables.
The resulting formula is (∼var0|var1)&(var0|∼var1).
This is a low-level routine guaranteed not to modify registers R08++.
Parameters
ctmem Memory used to create the resulting QBF within.
var0 Variable identifier.
var1 Variable identifier.
Return Values
ctmem Passed through.
qbf Resulting QBF.

EquivVarB (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Eq. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbf ) R01= INTEGER var0

R02= INTEGER var1 );

Description
Creates a propositional formula expressing equivalence between two variables.
The resulting formula is (var0>var1)&(var1>var0).
This is a low-level routine guaranteed not to modify registers R08++.
Parameters
ctmem Memory used to create the resulting QBF within.
var0 Variable identifier.
var1 Variable identifier.
Return Values
ctmem Passed through.
qbf Resulting QBF.
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BigExistsA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Bi. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout R01= CARGOTREE qbf

R02= HASHINTCOL hash ) R02= HASHINTCOL hash );

Description
Prefixes the input QBF with existential quantifiers for all the propositional variables
collected in the specified HASHINTCOL.
Parameters
ctmem Memory used to create the resulting QBF within.
qbf QBF-Scheme. Gets utilised.
hash For each of the INTEGERs collected in hash an existential

quantification is created.
Return Values
ctmem Passed through.
qbfout Resulting existential-quantified QBF. QBF-Scheme.
hash Passed through.

BigForAllA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Bi. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout R01= CARGOTREE qbf

R02= HASHINTCOL hash ) R02= HASHINTCOL hash );

Description
Prefixes the input QBF with universal quantifiers for all the propositional variables
collected in the specified HASHINTCOL.
Parameters
ctmem Memory used to create the resulting QBF within.
qbf QBF-Scheme. Gets utilised.
hash For each of the INTEGERs collected in hash a universal

quantification is created.
Return Values
ctmem Passed through.
qbfout Resulting universal-quantified QBF. QBF-Scheme.
hash Passed through.
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BigExistsB (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Bi. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout R01= CARGOTREE qbf

R02= INTEGER strt R02= INTEGER strt

R03= INTEGER num ) R03= INTEGER num );

Description
Prefixes the input QBF with existential quantifiers for all the propositional variables in
the specified range.
Parameters
ctmem Memory used to create the resulting QBF within.
qbf QBF-Scheme. Gets utilised.
strt Start of the variable-range.
num Number of variables, i.e., size of the variable-range.
Return Values
ctmem Passed through.
qbfout Resulting existential-quantified qbf. QBF-Scheme.
strt Passed through.
num Passed through.

BigForAllB (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Bi. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout R01= CARGOTREE qbf

R02= INTEGER strt R02= INTEGER strt

R03= INTEGER num ) R03= INTEGER num );

Description
Prefixes the input QBF with universal quantifiers for all the propositional variables in
the specified range.
Parameters
ctmem Memory used to create the resulting QBF within.
qbf QBF-Scheme. Gets utilised.
strt Start of the variable-range.
num Number of variables, i.e., size of the variable-range.
Return Values
ctmem Passed through.
qbfout Resulting universal-quantified qbf. QBF-Scheme.
strt Passed through.
num Passed through.
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FLAValid (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =FL. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout ) R01= CARGOTREE fla );

Description
Creates a closed QBF which is valid iff the propositional input formula is valid.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Gets utilised.
Return Values
ctmem Passed through.
qbfout Resulting QBF.

FLASat (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =FL. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout ) R01= CARGOTREE fla );

Description
Creates a closed QBF which is valid iff the propositional input formula is satisfiable.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Gets utilised.
Return Values
ctmem Passed through.
qbfout Resulting QBF.

FLAUnSat (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =FL. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout ) R01= CARGOTREE fla );

Description
Creates a closed QBF which is valid iff the propositional input formula is unsatisfiable.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Gets utilised.
Return Values
ctmem Passed through.
qbfout Resulting QBF.
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FLACons (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =FL. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout ) R01= CARGOTREE fla0

R02= CARGOTREE fla1 );

Description
Creates a closed QBF which is valid iff the second of the specified input formulas is a
consequence of the first one in propositional logic.
In other words: fla0 is the premise formula, fla1 the formula tested for being a
consequence.
Parameters
ctmem Memory used to create the resulting QBF within.
fla0 QBF-Scheme. No quantifiers. Gets utilised.
fla1 QBF-Scheme. No quantifiers. Gets utilised.
Return Values
ctmem Passed through.
qbfout Resulting QBF. Is normalised.

FLANotCons (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =FL. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE qbfout ) R01= CARGOTREE fla0

R02= CARGOTREE fla1 );

Description
Creates a closed QBF which is valid iff the second of the specified input formulas is a
not a consequence of the first one in propositional logic.
In other words: fla0 is the premise formula, fla1 the formula tested for not being a
consequence.
Parameters
ctmem Memory used to create the resulting QBF within.
fla0 QBF-Scheme. No quantifiers. Gets utilised.
fla1 QBF-Scheme. No quantifiers. Gets utilised.
Return Values
ctmem Passed through.
qbfout Resulting QBF. Is normalised.
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ArrayIdToFLA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Ar. ( R00= CARGOTREEMEMctmem

R01= ARRAY arrid R01= ARRAY arrid );

R02= ARRAY arrfla )

Description
From an array of INTEGERidentifiers creates an array of QBF-Scheme
CARGOTREE-s representing those propositional variables.
Useful for passing a variable-array to functions which expect a formula-array.
Parameters
ctmem Memory used to create the resulting formulas within.
arrid See description.
Return Values
ctmem Passed through.
arrid Passed through.
arrfla The resulting formula array.

SubSelectionVarA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Su. ( R00= CARGOTREEMEMctmem

R01= INTEGER varstrta R01= INTEGER varstrta

R02= INTEGER varstrtb R02= INTEGER varstrtb

R03= INTEGER numtuples R03= INTEGER numtuples );

R04= CARGOTREE flar )

Description
Creates a propositional formula which expresses a “subselection” condition between
two ranges of propositional variables.
The tuple identifiers are (varstrta+k,varstrtb+k) for k=0,...,numtuples-1, the resulting
formula is the conjunction of implications varstrta+k > varstrtb+k.
Consequently an interpretation of this range of variables is a model of the resulting
formula iff no tuple is evaluated to (T,F). This is also refered to as “subselection”
condition, because for any varstrta+k which is “selected” (evaluated to TRUE)
varstrtb+k is selected too.
Parameters
ctmem Memory used to create the resulting formula within.
varstrta See description.
varstrtb See description.
numtuples See description. Must be greater or equal to 1.
Return Values
ctmem Passed through.
varstrta Passed through.
varstrtb Passed through.
numtuples Passed through.
flar Resulting formula. QBF-Scheme. No quantifiers.
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SubSelectionVarB (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Su. ( R00= CARGOTREEMEMctmem

R01= INTEGER varstrt R01= INTEGER varstrt

R02= INTEGER numtuples R02= INTEGER numtuples );

R03= CARGOTREE flar )

Description
Creates a propositional formula which expresses a “subselection” condition between
two arrays of propositional variables.
The tuple identifiers are (varstrt+2k,varstrt+2k+1) for k=0,...,numtuples-1, the
resulting formula is the conjunction of implications varstrt+2k > varstrt+2k+1.
Consequently an interpretation of this range of variables is a model of the resulting
formula iff no tuple is evaluated to (T,F). This is also refered to as “subselection”
condition, because for any varstrt+2k which is “selected” (evaluated to TRUE)
varstrt+2k+1 is selected too.
Parameters
ctmem Memory used to create the resulting formula within.
varstrt See description.
numtuples See description. Must be greater or equal to 1.
Return Values
ctmem Passed through.
varstrt Passed through.
numtuples Passed through.
flar Resulting formula. QBF-Scheme. No quantifiers.
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ProperSubSelectionVarA (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Pr. ( R00= CARGOTREEMEMctmem

R01= INTEGER varstrta R01= INTEGER varstrta

R02= INTEGER varstrtb R02= INTEGER varstrtb

R03= INTEGER numtuples R03= INTEGER numtuples );

R04= CARGOTREE flar )

Description
Creates a propositional formula which expresses a “proper subselection” condition
between two ranges of propositional variables.
One variable range is given by varstrta+k, the other one by varstrtb+k, for
k=0,...,numtuples-1. The resulting formula is (varstrta+0 > varstrtb+0) & ... &
(varstrta+numtuples-1 > varstrtb+numtuples-1) & ∼( (varstrtb+0 > varstrta+0) & ...
& (varstrtb+numtuples-1 > varstrta+numtuples-1) ).
Consequently an interpretation of the ranges of variables is a model of the resulting
formula iff the selection of variables from range varstrta+k is a proper subselection of
variables from range varstrtb+k. (As usual “selected” corresponds to “evaluated to
TRUE”). In other words: If varstrta+k is selected, then varstrtb+k is selected too, and
the selections are unequal, i.e., there is at least one k0 such that varstrta+k0 is not
selected but varstrtb+k0 is.
Parameters
ctmem Memory used to create the resulting formula within.
varstrta See description.
varstrtb See description.
numtuples See description. Must be greater or equal to 1.
Return Values
ctmem Passed through.
varstrta Passed through.
varstrtb Passed through.
numtuples Passed through.
flar Resulting formula. QBF-Scheme. No quantifiers.
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SubSelection (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Su. ( R00= CARGOTREEMEMctmem

R01= ARRAY flaarray0 R01= ARRAY flaarray0

R02= ARRAY flaarray1 R02= ARRAY flaarray1 );

R03= CARGOTREE fla )

Description
Creates a propositional formula which expresses a “subselection” condition between
two arrays of propositional formulas.
The two input arrays flaarray0 and flaarray1 are of course required to be of the same
size, which is refered to as ‘n’. The resulting formula is flaarray0[0] > flaarray1[0] & ...
& flaarray0[n-1] > flaarray1[n-1].
This extends the principle of subselections as applied in SubSelectionVarA and
SubSelectionVarB to arbitrary propositional formulas. See there for comments on
the principle of “subselection”.
Parameters
ctmem Memory used to create the resulting formula within. Note that the

input formulas get utilised.
flaarray0 Each entry in QBF-Scheme and without quantifiers. Entries get

utilised.
flaarray1 Each entry in QBF-Scheme and without quantifiers. Entries get

utilised.
Return Values
ctmem Passed through.
flaarray0 Passed through.
flaarray1 Passed through.
fla Resulting formula. QBF-Scheme. No quantifiers.
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ProperSubSelection (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Pr. ( R00= CARGOTREEMEMctmem

R01= ARRAY flaarray0 R01= ARRAY flaarray0

R02= ARRAY flaarray1 R02= ARRAY flaarray1 );

R03= CARGOTREE fla )

Description
Creates a propositional formula which expresses a “proper subselection” condition
between two arrays of propositional formulas.
The two input arrays flaarray0 and flaarray1 are of course required to be of the same
size, refered to as ‘n’. The resulting formula is (flaarray0[0] > flaarray1[0] & ... &
flaarray0[n-1] > flaarray1[n-1]) & ∼( flaarray1[0] > flaarray0[0] & ... & flaarray1[n-1] >
flaarray0[n-1] )
This extends the principle of proper subselections as applied in
ProperSubSelectionVarA to arbitrary propositional formulas. See there for
comments on the principle of “proper subselection”.
Parameters
ctmem Memory used to create the resulting formula within. Note that the

input formulas get utilised.
flaarray0 Each entry in QBF-Scheme and without quantifiers. Entries get

utilised.
flaarray1 Each entry in QBF-Scheme and without quantifiers. Entries get

utilised.
Return Values
ctmem Passed through.
flaarray0 Passed through.
flaarray1 Passed through.
fla Resulting formula. QBF-Scheme. No quantifiers.
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Trigger (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Tr. ( R00= CARGOTREEMEMctmem

R01= HASHINT hash R01= HASHINT hash

R02= INTEGER numhash R02= INTEGER numhash

R03= ARRAY flaarray R03= ARRAY flaarray

R04= INTEGER trigstrt R04= INTEGER trigstrt

R05= INTEGER varstrt R05= INTEGER varstrt );

R06= CARGOTREE flatrig )

Description
Creates a propositional formula which is a conjunction of trigger variables triggering
(i.e., implicating) formulas of an array of formulas (correspondence between formula
selection and trigger variable models).
The trigger variable array is trigstrt+k for k=0,...,arraysize(flaarray)-1.
The formula’s variables are mapped to a new range starting at varstrt.
The resulting formula is (trigstrt > fla[0]) & ... & (trigstrt+n-1 > fla[n-1]), where fla[k]
results from the kth formula in flaarray through variable mapping and n is the size of
array flaarray.
This can, for example, be used to create correspondences between selections of
formulas and models (of the trigger variables).
Parameters
ctmem Memory used to create the resulting formula within.
hash Occurrence hash for the formula array. Does not need to contain

variables.
numhash Number of entries already in hash.
flaarray Each entry in QBF-Scheme and without quantifiers. The formulas

do not get utilised.
trigstrt Start of the range of trigger-variables. Range-size is the size of

array flaarray.
varstrt Start of the range of new variables to use. The range-size is

returned via the numhash return-value.
Return Values
ctmem Passed through.
hash Passed through and possibly altered.
numhash Updated.
flaarray Passed through.
trigstrt Passed through.
varstrt Passed through.
flatrig Resulting trigger-formula. QBF-Scheme.
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TriggerOmit (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Tr. ( R00= CARGOTREEMEMctmem

R01= HASHINT hash R01= HASHINT hash

R02= INTEGER numhash R02= INTEGER numhash

R03= ARRAY flaarray R03= ARRAY flaarray

R04= INTEGER trigstrt R04= INTEGER trigstrt

R05= INTEGER varstrt R05= INTEGER varstrt

R06= INTEGER idxomit R06= INTEGER idxomit );

R07= CARGOTREE flatrig )

Description
Identical to Trigger, except that one formula of the passed array is omitted.
If the size of array flaarray is 1, and hence everything is omitted, this function returns
the propositional formula ‘T’ (constant ‘true’).
Parameters
ctmem Memory used to create the resulting formula within.
hash Occurrence hash for the formula array. Does not need to contain

variables.
numhash Number of entries already in hash.
flaarray Each entry in QBF-Scheme and without quantifiers. The formulas

do not get utilised.
trigstrt Start of the range of trigger-variables. Range-size is size of array

flaarray. trigstrt+idxomit is omitted.
varstrt Start of the range of new variables to use. The range-size is

returned via the numhash return-value.
idxomit Selects which array-entry to omit. Must be in the range

[0,arraysize-1].
Return Values
ctmem Passed through.
hash Passed through and possibly altered.
numhash Updated.
flaarray Passed through.
trigstrt Passed through.
varstrt Passed through.
idxomit Passed through.
flatrig Resulting trigger-formula. QBF-Scheme.
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ConsistentSelections (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Co. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE fla R01= CARGOTREE fla

R02= ARRAY flaarray R02= ARRAY flaarray

R03= INTEGER trigstrt R03= INTEGER trigstrt

R04= INTEGER varstrtnew R04= INTEGER varstrt );

R05= CARGOTREE qbf

R06= INTEGER varstrt )

Description
Creates an open QBF where the models correspond to selections of formulas that
are consistent with the specified ‘theory’ formula.
The variables occurring free in the resulting QBF are
trigstrt,trigstrt+1,...,trigstrt+arraysize(flaarray)-1. A model evaluating
trigstrt+k0,trigstrt+k1,...,trigstrt+km to TRUEand the other variables to FALSE
corresponds to the selection of formulas flarray [k0],...,flaarray [km].
A selection flaarray [k0],...,flaarray [km] is called consistent with the input formula fla
iff fla & flaarray [k0] & ... & flaarray [km] is satisfiable.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Does not get utilised.
flaarray Each entry in QBF-Scheme and without quantifiers. The formulas

do not get utilised.
trigstrt Start of the range of trigger-variables.
varstrt Start of the range of new variables to use. Range-size via

return-value.
Return Values
ctmem Passed through.
fla Passed through.
flaarray Passed through.
trigstrt Passed through.
varstrtnew Updated varstrt.
qbf Resulting QBF.
varstrt Passed through.
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MaxConsistentSelections (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Ma. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE fla R01= CARGOTREE fla

R02= ARRAY flaarray R02= ARRAY flaarray

R03= INTEGER trigstrt R03= INTEGER trigstrt

R04= INTEGER varstrtnew R04= INTEGER varstrt );

R05= CARGOTREE qbf

R06= INTEGER varstrt )

Description
Creates an open QBF where the models correspond to selections of formulas that
are consistent with the input formula and that are maximal with this property, i.e., for
each such selection no proper super-selection is consistent with the input formula.
This function is identical to ConsistentSelections, except for the maximality
property. See there for a more detailed description.
Parameters
ctmem Memory used to create the resulting QBF within.
fla QBF-Scheme. No quantifiers. Does not get utilised.
flaarray Each entry in QBF-Scheme and without quantifiers. The formulas

do not get utilised.
trigstrt Start of the range of trigger-variables.
varstrt Start of the range of new variables to use. Range-size via

return-value.
Return Values
ctmem Passed through.
fla Passed through.
flaarray Passed through.
trigstrt Passed through.
varstrtnew Updated varstrt.
qbf Resulting QBF.
varstrt Passed through.
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ModellingSelections (0.00)
Synopsis
( R00= CARGOTREEMEMctmem =Mo. ( R00= CARGOTREEMEMctmem

R01= CARGOTREE fla R01= CARGOTREE flaleft

R02= ARRAY flaarray R02= ARRAY flaarray

R03= INTEGER trigstrt R03= INTEGER trigstrt

R04= INTEGER varstrtnew R04= INTEGER varstrt

R05= CARGOTREE flaright R05= CARGOTREE flaright );

R06= CARGOTREE qbf

R07= INTEGER varstrt )

Description
Creates an open QBF where the models correspond to selections of propositional
formulas which together with the first input formula model the second input formula
(in propositional logic).
The correspondence between models of the resulting QBF and selections from
flaarray is as usual, cf. ConsistentSelections.
In other words: The models correspond to those selections k0,...,km where the
propositional formula (flaleft & flaarray [k0] & ... & flarray [km]) > flaright is valid.
Parameters
ctmem Memory used to create the resulting QBF within.
flaleft QBF-Scheme. No quantifiers. Does not get utilised.
flaarray Each entry in QBF-Scheme and without quantifiers. The formulas

do not get utilised.
trigstrt Start of the range of trigger-variables.
varstrt Start of the range of new variables to use. Range-size via

return-value.
flaright QBF-Scheme. No quantifiers. Does not get utilised.
Return Values
ctmem Passed through.
fla Passed through.
flaarray Passed through.
trigstrt Passed through.
varstrtnew Updated varstrt.
flaright Passed through.
qbf Resulting QBF.
varstrt Passed through.
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Chapter 9

Details on the Implementation of
Reductions-to-QBFs

This chapter contains additional information on the Reduction-to-QBF Smute Package. This in-
formation is not required for using the Smute Functions of the Reduction-to-QBF Smute Package.
Instead, it is intended to illustrate the implementation offunctions working with recursively struc-
tured data via the Smute Language. It serves as showcase for the utilisation of various Smute-
and Smute Language-components. Section 9.1 lists and documents the Smute source-code of a
reduction-to-QBF. Technical remarks on the Reduction-to-QBF Smute Package are given in Sec-
tion 9.2.

9.1 Documented Source Code of a Reduction-to-QBF

This section lists and explains the source-code of a Smute Function implementing a reduction-
to-QBF for the consequence relation in the logic LPm. This reduction has been introduced in
Section 6.4 on pages 82ff. As the Smute Language is very generic, i.e., not designed with regard
to a specific kind of functions, there are manifold variants for the implementation of functions
working with recursively structured data. Thus it must be noted that for the implementation of
new functions different approaches might be more suitable than to closely stick to the example-
code presented in this section.

Smute Functions ThreeValT, ThreeValF, and ThreeValO, implementing τ(P,P ′, φ, x) (as
defined on page 83)

For the sake of simplicity and efficiency,τ(P,P ′, φ, x) is specified via three different Smute
Functions, namedThreeValT, ThreeValF, andThreeValO, for τ(P,P ′, φ, t), τ(P,P ′, φ, f) and
τ(P,P ′, φ,o) respectively.

The recursively structured input, propositional formulaφ, is expected in the form of aCARGO-
TREE-instance in the so-called QBF-CARGOTREE-Scheme. The QBF-Scheme is defined by
Smute Interpreter Logic Edition (cf. pages 87ff.). As the name suggests, the QBF-Scheme is
a convention for the representation of Quantified Boolean Formulas. Propositional formulas are a
special case of QBFs, namely QBFs without quantifiers. In order to avoid the necessity of conver-
sion and distinction, there is thus no separateCARGOTREE-Scheme for propositional formulas. In
the QBF-Scheme 32-bit integers serve as variable identifiers.

Instead of using two arraysP andP ′ of propositional variables a different approach is fol-
lowed: INTEGERidentifier ranges. In the resulting propositional formula the variable identifiers
are integers of a certain range, determined by parametervarstrt. Propositional variable identi-
fiers varstrt, varstrt+2, . . . correspond to the input formula’s variables (P ), whereasvarstrt+1,
varstrt+3, . . . correspond to the second array of distinct variables(P ′). Note that it would
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Figure 9.1: Occurrence-indices and Identifier Replacement

also have been possible to use a rangevarstrta, varstrta+1, . . . for P and a rangevarstrtb,
varstrtb+1, . . . forP ′. But then, in order to avoid overlapping ranges, the number of variables
in P would have to be known, i.e., prior to calling the Smute Functions the number of variables
occurring inφ would have to be counted. Thus, for the sake of efficiency the former “interwoven”
variable identifier approach has been preferred.

The correspondence between variable identifiersvarstrt,varstrt+2,. . . and the input formula’s
original variables is the so-calledcorrespondence-by-occurrence. The principle is depicted in
Figure 9.1. The leftmost visualisation is of an original input formula. The visualisation in the mid
shows this formula with variable-integers replaced by the respective occurrence-indices. In the
rightmost visualisation the variable identifier mapping isapplied with avarstrt-value of 4.

Each of the three Smute Functions,ThreeValT, ThreeValF, andThreeValO has the following
interface:

• Parameters:

– R00 CARGOTREEMEMctmem: memory used to create the resulting formula within;

– R01 CARGOTREEfla: formula in QBF-Scheme, without quantifiers, does not get
utilised;

– R02 HASHINThash: hash with occurrence-indices, may be empty on calling;

– R03 INTEGERnumhash: number of entries in the occurrence-index hash;

– R04 INTEGERvarstrt: lowestINTEGERof the range variable identifiers are mapped
to.

• Return-values:

– R00 CARGOTREEMEMctmem: passed through;

– R01 CARGOTREEflar: resulting formula in QBF-Scheme;

– R02 HASHINThash: passed through and possibly altered (new variable-occurrences
added);

– R03 INTEGERnumhash: updated;

– R04 INTEGERvarstrt: passed through.

The resulting formula is allocated fromctmem. Nodes from the input-formula are not used as part
of the resulting formula, as indicated by the “does not get utilised”-description of thefla parameter.
For variable correspondence-by-occurrence aHASHINT-resource gets used. For each hash-entry
one additional data-field is expected, containing the occurrence-index of the according variable.
Thenumhash-parameter specifies the initial number of hash-entries andmay be zero.
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The following listing shows the Smute Language code ofThreeValT. A description is given
thereafter. The code ofThreeValF andThreeValO is very similar to the one ofThreeValT and
not printed here.

000 Label(ThreeValT);
001 GetNodeId(R01,R07);
002 JumpTab(R07,
003 QBF_NOT,l00_qbfnot,
004 QBF_OR,l00_qbfor,
005 QBF_AND,l00_qbfand,
006 QBF_IMPL,l00_qbfimpl,
007 QBF_PROPVAR,l00_qbfvar,
008 QBF_CONST,l00_qbfconst);
009
010 //l00_qbfconst
011 Label(l00_qbfconst);
012 GetVal(R01,R07);
013 NewIntImmSetVal(R00,R01,QBF_CONST,R07);
014 Return;
015 //l00_qbfvar
016 Label(l00_qbfvar);
017 GetVal(R01,R07);
018 HashIntAddImm(R02,R07,1,R08);
019 BEQ(l00_gotit);
020 MoveToHashIntEntry(R08,R03,0);
021 Move(R03,R08); //occurrence-index
022 Add1(R03);
023 BRA(l00_occidx);
024 Label(l00_gotit);
025 MoveFromHashIntEntry(R08,0,R08); //occurrence-ind ex
026 Label(l00_occidx);
027 LSL1(R08);
028 Add(R04,R08); //add varstrt
029 NewIntImmSetVal(R00,R01,QBF_PROPVAR,R08);
030 Return;
031 //l00_qbfnot
032 Label(l00_qbfnot);
033 GetChildImm(R01,0,R01);
034 BRA(ThreeValF);
035 //l00_qbfor
036 Label(l00_qbfor);
037 Push(1);
038 MoveToStack(R01,0);
039 GetChildImm(R01,0,R01);
040 BSR(ThreeValT);
041 MoveFromStack(0,R05);
042 MoveToStack(R01,0);
043 GetChildImm(R05,1,R01);
044 BSR(ThreeValT);
045 Move(R01,R05);
046 NewConClsImm(2,R00,R01,QBF_OR);
047 PlugImm(R01,R05,1);
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048 MoveFromStack(0,R05);
049 Pop(1);
050 PlugImm(R01,R05,0);
051 Return;
052 //l00_qbfand
053 Label(l00_qbfand);
054 Push(1);
055 MoveToStack(R01,0);
056 GetChildImm(R01,0,R01);
057 BSR(ThreeValT);
058 MoveFromStack(0,R05);
059 MoveToStack(R01,0);
060 GetChildImm(R05,1,R01);
061 BSR(ThreeValT);
062 Move(R01,R05);
063 NewConClsImm(2,R00,R01,QBF_AND);
064 PlugImm(R01,R05,1);
065 MoveFromStack(0,R05);
066 Pop(1);
067 PlugImm(R01,R05,0);
068 Return;
069 //l00_qbfimpl
070 Label(l00_qbfimpl);
071 Push(1);
072 MoveToStack(R01,0);
073 GetChildImm(R01,0,R01);
074 BSR(ThreeValF);
075 MoveFromStack(0,R05);
076 MoveToStack(R01,0);
077 GetChildImm(R05,1,R01);
078 BSR(ThreeValT);
079 Move(R01,R05);
080 NewConClsImm(2,R00,R01,QBF_OR);
081 PlugImm(R01,R05,1);
082 MoveFromStack(0,R05);
083 Pop(1);
084 PlugImm(R01,R05,0);
085 Return;

A note about the labels: They are prefixed (in this case with “l00 ”) because labels are visible
Smute Module-wide. In order to avoid label-collisions (a label like “qbfnot ” is likely to be used
in multiple Smute Functions of a Smute Module), it is recommended to use function-dependent
label-prefixes.

In line 002 the different input formula cases get distinguished (is theformula a logical con-
stant, a propositional variable, a formula¬φ1, etc.). TheJumpTable -instruction branches to
the respective label. Node-idsQBFEXISTS andQBFFORALLare ignored, because the input-
CARGOTREEmust represent a propositional formula, i.e., a QBF withoutquantifiers.

For each of the different cases the treatment is very simple.For example, if a logical constant
is encountered, then the resulting formula is just a copy of that constant. The code for this oper-
ation is printed in lines011++. The value of the Int-node is read in line012 (recall that logical
constants are represented with Int-nodes in the QBF-Scheme, a value of 0 represents⊥, a value of
1 represents>). A new Int-node is created, its value is set to the previously read value.
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In the case of a propositional variable the occurrence-index of that variable is required. It is
retrieved by trying to add a new hash-entry with the variable-identifier used as key. If a hash-
entry with that key already exists, the occurrence-index can be read from the entry’s data-field 0.
Otherwise the occurrence-index is the current value ofnumhashand stored as data-field 0 of the
new hash-entry. Thennumhashmust be updated, i.e., incremented by 1. Once the occurrence-
index is available—here it is stored in registerR08—the replacement value can be calculated. It
depends on whetherpi or p′i is required. As outlined above, in the first case the appropriate value is
varstrt+(occidx*2), in the latter case it isvarstrt+1+(occidx*2). Within ThreeValT only the first
case is required. The multiplication by 2 is here performed via anLSL1-instruction in line027 .

Now to the more interesting cases of logical connectives. For connective¬ recall the following
definition:

τ(P,P ′,¬φ1, t) := τ(P,P ′, φ1, f).

The appropriate specification is the code in lines0032 , 0033 , and0034 . In line 0033 the child-
node is retrieved—it is the root-node of theCARGOTREErepresentingφ1. It is used as input to
ThreeValF. This is a case of (distributed) recursive function-calls,because functionThreeValF
could callThreeValT again. If this actually happens depends of course on the input to ThreeValF.

Observe that the following two code-fragments have exactlythe same effect, though the left
one is shorter and executed faster (and thus used in line034 ):

(1) BRA(ThreeValF); (2) BSR(ThreeValF);
Return;

For logical connective∧ the following function must be implemented:

τ(P,P ′, φ1 ∧ φ2, t) := τ(P,P ′, φ1, t) ∧ τ(P,P
′, φ2, t)

Basically this works the same as with connective¬. Though here two subformulas must be trans-
lated (instead of one), and then be connected with∧. Of course each of the two subformula
translations is performed with the appropriate Smute Function call, i.e., a recursive call toThree-
ValT . Here data preservation is required: After the first subformula has been translated, it must be
possible to access the second subformula, in order to translate it as well. After the second subfor-
mula has been translated, it must be possible to access the translation of the first subformula, in
order to connect it with the translation of the second subformula. The appropriate answer to data
preservation during function-calls is of course a stack architecture. ThreeValT uses the Smute
Data Stack resource for this purpose: In line054 a block holding one register is pushed onto the
stack. In line055 the root-node-identifier of theCARGOTREErepresentingφ1∧φ2 is stored to the
stack. In line056 the root-node of the left subformula is retrieved. With thisnode as parameter
ThreeValT recursively calls itself in line057 . Then the root-node ofφ1∧φ2 is retrieved from the
stack in line058 . The stack-place gets used for storing the translated left subformula in line059 .
The root-node of the right subformula is retrieved in line060 . This formula again needs to be
translated viaThreeValT, which happens via line061 . In line 065 the translated left subformula
is retrieved from the stack in order to be used within the resulting formula. Then the stack-space
is not needed anymore and popped in line066 .

The treatment of the other binary logical connectives follows the same pattern.

Smute Function Model3 implementingm3(P,P ′, φ) (as defined on page 83)

The Smute FunctionModel3 expects a single propositional formula, whereas in the definition
of m3an arrayW of propositional formulas has been used. There are two options for applying the
translation to an array of propositional formulas:

• For arrayW = [φ0, φ1, . . . , φn], pass
∧n

i=0 φi to Model3.

• Write another Smute Function which accepts an array of propositional formulas.
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When applied to a single propositional formula functionm3takes the following form:

m3(P,P ′, φ) := ¬τ(P,P ′, φ, f).

This can be implemented rather simple: FunctionThreeValF is called, and the resultingCARGO-
TREEis then plugged into a ConCls-node representing a negation.For the ease of implementation,
the interface of functionModel3 is almost identical to the interface of functionThreeValF:

• Parameters:

– R00 CARGOTREEMEMctmem: memory used to create the resulting formula within;

– R01 CARGOTREEfla: formula in QBF-Scheme, without quantifiers, does not get
utilised;

– R02 HASHINThash: hash with occurrence-indices, may be empty on calling;

– R03 INTEGERnumhash: number of entries in the occurrence-index hash;

– R04 INTEGERvarstrt: lowestINTEGERof the range variable identifiers are mapped
to.

• Return-values:

– R00 CARGOTREEMEMctmem: passed through;

– R01 CARGOTREEflar: resulting formula in QBF-Scheme;

– R02 HASHINThash: passed through and possibly altered;

– R03 INTEGERnumhash: updated;

– R04 INTEGERvarstrt: passed through.

The following is the code:

000 Label(Model3);
001 BSR(ThreeValF);
002 Move(R01,R05);
003 NewConClsImm(1,R00,R01,QBF_NOT);
004 PlugImm(R01,R05,0);
005 Return;

Smute Function ConsLP implementing reduction-to-QBFConsLP (as defined on page 84)

Like m3, functionConsLPis implemented for a single premise formula only, not for an array of
propositional formulas as in the definition on page 84.ConsLPis comprised of the previously
implemented functions, plus two additional operations: universal quantification and the creation
of formulaP ≤ P ′. In the Reduction-to-QBF Smute Package general-purpose QBF-functions like
these have been collected in a separate Smute Module called “qbf ”. The universal quantification
occurring in functionConsLPcan be performed with Smute FunctionBigForAllB , the formula
P ≤ P ′ can be created with Smute FunctionSubSelectionVarB. Both Smute Functions are ex-
ported from Smute Moduleqbf . Refer to the Smute Module documentation (pages 126ff.) for
the documentation of these functions, and for an overview ofthe availableqbf Smute Functions.
Obviously, Smute FunctionConsLP just needs to call Smute FunctionsModel3, SubSelection-
VarB andBigForAllB with the appropriate parameters and plug the results together according to
the definition ofConsLP. The interface ofConsLP is laid out as follows:

• Parameters:

– R00 CARGOTREEMEMctmem: memory used to create the resulting QBF within;
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– R01 CARGOTREEflal: formula in QBF-Scheme, without quantifiers, does not get
utilised;

– R02 CARGOTREEflar: formula in QBF-Scheme, without quantifiers, does not get
utilised;

– R03 INTEGERvarstrt: lowestINTEGERof the range variable identifiers are mapped
to.

• Return-values:

– R00 CARGOTREEMEMctmem: passed through;

– R01 CARGOTREEqbfr: resulting QBF in QBF-Scheme;

– R02 INTEGERvarstrtnew: updatedvarstrt (determines the range-size of the result-
ing QBF’sINTEGERidentifiers).

Following next is the code:

000 Label(ConsLP);
001
002 // stack:
003 // 0 = CARGOTREE qbfmod3r
004 // 1 = CARGOTREE qbfr
005 // 2 = CARGOTREE qbfmod3l
006
007 Push(3);
008 MoveToStack(R02,1);
009
010 Move(R03,R04);
011 NewHashInt(R02);
012 Clear(R03);
013 BSR(Model3);
014
015 // R00 = CARGOTREEMEM ctmem
016 // R01 = CARGOTREE flar (resulting formula)
017 // R02 = HASHINT hash (passed through and altered)
018 // R03 = INTEGER numhash (updated)
019 // R04 = INTEGER varstrt (passed through)
020
021 MoveToStack(R01,2);
022 MoveFromStack(1,R01);
023
024 BSR(Model3);
025
026 // R00 = CARGOTREEMEM ctmem
027 // R01 = CARGOTREE qbfr (resulting formula)
028 // R02 = HASHINT hash (passed through and altered)
029 // R03 = INTEGER numhash (updated)
030 // R04 = INTEGER varstrt (passed through)
031
032 DiscardHashInt(R02);
033 MoveToStack(R01,0);
034
035 Move(R04,R01);
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036 Move(R03,R02);
037
038 FarBSR(qbf,SubSelectionVarB);
039
040 // R00 = CARGOTREEMEM ctmem (passed through)
041 // R01 = INTEGER varstrt (passed through)
042 // R02 = INTEGER numtuples (passed through)
043 // R03 = CARGOTREE qbfr (resulting QBF)
044
045 NewConClsImm(2,R00,R04,QBF_AND);
046 PlugImm(R04,R03,0);
047 MoveFromStack(2,R03);
048 PlugImm(R04,R03,1);
049 Move(R02,R03);
050 Move(R01,R02);
051 NewConClsImm(2,R00,R01,QBF_IMPL);
052 PlugImm(R01,R04,0);
053 MoveFromStack(0,R04);
054 PlugImm(R01,R04,1);
055 LSL1(R03);
056
057 FarBSR(qbf,BigForAllB);
058
059 // R00=CARGOTREEMEM ctmem (passed through)
060 // R01=CARGOTREE qbfout (universal-quantified QBF)
061 // R02=INTEGER strt (passed through)
062 // R03=INTEGER num (passed through)
063
064 Add(R03,R02);
065 Pop(3);
066 Return;

For better readability a Smute Function’s return-values are inserted as comment after function-
calls. As the functionConsLP is not called recursively, a lax stack usage is applied, reserving
space for each of the values that needs to be preserved throughout the function, even if they do not
need to be preserved at the same time. The three values preserved throughoutConsLPare:

• qbfr , an identifier of the second input formulaCARGOTREE.

• qbfmod3l , an identifier of theCARGOTREErepresenting the formula where models cor-
respond to three-valued models of the first input formula.

• qbfmod3r , an identifier of theCARGOTREErepresenting the formula where models cor-
respond to three-valued models of the second input formula (for the type of correspondence
seeModel3).

It is important to note how theHASHINT-resource created in line011 gets used as parameter to
functionModel3 in line 013 , and then reused asModel3-parameter in line024 . Only by reusing
the hash are identical variables of the first and second inputformula correctly re-identified in the
resulting formulas. After the call to functionModel3 in line 024 the return-valuenumhash, i.e.,
registerR03, contains the number of variables occurring in both the input formulas. This at the
same is the number of tuples(pi, p

′
i) used in formulaP ≤ P ′, and is hence passed as parameter to

SubSelectionVarB. For the universal quantification all the variables fromP andP ′ are used. Ifn

152



is used to denote the aforementioned number of tuples, then the number of variables in bothP and
P ′ is 2n, which explains the multiplication by 2 in line055 . 2n is also the number of different
variables occurring in the resulting closed QBF. The identifiers are taken from theINTEGER-
range starting atvarstrt (varstrt,varstrt+1,varstrt+2,. . . ). Thus return-valuevarstrtnewis set to
varstrt+ 2n.

Lines 035 and 036 show a typical phenomenon of Smute Function calls: Data needs to
be moved to the appropriate registers before the function can be called. Although the effort for
moving data to the appropriate registers can be reduced by designing “compatible” Smute Function
interfaces (expecting parameters in the same registers), it is of course not possible to fully avoid
such parameter preparation.

This concludes the reduction-to-QBF example specifications. The other Smute Functions of
the Reduction-to-QBF Smute Package apply exactly the same principles asThreeValT, Model3
andConsLP.

9.2 Technical Notes

Except where otherwise noted, all Smute Functions of the Reduction-to-QBF Smute Package can
freely use all of the registers. Consequently, any data to bepreserved during function-calls needs
to be stored elsewhere (the typical solution is stack-storage). Parameters are usually passed in
registersR00, R01, etc. The task of finding new, unused variable identifiers is supported by using
integer identifier ranges. Many Smute Functions create formulas where variables are identified
via integers of a specified range, i.e., from within a certaininterval. If necessary, original variable
identifiers are “mapped” into the range. This mapping is usually done by correspondence-by-
occurrence, as depicted in Figure 9.1. Most Wrapper Functions create QBFs with an integer
identifier range starting at 0. This is true for all translations creating closed QBFs.

The Smute Functions of the Reduction-to-QBF Smute Package utilise CARGOTREEparame-
ters only where explicitly stated, by default there is no utilisation.
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Chapter 10

Conclusion and Discussion

The Smute Languageis a programming language for writing functions processingrecursively
structured data.Smuteis the generic term for the Smute Language and related applications and
conceptions. The functions implemented via Smute Languagecode, so-calledSmute Functions,
are directly exposed to users, so-calledSmute Function Users, with the user-interface provided by
Smute. Thus terms like “program” or “application”, which are used with many other programming
languages, are not used with Smute.

Currently there is one interpreter for Smute Language code,theSmute Interpreter. There is no
compiler to date.

For authors of Smute Language code, so-calledSmute Function Developers, there are many
advantages over using alternative solutions. The following is a summary of important Smute
features:

• Predefined functionality: For many of the operations typically occurring in functions pro-
cessing recursively structured data there are predefined instructions and datatypes in the
Smute Language. Examples are data instance manipulations and identifier-related opera-
tions.

• Abstraction from the implementation: Many specification-irrelevant implementation details,
like the layout of data structures and the handling of error conditions, are hidden from the
Smute Language layer.

• Efficiency: Smute Language code can be efficiently executed,with respect to runtime and
memory-requirements. The Smute Interpreter establishes this efficiency.

• Non-restrictiveness: The Smute Language has a powerful repertoire of instructions. The
Smute Interpreter implements the functionality in a non-restrictive way. For example, the
size and recursive depth of recursively structured data instances is only limited by the com-
puter’s available memory and 32-bit integers/32-bit addressing.

• Function user interfaces: Reading and analysis of parameters is covered by Smute. On the
one hand this guarantees uniform usage of Smute Functions, on the other hand it saves work
for Smute Function Developers.

• Data I/O Support: Data I/O is covered by Smute where possible. For example, in order for
a Smute Function to support textual input in arbitrary LALR-languages no parser needs to
be written—the parsing is automatically performed by Smute.

• Recursive function-calls: Unlike most other programming-languages there are no restric-
tions, problems, or disadvantages for recursive function-calls. This is important insofar, as
recursive function-calls are “natural” in the processing of recursively structured data.
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• Modularity: Smute Language-code can be used in a modular, non-redundant way, based on
(dynamic) linking.

• Auxiliary features for function development: There are several instructions in the Smute
Language helping to debug or test functions. The most remarkable feature is a built-in
tree-visualisation for arbitrary recursively structureddata.

• Platform independence of Smute Language code: The Smute Interpreter is written in C,
using only the ANSI Standard C library. It can thus be made available for most computer
platforms. Smute Language code can be executed on any of these platforms, without any
adaptations.

The Reduction-to-QBF Smute Packageis a collection of Smute Functions implementing re-
ductions for reasoning tasks from Classic Abduction, Equilibrium Logic, Paraconsistent Rea-
soning via Signed Systems, and Paraconsistent Reasoning via Three-Valued Logic. It includes
Smute Functions for generic QBF-operations, which can be reused for the implementation of new
reductions-to-QBFs. The Reduction-to-QBF Smute Package proves that the Smute Language al-
lows for a concise and straightforward implementation of reductions-to-QBFs.

Although Smute is fully usable, some of the solutions are of atentative nature. For all these
solutions either the fully developed solution is of little significance or its realisation would have
been too laborious (or a combination of these two factors applies):

• A Smute Assembler does not yet exist. A slightly less convenient solution is provided with
the Smute Assembler Library.

• Currently there is no support for reading arbitrary binary input formats and to generate ar-
bitrary output formats with Smute Functions. Though by using theCARGOTREEExchange
Format this can already be circumvented.

• Block comments are not supported by the Smute parser, due to the treatment of block com-
ments in GOLD Parser Builder.

Furthermore there are features which can be regarded as “natural extensions” of Smute and should
be considered for implementation:

• HASHSTRresource in the Smute Language (the equivalent of theHASHINTresource, with
string-keys instead of integer keys).

• HASHSTRSTACKresource in the Smute Language (the equivalent of theHASHINTSTACK
resource).

• ResourcesSTRINGandSTRINGMEM, plus a set of Smute Language instructions for string-
operations.

• Support for floating-point data-types and their according operations in the Smute Language,
including newCARGOTREE-nodes for these data-types.

• FormalCARGOTREE-Scheme related specifications, including string-aliasesfor integer iden-
tifiers to be used in Smute Language code (most notably node-ids). This feature should
be considered only after the Smute Assembler is realised. Within the same specification
could there be visualisation-related information in orderto supportCARGOTREE-Scheme-
dependent visualisations.

Another set of obvious extensions, with less relevance thanthe above mentioned ones:

• Type-checking for Smute Function parameters specified in the Smute Launch File.
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• Support of passing Smute Function results as input to other Smute Functions “directly”,
according to appropriate specifications made in the Smute Launch File.

• Preprocessing Function and data-storage specifications inthe Smute Launch File (could
supersede the Wrapper Functions, which currently perform these tasks).

• Currently the parser of the Smute Interpreter is not recovering from parsing-errors, i.e., it
cannot continue parsing after a parsing-error occurs (execution aborts). This means that
multiple errors in the source can only be detected one after another, i.e., only after one
such error gets corrected is the next one reported. Parsers with error-recovery are more
user-friendly, as they can report multiple parsing-errorssimultaneously. Thus the imple-
mentation of error-recovery is an option for ongoing development. It is however the author
of languages and Backus-Naur forms who needs to specify the parsing-error-recovery be-
haviour. As a result, GOLD Parser could not be used any longer, as it does not provide such
features. A completely new parsing-table generation system would have to be developed.
For the small benefit of parsing-error-recovery this seems hardly worthwhile.

• The functions implemented by Smute Function Developers aredirectly used by Smute Func-
tion Users. There is a related task, where functions processing recursively structured data
are used within an application, such as formula manipulations in mathematics software.
Smute is not designed for writing application-functions. Though it can be abused for this
task: Currently an application would have to externally execute the Smute Interpreter. This
is of course a rather dilettantish solution. Thus the support of application-internal usage of
Smute Functions is another potential extension of Smute. The minimal effort solution is to
provide a library and interfaces for Smute Function interpretation. Though an application
internally interpreting functions can be rightly regardedas peculiar. The best solution is a
compiler for the Smute Language.

Due to its optimised direct interpretability the Smute Language must be regarded as lower-level
language. Though a higher-level language is of course not ruled out by the Smute conception. In
fact, the Smute Language could serve as base for a higher-level language, such that specifications
in the higher-level language are compiled to the Smute Language. The following is a summary of
important considerations for assessing the value and necessity of a higher-level language:

• Ease of function specification: Comparable to C, the usage ofvariables instead of registers,
and the support of compound statements would definitely simplify function-specification.

• Readability/suitability for the publishing of specifications: For reductions-to-QBFs the situ-
ation is as follows: There is a specification with optimised readability which gets published.
The implementation is based on this specification. Due to theabstraction provided by the
Smute Language, the implementation-specification is already very closely related to the
published specifications. Though it might be desirable to melt these two specifications into
one: That is, specifications in the implementation languagewould have to be sufficiently
readable for publishing. The Smute Language clearly does not meet this criterion. But even
for a higher-level language this is almost impossible to achieve: A shift towards readability
can usually only be made at the expense of expressiveness. Inmany computer-science books
algorithms are listed inpseudo-codenot only to be programming-language independent, but
also because the comprehensibility of pseudo-code cannot be achieved with specifications
in a powerful programming language. It is thus more reasonable to not demand the suitabil-
ity for the publishing of specifications from a higher-levellanguage, but to carry on with
distinct specifications for publishing and for the implementation respectively.

• Efficiency: The convenience provided by a higher-level language is achieved at the expense
of efficiency. Unnecessary loss of efficiency can only be avoided by sophisticated optimisa-
tion in the compilation. The realisation of such optimisations is however laborious.
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• Compiler implementation: Some common compiler-principles cannot be used with Smute.
Most notably, compilers usually reserve stack-space for local variables. As discussed on
page 10, this is inappropriate for functions which get recursively called.

Readers interested in obtaining the Smute software should get in contact with the author,
preferably via e-mail.
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