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Chapter 1

Introduction

The two processes, the Fano- and the resonant Auger-process, discussed in
this diplomawork are already known for some time and have already been ex-
perimentally investigated many times in the spectral domain but time domain
experiments are just about to be started. New laser-technologies allowing
pulses in the attosecond domain make it possible to resolve the details. The
theories for these processes therefore need to be reconsidered and to employ
time-dependent approaches. Starting from the time-dependent Schrödinger
equation I intend to show the possibilities and occurring problems of a time-
dependent theory.

One of the most famous and simple experimental ”proofs” of quantum-
theory is the ”double-slit-experiment” which can not be explained classically.
On it’s way from its source to the detector the electron doesn’t choose one of
the slits but passes through both of them at the same time. At the detector
contributions form these alternative paths interfere and cause the unexpected
distribution. Although the processes studied here are a bit more complicated
this basic feature of quantum theory can still be observed in a rather simple
way. Of course a proper description of the normal Auger-process also needs
to be quantum-theoretically but the very basic principle may be explained
to a novice classically. This is not the case here. Although the single steps
of the processes are pretty much the same there is no way to explain the
obtained spectra without entering the exciting world of qunatum theory.
The description of the electrons by wavefunctions that allow to describe the
strange behavior mentioned above: The excited electron doesn’t choose a
single path but propagates in a superposition of them. Just like ordinary
waves the wavefunctions that describe these alternative paths interfere and
just in the moment of measurement the mixture of wavefunction collapses
and fixes the location and energy of the particle causing the asymmetric
spectra.
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Both processes are two-electron problems. As this makes the mathe-
matical description rather troublesome Ugo Fano developed an alternative
procedure, how to convert the Fano-process into an one-particle problems,
which might be of general interest. Furthermore this description makes the
resonance [3] coming from the exact coincidence of two coupled levels in
energy easier to understand.

Throughout this work the square-brackets notation [ ] is used to indicate
hole states and atomic units are used, eg � = 1, e = 1, me = 1. Further-
more a semiclassical approach is used, meaning applying quantum-theory for
particles but treating the radiation field classically (not quantized).
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Chapter 2

Basic methods

Before the processes are discussed it is important to give a short review
of the basic methods that can be used to describe those phenomenons or
give reasons why conventional procedures like perturbation theory are not
applicable.

Every attempt to study quantum effects will start at the Schrödinger-
equation

H|Ψ >= i|Ψ̇ > (2.1)

which unfortunately can analytically only be solved in some few simple cases.
Therefore one has to introduce some approximations and simplifications of
the real problem or/and make use of numerical technics.

2.1 Interaction representation

In the end every calculation has to provide results that can be compared
to experimental results. To derive physically measurable values from the
wavefunctions one has to calculate the expectancy value of the corresponding
operator: < A >=< Ψ|A|Ψ >. From the right side of this equation it can be
seen that it is free to choose where (in Ψ or A) to include the time-evolution
of the system. In the so called Schrödinger representation A is defined to be
constant but the wavefunction |Ψ > is a function of time. The exact opposite
of it is called the Heisenbergbild. An intermediate form, where both, Ψ and
A, are time-dependent, is the interaction representation which seems at first
sight to be needlessly complicated but simplifies things in some cases.

In this approach the hamiltonian H is split into a time-independent un-
perturbed Hamiltonian H0 and a time-dependent perturbation V.

H(t) = H0 + V (t) (2.2)
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Going [4] from the Schrödinger representation to the interaction representa-
tion with respect to H0 is archived by applying the unitarian transformation
T (t) = eiH0(t−t0) to the vectors and operators A of the Schrödinger represen-
tation1, t0 being a reference instant that we will take for the origin of time
(t0 = 0). This transformation equals the time-evolution operator of a system
described by H0. If |ψ̃(t) > and Ã represent the vectors and operators in the
new representation, then we have

|ψ̃(t) >= eiH0t|ψ > (2.3)

Ã(t) = eiH0tAe−iH0t (2.4)

If V were zero, the interaction representation would be identical to the
Heisenberg representation and |ψ̃ > would remain fixed over time. It fol-
lows that in the general case, where V is nonzero, |ψ̃ > evolves only as result
of the presence of the coupling V. To see this more precisely let us determine
the evolution equation of |ψ̃ > by applying i d

dt
to (2.3) and by using the

Schrödinger equation for the occurring id|ψ(t)>
dt

-term. As a result we note

i
d

dt
|ψ̃(t) > = −H0|ψ̃(t) > +eiH0t(H0 + V )|ψ(t) >

= Ṽ |ψ̃(t) >
(2.5)

where Ṽ = eiH0tV e−iH0t

2.2 Hamiltonian in the field

A good example for such a time-dependent perturbation is a radiation field.
The two studied processes are both triggered by an electromagnetic field
coming from a laser or a synchrotron.

2.2.1 Minimal-coupling prescription

To derive the proper description for the quantum-mechanical behavior of an
electron in a radiation field one has to start from classical electrodynamics
and then quantize the electrons motion according to the principles of the first
quantization [5]. The classical electrodynamics of an electron in a radiation
field can be summarized by the Hamiltonian

H =
1

2m
(p − e

c
A)2 − eφ (2.6)

1To understand operators like H0 in an exponent one has to expand the exponential
function into it’s Taylor series.
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where A and φ are the vector and scalar potential of the radiation field.
This Hamiltonian is justified because it correctly reproduces the equations
of motion (Lorenz-force) when substituted into the classical canonical equa-
tions:

q̇j =
∂H

∂pj
(2.7)

and

ṗj = −∂H

∂qj

(2.8)

Using the Hamiltonian from (2.6) in (2.7) leads for the x-component to

ẋ =
∂H

∂px

=
1

m
(px − e

c
Ax) (2.9)

When it is substituted into (2.8) we get

ṗx = −∂H

∂qx
= e

∂φ

∂x
+

e

mc
[(px − e

c
Ax)

∂Ax

∂x
+(py − e

c
Ay)

∂Ay

∂x
+(pz − e

c
Az)

∂Az

∂z
]

(2.10)
Relationship (2.9) can be used to rewrite (2.10) in the form

ṗx = e
∂φ

∂x
+

e

c
(ẋ

∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x
) (2.11)

The total time derivative of Ax

dAx

dt
=

∂Ax

∂t
+ ẋ

∂Ax

∂x
+ ẏ

∂Ax

∂y
+ ż

∂Ax

∂z
(2.12)

can be used to rewrite (2.11) as

d

dt
(px − e

c
Ax) = e(

∂φ

∂x
− 1

c

∂Ax

∂t
) +

e

c
[ẏ(

∂Ay

∂x
− ∂Ax

∂y
) − ż(

∂Ax

∂z
− ∂Az

∂x
)]

= e(
∂φ

∂x
− 1

c

∂Ax

∂t
) +

e

c
[v × (� × A)]x

(2.13)

For all three coordinates this result may be generalized:

d

dt
(p − e

c
A) = e(�φ − 1

c

∂A

∂t
) + e[

1

c
v × (�×A)]

= e(E +
1

c
v ×B)

(2.14)

For the last conversion we used the Maxwell law E = −1
c

∂A
∂t

+ �φ and
B = � × A. A closer look at (2.14) reveals that the right side of it is the
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well known formula for the Lorentz force, what is just what we were ment to
show to proof (2.6).

The classical Hamiltonian (2.6) allows us to quantize the electrons motion
according to the principles of the first quantization: p → −i� ; r → r and
H → i ∂

∂t
. We derive the time-dependent Schrödinger equation :

i
∂

∂t
Ψ(r, t) = [

1

2m
(−i �−e

c
A)2) + V ]Ψ(r, t)

= [H0 + H′(t)]Ψ(r, t)
(2.15)

This immediately provides the semiclassical electron-field interaction Hamil-
tonian H’:

H′(r, t) =
e

2mc
[2iA · � + i(� · A)] +

e2

2mc2
A · A (2.16)

2.2.2 The gauge invariance and the gauge transforma-

tion of the Schrödinger equation

We know that the electromagnetic field strengths are derivable from poten-
tials, which can be gauged in different ways. For example the so-called gauge
transformation of the first kind A′ = A + �χ together with φ′ = φ + 1

c
χ̇

leaves the field strengths unaltered.
These gauge transformations change the Schrödinger equation (2.15) to:

i
∂Ψ

∂t
= [

1

2m
(−i �−e

c
A′ +

e

c
� χ)2 − eφ′ +

e

c
χ̇]Ψ (2.17)

This can be transformed into

i
∂

∂t
[ei e

c
χψ] = [

1

2m
(−i �−e

c
A′)2 − eφ′][ei e

c
χΨ] (2.18)

Therefore, the new solution after the gauge transformation is

ψ′ = ei e
c
χψ (2.19)

what differs from the old solution by the phase-factor ei e
c
χ only. Whenever

we want to calculate any physically measurable value from this ψ′, we have
to take the expectancy value from it. As this is done by taking the square
of it’s absolute value such phase-factors cancel out leaving no physical differ-
ence between the different gauges of the wavefunction. During the following
derivations the ”radiation gauge” (also called ”Coulomb gauge”) will be used:

� · A = 0 ϕ = 0 (2.20)
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2.2.3 The dipole approximation and the two forms of
the interaction hamiltonian

In the radiation gauge the Maxwell’s equation of the vector potential in the
free space ((�2 − 1

c2
∂2

∂t2
)A = 0) can be solved by a monomode constant-

amplitude vector potential A(r, t) = A0cos(k · r − ωt) where k is the propa-
gation vector.
The dipole approximation of a radiation field consists of neglecting the ”re-
tardation effect” due to the wave vector k and thus replacing the spatial
modulation factor

eik·r ≈ 1 + k · r + . . . (2.21)

by the leading term, unity. Since the wavelength in the optical or suboptical
region is almost always very large compared to any other characteristic length
associated with the atomic system, effectively |k·r| � 1 and hence the dipole
approximation turns out nearly always to be very good in practice. With help
of (2.20) and (2.21) (2.16) can be transformed into the so-called ”velocity
gauge”

H′(t) =
ie

mc
A(t) · � +

e2

2mc2
A(t)2 (2.22)

where A(t) is (because of (2.21)) independent of the coordinates.
It is now convenient to introduce a transformed interaction Hamiltonian,
obtained by making a gauge transformation of the second kind:

ψ = ei e
c
r·A(t)Ψ (2.23)

Substituting this expression in (2.15) together with the definition for the elec-

tric field strength, namely E = −1
c

∂A(t)
∂t

, yields the interaction Hamiltonian
in the ”length form”

H′(t) = −erE(t) (2.24)

2.2.4 Selection rules

In the following chapters the probability of transitions, occurring as a con-
sequence of an external field, will be proportional to the matrix element
< n′l′m′m′

s|r|nlmms >, where n, l, m, ms (n′, l′, m′, m′
s) represent the quan-

tum numbers of the initial (final) state. The following selection rules for the
dipole-transitions can be derived [6]:

1. Δms = 0

2. Δm = 0,±1
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3. Δj = 0,±1

4. for j = 0 follows j′ �= 0

5. |nlmms > and |n′l′m′m′
s > need to have different parity. (if spin-orbital

coupling is neglected)

2.3 Perturbationtheory and transitionproba-

bility

In the introduction to this chapter it was already mentioned that it will often
be impossible to solve the full Schrödinger equation. Sometimes the solutions
of an unperturbed system are known but the influence of a small perturba-
tion (e.g:radiation) makes calculation too complicated. In this case it might
be convenient to start from the unperturbed solutions and try calculate its
changes due to the perturbations. This is done by the perturbation theory.

2.3.1 Time-independent Perturbation theory

This theory may be applied to systems which can be described by a hamil-
tonian

H = H0 + λV (2.25)

that consists of the unperturbed hamiltonian H0 and the small time-independent
perturbation λV . We assume the orthonormal eigenfunctions of the unper-
turbed problem are known: H0|a0 >= Ea0 |a0 >. We try to solve the whole
problem

H|a >= Ea|a > (2.26)

by a Taylor-expansion of |a >

|a >= |a0 > +λ|a1 > +λ2|a2 > +O(λ3) (2.27)

and of Ea

Ea = Ea0 + λEa1 + λ2Ea2 + 0(λ3) (2.28)

Insertion of this ansatz into (2.26) leads us to

(H0 + λV )(|a0 > +λ|a1 > +λ2|a2 > +O(λ3)) =

= (Ea0 + λEa1 + λ2Ea2 + 0(λ3))(|a0 > +λ|a1 > +λ2|a2 > +O(λ3))

(2.29)
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This equation can be solved by coefficient comparison. We will direct our
attention to the addends of first order of λ and project |b0 > onto it. This
yields for b = a the first order energy correction

Ea1 =< a0|V |a0 > (2.30)

For a �= b we obtain

< b0|a1 >=
< b0|V |a0 >

Ea0 − Eb0

(2.31)

Making use of the orthonormality of the unperturbed solutions < b|a >= δab

and < a0|a1 >= 0 enables us to calculate the first order correction of |a1 >

|a1 >=
∑
b�=a

|b0 >< b0|a1 > (2.32)

A similar derivation [4] for the second order terms of λ results in

Ea2 =
∑
c �=a

|Vca|2
Ea0 − Ec0

(2.33)

These results make it obvious that we have to deal with severe problems be-
cause of the occurring poles when we will analyze resonances in the following
chapters.

2.3.2 Time-dependent perturbation theory

The perturbation V(t) introduced by a laser is time-dependent and therefore
needs to be treated according to another theory. The system under study is
represented by the hamiltonian

H = H0 + V (t) (2.34)

Again it is assumed that the orthonormal eigenfunctions of H0: H0|n >=
En0|n > are known and the solution ψ(t) is expanded in terms of them.

|ψ(t) >=
∑

n

|n > cn(t)e−iEn(t−ti) (2.35)

The insertion of this ansatz into the Schrödinger equation leads to∑
n

V cne−iEn(t−ti)|n >= i
∑

n

ċne−iEn(t−ti)|n > (2.36)

Finally we project another orthonormal state < m| onto it and derive an
integral equation for cm

cm(t) = δmm0 − i
∑

n

∫ t

t1

dt′ < m|V (t′)n > cn(t′)e−iωnm(t′−ti) (2.37)

where ωnm = En − Em and the initial value was set to cm(ti) = δmm0
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2.3.3 Perturbative expansion of transition amplitudes

Assume we know the status (wavefunction) of the system for t = ti and
want to calculate from this the further development. This can be done by a
time-evolution operator U(tf , ti) which has to fulfill the following equation:
|ψ(tf ) >= U(tf , ti)|ψ(ti) >. It can be shown [7] that U is given by U =
e−iH(tf−ti). The evolution operator for a perturbated system can be expanded
to the integral equation

U(tf , ti) = U0(tf , ti) − i

∫ tf

ti

dt U0(tf , ti)V U(tf , ti) (2.38)

where U0 = e−iH0(tf−ti) is the evolution operator for the unperturbed system.
To prove this one has to show that U(ti, ti) = 1 and that (2.38) satisfies the
evolution equation:

i
d

dt
U(tf , ti) = (H0 + V )U(tf , ti) (2.39)

By successive iterations (2.38) leads to

U(tf , ti) = U0(tf , ti) +
∞∑

n=1

U (n)(tf , ti) (2.40)

where

U (n)(tf , ti) = (−i)n

∫
dτn . . . dτndτ1e

−iH0(tf−τn)V . . . V eH0(τ2−τ1)V e−iH0(t1−ti)

(2.41)
This result can be clearly understood: In lowest order the state develops
from ti to tf according to H0. In first order approximation we divide the
time-interval into two time-slots, during which we still consider H0-time-
development but at the instant in between we consider the perturbation
coming from V. In higher order the time-interval is divided more and more
often. This principle is depicted in fig: 2.1. In the interaction-representation
this result is

Ũ(tf , ti) = 1 +

∞∑
n=1

Ũ (n)(tf , ti) (2.42)

where

Ũ (n)(tf , ti) = (−i)n

∫
dτn . . . dτndτ1Ṽ (τn) . . . Ṽ (τ2)Ṽ (τ1) (2.43)
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Figure 2.1: Pictorial presentation of the perturbative expansion of transition
amplitudes

Let Lfi be the matrix element of Ũ(tf , ti) between the H0-eigenstates
< ϕf | and |ϕi >

Lfi =< ϕf |Ũ(tf , ti)||ϕi > (2.44)

The perturbative expansion (2.42) thus yields

Lfi = δfi +
∞∑

n=1

L
(n)
fi (2.45)

where
L

(n)
fi =< ϕf |Ũ (n)(tf , ti)|ϕi > (2.46)

First order transition amplitude

We want to specialize this result on the case of a constant perturbation V
during the time-interval ti = −T/2 < t < tf = +T/2. For n=1 (2.41) yields

L
(1)
fi = −i

∫ tf

ti

dτ1Vfie
i(Ef−Ei)τ1 (2.47)

where we have defined Vfi :=< ϕf |V |ϕi >. The integration can be executed
and we obtain

L
(1)
fi = −2πiVfiδ

(T )(Ef − Ei) (2.48)

where

δ(T )(Ef − Ei) =
1

2π

∫ T/2

−T/2

dτ1e
i(Ef−Ei)τ1

=
sin(Ef − Ei)T/2

π(Ef − Ei)

(2.49)

It can be seen that δ(T )(Ef−Ei) tends to δ(Ef−Ei) for T → ∞. It’s maximal
amplitude T/2π is obtained for Ef − Ei = 0, and it’s with is of the order of
4π/T (distance between the first two zeros on either side of the maximum).
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Second order transition amplitude

From a similar derivation [8] the second order transition amplitude can be
obtained.

Lfi
2 = −2πi lim

η→0+

∑
k

VfkV ki

Ei − Ek + iη
δ(T )(Ei − Ef) (2.50)

This formula can be interpreted as a transition in two steps. In a first step
the electron is scattered by the perturbation Vki from the initial level i into
an intermediate level k and then it is driven from there to the final level, Vkf .
As there may exist several possible intermediate states we have to take the
weighted sum of all of them.

All together the lowest three orders give

Lfi = δfi − 2πiδ(T )(Ei − Ef )[Vfi + lim
η→0+

∑
k

VfkV ki

Ei − Ek + iη
] (2.51)

Transition probability

The probability for a transition from |ϕi > to a different state |ϕf > due to
V is obtained by squaring (2.51)

Pfi(T ) = |Lfi|2 = 4π2[δ(T )(Ei − Ef)]
2|Vfi + lim

η→0+

∑
k

VfkV ki

Ei − Ek + iη
|2 (2.52)

If the final state belongs to an energy continuum, Pfi(T ) is no longer
a transition probability, but rather a transition probability density. At the
lowest order in V we obtain

δP (Ef , βf , T ) = 4π2

∫
E∈δEf

β∈δβf

dE dβ ρ(E, β)|v(E, β; ϕ)|2[δ(T )(E −Ei)]
2 (2.53)

where the final states are characterized by their energy Ef and a group of
other physical variables designated by β. v(E, β; ϕ) is the matrix element
< E, β|(T )|ϕi > which is to be calculated via (2.51). For sufficient large T
(large in comparison to the changing of the function ρ(E, β)|v(E, β; ϕ)|2) we
may replace δ(t) by a delta function centered on Ei. Because the integral over
E of [δ(t)]2 is equal to T/2π, it is justified to write

[δ(t)(E − Ei)]
2 =

T

2π
δ(t)(E − Ei) (2.54)
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Now we are capable to define a transition probability per unit time δw(Ef , βf)

δw(Ef , βf) =
1

T
δP (Ef , βf , T )

= 2π

∫
E∈δEf

β∈δβf

dE dβ ρ(E, β)|v(E, β; ϕi)|2[δ(T )(E − Ei)]
(2.55)

Assuming that the interval δEf contains Ei and that δEf is greater than
the with 1/T of [δ(t)], the integration over E is straightforward. As a result
we finally note the Fermi golden rule for the transition probability per unit
time and per unit interval δβ

δw(Ef , β)

δβf

= 2π|v(Ef = Ei, βf ; ϕi)|2ρ(Ef = Ei, βf) (2.56)

2.4 Nonperturbative calculation of transition

amplitudes - the resolvent

With help of the resolvent we will derive a formal, nonperturbative solution
of (2.38)

U(t, t′) = U0(t, t
′) − i

∫ t

t′
dt1U0(t, t1)V U(t1, t

′) (2.57)

The constraint imposed that t1 varies only between t’ and t prevents the
integral from being a convolution product. To eliminate this constraint and
to obtain a true convolution product that transforms into a simple product
by Fourier-transformation, we now introduce four new operators 2.

K+(t, t′) = U(t, t′)θ(t − t′) (2.58)

K0+(t, t′) = U0(t, t
′)θ(t − t′) (2.59)

K−(t, t′) = −U(t, t′)θ(t′ − t) (2.60)

K0−(t, t′) = −U0(t, t
′)θ(t′ − t) (2.61)

Under consideration of dθ(x)/dx = δ(x) we insert this ansatz into (2.39) and
we get as result

(i
d

dt
− H)K+(t, t′) = δ(t − t′) (2.62)

2Heaviside function: θ(t − t′) =
{

1 t > t′

0 t < t′
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This is the reason why K+ is sometimes called ”retarded Green’s function”.
Multiplying (2.57) with θ(t − t′) and replacing

∫ t

t′ by
∫∞
−∞ θ(t − t1)θ(t1 − t′)

guides us to a true convolution product

K+(t, t′) = K0+(t, t′) − i

∫ ∞

−∞
dt1K0+(t, t1)V K+(t1, t

′) (2.63)

Next we define the Fourier transform of K+(t, t′), which actually depends on
τ = t − t′

K+(τ) = − 1

2πi

∫ ∞

−∞
dE e−iEτG+(E) (2.64)

and it’s inversion

G+(E) = −i

∫ ∞

−∞
dτ eiEτK+(τ) (2.65)

Since K+(τ) = e−iHτθ(τ) we can rewrite this as

G+(E) = −i

∫ ∞

0

dτ ei(E−H)τ

= lim
η→0+

−i

∫ ∞

0

dτ ei(E−H+iη)τ

= lim
η→0+

1

E − H + iη

(2.66)

It is easily verified that

G−(E) = lim
η→0+

1

E − H − iη
(2.67)

The function G+(E) (G−(E)) is often refereed to as retarded (advanced)
propagator. Now we can fourier transform (2.64)

G+(E) = G0+(E) + G0+V G+(E) (2.68)

where G0+ is the retarded propagator associated with H0. In a next step we
introduce the resolvent

G(z) :=
1

z − H
(2.69)

as a function of the complex variable z. It is connected to G± by

G±(E) = lim
η→0+

G(E ± iη) (2.70)

Furthermore we remember that from G± we can calculate K± via the contour
integral (2.64). Thinking of their definitions we realize that

U(τ) = K+(τ) − K−(τ) (2.71)
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From this we can derive

U(τ) =
1

2πi

∫ ∞

−∞
dEe−iEτ [G−(E) − G+(E)]

=
1

2πi

∫
C++C−

dze−izτG(z)
(2.72)

where C+ (C−) is the contour immediately above (below) the real axis fol-
lowed from right to left (v.v.)

From this result it is obvious that G(z) contains all the information from
H. In many cases it is more convenient to use the resolvent instead of the
hamiltonian. G(z) is analytic in C aside from the real axis. The singularities,
which are all on the real axis, consist of poles located at discrete eigenvalues of
H and of cuts 3 extending over the intervals corresponding to the continuous
spectrum of H [9].

2.5 Rabi-frequency

Before going to more complicated processes we want to examine the simplest
suggestive model for an atom-laser interaction. The atom is reduced to a two
level-atom (orthonormal eigenfunctions |g > and |e > of H0, corresponding
energies εg and εe) and the laser field is assumed to be monochromatic (ω;
dipole approximation). In this approximation the Schrödinger equation for
an atom exposed to a radiation field is:

H = H0 + r · E = H0 + zE0 cos ωt (2.73)

We build an ansatz for the solution from the unperturbed eigenstates

ψ = cg(t)|g > +ce(t)|e > (2.74)

This is substituted into (2.73) and < g| or < e| is projected onto it.

ċg = −iεgcg + iΩR cos(ωt)ce (2.75)

ċe = −iεece + iΩR cos(ωt)cg (2.76)

3A cut is characterized by the fact that the matrix elements of G(z) do not tend to the
same value when z tends from below or above towards a point on the real axis located on
the cut. A so-called Riemann sheet is a extension of G(z) coming from the upper half-plane
toward the lower half plane. The complex poles of this new ( not necessarily analytic)
function describe unstable states of the system (complex energy leading to exponential
damping
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where we have introduced the ”Rabi flopping frequency” ΩR for the matrix
element.

ΩR = E0| < g|z|e > | (2.77)

For further calculations it is convenient to transform (2.75) and (2.76) into
the interaction representation

ċg = iΩR cos(ωt)ei(εg−εe)tce (2.78)

ċe = iΩR cos(ωt)e−i(εg−εe)tcg (2.79)

Expanding cos(ωt) = 1
2
(eiωt + e−iωt) and applying the rotating wave approx-

imation (which means neglecting higher frequencies) guides us to

ċg = i
ΩR

2
eiΔωtce (2.80)

ċe = i
ΩR

2
e−iΔωtce (2.81)

where Δω = ω − (εe − εg). To solve this system of coupled differential
equations we substitute:

ce(t) = c̃e(t)e
−iΔωt/2 (2.82)

cg(t) = c̃g(t)e
iΔωt/2 (2.83)

The system now can be rewritten as

i ·
(

˙̃cg

˙̃ce

)
=

(
Δω/2 −ΩR/2
−ΩR/2 −Δω/2

)
·
(

c̃g

c̃e

)
(2.84)

The matrixes eigenvalues are:

Ω = ±
√

Ω2
R + Δω2 (2.85)

We assume that the electron is in the excited state at t=0. The initial
condition corresponding to this assumption is ce(t) = 1 and cg(0) = 0: The
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solutions for this problem is4

cg(t) = e+iΔωt/2 ΩR√
Ω2

R + Δω2
sin(

Ω

2
t) (2.86)

As usual we are interested in the expectancy value:

|cg(t)|2 =
Ω2

R

Ω2
R + Δω2

sin2(
Ω

2
t) (2.87)

The probability for the electron to be found in the excited state can be
calculated from

|ce(t)|2 =1 − |cg(t)|2

=1 − Ω2
R

Ω2
R + Δω2

+
Ω2

R

Ω2
R + Δω2

cos2(
Ω

2
t)

(2.88)

From this formula it can be seen that

• the probability oscillates between the two states with the frequency Ω
2

• for Δω = 0 the amplitude of the sinus equals 1 and therefore the
electron totally leaves the upper (=initial) state and can at a certain
instant be certainly found in the lower state.

• for Δω �= 0 the frequency of the oscillation is increased and the ampli-
tude decreased according to a lorenz curve. The occupation-probability
of the excited state always remains unequal zero.

2.6 Dressed states and stark shift

The atomic dynamics can alternatively be described in terms of a dressed
state basis instead of bare states |e > and |g >. The dressed states |1 > and

4How to solve homogen systems of N linear differential equations of first order:

1. Bring the system into the matrix form: y′ = My

2. Calculate the eigenvalues of the matrix M: ri

3. To each simple root belongs a system of particular solutions
y1 = A1e

rix, y2 = A2e
rix, . . . , yN = ANerix

4. The coefficient vector A can be derived from (M− riE)A = 0 where the coefficient
vector A can be calculated up to an arbitrary constant. If all roots of the charac-
teristic equation are different, the sum of all these particular solutions contains N
independent constants, so that we always obtain the general solution.
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|2 > are eigenstates of the Hamiltonian and, by convention, the state |1 > is
the one with the greatest energy. They are conveniently expressed in terms
of the bare states via the Stückelberg angle θ/2 as

|1 >= sinθ|g > +cosθ|e > (2.89)

|2 >= cosθ|g > −sinθ|e > (2.90)

where sin(2θ) = −ΩR/Ω, cos(2θ) = Δ/Ω, where we have set Ω = (ΩR
2 +

Δ2)
1
2 . The corresponding eigen-energies are E1 = 1

2
Ω, E2 = −1

2
Ω. These

energies are illustrated in Fig 2.2 [8] as a function of the detuning Δ. The
dressed levels repel each other and form an anticrossing at resonance ω = ω0.
As the detuning Δ varies from positive to negative values, state |1 > passes
continuously from the excited state |e > to the bare ground state |g >, with
both bare states having equal weights at resonance. The distances between
the perturbed states and their asymptotes for |Δ| � ΩR represent the ac
Stark shifts, or light shifts, of the atomic states coupled to the laser. The
ac-stark-shift of |g > is positive for Δ < 0 and negative for Δ > 0. (vice
versa for |e >.)

Δ

E|g>

|e>

E1

E2

Figure 2.2: Dressed levels of a two-level atom driven by a classical monochro-
matic field as a function of the detuning Δ
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2.7 Pump-probe principle

In order to experimentally study the time dependency inner shell processes
a so called ”pump-probe”approach is employed. It is made use of the effect
that a strong light field affects the electron’s motion and can be used to probe
the emission [10]. A first sufficiently short XUV-pulse excites the probe and
triggers the process under examination. In the following the ejected electron
is accelerated in the laser field of the probing-pulse. The electrons final
velocity depends on the instant of it’s ionization: ti.
In a simple classical model we derive for a laser field E

F = m ∗ a = m ∗ ∂v

∂t
= eE ⇒ ∂v

∂t
=

e

m
E (2.91)

leading to

v(t) = − e

m
A(t) + [v0 +

e

m
A(ti)] (2.92)

where v0 is the electrons initial velocity. This velocity distribution can for
example be measured by a ”time-of-flight” spectroscope.

The amplitude of populating a state |v > with kinetic momentum v at
the moment T after the end of both the laser and the x-ray pulses can also
be calculated quantum mechanically [11]. The electron undergoes transitions
from the ground state |0 > to continuum states which we label by the kinetic
momentum of the outgoing electron |v >. As it is accelerated in the field, it
immediately acquires a high velocity, so that the role of the remaining ions
potential V(x) can be neglected. The time-dependent wavefunction can be
expanded as [12]

|Ψ(t) >= eiIpta(t)|0 > +

∫
dv b(v, t)|v >) (2.93)

where a(t) ≈ 1 is the groundstate amplitude, and b(v,t)are the amplitudes
of the corresponding continuum states. We have factored out the free os-
cillations of the ground-state amplitude with the bare frequency Ip. Under
certain assumptions [13] the Schrödinger equation for b(v,t) reads as

ḃ(v, t) = −i(
v2

2
+ Ip)b(v, t) − Ecos(t)

∂b(v, t)

∂vx
+ iEcos(t)d(v). (2.94)

Here d(v) =< v|x|0 > denoted the atomic dipole element for bound free
transitions. This equation (2.94) can be solved and b(v,t) can be written in
the closed form

b(v, t) = i

∫ t

0

dt′Ecos(t′)dx(v+A(t)−A(t′))e−i
R t

t′ dt′′[(v+A(t)+A(t′′)2/2+Ip] (2.95)
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Chapter 3

Resonant auger process

3.1 Introduction

3.1.1 Nomenclature

Before explaining the process it is convenient to define the occurring states,
energies etc.

• H is the neutral hamiltonian with the corresponding energy E

• H+ is the Hamiltonian of the singly ionized state with the correspond-
ing energy E+

• H++ is the Hamiltonian of the doubly ionized state with the corre-
sponding energy E++

• Hγ the photon-electron interaction operator

• D is the dipole-operator

• |g > is the ground state with the energy Eg, eigenstates of H

• |n > is a complete set of orthonormal Rydberg levels of H+ with energy
En. They are labelled by their principal quantum number n.

• |τ > is the intermediate state of the excited electron before the shake
process takes place; Its energy is τ , which is negative if it is bound.
Eigenstate of H+. Sometimes it is replaced by |[i]τ > to stress the
inner shell hole [i] (E[i]τ )

• |n′ > is a complete set of orthonormal Rydberg levels of H++ with
energy E ′

n. They are labelled by their principal quantum number n’
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• |τ ′ > is the final state of the excited electron after the shake process
with energy τ ′. Eigenstate of H++

• |εA > is the auger electron at energy εA

• |ε0
A >= E+ − E++ is the nominal auger electron energy

• |ε > is the excited (bound or free) former inner shell electron at energy
ε

• |a > and |b > are two states that are coupled by coulomb interaction.
In presence of an inner-shell hole they undergo an auger decay

• |f > is the final state at energy EF which is for example EF = Eg+IF +ε
in the resonant case

• ω incident radiation energy

• Eexc = ε + εa − ε0
a

• Γ[i] is the total width of the life-time broadened intermediate hole state
[i]

Sometimes states of the whole atom will be labelled by their differences to
the neutral atom. eg: |[f, f ′]τ > represents the atomic state with two holes
and the ε-electron in state |τ ′ >

3.1.2 A short introduction to the normal Auger effect

The normal Auger effect has been discovered experimentally by P. Auger in
1925 and was explained two years later by Wentzel.

The Auger-process can be modelled as a two step process [14]: At first an
incident radiation ω causes an inner-shell electron to leave the atom which
therefore remains with an inner-shell hole. This so called Auger (or autoion-
izing) state can be seen as an excited, quasi-discrete state of a system which
is embedded in the continuum of the next higher charge state of the system.
This one-particle representation will be explained in more detail in section
3.13. In the following an electron |a > drops down to fill the inner-shell
hole and passes the gained energy in a non-radiative process via Coulomb-
interaction to another electron in state |b > which then leaves the atom as
the Auger electron |εA >.
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Once it is excited the decay-probability can be calculated according to Fermis
golden rule:

Pi→f ∝ | < f |
∑ e2

rif
|[i]ε > |δ(E[i]ε − Ef − εA)ρ(εA) (3.1)

where the ρ(εA) is the density of Auger-states in the continuum. This Auger-
electron causes a symmetric peak following a Lorenzian in the double differ-
ential cross section of ejected electrons (fig 3.1).
In it’s final state the atom is therefore doubly ionized. The process can be

summarized as following:

ω + A → A+ + |ε >→ A++ + |ε > +|εa > (3.2)

and be depicted as presented in figure 3.2. The transition probability to a
state with photoelectron-energy ε and Auger-electron-energy εa is [15]

T (ε, εa) = < f |Hγ|g >︸ ︷︷ ︸
direct

+
∑
[i]

∫
ε

Auger︷ ︸︸ ︷
< f |H − E|[i]ε >

excitation︷ ︸︸ ︷
< [i]ε|Hγ|g >

E − E[i]ε
(3.3)

The direct path is usually omitted as it describes the double photo-ionization
which vanishes in the independent-electron approximation [16]. If further-
more the energies E[i] are well separated it is sufficient to consider the sum-
mation over one manifold |[i]ε > at the time. In this case E[i]ε can be
approximated by [15]

E[i]ε ≈ E[i] + ε + Δ[i] − i

2
Γ[i] (3.4)

Where the level shift Δ[i] and the width Γ[i] are due to the lifetime-broadening.
From energy-conservation we derive E = ω + Eg = E+

[i] + Eexc what allows
us to rewrite the transitionamplitude

T (ε, εa) ≈
∫

< f |H − E|ε >< ε|Hγ|g >

Eexc − ε + iΓ/2
(3.5)

Figure 3.1: Auger-crossection, characteristic Auger-peak on a background of
scattered (photo-)electrons.
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Figure 3.2: The normal Auger process

Alternatively the energy, gained when the electron drops down, could also
be lost by emission of radiation. If we want to decide whether for a certain
atom we have to expect an Auger or a radiative decay we have to calculate the
corresponding Z-dependency of the transition-probability. (Z is the atomic
number) According to Fermi’s golden rule (2.56) the transitionamplitude for
radiative decay is proportional to ω3| < f |z|i > |2 (the ω3 comes from the
density of final states of the photonfield). In the hydrogen-approximation
ω is proportional to Z and the dipole-matrix-element to 1

Z
[17]. Therefore

the radiative transitionprobability is proportional to Prad ∝ Z4. In the same
hydrogenic limit the probability for Auger transitions is independent of Z.
So we come to the conclusion that for atoms with lower atomic number
the Auger decay dominates unless it is forbidden by the selection rules for
Coulomb interaction (ΔL = ΔS = ΔJ = 0; no parity change)

3.1.3 Introduction to the resonant Auger effect

The resonant Auger effect was first experimentally identified at Stanford by
Brown in 1980. For the explanation of this effect exist mainly two different
approaches: A one-step scattering approach [18] and a more eidetic two-step
model [19], which we will make use of. Thus we will treat the process of
the x-ray absorbtion and excitation as an event separated in time from the
consecutive and incoherent process of deexctitation.

A resonant Auger effect occurs in the case of excitation of an inner-shell
electron from |g > to |τ > which is either a sum of Rydberglevels |n >
(Raman region; The levels near threshold are rather dense as with increasing
principal quantum number n the states become increasingly dense) or the
continuum just above threshold. One has to distinguish between the two
following cases: The first one is the so called ”participator-decay” where the
excited electron takes part in the Auger-decay leading to a final state similar
to direct photoemission (this case will be discussed in detail as the Fano-
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process in chapter ??). The decay mechanism now under study is called a
spectator-decay, which is depicted in fig 3.3. The excited electron remains
in the first instant in it’s original state while the Auger decay takes place
between two other lower lying electrons |a > and |b >. The Auger-electron
initially screens the ionic Coulomb field seen by the spectator (or receding
photo-) electron. This screening subsides when the (usually fast) Auger-
electron passes the bound spectator (slow photoelectron). Distortion of the
Auger line shape results and the Auger energy εA is raised at the expense of
the spectator- (photo-) electron energy ε, what might even lead to recapture
of the photoelectron. The whole process can be depicted as:

ω + A → |[i]τ >→ A+([f, f ′]τ ′) + εA (3.6)

In lowest order approximation and neglecting the direct path the amplitude
becomes [15]:

A =
∑
[i]

∑
τ

< [f, f ′]τ ′|H − EF |[i]τ >< [i]τ |D|g >

EF − E[i]τ + iΓ[i]/2
(3.7)

In case of excitation to above threshold the
∑

τ needs to be replaced by
∫

dτ .
The probability of observing an ejected electron with kinetic energy within
the range (ε, ε + dε) can be formally written by squaring the amplitude and
multiplying by a factor δ(ε + IF − ω) which expresses energy conservation.
This is valid if it is assumed that the final state A+([f, f ′]Φ) is a stationary
state [20]. In principle it will de-excite by cascade Auger and photoemission
according to a lifetime ΓF [20]. This finite lifetime is considered by replacing
the delta function by a Lorenzian

dPF

dε
∝ |AF (ω, ε)|2 1

(ε − ω + IF )2 + Γ2
F /4

(3.8)

t0 t1 tf
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D

Figure 3.3: The resonant Auger process
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3.1.4 Validity of the two-step picture

It may happen that the distribution of intermediate states is sparse so that
the spacing between the resonances which contribute to the RA-process is
large compared with the intermediate-state width. Therefore the resonances
can be considered as non interfering and the two-step approach is justified.
If this is not granted one has to consider the phases of the overlapping con-
tributions and calculate the whole process at once.
!!!!!!!!!!!!!!!!!!!!!!!!!!!
—————-Bild——————-

3.1.5 Changes of the measured Auger electron spectra

Seen from the Auger electrons point of view the difference to the normal
Auger decay lies in the additional coulomb interaction to the spectator elec-
tron and the resulting changed screening potential it feels as it overtakes
the spectator electron. This leads to a shift toward higher kinetic energies
relative to the normal Auger spectra [21].

3.2 Influence of the escaping Auger electron

on the spectator electron - the shake pro-

cess

In this first model we will apply the sudden-approximation. This means that
we assume that the Auger electron leaves the core immediately and is from
the very first moment on out of reach for any further Coulomb interaction.
In the instant of the Auger-decay the spectator electron suddenly feels the
increased field of a doubly-ionized ion instead of a singly ionized one H+ →
H++. The spectator electron now is in no eigenstate of the new hamiltonian
and therefore will decay into a superposition of the new eigenstates. This
process is the so called shake process. (see: fig 3.4) It is often assumed that
in (3.7) we can replace

< [f, f ′]τ ′ε|H − EF |[i]τ >≈ < [f, f ′]ε|H − EF |[i] >︸ ︷︷ ︸
Augerdecay

< τ ′|τ >︸ ︷︷ ︸
shake

(3.9)

This factorization is assumed to be valid for loosely bound orbitals < τ | but
may fail badly for situations in which it interacts strongly with the ionic
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Figure 3.4: The shake process

core. For the moment we assume the state |τ > consist of a single Rydberg-
state |n >. According to the selection rules for this transition [16], there is
a change only in the principal quantum number and all other should retain
their original values. If l=l’and j=j’ but n > n′ we have shake up or if it is
ejected to the continuum shake off. If n < n′ we have shake down and for
n = n′ we have pure spectator transition. Of course n′ = n doesn’t mean that
the state doesn’t get modified. It describes the decay from the eigenstate with
the principal quantum number n of the old, single-ionized hamiltonian to the
eigenstate with n’ of the new, double-ionized hamiltonian. The difference
between those two states is given by the rather small change of the potential
and they will therefore not differ too much.

In case of the first electron being excited just above threshold it is likely
it has not moved away too far and the faster Auger electron overtakes it
leading to a modified, stronger core-attraction what causes shake down to a
bound high-lying level. This special case is often referred to as post-collision
interaction (PCI) and will be treated in greater detail in section 3.10.

The so called shake probability < Pnn′ = | < n|n′ > |2 shows some general
trends [22]:

• The probability of a pure spectator process n=n’ oscillates as a function
of n

• Shakeup dominates over shakedown and shakeoff. This can be under-
stood intuitively: The new eigenstates are stronger bound and therefore
have for the same value of n lower energies. As the energy of the elec-
tron is almost conserved during the shake process shake up is necessary
for energy conservation.

• As n’ increases the maximum of the shakeup distribution shifts from
n=n’+1 toward higher values of n. (the higher n’ is, the closer are the
levels.
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Of course this sudden approximation is not very realistic . In reality the
finite time it takes the Auger electron to escape has some influence on the
remaining state and on the energy distribution of the Auger electrons.

3.3 Interaction of alternative paths

Assume the spectral with of the laser to be broad enough to excite the inner-
shell electron from |g > to two different possible states |n1 > and |n2 >. In
the following decay to the new, similar eigenstates |n′

1 > and |n′
2 > there

will be a nonzero probability for pure spectator decay |n1 >→ |n′
1 > (and

|n2 >→ |n′
2 >) but also a non-vanishing shake probability: |n1 >→ |n′

2 >
(and |n2 >⇔ n′

1). Consequently there are two alternative paths from |g >
to |n′

1 >. A good example for this is seen in the resonant Auger spectrum
of krypton [23] (3d−1

3/25p → 4p−2n′p and 3d−1
5/26p → 4p−2n′p) where the core-

excited states are energetically close to each other but at the same time well
separated from the other Rydberg states. In general near threshold are many
indistinguishable routes to arrive at a given final state leading to interference
what results in measuring an asymmetry in the differential cross-section. The
experimental results of krypton from [23] are plotted in figure 3.6

The situation gets even more complicated if the life-time broadened in-
termediate levels overlap. As the energy spacing of adjacent levels becomes
less than Γ, that is Eexc � −1

2
Γ2/3, more and more states contribute to the

formation of the intermediate state. Then the calculation of this state is the
coherent sum of amplitudes for all possible states |τ >=

∫ |n><n|D|g>
Eexc−En+iΓ/2

. This

new phenomenon can be directly derived from (3.7). Squaring the sum leads
to mix-term (”(a + b)2 = a2 + 2ab + b2”). The importance of these terms
depends on the width of the overlap of the Lorenzian-curves, that belong to
each resonance. This overlap is on the one hand fixed by the spectral dis-
tance between the resonances but also by the width of the Lorenzian, which

t0 t1 tf

V
Path 1

Path 2

pure spectator

shake down

Figure 3.5: Interference between two alternative paths to the same final state
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Figure 3.6: Constant final state spectra of the 4p−2(1D)5p group over the
photon energy range of the 3d−1

3725p and 3d−1
3726p excitations. Dashed lines: fit

by two Lorenzian curves; solid lines: fit including interchannel-interference.
Taken from [23].

is given by the Auger-decay constant Γ.
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3.4 Auger resonant raman effect (ARRE)

There is another speciality of the resonant Auger processes. As in the nor-
mal Auger-process the photoelectron is excited to a continuum it’s energy-
distribution reflects the spectral distribution of the incoming laserpulse and
the Auger electron-energy distribution is defined only by the Auger-decay-
constant. In the resonant Auger process (sub-threshold-region) the core-
electron can only be excited if the incoming photon energy is close to one of
the discrete bound energy-levels.

In general every atomic state, that is unstable against further decay with a
lifetime ζ , has an uncertainty in it’s binding-energies Γ = 1/ζ (Heisenberg’s
uncertainty relation). This leads to a broadening of the initially discrete
resonance at Er to a permitted energy band Gr(E − Er). eg: Auger.decay:
exponential decay leads to a Lorenzian spectral form of the possible energy
values Lr(E − Er).

Now we want to consider the case of an incoming radiation with a very
narrow bandwidth which can for example be taken from a synchrotron. The
occurring line-shape distortions of the Auger electron can be described on
the basis of energy conservation principle. Initially the system consists of an
incoming photon with the energy ω and a target-atom in the ground state.
In the end we obtain an atom with two holes and an excited electron with
the energy ε and an Auger-electron with the kinetic energy εA. Energy-
conservation guides to

εA = ω − ε (3.10)

The role of the intermediate excited state is that it selects the suitable photon
energies. Let’s assume this level is Auger-decay-lorenz-broadened around
Er → L(E − Er, Γ). The incoming radiation is distributed according to
Ω(ω). Thus the relative intensity I(εA) of the resonant Auger electrons is
given by

I(εA) = Ω(ω) ∗ L(E − Er, Γ) (3.11)

The product of these two curves is only symmetric if Ω(ω) is also symmetric
with reference to Er. Otherwise we obtain an asymmetric spectra

The most outstanding consequence of this so called Auger resonant raman
effect (ARRE) is that if a resonant state is excited by a very narrow photon
band, then the linewidth of the Auger electron spectrum can be much nar-
rower than the lifetime width of the core excited resonance state [25]. This
enables us to do high resolution Auger spectroscopy: e.g. study the finest
details of electron correlation
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Figure 3.7: Representation of radiationless resonant Raman scattering. An
incoming beam of photons with the spectral with G selectively excites inter-
mediate states near the resonant energy Ir, resulting in a intermediate-state
population P. Subsequent spectator Auger decay to the final state results
in the ejection of electrons with energy ε, determined by the difference in
intermediate and final ionic state energies. Taken from [24].

3.5 The ”exact” problem

Summarizing the preceding sections we know that three different coupled
electrons are involved in this process. Therefore a correct theory would have
to be a one step model including three-electron-wavefunctions.

1. The electron being excited and then shaken. It could be represented
by

|1 >= cg1(t)|g > +
∑

n

cn(t)|n > e−iEnt +

∫
dEncn(t)e−iEnt|n > +

+
∑
n′

cn′(t)|n′(r) > e−iEn′ t +

∫
dEn′cn′(t)e−iEn′ t|n̄′ >

(3.12)

2. The Auger-electron

|2 >= ca(t)e
−iEat|a > +

∫
dkck(t)|k > e−iEkt (3.13)

3. The dropping electron

|3 >= cbe
−iEbt|b > +cg2e

−iEgt|g > (3.14)
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The antisymetrized product of those single-electron states must fulfill the
hamiltonian

H = H0 + D + V12 + V23 (3.15)

As this problem is to complicated we split it into several steps which can be
solved under some approximations. (see section 3.1.4)

3.6 Excitation

The first part of the process is the excitation of the inner-shell electron to
the intermediate state |τ >. In section 2.5 the behavior of the two-level-atom
was already studied. Unfortunately this can not to be generalized to several
levels that easily.

We now calculate the population of states due to the excitation from the
groundstate by radiation.We make an ansatz:

Υ(t) = cg(t)e
−iωgt|g > +

∑
cn(t)e−iωnt|n > (3.16)

Inserting this into the Schrödinger equation leads to

ċg(t) = −i
∑

n

cn(t)E(t)cos(ωt) < g|z|n > e−i(ωn−ωg)t (3.17)

ċn(t) = −icg(t)E(t)cos(ωt) < n|z|g > ei(ωn−ωg)t (3.18)

Before excitation the atom is in the groundstate (cg(0) = 1, cn(0) = 0)
and the laser doesn’t cause much variation of the groundstate amplitude:
cg(t) ≈ 1. We neglect all dipole-matrix elements but < g|z|n >. Thus (3.18)
may be rewritten

iċn(t) = E(t)e−i(ωg−ωn)t < n|z|g > (3.19)

Formal integration leads to

cn(t) = −i < n|z|g >

∫ t

0

E(t′)e−i(ωg−ωn)t′dt′ (3.20)

To solve this we

• calculate the fourier-transformed of E(t) =
∫∞
−∞ E(ω)eiωtdω. The pop-

ulation at t → ∞ (after the pulse) is calculated from

cn(∞) = −i < n|z|0 >

∫ ∞

−∞
dω E(ω)

∫ ∞

−∞
dt′eiω−(ωg−ωn)t′

︸ ︷︷ ︸
δ(ω−(ωg−ωn)

(3.21)
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what yields the result we have already used in 3.4

cn = −i < n|z|g > E(ω − (ωg − ωn)) (3.22)

• In case of a monochromatic laserpulse E(t) = E0cos(ωt)∗ rect(o, T ) we
derive from (3.20) in the rotating wave approximation

cn(t) = − i

2
< n|z|0 > E0

∫ t

0

(eiω−(ωg−ωn)t′dt′ (3.23)

what leads for t > T to cn(t) = cn

cn = −1

2
< n|z|0 > E0

1

ω + ωg − ωn
(ei(ω−ωg+ωn)T − 1) (3.24)

3.7 Auger-decay

While this electron remains in the Rydberg state as a so called spectator
electron, the coulomb interaction V between two lower-lying electrons |a >
and |b > results in an Auger decay. At the level of approximation, that was
used for the calculation of these states, this potential V was not considered
yet. We include it now and thus search for eigenstates of the new hamiltonian

H = H+ + V (3.25)

There exist several alternative paths for solving this problem. To derive a an-
alytic result all of them need some approximations. Two of these possibilities
are presented:

3.7.1 Solving by formal integration

Starting from the hole-state e−iE[h]t|[h] > the system will decay to the final
state e−iEf t|f > (E[h] and Ef are the corresponding eigenvalues to H+). We
thus make an ansatz [26]

|Ψ >= c[h](t)e
−iE[h]t|[h] > +

∫
cf(t)e

−iEf t|f > dk (3.26)

where |[h] >= |a > |b > and |f >= |g > |k > (k is the free state |k >= eikr)
Inserting this into the Schrödinger equation and projecting the original states
onto it leads to:

ċ[h](t) = −i

∫
< [h]|V |f > cf(t)e

−i(Ef−E[h])tdk (3.27)
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ċf(t) = −i < f |V |[h] > c[h](t)e
−i(E[h]−Ef )t (3.28)

A formal integration results in

cf (t) = −i

∫ t

0

< f |V |[h] > c[h](t
′)e−i(E[h]−Ef )t′dt′ (3.29)

We substitute this result into (3.27) and derive

ċ[h](t) = −
∫

dk| < [h]|V |f > |2
∫ t

0

c[h](t
′)e−i(E[h]−Ef )(t′−t)dt′ (3.30)

To solve this we have to make some approximations: First of all we have
to get rid of the c[h](t) under the integral. This can be done under the
assumption that it is a slowly varying function of time, what permits us to
pull it out of the integral:

ċ[h](t) = −c[h]

∫
dk| < [h]|V |f > |2

∫ t

0

e−i(E[h]−Ef )(t′−t)dt′︸ ︷︷ ︸
p(t)

(3.31)

This differential equation is solved by

ch(t) = e−
R t
t′ p(x)dx (3.32)

and the time-integral in p(t) can be executed

p(t) =

∫
k2dk| < [h]|V |f > |2ei(E[h]−Ef )t e

−i(E[h]−Ef )t − 1

i(E[h] − Ef )
(3.33)

where the k2 comes from the transformation to spherical coordinates d3k =
k2dk. A Taylor-expansion of the exponent shows us that there is no need to
worry about poles. The final energy consists of Ef = k2/2 − Ea − Eb − E0.
With help of dEf = kdk we transform the integral into an integration over
Ef

p(t) =

∫
kdEf | < [h]|V |f > |21 − ei(E[h]−Ef )t

i(E[h] − Ef )
(3.34)

As p is in the exponent of (3.32) we are interested in the real and imaginary
part of it separately. Therefore we expand 1 − ei(E[h]−Ef )t = [1 − cos(E[h] −
Ef )t] + [isin(E[h] − Ef )t]. In the real part of it

Re(p(t)) =

∫
kdEf | < h|V |f > |2sin(Eh − Ef )t

i(Eh − Ef )
∗ t

t
(3.35)
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we substitute x = (E[h] −Ef )t; dx = −dEf t. We collect k, what resembles
somehow a density of states, and | < h|V |f > |2 to F (Ef )

Re(p(t)) =

∫ ∞

E[h]t

dx
sinx

x
F (E[h] − x/t) (3.36)

To be able to calculate further we have to specialize on

E[h]t � 1 (3.37)

In this case we may neglect the time-dependence of F. (3.36) simplifies to

Re(p(t)) = F (E[h])

∫ ∞

E[h]t

dx
sinx

x
(3.38)

This integral can be evaluated

Re(p(t)) = F (E[h])
π

2
(3.39)

This real part characterizes the exponential decay of c[h] and we therefore set
it to

Re(p(t)) = Γ/2 (3.40)

The imaginary part of p(t) can not be calculated as
∫

1−cosx
x

leads to a
divergent integral but it can be seen from numerical results that it is rather
small [26]. We will label it’s result Im(p(t)) = Δ. It’s value is of no great
importance as it cancels out in the instant the squared absolute value is
taken.

All in all we obtain
ch = e−Γ/2∗t+iΔt (3.41)

3.7.2 Solving by Laplace transformation

The same problem will now be solved in a different way, which makes some
different approximations and seems to me to be more evident. As usual we
start with an ansatz

|Ψ(t) >= c(t)e−i(Ea+Eb)t|a, b > +

∫
cc(E

′
c, t)e

−iE′
ct|c > dE ′

c (3.42)

Inserting into the Schrödinger equation

i · |Ψ(t) > = H|Ψ(t) >; (3.43)

37



leads to two coupled differential equations for the coefficients

ċ = −i

∫
dE ′

c < a, b|V |c > cce
−i(E′

c−(Ea+Eb)tdE ′
c (3.44)

ċc = −ic < c|V |a, b > e−i(Ea+Eb−E′
c)t (3.45)

For the sake of brevity we introduce a short notation:

< a, b|V |c >= Vab,c (3.46)

To solve the system we integrate (initial value cc(0) = 0) and derive

cc = −iVab,c ∗
∫ t

0

c(t′)e−i(Ea+Eb−Ec)t′dt′ (3.47)

This will be solved by Laplace transformation

L(c(t)) = u(S) :=

∫ ∞

0

e−stc(t)dt (3.48)

We apply the transformation rule:

L(ċ(t)) =

∫ ∞

0

e−stċ(t)dt = su(s) − 1 (3.49)

to (3.45) and obtain

(su(s) − 1) =

∫ ∞

0

dte−st

∫
dE ′

cVabc

∫ t

0

dt′c(t′)e−i(Ea+Eb−E′
c)(t

′−t)Vab,c

=

∫
dE ′

c|Vab,c|2
∫ ∞

0

dte−st

∫ t

0

dt′c(t′)e−i(Ea+Eb−E′
c)(t

′−t)Vab,c︸ ︷︷ ︸
u(s)

s−i(Ea+Eb−E′
c)

(3.50)

Rearranging results in

u(s) =

(
s +

∫
dE ′

c

|Vab,c|2
s − i(Ea + Eb − E ′

c)

)−1

(3.51)

Now we make an ”educated guess” for the solution. This ansatz is motivated
by the result of section 3.7

c(t) = e
−Γ
2

t−iΔt (3.52)
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It’s Laplace transformed is

u(t) =
1

s + Γ
2

+ iΔ
(3.53)

Comparing this to (3.51) results in

s +

∫
dE ′

c

|Vab,c|2
s − i(Ea + Eb − E ′

c)
= s +

Γ

2
+ iΔ (3.54)

• Now we try to find the zeros of the left side of the equation with help
of the Banach fixed-point theorem. The corresponding iteration is:

sn+1 = −
∫

dE ′
c

|Vab,c|2
sn − i(Ea + Eb − E ′

c)
(3.55)

For initial value we choose s0 = 0 and iterate once

s1 = − lim
s→0+

∫
dE ′

c

|Vab,c|2
s − i(Ea + Eb − E ′

c)
(3.56)

• Now we set the right side of (3.54) zero

O = s +
Γ

2
+ iΔ) (3.57)

• Finally we equate (3.56) to (3.57) and obtain

− lim
s→0+

∫
dE ′ |Vab,c|2

s − i(Ea + Eb − E ′
c)

= −Γ

2
− iΔ (3.58)

The problem of the possible singularity under the integral can be circum-
vented by replacing the integrand by a Cauchyschen principal value P and a
residuum.

lim
s→0+

1

x + is
=

P

x
− iπδ(x) (3.59)

Considering this we derive

−Γ

2
− iΔ =

∫
dE ′

c

−i|Vab,c|2
(Ea + Eb − E ′

c)
− π

∫
dE′

c|Vab,c|2δ(Ea + Eb −E ′
c) (3.60)

Comparing the real (imaginary) part on both sides leads to

Γ = 2π|Vab,c|2 (3.61)

and

Δ =

∫
dE

|Vab,c|2
Ea + Eb − E ′

c

(3.62)

39



3.7.3 Calculation of cf(t)

According to (3.29) we obtain cf(t) from

cf (t) = −i < f |V |[h] >

∫ t

0

dt′c[h](t
′)e−i(E[h]−Ef )t′ (3.63)

Which yields when c[h](t) = e−(Γ/2+iΔ)t is taken into account

cf(t) = i < f |V |[h] >
e−(Γ/2+i(Δ+E[h]−Ef )t − 1

Γ/2 + i(Δ + E[h] − Ef )
(3.64)

For later purpose we calculate the squared absolute value:

|cf(t)|2 = | < f |V |[h] > |2 1

Γ2/4 + (Δ + E[h] − Ef )2

[
1 + e−Γt − 2e−

Γ
2
tcos((Δ + E[h] − Ef)t)

]
(3.65)

3.8 A simple model for the time evolution of

the shake process of the bound spectator

electron

The next step is the shake-process. The preceding chapters supply all the
required data we need to calculate the shake process in the time-domain:
From section 3.6 we know a formula for the distribution of |τ > and section
3.7 offers a formula for the time-development of the Auger-process which
causes the change of potential seen by the spectator. In this model we replace
the real process of an escaping Auger electron by the creation of a hole. The
spectator electron is subject to the following hamiltonian:

H = H+ ∗ |ch|2(t) + H++ ∗ (1 − |ch|2(t)) (3.66)

From this we expect the eigenvalues of H to mutate from eigenvalues of H+

into eigenvalues of H++. To calculate the shake process < n|n′ > we could
try to represent the distribution of the new eigenstates |n′ > in the old
eigenstate-system:

H++ = H+ + Vhole (3.67)

where Vhole(t) is the additional potential caused by the hole in state |a >
that is created as a consequence of the disappearance of the Auger electron

Vhole(t) = Vhole ∗ (1 − |ch|2) =
−1

|rτ − r|a>| ∗ (1 − |ch|2) (3.68)
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This leads to an intuitive equation:

H = H+ + Vhole ∗ (1 − |ch|2) (3.69)

The more evident and strait forward path is to execute the calculations mak-
ing use of the final states (eigenstates of H++) right from the beginning:
The hamiltonian H must for t → ∞ converge to H++ and show the time
dependence of the Auger decay for times t � 0. These considerations justify
the following hamiltonian

H = H++ − Vhole ∗ |ch|2(t) (3.70)

We assemble the solution of
iτ̇ ′ = Hτ ′ (3.71)

from eigenvalues |n′ > of H++

|τ ′(t) >=
∑
n′

cn′(t)|n′ > e−iEn′ t (3.72)

Combining (3.72) and (3.71) guides us to

ċn′(t) = −i
∑
m′

< n′|Vhole ∗ |ch(t)|2|m′ > e−i(Em′−En′)tcm′(t) (3.73)

We formally integrate this and derive

cn′(t) = cn′(0) − i
∑
m′

∫ t

0

dt′ < n′|Vhole|m′ > |ch(t
′)|2e−i(Em′−En′)t′cm′(t′)

(3.74)
The values at t=0 are fixed by |τ ′(0) >= |τ(0) >

|τ ′(0) >=
∑
n′

cn′(0)|n′ >= |τ(0) >=
∑

n

cn(0)|n > (3.75)

Projecting |n′ > onto it leads up to

cn′(0) =
∑

n

cn(0) < n′|n >︸ ︷︷ ︸
shake

(3.76)

what resembles the shake process explained in section 3.2. (3.74) can be
rewritten

cn′(t) = cn′(0) − i

∫ t

0

dt′|ch(t
′)|2 < n′|Vhole|

(∑
m′

cm′(t′)e−iEm′ t′ |m′ >

)
︸ ︷︷ ︸

|τ ′>

eiEn′ t′

(3.77)
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This equation could be solved numerically by iteration. Instead of cm′(t) we
insert cm′(0) and iterate. The approximation of |τ ′ > in (3.77) by |τ > (where
the cn do not depend on the time) allows us to calculate further analytically.

cn′(t) = cn′(0) − i

∫ t

0

dt′|ch(t
′)|2 < n′|Vhole|

(∑
n

cne−iEnt′ |n >

)
︸ ︷︷ ︸

|τ>

eiEn′ t′dt′

(3.78)
We rewrite this

cn′(t) = cn′(0) − i
∑

n

cn < n′|Vhole|n >

∫ t

0

dt′|ch(t
′)|2e−i(En−En′ )t′dt′ (3.79)

Taking |ch(t
′)|2 = eΓt′ into consideration we are capable to execute the inte-

gration and thus have

cn′(t) =
∑

n

cn

[
< n′|n > − i < n′|Vhole|n >

1 − e−[Γ+i(Em′−En′)]t

Γ + i(Em′ − En′)

]
(3.80)

The influence on the Auger electron may be calculated according to the
law of energy-conservation εA = ω−ε−I[f ][f ′]. (I[f ][f ′] is the change of energy
of the remaining core)

3.9 Finite escape time

This time we want to consider the path R(t) the Auger-electron takes on
it’s way from it’ original state |a > at R = ra to infinity and consider it’s
influence on the shake process. This additional perturbation is often refereed
to as ”kick process”. The calculation of the solution of this partial problem
would still be a two-electron one and we would have to make a product-
ansatz:

|Ψ >=

[∑
n′

cn′(t)|n′(r) > e−iEn′ t

]
︸ ︷︷ ︸

spectator electron |τ ′>

∗
[∫

dkck(R, t)|k(R) > e−iEkt

]
︸ ︷︷ ︸

free Auger electron

(3.81)

This leads to the following differential equation for the joint probability

˙(cm′cl) = −i
∑
n′

∫
dk[cn′ck]e

−i(En′+Ek−Em′−El)t < m′ < l|Vc|n′ > k > (3.82)
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To reduce this problem to a one-electron-problem we have to make some
more approximations: We assume the Coulomb interaction to take effect
only on the spectator but not on the Auger electron. It’s perturbation is
considered like in the previous section in a next step according to the law of
energy-conservation. To start with we calculate an averaged location of the
Auger electron. This expectation value is given by < εA|R|εA >, (|εA >=∫

cf (t)e−iEf t|f > dk) The hamiltonian for the spectator electron is

H = H++ +
1

| < R(t) > −r|︸ ︷︷ ︸
Ves(t)

(3.83)

(r = radial location of the spectator). The following steps are just the same
like (3.71) to (3.77) but with Ves instead of Vhole|ch(t)|2.

cn′(t) = cn′(0) − i
∑
m′

∫ t

0

dt′ < n′|Ves(t)|m′ > e−i(Em′−En′)t′cm′(t′) (3.84)

In [27] the electrons path was assumed to be along the z-axis starting in the
origin and the influence of the kick-process was calculated. The results can
be seen in figure 3.8.

3.10 Post collisional interaction (PCI)

The first experimental evidence for PCI was found and interpreted by Barker
and Berry in 1966.

Figure 3.8: finite escape
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3.10.1 The three possible cases

We will now study the case of excitation to the continuum. Three different
cases have to be distinguished:

1. Excitation far above threshold: The photoelectron is fast and will never
be overtaken by the Auger electron (or at least not within a time where
any relevant Coulomb interaction may take place) This is the normal
Auger decay as described in section 3.1.2

2. The excitation is to just close above threshold [15]: The Photoelectron
will not have moved away far when it is overtaken by the Auger elec-
tron. The photoelectron feels a subsiding screening and the modified,
stronger core-attraction causes it to be recaptured to a bound high-
lying level (fig 3.9). (”shake down” from continuum to a bound state)
The Auger electron is exposed to a weaker core attraction leading to
distortion of the Auger line shape and raising of the Auger energy at
the expense of the photoelectron-energy.

3. Intermediate excitation: The Auger electron overtakes the photoelec-
tron but this one has already moved too far away to be recaptured.
Both line shapes will be distorted (Auger’s raised, photo’s lowered). In
this case we have two indistinguishable electrons of similar energy that
impinge on the detector [28]. Therefore the cross section for observing
either photo- or Auger electrons at energyεe is [29]

d2σ

dεe

∝
∑

[Γ(εe)| < E′ − εe|τ > |2 + Γ(E ′ − εe)| < εe|τ > |2] (3.85)

where E ′ = ω − I[f ][f ′] = Eexc + εA I[f ][f ′] is the increase in energy from
the original neutral to the doubly ionized state (hole in orbital f and f’).
Γ(x) represents the Auger-decay to an Auger electron energy x. The

t0 t1 tf

V

D

Figure 3.9: Recapture of the photoelectron
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PCI line shape seems to be independent from the atomic structure. The
only significant parameters are the excess energy and the intermediate
lifetime Γ−1.

Outside the ionic core the real and imaginary part of the intermediate
state |τ0 > attain the form of a damped oscillating wave as a function of

the radial distance r [22]. The damping factor e
− r

r0 where r0 ≈ 2Γ
√

2Eexc

determines how far the photoelectron has proceeded from the ion before
shake-down into a discrete or continuous state takes place.
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Chapter 4

Fano process

4.1 Introduction

In 1935 Beutler observed autoionizing states as broad and asymmetric lines
in the photo absorbtion spectra of argon, krypton and xenon. In the same
year developed Ugo Fano 1 [30] a theory for it which was first published in
”Nuovo Cimento” but is better known in the extended form that he published
in the Physical Review [1] in 1961, which is still among the journals most cited
papers. Its simple ’Fano profile’ formula, which predicts the shape of spectral
lines, has been a workhorse of nuclear, atomic, molecular and condensed-
matter physics. The impact of this work has been conceptually important
since any decay problem can be formulated as an interaction between discrete
and continuous states whether photon, phonon, exciton etc. manifolds.

4.2 Basic interaction mechanism

If an atom is exposed to radiation it may happen that an electron is removed
from the core. There exist mainly two different escaping-paths (figure 3.10):
Either one of the outer electrons is removed in a single step or an inner-shell
electron is excited to an outer shell where it undergoes an subsequent auger
decay, leading to the same final state. These two possibilities are often re-
ferred to as channels. These two alternative paths interfere and lead to the
characteristic asymmetric crossection of the Fano profile (figure 3.11). We
can observe all the characteristics of a resonance in energy: The scattering
cross section grows in its vicinity, the scattering phase varies rapidly as a func-
tion of energy, the density of the wave function |Ψ(x) > is strongly enhanced

1Ugo Fano; 1912-2001
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Channel 1

Channel 2

Interference

Figure 4.1: The Fano process

Figure 4.2: The Fano-profile
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at small distances. Experimentally autoionizing states can be observed via
different channels

• Photo absorbtion and photo electron spectrometry

• inelastic scattered electrons

• spectrometry of autoionizing electrons

4.3 Changing from a two-particle description

to a one-particle one

In the preceding section the Fano-process is explained as a two particle pro-
cess. This corresponds to reality but makes calculation rather difficult. This
can be circumvented by introducing a one-particle description (see: fig 3.12).
The new one-particle-hamiltonian is

H̃ = H0 + V + D (4.1)

where V is a Coulomb interaction which represents the Auger-decay-mechanism,
D is the dipole matrix for the laser-excitation and H0 is the undisturbed
hamiltonian with a discrete and a continuum set of single-particle orthonor-
mal eigenfunctions, which are coupled through the (configuration-) interac-
tion V. These eigenstates are:

• The initial bound groundstate : |g >

• The discrete excited bound state: |a >, which will be referred to as
autoionizing state and resembles in the two particle description the
intermediate hole-state

Figure 4.3: One-particle representation of the Fano-process
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• and the set of continuum wavefunctions: |c(E) >. These asymptot-
ically stationary standing waves are orthonormal: < c(E ′)|c(E) >=
δ(E ′ − E)

where the corresponding eigenvalues are:

H0|g >= Eg|g > (4.2)

H0|a >= Ea|a > (4.3)

H0|c >= Ec|c > (4.4)

The discrete energy Ea lies above at least the first ionization threshold in the
energy range of the continuum. It is bound only in some approximation that
neglects its interaction V with the continuum in which it is embedded [31].
This additional potential causes this state to be unstable against ionization
with one electron being ejected. The exact coincidence of energies of different
configurations, Ea and a specific Ec, makes it impossible to treat this problem
with conventional perturbation theory.

4.4 Derivation of the Fano-formula[1]

To get a deeper understanding of the problem it is convenient to introduce
the projection-operators:

P = |g >< g| Q = |a >< a| +
∫

dEc|c >< c| (4.5)

Together they form a complete system:

P + Q = 1 (4.6)

We can use them to rewrite (3.86)

H̃ = (P + Q)︸ ︷︷ ︸
1

H̃ (P + Q)︸ ︷︷ ︸
1

= PH̃P + PH̃Q + QH̃P + QH̃Q (4.7)

The following abbreviations and assumptions will be used:

< c|H̃|a >=< c|QH̃Q|a >=< c(Ec)|V |a >:= Vca(Ec) (4.8)

This variable indicates how strong the bound state is coupled to the contin-
uum and will therefore have a strong influence on the decay process

< a|H̃|g >=< a|QH̃P |g >=< a|D|g >:= Dag (4.9)
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< c|H̃|g >=< c|QH̃P |g >=< c(E)|D|g >:= Dcg(E) (4.10)

< c|V |g >= 0 < c|V |c′ >= 0 (4.11)

The eigenvalue-problem thus yields:⎛
⎝ H0 Dag Dcg

Dga H0 Vac

Dgc Vac H0

⎞
⎠ ∗

⎛
⎝ |g >

|a >
|c >

⎞
⎠ =

⎛
⎝ Eg

Ea

Ec

⎞
⎠ ∗

⎛
⎝ |g >

|a >
|c >

⎞
⎠ (4.12)

The H̃-matrix can be rewritten:(
PH̃P QH̃P

PH̃Q QH̃Q

)
(4.13)

We want to solve this problem in two steps. First we try to diagonalize the
submatrix H = QH̃Q and search for it’s eigenstates. Afterwards we use its
result to solve the whole problem.

Diagonalization requires the solution of

H|Ψ(E) >= E|Ψ(E) > (4.14)

We make the following ansatz

|ΨE >= ca(E)|a > +

∫
dE ′cc(E

′)|c(E ′) > (4.15)

The energy dependance will from now on only be indicated if necessary.
Inserting this into (3.99) and projecting |a > or |c > onto it leads up to

Eaca +

∫
dE ′V ∗

ca(E
′)cc(E

′) = Eca (4.16)

Vca(E
′)ca + E ′cc = Ecc (4.17)

we use (3.102) to calculate cc

cc =
Vca(E

′)ca

E − E ′ (4.18)

In a next step we want to insert this into (3.101) and are confronted with a
problem of a singularity at E ′ = E. This problem can either be circumvented
by quantization of the continuum [9] or, like Fano did, by applying the pole
approximation2. We obtain for the formal solution

cc = Vca(E
′)ca

(
P

E − E ′ + z(E)δ(E − E ′)
)

(4.19)

2Pole approximation: We replace the fraction under the integral by an principal part
(indicated by P) plus a weighted delta-pulse at the pole. The principal part for a pole at
0 is defined by : P

∫ b

a
:= limε→0

∫ −ε

a
+
∫ b

ε
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where the weighting function z(E) is to be determined later. The continuum-
wavefunctions have the following free asymptotic behavior:

|c(E ′) >= sin(k(E ′)r + δ) (4.20)

Now we are capable to calculate the integral of (3.101).∫
dE ′cc|c > ∝ sin(k(E)r + δ + Δ(E)) (4.21)

where
Δ(E) = −arctan(

π

z(E)
) (4.22)

This phase-shift is due to the configuration-interaction of |c > and |a >. To
calculate z(E) we insert (3.100) into (3.101), factor out ca and derive

z(E) =
E − Ea − F (E)

|Vca(E)|2 (4.23)

where

F (E) = P

∫
dE ′ |Vca(E

′)|2
E − E ′ (4.24)

We take this result to evaluate (3.107) and obtain the for a resonance typical
behavior: The phase shift varies by π as E traverses an Interval |Vca|2(E)
about the shifted resonance at

Ēa := Ea + F (4.25)

The coefficient ca can now be calculated from the normalization of (3.100).

< Ψ(E)|Ψ(E) >= ca ∗ (E)ca(E) +

∫
dẼcc ∗ (E)cc(E) = δ(E − E) (4.26)

Substituting (3.104) and evading the problem of the occurring poles with
help of the pole approximation (for details see [17]) brings us to:

ca(E) =
sinΔ(E)

πVca(E)
=

1

πVca(E)

√
tan2Δ

1 + tan 2Δ

=
1

πVca(E)

Γ(E)/2

(E − Er)2 + Γ2(E)/4

(4.27)

cc(E
′) =P

Vca(E
′)|sinΔ

πVca(E)(E − E ′)
− cos(Δ)δ(E − E ′)

=sinΔ

[ |Vca(E
′)|

πVca(E)(E − E ′)
+

E − Er

π|Vca(E)|δ(E − E ′)
] (4.28)
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where we have defined a variable Γ(E) that characterizes the spectral width
of the autoionizing state:

Γ(E) = 2πVca(E) (4.29)

The eigenfunction Ψ can now be calculated:

|ΨE >=
sinΔ

πVca(E)
|Φ > −cosΔ|c(E) > (4.30)

where the discrete state |a > is replaced by a broader and shifted state

|ΦE >= |a > +P

∫
dE ′Vca(E

′)
E − E ′ |c > (4.31)

Now we use these results to solve the whole excitation-decay-problem.
We calculate the excitation-probability given by | < Ψ|T |g > |2 where T is
any excitation-operator.

< Ψ|T |g >=
TΦg

πVca
sinΔ − TcgcosΔ (4.32)

where
TΦg =< Φ|T |g > and Tcg =< c|T |g > (4.33)

Δ is a function of E and varies sharply at resonance. As sinΔ is a even
function of E − Ea − F and cosΔ an odd one they interfere in (3.117) with
opposite phase on the two sides of the shifted resonance. From (3.117) we can
calculate the energy for which the transition probability vanishes tanΔ0 =
πV Tcg

TΦg
(see fig: 3.11)

It is convenient to introduce the ratio

q :=
TΦg

πV ∗
caTcg

(4.34)

0, 5πq2 = |<Φ|T |g>|2
|<c|T |g>|2Γ is the ratio of transition probabilities from the ground

state |g > to the modified discrete state and to a band with Γ of unperturbed
continuum states. Furthermore we define a reduced energy variable

ε := −cotΔ =
E − Ēa

1
2
Γ

(4.35)

Using these variables we obtain the Fano-curve for the ratio of transition
to the modified continuum or to the undisturbed continuum:

| < Ψ|T |i > |2
| < c|T |i > |2 =

(q + ε)2

1 + ε2
= 1 +

q2 − 1 + 2qε

1 + ε2
(4.36)

This formalism can be expanded to more than one discrete state or/and to
several continua. [1]
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4.5 Time-dependent analysis [2]

Now we have calculated the involved states and know about their influence
on the measured spectra. In the following we want to study the time devel-
opment of the process. From now on Ēa will indicate the shifted resonance
Ēa = Ea + F . We model the excitation radiation as monochromatic

T = D = z(Eeiωt + Ee−iωt) (4.37)

The hamiltonian under study is still (3.86)

H = H0 + V + D (4.38)

We start with an ansatz with time dependant coefficients:

|Υ(t) >= cg(t)|g > +

∫
dE ′cΨ(t)|Ψ > (4.39)

where |Ψ > is the Fano state we have calculated above. At the beginning
t=0 the atom is in the ground state |g >. We insert this into the Schrödinger
equation and project < g| or < Ψ| onto it.

ċg = −iEgcg − i

∫
dE ′ < g|PHQ|Ψ > cΨ(t) (4.40)

ċΨ = −iE ′cΨ − i < Ψ|QHP |g > cg (4.41)

To make calculation a bit easier we change to the interaction picture by
setting

vg(t) = cge
iEgt and vΨ = cΨeiEΨt (4.42)

Now we apply the Rotating-wave approximation 3:

v̇g(t) = −i

∫
dE ′M∗

E′gEei(ω−E′+Eg)tvΨ (4.43)

v̇ψ = −iME′gE∗e−i(w−E′+Eg)tvg (4.44)

where

ME′g =< Ψ|z|g >= (
DΦg

V ∗
ca

sin(Δ) − DcgcosΔ) (4.45)

3The Rotating wave approximation: Whenever two sin-functions are multiplied,
sin(ω1t)sin(ω2t), we derive on the one hand an oscillation at the lower frequency |ω1−ω2|
and on the other hand an oscillation at the higher frequency |ω1 +ω2|. The approximation
demands to neglect the high-frequency oscillations as they are usually averaged to zero
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where DΦg =< Φ|z|g > and Dcg =< c|z|g >
The probability for ionization having taken place, P(t), at the end of the

laser pulse of duration T is given by:

P (T ) = 1 − |cg(T )|2 − |ca(T )|2 =

∫
dE ′|cc(T )|2 (4.46)

The mentioned ca can be derived from (3.124) and (3.115)

ca(t) =

∫
dE ′ cΨsin(Δ)

πVca
(4.47)

After the laser is turned off, t > T , there is no more excitation but still
population of |a > may decay and enhance P(t) still further:

P (t) = 1 − |Ug(T )|2 − |Ua(T )|2e−Γ(t−T ) (4.48)

Formally integrating (3.129) we derive

vΨ = −i

∫ t

0

dt′ME′gE∗e−i(ω−E′+Eg)t′vg(t
′) (4.49)

and substitute this result into (3.128) to obtain

v̇g = −i

∫
dE ′|ME′g|2|E|2

∫ t

0

ei(ω−E′+Eg)(t′−t)vg(t
′) (4.50)

We try to solve this equation by Laplace transformation 4.∫ ∞

0

dte−ptvg(t) = ug(p) (4.53)

4 The Laplace transformation F(p) of f(t) is defined by∫ ∞

0

dte−ptf(t) = F (p) (4.51)

The function f(t) must be piecewise smooth and for t → ∞ it must not tend to ∞ stronger
than eαt where α > 0. Under this conditions the Laplace integral L{f(t)} converges in
the right half-space where Re{p} > α
Inversion:

L−1{F (p)} =
1

2πi

∫ c+i∞

c−i∞
dp eptF (p) = f(t) =

{
f(t) t > 0
0 t < 0

}
. (4.52)

The path for this complex integral is the parallel Re{p} = c to the imaginary axe, where
Re{p} = c > α.
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where the initial condition forces ug(0) = 1. Equation (3.135) is transformed
to

ug(p) =
1

p +
∫

dE ′ |ME′g|2|E|2
p−i(ω−E′+Eg)

=
1

p + S(p)
(4.54)

Now we set
p = −iz (4.55)

where z = x + iy
For the integration-path we may choose the imaginary axe (see footnote 4).

vg(t) =
−1

2π

∫ +∞

−∞
dx e−ixtu+

g (x) (4.56)

where

u+
g (x) = lim

η→0+
ug(x + iη) =

i

x − s(x) + iy(x)
(4.57)

To simplify this we calculate (3.130) to

E|ME′g|2 =

γ︷ ︸︸ ︷⎡
⎢⎢⎣|DE′g|2|Vca|2︸ ︷︷ ︸

A

+ |Dcg|2︸ ︷︷ ︸
C

(E − Ēa)
2 + |Vca|22Re(

DE′gDcg

Vca
)︸ ︷︷ ︸

B

(E − Ēa)
2

⎤
⎥⎥⎦ ∗

∗ [(E − Ēa)
2 + π2|Vca|4

]−1

(4.58)

With help of this we may write

s − iy = P

∫ ∞

−Ēa

dE ′ γ

(x − E ′)[(E ′ − Ēa)2 + κ2]
− iπ

γ

(x − Ēa)2 + κ2
(4.59)

where κ = Γ
2

(Γ = 2π|Vca|2). Under the assumption of slowly varying matrix
elements of D and V we may write γ = A+B(E ′− Ēa)+C(E ′− Ēa)

2, where
A, B and C are energy-independent. Furthermore we replace the lower limit
of the integral Ēa by −∞ in all but the following integral.∫ ∞

−Ēa/κ

dm
mb(m)

m2 + 1
:= N (4.60)

where N is a pure number and b(m) is defined by B/B0. The subscript 0
from now on indicates the function being evaluated at Eg +ω. N determines
the magnitude of the laser-induced stark shift of the state |g > and depends
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on how fast the bound-free matrix element Dcg goes to zero as Ec → ∞. The
other integrals can be approximated by the replacing A and B by A0 and B0.

All in all this results in

s(x) − iy(x) =
π

κ

A0 + B0X + C0X
2

X + iκ
− π

κ
(B0 + C0X + C0κN) (4.61)

where:

• A0 = |E|2|DE′g|2|Vca|2

• B0 = |E|22Re
D∗

E′gDcg

Vca
|Vca|2

• C0 = |E0|2|μ̃cg|2

• κ = Γ
2

• X = x + w − (Ēa − Eg)

Now we have to calculate the inverse Laplace transformation of ug to
obtain the desired time dependence.

vg(t) =
−1

2πi

∫ +∞

−∞
dx

e−ixt

x − s(x) + iy(x)
(4.62)

we now introduce some generalized Rabi frequency (generalized because DE′g
couples the ground state to Φ and not to a single discreet state). With help
of

Ω2 :=
πA0

κ
= |E|2|DE′g|2E′=Ēa

(4.63)

and the detuning
δ = ω − (Ēa − Eg) (4.64)

(3.147) can now be written

cg(t) =
1

2πi

∫ +∞

−∞
dx

(x + δ + iκ)e−ixt

Λ(x)
(4.65)

where

Λ(x) =

(
x +

Ω2

q2κ2
(Nκ + iκ)

)
(x + δ + iκ) − Ω2

(
1 − i

q

)
2 (4.66)

. We now assume we know the roots: x± of Λ. This finally results in

cg(t) =
1

x+ + x−

[
(x+ + δ + iκ)e−ix+t − (x− + δ + iκ)e−ix−t

]
(4.67)
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4.6 Alternative calculation using the resol-

vent operator

In section 2.4 we introduced a resolvent which is, just like the hamiltonian,
capable to describe the time-evolution of the system. We now want to make
use of that. The hamiltonian of the problem is H = H0 +V +D where H0 =
HA +HR consists of an atomic HA and a radiation HR part. The eigenvalues
are therefore E ′

g = Eg + ω, E ′
a = Ea and E ′

c = Ec. The wavefunction has a
time evolution according to

|Ψ >= e−iHt|Ψ(0) >= U(t)|Ψ(0) >= Ugg|g > +Uag|a > +

∫
dEc Ucg|c >

(4.68)
The coefficients Uxy are the matrix elements of U(t) which can be calculated
by the inverse Fourier-transformation of the resolvent operator G.

G(z) =
1

z − H
(4.69)

U(t) =
−1

2πi

∫ ∞

−∞
dxe−ixtG(x) (4.70)

This reduces the problem to the calculation of the matrix elements of G.
Ggg =< g|PGP |g >, Gag =< a|QGP |g > and Gcg =< c|QGP |g >. (3.154)
can be rewritten

(z − H) (P + Q)︸ ︷︷ ︸
1

GP = P (4.71)

Projecting P or Q onto it leads us to

(z − PHP )(PGP )− (PHQ)(QGP ) = P (4.72)

(z − QHQ)(QGP ) − (QHP )(PGP ) = 0 (4.73)

Projecting suitable states onto it and making use of the definitions from the
previous sections we derive

(z − E ′
g)Ggg − DgaGag −

∫
dE ′

cDgcGcg = 1 (4.74)

−DagGgg + (z − E ′
a)Gag −

∫
dE ′

cVacGcg = 0 (4.75)

−DcgGgg − VcaGag + (z − E ′
c)Gcg = 0 (4.76)
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This system needs to be solved. From (3.161) we obtain

Gcg =
1

z − E ′
c

(DcgGgg + VcaGag) (4.77)

Inserting this into (3.159) and (3.160) and the solving this new system leads
us to

Ggg =
1

Λ
(4.78)

Gag =
Dag +

∫
dEc

VacDcg
z−Ec

(z − Ea −
∫ |Vac|2

z−Ec
)Λ

(4.79)

where

Λ = z−Eg −ω−
∫ |Dcg|2

z − Ec
− (Dga +

∫
dEc

DgcVca

z−Ec
)(Dag +

∫
dEc

Dag
V ac

z − Ec)

z − Ea −
∫

dEc
|Vac|2
z−Ec

(4.80)
The occurring integrals can be evaluated under the assumption of slowly
varying matrix elements. Then we replace z → limε→0 Eg + ω + iε and again
make a pole approximation.∫

dEc
|Dcg|2
z − Ec

� P

∫
dEc

|Dcg|2
Eg + ω − Ec

−iπ|Dcg(Eg +ω)|2 := Sg−i
γg

2
(4.81)

The introduced Sg and γg are the shift and ionization width of the state |g >
due to direct transitions. (compare to C0 in the previous section)∫

dEc
|Vca|2

Eg + ω − Ec
� P

∫
dEc

|Vcg|2
Eg + ω − Ec

− iπ|Vca(Eg + ω)|2 := Fa − i
Γg

2
(4.82)

Dag+

∫
dEc

Dcg

V ac
z − Ec) � Dag+P

∫
dEc

Dcg

V ac
Eg + ω − Ec)−iπ(VacDcg)Eg+ω) := DEg(1− i

q
)

(4.83)
The variables are the same like introduced in the previous section.

4.7 Interpretation

4.7.1 Weak field case

As a consequence of Ω � κ in the weak-field limit we may neglect several
terms and thus have to calculate the roots of:

x2 + [δ + i(1 + β2)κ]x − [α2 − iβ2κ(δ + iκ)] = 0 (4.84)
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where β2 = Ω2

q2κ2 and α2 = Ω2
(
1 − i

q

)
. The roots are (again neglecting small

terms)

x+ =
α2

δ + iκ
− iβ2κ x− = −(δ + iκ) − α2

δ + iκ
+ iβ2κ (4.85)

Because of the weak field limit it is |x+| � |x−| and only the exponential
e−ix+t matters in (3.152). |cg| decays at a rate of 2Im(x+).

4.7.2 strong field case

The strong field case is characterized by q → ∞. (3.151) reduces to

x(x + δ + iκ) − Ω2 = 0 (4.86)

resulting in the roots

x± = −1

2
(δ + iκ) ± Ω (4.87)

In this case cg develops like

cg(t) =
1

2Ω

[
[
1

2
(δ + iκ) + Ω]e−i(Ω− δ

2
)t − [

1

2
(δ + iκ) − Ω]ei(Ω+ δ

2
)t

]
(4.88)

In this case we obtain the typical behavior of a state g > strongly coupled
to another bound state |a >. Like in section 2.5 the oscillation occurs at two
different frequencies separated by the Rabi-frequency. Additional to that it
decays at a rate of δ.

4.7.3 numerical results [2]

Lambropoulos and Zoller have shown [2] that for a weak field the transition-
probability per unit of time is time-independent. For large light intensities
or for short laser pulse duration it is of importance. In figure 3.13 the total
ionization is plotted as a function of detuning from resonance for constant
light intensities but different times of interaction. From this figure it can
be deduced that as long as T � 5Γ−1 we obtain the typical auto-ionization
profile with its characteristic minimum and asymmetric shape. For smaller
T T = Γ−1 the line shapes do not show the expected profile but it is flat.

In figure 3.14 the total ionization is plotted for a long time of interaction
T = 5Γ−1 and q=5 for different light intensities. For increasing intensities
the maximum vanishes, the minimum-position undergoes an ac-stark-shift
and the ionization probability tends to one for all detunings.
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Figure 4.4: The total ionization P is plotted as a function of detuning Δ from
resonance for constant light intensities but different times of interaction. [2]

Figure 4.5: The total ionization P is plotted for T = 5Γ−1 and q=5 for
different light intensities. [2]
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In figure 3.15 we see the behavior in relatively strong field for different
moments. None of the curves shows the expected behavior. Especially the
T=1-curve shows undulations due to the Rabi-oscillations between |g > and
|a >. The decay mechanism smoothes them.

Finally in figure 3.16 the time-development of the involved states and the
ionization probability is presented. The Rabi-oscillations are damped due to
the decay mechanism.

4.8 Using Fano’s formalism to study the time

dependance of the Auger-decay

In the introduction of this chapter it was claimed that Fano’s derivation was
a useful tool for many kinds of decay-problems. To give an example for this
we now want to derive the result from section 3.7 using this procedure. The
state of the interacting electrons e−1 and e−2 corresponds to the state |a >.
The special kind of excitation doesn’t have an influence on the decay so we
may assume that the electron has always been in the exited state but the
interaction Vac starts at a certain time t=0. For reasons of simplicity we thus
may set the initial state to |a > in a hamiltonian H0 + V (t) instead of |g >
and H = H0 + D + V . We are interested in the state at a time T > 0. The
measured Auger electrons are better described in the eigenstates of H0 as
the coulomb interaction falls of with distance. This is implemented in our
model by turning off the Interaction V just in the moment of measurement.

Figure 4.6: The behavior in relatively strong field for different moments is
plotted. None of the curves shows the expected behavior.[2]
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Figure 4.7: Time-development of the involved states and the ionization prob-
ability [2]

The Hamiltonian is

H(t) =

⎧⎨
⎩

H0 for t < 0
H = H0 + V for 0 < t < T
H0 for t > T

(4.89)

Next we make a piecewise ansatz [17]

|Ψ(t) >=

⎧⎨
⎩

|a > e−iEat for t < 0∫
dEfcf |f > e−iEf t for 0 < t < T

ca|a > e−iEat +
∫

dEfcc|c > e−iEc(t−T ) for t > T
(4.90)

where |f > resembles the Fano state. The expansion coefficients cf , ca or
cc are time-independent as the corresponding states are eigenstates of the
”hamiltonians of their time”. At t=0 and t=T continuity of the wave function
must be granted.

|a >=

∫
dEfcf |f > (4.91)∫

dEfcf |f > e−iEfT = ca|a > e−iEaT +

∫
dEfcc|c > (4.92)

To solve this system of equations we project the eigenstates onto it and obtain

cf = a∗ (4.93)

where a* is given by (3.112).

ca =

∫
dEc cf a e−iEf t (4.94)

cc =

∫
dEc cf h e−iEf t (4.95)
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where h is given by (3.113) The two integrals range over the permitted re-
gions of energy, which are limited by the threshold-energy of the atom. To
be capable to go on with analytical calculation we need to make an approxi-
mation. We assume the Auger electron to have an energy far from threshold
so that it is justified to set the limits of the integrals to infinity.

Ethreshold → ∞ (4.96)

Under the assumption that the matrix element Vca is an analytic function of
energy the integrations can now be solved with help of the residue integration.
Using previous results the discrete expansion coefficient follows as

ca =

∫ ∞

−∞
dEc

Γ/2π

(E − Er)2 + ΓE
2/4

e−iET = eiErT e−Γ0T/2 (4.97)

For this integration the integration path was closed in the lower half-plane;
Γ0 = ΓE(Er). As usual we are interested in the squared value |ca|2 = e−Γ0T

what is just the result we have obtained before. It is important to remember
that this resulting exponential decay is only an approximation of the real time
dependence. Without the approximation (3.181) we would not have obtained
an exponential decay! The continuum expansion coefficient is calculated by

cc(E) �

∫ ∞

−∞
dEc

|Vca|2
(E − Er)2 + ΓE

2/4

(
P

Vca

Ec − E
+

E − Er

Vac
δ(E − Ec)

)
e−iEcT

(4.98)
To execute this integration we rewrite the principal value

P
Vca

Ec − E
=

Vca

Ec − E − iε
− iπδ(E − Ec) (4.99)

because a pole in the upper half plane doesn’t contribute. This transforms
(3.183) into

cc(E) �

∫ ∞

−∞
dEc

|Vca|2
(E − Er)2 + ΓE

2/4

Vca

Ec − E − iε
e−iEcT +

+
Vca

(E − Er)2 + ΓE
2/4

(E − Er − iπ|Vca
2)e−iEcT

(4.100)

the integration path is closed so that only the pole at Ec = Er − iΓ/2 con-
tributes. With the assumption that ΓE depends only weak on E we may
replace it by Γ0 and derive

|cc(t)|2 =
Γ0/2π

Γ0
2/4 + (E − Er)2

[
1 − e−i(E−Er)T e−Γ0T/2

]
(4.101)

Let us investigate the extreme cases of this result
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• Γ0T � 1 The time after the decay began is large compared to the
natural decay time 1/Γ0. We obtain a Breit-Wiegner spectrum with
line width Γ0

|cc(t)|2 =
Γ0/2π

Γ0
2/4 + (E − Er)2

(4.102)

• Γ0T � 1 We measure immediately after the decay started. We obtain
an oscillating function with maximum atEr having a width decreasing
with T. It’s peak increases quadratically.

|cc(t)|2 =
Γ0

2π

|1 − ei(E−Er)T |2
(E − Er)2

=
Γ0T

2

2π

[
sin(E − Er)T/2

(E − Er)T/2

]
2 (4.103)
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|cc(t)|2 for Γ0T � 1 |cc(t)|2 for Γ0T � 1

Figure 4.8: both
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