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Abstract

The general theme of this thesis is orthogonal frequency division multiplexing (OFDM)
communications over time and frequency selective fading channels. We propose and study
linear prediction techniques for acquiring channel state information (CSI) in OFDM re-
ceivers, and we perform an information-theoretic analysis of the performance of OFDM
systems.

After a review of the generic discrete-time pulse-shaping OFDM system (which com-
prises conventional cyclic-prefix OFDM systems as a special case), we consider the trans-
mission over a time and frequency selective fading channel. We arrive at an approximate
multiplicative system input-output relation in which intersymbol and interchannel inter-
ference is neglected.

Based on this approximate input-output relation, we propose decision-directed channel
predictors that are capable of yielding up-to-date CSI without regular transmission of pilot
symbols. We derive the minimum mean-square error (MMSE) predictor and a reduced-
complexity version that allows for an efficient DFT implementation. We also develop
adaptive predictors that do not need statistical prior knowledge and can track nonstation-
ary channels. Several applications of channel prediction are discussed, and the excellent
performance of the proposed techniques is demonstrated by computer simulations.

The second major contribution of this thesis is an information-theoretic analysis of the
performance of OFDM systems transmitting over time and frequency selective channels.
We study the system capacity of wideband OFDM communications in the absence of CSI
at the transmitter and the receiver. Using a codebook that is "peaky" in time and fre-
quency, we show that OFDM can approach the infinite-bandwidth channel capacity. On
the other hand, using a "nonpeaky" constant-modulus signaling scheme, we show that the
information rate is reduced by a penalty term that is related to the predictability of the
fading channel. We quantify the impact of the spread and shape of the scattering function
on this penalty term. Finally, we formulate an upper and a lower bound on system capacity
and demonstrate by simulations that both bounds are close to the AWGN channel capacity
for large ranges of bandwidth and for practically relevant system parameters.



Kurzfassung

Diese Dissertation behandelt die Datenübertragung mittels orthogonaler Frequenzmulti-
plex-Technik {orthogonal frequency division multiplexing, OFDM) über zeit- und frequenz-
selektive Schwundkanäle. Wir entwickeln und untersuchen lineare Prädiktionsmethoden
zur Erlangung von Kanalinformation im OFDM-Empfänger. Eine informationstheoretische
Analyse von OFDM-Systemen liefert weiters Ergebnisse über deren Leistungsfähigkeit.

Nach der Beschreibung des OFDM-Systems mit Impulsformung (welches das OFDM-
System mit zyklischem Präfix als Spezialfall enthält) behandeln wir die Übertragung über
zeit- und frequenzselektive Schwundkanäle. Es ergibt sich näherungsweise eine Eingangs-
Ausgangsbeziehung, die Intersymbol- und Interkanalinterferenz vernachlässigt.

Ausgehend von dieser Näherung entwickeln wir entscheidungsrückgekoppelte Kanal-
prädiktoren, die ohne Übertragung von Pilotsymbolen aktuelle Kanalinformation liefern
können. Wir berechnen jenen Prädiktor, der den mittleren quadratischen Prädiktionsfehler
minimiert und schlagen eine DFT-Implentierung geringerer Komplexität vor. Weiters ent-
wickeln wir adaptive Prädiktoren, die kein statistisches Vorwissen benötigen und nichtsta-
tionären Kanälen folgen können. Verschiedene Anwendungen der Kanalprädiktion werden
behandelt, und die ausgezeichnete Leistungsfähigkeit der vorgeschlagenen Methoden wird
durch Simulationen gezeigt.

Der zweite wesentliche Beitrag dieser Dissertation ist eine informationstheoretische Ana-
lyse der OFDM-Übertragung über zeit- und frequenzselektive Schwundkanäle. Wir unter-
suchen die Systemkapazität ohne Kanalinformation am Sender und Empfänger. Mit Hilfe
eines Codebuchs, das die Sendeleistung in Zeit und Frequenz konzentriert, zeigen wir,
daß OFDM die Kanalkapazität für unendliche Bandbreite erreichen kann. Für Phasenmo-
dulation-Codebücher zeigen wir hingegen, daß die Informationsrate durch einen Term re-
duziert wird, der mit der Prädizierbarkeit des Kanals zusammenhängt. Wir quantifizieren
den Einfluß von Ausdehnung und Form der Streufunktion auf diesen Reduktionsterm. Ab-
schließend formulieren wir eine obere und eine untere Schranke für die Systemkapazität
und zeigen mittels Simulationen, daß beide Schranken innerhalb großer Bandbreitenbere-
iche und für praktisch relevante Systemparameter nahe der Kapazität des AWGN-Kanals
sind.
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Introduction

This thesis is concerned with orthogonal frequency division multiplexing (OFDM) commu-
nications over time and frequency selective Rayleigh fading channels. The investigation
of OFDM systems is motivated by their increasing importance in applications. More-
over, time and frequency selective fading channels are relevant in wireless communications,
which is one of the dominant applications of OFDM systems. Typically, wireless channels
are small-scale fading channels and are thus inherently time and frequency selective (cf.
e.g. [1-3]). An important problem in this context is the acquisition of channel state in-

formation (CSI) at the receiver of a wireless OFDM system. In this thesis, therefore, we
propose and investigate the use of channel prediction for obtaining CSI. Another problem
is that the information rate that can theoretically be achieved by wireless OFDM systems
is unknown. We therefore present an information-theoretic analysis in which we study the
system capacity and information rate of OFDM communication systems. This analysis will
reveal a close relation between the achievable information rate and the predictability of the
channel.

1



2 Chapter 1. Introduction

1.1 OFDM Communication Systems

OFDM is a modulation scheme that was first introduced in [4] where a general continuous-
time pulse-shaping system was considered. An important development for OFDM was
to recognize that a DFT can be used for modulation and demodulation [5]. However,
for a long time OFDM was used only in military applications. The current success of
OFDM is due to the invention of the so-called cyclic-prefix OFDM (CP-OFDM) system
[6]. This system uses the DFT for modulation and demodulation, and thus CP-OFDM can
be implemented with low complexity. Moreover, CP-OFDM also copes with delay-spread
channels in a simple yet effective manner. Further classical work on OFDM is [7,8], where
the application of OFDM in communication systems is proposed. Since then, a continuously
increasing number of publications have covered various aspects of OFDM communication
systems such as synchronization, channel estimation, detection, implementation issues, etc.

Several of today's communication standards are based on OFDM. In particular, OFDM
is used in commercial standards for wireless local area networks (WLAN), namely, IEEE
802.11a [9] and HIPERLAN/2 [10]; for terrestrial digital video broadcasting (DVB-T) [11];
for terrestrial digital audio broadcasting (DAB-T) [12]; and for asymmetric digital sub-
scriber line (ADSL) systems. Furthermore, it is currently being standardized as an ex-
tension to the WLAN standard IEEE 802.11b under the name IEEE 802.11g and for the
broadband wireless access system IEEE 802.15. Moreover, OFDM is a strong candidate
for fourth-generation cellular communication systems, for future multi-input multi-output
(MIMO) systems [13], and for ultra-wideband (UWB) systems [14].

OFDM is also known under the names multicarrier modulation and discrete multitone

(DMT). Basically, these are simply different names for the same modulation scheme. How-
ever, in wired applications the designation DMT is widely accepted. A subtle difference is
that for DMT real-valued transmit signals are desired and therefore only half of the avail-
able subcarriers are used for modulation; the other half is modulated by the conjugated
complex symbols. In this thesis, we focus on wireless applications and therefore will use
the name OFDM.

The basic idea of OFDM is to split the available transmission bandwidth into many
parallel narrowband channels. In wireless systems, the channel introduces complicated im-
pairments. It is here advantageous to deal with the low data-rate subcarriers individually.
A similar approach is pursued by frequency division multiplexing. However, in OFDM the
transmit/receive filters overlap in time and frequency. In this respect, OFDM is similar
to code division multiplexing if the transmit/receive filters are considered as spreading
sequences. However, in OFDM the transmit/receive filters have a certain time-frequency
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modulation structure that aims at transmitting information at specific time-frequency lo-
cations.

There exist several extensions of OFDM systems that we briefly list but do not consider
further in this thesis. In OFDM offset quadrature amplitude modulated (OFDM/OQAM)
systems, the real part and the imaginary part of the data symbols are transmitted with
a time offset of half the symbol duration [15-20]. OFDM/OQAM systems are related to
Wilson bases [21,22]. Furthermore, OFDM can be extended to systems operating with
nonrectangular time-frequency lattices [23], and recently an extension of OFDM using
multiple transmit/receive pulses was proposed [24,25]. Finally, precoded systems [26-29]
can also be regarded as an extension of OFDM.

There are certain aspects in OFDM systems that are important in practical imple-
mentations but are beyond the scope of this thesis. In particular, these topics include
synchronization [27, 30-38] and the reduction of the high peak-to-average power ratio of
OFDM [39-45].

1.2 Channel State Information: Relevance and Acquisition

Techniques

In this section, we briefly discuss why the acquisition of channel state information (CSI) is
important in communication systems. Furthermore, we give an overview of CSI acquisition
techniques used in OFDM systems.

1.2.1 Relevance of Channel State Information

Most OFDM systems use coherent detection, which has approximately a 3 dB signal-to-
noise ratio (SNR) gain over differential techniques [1] but requires CSI at the receiver.
Moreover, CSI at the receiver and/or transmitter is also necessary for a number of ad-
vanced communication techniques. In particular, at the receiver CSI is required for an-
tenna combining and space-time decoding. For example, in [46] it has been found that CSI
is important to realize the full potential of MIMO communication systems. Furthermore,
the transmitter needs CSI to apply link adaptation (bit and power loading), precoding,
pre-equalization, and adaptive transmit antenna diversity [8,47-50].

In wireless communication systems, it is much more difficult to obtain reliable CSI than
in wired systems. This is because the estimation error for time and frequency selective
channels contains, in addition to a component due to noise, a component that arises from
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the time-variation of the channel. For a given (fixed) channel estimate, this additional
error contribution increases gradually with time. Indeed, channel estimates are outdated
after a time period equal to a fraction of the channel coherence time. Therefore, to obtain
up-to-date CSI, time and frequency selective channels need to be tracked continuously.

For techniques that require CSI at the transmitter, outdated CSI is a severe problem.
If CSI is obtained from the receiver via a feed-back link, a significant percentage of the
data rate of the feed-back link may be required to transmit channel parameters. Here,
CSI may be outdated due to transmission delays. On the other hand, in a time division
duplex (TDD) communication scheme, if the channel is estimated by the transmitter while
in receive mode, this CSI could be outdated as well when applied subsequently.

Depending on the application, accurate CSI is required to achieve performance gains
similar to those that have been demonstrated with perfect channel knowledge. In [51],
it is shown that, as a rule of thumb, CSI cannot be regarded as "perfect" if the mean
square error (MSE) of channel estimation is larger than the reciprocal of the SNR. Hence,
communications over time and frequency selective fading channels inherently suffers from
channel uncertainty. The detrimental effects of channel uncertainty can be particularly
pronounced for large bandwidths. In the wideband regime, the SNR typically is low and
thus channel estimation errors tend to be large. Indeed, for spread-spectrum-like com-
munication systems it has recently been reported that the information rate tends to zero
for very large bandwidths, and the reason for this effect has been attributed to the large
channel uncertainty [52-54].

1.2.2 Acquisition of Channel State Information

The approaches to channel estimation in OFDM systems can roughly be classified into
four groups. These are pilot symbol assisted channel estimation, decision-directed channel
estimation, blind channel estimation, and decision-directed channel prediction. Next, we
briefly describe these approaches.

Pilot Symbol Assisted Channel Estimation

Channel estimation in time and frequency selective environments is usually performed in a
pilot symbol assisted mode [55-72]. Here, known training symbols are regularly transmitted
at certain subcarriers. For illustration, the pilot constellation in DVB-T is shown in Figure
1.1. The separation of the pilots in the time direction and in the frequency direction is four
OFDM symbols and eight subcarriers, respectively; about 10 % of the transmitted symbols
are pilots. In [73] it is shown that regular pilot locations are optimum. The performance
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O pilot symbol

O data symbol

»- symbol time interval n

Figure 1.1: Illustration of pilot symbol transmission in a DVB-T system.

of the channel estimator increases with the number of pilots.

The channel coefficients at intermediate symbol time or subcarrier locations (i.e., be-
tween the pilot locations) are obtained by estimation (interpolation). A widely explored
approach is linear minimum mean-square error (MMSE) channel estimation [55-57,59, 60,
64,65,74], which requires (nominal or estimated) second-order channel statistics. Estima-
tion of the channel statistics is considered in [64] and in a non-OFDM context in [75].
Explicit estimation of the channel statistics can be avoided by using adaptive channel esti-
mators [66-70]. A drawback of pilot symbol assisted channel estimation is that it reduces
the effective data rate and potentially introduces delays.

An alternative to the continuous transmission of pilots as illustrated in Figure 1.1 is to
use a training data block at the beginning of each packet (this strategy is also employed in
wireline communication systems). Here, the channel is estimated during the training block,
possibly using MMSE channel estimation, and the resulting channel estimate is used for the
duration of the respective packet. This strategy is used in IEEE 802.11a and HIPERLAN/2
where each frame starts with two known OFDM symbols (this training block is also used
for synchronization). A drawback of using training data in blockwise form is that the
channel cannot be tracked. Hence, IEEE 802.11a and HIPERLAN/2 cannot cope with fast
time-varying channels but are intended for quasi-static transmission environments.

Decision-Directed Channel Estimation

An alternative to pilot symbol assisted channel estimation is decision-directed channel
estimation as described in [76-79]. Here, previously detected symbols replace the pilot
symbols for channel estimation. This has the advantage that once the symbols are detected,
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all subcarriers can be used for channel estimation; this yields improved performance and
avoids interpolation. On the other hand, error propagation can occur, which limits the
performance of decision-directed channel estimation especially in the low SNR regime.
Moreover, this technique performs poorly for fast time-varying channels because with the
previously detected symbols only the past channel can be estimated. For fast time-variation
of the channel, these estimates are outdated.

Blind Channel Estimation

Regular transmission of pilot symbols can be avoided by techniques for "blind" channel
estimation [80] that exploit specific deterministic or stochastic structural properties of the
multicarrier signal. Deterministic blind methods are attractive because they tend to feature
better convergence properties and because no statistics need to be estimated at the receiver.
So far, blind channel estimation has mostly been considered for time-invariant channels.

In particular, blind algorithms that are based on the cyclostationarity of the received
signal have been presented in [81-84]. As observed in [83,84], this cyclocstationarity is
present even without any transmitter precoding. Alternative blind methods that are based
on a deterministic signal structure have been presented in [27] (for precoded systems) and
in [85] (exploiting the CP).

Decision-Directed Channel Prediction

As an alternative to conventional pilot symbol assisted or decision-directed estimation
and tracking schemes, CSI can be acquired by decision-directed channel prediction. Here,
exploiting the correlations of the fading channel, previously detected symbols are used to
predict the channel into the future. While this approach is somewhat similar to decision-
directed channel estimation, it is different in that is capable of yielding up-to-date CSI.
Therefore, this technique has the advantage of allowing the tracking of fast time-vary ing
channels without periodic transmission of training data. Only for initialization a short
training block is required. Channel prediction also allows the application of advanced
techniques such as link adaptation.

In a non-OFDM context, the prediction of fading channels and its applications were
previously investigated in [50,86-89]. In particular, the generic concept of the prediction
of fading signals is described in [50], and in [89] the application of channel prediction
to adaptive modulation is investigated. For OFDM systems, channel prediction and its
application to equalization have been proposed in [90,91]. However, [90] assumes that the
channel can be perfectly observed (noiseless prediction), and [91] considers pilot symbol
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based channel prediction.

In Chapter 3, we will consider the practically relevant case of noisy prediction, for

which we will develop MMSE channel predictors as well as adaptive channel predictors

[92-94]. Independently of the author's work, MMSE channel prediction in OFDM systems

has recently been proposed in [65].

1.3 Information-Theoretic Aspects of Wireless Communications

Information-theoretic results known for time and frequency selective fading channels
strongly depend on the CSI available at the transmitter and receiver [95]. Moreover, for
the practically most important case that neither the transmitter nor the receiver has CSI,
the channel capacity is known only for infinite bandwidth [96-99]; specifically, it is then
identical to the capacity of an AWGN channel. This is a surprising result because it was
expected that in the absence of CSI the capacity would decrease. To derive this result,
frequency shift keying (FSK) signaling with an average power constraint but no peak power
constraint was considered. Unfortunately, the analysis in [96-99] cannot be extended to the
case of finite bandwidth, and thus it is unknown whether the capacity of time and frequency
selective fading channels is identical to that of the AWGN channel for finite bandwidth.

In [100], the information rate of an "M-ary orthogonal communication system using
stationary stochastic signals" and transmitting over an AWGN channel has been calculated.
The system model in [100] pertains also to FSK signaling over (stationary) flat fading
channels with both an average and a peak power constraint. For this system, the AWGN
capacity is not achieved because the information rate is reduced by a "penalty" term due
to the unknown channel.

Comparing the results of [96-99] and [100] indicates that the type of power constraint
plays an important role in the analysis. In particular, it can be conjectured that "peaky"
signaling schemes (i.e., no peak power constraint; sometimes the designation "flash signal-
ing" is used for this case) are better suited for the transmission over time and frequency
selective fading channels than "nonpeaky" ones.

Very recently, the interest in time and frequency selective fading channels increased
again since modern wireless communication systems have to cope with mobile environments.
Moreover, future communication systems will operate in the wideband regime with large
bandwidth and low receive SNR (the SNR is low because the total transmit power is
limited due to regulatory directives and/or technical reasons and the noise power is high
due to the large bandwidth). It was long believed that the wideband regime is sufficiently
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characterized by an asymptotic (i.e., infinite-bandwidth) analysis. However, in [101,102]
it is shown that this is not the case, and thus communication systems need to be analyzed
specifically for this operation regime.

For wideband communications over time and frequency selective fading channels in
the absence of CSI at the transmitter and the receiver, [52-54] report that the capacity
asymptotically approaches zero if "nonpeaky" signaling schemes are used. This effect has
been attributed to increasingly unreliable channel estimates when the transmit power is
limited but the bandwidth is increased [52-54]. These results again indicate that one should
use peaky signaling schemes for the transmission over time and frequency selective fading
channels. However, it is difficult to assess whether the bounds in [52-54] have operational
significance for current communication systems. This issue has recently been studied for
spread-spectrum systems and pulse position modulation in [103,104], with the conclusion
that spread-spectrum-like signaling performs poorly for wideband communications. It is
unclear if similar results also pertain to OFDM. For OFDM, it has been shown that the
transmit and receive pulses (cf. Section 2.1) are approximate eigenfunctions of underspread
time and frequency selective fading channels [105,106]. Therefore, OFDM systems could be
better suited for time and frequency selective environments than spread-spectrum systems.
However, it can be conjectured that also for OFDM the type of power constraint (i.e.,
peaky or nonpeaky signaling) will be important for the analysis.

In Chapter 4, we will carry out an information-theoretic analysis of wireless OFDM
communication systems. In particular, we will study the system capacity of wideband
OFDM communications over time and frequency selective fading channels in the absence
of CSI at the transmitter or receiver. To the author's knowledge, this information-theoretic
analysis of OFDM systems is completely novel.

We will consider two specific signaling schemes that are peaky and nonpeaky, respec-
tively. An advantage of the OFDM modulation format is that it allows to analyze both
cases within the same framework. For infinite bandwidth, using peaky signaling, we obtain
that OFDM can achieve the infinite-bandwidth capacity of time and frequency selective
fading channels. With the nonpeaky signaling scheme, we demonstrate that, similar to the
result in [100], the information rate decreases by a "penalty" term due to the unknown
channel. In particular, also for OFDM, spreading the transmitted information over very
large bandwidths results in vanishing information rate. However, in contrast to [52-54]
(where bounds are derived that are only asymptotically tight), we can study the exact
behavior of the information rate in the wideband regime. In this analysis, we will show
that the information rate reduction is related to the predictability of the channel, which
conforms to the results in [107]. Moreover, since in OFDM we know the exact behavior
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of the information rate, the operating regime with vanishing information rate can easily
be avoided by appropriately limiting the bandwidth actually used to transmit information.
With this strategy, we obtain information rates for OFDM that do not approach zero but
remain constant for very large bandwidths. For spread-spectrum systems, a similar strategy
could be applied if the dependence of the information rate on bandwidth was known.

To assess the system capacity of OFDM in the finite-bandwidth case, we will derive
upper and lower bounds since we cannot provide exact results. We will demonstrate that
these bounds practically coincide for typical system and channel parameters over large
and practically relevant ranges of bandwidth. Moreover, the upper bound is close to the
capacity of the AWGN channel with the same transmit power and bandwidth.

From an information-theoretic point of view, our results indicate that OFDM is indeed
well suited for wideband communications over time and frequency selective fading channels.

1.4 Overview of Contributions

We conclude this introductory chapter with an overview of the main contributions of this

thesis.

Pulse-shaping OFDM system model (Chapter 2): Our analysis is based on a
"pulse-shaping" discrete-time OFDM system that is closely related to the original
OFDM system proposed in [4,5]. We present an efficient digital implementation
of pulse-shaping OFDM systems that is based on the discrete Fourier transform
(DFT) and whose computational complexity is only slightly higher than that of the
cyclic-prefix (CP) implementation of OFDM [6]. Furthermore, we introduce the
concept of an equivalent channel that jointly characterizes the time and frequency
selective fading channel and the pulse shaping at transmitter and receiver. Parts of
this work have been previously reported in [108].

MMSE channel predictor for OFDM (Subsection 3.2.1): We derive a novel decis-
ion-directed MMSE channel predictor for OFDM that exploits the correlations of the
time and frequency selective channel. We show that the MMSE predictor consists of
two stages: a division by the data symbols and a time-varying MIMO filter. This
work has been published in [69,94].

Efficient implementation of channel predictor (Subsections 3.2.2 and 3.2.3): We

show that the complexity of the full-blown MMSE channel predictor can be signif-

icantly reduced by replacing the second stage with a time-invariant MIMO filter,
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and finding an efficient DFT implementation for the resulting reduced-complexity
predictor. This work has been published in [69,94].

Performance of infinite-length predictor (Subsections 3.2.4 and 3.2.5): We con-
sider the MMSE channel predictor with infinite predictor memory. The performance
(MMSE) of this predictor can be calculated in terms of the channel's scattering
function and the noise variance. Moreover, for the special case of specular scattering
for which the scattering function consists of discrete (Dirac impulse) components,
we show that the channel can be predicted perfectly, i.e., the channel prediction
MMSE is equal to zero. This result, which extends a similar result for noiseless
prediction of nonregular processes [109], has been submitted for publication [110, 111].

Adaptive channel predictors (Section 3.3): Calculation of the MMSE channel
predictor requires knowledge of the channel statistics. To avoid estimation of the
channel statistics, we propose adaptive channel predictors that perform a continual
update of the predictor coefficients using the normalized least-mean-square (NLMS)
or recursive least-squares (RLS) algorithm. The adaptive channel predictors are
capable of tracking nonstationary channels. This work has been published in [69,93].

Application examples of channel prediction (Section 3.4): We consider the typi-
cal application of channel prediction, namely CSI acquisition for channel equalization
at the receiver. We also propose an adaptive modulation strategy for wireless
OFDM systems that is based on channel prediction and employs a novel protocol for
feeding CSI back to the transmitter. Finally, we briefly consider channel prediction
in OFDM systems that continuously transmit pilot symbols. Parts of this work have
been published in [69,93,94].

System capacity of OFDM for infinite bandwidth (Section 4.3): We consider the
system capacity of an OFDM system transmitting over a time and frequency selective
Rayleigh fading channel and using an orthogonal codebook similar to [99, Section
8.6]. Analyzing the bit error probability of the maximum-likelihood detector in the
asymptotic (i.e., infinite-bandwidth) regime, we show that error-free transmission is
possible if the information rate is below a certain nonzero rate. This rate is equal
to the capacity of time and frequency selective Rayleigh fading channels. This work
has been submitted for publication [110, 111].

Information rate for constant-modulus signaling (Subsections 4.4.1—4.4.3): We

study the practically important case of an OFDM system using constant-modulus
signaling and derive its information rate. We show how the information rate is related
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to the predictability of the channel (i.e., the prediction MMSE of the infinite-length
MMSE channel predictor). In particular, we show that the information rate is close
to the AWGN channel capacity if the channel prediction MMSE is close to zero.
On the other hand, spreading the transmitted information over extremely large
bandwidths results in zero information rate due to the large channel prediction
MMSE. This work has been submitted for publication [110, 111].

Dependence of information rate on scattering function (Subsection 4.4.4): For
finite bandwidth, we quantify how the scattering function influences the information
rate of OFDM systems using constant-modulus signaling. In particular, we show
that the information rate is reduced for a scattering function that is widely spread,
and minimized by a flat scattering function. This work has been submitted for
publication [110,111].

Upper and lower bounds on system capacity (Section 4.5): To assess the OFDM
- system capacity for finite bandwidth, we develop an upper bound and we derive a

lower bound from the information rate of OFDM using constant-modulus signaling
(cf. Subsection 4.4.1). We demonstrate that for typical system and channel parame-
ters, both bounds are close to the AWGN channel capacity. Furthermore, we show

, that the OFDM system capacity does not vanish for very large bandwidths. Parts
of this work have been submitted for publication [110, 111].

Bounds on information rate for Gaussian signaling (Section 4.6): Finally, we pres-
ent two lower bounds on the information rate for Gaussian signaling. One of these
bounds is most useful in the narrowband regime, while the other is most useful in the
wideband regime.



System Model

Orthogonal frequency division multiplexing (OFDM) communication systems were first in-
troduced in the late '60s. In those days OFDM was hardly used and for a long time only
little research was performed on this specific modulation format. It required the increased
capabilities of digital signal processors and the desire for spectrally efficient wideband com-
munications to again draw the interest to OFDM. Since the early '90s there has been
a steadily increasing interest in OFDM and nowadays OFDM has been standardized for
several communication services.

In this chapter, we describe the general system model for pulse-shaping OFDM commu-
nications over wireless channels. Pulse-shaping OFDM systems were initially introduced
by [4,5] and further investigated in, e.g., [106,108,112-116]. Based on this model, in
subsequent chapters we will develop novel predictors for OFDM systems and carry out
an information-theoretic analysis of wireless OFDM systems transmitting over time and
frequency selective channels.

The outline of this chapter is as follows. In Section 2.1, we review the pulse-shaping
OFDM modulator and demodulator and show how a pulse-shaping OFDM system can be
implemented efficiently. As a special case, we explain the CP-OFDM system since it is the
OFDM implementation used in practical applications. In Section 2.2, we then introduce the
random time-varying channel model. We consider a time-varying channel since our interest
is in wireless communications. In Section 2.3, the system input-output relation for OFDM
communications over a time-vary ing channel is derived. Finally, we present a widely used
approximation that neglects intersymbol and intercarrier interference and results in a very
simple multiplicative input-output relation.

13
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Xn,o î
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NXn,K-\

Figure 2.1: Modulator of an OFDM system with K subcarriers and a symbol duration of
N samples using pulse-shaping filters g[m}.

2.1 OFDM Modulator and Demodulator

We next introduce the pulse-shaping OFDM modulator and demodulator [106,108,114,
115]. We discuss a low-complexity implementation and specialize for the case of CP-OFDM.

OFDM Modulator

Figure 2.1 shows the modulator for a pulse-shaping OFDM system with K subcarriers.
The data symbols Xnk may belong to a single high-data-rate source (related by serial-to-
parallel conversion) or to multiple sources/users. The subscripts n and k in Xn^ denote the
OFDM symbol and the OFDM subcarrier, respectively. The OFDM symbol duration is iV
signal samples. After upsampling by a factor of iV, the transmit data is passed through the
transmit filter using the transmit pulse g[m] and modulated with the respective subcarrier
center frequencies. The modulated discrete-time baseband transmit signal is given by

oo K-\

(2.1)
n=—oo fc=0

with the time-frequency shifted transmit pulses

9n,k[m} ± g[m-nN (2.2)

Note that g[m] can in general have arbitrary shape and length. The number of subcarriers
may vary in a wide range. For example, in IEEE 802.11a and in HIPERLAN/2 only K = 64
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frequency

0 N 2N 3N
time

Figure 2.2: OFDM modulation can intuitively be interpreted as sending the data symbols
on top of time-frequency shifted pulses. These pulses are located on a rectangular time-
frequency lattice with cell size N x l/K. Note that in contrast to this schematic picture,
the pulses overlap with their neighbors.

subcarriers are used [9,10] but in DVB-T we have as many as K = 8192 subcarriers [11].

Moreover, the OFDM symbol duration is typically less than 25% larger than K so that

1 < N/K < 1.25. As will be discussed presently, the excess value of the ratio N/K above

one corresponds to the amount of redundancy in the OFDM system, and thus the spectral

efficiency is inversely proportional to N/K. Hence, a low value for N/K is desirable in

practical OFDM systems.

It is intuitive to think of (2.1) as transmitting the data symbols Xn^ on a rectangu-

lar time-frequency lattice of cell size N x l/K. This concept is illustrated in Figure 2.2.

Around the grid points of the rectangular lattice, the time-frequency shifted pulses <7n,fc["̂ ]

are located. Since the ^„^[m] are generated from the single pulse g[m] via time and fre-

quency shifts, they all have the same shape. On top of these pulses, the data symbols are

sent. However, (2.1) is more complicated than sketched in Figure 2.2 since a nonnegligible

overlap between neighboring pulses does exist. Note that other lattice geometries than the

rectangular are also possible. In particular, [23] proposes a hexagonal grid, which can have

better interference robustness but is more difficult to implement and to analyze.

OFDM Demodulator

The demodulator of a pulse-shaping OFDM system is shown in Figure 2.3. During each

OFDM symbol interval, the demodulator derives the K sequences Yn>k with k = 0 , . . . , K—\
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Figure 2.3: Demodulator of a pulse-shaping OFDM system.

by calculating the inner products

Yn,k = (y,fn,k) = (2.3)

Here, the received signal is denoted by y[m] and the time-frequency shifted receive pulses

are denned as

= f[m - nN (2.4)

with the receive pulse /[TO]. Note that (2.2) and (2.4) use the same time-shift and frequency-

modulation structure.

Biorthogonality Condition

In the absence of distortions and noise, the received signal is given by y[m] = x[m]. Inserting

(2.1) into (2.3) then yields for the demodulated sequences

oo K-\

Ynk = 2 / jXn'P (gn',k',fn,k) •

n'=-ook'=0

Hence, perfect demodulation (i.e., Yntk = Xn>k) is obtained if and only if the transmit pulse

g[m] and receive pulse /[TO] satisfy the biorthogonality condition

(9n',k',fn,k) = S[n-n'}5[k-k'}. (2.5)

In the special case where the transmit and receive pulses are identical, i.e., g[m] = /[TO],

(2.5) is an orthogonality condition; this explains the name OFDM. However, throughout
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this thesis we will use the term OFDM also for the case g[m] ̂  f[m]. We note that the

latter case is sometimes referred to as biorthogonal frequency division multiplexing.

With the transmit and receive pulses defined in (2.2) and (2.4), respectively, the left-

hand side of (2.5) can be reformulated as

with the cross-ambiguity function [21,117]

f[mW[m-l)e-^^. (2.6)

Hence, the biorthogonality condition (2.5) is equivalently given by

, ^ =6[n]ö[k]. (2.7)

The biorthogonality condition (2.7) imposes a certain structure on the shape of the

cross-ambiguity function: it requires that the cross-ambiguity function is equal to one at

the origin and zero at all other grid points of the OFDM time-frequency lattice.

It can be shown that pulses that fulfill (2.5) or equivalently (2.7) exist if and only if

N/K > 1, and furthermore the pulse sets {gn,k} and {/n,fc} have to constitute a frame

[21,106,115,117]. For N/K = 1, a unique solution is obtained, i.e, there exists only one

biort'hogonal f[m] to a prescribed g[m] and vice versa. However, for N/K > 1 there exist

several solution since (2.5) and (2.7) are underdetermined. This is a degree of freedom

that can be exploited by the system designer to, e.g., minimize the interference when

transmitting over a doubly dispersive channel [108]. If N/K is increased, the symbol rate

of the OFDM system is decreased since less symbols can be transmitted within a certain

time-frequency area. This reduces the spectral efficiency of the system. Therefore, the

choice of N/K corresponds to a tradeoff between system design freedom and symbol rate

(spectral efficiency). In practical systems, N/K is typically between 1.03 and 1.25.

2.1.1 Efficient Implementation

We next propose an efficient implementation of the modulator and demodulator of pulse-

shaping OFDM systems [108]. The transmit and receive pulses are assumed to have finite

length which will be denoted by Lg and Lj, respectively. The proposed implementation is

shown for the modulator in Figure 2.4 and for the demodulator in Figure 2.5. It essentially

consists of the usual length-/^ IDFT or DFT that is also a part of CP-OFDM systems
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Figure 2.4: Efficient implementation of a pulse-shaping OFDM modulator.

(cf. Section 2.1.2), a pulse-shaping operation (elementwise multiplication by the vector
g = G?[0] 0[1] • • • 9{L9-l])T or f = (/[0] /[I] • • • f[Lf-l])T), and an overlap-add or pre-
aliasing operation. We note that in practically relevant scenarios where N/K is only slightly
larger than one, polyphase implementations [118] are not possible since they would require
N/K to be an integer.

Implementation of the Modulator

Within the nth OFDM symbol period, x[m] in (2.1) can be written as

n+Qg

xf\m-iN], m = nN,... (n-t-l)JV-l,x[m) = (2.8)
i=n-Qg

where Qg = \Lg/(2N)] and

K-\

â xn[m}g[n], with xn[m] 4 (2.9)

Equation (2.8) describes an overlap-add operation that involves 2Qg + 1 windowed IDFT
signals Xn [m] (see (2.9)). These can be computed as follows (see Figure 2.4). First, the
vector xn = (xn[0] xn[l] • • • xn[K — 1])T is periodically repeated (stacked) to form a length-
Lg vector. Note that xn contains the length-K normalized IDFT of Xn^. Subsequently,
this vector is multiplied elementwise by the transmit pulse vector g.

Implementation of the Demodulator

Demodulation of the received signal y[m] according to (2.3) can be efficiently implemented
by means of the length-K normalized DFT

m = 0

yHere, the length-K sequence yn[m] is obtained from the windowed received signal

nN]f*[m)
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Figure 2.5: Efficient implementation of a pulse-shaping OFDM demodulator.

via the "pre-aliasing" operation

Qf

y{nf)W =
i=-Qf

with Qfê: \Lf/{2K)l

Computational Complexity

The complexity of the modulator is determined by the IDFT and the pulse shaping, re-
quiring a total of O(K log2 K + Lg) operations per symbol period. Similarly, the DFT and
windowing at the receiver amount to O(K log2 K+Lf) operations per symbol period. Com-
pared to a CP-OFDM system that requires only the IDFT/DFT (i.e., no pulse-shaping),
this is an increase by Lg + Lf operations per symbol period. As an example, for K = 1024
subcarriers, symbol length N = 1280, and pulse length Lg = Lf = 2N, the increase in
computational complexity with respect to a CP-OFDM system is only 25%. We note that
due to the overlap-add and pre-aliasing operations, pulse-shaping OFDM systems require
additional memory and introduce a latency of several symbol periods.

2.1.2 Cyclic-Prefix OFDM System

The simplest and most widely used OFDM variant is the cyclic-prefix OFDM (CP-OFDM)

system [5-7,119]. It is used by all commercial communication systems based on OFDM.

CP-OFDM Pulses

In a CP-OFDM system, the transmit and receive pulse are both rectangular. They are
given by
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Figure 2.6: Magnitude plot of the ambiguity function for a CP-OFDM system with N = 80
and K = 64.

Note that the transmit pulse exceeds the receive pulse by the CP length Lcp. The sym-
bol duration is N = K + Lcp. These pulses fulfill the biorthogonality condition (2.5) or
(2.7). Moreover, the receive pulse set {fn,k} constitutes an orthonormal set by itself, i.e.,
(fn,k, fn',k') = ö[n — n']8[k — k'\. The magnitude of the cross-ambiguity function (2.6) for a
CP-OFDM system with N = 80 and K = 64 is shown in Figure 2.6. In the delay direction
at Doppler frequency (p = 0, this cross-ambiguity function is shaped like a trapezoid and
in the Doppler frequency direction it is shaped like sin(a;)/x. Due to the CP, Aft9(l,0) = 1
for I = 0 ,1 , . . . ,Lcp.

Modulator and Demodulator

For the rectangular transmit pulse, the transmit signal is given by

xn[m-nN],

where the nth CP-OFDM symbol is obtained as

xn[m] = < xn[m + K)

0,

m = 0 , . . . , K - 1,

m = - L c p , . . . , - 1 ,

else.
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Figure 2.7: Efficient DFT implementation of (a) the modulator and (b) the demodulator
for a CP-OFDM system.

Hence, the modulation merely involves a scaled /f-point IDFT. The part of xn[m] for
m = — L c p , . . . , — 1 is the CP which is a copy of the last Lcp nonzero samples of xn[m]. This
modulator is shown in Figure 2.7(a).

Furthermore, the demodulation in (2.3) simplifies to a scaled /('-point DFT,

K-l

y[nN m]

which is shown in Figure 2.7(b). Note that the CP is not used for the purpose of demodu-
lation; it is discarded before applying the DFT.

A comparison of Figure 2.7 with the implementation of a pulse-shaping OFDM system
shown in Figure 2.4 and Figure 2.5 reveals that we obtain some simplifications in the
CP-OFDM case. In the modulator, only the IDFT, the stacking operation (prepending
the CP), and the parallel-to-serial conversion are retained. The demodulator simplifies to
a serial-to-parallel conversion and a DFT. No pulse-shaping is necessary for CP-OFDM
because the transmit and receive pulses are rectangular. In practical systems, the (I)DFT
is implemented by an (I)FFT and therefore the number of subcarriers is chosen as a power
of two.

Purpose of the Cyclic Prefix

The CP can be regarded as a guard interval protecting consecutive OFDM symbols from

intersymbol interference in the case of transmission over a multipath channel. However,

a more detailed analysis shows that the CP may also prevent interference between the
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subcarriers. In particular, for a time-invariant channel with impulse response shorter than
Lcp + 1 samples and after discarding the CP at the receiver, the channel input-output
relation is equivalent to a cyclic convolution. Therefore, after demodulation by means of
a DFT, the system input-output relation is multiplicative, i.e., each subcarrier is affected
by flat fading only. We will show in Section 2.3 that in practice such a multiplicative
input-output relation approximately holds also for time-varying channels.

A further important advantage of using a CP is that the signal structure imposed by
the CP can also be exploited for time synchronization [30, 34,35,120,121].

There exist communication systems that are closely related to CP-OFDM. The classical
one is single-carrier communications with frequency-domain equalization [119,122,123].
More recently, it has been suggested to use a CP also for this system [124-127]. The
resulting system can easily be derived from Figure 2.7 by shifting the IDFT operation
from the transmitter to the receiver. Another communication system that is related to
CP-OFDM (indeed, it can be regarded as being dual to CP-OFDM) is known as trailing-

zero OFDM [126,128-131]. Instead of prepending a CP, it adds trailing zeros to the
OFDM symbol at the transmitter. The receiver uses an overlap-add operation before DFT
demodulation.

2.2 Wireless Fading Channels

In this thesis, we are interested in OFDM communications over wireless channels. The
fundamental characteristic of a wireless channel is its time variation, which results from
movements of the transmitter, the receiver, and/or the scatterers. Therefore, the rate
of time variation strongly depends on the propagation scenario; e.g., in indoor scenarios
the channel changes more slowly than in outdoor scenarios. The basic wave propagation
mechanisms in wireless communications are free-space propagation, scattering, reflection,
and diffraction [1,3,132]. We will not consider these physical propagation mechanisms
in detail but use a statistical channel characterization known as the wide-sense station-
ary uncorrelated scattering (WSSUS) model [1,3,132,133]. Moreover, we concentrate on
the small-scale fading effects of the wireless channel. Large-scale fading effects like time
variation of the path loss, the channel statistics, or the number of delay taps will not be
modeled for reasons of analytic tractability. (We note, however, that a generalized channel
model incorporating small-scale and large-scale fading effects has recently been introduced
[134-136].)

This section is organized as follows. We first introduce the continuous-time channel
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model in Subsection 2.2.1. We define several equivalent channel descriptions and explain the

WSSUS model. Furthermore, some global channel parameters are defined. In Subsection

2.2.2, we consider the discrete-time channel that arises from the combination of analog-to-

digital (A/D) conversion at the transmitter, transmission over the continuous-time channel,

and digital-to-analog (D/A) conversion at the receiver. We again consider different channel

descriptions and relate them with their continuous-time counterparts. Furthermore, we

discuss a discrete WSSUS assumption and define some global channel parameters.

2.2.1 Continuous-Time Channel Model

Channel Input-Output Relation

We consider a wireless channel denoted by the operator symbol Hc. Due to multipath

propagation and Doppler shifts, Hc is time-varying. Its input-output relation is given by1

[1,3,132,133]

y(t) = (Mcx)(t) + u(t) = I h{t,r)x(t-T)dT + u(t), (2.10)

where x(t) and y(t) are the input and output, respectively, h(t,r) is the channel's time-

varying impulse response, and u(t) is zero-mean white Gaussian noise with power spectral

density No. For physical reasons, Hc has to be causal and can only introduce finite delays.

Hence, h(t,r) is zero for r outside the interval [0,rmax]- Moreover, the variation of h(t,r)

with respect to t cannot be arbitrarily fast; it is limited by the maximum Doppler frequency

System Descriptions

Further system descriptions for Hc that are equivalent to the impulse response h(t,r) can

be obtained via Fourier transformation. For our purpose, it is sufficient to introduce the

time-dependent transfer function

J^)e-^Tdr, (2.11)

and the spreading function

^ f)e-i*"*dt. (2.12)f
t

Note that H^c(t,f) and SÜC(T, V) are related by a symplectic 2-D Fourier transformation.

Since wireless channels are causal and introduce finite delays and finite Doppler shifts,
1 Integrals go from — oo to oo unless specified otherwise.
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the nonzero support of 5MC(T, V) is limited to (r, v) £ [0, rm a x] x [—^max/2, ̂ max/2] where

7"max = 10ns •• • 10/xs and ^max = 0 ••• 100Hz. Hence, wireless channels are typically

highly underspread, i.e., rmax^max "C 1 [1,106,137-140].

Since the spreading function Smc (T, V) is of limited support and in 2-D Fourier relation

with Hmc(t,f), the time-dependent transfer function H^c(t,f) is a 2-D lowpass function.

Its variation with respect to time and frequency is proportional to l/Vmax and l / r m a x ,

respectively.

Channel Statistics

Throughout this thesis we will assume a random channel Hc that is wide-sense stationary

with uncorrelated scatterers (WSSUS) and Rayleigh fading [1,3,132,133]. Due to the

WSSUS assumption, the correlation function of the impulse response is given by

E {h(t, r)h*(t', T')} = Dac(t - Ï, r) 5{r - r'),

with the time-delay correlation function D^c(At,r) [1,133]. That is, the impulse response

is stationary in time (WSS) and uncorrelated for different delays (US). Equivalently, the

WSSUS assumption implies that the time-dependent transfer function is 2-D stationary:

with the time-frequency correlation function R^c(At,Af) [1,133]. Finally, the spreading

function is 2-D white:

with the scattering function C^C{T,V) [1,133]. Due to the limited support of S^C(T,U),

the support of CHC(T, V) is also limited to (r, u) G [0,rmax] x [—umax./2, ẑ max/2] with

probability one. Moreover, CHC(T, V) is real-valued and nonnegative. It has the in-

terpretation of a 2-D power density spectrum of the time-varying channel. Further-

more, the time-frequency correlation function R^c(At}Af) is essentially supported within

(At, A/) G [-1/^max, 1/^max] x [—lAmax, l/rmax], i-e., the transfer function of the chan-

nel decorrelates for time lags larger than 1/̂ max and frequency lags larger than l/rmax. The

correlation functions D^c(At, r) and R^c(At, A/) and the scattering function CHC(T, V) are

related by Fourier transforms similar to (2.11) and (2.12), i.e.,
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and

C(T,V) = [Dmc(&t,r)e-j2*fAtdAt. (2.13)
J V

It should be noted that the statistics of a WSSUS channel do not depend on time even

though the channel realizations do.

Channel Parameters

The path loss of a WSSUS channel Hc is defined as the integral of the scattering function

over all delays and Doppler frequencies, i.e,

C - / / Cac(T,
J T J V

The delay spread auc and Doppler spread ßmc are defined as the normalized second

moments of the scattering function, i.e.,

k = 4 - / f(r-To)2CMc(T,u)drdu
°~MC JT JV

and

Here, (TQ,VQ) denotes the center of gravity of CHC(T, V). Roughly, a^c and ßuc are in the

same range as r m a x and i/max-

.We next define the coherence time 7ec and the coherence bandwidth B^c of Hc as

îiw, = ~z— and Bn^ — •

Tec and Bnc are approximately in the same range as 1/^max and 1/Tmax, respectively.

Therefore, coherence time and coherence bandwidth also specify the effective support area

of i?nc(Ai, A / ) , i.e., the transfer function H^c(t,f) approximately decorrelates for time

lags At larger than Tjnc and frequency lags A / larger than B^c •

2.2.2 Discrete-Time Channel Model

Discretization of the continuous-time channel Hc in (2.10) according to the model sketched

in Figure 2.8 yields a discrete-time channel Ha- At the transmitter, digital-to-analog (D/A)

conversion is used to convert the discrete-time signal x[m] into a continuous-time signal

x(t) = Y^ X H 7(* - mTs), (2-14)
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Figure 2.8: Discretization of the continuous-time channel is performed by idealized D/A
and A/D conversion at the transmitter and receiver, respectively.

where 7(t) is a transmit (interpolation) filter applied to each sample, Ts = \/B is the
duration of one sample, and B is the transmit bandwidth. For simplicity we assume an
ideal filter, i.e., j(t) = \fB smc{n Bt) with sinc(x) = SiEM This filter is normalized as
IMI2 = JtlT(*)|2^ = 1- The continuous-time transmit signal x(t) propagates over the
time-varying channel Hc and additive noise u(t) is added.

At the receiver, analog-to-digital (A/D) conversion of the received signal y(t) is per-
formed according to

y[m] = Jy(t) i{t - mT's) dt, (2.15)

where j'(t) is a receive (anti-alias and noise suppression) filter, T's = \JB' is the duration
of one sample, and B' = B + vmax. is the receive bandwidth. We assume an ideal filter with
j'(t) = y/Wsinc(nB't). The purpose of 7'(£) is to limit the noise.

Channel Input-Output Relation

Since the bandwidth of j'(t) is B' = B + i/max, the desired signal component in y(t) (the
information-bearing component JTh(t,r)s(t — r)dr) is not distorted by (2.15) but only
sampled and scaled by \j\fB'. Therefore, inserting (2.10) into (2.15) yields

y[m] = 's, T) x(mT's -r)dr + u[m), (2.16)

where

u[m] = \[~B' I u(t) sine (TTB'(É - mT's))dt
Jt

(2.17)

is zero-mean white Gaussian discrete-time noise with variance o\ = E{|ii[ra]|2} =
Furthermore, inserting (2.14) into (2.16) yields

[B~ °° r
y[m] = J— ] T x[m - I] h(mT's, r) sine {TVB [T - m(T's - Ts) - ITS] ) dr + u[m].

" i_ JT
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In this thesis, we consider wideband communication systems where the channel band-
width is at least several MHz (e.g., in IEEE 802.11a the bandwidth is 20MHz). On the
other hand, the Doppler frequency is maximally in the range of several tens of Hz. Hence,
compared with B, z/max is negligibly small and therefore the sampling frequencies at trans-
mitter and receiver are practically identical. We will consequently assume in the following
that B' = B and thus also T's = Ts. With this simplifying assumption, the input-output
relation of the equivalent discrete-time channel H<i is obtained as (cf. (2.10))

y[m] = (Udx)[m\ + u[m] = ^ h[m, 1} x[m-l] + u[m], (2-18)
Z=-oo

with the time-varying discrete-time impulse response given by

h[m,l] = f h(mTs,T) sine (TTB(T - ITS)) dr . (2.19)

For large channel bandwidths, (2.19) is well approximated as

h[m,l] sa ̂ -h(mTs,lTs). (2.20)
B

Generally, h[m,l] in (2.19) is nonzero for I 6 Z. However, for large B, it follows from

(2.20) and the fact that h(t, r) = 0 for r < 0 and r > rmax that h[m, 1} ~ 0 for I < 0 and

I > L, where

p | ] • (2.21)
Therefore, we will assume that h[m,l] has nonzero support only for / € [0,L]. Thus, (2.18)
becomes

L

y[m] = (Mdx)[m] + u[m] = ^2h[m,l]x[m-l] + u[m\. (2.22)
1=0

Note that the number of resolved channel delay taps is L + 1.

System Description

For the discrete-time channel Ha, the spreading function is defined by [1,133]
oo

E h[m,l}e-^m. (2.23)

Insertion of (2.19) and using the Fourier relation (2.12) yields

Smc(T,v)sinc(*B(T-lT.))

oo .

= B J2 5Mc(r, (£ + m)B) sine (TTB(T - IT,)) dr ,
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where we applied Poisson's sum formula. Note that Sud(l,0 is periodic in the normalized

Doppler variable £ due to the discretization of the impulse response in the time direction.

However, there does not occur aliasing in 5md(Z,f) because SHC(T, V) is limited to Doppler

frequencies \v\ < ^max/2 and ̂ max ^ B/2. Hence, in the fundamental Doppler interval we

obtain

SMd(l,O = B fsBc(r^B)smc(nB(T-lTs))dr, Ç G [-1/2,1/2).
JT

For large bandwidth B, this simplifies to

(2.24)

In the fundamental Doppler interval, the support region for Sud(l,Ç) is (/,£) € [0, L] x

[—£max/2,£max/2], where L is given in (2.21) and the maximum normalized Doppler fre-

quency is

(2.25)

The discrete-time channel Ha is underspread because

Çmax J-> —
Tmax
~7Fi ' 'max ' m a x <•« J- •

B | Ts

Channel Statistics

The correlation function of the discrete-time impulse response h[m,l] defined in (2.19) is

given by

E{h[m,l]h*[m',l'}} = f Dmc((m -m')Ts>r) smc(nB(r - IT,)) sinc(nB(r - I'Ts))dr .

(2.26)

While the WSS property is preserved in the discrete-time channel Hd, the different taps of

Hj are in general correlated. However, these correlations are negligible for large bandwidth.

Throughout this thesis, we therefore adopt the discrete WSSUS (DWSSUS) assumption

defined by

E {h[m, l]h*[m', I1}} = DMd[m - m', 1} 5[l - I'}, (2.27)

which corresponds to assuming that the integral in (2.26) vanishes for I ̂  /'. The time-delay

correlation function of Hd is obtained from (2.26) for 1 = 1':

DUd[m,l] = f DMc(mTs,T) [sïnc(irB(T - ITS))]
2dr. (2.28)

JT
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For large bandwidth, (2.28) simplifies to

In the spreading domain (delay-Doppler domain), the DWSSUS assumption can be

expressed on the fundamental Doppler interval £ 6 [—1/2,1/2) as

O, £ ,£ '€[-1/2,1/2) . (2.29)

Here, Ced(£,£) is the scattering function of Hd, which is in Fourier relation with the time-
delay correlation function:

Inserting (2.28) and (2.13) yields

CMd(/,£) = JB
2 I Cuir^B) [smc(-KB(r-lTs))}

2 dr,
JT

and for large bandwidth we obtain

CHd(/,£) « CMc(lTs,^B), £ € [-1/2,1/2). (2.30)

Hence, the scattering function of Hj is obtained by sampling CHC(T, V) in the delay (r)
direction and by scaling (normalizing) the Doppler frequency variable v. The support
region of CHd(/,£) is (/,£) G [0, L] x [-£max,£max] where L and £max are defined in (2.21)
and (2.25), respectively.

Channel

The path

2

In

Parameters

loss of the discrete-time

L ,1/2

1=0 J-1/2

1 f f1/2

~ if / / CHC(T,^
J S 7T 7-1/2

channel

L

s ~ ^ ^

IB)drd£

Hd is

/•1/2

/ He I •
J -1/2

r rB/2

JT J-B/2
= < , (2.31)

where we used (2.30) in the first approximation and assumed for the second approximation
that Ts is small such that the summation over the delay taps can be replaced by integration
over all delays. Hence, the path loss of the discrete-time channel is approximately equal to
the path loss of the continuous-time channel.
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The delay spread amd and the Doppler spread ßad of Hd are defined by

1 ^ /-Çmax

«L = — E / (l-lo)2CmAl,Od( (2.32)
a H d l=Q ^-Çmax

and

1

E / ( ^ e ) 2 C ( U ) ^ (2.33)

where (/o,£o) denotes the center of gravity of Ced(/,£). Inserting (2.30) and (2.31) into

(2.32) yields

H

Hence, the delay spread of the discrete-time channel Hd is related to the delay spread of

the continuous-time channel Hc as

A similar derivation for the Doppler spread (2.33) yields

Aid ~ Tsßuc = —^ •

The delay spread and Doppler spread are inversely proportional to the coherence band-

width and coherence time, respectively:

Tad — -5— and Bm = ,
ß

'-md = -w~ ana nUd
P H d "Md

and thus it follows with the above approximations that

THd ~ Y ^ = BTMc and BUd « TsBUc = — .

2.3 Input-Output Relation of the OFDM System

For the communication system consisting of OFDM modulation (2.1), transmission over

a time-varying channel (2.22), and OFDM demodulation (2.3), the system input-output

relation is obtained as [106]

oo K-\

Zn,k, (2.34)
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Figure 2.9: With OFDM, one desires a multiplicative input-output relation where only
(Mdgn,k, fn,k) Xn^k contributes to Yn>k. However, in general there exists interference from
other transmitted data symbols.

with

ZnJs = (u,fntk). (2.35)

Note that in (2.34), every transmit symbol Xn>^ for (n', fc')eZx [0, K—l] contributes to a

given received value Ynk. For this general input-output relation, decoding the information

stream at the receiver would be highly complicated.

The sum in (2.34) can be split into a desired term and an interference term, which are

respectively defined as

n.fe, fn,k) Xn,k and
oo K-\

n'=-oo fc'=O
nf^n k'j£k

/ J (ß-d9n',k',fn,k) Xni^i .

This decomposition is illustrated in Figure 2.9. Frequently, the interference is further

decomposed into intersymbol interference (ISI) and intercarrier interference (ICI) which

are respectively defined by

K-l K-\

and n|fc, fn>k)
n' = -ook'=0

Thus, by ISI we denote all interference from past or future OFDM symbols, no matter at

which subcarriers they are located. However, in most cases ISI is only experienced from the
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neighboring OFDM symbols, and even this ISI is typically avoided by introducing a guard

interval or CP between consecutive OFDM symbols. By ICI we denote the interference

from different subcarriers within the same OFDM symbol. In most cases, substantial ICI

contributions arise only from neighboring subcarriers. In contrast to ISI, ICI can never

be completely avoided for time-varying channels. This is because the transmit pulses

are distorted by the channel and the biorthogonality condition (2.5) is then not fulfilled

anymore. However, for well-designed transmit and receive pulses and practical channels,

the ICI terms are negligible compared to typical noise levels.

2.3.1 Approximate Input-Output Relation

The splitup of the system relation (2.34) into desired component and interference reflects the

desire to obtain a system input-output relation that is approximately multiplicative and will

be the basis for the rest of this thesis. The error introduced by neglecting the interference

in (2.34) has been thoroughly analyzed in [24,106,108,112,113,141-143]; related results

can furthermore be found in [21,105,137,138,144]. From these investigations, we can draw

the conclusion that for underspread channels and properly chosen pulses g[m] and f[m],

the interference terms in (2.34) are approximately zero [105,106,108,144]:

,*', fn,k) ~ 0 for (ri, k') ± (n, k).

The system relation (2.34) then simplifies to the multiplicative input-output relation

yn,k = Hntk Xntk + Zn>k • (2.36)

where the channel coefficients are defined by

Hn,k — (HId<7n,fc, fn,k) •

Note that the Hn>k depend on the channel and the transmit and receive pulses. In Subsec-

tion 2.3.2, we will discuss the properties of Hnk in terms of an equivalent channel H.

Hence, because practical wireless channels are underspread, OFDM indeed allows to

characterize the transmission over a wireless channel by pointwise multiplications of scalar

complex-valued coefficients. This is the main advantage of this communication scheme

over other wideband communication schemes. The practical benefit of this multiplicative

system structure is the possibility of low-complexity equalization at the receiver.

An interpretation of the approximate system input-output relation (2.36) is that OFDM

diagonalizes the time-varying channel [106,145], i.e., the transmit pulses gnik[m] in (2.2) and
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the receive pulses /n,jt[m] in and (2.4) are (approximate) singular functions of underspread

wireless channels in the sense of the singular value decomposition [146]. This has the

practical consequence that in OFDM systems, zero-forcing equalization of the received

signal can be simply achieved through scalar multiplication of the Ynk by the reciprocal of

the Hn,k [1].

According to (2.35), the additive Gaussian noise in (2.36) is given by Zn^ = (u,/„,*;).

Its correlation function is given by

Rz[An, k, k'} = E{ZnMZ:_Ank,} = Noe
j2^Ank'(fJAn!k_kl), (2.37)

since u[m] in (2.17) is zero-mean white Gaussian noise with variance o\ = No- Hence, Znk is

correlated if the receive pulse system {fn,k} is nonorthogonal. Moreover, Zn^ is stationary

with respect to the OFDM symbol index n since its correlation function depends only on the

difference An. However, for nonorthognal {fn,k}, Zn<k is nonstationary with respect to the

OFDM subcarrier index k. Uncorrelated and stationary noise is obtained if and only if the

receive pulse set {fn,k} is orthogonal. In particular, if {fn,k} is orthonormal, the correlation

function in (2.37) simplifies to Rz[&n, k, k'} = N05[An]S[k - k']. In OFDM systems, which

use identical transmit and receive pulses, the latter is always fulfilled. Furthermore, in

CP-OFDM the receive pulse set is orthogonal and, hence, the noise is again white and

stationary. Alternatively, Zn^ is stationary in k but correlated if N/K 6 N. However, such

a choice of the OFDM lattice cell size is impractical since for N/K = 1 pulses of infinite

length are necessary [21,117] and for N/K = 2 , 3 , . . . the spectral efficiency is too small.

2.3.2 Equivalent Channel

We next introduce the concept of an equivalent channel to characterize the channel co-

efficients Hn!k = (Hd?n,ici/n,ic) in (2.36). We can expect that the channel coefficients are

related with the time-dependent transfer function / /H C (£ , / ) of the underlying continuous-

time channel Hc (see (2.11)) since the input-output relation in (2.36) characterizes the

OFDM system in the time-frequency domain. Therefore, we express Hnk as the Fourier

transform of a discrete-time time-varying impulse response hnti in a manner analogous to

(2.11),

Hn,k 4 £ hnil e->™'K . (2.38)
i~o

The discrete-time system H whose impulse response is hn>i will be termed the equivalent

channel. Thus, Hn^ has the desired interpretation of the time-dependent transfer function
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of H. According to its definition, hn>i is given by

oo

hn,i = Yl h[m,l]g[m-l-nN]f*[m-nN]. (2.39)

It is hence seen that the equivalent channel H incorporates the effects of the discrete-time

channel Ha, of the transmit pulse g[n], and of the receive pulse f[n\.

For a CP-OFDM system, (2.39) simplifies to

1
hn>t = — Y^ h[nN + m, 1} « h[nN, 1}, (2.40)

m=0

where the approximation is accurate if the variation of h[m, I] within an OFDM symbol

interval is negligible. Hence, in a CP-OFDM system the impulse response of the equivalent

channel H is obtained by subsampling the impulse response of the discrete-time channel

Hd. Moreover, with (2.20) we obtain that hnj « ± h(nNTs,lTs). Hence, for CP-OFDM

systems the impulse response of H is essentially obtained by sampling the impulse response

of Hc. Even if (2.39) is more complicated than the special case (2.40), the same effect is

basically observed there.

System Descriptions

The time-dependent transfer function HUtk, expressed in terms of hUti according to (2.38),

was our starting point for the definition of the equivalent channel H. Using (2.19), (2.38),

(2.39), and the Fourier relation (2.11), it can be shown that Hn^ is approximately given

by

where we defined T = NTS and F = B/K. Therefore, Hn>k is (approximately) a discretized

version of the time-dependent transfer function of Hc sampled on the rectangular time-

frequency lattice of cell size T x F. Recall that the time-frequency lattice of the discrete-

time OFDM system had cell size Nxl/K. Hence, we can conclude that the continuous-time

OFDM symbol duration is T = NTS and the subcarrier frequency spacing is F = B/K.

We furthermore define the spreading function of KI in a manner analogous to (2.23),

SB(1,<P) = E hn,ie~j2n*n- (2-41)
n=—oo

Inserting (2.39) and (2.23) into (2.41) shows that S^(l,(p) is related with the spreading
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function of Hj as

•1/2/•1/2 /-1/2 r

SB(1,<P) =
J-1/2J-1/2J-1/2J-1/2J-1/2

Here, we used Poisson's sum formula and introduced the Fourier transforms of the trans-

mit and receive pulses as G(0 = E l - o o S N e ^ 2 ^ " 1 and F(£) = E"=-oo / H e"'21*"1,

respectively. We also used the fact that the cross-ambiguity function defined in (2.6) can

be expressed by

rl/2

AM 0 = / HO erg - 0 e^K'-o'df,

and has the symmetry property Aftg(l,£) = e^2nl^A^j(—l, — £). Furthermore, we note that

Smd{l,0 and Af>g(l,t;) in (2.42) are periodic in the normalized Doppler frequency £ with

period one.

In the fundamental Doppler interval, we obtain from (2.42) that if aliasing is avoided,

the spreading function of H is given by

( | ) } S ( | ) ip e [-1/2,1/2). (2.43)

Aliasing is avoided if (cf. (2.25))

= N ̂  < \ . (2.44)

In practical systems, this condition is always fulfilled because î max is maximally in the

range of several tens of Hz and B is minimally in the range of several MHz. Therefore,

aliasing may occur only if N is larger than 105, which is not realistic (recall that in current

WLAN systems we have iV = 80 and even in DVB-T we maximally have N = 10240).

Equation (2.43) shows that the influence of the pulse-shaping OFDM system (in the

spreading domain) is a weighting of the spreading function of Ha with the cross-ambiguity

function of the receive and transmit pulses and a normalization of the Doppler variable by

the OFDM symbol duration N. For large bandwidths, we can use (2.24), with which (2.43)

simplifies to

Sn(l,<p) - ^ H c ( ^ s , ^ r ) ^ ( ^ ) , <p G [-1/2,1/2).
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Hence, the spreading function of the continuous-time channel Hc is sampled in the delay

direction with sampling period Ts and the Doppler frequency is normalized by NTS.

The influence of the pulse shapes g[m] and f[m] on H is given by the weighting of

SMA^V) by Af<g(l,(p). Generally, the support region of 5nd(/,</?) is small so that only

the shape of Afi9(l, <p) about the origin comes into play. Within this support region, the

magnitude of Afi9(l, ip) is close to one (see Figure 2.6). (In particular, recall that A/g(0,0) =

1 due to the biorthogonality of g[m] and /[m].) Hence, the influence on M of the particular

pulses used by the OFDM system is small.

Channel Statistics

If Hd is DWSSUS (see (2.27)), then the equivalent channel H is also DWSSUS because the

correlation function of the impulse response of M is given by

A - ri, 1} S[l - I1], (2.45)

where we used (2.27) and (2.39). Here, the time-delay correlation function is defined by

oo oo

Dm[n,l]= Y, Y. Dmd[nN+m-m',l}g[m-l}g*[m'-l}f[m'}f*[m}. (2.46)
m=—oo m'=—oo

The channel coefficients Hnk in (2.38) constitute a 2-D stationary process with time-

frequency correlation function

L

RM[n, k] ± E{Hn,ik, H*nl_n^_k} = Y, Dm[n, 1} e~j2*kl'K. (2.47)
1=0

Moreover, since we assumed that Hc is Rayleigh fading, Hn<k is circularly symmetric com-

plex Gaussian (i.e., real part and imaginary part are independent and both are Gaussian).

The support region of Ru[n,k] is essentially concentrated within |ra| < l/(Nßud) and

|A;| < K/aud- Hence, the channel coefficients Hntk are effectively correlated only for a

limited range of time and frequency lags.

In the spreading domain, we obtain that SM(1, ip) in (2.43) is 2-D white (cf. (2.29)) with

the scattering function given by

oo „

CE(l, v) = Y, ö«[m, 1} e^m = ± CUd (l, ^ ) \Aft9(l, ^ ) | , <p G [-1/2,1/2).
m=—oo

(2.48)

The support region of the scattering function Cm(l,<p) is (I, <p) € [0, L] x [—Vmax,

where L is defined in (2.21) and (/'max is given by (2.44). The support region of \Aftg(l, ip)\2
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is much larger than that of CiHd(£,<£>)- Moreover, \Aftg{l,<p)\2 is close to one in the support

region of C^C(T, V), SO that (2.48) can be well approximated by

<p e [ -1/2,1/2). (2.49)

Channel Parameter

The path loss of the equivalent channel is given by

L ,1/2 L
CTO = > / C M ( / , cp) dcz? = 7 / CIHI^ (/, £) \Af a (L £)\ d£, (2.50)

where the equality is due to (2.48) and (2.44) was assumed to be fulfilled. If we furthermore

use the approximation (2.49), we obtain that the path losses of the channels H, Hj , and

Hc are approximately equal:

<4 ~ °Md ~ 4 C • (2-51)

We furthermore note that using (2.47) and (2.48), the path loss of the equivalent channel

H is obtained as

l { 2 } (2.52)



Channel Prediction in

OFDM Systems

In most communication systems, channel state information (CSI) is required at the re-
ceiver. Therefore, training data is classically sent which enables the receiver to estimate
the channel. If the channel is time-invariant, the training data is typically sent in one
block preceding the data packet. However, in wireless communications the channel is sub-
ject to time and frequency selective fading. This necessitates continuous tracking of the
channel, which is usually based on a periodically repeated transmission of training data.
The amount of training data necessary to estimate and track the channel increases with
the fading rate of the channel and can occupy a significant percentage of the transmission
time.

The problems and drawbacks of channel estimation (cf. Subsection 1.2.2) can be over-
come if channel prediction is used to obtain CSI. In this chapter, we propose novel schemes
for decision-directed MMSE and adaptive channel prediction in wireless OFDM systems.
Our channel predictors feature several advantages. They yield accurate, up-to-date CSI
without additional latencies, even for fast time-vary ing channels or large prediction hori-
zons. Due to their decision-directed mode of operation, no continual transmission of train-
ing data is required. Typically, a single known OFDM symbol suffices for the initialization

39
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of the predictor. Thanks to efficient FFT implementations, the computational complexity
of the proposed channel predictors is moderate. Our predictors enable key techniques for
advanced wireless communication schemes such as antenna combining, space-time decoding,
adaptive modulation, adaptive power control, and adaptive transmit diversity. Thus, they
can help improve the system capacity and/or link reliability of wireless OFDM systems.

For the design of our MMSE channel predictors, knowledge of the second-order channel
statistics is required; this is similar to the case of MMSE channel estimators. These channel
statistics are unknown in practical applications, and thus they would have to be estimated
prior to the design of the MMSE channel predictor. In the context of pilot symbol assisted
MMSE channel estimation, this is considered in [64]. However, this approach is problematic
since practical channels are stationary only for a certain time [135,136}. Fortunately, the
estimation of the channel statistics can be completely avoided by the application of adaptive
channel predictors. The adaptive versions of our channel predictors do not require any
statistical prior knowledge and are able to track nonstationary channel and noise statistics.
Moreover, we demonstrate by simulations that the adaptive predictors perform close to the
MMSE predictor.

Most parts of this chapter have been previously published by the author in [92-94].
Very recently, MMSE channel prediction for OFDM has independently been proposed in
[65]. Further independent work on channel prediction for OFDM and its applications can
be found in [90,91]; we will briefly summarize the main differences of this work from our
work. In [90], decision-directed channel prediction for equalization is proposed. Noiseless

MMSE prediction is considered; this assumes that the channel impulse response can be
observed without any error, which is however not a realistic assumption in practice. In
contrast to [90], we propose a generic receiver structure employing channel prediction that
can also be used for several purposes beyond equalization, such as adaptive modulation
etc. Furthermore, we derive the MMSE predictor and simplified implementations for prac-
tical noisy systems. Additionally, we consider the performance of the MMSE predictor for
infinite predictor memory and in specular scattering environments. Finally, we also pro-
pose adaptive predictors that do not require estimation of the channel statistics. In [91],
pilot symbol assisted MMSE channel prediction is proposed and applied to adaptive mod-
ulation for HIPERLAN/2. This differs fundamentally from our approach since we avoid
transmission of pilot symbols by using a decision-directed mode of operation.

In a non-OFDM context, the prediction of fading channels and its applications were
previously investigated in [50,86-89]. In particular, the generic concept of the prediction
of fading signals is described in [50], and in [89] the application of channel prediction to
adaptive modulation is thoroughly investigated.



3.1 OFDM Receiver Applying Channel Prediction
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Figure 3.1: OFDM receiver using channel prediction. The upper branch is a conventional
OFDM receiver that outputs detected bits Di. The lower part is required for channel pre-
diction. During training mode (initialization), the switch is down.

--/This chapter is organized as follows. In Section 3.1, we present the generic structure of a

wireless OFDM receiver employing channel prediction. In Section 3.2, we derive the MMSE

channel predictor. It will be seen that the computational complexity of the "full-blown"

MMSE predictor is impractical. We therefore introduce a reduced-complexity MMSE pre-

dictor that allows an efficient DFT-based implementation. This DFT structure is also used

to derive an analytic expression for the MMSE of the infinite-length one-step predictor and

to show that error-free channel prediction is possible in point scattering environments. In

Section 3.3, we develop adaptive channel predictors that do not require knowledge of the

channel statistics. Specifically, we use the normalized least-mean-square (NLMS) algorithm

and the recursive least-squares (RLS) algorithm for the adaptation of the channel predictor

coefficients. In Section 3.4, applications of the proposed channel predictors are considered.

We discuss predictive equalization, present an adaptive modulation scheme, and briefly

consider pilot symbol augmented channel prediction. In Section 3.5, we finally assess the

performance of our predictors by means of computer simulations.

3.1 OFDM Receiver Applying Channel Prediction

Figure 3.1 shows the generic receiver structure that we propose for channel prediction in

wireless OFDM systems. This scheme yields CSI that is required for coherent receiver
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processing (including, e.g., equalization, detection, and decoding) and can also be used for
advanced techniques such as adaptive modulation. As a difference from [90], we consider
the realistic case of noisy prediction. In contrast to the channel estimators in [55, 57, 59, 60,
64,70,74,147] and to the predictive adaptive loading method in [91], our scheme operates
in a decision-directed mode. Furthermore, different from the decision-directed channel
estimators in [76-79], our channel predictor is able to yield up-to-date CSI.

We will now explain the structure shown in Figure 3.1. We recall from (2.36) that the
OFDM system input-output relation is Ynk — HntkXnjk + Zn^. In vector notation, this
input-output relation can be written as

yn = Hnxn + zn

+ zn , (3.1)

with the K x 1 vectors y n 4 [YnfiYnA • • • Yn,K.x\
T, xn 4 [XnfiXnA • • • Xn>K.1]

T, hn 4

[Hnfi HUti • • • HntK-1]
T, zn = [Znfi Zn>i • • • Zn,K_i}T and the diagonal K x K matrices

Xn = diag{Xn]0, Xntl, • • • , Xn>K-i} and Hn = diag{^n,0, ffn,i, • • • , HnjK-i}-

Our decision-directed channel predictors process the demodulated receive vector yn in
order to yield an estimate hn = [Hnfi Hn,\ • • • Hn,K-i]T of the current channel coefficient
vector hn. To this end, past detected symbol matrices Xn_p, Xn_p_1; .. .obtained by re-
encoding previously detected bits Di are used. Here, Xn = diag{Xnio, Xn<i, • • • , XntK-i}

is a diagonal K x K matrix containing the detected data symbols. Furthermore, p denotes
the prediction horizon, i.e., the number of OFDM symbols the channel is predicted ahead;
its choice determined e.g. by the latency introduced by the receiver processing and the re-
encoder (cf. Figure 3.1). The detected bits Di are obtained by OFDM demodulation and
conventional receiver processing such as equalization and detection. Because the Di may
be incorrect, re-encoding them yields (partly) incorrect Xn. If too many Xn are incorrect,
the accuracy of the predicted channel hn suffers. In particular, if hn is used e.g. for receiver
processing in a feedback loop, error propagation may result. Simulation results in Section
3.5.5 show that error propagation is avoided if the SNR is above a certain threshold.

For initialization of the predictor, training data are required. During the training phase,
a few known transmit symbols Xn serve as training data (numerical experiments in Section
3.5.1 suggest that already one OFDM symbol suffices for initialization). In packet-oriented
communication systems such as IEEE 802.11a, each data packet is preceded by a known
preamble which suffices for initialization of the predictor.
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hn+p

Figure 3.2: The full-complexity MMSE channel predictor for OFDM is a linear time-varying
MI MO filter of length M.

3.2 MMSE Channel Predictors

We will now develop the MMSE predictor of the future channel coefficients1 Hn+Ptk, with

prediction horizon p > 1. We have seen in Section 3.1 that the channel predictor can

be operated in training mode or in decision-directed mode. For our derivation, we will

assume training mode operation for mathematical tractability. Hence, the current and

past data symbols Xnjk are assumed known; the effects of detection errors are disregarded.

Furthermore, we neglect ISI and ICI and thus assume that (2.36) or equivalently (3.1)

holds2, i.e., Yntk = HnfkXn,k + ZUtk or yn = X n h n + zn.

3.2.1 Full-Complexity MMSE Predictor

The MMSE predictor calculates a predicted channel coefficient vector h n + p =

[Hn+Pß Hn+Vt\ ••• Hn+PyK_i]T from the current and past received vectors y n , y n - i , •••,

yn-M+i by means of a linear multi-input multi-output (MIMO) predictor filter of length

M, i.e.,
M-l

= / K n T n y n - m • (3-2)
771=0

Figure 3.2 shows the structure of this predictor filter. A MIMO filter is used to exploit

the correlations between different subcarriers that exist due to the channel's frequency

correlation (nonzero coherence bandwidth). The memory of the predictor (corresponding

to the filter length M) is used to exploit the time correlation between consecutive OFDM

symbols that is introduced by the channel's time correlation (nonzero coherence time).

The predictor coefficient matrices Kn]Tn of size K x K are time-varying to account for

the nonstationarity of the received vector process y n . This nonstationarity is due to the

1For convenience, we shift the problem statement by p OFDM symbols.
2An analysis of the resulting errors can be found in e.g. [106,108,143].
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multiplication of the stationary vector process h n by the deterministic, time-varying symbol

matrix X n in (3.1) (recall that the transmit symbols are assumed known for the derivation

of the MMSE predictor). Note that a linear predictor suffices since h n and zn in (3.1) are

both circularly symmetric complex Gaussian [109,148,149].

Optimum Predictor Coefficients

The MMSE-optimum predictor coefficients K.n,m minimize the normalized MSE that is

defined as [109,148,149]

l
According to the orthogonality principle [148], the optimum Kn,m are such that

E { ( h n + p - h n + p ) y £ _ m } = 0 , for m = 0 , . . . , M - l , (3.3)

i.e., the prediction error vector h n + p — h n + p is uncorrelated with all available observations

yn . To streamline the calculation of the optimum K.n,m, we rewrite the input-output

relation of the MIMO predictor (3.2) as

h n + p = Knyn , (3.4)

with the KM x KM predictor coefficient block matrix K,n = [Kn]o • • • Kn]A/-i] and the

KM x 1 stacked vector yn = [y^ • • • y^_ M + 1 ] r . Upon insertion of (3.1) and (3.4) into the

orthogonality relation (3.3), the normal equations (Wiener-Hopf equations) are obtained

as

) = v H • (3.5)

Here, Xn = d iag{X n ,—, Xn_M+i} is a diagonal matrix with the data symbols

Xn-M+i,k, • • • ,^n,k as diagonal elements, the stacked channel correlation matrix Ve is

defined as VH — [R-H[P] • • • R-H[P + M — 1]], and the correlation matrices 72-H and TLz are

block-Toeplitz with first rows [RH[0] • • • R H [ M - 1]] and [Rz[0] • • • Rz[M - 1]], respec-

tively. Furthermore, the channel correlation matrix and the noise correlation matrix are

given by

Rm[n,0}

and

Ra[n,K-l]

Rz[n, 0,0}

Rz[n,K-1,0} .

. Rw[n,-K +

Rn[n,0}

Rz[n,0,K-l}

Rz[n,K-l,K-l}

(3.6)
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respectively, where R$i[n, k] is defined in (2.47) and Rz[n,k,k'} is given by (2.37). With
(3.5), the optimum predictor coefficients are obtained as

A-;1, with W n 4 VH (KM + ̂ ' ^ z ^ ) " 1 . (3.7)

We deliberately decompose JCOpt,n as in (3.7) to partition the MMSE predictor into two
operations/stages. We will come back to this point presently when considering the imple-
mentation of this predictor.

Minimum Mean Square Error

Again using the orthogonality principle [148], the error covariance matrix of the MMSE
channel predictor is given by

Bn = E{ (hn+p — hopt,n+p) (hn+p — hoptin+p) } = E{(hn+P — hopt in+p)hn+p}

= Re[0] - W n V ^ = RH[0] - VH (ttH + X^UzX-")'1 V^ , (3.8)

where hopt:n+p = K.optinyn. Note that the error covariance matrix depends on the actual
OFDM symbol via the transmit symbols Xnik that are contained in the diagonal matrix
Xn. The normalized MMSE achieved by /Coptin is given by

emin,n = — E{||hn+P — hopt]n+p|| } = — tr{Bn}E{||hn+P hopt]n+p|| }

= ÄH[0, 0] - 1 tr |VM {nw + X-n
xTLzX-n

HYX V^} . (3.9)

This depends on the data symbols, and thus is time-varying.

Implementation

Inserting (3.7) into (3.4) yields for the predicted channel vector

hOpt,n+p = l

This shows that the MMSE predictor implements two operations as depicted in Figure 3.3.

The first operation is a division of the Yn^ by the data symbols Xn^-

nn = X~lyn or, equivalent^, Hn<k = -^-, (3.10)

since the symbol matrix Xn is diagonal. Recalling that Yn,k = HntkXnk + Znik, this division
yields

Hn,k = Hntk + ZnM, with Z n , f c â ^ i . (3.11)



46 Chapter 3. Channel Prediction in OFDM Systems

W n , M _i

> h,opt ,n+p

Figure 3.3: The MMSE channel predictor consists of two stages: multiplication by the
inverse data symbol matrix X"1 (or X"1 in decision-directed mode) and filtering by means
of a time-varying MIMO system of length M with coefficients W„i?n.

Using hn = [Hn>0 Hnjl • • • Hn,K-i]T and zn = [Zn>0 Zn>i • • • Zn,.K-i] , this can be rewritten
as

hn = X;Vn = hn + zn , with zn = X^Zn. (3.12)

The second operation corresponds to a filtering by means of a time-varying MIMO

system of length M, using (3.10) as input:

i_ ^A) 1J ^ J IT3 I V — '-iy V~"\ 1J ft 1 Q̂

"opt.n+p = Wnltn ~ VU \rC-U + ^ n K-Z<*-n ) 'ln • {O.LO)

This system is given by

= [Wn>0 • • • Wn,M-i] = VH (72-H + X-lnzX-H)~X . (3.14)

In general it is time-vary ing since zn = X^Zn is nonstationary, and it depends on the
transmit symbols via Xn. The implementation of (3.13) would require on-line inversion of
a KM x KM matrix in each symbol interval, which is not practical.

Comparison of the generic linear predictor in Figure 3.2 and the MMSE predictor in
Figure 3.3 shows that we obtained an interesting two-stage structure. The first stage (the
division stage) is often used in OFDM channel estimators, but it is typically introduced in
an ad hoc manner (see e.g. [57,65,74,90]). Our derivation, on the other hand, has shown
that this stage is indeed part of the optimum (MMSE) channel estimator. The second stage
(filtering stage) poses a problem for practical implementation because its computational
complexity is excessive. Therefore, we will next develop a simplified MMSE predictor with
significantly reduced complexity.

3.2.2 Reduced-Complexity Linear MMSE Predictor

The reduced-complexity MMSE channel predictor is constructed as follows. We retain
the division stage (3.11), but to derive the subsequent processing we model the data Xn^
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as random. This will lead to a time-invariant MIMO filter for the second stage. More

specifically, we assume that the Xnk are zero-mean and i.i.d. and that 1/Xnk exists. Then,

the noise term Zn>k = Zn,k/Xn>k in (3.11) has mean E{Zn,k} = E{Zn,fc} E{l/Xnik] = 0

and the correlation function is given by

E{Zn,kZ*n,!k,} =

= Rz{n-n\k,k'\E{--^-Àô{n-n'}5[k-k'] = -f 5[n-ri)5[k-k'),

where Rz[n,k,k'\ is given by (2.37) and the "equivalent noise variance" is defined as

(3.15)

Here, | |/ | |2 = £3m=-oo l /[m] |2- Hence, Zn>k is zero-mean, stationary and white whereas Znk

was nonstationary and correlated (cf. (2.37)). For PSK symbol alphabets, Znk is Gaussian

with variance -y2 = No \\f\\2 /&x with a\ = \Xnk\
2. For non-PSK symbol alphabets, Znk

has a Gaussian mixture distribution. Thus, in general Zn>k is non-Gaussian. It follows that

the vector h n = h n + zn is stationary and generally non-Gaussian. Due to the stationärity

of hn , the linear MMSE predictor is given by a time-invariant MIMO predictor filter,

M - l

hn+p = Y^ Wmhn_m . (3.16)
m=0

In Subsection 3.2.3, we will show that this predictor filter can be efficiently implemented

using the DFT.

Optimum Predictor Coefficients

The coefficient matrices W m of the predictor filter are chosen such that the normalized

MSE e = ^ E { | | h n + P — hn + p | |2} is minimized. According to the orthogonality principle

[148], the optimum W m must be such that

E{(h n + p - hn + p) h£_TO} - 0 , m = 0 , . . . , M - 1, (3.17)

i.e., the cross-correlations between the prediction error and the predictor input must vanish.

Insertion of (3.12) and (3.16) into the orthogonality relation (3.17) yields the Wiener-Hopf

equations

M-\

W m ' (R H [m-m ' ] + 7 2 5 [ m - m ' ] l ) = Kw[m+p], m = 0 , . . . , M - l , (3.18)
m'=0
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with the K x K Toeplitz correlation matrices Rn[m] defined in (3.6). We will next stack the
M equations in (3.18) into a single block matrix equation. To this end, we introduce the K x
KM matrix W = [Wo • • • WM - i ] , the KxKM matrix VH = [Rub] • • • R H [ - M - 1 + P ] ] ,
and the KM x KM block Toeplitz matrix Hm with first block row [RH[0] • • • RH[M - 1]].
Then, (3.18) can be compactly written as

Thus, the MMSE-optimum predictor coefficient matrices Wopt]m are given by

The computation of Wopt in (3.19) is numerically stable (due to the term 72I) and can be
performed efficiently using the Wax-Kailath algorithm [150] because Ttm + 72I is Hermi-
tian Toeplitz/block-Toeplitz. Alternatively, the Levinson-Wiggins-Durbin algorithm can
be used [151-153].

The main difference between the full-complexity predictor and the reduced-complexity
predictor is that the filter W n in (3.14) is replaced by (3.19), and hence the term
X~lTZ,zX~H is replaced by 72I. Therefore, (3.19) is independent of the data symbols
and the second (filtering) stage of the channel predictor becomes time-invariant. A special
but important case where (3.14) and (3.19) coincide will be discussed presently.

Minimum Mean Square Error

Again using the orthogonality principle [148], the error covariance matrix of the reduced-
complexity linear MMSE channel predictor is given by (cf. (3.8))

B = E | (h n + p — hopt)n+pj (hn+p — hopt^+pj / = E | (h n + p — hop t )n+p)hn+p|xn+p)

M-l

= RH[0] - Y^ W°Pt,m Ra[-m-p] = RH[0] - VH ( t tH + 72!)"1 Vjjf , (3.20)
ro=0

where hopt in+p = ]Cm=o Wopt ,mhn-m . Note that (3.20), in contrast to (3.8), does not

depend on the transmit symbols Xn,k- The normalized MMSE achieved by Wo p t ] m is (cf.

(3.9))

1 I" .. - . |2i 1
= ~77 E < | | h n + p — h o p t i n + p | | | = — t r { B }

= ÄH[0,0] - — tr{VH(7?-H + 72 l )" '1Ve}. (3.21)
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This depends on the channel correlation matrix Rn[m] and the equivalent noise variance

72. As will be verified experimentally in Subsection 3.5.2, emjn tends to decrease for channel

coefficients Hnk that are more strongly correlated, i.e., for channels with a larger coherence

time and/or a larger coherence bandwidth. Equivalently, emjn will be smaller for channels

that are more underspread [1,106,138] in the sense of a smaller Doppler spread ß^d (slower

channel time-variations) and/or a smaller delay spread ae d • The prediction accuracy also

improves for lower noise variance 72. The correlations of the Hnik can be fully exploited

by the predictor (3.16) only if its memory exceeds the channel's coherence time, i.e., if

M > l/(ßudN). Hence, the choice of M is a trade-off between good prediction accuracy

and low computational complexity. Note that the channel's coherence bandwidth is always

completely covered because the predictor uses all subcarriers.

Optimality of the Reduced-Complexity MMSE Predictor

In general, the reduced-complexity MMSE predictor given by (3.19) is suboptimum because

it does not fully exploit the knowledge of the data symbols XU:k- However, if the data

symbols Xnk are drawn from a PSK symbol alphabet and it the noise Zn^ is white, then

the reduced-complexity predictor coincides with the MMSE predictor from Subsection 3.2.1

and hence is optimum. White noise in turn requires that the receive pulse is orthogonal

(cf. (2.37)). Note that for a PSK symbol alphabet we obtain a2
x = E{|Xnifc|

2} = |Xn,fc|
2

and furthermore E{l/|Xnjfc|2} = 1/cr2. For PSK symbol alphabet and white noise, the

full-complexity MMSE predictor in (3.14) then simplifies to
- l

This does not depend on n and is identical to (3.19), with the equivalent noise variance

given by 7
2 = N0/a

2
x (cf. (3.15)).

We can conclude that when transmitting training data, the symbols should be chosen

from a PSK alphabet.

3.2.3 Efficient DFT Implementation

The reduced-complexity MMSE predictor can be efficiently implemented as sketched in

Figure 3.4. As will be seen presently, this implementation corresponds to a transformation

of (3.16) into the eigenspace of the channel correlation matrices Ri[m]. Similar structures

have been proposed for OFDM channel estimation and prediction e.g. in [56, 57,65, 74,147].

The first operation in Figure 3.4 is again the division operation hn = X~1yn , i.e.,

calculation of Hn>k = Yn<k/Xnjk (cf. (3.7), (3.12)). Afterwards a /C-point IDFT is applied
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Figure 3.4: Efficient DFT implementation of the reduced-complexity MMSE channel pre-
dictor. Note that in typical OFDM systems, the number of delay taps L is much smaller
than the number of subcarriers K.

to the Hnjk, which yields (cf. (2.38))

K-\ hn,l
(3.22)_ V ^ îf gjïirlk/K _

k=° I Zn,l ,

Here, hnj is the (subsampled) channel impulse response and zn>j = j^ ^2^=Q Zn^ ej

is white Gaussian noise with variance 72/K. Subsequently, we only need to process the

first L + 1 signals hn>i since they convey all information about hnj. A length-M MMSE

predictor is used to predict the channel impulse response hn+Pti for each delay / = 0 , . . . , L.

Due to the channel's DWSSUS property (2.45), hnj and hnp are uncorrelated for / ^ V.

Therefore, the MMSE predictor decomposes into L + 1 parallel single-input single-output

(SISO) predictors given by . . . . . - - .

M-l

hn+p,l = I = 0 , . . . , L, (3.23)
m=0

with predictor coefficients w/ = [wo,i w\j • • • WM-I,I]T (specified below) and hn^ =

[hn,i hn-\,i • • • hn-M+i,i] • Finally, the predicted channel coefficients Hn+P!k are obtained

from the predicted impulse response samples hn+pj via a K-point DFT,

(3-24)
1=0

This implementation has significantly reduced complexity since L + 1 SISO predictors are

used instead of a MIMO predictor and because typically L < K. The computational

complexity of the predictors is assessed in Subsection 3.2.6.
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Optimum Predictor Coefficients

The Wiener-Hopf equations for the MMSE predictor coefficients w/ can be obtained by
diagonalization of (3.18), corresponding to a transformation into the eigenspace of the
correlation matrices Rji[m]. This diagonalizing transformation is a if-point DFT since
the K x K matrices Rn[ra] are circulant. This can be seen by recalling that Rn[m] =
E{hnh^_m} (see (3.6)). Furthermore, due to (2.38) the channel coefficients Hntk and the
impulse response hn>i of the equivalent channel IK are related by a DFT. In vector notation,
we obtain the relation

Hn,K-X

= F

hnfi

hn,L

0

0

(3.25)

where F is the orthogonal DFT matrix of dimension K x K with Y¥H = F H F = Kl.

Hence, the correlation matrix is given by

R H M = E{hnh^_m} = Fdiag{L>M[m,0],...,Z)HiKL],0,...,0}F / /, (3.26)

where D^[m, I] is the time-delay correlation function defined in (2.46). Note that the central
matrix on the right-hand side of (3.26) is diagonal since hU:i and hnti> are uncorrelated for
I T̂  /'. Hence, (3.26) is the eigenvalue decomposition of a circulant matrix with L + 1
eigenvalues KDm[m,l] (the factor K is due to FFW = Kl) [146].

Diagonalizing the Wiener-Hopf equations in (3.18) via left multiplication by F and right
multiplication by F ^ yields equivalent Wiener-Hopf equations in the time-delay domain:

t — U , i , . . . , i / . yo.Zl J

Here, the M x M Hermitian Toeplitz correlation matrices Dn[Z] and the cross-correlation

vectors dm[Z] are given by

DH[J] â

£>H[0,Z]

Dm[0,l]

(3.28)

and

dH[/] (3.29)
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where h n / = \hn<i • • • hn-M+\,i\ • Thus, the MMSE predictor coefficients are given by

wop t ,z = (BM[1\ + jçl\ du[l], l = 0,l,...,L. (3.30)

2

The computation of the wopt^ is numerically stable due to the term ^ - 1 , and it can be done

efficiently using the Levinson algorithm [152].

Moreover, from the derivation of (3.27) it follows that the coefficients of the reduced-

complexity MMSE predictor in the time-frequency domain (Wm in (3.16)) and in the

time-delay domain (wj in (3.23)) can also be related by an eigenvalue decomposition or

diagonalization:
W m = F A m F H , where Am = diag {wmfl,..., wm>L, 0 , . . . , 0} .

This relation leads to the implementation shown in Figure 3.4. Note that the wmj are the

nonzero eigenvalues of the circulant matrix W m .

Minimum Mean-Square Error

Using the orthogonality principle [148] and the DFT relation (3.25), the error covariance

matrix is given by (cf. (3.20))

B = E{(h n + p — hOp tn+pj (h n + p — h )

= F diag {emin,o, emin,i, . . . , emin,L, 0, . . . , 0} FH , (3.31)

where the MMSE of the predictor for the Zth delay tap is given by

(3.32)

= Dm[0,1} - d%[l] (r>n[l] + -gl) dB[l], (3.33)

with hoptjn+Pti — wffijhnj. Note that (3.31) is an eigenvalue decomposition of the er-

ror covariance matrix B into L + 1 nonzero eigenvalues Ktm\ni (the factor K is due to

F F ^ = ÄI). Using (3.31) and (3.33), the normalized MMSE obtained with the optimum

coefficients wop tj is (cf. (3.21))

emin = ^E{| |h n + p-h o p t , n + p | | 2} = l t r { B }

1 L

= — t r { F d i a g { e m i n , 0 , € m i n , i , . . . , e m i n i L > 0 , . . . , 0 } F H } = ^ e m i n , , ( 3 . 3 4 )
1=0

= ^ H [ 0 , 0 ] - J2 dH [I] f D H R ] + -^ I J dH[/], (3.35)
i=o ^ ^
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where we used that t r { F F H } = K and Rm{0,0] = ]Tf=0 Dm[0,1] (cf. (2.47)). Note that emin

is equal to (3.21).

We note, however, that the DFT implementation does introduce a systematic error if

some OFDM subcarriers (e.g. at the band edges) are not used for data transmission. This

is frequently done in practical systems to reduce out-of-band emissions. An analysis of this

error is provided in Appendix 3.A.

3.2.4 Infinite-Length MMSE Predictor

The best performance of the MMSE channel predictor is obtained if we exploit all existing

channel correlations. This is always ensured for the frequency correlations of the channel.

However, to exploit all time correlations, a prediction filter with infinite length is generally

necessary. Whereas the infinite-length predictor and its MMSE are difficult to calculate

for arbitrary prediction horizons p, an analytical result can be obtained for the case of

one-step prediction (p = 1). This result is of interest for at least two reasons. First, we will

use it for comparison with our finite-length predictors to determine the predictor length

that is necessary for exploiting an essential part of the time correlations. Secondly, the

infinite-length predictor will play an important role in Chapter 4 when we calculate the

ergodic system capacity of OFDM systems.

For our calculations, we again use the predictor structure shown in Figure 3.4 since it

is easier to analyze. Specifically, the predictor breaks up into the L + 1 independent SISO

predictors
oo

^n,l = ^2Wm,lhrn-n,l, I = 0,1, . . . , L . (3.36)
m=l

Note that these input-output relations are equivalent to (3.23) for p = 1 and M —» oo.

(Note also that for notational convenience, we have formally replaced w^nl in (3.23) by

Optimum Predictor Coefficients

In Subsection 3.2.3, we have seen that we can design the L SISO prediction filters (3.36)

independently. Let us define the individual MSE of the /th predictor by e/ = E{\hn>i — hn^\2}.

By the orthogonality principle [109,148], the MSE ei is minimized by coefficients wmj that

satisfy the Wiener-Hopf equations (cf. (3.27))

DM[m,l] - y] wm'ti
m'=l

TO > 0
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We can equivalently formulate these equations as

Dm[m,l] - ] P wm>ti
ro'=l

Dm[m - TO', I] + — 5[m - TO'] = 9m,i, (3.37)

where the sequences gmji have to be anticausal, i.e., gmj = 0 for m > 0, but are arbitrary

otherwise. This follows because when considering the predictor coefficients wmti for fixed /

as sequences in m, the wmii are strictly causal, i.e., wmti — 0 for TO < 0. Next, we apply

a Fourier transform with respect to the variable TO to (3.37), thereby transforming the

Wiener-Hopf equations from the time-delay domain to the scattering domain:

f). (3.38)

Here, Cm(l,ip) = Y^=-oo Dm[m,l}e-j2nvm is the scattering function as given by (2.48),

the predictor coefficients are transformed according to W(l,tp) = J2m=i w™,i e~j27rifiTn, and
l

We now use following spectral decomposition [109,154] of the scattering function and

additive noise:

CH{1, V) + ^ = Pi*(l, <P)**{1, V), (3-39)

with

Pl = exp i J ^ log (cm{l, cp) + ̂ \dA, (3.40)

where the sequence 4>m,i = /_i/2 ^ ( ^ if)e:'27rrn'pd(p is causal, minimum phase, and monic.

Note that the sequence 0n^ = J_x,2 ^n xej27rnyd(/? exists and is again causal, minimum

phase, and monic. The spectral decomposition (3.39) is guaranteed to exist since pi > —oo

due to the noise component J2/K, i.e., the Paley-Wiener condition is satisfied [109,155].

Substituting (3.39) into (3.38) yields

p, [»(I,*) - •(!,„) W(lM] = § ^ + 5 ^ j • (3.41)

Recall that the wmti are strictly causal. Therefore, to solve (3.41) for the optimum

) , we have to identify the part of (3.41) that yields a strictly causal sequence when

inverse Fourier transformed with respect to the variable (p. Let us first consider the terms

on the right-hand side of (3.41). Here, the time sequence corresponding to §rjfK is anti-

causal because it is the convolution of two anticausal sequences. Hence, this term does not
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contribute to the solution of the optimum W(l, ip). Moreover, the sequence corresponding

to ç,L s is also anticausal. Hence, to obtain the optimum W(l,ip), we have to equate the

right-hand side of (3.41) to zero. We next have to identify those parts of the left-hand side

of (3.41) that correspond to a strictly causal sequence. Here, the first term is <£>(/,</?); its

strictly causal part corresponds to <&(l,ip) — 1 because the sequence <j)mti — S[m] is strictly

causal. Furthermore, the term $(/, ip) W(l, ip) corresponds to the convolution of a causal

sequence and a strictly causal sequence and thus is strictly causal. Thus, the corresponding

strictly causal part of the equation (3.41) is given by

p ) ] = 0 .

Hence, the optimum infinite-length channel predictor coefficients are obtained from the

inverse Fourier transform of

- . (3.42)

Minimum Mean-Square Error

From (3.32), it follows that the MMSE of the Ith infinite-length predictor filter is given by

rl/2

i,/ = AH[0, /] - 2 ^ Wopt.m,* Dm[-m, 1} =
m=l

Inserting (3.39) and (3.42) yields

/•1/2 2 rl/2 1 2

emin,z = Pi $ * ( l , V3) dip - — / - T 7 7 — r dip = p i - — . (3.43)
7-i/2 K J_1/2 9{l, (p) K

The final expression follows because both integrals evaluate to one since both &(l,ip) and

$} > are monic. Inserting (3.40) into (3.43) yields further

72 r r r1'2 t K \ \ i
emin,i = 17 exp < / log 1 H—- CM,ip) )dip > — 1 . (3.44)

K L 17-1/2 V T ) ) J
For large bandwidth, we can furthermore insert (2.49), which yields

\ CUc(lTs,

From (3.34) it follows that the total MMSE is given by summation of the L + 1 individual

MMSEs:

L O L r
X "* ' X " I J Arm / i it /~i / im \ \ i I -i

Cmin = > €min,/ ~ -J7 > . ^ X P \ N T S / l o g 1 + -j—^ C m c ( l T s , u ) ] d l / } - l
1=0 1=0 l <• J v \ ' /

. (3.45)
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Hence, the minimum prediction error depends on the channel statistics via the scattering

function CHC(T, V), on the equivalent noise variance 72, and on the OFDM system param-

eters N, K, and Ts. Note that the transmit power effectively enters inversely into 7 2 (cf.

(3.15)). The behavior of emjn for different scattering functions CHC(T, V) and noise variances

72 can be directly assessed using (3.45).

3.2.5 Channel Prediction in Specular Scattering

We now consider OFDM channel prediction for a special type of "specular scattering"

channels whose scattering function consists of discrete (specular) components:

Cu(l, <p) = Yl Pi ôll ~ M 6& ~<Pi)> ^ e h i /2 ,1 /2) • (3.46)
i=0

This model of a wireless fading channel is widely used in the literature for its simplicity

and analytic tractability.

The parametric representation of C^(l,(p) in (3.46) comprises / parameter triplets

{pi,li,(fi}, i.e., each of the / scatterers is characterized by its gain y/pi, delay l{, and

Doppler shift (fi. It is important to note that knowledge of the channel statistics (scatter-

ing function) entails exact knowledge of the delays and Dopplers of the individual scatterers.

We can expect that this detailed knowledge about the structure of the time and frequency

selective fading channel (which implies a reduced randomness of the channel) can be ex-

ploited for channel prediction. Indeed, our analysis will show that the minimum prediction

error is equal to zero in this special case. This result extends a similar result for noiseless

prediction of nonregular processes [109]. For our calculations, we again use the DFT-based

implementation shown in Figure 3.4 since it allows a simplified analysis. Moreover, because

emin = Z)i=oemin,i (cf- (3-35)), the global MMSE emin vanishes if each of the L + l individual

MMSEs emin,2 is zero. Therefore, we can consider one (arbitrary but fixed) delay tap and

drop the delay index I for notational simplicity.

Problem Statement

Let us consider the length-M linear predictor given by (cf. (3.23))

M

*m ~hn-m , (3.47)

(3.48)

m=l

for the stationary process (cf. (3.22))
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Without loss of generality, we assume one-step prediction (p = 1); note that the prediction

MSE will vanish for any p > 1 if it vanishes for p = 1 because several one-step predictors

could be used one after the other to obtain any desired prediction horizon. For the power

spectral density of hn, we assume specular scattering defined by (cf. (3.46))

7-1

Vi), ^ € [ - 1 / 2 , 1 / 2 ) , p t > 0 . (3.49)
i=0

Furthermore, we require that ipi ̂  </v for i ̂  i' and assume that zn is zero-mean circularly

complex white Gaussian noise with variance 2

Optimum Predictor Coefficients

According to the orthogonality principle [109,148], the MSE-optimum predictor coefficients

are such that

E {(hn - hn)h*n_m} = 0 , m = l , . . . , M .

Inserting (3.47) and (3.48), the Wiener-Hopf equations are obtained as (cf. (3.27))

( i- \

where w = [wi ... WM]T', DH is an M x M Toeplitz correlation matrix with first row

[ £ > H [ 0 ] , . . . , DU[M-1}], and d H â [ D M [ - 1 ] , . . . , Dm[-M]f wi th Dm[m) à E {hnh*n_m}.
-The correlation function corresponding to the spectral density CM(<P) in (3.49) is ob-

tained as
1/2

Therefore, the correlation matrix and cross-correlation vector in (3.50) are, respectively,

given by
7 - 1 7 - 1

DH = ]TAVwf and dH = J ] Pi e-
j2*Vi &, (3.51)

i=0 i=0

with the M x 1 vectors

(-. A M e-j2ir<Pi e-j2ir(M-l)tfi-[T

The correlation matrix De has rank / . For growing M (note that M can be chosen

arbitrarily large), Dm and de can be arbitrarily well approximated as

D H ~ ] P Pi <Pi¥>? and d H w ̂  pt e~j27T~® (pt, (3.52)
i&c lec
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with the orthogonal DFT vectors

& â

and the index set C consisting of the / integers / corresponding to the frequencies JJ

that are closest to the actual Dopplers ipi G [—1/2,1/2). Note that (pf<f>k = M5[l — k\.

The cardinality of the set C is I and thus is identical to the number of scatterers of the

parametric model. The pi in (3.52) are reordered but otherwise equal to the pi.

Inserting the parametric model (3.52), the Wiener-Hopf equations (3.50) become

or equivalently

where
M

â tpf w
m=\

is the M-bin IDFT of the predictor coefficients. Hence, in the transformed domain the

MMSE predictor coefficients are given by

w « Pl lec
KM

The optimum predictor coefficients are finally obtained via a DFT,

:>—j2TTml/M

Minimum Mean-Square Error

Using (3.32), the prediction MMSE is given by (dropping the delay index I)

d^wo p t . With our parametric scattering model,

1̂ 0

Therefore, the MMSE is finally obtained as

(M)
1-1

(M) _
emin -

2
Pi

tec Pl + KM 1̂ 0 Pi "I" KM

Pi

t = 0
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Predictor type

MMSE predictor

Reduced-complexity MMSE predictor

DFT implementation

Adaptive predictor using NLMS algorithm

Adaptive predictor using RLS algorithm

Design

—

O{K2M2)

O(M2L)

—

—

Prediction

O(K3M3)

O{K2M)

O(K\og2K + ML)

0(Klog2K + ML)

O(Klog2K + ML)

Update

—

—

—

O(ML)

O(M2L)

Table 3.1: Approximate computational complexity of the finite-length MMSE and adaptive
channel predictors.

This shows, in particular, that the MMSE vanishes for infinite predictor length, i.e.,

= 0. (3.53)

We can thus conclude that for unconstrained predictor filter length, the prediction error

can be made arbitrarily small. A similar result exists for noiseless prediction of singular

processes [109]. In our case, we assume perfect knowledge of the Doppler locations of the

specular scattering model and, therefore, the only "randomness" in hn enters through the

/ gains yfpl- If we are able to estimate the pi without error, we can predict hn arbitrarily

well. But perfect estimation of pi is indeed possible since hn is a stationary process and

infinite time is available to average out the noise. Hence, the asymptotic prediction error

is zero.

3.2.6 Computational Complexity of MMSE Predictors

Thus far, we have discussed the "full-complexity" MMSE predictor (Subsection 3.2.1), the

reduced-complexity linear MMSE predictor (Subsection 3.2.2), and the DFT implementa-

tion of the reduced-complexity linear MMSE predictor (Subsection 3.2.3). The computa-

tional complexity of these finite-length MMSE predictors is compared in Table 3.1. We

specify the complexity both for the design (performed in advance only once) and for the

actual channel prediction (performed in each symbol interval). For the full-blown MMSE

predictor, the design has to be performed anew for each symbol and thus it is considered

as part of the prediction complexity. It is assumed that the design is based on the Wax-

Kailath algorithm [150] in the case of the reduced-complexity MMSE predictor and on the

Levinson algorithm [152] in the case of the DFT implementation.

It is seen that for typical values of the parameters K, M, and L, the DFT implementa-

tion is significantly less complex than the original implementation of the reduced-complexity
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MMSE predictor, which in turn is significantly less complex than the full-complexity MMSE
predictor.

3.3 Adaptive OFDM Channel Predictors

In practice, calculation of the MMSE channel predictor in (3.30) presupposes that the
channel correlation R]Hi[m] and the noise variance 72 have been estimated from the re-
ceived signal. Furthermore, the statistics of real-world channels are constant only over a
certain time [133,135,136], thus necessitating reestimation of Rn[m] and recalculation of
the channel predictor once in a while. To avoid these problems, we propose adaptive chan-
nel predictors that perform a continual update of the predictor coefficients, do not require
knowledge of the channel and noise statistics, and are capable of tracking nonstationary
statistics.

The adaptive predictors will be based on the same structure as the DFT implementa-
tion of Figure 3.4 because it is computationally efficient and involves only M(L +1) scalar
coefficients, instead of the MK2 scalar coefficients required by the original implementation
of the reduced-complexity MMSE predictor. Note that adaptive algorithms generally per-
form better when fewer coefficients have to be adapted [156]. Assuming that the adaptation
starts at n = 0, the predicted channel taps are (cf. (3.23))

h n + P t i = w f [ n } h n t l , n > 0 , l = 0 , . . . , L .

The time-varying predictor filters w [̂n] will be adaptively adjusted by means of the normal-
ized least-mean-square (NLMS) algorithm or the recursive least-squares (RLS) algorithm

[156].

3.3.1 NLMS Algorithm

The NLMS algorithm belongs to the family of stochastic gradient algorithms that iteratively
estimate the MMSE predictor filters. We use the NLMS algorithm rather than the LMS
algorithm because the selection of the adaptation constant is simpler. The predictor filters
w/[n] are updated according to [156]

wj[n] = wj[ra-l] + - ß e*n, hn_P),, n > p,
\\hn-p,l\\2

where ß is the adaptation constant, ||hn_Pi/|| = X î=o \hn-P-i,i\2> and eUii is the prediction

error that would ideally be given by hnti — wf[n — 1] hn_P)j. However, since we perform
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noisy prediction, hn<i is unavailable. Thus we approximate hUti by ynj = hnj + znj in (3.22),

i.e.,

en,i = KJL ~ wf[n-1] hn_P;/, n > p. (3.54)

The error introduced by this approximation will be small for most practical signal-to-noise

ratios. For n = 0,... ,p— 1, the prediction filters are initialized as

wj[n] = (3.55)

Thus, hn+Pii = hn<i for n = 0,. . . , p - l .
Stable operation of the NMLS algorithm requires 0 < ß < 2 [156]. The selection of ß

is a trade-off between fast convergence and small excess MSE. We obtained good results
with ß « 0.5.

3.3.2 RLS Algorithm

With the RLS algorithm, the Zth predictor filter w;[n] is calculated such that it minimizes

the error [156]

m=p

Here, A with 0 < A < 1 is a forgetting factor that accounts for possible nonstationarity of

the input hn^ (we obtained good results for A = 0.99). The resulting update equation for

w/[n] is [156]

wj[n] = w,[n-l] + K-P,i e*n,i, n>p,

where enii is as in (3.54) and kn^ is the RLS gain vector given by

A
n > 1.

Here, the matrix Pn,/ is the inverse of the M x M sample covariance matrix

Ylm=o An~m hm,/ h^ L; it can be calculated recursively as

Pn,i = j ( i - K,i h ^ ) Pn_i,,, n > 1.

The RLS recursion is initialized as in (3.55). Furthermore, we set

pOl/ =
- i 1 o,/
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and

1 ' UM +* '
where the stabilization factor S is in the range 0 < ^ < l (we chose S = 0.1).

Compared to the NLMS algorithm, the RLS algorithm converges faster and has a smaller

excess MSE. Its convergence rate is independent of the eigenvalue spread of the input

process [156]. In our case, this is an important advantage over the NLMS algorithm since

our channels are highly correlated (large coherence time).

3.3.3 Computational Complexity of Adaptive Predictors

The last two rows of Table 3.1 show the computational complexity of the channel prediction

(filter operation) and coefficient update for the two adaptive predictors. Both operations

have to be performed in each symbol interval. While the complexity of the channel pre-

diction is equal for the NLMS and RLS predictors (it is the same as the complexity of the

nonadaptive DFT implementation), the coefficient update is significantly more costly for

the RLS predictor than for the NLMS predictor, especially for large filter lengths M.

3.4 Applications of OFDM Channel Prediction

Channel prediction is potentially useful for a variety of communication techniques. Out

of these we consider predictive equalization in Subsection 3.4.1 and adaptive modulation

in Subsection 3.4.2. Furthermore, in Subsection 3.4.3 we treat the practically relevant

situation of an OFDM system that periodically transmits pilot symbols. Here, the decision-

directed operation of the predictor can be augmented by the pilot symbols.

3.4.1 Predictive Equalization

As a first application example, we consider delay-free predictive equalization. The OFDM

transmitter is sketched in Figure 3.5(a). We assume that a coder maps a bit stream

Di to symbol vectors x n = [Xn$Xn>i ••• XntK-i]T and an OFDM modulator generates

the transmit signal x[m}. In the receiver shown in Figure 3.5(b), the channel predictor

provides up-to-date channel state information without requiring regular transmission of

pilot symbols. Similar receivers have been proposed e.g. in [65,90,94]. The vector signal
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OFDM
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channel
equalizer
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(b)

Figure 3.5: Coded OFDM system using predictive channel equalization: (a) transmitter and
(b) receiver.

yn = [^n,o^n,i • • • Yn,K-i]T is obtained via the OFDM demodulator. A zero-forcing equal-

izer then calculates YUik — Yn,kjHn,k (cf. (2.36)), where the estimated channel coefficients

h n = [i/n)oi/n,i ••• Hn,K-\\ are provided by the channel predictor. Any of the finite

length-predictors considered so far may be used depending on the required prediction ac-

curacy and the available a priori knowledge. However, due to its efficient implementation,

the DFT-based predictor structure is most attractive from a practical perspective. The

equalized sequence yn = [Y^o Ynt\ • • • Y^/f-i] is decoded to obtain the detected bits Â .

The channel estimates HUik are generated by the lower receiver branch in Figure

3.5(b). The channel predictor is operated in decision-directed mode, i.e., the true trans-

mit symbols xn = [XnfiXnß ••• XnjK-i]T required in (3.10) are replaced by symbols

x n = \XnfiXnt\ • • • Xn^K-i\ that are obtained by re-encoding the detected bits £>,. Note

that x n = xn only if all bits Di were correct; otherwise, error propagation may result.

Together, decoding and re-encoding introduce a delay of p > 1 OFDM symbols; this delay

is compensated by channel prediction. We have p = 1 if coding is performed within only

one OFDM symbol over the subcarriers or when no coding is used. Except for initialization

of the predictor, no training data need to be transmitted.

For initialization of a channel predictor of length M, the symbol vectors xn should

ideally be known for M symbol periods. If less training data x n are available, we set the

corresponding unknown hn to zero. With HIPERLAN/2 and IEEE 802.11a, two known
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pilot OFDM symbols are transmitted at the beginning of each frame. Our simulations

in Subsection 3.5.1 show that this suffices for initialization; even a single known OFDM

symbol is sufficient. Predictive equalization thus enables the tracking of channel variations

in systems like HIPERLAN/2 and IEEE 802.11a, which is difficult otherwise because the

pilot symbols are not dense enough to interpolate the channel between them.

3.4.2 Adaptive Modulation

By adaptive modulation, we mean the adaptation of transmission parameters to the current

channel realization. Such transmission parameters may be the symbol alphabet, power allo-

cation, channel code, coding rate, etc. For adaptive modulation, channel state information

(CSI) is required both at the transmitter and the receiver. Moreover, both the transmitter

and the receiver have to be aware of the currently used set of transmission parameters. Im-

plementations of adaptive modulation typically perform estimation of the channel at the

receiver, calculation of the relevant transmission parameters according to some optimality

criterion, and feed-back of these parameters to the transmitter [8,49,157]. The optimality

criteria frequently encountered in the literature can be ordered into two groups. The first

criterion aims at maximizing the data rate under the side constraint of achieving a certain

bit error probability with a given transmit power and leads to techniques that are related

to waterfilling [8,158]. The other criterion tries to minimize the bit error probability under

the constraints of a given transmit power and a fixed (or minimum) data rate [8,159].

The idea of adaptive modulation is the key to obtaining high data rates in wired com-

munications such as digital subscriber line (xDSL) transmission systems [158]. Here, the

implementation of adaptive modulation is straightforward because the channel is practi-

cally time-invariant over the complete transmission period. Therefore, the channel can be

estimated and the relevant information can be fed back to the transmitter before actually

starting the transmission of data.

The success of adaptive modulation in wired communication systems has motivated

research on the application of these techniques to wireless systems [47-50,157,160-165].

However, in wireless systems the channel generally changes during the transmission, and

thus the implementation of methods proven useful in wired systems is not straightforward.

Because the channel is time-varying, a packet-oriented strategy is necessary using packet

lengths significantly shorter than the coherence time of the channel [49]. The adaptive

modulation methods known from wired systems can then be used in wireless systems on a

packet-by-packet basis. However, the overhead increases rapidly with the fading rate of the

channel and possibly absorbs all advantages [50,164,165]. Moreover, things can be made
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even worse by choosing unfavorable transmission parameters due to outdated CSI. This

is where channel prediction comes into play as a possible remedy for the implementation

problems plaguing adaptive modulation in wireless communication systems [50,165]. By

means of channel prediction, we are able to increase the maximum packet length by choosing

transmission parameters that match the future channel state. Moreover, with prediction we

can obtain up-to-date CSI even for fast time-varying channels or large prediction horizons.

Because of these advantages, channel prediction could be the key to successful application

of adaptive modulation in wireless systems.

System Description

Figure 3.6 shows a point-to-point, OFDM-based wireless communication system that im-

plements an adaptive modulation strategy. We will propose a novel protocol for signaling

the transmission parameters from the receiver back to the transmitter, and suggest the use

of channel prediction for obtaining CSI at the receiver.

The transmitter sends either training data or real user data. In training data mode,

the transmission parameters are fixed and preselected. For example, the available transmit

power is evenly distributed over all subcarriers and a BPSK symbol alphabet is used.

Training data is sent in blocks of length M'.

"The receiver is based on the system previously described in Subsection 3.4.1 in the

context of predictive equalization. However, the channel predictor is now used twice. First,

it is used for predictive equalization during data transmission periods, where the prediction

horizon p is chosen to compensate for decoding delays. Secondly, it is used to generate CSI

for the calculation of a transmission parameter set that is optimum according to a suitable

criterion. For the latter purpose, the predictor is operated with various prediction horizons

p' to generate CSI for the complete subsequent data packet (see below).

Obtaining CSI

We suggest to use the efficient DFT implementation of the MMSE channel predictor as

described in Subsection 3.2.3. The estimation of the required channel statistics and noise

variance is discussed in [64].

Inserting the MSE-optimum predictor coefficients (3.30) into (3.23) yields

K+?,i = dS[l]hn,i, I = 0 , . . . , L, p' > 1, (3.56)

with

( 2 \ ~1

DHM + ^ I J KJ, (3.57)
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Figure 3.6: Wireless OFDM communication system for implementation of adaptive modu-
lation strategies. The transmitter is shown in the top part and the receiver using channel
prediction in the lower part. The dashed line indicates the feed-back channel used to signal
transmission parameters from the receiver to the transmitter.

where DH[/] and d^[l] are given by (3.28) and (3.29), respectively. Note that while de[/] in
(3.56) depends on the prediction horizon p', (3.57) is independent of p' and therefore has
to be calculated only once even if we wish to predict the channel for various p'.

Let us assume that the user data packet has length Q and starts with an offset O. To
obtain CSI for the complete interval of the user data packet, we have to predict the channel
for the Q prediction horizons p' = O, O + 1, . . . , O + Q — 1 by calculating (3.57) once and
subsequently evaluating (3.56) Q times for this range of p'.
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Protocol

Finally, we propose a strategy for obtaining CSI and feeding the transmission parameters
back to the transmitter. Consider the packet structure shown in Figure 3.7. The transmis-
sion starts with training data being sent from the transmitter to the receiver. The duration
of the training data is M' > M, where M is the length of the channel predictor used in the
receiver. Choosing M' larger than M may be required for reliable estimation of the channel
statistics and the noise variance (see e.g. [64]). After the training data block, there follows
a short information field by means of which the transmitter informs the receiver about the
intended length of the data packet and possibly about constraints that need to be taken
into account when selecting the future transmission parameters. This information field
is sent using preselected transmission parameters (power level, symbol alphabet, channel
code). The transmitter then remains silent during a fixed silence period before it starts
transmitting the user data packet.

During the silent period, the receiver estimates the channel statistics, the receive power,
and the noise variance using e.g. the algorithm in [64]. Based on the received signal during
the initial training period, it then predicts the channel for the period of the information
field. After decoding the information field, the receiver is informed about the intended
length of the data packet and further transmitter-related parameters. Next, the receiver
predicts the channel for the period of the data packet or up to a certain percentage of
the channel coherence period (e.g., the prediction horizon can be limited to 10% of the
coherence time 7HC). If p' is too large compared to Tec, the prediction accuracy will be
poor. If the user data packet is larger than this maximum prediction horizon, the receiver
tells the transmitter to split the data packet into smaller snippets. Note that the receiver
can calculate Tjnc after it has estimated the channel statistics.

Next, based on the predicted channel, the receiver calculates possible transmission pa-
rameters for the user data packet. For this calculation, it tiles the time-frequency rectangle
of the data packet into smaller rectangles that correspond to regions of identical trans-
mission parameters (e.g., identical power allocation and identical symbol alphabet). We
propose to use a tiling as sketched in Figure 3.7, so that the information about the start
point of one rectangle using a pointer and its size A x B suffices for the receiver to subse-
quently generate the same tiling. The parameters A and B have to be much smaller than the
channel's coherence time and coherence bandwidth, respectively; they should be matched
to regions of approximately constant channel gains. The information about the tiling of
the data packet (starting pointer and parameters A and B) and the transmission parame-
ters within each rectangle (power allocation, symbol alphabet, etc.) are signaled from the
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Figure 3.7: Schematic illustration of the packet structure used in the proposed adaptive
modulation scheme. Vertical and horizontal directions correspond to subcarriers and OFDM
symbols, respectively.

receiver to the transmitter during the transmitter's silence period. This transmission also
uses a preselected format (power level, symbol alphabet, channel code). Additionally, the
receiver informs the transmitter about the allowable size of the data packet. The feed-back
channel carrying the transmitter parameter signaling has to be highly secure.

After receiving the transmission parameters, the transmitter adjusts its modulation and
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Figure 3.8: Pilot symbols (•) are regularly distributed over the time-frequency plane and
multiplexed with data symbols (o). This example shows scattered pilot locations for a system
with K = 24 subcarriers and P = 6 pilots per OFDM symbol. The "subcarrier distance"
between pilots is S = 4.

possibly coding accordingly and starts to transmit the user data packet. This data packet is

decoded at the receiver using predictive equalization. The accuracy of the already predicted

channel can be increased by again running the channel predictor during the transmission

of the data packet, this time in decision-directed mode.

The overhead of this protocol is determined by the sum of the lengths of the initial

training data field, of the information field, and of the silence period compared to the size

of the user data packet. For example, to obtain 10% overhead one could use 1000 OFDM

symbols per packet, of which 100 are used for the overhead. For IEEE 802.11a, we would

then obtain a total packet length of 1000 • 4/is = 4ms. Assuming indoor communications

and a coherence time of 100 ms, we would have to predict up to 4ms/100ms = 4% of the

coherence time, for which channel prediction is very accurate (see Section 3.5).

3.4.3 Pilot Symbol Augmented Channel Prediction

Some wireless communication systems based on OFDM continually multiplex training data

into the transmitted data stream. An example is DVB-T that transmits approximately

10% training data in the form of so-called scattered pilot symbols [166]. Here, pilot symbol

based channel prediction can be used. Alternatively, one can use a channel predictor with

decision-directed operation that is augmented by using the known pilot symbols instead

of the corresponding symbol estimates Xn^. These channel prediction schemes have the

advantage of yielding improved CSI while enabling delay-free equalization and decoding.

Pilot Symbols

The pilots are regularly spread over the time-frequency plane as shown in Figure 3.8. The

set of pilot symbol locations can be denned as [73]

V = {(n,k)\ne Z , k = iS + (rcmodS), i € [ 0 , P - 1]},
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where P is the number of pilots per OFDM symbol and S = K/P is the "subcarrier

distance" between two neighboring pilots in the frequency direction. We assume that P

divides K so that S is an integer.

For reasons of simplicity, the pilots are assumed to be a BPSK-modulated sequence,

i.e.,

else.

In [166], the pilot sequence is derived from a pseudo-noise sequence and transmitted with

a "boosted" power level using amplification factor 4/3.

Pilot-based channel estimation or channel prediction basically means that we subsample

the time-dependent transfer function of IK and then apply some filtering and interpolation.

The subsampling as well as the filtering/interpolation are two-dimensional, i.e., in both

the time and frequency directions. Therefore, the pilots need to be dense enough to avoid

aliasing. The four pilots per OFDM symbol used in the IEEE 802.11a standard are not

dense enough for channel estimation; they are solely meant for frequency synchronization.

Pilot Symbol Based Channel Prediction

In the case where channel prediction is based exclusively on the pilot symbols, only the

received sequences Ynk for (n, k) G V are used for channel prediction. (In contrast, we

previously based channel prediction on all Ynk for n G Z and A; G [0, K — 1], see e.g. Figure

3.1.) The efficient DFT implementation discussed in Subsection 3.2.3 can be used for pilot

symbol based channel prediction with small changes. Let us define the K x K diagonal

pilot symbol matrix

We simply replace the multiplication by X"1 in Figure 3.4 with multiplication by ftn and

obtain the pilot symbol based channel predictor that is shown in Figure 3.9. The predictor

coefficients w/ can be chosen according to the MMSE solution (see Subsection 3.2.3) or

according to the adaptive algorithms of Section 3.3.

Pilot symbol based channel prediction has advantages as well as drawbacks. Our initial

motivation for channel prediction was to reduce or altogether avoid the regular transmission

of pilots. However, the simulations in Subsection 3.5.5 will reveal that a system purely based

on decision-directed operation and predictive equalization exhibits an SNR threshold that

has to be exceeded for satisfactory performance. The reason for this SNR threshold is error

propagation. This problem is clearly avoided by pilot symbol based channel prediction.

Furthermore, since the pilots are a BPSK-modulated sequence, the reduced-complexity
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Figure 3.9: Channel predictor for pilot symbol based channel prediction.

linear predictor coincides with the full-complexity MMSE predictor (see Subsection 3.2.2

on the optimality of the reduced-complexity MMSE predictor for PSK symbols). On the

other hand, for purely pilot-based prediction, the "reference" reduces from K observations

per OFDM symbol to P observations per OFDM symbol, which leads to a larger MMSE.

We therefore suggest to employ channel prediction in an OFDM system where pilot

symbols are available in the following two modes: below the SNR threshold, purely pilot

symbol based channel prediction should be used; whereas above the SNR threshold, a

combined pilot-based and decision-directed operation (see below) should be used.

Combined Decision-Directed and Pilot-Based Channel Prediction

In à nutshell, this combined operation mode uses pilot symbols where available and decision-

directed operation at all other subcarriers. We thus replace (3.58) by

1 or - 1, (n, k)eV,

else ,

and define the diagonal matrix fln = diag{nn,o, ^ n , i , • • • , ^n,/c-i} accordingly. Replacing

f2„ in Figure 3.9 by Vtn leads to the combined operation mode. This mode is especially

useful when the system operates above the SNR threshold (see Subsection 3.5.5); otherwise

channel prediction accuracy may suffer from error propagation.

3.5 Simulation Results

We simulated a CP-OFDM system with K = 120 subcarriers and cyclic prefix length

Lcp = 20. The OFDM symbol length was N = K + Lcp = 140. We used a coded



72 Chapter 3. Channel Prediction in OFDM Systems

system with 16-QAM symbol alphabet and a\ = E{|Xnfc|2} = 1. The coding rate was

approximately 1/2. A (15,7) Reed-Solomon code over GF(l6) was used, with each code

symbol consisting of one 16-QAM symbol. The code symbols were interleaved in frequency.

No temporal coding was used. The coded system can exploit the frequency diversity offered

by the multipath channel; however, time diversity is not exploited. In Subsections 3.5.5

and 3.5.6, we additionally simulated an uncoded system with 4-QAM symbol alphabet and

a% — \Xn!k\2 = 1. Note that the coded and uncoded systems have approximately the same

net data rate; however, the uncoded system cannot exploit diversity.

The channel was simulated by means of the technique described in [167]. We prescribed

a scattering function with exponentially decaying delay profile and Jakes Doppler profile

[132], i.e.,

exp (-l/Xp) . .
for Z = 0,..., L , |£| < U{

V&ax - £2 (3.59)
0, elsewhere.

Unless stated otherwise, we chose Ao = L/loge(2L) and L = 19. We considered both

a "slow" (slowly time-varying) channel with £max-K' = 0.001 and a "fast" (rapidly time-

varying) channel with £ m ax^ = 0.01. The quantity £max-K' can be interpreted as the

amount of channel variation within one OFDM symbol. The additive noise was zero-mean

white and Gaussian with variance cr\.

For the channel predictor, the DFT implementation of Figure 3.4 was used. The predic-

tor consisted of L + 1 = 20 SISO prediction filters, each of length M = 10. The prediction

horizon was p = 1 unless indicated otherwise. The parameters of the NLMS and RLS algo-

rithms were chosen as ß = 0.5 and A = 0.99, respectively: The SNR, defined as (^d
<7x)'/au>

was 25 dB unless indicated otherwise.

3.5.1 Convergence of the Adaptive Predictors

Figure 3.10 shows the convergence of the adaptive channel predictors in the coded system

for the slow and fast channels. The (normalized) prediction MSE was estimated from 100

realizations. For comparison, the estimated prediction MSE of the reduced-complexity

MMSE predictor from Section 3.2.2 and the theoretical MMSE according to (3.21) are also

plotted. We assume packet transmission with a packet length of 1000 OFDM symbols and

a packet preamble of only a single known OFDM symbol. At the beginning of each packet,

the channel predictors were initialized in training mode with the single known OFDM

symbol to predict the channel for the next OFDM symbol. Afterwards, the predictors
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Figure 3.10: Convergence behavior of the adaptive predictors in decision-directed mode for
(a) the slow channel, and (b) the fast channel.

were operated in decision-directed mode. With the adaptive channel predictors, coefficient
adaptation started after M = 10 OFDM symbols had been received. With the MMSE
channel predictor, the appropriate predictor length (between 1 and M) was used during
the initialization phase, depending on the number of OFDM symbols received.

It is seen that the MSE achieved is below 1/SNR = -25 dB for all predictors. The RLS-
bas'ed predictor converges faster than the NLMS-based predictor and has almost no excess
MSE relative to the reduced-complexity MMSE channel predictor. The excess MSE of the
NLMS-based predictor is 4-6 dB. The prediction MSE obtained after convergence strongly
depends on the channel's maximum Doppler frequency; it is about 2-4 dB higher for the
fast channel than for the slow channel. We note that in this simulation, the predictors
always converged. Thus, a single known OFDM symbol here suffices for startup.

3.5.2 Dependence of Prediction MSE on Maximum Delay and Doppler

Figure 3.11 shows how the normalized prediction MSE (after convergence in the case of

adaptive predictors) depends on the channel's maximum delay L and maximum Doppler

frequency Çmax (cf. (3.59)). This simulation was carried out using the coded system. Note

that a larger L (£max) implies a smaller coherence bandwidth (coherence time). Throughout

this simulation, the predictors were operated in training mode to avoid error propagation

effects. The prediction MSE was estimated by averaging over 100 realizations with 104

symbols each.
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Figure 3.11: Dependence of the prediction MSE on the channel's maximum delay L and
maximum Doppler frequency £max-' (a) varying L at fixed ( m a x i f = 0.001, (b) varying £max
at fixed L — 19.

In Figure 3.11(a), L is varied between 0 and 19 while £max-^ is fixed at 0.001 (slow

channel). In Figure 3.11(b), £max-ß' is varied between 0.002 and 0.05 at a fixed L of 19. It

can be seen that the prediction MSE increases with increasing L and increasing £max. This

is an expected behavior since prediction is more difficult for weaker correlations, i.e., for

a smaller coherence bandwidth and/or coherence time. We also see that the RLS-based

predictor tends to perform nearly as well as the MMSE predictor. According to Figure

3.11(b), for high £max all predictors deviate from the theoretical MMSE. This is because

the approximate system relation (2.36) becomes less accurate with increasing £max [108],

due to increasing ICI.

3.5.3 Dependence of the Prediction MSE on the Prediction Horizon

Figure 3.12 shows the dependence of the normalized prediction MSE on the prediction

horizon p for the coded system. The predictors were again operated in training mode.

The prediction MSE was estimated by averaging over 10 realizations with 104 symbols

each. For the slow channel considered in Figure 3.12(a), channel prediction is accurate

even for large horizons. The excess MSE of the RLS-based predictor is negligible; that of

the NLMS-based predictor is between 1 dB and 4 dB. For the fast channel in Figure 3.12(b),

prediction over large horizons performs much less well. Indeed, for large p the prediction

MSE of all methods is significantly higher than for the slow channel. Again, the RLS-based

predictor performs practically as well as the MMSE predictor. However, the performance
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Figure 3.12: Dependence of the prediction MSE on the prediction horizon p for (a) the slow
channel and (b) the fast channel.

of the NLMS-based predictor is substantially worse, with the MSE exceeding —10 dB for

p> 10.

3.5.4 Tracking of Nonstationary Channel Statistics

We next study the ability of the adaptive channel predictors to track nonstationary channel
statistics. The nonstationary channel was derived from two different WSSUS channels.
Channel 1 had a flat scattering function (i.e., rectangular delay and Doppler profiles)
with maximum delay L — 14 and maximum Doppler £max-fr' = 0.004, and the SNR was
25 dB. Channel 2 had the Jakes-exponential scattering function (3.59) with L = 19 and
£max^ = 0.01, and the SNR was 35 dB. Channel 1 was in force during the first 1000 OFDM
symbols (phase A), and channel 2 was in force during the last 1000 OFDM symbols (phase
C). During the intermediate transition phase (phase B), the channel impulse response and
SNR at each time instant were obtained by linear interpolation of the impulse responses
and SNR values of channel 1 and channel 2.

Figure 3.13 shows the normalized prediction MSE vs. the OFDM symbol index n for the
adaptive channel predictors operated in decision-directed mode (initial convergence is not
shown). The coded OFDM system was used. The prediction MSE was estimated from 100
realizations. It is seen that both adaptive algorithms succeed in tracking the nonstationary
statistics. During phases A and C, the RLS-based predictor performs practically as well as
the respective MMSE predictor. The NLMS-based predictor has an excess MSE of about
3 dB. During phase B, the adaptive predictors track the variation of the channel statistics
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Figure 3.13: Tracking of a channel with nonstationary statistics. The curves labeled MMSEi
and MMSE2 show the (estimated) MSE of the MMSE predictor designed for channel 1 and
2, respectively. The curves labeled theoreticali and theoretical show the theoretical MMSE
for channel 1 and channel 2, respectively.

without problems. As expected, the MMSE channel predictors perform rather poorly if

they are not matched to the current channel conditions. This is especially seen during

phase C where MMSEi is about 13 dB above MMSE2, which in turn is about 2 dB above

the theoretical MMSE. This can be attributed to strong intercarrier interference that is

caused by the fast channel and violates the system relation (2.36).

3.5.5 Performance of Predictive Equalization

We simulated the uncoded and coded OFDM systems applying predictive equalization

that we proposed in Subsection 3.4.1 (see Figure 3.5). The results were averaged over

25 realizations with 104 OFDM symbols each. All channel predictors were operated in

decision-directed mode except during the initial convergence for which training mode op-

eration was used. For comparison, we also simulated an OFDM system using pilot symbol

assisted (PSA) channel estimation [59]. For PSA channel estimation, approximately 10%

of the transmitted symbols were used as pilots. The PSA channel estimator was designed

according to the robust technique described in [59], using knowledge of the maximum delay

L, maximum Doppler shift £max> a n d SNR, but not of the exact shape of the scattering

function. In the MSE plots, we also show the theoretical performance of the MMSE channel

predictor calculated according to (3.21). Furthermore, for the bit error rate (BER) results,

the performance of an ideal receiver with perfect CSI is also plotted.
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Figure 3.14: MSE and BER performance of predictive equalization and PSA equalization
within the uncoded system: (a) MSE for the slow channel; (b) MSE for the fast channel;
(c) BER for the slow channel; (d) BER for the fast channel.

Uncoded System

The uncoded system is considered in Figure 3.14. In Figure 3.14(a),(b), we show the

normalized MSE obtained with the various receivers vs. the SNR for the slow channel

and the fast channel, respectively. It is seen that the MSE for the predictive receivers

is unsatisfactory up to a threshold as large as 23 . . . 25 dB. This behavior is due to error

propagation that results in poor channel tracking performance. The PSA system does not

suffer from error propagation and thus exhibits no SNR threshold. However, it does not

achieve the theoretical prediction MMSE since only 10 % of the subcarriers are used to
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Figure 3.15: MSE and BER performance of predictive equalization and PSA equalization
within the coded system: (a) MSE for the slow channel; (b) MSE for the fast channel; (c)
BER for the slow channel; (d) BER for the fast channel.

transmit pilots.

In Figure 3.14(c),(d), the corresponding BERs are shown. For the predictive receivers,

below the SNR threshold, the poor MSE results in high BER. Stable channel tracking is

only possible above the SNR threshold of about 23 . . . 25 dB.

Coded System

We next consider the coded system. This system has approximately the same net data rate

as the uncoded system since a 16-QAM symbol alphabet and coding rate 1/2 are used. In

Figure 3.15(a),(b), the normalized MSE is shown vs. the SNR for the slow channel and
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the fast channel, respectively. Due to the decision-directed operation, good performance of
the predictors again requires the SNR to be above a certain threshold. However, this SNR
threshold is seen to be much lower compared to the uncoded system (cf. Figure 3.14(a),(b)).
It is approximately equal for the RLS-based predictor and the MMSE predictor, and about
2-4 dB higher for the NLMS-based predictor. For SNRs higher than this threshold, the
predictive receivers are close to the theoretical performance and clearly outperform the
PSA receiver.

In Figure 3.15(c),(d), we show the BERs after channel decoding obtained with the
various receivers vs. the SNR for the slow and fast channel, respectively. For SNR values
above the threshold, the BER of the receivers with predictive channel equalization is nearly
equal to the BER of the ideal receiver. The receivers using the MMSE-based and RLS-
based channel predictors have practically equal performance. The receiver using the NLMS-
based channel predictor has slightly poorer performance. Moreover, our decision-directed
predictive receivers outperform the PSA receiver for SNRs above the threshold. This is
because our channel predictors use symbol decisions from all K subcarriers (note that this
causes their computational complexity to be larger than that of the PSA estimator).

The above results show that for the coded system, the SNR threshold is significantly
lower than for the uncoded system. It may be expected that a more elaborate channel code
will result in an ever lower threshold.

3.5.6 SNR Threshold

The SNR threshold also depends on the packet length used in the OFDM system. To
appreciate this dependence, consider the realizations of the prediction errors in Figure 3.16
that were obtained with the uncoded OFDM system and the various predictive equalizers
for the slow channel at an SNR of 18dB. According to Figure 3.14(a), this SNR value is
below the threshold for all channel predictors. For comparison, we also show the MSE of
PSA channel estimation and the theoretical prediction MMSE. It is seen that the predictive
receivers are able to track the time-varying channel for some time until catastrophic error
propagation sets in and the predictors fail to track the channel. In Figure 3.16, this
happens for the MMSE predictor and the RLS-based predictor after about 1800 OFDM
symbols and for the NLMS-based predictor after about 3500 OFDM symbols. Note that
the reverse effect may also occur: the predictors randomly converge without transmission
of a training packet. In Figure 3.16, this happens for the NLMS predictor after about 104

OFDM symbols.

If we now calculate (estimate) MSEs by averaging the realizations of the prediction
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Figure 3.16: Realization of the prediction error for the uncoded system at an SNR of 18 dB.
The receivers applying predictive equalization are able to track the channel for about 1800
OFDM symbols (RLS and MMSE) or 3500 OFDM symbols (NLMS) before loosing track.

errors in Figure 3.16 over time interfvals starting at the first OFDM symbol, we obtain

different values depending on how many samples of the realizations are included in the

calculation. For example, the MSE obtained by averaging over the first 103 OFDM symbols

will be lower than the MSE obtained by averaging over the first 104 OFDM symbols.

To explore this dependence of the SNR threshold on the packet length, we show in

Figure 3.17 the BERs of the various receivers averaged over 25 realizations vs. the SNR.
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Figure 3.17: BER performance of predictive equalization and PSA equalization: (a) BER
for the slow channel; (b) BER for the fast channel.
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The performance of an ideal receiver with perfect CSI is also shown. A packet length of 103

OFDM symbols was used. Figure 3.17 should be compared with Figure 3.14(c),(d) which
shows analogous results for a packet length of 104 OFDM symbols. For the shorter packet
length, the SNR threshold is significantly reduced. In fact, for the slow channel in Figure
3.17(a), the threshold nearly disappears. Here, the predictive receivers perform close to
optimum within the entire SNR range. For the fast channel in Figure 3.17(b), the SNR
threshold is reduced to about 18 dB for the MMSE-based and RLS-based predictors and
to about 22 dB for the NLMS-based predictor.
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Figure 3.18: Systematic error (MSE) ennused introduced by the DFT implementation when
only Kused of the K subcarriers are used: (a) for K = 100, (b) for K = 1000.

3.A Systematic Error Caused by Unused Subcarriers

We analyze the systematic error obtained with the DFT implementation from Subsection

3.2.3 (see Figure 3.4) when only the subcarriers k G /C = {^min, -Kmin + 1> • • • > -K'max} are

used for data transmission and the symbols of the remaining subcarriers are set to zero.

Thus, only Knsed — + 1 subcarriers transmit data symbols. For simplicity,

we assume zero noise (Zn^ = 0) and a time-invariant channel (Hnik = H^ and hnj = hi).

Furthermore, we assume that (2.36) is satisfied exactly, so that Yn^ = HkXn^-

According to Figure 3.4, the first step of the DFT implementation is a division of

the received sequences by the data symbols, which yields HUjk = Yn^/Xn^ = Hk =

Y^fLo^ie~J2nkl^K f° r k E JC. The last equation can be written as Ji = Uh, where

W = [HKmin • • • HKmlix] , h = [h0 ••• hL] , a n d t h e c o l u m n s of t h e Knsed x (L + 1) m a -

trix U are [e-i
2*K«*°l/K • • • e-J^Km,xi/K^^ / = 0 , . . . ,L. Note that typically Kused » L.

Applying to 7i = Uh an IDFT as in (3.22) followed by a DFT as in (3.24) yields

n = ^-
K

K

Because U U H ^ Kl for Kused < K, we have H ^ 7i. Using results from [168], the

systematic MSE eunuseci = -j^— E{| |?i — 7^11^} (|| • | |F denotes the Froebenius norm) can

be shown to be

Unused =

where D H = E{hh H } and 7J is the /th column of the matrix F = U ( l — ^

DH is diagonal due the WSSUS assumption (2.45), i.e., D H = diag{DH[0], . . . ,

(3.60)

Because

, we
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obtain for (3.60)

1 L

Unused = -77 ^ Du[l] ||7,||2 . (3.61)
^ d

Figure 3.18 shows eunuseci (calculated from (3.61)) vs. the percentage of used subcarriers

Kused/K for OFDM systems with K = 100 and K = 1000 subcarriers and three different

values of the maximum channel delay L. We assumed D H = ^ryl, i-e., all L +1 paths are

equally strong and the path loss is normalized to tr{Du} = 1. It is seen that, as expected,

the error decreases as Kuse^ increases. For Kuse(^/K = 0.9, eunuseci is about —16 dB for

K = 100 subcarriers and between —20 dB and —25 dB for K — 1000 subcarriers.
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System Capacity of Wireless

OFDM Systems

It has been reported in [52-54] that for spread-spectrum-like signaling over time and fre-
quency selective fading channels without channel knowledge at the transmitter and receiver,
the information rate approaches zero for very large bandwidths. In this chapter, we will
study the information rate and system capacity of OFDM for this case. More specifically,
we will carry out an information-theoretic analysis with the aim of calculating the system
capacity of OFDM transmission over time and frequency selective Rayleigh fading channels
(underspread WSSUS channels, cf. Subsection 2.2.1) in the wideband regime.

The outline of this chapter is as follows. We start with an overview of known results in
Section 4.2. We concentrate on the asymptotic result of [96-99] and the bounds derived in
[52-54].

Next, we consider two specific codebooks and calculate the resulting information rate.
In Section 4.3, we use an orthogonal codebook similar to that in [99, Section 8.6]. By a
similar derivation, we are able to calculate the asymptotic information rate of OFDM. This
rate is equal to the asymptotic capacity in [99, Section 8.6] and the asymptotic AWGN

85
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capacity, and hence it is the asymptotic system capacity of OFDM; moreover, OFDM
achieves capacity for infinite bandwidth.

A more practical codebook is considered in Section 4.4 where we use i.i.d. data symbols
drawn from a constant-modulus symbol alphabet. This codebook (among others) is used in
IEEE 802.11a, Hiperlan/2, and DVB-T. For constant-modulus signaling and given channel
statistics, we can calculate an exact expression for the information rate of wideband OFDM.
Our result is based on the well-known relation between channel uncertainty and prediction
MMSE [53,107], and the new results on MMSE channel prediction in OFDM systems
presented in Chapter 3. We show that for fixed transmit power, the information rate tends
to zero in the large-bandwidth limit irrespectively of the channel statistics. Moreover,
for finite band widths, we quantify the impact of the spread and shape of the scattering
function on channel predictability and the associated reduction in information rate. In
particular, we demonstrate that channel uncertainty (and hence reduction of information
rate) is maximized if the scattering function is flat over its support region. We provide
guidelines on how to choose system parameters for given channel statistics so as to ensure
that the system operates below the critical bandwidth where the system capacity is close
to the AWGN capacity. Finally, we show that information rate is not reduced in purely
specular scattering environments since in this special case the channel can be predicted
perfectly.

In Section 4.5, we consider the system capacity of OFDM. We derive an upper and
a lower bound since we cannot provide an exact result. The lower bound follows from
the calculation of the information rate for constant-modulus signaling in Section 4.4 for
bandwidths below the critical bandwidth and is close to the AWGN capacity. Above the
critical bandwidth, however, it remains at a fixed rate. Therefore, the system capacity of
OFDM is close to the AWGN capacity up to a critical bandwidth. Moreover, it does not
approach zero in the large-bandwidth limit.

In Section 4.6, we calculate two lower bounds on the information rate of OFDM for

Gaussian signaling. However, no closed-form expressions for these lower bounds are found.

In Section 4.7, we demonstrate by numerical examples that the critical bandwidth is
extremely high for typical system and channel parameters. Furthermore, up to the critical
bandwidth our upper and lower bounds on the OFDM system capacity practically coincide
and both are close to the AWGN channel capacity. We also demonstrate that current
OFDM communication systems operate far below the critical bandwidth and thus can
achieve system capacities close to the AWGN capacity.

We note that parts of this chapter have been submitted for publication [110, 111].
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4.1 Definitions and Notation

In this chapter, it will be important to distinguish between random sequences/vectors and
their realizations. Therefore, we will denote random quantities by capital letters and their
realizations by lower-case letters. Thus, a random vector will be denoted by a boldface
capital letter and its realization by a boldface lower-case letter. Some care is necessary
with correlation matrices that will also be denoted by boldface capital letters even though
they are nonrandom.

We define the ergodic information rate of the OFDM system by

Here, /(•,•) is the mutual information of two vectors, T is the duration of one OFDM
symbol, and M is the number of OFDM symbols considered (hence, MT is the total
transmission time); furthermore, the channel input and output vectors of size MK x 1 are
respectively defined by

X = [Xo Xj ... XM_jJ , with Xn = [Xnfi Xn\ ... Xn>K-i] ,

Y â [Y0
T Y? ... Y £ _ J T , with Yn â \ynfi YnA . . . Ynjc-i]T ,

where Xn^ and Ynik are the channel input and output, respectively.
Maximization of the information rate (4.1) over all possible codebooks or distributions

of X yields the OFDM system capacity

S = maxi?, (4.2)

where we have to impose a power constraint on X. This power constraint can be formulated
as a peak power constraint or as an average power constraint.

We furthermore recall that, neglecting intersymbol and intercarrier interference, the
system input-output relation is given by YUjk = Hn^Xn^ + Zn<k (cf. (2.36)). This input-
output relation can be expressed by

Y = diag {H} X + Z = diag {X} H + Z , (4.3)

where the MK x 1 channel vector is defined as

H = [Hl Hj . . Hl^f, with Hn = [Hnfi HnA ... Hn<K.1]
T ,

and the diag {•} operation generates a diagonal matrix whose diagonal elements are given
by the argument vector. We will assume that Z is circularly symmetric complex Gaussian
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white noise with covariance matrix Hz — cr^I, i.e., Z ~ CM(O,cr^I). Furthermore, note
that a\ = No is independent of the bandwidth B. Hence, our analysis pertains to OFDM
with identical orthogonal pulses at the transmitter and the receiver (cf. Section 2.1).

For subsequent use, we note that the differential entropy of a circularly complex Gaus-
sian vector A of dimension M x 1 with covariance matrix R^ = EJAA^} is given by
[169]

/i(A) = log((7re)Mdet[RA]).

All calculations in this chapter are carried out in natural units (nats). One nat is equal to
l/log(2) ~ 1.4427 bit. We will use the unit bit only for the numerical results. Through-
out our development, we consider time and frequency selective WSSUS Rayleigh fading
channels and assume that neither the transmitter nor the receiver has CSI. However, it is
assumed that the receiver has perfect knowledge of the channel statistics.

4.2 Overview of Known Results

We will here summarize the most important known information-theoretic results that are
closely related to our analysis of OFDM system capacity. For fading channels, the results
very much depend on the considered channel model and the state of information about
the channel that is available at the transmitter and the receiver. We will only consider
time and frequency selective WSSUS Rayleigh fading channels, among which flat Rayleigh
fading channels are a special case. For completeness, we briefly consider the case that CSI
is available at the receiver. However, the more interesting case is where the receiver has no
CSI. An overview of results for the case that channel knowledge is available at the receiver
and/or transmitter is given in [95].

4.2.1 CSI Available at Receiver

If knowledge of the channel realization H = h is available at the receiver, we can apply

the results of [170,171] since (4.3) is simply the input-output relation of a multi-input

multi-output (MIMO) channel. Hence, the instantaneous information rate of a block of M

OFDM symbols is given by

1 . / , . . a.
#CSI,inst = T 7 ^ l 0 g ( d e t

2

^-diag{h}diag{h"}

M K-\
I IT" \h i \- \

(4.4)
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where we assumed i.i.d. data symbols Xnk with distribution CJ\f (0, a^). Averaging over

the realizations of the channel coefficients hn>i. in (4.4) yields the (ergodic) system capacity

where Jensen's inequality [169] has been used; the deviation of the bound from the true

value is known as Jensen's penalty. Moreover, we recall that the channel's path loss is

fc|
2}(cf. (2.52).

4.2.2 CSI Unavailable at Receiver

The situation where CSI is unavailable at the receiver is much more complicated than the

previous one and no results for the channel capacity of OFDM are known. However, many

information-theoretic results have been obtained for fading channels. We briefly recall

some of these results here.

• The channel capacity of the time and frequency selective WSSUS channel at infinite

bandwidth (see [96-98] and equation (8.6.37) in [99, Section 8.6]) is given by (in units

of nats per second)

c = ^N7 ' (4-6)

where P is the transmit power, <7jjjc is the path loss, and No is the power spectral

density of the noise. Hence, for infinite bandwidth the capacity is identical to the

asymptotic capacity of the AWGN channel operating at an SNR of Pa^ /No. It is

important to note that this result (4.6) is obtained without assuming a peak power

constraint at the transmitter. More details will be presented in Section 4.3.

• The performance of an M-ary orthogonal communication system using stationary

signals was investigated in [100]. This analysis pertains also to FSK signaling since

the considered system model is

Y(t) = H(t) ejuJmt + Z(t), m = 1,2,... , M, (4.7)

using M frequencies to signal over a flat Rayleigh fading channel H(t). Note that

(4.7) implicitly imposes a peak and average power constraint at the transmitter since

the "data symbols" have variance |eJ'u'mt|2 = 1. Hence, the result of [100] specifies the

system capacity of FSK signaling over flat fading channels,

•SFSK = —r- -
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where SMC(V) is the Doppler spectrum of the channel. We see that the first component

of (4.8) is identical to the infinite-bandwidth channel capacity (4.6) with transmit

power P = 1. However, the second component in (4.8) is always negative since

Smd^) > 0 and therefore it reduces SFSK- This component can be interpreted as a

penalty to system capacity due to the channel uncertainty at the receiver. For low

SNR, we can use log(l + x) ~ x which yields SFSK = 0. We recall that low SNR is

obtained in the wideband regime.

An important difference between the assumptions underlying (4.6) and (4.8) is that

for the first result an average power constraint is assumed whereas for the second

result additionally a peak power constraint is imposed.

• The capacity of the discrete-time flat uncorrelated Rayleigh fading channel has re-

cently been studied in [172]. The considered system model is given by

Yn = HnXn + Zn ,

where Xn is the channel input, Yn is the output, and Hn and Zn are mutually

independent complex Gaussian random variables. This corresponds to a flat Doppler

profile, i.e., the channel coherence time is zero. The input Xn is furthermore subject

to an average power constraint E{ |X n |} < P. The main result of [172] is that the

capacity-achieving distribution of Xi is discrete with a finite number of constellation

points that increases monotonically with the SNR. For low SNR, it is reported that

on-off keying (OOK) is optimal.

• Recent results on time and frequency selective fading channels that are closely related

to our analysis are reported in [52-54]. These papers consider spread-spectrum-like

signaling over time and frequency selective WSSUS channels. The common result

is that under a peak power constraint the system capacity approaches zero in the

large-bandwidth limit. Moreover, it is reported that the signaling scheme must be

peaky in order to obtain nonzero rates in the asymptotic limit.

— In [52], it is shown that for spread-spectrum-like signaling, the information rate

is lower and upper bounded as

C'AWGN < R < CAWGN—T
crit

L

where CAWGN = P/No is the capacity of the infinite-bandwidth AWGN channel,

L is the number of resolved delay taps (which depends on the sampling rate),
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and Lcrit = PTC/NQ is a critical number of delay taps (here, Tc is the coherence
time of the channel; note that in [52] the definition of Tc is different from our
definition of THC in Subsection 2.2.1). Furthermore, the path loss of the channel
is normalized to one and a flat scattering function is assumed. Note that LCTA

increases with the SNR and the channel coherence time. If L <C LCTIt, then
the information rate achievable with spread-spectrum signals is close to the
capacity of the infinite-bandwidth AWGN channel, i.e., R ~ CAWGN- However,
if L S> I-crit, the upper bound approaches zero and thus R ~ 0. Furthermore,
note that the structure of the lower bound resembles (4.8).

— In [53], an upper bound on the mutual information for spread-spectrum-like
transmission over time and frequency selective channels is developed. Under
a fourth-moment constraint on the channel input signal, it is shown that in
the large-bandwidth limit the mutual information approaches zero. The upper
bound increases with increasing coherence time of the channel.

— Finally, in [54] an upper bound on the mutual information is derived using the
concept of capacity per unit cost [173]. This bound depends on a fourth-order
cost function called forthegy that is defined as

â f [\X(T,v)\2*Bc(T,v)dTdv,
JT J V

where
*H.(T,I/) â / f CHe(r

/y)CHB(T + r'I»/ + i/
Jr' Ju1

is the convolution of the scattering function with itself and

, v) = / *

is the ambiguity function of the channel input signal x(t). Evaluating this bound
for spread-spectrum signaling again shows that the information rate tends to zero
in the large-bandwidth limit.

4.3 OFDM System Capacity for Infinite Bandwidth

We next calculate the system capacity of OFDM for infinite bandwidth. Our derivation

follows the classical analysis of the capacity of time and frequency selective channels for
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infinite bandwidth (see [99, Section 8.6] and [96-98]). We construct an orthogonal codebook
that is peaky in time and in frequency, i.e., it concentrates the transmit energy in time and
frequency instead of spreading it out. We then apply a maximum likelihood (ML) detector
and calculate its error probability. The result is that we can obtain arbitrarily low error
probability if the information rate is below a certain value—the infinite-bandwidth system
capacity of OFDM transmitting over a time and frequency selective fading channel.

Surprisingly, this system capacity does not depend on OFDM system parameters such
as the symbol duration T and the subcarrier separation F but only on the SNR at the
receiver. Moreover, the OFDM system capacity is equal to the capacity of the time and
frequency selective channel, which itself is equal to the infinite-bandwidth AWGN capacity.
Hence, for infinite bandwidth OFDM is able to approach capacity.

Codebook

We use the orthogonal signaling scheme with K codewords that is sketched in Figure 4.1.
The fcth codeword is defined by setting

k' = k, n = 0, M, 2M,...,

else,

i.e., every M OFDM symbols we only use the A;th subcarrier to transmit one symbol a > 0.
All other subcarriers are not used. We note that this signaling scheme is similar to FSK
signaling. The transmit bandwidth is given by B = KF where the subcarrier frequency
separation F is assumed fixed. Thus, to let B approach infinity we will let K grow.
Furthermore, the time duration between two successive codewords is chosen as

r = | , o < e < i,

where T is the time duration of one OFDM symbol and G is the duty cycle (see Figure
4.1). The information rate of this signaling scheme in units of nats/sec is

. ( 4 .9 )

To obtain constant transmit power P per codeword of duration T", we define

PT
a2 = —. (4.10)

The parameters we may vary are 0 and K. In particular, if we let 0 approach zero, fewer

codewords are transmitted but a2 increases. To obtain nonzero rates when 0 approaches
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frequency

A codeword codeword

T = Z =
time

Figure 4.1: Illustration of the orthogonal-signaling codebook used to calculate the infinite-
bandwidth capacity of OFDM systems. The effective length of a codeword is T and the total
length is MT. During the effective codeword length, a single OFDM symbol with only one
active subcarrier is transmitted.

zero, K must simultaneously grow exponentially fast. Since K is directly linked with the

bandwidth via the relation B = KF, this amounts to increasing the transmit bandwidth

exponentially fast. Hence, this codebook is rather inefficient with respect to spectral effi-

ciency, which is a typical drawback of orthogonal signaling schemes [102].

ML Detector

Without loss of generality, we assume that the first codeword (i.e., one OFDM symbol at

n = 0 and subcarrier k) is transmitted. With the OFDM input-output relation in (2.36),

we have

else.
(4.11)

The distribution of Yo.fc' is given by

p(yo,k') =
Po(yo,k') = CAT (0, No) ,

y u

else,
(4.12)

where a^ = E{|f/o,fc|2} is the path loss (see (2.52)). Furthermore, E{YbÄ*,,} = 0 for

/ T̂  /', i.e., the Vb.fc' are statistically independent.

The receiver is supposed to detect the index k of the transmitted codeword, i.e., the

subcarrier used at the transmitter. To this end, the ML detector maximizes the conditional

joint probability density function of the K received values YOk>, k' = 0 , 1 , . . . , K — 1 (cf.
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[99, Section 8.6]):
K-\ K-\

i i;\ i \ T T t \ Pi (2/0,0
P(Î/O,O,2/0,1, • • • ,yo,K-i\k) = P\[yo,k) I I po{yo,k') = —7—r I I

x Po(2/o,fc) £ * ,fc'=0
fc'/fc

Po{yo,k)

where in the last step we used the fact that Ylk'=oPo(yo,k') does not depend on k. Hence,

the ML detector decides in favor of

f Pi(yo.fc)
k = arg max —;——•.

ke[o,K-i) po(yo,k)

Bound on Error Probability

Following [99, Section 8.6], we will now bound the average error probability. Assume that

the transmitter used the kth subcarrier. Let us define the error event E^ as the event that

the ML detector erroneously decides in favor of subcarrier k' ^ k . This is the case if and

only if yo.fc is such that
Pi(2/o,fc') > Pi(yo,k)
po{yo,k>) ~ Po(yo,k)

The probability of Ey (given that subcarrier k was used by the transmitter and T/o,fc was

received) is

Po(yo,k

Pl(V0,fc)
7 —T

P0(V0,fc)

Pi(yo,k')po{yo,k)
Po(yo,k')pi{yo,k) _

yo,k'- ~ PO(VO,fc)

Po(yo,k>)
(yo,k)

dyo,k', P > 0.

Therefore, the error probability, given the kth subcarrier was used at the transmitter, can

be upper bounded by

Pr[ error |fc,y0)fc] = V^'

< Pi(yo,k')po(yo,k)

U
|'pi(y)po(yo,fc)'

[po(y)pi(yo,k) _
dy
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where we used the union bound. To obtain the average error probability for the kth.

codeword, we now have to average over Vo.fc,

ê,fc = E{Pr[error|/c,y0,fc]} = / Pr[error \k,y0>k] Pi(yo,k) dyo,k

' pi(y)po(yo,k)

J "Un

i+p \

dy Pi(yo,k

yo,k

= (K- iy ( / pl+p{y*,
\Jyo,k

ro,fc) P Ô + P (yo,fc
_ £ _

(y)p^(y) dy

which is independent of k. Hence, the bound is valid for any codeword and we can omit

the subscript k. Inserting (4.12) for p\{y) and po(y), we obtain

Pe <
i

iVo)

- iy

1
1+p 1

-e
M!"

-
dy

0 ^

p)N0

l+p

= (K-iye"oV No J -—°V1 +" ô s ( 4 1 3 )

Inserting K = eTR (cf. (4.9)) into (4.13) yields the following bound on the average error

probability:

P < P
T'(p*

where we defined
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System Capacity

We see from (4.14) that the error probability can be made arbitrarily small by increasing

r , i.e.,

iff

lim Pe = 0 ,
T'-^oo

pR - E0(p) < 0 . (4.15)

Increasing T" can be accomplished by decreasing the duty cycle O. Furthermore, we have

Eo(O) = 0,

dE0 _ 9
~dp ~ T

N0 log 1 + No

No 1+P + P No

> 0, 0 < p< 1,

and

d2E0 _ _ 0
dp2 ~ ~T

-"ft
*0 < 0, 0 < p< 1.

Hence, to fulfill (4.15) the rate has to satisfy (cf. [99, Section 8.6])

R <
dE0 0

P=O T L Âo

Upon insertion of (4.10), we obtain the upper bound

- log 1 + a aH

e e JV0

(4.16)

We finally maximize the bound (4.16) with respect to the duty cycle 0, which amounts
to taking the limit for 0 —> 0. For nonzero rates, 0 —> 0 implies that the bandwidth
approaches infinity. Thus, the information rate of OFDM using this orthogonal signaling
scheme is bounded by

R <
Pal

(4.17)
No No '

where we used (2.51). We note that the right-hand side of (4.17) is equal to the infinite-
bandwidth capacity of time and frequency selective WSSUS channels in (4.6) which is the
maximally achievable information rate. Therefore, the infinite-bandwidth system capacity
of OFDM is given by

S
No

(4.18)
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The result in (4.17) shows that OFDM communications for infinite bandwidth can obtain
arbitrarily low error probability if the information rate is bounded as R < S. Hence, we
have shown that OFDM can achieve capacity for infinite bandwidth and we have described
a capacity-achieving codebook.

4.4 Information Rate for Constant-Modul us Signaling

The infinite-bandwidth analysis in Section 4.3 has shown that when using a specific orthog-
onal codebook, the system capacity for OFDM is equal to the infinite-bandwidth capacity
of time and frequency selective channels. While this result may be of theoretical interest, it
suffers from the fact that the specific codebook considered and the infinite-bandwidth as-
sumption are not relevant to practical systems. Therefore, we will now consider an OFDM
system with a constant-modulus (i.e., PSK) symbol alphabet and finite transmission band-
width.

In practice, the transmission bandwidth may be on the order of several hundreds of
MHz but it will never be infinite. While until recently the asymptotic infinite-bandwidth
performance has been regarded as a valid characterization of the wideband regime, in
[101,102] it is shown that this is not the case. The performance limits for infinite bandwidth
thus do not allow us to draw conclusions about the wideband capabilities of communication
systems. In particular, orthogonal signaling schemes tend to perform very well in the
infinite-bandwidth case and often approach capacity. However, in the wideband regime
their spectral efficiency is poor.

To obtain insight into the performance of practical OFDM systems, we would like to
know how parameters such as bandwidth, SNR, channel coherence time and coherence
bandwidth, etc. influence the information rate for practical codebooks such as those cor-
responding" to constant-modulus signaling. This type of analysis seems to be completely
novel; to the author's knowledge no results about the information rate of OFDM for time
and frequency selective fading channels in the wideband regime exist. The problem is that
the time and frequency selective channel is rather difficult to analyze and the only results
obtained up to now are the infinite-bandwidth capacity [98,99] and certain upper and lower
bounds [52-54]. These bounds show that the capacity of signaling schemes that are not
peaky in time and/or frequency approach zero for infinite bandwidth. However, it is not
known for which bandwidth this disastrous "overspreading" effect occurs and how it is
influenced by system and/or channel parameters.

Using OFDM, we are able to answer some of these open questions. Specifically, the
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information rate of OFDM can be calculated exactly if we assume constant-modulus sig-

naling, i.e., a PSK symbol alphabet. Since we are not able to maximize this information

rate with respect to the input distribution (cf. (4.2)), we cannot calculate the system ca-

pacity of OFDM for finite bandwidth. However, our result on the information rate will

allow us to develop a lower bound on the system capacity of OFDM (see Section 4.5).

4.4.1 Derivation of the Information Rate

We assume that the data symbols Xnjk are zero-mean and i.i.d. They are drawn from a

constant-modulus signal alphabet with |^n,fc|2 = o\- For constant-modulus signaling, we

are able to calculate the information rate (4.1) exactly because we know the distribution

of the channel output vector and we can exploit that E {|Xn]fc|2} = |^n,fc|2 = o\. We start

from

/(Y;X) = h(Y) - h{Y\X), (4.19)

and separately calculate h(Y) and /i(Y|X).

Calculation of h(Y)

According to (4.3),

Y = S + Z, with S = diag{H}X and Z ~ CM(0, JV0I) . (4.20)

We next look at the distribution of S. The individual components of S are given by

Ç 17 V 117 I I V I i(arg{/f„ |fe}+arg{^„,fc})
Jn,k — n n,J t A n, t — \rln,k\ \-^-n,k\ e

Here, \Hn<k\ is Rayleigh-distributed and &xg{Hnik} is uniformly distributed. Further-

more, since Xn>k is drawn from a constant-modulus symbol alphabet, \Xntk\ = crx is

deterministic and arg{Xnifc} has a uniform discrete distribution. Therefore, |5njfc| =

|-#n,jfc||̂ n,fc| = crx\Hntk\ is also Rayleigh-distributed. The probability density function (pdf)

of arg{5nifc} = aig{Hntk} + arg{Xnijt} is given by the convolution of the pdf of arg{iïnfc}

with the probability mass function of arg{Xnfc} since Hnk and XUjk are independent.

Hence, the distribution of arg{5n)jt} is again uniform. Combining these two results, we find

that Sn<k ~ C/V(0, cr̂ Ojfl). Note that Sn,k is zero-mean since Hn,k and Xn^ are zero-mean.

The correlation function of Sn%k is

fc'Sn'fc'} = E
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since the data symbols Xnk are uncorrelated. Note that in SUik = Hn,kXn,k> the uncor-

related data symbols "destroy" the correlations existing between the channel coefficients

Hntk- Intuitively, this "randomizes" Sn:k and thus maximizes entropy. For the joint dis-

tribution of S in (4.20), we thus find that it is circularly symmetric complex Gaussian

according to CM (O,crjjjCr;j:I) since the individual components of S are i.i.d., zero-mean, and

circularly symmetric complex Gaussian.

Since S and Z are independent, the distribution of Y is also circularly symmetric

complex Gaussian according to CM (0, (cr^a^. + N0)I) . Hence, the entropy of Y is given

by

MY) =

( 2 2 \

1 + ^ £ ) + MK log(TreiVo) - (4.22)

A'o /

In view of our derivation above, we can say that, for fixed variance, h(Y) is maximized

by constant-modulus signaling with i.i.d. data symbols since this results in white complex

Gaussian channel output vectors. If X was distributed differently (e.g., Gaussian input

with variance a%), then S would not be Gaussian. In that case, (4.22) would be an upper

bound on h(Y) (cf. Subsection 4.5.1). Note that (4.22) is also an upper bound on h(Y) if

the data symbols are drawn from a constant-modulus symbol alphabet with magnitude ax

but are correlated (in that case, Y will generally be non-Gaussian).

Calculation of h(Y\X)

For the calculation of h(Y\X), we follow [53,107] and first use the chain rule of differential

entropy [169]

M

/i(Y|X) = h(Y1,Y2,..., YM|X) = 5^(Y n |X , Yi, Y2 , . . . , Yn_a). (4.23)
n=l

Let us consider the nth component of this sum, i.e., /i(Yn|X, Yi, Y2, - - -, Yn_i). The input-

output relation for the OFDM system can be written as Yn = diag {Xn} Hn + Zn. For

fixed input X = x, the output Yn = diag {xn} Hn + Zn is circularly symmetric complex

Gaussian. If we furthermore fix the previous channel outputs Yn/ = yn' for n' = 1, . . . , n—1,

then Yn is Gaussian with conditional mean given by

E{Y n |x ,y 1 ,y 2 , . . . ,y n_i} = E{diag{xn}Hn + Zn |x ,y1 ,y2 , . . . ,y„-i}

= diag{xn}E{HT l |x,yi,y2 , . . . ,yn_i}

= diag{xn}Hn ,
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where we define

Hn = E{Hn |x Jyi,y2 , . . . ,y„_i} .

Hence, Hn is the MMSE estimate [109,148,149] of the channel given the channel input
and the past channel outputs, i.e., Hn is the predicted channel vector (cf. Chapter 3).
Furthermore, the conditional covariance matrix of Yn is given by

cov{Yn|x,y!, y 2 , . . . , yn_i}

= E{(Yn - diag{xn}Hn)(Yn - diag{xn}Hn)H|x>y1,y2>... ,yn_!}

= diag {xn} E {(Hn - Hn)(Hn - Hn)"} diag{<} + E {ZnZ^}

- diag {xn} Bn diag {x^} + N0I, (4.24)

where Bn = E{(Hn — Hn)(Hn — H n ) F } is the error covariance matrix of the one-step
MMSE channel predictor. An expression for B n has been provided in Subsection 3.2.1 (see
(3.8) with p = 1). More specifically, for constant-modulus data symbols and white noise,
(3.8) yields

Bn = RH[0] - V H ^ H + 4 1 V j , (4.25)
X

which does not depend on the actual realizations x and yi ,y 2 , . . . ,yn_i. However, Bn

depends on the memory length of the predictor via the dimensions of the matrices VH and
TZ-M- For constant-modulus data symbols and white noise, we know from Subsection 3.2.2
that the MMSE predictor coincides with the reduced-complexity MMSE predictor; this
equivalence will be exploited presently.

With (4.24), we-obtain that

x,y1 ,y2 , . . . ,y„_i) = log ((ne)K det [cov{Yn|x,yi,y2,... ,yn-i}])

= log ((ne)K det [diag {xn} Bndiag {x^} + Nol}) (4.26)

= log ( (TreiVo)* det -—diag {x;} diag {xn} B n

= log ( (neN0)
K det (4.27)

V
where we used that det [I + AB] = det [I + BA] for matrices A and B of proper sizes [174]

and diag {x*} diag {xn} = a^I. The expression (4.27) shows that /i(Yn|x; y1; y 2 , . . . , yn_i)

does not depend on the actual realizations x and y i ,y 2 ) . . . ,yn-i, and by averaging we

O b t a i n ( K \ *2 ]\
/i(Yn |X,Yi,Y2>...>Yn_1) = log (7reiVo)*det I + - f B n .
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Inserting this result into (4.23) yields

M

det( (4.28)

In Subsection 3.2.3, we have shown that B n can be decomposed as1 (see (3.31) and

note that we introduce the subscript/superscript n to make the dependence of the error

covariance matrix B n and the tap prediction error e^in l on the predictor length explicit)

B n = F diag < ej™ n 0, e^{n j , . . . , e^in L, 0, . . . , i

where e^nl is given by (3.33) with 7 = al/N0. Therefore, we obtain for (4.28)

M / L / 2 W

MY|X) = ^ '" — l

n=l \ 1=0

ML / 2 >)
l + K-^± + MK log(TreiVo). (4.29)N J

Information Rate for Constant-Modulus Signaling

Inserting (4.22) and (4.29) into (4.19) results in the following expression for the mutual
information of channel input and output:

ML / 2 («)

With (4.1), we therefore obtain for the ergodic information rate of OFDM systems with

constant-modulus signaling

M—*oo

0 9 \ 1 M

ivrj-r£log

xThis is the eigendecomposition of the circulant matrix B n . The L + 1 nonzero eigenvalues are
where the factor K results from the fact that the DFT matrix F satisfies F ^ F = KÏ.
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where e^i denotes the one-step prediction MMSE for the lih delay tap using an infinite-
length predictor. This specific predictor was analyzed in Subsection 3.2.4, where it was
shown that e[~]jZ is given by (3.44) with 72 = N0/a

2
x. Inserting (3.44) into (4.30) yields

TS / 2 2 \ i ^ /*l/2

= j ; log (l ^ J YJ

In the wideband regime, we can approximate Cy&(l,<p) by (2.49). Furthermore, assuming
constant subcarrier spacing F and constant transmit power P, we have K = B/F and
0-2 = PT/K. Inserting this into (4.31) together with a^ « a^c (cf. (2.51)) yields

HCM « 5 ^ log (l + - - j i ) - g I log (l + — CH„(ff„ „)) A,,

where we also used that T = NTS = N/B and v = ip/T. Finally, noting that for large
B the summation over the channel taps can be approximated by an integration over all
delays, we finally obtain for the ergodic information rate of OFDM using constant-modulus
signaling

~ B JJ^^ + ^^ir^drdu. (4.32)

The first term on the right-hand side of (4.32) is equal to the AWGN channel capacity for
effective bandwidth B/(TF). The second term is related to the channel prediction error,
and it is always negative since CHC(T, V) > 0. It can hence be interpreted as a loss in
information rate due to the limited predictability of the channel. As long as the channel
can be well predicted, the second term is small compared to the first one and thus the
information rate loss is small. This is corroborated by our numerical results in Section 4.7.

Based on the derivation leading to (4.32), it can be conjectured that the information
rate in (4.32) can be achieved by an OFDM communication system that uses constant-
modulus signaling with independent data symbols. No pilot symbols are inserted in the
transmit data stream, and at the receiver, CSI is obtained using a one-step, infinite-length,
decision-directed MMSE channel predictor (cf. Subsection 3.2.4). This receiver corresponds
to the receiver described in Subsection 3.4.1 and depicted in Figure 3.5(b), with prediction
horizon p = 1. Let us recall some issues related to the practical application of such a
system. For startup of the channel predictor, it is necessary to transmit some training data
at the beginning of the transmission of a data packet. Furthermore, it will not be possible
to implement an infinite-length predictor filter. However, for finite channel coherence times,
the infinite-length MMSE channel predictor will reduce to the finite-length MMSE channel
predictor which, for constant-modulus symbols, can be efficiently implemented as described
in Subsection 3.2.3 and shown in Figure 3.4.
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4.4.2 Alternative Derivation of the Information Rate

We now present an alternative derivation of (4.31). Applying the chain rule of mutual

information [169] to /(Y;X,H), we obtain the decomposition

/(Y; X) = 7(Y; X, H) - J(Y; H|X). (4.33)

Calculation of / (Y;X,H)

The first component of (4.33) is

7(Y;X,H) = /i(Y)-/i(Y|X,H).

We use (4.22) for h{Y); furthermore, due to Y = diag {H} X + Z, we have

/i(Y|X,H) = Ex{EH{h(Y\x,h)}} = Ex{EH{/i(diag{h}x + Z|x,h)}}

= Ex{EH{h(Z\x,h)} = Ex{EH{h(Z)} = MKlog(neN0). (4.34)

We thus obtain

7(Y; X, H) = MK log ( l + ?j&j . (4.35)

Calculation of 7(Y;H|X)

For fixed channel input X = x, the channel output Y = diag {x} H + Z is circularly

symmetric complex Gaussian with covariance matrix

cov{Y|x} = E{(diag{x}H + Z)(diag{x}H + Z)

= diag {x} nm diag {x*} + Nol. (4.36)

Here, 72-e is an MK x MK block-Toeplitz correlation matrix with first row

[Rn[0] • • • RH[A^— 1]], with the K x K correlation matrix R H [ ^ ] defined in (3.6). Using

(4.34) and (4.36), we therefore obtain

7(Y; H|X) = /i(Y|X) - h{Y\H, X) = E* {^(Y|x)} - MK \og{neN0)

= Ex {log {(ne)MK det [diag {x} Um diag {x*} + NQ1])} - MK \og{7reN0)

= Ex | log fdet I + — diag {x} nu diag {x*} J 1

= E x <̂  log det I + — diag {x*} diag
iv0
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= Ex < log det = log ( det
0";

where we exploited that the input is constant-modulus, i.e., diag{x*} diag{x} = a%l-

Denoting the eigenvalues of 72-e by Xi{7t^}, we further have

(4.37)
MK-l , 2

/(Y;H|X)= J2 l o g ( 1 + ^

Information Rate for Constant-Modulus Signaling

With (4.35) and (4.37), we obtain for (4.33)

o o \ MK-l

Ç
Inserting this into (4.1), we furthermore obtain for the ergodic information rate

T

Since 7?-e in (4.38) is block-Toeplitz, we can apply Theorem 3 in [175], which is an extension

of Szegö's theorem on the asymptotic eigenvalue distribution of Toeplitz matrices. This

yields

K / 0-2^-2 \ 1 {I"1 /-1/2 / 2 \

Rcu = Y log ( l + ̂  j - - X : j i 2 log ( l + ̂  Afc{BH(^)} JX: j i 2

where the K x K Toeplitz matrix BH(<£>) is given by

(4.39)

F diag {Dm[n, 0], . . . , Dm[n, L], 0, . . . , 0} FH

, 0, . . . , (4.40)

Here, we used the eigenvalue decomposition of R H N in (3.26) and the Fourier relationship

between the time-delay correlation function D^[n, 1} and the scattering function C^(l,(p)

in (2.48). Because the DFT matrix F is orthogonal up to a factor, i.e., F F W = F ^ F = KI,

(4.40) is recognized as the eigenvalue decomposition of Bm(</?), the eigenvalues being

KCn{l,<p), 1 = 0,1,...,L,

0, else.
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Hence, (4.39) becomes

which is identical to our previous result (4.31).
Hence, we have found an alternative derivation of the information rate of OFDM with

constant-modulus signaling that is based on Szegö's Theorem. In contrast to our previous
derivation in Subsection 4.4.1, this derivation does not directly reveal that the second term
in (4.31) is related with the MMSE of the one-step infinite-length channel predictor.

4.4.3 Dependence of Information Rate on Bandwidth

With our expression for RCM in (4.32), we can now assess how the information rate of
OFDM with constant-modulus signaling depends on the bandwidth. We are specifically
interested in the asymptotic limit and the wideband regime.

Asymptotic Limit

Using <7jjc = JT / CHC(T, V) dr du, it follows from (4.32) that in the limit of infinite band-

width the OFDM information rate approaches zero:

^H - B / I l o g i1+-m^T^)dTiv)

Hence, as for CDMA [52-54], the wideband capacity of OFDM systems with constant-
modulus signaling approaches zero. The reason for this asymptotic behavior is the fact
that with constant-modulus signaling, the transmit power is uniformly spread over all
time-frequency slots, resulting in signals that are not peaky in time or frequency. We
emphasize, however, that in contrast to the results in [52-54], (4.32) allows to assess the
behavior of the information rate in the wideband regime (see also the simulations in Section
4.7).

Wideband Regime

The information rate RCM in (4.32) increases with B up to a maximum

# - max
D



106 Chapter 4- System Capacity of Wireless OFDM Systems

that is obtained for the "critical bandwidth"

-Berit — arg max RCM • (4-41)

For B < .Bent, numerical results show that RCM is close to the AWGN capacity (see

Subsection 4.7.1). For B > Bcrit, RQM decreases to zero; we call this effect "overspreading."

Overspreading means that the bandwidth is too large and the transmit power is too low

to sufficiently "illuminate the channel." The expression for RCM in (4.32) only allows a

numerical calculation of Rmax and -BCrit-

4.4.4 Dependence of Information Rate on Scattering Function

Given a certain bandwidth, the information rate RQM in (4.32) depends on the shape and

spread of the scattering function CHC (T, U) .

Impact of Spread of Scattering Function

For fixed aj|c and fixed shape of the scattering function, the information rate (4.32) de-

creases for increasing channel spread Tmaxumax. This can easily be seen by replacing

CB.XTIV) with ^Ci c ( r , j / ) (^ , | ) in (4.32) and noting that (4.32) decreases with increasing

dilation factor product ab.

Impact of Shape of Scattering Function

To gain insight in how the information rate (4.32) depends on the shape of the scatter-

ing function, we now derive the worst-case scattering function C^C(T,U) that minimizes

(4.32) within the class of scattering functions with given path loss o^ and given support

region [0, rmax] x [—^max/2, ^max/2]. To this end, we define a parametric representation of

scattering functions as

IP Q

C(T.u) = Yl Yl ap.97(r - Pro>v ~ Ç^o), (4-42)
P=0 q=-Q

with the set of coefficients {&Plq} and the indicator function

(T> ") e [°> ro] x [-izo/2, uo/2],

0, else,

where r0 = r m a x/(2P + 1) and u0 = umaK/(2Q + 1). Note that in the limit P —»• oo and

Q —>• oo, this model is capable of approximating any finite-support scattering function with
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arbitrary accuracy. With (4.42), the path loss is given by

2P Q

= C(T, V) drdu =
P=0 q=-Q

Rou - W log (l + -5--J.) - BJJjos (l + m-C(r,u)) ärä.

and the rate (4.32) is given by

Hence, the worst-case scattering function is obtained if ^ p = 0 Ylq=-Q ^°S ( 1 + ß^r av,<i ) ^s

maximized for a given path loss o^. To calculate the worst-case coefficients {a^ } , we

define the cost function

^ M r T S S ^ (444)

p=0q=-Q V ° / /

where A is a Lagrange multiplier. Solving dJ/dap^q — 0 yields

which does not depend on p or q. Inserting (4.45) into (4.44) and solving dJ/dX — 0

determines the Lagrange multiplier as

1 _ No CTHC

A P Tmaxl/max-£'

Inserting (4.46) into (4.45), we finally obtain the worst-case coefficients as

Letting P —*• oo and Q —> oo, it is seen that the scattering function C^{T,V) minimizing

(4.32) (maximizing the penalty term) among all scattering functions with path loss a^c

and support area [0, r m a x ] x [—^max/2, ^max/2] is the uniform scattering function given by

u) = { ^ " " ^ ' ( ' ) [> max] [max/' max/] ' (4 47)

0, else.
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This result is not surprising as it simply says that the channel prediction error is maximized
when the random process describing the channel has a fiat spectrum.

Insertion of (4.47) into (4.32) results in the information rate

d S b ) (448)

which is the minimum information rate for given path loss a^c and given scattering function

support region [0, rmax] x [—fmax/2, z/max/2]. Note that (4.48) depends on the channel

spread, i.e., the product Tmax̂ max, but not on rmax and vmax individually.

Information Rate in Specular Scattering

For specular scattering, the scattering function consists of discrete components as defined
by (3.46). In Subsection 3.2.5, we have shown that for this special case e^i is z e r o (cf-
(3.53)). Inserting this result into (4.30) yields for the information rate

(4.49)

i.e., the "penalty term" due to channel uncertainty is zero. For constant subcarrier spacing
F and constant transmit power P, we have K = B/F and o\ — PT/K and hence obtain
for (4.49)

i?CM = ^ l o g ( l + — - ^ J .

where we used (2.51). For B —> oo, we thus obtain RCM = P<JUQ/NQ, i.e., the infinite-
bandwidth information rate is nonzero. This is because the receiver perfectly knows the
channel's delays and Doppler shifts.

4.4.5 Information Rate and Diversity

We have shown that the worst-case scattering function (maximizing the penalty on the
information rate for an OFDM system transmitting over an unknown random time and
frequency selective fading channel) is the flat scattering function in (4.47), and the maxi-
mum penalty is equal to the second term in (4.48)

(
Brmaxumax\og 1 H BTmaxi/maxN0

We now recall from Subsection 2.2.1 that rmax and vmax are approximately equal to the
reciprocal of the coherence bandwidth B^c and the coherence time Tmc, respectively. Hence,
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the maximum penalty is approximately equal to

log

From this expression, we see how diversity offered by the channel relates to obtainable
information rate. From the diversity point of view, we would like to have a channel with
small coherence time/bandwidth. However, in this case the penalty on the information
rate will be large. Hence, high diversity and high information rate impose conflicting
requirements on the channel parameters.

4.4.6 Impact of Information Spreading

(Pre)coding may be used to spread the transmitted information over time and/or frequency
and thus introduce dependencies between the data symbols Xnk- To obtain an understand-
ing of how information spreading can affect the information rate Reu m (4.32), we again
look at the derivation in Subsection 4.4.1. For (4.22), it was essential that the received
sequence Yn>k was i.i.d. with circularly symmetric complex Gaussian distribution. In our
derivation, this was ensured by independent data symbols drawn from a constant-modulus
alphabet. If information is spread over time and/or frequency at the transmitter, correla-
tions between the Xn>k are introduced. This leads to correlations in the received sequence
Yn£ unless the time or frequency distance between correlated data symbols is larger than
the channel coherence time or channel coherence bandwidth, respectively (cf. (4.21)). For
correlated Yn,k, (4.22) is an upper bound and thus the rate in (4.32) will generally be re-
duced. Hence, the channel has to decorrelate between two correlated data symbols or the
information rate decreases. This requirement conforms with the aim of spreading to exploit
diversity.

4.5 Bounds on System Capacity

While we cannot calculate the system capacity (4.2) exactly, we can derive an upper bound
as well as a lower bound on system capacity. Our numerical results in Section 4.7 will
demonstrate that the upper and lower bounds practically coincide for most bandwidths of
practical interest. Only for bandwidths in the range of BCT\t (see (4.41)) and above there is
some deviation between the two bounds.
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4.5.1 Upper Bound on System Capacity

To obtain an upper bound, we note that the mutual information for no CSI at the receiver
will be upper bounded by the mutual information for perfect CSI at the receiver

/(Y;X|H) = 7(X; Y|H) = fc(X|H) - /i(X|Y,H) = h(X)

> h(X) - A(X|Y) = /(X; Y) = 7(Y; X),

since X and H are independent and conditioning reduces entropy. Hence, 7(Y; X) <
7(Y; X|H) and thus the system capacity without CSI at the receiver will be upper bounded
by the mutual information for perfect CSI at the receiver, i.e., 5 < Scsi- With (4.5), we
obtain the desired upper bound on the system capacity of OFDM:

f ( ^) (4.50)

Hence, the system capacity of OFDM is upper bounded by the capacity of K independent
parallel AWGN channels, each operating at SNR cr^a^/No and symbol rate T.

We next assume constant transmit power P and fixed subcarrier spacing F. We have
K = B/F and o\ = PT/K = PTF/B. Inserting this into (4.50) together with (2.51), we
obtain

The only OFDM system parameter involved in (4.51) is the product of the OFDM symbol
period T and the subcarrier separation F. For TF = 1, the bound (4.51) is the capacity
of an AWGN channel with bandwidth B operating at an SNR equal to Pa^c/(BN0).

In OFDM systems, however, TF has to be larger than one; this amounts to introducing
redundancy and design freedom into the system but obviously reduces the potential system
capacity. The redundancy can e.g. be used for inserting a guard period or a cyclic prefix
between consecutive OFDM symbols. However, TF is typically very close to one (e.g., in
DVB-T a value of 1.03 is possible) so that the upper bound (4.51) is practically equal to
the AWGN capacity. Furthermore, for any TF, the bound (4.51) can be interpreted as the
capacity of an AWGN channel with "effective bandwidth" B/(TF).

An interesting special case of the bound (4.51) is obtained for the infinite-bandwidth
limit B —» co. Here, the bound is given by

B , / TFPol \ Pal
Jim — log 1 + H < * -

TF ° V B No ) No
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which is equal to the infinite-bandwidth capacity of time and frequency selective channels

[99, Section 8.6]. Note that for this case, the bound does not depend on the OFDM system

parameters T and F. In Section 4.3, we have shown that using a simple orthogonal code-

book, this infinite-bandwidth system capacity can indeed be obtained by OFDM. Hence,

for B —> oo the bound (4.51) is tight.

Furthermore, the bound (4.51) is identical to the first term of our expression (4.32) for

the information rate for constant-modulus signaling, RQM- RCM deviates from the bound

by the second term in (4.32) that is due to channel uncertainty at the receiver. For practical

bandwidths, however, the second term is small compared to the first one, and thus RCM IS

nearly equal to the bound (4.51). Only if the information is overspread, i.e. for B > Bcrit,

RCM deviates significantly from the bound.

4.5.2 Lower Bound on System Capacity

From the definition of the information rate in (4.1) and the system capacity in (4.2), we

obtain the lower bound S > R where R may be calculated using some specific codebook.

Hence, we can use the information rate obtained with constant-modulus signaling RCM in

(4.32) to formulate a lower bound on the system capacity, i.e., S > RCM- However, for

B > -Berit, a tighter bound can be easily found by the information rate of an OFDM system

with constant-modulus signaling that does not use all the available bandwidth but only

bandwidth -Bcrit, i.e., only K' = BCI\t/F adjacent subcarriers are used. This OFDM system

would achieve Rmax = maxß RCM = RcM\B=Bcrit- Hence, we obtain the lower bound

R <^ R

B > -Berit •

Moreover, since in Subsection 4.4.4 we have shown that RCM > -^CM with RCM g i y e n by

(4.48), we also obtain the looser lower bound

B < -Berit ,
(4.52)

B > -Bcrit •

From these lower bounds, it is clear that the OFDM system capacity does not approach

zero at infinite bandwidth but is at least i?* •
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4.5.3 Relation to Telatar and Tse's Result

As mentioned in Subsection 4.2.2, the following lower and upper bounds on the information

rate for spread-spectrum-like signaling were given by Telatar and Tse [52]:

CAWGN
^crit

< R < CAWGN—f-
Ll

where CAWGN = P/NQ is the asymptotic AWGN capacity, Lcrjt — PTC/NQ is a critical

number of delay taps, Tc is the coherence time of the channel (note that in [52] the coherence

time is differently defined than Tec in Subsection 2.2.1), and L is the number of resolved

delay taps that increases linearly with bandwidth B. Furthermore, the path loss of the

channel was normalized to one. The upper bound of [52] is meaningful if it is smaller than

CAWGN which is the case for L < Lcr\t-

With a^c = 1, our upper bound (4.51) is given by

TF P

Hence, our upper bound is different from that of [52].

For B < BCTlt and <7j| = 1, our lower bound in (4.52) is equal to

^ê-*(1+¥£i- (l P

\ BTmaxumaxNo

where we used (4.48). Bounding the first term by means of log(l + x) > x — x2/2 where

for small x (wideband regime) the quadratic term is negligible, we furthermore obtain the

looser lower bound

P
ïvë
P

1 - log 1 +
P

' N0Brmax ( PTC

1 ^ — log 1 +PTC

where we defined the channel coherence time as Tc = l/vmax. Noting that the number

of resolvable paths is approximately equal to L = Brmax, defining Lcrit = PTC/NO, and

recalling that CAWGN = P/NQ as in [52], we finally realize that our looser lower bound is

equal to that of [52]. Note, however, that for B > BCT\t we have a different lower bound,

namely S > Rmax- Hence, the OFDM system capacity is nonzero also for B —> oo.
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4.6 Bounds on Information Rate for Gaussian Signaling

For Gaussian signaling, the inputs Xntk are i.i.d. with distribution £/V(0, a%). For this

case, the information rate cannot be derived exactly. However, we already derived the

upper bound on the information rate (4.50) that is valid for any distribution of the transmit

signal and hence also for Gaussian signaling. Here, we derive lower bounds for the Gaussian

case. We again start with the decomposition of mutual information as in (4.33), i.e.,

J(Y; X) - I (Y; X, H) - / (Y; H |X) . (4.53)

Lower Bounds on /(Y;X,H)

A lower bound on / (Y; X, H) can be calculated by using that

/(Y;X,H) = h(Y) - h(Y\X, H) > /i(Y|H) - / i(Y|X,H) - J(Y;X|H)

= h{Y\H) - h(Y\X,H) = h{Y\H) - h(Z)

= h(Y\H) - MK log(TreA^o). (4.54)

For fixed channel realization H = h, the output Y is Gaussian with diagonal conditional

covariance matrix. We thus have

/i(Y|H) = EH{h(Y\h)} = EH {log ((ne)MKdet [E {YY^

M K-\ , , 2

= MK EH I log ( 1 + jZ- \H\2j 1 + MK

Here, H is a random variable with distribution CAf (0, ajjj). Inserting in (4.54), we obtain

ICY; X, H) > MK EH jlog ( l + ̂  l#|2) } • (4-55)

Based on (4.55), we can develop two different bounds that are useful for the wideband

regime and the narrowband regime, respectively.

For the wideband regime, we lower bound (4.55) using log(l + x) > x — x2/2, which

yields

^ ( ^ ) (4.56)
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Since the lower bound log(l + x) > x — x2/2 is only tight for small values of x, the bound
(4.56) is most useful if jf- \H\ is small compared to one, i.e., for small SNR. This is generally
the case in the wideband regime.

For the narrowband regime, we lower bound (4.55) as

/(Y;X,H) > MKEH {log (£ |#|2) } = MK [log ( ^ ) + E (log(|X|2)}

where we used log(l + x) > log(x) and introduced the random variable x — H/a^ that is
distributed as CA/"(0,1). It can be shown that [176]

E{log(|X|2)} = -CE u l e r ~ 0.5772,

where Cguier is Euler's constant. Hence, we obtain the lower bound

/(Y;X,H) > MK log (j^) ~ C E U J • (4.57)

This bound is tightest if jf- \H\ is large compared to one, i.e., if the SNR is large. This is
generally the case in the narrowband regime.

Upper Bound on/(Y;H|X)

We start from

J(Y; H|X) = /i(Y|X) - h(Y\X, H) = /i(Y|X) - h(Z) = h(Y\X) - MK log^eiVo). (4.58)

We can again decompose /i(Y|X) as in (4.23). Fixing X = x and Yn/ = yn> for n' =

1,. . . , n - 1, we find that (cf. (4.26))

/i(Yn|x; y i , . . . , yn_i) = log ( det
V

1
—diag {xn} Bndiag {x;

where B n is given by (3.8). Since the matrix in the determinant is Hermitian symmetric,
we can apply the Hadamard inequality [169] to obtain

Ji(Yn|x; yi, •. •, y„_i) < log TT
V fc=o

I + — d i a g { x n } B n d i a g { x ^ } ) + K \og(KeN0)

= log (j[ (l + ̂ [ B n ] f c , , j J +K\og(ireNo)

/ | x 12

log f 1 + L-^L[Bn]fc,fc ) +Klog(ireN0), (4.59)
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which does not depend on yi, i = 1 , . . . , n — 1. Unfortunately, this expression cannot easily

be further simplified since we here deal with the full-complexity MMSE channel predictor

of Subsection 3.2.1 and thus B n depends on the data symbols (see (3.8)). Averaging (4.59)

with respect to X and Yi , Y2, . . . , Yn_! yields

i_i) = Ex,Y1;Y2,...,Y„_1{MYn|x;yi,.-.!yn-i)}

K~l ( / IF I2 \ 1
+ K\og{TveNQ),

fc=0

and inserting this into (4.23) results in

h(Y\X) < Y^ YI Ex\ l o g f1 + "' [Bn]fc,fc) f + MKlog(TreiVo).
n = l fc=O ^ ^ ° ' *

Inserting this into (4.58) and using Jensens's inequality [169], we finally obtain the upper

bound

^A ( 1 \
/(Y;H|X) < 5 " £ l o g ( l + ̂ Ex{|XB,fc|

2[BB]fci*} . (4.60)Ä )
n=l fc=0 \ 0 /

The problem in finding closed-form expressions for these lower bounds is that the expecta-

tion Ex{|^n,A:|2[Bn]fc,fc} with B n given by (3.8) cannot be calculated since B n depends on

the data symbols in a complicated way.

Lower Bound on Information Rate

In the wideband regime, we obtain by inserting (4.56) and (4.60) into (4.53)

2 2 K—\

With (4.1), a lower bound on the information rate for Gaussian signaling in the wideband

regime is thus given by

A similar derivation using (4.57) yields a lower bound on the information rate in the

narrowband regime,

R ä 7 Ht1) H ^
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Figure 4.2: OFDM information rate for constant-modulus signaling vs. bandwidth for two
Rayleigh fading channels with different spread Tmax^max- For comparison, the upper bound
(4-51) and the AWGN capacity are also shown.

4.7 Simulation Results

In this section, we provide some numerical results aimed at assessing the performance of

existing OFDM-based systems in the light of the results obtained in this chapter. Our

simulation study will also yield system design guidelines ensuring that overspreading and,

hence, small capacity are avoided. We use IEEE 802.11a related system parameters with

subcarrier spacing F = 312.5kHz, TF = N/K = 1.25, and transmit power P = lmW. We

consider two channels with flat scattering functions and channel spreads Tmax^max = 10~3

and Tmax^max = 10~2. For both channels, the path loss is ajjjc = 90dB. Furthermore, JVo =

fco-300K = 4.1421 -10-21W/Hz where k0 = 1.3807-l(T23Ws/Hz is the Boltzmann constant.

For B = 20 MHz, for example, these parameters yield a receive SNR of Pa^J(BN0) =

10.8dB.

4.7.1 Dependence of Information Rate on Bandwidth

Figure 4.2 compares the AWGN capacity, the information rate for constant-modulus sig-

naling RCM in (4.32), and the upper bound in (4.51) as a function of bandwidth B. The

asymptotic (B —> oo) values for the AWGN capacity and the upper bound are both

Pcr,y(iV0log(2)) = 348.3Mbit/s. For rmaxumax = 10~3, RCu has a flat maximum at the

critical bandwidth i?CI.jt,i = 3.1 GHz. For r m a x ^ m a x = 10~2, the critical bandwidth reduces

to ßcrit,2 = 1.1 GHz. For bandwidths below BcxA, Rcu is very close to the upper bound; for
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Figure 4.3: Ratio of information rate for constant-modulus signaling and upper bound for
two channels with different spread Tmoxvmax-

bandwidths above BCT[t, we enter the overspreading regime in which RQM decreases with

growing B and asymptotically approaches zero.

To better demonstrate that RCM is indeed very close to the upper bound (4.51) for

B < .Bent) Figure 4.3 shows the ratio of RCM and the upper bound (4.51) vs. bandwidth

for the two channels. For Tmax^max = 10~3, RCM decreases to 94% of the upper bound

at B = Bcrit,i. For rmaxumax = 10~2, the ratio is 84% at B — 5Crit,2- For B > Bcrit, the

ratios decrease more rapidly and constant-modulus signaling becomes rather inefficient.

The system design has to ensure that this operating range is avoided.

The expression for RCM in (4-32) allows to choose the OFDM system parameters (trans-

mit power and bandwidth) such that the system operates close to the maximum information

rate i?max. This choice critically depends on the scattering function since Bcr\t decreases

when the channel spread rmax^max increases. However, current OFDM-based wireless sys-

tems operate far below the overspreading regime. For example, in IEEE 802.11a P > lmW

and Tmaxvmax < 10~5. For P = lmW and rmaxvmax = 10~5, the critical bandwidth is

R.rit = 24GHz whereas the actual transmit bandwidth for IEEE 802.11a is B = 20MHz.

4.7.2 Dependence of Information Rate on Channel Spread

In Figure 4.4, we show the dependence of the information rate for constant-modulus sig-

naling RCM on the channel spread Tmaxumax for bandwidths of 100 MHz and 1 GHz. We

again used a flat scattering function. Figure 4.4(a) shows the result for B = 100 MHz.

Here, RCM is practically equal to the upper bound (4.51) up to extremely large channel
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Figure 4.4: Information rate for constant-modulus signaling vs. channel spread for a uni-
form scattering function for (a) bandwidth B = 100 MHz and (b) bandwidth B = 1 GHz.

spreads. Note that for Tmax!/max > 10~2 and TF = 1.25, the approximative input-output

relation (2.36) is not necessarily valid anymore, i.e., the intercarrier interference cannot be

neglected for highly time-vary ing channels. We furthermore note that the AWGN capacity

and the upper bound (4.51) do not depend on the channel spread but only on the SNR

and the bandwidth.

Figure 4.4(b) shows the result for B = 1 GHz. Using ten times the bandwidth (and the

same transmit power) nearly doubles the information rate. However, i?cM deviates from

the upper bound (4.51) already for about r m a x i / m a x > 3 • IO""4.

4.7.3 Spectral Efficiency

To further demonstrate the detrimental effect of overspreading, Figure 4.5 shows the spec-

tral efficiency R/B as a function of Eb/No, where Eb = Pa^c/R, for the AWGN channel, the

upper bound (4.51), and the information rate for constant-modulus signaling (4.32). For the

AWGN channel, reliable communications require Eb/No > —1.59dB. For constant-modulus

signaling (4.32) and Tm a x^m a x = 10~3 (10~2), we numerically calculated the lowest (Eb/No)

as (Eb/N0)min = -1.13dB (-0.29dB), resulting in a spectral efficiency of 0.10bit/s/Hz

(0.24bit/s/Hz). This point corresponds to the maximum of (4.32) at B = BCTit in Figure

4.2. Note that with increasing channel spread, we require a higher (Eb/N0)min for reliable

communications. For Eb/No > (Eb/No)m\n, we obtain two spectral efficiency values where

the lower one is obtained when the OFDM system operates in the overspreading regime

(i.e., B > Bcrit). While it is uncommon that the spectral efficiency vs. Eb/No graph splits
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Figure 4.5: Spectral efficiency R/B vs. Eb/No for the AWGN channel, the upper bound,
and the information rate for constant-modulus signaling.

up into two branches, it should be noted that also in Figure 4.2 a given information rate

can be achieved with two different bandwidths, one smaller and one larger than -Bcrjt.

An interesting aspect of OFDM communications with constant-modulus signaling over

time and frequency selective fading channels is that the minimum energy per bit for re-

liable communications, (Eb/No)m\n, increases with the channel spread. This dependence

is shown in Figure 4.6(a). For rmax^max below approximately 10~4, (Eb/N0)mm is practi-
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Figure 4.7: OFDM system capacity bounds vs. bandwidth. For comparison the AWGN
capacity is also shown.

cally equal the (Eb/No)mm of the AWGN channel which is —1.59 dB. For larger channel

spreads, (Eb/N0)min increases rapidly. In Figure 4.6(b), we show which spectral efficiencies

are obtained at (Eb/No)m\n for different channel spreads. Note that these values do not cor-

respond to the lowest possible spectral efficiency but rather to the most efficient operating

point with respect to

4.7.4 Bounds on System Capacity

In Figure 4.7, we finally compare the upper bound (4.51), the lower bound (4.52) for three

different channel spreads, and the AWGN capacity as a function of bandwidth B. Note that

for B < Bait, the lower bounds in Figure 4.7 are identical to the OFDM information rate

using constant-modulus signaling (4.32) for a flat scattering function (cf. Subsection 4.5.2).

It is seen that the upper bound is only slightly lower than the AWGN capacity; indeed, for

large bandwidths both coincide. The lower bound depends on the channel spread. However,

for practical channel spreads, the lower bound is close to the upper bound. Specifically,

for a channel spread of Tmaxumax = 10~5 that is typically encountered in slow-mobility

environments such as indoor communications, the lower bound is almost identical to the

upper bound. Even for Tmax^max = 10~2, the lower bound is close to the upper bound for

bandwidths up to about 200 MHz. Note that for current wireless communication systems,

the bandwidth is typically smaller than 20 MHz (the bandwidth of IEEE 802.11a). However,

OFDM is currently being considered for ultra-wideband (UWB) communications by the
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standards committee IEEE 802.15 with a bandwidth of about 500 MHz [14]. Depending

on the transmit power, path loss, and channel spread, such OFDM systems could be close

to the critical bandwidth -SCrit-



Conclusions

In this final chapter, we summarize the most important results of our work and suggest
possible extensions of these results.

In Chapter 2, we reviewed a model for pulse-shaping OFDM systems together with a
model for random time and frequency selective wireless channels. The input-output relation
of the resulting system can be approximated by a simple pointwise multiplication of the
transmit symbols by complex-valued channel coefficients, plus the addition of Gaussian
noise. Hence, apart from the noise, each data symbol merely experiences flat fading. This
simple approximate system input-output relation provided a basis for our development in
subsequent chapters.

We presented an efficient DFT-based digital implementation of the pulse-shaping
OFDM modulator and demodulator. The computational complexity of this implementa-
tion is only slightly larger than that of a conventional cyclic-prefix OFDM system. Further-
more, we characterized the channel coefficients by introducing the concept of an equivalent

channel. It was seen that the channel coefficients can be obtained by sampling the time-
dependent transfer function of the continuous-time channel on a rectangular time-frequency
lattice that is induced by the OFDM modulation structure. The channel coefficients decor-
relate for time lags larger than the channel's coherence time and for frequency lags larger
than the channel's coherence bandwidth.

In Section 3, we presented decision-directed channel predictors for OFDM communica-
tions over time and frequency selective fading channels. Channel prediction is interesting
because by compensating unavoidable delays (such as coding/decoding delays), it is capable

123



124 Chapter 5. Conclusions

of yielding up-to-date channel state information (CSI). The proposed channel predictors

can be operated in decision-directed mode and do not require regular transmission of pilot

symbols. The successful application of channel prediction to delay-free channel equalization

was demonstrated. Channel prediction also enables the use of advanced communication

techniques such as adaptive modulation that hold the promise of improved system capacity

and link reliability. For adaptive modulation, we proposed a novel protocol for signaling

the transmission parameters from the receiver back to the transmitter, and we discussed

the use of channel prediction for obtaining CSI at the receiver.

We derived the full-complexity MMSE channel predictor which, however, is unpractical

because of its excessive computational complexity. We then developed a reduced-complexity

MMSE predictor that allowed an efficient DFT-based implementation. We also proposed

adaptive predictors using the normalized least-mean-square (NLMS) or recursive least-

squares (RLS) algorithm. These adaptive predictors avoid an explicit predictor design, do

not require any statistical prior knowledge, and are able to track nonstationary channel

and noise statistics. Our simulation results demonstrated that, in decision-directed mode,

using only a single known OFDM symbol for initialization, adaptive prediction features

excellent performance even in the case of fast time-varying channels. However, to avoid

error propagation, a certain minimum SNR is required that depends on system and channel

parameters. Above this SNR threshold, prediction of time-varying channels over large

prediction horizons is feasible.

We furthermore analyzed the infinite-length one-step MMSE predictor and calculated

its performance in terms of the channel's scattering function, noise variance, and OFDM

system parameters. We also showed that for specular scattering, the prediction error can

be made arbitrarily small.

In Chapter 4, we considered the system capacity of OFDM transmitting over time and

frequency selective Rayleigh fading channels, under the assumption that transmitter and

receiver have no CSI. We derived both an upper bound and a lower bound on the system

capacity and demonstrated that these bounds practically coincide for typical system and

channel parameters over large and practically relevant ranges of bandwidth, and that the

upper bound is close to the AWGN channel capacity. Hence, the system capacity of wireless

OFDM systems is close to the AWGN channel capacity. Moreover, even for very large

bandwidths the OFDM system capacity does not necessarily vanish; this was demonstrated

by the lower bound and by calculation of the infinite-bandwidth system capacity.

A main result of Chapter 4, which also led to the lower bound, was the derivation of the

OFDM information rate obtained for constant-modulus signaling. This result is important

because this signaling scheme is widely used in practical systems such as IEEE 802.11a
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and DVB-T. Prom our derivation, it can be conjectured that this information rate can be
achieved by a receiver that uses channel prediction for obtaining CSI.

It was shown that the information rate for constant-modulus signaling deviates from
the upper bound on system capacity due to a "penalty term" which is related to the
predictability of the channel, and which is small for channels that can be well predicted. Our
numerical results demonstrated that this penalty term is small up to a critical bandwidth.
For larger bandwidths, however, the penalty term is large and thus the information rate
for constant-modulus signaling asymptotically approaches zero. Our expression for the
information rate also allowed to study the impact of the shape and spread of the channel's
scattering function on the information rate. In particular, we showed that the worst-case
scattering function minimizing the information rate is the flat scattering function.

We finally provide some suggestions for future research concerning possible extensions
of the work presented in this thesis.

• The idea of decision-directed channel prediction can be extended to wireless MIMO-
OFDM systems which have been proposed for future communication systems. It has
been demonstrated in [46] that CSI is required to exploit the full potential of MIMO
systems. This CSI can be acquired by prediction. An important application of such
a scheme could be space-time decoding. If the spatial correlations or structure of
the MIMO channel can be exploited, the performance of channel prediction can be
expected to improve. However, the results will critically depend on the channel model
used.

• CSI at the transmitter \s required for the application of techniques for link adaptation,
pre-equalization, and precoding that hold the promise of improved system capacity
and link reliability. Up-to-date CSI can be obtained through channel prediction. As-
sessing the sensitivity of the adaptive modulation algorithms with respect to channel
uncertainty would be an interesting topic for future research. Furthermore, it would
be interesting to implement strategies that only require the magnitude of the channel
coefficients at the transmitter. For example, one could consider pre-equalization of
the magnitude at the transmitter and phase equalization at the receiver.

• Our information-theoretic analysis of wireless OFDM systems could be extended
to communication systems using orthogonal frequency division multiple access
(OFDMA) for the uplink. Specifically, it would be interesting to consider the ca-
pacity regions for OFDMA communications over time and frequency selective fading
channels.
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• The information rate of an OFDM system applying pilot symbol assisted channel
estimation could be derived and compared to the information rate obtained with
channel prediction. How large is the loss in information rate due to pilot symbols
and how does this system behave for very large bandwidths? Furthermore, one could
attempt to derive the "optimal" pilot locations maximizing the information rate.

• The exact OFDM system input-output relation that includes intersymbol and inter-
channel interference (cf. Section 2.3) could be the basis for an extended information-
theoretic analysis of OFDM systems. Is it possible to calculate (bounds on) the
information rate or system capacity? If so, how does the system behave when the
channel spread approaches one?

• In practical systems, besides the ergodic information rate, the outage capacity is of
great operational significance. To assess the outage capacity, the cumulative distri-
bution function of the instantaneous information rate has to be calculated. If no
analytic derivation is possible, one could resort to numerical methods. An interesting
question here is how the outage capacity depends on the bandwidth as well as the
spread and shape of the scattering function.
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