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Kurzfassung

Metallschdume sind zelluldre Metalle, die als Leichtbauwerkstoffe stetig an Bedeutung ge-
winnen. lhre hervorstechendsten mechanischen Eigenschaften sind hohe spezifische Stei-
figkeit bzw. Festigkeit sowie ein hohes Stoflaufnahmevermoégen, welches eine Folge ihrer
hohen Verformbarkeit darstellt. Metallschiume bestehen aus einem Skelett aus solidem
Material, welches entweder schwammartig aus verbundenen Stegen oder schaumartig aus
geschlossenen Zellen aufgebaut ist. Der hohe Hohlraum-Anteil macht sie zu hochgradig
inhomogenen Materialien und fiihrt zu thermomechanischen Eigenschaften, welche sich
deutlich von jenen massiver Metalle unterscheiden.

Da der schwammartige bzw. geschlossenporige mikrostrukturelle Aufbau die mechanischen
Eigenschaften von Metallschaum wesentlich mitbestimmt, wurden in der vorliegenden Ar-
beit Simulationen des mechanischen Verhaltens auf der mikrostrukturellen Ebene durch-
gefiihrt, wobei sowohl analytische als auch Finite Elemente Modelle, insbesondere in Ver-
bindung mit Einheitszellen-Modellierungsstrategien Anwendung fanden. Die Untersuchun-
gen geben Einblick in die lokalen Deformations- und Lastumlagerungs-Mechanismen sowie
deren Auswirkung auf das effektive mechanische Verhalten des Metallschaums, reprisen-
tiert beispielsweise durch die Gestalt der effektiven Flielfliche oder das effektive Verhalten
unter mehrachsiger Belastung. Es werden sowohl vorteilhafte als auch nachteilige Topo-
logien und Werte von mikrogeometrischen Parametern identifiziert und damit wertvolle
Erkenntnisse fiir das Werkstoffdesign und die Entwicklung neuer Metallschdume gewon-
nen.

Auf der Liangenskala von Werkstoffproben und Bauteilen, die zwei oder drei Groflenord-
nungen grofler sind als einzelne Schaumzellen, wurde das effektive Werkstoffverhalten si-
muliert, wobei zwei im Finite Element Programm ABAQUS implementierte Stoffgesetze
an Hand der Simulation von Aufprallversuchen mit Bezug zum Insassenschutz in Automo-
bilen evaluiert wurden. Die Untersuchungen zeigen unter anderem das Vorhandensein von
optimalem Energieaufnahmeverhalten - im Sinne einer méglichst hohen Energieaufnahme
bei niedrigem Spitzenkraftniveau - bei einer bestimmten, von der Art des Metallschaums
abhéngigen, effektiven Schaumdichte.

Auf derselben Léngenskala wurde ein Algorithmus zur Optimierung der Dichteverteilung
in Metallschaum-Strukturen entwickelt und zur Berechnung von steifigkeits- und festig-
keitsoptimierten Bauteilen herangezogen. Der Ansatz, den Optimierungsalgorithmus als
Materialgesetz im Sinne eines selbstadaptierenden Werkstoffes in Analogie zu lebendem
Gewebe (Knochen) zu implementieren, bringt starke Geschwindigkeitsvorteile gegeniiber
bestehenden Methoden.

Eine Untersuchung der Auswirkungen von mesoskopischen Inhomogenitéten in der Dichte-
verteilung auf das statische und dynamische Stauchverhalten von Metallschaum-Korpern
rundet das Spektrum der Arbeit ab. Hier wurden unter anderem dynamische Effekte wie
Wellenausbreitungsphinomene untersucht, und wertvolle Riickschliisse fiir die Auslegung
von stoflabsorbierenden Metallschaum-Strukturen gezogen.
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Abstract

The subjects of the present thesis are metallic foams, which have entered the stage of
practical application, their most important mechanical properties being high energy ab-
sorption capacity as well as high specific strength and stiffness. Metallic foams consist of
a solid skeleton formed by struts and/or cell walls and a high volume fraction of voids,
making them highly inhomogeneous materials. Their heterogeneity leads to thermome-
chanical responses, that are markedly different from those of bulk solids, and gives rise
to material properties that have made cellular materials attractive for many engineering
applications. It also presents an obvious target for modeling studies aimed at gaining an
improved understanding of the mechanical behavior of cellular materials and of structures
made of them.

In the present thesis, simulations of the mechanical responses of cellular metals are car-
ried out at different length scales. In micromechanical approaches, their inhomogeneous
structure is accounted for at the level of individual cells, cell walls, struts, and vertices.
At this length scale, discrete geometrical models of the cellular microstructure are exam-
ined with the Finite Element method in combination with unit cell approaches, providing
information on the local deformation and load transfer behavior. The micromechanical be-
havior is correlated to the mechanical behavior at the structural level, for example, in the
form of overall yield surfaces or the effective behavior under multiaxial loading conditions.
Advantageous and detrimental topologies and values of microgeometrical parameters are
identified for supporting materials design and development.

At the macromechanical level, that is, the level of samples and components that are two or
three orders of magnitude larger than the typical size of individual cells, only the overall
thermomechanical behavior is accounted for. Constitutive models for metallic foams, which
are implemented in the Finite Element code ABAQUS, are evaluated with regard to their
performance in simulating impact tests related to passenger protection in motor vehicles.
Among other results, the investigation shows the existence of optimum crash-absorption
behavior, described by high energy absorption capability at a low peak force, for a well-
defined foam-specific apparent density.

At the same macroscopic level, an algorithm for the optimization of foam density distribu-
tions in components made of or containing metallic foam is presented along with examples
of structures that are improved with regard to strength or stiffness. The implementation
of the algorithm as a material law, which is self-adapting in analogy to living tissue (bone),
yields distinct speed benefits in comparison to existing methods.

In addition, questions involving the spatial variations or gradients of cell sizes and shapes
within a given sample or structure are studied at length scales that are intermediate be-
tween microscale and macroscale. A section of the present thesis is devoted to the influence
of mesoscopic inhomogeneities on the mechanical behavior of bodies made of metallic foams
under crush and crash loads.
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Chapter 1

Introduction

Cellular materials are a class of materials that can be found in nature and in technical
applications alike, see Figure 1.1. Their cellular structure gives rise to excellent weight-
specific properties, such as high specific stiffness and high specific strength. Beyond these
most obvious advantageous properties of cellular materials, a range of additional beneficial
properties such as excellent deformability, formability, insulation, small absolute density
and, therefore, good buoyancy, makes them suitable for a multitude of thermo-structural
applications like packaging, cores in lightweight structural sandwich panels, thermal insu-
lations, crush and crash elements, and many more.

Since cellular materials consist of an interconnected network of solid struts or plates their
overall properties scale with those of the solid bulk material. Hence, the creation of cel-
lular materials with a solid phase of high (specific) stiffness and strength is of special
interest. Solid metals and, in particular, aluminum provide the required properties, and
the design and production of metallic foams is gaining momentum. In addition to their
advantageous mechanical properties metallic foams show good thermal stability, high fire
retardance and considerable potential for recycling. By various production routes, they
can be manufactured both in simple shapes like panels, as well as in more complex shapes,
see Figure 1.1 (right). Owing to their metallic bulk phase, they are compatible with metal
face sheets, stimulating the design of integral structures and lost cores for advanced casting
technologies.

Metallic foams are produced both in the form of spongy, open-cell foams, see Figure 1.2,
and in the form of closed-cell foams, compare Figure 1.3. A special class of cellular metals
are metal honeycombs, which can be used as core materials in high-performance sandwich
panels.

The modeling and simulation of cellular metals is a field of research that has drawn consid-
erable interest from researchers, research groups and industry, from foam manufacturers to
industrial end-users. Two major directions of research can be distinguished, the “design”
of metallic foams on the one hand and the design of components made of cellular metals
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Figure 1.1: Cross-section of the head of a human femur (left) and samples of
shell structures with in-situ foam cores (right, courtesy of LKR).
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Figure 1.2: REM image of a bent strut in an open-cell metallic foam; (image
courtesy of Institute of Materials Science and Testing, Vienna
University of Technology.)
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Figure 1.3: Microscopic cross-section through a closed-cell aluminum foam
(image courtesy of Neuman Aluminium).

on the other hand.

1.1 Modeling and Simulation for Material Design

From the point of view of the manufacturers, the design of mechanically efficient metallic
foams is the paramount aspect of foam modeling and simulation, the aim being the devel-
opment of “optimum” cellular metals. The most important design variables are production
technologies and the choice of the metal constituting the solid phase of the foam. Besides
the apparent mass density and the properties of the metal, the mechanical behavior of
metallic foams is determined by the geometrical arrangement of voids and solid regions
in the material, which will be referred to as the microgeometry in the following. Conse-
quently, a considerable number of studies has aimed at exploring the connections between
the microgeometry and the mechanical properties of cellular materials and thus belong to
a research field known as micromechanics of materials.

At the length scale of the voids, the deformation of cellular materials tends to be dominated
by local mechanisms (Figure 1.4) that must be accounted for in any modeling effort. Be-
cause detailed descriptions of the microgeometries of large structures or components made
of foam are far in excess of present capabilities, the most fruitful approaches for simulating
the thermomechanical behavior of metallic foams have aimed at studying representative
regions of appropriate model materials. Most commonly, actual foams are approximated
by periodic microgeometries that can be described via unit cells subjected to appropriate
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Figure 1.4: Deformation sequence of a wrought alloy aluminum foam
(ALULIGHT(™) showing post-buckling collapse of a cell wall
oriented in deformation direction; images courtesy of Institute of
Materials Science and Testing, Vienna University of Technology
[61].

boundary conditions. Alternatively, a geometrically detailed microregion may be embedded
in a larger region for which a much simpler description is employed, leading to embedded

cell models. A discussion of such micromechanical approaches will be presented in Chapter
2.

Microgeometrical models covering a wide range of complexity can be studied with the
above methods to give predictions for the overall mechanical behavior of metallic foams
and link it to specific local deformation processes. In addition, microscale geometrical
imperfections such as curved cell walls can be introduced in a controlled way and assessed
for their influence on the macromechanical material response, making it possible to isolate
the influence of individual parameters. It has been found difficult, however, to make fully
quantitative predictions on the basis of micromechanical simulations, the main reason
being the high geometrical complexity of actual foams and the dearth of reliable data
on the in-situ material behavior of the metallic phase. Nevertheless, micromechanical
approaches have provided important instruments for gaining a better understanding of the
thermomechanical behavior of metallic foams, see Chapter 2.

If the mean cell size or the effective mass density of the foam exhibits spatial variations or
gradients over a sample or component, additional information can be obtained by explicitly
considering length scales that lie between the micro- and macroscales. Such mesomechan-
ical studies are described in Chapter 3.
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1.2 Modeling and Simulation for Component Design

Designers of components made of metallic foams (Figure 1.1, right) are interested in easy-
to-use methods for describing the constitutive behavior of these materials, for example in
the form of constitutive material laws for use with general purpose Finite Element codes.
For such purposes it is neither possible nor desirable to account for details of the foams’ mi-
crogeometry at every position in the component. Instead, the material behavior of the foam
is described in terms of a (fictitious) equivalent homogeneous material. Such macroscopic
constitutive models may be derived from micromechanical studies by homogenization, or
they may take the form of phenomenological macroscopic descriptions that employ ma-
terial parameters which have to be obtained from experiments. Because metallic foams
typically show a limited elastic range, such constitutive models have to be nonlinear for
general application.

For some purposes full constitutive descriptions are not required and material character-
ization can provide the necessary information. This can take the form of experimentally
based relations, for example in the form of stress versus strain relations parametrized by
the effective mass density of the foam. Alternatively, micromechanical reasoning may be
used to derive generic mathematical relationships, which can then be fitted to experimental
results and provide physically based regression formulae.

Knowledge of the effective elastic stiffness on the continuum level is sufficient for linear
stress analysis, where the foam is treated as a homogeneous, linear elastic solid. Depend-
ing on the complexity of the problem, such structural analyses can either be performed
analytically or numerically, for example by using the Finite Element method. If only the
macroscopic stresses within the component are of interest, the knowledge of the homog-
enized material properties (in this case the tensor of elasticity) will be sufficient. These
macroscopic stresses have to be assessed with respect to failure of the structure by yielding,
fracture or buckling, so that additional information in the form of macroscopic strength
data is required.

More sophisticated structural analysis must take into account the nonlinear behavior of
metallic foams; this is an absolute necessity when large strains are present, for example
in crushing or crash situations, compare Figure 1.5. Here, incremental macroscopic con-
stitutive laws, that is, relationships between increments of stresses and strains, must be
available to allow the use of typical numerical analysis tools. Several constitutive material
laws describing the overall behavior of cellular metals have been proposed and applied in
the simulation of components consisting of or containing metallic foams. Obviously, the
selection of a particular constitutive law is governed by the number of material param-
eters it requires and by the effort necessary for calibrating them by experiments or via
micromechanical studies. Because they are based on the use of an equivalent homogeneous
continuum, macroscopic constitutive laws should only be used for studying components or
samples that are considerably larger (and thicker) than the typical cell size of the foam.
Macroscopic constitutive laws for foams are the focus of Chapter 4, where the advantageous
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Figure 1.5: Crushed square steel profiles in empty monotubal (left), foam-
filled monotubal (center) and foam-filled bitubal design (right);
from [100].

use of metallic foams in energy absorbing structures, and modeling strategies for assessing
crashworthiness are discussed.

Because metallic foams show some potential for controlled spatial variation of their ef-
fective mass density and, as a consequence, of their mechanical properties, they offer the
possibility of designing functionally graded cellular materials in analogy to bone tissue
(Figure 1.1, left). Some considerations pointing in this direction can be found in Section
4.5. Considering all the facts mentioned above, the structural analysis of components made
of or employing metallic foams is likely to become a standard procedure in Finite Element
simulations. Chapter 4 will present some steps in this direction.



Chapter 2

Micromechanical Modeling and
Simulation of Metallic Foams

2.1 Introduction

From the point of view of micromechanical modeling, cellular metals fall into three groups:
honeycombs, which can be studied by two-dimensional models, open cell foams, the solid
scaffold of which is dominated by beam-like members, and closed cell foams, in which
membrane- or shell-like cell walls are present. All of these materials typically show a
limited elastic range, and their mechanical behavior tends to be dominated by local defor-
mation mechanisms such as bending, buckling, plastic yielding, and fracture of cell struts
and walls. These deformation mechanisms, in turn, are highly sensitive to details of the
microgeometry, which, in practice, may be quite regular for some honeycombs, but tends
to be complex and highly non-uniform in the case of metallic foams.

The mean field and Hashin—Shtrikman-type methods, that play an important role in con-
tinuum micromechanics of composites and materials with small volume fractions of pores,
compare [86], have seen only limited use for cellular materials. Hashin-Shtrikman upper
bounds for the elastic moduli can be evaluated for macroscopically isotropic cellular ma-
terials by prescribing vanishing stiffness for the void phase (the lower bounds, however,
vanish trivially). Typically, the elastic moduli of metallic foams lie considerably below
these upper bounds, but for honeycombs it was possible to identify microgeometries that
realize the upper bounds, see [112].

As a consequence, most micromechanical studies of cellular materials in general and of
metallic foams in particular have been based on discrete microgeometrical models. Due
to the high geometrical complexity and irregularity of actual metallic foams such model
microgeometries tend to be highly idealized. One common modeling strategy is based
on studying periodic “model foams”, the thermomechanical behavior of which is fully de-
scribed by appropriate unit cells, see Section 2.3.2. Alternatively, cells or geometrical
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Figure 2.1: Schematic representation of imperfections at the level of indi-
vidual cell walls: Plateau borders (left), corrugated cell walls
(center) and curved cell walls (right).

units may be studied in isolation without requiring them to be space filling. A third type
of approach employs a geometrically fully resolved microregion (“core”) that is embed-
ded in a much larger region in which the microgeometry is not resolved and smeared-out
material behavior is used (“embedded cell models”). Discrete microgeometrical modeling
approaches facilitate the controlled variation of selected geometrical parameters in order
to assess their effect on the mechanical response. These modeling strategies, which have
well-established equivalents in continuum micromechanics of composite materials, allow
studying both the local deformation mechanisms and the corresponding overall behavior,
which can be obtained by homogenization.

2.2 Classification of Microgeometries

This section represents an attempt at systematically classifying the most important types of
cellular microgeometries that have been or may be used for unit cells or in the core regions
of embedded cell models. The main classification criteria are the dimensionality (two-
dimensional versus three-dimensional) and the microscale morphology (regular periodic,
perturbed periodic, random and “real structure” arrangements) of the geometrical models.

Two-dimensional discrete microgeometry models are directly applicable for investigating
the mechanical behavior of honeycombs. Due to their relative simplicity they have also
been used as tools for studying metallic foams in a qualitative way (in the following planar
models are generally referred to as “honeycombs”). The “baseline” regular morphology are
periodic hexagonal honeycombs, which show in-plane elastic isotropy and, in the context
of two-dimensional liquid foams, may be viewed as surfaces of minimal surface energy.
Because hexagonal honeycombs (albeit of reduced symmetry) are applied routinely as
sandwich cores, cellular metals of this type have been closely studied both experimentally
and analytically, compare [80]. Alternative regular microgeometries for two-dimensional
cellular materials were also discussed in the literature [14; 40].
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Figure 2.2: Schematic representation of a honeycomb containing imperfec-
tions in the form of a large hole, cells filled with material, frac-
tured cell walls and geometrical perturbations (from left to right).

In contrast to the regular microgeometry of idealized models, real cellular metals are subject
to morphological defects that tend to lead to softer and weaker mechanical responses.
Periodic two-dimensional models have been an important means for studying the influence
of imperfections such as curved or corrugated cell walls [11; 39; 107], perturbed cell shapes
[42], and non-uniform material distribution between cell walls and cell vertices (Plateau
borders) [106] as sketched in Figure 2.1. Within such honeycomb models local defects can
be introduced into cell walls [11; 12; 95], individual cell walls can be eliminated [12; 104],
vertices and the adjoining cell walls can be removed to leave large voids in the honeycomb
structure [12; 87], and cells or groups of cells can be filled with solid material to assess the
influence of nodal inclusions [12], compare Figure 2.2.

In addition, periodic arrangements of large and small cells [17] may be used to study
influences of relative cell sizes.

Random honeycomb arrangements can be generated on the basis of Voronoi tesselations
[11; 95; 104; 105], which may be interpreted in terms of geometries that emerge when the
fronts of bubbles growing with the same linear rate from randomly distributed nuclei meet.
A different type of random microgeometry are Johnson—Mehl cells [63], a tessellation that
corresponds to cases where new cell nuclei are added while others are in the process of
growing.

Finally, two-dimensional microgeometries may be based on micrographical sections of
metallic foams [20]. Such “real structure” unit cells typically require some manipulation
in the boundary regions in order to achieve periodicity.

Planar models obviously can emulate the behavior of three-dimensional microgeometries
only to a limited extent (note, for example, that in the two-dimensional case there are no
equivalents of open cell and closed cell topologies). Accordingly, there has been growing
research interest in three-dimensional models of cellular materials despite their high de-
mands on computational resources. In the case of open cell foams, beam theory or beam
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Figure 2.3: Regular tetrakaidecahedral model for a closed cell foam [20].

Finite Elements provide comparatively inexpensive solutions for describing the mechani-
cal behavior of the solid skeleton. Micromechanical studies of closed cell foams, however,
require an appropriate modeling of the cell faces and, consequently, shell theories must be
invoked or shell elements must be used, which increases the complexity of the simulations.

Perfectly regular three-dimensional periodic microgeometries can be generated from space
filling regular polyhedra, leading to models based on cubes, rhombic dodecahedra and
regular tetrakaidecahedra (Kelvin structures). None of these arrangements is elastically
isotropic, but tetrakaidecahedral geometries have the advantage of giving face and edge
counts per cell that are similar to the average values found in actual polyhedral foams
[116]. Accordingly, tetrakaidecahedral microgeometries have been widely used for studying
open cell [1; 115] and closed cell [20; 71] foams, compare Figure 2.3. Somewhat more
complex microgeometries were also proposed in the form of regular arrangements of two
populations of polyhedral voids of different size [94].

Most three-dimensional studies of the effects of imperfect periodic cellular arrangements
have been based on closed cell tetrakaidecahedral microgeometries subjected to various
kinds of perturbations. Unit cell models of varying levels of complexity were used to study
the effects of Plateau borders [106], of curved or corrugated cell walls [39; 107], of perturbed
cell shapes [20; 42], and of cell walls that have randomly assigned thicknesses [41].

In analogy to two-dimensional models, Voronoi diagrams may be used to generate irregular
three-dimensional microgeometries for open cell [103; 121] and closed cell foams [22; 42; 59].
Because they typically require large numbers of shell elements, investigations of this type
tend to be computationally expensive.

Three-dimensional real structure models of cellular materials can be generated on the basis
of microtomographical data, each voxel being typically mapped to a Finite Element. Anal-
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Figure 2.4: Classification of micro-mechanical simulation models.

yses of this kind were pioneered by groups studying the mechanical behavior of cancellous
bone [54; 75|, which may be viewed as an open cell foam, and were recently also reported
for closed cell metallic foams [65]. This modeling strategy typically gives rise to ragged
surfaces of the solid skeleton of cellular materials, which may lead to difficulties in analyses
involving large deformations and large strains.

As was outlined in this section, microstructural models for cellular materials can be clas-
sified according to their topology, the regularity of their geometry as well as the nature
and the degree of their imperfection(s). In compliance with the above criteria, Figure
2.4 sketches the classification of the microstructural models developed for this thesis. At
present it is not feasible to examine the combined influence of all parameters that influence
the microstructural geometry. Therefore, the influence of individual imperfections, such
as curved cell walls, is generally studied in isolation. Models following this principle are
symbolized by individual cubes in Figure 2.4. If the prediction of the effective behavior of
real metallic foams is the aim of a microstructural simulation, it is reasonable to include
as many natural imperfections as possible in the model. An example for this category of
models is the 2D “real structure” model presented in Section 2.11.
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2.3 Methods for Micromechanical Modeling

2.3.1 Analytical and Semi-Analytical Methods

When a sufficiently high degree of abstraction is introduced into discrete microgeometry
models of cellular materials, the mathematical description of the micromechanical system
becomes accessible to analytical methods, and closed-form solutions [118] can be obtained.
For cellular 2D structures and open-cell 3D foams the application of linear elastic beam
theory is a typical analytical modeling strategy.

A by now classical example of an analytical modeling approach is the work of Gibson and
Ashby [33], who based their models on single cells, that do not necessarily give rise to
space-filling periodic arrangements, and developed a large body of results on the elastic
deformation, elastic buckling, plastic collapse, brittle fracture, visco-elastic deformation,
creep, and creep buckling of honeycombs, open cell and closed cell foams, see also [7;
31]. Developments of this class of models have included, among others, large deformation
analyses of the buckling collapse of honeycombs [120] and studies on the power-law creep
of honeycombs [5].

Analytical formulae for the elastic behavior of a number of perfectly regular periodic cellular
geometries were given by Grenestedt [40], and scaling relations for arrangements of this type
were published by Christensen [14]. Tetrakaidecahedral cells were used in a series of papers
by Zhu et al. to describe the elastic behavior [123] and the finite deformation compressive
response of periodic open cell [124] and closed cell [71] foams, numerical methods being
used to resolve the resulting equations in some cases.

In addition to studying perfectly regular cellular microgeometries, imperfections of the cells,
such as waviness of cell walls and struts, can be accounted for, compare [11; 39]. Analytical
methods may also be applied to predict the plastic collapse of cellular structures as was
proposed by Santosa and Wierzbicki [94] who presented a kinematic model for the crushing
of a column of truncated cubes.

The attribute semi-analytical is used in this thesis for describing analytical problems, the
solution of which can only be found by numerical techniques. Although a closed-form
solution is preferable in most situations, such approaches are often helpful to determine
the governing mechanisms in a mechanical problem, especially in comparison with more
sophisticated, purely numerical methods like the Finite Element method.

2.3.2 Finite Element Unit Cell Methods
Introduction to the Unit Cell Method

Generally, analytical descriptions can only be used for relatively simple generic micro-
geometries. More complex geometrical arrangements typically have to be analyzed via
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Figure 2.5: Idealized 2D unit cell in the undeformed and the deformed con-
figurations. Displacement vectors and codes for the corner and
edge nodes are given. Single letter codes denote edges, two-letter
codes denote corners.

numerical engineering methods, the Finite Element method [8; 55; 125] having proven the
most popular tool for this purpose. In some Finite Element based studies of honeycombs it
was possible to simulate actual experimental setups, compare [79]. In most cases, however,
unit cell methods were employed.

The unit cell method is a modeling approach for the prediction of the thermo-mechanical
behavior of infinite periodic structures on both the microscale and the macroscale. The
method assumes that the behavior of an infinite periodic structure or phase arrangement
can be represented by a model of finite size constituting a periodically repeating building
block of the geometry in combination with appropriate boundary conditions, which ensure
the periodicity of the structure. The combination of representative building blocks and
boundary conditions is referred to as a unit cell. Unit cells are designed to fill the problem
space seamlessly both in the initial undeformed and in all subsequent simulation states. For
mechanical problems this means that the displacement of those points on the boundary
of the unit cell, which can be mapped onto each other by a translation along a linear
combination of the vectors of periodicity, have to be coupled by kinematic constraints.
Figure 2.5 illustrates the periodicity of the boundary of a deformed rectangular unit cell.

The boundary of the rectangular unit cell in Figure 2.5 consists of the four edges N,S,W,
and E, as well as the four corners NW, SW, NE, SE. The letters in this naming scheme are
abbreviations for the four cardinal points North, South, West, and East. The displacements
of the corners SW and SE are constrained to restrict rigid body movement modes. Under
these constraints, the unit cell can still deform in horizontal and vertical direction, as well
as in a shear-like manner without violating the periodicity of the boundary. It is convenient
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to relate these global deformation modes to the displacement of Finite Element nodes at
the corners of the model. These nodes are commonly called “master nodes”. In Figure 2.5
the nodes NW and SE are master nodes, and their contribution to the overall deformation
of the unit cell is indicated by bold arrows.

To maintain geometrical periodicity, pairs of parallel edges of a rectangular unit cell have
to be coupled in terms of their displacements. In such a pair the degrees of freedom (DOF)
of one edge remain unconstrained. The degrees of freedom of corresponding points on the
opposite “slave” edge are constrained to be identical to those of the unconstrained edge
except for a constant additional offset vector, which is related to the global deformation
DOFs of the unit cell. In the idealized unit cell in Figure 2.5 these offset vectors are
uxnw = {unw,vnw} and usg = {usg,0}, the components of which are related to the
macroscopic strain state € = {4, €4y, Y2y} Of the unit cell by:

_ UsE UNW UNW

Exp = o syy—l—, %y:l—, (2.1)
x Yy Yy

Constraining the corner node SW and the vertical DOF of the corner node SE, choosing
the remaining DOFs of node SE as well as NW as macroscopic master DOFs and the
edges S and W as unconstrained edges leaves the edges N and E to be slaved to the former
entities:

ug(y) = uw(y) + usg (2.2)
ux(z) = us(z) + unw (2.3)

The displacement of the corner node NE is a linear combination of the displacement vectors
unw and ugg of the two master nodes NW and SE:

UNE = UNW T+ UsE (2.4)

In the case of Finite Element models involving rotational DOF's (for example beam or shell
elements) additional coupling equations have to be provided. In the case of a rectangular
unit cell the rotational DOFs ¢ of all corner nodes have to be identical:

PNW = PNE = @PSE = Ysw (2-5)

The rotational DOF's of opposite sides have to be coupled accordingly:

er(y) = ow(y), on(T)=ps(z) (2.6)

A complete description of the set of boundary conditions necessary for a rectangular pe-
riodic 2D unit cell can be found in Table 2.1. Node groups with free DOF's are tabulated
in the columns. Node groups with DOF constraints are listed in the rows. In the first row
(“DOF=0") the fully constrained DOF's of the master nodes are given. In the row “Free”
the unconstrained degrees of freedom of the master or unconstrained nodes are given. The
set of Equations (2.2)—(2.6) is represented by the subsequent rows, where each DOF index
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Slave Master Node Sets
Node Sets | SW |SE[NW [ W [ S
Fully Constrained DOFs
DOF=0 [ 1,2 | 2 | | |
Unconstrained DOF's

Free [ 6 | 1] 12]126]126
Dependent DOFs

SE 6

NW 6

NE 6 | 1] 1,2

E 1 1,2,6

N 1,2 1,2,6

Table 2.1: Degree of freedom (DOF) dependence matrix for general peri-
odic boundary conditions on a rectangular 2D unit cell. The
DOF indices 1,2 and 6 conform to ABAQUS conventions, where

{ula Uz, uﬁ} = {U, v, SDZ}

in the matrix indicates the addition of the respective displacement term to the constraint
equation for the same DOF of the node (set) identified in the leading column.

The fact that all nodes along a boundary are coupled to the free DOF's of unconstrained
nodes predestines the latter to serve as points of load application. It can be shown, that
unit cell models react to concentrated loads on master DOFs like the infinite periodic
structure would react to homogenized applied stresses [108]. Similar to Equation (2.1) the
relationship between the homogenized stress state o = {044, 0yy, 04y} and the concentrated
horizontal and vertical nodal forces H and V involves the side lengths [, and [, of the
rectangular unit cell:

H. )% H
Opg = SE, Oyy = NW, Opy = NW, (2.7)
I, I I,

With the present definition of [, and [, as the initial side lengths of the unit cell, these
stress components are defined as nominal stress measures. The extension to true stresses
in the large strain domain is straightforward and involves the consideration of the actual
side lengths.

The same scheme can be applied to three-dimensional unit cells. Figure 2.6 (left) shows
a naming convention for identifying corners, edges, and faces on a cube-shaped unit cell.
The identifiers Top and Bottom are introduced to account for the third spatial dimen-
sion. Three-letter identifiers denote vertices, two-letter identifiers denote edges and single
letter identifiers denote faces. Figure 2.6 (right) depicts the same unit cell in a general
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Figure 2.6: Default identifiers for the node sets on the unit cell cube (left)
and general deformation state of the 3D unit cube (right).

macroscopic deformation state, with three normal and three shear deformation degrees of
freedom being active. Unlike Figure 2.5, this figure does not show possible fluctuations of
the local periodic deformation field.

A detailed table of the dependences of the DOFs of Finite Element node sets representing
corners, edges and faces of the cube-shaped 3D unit cell can be found in Table 2.2. Each
row of the table translates to constraint equations for the DOF's of the constrained node
sets (left column) involving the marked DOF's of the master nodes and the unconstrained
node sets as listed in the right columns. The constraint equation with the highest number
of independent terms (3) can be found for the z-displacement uygr of the corner NET:

UNET = USEB 1+ UNwB + UswT (2.8)

Figure 2.7 shows the successful validation of the proposed set of periodic kinematic bound-
ary conditions; a large 3D unit cell model with a closed-cell tetrakaidecahedral topology is
displayed. The cell walls are modeled using shell elements and, hence, periodic coupling
conditions have to be provided for rotational DOFs. The principal deformation modes,
uniaxial deformation and shear deformation, are shown to be handled correctly.

Some care is required in the selection of unit cells for a given problem. In order to provide
reliable results the unit cell ideally should be a proper representative volume element, the
geometry of which contains the full statistical information on the material’s microgeometry,
compare the discussion in [49]. For modeling the inelastic behavior of cellular materials,
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Slave Master Nodes Unconstrained Node Sets
Node Sets || SWB ‘ SEB ‘ NWB ‘ SWT || SB ‘ WB ‘ SW H B ‘ S ‘ A%
Fully Constraint Degrees of Freedom
DOF=0 | 123 [23 ]| 3 | |

Unconstrained Degrees of Freedom
Free [ 456 | 1 | 12 [123]1.6]1.6]1.6][1.6]1.6]1.6
Degree of Freedom Dependence at Corners
SEB 4,5,6
NEB (3)4,5,6 1 1,2
NWB 4,5,6
SWT 4,5,6
SET 4,5,6 1 1,2,3
NET 4,5,6 1 1,2 1,2,3
NWT 4,5,6 1,2 1,2,3
Degree of Freedom Dependence at Edges
EB 1 1...6
NB 1,2 1...6
SE 1 1...6
NE 1 1,2 1...6
NW 1,2 1...6
ST 1,2,3 || 1...6
ET 1 1,2,3 1...6
NT 1,2 1,23 || 1..6
WT 1,2,3 1...6
Degree of Freedom Dependence at Faces
E 1 1...6
N 1,2 1...6
T 1,2,3 1...6
1...6 ... Degrees of freedom {u,v,w, ¢z, ¢y, ¢, }
DOF=0 ... Fully constraint degrees of freedom

Table 2.2: Degree of freedom dependence matrix for general periodic bound-
ary conditions on a cube-shaped 3D unit cell.
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Figure 2.7: Predicted undeformed (dark) and deformed configurations of a
3D unit cell model composed of multiple tetrakaidecahedral cells.
The deformed configurations for uniaxial compression (left) and
combined shear (right) are shown.

the unit cell must be designed to allow for very large local deformations, and self contact
between the cell walls has to be provided for if the behavior in the densification range is
to be explored.

Figure 2.8 shows the predicted periodic deformation pattern of an irregular 2D honeycomb
with two cell size populations and cell walls with geometric imperfections. The unit cell was
subjected to a biaxial compressive deformation by prescribing the vertical displacement
of corner NW and the horizontal displacement of corner SE. The resulting horizontal
displacement of corner NW indicates the activation of a macroscopic shear deformation
mode, and, hence, anisotropic behavior of the microstructure. The dashed line in Figure 2.8
outlines a cell which was approximately circular in the undeformed configuration and has
collapsed completely during the deformation process.

In this example, the contact across the unit cell boundary could be captured quite well,
but this is not necessarily always the case: cells that are split by the unit cell boundary
lack a contact partner for self-contact in a conventional unit cell model. In Section 2.4 a
modeling approach, which overcomes this problem, will be discussed.

The choice of the unit cell geometry is often influenced by the necessity of allowing for
realistic deformation and buckling patterns, which in most cases precludes the use of simple
symmetry boundary conditions [89]. Figure 2.9 shows predicted periodic buckling patterns
for regular hexagonal honeycombs under uniaxial compression. While for compression in
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Figure 2.8: Predicted deformed configuration for an irregular 2D honeycomb
unit cell model under biaxial compression. The undeformed con-
figuration is depicted by red lines. Red arrows mark the dis-
placement vectors of the corners of the unit cell. The black lines
outline the deformed configuration of the actual Finite Element
model, while the blue lines illustrate the periodic pattern, in
which the unit cell fills the model space. The dashed line sur-
rounds a cell which has collapsed completely.
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Figure 2.9: Predicted buckling patterns for unit cell models of regular hexag-
onal honeycombs under uniaxial compression in horizontal (left)
and vertical direction (right).

horizontal direction (Figure 2.9, left) the periodicity of the buckling pattern is not readily
apparent, the deformed configuration for compression in the vertical direction (Figure 2.9,
right) suggests that a much smaller unit cell would suffice to describe the buckling patterns.
In all cases, of course, there is a requirement to keep the complexity of the unit cell and
thus the computational costs within acceptable limits.

When using unit cell descriptions it is important to keep in mind that the resulting models
are periodic in all respects. As an example, inhomogeneous densification of cellular materi-
als as predicted by unit cell models will always take place in periodic patterns, the period of
which is strongly influenced by the choice of the size of the unit cell (compare Figure 2.8).
Single crack tips (as opposed to periodic patterns of cracks) cannot be handled by periodic
microgeometries, and free surfaces are restricted to layer-like geometries in which at least
one direction is non-periodic. For these types of problems, embedded cell approaches are
the methods of choice [1; 89].

Preprocessing Techniques

All micromechanical simulations in this study were performed with the Finite Element
code ABAQUS [52]. For the simplification of some mesh and model generation tasks some
preprocessing tools were developed which will be discussed briefly in the following.
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Automatic Generation of Periodic Boundary Conditions. In the previous sec-
tion an introduction to the definition of periodic boundary conditions on the boundary of
rectangular 2D and cube-shaped 3D unit cells was presented. Preprocessing tools, which
were developed in the course of the present thesis, provided for an automatic generation
of input code containing the definition of constraint equations necessary for a successful
unit cell analysis. This task involved the determination of the unit cell dimensions, the
classification of the Finite Element nodes in corner nodes, edge nodes, face nodes and
non-boundary nodes (mutually exclusive) as well as the correlation of unconstrained and
constrained nodes.

The following bit flag based encoding scheme proved advantageous for the classification of
the Finite Element nodes:

Identifier T| B|E|W|N|S
Bit flag value |32 |16 | 8 | 4 | 2 | 1

Employing this scheme, the node set membership of a Finite Element node can be coded
without ambiguity. Masks of 6 bits can then be used to filter the required nodes from the
database of the preprocessor. This is a prerequisite for a speed-efficient implementation of
the algorithm that searches for the partner of unconstrained nodes.

Controlled Perturbation of Finite Element Meshes. For studying the influence
of geometrical imperfections in a systematic way, it is advantageous to have a means of
perturbing arbitrary Finite Element meshes in a geometrically and statistically well defined
way. A preprocessing tool with the purpose of perturbing 2D beam Finite Element models
was developed for this thesis. This tool allowed for an isolated, or combined, perturbation
of Finite Element node positions by

e shifting the vertices of a 2D beam structure in a statistically well defined way while
maintaining straight cell edges,

e shifting cell wall nodes to create cell walls with sinusoidal wiggles,

e shifting cell wall nodes to achieve curved cell walls.

Figure 2.10 (left) shows a regular hexagonal honeycomb prior to the perturbation prepro-
cessing step. In Figure 2.10 (right) the same model is shown after a controlled disturbance
of the node positions. Applications of the mesh perturbation tool will be demonstrated in
Sections 2.6 to 2.8.

Automatic Creation of Contact Surfaces. For unit-cell simulations, which involve
the deformation of unit cell models up to very high macroscopic strains, compare Figure 2.8,
it is advantageous to have a tool which facilitates the creation of contact surfaces on the
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Figure 2.10: 2D Beam model of a hexagonal honeycomb; original geometry
(left) and geometry perturbed by a custom preprocessing pro-
gram (right).

unit cell models. For 2D beam models, this capability was implemented in a preprocessing
tool which was able to identify the topology of a plane beam model by detecting the
connectivity of the beam elements.

Figure 2.10 (left) shows a 2D unit cell comprised of hexagonal honeycombs. The surfaces
on this beam model were correctly identified by the preprocessing tool; they are displayed
as thin lines which are drawn with a small offset in the direction of the surface normal.

Prediction of the Elastic Behavior

The most basic aspect of the mechanical material characteristics of inhomogeneous mate-
rials is their linear elastic behavior, which can be described in terms of an overall elasticity
tensor or appropriate effective moduli (compare Section 4.3.3). Linear analysis requires
comparably little effort, and, therefore, the linear elastic properties of a wide range of cel-
lular microgeometries are well researched. As a consequence, the focus of the microstruc-
tural investigations in this thesis rests on the prediction of the nonlinear behavior of cellular
metals.

Prediction of the Onset of Yielding in the Microstructure

Cellular metals typically have small linear elastic ranges, beyond which nonlinear behavior
sets in due to finite deformations, yielding, loss of stability or fracture at the microscale.
In contrast to bulk metals, the elastic range of metallic foams is also limited under purely
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hydrostatic loading. Micromechanical analyses of such behavior may be carried out in
terms of material characterization by simulating, for example, uniaxial or multiaxial tests
to obtain homogenized stress versus strain curves. In terms of the overall behavior the
onset of nonlinear responses can generally be described via appropriate surfaces in stress
space, of which the classical von Mises yield surface for plastic yielding of bulk metals
is a well-known example. Analogous surfaces for cellular metals can be obtained from
micromechanical analyses by monitoring the material response while following loading
paths that are radial in macroscopic stress space. Deviations from linear overall behavior
are mainly due to local yielding (typically at the transitions between cell walls and cell
edges) or to local elastic buckling of the cell walls or struts. The onset of nonlinear behavior
is, in fact, caused by yielding in the majority of cases, and microscale buckling plays an
appreciable role only for highly regular microgeometries, for which the above surfaces may
be viewed as “generalized yield surfaces”. If only the onset of plastic yielding is considered
in this context the superposition of elastic solutions is possible, and only one simulation
per dimension of the macroscopic stress space is required for determining the overall yield
surface of macroscopically isotropic materials.

The algorithm for the determination of the initial yield surface and for tracing the evolution
of the yield surface during a nonlinear deformation process will be outlined in the following.
The term “yielding” is used in a very strict sense here, because fulfilling the (local) yield
condition

F(e)=0 (2.9)

anywhere in the unit cell is interpreted as the onset of both local and macroscopic yielding.
In Equation (2.9), the yield function F (o) is introduced as a scalar function, which returns
negative values for stress states that do not cause yielding and zero for stress states which
are able to cause plastic deformations (the framework of Plasticity Theory will be discussed
in depth in Chapter 4). Often, the yield function takes the form

F(0) = Gy (0) — 03y, (2.10)

where the equivalent stress oeqy (o) is a scalar measure for the tendency of the (local) stress
state o to cause (local) yielding in the material. For use in Equation (2.10) this equivalent
stress has to be formulated such that it can be directly compared to the uniaxial yield
stress oyg of the bulk material.

In practice, it will be virtually impossible to detect local, initial yielding in experiments,
which rely on the occurrence of measurable plastic deformations for the definition of the
yield stress. Consequently, the determination of yield surfaces with micromechanical mod-
els is expected to show important trends in the influence of individual microgeometrical
parameters on the macroscopic behavior of the foam.

For foams with a metallic solid phase, the von Mises yield criterion is applicable for

determining the onset of local yielding. This local yield criterion can be expressed in

Nye (vector) notation [77], that is, in terms of the vector of stress components ot =
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{0-18187 Uyya UZZ; Uyz; UZ.GU, ny}a glVlng

1

FMises(o') = 5 O'TPO' — 0'}2,3 = 0, (211)

where o is a n X 1 (pseudo) vector of local stress components and P is a constant n x n
matrix [15]. For general 3D stress states (n = 6) P becomes:

2 -1 —1
-1 2 -1
p_| 1 -1 2 (2.12)
6
6
- 6_

Taking into account a possible local residual stress state ®ES, which is inside the local

yield surface in stress space, and a linear elastic response of the bulk material, the total
vector of stress components o in Equation (2.11) can be expressed as the sum of #*¢ and
the product of a load multiplier A and a vector of load induced stress components Yo,

o) =fg + )\, (2.13)

as long as o () is a stress state inside the von Mises yield surface, that is, Fiises(o(N)) <
0. The vector (\Po) describes the contribution of a stress field induced by an applied
macroscopic load to the local stress state.

To calculate the load multiplier Ay, which would cause the equivalent stress to reach the
yield strength of the bulk material, the expression (2.13) can be inserted in the yield
criterion Equation (2.11):

(%o + A, DO')T P ("o + )\, "o) — ols = 0. (2.14)

DO | =

Since P is a symmetric matrix, the product (RESO'TP DO') is equal to (DO'TPRESO') and
Equation (2.14) can be rewritten in the form of a second order equation for A,:

A (PeTP o) +2y (20T PPo) + (TP e — 207%) =0 (2.15)
v 1 ’

The two solutions /\§1’2) can then be calculated with the well-known formula:

\(12) —b+ Vb —4ac

y 2a

(2.16)

For each stress evaluation point ¢ in the Finite Element analysis it is possible to calculate
a load multiplier /\§Z), which in connection with the known applied macroscopic stress state
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Figure 2.11: Verification example for the prediction of initial yield surfaces:
cylindrical yield surface corresponding to the yield condition of
Jo plasticity in a solid material.

would lead to yielding in the evaluation point. The critical global load multiplier A, causing
the first local fulfillment of the yield condition in the structure can be found for a radial
loading path as the local load multiplier with the smallest positive value: Ay = min ()\y ))
for all /\§,i) > 0.

Since, here, the determination of yield surfaces is based on the assumption of linear elastic
deformation prior to the situation at which the local yield condition is met, the local load-
induced stress states Po can be calculated by superimposing stress fields obtained by the
analysis of unit load cases.

The outlined algorithm was implemented in a Finite Element postprocessor program. Fig-
ure 2.11 shows the result of a verification example based on a single element test and the
application of the von Mises yield criterion. In three subsequent linear elastic analysis
steps the element was loaded with a unit load in the direction of a different coordinate
axis. By feeding the resulting stress states into the postprocessor it was possible to recover
the yield surface of Jo (von Mises) plasticity, which corresponds to a cylinder along the
hydrostatic stress axis in the principal stress space, see Figure 2.11.

The above concept can also be used to follow the evolution of the yield surface for a pre-
scribed macroscopic loading path. To do this, the macroscopic load is applied incremen-
tally, and complete unloading is carried out after each step followed by an evaluation of the
new yield surface under the consideration of the residual stress state in the microstructure.
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This may again be done by superimposing elastic solutions.

A complete analysis for tracing the evolution of the yield surface consists of the following
independent simulation runs:

1. An analysis performing a linear perturbation step for each global unit load component
and subsequent calculation of the initial yield surface.

2. A nonlinear analysis for a given global radial load path, subdivided into increments
each of which can be used as the starting configuration for step 3.

3. An analysis, which recovers an arbitrary deformation state from step 2, and performs
an unloading step during which the applied load is removed. This way the residual
stress state caused by the plastic deformations in the model is obtained.

4. A linear perturbation analysis for each global unit load component directly follow-
ing step 3. With these results, the sequential yield surface can be predicted under
consideration of the residual stress state *5r(z,y, 2) obtained in step 3.

If desired, steps 3 and 4 can be repeated with different increments from step 2.

The evaluation of Equation (2.15) for determining the critical local load multiplier is only
straightforward as long as the yield stress 0,5 remains constant during the deformation,
that is, hardening does not occur (compare Chapter 4). Hence, the assumption of elastic—
ideal plastic bulk material behavior simplifies the algorithm considerably.

Additionally, it should be noted, that the application of linear superposition analyses
is limited to the small deformation regime. In cellular metals geometrical nonlinearities
(caused, for instance, by marked bending of cell walls) may give rise to noticeably nonlinear
overall responses even before yielding sets in.

Prediction of Collapse and Fracture

As soon as a foam is subjected to increasing compressive stresses a load will be reached
at which the first collapse of a cell occurs. In metallic foams the initial collapse of a
cell under these conditions tends to be followed by growth of the collapsed region, which
typically takes place at stress levels that show only limited variation, giving rise to a so-
called plateau region in the overall stress versus strain behavior. When a considerable
percentage of cells have been “consumed” the foam densifies, the plateau region ends, and
a much stiffer response sets in. The accumulation of considerable compressive strains at
nearly constant stresses is of particular interest for cellular metals that are to be employed
for impact energy absorption. Collapse stresses under uniaxial loading have been studied
for many cellular morphologies and for various kinds of microgeometrical imperfections.
For general load cases the initial collapse stress states form an envelope surrounding the
initial yield surface, which may be called a collapse surface. For the point-wise evaluation
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of collapse surfaces fully nonlinear analyses along individual load paths are required, see
Section 2.11.

Relatively little work has been reported on the modeling of fracture of metallic foams,
although it is the dominant failure mechanism under tensile macroscopic loading. Embed-
ded cell models provide a flexible approach for studying cracks in idealized cellular metals,
compare Section 2.12.
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Figure 2.12: Left: Section through an aluminum foam produced by the pow-
der metallurgical route (courtesy Institute of Materials Science
and Testing, Vienna University of Technology). Right: Model
geometry.

2.4 Influence of Material Distribution in the Cell Walls

2.4.1 Introduction

The production of metallic foams typically involves the solidification of a molten precursor
material into an appropriate shape. In the liquid state a redistribution of material driven
by surface tension and internal pressure results in the formation of concave transition
regions between the cell walls, known as Plateau borders, and give rise to non-uniform cell
wall thicknesses, compare Figure 2.12. This phenomenon may influence the mechanical
behavior of the foam on both the micro- and the macroscales and has, accordingly, been
the subject of research interest.

Simone et al. [106] developed unit cells for hexagonal honeycombs and tetrakaidecahedral
foams in which Plateau borders were modeled by appropriate curved and parallel regions.
Their results indicate that the distribution of material in the cell walls has little influence
on the Young’s modulus and only a moderate effect on the uniaxial yield strength of closed
cell metallic foams. A different approach was followed by Chen et al. [11], who studied
honeycombs with wall thicknesses that increase linearly between the middle of the walls
and the vertices. This simplifies the mathematics of the problem sufficiently for closed-form
analytical solutions to be obtained for the overall yield surfaces of the models.

In the following, several aspects of the influence of Plateau borders on the effective me-
chanical behavior of regular hexagonal honeycombs are studied, including the initial overall
yield surface and the behavior under uniaxial crush deformation.
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2.4.2 Method

Geometry

In the microstructural cross-section of a metallic foam in Figure 2.12 (left) the curved tran-
sitions between adjacent cell walls are apparent. The figure also shows other imperfections
like non-uniform cell wall thickness (compare Section 2.5), curved cell walls (compare Sec-
tion 2.6) and different cell sizes (compare Section 2.8). To study the influence of Plateau
borders in isolation, a regular hexagonal honeycomb model is proposed. Figure 2.12 (right)
shows a geometrical building block of this model.

The geometry of the model is fully described by the honeycomb edge length [, the concave
radius of the cell wall transition R, which will be referred to as “Plateau border radius” in
the following, and the thickness ¢, of the straight part of the cell wall. The out-of-plane
thickness b completes the set of geometrical parameters.

The dimensions of the model honeycomb have to be related to the apparent density py; on
the one hand and a measure for the size of the Plateau border on the other hand. For this
purpose, the in-plane area filled with solid material is partitioned into two sections: the
area A, contained in the straight cell walls and the area A, contained in the cell vertex
formed by the Plateau borders.

The total area A, of a cell vertex with Plateau borders is given by

te\> R?
Ap:\/§<R+5) —% (2.17)

The total area Ay, of a straight cell wall section is

2R+tw)
V3

A triangle containing one vertex and the symmetry halves of the three adjoining cell walls
can be considered as a geometrical unit cell for the honeycomb. The total area A; of the
representative triangular cell is

Ay =ty (l - (2.18)

Ay (2.19)

= % 12
4
The relative density pre of a cellular material is defined as the quotient pr/ps of its absolute
apparent density pr and the absolute density ps of the bulk material. The relative density
can also be expressed in terms of volume, or cross-sectional area fractions, the volume, or
area, of the solid phase being the numerator and the volume, or area, of the overall volume
being the denominator. With the definitions (2.17) to (2.19), the relative density p. can

be calculated to p 5 4
+ 94w
Prel = pT2 (2.20)
t
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Figure 2.13: Geometrical parameters for aluminum honeycombs with
Plateau borders. The shaded area indicates unrealizable combi-
nations of ¢ and ®. The hashed area indicates relative densities
below p;,, that is, vanishing thickness ¢ for & — 1.

Finally, the size of the Plateau border can be described by the ratio ® of the area contained
in the cell vertex and the total solid area in the representative triangular cell:
Ap

g %Aw (2.21)
For a given honeycomb edge length [, a given relative density p, and a desired volume
fraction ®, the geometric parameters R and %, can be determined by solving the system
of equations (2.17)—(2.21) numerically for these parameters. Cell wall thickness values and
Plateau border radii, both normalized with respect to the the honeycomb edge length,
can be found in Figure 2.13 as functions of the Plateau border area fraction ® and the
honeycomb density. The absolute density values associated with the dashed lines in Figure
2.13 assume an aluminum bulk material with an absolute density of 2.7 g/cm?® (2700

kg/m3).
The range of admissible density and volume fraction values is limited by two boundary

cases: (a) perfect honeycombs with a sharp corner (R = 0) instead of a smooth transition
and (b) cases of vanishing cell wall thickness for & — 1.

For a perfect honeycomb (R = 0) with uniform cell wall thickness ¢, along the honeycomb
edge, the relative density p. is correlated to the cell wall thickness by

2 |ty 1|ty

prei(tw/l) = 7 [7] 3 [7]2 (2.22)
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Lower limits of the Plateau material fraction ®,,;, and the cell wall thickness thin)

perfect honeycombs can be given directly in terms of the relative density pre:

1— V1= pw
(I)min(prel) - Prel (223)
1+ V 1- Prel

#min) (o 1) = 1V/3 (1 /1= prel) (2.24)

The grey area in Figure 2.13 (left) covers ®— pairs that violate the condition ®(pre) >
®in(pre1) and, hence, do not have a physical meaning.

For ® = 1 and relative densities below p%, = 1 —7/(2v/3) = 0.0931, the cell wall thickness
is zero. In Figure 2.13 (left) the hashed area covers ®—¢ curves for which the condition of
vanishing cell wall thickness applies for & — 1. For relative densities above p},, the cell
wall thickness for honeycombs with voids in the form of circular cylinders (® = 1) is given

by:

for

b — V3 — 1| Y3 (L= Pre) (2.25)

™

The local cell wall thickness ¢(z) within the Plateau border section can be expressed as a
function of the distance x from the center of the honeycomb vertex:

t(:v)=2R+tw_%\/8R2_4Rtw—(tw)2+8\/§R$+4\/§th_12x2 (2.26)

Admissible values for z in Equation (2.26) are l,p < x < [,, where

p o tet R(2 —/3)
p0 2\/3
is the z-coordinate marking the intersection of the Plateau border and the symmetry

plane, and [, is the width of the Plateau border, that is, the axial location of the transition
between Plateau border and cell wall:

(2.27)

L 2R+ ty

p /3
The length [, = [ —2 [, denotes the length of that part of the honeycomb edge that shows
a constant wall thickness.

(2.28)

Applied Stresses and Local Stress State

Subjecting a regular hexagonal honeycomb with variable cell wall thickness ¢(z) to macro-
scopic stresses 0., and oy, in the horizontal and in the vertical directions causes local
stresses, which can be split into contributions from bending moments, normal forces, and
shear forces. Plane stress conditions are assumed in the following considerations.

In the schematic diagram below the global x and y directions are defined in relation to the
vertical honeycomb edges (v) and the inclined honeycomb edges (h):
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The stresses due to normal forces in the vertical honeycomb edges (v) and the inclined
edges (h) can be related to the applied stress state by:

FLOTV AR e

Both components of the vector of applied stresses (0,4, 0y,) cause bending moments in the
oblique cell edges, but not in the vertical edges. Along the skeletal lines of the oblique
edges, the bending moment varies linearly between a maximum value at the proximal
corner and a moment of the same magnitude but opposite sign at the distal corner. In
the middle of the oblique honeycomb edges (z = [/2) the bending moment changes its
sign and, hence, vanishes: M(l/2) = 0. For uniaxial applied stress states the maximum
moment M., relates to the applied stress o by

3
Munax = o bli’o (2.30)

The linear bending moment distribution along the cell wall is given by

The bending moments M,, and M,, caused by the two applied stress components o,
and o0y, respectively, have the same relative magnitude, but opposite sign. The total
bending moment can be derived by a linear superposition of the individual bending moment
contributions:

M(z) = Myo(2) — My, (a) (2.32)

The axial stresses o, and o in the upper and the lower fibers of the cell edge can be calcu-
lated by superimposing the bending stresses M (z)/W (z) and the normal stress distribution

o from Equation (2.29):

=%

l 9l |1
@(3%35 + oyy) £ (00z — 0yy) % [5 - ac] (2.33)

Shear stresses are generally neglected in this investigation.

Ou/l(m) =
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Onset of Yielding (Effective Initial Yield Stress)
Considering a bulk material with a yield stress of oyg, the condition
max(|oyl, |o1]) = oys (2.34)

has to be fulfilled for the onset of yielding at a critical position x*, for which the optimality
criterion do(z)/dz = 0 is fulfilled with o(z) being either o,(x) or oj(xz). The critical
axial positions of the locations with the highest axial stresses in the outer fibers of the
cell wall can be determined numerically for general applied stress states. For the plane
“hydrostatic” biaxial case 0., = 0y, = p the critical applied stress p* can be given directly:

p= io—\g [tﬂ (2.35)

If no strain hardening is assumed for the bulk material this macroscopic yield stress is equal
to the macroscopic collapse stress in the regular hexagonal configuration, because, owing
to the uniform distribution of axial stress for this loading case, the whole cross section of
the cell wall yields at once as soon as the yield stress is reached at the thinnest portion of
the cell wall.

The optimization problem posed by Equation (2.34) was solved numerically with the sym-
bolic and numerical mathematics code Mathematica [117]. The minimization function
FindMinimum[f(x)] was used at the core of the solution. Four cases of objective functions
f(z) were considered: oy(z), —oy(z), o1(z), and —oy(x). A calculation of absolute values
for oy, (z) with the Abs[f(z] function had to be abandoned, because the occurrence of
spikes caused numerical problems. Furthermore, special provisions had to be taken to
prevent execution problems owing to the occurrence of boundary extrema. Lastly, plane
hydrostatic stress states 0., = 0yy = p* caused uniform axial stress states in cell walls of
uniform thickness, leading to an indefinite numerical problem. This case was trapped, and
Equation (2.35) was applied directly.

Uniaxial Effective Collapse Stress

Loading beyond the elastic limit discussed above causes plastic deformation and the spread-
ing of a plastic zone throughout the honeycomb wall sections. At a certain point, the cross-
section cannot withstand any further increase of the applied loads and starts to collapse as
soon as the admissible peak load is exceeded (see, for example, Mang and Hofstetter [66]).
An estimate for this peak or limit load will be derived in the following.

The moment M, for a rectangular cross-section of height #(z) and width b in the fully
plastified state is given as:

My(z) = tz("”) oys (2.36)
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The critical axial force leading to plastic failure of the rectangular cross-section can be
determined by

Npl(.I) =b t(ﬂ?) Oys (237)
For a constant axial force N the critical moment M*(z) can be found by solving the
interaction relationship:
M N 7
4 —1 2.38
rreRd b (2:39)

for M*(z) [66]. For the regular hexagonal honeycomb, the axial force N can be expressed
in terms of the applied stress o, by

3
N = % bloy, (2.39)
For a rectangular cross-section b x t(x) the applied stress, which would cause plastic failure
of the cross-section, can be calculated by solving the identity relationship
M*(z,0,,) = My(z,0,,) (2.40)

Yy

for oy, (@, 0ys), the necessary applied stress to cause local plastic failure. The global collapse
stress oy, can then be calculated by minimizing a;“y(x) by variation of x. This operation
was performed semi-analytically with the code Mathematica [117].

Finite Element Model

For a more detailed resolution of the stress fields in the honeycomb and a simulation of
crushing deformation up to large strains, a Finite Element model of a regular hexagonal
honeycomb with Plateau borders was developed.

Figure 2.14 shows the setup of the unit cell. The model consists of two neighboring hon-
eycomb cells offset by v/3/21 in the vertical direction and sharing a cell edge. For this
model to be a representative volume element of an “infinite”, space-filling honeycomb, ap-
propriate boundary conditions have to be prescribed. These boundary conditions enable
the unit cell to deform in a natural, periodic pattern, which was elsewhere demonstrated to
appear in the uniaxial compression of elastomeric honeycombs, see Figure 2.15. The peri-
odic coupling conditions are indicated by arrows in Figure 2.14. To trigger non-symmetric
deformation patterns like the one depicted in the inset picture in Figure 2.14 it is necessary
to introduce small geometric imperfections. The custom pre-processor developed for the
generation of the unit cell models supports two kinds of imperfections: curved cell walls
and cell wall wiggles. The initial deformations used to trigger the desired collapse mode
for vertical uniaxial compression are overemphasized in Figure 2.14.

The Finite Element mesh was composed of 8-node solid 2D elements with bi-quadratic
interpolation functions. Typically, six elements were used in edge thickness direction.
Plane stress conditions were prescribed.
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@...Periodic
boundary
conditions

Figure 2.14: Deformation constraints and periodic boundary conditions on
the Finite Element model of two honeycomb cells with Plateau
borders.

-

Figure 2.15: Periodic buckling mode of an elastic honeycomb under uniaxial
compression in the vertical direction, from Gibson and Ashby
[34].
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Model Material Parameters
Density p = 2.7g/cm?
Young’s modulus E = 70 GPa
Poisson ratio v = 0.33
Yield stress oys= 200 MPa
Hardening modulus E;= 700 MPa

Table 2.3: Bulk material parameters.

Figure 2.16: Predicted symmetric (left) and periodic (right) deformation
modes of hexagonal honeycombs with Plateau borders.

Jo plasticity with isotropic hardening was used as the constitutive theory for the cell wall
material. The uniaxial stress—strain relationship was idealized as bilinear with a post-
yield modulus E; of E/100. The parameters listed in Table 2.3, which were used for the
calibration of the bulk material, are intended to describe an idealized aluminum material.

Investigations of the deformation patterns of honeycombs in the large strain regime, which
determine the materials’ energy absorption capacity, can also be carried out with this unit
cell model. In such simulations the initiation of densification can be identified from the
occurrence of surface self-contact in the collapsed voids, the modeling of which required
special provisions in terms of the unit cell geometry; in the proposed unit cell all boundaries
run within the cell walls, which means that no contact has to be accounted for at the outer
boundary of the model. The free surface on the inside of the honeycomb cells is a closed
surface and, therefore, suitable for detecting self-contact. Such unit cells have been found
to answer well for the self-contact problem, compare Figure 2.16 which shows symmetric
and periodic deformation modes before the onset of densification. The main advantage of
unit cells of the above type is that all free surfaces of the voids face inwards, allowing for
a straightforward use of contact algorithms.
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Figure 2.17: Predicted effective stiffness of hexagonal honeycombs normal-

ized by the stiffness Fy for ® = ®,,;, as a function of the material
distribution between walls and cell vertices (Plateau borders).

2.4.3 Results and Discussion
Elastic Stiffness

The effective elastic stiffness of regular hexagonal honeycombs with Plateau borders was
determined by compressing Finite Element models with perfect geometric symmetry, that
is, without curved walls or wiggles, in the vertical direction. An example of the resulting
symmetric deformation mode is depicted in Figure 2.16 (left).

The predicted structural stiffness is expressed by the normalized effective modulus Es in
Figure 2.17. The reference modulus E, for the curves in this diagram is the modulus
determined for a perfect honeycomb without Plateau border transition regions (R = 0).
The solid lines correspond to absolute densities of 0.1, 0.3, and 0.5 g/cm?, with aluminum
(ps = 2.7 g/cm?) being the bulk material. The dashed lines representing relative densities
between 0.03 and 0.12 are results derived in a similar Finite Element study by Simone
and Gibson [106]. They agree very well with the ones predicted by the proposed unit-cell
model.

The results show an increase of the effective elastic modulus for volume fractions ® up to
approximately 25%. At this point, the predicted stiffness of the honeycomb with the lowest
density shows a maximum and starts to drop for increasing volume fractions. The relative
density of this honeycomb (pre = 0.037) is below the critical relative density pi; = 0.0931
for vanishing cell wall thickness. Hence, the effective modulus tends towards zero for
® — 1.
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The honeycomb of intermediate density (0.3 g/cm?®) gains elastic stiffness up to a volume
fraction of ® =~ 65%, where the elastic stiffness is 35% above the one of the perfect reference
honeycomb. For higher volume fractions, the effective elastic modulus drops again until it
reaches a value of 70% Ey at ® = 1. In this case ® = 1 means that the cell wall length
l, becomes zero, while the cell wall retains a finite thickness ¢,,;, according to Equation
(2.25).

For the honeycomb with the highest density (0.5 g/cm?) an increase of the Plateau border
volume fraction ® leads to a monotonic increase of the effective stiffness, with the highest
stiffness for ® = 1 being 55% higher than the stiffness of the corresponding perfect honey-
comb. For this density, the formation of Plateau borders is beneficial for arbitrary values
of ®.

The influence of the mass distribution between the cell walls and the cell vertices on the
predicted effective stiffness shows the two contrary effects caused by a redistribution of
material in the honeycomb:

1. With increasing values of ®, material is shifted from regions subjected to small local
bending moments, such as the center of the edge, to regions, where the local bending
moment is maximal, that is, close to the vertices. This redistribution leads to a
stiffening of the microstructure.

2. On the other hand, increasing ® implies a reduction of the thickness of the cell wall,
thus reducing the stiffness of the straight-walled cell sections.

Which of these two mechanisms is the governing one depends on the relative density and
on the vertex volume fraction ®. For the aluminum honeycomb with 0.5 g/cm? absolute
density the stiffening effect dominates for all values of ®. For lower densities, the influence
of the two mechanisms is more balanced, and the effective stiffness shows a maximum for
intermediate ® values.

Onset of Yielding

With the semi-analytical model governed by Equation (2.40) and the numerical method de-
scribed in Section 2.3.2, it is possible to predict the onset of local yielding for proportional,
that is, radial loading paths.

Figure 2.18 shows deformed configurations of a perfectly regular aluminum honeycomb
with an absolute density of 0.5 g/cm® and three different vertex volume fractions (®=10%,
50%, and 90%). In the top row, the symmetric deformation modes under vertical uniaxial
tension are depicted. In the bottom row, the deformed configurations for uniaxial tension
in the horizontal direction are shown. All configurations were predicted by means of linear
elastic analyses.
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Figure 2.18: Predictions for undeformed and deformed configurations for uni-
axial tension in “vertical” (top row) and “horizontal” direction
(bottom row) for a honeycomb of 0.5 g/cm® density and differ-
ent volume fractions ®.
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Figure 2.19: Applied macroscopic stress states (o}, o;,) leading to the onset
of yielding in hexagonal aluminum honeycombs of a density of
0.5 g/cm? and different vertex volume fractions ®. The dashed
lines represent semi-analytical predictions.
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The corresponding curves representing applied macroscopic stress states (o7, ogy), that
lead to the onset of local yielding, are shown in Figure 2.19. In this diagram, the abscissa
represents plane hydrostatic stress states o,, = o0y4,. The ordinate marks applied stress
states of pure shear o,, = —0y,,. Uniaxial stress paths are projected to straight lines with
a gradient of +2:1. Solid lines correspond to Finite Element results, and dashed lines

represent semi-analytical predictions.

For uniaxial stress states, the semi-analytical model predicts yield stresses that are highest
for the ®=90% honeycomb and lowest for the ®=10% honeycomb, indicating that, as it
was the case for the effective stiffness, a shift of material from the cell wall to the vertex is
beneficial, at least for the considered density of 0.5 g/cm?.

With increasing biaxiality the critical cross-section moves towards the middle of the cell
edge, but remains within the Plateau border (z < [,). The perfectly biaxial applied stress
state 0y, = o0y, is a special case, because it causes uniform normal stress states in the
whole cell wall section between the Plateau borders. The mathematical model predicts
macroscopic plane-hydrostatic yield stresses, which increase for decreasing vertex volume
fractions ®. This prediction is in line with the expectations, because (a) the biaxial applied
stress state causes only normal stresses in the cell wall, and (b) the thickness of the cell
wall decreases with increasing ®. Hence, the perfect honeycomb has the highest biaxial
yield strength at least according to linear elastic beam theory.

The predicted yield surfaces obtained by the evaluation of the Finite Element analyses agree
very well with the mathematical results for intermediate and high vertex volume fractions.
For the honeycomb “closest” to the perfect configuration, that is, for low ® values, the
yield surface predicted by the Finite Element method is much smaller than the respective
analytical one. The reason for this discrepancy is the ability of the Finite Element method
to resolve local stress concentrations. Figure 2.20 shows a detail of the vertex area of the
honeycomb with a contour plot of the von Mises equivalent stress. Along the surface of
the cell wall, the von Mises equivalent stress increases almost linearly as expected from
the predictions of beam theory. In the small transition area between the cell edges, stress
concentration effects cause a local stress peak with equivalent stress values that are 2.4
times as high as the nominal stresses in the immediate surrounding. Such local stress
concentrations cause the macroscopic yield surface to shrink disproportionally for ® values
approaching ®,,;,. They are also liable to have a marked detrimental effect on the fatigue
strength of the honeycomb.

Collapse under Uniaxial Compression

Beyond the yield limit discussed above, the mechanical response of the honeycomb structure
becomes inelastic. Figure 2.21 shows predicted macroscopic stress—strain relationships
for an aluminum honeycomb of 0.1 g/cm® apparent density and different vertex volume
fractions ®. The symmetry of the Finite Element models used for these simulations was
perturbed with small geometrical imperfections to trigger a periodic deformation mode,
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Figure 2.20: Predicted distribution of the von Mises equivalent stress in de-
tail of a nearly perfect hexagonal honeycomb under uniaxial
tension in the horizontal direction.
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Figure 2.21: Predicted macroscopic stress—strain relationships of hexagonal
aluminum honeycombs of 0.1 g/cm? apparent density and dif-
ferent vertex volume fractions ®.
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Figure 2.22: Normalized macroscopic collapse stresses predicted by a semi-
analytical model (solid lines) and FE analyses (dashed lines) as
functions of the material distribution between cell walls and cell
vertices (Plateau borders) for three different apparent densities.

compare Figure 2.14.

The stress—strain relationships in Figure 2.21 exhibit a distinct peak between 3% and 4%
nominal strain. Beyond this peak stress, the level of the macroscopic stresses drops steadily
until self-contact occurs. At these points, which are connected by a dashed line in Figure
2.21, the stress level jumps instantly to values that are several orders of magnitude higher
than the initial peaks. At this point, the simulations were stopped. The instantaneous
densification is a consequence of the small number of cells in the model and of the applied
periodic boundary conditions, both of which do not allow for a stepwise localization of the
deformation.

For the aluminum honeycomb of 0.1 g/cm?® absolute density, the transfer of material to
the cell vertices for increasing values of ® consistently reduces the peak stress, as can be
seen from Figure 2.21. Plotting the normalized collapse stresses for the two high densities,
0.3 g/cm?® and 0.5 g/cm?, shows that this is not a general rule, see Figure 2.22. As for the
elastic stiffness, the simulations reveal a slight strengthening effect for small values of ®.
This effect is most pronounced for the highest density, where it leads to a relative increase
of 15% in the strength of the honeycomb. Unlike the predictions of the elastic stiffness,
the predicted strength shows a maximum for ® = 70%.

Figure 2.22 also contains predictions for the uniaxial limit load obtained with beam theory
(solid lines). For low and intermediate densities, the qualitative and the quantitative
agreement with the Finite Element results is excellent. The predicted strength for the
high density deviates from the simulation results for very low and very high & values. A
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Figure 2.23: Predicted normalized macroscopic collapse stresses as functions
of the material distribution between cell walls and cell vertices
(Plateau borders) for three different apparent densities.

visual inspection of the models depicted in Figure 2.18 leads to the conclusion, that the
applicability of beam theory has to be re-assessed for high apparent densities.

Uniaxial Compression until Densification

The specific unit cell setup used in this investigation allows for the extension of the crush
deformation domain to the point of self-contact. The description of the effective mechanical
behavior beyond the onset of yielding and before the moment of self-contact and, therefore,
densification is important for the assessment of the energy absorption characteristics of the
microstructure.

Two parameters govern the amount of energy that is necessary to deform the honeycomb up
to the point of densification: (a) the macroscopic peak stress and (b) the overall strain, for
which densification occurs, that is, the point, at which opposite cell walls get into contact.
Figure 2.23 shows both the normalized macroscopic peak stress 0g max for different densities
and vertex volume fractions as well as the normalized stress 0@ min shortly before contact
occurs. The ratio between those two stress levels is also shown. In all cases the macroscopic
peak stress is distinctly higher than the stress prior to contact, indicating softening during
the deformation process.

Figure 2.24 shows the dependency of the strain at the first moment of contact on the
fraction of mass in the vertices/Plateau borders. For all densities, this strain decreases
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Figure 2.24: Predicted macroscopic nominal strains at first cell wall contact
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Figure 2.25: Predicted normalized absorbed energy (up to first cell wall con-
tact) as functions of the material distribution between the cell
walls and the cell vertices (Plateau borders) for three different
apparent densities.

with an increasing fraction of material in the vertices. This is a result of the changing
kinematics in the honeycomb, as the deformed configurations in Figure 2.24 demonstrate;
the larger the vertex section is, the farther the yield hinge is situated away from the vertex
center. This manifests itself in a smaller overall contact strain, and, hence, in a reduced
stroke length usable for energy absorption.

The resulting influence of the material distribution between cell vertex and cell wall on
the effective energy absorption behavior is demonstrated in Figure 2.25, where the amount
of mechanical energy necessary to crush the unit cell up to the point of self contact is
plotted. Perfect honeycombs without Plateau borders have the highest energy absorption
capacity. Any shifting of material reduces this capacity. It has to be concluded that the
reduction of the usable strain domain, or, in other words, of the usable stroke length,
is the governing factor for this relationship. The increase of the peak stress, which was
observed for the honeycomb of high absolute density and intermediate values of ® (Figure
2.23), cannot compensate for the loss of deformation capacity owing to the influence of the
Plateau borders on the deformation kinematics.
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Figure 2.26: Formation of plastic hinges at the transition from the Plateau
border and the cell wall for an ideally plastic material (left) and
a material with isotropic hardening (right).

Influence of the Bulk Materials’ Hardening Behavior

It has to be noted, that the hardening behavior of the bulk material does not only influence
the plastic failure moment of a cross-section, but also the deformation kinematics. Figure
2.26 shows a detail of the predicted deformed configurations of honeycombs with Plateau
borders and different degrees of hardening. In the left picture in Figure 2.26, the deformed
configuration is given for an elastic-ideally plastic bulk material. The formation of a very
localized yield hinge is apparent. As a matter of fact, the deformation localizes in a single
column of Finite Elements, resulting in a sharp kink in the cell wall. Figure 2.26 (right),
on the other hand, shows the deformed configuration predicted for a bulk material with
linear hardening. Here, the plastic zone is extending over a comparatively wide area while
the neutral axis of the beam remains elastic. This can be attributed to the fact that the
outer regions of the edge increase in their yield strength as long as they experience growing
plastic strains. This behavior leads to a deformation of the cell wall in the form of an arc
of finite radius.

2.4.4 Conclusions

Drainage of the material into Plateau borders reduces the cell wall thickness, which is the
governing parameter for the strength and the stiffness of honeycombs. This is especially
important in the case of foams of very low density, for which the cell wall thicknesses
approach zero. At higher densities, however, the redistribution of material towards the cell
vertices and, therefore, into regions subjected to higher bending moments can be beneficial
for the overall properties. Furthermore, smooth transitions with large radii of curvature
were shown to reduce stress concentration effects in the transition region between adjacent
honeycomb edges, which is beneficial for the yielding and the fatigue behavior of the
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microstructure.

As more material is accumulated in the vertices, the plastic hinges tend to form more closely
to the mid-region of the cell edges, so that the size of the nearly rigid regions around the
vertex is increased. Although such a zone can rotate during compression it still takes up
more space because the distance between the hinges and the vertex centers is increased.
Together with changes in the folding kinematics this causes the cell walls to contact each
other at lower strains than it is the case for microgeometries with less pronounced Plateau
borders. This effect dominates the energy absorption potential as shown in Figures 2.23,
2.24, and 2.25.

Even in cases, where the collapse and pre-contact loads are increased by the material
redistribution, the decrease of the usable deformation length reduces the amount of energy
that can be converted by plastic deformation before the densification regime is reached.
Strong mass concentrations in the edges reduce the weight efficiency of the material with
respect to energy absorption.

2.5 Influence of Non-Uniform Cell Wall Thickness

Microscale fluctuations of the material distribution in cellular materials may, on the one
hand, be due to thickness variations within individual cell walls as discussed above in con-
nection with Plateau borders or can, on the other hand, be caused by individual cell walls
having different thicknesses. The latter problem was addressed by Grenestedt and Bassinet
[41], who developed a three-dimensional tetrakaidecahedral model of a closed cell foam that
contains a total of 112 cell walls, the thicknesses of which could be assigned individually.
Their results show that the stiffness of regular closed cell arrangements is rather insensitive
to the presence of cell walls with different thickness. This was explained noting that such
microgeometries deform primarily by cell wall stretching, which is less sensitive to cell wall
thickness effects than bending modes induced, for example, by corrugated cell walls.

Meguid et al. [69] studied the crush behavior of closed cell metallic foam with a repre-
sentative Finite Element model based on a modification of the truncated cube model [94]
consisting of an array of cubic cells the corners of which are replaced by two pyramidal sec-
tions forming a smaller closed cell around the replaced cube corner. In [69] the pyramidal
cell was replaced by a spherical one, and a multi-cell FE model consisting of 5 x5 x5 = 125
individual unit cells was composed. To achieve different apparent densities in the model,
the cell wall thickness was varied across the unit cells. The authors then simulated uni-
axial compression tests. In comparison to experimental results they found the predicted
force—displacement behavior to fit the measured one much better than force—displacement
curves predicted with a reference model of uniform cell wall thickness, which overestimated
the collapse force and showed very large oscillations caused by the layer-wise collapse of
the microstructure (see also Section 2.8). Comparing the absorbed energy in all config-
urations, they achieved 5% accuracy with the randomized model as opposed to a 40%
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difference between the prediction of the uniform model and the experiment.

Variation of the cell wall thickness in otherwise regular microstructures leads to deformation
localization and lower yield and collapse stresses. Meguid et al. [69] showed that statistical
variations of the cell wall thickness can improve the predictive quality of multi-cell Finite
Element models significantly.
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2.6 Influence of Wavy and Curved Cell Walls

2.6.1 Introduction

In addition to inhomogeneous thickness distributions, the geometries of cell walls may also
be perturbed by deviations from simple linear (honeycombs) or planar (three-dimensional
foams) connections between the vertices. Straight strut or plane wall geometries are in fact
good approximations for low-density organic foams. In metallic foams, however, curved
and corrugated (“wavy”) cell walls typically are present, compare the curved cell wall in
Figure 2.12.

Grenestedt [39] studied the influence of wavy cell wall imperfections on the elastic stiffness
of cellular solids and found that the bulk modulus decreases by some 50% when corrugations
with an amplitude of twice the thickness of the cell walls are added. Simone and Gibson
[107] documented the detrimental effect of curved and corrugated cell walls on the stiffness
and strength of regular honeycombs and perfectly tetrakaidecahedral unit cell models. The
Young’s modulus was shown to be more adversely affected by these imperfections than the
collapse stress. Chen et al. [11] gave analytical expressions for the yield surfaces of regular
honeycombs with wavy cell walls. They found that corrugations significantly reduce the
hydrostatic yield strength of honeycombs, whereas the deviatoric yield stresses are hardly
affected. Evidently, cell wall bending is activated in addition to membrane deformations
even under overall hydrostatic loading.

In this section, the investigation of the effects of imperfect cell wall geometries on the onset
of yielding and failure by elastic buckling will be extended to irregular honeycombs and
general biaxial stress states.

2.6.2 Method

A periodic unit cell model of a regular hexagonal honeycomb was used as the reference
geometry for the prediction of the influence of cell wall geometry imperfections. The model
contained 30 individual cells as shown in Figure 2.27 (left; the other two topologies will be
discussed in Section 2.8). Periodic boundary conditions were prescribed to achieve periodic
plane-filling deformation patterns.

The honeycomb struts were modeled using 8 three-node beam elements with quadratic
interpolation functions (ABAQUS element type B22). The cell edge length was set to 1.963
mm. The thickness of the rectangular beam sections was adjusted to achieve the desired
apparent density. The model bulk material was characterized as an elasto-plastic solid
described by Jy-flow theory and isotropic, linear hardening. The bulk material properties
were chosen as those of a generic aluminum alloy (see Table 2.3).

The initial overall yield surfaces of hexagonal honeycomb models with different geomet-
rical imperfections were determined with the postprocessing method proposed in Section
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Figure 2.27: Honeycomb geometries for studying the interaction of cells of
different sizes [17]: Regular hexagonal arrangement (“HC”,
left), a cluster of small cells surrounded by big cells (“SBS”,
center), and big cells surrounded by small cells (“BSB”, right).

2.3. At the same time, the effective elastic stiffness of the microstructure was calculated.
Additionally, elastic buckling analyses were performed for a large number of radial stress
paths in the compressive regime.

2.6.3 Results

The influence of the relative amplitude of geometrical cell wall imperfections was studied
both on regular hexagonal honeycombs as well as irregular hexagonal honeycombs, that is,
honeycombs, the regularity of which was disturbed by shifting cell vertices in a statistically
controlled manner (see Figure 2.2, right). Specifically, the vertex positions were perturbed
by random displacements following a Gaussian distribution with a given standard deviation
of 15% of the honeycomb edge length (7 = 0.3 mm) in the radial direction and a normal
distributed angle of translation.

Table 2.4 lists selected results for (a) a perfect regular honeycomb of 0.1 g/cm® density,
(b) an irregular honeycomb with three different apparent densities, (c) the same irregular
honeycomb with wiggles of a relative wiggle amplitude w,q of up to 10% of the strut length,
and (d) the same irregular honeycomb with curved cell walls and a curvature amplitude
Crel Of up to 10% of the strut length. Simulations (c) and (d) were performed assuming an
apparent foam density of 0.1 g/cm?. In the results Table 2.4, the following macroscopic
stress values are given: ov,, oy,, and oy, which are, respectively, the overall stresses
causing initial micro-yielding under loading in z- and y-direction as well as under plane
hydrostatic stress conditions, and og,, 0By, OBm, Which are the macroscopic uniaxial
stresses and the macroscopic biaxial stress causing elastic buckling. The two buckling
modes of the regular honeycomb model were presented earlier, see Figure 2.9.

The dependence of the effective elastic stiffness on the amplitude of the cell wall imperfec-
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PF r Wrel | Crel Oy x 0Y,m Ov,y Ea:
[g/cm®] | [mm] | [%] | [%] | oBe | oBm | OBy Ey
Perfect Hexagonal Honeycomb
0.1 0.0 0 0 |0.10235 | 3.68765 | 0.10379 | 5.30000
0.69908 | 0.40527 | 0.48690 | 5.30000
Irregular Hexagonal Honeycombs of Different Density
0.1 0.3 0 0 | 0.06075 | 0.12223 | 0.06612 | 5.73356
0.62719 | 0.56021 | 0.48249 | 5.45780
0.3 0.3 0 0 | 0.53763 | 1.01962 | 0.59719 | 146.678
16.7360 | 10.6066 | 12.9030 | 139.659
0.5 0.3 0 0 | 1.48478 | 2.64190 | 1.67785 | 614.428
75.6770 | 48.2869 | 58.5990 | 586.239
Irregular Hexagonal Honeycombs with Cell Wall Wiggles
0.1 0.3 2 0 | 0.05956 | 0.11592 | 0.06682 | 5.60501
0.62707 | 0.39502 | 0.48173 | 5.35848
0.1 0.3 4 0 | 0.05884 | 0.11031 | 0.06805 | 5.34423
0.61829 | 0.39079 | 0.47705 | 5.13871
0.1 0.3 6 0 | 0.05851 | 0.10538 | 0.06849 | 4.98826
0.60256 | 0.38378 | 0.46887 | 4.82439
0.1 0.3 8 0 | 0.05824 | 0.10087 | 0.06918 | 4.57481
0.58196 | 0.37448 | 0.45779 | 4.45010
0.1 0.3 | 10 | 0 | 0.05767 | 0.09267 | 0.07005 | 4.13927
0.55825 | 0.36347 | 0.44453 | 4.05018
Irregular Hexagonal Honeycombs with Curved Cell Walls
0.1 0.3 0 2 | 0.06154 | 0.13317 | 0.06725 | 5.69133
0.62480 | 0.39771 | 0.48486 | 5.41431
0.1 0.3 0 4 | 0.06256 | 0.13770 | 0.06662 | 5.59947
0.61997 | 0.39833 | 0.48559 | 5.31975
0.1 0.3 0 6 | 0.06382 | 0.12351 | 0.06612 | 5.46097
0.61281 | 0.39798 | 0.48470 | 5.18091
0.1 0.3 0 8 | 0.06530 | 0.11224 | 0.06568 | 5.28443
0.60351 | 0.39660 | 0.48224 | 5.00337
0.1 0.3 0 | 10 | 0.06367 | 0.10323 | 0.06532 | 5.07614
0.59234 | 0.39415 | 0.47830 | 4.79688

Table 2.4: Selected results of the elastic yield and elastic buckling analysis
under uni- (x,y) and biaxial (m) compression. All nominal stresses
and the elastic moduli are given in [MPa].
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Figure 2.28: Effective stiffness of an irregular hexagonal honeycomb with cell
wall wiggles and curved cell walls of different amplitude; (x) and
(y) denote the loading direction.

tions is displayed in Figure 2.28. In this diagram, all effective stiffness values are normalized
by the effective stiffness of a perfect regular honeycomb. The stiffness of 5.3 MPa, which
was predicted by the Finite Element simulation for this configuration agrees very well with
the analytical estimate

4 Tt]°
where ¢ is the cell wall thickness and [ is the cell strut length of a regular hexagonal hon-
eycomb [34]. It is obvious from Figure 2.28 that irregularities in the vertex positions make
the microstructure slightly stiffer and introduce some anisotropy. Cell wall wiggles reduce
the relative effective stiffness to a stronger extent than curved cell walls. With respect to
the irregular configuration with straight cell walls, the relative decrease of stiffness with
increasing imperfection amplitude is approximately the same in the two loading directions.

Apart from the elastic stiffness of the honeycombs general overall yield and buckling stress
states were investigated and are displayed as curves in the normal stress plane in Figure
2.29. Figure 2.29(a) shows the overall yield and overall buckling curves for a regular hexag-
onal honeycomb with different wiggle amplitudes. Figure 2.29(b) shows the overall yield
curves for an irreqular hexagonal honeycomb with wiggles of different amplitude. The same
irregular base geometry was analyzed in Figure 2.29(c), but parabolic cell walls of different
curvature were superimposed. Figure 2.29(d) presents predicted overall yield surfaces for
different irregular honeycombs. The standard deviation of the radial displacement of the
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states.
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cell vertices was 20% of the honeycomb edge length (7 = 0.4 mm) for the overall yield
curves represented by solid lines.

2.6.4 Discussion

The influence of corrugated and curved cell walls on the onset of nonlinear behavior was
studied by evaluating initial yield surfaces according to the postprocessing method pro-
posed in Section 2.3. Figure 2.29 shows such curves, which represent overall stress states
that give rise to the local onset of yielding or to local elastic buckling in regular and
perturbed honeycombs having curved and wavy cell walls of varying curvature.

In perfect regular honeycombs in-plane hydrostatic compression leads to pure membrane
stresses in the cell walls, which gives rise to an elongated overall initial yield surface in
the o,-0y stress plane. For low-density perfect honeycombs, this yield surface is truncated
by the failure surface for elastic cell wall buckling, compare the dashed lines in Figure
2.29(a), which shows a kink due to the change of the buckling mode. The two buckling
modes of a regular honeycomb were displayed earlier, see Figure 2.9. This type of behavior
is maintained in the presence of small corrugations, but when the amplitudes of wiggles
exceed about 5% of the wall thickness yielding alone determines the onset on nonlinearity.

The influence of wiggles and curved cell walls on the yield surfaces of honeycomb microge-
ometries, that are irregular from the outset, is much less pronounced, see Figures 2.29(b—c).
Perturbing the geometry by randomly displacing cell vertices causes the yield surface to
shrink even more than the presence of severe wiggles, compare Section 2.7. Corrugated
or curved cell walls generally have little effect on the uniaxial yield strength, but severe
wiggles can reduce the in-plane hydrostatic yield stress by some 35%. Curved cell walls
typically give rise to similar effects as wiggles, see Figure 2.29(c), but cell walls incorpo-
rating only slight curvature can lead to minor increases of the in-plane hydrostatic yield
stress.

2.7 Influence of Irregular Vertex Positions

Generic models for cellular materials are commonly based on regular periodic microgeome-
tries, the simplest geometry being hexagonal honeycombs for the two-dimensional case. A
comparison of such a honeycomb structure to a cross section of an actual metallic foam
as shown in Figure 2.12 makes clear that the latter is far from being a regular structure.
A standard assumption in modeling efforts is that different types of geometrical imperfec-
tions may be studied in isolation. Following this strategy, the present section concentrates
on the effects of irregularities of the overall cell geometry while neglecting the cell wall
imperfections discussed above.

It can be shown that the elastic stiffness of a honeycomb model is not very sensitive
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to irregularities and perturbations of the vertex positions. In fact, upon comparing the
elastic stiffnesses of hexagonal and Voronoi honeycombs, Silva et al. [105] reported that
the overall elastic moduli are some 5 to 10% higher in the latter case, which is in excellent
agreement with Figure 2.28. Zhu et al. [122] defined a measure for the irregularity of
Voronoi honeycombs and correlated it to the predicted elastic properties. They found
the effective Young’s and shear moduli of periodic Voronoi honeycombs to increase with
growing irregularity, whereas the effective bulk modulus decreases. In [121] they applied
the same methodology to three-dimensional open cell foams and obtained analogous results.
Grenestedt and Tanaka [42] examined the elastic behavior of three-dimensional closed cell
Voronoi unit cells, finding a decrease in the bulk modulus of 5 to 10% compared to regular
tetrakaidecahedra.

The uniaxial yield stress of honeycomb models can be reduced by some 40% by perturbing
the positions of the cell vertices, compare Figure 2.29(d), where the initial overall yield
curves for a number of perturbed hexagonal honeycombs are compared. Silva and Gibson
[104] reported a similar decrease in the yield strength of Voronoi honeycombs compared to
hexagonal honeycombs, but a less pronounced reduction for the uniaxial yield stress was
obtained by Chen et al. [11], who attribute this difference to the use of periodic rather than
mixed boundary conditions for their unit cells. In addition to Voronoi honeycombs, they
studied configurations obtained from hexagonal arrangements by randomly shifting the
vertices and predicted uniaxial compressive yield stresses that are in good agreement with
Figure 2.29. Both planar Voronoi microgeometries and perturbed hexagonal arrangements
give rise to strongly reduced yield stresses under in-plane hydrostatic loading as compared
to regular honeycombs, because the deformation mode tends to be cell wall bending rather
than membrane compression [11]. In the case of the 0.1 g/cm?® reference honeycomb in
Table 2.4, the overall plane hydrostatic yield stress of the perturbed model is only 3.3% of
the respective yield stress of the regular model.

As mentioned above, randomly shifting the vertex positions of regular honeycombs typically
leads to more pronounced reductions of the overall yield limits than does the introduction
of corrugations of the cell walls. In addition, the collapse stress, which is closely related to
the macroscopic plateau stress, is decreased. Again, the most affected loading condition
is in-plane hydrostatic loading. Loss of stability due to elastic buckling plays a significant
role only in extreme cases of near-perfect microgeometries and very thin cell walls. For
microgeometries with significant irregularities of the vertex positions elastic buckling would
require uniaxial applied stresses that are about one magnitude higher than the predicted
yield stress.

Clearly, irregular microgeometries are required for obtaining realistic results from simula-
tions of the mechanical behavior of metallic foams. This is especially true when multiaxial
loads or deformations are to be studied. In the presence of irregular vertex positions other
imperfections such as cell wall corrugations typically are relegated to secondary roles.
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Cell incircle radius Unit cell Unit cell | Total beam
Model | large small dimensions area length
[mm] [mm] | [mm] X [mm] | [mm?] [mm]
BSB 2.500 0.965 | 15.00 x 17.32 | 259.81 164.76
SBS 2.500 0.873 | 11.29 x 13.03 | 147.09 108.56
HC 1.700 17.00 x 17.67 | 300.33 176.67
Papp | 0.1 g/cm?® | 0.3 g/cm?® | 0.5 g/cm?
o | 0.037 0.1 0.185
Model Beam thickness [mm]
BSB 0.05840 0.17521 0.29202
SBS 0.05018 0.15054 0.25091
HC 0.06296 0.18889 0.31481

Table 2.5: Summary of geometric parameters for the perfect models.

2.8 Interaction of Cells of Different Sizes

2.8.1 Introduction and Method

In metallic foams the sizes of the cells are typically far from uniform, compare Figure 2.12,
and often regions containing small cells as well as clusters of very large cells can be iden-
tified. In order to gain some understanding of the interaction between larger and smaller
cells, simulations of two-dimensional geometries consisting of generic periodic arrangements
of cells of two different sizes, see Figure 2.27, were performed [17]. They comprise a regular
hexagonal honeycomb (HC; Figure 2.27, left), serving as reference configuration, clusters
of small cells surrounded by large cells (SBS; Figure 2.27, center), and isolated large cells
surrounded by small cells (BSB; Figure 2.27, right).

The underlying geometries were constructed by closely packing circles with two different
diameters. The cell walls were defined by the contact points and the common tangents of
the circles. The vertices were positioned at the intersection points of the so-defined cell
walls. The circles can be interpreted as inscribed circles of the polygons forming the foam
cells. To establish a relation between the two inhomogeneous topologies the larger of the
two incircle radii was chosen to be equal (r = 2.5 mm) for both models (see Table 2.5).
The incircle radius of the reference honeycomb model was set to be approximately equal
to the averaged incircle radius of the two other models. The number of cells was chosen as
28 for the SBS unit cell and 36 for the BSB unit cell. The size of the honeycomb unit cell
was chosen to contain a comparable number of 30 cells. With the intention of simulating
configurations that appear as “natural” as possible, all three topologies were investigated
with perturbed microgeometries. For the large-strain analyses, these perturbations and
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Model PF r Wrel | Crel Oy x OYy,m Ov.,y Ea:
Topo. | [g/cm?] | [mm] | [%] | [%] | oB. OB,m OBy E,

Perfect Hexagonal Honeycomb
HC 0.1 0.0 0 0 |0.10235 | 3.68765 | 0.10379 | 5.30000
perf. 0.69908 | 0.40527 | 0.48690 | 5.30000
Irregular Honeycombs with Different Topologies

HC 0.1 0.3 0 0 | 0.06075 | 0.12223 | 0.06612 | 5.73356
irreg. 0.62719 | 0.56021 | 0.48249 | 5.45780
SBS 0.1 0.3 0 0 | 0.05841 | 0.12515 | 0.07197 | 6.85680

0.54486 | 0.35397 | 0.59102 | 8.64782
BSB 0.1 0.3 0 0 |0.06725 | 0.14774 | 0.06319 | 7.52634

0.37377 | 0.25131 | 0.31546 | 6.54345

Table 2.6: Selected results of the elastic yield and elastic buckling analyses
under uni- (x,y) and biaxial (m) compression. All nominal stresses
and the overall elastic moduli are given in [MPa).

additional cell wall wiggles were imposed to trigger deformation localization.

Apart from the different geometry, all simulation parameters were equal to those used for
the hexagonal honeycomb models discussed in Section 2.6.2. For the present section an em-
phasis was put on uniaxial and biaxial compressive deformation in the large strain domain,
owing to the importance of these deformation modes in crash protection applications.

2.8.2 Results

In accordance with Table 2.4 for hexagonal honeycombs, Table 2.6 lists selected results for
irregular honeycomb models of different topologies and an apparent density of 0.1 g/cm?®.
The presented absolute values were calculated on the basis of the generic aluminum bulk
material described by Table 2.3. For a description of the result parameter identifiers in
Table 2.6 see Section 2.6.3.

In comparison with the perfect hexagonal honeycomb, all of the perturbed models show
reduced uniaxial and biaxial values of the overall initial yield stress. The maximum relative
reduction of the uniaxial overall initial yield stress amounts to approximately 40%. The
values of the overall initial yield stress are not ordered consistently; the yield stress in z-
direction and the biaxial yield stress are highest for the BSB model while at the same time
the yield stress in y-direction is the lowest for this model. Obviously, the scatter caused
by the geometrical imperfections is larger than any intrinsic influence of the topology.
Furthermore, a large degree of anisotropy is apparent for each model. The largest difference
between the highest and the lowest uniaxial yield stress is 14% for the y-direction. Among



CHAPTER 2. MICROMECHANICAL MODELING AND SIMULATION o8

groups of identical models the largest difference between the two uniaxial yield stresses is
23% for the model SBS. This model shows both the largest and the smallest uniaxial yield
stress among the imperfect models.

With respect to elastic buckling, the model BSB showed the least resistance in uniaxial
and biaxial loading situations. This instability was caused by buckling of the long beam
members connecting the clusters of small cells in combination with a rotation of the latter.
Nevertheless, the buckling stresses were one order of magnitude higher than the initial
yield stresses in the uniaxial loading situations. For biaxial loading, the difference was less
pronounced, with the biaxial buckling stress of the model BSB exceeding the yield stress
by 70%.

The effective elastic stiffness of the imperfect configurations was higher than that of the
perfect reference honeycomb, the maximum increase of 63% being recorded for the modulus
E, of model SBS. The hexagonal honeycomb exhibited the lowest stiffness of the imperfect
models.

The results presented so far only concerned the elastic behavior and the onset of non-
linearity by yielding and by elastic buckling. To examine the influence of the microstruc-
tural topology, the collapse and post-collapse behavior of the three honeycomb models was
calculated. Figures 2.30-2.32 show the results in form of predicted stress versus strain dia-
grams for uniaxial compression in both directions as well as for biaxial compression (dashed
lines). Additionally, predicted deformed configurations are displayed for selected stages of
uniaxial compression in x- and y-direction; arrows indicate the corresponding points on the
stress—strain curves. The extension of the initial linear regime is shown as dotted lines. The
convergence of the simulations depended on the complexity of the occurring self-contact
conditions. Nominal compressive strains of up to 75% could be achieved.

The imperfections induced anisotropic mechanical behavior in all three models. Like the
overall initial yield stresses, the initial peak stresses in the two principal directions varied
considerably for the individual models. Some simulations showed a distinct initial peak
stress marking the onset of cell collapse, while other stress—strain relationships exhibited
an extended hardening regime prior to collapse (SBS, z-compression, see Figure 2.32).
Besides these types of mechanical responses, behavior close to an ideally plastic one can
be found (HC, z-compression, see Figure 2.30), at least up to intermediate compressive
strains. The biaxial collapse stresses are consistently higher than the uniaxial collapse
stresses. For simulations with compressive strains that extend into the densification regime,
a characteristic steep increase of the compressive stress could be observed as soon as most
of the cells had collapsed.

2.8.3 Discussion

The most obvious conclusion that can be drawn from results of the linear and buckling
analyses (Table 2.6) is that the scatter induced by irregularities of the geometry and by
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Figure 2.30: Predicted overall stress versus strain diagrams
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Figure 2.31: Predicted overall stress versus strain diagrams (center) for the
imperfect and irregular honeycomb model “BSB”. Plots of the
deformed configurations under compression in z-direction (top)
and in y-direction (bottom) are supplied.
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Figure 2.33: Undeformed and deformed configurations (as predicted by unit
cells with periodic boundary conditions) of an imperfect hexag-
onal honeycomb subjected to uniaxial loads applied in the hor-
izontal and vertical directions. Note the occurrence of shear
localization (left) and layer-wise collapse (right), respectively.

the cell wall wiggles is stronger than the influence of the micro topology. With respect
to the perfect hexagonal honeycomb all other configurations showed reduced overall yield
stresses, but increased elastic moduli.

When observing overall stress—strain relationships predicted for uniaxial compression, two
qualitatively different deformation and collapse mechanisms become apparent. If shear
localization occurs, the microgeometry can deform at nearly constant applied stress through
cell wall bending, and, after the collapse of the shear bands, by sliding along the collapsed
layer, giving rise to comparably smooth stress—strain curves. If, in contrast, cell wall
buckling and extensive layer-wise collapse perpendicular to the loading direction are the
dominant mechanisms, the stress—strain relationship shows marked oscillations on account
of the sequential collapse of “cell rows” which are incapable of accommodating subsequent
deformation by sliding. Figure 2.33 shows deformation modes of the above types for the
imperfect hexagonal honeycomb, with the corresponding stress versus strain curves being
given in Figure 2.34.

In addition to these general observations on collapse modes some specific rules for the
interaction of small and big cells can be identified. Comparing the deformation patterns
developed by arrangements SBS and BSB, see Figure 2.35, one can observe that in the latter
the clusters of small cells do not contribute very much to the overall deformation and may
become obstacles in the densification regime. The framework of small cells surrounding
the large ones in model SBS, however, provides more uniform stiffness and deforms more
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modes shown in Figure 2.33.

Clusters of small cells stay
undeformed even at high glo-
Surrounding small cells re- bal strains

main largely unaffected.

Figure 2.35: Deformed configurations predicted for imperfect models describ-
ing small cells surrounding big cells (BSB, left) and big cells
surrounding small cells (SBS, right) based on the configurations
presented in Figure 2.27.
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evenly. In general, clusters of small cells tend to be detrimental to the deformation and
energy absorption potential of cellular metals as they typically deform less than their larger
neighbors, the longer struts of which confer lower bending stiffness and strength.

These observations lead to the conclusion that whenever smooth stress versus strain rela-
tionships are desired, the cell size distribution should be as uniform as possible and the
cells should be small compared to the sample or structure to either prevent localization or
to limit its detrimental effects.

2.9 Influence of Holes and Solid-Filled Cells

Another group of imperfections in cellular geometries may be generated by eliminating
some vertices as well as the cell walls connected to them leading to holes that are larger
than typical cell sizes, or by filling selected cells with solid material, compare Figure 2.2.

Experiments by Prakash et al. [87] have shown that the filling of some cells leads to local
strengthening of honeycombs and increases the elastic modulus as well as the degree of
strain hardening, but reduces the densification strain. The opposite effect is caused by
removing individual cells or whole cell clusters as demonstrated by Guo and Gibson [43] in
a Finite Element study on intact and damaged honeycombs. They reported on correlations
between the undamaged cross sectional area perpendicular to the loading direction and the
elastic buckling load as well as the plastic collapse strength. The maximum interaction
range between separate defects of this type was found to be about ten cell diameters.

Chen et al. [12] investigated the influence of solid inclusions and holes on the stiffness as well
as on the uniaxial and the in-plane hydrostatic yield strength values of perfect honeycombs
and two-dimensional arrangements in which some 5% of the cell walls were randomly
fractured. Solid inclusions were shown to lead to minor increases of the elastic stiffness and
to have a negligible effect on the uniaxial and the in-plane hydrostatic yield strength of both
the otherwise perfect and the fractured honeycombs. Because the solid inclusions introduce
additional mass, however, the specific properties were negatively affected. Large holes were
found to induce cell wall bending in otherwise perfect honeycombs, leading to significant
reductions of the bulk modulus and the hydrostatic yield strength. For honeycombs with
some missing cell walls the decrease in overall stiffness due to the missing microstructural
parts could be estimated from the reduced overall relative density of the honeycomb.

2.10 Influence of Fractured or Missing Cell Walls

Cell walls that are damaged by fracture or that are bodily removed may weaken cellular
materials to a considerable extent. Having introduced such defects into regular hexagonal
and Voronoi honeycombs, Silva and Gibson [104] reported that the reduction of overall
mechanical properties due to the removal of cell walls tends to be 2 to 3 times greater
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than that caused by an equivalent (in terms of density) uniform reduction of the cell wall
thickness. A typical Voronoi honeycomb was predicted to be, on average, 30-35% weaker
than a periodic hexagonal honeycomb of the same density. The same degree of weakening
can be obtained by removing 5% of the cell walls.

Experiments on honeycombs [87] showed that removal of cell walls triggers localized de-
formation because the weakened cells collapse prematurely. Whether or not cells with
defects interact to form a common deformation band depends on their distance and the
orientation of their offset vector with regard to the loading direction. Albuquerque et al.
[3] performed similar experiments on Kevlar honeycombs. In addition to confirming the
results of Silva and Gibson [104] and Prakash et al. [87] they found that the compressive
behavior is hardly affected by having the defects uniformly dispersed or concentrated in a
region, provided the concentration of defects is low.

Upon removing 10% of the cell walls in Voronoi honeycomb models, Silva and Gibson
[104] obtained a reduction of the compressive strength by some 40% and found that the
stiffness and strength tend to zero when 35% of the cell walls are removed. To study fatigue
accumulation in cancellous bone Schaffner et al. [95] removed struts in an open cell model
once the lengths of fatigue microcracks in them (assumed to grow according to a Paris law)
exceeded a user-specified limit. They found that Voronoi honeycombs are more sensitive
to fatigue damage than regular hexagonal geometries. After comparing several types of
morphological imperfections in honeycombs Chen et al. [11] identified the removal of cell
walls as the most critical of them in terms of reduction of the yield strength.
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Figure 2.36: Unit cell for a periodic “real structure” honeycomb model [20]
adapted from a micrograph given in [39]. Note the wide range
of cell sizes, cell shapes and cell wall imperfections.

2.11 Overall Yield and Collapse Surfaces

In Section 2.3 the evaluation of yield surfaces, “generalized yield surfaces” and collapse
surfaces from unit cell analyses was discussed. For a given cellular metal, the availability
of such data allows multiaxial stress states to be assessed for the onset of inelastic behavior
and for the commencement of cell collapse, which defines the initial overall peak force and
the start of the plateau region in the overall stress versus strain behavior.

Overall initial yield surfaces for hexagonal honeycombs with corrugated or curved cell walls
were mentioned in Section 2.6. Here, some aspects of overall yield and collapse surfaces
will be discussed for more realistic microgeometries. To study the behavior of an irregular
honeycomb with a “natural” microgeometry, a unit cell was generated on the basis of a
section through a sample of closed cell aluminum foam given by Grenestedt [39], suitable
adaptations being introduced to support periodic boundary conditions, see Figure 2.36.
The prescribed beam thickness was chosen to give an apparent density of 0.1 g/cm? in
combination with the generic aluminum bulk material properties listed in Table 2.3.

The predicted overall collapse stress surfaces typically surround the overall initial yield
surfaces, and for irregular honeycombs the shapes of the two surfaces tend to be somewhat
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Figure 2.37: Overall yield and collapse surfaces [20] predicted for the real
structure honeycomb model presented in Figure 2.36.

similar, compare Figure 2.37. It may be noted that for uniaxial overall stress states, where
the dominant local deformation mechanism is bending, the collapse stress exceeds the
initial yield stress by a factor of about 2.4, which is far in excess of the value of 1.5 given
by simplified beam analysis (assuming ideally plastic beams of rectangular cross section
and neglecting stress redistribution).

The collapse surface presented in Figure 2.37 is not given for all possible loading paths, only
the purely compressive regime (3rd quadrant) and those parts of the shear regimes being
covered, for which the larger principal stress is compressive (2nd and 4th quadrants). These
restrictions were necessary because the predicted stress versus strain responses do not allow
the extraction of plateau stresses once the tensile principal stresses exceed the compressive
ones. To obtain peak stresses and a plateau region from such tension dominated loading
paths additional failure criteria, for instance cell wall fracture, would have to be introduced.

By definition, an initial yield surface allows the presence of plastic yielding to be assessed on
the basis of linear analyses. This obviously is an important contribution to the development
of macroscopic elastoplastic constitutive models. It is not, however, sufficient for carrying
out nonlinear studies such as crushing or crash analyses, for which detailed information
on the evolution of the yield surface under loading as provided by a hardening law (see
Section 4.3) is indispensable and strain rate effects may have to be accounted for. One
of the hardening laws used in connection with metallic foams is isotropic hardening [24].



CHAPTER 2. MICROMECHANICAL MODELING AND SIMULATION 68

2D RealFoam Model, 0.1 g/cm?’, Compression X.

laWaYel
U.VO

|Yie|d Surface(Collapse Load X)|

+—{initial Yield Surface |

-

Engineering stress in y direction [MPa]

-

faWaYad
U. UV -
€ -+
-
L — { Collapse Load Envelope |
faYe) 1 1 1 1
JO

Engineering stress in x direction [MPa]

Figure 2.38: Evolution of the overall yield surface under uniaxial compres-
sive loading in z-direction predicted for the real structure hon-
eycomb model presented in Figure 2.36.

It assumes that the origin and the shape of the yield surface stay the same, while its size
increases driven by accumulated plastic strains. In the Crushable Foam model [51] mixed
hardening is assumed, where the yield surface keeps the same shape while its size can
increase (isotropic hardening), and its origin can be shifted (kinematic hardening) so that
the hydrostatic tensile yield stress is kept constant.

Micromechanical analyses based on the real structure geometry shown in Figure 2.36 paint
a somewhat more complex picture. Derived with the method presented in Section 2.3.2,
Figure 2.38 displays predictions for the evolution of the overall yield surface corresponding
to progressive uniaxial compressive loading in the z-direction. At several points during the
loading sequence the analysis was interrupted, the model was unloaded and then subjected
to linear superposition analyses to estimate the onset of nonlinear behavior. This way
the yield surface corresponding to the actual state of hardening was generated. The initial
hardening behavior was predicted to be essentially kinematic, the yield surface being shifted
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Figure 2.39: Irregular tetrakaidecahedral model for a closed cell foam [20].
As can be seen from the planar section, perturbations were in-
troduced only in the core of the model to allow for the use of
symmetry boundary conditions.

in the direction of the applied stress without major changes in shape or size. At elevated
compressive stresses, however, the evolving yield surface changes its shape and contracts as
well. Because Figure 2.38 is based on the superposition of solutions from linear analyses it
cannot account for geometrical nonlinearities, which may be expected to play an increasing
role as compressive collapse is approached. Hence, its reliability in the latter regime is
not fully clear. Accordingly, the results can be interpreted as clearly favoring kinematic
hardening models for low inelastic strains and hinting at possible changes in the hardening
behavior for the high strain regime.

As mentioned before, planar models are directly applicable to honeycombs, but are not nec-
essarily directly transferable to real foams that require three-dimensional simulations for
quantitative predictions. Denzer developed three-dimensional closed cell microgeometries
[20] based on a body-centered cubic arrangement of tetrakaidecahedral cells, using sym-
metry boundary conditions to limit the computational costs. Initial overall yield surfaces
under compressive loading were evaluated for configurations with perfect cell geometry as
well as for models with statistically perturbed vertex positions, see Figures 2.3 and 2.39.
The general shapes of these yield surfaces are ellipsoidal in the principal stress space, and
their major axes are aligned with the hydrostatic axis, compare Figure 2.40. This can
be explained by discussing the stress states induced in the cell walls, which are mainly
membrane-like for hydrostatic loads (even though regular tetrakaidecahedra are not elasti-
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Figure 2.40: Yield surfaces predicted for regular (Figure 2.3) and irregular
(Figure 2.39) tetrakaidecahedral closed cell foams [20].

cally isotropic) and characterized by high bending stresses close to the vertices for uniaxial
loads, which gives rise to yielding at deviatoric macroscopic stresses that are lower than
the hydrostatic macroscopic yield stresses. This load state influence is less pronounced
for the imperfect models, where the “aspect ratio” of the yield surface tends to be lower
owing to bending moments that are induced by the imperfections and have approximately
the same magnitude for uniaxial and hydrostatic applied macroscopic stress states. This
behavior is qualitatively similar to predictions obtained from honeycomb models, but the
yield surfaces for perfect tetrakaidecahedra are less elongated along the hydrostatic axis
than those of perfect honeycombs, compare Figure 2.29.

By projecting selected points of the yield surface shown in Figure 2.40 (left) onto the von
Mises equivalent stress versus mean stress plane a standard representation is obtained, see
Figure 2.41, that can be readily compared with other results. The projected points can be
seen to be scattered around an ellipse, the major axis of which coincides with the mean
stress axis, the hydrostatic yield stress being about 2.5 times larger than the uniaxial yield
stress. It may be noted that many material laws for foams use yield surfaces that give
rise to ellipses when projected to the von Mises equivalent stress versus mean stress plane,
among them the model of Deshpande and Fleck [24].
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Figure 2.41: Projection of the yield surface shown in Figure 2.40 (left) onto
the von Mises equivalent stress versus mean stress plane.
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Figure 2.42: Microsection of a closed-cell foam revealing a crack running
through the bulk material (Image courtesy of Erich Schmid In-
stitut der Osterreichischen Akademie der Wissenschaften).

2.12 Fracture Simulations for Metallic Foams

Unit cell based micromechanical methods give rise to periodic deformation, stress and
strain fields and, as a consequence, periodic patterns of damage and cracks. Although
this may be acceptable for distributed damage, a useful alternative for studying small
samples consists in employing microgeometries that essentially model the whole specimen.
Schaffner et al. [95], for example, used a Voronoi honeycomb to study fatigue damage of
cancellous bone.

Crack tips in discrete cellular microstructures (Figure 2.42) were studied by Gibson and
Ashby [33], who gave expressions for the fracture toughness of brittle honeycombs by
considering failure of the first unbroken cell wall in the path of an advancing crack in simple
planar and three-dimensional models. An approach in which hexagonal honeycombs are
homogenized as a micro-polar elastic material, for which the asymptotic crack tip fields
are computed and then used to estimate the displacements and rotations of the cell walls
surrounding the crack tip, was developed by Chen et al. [13]. Probably the most flexible
approach available at present for studying crack tips in cellular materials, however, is the
use of embedding techniques. Such a strategy was followed by Ableidinger [1] for studying
the influence of a number of microgeometrical and material parameters on the macroscopic
fracture mechanical behavior of a compact tension (CT) specimen made of an open cell
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Figure 2.43: Embedded cell model of an open cell foam using a tetrakaidec-
ahedral core and a homogenized outer region (left) and detail
of the core around the crack tip (right), from [1]. Note that
symmetry with respect to the crack plane is assumed.

aluminum foam subjected to monotonic loading, see also [88].

The region surrounding the crack tip was modeled with a fully resolved, but highly generic,
three-dimensional tetrakaidecahedral open cell microgeometry discretized with beam ele-
ments. This kernel was embedded into the remainder of the CT specimen, compare Figure
2.43 (left), which was treated as a homogeneous structure with an effective material behav-
ior obtained from unit cell analyses of the same tetrakaidecahedral microgeometry. In the
out-of-plane direction the core consisted of a single layer of tetrakaidecahedra, the embed-
ding region having the same thickness, and symmetry boundary conditions were applied
at the top and bottom planes, so that the model actually corresponds to an inner layer
(plane strain conditions) of the specimen. Tensile loads were applied at the positions of
the loading fixtures of the CT specimen, so that the crack proceeded in fracture mode I
on the macroscale. Crack propagation at the micro level as resolved in the kernel region
was assumed to be caused by sequential ductile failure of the most highly loaded struts,
compare Figure 2.43 (right).

From the predicted force versus displacement diagrams of the CT specimens, see Figure
2.44, effective K; versus Aa (crack resistance) curves as shown in Figure 2.45 were obtained.
For this purpose, the macroscopic stress intensity factor K; was evaluated at each maximum
of the force versus displacement curves according to standard expressions for CT specimens,
the crack length increments Aa being dictated by the selected microgeometry. Both Figure
2.44 and Figure 2.45 show results for three values of the apparent density of the foam and
for two aluminum alloys differing in ductility.

Within such a modeling approach parameters such as the mass density of the foam (which
determines the void volume fraction), the size of the cells (which influences the fracture
behavior in terms of an internal length scale), the yield strength, and the fracture strain
of the bulk material (which govern the ductile damage and failure of the struts) can be
varied easily in order to study their respective influences on the fracture behavior of open
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Figure 2.44: Macroscopic force versus displacement curves of CT specimens
made of open cell aluminum foams predicted by embedded cell
models, see Figure 2.43, for different effective densities and dif-
ferent aluminum alloys [1].
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cell metallic foams.
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2.13 Summary and Outlook

A large body of different micromechanical simulation models and simulation results were
presented in this chapter. The interaction of various topologies and imperfections was
investigated, and their influence on the effective mechanical behavior of cellular metals
was assessed. The employed simulation models were predominantly two-dimensional, but
the application of periodic boundary conditions to 3D unit cells was demonstrated, and
some results obtained with 3D models were presented. Several pre- and postprocessing
methods were developed to ease the generation of models for cellular materials and to
provide advanced result evaluation methods.

The future of micromechanical modeling can be expected to see an increased interest in
modeling three-dimensional cellular arrangements and in transferring methods that have
proven successful in the analysis of planar morphologies into the three-dimensional do-
main. This process is facilitated by the steadily increasing capabilities of computer hard-
ware and software. Therefore, the advent of micromechanical models, which better capture
the behavior of three-dimensional microgeometries (especially for closed cell foams), may
be forecast. Larger and more sophisticated three-dimensional micromechanical models
will provide more precise information on the behavior of cellular metals under multiaxial
loading states. This, together with additional information from corresponding multiax-
ial experiments, can be expected to lead to new insight into phenomena related to the
macromechanics of cellular models and may give rise to the development of more refined
constitutive theories.



Chapter 3

Modeling of Mesoscopic Density
Inhomogeneities

3.1 Introduction

Safety requirements in vehicle engineering have been raising interest in materials which are
suitable for minimizing the contact forces between two colliding bodies while maximizing
the amount of kinetic energy that is converted to irrecoverable internal energy. The latter
process is generally referred to as energy absorption. To satisfy both of the above demands
the material of choice should be able to undergo large compressive deformations at a more
or less constant stress level. In addition the material should be of light weight.

Properties like these can be found in metallic foams which exhibit a characteristic non-
linear deformation behavior: during the first stages of uniaxial compression the stress
rises steeply due to the resistance of the cell walls and struts against axial compression,
bending and buckling. After the stress has exceeded the collapse strength of the weakest
band of cells, the sequential collapse of cell layers is initiated during which the stress, if
at all, increases only slightly, leading to a plateau-like stress—strain regime. This changes
drastically as soon as the better part of the cells has collapsed, and their cell walls start to
contact each other. Then the densified foam stiffens drastically as soon as it is compacted
further.

Generic quasi-static responses of foams under compressive deformation are depicted in
Figure 3.2 (right). Considering that the area under the nominal stress versus nominal
strain curve is equal to the energy stored in the foam material it becomes clear that
the stress—strain behavior is very favorable in terms of high energy absorption at low
peak stress levels. Unfortunately, it is at present difficult to produce foam structures of
homogeneous density. Therefore, foams are not only heterogeneous in terms of consisting
of solid regions and voids, but in many cases also show an inhomogeneous distribution of
their apparent density, their mean cell size and other microgeometrical parameters. These

7
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Figure 3.1: Micro-graphical cross-section of an aluminum foam with three
regions of differing apparent density (left) and sketch of the sim-
ulation model used in the present study (right).
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Figure 3.2: Left: three different stages of deformation of a foam specimen; re-
gions of localized deformation are hatched. Right: generic quasi-
static stress—strain relationships for aluminum foams within a
density range between 0.2 and 0.8 g/cm?® (from [36]).
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variations correspond to length scales larger than that of the voids (the microscale) and
smaller than that of the samples or components (the macroscale) and are, accordingly,
termed mesoscopic inhomogeneities in the following. Figure 3.1 (left) shows such density
variations in a cross section of a foam sample.

Shim et al. [102] introduced uniaxial lumped mass—spring mesoscopic models for the sim-
ulation of the dynamic uniaxial crushing of foam samples with uniform apparent density.
Systems of elastic—plastic springs were employed by Gradinger and Rammerstorfer [36; 38]
for studying the compressive force-displacement behavior of crushed specimens with de-
terministically distributed meso-inhomogeneities. These two approaches were combined
by Daxner et al. [18] to assess the influence of inhomogeneous density distributions on
the impact response of foam plates with generic variations in the apparent density, the
interaction of density inhomogeneities in directions normal to the orientation of the load
being also accounted for, see Figure 3.1 (right). Here, these investigations of the influence
of mesoscopical inhomogeneities, for example, of the apparent density on the overall me-
chanical behavior of a crushed foam body are summarized and complemented by a detailed
treatise on the dynamics of a rigid mass impacting an (in)homogeneous foam pad.

3.2 Experimental Data

The simulation model proposed in the next section uses experimental data presented by
Gradinger [36], who performed a large number of quasi-static uniaxial compression tests
for obtaining a correlation between the apparent density and the uniaxial stress—strain
relationships of compressed foam samples.

Shim [102] proposed an analytical piece-wise linear and exponential relationship between
the nominal stress ¢ and the nominal strain ¢ for describing a generic stress—strain rela-
tionship for metallic foams under uniaxial compression:

£ : e < g
o(e) = oo ale — e (3.1)
exp(gl_ig)%—b(e—eo) g <e<a

Below the collapse stress oy, the stress—strain relationship is assumed to be linear. The
collapse strain ¢g marks the end of the linear regime. The initial tangent modulus 5
can be calculated from Sy = 0g/eg. For strains above the collapse strain the stress—strain
relationship is described by an exponential function with an initially flat tangent, which
represents a “plateau” in the stress-strain relationship, see Figure 3.2 (right). In [36]
the parameters a, b, 9, n and the collapse stress oy were adjusted to fit experimental data
obtained for an Al99.5 foam. Equation (3.2) shows the resulting set of parameters as
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functions of the apparent density p, which has to be inserted in [g/ cm3]:

a(p) = — 03704 p + 1.0000

b(p) 6.6964 p2 — 10.2790 p + 2.3053

eo(p) = —0.0459 p2 + 0.0563p — 0.0055 (3.2)
n(p) = —1.3633 p> + 1.2243p + 0.3321

oo(p) = 12.3430 x p'8897 [MPa|

Additionally, Gradinger gives the following regression equation for the dependency of the
unloading modulus Sgp, on the apparent density p of the metallic foam (in [g/ cm?’]):

Srpo(p) = 14000 p>? [MPa] (3.3)

3.3 Method

The proposed simulation model tries to capture mesoscopical variations of the apparent
density by partitioning a generic foam specimen into a checker-board like arrangement of
regions with approximately uniform apparent density. The foam material is represented by
an array of point masses connected by elasto-plastic spring elements in loading direction
and rigid cross-bridges transverse to the loading direction. A schematic sketch of the model
and the density inhomogeneities it is intended to capture can be found in Figure 3.1. The
simulation model was implemented as a stand-alone Fortran program.

Similar models were used by Gradinger [36; 38] for quasi-static analyses of layered, inhomo-
geneous foam volumes and by Shim et al. [102] to investigate the dynamic uniaxial crushing
of generic foam blocks with uniform density. Though the model is one-dimensional in prin-
ciple, the cross-bridges, which couple the point masses transversely and can be understood
as regions of either zero or infinite shear stiffness, are intended to take into account the
interaction of foam regions that are connected in parallel with respect to the deformation
direction. The cross-bridges can either be open or closed, in each case representing an
extreme value of the local shear stiffness.

3.3.1 Uniaxial Constitutive Models

Each foam region of mesoscopically homogeneous density is represented by one or more
spring elements, the stress—strain relationships of which are defined as functions of the ap-
parent density by Equations (3.1) and (3.2). The mechanical behavior of the springs can be
chosen to be nonlinear elastic or elasto-plastic with either elastic or inelastic unloading, the
latter meaning an instant relaxation of the spring as soon as shortening occurs. Quasistatic
stress—strain relationships for the different material models are shown in Figure 3.3 (left)
for the uniaxial compression of a foam volume of 0.5 g/cm® apparent density. Gradinger
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determined an average plateau stress of 3.35 MPa for this density. The initial tangent
modulus was found to be ~ 300 MPa, the collapse strain being g = 1.1%. The unloading
modulus Sgp, according to Equation (3.3) is one order of magnitude higher, that is, slightly
above 3 GPa. Choosing the Young’s Modulus Ex from those two extremes strongly affects
the character of the stress—strain relationships in Figure 3.3 (left), particularly the initial
“elastic” regime and the unloading part. It is also obvious from Figure 3.3 (left) that the
initial stiffness Sy restricts the applicable range of the stress—strain curve, since the tangent
modulus do/de can easily become larger than the “elastic” modulus at high strains, which
is physically unsound. For the elastic-rigid plastic material model the stress drops to zero
as soon as the strain in the spring element drops beneath its current maximum.

The choice of the material model also affects the dynamic behavior of the lumped mass
model. In Figure 3.3 (right) a single spring element with the corresponding lumped point
mass for an apparent density of 0.5 g/cm® attached at one end and a displacement con-
straint at the other end was subjected to a constant stress of 7.5 MPa. Strain histories for
nonlinear elastic (with and without damping), soft and stiff elasto-plastic and elastic-rigid
plastic material behavior are depicted. The inertial effects of the lumped mass are clearly
visible when comparing the maximum dynamic strain of 66% to the quasi-static solution
of 41.5%.

3.3.2 Integration Algorithm

The treatment of dynamic processes requires the formulation and the integration of the
equations of motion for the spring/mass system. The equations of motion are integrated
using the explicit central difference integration rule. For each degree of freedom (DOF) uy

the state at the time ¢ + At can be calculated from previously calculated states *~“*u;, and
tuy, according to:
F(ext) . F(int)
Ay, =2ty — By, 4~k k Ag2 (3.4)

my

where for £ = 1 the external force F; ,SeXt) is equivalent to the total applied or contact force
acting on the lumped mass m; of the top foam layer, and equal to zero for all other degrees
of freedom. The internal force F™ in Equation (3.4) is the sum of all spring forces acting
on the lumped mass k, compressive forces being counted as positive.

The central difference method was chosen mainly for its simplicity and its easy and straight-
forward implementation. One disadvantage of this explicit integration method is that it is
only conditionally stable, that is, the solution may diverge if no precautions are taken. It
can be shown [8] that the central difference method is stable if the integration time step
At is smaller than a critical time step Aty = Timin/m, Where Tp, is the smallest period
of the model, corresponding to the highest frequency of free vibration of the whole model.
The exact calculation of the smallest period of oscillation can be avoided by using a lower
bound T instead of the actual Tmin- This bound is the smallest period of oscillation TV

min min
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among all individual elements in the model [8]. A related estimate for the critical time
step is the shortest time it takes a stress wave to run through any of the individual spring
elements in the model (Courant-Friedrichs-Lewy stability condition). Hence, the critical
time step is given by Aty < min(l;;/c;;), where [;; is the length of the spring element
(4,7), and ¢;; is the one-dimensional wave-speed c;; = \/E;;/pij [8]-

3.3.3 Damping Algorithm

To eliminate oscillations of unrealistically high frequency an internal damping mechanism
can be activated to improve the results of high-speed impact simulations. A basic damping
mechanism depending on the elongation rate of the springs was introduced by adding speed
proportional internal forces

FY™) = —d- A, (Ui = A /At (3.5)

-~

where A; is the cross-section of the foam column (), /;; is the length of the spring element,
and the damping coefficient d relates the elongation velocity lzy to the damping force Fi(fsc).
This simple damping model was introduced to obtain smoother solutions rather than to
predict the influence of actual foam material damping characteristics. One shortcoming
of Equation (3.5) is that the damping effect is independent of the effective foam density,
which may not be the case in reality. To demonstrate the effect of the damping algorithm
the decaying oscillation of a lumped mass attached to a spring/damper element is shown in
Figure 3.4. The envelope formed by the two dashed lines is defined by the amplitude func-
tion a(t) = tuini exp(—t d/2m) for a freely oscillating mass m with a velocity proportional

damping coefficient d and an initial displacement of up;;.

3.3.4 Contact Algorithm

During the simulations tensile stress waves were generated by the transition of compression
waves from regions of higher local density to regions of lower local density, a configuration
that behaves partly like a free end in that one part of the compression wave is reflected as
a tensile stress wave whereas the other part continues to propagate through the less dense
material as a compression wave.

The tensile stress waves cause tensile effective forces in the spring elements between the
foam nodes closest to the surface and the merged foam surface-impact mass node. Since
contact between the impact mass and the foam surface is assumed, the foam will separate
from the impact mass for a short period of time. The algorithm handling this separation
waits for a tensile contact force to act on the impact mass M at time ¢. As soon as this
occurs the combined mass M + m of the impact mass M and the surface node mass m is
split up and the impact mass is assigned an own degree of freedom uy;. The impact mass
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is then considered to move free of force, that is, at a constant velocity. The internal force
'F now acts on the surface node m exclusively, and the new displacement of the now free
surface 2%y, is calculated accordingly.

As soon as the displacement ***uy; of the impact mass exceeds the displacement of the

surface foam node, “t2%y,, the impact mass is added to the foam node mass, and the
displacement of the foam node, "ty m, is set equal to the displacement of the impact
mass at time ¢t + At and at time ¢, so that the reunited mass M+m both has the actual
displacement *2*uy; and the velocity of the impact mass. The number of DOFs is reduced
by one during this procedure. The node mass is considered to be negligibly small compared
to the impact mass for this impact event.

3.3.5 Energy Balance

During a dynamic impact event the major part of the initial kinetic energy EI%)I of the
impact mass (M) is transferred to the foam material (F). Assuming an adiabatic process
the principle of conservation of energy demands that

Elg\ﬁ)l - El(i\ﬁ)z = Wext = Elg:l"l)Z + AU(F)a (3-6)

where Wy is the work of the contact forces between impact mass and foam surface and
AU®) stands for the change of internal energy of the foam material. Inserting the inte-
grated equation of motion rewritten as AE(, = Egn)z = W) + Wy into Equation (3.6)

results in the equality AUF) = —I/Vi(n}:). In the following the work Wy, of the contact forces
between impact mass and foam surface will be referred to as the absorbed energy. It can
be calculated as the integral

Wes(en) = Vo /0 " oale) de. (3.7)

where nominal strains ¢, and stresses o, have to be inserted. V; is the undeformed volume
of the foam specimen, and ¢, is equal to the nominal strain at the time the impact mass
finally separates from the foam.

In terms of crash worthiness, an absorption efficiency A can be defined as the ratio between
the actually absorbed energy W, and the energy absorbed by an ideal absorber Wigea
showing a constant stress level 0*** throughout a compressive deformation:

A(En) — Wext(‘sn) — Wext(‘fn) (38)

VVidea,l o Irln ax €n
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Figure 3.5: The three foam cube models for the quasi-static simulations:
three layers in serial arrangement (a), three layers in two par-
allel columns (b) and linear density distribution (c). The cube
edge length is equal to 100 mm.

3.4 Results

3.4.1 Quasi-Static Simulations

The simulation models used for the quasi-static simulations are shown in Figure 3.5. Model
(a) consists of three layers with absolute densities of p; = 0.2, p, = 0.5, and p3 = 0.8 g/cm?.
The relative thicknesses of the layers are determined in such a way that the apparent density
Papp 18 equal to ps = 0.5 g/cm3. Accordingly, the volume ratio is uniquely defined by the
volume fraction of the layer of medium density po, that is, Vo/Vieta, which is also the
parameter distinguishing the different simulation results in Figures 3.6 and 3.7.

Figure 3.6 shows the predicted quasi-static stress—strain relationships for volume fractions
Va/Viotal ranging from 0 to 100%. The relationship for the fully homogeneous foam cube
corresponds to the one found for p = 0.5 g/cm? in Figure 3.2. The foam model, which
contains just two layers of 0.2 and 0.8 g/cm? density shows two distinct kinks where the
collapse stress of either fraction is reached. The fact that half of the foam volume collapses
at a very low plateau stress significantly reduces the amount of energy absorbed by the
material. This is reflected in Figure 3.7 (left), which shows the absorbed energy of the
cube-shaped specimen as a function of strain and the density composition. It becomes
obvious that the homogeneous foam absorbs a maximum of energy, whereas the opposite
is true for the foam composed of 50% p; and 50% ps. The energy absorption efficiency
plots in Figure 3.7 (right) show a similar picture, with the efficiency being maximal for the
homogeneous foam for strains above 20%. At strains below 20% the lower gradient of the
stress—strain curve for p; results in a higher efficiency of foam models containing a layer
of this density. For the special case of a foam composed of three layers of equal volume
and of densities p;, po and p3 each, Figure 3.8 displays how the stored energy is distributed
between the different regions. The potential of the low density fraction is exhausted at
global strains around 25%, indicating that the material has become too densified to be
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Figure 3.8: Increase of local internal energy (per spring element) as a function
of global strain for model (a). The three layers of initially equal
thickness have densities of 0.2, 0.5 and 0.8 g/cm?, respectively,
from left to right.

compacted further. It is at strains above this value that the other two regions collapse
successively and start to absorb energy. At 50% global strain they are still capable of
absorbing more energy.

The second simulation model is composed of six geometrically identical cuboids, see Fig-
ure 3.5(b). Again three different densities are considered, but now the arrangement of 3
rows and 2 columns allows for a parallel coupling of regions with different densities. In
Figures 3.9 and 3.10 the composition of the columns is described by a sequence of two
numbers where each digit 1, 2 and 3 stands for a density of 0.2, 0.5 and 0.8 g/cm?, re-
spectively. The apparent density is kept constant at 0.5 g/cm?®. Again the most balanced
arrangement (123-321) shows the best behavior with respect to energy absorption. At the
other end of the scale the most unbalanced combination 123-123 sets the minimum value
for the absorbed energy.

The quasi-static model in Figure 3.5(c) is characterized by a linear density distribution
with a range from 0.2 to 0.8 g/cm3. Comparing the local strain, Figure 3.11 (left), and
the increase of internal energy, Figure 3.11 (right), shows again that layers of low density
(right) collapse first and store the main part of the absorbed energy at low global strains.
At higher strains the denser regions, which collapse at higher plateau stresses, dominate
the energy absorption behavior, while at the same time the deformation and absorption
potential of the compacted layers of low density has been exhausted.

The proposed simulation model also allows a random perturbation of the local apparent
density. Figure 3.12 shows how different stress versus strain relationships may result from
different statistical distributions of the local foam density. In all cases the average density
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was 0.3 g/cm®. The dashed line in Figure 3.12 represents the stress versus strain rela-
tionship for a model of homogeneous foam density. For compressive strains up to 30%
the randomly perturbed foam bodies mostly exhibit lower stresses than the homogeneous
model, owing to the localized collapse of layers with an apparent density below the average
one. Beyond 30% compressive strain, however, most of the perturbed configurations show
more resistance against compression than the homogeneous model.

3.4.2 Dynamic Simulations

As an example for dynamic mesomechanical simulations the impact of a rigid impactor on
a foam cube fixed to a rigid wall is considered. The influence of the deformation velocity is
restricted to inertial effects: any strain rate influence due to the entrapped gas is neglected
assuming closed foam cells filled with an ideal gas under isothermal conditions. Thus, the
mechanical contribution of the compression of the entrapped gas is implicitly taken into
account by the quasi-static stress—strain relationship as no gas flow is assumed to take
place. In addition the strain rate sensitivity of aluminum is considered to be negligible.
Since a purely mechanical theory is applied neither the temperature rise due to the increase
of internal energy is taken into account nor is any other kind of thermo-mechanical coupling
accounted for.

Introduction

Shim et al. illustrated several phenomena pertinent to the dynamic crushing of cellular
structures [102]. Figure 3.13 shows the time histories of the normalized positions of selected
material points during an uniaxial impact event. The material points are represented by
lumped masses in the spring/mass model, and the mass positions are normalized by the
foam pad thickness tp. The actual simulation time is normalized by the time it takes
an elastic shockwave to run from the impact end to the rigid wall, as will be discussed
later. The material points are represented by lumped masses in the spring/mass model.
The graphs were recalculated using the generic parameters presented in [102]: a = 0.9,
b=2.0,¢e9=0.05, n =04, and og = 1.0. These parameters imply strain-softening, that
is, for increasing compressive strain the post-collapse force decreases to a minimum and
rises again as the collapse of individual cell layers begins to increase the overall stiffness.

Shim used an elastic-rigid plastic material formulation, where unloading in the post-collapse
regime is assumed to be inelastic. The ratio m = m/M of the lumped foam masses m to
the impact mass M governs the degree of compaction, as can be seen in Figure 3.13: the
two diagrams differ in the mass ratio m, which was chosen as 1/10 for the left figure and
1/100 for the right figure. The impact velocity, normalized by the foam pad thickness tr,
was identical for both simulations and amounted to v = 0.25.

The ratio between the mass M of the impactor and the lumped mass of the individual
foam elements influences the penetration depth of the impactor. For the higher m/M ratio
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Figure 3.13: Predicted histories of the position of selected material points in
a uniform foam sample under impact load (recalculated after
Shim et al. [102]).

in Figure 3.13 (left) the inertial forces exerted on the impactor and the layer of compacted
material traveling in front of it give rise to very high local strain levels close to the impactor
and a crushing deformation mode that localizes in the upper half of the foam body. For
a lower ratio m/M the forces necessary to accelerate individual lumped foam masses are
lower, leading to lower local stress levels and lower local strains, see Figure 3.13 (right).
Since the initial kinetic energy of the impact mass is the same in both simulations, more
foam elements have to be compacted to absorb the same amount of energy as the highly
compacted surface layers in Figure 3.13 (left). Therefore, the crushed zone in Figure 3.13
(right) is spreading over the whole foam body and shows uniform, but comparably low
straining, resulting in a low stress level over a large stroke length.

In both simulations documented in Figure 3.13 elastic and plastic wave propagation phe-
nomena are apparent. The time histories of the normalized positions of individual lumped
foam masses show that after a certain time, which is directly proportional to the initial dis-
tance between the point masses and the foam surface, the masses suddenly start to travel
in impact direction at a velocity which is well below the impact velocity. In Figure 3.13
the intersection of the dashed line with the initially horizontal mass position curves marks
the moment of this sudden acceleration impulse, which is the footprint of the elastic com-
pressive stress wave that is initiated at the first moment of impact and travels ahead of
the spreading zone of plastic deformation. For a continuum, the elastic wave speed ¢, can
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Shock wave front
i
Compressive stress op} o1
Density P2 P1
Velocity Vg U1
Wave speed c =

One-dimensional Shock Wave Analysis

Table 3.1: Material state in front (index 1) and behind (index 2) a shock
wave front for a one-dimensional shock wave analysis.

be calculated as a function of Young’s modulus E and the density p:

ca = \/EJp (3.9)

For the particle-spring chain proposed by Shim et al. this translates to the normalized wave
speed ¢ = tp *4/(gom) 1. The pseudo time it takes the elastic wave to travel through the
20 layers of the model can be calculated to 1.41 s for £g = 0.05 and m = 0.1 (Figure 3.13,
left), and 0.45 s for m = 0.01 (Figure 3.13, right), which agrees with the simulation results.

At the distal end of the simulation model, the elastic wave is reflected at the rigid wall the
model is attached to. At the same time, the bottom of the foam column, which at that
time is traveling at a constant speed of v = 0¢/(pca) or, in terms of the parameters used
by Shim et. al., Ty = tp~'\/0g &0/, giving g = 0.0355 for m = 0.1 and ¥y = 0.112 for
m = 0.01, suddenly encounters a rigid obstacle. This has two immediate effects: firstly,
the elastic wave is reflected into the material, which at that point shows a stress level oy
corresponding to first cell collapse, and, hence, a tangent stiffness, which is far lower than
the elastic modulus; secondly, the body of foam, that is traveling behind the elastic wave
front, runs into an obstacle. These effects cause the foam layers close to the wall to crush,
and a plastic shock wave to originate at the wall.

At the impact end, the impact mass usually has sufficient speed and kinetic energy to
outrun the material traveling at ¥, behind the elastic wave front. This causes layer-wise
crushing and produces an expanding zone of compacted material in front of the impact
area, which is lead by a plastic shock front (see Figure 3.13).

Table 3.1 describes the state of a material before (index 1) and after a shock wave has
passed by (index 2). Considering a control volume traveling along with the speed of the
shock wave ¢, the law of momentum conservation yields:

(09 —01) =v1 (v1 —¢) pr — v2 (V2 — C) p2 (3.10)
Material continuity dictates that

(c—wv1) pr — (c—wg) pa = 0. (3.11)
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Equations (3.10) and (3.11) can be used together with the stress-density relationships
01j2 = 0(p1/2) defined implicitly by Equation (3.1) for calculating the states in front and
behind the wave front. Please note that o; and o, have to be inserted as positive values
for compressive stresses.

The set of equations (3.10) and (3.11) can be exploited in several ways. For the elastic
compression wave, inserting v; = 0, oy = 0, p; = po for the initial state of the material
in front of the elastic wave front, and oo = 0 as well as py = po/(1 + 02/ F) for the
state behind the shock wave allows solving for the elastic wave speed ce = 4/ F/p and the
resulting speed v = 0¢/(p ce) of the material trailing the wave front.

The initial elastic wave is followed by a slower stress wave causing massive local compaction
in front of the impact mass. For a real metallic foam the assumption of o, = gy, v; = 0,
P1 = po, and Vo R Vimpact 15 justifiable for the moment of impact. With this simplification
the corresponding stress state 0o = o4yn can be calculated by numerically solving the
equation

P1 PQ(Udyn) 2
02 (Udyn) — impact

Odyn = 00 + (312)

for o4yn.

It is readily observable that the speed c, of the plastic wave front is not constant, but
gradually decreases to zero as the kinetic energy is absorbed, and the zone of compacted
foam between the plastic wave front and the impact mass is increasing and slowing down
at the same time (Figure 3.13).

The front of compaction originating from the rigid wall, on the other hand, appears to
progress at a constant speed until it meets the impact front. In the idealized example of
Shim et al., o1 = 09, v1 = Ve, and p; = m/(1 — &g) describe the state of the material
between the two plastic wave fronts. The rigid boundary causes v, to be zero between the
reverse plastic wave front and the wall. Expressing o9 as 0y(ps) by means of the stress—
strain relationship (3.1) we can solve Equations (3.10) and (3.11) for ¢, and py, obtaining
theoretical values of ¢, = 0.027 for m = 0.1 and ¢, = 0.085 for m = 0.01.

After the initialization of a plastic wave front at the rigid wall a zone of compacted material
is expanding away from this boundary. In the idealized models of Shim et al. the mass
ratio m determines whether this wave front meets with the compaction front in front of the
impact mass. For the higher normalized mass m = 0.1 this is not the case (Figure 3.13, left),
because the inertial forces resisting the acceleration of the individual lumped foam masses
cause higher local compressive strains and, therefore, higher local energy dissipation. At
the same time, these forces slow down the lump consisting of the impact mass and the
body of compacted foam at a rate that prevents deep penetration of the impactor. For
the lower normalized mass m = 0.01 in Figure 3.13 (right) the inertial forces necessary
to accelerate the lumped foam masses are lower, resulting in lower local strains and lower
local energy dissipation. The forces acting between impactor and foam pad are too low
to prevent the impactor from penetrating until the two compaction fronts meet, and the
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Figure 3.14: Predicted influence of impact velocity and foam density on the
initial stress response o4y, relative to the static collapse stress
aggp.

foam is compressed in a very uniform manner (Figure 3.13, right). This generic dynamic
example shows that, all things like impactor mass M, impact velocity vimpact and material
behavior being equal, the foam with the lower normalized mass density performs better in
terms of uniformity of the compressive strain, the exploitable stroke length, and the stress
level exerted on the impactor.

ALULIGHT Foam Pads of Uniform Density

In the previous section, a generic model originally proposed by Shim et al. [102] was
investigated to outline the basic mechanisms of elastic and plastic wave propagation that
govern a one-dimensional impact event involving a foam pad fixed to a rigid wall and a
rigid impact mass striking perpendicularly to the surface of the pad. The material data
collected by Gradinger (see [36] and Section 3.2) lend themselves well to a transfer of the
theoretical results to more practical examples of uniaxial impact events.

In Equation (3.12) an implicit relationship for the determination of the initial dynamic con-
tact stress ogyn between an impactor with an absolute velocity vimpact and a foam pad was
presented. Inserting the density dependent material parameters (3.2) in Equation (3.12)
and calculating o4y for different impact velocities vimpact the influence of the apparent foam
density and the impact velocity on the initial contact stress can be predicted. Figure 3.14
shows the relationship between this dynamic stress and the static collapse stress gy as a
function of the impact velocity and the foam density. All curves originate at o4y, = 0¢ for
Vimpact = 0 M/S. FOr Vimpact = 30 m/s the impact stress is about 50% higher than the static
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collapse stress, with slightly higher relative stress responses for lower foam densities. At
an impact velocity of vimpact = 50 m/s the relative difference between the static collapse
stress and the dynamic contact stress ranges from approximately 80% for 0.2 g/cm?® foam
density to 140% for 0.8 g/cm? foam density. It may be concluded that for the considered
brand of aluminum foam the dynamic response of a low density foam is more sensitive to
the impact velocity than that of a high density foam.

For the discussion of elastic and plastic wave propagation in an ALULIGHT foam pad a
new type of diagram is introduced in Figure 3.15. At the bottom of Figure 3.15 a lumped
mass position versus time diagram as presented earlier is tilted counter-clockwise and
projected to the base of a three-dimensional diagram showing the nominal local strains
along its vertical axis. This kind of diagram has the advantage of giving not only a
impression of the global deformation, but also of the distribution and the evolution of
the local strains. Stress waves leading to a sharp increase in the local strains are clearly
discernible as ramps along the time-position curves of individual foam elements. The
parameters used for Figure 3.15 were: foam thickness tr = 50 mm; impact mass M = 10
kg; impact velocity vimpact = 10 m/s; plow = 0.2 g/cm?® (dashed area); phign = 0.3 g/cm?.

It is easy to visualize the wave propagation phenomena discussed earlier with the proposed
diagrams. In Figure 3.16 two low-energy impact events are illustrated as strain surface
plots. The two depicted cases differ in the magnitude of the impact mass, M and 2.5M,
respectively, while the impact velocity is identical. Therefore, the kinetic energy to be
considered in Figure 3.16 (b) is 2.5 times higher than the one in Figure 3.16 (a). At the
moment of impact (time zero) an elastic shock wave starts running through the foam and
subjects the material to the collapse stress 0o. In Figure 3.16(a) the jump of the local
strain from zero to ¢y is visible as a ramp, which is marked by a circle. At both ends,
massive ramps indicate the propagation of the plastic wave fronts from both ends of the
model. The slope of the ramp shows how the local strain is decreasing with increasing
distance to the foam surface indicating that the body of compacted foam is slowing down
gradually leading to less severe dynamic crushing inside the foam pad. The two plastic
wave fronts meet roughly in the middle of the foam body resulting in a superposition of
the stress waves and very high local strains. The plastic wave originating from the rigid
wall subsides shortly afterwards while the impact wave continues to propagate until it is
arrested at the rigid wall. The dissipation of the higher impact energy for the configuration
in Figure 3.16(b) requires higher degrees of compaction, which manifests itself in the fact
that both plastic waves continue to propagate beyond the limits of Figure 3.16(a). The
impact wave is reflected both at the rigid wall and the impact mass, higher global and
local levels of compression being the consequence. Note, that the initial strain levels are
the same in both figures, since they depend essentially on the foam density and the impact
velocity, both of which are identical.
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Figure 3.17: Comparison of the local strain histories for the foam layers with
(a) 0.2 g/cm? and (b) 0.85 g/cm? density.

Global Influence of Density Variation

To transfer the above considerations to a more realistic setting, an idealized head impact
event, as it may occur in the context of passenger protection in automotive engineering,
was simulated. The impact mass M and velocity Vimpac; Were set to 10 kg and 10 m/s,
respectively. A cube-shaped foam pad with a constant foam layer thickness of tg = 50
mm and a base area of 100 x 100 mm was assumed. With this configuration dynamic
simulations were performed for varying apparent foam densities.

Figure 3.17 shows the strain surface plots for two extremes of the density range, pp min = 0.2
g/cm® and ppmax = 0.85 g/cm®. The foam pad with the low density, Figure 3.17(a),
shows the characteristic zig-zag pattern of plastic waves originating and being reflected
at the impact mass and the rigid wall. Since the stepwise increase of the local strain
as indicated by the “ramps” in Figure 3.17(a) corresponds to jumps of the local stress,
a stepwise increase of the contact stress at the top of the foam body may be expected
from the ascending left border of the strain surface plot in Figure 3.17(a). The predicted
time histories of the contact stress support this conclusion, see Figure 3.18. For the low
density of 0.2 g/cm? several stress waves arrive at the impact mass and cause steps in
the contact stress history. The fact that several compression waves run through the foam
pad corresponding to the strain surface plot in Figure 3.17(a) means that at any time the
strain distribution in the foam pad is comparably uniform. This can be emphasized by
comparing the dynamic stress—strain relationship for pr = 0.2 g/cm? with the quasi-static
one, which is marked in Figure 3.19 by a dashed line.

Subjecting a pad of foam of 0.85 g/cm? density to the same impact load leads to a dras-
tically different result. Figure 3.17(b) shows the local strain surface plot for this initial
density. The most surprising finding from this diagram is that the sudden acceleration of
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Figure 3.20: Predicted deceleration histories for the impact of a mass of 10
kg at a velocity of 10 m/s on foam layers of 50 mm thickness
and different densities.

the foam surface layers does not lead to the formation of a plastic wave front the reason
being that the velocity ve = 9.92 m/s of the material trailing the elastic shock wave front
is almost identical to the impact speed of Vimpact = 10 m/s. As the elastic shock wave
reaches the distal end of the model, the reflection of the elastic stress wave and the kine-
matic boundary condition cause compressive strains beyond the collapse strain ¢y and a
wave of plastic compression to run back towards the impact mass, which, at that time,
perceives only the static collapse stress 0o = 9.1 MPa as the foam’s mechanical response.
This changes as soon as the plastic shock wave reaches the foam surface and is reflected
at the rigid impact mass raising the instantaneous stress level to 11 MPa. Comparing this
stress response to the quasi-static one (the dash-dotted line in the upper left hand corner
of Figure 3.19) shows that the contact stress experienced by the impact mass jumps from
the collapse stress directly to a maximum level. The final peak of the dynamic stress—
global strain curve (Figure 3.19) is very close to the quasistatic stress—strain relationship
indicating that the strain distribution is almost uniform over the thickness of the foam
pad, which can also be seen from Figure 3.17(b).

To judge the severity of the impact events from a biomechanical viewpoint it is advanta-
geous to describe the impact event in terms of a deceleration history. Figure 3.20 shows
the corresponding diagrams for the problems under consideration. It is obvious that the
foam pads of high density show high initial stresses, which increase only slightly in the
course of the impact. The reason for this is the high rate of energy dissipation at the
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Figure 3.21: Predicted strain histories for the impact of a mass of 10 kg at
a velocity of 10 m/s on foam layers of 50 mm thickness and
different densities.

increased plateau stress, which reduces the necessary stroke length and, in turn, the global
strain. The high decelerations caused by high-density foam pads are also visible from the
high initial curvature of the predicted global strain versus time curves in Figure 3.21. Ow-
ing to the large decelerations, the impact events last considerably shorter for high density
foam paddings. The low density foams represented in Figure 3.20, on the other hand,
show impact events lasting several milliseconds, during which the deceleration is steadily
increasing. In the case of a foam of 0.2 g/cm?® density the final deceleration reaches almost
half of the magnitude of the peak acceleration experienced for the maximum density due to
low initial energy dissipation rate and the resulting high degree of compaction at the end
of the impact. For the considered impact parameters the most advantageous density with
respect to a minimization of the highest appearing deceleration is about 0.3 g/cm?. The
fulfillment of other injury criteria may require a different combination of impact duration
and deceleration history.

Influence of Foam Pad Thickness

So far, the apparent density pg of the foam material was varied, while the thickness tg
of the foam pad was kept fixed. Certain damage or injury criteria may put restrictions
on the maximum contact stress experienced by a body hitting a metal foam layer. If, for
example, the maximum allowable contact stress is around 1 MPa, a foam density beyond
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Figure 3.22: Predicted stress histories for the impact of a mass of 10 kg at
a velocity of 10 m/s on foam layers of 0.25 g/cm® density and
different densities.

0.25 g/cm? is undesirable since it would imply a plateau stress above 1 MPa. But even
if the plateau stress is below the required maximum, the actual maximal contact stress is
still largely influenced by the thickness g of the foam layer, as will be discussed in this
section.

In the following, the relationship between the foam pad thickness and the predicted history
of the contact stress is demonstrated for the example of a cuboid with a base area of
100 x 100 mm and a constant density of 0.25 g/cm3. The impact load was identical to
the previous example (M = 10 kg; vimpact = 10 m/s). The foam pad thickness was varied
between 25 and 100 mm.

Figure 3.22 shows the time history of the contact stresses experienced by the impact mass,
and Figure 3.23 displays the contact stresses in terms of deceleration histories. The initial
response of the foam is the same for all thickness values and oscillates between 1.0 and 1.1
MPa. This compares well to the quasistatic collapse stress of 0.91 MPa for pr = 0.25 g/cm?
multiplied by the dynamic load amplitude magnifier of approximately 120% as documented
in Figure 3.14. The subsequent evolution of the contact stress and the deceleration show
the strong influence of the available stroke length on the occurring stress levels. For the
thick (100 mm) foam pads a large degree of absolute deformation was possible at a rather
low strain of 40%, compare Figure 3.24. Consequently, the maximum stress remained
below 1.5 MPa and the energy absorption efficiency A above 80%. For the thin (25 mm)
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foam pad the available stroke length was considerably smaller resulting in higher strain
(~80%) and stress levels (=12 MPa). At the same time, the energy absorption efficiency
was reduced to A = 5%

It follows that a thick foam layer is desirable for reaching large stroke lengths and for
keeping both the levels of compaction and the stress levels low, as illustrated by Figure 3.25.
For actual applications, restrictions on the available design space or weight considerations
will, unfortunately, favor configurations of less than ideal thickness.

Layered Foam Pads of Non-Uniform Density

After the investigations of various configurations with uniform apparent foam densities we
now study the case of simulation models consisting of two layers of equal thickness (25 mm
each) but differing density (0.20 g/cm?® and 0.35 g/cm®). The model is hit by a rigid mass
of 1 kg traveling at a speed of 30 m/s. The two possible stacking orders of the two layers
are considered.

As predicted by the analytical derivation the instantaneous stress is significantly higher
if the impact mass hits the layer of high density first (see Figure 3.26). The subsequent
stress—time history depends on the way the stress waves are reflected at the impact mass,
the density boundary, and the rigid wall. In Figure 3.27 the time history of the local
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Figure 3.26: Contact stress between a mass of 1 kg having an impact speed of
30 m/s and a foam pad composed of two equally thick layers of
0.20 g/cm? and 0.35 g/cm? density. The two possible stacking
orders of the layers are simulated.

strains and the evolution of the local internal energy can be seen. Apart from the basic
wave propagation and reflection phenomena described previously the wave reflection at the
density boundary influences the dynamic response of the model. It is noteworthy that the
internal energy absorbed by the layer of higher density exceeds that of the softer layer,
although the latter is deformed considerably more. It is also noticeable that two or three
wave reflections are sufficient for generating fairly uniform local strains in each of the two
layers.

3.5 Summary

The influence of meso-inhomogeneities of the apparent density on the quasi-static and
dynamic energy absorption behavior of aluminum foam was examined. The results are
of particular interest when metallic foam is applied as protective padding. Strong meso-
inhomogeneities reduce the energy absorption efficiency, because they lead to strain local-
ization resulting in a decrease of the initial collapse and plateau stress and a less pronounced
plateau region [18; 38], as can be seen from Figure 3.6. This holds true for density vari-
ations occurring in the loading direction and perpendicularly to it [18]. Accordingly, for
such applications it is desirable to tune foam production technologies for achieving uniform
density distributions.

When a metallic foam is treated as a homogenized material, inertia effects [6] lead to wave
propagation phenomena which are governed by the interaction of foam density, layer thick-
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Impact mass hits layer of HIGH density first

Figure 3.27: Local strain history (left) and evolution of internal element en-
ergy (right) for the impact of a mass of 1 kg at a speed of 30 m/s
on a 50 mm thick foam layer. The foam pad is composed of a 25
mm thick layer of 0.20 g/cm? density and a 25 mm thick layer
of 0.35 g/cm?® density. Different stacking orders are considered.
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ness, impact energy and impact velocity [18]. These interacting factors are summarized in
Figure 3.28. At moderate impact speeds such inertia effects give rise to an impact resistance
that exceeds the static collapse strength only slightly, compare Figure 3.14. Nevertheless,
the dynamic effects of wave reflection and wave superposition are noticeable under these
conditions, as is evident in Figure 3.26, where the stacking order of foam layers with differ-
ent densities is shown to influence the time histories of impact stresses significantly. The
results obtained with simulations, that treat cellular metals as homogenized materials,
however, will have to be compared to dynamic tests to make sure that no artificial inertia
effects are introduced by the homogenization approach. Possibly, the mass density used for
the homogenized material may have to be adjusted to closely fit the experimental results
for dynamic events.

Mesoscopic mass—spring models as described above are restricted to specific load cases and,
in general, cannot handle arbitrary multiaxial loading paths. More generalized mesoscopic
simulations can be carried out by using the Finite Element method with standard volume
elements, see Chapter 4.



Chapter 4

Macroscopic Modeling of Metallic
Foams

4.1 Introduction

From the perspective of structural modeling and simulation an efficient method of modeling
metallic foam material in components, which are much larger than individual foam cells, is
desirable. The difference in length scale between individual cells and foamed components
impedes the modeling of microgeometrical details of the foam structure, because (a) a
discretization of actual components down to the level of individual cells is out of the scope
of current hard- and software technology, and (b) the algorithmic effort to create such large-
scale microgeometrical models would be tremendous; a preprocessor suitable for this task
would have to be capable of incorporating the available statistical information on cell size
and cell orientation distribution in a meaningful way to reverse engineer a corresponding
micro-structure.

Sometimes micro CT scans are used to generate microstructural models of foams [93] or
bone [2], often by a direct transformation of individual CT data points (Voxels) to cuboid
Finite Elements [65]. But, as in the case of a potential statistics-based microstructural
modeling strategy, the length scale difference between the microstructure and the com-
ponent poses severe characterization problems, because it is not yet technically possible
to produce CT scans from component sized objects with high enough spatial resolution
to render the microstructure in sufficient detail. Therefore, although examples of large
scale Finite Element simulations, that can be directly compared to identical experimental
setups, do exist for 2D honeycomb structures, compare the work of Papka and Kyriakides
[79; 80; 81; 82], this approach is infeasible for typical 3D foams.

As a consequence, a continuum formulation for foams is applied, that is, the material is
treated as if it did not consist of separate solid and gaseous phases, but rather represents
a homogeneous medium, which fills the foam parts of the structure as if a solid, virtual

109
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material was distributed uniformly in space instead of the discrete structure of the foam
skeleton. This approach is backed up by the theory of asymptotic homogenization of
periodic microstructures which is routinely applied to heterogeneous materials [110]. All
these methods deal with local deformation mechanisms only insofar as their influence on
the macromechanical behavior of the material is sought to be captured as accurately as
possible. Sometimes it is not necessary to consider micromechanical mechanisms at all,
for example when the macroscopic behavior of the material is modeled based solely on
macroscopic experiments without any information on the micromechanical processes being
available. In this case, often only overall properties, for instance the effective density, are
used to describe mechanical parameters of, in most cases, specific brands of metallic foams
[36; 38].

As was shown in the previous sections micromechanical considerations can nevertheless be
useful to derive generic relationships, for example between the effective foam density and
the effective stiffness [34], which can then be fitted to experimental results and provide
some physical background for phenomenological approaches.

4.2 Nonlinear Macroscopic Behavior of Metallic Foams

Before mathematical models for the macromechanical behavior of metallic foams will be
discussed in Section 4.3, some macromechanical phenomena characteristic of metallic foams
will be presented in the following along with a survey of corresponding experimental results.

4.2.1 Behavior under Uniaxial Compression
Uniaxial Compression Behavior in Compression Direction

The uniaxial compression test is by far the most popular and most frequently performed
test for metallic foams, see, for example, Degischer et al. [21]. Therefore, the mechanical
behavior of metallic foams under uniaxial compression is very well documented. A dis-
cussion of the inelastic mechanical behavior in loading direction was already presented in
Chapter 2 for the microscale and in Chapter 3 for the overall behavior.

Plastic Poisson’s Ratio

Metallic foams can be compressed to very large axial strains. At the same time they do
not show excessive lateral expansion, indicating a high degree of compressibility. Visual
inspection of compressed foam samples, see, for example, Figure 3.2 (left), Markaki and
Clyne [67], or Seeliger [99], even leads to the conclusion that there is no lateral expansion
at all.
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Foam Density  Yield Surface  Plastic Poisson’s

Brand Prre ohape Param. o ratio vp Source
DUOCEL 7.0% 1.58 0.150 [24]
DUOCEL 7.0% 0.052 (35]
ALPORAS  8.0% 0.024 (35]
ALPORAS  8.4% 2.08 0.010 [24]
ALPORAS 16.0% 1.35 0.230 [24]

Table 4.1: Plastic Poisson’s ratios v and selected yield surface shape parame-
ters o (see Section 4.3.4) for open (DUOCEL (™) and closed-cell
(ALPORAS™) aluminum foam.

The relationship between longitudinal compression and transverse expansion is expressed in
elastic and plastic Poisson’s ratios, v and v, respectively. The plastic Poisson’s ratio vy is
defined as the negative ratio of the transverse logarithmic plastic strain to the longitudinal
logarithmic plastic strain under uniaxial compression.

Shaw and Sata [101] report a plastic Poisson’s ratio of 0.17 for closed cell aluminum foam.
Deshpande and Fleck measured values of the plastic Poisson’s ratio for three different
metallic foams [24]. Their results are listed in Table 4.1 along with results of Gioux et al.
[35], who found distinctly smaller values of v, for comparable foams. Motz and Pippan
[72] confirm the approximation of vanishing lateral expansion at high compressive strains,
but observe a plastic Poisson’s ratio of v,; = 0.35 in the small strain regime between tensile
yielding and fracture of the closed-cell aluminum foam ALPORAS. This result was found to
compare favorably with Finite Element simulations of tetrakaidecahedral unit cell models

[1].
Seeliger [99] found the plastic Poisson’s ratio of closed-cell aluminum foam to increase
monotonously from initially zero to 0.33 at 80% nominal compressive strain.

The abstraction of vanishing plastic Poisson’s ratio for the compression of metallic foams
is attractive and an often used assumption. In the interpretation of Poisson’s ratios larger
than zero care has to be taken with regard to the admissible strain range which might be
comparatively small or even tensile. The influence of the plastic Poisson’s ratio in Finite
Element simulations will be discussed later.

4.2.2 Behavior under Hydrostatic Load

As soon as hydrostatic loads are imposed on cellular metals, their mechanical behavior
begins to differ most significantly from the one observed in solid metals: whereas the latter
generally retain a constant volume during plastic deformation, cellular metals can undergo
large volumetric deformation due to the compressibility of their gaseous phase.
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With respect to macromechanical modeling of metallic foams it is, therefore, important to
characterize the effective behavior of the material under multiaxial loads. Unfortunately,
the cellular nature of foams poses practical difficulties in the execution of experiments,
since the surface of a foam specimen generally does not constitute a skin that can bear
distributed (pressure) loads. Owing to this experimental problems, less data exists on the
multiaxial behavior of metallic foams compared to the wealth of data for uniaxial loading.

Triantafillou et al. [113] submitted an open-cell aluminum foam (pr = 0.135 g/cm?®) to
axisymmetric loading by applying tensile radial stresses and, simultaneously, compressive
or tensile axial stresses. They found that an analytical failure surface derived in a com-
panion paper by Gibson et al. [32] could be fitted well to the experimental failure stress
states. As a particularly noteworthy result Triantafillou et al. determined the failure stress
under hydrostatic tension and found it to be roughly equal to both the tensile and the
compressive uniaxial failure stress of the examined foam material, which amounted to 1.77
and 1.70 MPa, respectively.

Gioux et al. [35] investigated the failure of open-celled aluminum foam (DUOCEL, pp e =
7%) and closed-cell aluminum foam (ALPORAS, pr.a = 8%) under biaxial and (axisym-
metric) triaxial loading. The average hydrostatic compressive collapse stress was essentially
equal to the uniaxial compressive collapse stress for the open-cell foam and 30% higher
than the uniaxial compressive collapse stress for the closed-cell foam. The data showed
considerable scatter owing to variations in the apparent density of the specimens.

Deshpande and Fleck [24] investigated the yield behavior of two aluminum alloy foams
(ALPORAS, prra = 8.4% and 16%; DUOCEL, ppra = 7%) under axisymmetric com-
pressive stress states. They found that the magnitude of the hydrostatic yield strength
was consistently 20% lower than the uniaxial yield strength. Furthermore, they explored
the evolution of the yield surface by repeated unloading and re-loading on different stress
paths. More details on their results and the constitutive theory they inspired can be found
in Section 4.3.5.

Hanssen [47] and Miillerschon [27] examined the hydrostatic behavior of HYDRO aluminum
foam. They observed that the hydrostatic plateau stress was approximately of the same
magnitude as the plateau stress measured for uniaxial loading. Seeliger [99] reports a
hydrostatic compressive yield strength, which is 2/3 of the uniaxial compressive yield
strength for an AlSi7 foam of 0.34 g/cm?® density.

The cited studies do not show a consistent trend with regard to the relationships between
the uniaxial collapse stress and the hydrostatic collapse stress of the materials. The mea-
sured hydrostatic collapse stresses approach the values of the uniaxial collapse stresses
within a range of £1/3 of the latter values. It can be concluded that in the absence of
specific triaxial experimental data, the hydrostatic strength can be estimated to be equal
to the uniaxial strength of the materials.
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4.2.3 Macroscopic Tensile Loading and Fracture

While metallic foams behave primarily in a ductile way under compression, they exhibit a
semi-brittle behavior under uniaxial tension resulting in rupture of specimens at a strain
of only a few percent, preceded by a linear elastic and an elasto-plastic regime with strain-
hardening.

Thornton and Magee [111] found that the tensile yield strength of aluminum foam is in
most cases lower than the compressive yield strength, with the relative difference increasing
with increasing density. Sugimura et al. [109] concluded from their evaluation of flexure
tests performed on ALPORAS foam (pr &~ 0.2 g/cm?®) that the tensile yield strength of the
material was about 30% higher than the compressive yield strength at the same uniaxial
strain. McCullough et al. [68] determined the tensile yield strength of ALULIGHT foam
of pr = 0.65 g/cm? density; the measured tensile strength was at most 20% above the
compressive one. Andrews et al. [4] performed uniaxial tension and compression tests on
several different foam products and found tensile strengths, which are up to 20% lower than
the compressive ones, with the exception of ALCAN foam, which behaved brittle in tension
and showed a tensile ultimate strength less than half of its compressive collapse stress. In
good agreement with these findings, Olurin et al. [78] report ultimate tensile strengths that
are within 25% of the compressive plateau stresses for ALPORAS and ALCAN foam. Gioux
et al. [35] report the tensile failure strength of DUOCEL (ppra = 7%) and ALPORAS
(pr e = 8%) foam to be consistently 8% higher than the compressive yield strength. Motz
and Pippan [72] performed tensile tests on ALPORAS foam (pr = 0.25 and 0.4 g/cm?)
and determined yield stresses of 0.71 MPa and 1.79 MPa, and ultimate stresses of 1.70
MPa and 3.95 MPa, respectively, indicating a ratio of over 1:2 of yield stresses to ultimate
stresses. Hanssen [47] reports tensile failure stresses, that are more or less equal to the
initial plateau stress in compression for aluminum foam produced by Hydro Aluminium
AS (pr = 0.2 to 0.5 g/cm?®).

Most experiments cited above place the tensile strength of metallic foams within +£25% of
the compressive strength. After the ultimate stress is reached, cracks start to propagate
through the material leading to a sharp drop in the nominal stress—strain relationship and,
eventually, total rupture of the specimen at strains of a few percent. Depending on the
foam production technology this behavior can be highly anisotropic and different strength
values can be found for longitudinal, transverse, and through-thickness directions [68].

The material behavior under compressive and under tensile uniaxial loading differs so
significantly that a foam constitutive model intended for general application should take
both hardening (densification) and fracture into account. First steps into this direction
are documented by Schluppkotten [96], who extended the constitutive model proposed by
Deshpande and Fleck [24] with an isotropic damage model, albeit with the intention of
modeling polymeric foams.
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4.2.4 Strain-Rate and Impact Velocity Effects

Since metallic foams are a candidate material for energy absorption related applications
such as passenger or pedestrian protection [60] and protective packaging, it is indispensable
to discuss their behavior under dynamic loading. According to Hall et al. [44] strain rates
between 102 s~* and 10® s~! have to be expected in parts of automobiles’ structures during
impact events.

From a theoretical standpoint the following potential sources for strain-rate or impact
velocity dependent mechanical effects can be identified:

e Strain rate sensitivity of the cell-wall material:

Dynamic compression tests by Dannemann and Lankford [16] show a noticeable in-
fluence of the strain rate on the flow stress of solid Al 6101 samples.

Deshpande and Fleck [23] demonstrated how the overall and the local strain rates are
related by means of the idealized open-cell model of Gibson and Ashby [34]. They
find that the strain rate in the outer fibers of the cell wall is approximately an order of
magnitude lower than the macroscopic strain rate indicating that a potential strain-
rate dependency of the cell wall material is attenuated by the foam micro-kinematics.

e Micro-inertial effects:

Micro-inertial forces effects contribute to an increased dynamic strength of cellular
materials by resisting the buckling of the cell walls [23], causing a pronounced initial
peak in the stress strain relationship. Deshpande and Fleck [23] do not note this
initial peak in their experiments and conclude that micro-inertial effects do not have
a strong impact on the deformation of metallic foams, since they deform primarily
by cell wall bending (as opposed to buckling) due to numerous imperfections in the
microstructure.

e Shock wave propagation:

Shock wave propagation effects were discussed in detail in Chapter 3. Their influ-
ence can be assessed by treating the metallic foam as a homogeneous material. For
this reason, macroscopic modeling with continuum elements will capture shock wave
phenomena without additional measures.

e Viscous effects; entrapped gas flow:

Deshpande and Fleck [23] consider the case of a gas, which is perfectly enclosed in
the foam skeleton, as the upper bound for the contribution of the viscous strain rate
effects due to gas flow and the inhibition thereof. They found the stress increase
caused by the compression of an enclosed gas having an initial pressure, which is
equal to the environmental pressure, to be only of a few percent of the static yield
stress. It can, therefore, be safely assumed that for gas-filled foams gas flow effects
do not add a pronounced strain rate dependence, especially in the initial response to
dynamic loading.
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While it is possible to predict the influence of the described dynamic effects within a certain
margin of error, only experiments can give insight into their interaction in the real material.
Most experiments fall in one of the two following categories:

1. Direct impact tests,

2. Split-Hopkinson Pressure Bar (SHPB) tests.

For a description of the two methods and a comparison of their relevance with regard to
the testing of metallic foams see Deshpande and Fleck [23].

Yu et al. [119] performed high-strain rate testing including Split-Hopkinson Pressure Bar
tests on Al6061 foam samples of a relative density of 10% to 30% produced by a powder-
metallurgical route. Comparing the dynamic test results to quasistatic test results they
claim that, although considerable data scatter exists, the initial peak stress of the samples
is essentially independent of the strain rate.

Mukai et al. [73; 74] investigated the dynamic response of closed-cell aluminum foam
(ALPORAS) and open-cell magnesium foam at dynamic strain rates over 10® s7*. They
found that the plateau stress of both foams exhibited a strong strain rate sensitivity leading
to a two-fold increase of the plateau stress. For an ALPORAS foam of 10% relative density,
testing of samples of 9 x 9 x 6 mm? dimension gave quasi-static collapse stresses between
1.5 and 2 MPa and dynamic collapse stresses between 2.5 and 3 MPa for an overall strain
rate of 2.5 x 10% s™!, which corresponds to an initial impact velocity of 15 m/s.

Paul and Ramamurty [83] obtained strain rate sensitivities m for the exponential relation-
ship oy o< (€4)™ between the true stress oy and the true strain rate €; by switching nearly
instantaneously between two (overall) strain rates during a compression test. The strain
rate sensitivity m was shown to increase with the magnitude of the strain rate jump A&
and the true strain, at which the rate jump was prescribed. For their 25 x 25 x 50 mm?
ALPORAS specimens they obtained m values between 0.005 and 0.015. For comparatively
low strain rates of 1.6 x 107! s=! they found an increase of the first peak stress by as much
as 25% compared to a reference experiment performed at a strain rate of 1072 s!. In this
context they emphasize the difference between the overall (nominal) strain rate and the
local strain rate in bands of localized deformation. Furthermore, an extrapolation of their
results seems to be in good agreement with the results of Mukai et al. [74] for much higher
strain rates.

Performing SHPB experiments on cylindrical aluminum foam specimens (height: 12 mm;
diameter: 18 mm) produced by the Fraunhofer process, Hall et al. [44] found it impossible
to distinguish any strain rate influence on the flow stress from the scatter inherent in the
tested material, although they achieved strain rates as high as 2.0 x 10® s~ 1. They also
imply that SHPB tests on foam material should be evaluated with great caution since
foams violate some of the fundamental assumptions of the standard evaluation procedure.

Deshpande and Fleck [23] performed both SHPB and impact type experiments on AL U-
LIGHT (ppra = 0.17 to 0.4) and DUOCEL foams (pp e = 0.07). They used cylindrical
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specimens of 10 mm diameter and length. In the SHPB test they achieved strain rates
up to 5.0 x 10® s7! corresponding to a maximum impact velocity of 50 m/s. Employing a
simple, one-dimensional shock model introduced by Reid and Peng [90] they stated that
a noticeable (in terms of a 20% increase of the plateau stress) effect of shock propagation
mechanisms has to be expected at impact velocities exceeding 50 m/s. Correspondingly,
they did not expect any strain-rate effect to be discernible from strength scatter due to
density inhomogeneities in their experiments, for which this scatter was also found to be
of the order of 20%. It appears that the number of experiments reported in [23] was not
large enough to show a consistent trend to higher dynamic plateau stresses for increasing
strain rates. Deshpande and Fleck, therefore, excluded significant strain rate effects on the
examined foam materials.

Dannemann and Lankford [16] investigated samples of closed-cell aluminum foam (ALPO-
RAS; relative densities of 7.4% and 15%), open-cell aluminum foam (DUOCEL; relative
density of 7%), and solid Al6061 samples with the SHPB method. The tests revealed neg-
ligible strain-rate dependence of the yield strength for the low density open-cell aluminum
foam at ¢ = 1.2 x 10® s7! as well as for the solid 6101 aluminum material at ¢ = 9.1 x 10?
s~!. In contrast, a distinct strain rate dependence (¢ < 2.5 x 10® s7!) of the yield stress
was demonstrated for the closed-cell ALPORAS foam samples (length: 25.4 mm; diame-
ter: 23.6 mm) and attributed primarily to viscous effects like the flow of the entrapped gas
through ruptured cell walls. Unfortunately, their diagrams are not very clear and show a
large degree of scatter. The tendency, however, appears to be the same as in the investi-
gation of ALPORAS foam by Mukai et al. [74]. The achieved strain rate corresponds to a
comparably high impact velocity of 63.5 m/s.

Hanssen et al. [47] fired a projectile fitted with strain gauges against a stationary foam
target (aluminum foam by Hydro Aluminium AS) reaching velocities of up to 15 m/s.
They found the dynamic force peak to be as much as 50% higher than the quasi-static one.
The relationship between the impact velocity and the increase of the peak force appears
to be linear in the investigated ranges of velocities (< 15 m/s) and strain (< 30%).

This brief summary of recent experimental evidence pro and contra the existence of a dis-
tinct rate-dependence of the mechanical behavior of metallic foams may cause some confu-
sion, since it proves that conflicting observations and opinions exist among researchers. It
may well be that strain-rate effects exist, but are hidden by experimental scatter caused by
small sample sizes and material inhomogeneities. In this case the calibration of the material
data itself will be a more serious problem than capturing the strain-rate dependence.
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4.3 Constitutive Modeling

4.3.1 Some Basic Conventions

The local stress state in a solid body can be described by a symmetric second-rank tensor
o = [o;j] called the stress tensor. Three scalar properties I, I5, and I3, which are invariant
with respect to a rotation of the reference frame, can be found for any stress tensor. These
invariants are defined as:

L = o (4.1)
1

I, = 5 (Uz‘z'Uk/c - OijOij) (4-2)

I; = deto (4.3)

It is possible to find a reference frame 1-2-3 for which all non-diagonal, that is, shear
stress components o0;; vanish identically. The remaining diagonal, that is, normal stress
components o, = 011, 0y = 099, and o3 = o33 are called the principal stresses. They can
be found by solving the characteristic equation

det(oc —oI)= -0+ 10" — Lo+ 13 =0, (4.4)

Expressing the principal invariants in terms of the principal stresses gives:

Il = 01+ 09 +0'3 (45)
IQ = 01 09 + 09 O'3+O'1 O3 46)
13 = 01 09 03 47)

It often proves advantageous to decompose the stress tensor o into a hydrostatic part,
which is described by the volumetric (spherical, hydrostatic) component

Om=-1, (4.8)

the negative value (—oy,) of which corresponds to the hydrostatic pressure p, and a devia-
toric part s, the components s;; of which are defined as:

Sij = 045 — Om 51‘;', (4-9)

where d;; is the Kronecker delta symbol, which takes the values ;; = 1 for « = j, and
d;j = 0 for ¢ # j. As for the full stress tensor o three invariants J;, Jo, and J; can be
defined for the deviatoric stress tensor s. The first invariant J; of the deviatoric stress
tensor vanishes identically. The second invariant J, is given as J, = %sijsij and plays an
important role in metal plasticity, where the von Mises equivalent stress

Oe = 3 J2 (410)
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is a scalar measure for the stress state regarding the tendency of a material to yield,
provided that the material can be described by the theory of J; plasticity, as it is the case
for most solid metals. In these cases, the von Mises stress can be compared to the uniaxial
yield stress of the material to determine whether yielding of the material occurs under an
applied general stress state (compare the discussion in Section 2.3.2).

4.3.2 Formal Introduction to Elasto-Plasticity

In this section a brief, formal introduction to the constitutive modeling of inelastic and,
in particular, elasto-plastic material behavior [64] will be presented. The state of local
deformation in the material is described by a strain tensor €. Generalized constitutive laws
commonly express the strain tensor € in terms of the instantaneous stress tensor o, the
temperature 7', and internal variables S;:

e= f(o,T,5;) (4.11)

The internal variables S; describe the internal structure of the material during the defor-
mation process. Examples for internal variables are accumulated plastic strains for rate
independent plasticity and creep strains for time-dependent inelastic behavior. The con-
stitutive description of the material requires evolution equations for the internal variables:

ds;
=g; ; 12
= =4l T,5) (112

Equations (4.11) and (4.12) constitute a coupled system of equations that form the con-
stitutive law. Time-integration can be performed to calculate the actual strain state €(t).

A specialized case of these generalized constitutive equations is the theory of rate indepen-
dent, incremental plasticity (“flow theory”). This theory has been applied successfully to
predict the inelastic mechanical response of a wide range of materials including solid metals
as well as metallic foams. The principal premise is that the strain tensor € can be split
into an elastic part €, and a plastic part €, where the former is the instantaneous elastic
response depending only on the local stress state: €q = €q(0). The tensor of plastic strains
€, represents inelastic, time-independent strain components that cannot be recovered by
elastic unloading.

Incremental plasticity theory assumes a purely elastic response for stress states o, for
which a material specific yield function F(o,S;) returns values lower than zero. Plastic
deformation implies fulfilling the yield criterion F(e,S;) = 0, which defines a surface in
the (6-dimensional) stress space that is referred to as yield surface. As soon as the yield
criterion F' (o, S;) = 0 is fulfilled the material is accumulating plastic strains €, at a rate,
which is defined by the incremental plastic flow rule

dep = deyi (o, do, S;). (4.13)
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Often, the flow rule is defined in terms of the gradient of a flow potential G(o):

pl (9G(0')
de;; = dA do; (4.14)
where d\ is the nonnegative increment of the plastic flow multiplier A\, which can be
determined using a consistency condition expressing the fact that in the case of plastic
loading the stress state always remains on the yield surface [64]. Those special forms of
Equation (4.14), for which the yield function F(o) assumes the role of the flow potential,
that is, G = F, are called associated flow rules.

For loading in the plastic range the stress state always remains on the yield surface, the
size, the location and the shape of which can change according to the applied constitutive
theory. This evolution of the yield surface is driven by the evolution of the internal vari-
ables S;, which, in turn, is governed by hardening laws and temperature changes, compare
Equation (4.12).

4.3.3 Constitutive Laws for Metallic Foams - Overview

The effective mechanical behavior of foam can be described by constitutive theories such
as plasticity theory under the condition that the overall dimensions of the structures made
of foam are at least one or two orders of magnitude larger than the typical size of single
foam cells.

Linear Elastic Behavior

For small elastic deformations, the tensor of elastic strains €., can be related to the stress
tensor o by a generalized form of Hooke’s Law:

o = Ee,, (4.15)

which constitutes a linear relationship involving the fourth-rank tensor of elasticity F.

As long as only the linear elastic response of a structure is of interest, homogenized cellular
metals are fairly easy to deal with. For the special case of an isotropic, linear elastic
material, two material parameters A and p, which are known as the Lamé coefficients,
are necessary for the calibration of the generalized Hooke’s law 0;; = Ejji € and the
formulation of the tensor of elasticity F;jx:

Eijri = X0 + p (dirdj1 + dudjn) , (4.16)

The Lamé coefficients A and p can be expressed in terms of the Young’s modulus £ and

the Poisson’s ratio v as: g
A= v (4.17)
(I+v)(1-2v)
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E
2(1+v)
Here, the need for a definition of Young’s modulus for cellular metals arises. Some experi-
mental results indicate that typical metallic foams may not possess an elastic regime under
compression, but rather begin to deform irreversibly at stresses which are low compared to
their collapse or plateau stresses. Thus, it is not fully clear, to what extent cellular metals
can be treated as linear elastic materials in structural analyses.

w= (4.18)

Elasto-Plastic Constitutive Laws

The most distinguishing feature of the macroscopic mechanical behavior of cellular ma-
terials is their ability to yield under states of pure hydrostatic pressure and to acquire
volumetric plastic deformations when being loaded beyond this yield limit. This charac-
teristic behavior is not supported by the classical J, plasticity theories for solid metals,
which assume that the volume of a volume element remains constant during plastic defor-
mation. Therefore, new constitutive laws had to be developed for cellular materials.

A comprehensive overview of material laws for the simulation of metallic foams was com-
piled by Hanssen et al. [46; 47]. They describe and compare constitutive formulations
proposed by Schreyer et al. [98], Ehlers et al. [25; 26], Deshpande and Fleck [24], Miller
[70], HKS [53] and then proceed to validate constitutive formulations implemented in the
Finite Element code LS-DYNA [45]. In his thesis [96] on crash simulation involving poly-
meric foams Schluppkotten additionally surveyed material laws implemented in the Finite
Element codes RADIOSS and PAMCrash. Chen and Lu [10] proposed a stress potential
for metallic foams in connection with an associated flow rule and demonstrated excellent
agreement with the multi-axial experimental results of Deshpande and Fleck [24].

The individual constitutive models differ in the mathematical formulation of the yield
surface, the plastic flow rule and the history dependence of the hardening function. In the
following, the Crushable Foam constitutive law(s) provided by the Finite Element code
ABAQUS will be discussed in greater detail.

4.3.4 The ABAQUS Crushable Foam Models

Constitutive theories, or material laws, are typically implemented into displacement con-
trolled Finite Element codes as algorithms, which, essentially, return the stress response
of the material to an imposed strain increment. In the Finite Element code ABAQUS
[53] the phenomenological Crushable Foam constitutive models can be considered for the
macroscopic simulation of metallic foams. The original Crushable Foam model, which was
characterized by volumetric hardening, was developed for PU foams, but an application
and calibration of this model for metallic foams is possible. In [24] Deshpande and Fleck
proposed an isotropic constitutive model for metallic foams, which was, subsequently, im-
plemented as an ABAQUS user material subroutine by Chen [9] and is included as a standard
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constitutive model with the explicit Finite Element code ABAQUS/Explicit from Revision
6.2 onwards.

Both models feature a yield surface which can be represented as an ellipse in the mean/
effective’ stress plane (see Figures 4.1 and 4.2). The yield surface of the Crushable Foam
model with isotropic hardening, Figure 4.2, is symmetrical with respect to compressive and
tensile stress states. Furthermore, it evolves by uniform scaling in all directions (isotropic
hardening). An associated flow rule is used, and the plastic Poisson’s ratio is generally
not equal to zero. The Crushable Foam material, on the other hand, is characterized by
a constant tensile hydrostatic yield stress, which causes the origin of the yield surface to
move along the hydrostatic axis as the yield surface expands during hardening (Figure 4.1).
The non-associated flow rule governing this constitutive model is defined such that plastic
Poisson’s effects are suppressed.

Crushable Foam Model with Volumetric Hardening

The yield surface of the ABAQUS Crushable Foam material law with volumetric hardening
is defined in terms of the von Mises equivalent stress o, and the hydrostatic pressure p

(= —0m):

Foo1(0e,p) = \/(Ue)2 +a2(p—py)2—B=0 (4.19)

As mentioned before, Equation (4.19) defines an ellipse in the effective stress versus pres-
sure plane, as shown in Figure 4.1. Along the hydrostatic axis the ellipse is bounded by the
tensile hydrostatic yield pressure p§°) in the tensile regime and the instantaneous compres-
sive hydrostatic flow pressure p., which is initially equal to the compressive yield pressure
pgo) for the initial yield surface. In the Crushable Foam law with volumetric hardening,
the tensile hydrostatic yield pressure pEO) is assumed to remain constant throughout the
evolution of the yield surface and, therefore, during any plastic deformation process. Fur-
thermore, the shape of the yield surface, expressed by the shape parameter « in (4.19)
is assumed to be a constant. Other important points on the circumference of the ellip-
tical projection of the yield surface are the point corresponding to the initial shear yield
stress (0,73@ v/3) and the point (a)(,g) /3, 0§2)) marking the onset of yielding under uniaxial
compressive loading.

For the description of individual foam materials two specific input parameters, & and k;,

have to be known:
(0) (0)

_ Oye _ Py
k= © and kt = @ (420)

p
Dc p

'In this notation, which is widely used in the literature, both the “mean” and the “effective” stresses,
om and o, denote stresses on the macroscopic level, and “effective stress” denotes the effective (in the
sense of macroscopic) von Mises equivalent stress.
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Figure 4.1: Crushable Foam model with volumetric hardening [53]; yield sur-
face in the o, — 0, plane.
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The shape parameter (aspect ratio) « then follows as:

o= 3k (4.21)

V(Bk, +k)(3—k)

The parameter B in Equation (4.19) represents the length of the (vertical) o, axis of the
yield ellipse. It is related to the length of the hydrostatic axis (p. + pﬁ")) via the shape

parameter o, which is the aspect ratio of the ellipse:

0
pe +p¥
ai

2

B = (4.22)
The center of the yield ellipse, which moves along the hydrostatic axis during volumetric
hardening, is situated at the mid-point of the fixed tensile yield pressure and the variable

compressive flow pressure:

De — pEO)

5 (4.23)

bo =
In addition to the uniaxial compressive yield stress 052), two additional data items from
the following list have to be known (or appropriate assumptions have to be made) to allow
the calibration of the input parameters:

(0)

e Initial tensile yield stress in uniaxial tension oy,

e Initial yield stress in simple shear Ty(o)

e Initial yield stress under hydrostatic pressure p((;O)

e Initial yield stress under hydrostatic tension pEO)

Since tension tests on metallic foams are becoming a standard procedure (see Section 4.2.3)
and some data exists on the hydrostatic yielding of metallic foams (see Section 4.2.2) it
is appropriate to utilize the respective material parameters to determine the hydrostatic
yield strength p§°) required for the calculation of the ABAQUS input parameter k;:
0) (0) (0
(0) pg )J}(’C)G}(It)

by = 0), (0 0 0)_(0
3700~ o) + o0

(4.24)

which

is equal to the compressive volumetric part —55(1)1 of the tensor of the plastic strains €

for the volumetric hardening model. While the hydrostatic tensile strength p§°) remains

constant throughout any plastic deformation process, the hydrostatic compressive strength
pe evolves as a function of the equivalent plastic strain p, = pc(egév). This hardening
function is material dependent and can be obtained from a uniaxial compressive test under

The evolution of the yield surface is controlled by a plastic strain measure 5§év,
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the assumption of zero plastic Poisson’s ratio, that is, the uniaxial plastic strain being
equal to the volumetric plastic strain.

The flow rule is a non-associated flow rule defined in terms of the total derivative of a flow
potential function Gq:

oG

dEpl = dgg(llv 3—0'

For the Crushable Foam model with volumetric hardening, the flow potential function
Gvol(0e, p) is given as:

(4.25)

9
Gyol = 1/ (0e)? + §p2 (4.26)
and the increment of the equivalent plastic strain def, is defined as:
o : de”
dgg(llv = e (427)

with the operator (:) representing the scalar product of two tensors, that is, the sum of the
products of corresponding elements. The flow rule (4.25) in connection with the particular
form (4.26) of the flow potential gives a direction of plastic flow that is identical to the
stress direction for radial loading paths in the stress space. This implies that loading in
any principal direction does not cause plastic strains in directions perpendicular to the
loading direction. Hence, the plastic Poisson’s ratio v is assumed to vanish. There is
experimental evidence showing that this is a reasonable assumption at least for finite,
compressive deformation, see Section 4.2.

4.3.5 Crushable Foam Model with Isotropic Hardening

The Crushable Foam model with isotropic hardening was originally proposed by Deshpande
and Fleck [24], who performed compression tests on aluminum foam prescribing multiaxial
(axisymmetric) stress states. By successive loading and unloading on different loading
paths they located points on the yield surface. By repetition of this procedure for several
stages of pre-deformation they obtained information about the evolution of the yield surface
for increasing plastic strains. Note that this experimental procedure was very similar to
the numerical method proposed in Section 2.3.2. The experimentally determined points on
the yield surface could be approximated very well by an ellipse in the origin of the effective
stress/hydrostatic pressure plane. Accordingly, their mathematical definition of the yield
surface Fig,(0e, p) = 0 took the form of an ellipse:

ESO(Uevp) = (O'e)2 + a? p2 —-B=0 (428)

where « determines the shape (aspect ratio) and B determines the size of the yield surface.
The shape factor a can be found by inserting the quotient £ = 0}(,2) / p£°) of the absolute



125

CHAPTER 4. MACROSCOPIC MODELING OF METALLIC FOAMS

oe A
uniaxial compression

uniaxial tension

initial yield under
uniaxial compression

Oyt = Oyc |,*°
I" “\

. “ HARDENED
ALY yIELD

b 0 \ SURFACE
: aét) SURFACE

: P

! v + p(=—0m)
' 0 (ovfED (oY 0) ' =
—Pt o Oyt [3=0y[3 pc Dc

face in the o, — 0, plane.

Figure 4.2: Crushable Foam model with isotropic hardening [53]; yield sur-
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value of the initial yield stress in uniaxial compression a}(,g) and the initial yield strength

in hydrostatic compression pgo) into the expression

0= — (4.29)

The yield surface size parameter B, defined as the length of the deviatoric half axis of the
initial yield surface, can then be calculated as a function of either pgo) or a}(,g):

2
B=ap¥ = 0}(,2) 1+ (%) (4.30)
A factor £ = 0 results in a = 0 and recovers the von Mises yield surface. Deshpande and
Fleck [24] found that for uniaxial loading paths the yield surfaces changed primarily in
size while maintaining essentially the same elliptic shape. They dubbed their material law
“Self-Similar” constitutive model as a consequence, thereby indicating isotropic hardening.

The flow potential G, used in the Crushable Foam material law with isotropic hardening

is defined by:

Giso = V/ (0e)? + 52 p?, (4.31)
where
3 1-— 2Vp1

:ﬁ 1'i'l/pl‘

Note, that for 5 = a the condition Gj,, = Fi, for associated plastic flow is fulfilled. For
vanishing plastic Poisson’s ratio v, = 0, the parameter 3 assumes a value of m ~ 2.12.
With the two parameters o and [ it is possible to independently adjust the size of the
yield surface and the plastic Poisson’s ratio.

3 (4.32)

The incremental flow rule is given by:

8Giso
oo

depy = dA (4.33)

in accordance with Equation (4.14).

The hardening of the foam is described by the relationship oy, = oy.(eb,), where €& is
the equivalent plastic strain. The evolution of the equivalent plastic strain aep(llv is defined
through

o : de?

Oyc (5531\')

which means that the work performed by the increment of the equivalent plastic strain
and the instantaneous uniaxial yield stress is the same as the work performed by the
increment of the full plastic strain tensor and the full stress tensor. For uniaxial tension
or compression, transverse expansion does not contribute to the plastic work. In this

pl _
dseqv =

(4.34)
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case, Equation (4.34) simplifies to de?), = oy, de?' /oy, and the equivalent plastic strain is
equal to the absolute value of the uniaxial plastic strain. Therefore, the relationship oy =
ch(eg(llv) can be found directly from the stress—strain diagram of a uniaxial compression
test. In contrast to the Crushable Foam model with volumetric hardening the isotropic

hardening model experiences hardening during pure shear deformation.

4.3.6 Discussion

Existing material laws for metallic foams are adequate for modeling simple deformation
histories and predominantly radial stress paths. More complex mechanical processes such
as successive perpendicular loading will require more sophisticated modeling techniques

to account for the anisotropy caused by changing loading or deformation directions, see
Deshpande and Fleck [24] and Hanssen [47].

Perhaps the most restricting feature about the available foam models is the absence of
appropriate fracture models. Metallic foams are very prone to softening and premature
failure when experiencing tensile stress states, the overall behavior being governed by
progressive failure of the cell walls in this regime. Progressive fracture of cell walls governs
the behavior of metallic foams in this situation. Since fracture is often observed in real-
world applications of metallic foams, the introduction of corresponding simulation methods
will be a major advance.

A correct calibration of the material parameters based on experimental data is indispens-
able for the success of any Finite Element simulation. In most cases, a uniaxial compressive
test is the minimum requirement for this calibration. For more sophisticated constitutive
models additional data on the yield surface shape and the hardening behavior has to be
provided by the user. This requires information about the mechanical behavior of the ma-
terial under multi-axial loading conditions. Since multi-axial experimental data is scarce
the user must rely on appropriate assumptions, which can be derived either from microme-
chanical FE simulations or via parameter identification techniques (that is, by minimizing
the discrepancy between simulations and experimental results).

Fortunately, applications, in which hydrostatic loading conditions prevail, are rare. To
illustrate this, an application will be presented in the following, for which the uniaxial
compressive stress—strain relationship is the most influential material property: the impact
of a large object onto a relatively thin foam layer (padding).



CHAPTER 4. MACROSCOPIC MODELING OF METALLIC FOAMS 128
4.4 Low Energy Impact on Metallic Foam Paddings

4.4.1 Introduction

Safety requirements in vehicle engineering have been raising interest in materials which are
suitable for minimizing the contact forces between two colliding bodies while maximizing
the amount of kinetic energy that is converted to irrecoverable energy. The latter process
is generally referred to as energy absorption. The material of choice should be able to
undergo large compressive deformations at a more or less constant stress level. In addition
it should be of light weight.

At present paddings made of organic foams, which exhibit relatively low strength, are
widely used for impact protection. Due to their low plateau stress levels, these foams have
to undergo comparatively large deformations to absorb the kinetic energy of impacting
body parts. In some situations, however, the available design space is too small to allow
for the provision of an organic foam layer of sufficient depth. Metallic foams are candidate
materials for use in such cases because they exhibit a higher collapse strength while pre-
serving the deformation characteristics of a cellular material, in particular a long plateau
of nearly constant stress in the stress—strain diagram (see Figure 3.2).

Typically, the impact events under consideration will include an impacting object of roughly
cylindrical (for example knee) or spherical shape (for example head) and a comparably thin
foam padding. Safety regulations like the Federal Motor Vehicle Safety Standards, see, for
instance, [76], provide standardized test set-ups for the assessment of the crashworthiness of
vehicle interiors. Body parts are abstracted by simple geometrical shapes of standardized
dimension and mass to make safety tests and the associated results comparable to the
prescribed safety requirements.

For complementing the testing of real structures and for supporting the design of new
energy absorption structures as well as the development of new materials, numerical simu-
lations are performed, see, for instance, Kretz and Gotzinger [60], or Schluppkotten et al.
[97]. In this section, the performance of aluminum foam as a protective material is assessed
by simulating a head impact event as described by FMVSS 201 [76]. At the same time, the
performance of the ABAQUS constitutive models for crushable foams and their parameter
sensitivity are investigated in this potential field of application for metallic foams.

4.4.2 Method

The following crush and crash simulations are related to a potential real-world applica-
tion of metallic foams by the specification of the standardized head impact test set-up
described in the Federal Motor Vehicle Safety Standard FMVSS 201 [76]. In this interna-
tional occupant safety standard, the injury potential of head impacts on interior surfaces
of automobiles is assessed.
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Figure 4.3: Schematic diagram showing the impact simulation setup.

The test can be described as the collision between a freely moving, rigid sphere representing
the head of an adult and structures enclosing the passenger compartment of the automobile.
The spherical impactor is characterized by the following parameters (compare Figure 4.3):

e Impactor diameter 7y = 82.5 mm (165 mm diameter),

e Impactor mass my = 6.8 kg,

e Impact velocity vy = 6.7 m/s (=~ 24 km/h).

The initial kinetic energy K of the impact sphere amounts to K = myvi/2 = 152.6 J.

A sketch of the impact situation is provided in Figure 4.3. Here, the foam pad thickness
tr and the foam pad radius rr are identified. The maximum indentation depth is denoted
as 0. The radius r, of the impact area can be expressed as a function of the radius of the
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impact sphere r\ and of the impact depth d:

To = /T3 — (rv — 6)? (4.35)

The initial offset # between sphere and foam surface completes the set of geometrical pa-
rameters. For the Finite Element simulations axisymmetric models were created. The
impact sphere was modeled by means of a rigid, analytical surface. The foam pad was
represented by a mesh of axisymmetric 4-node continuum elements with bilinear interpola-
tion functions. Frictionless contact between the analytically described sphere and the top
surface of the uppermost element layer was prescribed.

Both quasi-static and dynamic simulations were performed. Wherever possible, the im-
plicit Finite Element code ABAQUS/Standard 6.2 was used. For certain ranges of input
parameters all attempts to achieve a convergent solution with ABAQUS/Standard 6.2 failed.
For these cases, the simulations were performed with the more robust forward integration
method of ABAQUS/Explicit 6.2. For the quasistatic analyses, the simulation time inter-
val was set to 0.1 seconds. Comparison with longer simulation intervals did not reveal any
significant strain rate effect, and the simulations could, therefore, be considered quasistatic.

To model the constitutive behavior of the foam material, the ABAQUS Crushable Foam
material was used with both the volumetric and the isotropic hardening options. The
hardening behavior was described by the analytical stress—strain relationship (3.1) in com-
bination with density dependent function parameters (3.2) as defined by Gradinger for
the uniaxial compression of a typical aluminum foam [37], see Section 3.2. The necessary
conversion of the nominal compressive strain €. to the true compressive plastic strain ey
was performed by the equation

epp = —1In(l —¢g;) — oy /E (4.36)

Here, oy denotes the ¢rue instantaneous compressive yield stress (oy > 0). Care for the
proper conversion of experimentally determined nominal stresses to true stresses has to be
taken for non-zero plastic Poisson’s ratios vp,;. The Young’s modulus £ was chosen equal to
the unloading modulus defined in Equation (3.3). The nominal stress—strain curves were
truncated where the tangent modulus became equal to the elastic modulus. The rest of
the stress—strain regime was described by linear extrapolation to 99% nominal strain with
the tangent modulus being equal to the elastic modulus. The elastic Poisson’s ratio v was
set to zero.

For the various simulations described below, the following reference parameters apply if
not otherwise noted:

e reference initial uniaxial compressive yield stress of 0§(c)) =1 MPa;
e reference initial hydrostatic yield stresses pgo) = pEO) =1 MPa.

e reference thickness of the foam pad tp = 25 mm;
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e reference indentation 0 in quasistatic simulations: 20 mm, or 80% of the reference
thickness;

radius of the foam pad rr equal to radius of the sphere: ry = 7g;

vertical displacement constraints at the bottom of the foam plate;

radial displacement constraints at the bottom and the outside of the plate.

Complementing the Finite Element simulations a simple analytical model is proposed as-
suming that the reaction force F'(0) can be approximated by integrating the local, axial
stress 0., over the impact area:

To

F = /27r7“ Ozz(r) dr (4.37)

Assuming that the axial strain e,,(r) at a given distance r from the axis of rotation
is uniform over the thickness of the pad, the local stress becomes a function of r only.
Kinematic considerations provide the magnitude of the local compressive axial strain 5552

as a function of r, the radius of the sphere ry;, and the indentation depth ¢:

(5 _ 2 _ 2
£ (r) = L2V +t VI =" (4.38)
F

T

In the following sections the influence of several material and geometrical parameters on the
overall force-indentation behavior of the described impact configuration will be examined
in quasistatic and dynamic simulations.

4.4.3 Results
Examination of the Reference Configuration

The first simulations, based on the reference configuration as outlined in the previous
section, are intended to demonstrate the influence of the choice of the kinematic boundary
conditions on the overall force-indentation behavior and the importance of material models
suitable to simulate pressure sensitive materials.

Two different kinematic boundary conditions were considered: (a) a model without any
radial constraints as a model for a plate of finite radius rr and frictionless contact with the
rigid foundation (vertical displacement constraints at the bottom of the foam part), and
(b) a model with radial displacement constraints representing an integrated plate tied to
the foundation by adhesive or metallic bonding.

For the Crushable Foam material with volumetric hardening, the force-indentation dia-
grams in Figure 4.4 show little difference between the two boundary configurations for
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Figure 4.4: Predicted force-indentation relationships for different constraint
conditions and constitutive models.

normalized indentation depths of up to 60%. Beyond this indentation depth the predicted
reaction forces begin to diverge with the constrained model showing an exponential in-
crease of the indentation force while the unconstrained model shows a slight drop in the
tangential stiffness.

The difference is even more marked, if, for the sake of completeness, the Crushable Foam
material law (with volumetric hardening) is replaced with classical, plastically incompress-
ible Jy plasticity. Here, the initial response is distinctly stiffer than for the Crushable Foam
model. In the unconstrained model, the tangential stiffness drops at about 10% normalized
indentation and remains roughly equal to the corresponding tangent stiffness predicted by
the simulations with the Crushable Foam material. In the physically more reasonable con-
strained configuration, however, the force-indentation response remains essentially linear
and, thus, unnaturally stiff.

The difference between the two simulations using the Crushable Foam model with volumet-
ric hardening has to be sought in the respective accumulation of volumetric plastic strains
and the associated degree of hardening for different boundary conditions. The deformed
Finite Element meshes and the contour plots of the plastic volumetric strain fields for both
configurations (Figure 4.5) show that the unconstrained mesh is able to escape volumet-
ric plastic compression by radial expansion. The constrained model lacks this degree of
freedom along parts of its boundary and, therefore, is forced to undergo volumetric plastic
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Figure 4.6: Predicted force-indentation relationships for different constraint
conditions and different degrees of mesh refinement, expressed by
the number of elements over the foam pad thickness.

straining corresponding to uniaxial compression with vanishing plastic Poisson’s ratio.

This may be the reason why the analytical model (represented by the dashed line in Fig-
ure 4.4) as introduced in Section 4.4.2 predicts a force—indentation response that is very
similar to the constrained Finite Element model, notwithstanding a slight underestima-
tion of the actual reaction force at high indentations. Figure 4.4 also contains a force—
indentation diagram obtained using the Crushable Foam model with isotropic hardening
and radial displacement constraints. Starting off at the same initial stiffness as the foam
law with volumetric hardening, the isotropic hardening model predicts higher indentation
forces for increasing strains. A closer look at Equation (4.34), which drives the evolution of
the equivalent plastic strain in the case of isotropic hardening, reveals, that hardening can
be caused by shear deformation in this model, giving rise to a higher degree of hardening
than is observable in a model with hardening being driven exclusively by the evolution of
the volumetric plastic strain.

Influence of Mesh Refinement

An investigation of the influence of the mesh refinement on the qualitative character of the
force-indentation diagrams is suitable for explaining the phenomenon of stair-like force
jumps in the indentation responses, as they can be observed in some publications [60]. In
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contrast to force jumps owing to the wave propagation and reflection phenomena outlined
in Chapter 3, steps in the quasistatic force-indentation curves can be attributed to the
finite discretization of the contact surface in radial direction.

Figure 4.6 illustrates the beneficial influence of an increasing mesh refinement on the
smoothness of the force-indentation diagram of the radially constrained (left) and the
unconstrained reference model (right). The number of elements in the thickness direction
of the foam pad distinguishes the individual curves. Since equilateral 4-node elements were
used, a high mesh refinement in thickness direction implies a high mesh refinement in radial
direction, which is advantageous for resolving the extension of the contact area sufficiently
fine for obtaining a smooth force diagram. Increasing the mesh refinement from 10 to 20
elements did not result in any visible improvement; 10 elements in plate thickness were,
consequently, chosen as the reference mesh refinement.

As was outlined previously, it is not easy to determine experimentally the material pa-
rameters associated with the behavior of cellular materials under hydrostatic loads. The
following sections are devoted to the quantification of the sensitivity of crush simulations
with spherical indenters to variations of the hydrostatic compressive and/or tensile yield
stress, p£°) and pEO), respectively, and the plastic Poisson’s ratio v, in the case of isotropic
hardening.

Sensitivity to Variations of the Hydrostatic Compressive Yield Stress

The first parameter subjected to a systematic variation is the initial hydrostatic compres-
sive yield pressure p((:o)' The theoretical limit for pf;o) is one third of the uniaxial compressive
yield strength ayg). Figure 4.7 shows predicted force-indentation diagrams for values of
the compressive yield pressure ranging from 0.40 to 100 MPa. The uniaxial compressive
and tensile hydrostatic yield stresses were kept constant at 1 MPa.

For p£°) values below the uniaxial compressive yield stress the implicit solution method
failed to converge. An explicit simulation produced results in this range, but for p((;o) values
very close to the theoretical limit the explicit simulation produced very ragged reaction
force-indentation curves, and the deformed mesh showed hourglassing effects. These results
were omitted from Figure 4.7.

With regard to the set of reference parameters a}(,g) = pgo) = p§°) = 1 MPa, an increase of

the initial hydrostatic compressive yield strength resulted in a slight decrease of the overall
reaction force (—3.4% for p”) = 100 MPa). There was no relevant additional decrease for
p((;o) values beyond 5 MPa. Decreasing pgo) leads to increased force levels. At pEO) = 0.4
MPa the reaction force was 21% higher than the reference force.
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Sensitivity to Variations of the Hydrostatic Tensile Yield Stress

The volumetric hardening option of the ABAQUS Crushable Foam material law allows for
different tensile and compressive initial hydrostatic yield stresses. Figure 4.8 shows pre-
dicted force-indentation diagrams for tensile hydrostatic yield stresses between 0.1 and
100 MPa at constant uniaxial compressive and compressive hydrostatic yield stresses of 1
MPa, respectively.

For pEO) values of 5, 10, and 100 MPa convergence could not be obtained with the standard

implicit integration scheme of ABAQUS/Standard. Again, the explicit integration scheme
of ABAQUS/Explicit proved to be more robust and provided results up to the desired
indentation depth.

Compared to the result for the reference parameter set a}(,?;) = p£°) = pEO) = 1 MPa, a
reduction of the initial hydrostatic tensile yield strength caused a slight decrease of the

overall reaction force (-5% for p) = 0.1 MPa). Increasing p{” leads to increased force

levels. At p&o) = 100 MPa the reaction force was 7% higher than the reference force.

Simultaneous Variation of the Hydrostatic Tensile and Compressive Yield Stress

Besides a separate variation of the constant tensile hydrostatic yield stress p§°) and the
initial compressive hydrostatic yield stress pff’), a simultaneous variation of these two yield
surface parameters is possible. With increasing values of p£°) and pEO) the shape of the
initial yield surfaces turns into an elongated ellipse aligned with the hydrostatic axis in the

mean/effective stress plane.

The influence of a simultaneous variation for the values of the two hydrostatic strength
parameters on the overall quasistatic force-indentation response was also investigated.
Since for the used set of parameters the initial yield surface is symmetric with respect to
the origin, it was possible to use both the volumetric and the isotropic hardening model;
a vanishing plastic Poisson’s ratio v, = 0 was assumed for both models.

Figure 4.9 shows predicted force—indentation diagrams for a range of values of p£°) = p§°)

between 0.4 and 100 MPa. With respect to the reference reaction force for p£°) = p§°) =

0}(,2) = 1 MPa an increase of the hydrostatic strength to 100 MPa leads to an increase of
1.5% for the volumetric hardening model and a decrease of 4.4% for the isotropic hardening
model. A reduction of the hydrostatic strength to 0.4 MPa resulted in a relative increase
of the peak reaction force by 18.4% for the volumetric hardening model and by 46.1% for

the isotropic hardening model.
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Variation of the Plastic Poisson’s Ratio for Isotropic Hardening

The formulation of the Crushable Foam law with isotropic hardening allows for the varia-
tion of the plastic Poisson’s ratio v, (for volumetric hardening, v, = 0 is assumed).

Figure 4.10 shows the influence of a variation of the plastic Poisson’s ratio v, in the interval
0 < v < 0.5 on the predicted mechanical behavior of the quasistatic reference indentation
simulation. The theoretical limit of v,; = 0.5 forbids any volumetric plastic compression
(analogous to Jo plasticity); a simulation with this restriction could not be executed owing
to numerical difficulties.

Plotting the peak reaction force over the prescribed plastic Poisson’s ratio (Figure 4.10,
right) reveals two different regimes. For v, values between 0.0 and 0.33, an increase of vy
results in an increase of the peak reaction forces. At 80% nominal compressive strain the
peak force for v, = 0.33 is 70% higher than the peak force for v, = 0. For v, values above
0.33, further increasing v, causes the peak reaction force to decrease towards the value for
vp = 0.0. A similar relationship between the plastic Poisson’s ratio and the axial stress
can be observed in the simulation of a uniaxial compression test with lateral expansion
constraints, see Section 4.4.4, where it will be shown that the value of v,; maximizing the
reaction force for arbitrary states of compression can be determined in consideration of
work hardening mechanisms.
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Figure 4.11: Left: predicted force-indentation relationships for foam pads
of different thickness. The curves terminate at the point of
maximum dynamic indentation. Right: peak indentation force
as a function of the foam pad thickness.

Variation of the Foam Thickness in Dynamic Situations

So far, the influence of parameters necessary for the calibration of the Crushable Foam
material law was studied in quasistatic simulations. Now, the influence of a geometrical
parameter, namely the foam pad thickness tr, on the results of an impact simulation will
be considered.

In the following simulation series, the Crushable Foam constitutive model with volumetric
hardening was calibrated with the reference material parameter set (0§,2) = pgo) = pEO) =

MPa). The impact of a rigid sphere of standardized mass and velocity on foam pads
of different thickness was simulated. Figure 4.11 shows the simulation results as overall
force—displacement plots (left) and as a peak force versus foam thickness diagram (right).
Besides the Finite Element simulation results, selected force-displacement graphs obtained

with the analytical solution (4.37) are presented and will be subjected to discussion.

The maximum reaction force appears for the minimum foam pad thickness of ¢t = 20
mm. In this thickness regime, the peak force is highly sensitive to changes in thickness: an
increase of the foam pad thickness to 25 mm reduces the predicted peak force by almost
50%! Above 25 mm thickness, the thickness—peak force relationship quickly approaches a
limit value of 15 kN, only 25% below the peak force for tx = 25 mm. It can be concluded,
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Figure 4.12: Predicted distribution of axial stresses in a 100 mm thick foam
pad at the moment of maximum indentation of a spherical im-
pactor; Left: contour plot; Right: radial stress distributions.

that at small original thickness values, a slight increase of the foam thickness can be very
beneficial, whereas for thick foam pads even large thickness increments do not have a
noticeable influence on the peak force.

Figure 4.11 contains three force-displacement graphs predicted by the analytical solution,
Equation (4.37), for ¢z = 20, 25 and 100 mm. They are discernible as dashed lines. For
foam pads of small thickness, the analytical solutions agree very well with the simulation
results. Beyond a foam pad thickness of 50 mm, however, the peak force predicted by
the Finite Element simulation does not drop further with increasing thickness, while the
analytical model continues to show a decreasing peak force for increasing thickness ¢tg. For
investigating this difference in behavior, a comparison between the two models is provided
for tg = 100 mm in Figure 4.12. The contour plot of the axial normal stress ., (522)
in the deformed configuration (Figure 4.12, left) indicates, that the crash deformation
localizes in the upper half of the Finite Element model. There is no apparent interaction
between the stress field in the upper half of the pad and the distal wall. A plot of the axial
normal stress along the bottom and the top surface of the Finite Element model versus
the radial distance from the rotational axis of symmetry, Figure 4.12 (right), confirms
this statement. It shows a parabolic stress distribution at the top surface, but a uniform
stress distribution at the bottom surface. The analytical model, assuming uniform stress in
thickness direction, predicts stress levels between these two extremes, that is, lower than
the actual stresses acting on the impact sphere. Hence, neglecting the effects of strain
localization clearly reduces the analytically predicted peak force.

With increasing distance between the localized deformation field and the distal wall, bound-
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Figure 4.13: Predicted force-indentation relationships for the dynamic im-
pact of a spherical impactor on foam pads of different apparent
density.

ary effects begin to diminish and the peak indentation force converges towards a lower limit.

Variation of the Foam Density in Dynamic Situations

As shown in Chapter 3, the apparent foam density has a very strong influence on the
uniaxial force—displacement behavior of metallic foams. The same effect is observable
in crash simulations involving a spherical indenter. Figure 4.13 shows predicted force—
indentation graphs for the dynamic impact of a rigid spherical impactor on foam pads of
apparent densities pp ranging from 0.2 g/cm?® to 0.6 g/cm3. Starting from zero at the
moment of impact the reaction force rises exponentially until a peak reaction force and the
maximum indentation depth are reached. The force-indentation diagram for the foam of
0.2 g/cm?® apparent density shows how the reaction force drops sharply to zero after the
maximum indentation was reached. This drop marks the end of the deceleration period
and the beginning of the acceleration of the impact mass in the opposite direction by forces
created by the release of the stored elastic energy. As soon as the impactor separates from
the foam surface the contact force vanishes. This elastic spring-back regime was omitted
in the other curves for more visual clarity.

The area under the force-indentation curves equals the work performed by the contact
forces between the impactor and the foam pad. The overwhelming part of the kinetic
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energy, which initially amounts to 152.6 J, is dissipated by plastic deformation, while a
minor part is stored as elastic strain energy. At the moment of standstill, the initial kinetic
energy of the impact mass is fully stored in the foam material. The corresponding peak
reaction force values, parameterized by the apparent foam density, are connected by a
line in Figure 4.13. In addition to this envelope of the predicted force—indentation curves,
indentation states, for which the stored energies amount to 50 and 100 J, respectively, are
marked in Figure 4.13.

With respect to the minimization of the injury potential of the impact situation, the peak
load appearing during impact should be minimized. If the free parameter is the apparent
foam density then a diagram like Figure 4.13 can be evaluated to find the density that
corresponds to the lowest peak load sustained during an impact event driven by a given
amount of kinetic energy [60]. For the considered head impact, the lowest peak load is
approximately 20 kN for an optimum density of 0.275 g/cm®. This optimum density value
is very close to the one obtained in the uniaxial simulations investigated in Chapter 3.
As in previous examples, the analytical solution based on Equation 4.37 gives surprisingly
good predictions for the overall force-indentation behavior, compare the dashed lines in
Figure 4.13.

4.4.4 Discussion
Influence of Hydrostatic Yield Parameters

In Figure 4.14, the relative difference between the predicted and the reference peak inden-
tation force at an indentation depth of 0.8 ¢r is plotted versus the prescribed hydrostatic
strength parameters pgo) and p§°). The absolute force offsets have been normalized by the
reference indentation force for volumetric hardening. Thus, it becomes obvious that the
peak force for the reference parameter set pgo) = p§°) = 052) = 1 is approximately 20%
higher for isotropic hardening, although the two hardening data sets were identical; in par-
ticular, the plastic Poisson’s ratio v, was set to zero for isotropic hardening. This shows,
that for equal material data and equal simulation configurations the isotropic hardening
behavior predicts slightly higher force values than the volumetric one owing to (a) the
contribution of shear stresses and strains to the expansion of the yield surface, and (b) the
symmetric expansion of the yield surface in the compressive and the tensile hydrostatic

regimes.

The strongest influence of a variation of the hydrostatic strength parameters can be ob-
served for low pff’) values, representing initial yield surfaces, the long axis of which is
parallel to the effective strain axis in the 0,0, diagram. For yield surfaces of this shape
small increments of the hydrostatic, compressive yield stress lead to large increments of the
uniaxial compressive and the shear yield stresses. It will be shown below, that these stress
states cover large regions of the stress field and, therefore, make the simulations sensitive
to variations of the corresponding yield stress properties. Within the range of practical
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Figure 4.15: Dependence of the axisymmetric stress state on the plastic Pois-
son’s ratio vy in a radially constrained uniaxial compression
simulation, visualized by projection to the mean/effective stress
plane. The prescribed nominal axial strain is 70%.

hydrostatic yield stress values discussed in Section 4.2.2; a variation of only -5/4+10% has
to be expected for the peak indentation force for the given configuration.

Influence of the Plastic Poisson’s Ratio

For the isotropic hardening model, the plastic Poisson’s ratio has been shown to exert
considerable influence on the overall force-indentation behavior. At v, = 0.33 a maximum
force was predicted by the indentation simulation. Subjecting the Crushable Foam material
with isotropic hardening to uniaxial compression and radial deformation constraints gives
a similar relationship between 1, and the axial compression force. The thick solid line in
Figure 4.15 connects axisymmetric stress states, which are evaluated for the same uniaxial
compressive strain and parameterized by the Poisson’s ratio. The dotted lines show stress
paths for two selected plastic Poisson’s ratios (v, = 0.33 and v, = 0.45 ) and monotonically
increasing, purely uniaxial compressive strain.

To relate the stress states to the corresponding state of the yield surface, a projection to
the mean/effective stress plane was chosen. In the case of an uniform axisymmetric stress
state with g4y = 0, this transformation is performed by:

Oe = |Uzz - Urfr‘ (439)
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_ Ozz + 200

; (4.40)

Om
In this representation, isolines of constant axial stress 0., can be described by the linear
equation

ou(0m) = ;(Um o). (4.41)

Maximizing o0,, under the constraint that the stress state resides on the yield surface
leads to the condition that the isoline, Equation (4.41), touches the yield surface in the
point corresponding to the maximized axial yield stress (and the corresponding radial
stress). From this follows that the largest axial stress is associated with the “largest” yield
surface, that is, the maximum degree of hardening. Maximizing de®, in Equation (4.34)
for arbitrary uniaxial hardening tables oy.(e2,,) means maximizing the plastic dissipation
energy increment (o : dey). The principle of maximum plastic dissipation applies to
associated plastic flow, for which the yield surface Figs, and the flow potential G;g, are
symmetric. Comparing Equations (4.28) and (4.31) shows that this condition is fulfilled

for « = 8 and, consequently, for
1

vpl = o (3 —k?). (4.42)
For the examined case of k = 1, the highest degree of hardening occurs at v, = 1/3, as
was observed in Figures 4.10 and 4.15.

Stress Fields and Stress Evolution

So far, the evaluation of the simulation results was primarily based on a discussion of the
overall force—displacement response of the sphere/foam system. To understand the reaction
of the foam material in the considered impact situation it is advantageous to discuss the
stress and deformation fields in the model in more detail.

The instantaneous stress state can be visualized by stress vector plots, in which the length
and the direction of vectors graphically represents the magnitude of the principal stresses,
and the orientation of the vectors shows the orientation of the principal stresses axes.
Figure 4.16 shows a corresponding plot for an early stage of a typical impact simulation.

Directly under the impact mass uniaxial compressive deformation prevails. The maximum
degree of hardening occurs at the foam surface below the center of the impact mass. Both
stresses and strains are largest at the surface of the foam and decrease with increasing depth
under the impact zone. The zones of equal compressive strain in the impact direction have
the shape of an inverted cone with the impact area as its base.

Tensile principal stresses occur at the surface of the foam pad just outside the border of
the contact area. The tensile principal stress axes are oriented parallel to the (deformed)
surface. The highest value of tensile principal stresses is reached at the border of the
impact area. Here, the occurrence of cracks can be expected as schematically indicated in
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Figure 4.16: Plot of predicted principal stress vectors, partitioned into dif-
ferent characteristic stress domains.

Figure 4.16. Material points just inside the border of the impact area undergo the highest
amount of shear deformation.

The observation of the instantaneous stress distributions indicates the prevalence of uni-
axial stress states in the considered impact event. This means that the simulation should
not be very sensitive to changes in the hydrostatic parameters of the material. Addition-
ally, the principal stress axes keep roughly the same orientation during the indentation.
Therefore, strong anisotropy effects do not occur.

Besides the multiaxial nature of the instantaneous stress states, the history of local stress
states is an important aspect of the simulation. The evolution of local stress states is best
visualized as a curve in the mean/effective stress diagram used commonly when describing
pressure dependent material laws; in Figure 4.17, the predicted evolution of stress states in
selected material points of the foam target is followed during the impact event. This data
can be used to assess which level of complexity of the flow rule and the hardening law is
required for performing satisfactory simulations.

Essentially, radial paths in stress space indicate that simple isotropic constitutive laws
suffice for describing the local material state, whereas distinct changes in the direction
of the stress paths signal that phenomena such as anisotropic hardening will have to be
considered. Furthermore, softening due to fracture of cell walls may occur when stress
states enter tensile regimes.
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Evolution of Some Local Stress States During Impact
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Figure 4.17: Stress states of selected material points visualized as paths in
the von Mises equivalent versus mean stress plane during a typ-
ical impact event.

Figure 4.17 shows stress history paths for three different material points. These stress
paths lie mostly between the axis of uniaxial compression (inclination 3:1) and the vertical
axis that represents pure shear, indicating that these two types of loading will dominate
the local deformation of the foam. The “Axis, top” line in Figure 4.17 is associated with
a point under the center of the impact mass. It is surrounded by an ellipse, which is
the projection of the Crushable Foam yield surface corresponding to the highest value of
the hardening parameter, in this case the accumulated volumetric plastic strain. Uniaxial
stress states can be seen to prevail in the impact event considered here, indicating that
the simulation should not be very sensitive to changes of the hydrostatic parameters of the
material.

These findings narrow down the requirements for constitutive laws to be employed in crash
simulations involving a comparatively thin padding and a large impactor. They explain the
relatively small influence of the shape of the yield surface on the overall force-indentation
relationship and the surprisingly good predictions of the uniaxial analytical model.

4.4.5 Conclusions

In this section, the simulation of low-energy impact events with selected constitutive models
was demonstrated. Because of the geometrical relation between the curved impact mass
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and the thin foam layer, the local deformation and stress states were predominantly in
the uniaxial compressive and shear like domain. The orientations of the principal axes
of the stress tensor did not change significantly, and anisotropy effects could, therefore,
be neglected. Furthermore, the influence of hydrostatic material parameters was not very
pronounced under these conditions; the simulations were rather insensitive to variations of
these parameters within reasonable ranges.

The Crushable Foam constitutive model with isotropic hardening allows for the specifica-
tion of the plastic Poisson’s ratio v,. The peak indentation force is approximately equal
for v, = 0 and v, = 0.5. Between those limiting values, the peak force reached a maxi-
mum if the condition of associated flow is fulfilled. For equal uniaxial and hydrostatic yield
stresses this is the case for a plastic Poisson’s ratio of 1/3, where the peak force was 70%
above the reference value. This significant influence has to be kept in mind with regard to
the calibration of material data.

In addition, the simulation results were very sensitive to changes of the kinematic boundary
conditions and the thickness of the foam pad. Radial kinematic constraints lead to a strong
increase of the reaction force for indentation depths exceeding 60% foam pad thickness.
Increasing the foam pad thickness has a strong effect for foam pads of low thickness and
a diminishing effect for foam pads of high thickness. In the former case, the thickness
influences the degree of compaction, and, thereby, the degree of hardening directly. In
the latter case, the diminishing interaction between the impact zone and the distal surface
leads to a decoupling of the foam thickness and the dynamic peak load.

Another strong influence can be contributed to the apparent density of the foam. For
the examined reference configuration, a distinct optimum in the density range existed
with regard to a minimization of the peak load experienced by an impactor hitting the
metallic foam padding. It can be expected that such an optimal density exists for similar
configurations, see, for example, [60] and Chapter 3.
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4.5 Design Optimization with Metallic Foams

4.5.1 Introduction

Nature, well known for her economic use of sparse resources, relies on cellular materials such
as wood or bone to set up load-bearing structures (for example endo- and exoskeletons) in
living beings. The reason for this preference lies in the high specific stiffness and strength
of this kind of materials. Another characteristic of porous or cellular materials is the
fact that their mechanical properties are scalable by changing their effective density. In
living beings biological growth processes exploit this possibility by adapting the mechanical
properties of tissue in response to changing loading conditions. Apart from changes of the
microstructure, the most apparent change is the increase or decrease of the local effective
density.

Engineers are inspired by the intricate biological structures, that were optimized by evo-
lution in the course of hundreds of millions of years, and they are looking for engineering
materials with similar advantageous properties [58]. With growing knowledge about the
mechanical performance of cellular metals and, in particular, of metallic foams, methods
for the design of foam components for applications such as packaging, energy absorption
and sandwich structures have evolved significantly [6; 31; 33]. The ability of cellular metals
to compete with other materials can be underlined by emphasizing their multifunctionality
[29; 30]. Furthermore, it was shown that in certain structures, such as cylindrical sandwich
shells, metallic foam cores are more weight efficient than other stiffening concepts [56]. In
studies dealing with the design and optimization of metallic foam components usually a
foam of uniform density is assumed.

Metallic foams show some potential for being produced with controlled spatial variations
of their density, introducing inhomogeneities on a mesoscale as defined in Chapter 3. In
the case of foams produced via powder metallurgical routes the foaming process, and, as
a consequence, the final density distribution may be controlled by suitable choices of the
distribution of the blowing agent and of process parameters such as temperature and pres-
sure. This suggests employing such foams as graded materials in space filling lightweight
structures designed in analogy to cancellous bone, a functionally graded biological material
that displays increased density in regions of high loading, compare Figure 1.1 (left).

In a study by Reiter [91] algorithms are presented which simulate the natural adaptation
of bone to applied loads. Figure 4.18 (left) shows the bone density distribution as pre-
dicted by the program FAROB. The calculated density distribution agrees well with the
density distribution found in an actual femur (Figure 4.18, right). Bone typically shows
regions of dense material, that is, cortical bone, and of foam-like material, that is, spongy
(trabecular) bone. It was shown that in many cases bones represent stiffness optimized
structures. Hence, it was a natural step to try simulating the bone remodeling processes
and to transfer the concepts and corresponding algorithms to technical applications within
the framework of functionally graded materials [92]. Some production routes [34] for metal-



CHAPTER 4. MACROSCOPIC MODELING OF METALLIC FOAMS 151

RELATIVE DENSITY

Figure 4.18: Left: density distribution in the proximal femur as predicted by
numerical bone remodeling simulation [85]. Right: Radio-graph
of a typical human femur [62].
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lic foams are undergoing development aimed at allowing the realization of spatially varying
micro-structures and apparent mass densities, leading to position dependent stiffness and
strength properties. This opens up the possibilities of employing them as graded materials
in space filling lightweight structures and of approximating the natural path of “optimiza-
tion” followed by bone configurations for making functionally graded foams and for the
formation of in situ sandwich structures made of aluminum (Figure 1.1, right).

4.5.2 Method

The method proposed in this study is based on the premise that the global behavior of
structures can be improved by achieving certain stress or strain conditions on the local
level. In many design cases, an improvement of a structure is related to a reduction of its
total mass while maintaining or improving important parameters like stiffness or strength.
The design objective in these cases is the improvement of the weight-specific properties
of the structure. Depending on the parameter domain of the problem this can imply the
optimization of part dimensions, shapes of parts with a given topology or an optimization
of the topology itself. Sophisticated methods try to optimize the geometry (that is, size or
shape) and the topology of a structure at the same time. The existence of a structural shape
implies that the structure is defined by the geometry and the topology of the boundary of
a volume of solid material. For practical reasons, only shapes, which do not extend beyond
a predefined design space, are considered.

Metallic foams offer a different route for the improvement (or the optimization) of struc-
tures, since they can be produced not only in fairly arbitrary shapes, but also with a
varying local apparent density. Recognizing the local apparent density as an important
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design variable in structures consisting of or containing metallic foam, a method to adapt
the local density in a way, that is beneficial for the overall behavior of the structure, was
sought. In the research field of biomechanics, an appropriate method was proposed by
Reiter [91]. This method predicts the growth of bone in living beings by simulating the
adaptation of the apparent bone density to stress fields caused by external loads. The
basic assumption behind this algorithm is that bone can react to a local stimulus related to
the stresses or the strains in the trabecular microstructure. In the case of bone remodeling
this stimulus is often chosen to be an averaged local strain energy density in the trabecular
structure of the spongy bone.

In the context of the present investigation two different scalar mechanical properties were
considered as the driving forces for the density adaptation process:

1. the homogenized strain energy density and

2. an equivalent stress for the homogenized material.

These two properties were related to nominal values to calculate a stimulus and, conse-
quently, a proportional rate of change of the local foam density. For a local mechanical
parameter v, which is desired to converge towards a nominal, stationary value vg,;, the
stimulus S can be determined by:

U(t) — Ustat

(Ustat)sw

S(t) = (4.43)
The numerator of this expression corresponds to the stimulus definition proposed by Reiter
[91], whereas the denominator was supplemented in this work to allow for a calculation
of the stimulus in terms of absolute or relative, that is, dimensionless values. To this end
the exponent s, was introduced, which acts like a switch, yielding a stimulus in absolute
values for s,, = 0, or a dimensionless quantity for s,, = 1. Calculating a relative stimulus
simplifies the calibration of the adaptation parameters, therefore s,, was kept at a value of
1 throughout the present study.

The goal of the proposed algorithm lies in improving the global behavior of structures by
satisfying a local stationarity condition v — v, = 0, where v is a state variable such as the
spatially varying homogenized equivalent stress, and wvg,; is a constant global stationary
value. The stimulus S expresses by how much the actual value v differs from the aspired
stationary value vg,t. If the difference is severe then the density of the foam changes at a
high rate, whereas the rate of change of the foam diminishes in the vicinity of the density
that corresponds to the locally optimal configuration. This is achieved by solving the initial
value problem

dpr
—_— = 4.44
o = e 5(0) (4.44)

where dpg/dt is the rate of the change of the apparent foam density, S(¢) is the time-
dependent stimulus as introduced in Equation (4.43) and c is a factor for controlling the
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speed of the density adaptation process. Appropriate initial conditions, often in the form
of an initially uniform density distribution pr(tg) = pr o, complete the problem. Equation
(4.44) is an ordinary first-order differential equation describing the evolution of the local
apparent density pr(t). The rate of change of the density is a linear function of the stimulus
S(t). This approach has been used in a number of studies on bone remodeling, for example,
in the work of Reiter [91] or in Pettermann et al. [85], where ¢ has the character of a real
time. For the present models ¢t may be viewed as a fictitious time.

So far little has been said about the relevance of the two different state variables, the local
strain energy density and the local equivalent stress, and about their respective nominal
values. Pedersen [84] states that structures, which exhibit a uniform distribution of the
strain energy density in the loaded condition, are optimized with respect to weight specific
stiffness. This leads to the choice of the homogenized strain energy Ur as a variable v and a
constant homogenized strain energy U ¢y as a nominal value vg,¢ in Equation (4.43). The
rate Equation (4.44) causes the density pr to decrease as soon as the actual strain energy
density is below the nominal one and to increase as soon as Up is higher than Upeq. It
is worth restating that a spatial distribution Ur(z,y, 2z) of the homogenized strain energy
density, which converges locally to a stationary value Ur o4, is equivalent to an increase of
the specific stiffness.

The other state variable under consideration is an equivalent stress oeq,, Which is, in
connection with a density-dependent yield stress op yi4(pr), a scalar measure that can be
used to determine whether a material deforms inelastically or not. For a structure made of
metal, inelastic deformation usually implies plastic deformation, and in many design cases
these non-reversible deformations are undesirable. Within the framework of plasticity
theory stress tensors are translated into a scalar equivalent stress, which can be compared
to a yield stress representing the limit of purely elastic deformation under uniaxial loading.
Assuming that such a yield stress exists for metallic foams we can apply the proposed
procedure to improve the strength of a structure made of or containing metallic foam
by gradually changing the local apparent density of the homogenized material such that,
ultimately, the local stress state shows the desired safety against yielding everywhere in the
structure. This procedure is known as “fully stressed design” and regarded as an intuitive
way to optimize the strength of a structure.

In the treatment of porous or cellular materials a distinction has to be made between
quantities vg related to the solid phase and effective or homogenized quantities vp which
can be defined on a length-scale, where the material does not act like a structure, that is,
an arrangement of cell walls, struts, and vertices, but rather as a homogeneous material
with individual cells being indistinguishable from a mechanical point of view (compare the
discussion in Section 4.1). The field of homogenization theory deals with the transition
between these two length-scales. For an isotropic material with a statistically uniform
microstructural topology the apparent density is the governing material property. It has
proven advantageous to relate homogenized quantities vp and bulk material quantities vg
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by power laws of the form

LIS (p—F>ﬁ (4.45)

Us Ps

with the relative density prre = pr/ps being the governing parameter. The dimensionless
constants a and [ depend on foam-specific microgeometrical parameters. Gibson and
Ashby [34] suggested an exponent Sp of 2 for scaling the elastic modulus of open cell
foams, while they assigned an exponent 3, of 1.5 to the yield stress opyi4. In the same
work, several more refined micromechanical models are presented to take into account
the microtopology, that is, open or closed cell microstructures, or the distribution of the
material between cell walls and corners as well as edges. We assume that a relationship such
as Equation (4.45) can describe the actual dependence of an effective material property
v;p on the relative apparent density prra reasonably well within a given density range
[pF,min; pF,max]-

If the bulk material density ps and the mechanical bulk material properties véi) are un-
known, but scaling relations are available in terms of absolute parameter values vp and
the absolute foam density pr, then the scaling parameters o and 3 can be used directly as
soon as the bulk material density ps and the bulk material parameter véz) are both set to
1.0. Equation (4.45) then becomes

As mentioned in Section 3.2, Gradinger and Rammerstorfer [36] presented power laws
similar to Equation (4.46), which were obtained for an aluminum foam of the brand
ALULIGHT(™) in an extensive experimental program. This aluminum foam is produced
via a powder metallurgical route holding a potential for controlling the foaming process,
and, therefore, the final density distribution by a suitable choice of the distribution of the
blowing agent and the process parameters, for example the time histories of temperature
and pressure. In [36] the results of a large number of uniaxial compression tests was ex-
pressed by the following regression formula for the macroscopic uniaxial compressive yield
stress oF yiq

or yd(pr) = 12.343 pp %7 [MPal, (4.47)

which was considered to be equal to the collapse stress og. A similar relationship for the
initial tangent modulus Er was derived as:

FEr(pr) = 892.32 pp'*?'2 [MPa). (4.48)

The absolute apparent foam density pr has to be inserted in [g/cm3] in both equations.
Equations (4.47) and (4.48) are valid for a density range of 0.2 < pr < 0.8 g/cm®. In
addition to the initial modulus Er, an unloading modulus of

Skrpo(pr) = 14000 pp>? [MPa] (4.49)

was measured. Equations (4.47) to (4.49) will be used to demonstrate the adaptation
process for an existing aluminum foam. The homogenized foam material is assumed to be
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isotropic and linear elastic for stress states inside the yield surface. The elastic Poisson’s
ratio v is chosen as 0.3.

Since an important characteristic of foam is its pressure sensitivity, a suitable stress measure
has to be found for strength optimization. If isotropic behavior can be assumed then it
is advantageous to express the yield criterion geqy = Opyq in terms of the invariants of
a stress tensor o. A suitable stress measure for assessing the influence of the deviatoric
stress components is defined in classical metal plasticity by the von Mises equivalent stress:

3
Te = \| 5 Sij Sij» (4.50)

with s;; being the deviatoric components s;; = 0;; — om 0;; of the local stress tensor o. An
alternative formulation of Equation (4.50), namely o, = (3.J5)"/%, incorporates the second
invariant Jo = %s,-j si; of the deviatoric stress tensor and motivates the designation “Jo-
plasticity” for a theory of yielding for materials that do not yield under pure hydrostatic
stress states. In contrast to the behavior of solid metals, hydrostatic pressure can cause
yielding of a porous or foamed metal. Thus, the influence of the mean stress

Om = %Ukk = %]1 (451)
has to be taken into account along with the equivalent deviatoric stress o,. Here, I; =
011 + 099 + 033 denotes the first invariant of the local stress state o. For the interaction of
deviatoric and hydrostatic stress components an equivalent stress measure was proposed
by Deshpande and Fleck [24]:

1
oqu2 = W (0e2 + &2 omZ) (4.52)
The corresponding yield surface, which is defined by the yield condition oeqy = 0r yi4, is of
elliptical shape in the (o, 0.) stress space. The shape parameter £ defines the aspect ratio
of the ellipse?, and Or yia is the yield strength of the foam under uniaxial compression. The
hydrostatic yield strength omyiq is given by omyia = orya [(1+ (€ /3)2)1/ ?/¢. For € = 0
Equation (4.52) simplifies t0 0eqy = e, and the equivalent stress oeqy is equal to the von
Mises equivalent stress o.. The definition of a local equivalent stress o.q, and a density
dependent yield stress oryiq are sufficient for performing density adaptation in order to
achieve a fully stressed design as outlined previously.

The choice of a nominal strain energy density Upeq for an adaptive improvement of the
specific stiffness of a foam structure is less straightforward and requires some additional
considerations. It will be shown later that a structure of high specific stiffness tends to be
clearly partitioned in regions of maximum and minimum foam densities. Assuming that
only the regions of maximum apparent foam density carry the applied load, a nominal

2The parameter ¢ in Equation (4.52) is equivalent to the parameter « in the definition of the equivalent
stress according to Deshpande and Fleck [24] and the ABAQUS Crushable Foam law with isotropic hardening.



CHAPTER 4. MACROSCOPIC MODELING OF METALLIC FOAMS 156

strain energy density Ur oq, that ensures that the yield criterion oeqy > 0r yiq is not fulfilled
in regions of maximum foam density, can be considered an appropriate target value. In the
case of the yield criterion for metallic foams proposed by Fleck and Deshpande [24] it is
indeed possible to find an appropriate strain energy density, since for £ > 0 the yield surface
is closed and convex in the 6-dimensional space of the components of the stress tensor. The
total strain energy density Ur can be split up into a contribution Uy representing the elastic
energy stored by changing the volume of an volume element, yielding
3(1-2v) 9

Uy(om) = o (om) (4.53)
for an isotropic material and a contribution Ugy, corresponding to the elastic energy stored
by changing the shape of the volume element:

USh(Ue) = (O'e)2 (454)

3E

Here, we are looking for a nominal strain energy density U, that is lower or equal to
the minimum of all strain energy density values for stress states on the yield surface. In
other words, we want to minimize Up = Uy + Us, under the condition that the yield
criterion is fulfilled. Since Uy, Usn, and oeqy can be expressed in terms of the mean stress
om and the von Mises equivalent stress o, this minimum can be found fairly easily. For
PF = Prmax = 0.8 g/cm® and & = 1.5 the sought nominal strain energy density Up e is
equal to the strain energy density Up(omyia) for a foam volume having a density of pp max
and being loaded by the hydrostatic yield stress omyiq. If the strain energy density Ur is
below this threshold U ¢4, and the foam density iS pr max then yielding will not occur.

Another approach for the determination of a nominal strain energy density is the consider-
ation of a uniaxial stress state which corresponds to the uniaxial yield stress o yi4. In the
following it will be shown that upon trying to improve the specific stiffness of a structure
with spatially varying stiffness one often ends up with a framework of struts formed by
regions of maximum density. Assuming that these stiff struts are the load bearing parts
of the structure and that uniaxial stress states predominate in a framework topology, the

choice of a nominal value ( 2
OF,yld
Up oy = ¥ 4.55
F.eq 92 EF ’ ( )
which is the elastic energy energy density at the uniaxial yield stress o yq of a foam of

maximum admissible density pr max, has some physical relevance.

4.5.3 Implementation

The stress—strain relationship & = FE € for a linear elastic material and the differential
equation (4.44) governing the adaptation process were implemented as a user material
subroutine in the Finite Element code ABAQUS. A user material subroutine (UMAT) essen-
tially takes a strain increment as an argument and returns a stress increment as a function
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of the strain increment and the local material state. The strain increments, which are sup-
plied by ABAQUS, are updated iteratively until global mechanical equilibrium is achieved.
Due to the discretization of the continuum problem the material state is evaluated only at
a finite number of integration points.

The evolution of the local, homogenized density pg is evaluated by integrating Equation
(4.44) incrementally using the explicit integration scheme:

pr(t + At) = pp(t) + dstFAt. (4.56)
In the implementation of this incremental integration scheme, the rate of change of the
density |dpp/dt| is limited by a maximum value (pr)max- This parameter and the factor ¢
in Equation (4.44) govern the convergence behavior of the optimization process. The use of
an explicit integration scheme requires the parameters ¢ and (pr)max to satisfy additional
convergence conditions. If the multiplier ¢ for the stimulus or the time increment is chosen
too large then the solution will oscillate around the equilibrium state. If too high a value
is selected for (pp)max then the force equilibrium iterations of the Finite Element solver
will fail to converge.

A reasonable value for the cut-off rate of change of the foam density (pr)max can be derived
by specifying the minimum number of increments n;,. necessary to raise the density at a
material point from the minimum density ppmin to the maximum density pgmax. For a
time increment size At a maximum rate (Pp)max Of

. PF.max — PF,min
max — ’ : 4.57
(o) = P2 (4.57)

follows. In the present study, the number of increments n;,. was set to 10. Since the step
time has no physical meaning in the case of topology optimization (as opposed to, for
example, bone remodeling,) the time increment size At was set to 1.0. The rate multiplier
¢ in equation (4.44) was chosen such that the lowest possible relative stimulus, namely
(0 — Vstat) /Vstat = —1 leads to the highest rate of density reduction —(pp)max- It follows

that ¢ = (pF)max-

With the definition of a user material subroutine the density adaptation process is per-
formed on the integration-point level. A comparison of this method to other approaches
(element based, node based) is given in the work by Jacobs et al. [57]. It should be men-
tioned that the integration-point approach can put severe restrictions on the choice of the
Finite Element type. The integration order of conventional Gauss quadrature can be too
low for the case of high density gradients. It was shown in a single element test (bilinear,
4 node, two dimensional solid) that the assembly of the Finite Element stiffness matrix
can lead to physically unreasonable stress states in the integration points if the integration
order is too low to capture high stiffness gradients throughout the element. This problem
is tied to the existence of multiple integration points per element. Finite Elements with a
single integration point are the logical exception. Therefore, only two element types with
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Figure 4.19: Deep cantilever beam example.

one integration point were used in the present study, namely 2D constant strain triangles
and 3D axisymmetric triangles.

The simulations were started with a uniform density distribution. The analyses were
continued until the density changes fell below a chosen convergence limit.

4.5.4 Results
Structures of High Specific Stiffness

In the following some basic configurations characterized by different admissible design
spaces and different loading as well as kinematic boundary conditions will be investigated.
Beam-like topologies are very common in engineering. Consequently, some standard cases
for topology optimization are defined by beam-like design spaces and single concentrated
or distributed loads. Depending on the symmetry and the boundary conditions of the
problem deep or short cantilever beams as well as bridge-like beams supported at two or
more points can be distinguished. For these configurations many reference solutions for
stiffness and strength optimized topologies exist [28; 50]. Here, some similar problems
were examined to allow for a comparison of the obtained solutions to the ones found in the
literature and, thus, to verify the proposed method as well as to find the characteristics
inherent to a optimization process based on metallic foams.

The first design problem involves a clamped, deep cantilever beam with a single load at the
center of the long free edge (Figure 4.19). An adaptation of the density distribution with
the goal of achieving a uniform apparent strain energy density was performed. The value of
the nominal strain energy density Ur oq Was chosen to be equal to the strain energy density
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for the uniaxial yield stress of a foam volume having the maximum density ppmax. This
choice was motivated by the assumption that the adaptation process would lead to a two-
bar truss, which is considered the stiffness optimized reference solution for this problem.
The concentrated load was chosen to lead to a reasonable thickness of the two trusses,
which involved the calculation of the relationship between the magnitude of the load and
the stress in the two trusses. The elastic modulus Ex was calculated as a function of the
apparent density pp according to Equation (4.49), that is, the unloading modulus Sgpo
was used in place of Fr. The input parameters for this and the following simulations are
summarized in Table 4.2.

The resulting converged density distribution is depicted in Figure 4.19. The density adap-
tation process effectively produced the desired reference solution of a two-bar truss. The
“bars” represent regions, where foam of the highest admissible density pp max Was accumu-
lated, while the rest of the design space is filled with foam of the lowest admissible density
Pr.min- Lhe thickness of the bars is approximately 75% of the analytically predicted one.
This ratio remains valid even if the minimum density is set to a value close to zero, and,
consequently, the supporting effect of the regions of low density is vanishing. Examining
the deformed configuration of the problem one finds that the “bars” undergo shear and, to
a lesser extent, bending deformation. Therefore, they do not act like ideal truss members,
but more like thick beams with finite shear and bending stiffnesses, the influence of which
manifests itself in the slightly reduced thickness of the bars.

If the dimensions of the design space are changed such that the length of the feasible region
becomes larger than the height then we arrive at a design problem commonly referred to
as short cantilever beam. Figure 4.20 shows the density distribution after a strain energy
driven adaptation simulation was performed for the clamped beam with a central concen-
trated load at the short free edge. For this example the nominal strain energy density was
chosen to be the lowest one for which yielding can occur in regions of maximum density (as
discussed in Section 4.5.3). The resulting density distribution is more complicated than the
one presented for the deep cantilever beam problem, but it shares an important character-
istic, namely the distinct partitioning of the design space into regions filled with material
of low and of high density. This truss-like topology is typical for stiffness optimization
problems. Again, the solution of the problem corresponds well with reference solutions
[50]. A slight asymmetry is noticeable between the two outer diagonal members: the top
flange is interrupted by a comparatively wide section of intermediate density. The inner
truss-like members, which are arranged in the shape of an “X”, also exhibit this interme-
diate density. Upon closer observation, the grey areas in the contour density plot turn
out to be a checkerboard-like arrangement of elements with maximum and minimum foam
density. The cause for this pattern and the implications of this finding will be discussed in
greater detail in the following section.

To document the convergence behavior of the algorithm a history plot of the averaged
strain energy density is shown in Figure 4.21. The two curves in Figure 4.21 correspond
to two different initial densities ppo, namely ppmin and ppmax- At selected points in
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Input Parameters for (Self) Adaptive Material

No. ‘ Input Parameter P;

‘ Value ‘ Unit

1 | Remodeling mode flag 0 ...no remodeling (lin. elast.) lor2
1 ...strain energy based
2 ...eqv. stress based
2 | Absolute density of the bulk material ps | “1.07 g/cm?
3 | Minimum admissible foam density PF min 0.2 g/cm?
4 | Maximum admissible foam density PF max 0.8 g/cm?
5 | Poisson’s number v 0.3
6 | Young’s modulus of the solid bulk material Es “1.0” MPa
(also: Young’s modulus for linear elastic mode if P, = 0)
7 | Young’s modulus scaling factor ag: ..unloading: | 14000
..initial: | 892.32
8 | Young’s modulus scaling exponent [g: ..unloading: | 2.2000
..initial: | 1.3212
9 | PL=1...Equilibrium strain energy density Useq(= Ureq) | 0.00256 | MPa
Py =2 ...Yield stress of (fictitious) solid material oys | “1.07 MPa
10 | P, =1 ...Strain energy scaling factor ay 1.0
P, =2 ...Yield stress scaling factor oy | 12.343
11 | P, =1 ...Strain energy scaling exponent (Useq = Ur eq) Bu 0.0
P, =2 ...Yield stress scaling exponent B, | 1.8807
12 | P, =1 ...Density weighting factor in Bone Remodeling [91] a4 0.0
P, =2 ...Shape parameter for self similar foam model & 1.5
13 | Necrosis limit for Bone Remodeling [91] (not implemented) —
14 | Density reduction rate multiplier Cdec 0.06 g/%
3
15 | Density increase rate multiplier Cinc 0.06 g/fTItn
16 | Maximum density reduction rate, Eq. (4.57): Pd 0.06 g/cm’
) ec Tt
17 | Maximum density increase rate, Eq. (4.57): Pinc 0.06 g/cm’
’ in At
18 | Lazy zone half width for Bone Remodeling [91] 0.0
19 | Stimulus switch: 0 ...absolute stimulus Sw 1

1 ...relative stimulus

Table 4.2: Input parameters for the ABAQUS User Material subroutine de-

scribing self-adaptive density remodeling.
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Figure 4.22: Density distributions of a stiffness optimized symmetric plane
stress beam under a central load F' with free (a) and fixed sup-
ports (b) [19].

the simulation history, contour plots of the apparent density are also given. Towards
the right side of the diagram, the two converged configurations are depicted which are
almost identical indicating that the solution is not sensitive to the choice of the initial
density. The history of the averaged strain energy density for pp o = pp min Shows steadily
decreasing energy density values. This is favorable since minimizing compliance defined as
the work done by a set of given loads against the displacements at mechanical equilibrium
is equivalent to minimizing the total elastic energy of the structure [28]. Starting at the
other end of the density range, pro = ppmax, results in an initially stiffer structure in
terms of absolute values. The mass-specific stiffness, however, is less favorable since a lot
of surplus material is distributed in regions with low stress levels. In the course of the
simulation this excessive material is degraded, and after passing through a maximum close
to the nominal strain energy density the averaged strain energy density converges to the
value obtained for the simulation starting at minimum initial density.

In [19] stiffness improved configurations were presented for the problem of a beam, which
is supported on both ends and loaded by a vertical force along the symmetry plane (Fig-
ure 4.22). Free and fixed supports were considered and led to distinctly different density
distributions. For the fixed supports in Figure 4.22(b) a clean planar framework appears
in the course of the adaptation process, while in the case of free supports a sandwich-like
structure with cover sheets of variable thickness and a core of intermediate density emerges,
see Figure 4.22(a). Here, the kinematic boundary conditions govern the adaptation process
leading to a sandwich topology for the bending dominated problem of horizontally movable
supports.

Tackling true sandwich structures with the proposed method leads to similar configurations
showing regions of intermediate, but uniform density. In Figure 4.23 a symmetric beam is
covered by a shell consisting of bulk material (E' = Es). Furthermore, a distributed load
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Figure 4.23: Sandwich beam with improved specific stiffness due to a func-
tionally graded metallic foam core [114].

is assumed, and fixed supports are prescribed for this example. A stiffness optimization
of this configuration was performed in [114]. The depicted solution showed better weight
specific stiffness than an analytically optimized configuration which was restricted to having
a density distribution that was variable only in thickness direction [114].

Structures of High Specific Strength

In this section some examples of structures with a high specific strength, obtained by
following the axiom of fully stressed design, will be presented. Here, the local foam density
is changed until the local equivalent stress matches the strength of the material as closely
as possible, therefore avoiding the usage of dense material in regions of low stress levels.
In the simulations under consideration the lower initial (tangent) modulus as defined in
Equation (4.48) was used. This fact will be of great importance in the discussion of the
results.

The beam that was presented earlier in Figure 4.22 is treated again with the density
adaptation method, but now with the object of achieving a high specific strength instead
of a high specific stiffness. The result is shown in Figure 4.24. The most obvious difference
to the results presented earlier is the smoothness of the density distribution, with soft
gradients instead of a stepwise change of the apparent density such as it predominates in
the truss-like structures of high specific stiffness. Figure 4.24 shows how highly stressed
regions such as the supports and the lower and upper regions in the middle of the beam
accumulate the highest local foam densities, while nearly stress-free regions like the top
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Figure 4.24: Strength optimized symmetric beam with fixed supports under
a central load.

corners are filled with foam of minimal density. The whole layout reminds of an arched
bridge with a bottom flange, both of which exhibit high foam density and are connected
by a core of gradually changing intermediate density.

In [19] the effects of stress concentrations around a hole in the center of a square plate
are investigated with respect to their influence on the strength optimization process. Fig-
ure 4.25 shows the density distributions obtained for a plate which was subjected to a
distributed load ¢ on the top surface. Here, a distinction was made between the von Mises
equivalent stress and the equivalent stress for foam plasticity proposed by Deshpande and
Fleck [24]. The shape parameter £ for the yield criterion was chosen to be 1.5. To effect
three-axial stress states plane strain conditions were prescribed.

The stress concentration around the hole gives rise to an accumulation of high density
material, which forms two symmetric columns oriented in loading direction and bounded
by the hole on the inner side and a region of low foam density on the outside. Another
area reinforced by foam of high density developed close to that sector of the circular hole
which is parallel to the loaded area. Here, the material accumulation is the result of a
concentration of tensile stresses perpendicular to the loading direction. Figure 4.25 allows
for a comparison of the two different yield criteria with respect to their effect on the evolved
density configurations. The foam specific equivalent stress, Equation (4.52), proves to be
more sensitive to the distributed load applied to the top of the model as it is indicated by
the layer of increased density, which spans across the whole width of the top of the model,
and the horizontal bands of denser material that reinforce the center region of the plate
right above the hole.

To provide a situation, where triaxial stress states are even more dominant, a circular plate
such as the one presented in Figure 4.26 was considered. The circumferential boundary
of the plate was fixed, and a constant pressure p was applied to the top surface of the
model. The magnitude of this pressure was set to 50% of the uniaxial yield strength of a
foam of the highest admissible density: p = %O’F,yld(p}?,max). To get an impression of the
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Figure 4.25: Strength optimized symmetric plane strain plate with a central
hole under a distributed load ¢ in the vertical direction. The
optimized density distributions for Jo-plasticity (a) and foam
plasticity (b) are shown. Due to the symmetry of the problem
only one quarter of the model is depicted [19].
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influence of the shape parameter £ in this case, £ was varied from £ = 0.0 (von Mises yield
criterion) to & = 3.0 in steps of A& = 0.5. The six resulting density distributions are shown
as axisymmetric cross-sections in Figure 4.26.

For the uniform initial configuration, the stresses o,, in axial direction are equal to —p
at the top surface and decline with an almost constant gradient until they vanish at the
bottom surface. The radial stresses o,, reach values slightly higher than £2p due to the
circumferential bending moment in the middle of the plate and the reaction moment at
the clamped lateral area. In the center of the plate the circumferential stresses ogg are
equal to the radial ones. With increasing radius they decline and change their sign to rise
again to values of approximately £p due to Poisson’s effect. The shear stresses o,, are
distributed parabolically in thickness direction and rise linearly from 0 in the center of the
plate to values around p close to the lateral area, where the parabolic stress distribution
is disturbed by the kinematic boundary conditions. How these initial stress distributions
and the yield surface shape parameter £ affect the final density distribution can be seen in
Figure 4.26.

For von Mises plasticity (£ = 0), the deviatoric components of the stress tensor are critical.
Regions of high foam density can, accordingly, be found in regions of high shear stresses,
as is observable from the dark regions in the density contour plot in Figure 4.26(a). The
nearly hydrostatic stress conditions along the axis of the plate do not result in high von
Mises equivalent stresses, and, therefore, only thin layers of high-density foam can be found
at the top and at the bottom of the central part of the plate, where the bending stresses in
radial and circumferential direction are the dominant components of the stress tensor. It is
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Figure 4.26: Optimized foam density distributions in the cross-section of a
thick, circular plates under uniform pressure for different yield
surface shape parameters &.
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remarkable that the layer of high density is more extended at the bottom of the plate, where
no surface pressure was applied. Here, a plane stress state with o,, = ggg = 2p results in
von Mises equivalent stresses that have a stronger deviatoric effect than the stress state at
the loaded surface, where the pressure in the third direction induces a higher triaxiality
and a lower von Mises equivalent stress. In the initial configurations the von Mises stress
is lower than the yield stress of the highest foam density, but the increase of the foam
density along the surface of the plate leads to stress redistribution and, ultimately, to the
formation of layers with maximal density.

With increasing £, the influence of the hydrostatic part of the stress tensor becomes more
pronounced. A closer investigation of the configuration for £ = 2.5, Figure 4.26(e), reveals
that in the regions with the initially highest shear stresses material with a less than max-
imum density suffices to prevent yielding. At the top surface, where the applied pressure
acts in combination with the compressive bending stresses a massive layer of high foam
density can be found. At the bottom of the plate the axial stresses are dropping to zero
and the biaxial tensile bending stress state produces a foam layer that is only slightly more
extended than the corresponding region in Figure 4.26(a). At the outer edges of the plate
the radial and circumferential bending stress concentrations cause the density to reach the
maximum admissible value.

4.5.5 Discussion

The proposed method makes innovative use of the capabilities of ABAQUS with regard to
modeling the constitutive behavior of materials. It is intended to represent a material that
adapts to mechanical loading. While certainly not an optimization in the strict mathe-
matical sense, the self-adapting material subroutine can be used for a quick assessment of
the potential effects of other, more refined topology optimization methods. Apart from
the necessary restrictions on element types, this requires no change to the Finite Element
model itself. The implementation as an ABAQUS UMAT makes pre- and post-processing steps
within the iteration loop obsolete. This leads to a speed increase by a factor of up to
8 in comparison to comparable stand-alone remodeling and optimization programs (for
example FAROB by Reiter [91]).

Two different optimization goals were pursued in the previous section: the maximization
of the specific stiffness by achieving a uniform homogenized strain energy density and the
maximization of the specific strength by means of a fully stressed design. Apart from
the different definitions of the stimuli, the density dependent moduli of elasticity Er was
defined differently in the two cases. For the strength adaptation, the lower initial tangent
modulus (4.48) was used, while for the stiffness adaptation the higher unloading modulus
(4.49) was chosen to model the elastic behavior. This proved to be influential for the
character of the density distributions, which is truss-like for stiff structures and continuous
with smooth gradients in the case of structures of high specific strength.

Density distributions, which are of the same binary nature as the one presented as examples



CHAPTER 4. MACROSCOPIC MODELING OF METALLIC FOAMS 168

of structures of high specific stiffness, are well known and investigated in the biomechanical
research field of bone remodeling, which deals with the functional adaptation of living bone
tissue to changing load conditions. In the case of bone remodeling the strain energy density
Ug,s in the trabecular solid bone material is assumed to be relevant for adaptation, that
is, Sp(t) = Ups — Upgstat acts as a stimulus. The relation between the apparent and the
bulk density values for bone are similar to Equation (4.45) and given by

Us
Ug < = 4.58
Bs pB,relﬂU ( )
and
Ep = Eng ppye’™. (4.59)

Harrigan [48] and Reiter [91] state that in such cases the condition g < Sy must be fulfilled
to ensure the stability of remodeling solutions with smooth density gradients. Stable den-
sity distributions are insensitive to perturbations of the local density, meaning that these
perturbations tend to decay with time, whereas perturbations of instable configurations
cause the local density to diverge to either minimal or maximal density values. In the case
of an initially non-uniform stress field this means that the Finite Element solutions tend
towards the formation of a framework of plane/space trusses on the global level, and to the
local appearance of “checkerboard” density patterns, wherein adjacent elements alternate
between the maximum and minimum density.

If the condition B < fBy is applied to the problem of stiffness improvement of foam
structures as treated here, because of Sy = 0 (the homogenized strain energy density is
used instead of the bulk value) and Bg > 0, this stability condition is violated as in many
similar situations in topology optimization.

The density configurations in Figures 4.24 to 4.26, which exhibit continuous density distri-
butions with comparably shallow gradients, show that smooth and stable density distribu-
tions were obtained for a yield stress related stimulus and the low S5 from Equation (4.48).
To derive a stability condition like S < [y by dimensional analysis we first note that
U x 0%/E. Substituting the yield stress oryid for o and the effective Young’s modulus
Er for E we arrive at the relationship U 0F7y1d2 /Er. Both arguments on the right hand
side of this proportionality equation depend on the relative foam density pp . Expanding
both terms and introducing the respective scaling exponents 5 we obtain

(prret) e
(PF ra1)PE

Substituting (28, — Br) for By in the stability condition 8y > B gives 23, — Bg > g and,
hence, 5, > (g as the stability condition for the fully stressed design adaptation method.
This condition is indeed fulfilled for the considered exponents £, = 1.8807 and fBg =
1.3213. Although Equation (4.60) is just a coarse approximation, the above consideration
indicates that the strength optimization leads to stable and smooth solutions for the chosen
parameters.

U x = (prper)*P" 77" (4.60)
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For cases of structures with high specific stiffness distributed load and boundary conditions
had a smoothening effect on the density distribution despite the prevalence of the described
instability issues on the local level (compare Figure 4.23). Metallic foams seem to be more
suited for the construction of stiff structures under such conditions than for design cases
dominated by concentrated loads and point-like supports.

It should be mentioned that in practice ideal conditions like uniform strain energy density or
full exploitation of the load bearing capacity can hardly be achieved. This is a consequence
of the constraints that are put on the density range, with material prevented to vanish
completely at one end of the density range and material, which is over-stressed, but has
already reached the highest admissible density value at the other end. A distinct lump of
high-density foam indicates that the load-bearing capacity of the design space is exceeded
and inserts of solid material are necessary to distribute the applied load.

4.5.6 Summary

An algorithm for an optimization of distributions of the apparent density in structures
made of functionally graded cellular materials was proposed. This algorithm, which can
be described as a self-adapting material, was implemented into an ABAQUS User Material
subroutine (UMAT). This implies that it acts on the integration point level, where it
converges locally to a stationary condition for which a user defined state variable reaches
a nominal value. This value is in most cases related to the local homogenized mass density
by a power law. The exponent of this power law governs the numerical stability of the
solutions with respect to small variations in the local density. This indicates that the
character of the solutions is strongly influenced by the actual elastic properties and their
density dependence. Choosing an appropriate adaptation criterion can provide solutions
that represent foam structures of high specific stiffness or strength.

It was shown that strength optimizations with material parameters, that are typical for
metallic foams, lead to continuous solutions showing density gradients, which may indeed
be realizable by suitable processing technologies (compare Figure 4.24). Local stress con-
centrations like loading points or supports may have to be reinforced with solid inserts
in practical applications. Attempts to optimize the specific stiffness of foam structures
resulted in the formation of discrete structures such as frameworks of struts. This indi-
cates that cellular metals may not be ideal for stiffness-optimized structures, at least in the
presence of concentrated loads. For sandwich beams with foam cores as studied by Vonach
et al. [114] smooth mesoscopic density distributions were obtained for stiffness optimized
configurations under distributed loads.

As the processing technologies for foamed metals are improved, and the production of
foamed structures with non-uniform density becomes feasible, studies like the one presented
here may give useful information about potential improvements for the density distributions
in such structures. Future developments may incorporate the optimization of the shape of
the foam filled region, which was tied to a rigid design space in the present study, and the
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simultaneous optimization of the thickness of a shell of solid material, which encloses the
foam core to form integrated, sandwich-like components as displayed in Figure 1.1 (right).



Chapter 5

Conclusions

It is generally difficult to decide on which length scale the simulation of the thermo-
mechanical behavior of metallic foams has to be performed to achieve optimum results
and reliable predictions for the real performance of the material. One of the potential ap-
plications of metallic foam, namely sandwich cores, may serve to illustrate this difficulty:
in thickness direction sandwich cores possess a limited number of cell layers, suggesting a
microstructural simulation approach that fully resolves the discrete microstructure of the
material. On the other hand, the in-plane dimensions of the core are typically much larger
than the core thickness and, hence, the average cell size, thus favoring a macroscopic
simulation approach considering that it is infeasible to model microstructures contain-
ing thousands of individual foam cells within present computational capabilities. These
macroscopic approaches describe the discrete microstructure via a homogeneous reference
material, the effective behavior of which closely approaches that of the original microstruc-
ture. In many cases such macroscopic descriptions can give excellent approximations of
the behavior of the cellular material. They have to be adapted to capture the essential mi-
cromechanical features while keeping the computational cost for modeling component-size
metallic foam structures within reasonable bounds.

To identify the necessary abstractions on the macromechanical level and the governing
mechanisms on the micromechanical level, it is advantageous to perform the simulation
of metallic foams on both levels and to transfer results from one level to the other. The
present thesis attempts to cover different strategies for modeling the mechanical behavior of
cellular metals. On the microstructural level, several methods for advanced pre- and post-
processing of 2D and 3D models were proposed to capture the influence and the interaction
of imperfections and irregularities in ways that promote a deeper understanding of foam
micromechanics than existing approaches. With crash-protection applications in mind, a
special emphasis was put on predictions of the micromechanical behavior for large com-
pressive strains. By applying homogenization methods the results were expressed in terms
of effective/overall quantities and, therefore, made accessible for comparison to macrome-
chanical results. Macromechanical characteristics like oscillations in the plateau region
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of the overall stress—strain relationships were correlated to micromechanical processes. In
some way, results from experimental results drive the development of more sophisticated
microstructural models, because a result that can be ezplained weighs more heavily than
plain data; for cellular materials, investigations on the microstructural level are the richest
source of qualitative information.

On the other hand, not all microstructurally based mechanical phenomena have to be
considered for simulating the mechanical behavior of a metallic foam structure successfully.
To demonstrate this, the predictive quality of two constitutive laws was evaluated for a
standard impact protection situation. The requirements for constitutive laws are tied to
their intended application, and in the case of large objects impacting thin foam layers these
requirements were shown to be modest.

Even easier to deal with are problems where inelastic behavior can, in principle, be excluded
by appropriate dimensioning of the metallic foam components. In these cases, metallic
foams can be modeled with linear elastic constitutive theories, which, for the simplest
case of isotopic elasticity, require only two parameters for the calibration of the material
data. On the basis of such approaches, it is possible to exploit the scalability of the
elastic properties by a controlled variation of the apparent density for designing structures
with optimized distributions of the local apparent density. A method suitable for the
prediction of such weight-efficient density distributions was presented and parallels to the
self-adaptation capability of living cellular tissue (bone) were discussed.

The scope of the present thesis demonstrates that many different strategies are applica-
ble for modeling the mechanical behavior of cellular metals. In view of the engineering
potential of metallic foams and the research challenges they pose, it appears safe to say
that studies of these materials on all length scales discussed above will remain a fertile
field for future research. The immediate challenge on the micromechanical level will be the
introduction of larger, more representative 3D models of the cellular microstructure. On
the macromechanical level, the implementation of robust and reliable algorithms for the
modeling of damage and fracture has great potential for improving the predictive quality
of simulations involving metallic foam components.
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