
DISSERTATION

Development of Vertex Finding and
Vertex Fitting Algorithms for CMS

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Univ. Doz. Dipl.-Ing. Dr. Rudolf Frühwirth (E107)
am Institut für Hochenergiephysik der Osterreichischen Akademie der

Wissenschaften

eingereicht an der Technischen Universität Wien
Fakultät für Physik

von

Dipl.-Ing. Wolfgang Waltenberger

E9325377
Gumplowiczstraße 1/4/21

A-1220 Wien
waltenQhephy.oeaw.ac.at

Wien, am 19. Oktober 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung
Im CMS Experiment müssen Interaktionswechselwirkungspunkte ("Vertices") der Teilchen
rekonstruiert werden. Man unterscheidet zwischen "primären" Proton-Proton Kollisionsver-
tices und "sekundären" Zerfallsvertices. Das Problem der Vertexrekonstruktion wird des
weiteren aufgeteilt in das statistische Problem, einen Vertex aus einer gegebenen Menge
an Teilchenspuren zu schätzen, und in ein Mustererkennungsproblem. Hierbei ist die Auf-
gabenstellung, aus einer Gesamtmenge Untermengen von Teilchenspuren zu finden, die
einen gemeinsamen Ursprungsvertex teilen. Die vorliegende Arbeit beschäftigt sich mit
allen oben genannten Aspekten. Im Gebiet der Vertexschätzung wurden Robustifizierungen
des Kaiman Filters entwickelt, implementiert und untersucht. Die Vertexsuche betreffend
wurden verschiedene, teils aus der Literatur bekannte Algorithmen der Problemstellung
angepasst, implementiert und analysiert. Zu diesem Zweck musste eine Reihe an Soft-
waretools geschrieben werden. Es war notwendig, dem Anwender volle Kontrolle über die
kinematischen und statistischen Eigenschaften zu ermöglichen. Dafür wurde ein Paket zur
schnellen Simulation entwickelt. Eventweises Debuggen hingegen führte zur Entwicklung
eines Visualisierungstoolkits. Ein einfacher Persistenzmechanismus ("data harvesting")
ermöglichte schnelleres Debuggen. Erst ein Paket, das Vertexsucher automatisch fein ab-
stimmt, erlaubte einen unverzerrten Vergleich der verschiedenen Algorithmen.

Alle Algorithmen wurden auch in realistischen Anwendungen getestet. Im Gebiet der
Vertexsuche wurde das Hauptaugenmerk auf die Verwendung der Vertexsucher im "6-
tagging" gelegt. Im Bereich der Vertexschätzung wurde das Schätzen von Primärvertices
mit Ausreißern und Sekundärvertices mit schlecht gemessenen Spuren getestet. Es kon-
nte gezeigt werden, dass der adaptive Schätzer den klassischen Methoden, die mit "har-
ter" Zuordnung arbeiten, überlegen ist. Der Multi-Vertexschätzer konnte im Vergleich
zu den klassischen Strategien bei gleichbleibenden 6-tagging Ergebnissen die 6-mis-tagging
Raten wesentlich verringern. Darüberhinaus wurde ein exzellenter Kandidat für die Online-
Vertexrekonstruktion gefunden: der adaptive Vertexrekonstruktor erzielt ebenfalls gute
6-tagging Ergebnisse, und ist außerdem sehr schnell.

Robuste Schätzer sind in großem Maße abhängig von ihrer Initialisierung. Verschiedene
"linearization point finders" wurden analysiert. Ein bestimmter Algorithmus wurde als
neuer Standardalgorithmus festgelegt. Er ist sehr schnell und liefert in einem weiten
physikalischen Anwendungsbereich ausgezeichnete Anfangswerte. Viele "linearization point
finders", darunter auch der neue Standardalgorithmus, bedürfen einer schnellen und den-
noch präzisen Methode, den minimalen Abstand zwischen zwei Helices zu berechnen. Ein
neuer Algorithmus wurde implementiert; er ist den bisherigen Methoden weitaus überlegen.

11

Abstract
In the CMS detector interaction vertices of particles will have to be reconstructed. We
distinguish between proton-proton collision vertices ("primary vertices") and decay vertices
("secondary vertices"). We furthermore categorize into fitting a given set of tracks into a
vertex, and finding sets of compatible track bundles, "vertex finding". This PhD thesis
deals with the tasks of finding and fitting of primary and secondary vertices. In the field of
vertex fitting robustifications to the classical Kaiman filter formalism have been developed,
implemented, and tested. In vertex finding several algorithms found in literature have been
identified, implemented, and tested. To this end it was necessary to develop a fairly large
set of tools. The necessity for full control over event kinematics and the reconstructed tracks
lead to the implementation of a fast simulation package. The event-by-event debugging
process triggered the development for a special-purpose visualization. A simple persistency
mechanism ("data harvesting") that allows for faster debugging cycles was developed. A
package that automatically tunes vertex finders made fair comparisons between different
algorithms possible.

All algorithms have also been tested in realistic use cases. On the finding side strong
emphasis was put on the use case of employing vertex finding algorithms in the context
of 6-tagging; vertex fitting was tested in the application of primary vertex fitting with
outlying tracks and secondary vertex fitting with mis-measured tracks. It could be shown
that the adaptive vertex fitting method is superior to the classical algorithms that operate
with "hard assignment". In the vertex finding section, the multi vertex fitter method
improved 6-mis-tagging rates significantly, while maintaining the same level of 6-tagging
rates as the classical strategies. Also, a likely candidate for online vertex reconstruction
could be identified: the adaptive vertex reconstructor. This method, while it is extremely
fast, also exhibits an excellent 6-tagging performance.

Robust fitting methods depend heavily on their initialization. Various linearization
point finders were studied, one of which was identified as the new default algorithm. It
is a fast algorithm which has an excellent performance over a wide range of applications.
Many linearization point finders, including the default method, need good and fast ways
to compute the minimal distance between two helices. A new algorithm was implemented
that outperforms the previous methods.

Ill

Acknowledgment
First of all my thanks go to my supervisor Rudi Frühwirth. Both Rudi's expertise in "his"
field and his social skills that are, it seems, just as crucial for a successful supervision of a
PhD thesis as the scientific competence, are widely known and well documented [104, 74,
92]; every additional comment seems quite redundant. So let me be indeed be redundant:
it has been a truly grand experience working with Rudi. Further thanks for supervision to
Pascal Vanlaer, my de facto second supervisor, for inserting me into the ORCA vertexing
group. Pascal was a knowledgeable source of information, who, amazingly, always had an
open ear for all silly and not-so-silly requests that one has in three years of writing a PhD
thesis.

Further thanks goes to all my colleagues both in Vienna and in Geneva, Meinhard
Regler, Winni Mitaroff, Laurenz Widhalm. Special kudos to Gerald who has shared the
subtle joys of the open source world with me (predominantly the CLI parts of it, since
our opinions on the GUI world diverge), Kirill Prokofiev for a few wonderful evenings in
quite a variety of European cities, Christian Weber for periodically inserting me into the
miraculous world of phenomenology and "how to get lost in the particle zoo". My last
collégial thanks go to Susanna, friend and moral support in an environment as bizarre as
the CERN environment can be at times.

Last but not least all my thanks to my dear family - Manja who has, herself, had a
thesis to write [105], Fabian who in the same period in which I managed to write but
one little PhD thesis, realized great many "first ones": he made his first steps, uttered
his first words, played his first games, asked his first questions, watched his first movies,
and, ultimately, logged onto our Linux computer for the first time in his life! This nicely
documents what a slow and tedious process science generally is, or, for once, how incredibly
adaptive children are. Finally special thanks also to my parents. I doubt there is anybody
who knows me since longer.

Parts of the WFçft style of this thesis are taken from the source code of R.M. Hristev's
"Matrix ANN" book [65].

Further thanks also goes to "my students" (note the composite nature of being a stu-
dent), Boris Legradic, for the templated version of the voting schema, David Schmitt, for
his implementation of the vector quantization algorithm (and a few smart ideas about
quite a few topics), and Florian Köchl, for the implementation of the Super Paramagnetic
algorithm, and Thomas Layer and Werner Prinot who have very recently started to work
on the PickleHarvester.

Plenty of world-readable afs disc space (50GB) has been granted to the author for the
production of Monte Carlo data. Thanks a lot to Gerhard Walzel and his computing team
at the HEPHY for this generous gesture.

This thesis was made possible by the Fonds zur Förderung der wissenschaftlichen
Forschung, project number 15177.

Ver 1.71, 20th October 2004

Contents

Introduction 1
1.1 Physics at the LHC 2

1.1.1 The Higgs boson 2
1.1.2 Supersymmetry, SUSY Higgses, and SParticles 4
1.1.3 Large extra dimensions and black holes 6
1.1.4 Exotics 8
1.1.5 6-tagging 8

1.2 The CMS Detector 9
1.2.1 The CMS inner tracker 9
1.2.2 The calorimetry 12
1.2.3 The muon system and the magnetic yoke 13

1.3 Data flow 13
1.4 CMS offline software 15

1.4.1 CMSIM 16
1.4.2 PYTHIA 16
1.4.3 COBRA 16
1.4.4 CARF 16
1.4.5 ORCA 17
1.4.6 OSCAR 17
1.4.7 FAMOS 17
1.4.8 IGUANA 17
1.4.9 Track reconstruction in ORCA 18
1.4.10 Online versus offline reconstruction 20

1.5 The vertex subsystem 21
1.5.1 Data objects 21
1.5.2 Algorithm classes 22

1.6 Scope of this thesis 23
1.7 Writing conventions 25

Simulation 27
2.1 Full simulation 28

2.1.1 Data produced for the thesis 28

vi CONTENTS

2.1.2 Other data sources 30
2.2 Fast simulation 31

2.2.1 Motivation 31
2.2.2 The framework — VertexFastSim 31
2.2.3 Event generation 31
2.2.4 Standard scenarios 34
2.2.5 VertexGunFromFile 37
2.2.6 Verification, comparison . 37

3 Mode finding 39
3.1 Motivation 39
3.2 Mode finding in one dimension 40
3.3 The "ClusteringlD" package 41
3.4 Mode finding in three dimensions 42
3.5 Mode finding in 3d in ORCA 44

4 Vertex Finding 45
4.1 Introduction 46
4.2 Categorization 46
4.3 Input data 46

4.3.1 Apex Points 47
4.3.2 Apex point finders 48
4.3.3 Analysis of the apex point finders 48
4.3.4 Apex fitting 48
4.3.5 Performance limits of the apex point approach 50
4.3.6 Final remark 50

4.4 Hierarchic Clusterers 50
4.4.1 Agglomerative clustering 50
4.4.2 Divisive Clustering 52

4.5 Non-hierarchic clusterers 54
4.5.1 Vector quantization . . 54
4.5.2 Weighted versus non-weighted learning 55
4.5.3 The KMeans algorithm 56
4.5.4 Seeding 57
4.5.5 Deterministic annealing 58
4.5.6 Super-paramagnetic clusterer 58

4.6 SuperFinders 59
4.6.1 Global association criterion (GAC) 59
4.6.2 Best solution finder 61
4.6.3 Voting system 62

4.7 Other methods 65
4.8 Physics knowledge 66

CONTENTS vü

5 Vertex Fitting 69
5.1 Introduction 70
5.2 Linearization point finders 70

5.2.1 Categorization 70
5.2.2 Implementations 72
5.2.3 Performance analysis 73
5.2.4 Results 73
5.2.5 Influence of the linearization point on the final fit 75
5.2.6 Conclusions 76

5.3 Least-squares fitting methods 76
5.4 Robustifications 77

5.4.1 The trimmer 78
5.4.2 The adaptive estimator 78
5.4.3 The Least Median of Squares (LMS) 81
5.4.4 Verification of the robust methods 82
5.4.5 Conclusions 83

5.5 MultiVertexFit 83
5.5.1 Implementation 84
5.5.2 Verification of the MVF 84
5.5.3 Future ideas for the MVF 86

5.6 Prior information 87
5.7 The Gaussian Sum Filter (GSF) 87
5.8 GSF and AVF 88
5.9 GSF and MVF 88
5.10 Derivation of the adaptive methods 88

5.10.1 Statistical approach 88
5.10.2 Effective energy 90
5.10.3 EM algorithm 91
5.10.4 Quantum mechanics 93

6 Performance studies 95
6.1 Vertex fitting 96

6.1.1 Results 96
6.2 Vertex finding - comparison of "geometric" scores 97

6.2.1 Results 98
6.3 Algorithmic complexity 98
6.4 Vertex finding in the context of fr-tagging 99

6.4.1 Setup 99
6.4.2 Results 99
6.4.3 PVR performance in 6-tagging 100
6.4.4 The agglomerative clusterers in 6-tagging 100
6.4.5 The MultiVertexFitter in 6-tagging 100
6.4.6 Non-hierarchic clustering methods 100

viii . CONTENTS

6.4.7 The adaptive vertex reconstructor 101
6.4.8 A "group picture" of algorithm performances in 6-tagging 101
6.4.9 A "group picture" of the preliminary algorithms 101
6.4.10 Summary — vertex finders in the 6-tagging context 101
6.4.11 Vertex finding - correlation between geometric and b-tagging scores 102

7 Summary and outlook 117

A Various algorithms 119
A.I Minimal distance between two helices 119

A.I.I Newton-Kantorowitsch method 120
A.1.2 The final recipe 122
A.1.3 Comparison with other algorithms 122

A.2 Rotation matrix —> rotation axis 122
A.3 Track error transformation 124

B Tools 127
B.I Algorithm tuning 128

B.I.I An MC based "geometric" score 128
B.1.2 Changing the MC truth . 129
B.1.3 A 6-tagging score . . . 129
B.1.4 The TuningTools package 129
B.1.5 The FineTunerlD 131
B.1.6 Future development . . 132

B.2 Data harvesting 134
B.2.1 The MultiType 136
B.2.2 The AbstractDataHarvester 136
B.2.3 Implementations of the AbstractDataHarvester 137
B.2.4 The DataHarvester 139
B.2.5 Meta data 140
B.2.6 Closing the harvester 140
B.2.7 Data harvesting in action 140
B.2.8 Object harvesting 140
B.2.9 Data seeding 142
B.2.10 Object seeding 142
B.2.11 Final remarks and potential future developments 143

B.3 Visualization 143
B.3.1 The offline program . . . , . _ 146
B.3.2 Download 146

B.4 Vertex-specific 6-tagging analysis tools 146
B.5 Associators 147

B.5.1 Track association 147
B.5.2 Vertex association . . . 148

CONTENTS ix

C Plots and Tables 151

D Acronyms 159

The White Rabbit put on his spectacles. "Where shall I begin, please your Majesty?"
he asked. "Begin at the beginning,", the King said, very gravely, "and go on till you
come to the end: then stop."

Lewis Carroll, "Alice in Wonderland"

CHAPTER 1

Introduction

Nos esse quasi nanos gigantum umeris insidentes, ut possimus plura eis et remotiora
videre, non utique proprii visus acumine out eminentia corporis, sed quia in altum
subvehimur et extollimur magnitudihe gigantea.
(We are dwarves perched on the shoulders of giants. We see thus more and further
than they do, not because our sight is more acute or our height taller, but because
they lift us into the air and elevate us with all their gigantic height.)

Bernard de Chartres

Introductions commonly have it that they provide a starting point for the story that
is being told. This document shall not deviate from this rule. It shall be attempted
to bring to the eye of the reader the greater picture that this work is embedded in.
Starting with a description of the physics goals of LHC, the hardware setup and a
few details of the CMS inner tracker and the calorimetry will be given. The data
challenges that have to be met shall then be presented, and the time budget avail-
able for vertexing within a high level trigger will be given. The chapter shall end
with a brief summary of the contribution of this PhD thesis to the CMS experiment.

CHAPTER 1. INTRODUCTION

1.1 Physics at the LHC

In Nature's infinite book of secrecy a little can I read.

William Shakespeare, "Anthony and Cleopatra"

To say that the experiments at the Large Hadron Collider (LHC) [31, 8] will dominate
the next decade of high energy physics is probably not exaggerated. The range of physics
models LHC experiments will cover, the number of theories that will be at test, is large.
Speaking in simple terms, the following qualitative, "epic" questions are expected to be
answered:

• What is the origin of mass? Within the standard model all particles acquire their
masses by coupling to the (physically observable) Higgs boson, but the latter has not
yet been observed.

• Is there experimental evidence for a Grand Unified Theory (GUT) - a proposed
unification of the electromagnetic, the weak, and the strong interaction?

• Is a fundamental symmetry between fermions and bosons, the "supersymmetry",
realized in nature?

• What is the origin of "dark matter"? Could the so-called neutralinos, particles
proposed by the theory of supersymmetry, be a candidate for dark matter?

• Why is there an asymmetry in the quantity of matter as compared to antimatter?

• Why are there three families of quarks and leptons?

• Do quarks and leptons have a substructure?

• Is there a new form of matter, the so-called quark-gluon plasma, as it might have
existed in the early universe?

• Is the world we live in really four-dimensional? Will evidence for further dimensions
be found?

The following sub-sections shall briefly delve into a few main potential discoveries,
focussing on possible contributions of this thesis.

1.1.1 The Higgs boson

(The deep of night is crept upon our talk,) And Nature must obey necessity.

William Shakespeare, "Julius Caesar"

1.1. PHYSICS AT THE LHC

5-

4-

3-

2-

1-
Excluded

20

\ — 0.0ZM7A0.00O12
— Ind. low Q* data

PreDmlnafy

400

mu MGeVN

FIGURE 1.1: Ax2 of the electro-weak "world" fit, as a function of the Higgs mass

The standard model today is left with one and only one piece that still defies experimental
verification - the Higgs boson [90, 97]. This Higgs field was introduced into the model
as a mechanism that allows insertion of mass terms in the Lagrangians without explicitly
violating the fundamental gauge symmetries - the U(l)y and the SU(2)i symmetries of the
electro-weak theory. In its simplest form it is inserted as a doublet field, with 2-2 — 3 = 1
degrees of freedom, that is, with one physical particle. The theory itself does not predict
the mass of the Higgs boson. But it does predict how the mass depends on the branching
ratios. The past LEP experiments have not found the Higgs boson, but they have left us
with a lower limit on the mass: M H > 114.4 GeV at 95% confidence level, see Fig. 1.1.

Higgs boson production

The leading process for Higgs boson production over the whole mass spectrum is gluon
fusion with no by-products, see Fig. 1.2. The production rate of the next-to-leading
production mechanisms, like vector boson fusion (qq —* Hqq) or W/Z bremsstrahlung
(qq —» HW/Z) are, in a great part of the spectrum, already orders of magnitude smaller
than the gluon fusion. The only other production channel that is of relevance for this the-
sis, is the ÜH channel; this potential discovery channel has a much lower branching ratio,
but the decay products of the Higgs boson and the top quarks make for a very distinct
signature.

The most prominent decay channels for standard model Higgs particles are as follows:

• For M H < 140 GeV (small mass scenario): The decay channel with the highest
branching ratio in this scenario is H —> bb. A large QCD background, unfortunately,
makes it unusable for physics analysis. Thus, one of the promising decay channels
is H —» 77; the narrow width of the Higgs boson and the expected superb mass
resolution should allow to discriminate the signal from an immense background (note
the very low branching ratio ~ 10~3). One possible alternative in this low mass region

CHAPTER 1. INTRODUCTION

10'

10

10

o(pp-»H+X)[pb]

Vs=14TeV

M,= 175GeV

CTK34M

gg,qq-iHDD _gq-tHZ

200 400 600

MH [GeV]

800 1000

FIGURE 1.2: Higgs production channels (left), Higgs decay channels (right), taken from [90]

is to look at Higgs bosons with other particles as by-products, e.g. Higgs bosons with
an associated iïpair, Fig. 1.3. In this case one can trigger on e.g. the leptonic decay
of one of the top quarks. The event has 46-jets; good 6-tagging capabilities will indeed
be crucial in this complicated channel.

• For 130 < M H < 500 GeV (medium mass range): The most prominent channels
are H -> VV* -> l+l'uu, and H -> VV* -» l+ri+r(l = e,ß;V = W,Z). These
channels are fully leptonic. Especially the four-lepton channel has a particularly clean
signature; it is sometimes referred to as the gold-plated channel.

• For heavy Higgs (MH > 500 GeV): For this mass range H
one of the more promising channels.

VV* jet jet is

The LHC accelerator has been specifically designed to cover the whole Higgs mass range
up to about 1 TeV. Within this range, the Higgs particle can be expected to be found
within the first year of running at low luminosity.

Finally note that the predicted Higgs particle is a scalar, but there is nothing in the
theory that demands that it be a fundamental scalar field: Higgs "condensates" are a
possibility.

1.1.2 Supersymmetry, SUSY Higgses, and SParticles

The best argument for supersymmetry: almost half of the predicted particles have
already been found.

Supersymmetry is a proposed extension to the standard model that combines fermionic
and bosonic states. Its theoretical achievements include the unification of all fundamental

1.1. PHYSICS AT THE LHC

FIGURE 1.3: Feynman graph of the ttH channel; a Higgs boson with an associated top
quark pair production.

forces (except for gravity) at the GUT scale, and the cancellation of all quadratic diver-
gences in the QFT perturbation theory. Its smallest possible form is referred to as the
minimal supersymmetric model (MSSM). It introduces a supersymmetric partner for ev-
ery particle; the Higgs doublet is extended to comprise two doublets, making way for no
less than 2 - 2 - 2 - 3 = 5 physical MSSM Higgses: a CP-odd (A), two CP-even (H, h), and
two charged (H*1) Higgs bosons. The spectrum of the MSSM Higgs bosons can at tree
level be expressed with only two parameters; rriA and tan/3. The predicted phenomenol-
ogy, though, depends also on the SUSY particle masses w.r.t. the Higgs particle masses.
If the SUSY particles are heavier than the Higgs bosons, then evidently the latter cannot
have supersymmetric decay chains. So, even for the MSSM the spectrum of possible phe-
nomenology is extremely wide; it makes little sense to discuss specific scenarios here. But
it can still be said on this abstract level that fr-jets will play an important role either as
part of a signal or as part of background. For a good overview over supersymmetry and
its predicted phenomena see [78].

SParticles and particlinos

The predicted supersymmetric particles are the

• squarks (q), sleptons(Z) and sneutrinos(i/) - the bosonic supersymmetric partners of
the quarks, electron, the muon, the r lepton, and the neutrinos, respectively.

• gluinos(p), charginos(x±), and neutralinos(x°), the supersymmetric partners of the
gluons, the gauge bosons and the Higgs boson. (The charginos and neutralinos are
superpositions of the "mathematical" gauginos and Higgsinos). In many scenarios
the lightest SUSY particle is a neutralino. This particle decays no further, if R

CHAPTER 1. INTRODUCTION

Inclusive f * r + E"ES final states

I . . .2 3 0

2 0 0

>

c

ifi 100

so

n mSUGRApai.

IfJ

/ '

m.= 200G«V, m ia

«anp = 2, A.

^ t *

p,<^>
l-tnl =

SUSY +SM

. SM

ameters
= 180GoV.
s Ot ii<Q

1CX5 GsV

15GoV

103 pb-'

-

-

IOO ISO
M K+/-),GeV

200 23O

FIGURE 1.4: Left: A SUSY decay chain (with quite a spectacular signature). Right: The
di-lepton mass distribution, after one month of data taking at low luminosity. (Plots taken
from [99])

parity is conserved, i.e. if the number of SUSY particles is conserved. In this case
it is a stable particle — a weakly interactive massive particle (WIMP). It makes an
excellent candidate for dark matter (see [78] and references therein).

Note that the question of whether or not supersymmetry is realized in nature will probably
be answered very quickly, once LHC is running. See Fig. 1.4 for an example of how one
particular decay chain (left plot) can dramatically change the (inclusive) di-lepton mass
distribution (right) after one month of data taking [62].

1.1.3 Large extra dimensions and black holes

(Wherefore base? When) my dimensions are as well compact, (My mind as generous,
and my shape as true as honest madam's issue?)

William Shakespeare, "King Lear"

If the Planck scale is in the TeV range, LHC will produce one black hole about every
second [44, 63] *. The microscopic black holes will in this scenario decay into prompt,
hard photons and energetic leptons which, together, will provide a very clean signature.
They will thus be easily detectable. Apart from the first direct confirmation of Hawking
radiation, information could be revealed about the scale of quantum gravity, and the
number of (large) extra dimensions.

1There are models that predict a lower production rate even with a 0(TeV)-Planck scale; literature
has at least two candidate mechanisms for suppression of black hole production: Voloshin suppression [81]
and the generalized uncertainty principle [30].

1.1. PHYSICS AT THE LHC

FIGURE 1.5: A SUSY Higgs —> bb decay, taken from [3]. This is a CMSIM simulation of
an mSUGRA event. The pp-collision produced ÛL + g. g decays in a lengthy chain into
jets 3, 4, and 5. üL decays into a «-quark (jet 6) plus a neutralino and a SUSY Higgs h.
The Higgs h then decays into bb that generates the jets 1 and 2.

CHAPTER 1. INTRODUCTION

1.1.4 Exotics

You should never bet against anything in science at odds of more than about 1012 to
1.

Ernest Rutherford

The number of more daring ideas that can and will be tested in LHC is large. It is
futile to even start discussing possible discovery channels, let alone discussing potential use
cases of sophisticated vertex reconstruction methods. Hence we shall restrict ourselves to
simply listing a few physics models:

• String balls [45, 32] Highly excited strings can appear at an energy range similar
to black holes - in models that assume a O(TeV)-Planck scale.

• Little Higgses This model [23] introduces a Higgs boson as a pseudo-Goldstone
boson resulting from a spontaneously broken global symmetry. The search for little
Higgses is pursued by one ATLAS group [58].

• Leptoquarks Leptoquarks are hypothetical particles predicted by a wide range of
models. Living in "both worlds", they carry a color charge, a fractional electric
charge, and both baryon and lepton numbers.

• Extended gauge groups (Z1) All GUTs "above" SU(5) — the simplest possible
group which can contain the standard model — predict at least one extra neutral
gauge boson [73]. The discovery of such a Z' boson would provide information on
the GUT group and its symmetry breaking.

• Randall-Sundrum models [80] Randall-Sundrum models postulate a five-dimensional
Anti-de-Sitter space-time with two 4d branes, which are commonly referred to as the
"Planck" brane and the "standard model" brane, respectively. The warped (small)
extra dimension is a possible answer to the hierarchy problem.

1.1.5 6-tagging

Der kleine Gott2 [...] in jeden Quark begräbt er seine Nase.

Johann Wolfgang von Goethe, "Faust"

The identification of fr-quark decays has already played important roles in past experiments;
more recent examples are the Z —> bb branching ratio at LEP, and the discovery of the top
quark with t —• bW at the Tevatron. In the LHC experiments b-tagging will very likely
play a crucial role in many analyses, be it for signal discrimination (as in e.g. the ttH
channel), be it for background subtraction as it will happen in a lot of channels.

2 "Der kleine Gott" is a reference to man.

1.2. THE CMS DETECTOR

The average lifetime of a S meson is crBo ~ 464/xm. Considering the Lorentz boost
(-y ^ 4 _ 5^ this results in a flight path in the detector of about two millimeters. B mesons
produce on average five charged particles per decay. It is the task of vertex reconstruction
in the 6-tagging context to find this secondary vertex; 6-tagging algorithms can exploit
the information of the existence of a secondary vertex, together with the number of tracks
associated to the vertex, and the total track momentum at the vertex. This can be used
to separate B mesons from its background, like the decay of a D meson, which has a
considerably shorter life time (cr^o ~ 124/im), and fewer tracks and a smaller mass at
the vertex. The information obtained by vertex reconstruction is not the only source of
information of a 6-tagger; another possibility for a 6-tagger is to simply count the number
of tracks above a certain threshold on the impact parameter significance [86].

1.2 The CMS Detector
The Compact Muon Solenoid (CMS) detector [39, 36] is one of the four de-
tectors at the future Large Hadron Collider (LHC). LHC will produce proton-
proton collisions at unprecedented energies: The total center-of-mass energy
will be 14 TeV. This will produce parton-parton interactions at the scale of up to a few
TeV. LHC experiments generally and CMS in specific are designed to answer a large range
of open fundamental questions of high energy physics. The basic design criteria are as
follows:

(a) a very good identification and momentum measurement of muons (fi*),

(b) energy measurement of photons (7) and electrons/positrons (e±) with best possible
precision and consistent with (a),

(c) a central tracking detector for precise momentum and impact parameter measure-
ments of charged particle tracks to facilitate (a) and (b),

(d) robustness and cost effectiveness while maintaining (a), (b), and (c).

Fig. 1.6 shows a schematic view of the detector. A collaboration of nearly 2000 scientists
and engineers from more than 30 nations and over 150 scientific institutions is currently
designing and building the detector which is supposed to go online in 2007. The next
sub-sections will briefly walk through the detector sub-systems. The layout of the detector
is subject to changes — e.g. in the first year of operation CMS is known to start in a
simplified setup. Reports and up-to-date information can always be queried from the CMS
technical web pages [35].

1.2.1 The CMS inner tracker
The tracker [40, 34] constitutes the central part of the CMS detector. It is a silicon
detector, consisting of 2d "pixel" detectors and one-dimensional silicon microstrips. It

10 CHAPTER 1. INTRODUCTION

Very-forward
Calorimeter

Superconducting Solenoid

Silicon Tracker

Pixel Detector

Preshower

Hadronic
Calorimeter

Electromagnetic
Calorimeter / Muoh

Detectors

Compact Muon Solenoid

FIGURE 1.6: The CMS detector and its components. We can see the large muon chambers,
the hadronic and the electromagnetic calorimeters, and the "inner tracker" - consisting of
the silicon microstrip detectors and the "pixels".

measures (i.e. it "tracks" the flight paths) of charged particles. When crossing materials,
charged particles lose energy, mainly due to ionization. This effect of ionization is measured
and transformed into electrical signals by dedicated read-out hardware. In order to sustain
the enormous particle flux (luminosity) of the LHC, the following requirements have to be
met:

• the detectors need to be radiation hard,

• their response needs to be fast (one bunch-crossing every 25ns),

• the number of channels per sensitive element needs to be sufficiently high in order to
achieve a low enough occupancy (of the order of a few percent),

The spatial granularity needs to be fine enough for a high precision of the measure-
ment of the track parameters.

1.2. THE CMS DETECTOR 11

These requirements are met in the current configuration that has three silicon pixel
layers (Fig. 1.7) and ten silicon strip layers (Fig. 1.8) in the barrel. In the endcaps two
pixel layers, three inner and nine outer forward discs made of silicon microstrip detectors
are foreseen.

FIGURE 1.7: The pixel detector. This layout shows only two barrel layers, while the
"final" version is conceived to include a third layer. The three layers are at an approximate
radius of r = 4/7/11 cm from the beamline, respectively. The 2 x 2 pixel endcaps are at
z = ±35/47 cm, respectively.

U U U U U U f U I« 1 14 12 13 lA

im im tm

FIGURE 1.8: An r — z view of a quadrant of the silicon microstrips of the inner tracker.
Numbers are given in mm. Red lines symbolize single-sided modules; blue lines denote
double-sided modules. Note the values for the pseudo-rapidity 77 around the plot; we can
see clearly that the inner tracker mainly covers the range \rj\ < 2.4; the barrel detectors
start at \rj\ < 1.4.

12 CHAPTER 1. INTRODUCTION

s 1.479

5 i=C^

J

•{El}

- X
X.

Si ,

—

COIL

X

f
i

[HB]

X.SB

12^.—-. jgg*

IMO n .

1
1

ÏMi\ \ \ \ \ \ \ \ * i

FIGURE 1.9: The electromagnetic and the hadronic calorimeters

1.2.2 The calorimetry

The CMS design foresees two calorimetry subsystems: an electromagnetic calorimeter
(ECAL) and a hadronic calorimeter (HCAL). Calorimetry information is used for the
definition of jet cones, which - in turn - are essential objects for many 6-tagging strate-
gies. Hence, calorimetry information must be taken into account for analysis of vertex
reconstruction.

The electromagnetic calorimeter

The purpose of this subsystem is to measure the direction and energy of electrons, positrons
and photons. This is achieved with over 80 000 lead-tungstate (PbWO4) crystals. Lead-
tungstate is a very responsive transparent scintillating radiation-hard material with a small
Molière radius and a short radiation length which allows for a very compact design. The
ECAL itself consists of two different types: the barrel part, that covers a pseudo-rapidity
range of roughly \r)\ < 1.48 and two endcaps (on either side of the barrel) that cover
an 77 of up to 3.0. Electrons, positrons, and photons that enter the calorimeter produce
an electromagnetic shower inside the crystals, which in turn triggers a scintillation light
proportional to the energy of the original particles. The scintillation light is measured by
vacuum phototriodes in the endcaps and by avalanche photodiodes in the barrel.

A preshower detector, consisting of lead radiators and two orthogonal planes of silicon
strip detectors, is placed in front of the endcaps to help determine the multiplicity of an
electromagnetic shower, i.e. the number of incident particles that produced a shower.

The hadronic calorimeter

The hadronic calorimeter (HCAL) is specialized in the measurement of direction and energy
of hadrons and hadronic jets. The HCAL consists of four different types: the barrel (HB),
the outer barrel (HO), the endcaps (HE) and the forward calorimeter (HF). HB and HE
are within the radius of the coil, the HO is around it. HF is situated in the very forward

1.3. DATAFLOW 13

region of CMS, some 11 meters from the interaction region. HB and HE are sampling
calorimeters made of 50 mm thick copper absorbers interleaved with 4 mm thick plastic
scintillators that are read out with wavelength shifting fibers. Scintillation light is detected
by hybrid photodiodes. HF is built of steel absorber plates.

1.2.3 The muon system and the magnetic yoke

A good reconstruction of muons is expected to be essential for many data analyses. It is
the task of the muon system to identify muons and provide, together with the tracker, a
precise measurement of their track parameters.

CMS ENDCAP MUON SYSTEM

FIGURE 1.10: The muon system in CMS. Left: a quadrant of the barrel and endcap muon
system. Right: transverse view of the barrel region. A muon that traverses the various
muon stations is shown.

The magnetic yoke is one part of the muon system. It is built to capture the magnetic
field for the "muon stations" that are embedded in the yoke. The muon stations contain
the sensitive parts of the muon system. Different technologies are used in the different
regions. Fig. 1.10 shows the schematic layout of the muon system.

1.3 Data flow
/ cannot do't without compfujters

William Shakespeare, "The winter's tale"

LHC is designed to produce collisions of proton-proton bunches at a frequency of 40 MHz.
Every bunch contains 1011 protons. At the design luminosity of 1034cm~2s~1 each cross-
ing produces on average 20 inelastic and 5 elastic collisions. One such event produces

14 CHAPTER 1. INTRODUCTION

Key:
dm

— — — Muon
^ — Electron
— — Charged Hadron (e.g. Pion)

• Neutral Hadron (e.g. Neutron)
- - - - - Photon

©
«T

FIGURE 1.11: A transverse slice through CMS and typical paths of a few different particle
types.

approximately 1 MB of raw data, which results in the equivalence of 40MHz x 1MB «
40 terabytes per second. Surely no data storage technology can handle such data rates.
Luckily a vast majority of the events is of no interest to physics. Interesting events can
be filtered out. Event filtering in CMS is done in two levels: a level 1 (LV1) hardware
trigger and a high-level software trigger (HLT) - see Fig. 1.12. Initial event data resides
in front-end buffers and pipelines until the hardware trigger has reached a decision. If the
event is to be kept, the data is transferred into various read-out buffers. In a next step an
event builder combines an event's scattered data that are in the different read-out buffers
and produces one single data structure per event. This consistent event data structure is
then shipped to the filter farm. The farm will consist of some « 5000 computers; the event
rate at this stage is down to O(105)Hz. Every event will be processed on a single CPU.
Assuming that every computer has two CPUs we arrive at 105s~Vl04 « 10s"1 events per
second that one CPU has to cope with, or 100 milliseconds per event. Based upon the
final decision of the HLT, an event is either discarded or stored permanently. The output
event rate of the HLT is estimated to be 102 Hz; this amounts to a daily 1013 bytes (10
TB) that need to be stored. Stored data is then analyzed offline in large world-spanning
collaborations. The data itself will not be kept in a centralized place but spread around
the participating institutes' storage resources. Grid technologies [5] will be used to manage
the scattered data and the computing resources.

1.4. CMS OFFLINE SOFTWARE 15

(L V I - I)

c
CHLT j)

i

1

i

1 à

Detectors

Front end pipelines

Readout buffers

Switching network

Processor farms

Level-1
TWgger

Col Uucm Global

IT r
Event

Manager

- Sub-systems
- Acronyms

Detector Promena

Builder Networks Controls

Computing Services

FIGURE 1.12: Trigger and data acquisition. Data flow (left) and design (right).

FIGURE 1.13: Data rates at the different trigger levels.

1.4 CMS offline software
Some of CMS offline software started in the old FORTRAN world. A few of the old projects
that are now obsolete or being phased out (like CMSIM) give testimony of this legacy. The

16 CHAPTER 1. INTRODUCTION

more recent projects axe all based on C++; the paradigm shift is finished. The current
CMS software framework is heavily based on LCG software projects [9]. CMS software
exploits LCG's grid software, its persistency solution POOL [14], as well as a large variety
of libraries and tools that are available, e.g. via the SEAL project [16]. PAW [12] was
replaced by ROOT [29] as the supported analysis (plotting and histogramming) software
framework. Python language bindings have later been added to ROOT in version 4.

1.4.1 CMSIM

CMSIM [33] is a single large GEANT3 [59] based FORTRAN application for detector simu-
lation (and reconstruction). Although 0 0 successors exist already (see OSCAR, Sec. 1.4.6),
it is still used for detector simulation in this thesis, mainly because its physics output can
still be called more reliable. The community's migration from CMSIM to OSCAR took
place only very recently.

1.4.2 PYTHIA

PYTHIA [88, 87] is an event generator that simulates standard model processes as well as
a wide variety of non-standard physics, presented in Sec. 1.1. PYTHIA can be considered
the default event generator in CMS; for this thesis no other event generator has been used.

1.4.3 COBRA

COBRA [66] (Coherent Object-oriented Base for Reconstruction, Analysis and simu-
lation) forms the base of CMS specific software. Its central piece is CARF, the main
application framework, see next subsection. Apart from the framework it also offers a
few helper classes and interfaces to event generators, magnetic field, and data acquisition.
For instance, the SimpleConfigurable class that will often appear in the thesis is part of a
COBRA package. It allows one to have parameters in the code that are easily configurable
at runtime via an "re" file (.orcarc).

1.4.4 CARF

CARF [66, 67] (CMS Analysis and Reconstruction Framework) is the main application
framework for offline reconstruction as well as the high level trigger. It defines the main
reconstruction event loop. To this end it utilizes and extends the Observer pattern [57].
CARF implements an "action on demand" principle; nothing is supposed to be done unless
it is "needed". This, too, is implemented with the Observer pattern. This behavior will be
emulated in the VertexFastSim package, see Sec. 2.2.2.

1.4. CMS OFFLINE SOFTWARE 17

1.4.5 ORCA
ORCA [38, 91] (Object oriented Reconstruction for CMS Analysis) surely is the flagship
of the CMS software community. It is by far the largest artefact. Functionally it is based
on CARF. ORCA is responsible for the complete reconstruction chain from the DAQ to
physics objects. It has to supply both the reconstruction tools for the HLT and offline
mode. Note that there will not be a single reconstruction strategy. Different tasks will
employ different sets of algorithms. It is ORCA's task to provide a flexible environment
that makes a wide variety of reconstruction algorithms easily accessible to the end user —
the data analyst.

In the case of reconstruction in the tracker, a simple reconstruction chain looks like
this:

I Create RecHits from Digis I
i ~ i

I Create RecTracks from RecHits I

Create RecVertices from RecTracks

I Create KinematicParticles from RecTracks and RecVertices |

In this figure the scope of the thesis would be the third box. (A description of the above
classes will be given in Sec. 1.5.1).

1.4.6 OSCAR
OSCAR [37] (Object oriented Simulation for CMS Analysis and Reconstruction) is CM-
SIM's modern object oriented successor, written in C++. The output of an event generator
is the input for OSCAR, which traces the particles through the detector. OSCAR uses
the GEANT4 toolkit [22, 60] for many of the computational steps, like tracking a charged
particle through an external magnetic field.

1.4.7 FAMOS
FAMOS [24] stands for Fast Monte Carlo Simulation. Very often, events need not be
simulated at a granularity as fine as the "full" simulation packages like OSCAR or CMSIM.
Full simulation is a CPU intensive task that is performed in several distinct steps. Various
shortcuts to the simulation chain have been implemented in FAMOS. Fig. 1.14 shows
several of those shortcuts.

1.4.8 IGUANA

18 CHAPTER 1. INTRODUCTION

Generator Data

V"-

Full Event Simulation
_ _ ^ (O S C A R)

- - *

\

Sim Data

• Full simulation chain
•• FAMOS & OSCAR

— • FAMOS &ORCA

Pil e-up & Digitization
- ^ O R C A)

^ ^
Rec Event Data

^ — ^"TIIII h

Reconstruction
—-^(ORCA)

Reconstructed Object

FIGURE 1.14: Several shortcuts that the FAMOS package offers compared to the full
simulation chain. (Picture taken from [74]).

IGUANA [96] (Interactive Graphics for User Analysis) is CMS's official vi-
sualization project. Despite it being an official CMS artefact, it aims to be
a general, detector independent, extensible "non-intrusive" environment that
provides a rich set of tools needed for visualization and analysis. It is, itself, based on
standard libraries like Coin3D [4], Qt [15], and various LCG tools [9].

1.4.9 Track reconstruction in ORCA

Track reconstruction in CMS is described in great detail in [104]. The topics of track
reconstruction and vertex reconstruction are closely coupled in CMS; the supervisor of this
thesis contributed to many, if not all, major ideas for novel track.reconstruction concepts
that are implemented in ORCA. A Kaiman filtering technique [50, 51] can be considered
the classic algorithm. CMS with its noisy data has triggered the development and analysis
of many novel algorithms:

• The Riemann fit [95, 93, 94, 55] is a viable alternative to the Kaiman technique. It
works by mapping the transversal coordinates of the RecHits on a Riemann sphere.
The task of fitting a circle in the R — <̂ >-plane maps onto the task of fitting a plane
intersecting the sphere. The latter is computationally much simpler than the original
aim.

1.4. CMS OFFLINE SOFTWARE 19

Eile Windows Help

File Lights Clips Anims Viewpoints Mise Physics Events
3 CMS Detector and Event

»Detector
4 CustomTracker

Magnet •
?Muon barrel Sf

-Absorber •
DT (1st level of details) D

'. DT (2nd level of details) •
. DT (all) G

Center position of the module—0.728724
-0.827992 -0.804704
single module '
silicon barrel

FIGURE 1.15: IGUANA Screenshot, taken from the IGUANA home page. Parts of the
tracker are visible, as well as a few tracks.

The final uses for the Riemann fit are still unclear. The Riemann fitter seems to make
sense as an initialization for Kalman-filter based techniques. It is also interesting as
a fast method for high energy tracks; the method seems to have its problems in the
presence of multiple scattering.

Robustifications of the classical Kaiman filter [54, 75, 92] are interesting in the pres-
ence of noise and imperfect data, as is the case at LHC. The deterministic annealing
filter (DAF) [104] seems to be a very powerful general purpose algorithm. It works
by assigning track-association weights to the RecHits. Hits that are incompatible
with a track candidate are down-weighted. The adaptive vertex fitter and the multi
vertex fitter that will be presented in Sec. 5.4.2 and 5.5 are closely related to the
deterministic annealing track fitter.

The Gaussian sum filter (GSF [21, 20] is able to deal with mixtures of Gaussian dis-

20 CHAPTER 1. INTRODUCTION

0.6«.

0.4 >

1

. . - • " • " * " :

. • • • ? " " * *

.'X'....

f1m
•'•\T\

-]

m
ii

• • ; •

-15

* " • - . . . _

. . .

V\;
C'A

-2

*""•• . ,

• * • - • . !

.. i......

• > L ' • ' • i - - .

s

FIGURE 1.16: The Riemann fit maps the hits onto a Riemann sphere where a plane is
fitted into the data set.

tributions. It is usually implemented as Kaiman filters that run in parallel, one filter
for every component in a Gaussian mixture. Assignment probabilities are assigned
to the Gaussian components according to a specific metric. Often the combinatorics
needs to be actively kept low ("trimming") because the number of Kaiman filter rises
exponentially.

The most promising use case is the reconstruction of electron tracks in the presence
of bremsstrahlung photons.

The GsfVertexFitter [53] that will be briefly mentioned in Sec. 5.7, is the Vertex
system's counterpart to the GSF Track Fitter.

1.4.10 Online versus offline reconstruction

The constraints for online reconstruction algorithms differ from those for the offline al-
gorithms. CPU time plays a major role for the first case, while it is only moderately
important for the second case. So clearly one will employ different algorithms for the two
different use cases. Still it is desirable to have a framework that allows online and offline
algorithms to be interchangeable. ORCA complies with that design. All algorithms that
are introduced in this thesis can in principle be used for online and for offline use. The
time budget dedicated to online vertex reconstruction is estimated to be 40 ms per event
in 2007. Applying the inverse of Moore's law, one arrives at a 300 ms on a 1 GHz PC. See
also [39] (p.9) for a few general comments on event filtering and time budgets in CMS.

1.5. THE VERTEX SUBSYSTEM 21

1.5 The vertex subsystem

Of all of ORCA's subsystems, the vertex subsystem [11] plays the most important role for
this thesis: almost all of this work's contribution to CMS is in the form of code that resides
there. This section shall give a summary of the most important classes and concepts.

1.5.1 Data objects

Data objects are instantiations of classes that represent a specific consistent set of data.
Such well-defined, self-contained data objects implement the 0 0 paradigm of encapsula-
tion. Here is a list of the most frequently used data objects in the vertex package:

• RecHit A RecHit represents the information measured by a detector. It is fairly
general, for instance the number of dimensions is not fixed. It is also a composite
object — a single RecHit can consist of several RecHits. In the tracker, a RecHit is
used to represent detector signals in the pixels and the microstrips. RecHits are never
accessed directly in the vertex package. Their relevance in this thesis is confined to
the usage of one specific TrackAsssociator - see Sec. B.5.1.

• GlobalPoint represents a simple point in "global" Euclidean 3d space.

• RecTrack A RecTrack represents a reconstructed particle track. It has the information
of the trajectory state vector. This vector can be propagated to any point on the
track. It also stores the RecHit collection that is part of the track. It is a variant
of a composite object: it contains a set of trajectory state vectors; if queried for
the trajectory state vector, it returns a collapsed vector. This feature is used in the
Gaussian Sum Track Filter (GSF). The interface of the RecTrack class is heavy; a
lot of infrastructure, like propagating the track to various geometric objects (points,
lines, surfaces) is part of the RecTrack interface. It is also a proxy object - the
RecTrack class itself does not contain the data. It can be copied without overhead;
value semantics should be used.

• TrajectoryStateOnSurface describes a state vector that is "bound" to a certain surface.
It is reference counted; it should be used by value. It is a composite object. A
TrajectoryStateOnSurface can be asked for its components. In case it does not have
any, it returns itself as the only component.

• TkSimTrack An object only available in Monte Carlo simulations. It represents the
track of a simulated particle that is sufficiently long-lived to be observable. A TkSim-
Track contains the information of particle momentum, production and decay vertices,
charge, and generator particle (i.e. particle type and the like). The abstract TkSim-
Track, too, includes a few methods for propagating the track.

• TkSimVertex is also a Monte Carlo object. It represents the decay vertex of certain
particles. TkSimVertices are created only if the parent particle is long-lived. The

22 CHAPTER 1. INTRODUCTION

class contains pointers to the mother particle and the decay products, as well as the
vertex position.

• TkSimEvent represents the collection of the TkSimTracks and TkSimVertices.

• TkRecEvent contains (currently) nothing but the collection of RecTracks.

• G3EventProxy is the proxy class of a GEANT3 event. This is the object that the
CARF framework dispatches to all EventAnalysers; all event information is to be
retrieved from it. Specifically it can be asked for the TkSimEvent and the TkRecEvent
objects.

• RecObj is a generic reconstructed object. It is implemented in CARF. Reconstructed
objects that are supposed to be streamed onto DSTs (Data Summary Tapes) need
to derive from this class.

This list shows the most important data classes that are defined in the vertex package:

• RecVertex A RecVertex represents a reconstructed vertex. It contains the location
and the error of the interaction vertex, plus the tracks that were used to fit the
vertex. The knowledge of the vertex position can be used to refit ("smooth") the
track momenta. A RecVertex keeps both the original and the refitted tracks.

• CachingVertex A CachingVertex is similar to a RecVertex object, except that it keeps
some additional (redundant) information for CPU performance reasons. It can keep
e.g. the weight matrix — the inverse of the covariance matrix.

• LinearizedTrackState Given a RecTrack and a GlobalPoint, the track is linearized
around the point and the information is kept in this class. The specific coordi-
nate system in which the track is linearized depends on the implementation class.
This class, too, is a composite class.

1.5.2 Algorithm classes

Algorithm objects are not defined by what they contain — very often, in fact, algorithmic
objects don't include any data members. They are defined by what they do. In order
to enjoy maximum freedom in the choice of algorithms employed by the user, all impor-
tant algorithm classes have an abstract interface — they derive from an abstract base
class. These abstract interfaces implement polymorphism: no matter what e.g. a specific
VertexFitter does internally — we know we can use it to fit tracks into vertices.

The list below names the most important algorithmic concepts that are referred to in
the thesis but are not part of the vertex package:

• TrackFinder. A track finder solves the pattern recognition problem of finding (and
fitting) the RecTracks in a certain region of the detector.

1.6. SCOPE OF THIS THESIS 23

• TrackReconstructor: A track reconstructor is the "glue code" that couples a Track-
Finder to the CARF framework.

• EventAnalyser: The CARF framework dispatches the events (the G3EventProxy ob-
jects) to every EventAnalyser that has registered itself to the framework. Every
"regular" user code needs to have such an EventAnalyser to couple the analysis code
to the framework.

• TrackAssociator: A TrackAssociator is an object that receives a list of TkSimTracks
and a list of RecTracks upon construction. When queried, it can then return lists of
TkSimTracks that are most compatible with a given RecTrack, and vice versa.

Now follows an enumeration of the most important algorithm concepts that are defined

• VertexFitter: A VertexFitter is an algorithm that fits a RecVertex from a given set of
tracks: vector<RecTrack> —• RecVertex

• A VertexReconstructor finds and fits RecVertices from a given set of tracks:
vector<RecTrack> —» vector<RecVertex>

• VertexUpdator: All VertexFitters that add tracks sequentially (like any Kaiman filter
technique) employ a VertexUpdator that updates a vertex candidate with one track.

• LinearizationPointFinder: Almost all VertexFitters need an initial rough guess of the
vertex location. A LinearizationPointFinder is an algorithm that delivers just that:
vector<RecTrack> —> GlobalPoint

• A VertexTrackCompatibilityEstimator computes that compatibility between a track and
a vertex.

• A ClosestApproachOfHelices algorithm computes the points of closest approach be-
tween two tracks.

• VertexAssociator: A VertexAssociator is the vertex package's counterpart to a Track-
Associator. For a TkSimVertex it returns a list of compatible RecVertices and vice
versa.

1.6 Scope of this thesis

It is the aim of this thesis to develop, implement and analyze novel algorithms for the esti-
mation of interaction vertices from tracks (known as "vertex fitting") and for the problem
of grouping the tracks into sets that share points of origin (a.k.a. "vertex finding"). Con-
trary to a typical algorithmic thesis it was necessary to not only implement an algorithmic
prototype that verifies the algorithmic properties predicted by theory. Instead, code that

24 CHAPTER 1. INTRODUCTION

works in an online and an offline situation is demanded. Some of the algorithms presented
in this thesis might easily run of the order of 100000 times a second once CMS has started
to take data; thus reconstruction code needs to be very robust. It is safe to say that a few
of the implementations in this thesis will find their way into widespread use in the CMS
community and hopefully beyond; they will have to run (often unsupervised) over a huge
amount of data. These challenging technical aspects should also be taken into account
when judging the "value" of this thesis.

In yet greater detail, the scope of this thesis comprises:

• Design, implementation and verification of mode finders (Ch. 3). The need for mode
finders emerges in more than one place in this thesis. An entire chapter is devoted
to identifying a few strategies; the implementation is also presented.

• Design, implementation, and performance analysis of a few linearization point finders.
Vertex fitters need linearization point finders for an initial rough guess as to where
the vertex is to be found. A few ideas will be presented; they will then be compared
in a few relevant physics cases.

• Implementation, and verification of novel vertex fitting algorithms (Ch. 5). The noisy
LHC environment makes the study of robust statistical algorithms necessary. A few
robustification strategies were identified and implemented. The implementation was
verified with a few simple statistical tests.

• Development of a fast simulation package tailor-made for vertexing needs. The pack-
age comprises very fast "unphysical" event generators (VertexGuns), fake TrackRecon-
structors that are fully controlled by the user (RecTrackSmearer), and a framework
that renders the event source almost invisible for user code (VertexFastSim).

• Design and development of vertex finding algorithms (Ch. 4). A few pattern recog-
nition algorithms known in literature have been adapted to the problem of vertex
finding. They were then implemented and tested.

• Performance analysis of vertex fitters and vertex finders in relevant, realistic physics
cases (Ch. 6). Vertex reconstruction strategies were compared, both in "geometric"
terms and in terms of 6-tagging efficiencies. Resolutions, pulls, and failure rates of
vertex fitters were compared.

• Design, development, and verification of an algorithm that computes the points of
closest approach of two tracks (Sec. A.I).

• Development of a framework that automatically tunes one parameter of a vertex find-
ing algorithm against an objective function that is configurable by the user (Sec. B.I).

• Development of a tool that allows to dump variables into a file in a very simple
manner. The harvesting concept (Sec. B.2) is supposed to make debugging easier.

• Development of a simple visualization tool (Sec. B.3).

1.7. WRITING CONVENTIONS 25

1.7 Writing conventions
RecTrack denotes the implementation class called "RecTrack", VertexFitter is an abstract
class (a.k.a. an "interface"). MaxEvents=l denotes a configurable quantity (i.e. a line in
an .orcarc file). Design patterns, such as the singleton [57] pattern are denoted in italics.
C++ source code is written as follows:

cout « "Hello World" « endl ;

26 CHAPTER 1. INTRODUCTION

CHAPTER 2

Simulation

Science may be described as the art of systematic over-simplification.

K. Popper

Collider experiments rely heavily on realistic simulation of event data. Ultimately
most data analyses end up comparing real data with simulated data with a known
and well-defined underlying physics model. For the development and analysis of
reconstruction algorithms it is often necessary to produce data with controlled event
kinematics and/or track reconstruction. To this end the VertexFastSim package has
been developed. It allows to control every aspect of an event's RecTracks - both the
kinematics and the pseudo-reconstruction (the "track smearing") are entirely put
into the user's hands.

FIGURE 2.1: A cannon, the historical prototype of the modern VertexGuns. This military
technology is at last brought to civil use, just like in the case of the Kaiman filter.

27

28 CHAPTER 2. SIMULATION

2.1 Full simulation
In order to perform realistic performance analyses of reconstruction algorithms, one needs
realistic data. Standard "full sim" events in CMS are often generated via PYTHIA and
CMSIM. More recently OSCAR has taken over as CMSIM's object oriented successor.
For fast simulation, FAMOS is gaining popularity in the CMS community. Certainly, for
physics analysis many event generators are used; this being an algorithm oriented thesis,
it can safely be assumed that the results presented in this thesis do not depend much on
the choice of event generator.

A certain number of channels were chosen as test channels for various algorithmic
analyses; lacking official data sets, some had to be produced specifically for this thesis
by the author. In the time period of writing the thesis, CARF's persistency layer had
periodically gone through tremendous non-compatible changes; very often all the generated
data that had taken CPU months to produce had to be discarded and reproduced.

The next section shall list the data (both produced for the thesis and "official" produc-
tions) that had been used versus the end of the thesis. The data described here is usable
from ORCA_8_2_0; they are in a world readable afs directory. The reader is invited to use
the data for his own purposes.

If not noted otherwise, the event samples used throughout this thesis are from these
productions.

Note that past experience suggests that the information content of this chapter is highly
volatile.

2.1.1 Data produced for the thesis

A few event topologies were produced specifically for this thesis. The data were generated
using PYTHIA and CMSIM. The "digis" were produced in the standard ORCA procedure,
the tracks were reconstructed with the default track reconstructor (combinatorial Kaiman
filter). The channels produced are:

• bb, \r)\ < 1.4, 50 GeV - Production of a b and a b quark; quark confinement demands
that the quarks hadronize almost instantaneously. Two B mesons are produced that
travel on average 2mm (lab frame) before they decay, producing two distinct and
collimated jets with total jet momenta equal to the momenta of the original fe-quarks.
This makes it a good benchmark test for secondary vertex finding algorithms. In order
to create a more realistic use case, the events are filtered according to calorimetry
information; tracks outside of jet cones are discarded. This sample covers the barrel
region of the tracker (|7/| < 1.4).

• bb, \rj\ < 1.4, 100 GeV - The same event topology is produced with different jet
energies and pseudorapidities. This enables us to study of the dependency of vertex
reconstruction as a function of the two aforementioned parameters.

• bb, \r}\ < 1.4, 200 GeV

2.1. FULL SIMULATION 29

bb, 1.4 < M < 2.4, 50 GeV - Same as the above, only for the high 77 region. A look
at Fig. 1.8 reveals that the interval for 77 corresponds with the forward region of the
CMS silicon tracker.

bb, 1.4 < M < 2.4, 100 GeV

bb, 1.4 < IT/I < 2.4, 200 GeV

cc, \T}\ < 1.4, lOOGeV - Production of a charm quark and its anti-quark, analogous to
the bb case. Charmed mesons have a much shorter lifetime; they travel only « 0.5 mm
in the detector. They, too, produce two jets, but very close to one another and to
the primary vertex. This will be used as a very tough "scenario" for vertex finding
algorithms, and as a background to bb events.

• </</> \V\ < *••% 100 GeV - Production of a light (u, d or s) quark and its anti-quark.
No search for secondary vertices is performed. This event topology thus serves as a
primary vertex contaminated with tracks from decays of strange mesons and baryons.

• J/I/J ^ - At ORCA level we shall filter for J/ift <f> —> K+K~ß+n~. The topology is
used as a highly collimated four-prong decay vertex. This serves as a use case for
vertex fitting algorithms.

h° —• T+T —* 7T+7T 7T+7T 7T+7T~ - Light MSSM neutral Higgs, decaying into two rs,
both of which decay into three-prong 7r±7r+7r~ topologies. At analysis level usually
one of the three-prong vertices is filtered out; the other one is used for testing fitting
algorithms.

FIGURE 2.2: Diagram of the decay Bs —• J/ip § —»• ß+ fj,~K+K~. This is topology will
appear frequently in this thesis, e.g. in the fitter tests.

These data can be found at /af s/hephy. at/project/cms/simul/820. Please contact the
author for a more precise description.

30 CHAPTER 2. SIMULATION

2.1.2 Other data sources

The official test samples

Every recent ORCA release always come with a few test samples. These samples, albeit
being small, are very useful for small analyses and code verification. In the last few years,
they have been the most reliable source of event data. Information on the test samples is
available at h t tp : //cmsdoc. cern. ch/orca/ tes tdata . html.

The ft-tagging samples

The 6-tagging group has also produced its own data, specific to 6-tagging purposes. The
events generated include three channels:

• a "bg" channel - in which a ft-jet "recoils" from a gluon jet.

• a "cc" channel, and

• a light quark channel.

The former is used as a signal for 6-tagging purposes; the latter two serve as background.
For any detailed information contact the BReco package administrator.

2.2. FAST SIMULATION 31

«singleton»
VertexFastSlmEventLoop

••-«singleton» instantiation)): static VertexFastSim
+setGenerator(const VertexGun &):
+registerAnalyser(VertexGunEventAnalyser •) :
+loop():

All VertexGunEventAnalysers are
instantiated via VertexFastSimPKBuilder.
The Builder then registers them to the
singleton VertexFastSimEventLoop
instantiation.

«pABC»
VertexGunEventAnalyser

•••analysis { TkSimEvent, TkRecEvent
+initGun()

VertexFastSimPKBuilder
_̂B : VertexGunEventAnalyser

firtexF9stSiniPKBüildfir{const char * const VsrtsxGun St}z
This is the registering mechanism for any VertexGunEventAnalyser.

FIGURE 2.3: The VertexFastSim framework.

2.2 Fast simulation

2.2.1 Motivation

Realism of simulated data is not always a top issue. For verification of the implementation
of vertex reconstruction methods one wants to have complete control over the reconstructed
tracks. The VertexFastSim package addresses such use cases; it can be seen as a very fast
event generator that completely ignores physics realism. Within the framework that is
presented in this section, it is the user who decides where decay vertices appear and with
what track multiplicity. The user also takes control over the track momenta and the way
tracks are "reconstructed" — reconstruction is simply done by "smearing" the SimTracks
according to a specific statistical model.

2.2.2 The framework — VertexFastSim

2.2.3 Event generation

Track smearing

When creating RecTracks from SimTracks the tracks need to be
"smeared" according to a well-defined statistical model. Smearing
is implemented as a three-staged process:

• Translation: The local (2d) position of the Trajectory-
StateOnSurface is shifted according to iV(0, <rpos).

32 CHAPTER 2. SIMULATION

main

<<singleton>>

Vertex FastSimEventLoop

<<template>>

VertexFastSimPKBuilder VertexGunEventAnalyser

I

loop))

reqisterAnalvserO
setGeneratorO

<<create>>

initGunf)

analyseO
[CARFTerminateexception]

<<destroy»

FIGURE 2.4: The VertexFastSim sequence.

• Rotation: The (2d) direction of the state vector is changed
according to iV(0, <7dir)

• Stretching: The vector is resized according to N(0,ap).

This procedure is done in the class GaussianRecTrackSmearer. For many applications,
though, one wants non-Gaussian or mis-measured track errors. To achieve this, the abstract
base class RecTrackSmearer was introduced, along with a TwoGaussiansRecTrackSmearer a
composite class that combines two RecTrackSmearers into another RecTrackSmearer. With
this simple design any track error distribution can in principle be approximated, since any
error can be modeled as a mixture of n Gaussians. Practically a mixture of more than two
Gaussians has never been needed. Thus, it is not only in principle a sufficient design, but
also in practice.

Introducing correlations

For a few sophisticated use cases well-defined correlations in the track parameters were
required. To this end the GaussianRecTrackSmearer was extended; now the user can op-
tionally supply a 5-by-5 correlation matrix.

Hiding differences

In order to further hide the differences between the VertexFastSim framework and CARF's
(much more powerful) functional equivalent, a class MultiObserver was introduced. It in-
herits both from VertexGunEventAnalyser and CARF's EventAnalyser. That way, the same

2.2. FAST SIMULATION 33

«type»
TkRecEvent

A

TknoCEvântrfûnriVêftâxGiiii

+TkRecEventFromVertexGun(const VertexGun s

i

«type»
TkSimEvent

TkSimEvêniFromVeriexGurï

+TkSimEventFromVertexGun(const VertexGun s

1
«type»

VertexGun

+simTracks(): vector <const TkSimTrack *>
+recTracks(): vector <const RecTrack *>
+simVertices(): vector <const TkSimVertex *:
+shoot()

MultipleVertexGun

+addGun(const VertexGun S)
î

VertexGunFromParticleGun

+ParticleGun
+RecTrackSmearer
+SimInfoFromRawParticles

<

DirectlonalVertexGun |

GaussianSmearedVertexGun|

FinderTestVertexGun |

ConfigurableVertexGun

FIGURE 2.5: UML class diagram of the VertexGun facilities

34 CHAPTER 2. SIMULATION

analysis code can be used in both frameworks; which one is used is only a matter of which
package builder is employed — PKBuilder or VertexFastSimPKBuilder. The usage of the
builders is identical. Making this transition between frameworks a runtime option instead
of a compile time option is a desirable future development.

Track associators

TkSimTracks and RecTracks are usually associated using their track parameters, or the
list of their hits. In the case of the VertexFastSim framework there is an additional
option: the "source" TkSimTrack from which a RecTrack is created is defined, unique,
and known! This enables one to write a perfect TrackAssociator. This code exists - it
is part of the VertexFastSim package, and the TrackAssociator is called TrackAssociation-
ByMap. The e.g. ConfigurableTrackAssociator knows about it, it can be switched on at
runtime via ConfigurableTrackAssociator :Associate= ByFastSim. A proper usage of
the VertexFastSim package enables these associators by default (i.e. the default values
of ConfigurableTrackAssociator:Associate and VertexAssociationToolsFactory:-
TrackAssociator are automatically changed to the value ByFastSim)

Testing track smearing

In order to verify the correct statistical behavior of the track smearing code, the stan-
dardized residuals of the track parameters were measured. And indeed, the sigmas of the
standardized residuals were all close to 1.0.

2.2.4 Standard scenarios

In order to have a fast means to test vertex finding algorithms against simple but useful
events, we decided to standardize specific VertexGun configurations and distribute those
frozen configurations as a small set of classes. The class FinderTestVertexGun implements
this concept, ConfigurableFinderTestVertexGun makes the specific choice of the scenario a
runtime option. Currently the following standard scenarios are defined: "easy", "realistic",
and "tough":

"Easy" scenario

This is a very simple scenario, with two cleanly separable vertices; the jets of both vertices
are perpendicular to the distance vector between the vertices. This scenario only serves
debugging purposes.

2.2. FAST SIMULATION 35

Number of tracks
Total momentum

Track smearing, position
Track smearing, momentum

Angular spread
Jet direction

Distance between vertices

Primary vertex
9-11

30GeV
50 /xm, Gaussian

3 mrad, Gaussian
15°

Perpendicular
1 mm - 1.0 cm

Secondary vertex
4-5

20GeV
50 /im, Gaussian

3 mrad, Gaussian
15°

Perpendicular

The jet direction is given with respect to the vector from the primary vertex to the sec-
ondary vertex.

"Realistic" scenario

This scenario has a primary vertex with tracks emerging from it at all angles. The sec-
ondary vertex is very displaced from the primary vertex and has an attached jet parallel
to the line connecting the two vertices.

Number of tracks
Total momentum

Track smearing, position
Track smearing, momentum

Angular spread
Jet direction

Distance between vertices

Primary vertex
9-11

30GeV
50 /wn, Gaussian

3 mrad, Gaussian
180°

1 mm - 1.0 cm

Secondary vertex
4-5

20GeV
50 /im, Gaussian

3 mrad, Gaussian
15°

Parallel

"Tough" scenario

This scenario is roughly modeled after a 66 or a cc event. From the primary vertex a B
meson emerges that decays some 100/im — lmm "later" into another particle jet of 4-5
particles. Fig. 2.6 visualizes this topology; we can see two vertices, a red primary vertex,
and a yellow secondary vertex. The tracks associated with the red vertex a drawn in cyan.
Note in comparison the two innermost detector layers drawn schematically; these layers
are where the first measurements are obtained. The innermost layer has a radius of « 2.5
cm.

36 CHAPTER 2. SIMULATION

FIGURE 2.6: The "tough" scenario. One can see the primary vertex (red dot), the sec-
ondary vertex (yellow dot), the primary tracks(blue lines), the secondary tracks(cyan lines),
and the two innermost detector layers (gray circles).

Number of tracks
Total momentum

Track smearing,
position

Track smearing,
momentum

Angular spread
Jet direction

Distance between vertices

Primary vertex
9-11

30GeV
50 //m, Gaussian

3 mrad, Gaussian

15°
Parallel

100 /mi - 1 mm

Secondary vertex
4-5

20GeV
50 ^m, Gaussian

3 mrad, Gaussian

15°
Parallel

2.2. FAST SIMULATION 37

2.2.5 VertexGunFromFile

One VertexGun was implemented that reads its data from a file. It is called the VertexGun-
FromFile; for reading the data it uses a DataSeeder (see subsection B.2.9), writing is done
via the object harvesters (subsection B.2.8). The DataHarvesters currently cannot save on
a per-event basis. Thus, the current implementation of the VertexGunFromFile relies on the
assumption that the data are stored into the file in the right sequence. This assumption
may not generally hold true. This is why currently this approach only works if the data
are stored in text files, not in ROOT files. A future development (see subsection B.2.11)
might address this issue in a truly general and efficient way.

So what is the use of such a gun, if, indeed, for realistic data one would not use this
facility but access the Monte Carlo data via CARF? The VertexGunFromFile has three
important advantages. It is much faster - since it concentrates on a much more specific
task, it can read ASCII files (editable with any text editor!), and it is not subject to changes
in CARF's persistency layer.

2.2.6 Verification, comparison

The VertexGun implementations were (partly) verified with the VertexFitters, and vice versa.
Since all VertexFitter exhibit the theoretical properties that were predicted on a theoretical
basis, we conclude that either the Fitters and the Guns work appropriately, or they have
errors that cancel each other. The statistical properties that were explicitly checked were:

• The x2-distribution of single, clean vertex events, fitted with a linear method.

• The x2-probability of single, clean vertex events, fitted with a linear method.

• The standardized residuals of single, clean vertex events, fitted with a linear method.

• The ̂ -distribution, the %2-probability, and the standardized residuals of single ver-
tex events with a well-defined number of outliers; fitted with both linear and non-
linear methods.

"Clean" in this context means that the error of the track parameters is Gaussian, and that
the reported errors and the "real" errors (i.e. the ones used for smearing) are identical.

A performance test was done with ORCA version 7_1_3; the generation of 5000 Vertex-
Guns of the "tough" scenario takes 8 seconds; this amounts to 1.6 milliseconds (real-time)
per event on a 1 GHz SMP computer. This compares favorably with the "regular" way of
obtaining MC data: a setup that measured the time of accessing 50 bb events on a local
hard disc, plus track reconstruction, took 370 (real-time) seconds on the same machine,
which results in 7 seconds per event.

The VertexGuns thus produced similar data about 5000 times faster in this specific
setup. Surely, for serious analyses one should never use the VertexFastSim framework; the
resulting RecTracks are far too unrealistic. But in many cases VertexGun data are fully
sufficient; in fact sometimes one even wants full control over the statistical properties of
the input. This can only be achieved via the VertexGuns.

38 CHAPTER 2. SIMULATION

CHAPTER 3

Mode finding

The mode of a set of data is the value in the set that occurs most often. In the presence
of continuous data it is the maximum in the "parent" distribution underlying the data.
Mode finding is mathematically not concisely defined. In this thesis it will refer to the task
of estimating the maximum of a data set's (non-defined) distribution, without making any
specific assumptions about the distribution itself.

This chapter is divided into five sections: the first section motivates this chapter. The
next two sections treat the special case of having one-dimensional data. Finally, the last
two sections discuss algorithms that operate in three dimensions.

3.1 Motivation

Mode finding will be used in a few different contexts in this thesis. The chapter on vertex
finding (Ch. 4) will introduce points that represent RecTracks — the apex points. Finding
these points represents a pattern recognition problem in one dimension. The Clusterizeri D
that will be presented in this chapter, is used for apex point finding. The vertex fitting
task, on the other hand, is confronted with the problem of finding a good initial vertex
seed. One class of such LinearizationPointFinders is based on the points of closest approach
(PtCAs) between track pairs. These PtCAs serve as the input for a mode finder in three
dimensions. The output of this algorithm is a first guess of the vertex position. The one-
dimensional mode finding package is written in a templated fashion. It is also used for
finding the primary vertex along the beamline [41].

39

40 CHAPTER 3. MODE FINDING

3.2 Mode finding in one dimension

• LMS The "Least Median of Squares" estimator [84]. The LMS algorithm per defi-
nition minimizes the median of squared residuals.

= argminmed rj{ß)
ß

(3.1)

No general algorithmic solution to this problem is known, except for a fully combina-
torial approach. One suggestion for a faster algorithm has been to randomly select
but a few combinations of data points [84]. For the special case of one-dimensional
data literature knows of a simple and fast solution: in this case the LMS estimator
is the midpoint of the smallest interval that covers at least 50% of all data points.
Algorithmic complexity, assuming sorted input: Ö (n)

1

;LMS
1 1

1

• HSM The "Half Sample Mode" [26] can be formulated as a recursive LMS estimator:
we iteratively perform an LMS on the points in the interval of the last interval
supplied by the LMS estimator. Algorithmic complexity, assuming sorted input:
O (n log2 n)

HSM

FSMW The "Fraction-of Sample Mode with Weights"-estimator is a simple gener-
alization of the HSM: instead of looking for an interval that covers > 50% of the data
points we generalize to a search for the interval with k percent of the data points.
Additionally we associate "weights" with the data points. Instead of searching for the
smallest interval we now search for the smallest "weighted" interval, where a weighted
interval is defined as the length of the interval divided by the sum of all weights of
contained data points. The implementation allows - for performance reasons - to
ignore the weights until the "sub-sample size" is below a certain threshold.

.- , . . , , Ö (n2logfiif\7i) (below user-supplied threshold)
Complexity, assuming sorted data: ~.\, KIJ) / , , ^ . , , ,

* J & C?(nlog(1/ /)n) (above threshold)

3.3. THE "CLUSTERING1D" PACKAGE 41

1

2

1

3

FSMW
1—1

l

1 l

• Kernel estimator A kernel estimator [85] is a generalization of an average shifted
histogram. It introduces a "kernel" function — a pdf with which the data points are
"smeared out", then superimposed.

• Deterministic annealing The deterministic annealing algorithm [82, 83] introduces
the metaphor of a thermodynamic system into the Id mode finder problem. The
thermodynamic system that consists of the data points "cools down", prototypes
move and split with each "phase transition". The concept has been tried in the
vertex finding problem, Sec. 4.5.5.

• Gravitational clustering [72] Every data point exerts a force of attraction on every
other data point. The force of attraction follows a simple Newtonian ^ law. Data
points are considered impenetrable — a clash of two points results in a larger data
point with the total weight being the sum of the weights of its constituents.

• MTV The "maximal two values" algorithm is a very simple construct. The estimate
is the weighted mean of the two consecutive data points with the largest sum of
weights. Complexity, assuming sorted data: Ö (n)

•MTV

• MSV, M3V The "maximal single value", and "maximal three values" - same as
MTV, but with one or three values, respectively, instead of two.

• MAMF The "maximum area mode finder" - Same as the MTV, but respecting the
weights, also ("area" comes from considering the weights as a second "dimension" of
the data).

3.3 The "ClusteringlD" package
Mode finding in one dimension in ORCA is implemented in a fully templated fashion; this
enabled us to use the same algorithms for different applications. Apart from the use shown

42 CHAPTER 3. MODE FINDING

ClusterlD
_[jjTrackTyp<{

+theHeasurement: Measurement10
+theTracks: vector < const T • >
+ClusterlD(MeasureaentlD,tracks:vector < const T • >
•position)): HeasurementlD
+tracks(): vector < const T • >

ClusterizerlD

[[
i Cluster=ClusterlD<T>j

*O(vector<Cluster>): pair < vector<Cluster>, vectortconst T •> >
•xloneO: ClusterizerlO<T> •
*-ClusterizerlDf)

{_T:TrackTypë|
(simpleWelghtEstlmätörf

FsmwClusterizerlD
j C1uster=ClusterlD<T>|

•ftheFraction: double = 6.5
+theEstimator: WeightEstimator »
•FsmwClusterizerlD(f raction.WeightEstimator<T>

WeightEstimator
_J_T:TrackTyptj

+-¥eightEstlmator()
*clone(>: WeigtitEstimator *
*welght(vector < const T » >): double

FIGURE 3.1: The Clusteringi D design.

in this thesis (apex point finding, linearization point finding), the Clusteringi D is also used
in the context of primary vertex finding with pixel tracks [41]. The templated design of the
package is depicted in Fig. 3.1. Central in this framework is the notion of Cluster1D<T>,
T being the class of the "track" objects. This class consists of a Measurement D — the
position of the cluster, and a vector of tracks. This ClusteM D<T> class serves both as
the input and the output of a ClusterizerlD<T>. In order to have maximum generality,
WeightEstimators were introduced that return the weight associated to a Cluster1D<T>,
depending on the tracks associated with the cluster.

Verification

The templated nature of the Clusteringi D package makes code verification particularly fast
and easy. The package's test directory has one simple program (ClusteringTest.cpp) that
performs a few simple tests against the Clusterizerl D<char> algorithms. The only class
that is external to the package, is Measurementi D; The test program thus compiles and
runs very quickly, and is extremely insensitive to changes in the rest of ORCA.

3.4 Mode finding in three dimensions

We distinguish between coordinate-wise and "full" 3d mode finders, a coordinate-wise mode
finder being an algorithm that splits up an n-dimensional problem into n one-dimensional
problems. For the coordinate-wise mode-finders we have to bear in mind the following

3.4. MODE FINDING IN THREE DIMENSIONS 43

unpleasant property:

FIGURE 3.2: Illustration of the proposition.

Proposition 1. The estimate of the œordinate-wise mode finders is in the general case
not within the convex hull H of the data points.

Proof. Consider the 3d input data xi — (1,0,0), x2 = (0,1,0), X3 = (0,0,1). Since a mode
finder is defined to return the most frequently observed data value, any coordinate-wise
mode finder has to return: x = (0,0,0) £ H D

This is a result with quite drastic consequences for us. Mode finding in higher dimen-
sions turns out to be a very CPU-intensive task. So the above proposition seems to leave us
only with the option of trading in quality for speed in case of n-dimensional mode finding
problems.

Note, on the other hand, that in the case of highly collimated tracks the data points
are aligned very close to a line. In that special case the above proposition loses some of its
power. (The proposition does not hold in the special case that all points are aligned on a
straight line).

"True" 3d mode finders

In the category of "true" 3d mode finders we only have a single family of algorithms:

• SMS Small Median of Squares: For each data point the median of the distances to
all other points is computed. The data points are sorted according to their associated
median distance. The mode is now the mean of the top n % of the data points, n
being a quantity defined by the user.

44 CHAPTER 3. MODE FINDING

• ISMS Iterated Small Median of Squares: Same as the SMS algorithm, only per-
formed iteratively. It is analogous to the HSM algorithm in one dimension.

• ISMSW Iterated Small Median of Squares with Weights. Same as the ISMS, but the
data points have now an associated weight. We associate a weight with the distance
between two data points that is the sum of the weights of the data points. For each
point the distances are, again, sorted according to their length. Starting from the
top of the list we now add up the distances' weights until we exceed half of the total
sum of all weights. This is now considered the "weighted average distance" ; the data
points are sorted by this quantity. The final estimate is now the weighted mean of
the n % of the data points..

Literature knows of algorithms that try to minimize the LMS criterion [84], but they
seem to be too CPU intensive for our needs.

3.5 Mode finding in 3d in ORCA
Mode finding in three dimensions is not as generic as the Clusterizeri D interface. It does not
exploit an template technique and uses GlobalPoints as its "fundamental data type". The
abstract interface is depicted in 3.3. Currently a few coordinate mode finders (FSMWMod-
eFinder3d, HsmModeFinder3d, LmsModeFinder3d), as well as a few "true 3d" algorithms
(SMSModeFinder3d) are implemented.

ModeFlnder3d
+operator()(vector < pair < GlobalPoint. float > >): GlobalPoint const
*clone(): HodeFinder3d * const

FIGURE 3.3: Purely abstract base class for mode finding in 3d

CHAPTER 4

Vertex Finding

Je ne cherche pas; je trouve.

P. Picasso

This chapter is devoted to the task of sorting a set of tracks into subsets that share
points of origin. Both the mathematics and the implementations of different clus-
tering algorithms are presented.

FIGURE 4.1: A nicely reconstructed artificial (i.e. VertexFastSim) event with a primary
and a secondary vertex. Both vertices are found — the cyan and red ellipsoids represent
RecVertex objects.

45

46 CHAPTER 4. VERTEX FINDING

4.1 Introduction
It is the aim of this chapter to discuss vertex finding algorithms that operate on geometric
knowledge only. Only the last section (Sec. 4.8) will briefly discuss general ideas of how
to incorporate special physics knowledge into the geometric algorithms. The primary
benchmark test shall be 6-tagging. In this case the decay vertex of a B meson is to be
found, with an average distance of « 2 mm to the primary vertex, and an average track
multiplicity of 4-5. Since the 6-tagging efficiency in itself is not meaningful without taking
into account fake rates, we compare results in bg topologies, with those in cc and qq
topologies. This makes 2d efficiency versus fake rate plots possible.

Section 4.2 will introduce a broad categorization into the sea of algorithms, section 4.3
will say a few words about the input of vertex reconstructors; the apex point concept is
mentioned here. Sections 4.4 and 4.5 will describe hierarchic and non-hierarchic methods,
respectively. Section 4.6 will introduce meta-algorithms, i.e. vertex reconstructors that
work on the input of two or more other vertex reconstructors. Finally, section 4.7 will
describe methods used in other experiments that have not (yet) been considered for CMS,
while section 4.8 will mention a few general ideas of how to insert specific physics knowledge
into existing geometric algorithms. Comparisons in realistic use cases will not be given in
this chapter — this task is delegated to Ch. 6.

4.2 Categorization
In order to strengthen the structure of this chapter, a fundamental categorization of algo-
rithms shall be introduced. We shall distinguish between hierarchic and non-hierarchic al-
gorithms; a hierarchic algorithm is one that can be visualized with a dendrogram (Fig. 4.5).
Non-hierarchic methods are those that lack such a "dendroidal" representation of the pro-
cedure. Hierarchic methods can further be subdivided into agglomerative and divisive
clusterers, depending on the "direction of operation" in the dendrogram. Divisive cluster-
ers start with one big cluster that is then subdivided into sub-sets; agglomerative clusterers
start with singleton groups — groups with one track only — that are then merged iter-
atively. Hierarchic algorithms are presented in section 4.4, with an agglomerative (4.4.1)
and a divisive (4.4.2) subsection. Section 4.5 is dedicated to non-hierarchic algorithms.

4.3 Input data
A vertex reconstructor maps vector < RecTrack > —> vector < RecVertex > . Its input is
a vector of RecTracks, its output is a vector of RecVertices. Distances between tracks
feature unpleasant metric properties (see subsection 4.4.1). To circumvent these nasty
characteristics, apex points have been introduced. The idea is straightforward: simple
points in Euclidean 3d space are introduced representing the tracks. Being ordinary points
in 3d space, the pattern recognition algorithms can again work in a simple Euclidean space
with all its nice properties. The rest of this section is dedicated to this apex point approach.

4.3. INPUT DATA 47

4.3.1 Apex Points

apex -ïcïs m. the top; esp. the top of the conical cap of the Roman 'flamines', or the
cap itself; hence any crown, tiara, helmet; fig., highest honor, crown; gram., the long
mark over a vowel.

FIGURE 4.2: A /i+/n track pair, and the according apex points. Note how the apex
points "inherit" the tracks' transversal errors. (Tracks are part of a simulated J/ip (f> —>
fj,+IJ,~K+K~ decay).

As has already been mentioned, the apex point formalism introduces representative
points that live in 3d space. The formalism splits one pattern recognition problem in two:
instead of finding a vertex from a set of tracks, this formalism finds points that represent the
tracks, and only then a vertex from this set of representative points is searched for. Apex
points serve as a nice play ground; since they are ordinary spatial points, one can implement
practically any clustering algorithm that is known in literature. The apex point approach
does not end with simple 3d spatial points; the track direction can naturally be introduced
via a covariance matrix that is attributed to every apex point. The error perpendicular
to the track direction is inherited from the track itself, the error longitudinal to the track
direction is a property of the algorithm that finds the apex points (the ApexPointFinder);
an infinite longitudinal error is equivalent to track linearization. Note that the distances
weighted with the covariance matrices again do not form a metric space, as the triangle
inequality can be violated. So, in some sense, the apex point formalism is merely a trade-
off between track information and the "metricity" of the "feature space" (the space of the
input data of the pattern recognition algorithms). Misery is thus conserved.

The mapping between tracks and apex points does not have to be unique: n apex points
can be used to represent a track. Such an apex point finder is implemented; since it has
never been seriously tested, it will not be mentioned in the rest of this section.

48 CHAPTER 4. VERTEX FINDING

4.3.2 Apex point finders

Points of closest
approach

Considered track

ApexPointFinder: Mtv

\
ApexPointFinder: Mamf

FIGURE 4.3: Two ApexPointFinders at work

An algorithm that searches for representative "apex" points is called an apex point
finder; Fig. 4.3 visualizes the task. These finders operate on the points of closest ap-
proach (PtCAs); they determine the points of concentrations of these PtCAs. They can
be formulated as a generic pattern recognition problem in one dimension (i.e. along the
tracks). The information of the distance of the PtCAs to the track is exploited as an
apex point "weight". Within ORCA, Clusterizer1D<RecTrack> (see Sec. 3.3) algorithms
perform the task; input and output are the arc lengths of the points along the track, and
their "weights". The latter are a function of the distances of the other tracks with respect
to the track considered.

4.3.3 Analysis of the apex point finders

The apex point finders were compared with one another in a set of 1000 bb events. The
AgglomerativeApexVertexReconstructor was used, with the various apex point finders (see
Fig. 4.4). Comparing the "geometric scores" (see Sec. B.I.I) has the "MTV" algorithm
appear as the most promising apex point finder. It is therefore established as the default
method for the remainder of the thesis.

4.3.4 Apex fitting

Many issues relevant for vertex fitting are also relevant for apex fitting. Specifically, we can
also formulate a linear fitter, and robustified methods, in full analogy with the vertex fitters.

4.3. INPUT DATA 49

FIGURE 4.4: Comparison of different ApexPointFinder algorithms, with 1000(4-300) bb
events. "MTV" is the winner here.

The similarity between a least squares apex fitting method and the LinearVertexFitter is yet
even greater. In fact, mathematically we can understand a LinearVertexFitter as a special
ApexFitter with the following distinctive features:

• Its apex points are called points of closest approach. They have an infinite error
longitudinal to the track. They minimize the distance to the linearization point.

• The whole fit is iterative, i.e. the apex points are not static but drawn towards the
vertex candidate in every iteration step.

Apart from the above, they are mathematically equivalent. Thus, the robustification con-
cepts of the vertex fitters (see Ch. 5) can be easily transferred to this framework. There is,
in fact, also a very natural way of testing these new fitters. The only thing that is needed
is a "fake" apex point finder that delivers apex points close to the SimVertex. This way,
the apex fitter should give results that are statistically compatible with their VertexFitter
counterparts.

One novel feature appears in the apex fitting approach that has no functional equivalent
in the vertex fitting context: the quality attribute of the ApexStates, which can be used as
a weight. This can be seen as a very simple robustification mechanism with virtually no
CPU overhead. This will be the default robust apex fitting algorithm.

Summarizing it all up, we have now a

• LinearApexFitter

50 CHAPTER 4. VERTEX FINDING

• AdaptiveApexFitter

• TrimmingApexFitter

• LinearApexFitter using the quality attribute as a weight.

The aforementioned fitters have been implemented in ORCA; testing has so far been
very rudimentary only.

4.3.5 Performance limits of the apex point approach

It would be desirable to know the limits of the apex point approach; after all, it is an
ad hoc idea that may or may not be useful. Such a study of its performance limits has
not (yet) been performed. It will, though, be a necessity if one wants to come to a final
decision about whether the apex point concept shall be pursued any further.

4.3.6 Final remark

The apex point formalism must definitely be put in question. It is an ad hoc idea that
splits one pattern recognition problem in two. It has been introduced to deal with the
fact that the triangle inequality is violated in the distance matrix between all tracks. The
insertion of apex errors, though, reintroduced the "non-metric" aspect of problem, at least
in principle, if maybe not so much in practice. To come to a final conclusion about the apex
point concept one will have to study the performance limits of the approach. In order to
overcome some of the limits of the approach, dynamic apex points - apex points that can
move along the tracks - have been conceived. This will need highly specialized algorithms
that are able to exploit the dynamic nature of the apex points. It will still take some more
research until one can formulate a final decision on the whole concept.

4.4 Hierarchic Clusterers

4.4.1 Agglomerative clustering

Agglömero (adg-), -ävi, -ätum, 1, v. a., lit., to wind on (as on a ball); to add or join to,
to annex; to join one's self to.

Agglomerative clustering algorithms start out with singleton groups, i.e. by assigning
a separate group to every single track. The most compatible clusters are then iteratively
merged until a stopping condition is met. The specific implementation is completely defined
by its metric system, i.e. by its cluster-to-cluster compatibility criterion. We can distinguish
between ORCA's various agglomerative clusterers in the following way:

(a) Agglomerative clustering in the distance matrix (AggloCAOH)

4.4. HIERARCHIC CLUSTERERS 51

FIGURE 4.5: Every hierarchic clustering method can be visualized with such a dendrogram.

(b) Agglomerative clustering with fitted vertices as a "representative" of a cluster (Ag-
gloIP)

(c) Agglomerative clustering in the ApexSpace (AggloApex)

Let a and ß denote two clusters. Let further s be the set of all minimum distances
between track pairs with one track in cluster a and the other in cluster ß. We can now
choose as the metric e.g.:

d(a, ß) = min(s), max(s), s, median(s),... (4.1)

The choice d(a,ß) = min(s) implements a single linkage or minimum spanning tree
procedure, whereas d(a, ß) = max(s) is often referred to as a complete linkage.

The following proposition significantly reduces the number of reasonable choices:

Proposition 1. The triangle inequality does not generally hold for the minimum distances
between a set of n tracks.

Proof. Let A,B,C denote three tracks. Let A and B share one common vertex VV, let
further B and C also share one common vertex V^. Then:

AB = e, BC = e, AC = d > e
D (4.2)

52 CHAPTER 4. VERTEX FINDING

FIGURE 4.6: Schematic description of how the triangle inequality is violated in the track
clustering problem.

This means that the choice d(a, ß) = min(s) would cluster A, B and C into a single
vertex. We can therefore safely discard single linkage from the list of promising algorithms.

Until now the best results were obtained with the choice d(a, ß) = max(s), i.e. with a
complete linkage procedure.

Implementation

The agglomerative clusterers have a package on their own: AgglomerativeVertexReco. All
three types of agglomerative clusterers (clustering with representatives, clustering in the
distance matrix, clustering in the apex space) have been implemented. The user can
also specify a StoppingCondition. That way it is possible to implement a clusterer that
reconstructs e.g. at least two vertices. In the case of clustering with representatives it is
also possible for the user to provide the VertexFitter that is used to estimate the location
of the representative point.

Implicit assumption

In order to be able to find a vertex, at least two tracks must be sufficiently compatible
with one another. Both tracks must not be more compatible with another track than with
the "partner" track. Compatibility is defined by the specific metric that is employed.

4.4.2 Divisive Clustering

Divisive clusterers start by assuming all tracks to be in one, huge cluster. This cluster is
then further divided into smaller sub-clusters, which are then sub-divided until a formal
criterion is met. ORCA has two divisive clusterers. Both work in a very similar manner:
they fit a given set of tracks with a VertexFitter, then discard the incompatible tracks, until

4.4. HIERARCHIC CLUSTERERS 53

all tracks are considered compatible. The procedure is then repeated with the remaining
set of tracks that are incompatible with the previous vertices. This procedure is also called
"finding-through-fitting".

The principal vertex reconstructor

The PrincipalVertexReconstructor (PVR) has been developed in Brussels; given a vertex
fitter, it is the most straightforward type of vertex finding algorithm. The PVR has been
the first implementation of a vertex finder; ever since then it has served as a solid and
stable baseline for all other finders. Its algorithm is very simple:

Fit one vertex with all tracks

Discard the least compatible track, move track to the "discarded" set.

Fit a new vertex with the remaining set of tracks

Repeat until no incompatible track is left.

Repeat with "discarded" tracks, until this set contains less than two tracks

Implementation The PVR has its own package: PrincipalVertexReco. Its two most
important parameters are:

• the cut on the track probability — i.e. how unlikely does it have to be for a track to
belong to a vertex for it to be discarded.

• the cut on the vertex fit probability: how improbable must a vertex fit be in order
for the vertex to be discarded in a final cleaning step.

Recently, an experimental feature has been added that allows the cut on the track proba-
bility for the first (i.e. the primary) vertex to differ from the track probability cut from all
the subsequent vertices.

Implicit assumption For a secondary vertex to be found, at least two tracks must be
incompatible with the primary vertex, and they must be sufficiently compatible with one
another. Compatibility is defined by the VertexTrackCompatibilityEstimator.

Adaptive vertex reconstruction

The AdaptiveVertexReconstructor (AVR) is also a very simple vertex reconstructor. Given
an AdaptiveVertexFitter (Sec. 5.4.2), it can be described as:

54 CHAPTER 4. VERTEX FINDING

Fit one vertex with all tracks with the adaptive method

Fit all tracks which have been assigned a track

weight below a certain threshold in the previous fit

Repeat as long as enough tracks are left

Implementation Despite its inherent simplicity, the AVR was first implemented by the
author only a few weeks before this thesis was turned in. At the time of this writing, it is not
even in ORCA's CVS repository yet, although it certainly will be soon. Its implementation
is trivial: An AVF is called iteratively.

Implicit assumption A secondary vertex can only be found if at least two of its tracks
are incompatible with the primary vertex. ChiSquareForWeightComputation is responsible
for the computation of the compatibilities.

Future development Many ideas that have been tried with the PVR can also be
adapted to the AVR. Particularly, changing the x;?ut parameter after having fitted the
primary vertex, is very interesting. Using soft constraints on the track weights, which has
also been suggested for the multi vertex fitter (Sec. 5.5.3), is a viable option for the future,
too.

4.5 Non-hierarchic clusterers

Non-hierarchic clusterers distinguish themselves by the lack of a strict clustering hierarchy.
Most methods here employ the notion of mobile prototypes that are attracted to the data
points. This concept has already appeared a few times in literature [71, 61]. The last
algorithm presented in this section has no moving prototypes. Rather the data points
are associated with an integral number which can be interpreted as a "cluster number".
A generalization of such an association number would be a complete list, assigned to
every data point, that keeps track of assignment probabilities of all data points to all
clusters. This concept, too, has already appeared more than once in literature [25, 28].
The MultiVertexFitter that will be presented in Sec. 5.5 also functions in a similar way.

4.5.1 Vector quantization

Vector quantization [61] has been introduced as a method of "lossy" data compression; the
data vectors are replaced by representative "code vectors", that are taken from a "code
book". The code vectors need not live in the same space as the data vectors. Kohonen's

4.5. NON-HIERARCHIC CLUSTERERS 55

renowned self organizing maps (SOM) [71] are an example for such a vector quantization
algorithm. The optimization of the code book determines the quality of the assignment.

In the vertexing context, the apex points have been chosen as the data vectors. The
code vectors also live in the apex space; they are attracted by the apex points. The final
position of the code vectors will provide the location of the vertex candidates. The ORCA
implementation of a vector quantization algorithm is a "frequency-sensitive competitive
learning" algorithm which means that:

• Iterating over all data vectors, every data vector "attracts" the closest code vector
and pulls the code vector (the "vertex prototype") towards itself (competition),

To make sure that all prototypes learn to represent data vectors, a "conscience" is
introduced: code vectors which "win" frequently, are penalized in order to make way
for the "losers" (frequency-sensitivity).

Clearly, the learning procedure relies on a distance measure between the apex point (data
vector) and the prototype (code vector). Since we are dealing with Euclidean 3d space,
the geometric distance between the two points is certainly an option. Another possibility
takes into account the fact that the apex points come with a covariance matrix.

4.5.2 Weighted versus non-weighted learning

weighted
(non—linear)'

learning path

linear
learning
path

Prototype

FIGURE 4.7: Weighted vs non-weighted learning

In order to account for the knowledge of the ApexErrors, a non-linear learning method
is introduced. The distance vector ApexPoint - prototype is multiplied with the weight of
the ApexPoint:

d(a,p) = (ä-p)-Ws (4.3)

56 CHAPTER 4. VERTEX FINDING

where o is the position of the ApexPoint, p the position of the prototype and W j is the
inverse of the covariance matrix of the ApexPoint.

What do these new "learning paths" look like? In our specific application the error in
the direction of the track is usually significantly larger than the error perpendicular to the
track direction. Hence, the prototypes are not directly drawn towards the ApexPoints, but
more towards the tracks they represent. If one wants a more rigorous understanding of
the non-linear "learning paths", we can without sacrificing generality consider a diagonal
weight matrix *. For simplicity we consider a two dimensional example; the generalization
to three dimensions is trivial. If p{t) denotes the path of the prototypes, a, W j being the
ApexPoint and the ApexWeight, then:

« ' + ') - « ' > , w , • (a - a t » (4.4)

With e —» 0 (i.e. infinitesimal learning steps) this leads to

W5äWä

Without loss of generality we can consider the case of a diagonal weight matrix:

(4.5)

WS = (W~) (4.6)
\ vvvvj

Px(t) = -Wxx • px{t) + Wxx • ax (4.7)

Py(t) = -Wyy • Py{t) + Wyy • üy (4.8)

The solution is

px{t) = Cx-e-w**t + ax (4.9)
Py(*) = Cy • e-™»*1 + ay (4.10)

(4.11)

which defines Cx = px(0) — ax. After a few trivial manipulations we arrive at:

Extending to three dimensions will simply yield 4.12 again, only with z substituted for
all occurrences of y.

4.5.3 The KMeans algorithm

The KMeans algorithm works similarly to the vector quantization, only the update of the
prototypes is done in a batched fashion; all apex points are associated with one and only
one prototype. The new position of a prototype is then the result of an "apex fit" (see
Sec. 4.3.4), either linear or robust.

xOne can always rotate into the eigensystem, then rotate back.

4.5. NON-HIERARCHIC CLUSTERERS 57

FIGURE 4.8: A prototype (initial position: gray sphere at the bottom) "learns" in a
zigzag (weighted learning) towards the simulated vertex (yellow sphere) which has the red
RecTracks attached to it.

4.5.4 Seeding

Ut sementem feceris, ita metes.

Marcus Tullius Cicero, De Oratore (11,65)

The KMeans and the VQuant algorithms need "seeding"; they need initial prototypes
placed at some meaningful initial locations. A class that provides such information, in
the form of a list <GlobalPoint>, is a VertexSeeder. Currently only the VQuantlnitialiser is
used: its central piece is a TrimmingApexFitter, which fits a prototype with a small fraction
(typically some 25%) of the data points. The points compatible with the prototype are
then discarded from the set of data points, and the fitter is applied again. This procedure
is iterated until no more data points are left.

Implementation

The VQuantVertexReconstructor and the KMeansVertexReconstructor share one package:
VQuantVertexReco. They both use the same initializer class: VQuantlnitialiser. The current
implementation is entirely based on the apex point concept; a future development could
introduce an additional abstraction with respect to the input data; RecTracks and distances
between them could just as well serve as input.

58 CHAPTER 4. VERTEX FINDING

4.5.5 Deterministic annealing

1

"S 0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

°0

11 11 1i i

Y y• 1111

i

%.

\w
2 3

\

\ \

\ \

s\\
\ \ \

4

\

. \

S 6
position

FIGURE 4.9: The deterministic annealing process (picture taken from [47])

The deterministic annealing algorithm [82, 83] is another method that exploits a physics
analogy for the problem of finding natural clusters in data sets. This method starts with
one "prototype" situated e.g. in the center of mass of the data points. In an annealing
procedure the energy of the data points interpreted as a thermodynamic system is lowered.
Every phase transition that the system goes through, a prototype splits up in two, along
the principal component of the data associated with the prototype, see Fig. 4.9. A vertex
reconstructor for CMS based on this concept has been developed in Lyon [48]. It is also
based on the apex points. "Geometric" comparisons between this reconstructor and the
PVR have been made [47]; performance comparisons in the context of fe-tagging are still
missing.

4.5.6 Super-paramagnetic clusterer

An inhomogeneous ferromagnet exhibits an intermediate state between the ferromagnetic
and the paramagnetic phase. This state is commonly referred to as the super-paramagnetic
phase. The super-paramagnetic clusterer(SPC) [28] exploits this analogy for clustering
tasks. A spin equivalent is assigned to each apex point. The spin will interact and ar-
range themselves depending on a virtual temperature parameter, which is lowered over
time. At a certain temperature the spins will align in typical ferromagnetic grains - the
"Weiß regions". These strongly correlated regions are then identified as a cluster. An
implementation of the algorithm in ORCA exists. No results have yet been obtained.

4.6. SUPERFINDERS 59

4.6 SuperFinders

A SuperFinder is a VertexReconstructor that internally relies on other VertexReconstructor
implementations, and then combines the found solutions into one, hopefully better, so-
lution. Combining solutions may be as simple as choosing one that minimizes a formal
criterion, such as the global association criterion (see Sec. 4.6.1); it may also be a true com-
bination, i.e. a new solution, such as the ones delivered by the voting algorithm described
in Sec. 4.6.3.

4.6.1 Global association criterion (GAC)

The weights that have been introduced for the adaptive fitting method (see Sec. 5.4) can
also be used to define a global "plausibility" criterion of the result of a vertex reconstructor.
With m being the total number of tracks and n as the number of vertices we define the
GAC by:

.. m n

where
r i - W i , i f i € j (4 1 4)

r J \ Wij otherwise v '

and Wij is the weight ti>j (5.4) of track i with respect to vertex j . A is an additional, optional
parameter that can be used to penalize an excessive number of vertices.

The potential uses of such a criterion are manifold:

• Exhaustive vertex finding algorithm. All combinations of track clusters could at least
in principle be iterated through, then one can decide for the smallest GAC found.

• Stopping condition. The GAC could also serve as a stopping condition in a wide
range of algorithms.

• Super finder algorithms. One could also use it to resolve ambiguities. More than one
vertex reconstructors could be used on one event, the GAC could then decide for the
"better" solution.

The weights Wij in Eq. 4.14 are a function of the cutoff parameter Xcut- A lower limit
on this cutoff parameter can be motivated by a purely analytic argument: let us assume
one single vertex with n associated statistically correct tracks. The weight of each track
with respect to the single vertex is

m (x2) = ^ (4-15)
1 + e 2-rcllt

60 CHAPTER 4. VERTEX FINDING

GAC of different solutions versus

GAC, one vertex

GAC, two vertices

GAC. three vertices

GAC. four vertices

FIGURE 4.10: The GAC for different hypotheses (i.e. different clustering solutions), with
A = 0. The event contains one "perfect" vertex. Lower GAC corresponds to a more
plausible hypothesis.

Taking the average of the Wi is in good (linear) approximation 2

1
2-Y2

This results in an average GAC for a single vertex hypothesis:

P\\ vertex =
n

Let us now consider the hypothesis of two vertices, separated by e —» 0.
The average GAC for this hypothesis reads:

vertices = r - V* (Pii + Pa) + 2A = - 4- 2A
In tr' 2r
In

The same for three vertices is:

P|3 vertices = Ö i1 + ̂) +

And generally for m vertices, m < n:

1_,
m vertices =

n-m
n (1 - Wi) + (m - 1) niuj + 7TlA = 1

m

ra-2

mm

(4.16)

(4.17)

(4.18)

(4.19)

l + mX (4.20)

2We shall see that the most interesting part of the approximation is around \2 = 2. At this value the
second derivative vanishes.

4.6. SUPERFINDERS 61

For the special choice of A = 0, we have Wi (2) = \. This leads to pm (xlut = 2) = | , for
any m\ Thus, in order for this situation to be classified correctly (remember that the lower
the GAC, the better), one will have to choose xj?ut

 > 2 for any value of the temperature T
(for A = 0).

An open question

The most important open question with respect to this criterion is how it relates to the
"Minimum Message Length" [100]. Can the information theoretic limit of the vertex finding
task be formulated in terms of the GAC? It should also be investigated whether something
can be gained by using the Akaike (AIC) or the Bayesian (BIC) information criterion rather
than our GAC.

4.6.2 Best solution finder
The BestSolutionFinder is an experimental SuperFinder that uses the GAC to determine
to most plausible result. A few tests have been made. Fig. 4.11 shows a comparison of
the BestSolutionFinder with its constituting components. "Score" in this context refers to
the geometric score function that is defined in Sec. B.I.I. The BestSolutionFinder does
not exhibit the desired properties: the solution that is "best" according to the GAC is not
always optimal by the "score" criterion. Despite it being a persuasive concept, development
on GAC-based vertex finders has been suspended due to its lack of success.

SuperFinder vs components

• SuperFinder
o PVR
T AgglolP
A Agglo-Apex
• AggloCAOH
4 «Means

VtxGun:Easy(1000) VtxGun:Tough
(1000)

bb(500) h300eemm(1000)

Sample type (sample size)

FIGURE 4.11: Comparison of the BestSolutionFinder with its constituting components.

62 CHAPTER 4. VERTEX FINDING

4.6.3 Voting system

Another option for combining the results of different vertex finders into one single, hopefully
better result has been suggested in [102].

Our (extended) version of the voting procedure can be described as follows: Given n
solutions to a clustering problem, we start by picking two. We now try to identify the most
similar clusters. The similarity of two clusters a and ß is defined as a "relative" similarity:

where p (a) denotes the cardinality (i.e. the number of elements) of cluster a. Starting
with the most similar clusters, we now construct the corresponding cluster for the new
solution. If ckj, ßj denote the similar clusters in our two solutions, we now iterate through
all elements in both solutions. Each element that appears in both clusters is added to our
new cluster 7 with a weight of one. Each element that appears in only one cluster is added
with a weight of \. The two merged clustered are now "erased" from the set of clusters of
the two original solutions. The procedure is now repeated: the two most similar clusters
are searched for, then merged, then erased from the original sets. After having iterated
through all clusters in both solutions, the "merged" solution S[= S\ ® S2. A third, or,
more general, an nth solution can now be added in similar way. We only need to take
into account that the cluster that carries the information of the previous n — 1 solutions,
receives a weight of n ^ , while the "new" solution that we take into account receives a
weight of i , n being the number of solutions considered so far, including the one that is in
the process of being "added". The similarity criterion also has to respect the weights: If
a1 = (n\Ai,n\A2, • • • ,n\Ak) (n\ being the weights assigned to the elements Ai), then:

it

p(ai) = J2n5 ("cardinality")
3=1

a1 C\o? = (n\n\A\, n2n
3

2A2-, • • • , n^^Ak) ("intersection")

a1 0 ot = ([n\ - n{]Ai, [n2 - n{}A2, ••• , K - n{]Ak) ("subtraction") . (4.22)

The description given above may be confusing; a simple example will make things
clearer. A few simple definitions might help make the example more readable: Let S\ be
a "solution" that consists of the cluster S\ = (a i , ^ • • • >#«)• Let 52 be another solution
with the clusters S2 (ß\, #2, • • • , ßm)- We define:

Definition 1.

5 1 0 52 = (ai, • • • ,a„,ßi, • • • ,ßm) ("concatenation")

Example:

4.6. SUPERFINDERS 63

= \ABE\CD\FGH

Example 1. Consider the three "original" solutions:

51 = ÇÂB}

52 = CÄBC]

The voting schema now starts to merge Si and S^:

s'i = Isi e ls2 =
Or one could just as well start with the solutions 52 and .S3:

(4.23)

(4.24)

(4.25)
£é Aà

The third solution now has to be added:

o(l) _ 2 ni a, I a _
3 3 | 3 ^ 3 3 3 X 3 J J 3 3 - " J

Or, another legitimate way would be to:
c\ -I

_ £ Ç' ffi Q SI Ï
3 3] 3 ^ 3 3 3 1 3 1 3 3 ^

Relieved, we note that

Resolving ambiguities

Special considerations have to be taken in situations when there is no unique pair of most
similar clusters. Eq. (4.28) shows a simple case. Both clusters of $2 have a similarity
with the cluster of Si of | ^ = \. Randomly choosing one cluster to be merged with the
large "mother cluster" would introduce a bias; the symmetry that the "original" solutions
exhibit would not appear in the final solution. Hence, a mechanism to resolve any such
ambiguity is desirable. We demand of the resulting solution to show the same symmetries
that exist in the initial solutions. The following mechanism has been conceived: Let a
be one large "mother" cluster. Let further ßit2,...,n denote the n "daughter" clusters with
the same similarity with respect to their mother. The result that comes from associating
daughter ßi with its mother a shall be denoted with Ri. Ei shall further be the solution
Ri, only the big cluster that comes from "merging" the daughter with the mother shall
be removed. M* shall denote that cluster that has been removed: Ri = Mi © Ei. Now
one specific "asymmetric" solution Ri is chosen. For simplicity let us choose Ri. Now the
intersection of all Ej,j ^ 1 is computed: / = E-i (~) E$ • • • En. / i s now "subtracted" from
Mi1. M[= Mi G / . The final solution is then M[0 Ei. "Bidirectional" ambiguities, as
shown in 4.35, can be resolved with this mechanism as well, if only we ignore one ambiguity,
i.e. we simply decide for any single "mother" cluster. Again the description is complicated,
a few simple examples are needed:

64 CHAPTER 4. VERTEX FINDING

Example 2. We start with a very simple example:

51 = [ABCD]

52 = • (4.28)

The input is invariant under the permutation of any two tracks. This symmetry is supposed
to appear also in the merged solution. Let us start by computing R{, identifying Mi and

1 1

MI ©

— ~<->l W(asym,2) ~<->2 —
AB
2 24f =M2QE2 (4.29)

Let us choose ü i as the starting point for our "symmetrization technique". Now comes
the intersection of all Ef

fàÏÏ] (4.30)

"Subtracting" the intersection from Mi:

M[= M:
T — ÇÂBCD (4.31)

M{ already looks nicely symmetric. As a last step we glue together all parts:

(4.32)

The solution exhibits all the expected symmetries. Just to check, we compute Sgnal:

AB_QD\ AB
2 2 2 2 1 2 2

CD)
2 2 J (4.33)

Example 3. This example is a tiny bit more complicated.

Si = [ABCDEF)

Si ®(asym,l) S2

Si ®(asym,2) S2

Si ©(asj/m,3) S2

h

Sfinal

^D2 2 2 2

2 2 ^ - ^ 2 2

C D

AB_\E_F_
2 2 1 2 2

2 2 2 2 2 2 1 2 2

M2 O E2

M3O E3

= (Mi0J1)0JOEi=[ABCDEF]AB
2 2 2 2 2 2 X 2 2

CD] E F
{ 2 2 [2 2 J

(4.34)

4.7. OTHER METHODS 65

Example 4. It is left to the user to show that in the case below the merged solution does
not depend on the choice of the "mother" cluster:

(4.35)

Order dependence

The whole procedure unfortunately is not order independent; a simple order dependent
example is the set with the three solutions {AB\C\D\, [ABCD], and \A\B{CD). The
procedure will introduce a bias towards the first solution. The ORCA implementation sorts
the solutions by the number of clusters they contain, in ascending order. This minimizes
the number of small clusters in the final solution.

Implementation

The ORCA implementation has been written in a fully templated fashion, the type of the
fundamental elements can be defined by the user. The code has been verified (exploiting
the templated nature of the code — it operates on simple ASCII characters rather than
RecTracks). It should be very easy to recycle the code for any other application.

A VotingVertexReconstructor serves as the glue code between the templated VotingSchema
and the vertex package. Any set of VertexReconstructors (including the VotingVertexRecon-
structor itself) can be specified as the primary source of solutions. The solutions are then
combined in the way described in this section. The result is then fed to a MultiVertexFitter
(see Sec. 5.5). The weights from the voting schema are used as the initial weights in the
multi vertex fit.

Results

The 6-tagging performance was compared between the voting vertex reconstructor and
its constituents. In order to remove its influence, the same multi vertex fitter has been
applied to the results of the constituents. The default values of the algorithms has been
used. Fig. 4.12 shows the results. No clear performance gain is visible.

4.7 Other methods

ORCA has had one additional (secondary) vertex reconstructor, the "dOphi" method [86].
In this method the tracks are linearized at the points of closest approach to the primary
vertex. Each track is then associated with a point in the do — <t> plane, where do is the track
impact parameter, and <f> the azimuthal angle. Tracks which share a secondary vertex are
roughly aligned in the do — 0 plane, with a positive slope, while tracks from the primary

66 CHAPTER 4. VERTEX FINDING

0.08

met

0.8

0.75

0.7

0.65

0.6

encv versus Fake rate, b-tasging 1

'-

— VoSng

— MVF-PVB

— MVF-AQ0O

[- -44-

L + +

0.12 0.14
Fake rate (qq)

I Efficiency versus Fake rate, b-taaglng I — Voting

MVF-PVR

— MVF-AggtolP

— MVF-Agglo

02 022 UM 026 0.28 0.3
Fake rate (cc)

FIGURE 4.12: Comparison of the 6-tagging efficiencies of the voting algorithm with its
constituents.

vertex appear unaligned. The pattern recognition problem thus transforms into the task
of finding straight lines in the do — <t> plane. An implementation exists in ORCA, but it is
orphaned.

Literature names only a few more (geometric) vertex reconstruction techniques that
have not yet been considered in CMS; the topological vertex reconstruction [69] seems
especially appealing. Certainly, the number of general purpose clustering algorithms known
to literature is immense. It is, though, the subjective feeling of the author that there is no
need for any more pattern recognition algorithms. Future work should rather focus on how
to improve upon the existing algorithms, what information should be fed to the existing
non-hierarchic methods, etc.

4.8 Physics knowledge

In many use cases users will want to insert knowledge about the specific physics channels
into the vertex finding procedure. The standard 6-tagging application is a good example.
Users will apply many different pieces of information to enhance 6-tagging performance. A
few good general ideas are known:

• Ghost track formalism [18] B mesons have a high probability of decaying into D
mesons further "downstream" ; for vertex reconstruction this poses a serious problem:
instead of one vertex with sa 5 tracks, one ends up with two separate vertices and
lower multiplicities. The ghost track has been conceived as a remedy: another "fake"
track is introduced that points from the primary vertex in the direction of the B
meson (i.e. in the jet axis). This "ghost track" can further help reconstruct secondary
vertices — in theory it enables one to reconstruct 1-prong vertex decays! This idea
is currently being implemented into ORCA by the 6-tagging group.

4.8. PHYSICS KNOWLEDGE 67

• Vertex suppression field Some algorithms might be able to exploit some prior
information of where a vertex is likely to be found and where vertices should be
"suppressed". Such information could be passed to a vertex reconstructor in the
guise of a scalar field. A possible use case is the suppression of vertices at the
"fringes" and outside a jet cone.

68 CHAPTER 4. VERTEX FINDING

CHAPTER 5

Vertex Fitting

"That's right," shouted Vroomfondel, "we demand rigidly defined areas of doubt and
uncertainty!"

Douglas Adams, "The Hitchhiker's Guide to the Galaxy"

This chapter deals with the statistical problem of estimating the location and the
error of a vertex. Dealing with finding a good initial guess at first, it then goes on to
describe the well known least-squares techniques based on the Kaiman filter. Least
squares methods are non-robust; the chapter then discusses potential robustifica-
tions. Three robust algorithms are then implemented and compared with each other
in well-controlled data sets. The chapter focusses on geometric properties only; spe-
cial physics knowledge does not enter.

FIGURE 5.1: A J/ip <j> —• K+K~fi+^~ decay vertex, fitted with a linear fitter. K+ was
not reconstructed properly by the track reconstructor, therefore the track is missing.

69

70 CHAPTER 5. VERTEX FITTING

5.1 Introduction

Vertex fitting deals with the "geometric" estimation of the location and the error of a
vertex. This chapter will mainly look at Kaiman filter techniques, which make it possible
to sequentially add the information of a track to the vertex fit. Linearization of the tracks is
required; the choice of parametrization, the specific track state, is not unique. In practice,
though, it is restricted to only a very few possibilities. Sec. 5.3 will list two choices of
parametrization. Linearization needs a point around which the tracks are linearized. This
point is called a linearization point; Section 5.2 discusses a few approaches of how one can
come up with a good initial guess. Linearization point finders will gain special importance
in the context of robustifying the least squares methods. Robustifications will be presented
in Sec. 5.4. The multi vertex fitter presented in Sec. 5.5 is a generalization of the adaptive
estimator of Sec. 5.4. It can fit n vertices at once, and the vertices "compete" for the tracks.
This method will be interesting when reconstructing entire decay chains. The subsequent
sections deal with adding prior information (5.6), and an introduction of the Gaussian-sum
filter (GSF, section 5.7). The implementation of the GSF is not part of this thesis, it is
only mentioned because it can be combined with the adaptive method (5.8) and the multi
vertex fitting method (5.9). This algorithmic chapter concludes with the derivation of the
adaptive and the multi vertex algorithm from basic theoretical models (5.10).

5.2 Linearization point finders

All fitters, robust or not, require an initial rough guess of the vertex location. Such a
guess is called "linearization point"; an algorithm that finds such a point is a Lineariza-
tionPointFinder. In the case of least squares fitters it merely determines the point around
which the tracks are linearized. The least squares fitters are written such that too large
a discrepancy between linearization point and vertex position triggers a re-linearization of
all tracks. Thus, the initial linearization point should not play a crucial role. It should
only show in the CPU cost of the fitter, not in the final result (at least not statistically). In
combination with a robust fitter the initial guess plays a much greater role. In this case it
represents the global aspect of the optimization problem. The robust fitters are but local
optimization algorithms. A good initial estimate is thus crucial.

The section starts by sorting all implementations into various, general categories (5.2.1),
before it discusses implementation details (5.2.2). It then describes how the performance
can be analyzed (5.2.3) and shows the results (5.2.4). The next to last subsection (5.2.5)
documents the importance of having a good linearization point finder. Finally, general
conclusions are drawn (5.2.6).

5.2.1 Categorization

A LinearizationPointFinder is an algorithm that maps a vector < RecTrack > onto a Glob-
alPoint. We can distinguish between two broad categories of LinearizationPointFinders ac-

5.2. LINEARIZATION POINT FINDERS 71

cording to how they "process" the input RecTracks: apex point based algorithms map
the RecTracks onto ApexPoints, then fit the apex points with an ApexFitter (4.3.4). The
crossing point based algorithms compute the crossing points (i.e. the algebraic mean of the
two points of closest approach) of all track pairs. The crossing points then serve as input
for a 3d mode finder (3.4).

Weighting the crossing points

The crossing point based algorithm can exploit not only the location of the crossing point.
In addition a "quality" criterion can be assigned to the crossing points. This "weight" is
a function of the distance of the two points of closest approach — the further apart the
two PtCAs, the less a crossing point should "count". For linearization point finding the
following general function has been used for weight assignment:

w = \d + dcut\
n (5.1)

dcut and n are user-definable. Typically <icut should be chosen to be of the same order of
magnitude as the transversal track errors, n should be —1 or —2. Current defaults are
^cut = lOjLtm, n = —2. Fig. 5.2 depicts the weight functions for a few parameter choices.

Choosing a subset of crossing points

All crossing point based algorithms further have in common that the user can choose
whether all possible track pairs (n_pairs=-1) or only a certain subset of track pairs should
be considered. If the user-supplied n_pairs is positive then only a subset of crossing points
is computed. The algorithm that chooses the subset is designed to benefit from the ad hoc
assumptions:

(a) Tracks with higher pT tend to be a "better" source of crossing points.

(b) Very high pr tracks (e.g. in jets) tend to be highly collimated. It might be better to
pair high-px tracks with tracks with a lower px, as long as one remains compatible
with (a).

The algorithm that has been implemented fulfills these criteria. The simplest descrip-
tion is by example (Fig. 5.2). The performance of this sorting algorithm has never been
analyzed. It is currently unknown if it performs better than a mere random generator!
Anyway, the CPU cost of this sorting is very low and the idea of introducing an "upper
combinatorial" limit will prove to be a good idea, once CPU performance is taken into
account.

RecTracksDistanceMatrix

Since the computation of the crossing points is costly, a class was introduced that optionally
caches those crossing points, as well as the points of closest approach and their distances:
the RecTracksDistanceMatrix. LinearizationPointFinders can be given such a RecTracks-
DistanceMatrix, instead of supplying a simple vector of RecTracks.

72 CHAPTER 5. VERTEX FITTING

FIGURE 5.2: The weight, as used in the input of the LinearizationPointFinders, as a func-
tion of the distance. A few typical parameter values are shown (left plot). The sorting
mechanism of the crossing point based algorithms shown for the example of 6 tracks (right
plot). . .

5.2.2 Implementations

The following list of crossing-point-based algorithms has been implemented and tested:

• LMSLinearizationPointFinder - coordinate-wise LMS (3.2).

• HSMLinearizationPointFinder - coordinate-wise HSM (3.2).

• SubsetHSMLinearizationPointFinder works just as the above, it only niters out the
crossing points with a large "distance" attribute, i.e. crossing points whose associated
points of closest approach are very far from one another.

• FSMWLinearizationPointFinder - coordinate-wise FSMW (3.2).

• SMSLinearizationPointFinder - A 3d algorithm (3.4).

For debugging and benchmarking the following finders were implemented:

• ZeroLinearizationPointFinder - always returns (0,0,0).

• MonteCarloBasedLinearizationPointFinder - returns the position of the associated SimVer-
tex.

• LinPtFinderFromVertexFitter Delegates the task of finding a linearization point to a
VertexFitter.

Finally, an ApexPointBasedLinearizationPointFinder has been implemented that delegates
the computation to an ApexFitter.

5.2. LINEARIZATION POINT FINDERS 73

5.2.3 Performance analysis

The implementations were tested in four different topologies. In cc and qq topologies all
tracks (with no prior track filter) were considered as input; the finder had to produce a
viable prototype for a primary vertex; the tracks from the secondary vertices served as
contamination of the data. In the J/ip (p and the r scenarios the finders had to fit the
J/tp <j> —• K+K~fi+fj,~, and the r —• irinr decay vertex, respectively. The input data was
the RecTracks associated with the four/three relevant TkSimTracks — there was no explicit
source of contamination. In case of less than two RecTracks the event was dropped. 2000
events per topology were considered. All distances refer to the ̂ -coordinate only. To "fail"
in this context means that the linearization point finder produced a prototype that is more
than 3mm displaced from the true vertex position (in the rr-coordinate) - clearly the word
"failure" should not be taken literally in this context. The time was measured on a 2.8 GHz
Intel Celeron; the values are given in milliseconds per event. The algorithms considered
were:

• SubsetHSM(-i) SubsetHSM, considering all track pairs (i.e. all crossing points)

• HSM(-1) . . .

• LMS(-1) . . .

• HSM(100) HSM considering a maximum of 100 track pairs.

• FSMW(exp=-2, f=0.4, c=10, np=-1) FSMW, considering all track pairs, fraction=.4,
exponent=-2, dcut = 10/rni.

• FSMW(exp=-2, f=0.4, c=10, np=200) FSMW, just as above, except for a maximum of
200 track pairs considered.

• ISMS(200) Iterative non-weighted SMS, with a maximum of 200 track pairs.

• TrimmingApex(Unweighted,MTV) An apex point based approach, with a Trimmin-
gApexFitter. The weights are ignored, the MTV algorithm is the apex point finder.

5.2.4 Results

Tables 5.1 and 5.2 show the test results, Tables C.I and C.2 show a more extensive list of
the same test. FSMW with a fraction / = 0.4, exponential n = —2, a cutoff dcut = 10/mi,
and an upper limit ripa^ = 200 seems to be a very sound choice for all topologies. With a
3 milliseconds per event on a 2.8 GHz machine it is reasonably fast, too. The current im-
plementation is not (yet) CPU optimized. The aforementioned "test winner" has become
the DefaultLinearizationPointFinder. The complete inheritance tree of the DefaultLineariza-
tionPointFinder is depicted in Fig. 5.3.

74 CHAPTER 5. VERTEX FITTING

LinPtFinder

SubsetHSM(-i)
HSM(-1)
LMS(-1)
HSM(100)
TrimmingApex(Unweighted,MTV)
FSMW(exp=-2, f=0.4, c=10, np=-1)
ISMS(200)
FSMW(exp=-2, f=0.4, c=10, np=200)

RMS
[Aim]

38
37

196
54

147
38
33
49

cc
OFit

[/im]
29
27
41
38
33
27
27
33

fail
%o

0
0
2
0

16
0
0
0

t
[ms]

3.5
3.4
3.4
0.7

51.3
16.1
8.2

3

RMS
[/im]

37
32

237
48

202
34
30
43

QQ
OFit

[/im]
25
24
44
32
37
24
26
29

fail
%o

0
0

11
0

29
0
1
0

t
[ms]

4
3.9
3.9
0.8

59.5
22.9
8.1

3

TABLE 5.1: Resolutions and failure rates of different LinearizationPointFinders for quark
pairs. See the text for detailed description.

LinPtFinder

SubsetHSM(-i)
HSM(-1)
LMS(-1)
HSM(100)
Tri m m i ng Apex(U n weig hted, MT V)
FSMW(exp=-2, f=0.4, c=10, np=-1)
ISMS(200)
FSMW(exp=-2, f=0.4, c=10, np=200)

J/I/J <

RMS
[Aim]
744
744
833
744
781
578
736
578

P^K
<7Fi t

[Aim]
61
61

139
61

179
63
60
64

fail
%o

194
194
170
194
260
140
162
140

t
[ms]

0.2
0.2
0.2
0.2
0.8
0.3
0.4
0.2

r
RMS
[Aim]
1018
1020
1035
1020
876
967

1010
967

± —• 7Td

CTFit

[Aim]

780
780
937
780
553
755
876
755

b7T+7r"

fail
%o

379
378
384
378
329
323
382
323

t
[ms]

0.1
0.1
0.1
0.1
0.7
0.2
0.2
0.1

TABLE 5.2: Resolutions and failure rates of different LinearizationPointFinders for low-
multiplicity jets. See the text for detailed description.

LinPtFinder

LMS
Fsmw-default
Zero
MonteCarlo
LinVtxFit

cc (jetfilter)
vtx

1969
1986
443

1993
1955

< eut
1849
1892
381

1897
1840

qq .(jetfilter)
vtx

1963
1993
435

2000
1935

< eut
1881
1942
385

1999
1854

J/
vtx

1901
1948
407

1984
1926

ip <p
< eut
1120
1285
147

1409
1305

T —*

vtx
1578
1778
167

1678
1648

TTirir

< eut
250
272

23
348
261

TABLE 5.3: Test of the importance of the linearization point w.r.t. the final (adaptive)
vertex fit. See the text for further explanations.

5.2. LINEARIZATION POINT FINDERS 75

LlnearlzatlonPolntFlnder
*getU.nearizatlonPolnt(vector < RecTrack >): GlobalPolnt const
+getLinearizatlonPolnt(vector < FreeTrajectoryState >): GlobalPoint const
+clone(): LinearlzationPointFinder * const

ModeFlnder3d
+operator()(vector < PointAndDlstance >): GlobalPolnt const
+clone(): HodeFinder3d * const

1
IcrosslngPtBasedLlnearlzatlonPolntFlndefO——'

Ï
| FSMWLInearlzatlonPolntFlndeij

t
DefaultLlnearizationPointFlndeij

FIGURE 5.3: The DefaultLinearizationPointFinder and its inheritance.

5.2.5 Influence of the linearization point on the final fit

Now that a sensible default linearization point finder has been found, we want to document
the influence of the linearization point finder on the final fitted vertex. To this end five
different LinearizationPointFinders were used as the initial guess of an adaptive vertex fit (see
5.4.2): the LMS algorithm, the "default" FSMW method, the ZeroLinearizationPointFinder,
the MonteCarloBasedLinearizationPointFinder, and the LinearVertexFitter. The number of
valid RecVertices is compared, as well as the number of RecVertices that are no further than
200^m from the corresponding Sim Vertex (distance in "full 3d"). For the results consult
Table 5.3. The "vtx" column shows the number of RecVertices (see Sec. 5.4.2) that could
be associated; association was done by tracks. 2000 events were considered. The "<cut"
column indicates how many of the found RecVertices are no further than 200 microns
off w.r.t. associated SimVertices. For the final fit the default Adaptive Vertex Fitter was
employed (XcUt = 3.0, T = 64,9,4,1,1). The results clearly demonstrate the importance
of the linearization point for a robust fitter. The behavior of the LinVtxFit is interesting
insofar as it is mathematically equivalent to starting the adaptive method with all weights
= constant. The results clearly indicate that such an "interim least-squares step" is not
advisable; the chain of robust algorithms should not be broken. Note that in the r-events
the Monte Carlo-based finder is seriously challenged by the FSMW algorithm; the latter
actually returns « 5% more valid vertices! Fig. 5.4 shows the resolutions plots of the
default linearization point finder in two channels.

76 CHAPTER 5. VERTEX FITTING

1 z resolution of the default UnPIFInder - c£ events 1

350

300

250

200

150

100

50

- n

\

in

t
i
l
l

I
M

: r

r . . . /
-0.04 -0-02 0V,0X12

dilcm

rusto
Elm«* if ln
I M n 5.115»«
RMS O.0OSM2

0.04
, |dl|<.05

1 z resolution of the default UnPtFlnder - J/v-« events 1

140

120

100

80

60

40

20

Entrt«« 1572
MMn 0JJ00S043
RMS 0^1381

7 n

r

7 J l
'7 r l

7 r \

7 j \

•

j

i

r

i

I
-0.04 -0.02 0 0.02 0.04 I

dz[cm], |dl|«.O5 |

FIGURE 5.4: Resolution plots of the default LinPtFinder.

5.2.6 Conclusions

A solid general purpose linearization point finder has been identified and evaluated. The
algorithm has been shown to cover a wide range of applications very well: from a low-
multiplicity highly-collimated decay vertex fit to a high-multiplicity primary vertex fit,
the default algorithm performs well and is very fast at the same time (Tabs. 5.1, 5.2).
The default algorithm with the default settings has been wrapped into a special class, the
DefaultLinearizationPointFinder. It is the current default in almost all VertexFitters. The
effect of the choice of linearization point finder on a final (adaptive) vertex fit has been
documented (Tab. 5.3); it is significant. Whether there is still space for large improvement
is difficult to tell. Comparison of the current default algorithm with feeding the Monte
Carlo truth (Tab. 5.3) vaguely indicates that there might be some in high multiplicity
events. An impressive detail is the performance of the FSMW compared with the Monte
Carlo based method — FSMW returns more valid vertices!

5.3 Least-squares fitting methods

A least squares method per definition minimizes the function:

(5.2)

The derivative of Eq. (5.2) depends linearly on the residual ri(ß). In this sense least-
squares methods are often called "linear" - every robust method is then non-linear. All
vertex fitters also linearize the tracks. In this notation all fitters are linear. If not stated
otherwise, the notion of "linearity" will refer to the dependence of the derivative of the
objective function on the residuals, so robust fitters will be called non-linear.

In the ORCA framework two different least squares fitting algorithms have been imple-
mented:

5.4. ROBUSTIFICATIONS 77

• LinearVertexFitter This algorithm [70] starts with an ini-
tial vertex candidate, then computes the impact points of
the tracks with respect to this candidate. The error of the
impact point is a 3x3 matrix with a rank of 2. The weighted
means of the impact points is now taken; since the error ma-
trix is degenerate, we take the pseudo-inverse, which can be interpreted as having an
infinite error in the track direction, which, in turn, describes a track linearized in 6d
phase space. If the vertex candidate moves too much within one iteration, the tracks
are re-linearized.

• Kaiman VertexFitter This procedure [51] parametrizes the tracks with a perigee
parametrization [27]; it linearizes in the 5 perigee parameters, as opposed to the
LinearVertexFitter that linearizes the track in the track's phase space. A standard
Kaiman filter procedure is now applied to the perigee vectors.

Since both methods minimize the same objective function, they have to converge against
the same results, up to numerical instabilities. And indeed the fitters report the same
numbers [89]. The perigee parameters are the more sensible choice in the sense that a lin-
earization in these parameters is a closer approximation to reality. The KalmanVertexFitter
has been identified as the numerically more stable method.

5.4 Robustifications
The method of Least Squares is seen to be our best course when we have thrown
overboard a certain portion of our data - a sort of sacrifice which has often to be
made by those who sail the stormy seas of Probability.

F. Y. Edgeworth, 1887

Any kind of robustification can be expressed in terms of changes to the "objective func-
tion" of the least squares method (Eq. (5.2)). In this thesis three approaches have been
implemented and studied:

• The TrimmingVertexFitter (Sec. 5.4.1) ignores ("trims") a certain fraction of the tracks,

• the AdaptiveVertexFitter (Sec. 5.4.2) down-weights outliers, and

• the LMSVertexFitter (Sec. 5.4.3) minimizes the median — instead of the sum — of
the squared residuals.

The three approaches shall now be discussed in greater detail.

78 CHAPTER 5. VERTEX FITTING

5.4.1 The trimmer

The trimming method minimizes the sum of only a subset of all residuals:

h<n

(5.3)
t = i

The only guaranteed general way to find the global minimum is to try all combinations.
Clearly such an exhaustive approach is not feasible in any realistic context. Fortunately we
have other methods of guessing the rough whereabouts of our vertex candidate: we have
the linearization point! This enables us to implement a very CPU-effective version of P.
Rousseeuw's Fast-LTS [46] algorithm. The algorithm can be described as:

Compute a good first guess with e.g.SubsetHSMLinearizationPointFinder.

Find the h tracks that are most compatible with the vertex candidate.

Fit a new vertex candidate with these h tracks

Iterate until convergence

5.4.2 The adaptive estimator

Let us not throw away data all too hastily. Instead, let us weight and re-weight
the data, consider and reconsider alternative models. Only if we must, at the latest
possible stage, shall we distinguish between "in" and "out", between signal and noise.

The author, on behalf of the CMS vertexing circle (expressed as a formal answer to
Mr. Edgeworth, see p. 77)

The AdaptiveVertexFitter [101] does not reject outlying tracks; it rather down-weights
them with a well-defined weight Wi:

Wi

(h (V. 1 P IT
(5-4)

With this definition the objective function now reads:

n

ßLS = argmin V wt • rj(ß)
1?

(5.5)

5.4. ROBUSTIFICATIONS 79

1 Weight function wfeVn 1

w
ei

g
h

t

0.8

0.6

0.4

0.2

-

,
,

I
,

, , '

0 2 4 6

T-»0

8 10 12 14 16 18

FIGURE 5.5: The weight function (Eq. 5.4).

The fitter is implemented as an iterative re-weighted least squares algorithm; as always,
one starts with an initial guess: the linearization point. Tracks weights are computed for
the use in a weighted fit. The weights are then re-computed and the vertex re-fitted, until
convergence. As an additional improvement a geometric annealing schedule is introduced:
with every iteration step the temperature T is multiplied with a factor r, r < 1.

Note that the distribution function inserted for <f> (xj) in Eq. (5.4) does not have to be
Gaussian; in principle any distribution could be inserted. If the x2 follow a x2 distribution,
the above choice is optimal.

Implementation

The adaptive fitter (AVF) has been implemented in ORCA as a VertexFitter (see Fig. 5.6).
It uses a LinearizationPointFinder (default is DefaultLinearizationPointFinder) for the initial
"rough guess" of the vertex. A VertexUpdator (default: KalmanVertexUpdator) is then used
to sequentially update the vertex candidates. An AnnealingSchedule manages the annealing
procedure. A VertexSmoother is finally called to smooth the vertex. The default smoother
is the Dummy VertexSmoother. It leaves the vertex untouched. The AnnealingSchedule is the
only class that has been introduced specifically for the adaptive method, all other classes
are reused from the implementations of the linear methods. Note that polymorphism has
been heavily used in the design of the fitters. All polymorphic classes are cloneable to
facilitate object lifetime management.

Small remark on x2 computation

When talking about x2, we indeed have to be a little more careful. The x2 value used in
the weight function Eq. (5.4) is a little different from the fitted x2- A formal derivation of
the adaptive method (Sec. 5.10) makes it evident that

80 CHAPTER 5. VERTEX FITTING

VertexFltter
*vertex(vector
*vertex(vector
*vertex(vector
*vertex(vector
*vertex(vector
*clonet): VertexFltter * const

RecTrack >): CachingVertex const
RecTrack >,UnPoint): CachingVertex const
RefCtdVtxTrack >): CachingVertex const
RecTrack >,prior): CachingVertex const
RefCtdVtxTrack >,prior): CachingVertex const

LlnearlzatlonPolntFlnder
*getLiaeerizationPoint(vector < RecTrack >): 6lobalPoint const
*getLineariiationRoint(vector < FreeTrajectoryState >): SlobalPoint const
*clonel): LinearizationPointFinder * const

VertexUpdator
*add(CachingVertex,RefCountedVertexTrack): CachingVertex const
*remove(CachingVertex,RefCountedVertexTrack): CachingVertex coast
*clone(): VertexUpdator » const

AnneallngSchedule
*anneal()
*resetAnnealingl)
*phi(chi2:double): double const
*veight(chi2:double): double const
*clonet): AnnealingSchedule * const

VertexSmoother
*smooth(CachingVertex): CachingVertex const
*clone(): VertexSmoother * const

AdaptlveVertexFltter
•fvertexl...): CachingVertex

FIGURE 5.6: Implementation of the adaptive vertex fitter

• the weights must not appear in the "weight" x2>

• the "vertex term" does not appear, either, in the x2 u s e d in Eq. (5.4)

For completeness, here is a list of the three different x2 definitions:

Xfc,Lir

X^Kalman =

CL - î

(SSkf, (5.6)

(5.7)

(5.8)

where Sx~k denotes the vertex displacement at iteration A; (Sx~k = Xk — Xk-i), Cp,k denotes
the error matrix of track k, Cv,k the error matrix of the vertex after having added track
k. Wk is the assignment probability of track k to the considered vertex and r* denotes the
residuals of track k.

Weighted linear fitters

The generalization of a linear (Kaiman) method to a more general weighted linear method
is relatively straightforward. One has to bear in mind only two issues:

5.4. ROBUSTIFICATIONS 81

FIGURE 5.7: Result of an adaptive fit. The fitter was supplied with 4 tracks (K+K /x+/j),
one of which is incompatible with the other three. The fitter completely ignores this
outlying track.

• The number of degrees of freedom (NDF) is multiplied with the assignment proba-
bility; this can of course trigger a software technical change: the representation of
the NDF may change from an integral to a floating point type.

• Every occurrence of the covariance matrix of the track parameters has to be divided
by the assignment probability.

5.4.3 The Least Median of Squares (LMS)

Generally, the LMS method minimizes the median of the squared residuals, instead of the
sum.

ßLS = argmin med?=1rt
2(/3) (5.9)

ß

Unfortunately the general case has neither a simple analytical solution nor is there a
(known) fast numerical algorithm to find that minimum. In ORCA a coordinate-wise LMS
that operates on the impact points has been tried. It is a ModeFinder3d that works just like
the LMSLinearizationPointFinder, except that the error is estimated as well. This approach
clearly has the disadvantage that one intentionally discards the important information of
the spatial structure of the data. And indeed, we have to humbly accept the fact that this
algorithm is neither very exact, nor is it very (statistically) efficient.

Error estimation

There is no straightforward well-justified way of computing the error of the LMS method.
In order to still deliver an error estimate, all data points are classified into inliers and
outliers according to a x2-h'ke criterion that is designed to give the "right" x2 m the case
of Gaussian errors [49]:

X2 = 1-4826 • (1 + —^—) med(rr) (med(Ca:))~
1 med(a;)r (5.10)

82 CHAPTER 5. VERTEX FITTING

Note that the error computation has never been thoroughly tested. Still, it is a robust fitter
with a very high breakdown point (50%), and it is faster than the linear vertex fitters.

Implementation

ORCA's LMSVertexFitter is implemented as an Adapter - a class that bridges the Mod-
eFinder3d classes with the VertexFitter interface. The error estimation is currently per-
formed the way described in the previous paragraph. This computation of the error is
currently a part of the Adapter. Hence, the user can transform any ModeFinder3d into a
VertexFitter, but the computation of the error estimate is mathematically "justified" only
for the LMS algorithm. (Although, since the error estimate is already quite poor for the
LMS case, we can assume that it works just as well/poorly with any other mode finder).

5.4.4 Verification of the robust methods

Average of the x2~distribution

4

2

(

Bias

) S 10

of

IS

the

/

20 25

vertex f i t

Adaptive "
Trimmer :
Linear -

30 35 40 45 50
Percentage erf outliers (%)

i.i

i

0.9

0.8

RMS

N=i) and o j
"Adaptive/
-Trimmer
: Uncfrf

-

0 5 10

Ot

• ^

IS

t he

20 25

pulls

•i

30 .15 « 45 50

Percentage of outliers (%)

10 15 20 25 30 3S 40 45 50

Percentage of outliers (%)

FIGURE 5.8: Plots of different statistical tests, taken from [43]. See the reference for
precise definitions of the tests.

The statistical properties of the AVF and the trimming algorithm have been verified
and tested extensively in [43]. Fig. 5.8 shows a few tests.

The top left plot shows the bias of the vertex in the presence of "type-2" outliers.1

The outliers come from another vertex 5mm displaced from the "signal" vertex. The track
1 Type-2 outliers are tracks that come from the wrong vertex. Type-1 outlier tracks are from the right

vertex, but have a mis-measured covariance matrix

5.5. MULTIVERTEXFIT 83

multiplicity is always 20, including outliers.

The bottom left plot shows the RMS of pulls in the presence of type-1 outliers.

The right plot shows the mean of the \2 distribution in the presence of "type-1" outliers.
The outliers are unbiased but their true errors are 10 times their covariance matrix. Clearly
visible are the linear fitter's "ideal" 0.5 at the presence of no outliers, then the rapid decline.
The trimmer exhibits very similar properties only 20 % "further right" (the trimming
fraction is 20%). The adaptive method has a typical slight error over-estimation at 0%
outliers, then remains fairly neutral to the additional noise.

5.4.5 Conclusions

From these tests with artificial data alone it is already very obvious that the AdaptiveVertex-
Fitter is a very robust, general purpose algorithm. It can operate with very pure data with
almost no loss in statistical efficiency, while it remains quite unimpressed by the presence
of contamination. As opposed to many other robustification schemata no special assump-
tions about the data have to be supplied. The trimmer exhibits the same behavior as the
linear fitter, only "shifted" to the right by the trimming fraction. Specific knowledge of
the expected outlier fraction would have to be known in order for the trimmer to perform
well. Thus, it seems impossible for the trimmer to compete with the much more generic
adaptive estimator. Surely, the linear method is still the only efficient method in case of
perfect data.

5.5 MultiVertexFit

The MultiVertexFitter (MVF) [56] is an algorithm that fits n vertices at once; it is very similar
to the AdaptiveVertexFitter - it, too, has a soft assignment with a weight function that is
indeed a generalization of eq. (5.4); for the special case of one vertex the MultiVertexFitter
and the AdaptiveVertexFitter are equivalent. What changes with n > 1 is that the weight
function generalizes to:

—I —5" (5.11)

E
j I 5

e 2T + Efc=i e 2T

Here w^ denotes the weight of track i with respect to vertex candidate j . Likewise, xfj
is the x2 compatibility between track i and vertex candidate j . The fitting procedure can
now be described as:

84 CHAPTER 5. VERTEX FITTING

User supplies vertex candidates or clusters

of RecTracks plus (optionally) also initial

assignment probabilities between tracks and vertices.

Fit vertices, using the assignment probabilities.

Recompute assignment probabilities.

Repeat until convergence.

Note that technically the MVF is not a VertexFitter, since a VertexFitter is an algorithm
that delivers one and only one CachingVertex. The MVF is its own category; it does not
derive from any super-class.

Caching in MVF To speed up the somewhat slow MVF it has been tried to intro-
duce caching of the LinearizedTrackStates. To this end, the standard SequentialVertexFitter
had to be adopted to exploit the MVF's cache. So far studies have shown no significant
improvements in CPU performance.

5.5.1 Implementation

The MultiVertexFitter is not a VertexFitter, as can be seen in Fig. 5.9. Similar to the im-
plementation of the AVF it, too, recycles many classes that have been written for the
linear vertex fitters. In the case of the MVF, a complete KVF is used internally — the
MVF is quite literally implemented as a set of weighted Kaiman filters run in parallel.
The linearized track states are saved in LinTrackCache between the iteration steps. The
AnnealingSchedule has been introduced in the AVF and is recycled here.

5.5.2 Verification of the MVF

Events were generated with two vertices. A primary vertex at (0,0,0) had 5 tracks attached
to it, the tracks forming a jet with total jet momentum ppTim = (0,25,25), and opening
angle=0.5. At (0,0,0.2) a secondary vertex was positioned with 3 tracks, jet momentum
Psec = (—15,0,20), opening angle=0.5. All tracks were "perfect", i.e. the errors were
Gaussian and correctly described by the tracks' covariance matrices.

Afterwards the track of the primary vertex that is most compatible to the secondary
vertex was selected, and vice versa. Those two tracks were moved to the "wrong" vertices
— the primary track was assigned to the secondary vertex and vice versa, see Fig. 5.10.

These two track bundles with one mis-associated track in each bundle were now the
input for the verification procedure that compares the MVF to the AVF and the KVF.

5.5. MULTIVERTEXFIT 85

KalmanVertexFitter
+vertex(vector < RefCtdVtxTrack >): CachingVertex const

AnneallngSchedule
+anneal()
+resetAnnealing()
+phl(chl2.-double): double const
+velght(chl2:double): double const
•Klonet): AnneallngSchedule * const

LlnTrackCache
+\inTrack(61oba\Point,RecTrack) : RefCtdLinTrackState

1)

MuKiVertexFttter
+vertices(vector < vector < RecTrack > >): vector < CachingVertex >
+vertices(vector •« CachingVertex >): vector < CachingVertex >
•vertices(vector < vector < TrackAndWeight > >): vector < CachingVertex >

FIGURE 5.9: Implementation of the multi vertex fitter

Venn 2mm -O

FIGURE 5.10: MVF code verification: Track swapping

Fig. 5.11 shows a comparison of the final flightpath resolutions2, and Fig. 5.12 shows the
assignment probabilities of each track to each vertex of the AVF versus the MVF. Note that
the AVF and the KVF vertices cannot recover the mis-associated tracks. The AVF can
down-weight the outliers, but not recover the tracks that landed in the wrong track bundle.
The effect of this missing information on the "flightpath resolution" is nicely documented
in Fig. 5.11; the KVF has a huge bias, the AVF can down-weight the outlying tracks that
cause the bias, but it "sees" fewer tracks than the MVF. As a result, the AVF exhibits a
wider resolution plot compared to the MVF.

The most direct code verification is Fig. 5.12. Here we see directly the track weights
of AVF versus MVF. The plot shows 10000 events with 8 tracks and 2 vertices per track,
resulting in 80000 correct track-to-vertex associations ("inliers") and 80000 wrong associa-

The flightpath is the distance between the primary vertex and the secondary vertex.

86 CHAPTER 5. VERTEX FITTING

1 Rlghtpaih resolution, KVF I

300

250

200

150

100

50

/

'-

-

A
\

\X
V

° 0.1 0.15 0

Stats
Entries 6916
Uran 0.1335
RMS 0.02598
Constant 26Z6±4.4
Mean 0.1109± 0.0016
Sigma 0.03729 ± OJ00089

2 0.25 0.3
d(cmj

I FUghtpath resolution, MVF |

700

600

500

400

300

200

100

E- ' J
r 4

" 0.1 0.15 0

I Fllqhtpoth resolution, AVF I

500

400

300

200

100

1
1
 (

1
 1

'"• Û

0 0.1 0.15 0

\

Slats
Entries 8834
Mean 02001
RMS 0.01639
Constant 636.8 t OS
Mesn 0.2002 ±0.0001
Sigma 0.0137310.00013

\ \

l\
l \! \ l

•

2 0.25 0.3 ;

i . _ d . I c m I 1

\

\ \

\ \

i \
! \

a.

stats

Entries 9755
«ran 0.1993
RMS 0412574
Constant 397.1 ± 6 J
Mean 0.199110.0002
Sigma 0A210510J0024

0J5 0 J
d[cm]

FIGURE 5.11: Flightpath resolutions for the different fitters. The blue line denotes the
true value.

tions ("outliers"). It can be seen that both algorithms almost always identify the outliers.
The AVF fails to identify only three outliers; the MVF is a bit worse in this case: roughly
30 tracks are assigned to a vertex that is not the right one. In the case of inliers an ideal
AVF can only do right in 60000 cases; 20000 tracks are mis-associated from the very be-
ginning and cannot be recovered. We see that the implementation comes very close to
the theoretical limit. Only a rough 450 inlying tracks (less than one percent) are down-
weighted when they should not be (Xcut = ^)- The MVF performs similarly with respect
to its own theoretical limit, only its theoretical limit is much higher. About 400 tracks
have a weight close to zero where the right weight would be one or close to one.

5.5.3 Future ideas for the MVF
A short term development of the MVF will be the introduction of additional "hard as-
signed" tracks; tracks that are associated to one specific vertex, with the association being
in a "frozen" state. This additional feature will be used to exploit knowledge that comes
from external sources. As a longer term development a generalization of these "hard as-
signed" tracks would be desirable; it would be nice to implement a framework for any kind

5.6. PRIOR INFORMATION 87

1 Assignment probabilities, VertexGun |
•i

0.8

0.6

0.4

0.2

0

—

338

1

79966
46

2

g

16

2
4

Legend fa
• Infers 1
Ljuuiiiers _ | 1

5 58876

249

38

24

24
20400

, , , I , , , I , , , I . , . l . , ,
A A «* A A A C A O 4
W V . & V*-9 W.V V.W

MVF

i
1
i

i

i

FIGURE 5.12: Comparison of the assignment probabilities, AVF versus MVF.

of constraints, be it on the tracks, its weights, or a quantity related to the vertex. A way to
achieve this could be to interact with the kinematic package [79]. This package implements
kinematic constraints via the Lagrange multiplier formalism.

5.6 Prior information
A vertex fit can also make use of a prior knowledge of the vertex. This prior information is
used as a linearization point with finite errors. The number of degrees of freedom is raised
by three. All our fitter implementations can deal with such a prior information. One use
case for this feature is to feed a fitter with the knowledge of the beam profile. This makes
sense if it is known that the vertex that is to be fitted is a primary vertex.

5.7 The Gaussian Sum Filter (GSF)

The GsfVertexFitter (GSF) [53] is the vertex fit's equivalent to the GsfTrajectoryFitter [20,
21]. It is not part of this PhD thesis. It appears here merely because it is possible to
combine the GSF and the AVF - see next section. In the vertex fitting context the concept
of the GSF may be described as follows: the track parameters in ORCA can not only
be described in a Gaussian model, but also as a mixture — a sum — of a number of
Gaussians. Each component of the mixture is assigned a weight. This more detailed
information can be exploited when fitting a vertex. In the Kaiman formalism this implies
that whenever a vertex is updated with a multi-component trajectory state, the result is a
multi-component vertex, the number of vertex components being the previous number of

88 CHAPTER 5. VERTEX FITTING

vertex components times the number of track components. The Bayes theorem is used to
compute the component weights. Since the procedure explodes computationally, trimming
needs to be performed to keep the number of vertex components at a reasonable number.

5.8 GSF and AVF

The GSF can also be combined with the AVF; one can use the GaussianSumUpdator instead
of the default KalmanVertexUpdator in the Adaptive Vertex Fitter. That way we end up with a
vertex fitter that "decides" for the most plausible component within a TrajectoryState, while
it can also down-weight entire TrajectoryStates within a vertex fit. This combined algorithm
has not been anticipated; the idea only came after all the necessary code has already been
written (except for a very few lines). This fact can be taken as a good confirmation of our
design choices.

Fig. 5.13 depicts a few code verification tests. The test shows resolution in x (top row)
and the pulls in x (bottom row) of the GSF algorithm (left column) and the combined
AdaptiveGSF (right column). Input data were 4 tracks with two Gaussians as the track
parameter distribution. The track errors are described correctly, only one track comes
from another vertex. Implementation and study of the AdaptiveGSF (including the plots
above) are work done by Thomas Speer [53]. No contribution to the AdaptiveGSF has
been done in the context of this PhD thesis.

5.9 GSF and MVF

It is conceivable that the MVF is used in conjunction with the GSF: one can use a GS-
FVertexUpdator in the MVF. This has not been tried yet.

5.10 Derivation of the adaptive methods

Literature so far knows of two ways to motivate the weight function Eq. (5.4) from more
general principles. The two deductions shall briefly be performed here; a less powerful but
novel derivation from a quantum mechanical analogy will be given afterwards.

5.10.1 Statistical approach

The weights in Eqs.(5.4) and (5.11) have so far been introduced without any further ex-
planation. This section is dedicated to an a posteriori derivation of the algorithms. The
adaptive fitter can be seen as a special case of the multi vertex fitter, so we shall from the
very start allow for nv vertices. In that case, the estimation of the vertex can - in full
analogy to track fitting [54] - be formulated as the problem of finding the minimum of the

5.10. DERIVATION OF THE ADAPTIVE METHODS 89

GSF AdaptiveGSF

G
.2
"3

_
I

u: J
Mean
R M S

V/ndf
Constant

LMcan
VSigma

O.3438K-O2
0.3966E-0I

331.1 / 79
442.7

0.880012-0.1
0.25O912-01

Mean
RMS

li X=/ndf
Ml Constant
HMean
VSigma

0.1589K-O2
0.40I0K-O1

343.2 / 81
442.6

O.965OE-O4
o.250yi!-oi

-0.3 -O.2 -0.1

CO

%

OH

450

400

350

300

250

200

150

100

50

1.145
101.8 / 65

401.6
0.5442E-01

0.9726

0.238912-01
1.079

101.9 / 63
426.7

0.I308K-OI
0.9154

FIGURE 5.13: Comparison of the GSF with the AdaptiveGSF fitter

following objective function:

t = i

(5.12)

Here xv denotes the location of the vertex v, the index k runs over the vertices, whereas
index i refers to track i. M^ is the squared weighted distance of track i to vertex k. The
assignment variables S^ are either 1 or 0; Sik describes whether or not track i is part of
vertex k. In the multi vertex fit scenario we introduce competition between the different
vertices — again, in full analogy to the DAF track fitting method. Thus we introduce the
constraint

= O or (5.13)

90 CHAPTER 5. VERTEX FITTING

Usually it takes at least two tracks to fit a vertex. This, too, could in principle be
translated into a constraint. It is not clear to the author whether it makes sense to
incorporate such an additional constraint. The only thing that seems evident is that it
complicates the derivation significantly.

5.10.2 Effective energy

The energy function Eq. (5.12), together with the constraint Eq. (5.13) completely defines
the statistical problem. In order to transform the combinatorial problem into a continuous
problem we add noise in the form of a Boltzmann distribution [75]:

e-ßE({Sik})
P({Sik}\xl) = , (5.14)

where Z is the partition function:

Z= Y, [d3nv£ie-ßE«s<k» (5.15)

ß denotes the inverse temperature 1/T. The next vital ingredient is the marginal proba-
bility

X) } | x i) (5.16)

Not all configurations of {5^} satisfy the constraint Eq. (5.13). Let the "legal" set of
configurations S be defined as:

S = {S\S legal}

S legal & as(i) = 0 or 1 Vi (5.17)

The marginal probability is now computed:

ZPM{x{) =

ses

ses

We introduce the function

0 if<7S(i) = 0
vertex index of track i if crs(i) = 1 \ • J

It is thus always true that:
0 < as(i) < nv (5.20)

5.10. DERIVATION OF THE ADAPTIVE METHODS 91

With the as the marginal probability function can be rewritten:

ses

- EIK**"""'
ses i=i

ses i=i
m

- V I T [5 r\ne-ßy

— / I I Jetait) 0e

ses i=i

Summin01 \ir> over the le^al corifiguration yields:

(5.21)

nt

ZP M

t = i

nv

jt=i

(5.22)

The effective energy can now be defined as:

Local extrema fulfill:

dMa\

dMu = 0

(5.23)

(5.24)

(5.25)

with the weights wu that are exactly as in Eq. (5.11).

5.10.3 EM algorithm

Another theoretical motivation for the weights Eq. (5.11) can be given via the well known
expectation-maximization (EM) algorithm [42]. The EM algorithm can be seen as an
extension of the maximum-likelihood method in the presence of non-observable data. We
consider the tracks pi to be our observed data; the vertex positions Xf. are the parameters
that are to be estimated, yi denotes the vertex index of track i (0 < fji < m,i — 1 • • • n)
and is considered unobservable. Assigning a value of zero to the index yi denotes a track
that is not assignable to any vertex. To make for a more pleasurable reading experience
we shall also introduce 9 = (x\, • • • ,xm). The complete density function now reads:

/c (PU • • •

n

, yn\v) =Y[f (pi, Vi\0)
t=l

(5.26)

92 CHAPTER 5. VERTEX FITTING

The partial density function (pi,yi\9j is in our case:

/ (ä,Vi\0) = (pi\Vi = k,e)p (yt = k\6) = e~^M^p (yt = k\0) (5.27)

As always, zero correlations between the tracks were assumed. The prior probabilities
P [Vi = k\6) can be used to specify prior knowledge of track-to-vertex association. If the

prior is non-informative (uniform), as is usually the case, it drops out of the formalism.
For the rest of the derivation, such a non-informative prior will be assumed. According
to the maximum-likelihood principle, the estimate of 9 is the value that maximizes the
log-likelihood of the observed data:

) (j ^ c (p i , • • • ,pn,Vi,--- ,yn\0) (5 .28)
i

Further,

i = k\pu e) = V } = 1 (5.29)

Since yi = 0 denotes non-assignable tracks, Mi0 introduces a "cutoff" for true outliers:
0 = Mcut.
The EM algorithm consists of two steps:

• The E (expectation) step

^ p , , - - - ,pn,yu--- ,yn)\pu--- , p n ,

translates into the computation of the weights, while

the M (maximization) step

re-fits the vertices given the computed weights.

For the computation of the weights:

n - m —M-k m n ..

Q fe<>) = £ -±Mik Y: e-^~e-é^ + e-è^ = ̂ ^ -±Mikwik (5.30)

Again, the choice of the weight function in Eq. (5.11) has been derived from basic principles.

5.10. DERIVATION OF THE ADAPTIVE METHODS 93

5.10.4 Quantum mechanics

Another interesting proposal for a pattern recognition algorithm has been proposed re-
cently [64]. The method exploits an analogy with quantum mechanics: the data points
are "smeared out" with a Gaussian distribution, then superimposed. This distribution is
interpreted as a quantum mechanical wave function. The minima of the corresponding
potential are then considered the center of the clusters. This section shall establish a
relationship between this quantum mechanical metaphor and the adaptive methods.

Let Xi denote the spatial position of a data point i, and Vj denote its error. One can
now define:

Sxi = (x-Xi) (5.31)

X? = 7â(S;x^ = S^V^SSi (5.32)

In the above equation a (scalar and dimensionless) "temperature" T was introduced. The
normed sum of the fa

n
i

shall be interpreted as the lowest ground state of the Schrödinger equation

/ h2 -. \
Hip(x) = -—V2 + V(x) ipix) = Eip(x) (5.35)

V 2m)
with

At this point unfortunately generality has to be sacrificed. We specify to the unpleasantly
special case that the error matrices are the same and a multiple of the unit matrix:

Vi = V • 1 (5.37)

This constraint reduces the covariance matrix to a simple scale factor that will eventually
be expressed as a function of T. With this constraint we can formulate:

Since V is degraded to an overall scale factor, it serves a similar purpose as the temperature
T that we introduced at the beginning. T can thus be described as a function of V. We
choose:

2nmV

94 CHAPTER 5. VERTEX FITTING

. Choosing the total energy of our system to be E = §T, one arrives at

MT (5-39)

The task of minimizing this function is now again mathematically fully equivalent to in-
troducing the weights in Eq. (5.4), except for the lack of the Xcutoff term. Unfortunately
the covariance matrices of the data points in Eq. (5.37) had to be discarded. This breaks
the analogy. Still, a striking similarity is visible between the adaptive method and this
method which introduces a clustering algorithm via a quantum mechanical analogy. Pos-
sibly, a (classical) field theory could be used as well.

CHAPTER 6

Performance studies

This chapter is dedicated to in-depth studies of vertex reconstruction strategies in
selected, relevant and realistic physics channels. Both vertex fitting and vertex
finding algorithms are covered. Special emphasis is put on application of vertex re-
construction strategies to the ft-tagging task.

95

96 CHAPTER 6. PERFORMANCE STUDIES

6.1 Vertex fitting

The PrincipalVertexReconstructor (see Sec. 4.4.2) can, if we consider only the "leading ver-
tex" , be seen as a robust vertex fitter that works with hard assignment and is based on the
statistical track-to-vertex compatibility. Considering this, it is of interest to compare the
PVR with the AdaptiveVertexFitter; it is a "fair" comparison between a method that works
with soft assignment and a similar one based on hard assignment.

This comparison was performed in four channels: cc (jet filtered), qq (jet filtered),
J/iJj 4> and r —> innr. In the first two cases the primary vertex had to be fitted, with
the tracks from the hadronic jets serving as a source of contamination of the data. In
the latter two channels no mis-associated tracks were considered. Mis-measured tracks
were the only source of contamination. The standard CombinatorialKalmanTrackFinder was
used for track reconstruction. A lot of attention was turned to making sure that the
comparison is fair: both algorithms use the DefaultLinearizationPointFinder and the Kalman-
VertexUpdator. For the PVR a facade class was written: the PrincipalVertexFitter (PVF):
a vertex fitter that returns the vertex with the highest track multiplicity found by the
PrincipalVertexReconstructor. This PrincipalVertexFitter used the VertexCompatibility3D to
determine track-to-vertex compatibility. In order to have a legitimate baseline, both algo-
rithms were also compared with the standard KaimanVertexFitter. The study also tried to
evaluate how "tunable" these algorithms are, how much the result depends on the most
sensitive parameter. For the AdaptiveVertexFitter this parameter clearly is the "cutoff" pa-
rameter. The annealing schedule has already been shown to play a less crucial role; the
default (T;nj = 256; r = 0.25) schedule was considered. In the PVF case it was decided to
change both the VertexTrackCompatibility and the VertexFitCompatibility criterion
in sync - one parameter had always the same value as the other. The fitters were run over
5000-10000 events per channel.

6.1.1 Results

Figs C.I, C.2, C.3, C.4 in the appendix nicely demonstrate the superiority of the AVF over
the KVF even in the absence of truly mis-associated tracks (in the J/ip 4> and r channels).
The difference becomes particularly convincing in the presence of outliers, as is the case in
the cc and the qq channels.

A comparison with the PVR is more subtle: Figs 6.1, 6.2 and C.5, C.6 show detailed
results of the analysis in various event channels. A few general tendencies can be summa-
rized as follows: Both algorithms produce roughly the same results. The resolution plots
as well as the plots of the standardized residuals look very much alike. One clear asset of
the adaptive method is that it is more reliable: in all event channels there has not been
one single "failure". When plotting the resolutions or the standardized residuals, the AVF
tends to produce more events in the same interval. Sometimes this difference in the number
of events in a given interval can be quite significant (e.g. 5464 events versus 4744 in the
z resolution plot in the J/ip 4> channel, see Fig. 6.1). Only the z resolution plots in the r
channel deviate slightly from this rule. Another major difference is the CPU consumption,

6.2. VERTEX FINDING - COMPARISON OF "GEOMETRIC" SCORES 97

as the following table shows:

T

CC

QQ

CPU time
PVF
3 ms

2-3 ms
100 ms
120 ms

per event
Adaptive

3 ms
2-3 ms
24 ms
25 ms

It is, though, important to note that the PVF in its current implementation still fits
more than one vertex. The secondary vertices are discarded only afterwards. The table
given above will have to be re-evaluated once a stopping mechanism is introduced in the
PVR/PVF.

Ultimately it is safe to state that the AVF should be treated as the new default method.
In realistic scenarios it outperforms least-squares techniques, even in the absence of truly
mis-associated tracks. The PVF and the AVF perform roughly equally well, but the AVF
tends to be more reliable and a lot more "efficient" in the sense that in more cases the AVF
produces sensible results. The AVF is also the more general approach. The weights that
were introduced carry information that can be used in "higher level" code, like a kinematic
fit or a 6-tagging algorithm. It will be very interesting to see how well this new piece of
information can be exploited by the user.

6.2 Vertex finding - comparison of "geometric" scores

In order to compare performances of the various vertex reconstructors, comparison with the
Monte Carlo truth is a possibility. How vertex reconstruction results are exactly compared
with Monte Carlo truth, is not straightforward. In the vertex package this comparison is
based on the notion of performance estimators. Every performance estimator is a measure
for a specific aspect of the congruence between the reconstructed event and the simulated
event. In vertex we find the following set of performance estimators:

• A VertexFindingEfficiencyEstimator measures the fraction of TkSimVertices which are
correctly reconstructed.

• The VertexTrackAssignmentEfficiencyEstimator reports the efficiency with which tracks
are correctly assigned to a RecVertex.

• The VertexTrackAssignmentPurityEstimator estimates the purity of the track to vertex
assignment.

• Finally, the VertexFakeRateEstimator reports the fraction of RecVertices which can
be considered fake.

These estimators form a solid base for algorithmic comparisons. In order to compare
algorithms the following issues have to be addressed:

98 CHAPTER 6. PERFORMANCE STUDIES

• MC truth meddlers: the choice of which tracks and vertices shall appear in the
SimEvent is not trivial. Particles that are too short-lived to be visible should not
be listed as a decay vertex. The definition of short-lived, though, may depend on
the context. Development of "MC truth meddlers" has begun only recently, see
Sec. B.1.2.

• Scalar score function: For an optimization package it is necessary to have an
objective function. The objective function must be a scalar that describes the quality
of the reconstruction. A score function based on a comparison with the geometric
MC truth has been implemented, see Sec. B.I.I. It is a function of the performance
estimators listed above. In fact it is simply a product of the performance estimators,
all raised to a configurable power.

• Tuning framework: Given an objective function, one can tune algorithms against
this function. This is done in a separate vertex package: the TuningTools - see
Sec. B.I. The package is (currently) designed to optimize any single tunable param-
eter. For every reconstructor that is to be tuned, a separate wrapper class is written
that defines how the parameter is set. The framework then allows to automatically
tune the parameter and optionally compare against a baseline.

6.2.1 Results

A specific set of algorithms has been fine-tuned and compared against one another. Figs. 6.3
and 6.4 show a summary of the vertex finders in different event topologies. DetAnneal
uses the default configuration of Lyon's deterministic annealing algorithm (Sec. 4.5.5).
AggloIP refers to agglomerative clustering based on cluster representatives, AggloCAOH
is agglomerative clustering based on the distance matrix, and AggloApex is based on apex
points, see Sec. 4.4.1. KMeans denotes the k-means clusterer, Sec. 4.5.3. Because it is
non-trivial to translate these results into physics performances, they shall not be discussed
too deeply. It should be mentioned at this point that work has started on relating these
"geometric" studies to physics performance. It can be noted that the PVR, compared with
AggloIP, tends towards smaller secondary vertex finding efficiencies, but also towards lower
fake rates. This seems to be a fairly general feature; a similar behavior will emerge in the
more physics oriented 6-tagging analysis.

6.3 Algorithmic complexity

A test was performed to evaluate the algorithmic complexity of a certain set of vertex
finders. The test was run on a 2.8 GHz Intel Xeon. Fig. 6.5 shows the CPU time of
the algorithms (in ms per event) as a function of the number of tracks. The number of
simulated vertices in an event equals 1 + r • ntraCks/4, where r is a random number between
0 and 1. The HLT time budget (40 ms in 2007; « 100 ms on a 3GHz PC) is also shown.

6.4. VERTEX FINDING IN THE CONTEXT OF ß-TAGGING 99

6.4 Vertex finding in the context of 6-tagging

Two B or not two B?

William Shakespeare, "Hamlet"

One of the currently most prominent applications of secondary vertex finding is the task
of 6-tagging, i.e. the decision about whether or not a given jet comes from a 5-meson. The
6-tagging package [103] in ORCA co-evolved with the vertex package, the latter having
started a little earlier. During the final stages of this thesis the 6-tagging framework
matured into a usable piece of code.

6.4.1 Setup

The 6-tagging task can but does not have to exploit secondary vertex information. A lot of
different kinds of data are usable for 6-tagging. Also, a lot of methods for 6-tagging have
been conceived in ORCA [103]. The most general approach is one that uses a few different
algorithms in a combined fashion — see the aforementioned reference for further details.
The 6-tagging package introduced an abstract "discriminator" value, which describes the
"level of strictness" for a jet to be 6-tagged. In a future release, it will be given as a
probability — it will take values between zero and one. For the time being, though, it
is a somewhat queer parameter that has values between 1 and infinity, and has no direct
interpretation. The plots that show 6-tagging efficiencies versus discriminator cuts (Fig. 6.6
and the following figures) show this discriminator parameter. The other plots in this section
do not explicitly name a discriminator cut. A cut=1.0 is taken in those cases. The analyses
in this section use the "BySecondaryVertex" 6-tagging method. This method is known not
to be optimal; the absolute 6-tagging efficiencies are thus irrelevant. This method is chosen
because the effects of secondary vertex reconstruction on 6-tagging are more prominent.

6.4.2 Results

Fig. 6.6 together with an entire subsequent throng of figures show the results of the 6-
tagging performance analysis. The plots show parameter scans of the algorithms (blue
lines in top row) and the default setting of the same parameter (red crosses in top row).
The other six plots on the page below the top row refer to the default parameter setting
(i.e. the red crosses in the top row). The efficiency versus cut and efficiency versus mass
plots in the second row exploit the discriminator parameter of the 6-tagging package. The
discriminator is tuned against one specific algorithm! The results of the second row are
thus still very preliminary, as long as optimizations are still missing. Work has begun in
the 6-tagging group on an automatic tuning tool. The plots in the two bottom rows, the
multiplicity distribution and the mass-at-vertex distribution, show two typical variables
that the 6-tagging package exploits if one chooses discriminator cuts > 1.0. The more
distinguished these variables are from each other in the different event topologies, the
more can be gained by exploiting this information in the 6-tagging algorithm. Finally let it

100 CHAPTER 6. PERFORMANCE STUDIES

be mentioned that the mass and the multiplicity variables respect the track weights. This
fact is particularly visible in the (fractional) multiplicity distributions of the MVF-based
algorithms.

6.4.3 PVR performance in ^-tagging

The PVR stands as the baseline against which all other algorithms are tested. Fig. 6.6
shows the performance profile of the method. "Default-PVR" is the DefaultPrincipalVer-
texReconstructor; the "PVR" series consecutively assigns values from 0.0005 to 0.50 to the
parameters VertexFitProbabilityCut, TrackCompatibilityCut, and TrackCompatibilityCutSV.
The results show a baseline that settles at « 68% efficiency, while it maintains « 8% and
29% fake rate in qq and cc events, respectively. The mass and multiplicity distribution
plots suggest a decent separability in these two variables; this information is not taken into
account in the top row.

6.4.4 The agglomerative clusterers in 6-tagging

One of the main assets of the agglomerative clusterers is speed, see Fig. 6.5. Apart from
CPU performance, they tend to feature both high efficiencies and fake rates, Figs. 6.8
and 6.10. An interesting combination is an agglomerative clusterer in conjunction with an
MVF, Figs. 6.9 and 6.11.

6.4.5 The MultiVertexFitter in 6-tagging

The MultiVertexFitter itself does not solve the pattern recognition problem; it can only work
on a prior solution. Thus it makes most sense to compare solutions found by a certain
vertex reconstructor with the solution found by the vertex reconstructor plus the MVF.
Fig. 6.12 shows such comparisons. It shows a parameter scan of different algorithms, and
plots the 6-tagging efficiency versus fake rate, where fake rate is the ratio of false positives
in cc or qq events. The same parameter scan is repeated with a multi vertex fit applied to
the solution found by the reconstructor. The MVF is performed with the default values
(Xcut = 20, T,ni = 1024, r = 0.2). The general trend seems to be a decrease in the fake
rate that is sometimes accompanied with a small deterioration of the 6-tagging efficiency.

6.4.6 Non-hierarchic clustering methods

The non-hierarchic methods are considered not mature enough to show any meaningful
results. Preliminary tests so far have given results that are comparable with the hierarchic
methods. Fig. 6.13 shows the results obtained so far for the super-paramagnetic clusterer
(SPC), the vector quantization algorithm (VQ), and the k-means algorithm (KM).

6.4. VERTEX FINDING IN THE CONTEXT OF ff-TAGGING 101

6.4.7 The adaptive vertex reconstructor

The adaptive vertex reconstructor (AVR) has been introduced only very recently, see
Sec. 4.4.2. The first impressions (Fig. 6.14) are very interesting, especially in the light
of CPU performance (Fig. 6.5). A very notable feature is that the MVF does not have
the "cleaning effect" that it has in combination with other algorithms. This algorithm is
a good candidate for the online reconstruction task. More systematic studies are on their
way.

6.4.8 A "group picture" of algorithm performances in fr-tagging

Fig. 6.15 shows a "group picture", for better comparison between the different presented
strategies. Note that if the best performing points from each algorithm were connected
with each other, one would end up drawing a monotonously increasing line — a "maximum
performance wall". Are there algorithms beyond that "performance wall" ?

6.4.9 A "group picture" of the preliminary algorithms

It is also interesting to see where the immature algorithms stand, compared with the
baseline. Fig. 6.16 serves this purpose.

6.4.10 Summary — vertex finders in the 6-tagging context

It is clear that the task of studying the effects of vertex finders on 6-tagging has only
started. Before systematic studies can be performed, a few more analysis tools will have
to be written. A tool that automatically tunes the discriminator ([103]) variable against
variables like mass at vertex and track multiplicity still needs to be written; work on such
a tool has just started. The correlations between geometric and 6-tagging scores will have
to be understood better. A few studies will need facilities to manipulate the Monte Carlo
truth in different ways. Also, the performances of the different algorithms should not only
be measured, but also qualitatively and quantitatively understood. Despite this lengthy
todo list, a few features of the current implementations have already surfaced:

• The performance of the PVR baseline is quite solid. Its efficiency / fake rate ratio
seems to be acceptable for many applications, only the CPU consumption of its
current implementation seems to leave a large space for improvement.

• The MVF, too, seems to be a decent algorithm. Its effect tends to be a reduction in
the fake rate, while often being able to maintain the 6-tagging efficiency. It seems to
provide a powerful "cleaning" step after having employed a vertex reconstructor for
the pattern recognition task.

• The agglomerative algorithms tend to exhibit very high 6-tagging efficiencies, but at
the expense of high fake rates. An additional advantage is their CPU performance:
they are extremely fast.

102 CHAPTER 6. PERFORMANCE STUDIES

• The adaptive vertex reconstructor gives very good results at a superb CPU perfor-
mance. It is an excellent candidate for online reconstruction.

• The apex point concept, prototype-based approaches, and "super-finders" could not
yet be shown to increase performance. However, it is certainly premature to discard
those ideas at this stage.

6.4.11 Vertex finding - correlation between geometric and ^-tagging
scores

In order to understand the performances of VertexReconstructors in ft-tagging it is also im-
portant to establish a link between geometric scores and 6-tagging performances numbers.
The geometric scores are needed for in-depth understand of the algorithms, whereas the
fc-tagging scores connect to the physics analysis world. Fig. 6.17 shows a few plots of how
these quantities correlate; it shows various kinds of vertex reconstructors run over 2500
bg and 5000 qq events, in ORCA_8_2_0. 6-tagging related quantities are plotted against
geometric performance estimators. Correlations between 6-tagging scores and geometric
scores are visible. Algorithms that assume a fixed number of reconstructed vertices fall
out of the general tendency. This is documented in Fig. 6.17. It is necessary to state that
the only "fixed number reconstructor" currently used in this picture is the MVF with a
"BSeeder" — a very recent, experimental special purpose seeder for the MVF, that pro-
duces only one secondary vertex candidate at a certain distance along the jet axis (obtained
by calorimetry information) from the primary vertex. A deeper understanding is desirable.
Also the dependence on MC truth meddlers (Sec. B.I.2) is of interest. If the right MC
truth meddler is implemented, and strong correlations between the "modified" geometric
scores and 6-tagging performance numbers are established, then the vertex finding algo-
rithms can be analysed in great detail in a physics-oriented context. Quite some work still
needs to be done to reach this level of sophistication.

6.4. VERTEX FINDING IN THE CONTEXT OF B-TAGGING 103

I Failure (out of 1000), Adaptive fitter. Jip/Q I

ro.5

-0.5

0 >* * • •

0 0.01 0.020.03 044 045 046 047 048 049

Resolution, Jv / », Adaptive, z-coord

600

500

400

300

200

100

S

r n
L

r | l

48 -0.08 -044 4.02 0

J
RMS
Prob

C0Mt>M(Car.
HHnfCan)

Cmtntra

. . i r^*? i i
0.0. 0.04

Stats

•Q-t

1
0.01 S U

4.0002*10.0000»

0.0043M 10.000137

SM71SJW

OJKOMM 10.00091«

0.06
. 1
OX}

d[cm]

I Failure (out of 1000). PVR fitter.

042 0.04 046 0.08 0.1
Ptt'Kul

Resolution, Jv / «• PVR, z-coord

500

400

300

200

100

n

|

n
uft
\

h
a

•kMCon)

Slgn(Con|

1

Stats

3.

3.07T*-n

S3.3S1X09

0.03*03 tOJ»07«

4)46 -044 -042 0 0.02 044 046 048
d[«n]

I Standardized residuals. Jy / ». Adaptive, »-coord |__§tatt

600

500

400

300

200

100

0

6*06

thai «Oil»

RUS 1.2H

Prob 0007X80

C«ta«(Con) Xlltta

MMn(Cara) * 0 1 « » t a 0 1 2 «

ConuanKTaD 2.7U10JM

MaaKTal) 0JM11J7»

snyi.fT.ll)

10
d[cm]

Standardized residuals, ay I«, PVR, z-coord
' ' T—" ' r

I Failure [PVR fitter. J<f / », cut at 0.051 - reasons

Zero

FIGURE 6.1: Comparing AVF with PVF, J/ip <f> channel.

104 CHAPTER 6. PERFORMANCE STUDIES

Failure (out ot 1000). Adaptive titter, OP I

0.01 0Ü3 0.03 0.04 0.05 0J06 0.07 0.08 0JO9

Failure (out ol 1000). PVR titter. CO 1
3 r

Resolution, qq, Adaptive, z-coord I

800

700

600

500

400

300

200

100

0

-

— 1 \

• T i i i i . I . • . • w f T T i , . . i .

Stats

UMn .1.21*09

Prs6 3909*10
C M M C e n) 9 1 U 1 1 U
llMn(Can} 2.101*0912477*09
SlgmtCon) a0O19791O00D019
CamtantfTall) 9O219.0
HMnfTafl) -1.177*0911.199*04
Ston^TWI) 0.006S352 Q.CD01 TO

I Resolution, qq, PVR, z-coord I

607.9112.9

t 2.791*09

OO3197910.O30OS9

71.131 U 2

0.0098« 10.000199

TO*

0-00J7»

d[cm] dlcmj

[Standardized residuals, qq, Adaptive, z-coord I

700

600

500

400

300

200

100

0

unOCT
1.176
0.163

RMS
Prab
ComttntlCon)
HwKCon)
SlgmalCora) 1J325t 0.010
ConramfTHI) 2.11110.287

0t 1.1Slgm»(T.D)

[Standardized residuals, qq, PVR,z-cooi

700

600

500

400

300

200

100

Stats

Uran 0.01205
RMS 1.1H
Prob osam
ConKjnKCoc) MO2 tu
Man(Con) 0.012S110JJ12O»
8lgm.(Cor.) 1JM 10.01
Con9Um(T9lI) 120610J06

0J24311J1TI

10
d[cm]

10
d[cm]

I Failure [PVR titter, qq, cut at 0.051 - reasons

Zero

FIGURE 6.2: Comparing AVF with PVF, qq channel.

6.4. VERTEX FINDING IN THE CONTEXT OF B-TAGGING 105

AgglolP
-PVR
AggloCAOH
Agglo Apex

-KMeans
DetAnneal

I Scores as a function ot event topology- | Efficiency of •acoiidMyVftic— M • function of «wot topology. | I AgglolP
PVR
AggloCAOH
Agglo Apex
KMeans
DetAnneal

45 H *? «3 11 U *;
* ' *f 5 1 5f 5* 5j sJ

FIGURE 6.3: "Geometric" comparison of algorithms. Left: absolute scores. Right: sec-
ondary vertex finding efficiencies.

S
Fake rate as a function of event topology.

u
0.7

0.6

0.5

0.4

0.3

03

0.1

n

'-

'--

'-

AgglolP
PVR
Agglo C
Agglo A

—KMeans
-OetAnn

\>

AOH
pex

sal

n *-i n H n n

I CPU consumption as a function of event topology. I

3000 «

«500
E

i
1500

n H il

AgglotP
-PVR
-AggloCAOH
Agglo Apex

-KMeans
DetAnneal

U H H Si
i Si « f

FIGURE 6.4: "Geometric" comparison of algorithms. Left: fake rates. Right: CPU
consumption.

106 CHAPTER 6. PERFORMANCE STUDIES

Algorithmic complexities
900

E
5*800
Q.

°700

600

500

400

300

200

o

M
M

I
M

M
I

I I I I I I
I I I I I

I I I I
1

1 1
1

I I I I I I I

0 10 20

Algorithmic complexities

§000
Q.
O

800

600

400

200

o

- -

-

—

—

—

—

0 10 20

Legend
PVR

AgglolP
«Means
DetAnneal
AVR |

oio HLT budget ;

jf\}V

/

i i i I i i i—i—I r~ i i i i i i i i I i

j

!

30 40 50 60
"tracks

(I ,

Legend i
MVFPVR

MVFAgglo
MVFAgglolP

o'o HLT budget |

i i i ! i i i i 1 i i i i 1 i i i i 1 i

i
i

i

30 40 50 60
"tracks

FIGURE 6.5: Algorithmic complexities, empirical tests.

6.4. VERTEX FINDING IN THE CONTEXT OF 5-TAGGING 107

I Efficiency versus Fake rale, b-tagg.ng

I "
0.65

as

ass

as

0.45

— PVR

Default

0.01 0JO2 oM O04 0.05 aOS 0J)7 0.06 0.0» 0.1
Fakarata(qq)

I Efficiency versus fake rat», p-tagalno. I

I 0.7
ii

0.65

0.6

ass

as

0.45

PVR

— Default

0.18 O2 0.22 O24 0.26
Faka rata (ce)

I Efficiency va discriminator cut. PVR5 I I Efficiency va mass at vertex. PVR5 I

ip-

1 1.5 2 2.5 3 3.5 4 4.5 5

I Multiplicity distribution, PVR5<bb) I

250

200

ISO

100

60

-

-

—

Stats

Haan 4.1*5
RMS 1417

.1.1.. _
Multiplicity tfitrtbutton

1 Multiplicity distribution, PVR5{cc) J

200

180

160

140

120

100

SO

40

20

-

r

r

--

--

r

:

Statt

Uaan 3.178
RMS 1.S45

1,
% 2 4 6 8 10 12 14

Multiplicity dl.tribuilon

1 Mass at vertex, PVR5(bb) |

so

60

40

20

1
T) 5 10 IS

Stau
Entfias 1038
Maan U38
RMS X887

20 25
Ibaaatwrtex

1 Mass at vertex. PVR5(cc) 1

70

so

'm

% S 10 15

Stat»
Entrt« MS
Itain 2JK5
RIIS 2.865

20 25
l lMSatVHtU

FIGURE 6.6: 6-tagging efficiency, PVR. PVR parameter scan (top row), 6-tagging effi-
ciency, as a function of the discriminator cut and the vertex mass for the default PVR
(second row). Differences in the track multiplicities between bb and qq (third row). Differ-
ences in the vertex masses (bottom row).

108 CHAPTER 6. PERFORMANCE STUDIES

I Efficiency versus Fake rale, b-tagging \

Stt75

S 0.7

0.55

0.5

• I . . . I) I •

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.03
Faka rata (qq)

Efficiency versus Fake rale, b-taqglnq I

ass

as

—MVF-pvnMaak

i • • • i • • - i • • • i

0.18 O2 O23 O24 O26
Faka rata (ce)

I Efficiency vs discriminator cut, MVF-PVRDe1ault5 I

4.5 5
DbcrMnatorcut

I Efficiency vs mass at vertex, MVF-PVRDefault5 I

4 4.5 5
Has» at «max

Multiplicity distribution, HVF-PVR5(bb) I
250

200

150

100

50

1

-

U _ai

1

111,
6 8 10 12

sut
EntrlM
U«an
RMS

14

1050
4.178
1.792

Multiplicity dbslbutlon

Multiplicity distribution, MVF-PVRS(cc) 1

120

100

eo

GO

40

20

-

'-

r

s
J J.J.I...

Ststs

Item 3416
RMS 1-702

i

10 12 14
UtdtlpUdty distribution

20 25
Mass «vertex

itess at vertex, MVF-PVR5(cc) I

60

so

40

m

20

to

(l
f.
>*ll

StaU

RMS
2317
3J27

20 25
Usss « vertex

FIGURE 6.7: 6-tagging efficiency, MVF-PVR. MVF-PVR parameter scan (top row), b-
tagging efficiency, as a function of the discriminator cut and the vertex mass for the default
MVF-PVR (second row). Differences in the track multiplicities between bb and qq (third
row). Differences in the vertex masses (bottom row).

6.4. VERTEX FINDING IN THE CONTEXT OF fî-TAGGING 109

I Efficiency versus Fake rate, b-taqglng I

HI 0.7

aes

ae

0.55

—Agglo
Default

0.04 0.06 O08 0.1 0.12 0.14 0.16
Faka rata (qq)

I Efficiency versus Faxe rale, b-tagqing I

8 0.6

S 0.75 r

S 0.7'

0.65 j -

ae

OLSS

as

0.45

—Default

0.18 O2 O22 0L24 026 0.28 0.3 0.32

Fain rata (ce)

I Efficiency v» discriminator cut, AqglolO I I EHIclency vs mass al vertex. AgglelO I

4 4.8 5 1 1.6 2 2.5 3 S3 4 4.5 5
Mas« «I vertex

I Multiplicity distribution, AggloiO(bb) j

220

200

180

160

140

120

100

60

40

20

r

I I 1 1 1

i-

Stau
bfltnas
•ten
RMS

1
1 I ,

% 2 4 6 8 10 12 14
Muttlpiicny cOfttnoutJo^

1120
4.<9

Z203

1 Multiplicity distribullon. AgoJoK^cc} |

140

120

100

80

60

«

20

-

~

T

r

Särt»
Entrtm 600
Mtwn 1Ö13
RMS 1-M3

% 8 10 12 14
lluttlpaettydslitbutlon

1 Mass at vertex

70

so

40

30

iillm
m1

AggloiOdf) |

•J IJ-JUL
5 10 16

State
Enmat 1120
Ham
RMS

20 25
•laaaatvartei

«72
4.788

1 Mass at vertex, AnnloKKcc) I

60

SO

40

30

10

1

% S 10 15

Entr
MMT
RMS

30
Masaatv

sati
»

25
Htex

506
2.727
iO89

FIGURE 6.8: 6-tagging efficiency, agglomerative clusterer. Parameter scan (top row), 6-
tagging efficiency, as a function of the discriminator cut and the vertex mass for the default
Agglo (second row). Differences in the track multiplicities between bb and qq (third row).
Differences in the vertex masses (bottom row).

110 CHAPTER 6. PERFORMANCE STUDIES

I Efficiency versus Fake rate, b-tatmlnq

ï°-75r

0 . 6 5 -

ae -

— MVF-Agglo

— Default

0.02 ao4 aoe aos at a i2 ai4
Fake me (qq)

I Efficiency versus Fake rale, b-laqqlng I

3 as

E0.7S

I 0.7

0.65

as

ass

as

0.45

-MVF-Aofllo

-Default

a i 4 0.16 0.18 O2 O22 0.24 028 O28 a3
Fake rate (cc>

Efficiency vs discriminator cm. MVF-Anqlo10 I

1 1.5 2 15 3 3J 4 4.5 6

1 Multiplicity distribution, MVF-AflfllotCKbb) |

ISO

140

120

100

80

60

40

20

;-

j -

r

• r

r

: Id L

StBt*
Entrt»»» m o
Mttn 4.482
RMS 107S

Ï i

• ï

IL,
t 2 4 6 8 10 12 14

MulUplldty attribution

I Multiplicity distribution, MVF-Agglo1Q(c£) |

100

60

40

20

-

: iJ ,p

Statt
Erdrtet 466
Maan U73
RMS 3-O««

F Q „
% 2 4 6 8 10 12 14

Multiplicity distribution

Mass a vertex, MVF-Agglo10(b5) I
«0

so
70

60

40

30

20

HI11
5 10 15 20

Sorti
t m m i
Mttn
RU3

— » • J
25

1110
4.25

4J94

Has* at vertex

Mass at vertex, MVF-AagloKKcc)

50 -

4 0 -

20 P

5 10 15 20

Mean
RMS

Statt

L909
3J12

n 1
m

FIGURE 6.9: 6-tagging efficiency, agglomerative clusterer with a subsequent MVF. Pa-
rameter scan (top row), 6-tagging efficiency, as a function of the discriminator cut and the
vertex mass for the default MVF-Agglo (second row). Differences in the track multiplicities
between 66 and qq (third row). Differences in the vertex masses (bottom row).

6.4. VERTEX FINDING IN THE CONTEXT OF B-TAGGING 111

Efficiency verein Falc« rate, b-tagglnq

SOJX-

| Mi-
lan j-
u :

0.7 r

0.65-

0-6 r

0.65-

0.5 -

0.45 r

O4 -

-Agglo IP

—Default

0.16 0.15 O2 022 034 O26
Fakarata(qq)

I Efficiency versus Fake rate, b-taggina

|o.85

S a 8

10.75 E-

0.7

aes

0.6

ass

as

0.45

0.4

-Agg lo IP
—Default

DAS
Faka rate (cc)

4 4.5 5

I Efficiency vamasa at vertex, AHBIOIP11 I

Multiplicity distribution, AgplolP11(bb) |

ISO

140

120

100

so
60

40

20

o

I...I.
--

,1,

--

--

"-

1

II.,

Statt
fcimiat 1201
Maan <933
RMS M92

10 12
Multiplicity attribution

1 Multiplicity distribution, AgglolP11(cc) |

300-

250 '-

200-

t 5 0 -

1 0 0 -

5 0 -

Ham
RMS

10 12 14
Multiplicity attribution

Mass at vertex, AgglolP11(b6j)

70

60

50

40

30

10

«r

; .

Statt
Entrtat 1201
Maan U35
RUS 5JO3

1 ,HlkiiiââkiiMi
9 10 15 20 20 25

Hasa at vertex

FIGURE 6.10: 6-tagging efficiency, AggloIP. Parameter scan (top row), 6-tagging efficiency,
as a function of the discriminator cut and the vertex mass for the default AggloIP (second
row). Differences in the track multiplicities between bb and qq (third row). Differences in
the vertex masses (bottom row).

112 CHAPTER 6. PERFORMANCE STUDIES

Efficiency versus Fake rate, b-tagqlnq I

3O 0.02 0.04 a W 0.08 0.1 0.12 0.14
Foto rato (qq)

I Efficiency versus Fake rale, b-tagginq I — UVF-AogMP

0.1 0.15 O2 O25 0.3
Fake rats (cc)

I Efficiency vs discriminator cut, MVF-AHBIOIPI 1

4 4.6 5
Dncnnunfltor cut

Efficiency vs mass al vertex. MVF-AqntolP11 I

4,5 S
Mast at vertex

1 Multiplicity distribution, MVF-AgglolPII(bb) 1

160

140

120

too

SO

60

40

20

:_

,l,,,l,,,l,
-r

I
1 k J L

% 2 4 (

sat»
bntnos ii«r
MMn 4.693
RMS 1M8

JJL.
8 10 12 14

Multiplicity distribution

1 Multiplicity distribution, MVF-AaalolPt t(cc) 1

140

120

100

80

60

40

20

-

-

-

r • J

8t«ts
Entrtas &16
MMn 3.703
RMS 2.408

JjJ
1) 2 4 6 8 10 12 14

Multiplicity distribution .

Mass at verte», MVF-AanlolP11(bfc) | [Mass at verte». MVF-ABBIOIPH(CC) I

FIGURE 6.11: 6-tagging efficiency, MVF-AggloIP. Parameter scan (top row), 6-tagging
efficiency, as a function of the discriminator cut and the vertex mass for the default MVF-
AggloIP (second row). Differences in the track multiplicities between bb and qq (third row).
Differences in the vertex masses (bottom row).

6.4. VERTEX FINDING IN THE CONTEXT OF ^-TAGGING 113

1 Efficiency versus Fake rate, b-taaaino 1

JLo.75
S

1 a7

"aes

ae

ass

as

O45

O4
0

— MVF

—

^ ' ̂ / -
Ê- <//

r
:

0.01 0.02 O03 0.04 0 / » 0.0S O07 O0S a i »
Fake rate (qq)

-PVR |

1 Efficiency versus Fake rate, b-tagging |

âa75
&
I °-7
"aes

ae

ass

as

a45

0.4

PVR

— MVF

'I
"

'I
" \

j-
-

o.i2 0.14 aïs aie 02 022 024 02s 02s 0.3
Fake rate (cc)

-PVR

I Efflclency versus Fake rate, b-lagglnp |

|a7S

S 0.7

aes

ae

ass

as

0.45

— MVF-A(|glo

am 0.04 a « aos a i ai2 0.14 aie
Fakt rate (qq)

Efficiency versus Fake rale, D-tamlng I

t 0.8

Ja7s
È 0.7

0.B5

ae

ass

as

a4s

0.4

—MVF-A8BI01

0.14 aie aïs 02 022 02« 02s O28 OJ 032
Fake rate (cc)

I Efficiency versus Fake rate, b-tamlrm I

oja 0.1 aïs
Fake rate (qq)

I Efficiency versus Fake rate, b-tamiim I

0.1 0.15 O2 O2S a> 0.3s O4
Fake rate (ec)

FIGURE 6.12: ^-tagging efficiency, for various algorithms with and without a subsequent
multi vertex fit.

114 CHAPTER 6. PERFORMANCE STUDIES

I Efficiency versus Fake rate, b-tagglng |

r
f).75
Si

0.7

0.65

0.6

0.55

0.5

* i

— SPC
— VQ

KM

— MVF-SPC
MVF-VQ

— MVF-KM

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Faka rats(qq)

| Efficiency versus Fake rate, b-tagging \

ÎOM

3)75
u

0.7

0.65

0.6

0.55

0.5
0.15 0.2 0.25

— SPC
— vo

KM

— MVF-SPC
MVF-VQ

— MVF-KM

0.3 0.35 0.4
Fake rate (cc)

FIGURE 6.13: fr-tagging efficiencies, for non-hierarchic methods — preliminary results.

0.06 0.08

Efficiency versus Fake rate, b-tagging |

1.0.8

tu

0.7

0.65

0.6

; ' fi fxEitâ*~i

'- ' '

-

— AVF

— MVF

. l .

"AVR

0.12 0.14
Fake rate (qq)

| Efficiency versus Fake rate, b-tagging

0.7

0.65

0.6

— AVR

— MVFAVR

i i i i

0.24 0.25 0.26 0^7 0J8 0.29 0.3 0.31 0.32
Fake rate (cc)

FIGURE 6.14: 6-tagging efficiencies, for the AVR.

I Efficiency versus Fake rate, fa-tagflina I

I
' 0.8

i 0.7

as

as

0.4

0J)5 0.1

— PVR
— MVF-PVR
— AogtolP
— MVF-AgglolP

-MVF-Agglo

I

Fake ran (qq)

Efficiency versus Fake rate, b-tagging I

J
i
m 0.7

0.6

0.5

0.4

na

1

i
i

1 1 1

— PVR
MVF-PVR

— AjglolP

— MVF-AjtplolP

— MVF-Aggto

0.1 0.15 02 025 OJ 0J5 OA 0.45
Fake rate (cc)

FIGURE 6.15: Group picture — all algorithms in one plot

6.4. VERTEX FINDING IN THE CONTEXT OF B-TAGGING 115

I Efficiency versus Fake rate, b-tagglng I

0.02 0.06 0.08 0.1 0.12
Fake rate (qq)

Efficiency versus Fake rate, b-tagglng |

S 0.8

jp.75

m 0.7

0.65

0.6

0.55

OS

— PVR
— MVF-PVR
— MVF-SPC
— MVF-VQ

MVF-KM
— AVR

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
Fake rate (cc)

FIGURE 6.16: "Group picture" — preliminary algorithms vs baseline (PVR).

I Correlation b-taaqlna - geometric »cow I

g 0.7

0.6 -

0.5 r

-Variable

-Fixed

• • O D
f l O o

- ° l I

0.2 0.25 OJ 0.35 0.4
Secondary vfirtox finding efficiency

JjO.45

h:
Ioj5

02
0.15

0.1

0.05

"l
""

l"
"l

""
l"

"
."

"l
""

l"
"l

"

(U 0 4

Hflincj " Heorl

o
a a O

• • •
0.4

• • a •

• a » •
o a O O [2

0.3 0.6

—Variable

-Fixed

0.7 0.6
Gootnstric fste rets

FIGURE 6.17: Correlation between geometric performance quantifiers and fe-tagging scores.
"Fixed" refers to algorithms that assume a fixed number of vertices (one secondary vertex
and one primary vertex, in that case). "Variable" algorithms operate without such ad-hoc
constraints.

116 CHAPTER 6. PERFORMANCE STUDIES

CHAPTER 7

Summary and outlook

Starting from the Kaiman filter, a few robustifications of least-squares vertex fitting meth-
ods have been conceived, implemented, and studied. It turned out that the AdaptiveVertex-
Fitter has a wide application range; it seems a good choice for primary vertex fitting, where
a lot of tracks with a lot of "contamination" point to the parton-parton collision vertex.
It also seems adequate for secondary vertex fitting, where one often fits only three or four
tracks into one vertex. Even in the absence of truly mis-associated tracks the adaptive
method performs at least as well as more classical approaches, such as the PrincipalVertex-
Fitter. In many cases the adaptive method performs significantly better. Given the current
implementations, it also has the advantage of being significantly faster at higher multiplici-
ties. It is also a more general approach; the user is given an additional piece of information,
the track weights. How much the user can benefit from this extra information, is difficult
to predict and shall not be attempted here.

All vertex fitters, especially the non-linear ones, require an initialization point. Many
LinearizationPointFinders have been designed, implemented, and studied. A very good
general purpose method that covers a wide range of physics applications has been identified.
This problem, it seems, can be seen as being solved.

In the field of vertex finding an entire algorithm zoo has been designed and imple-
mented. The performance tests in this field have not yet progressed as far as in the
case of vertex fitting; still it has already matured enough to merit a few comments. The
agglomerative cluster finders work satisfactorily. One very recent addition, the Adaptive-
VertexReconstructor could also be shown to exhibit good efficiency versus fake rate ratios,
with an excellent CPU performance. It will be suggested as the default online HLT al-
gorithm. The MultiVertexFitter has been implemented and tested. It shares its theoretical
background with the AdaptiveVertexFitter and seems to be an adequate algorithm for a
"clean-up" step: in combination with other vertex reconstructors it exhibits smaller fake
rates. It is somewhat unfortunate that the "meta-algorithms", such as the BestSolution-

117

118 CHAPTER 7. SUMMARY AND OUTLOOK

Finder and the VotingFinder do not show significant improvement over the baseline. Also,
the non-hierarchic methods have not yet had any successful impact. It is, on the other
hand, still too early to discard these ideas entirely; deeper insight is required. A compre-
hensive understanding of why each algorithm performs how well under what circumstances
is still missing.

The task of computing the smallest distance between two helices has seen a major
improvement. In the context of this thesis it was possible to develop a simple algorithm
that improves results dramatically.

A few of the tools developed in the context of this thesis seem to thrive and take on lives
on their own. The algorithmic tuning tool still lacks a generalization of the score function.
Besides that it seems to turn into a basic standard tool of the vertexing package. Still
more successful (in terms of usage) is the VertexFastSim package. By now, practically all of
the vertex package's code verification makes use of the package. Even a few official studies
make use of the fine-grained control over the event data that this package allows for. The
data harvester is a more recent development. It, too, seems to develop into a direction that
has not been anticipated when the harvester has first been conceived. It is now a highly
usable non-intrusive debugging tool that shields various persistency technologies from the
user. Still, at this point, it remains a special purpose debugging tool, although the future
plans are ambitious. Finally a small and simple visualization tool has been written for
this thesis. It is a special purpose tool and does not even pretend to compete with big,
general-purpose artefacts like IGUANA. Especially the last two tools have the potential
of being used outside of CMS as well. In both cases special interest by other groups has
already been declared.

Another idea that has been born in the process of this thesis is the creation of a detector
independent vertex reconstruction toolkit [76, 77]. The big advantage of the task of vertex
reconstruction is its high level of abstraction; it is fairly detector independent. The only
detector-dependent issues can easily be hidden in Propagator and MagneticField objects.
The number of connector classes that need to be interfaced to the environment is thus
fairly small. A part from the aforementioned Propagators and MagneticField, one also
needs to define RecTracks and RecVertices. These should already be sufficient, apart from
"framework infrastructure", such as configuration and logging utilities. A similar project is
"RecPack" [98] ; it has the much more ambitious goal of providing a detector independent
track reconstruction toolkit.

CHAPTER A

Various algorithms

This chapter is dedicated to small "math snippets" that have not found an appropri-
ate place in one of the main chapters.

A.I Minimal distance between two helices

A very fast method of finding the minimal distance between two helices is essential for
many different clustering algorithms that work on the distance matrix as well as for many
linearization point finders, including the default method.

Finding the local minima
For the problem of finding a local minimum a Newtonian procedure

that finds the zeros of the distance function's gradient is used. A general
parametrized helix can be given by [52]

h, 0°H , H o) = H o + h =

Ho + h I — cos fa + cos <fPH (A.I)

where we have used the signed projected radius of the helix h = — l
H o contains the coordinate values at 4>n = 4>°H, and A// = | — $ is the slope
angle. Our helix is defined by a point in space, a momentum vector, and
the "charge" (that is ±1). The point in space is represented by Ho, the
momentum vector goes into (A.I) the following way: Solving the Lorentz

119

120 APPENDIX A. VARIOUS ALGORITHMS

force equation f = & = (?Kqy(t) x B(x(i)) results in:

.0
H = <P

7717

The initial momenta p# can be calculated easily:

pH =

h is not determined yet. Solving for h, and plugging in yields:

Pz,H
= arcsin

\PH\C2

= -qHB(?Kh sin 05, (A.3)
dt

Solving for sin <jPH et al:

-, tanAf/ = - V*'", (A.4)

A. 1.1 Newton-Kantorowitsch method

We denote a second helix with G:

(sin <f)G - sin
- c o s 0 G + c o s ^ (A.6)

The squared distance between those two is then:

d2(H(0„), G(0G)) =• (Ho + h - Go - g)2 (A.7)

A local minimum certainly has to fulfill:

(f e)) = 2 d T .üh_ (A.8)

= _ 2 d T . _dg_ (A g)

This translates into the following two constraints:

i r TTQX S~IOX i L / • j . • „ JLO \ / • i • JLO \1 I

COS0// Ln — Gr + /i(sin</)// — sui(pff) — g\s\x\<pQ — s i n ç ^ J I H-

sin 4>H [HOy - G°y + h(- cos (ßH + cos (fPH) - g(- cos(f>G + cos 0^)] +

tan \H [HOz -GOz + h tan \H(<f>H - (jPH) - g tan AG (0G - 0G)] = 0

(A.10)

A.I. MINIMAL DISTANCE BETWEEN TWO H E L I C E S 1 2 1

G [HOx - GOx + h{sm(/)H - s i n ^) - g(sin(j)G - s i n ^

sin <f>c [HOy - G0* + h(- cos <ßH + cos 4>°H) - g{- cos 0 G + cos <jPGj\ +

tan AG [#O z - GOz 4- /* tan AH (<£„ - 4>%) - g tan XG{4>G - <f>G)} = 0

(A.l l)

These are transcendent equations of the following type:

z\ = cos 4>H{O, — g sin </)G) + sin (j>H(b + g cos <f>G) +

ci0// + dx<pG + ei = 0
z2 = cos <f)G(a + h sin <̂ >//) + sin (j)G{b — h cos <£//) +

c20G + ài4>H + e2 = 0 (A.12)

The coefficients correspond to the parameters:

a = HOx- GOx + gsm</)G - hsinfà

b = H0y-GOy- gcos(f>G + hcos<f>°H

di = — g tan AG tan A#, d2 = h tan AG tan A#

ei = t a n XH (HOz - G°z - h4>°H t a n XH + g<f>G t a n AG)

e2 = t a n AG (HOz - G°z - h<f>% t a n X„ + g<j>% t a n AG) (A. 13)

We shall solve the equations using a Newton-Kantorowitsch approximation. The following
equation has to be solved iteratively:

0 = z (^H,i-l\ , p^ti é •) ((^H'*\ - f^^-1'
V0G,t-l/ 'l~ ' '*~ V\^G.»/ V0G,i-l,

where A is the Jacobian matrix to z, its elements being:

Au = 777— = — sincj)fj(a — gsin<j)G) + cos <f>H(b + gcos(f)G) + c\

A22 = TT-r-=—sin (f)G(a +h sin (j)H) +cos (j)G(b —h cos <(>H)+ c2
OÇG

= —g cos (pu cos <pG — g sin <pH sin <pG + di4̂i2 = XT
O<PG

A21 = -^— = h cos (j>H cos (f>G + h sin <£# sin 0G + rf2 (A. 15)

Zi and 22 denote the components of z = I 1 I. The iteration can be explicitly solved for

o u r n e w <j}H,i, <$>G,ï.

Z1A22 - z2A12

det^l
z2An - ^1^21 (A. 16)

122 APPENDIX A. VARIOUS ALGORITHMS

TracksCrossing3D

Mean: 237.94 (im
RMS: 242.27 |im

Time: 9059

XL. 0.1 &t> 0.1« «.W

ICIosestApproachlnRPhlj

Mean: 470.58 pm
RMS: 381.32 |im

Time: 90

Oil 0.1) O.H 0.1*

[TwoTrackMlnDlst (q=105)i

Mean: 147.41 |im
RMS: 192.03 |im

Time: 55

0.1 0.11 0.1*

: i

FIGURE A.I: Different implementations of ClosestApproachOfHelices in comparison.

A. 1.2 The fined recipe
. . . is very simple. The iteration Eq. (A. 14) has to be solved, its solution being Eq. (A. 16).
So we start with some initial values, for instance (p^ß = 0$/> ̂ G,O = <$?• The coefficients
Eq. (A.4), Eq. (A.13) are calculated. Then, in an iteration, one can compute A (Eq. (A.15))
and z (Eq. (A. 12)), new (f>H,G are obtained, that can again be used for a new A , z, . . .

A. 1.3 Comparison with other algorithms

This algorithm compares favorably with the other algorithms, see Fig. A.I. The figure
shows a comparison with tracks from VertexGun events. TwoTrackMinimumDistance (the
method presented in this section) is both faster and more precise than the previously used
algorithms. Note that in order to enhance the algorithm's numerical stability, the following
strategy has been implemented:

• Try to compute the minimum distance with TwoTrackMinimumDistance, using the
innermostStates() as the initial points.

• If this fails (i.e. if the algorithm does not converge), we use the result of ClosestApproach-
InRPhi as the initialization for another run of TwoTrackMinimumDistance.

This strategy benefits from both the robustness of ClosestApproachlnRPhi and the
precision and speed of TwoTrackMinimumDistance. It has been used extensively since a
long time; so far we are not aware of any problems with this approach.

A.2 Rotation matrix —•> rotation axis

For visualization of the 3x3 covariance matrices of points SoEllipsoid of the hepvis classes [6]
were used. These classes do not receive covariance matrices as their input. Rather they
expect the eigenvalues of the matrix in its diagonal form, together with a rotation axis and
a rotation angle, as is indeed the standard in Coin3D [4], and, in fact, also in VRML. As
simple as the transformation is, there are a few caveats that accompany the computation.
Thus, we shall briefly describe the algorithm that is employed in the visualization tool.

A.2. ROTATION MATRIX -» ROTATION AXIS 123

We start with an arbitrary covariance matrix V, and assume that the diagonalization of
V is already accounted for within a general-purpose linear algebra framework;

V = UDU T . (A.17)

The first task, finding the eigenvalues, is already accomplished.

eigenvalues = 01,1,02,2, D3,3

We demand that the determinant of the rotation matrix is +1. If it is —1 any two rows of
U (and, likewise, of D) can be swapped in order to change the sign of the determinant. The
rotation matrix U (with det(U) = +1) has to be described as a rotation axis h and angle
a. h is - in spaces with an odd number of dimensions - the eigenvector to the eigenvalue
of 1. h is thus determined by:

(U - I) K = O (A.18)

The matrix U —I is of rank 2. This is equivalent to the fact that the length of h is arbitrary.
As one can see from A.18, h has to be orthogonal to any row of the matrix U — I. Hence
we can take any one non-zero row

bi = (Uitl - Sitl, Vu ~ ài,2, Ui,3 - 8it3) (A.19)

and rotate it with the rotation matrix U:

b'i = Ubi. (A.20)

h is now simply

h = -lui. (A.21)
\bi x Vt\

Its associated angle can be determined by computing "how far" b\ has been rotated with
respect to bi.

(4^ (A.22)
\\bi\%\)

Note that the procedure fails (only) in the case that U is the identity matrix.

124 APPENDIX A. VARIOUS ALGORITHMS

A.3 Track error transformation

Per'i'gee n. (Astron.) That point, in the orbit of the moon or other body orbiting
the earth, which is nearest to the earth; — opposed to apogee. It is sometimes, but
rarely, used of the nearest points of bodies not orbiting the earth, such as of a comet,
a planet, etc. Called also epigee, epigeum.

Webster's Online Dictionary

FIGURE A.2: Perigee parameters, R — <f) projection only

Usually the perigee parametrization of the track has computational advantages over
the global Euclidean parameters. Its definition point P is usually defined as the point of
closest approach to the beamline, which, in our case, is the z axis. With this pivot point
a track is parametrized [27] as £perigee = (e, zp, Ö, 4>p, K)T. If O denotes the point of closest
approach to the track at the z axis, then P is defined by the angle 4>P a n d the norm of
e, where e is the signed distance OP. sgn(e) is defined to be +1 if the angle between
OP and the track direction is +TT/2. zp is the z offset of P, 6 is the polar angle of the
trajectory with respect to the z-axis, and K is the signed curvature in the x — y projection,

^ The sign of n is positive if the trajectory is anticlockwise. Let further L denoteK =
the projected path length. With these parameters a track is described as

e sin (f>p + A cos <j)p — ̂ sin
x{\) = I —e cos (j)p + A sin cf>p + ̂ cos

zP + XcotO
(A.23)

For visualization, these parameters had to be expressed in terms of the global Euclidean
parameters (x,y,z,px,py,pz). Thus, with the auxiliary variables

Q

R

Pt Pt

Pt Pt

(A.24)

(A.25)

A.3. TRACK ERROR TRANSFORMATION 125

the perigee parameters can be expressed as (see [27]):

e = -R-Q2K/2 (A.26)

zP = Z-Q(1-RK)— (A.27)

(j)P = (j) - Q{\ - RK)K (A.28)

If one also wants to visualize the transversal track errors cr(ep) and a(zp), then one needs:

(A.29)

var(«) = ^ y v a r (p t) (A.30)

var(Q) = ^

^ 1 var(y) + 1^1 varfo,) + (^

) 2 / \ 2 / \ 2

var(y) + f — j var(px) + f —- J var(pt) +
+ (—) var(x) + (—) var^y) + f —- J var(pf) (A.32)

This leads to:

I
var(ep) = var(Ä) + (QK)2 var(Q) + -Q4 var(«) (A.33)

var(zp) = var(2) + fe (1 - ite) 1 var(Q) + f —QK) var(fl) + f —QÄ) var(«) +
LPt J \Pt / \Pt /

(A.34)
Pt J \P.

126 APPENDIX A. VARIOUS ALGORITHMS

CHAPTER B

Tools

Man must shape his tools lest they shape him.

A. R. Miller

A few novel software tools for debugging and analysis of the vertex reconstruction
algorithms were written within the scope of this thesis. This chapter is dedicated
entirely to these tools.

127

128 APPENDIX B. TOOLS

B.I Algorithm tuning

All vertex finders have one or more parameters that can be
tuned. The process of tuning can formally be described as
an optimization of an objective function; in the fr-tagging
scenario this objective function is likely to depend on a b-
tagging efficiency and a fake rate or something similar. Such
an objective function basically describes the relative impor-
tance we assign to the two values. The objective function
that we tune against can also be a function of the "geo-
metric" Monte Carlo description. In this case the objec-
tive function is a measure for the congruence of the recon-
structed objects with the simulated objects. The advantage
of such a geometry based objective function as opposed to
a ^-tagging based one is that it is not specific to a physics
case. It does not involve 6-tagging code, it is more direct.
The results are easier to understand and interpret. The ad-
vantage of the 6-tagging based objective function is that it is
specific to a physics case. Physicists will find results based
on a 6-tagging related objective function more interesting.
Understanding an algorithm from the results of tuning in
^-tagging, on the other hand, is incomparably more compli-
cated.

This section will walk through the steps of implement-
ing a package that automates the tuning of an algorithm
against an arbitrary objective function. The current imple-
mentation realizes only an optimization against a "geomet-
ric" objective function; a few possible generalizations of the
package are discussed in the last subsection (Sec. B.1.6).

B.I.I An MC based "geometric" score

FineTuning of a parameter

Round 1.0

UPwnai

I I

Zoom
FineTuning of a parameter

Round 2.0

-O Shift
FineTuning of a parameter

Round 2.1

Shift back
FineTuning of a parameter

Round 2.2

^Zoom
FineTuning of a parameter

FIGURE B.I:For historical reasons, the general objective function that
operates on geometric properties only, is called the vertex
finding score or simply the "score". It is a measure of congruence between the simulated
event and the reconstructed event. It is implemented in the class VertexFindingScore, its
definition reads:

S = EL-Eb
Sc.P£T-Pic.A<Pr-A

f
Sc-(l-F)s

JPT (B.I)

Here E denotes the "finding efficiency", P is short for "vertex purity", A means "as-
signment efficiency", and F stands for "fake rate"; "Pr" denotes primary vertices, "Sc"

B.I. ALGORITHM TUNING 129

secondary vertices. The parameters a, 6, c, d, e, / , g are SimpleConfigurables - they can be
changed at runtime. The defaults are a, 6, c, d, e,f,g = 2,2, .5, .5, .5, .5,1.

Note that the score heavily depends on the description of the simulated event; whether
or not a decay vertex appears in the description as a separate SimVertex changes heavily the
final score. It is not always trivial what SimVertices should appear in the event description.
Clearly the decay vertex of a Higgs boson should not appear - it is under any circumstances
indistinguishable from a primary vertex. Whether or not e.g. a D meson that is a decay
product of a B meson should appear as a separate SimVertex depends on the use case. To
this end some manipulators that meddle with the Monte Carlo truth have been written
(see subsection B.I.2).

B.1.2 Changing the MC truth

It has already been established in the previous subsections, as well as in the chapter
on performance comparisons (Ch. 6) that classes that change the Monte Carlo truth are
important for a quite a spectrum of algorithmic analyses. The ultimate goal must be
to have a set of well-understood MC truth meddlers which establish strong correlations
between geometric and e.g. 6-tagging performances. This goal implies that the important
features of a specific use case (e.g. 6-tagging) are well understood. And only with such an
understanding of the problem will it be possible to understand the merits and problems of
the different vertex reconstruction strategies at a profound level. Work on such tools has
barely started in ORCA. It will still take a lot of effort to reach these ambitious goals.

B.1.3 A 6-tagging score

The current implementation of the tuning framework does not yet have the facilities to
tune against 6-tagging performance; but certainly the objective function would have to
resemble:

if i denotes the jet i, and

if bi is a b jet,
otherwise

t = (1 if U is tagged, , ß 4 ,
1 \0 otherwise

An implementation of this score for ORCA would be desirable.

B.1.4 The TuningTools package

The TuningTools package is designed to be a framework that allows the fine tuning of various
parameters against specific event data. Its design should accommodate for a maximum of

130 APPENDIX B. TOOLS

«pABC»
EventAnalyser

ConflgurableVertexTunlngEventAnalyaer

9
TUnableVertexReconstructorProvlder

Configurable via .orcarc datacard
+recos(); vector < TunableVertexReconstructor •:

I

VertexTkinlngEventAnalyser
tVertexTunlngEventAnalyserlTunableVertexReconstructor &)
•initSetUpl): void
+userAnalysis(TkSinEvent,TkRecEvent) :
•meedsHoreO:
•reportl): void

«singleton»
TkinabteVertexReconstructorfactory

+registry(string,TunableVertexReconstructor *) :
+reconstructor(name;strlng): TunableVertexReconstructor

A

FlneTUnerlD
+FineTunerlD(TunableVertexReconstructor &):
«•addEvent<&:TkSinEvent.&:TkRecEvent) : int
»report() :

i class RecotTunableVertexReconstructdr

TkinableVertexReconstructorBullder
Registers TunableVertexReconstructors to the Facto:J

«pABC»
TUnableVertexReconstructor

FIGURE B.2: UML class diagram of the FineTuning framework.

flexibility; the e.g. optimizing algorithm and the objective function should be exchangeable.
Any reconstructor should certainly be tunable against any of its parameters.

The current implementation does not implement the first two of the aforementioned
design goals; both the optimizing algorithm and the objective function are currently hard
coded. Future developments would have to address these two constraining issues.

Implementation details

VertexReconstructor

TunableVertexReconstructor
+setParamete r (f l oa t) : void
+name(): string const
+initialPararaeterRange(): pair<f loat, f loat> cons:
+defaultParameter(): f loat const
+acceptNegativeValues(): bool const
+parameter(): f loat const
+isFixed(): bool const
+wantsLinearRange(): bool const
+parseString(description:string): void
•vert ices!) : vector <RecVertex > const

FIGURE B.3: TunableVertexReconstructor interface

B.I. ALGORITHM TUNING 131

The most important abstract base class is the TunableVertexReconstructor (Fig. B.3).
The user implements a TunableVertexReconstructor for every parameter in every VertexRe-
constructor that he/she wants to see tuned. With this class the user primarily specifies
how the parameter is tuned, but also a range of where the optimal parameter value can
be expected to be found. The user also specifies whether the range should be "scanned"
logarithmically or linearly. Additionally it defines a good default value for an algorithm.
This makes it possible to compare novel algorithms with a well-defined base line.

As it can be seen already from the interface, a lot of issues in this package are written
with a one-dimensional parameter scan in mind. A generalization will trigger many changes
throughout the package.

The TuningTools package employs an abstract factory TunableVertexReconstructorFac-
tory to cleanly separate implementation of the TunableVertexReconstructors from the tuning
tools framework, see Fig. B.2. The TunableVertexReconstructors self-register to the factory.
The class with the impossible name ConfigurableVertexTuningEventAnalyser serves as the
glue code between CARF and TuningTools. From an orcarc configurable it determines what
algorithms the user wants to try, queries the TunableVertexReconstructorProvider for the in-
stantiations of the TunableVertexReconstructors and sets up the VertexTuningEventAnalyser.
Later on, when G3EventProxy data is dispatched, the ConfigurableVertexTuningEventAnal-
yser dispatches the data further to its set of VertexTuningEventAnalysers. Note that the
mechanism is flexible: via the orcarc configurable the user can set various algorithmic-
specific parameters, add fixed-parameter algorithms to the list (to e.g. compare algo-
rithms against a baseline), or change the initial parameter range. All these features are
implementable within the concrete TunableVertexReconstructor classes.

B.1.5 The FineTunerlD

The FineTunerlD class (see Fig. B.4) implements a Id optimization technique by "scan-
ning" a certain parameter range, then deciding upon where the maximum "score" can be
expected (see Fig. B.I). Depending on where within the interval the maximum is found,
the algorithm either "zooms in", or shifts the parameter range and repeats the procedure.
This is done a few times, until, in a final round, a set of fine-tuned algorithms are compared.

The user can configure many aspects of the procedure:

• The number of events per "round",

• the number of events in the "final round",

• the initial parameter range,

• the number of "zooms" that are performed (this is referred to as the "depth"),

• the number of bins that cover the parameter ranges at every iteration of the tuning
process,

• whether or not the parameter range should be binned linearly or logarithmically, and

132 APPENDIX B. TOOLS

FineTunerlD

+FineTunerlD(TunableVertexReconstructor &
+addEvent(&:TkSimEvent,&:TkRecEvent): int
+name(): string
• report(extensive :bool): void
+result(): float

the
f
rid

/.

TUningBinBullder

-TunableVertexReconstructor *
-VertexRecoPerformanceTest *
+results(): TuningBin
•named: string

\
t

TuningBin

Stores the results of the performance analysis.
*TunlngBln(VertexPerfoaanceEstlmators.cut)

+TuningBin()
•scored: Measurement«
+time(): pair < float, float >
+cut(): float
*vertexPerfotnanceEstinators()

«pABC»

VertexReconstructor

•vertices(vector*RecTrack>): vector<RecVertex>

t
«pABC»

TlinableVertexReconstructor
*satParametar(par:float): void
*acceptNegatlveValuasl): tool
*paramatar(): float
*isFixed(): tool
*mntsLinaartlanga()! tool

Î
lunableBaseVertexReconstructor

Implements a few basic features.

\ t
VertexRecoPerfomancelest

Generates and handles the VertexPerfbrmanceEstlmators.

FIGURE B.4: UML class diagram of the ID tuning algorithm.

the verbosity of the procedure.

Details of the FineTuner lD

The FineTunerlD (Fig. B.4 internally uses TuningBinBuilder. One such builder has a spe-
cific VertexReconstructor (with a specific value of the tunable parameter) and a specific
VertexPerformanceTest instantiation. FineTunerlD dispatches the input events to the Tun-
ingBinBuilders. It is the TuningBinBuilders task to call the VertexReconstructor, and to
analyse and store the result. The stored result is a TuningBin. According to the results
stored in the TuningBins, FineTuneri D determines its winner, and the new range. In the
end, when a final "winner" is found, the final result is presented.

B.1.6 Future development

Clearly the package needs to be transformed into a more general-purpose tool. The top
item on the TODO list is the abstraction of the objective function. It must be possible
to optimize against non-geometric, physics-oriented, information. Maybe a second point
is the abstraction of the optimization technique. Whether this is a reasonable goal is very
hard to say before it is actually tried. But it is safe to say that at this stage one should
consider using general optimization packages like Minuit [10]. In this case the TuningTools

B.I. ALGORITHM TUNING 133

X ConfigurableVertexReco-
TUnlngEventAnalyser

TbnableVertex-
ReconstructorProvider

« s i n g l e t o n »
TU nab le Vert ex-

RetonstructorManager
TU nable Wrtex-
Reconstructors 1Vertexlljnlnq-

EventAnalyser

<.*. PTRniMpr * ^

[no tuner need

I
I
i

finable reconstruct!»*.

lata]

X

JL

tupa ble jBconstmctots

nruityw

rpnnrt

K

1

I
1

• o

£ 1

FIGURE B.5: Sequence diagram of the tuning tools.

would turn into a much smaller package that only interfaces to a general minimization
package.

134 APPENDIX B. TOOLS

B.2 Data harvesting

Say not ye, There are yet four months, and then cometh harvest? behold, I say unto
you, Lift up your eyes, and look on the fields; for they are white1 already to harvest.

The New Testament, John 4:35

One frequent task common to both debugging and analyzing al-
gorithms is the collection of data in ntuples. These days ROOT [29]
seems to be the most often used tool for such tasks in the high en-
ergy physics community. What the user has to do in ROOT to
produce data tuples and/or histograms, is the following:

• Instantiate a ROOT file,

• Instantiate the ntuple objects,

• fix the format of the ntuples, i.e. name the columns, define the data type of the
columns, in case of arrays, fix the size of the arrays (or name the variable that
defines the size of the array). Also define the variables that will be used for filling
the ntuples.

• Every time the user wants to fill an ntuple row, he/she has to

— Copy the data into the variables defined above,

- Call ntuple::Fill()

• Finally, write and close all ntuples.

This lengthy procedure clearly carries the burden of FORTRAN legacy — the fact that
the user has to fill certain variable "blocks" is reminiscent of the old common blocks.
For a modern programming environment it is very insecure and inflexible. (The "fill"
variables, the TFile, and the TTrees have to be known wherever information needs to be
made persistent. A simple change in the ntuple layout triggers a change in at least two
places in the source code. No checks are made against wrong variable types, variables
being in the wrong order, etc.) In the 21st century things ought to be done differently.

The data harvesting concept has been introduced as a remedy against many of these
problems. It intends to fulfill the following design goals:

• Simple tasks must be simple — only a few simple lines of code should have to
be written for storing e.g. two floats in an ntuple.

• Complicated tasks must be achievable — very "convoluted" use cases need not
be simple, but they should still be coped with.

B.2. DATA HARVESTING 135

• User code should be technology agnostic — changing from storing data into
ROOT files to storing into AIDA [19] files should not imply significant changes in
the user code.2

• The user shall have to handle as few objects himself as possible — it is not
necessary for the user in these use cases to be exposed to e.g. file handles. It must
be enough for him/her to state "I want to store data X into file named Y". The same
argument holds for ntuple objects.

• The user shall not have to supply redundant information — If the user
supplies only floats for a column of an ntuple, he/she evidently wants the column type
to be a float. He/she should not have to specify this explicitly; implicit specification
is enough, simpler, and more robust. The worst design clearly is to let the user specify
types explicitly, and then not check whether the user supplied data is consistent with
the specification. This is how the ROOT API currently works. In the case that the
user supplies different types for one column, the more general type should be used.
If this is not possible, a warning or an error message should be issued.

• Changes in what is stored, e.g. adding another column in an ntuple, must
be an easy task — it should trigger changes in only one place in the code. This is
especially important for debugging tasks, where the content of an ntuple is likely to
change frequently.

• It should be as difficult as possible for the user to introduce inconsistencies
— separating the definition of the ntuple and the filling of the ntuple is prone to
introducing such inconsistencies.

• It is desirable to be able to document what exactly is stored in what
column in what ntuple.

• Everything related to getting the data into a file should happen in only
one place in the code — and that place should be close to where the data is
produced.

• Filling one ntuple from various places - e.g. in more than one source files
- should be as easy as possible

• Producing such ntuples should be non-intrusive — debugging an algorithm
should not imply major changes in the algorithm code.

The implementation of the data harvester fulfills all of the aforementioned design goals —
except for one tiny issue about closing the files, and the fact that some more complicated
tasks can be realized only in a very poor manner; the shortcomings will be described later.

2This issue has also been addressed in AIDA via its plugin mechanism.

136 APPENDIX B. TOOLS

As the fundamental data type a MultiType is introduced that heavily exploits the C++
capability of operator overloading. The MultiType (but not only the MultiType) implements
the fourth point in the list of design goals - the data type is implicitly defined with the
data itself. An ntuple row is supplied either column by column (the user sequentially
provides the column name and the column data; when a column name gets repeated, the
object assumes the start of the next row in the ntuple), or via a map <string, MultiType>.
Both constructs are very "natural" in C++ code. Both ways of supplying data are also
particularly fail proof — it is almost impossible for the user to provide inconsistent data,
to swap variables, or to specify the wrong data type.

The following subsections will now elaborate on the implementation of the data har-
vesting concept.

B.2.1 The MultiType

MultiType
+MultiType(double/string/int/bool)
+operator=(double/string/int/bool): MultiType
+operator=(double/string/int/bool) : bool const
+operator=(const char *) : bool const
+operator!=(const char •) : bool const
+isADouble/isAString/isAInt/isABool<): bool cons
-•operator doublet): double
•operator string!): string
•operator int () : int
•operator bool(): bool
+asDouble(): double
+asString(): string
+aslnt(): int
+asBool(): bool
+isA(): string const

FIGURE B.6: The MultiType class.

It has already been mentioned that the fundamental data type in the DataHarvesting
package is the MultiType. Fig. B.6 shows the UML description of the class. It is something
of a "generalization" of four C++ types: doubles, STL strings, ints, and bools. It can
be assigned any of these four types (and a few more), and it stores not only the value,
but keeps also track of the data type — something of a simplistic form of real-time type
information (RTTI). It also handles conversions between these types. In some sense, it
softens the strongly typed paradigm of C++.

B.2.2 The AbstractDataHarvester

The AbstractDataHarvester has been introduced to allow for a technology agnostic data
harvester, one of the design goals stated in section B.2. Implementations of this class will
be specific to one technology - there will be one implementation for ROOT file formats,

B.2. DATA HARVESTING 137

OataHarvastar
«flla(«ilenaae:string): static UstractOataHarvester
«closeO: static void
OataHarvesterO I ^
-OataHarvesterO ç^y u s e r . v l 5 i b le class!

DataKarv«star asks
MarvesterflleTypeKanager
for specific AbstractDataHarves<tarj

AbstrmctDmtaHmmtfr
p < itriftf. mtlUrya* >,tapleM»»tria>J> nU

««apaatf(teplasaMKtriai, la«rua>: striae, nlmfllltiTy»*) i mi«
•KlosmOi nU

raid

I

y
HarvastarFllaTypaManagar

-»salt!I: static HarvesterFileTypeHanager •
+registerFi\eType(fi\etype:strlng,AbstractDataHarvester *) ; void
+hervester(fl\etype:strlng): AbstractOataHarvester •
•supportedHarvestersO: nap < string, AbstractDataHarvester *>
-HarvesterFlleTypeHanager()
-HarvesterFiloTypeManagarl)

A
I

RootOataHarvastar
«>He(fnena»e:string); static RootOataHarvester

TMDataHarvester
•flie(fUenawe:string); static RootOataHarvester

JHarvester:c1ess
larvastarFilaiypaBÛ
«WarvesterFlleTypePiUdei

flcTaV-
ir() I

Concrete DataHarvesters register theaselves
to HarvesterFUeTypeNanager via
HarvesterFUeTypaBuUder.

RootDataCacha
+«dd(tuplenaae;strlng,data:aap < string, HultiType >): void
tappend(tuplem

void
i:strlng,laafnaae:string,value:KultiType): vo

Caches aU data (one cache pei
before they are passed on to
root fretwork

ir flleU
the

FIGURE B.7: The DataHarvesting framework

one for AIDA, etc. The purely abstract base class is depicted in B.7. It has two methods
that deal with retrieving information from the user. The first one is ::save (const map <
string, MultiType > & data, string tuplename), in which the user describes an ntuple called
"tuplename" and already supplies one complete "data row" at the same time! If the user
ever accidentally supplies data with different layout but the same tuplename, the harvesters
complain and discard the data. The second way to supply data to the harvester is via:
::append(string ntuple, string parameter, MultiType value). In this case the user supplies the
data leaf by leaf. Once a leaf is named again, the harvesters will assume that one data row
is finished, and start the next row. Again, strict consistency checks are made.

B.2.3 Implementations of the AbstractDataHarvester

Currently there are only two implementations of the AbstractDataHarvester interface: the
RootDataHarvester and the TxtDataHarvester. The TxtDataHarvester can stream either into
a simple txt file or to stdout. The file format is very simple (and redundant), it is:
ntuplename: namel=valuel, name2=value2, name3=value3
ntuplename: namel . . .
The RootDataHarvester (see Fig. B.8) owns RootDataCache objects (one per TFile), which

in turn create RootlnternalNtuple, one per ntuple (TTree). Apart from introducing a more
structured design, the RootDataCache — nomen est omen! — caches the data in a special,
compact form (exploiting STL techniques), before writing them into the files. The data
are made persistent after explicit ::write() and ::close() method calls, or if the cache has

138 APPENDIX B. TOOLS

X
Actor

I

<<singleton>>
RootDataHarvester

filol'filo mnf)

tai/ririata«! •nsrnp^g)

RootData Cache RootlnternalNtuple

open n leJIlejDot"

ariHMafal 'n'namolu

V V

flucht) /» aiitn fln

aHrilriataM.t.1 'na

aHHMafaMl

• "rwmp?" »a-
nrifilrifltflN-rn »

Create the TTree
with the right
layout. Fill it only
now (to avoid too
many "cycles").

X

(Re-)create the
TTree with the
layout. Fill

ie right

FIGURE B.8: RootDataHarvesting internals. The "actor" could in principle be user code,
though in practice only the DataHarvester should be a direct "user".

exceeded its internal limit (after a certain number of saved "ntuple rows", configurable via
RootDataHarvester: :FlushAfter=10000).

ROOT files are buffered files, so why bother introduce yet another buffer? Because,
with every "change" from writing into one ntuple to writing into another, ROOT introduces
another "cycle" of the same ntuple. It is the author's subjective feeling that the way these
cycles are handled in ROOT is painful for the user. They should thus be at least avoidable,
if not avoided in the general case.

Note that the concrete harvesters are singleton classes: there is one harvester per file
format, not per file. One harvester must handle all the files of a particular file format.

B.2. DATAHARVESTING 139

<<singleton>>
Data Harvester

<<singleton>>
HarvesterfilelypeManager

«singleton»
RootOataHarvester

Code
(3 lines total):

Actjor

I
I
I
I

DataHarvester::file("file.roof)...

...->save(datal."tuplel");

DataHarvester: :fl1e("file.roof)...

...->save(data2,°tuple2-);

DataHarvesterxcloseO;

. ^_BootûataUa rester _
•f'mnft »

<unnnrtw4Han/«frprfL

«eolictère frn thp mananpr

FIGURE B.9: Data harvesting - a sequence diagram.

It is up to the harvester to decide upon how to handle multiple open files. The fact that
these harvesters are singletons is historically motivated — the feature of hiding specific
technologies from the user (the DataHarvester, see next section), the concept of having one
front-end for all different file formats, was introduced only later.

B.2.4 The DataHarvester

The DataHarvester (see Fig. B.7) can be seen as the front-end to the whole DataHarvesting
package — it is the only class that the user will directly interact with. Its central method is
::file(string filename), which "dispatches" the right concrete data harvester to the user. The
information of which concrete harvester is to be used for which file name, is provided by
the HarvesterFileTypeManager. The concrete harvesters register themselves to the manager
via the HarvesterFileTypeBuilder. The manager can be seen as an abstract factory — the
technology dependent parts are confined to a well-defined set of classes. There is no class
that has to know about all concrete harvesters at compile time. Thus no class depends on
more than one technology. The different harvesters also do not have to appear in the same
package. What harvester is available to a program can thus be a choice of what libraries
the program is linked against. Fig. B.9 shows the sequence diagram of what happens when

140 APPENDIX B. TOOLS

the code snippet in the figure's leftmost column is executed.

B.2.5 Meta data

The DataHarvesters support meta data; every ntuple can be supplied with a description
string, so can every column in an ntuple, with the description given in brackets, together
with the column name — see the example in section B.2.7. This meta data is, itself, stored
as ntuples (__ntuples_ has all ntuple descriptions; _columns_ lists all descriptions of
ntuple columns).

B.2.6 Closing the harvester

Some technologies, e.g. ROOT, need to explicitly close the files. Otherwise the user suffers
from data loss. The data harvesting framework is designed such that one and only one line
of code is needed to close all open files: DataHarvester::close(). Currently the user has to
call this function in his code. A future version of the DataHarvesting package might try to
do this automatically, via e.g. the POSIX compliant atexit function. The big problem with
this automatic call is that it is very hard to guarantee that all the persistency technologies
are still available when the atexit function is called. (Surely the "closing method" should
be registered as late as possible). Even if such an approach turns out to work in a specific
environment, it might be simply impossible to guarantee that it will work with every
version of every persistency technology.

B.2.7 Data harvesting in action

This subsection gives a brief demo of how the data harvester is used:

map <s t r ing , Mult iType> m;
m["Where (Where was the exception caught) "] = "Right here" ;
m["What (Descr ip t ion of the excep t ion) "] = myexception . what () ;

DataHarvester : : f i l e ("ex. roo t ") ->save(m,
"Exceptions (This ntuple keeps track of a l l exceptions t h r o w n) ") ;

For a possible visualization of the data "reaped" with the simple code snippet given above,
see Fig. B.10.

B.2.8 Object harvesting

The idea of "object harvesting" is to exploit the functionality of the data harvester for
high level ORCA objects like a RecTrack or a RecVertex. See Fig. B.ll for an UML of a
few object harvesters that have been written. As opposed to CARF's RecObj mechanism,
the writer of an object harvester has to specify what data of an object gets stored. This
is a price that is paid for having a lot of flexibility and complete independence from the
ORCA/CARF framework. We shall exploit this feature in the visualization program.

B.2. DATA HARVESTING 141

1 WhaiiWhere |

20-
18:
16-
14-i
12-i
10-

8-
6-
4-
2-

- - fe%m -^ ^ ^ 5 .

o t ^ ^ T ^ > ^ ^ I J?\
^^ni^XTi^ j.

FIGURE B.10: Sample ROOT lego plot of harvested data

SystemHarvesterj

Operating System,
Machine name

stem, CPuTl
' • • I

lEventHarvesterl

SimEvent, RecEvent -
SimTrack, RecTrack,

|PrimltlvesHarvester|

SimTrack, SimVertex, RecTrack,I
RecVertex, GlobalPoint, ... I
-> map < string, MultiType > I

|ApexHarvester

ApexPoint ->
map < string, MultiType

stl map < string, MultiType > -> persistency

RootDataHarvesterl |TxtDataHaivester

map < string, MultiType
-> ROOT TTrees \

map < string, MultiType
-> ASCII file

UldaDataHarvesterl

map < string, MultiType >| Data Flow
-> AIDA file

FIGURE B . l l : All harvesters and their interrelationships.

vector < RecVertex > resul t ;
// Now make the RecVertices persistent. Make sure they ' l l

/ / show up green in the v isual izat ion,
map < s t r ing , MultiType > at t r ibutes;
attr ibutes ["color "]= "green" ;
PrimitivesHarvester : : f i Ie (" myfile . root ")->save(result , "RecVertex' attr ibutes);

142 APPENDIX B. TOOLS

The sample code above shows the usage of the PrimitivesHarvester class. Using these object
harvesters will produce data that can be visualized with the visualization package described
in Sec. B.3.

B.2.9 Data seeding

The DataHarvester is a class that maps a map < string, MultiType > on a piece of data in a
file. Clearly, also the inverse operation is defined. This operation is called a DataSeeder;
it creates a number of maps < string, MultiType > from one or more files. DataSeeders are
used in the e.g. visualization package (section B.3), and also — exploiting a dirty trick
— in the VertexGunFromFile, see Sec. 2.2.5. Currently only a TxtDataSeeder and a first
version of a "user-visible" DataSeeder have been written; a RootDataSeeder is still missing.

B.2.10 Object seeding

1 •

EventSeederl

SimEvent, RecEverit <- H
SimTrack, RecTrack, . . . |

f
PrimitivesSeeder]

SimTrack, SimVertex, RecTrackJ
RecVertex, GlobalPoint, . . .
<- map < str ing, MultiType > |

t
DataSeederj

Data

i

s t l map < st r ing , Multitype > <- persistency^ |

t 1
RootDataSeederl I TxtDataSeeder 1 kidaDataSeederl

|V
s t l < map, MultiType > < - H
ROOT TTrees |

stl < map, MultiType > <-H
ASCII f i l e |

Flow

s t l < map, MultiType > <-~l
AIDA f i l e |

FIGURE B.12: The object seeders - the inverse operations to the object harvesters (see
Fig. B.ll)

The "inverse" class of a DataHarvester is called a DataSeeder. It creates an STL map
< string, MultiType > from a file. No fully encapsulated object seeders exist yet. The
class VertexGunFromFile (see Sec. 2.2.5) has the implementation of a PrimitivesDataSeeder.
One of the next versions of the VertexFastSim package will clearly have to extract this
functionality from the VertexGunFromFile and put it into a separate class.

B.3. VISUALIZATION 143

B.2.11 Final remarks and potential future developments

Albeit it is designed to address only simple tasks, the data harvesting concept seems to
have quite some potential. One major weakness of the current harvesters is that all data are
stored in a "flat" way — no hierarchy in the data is (yet) foreseen. A future development
will address this issue. Another shortcoming of the current implementation is its lack of
any kind of arrays.

Comparing it with CARF's persistency mechanism seems somewhat nonsensical, too
different use cases are addressed. Still, one nice feature of CARF's persistency mechanism
is that the user never needs to specify how a specific class gets saved. The class just
needs to derive from a special base class (RecObj); this alone makes objects of this class
"storable".

The data harvesting concept addresses completely different needs — it tries to save
(any) specific data in a very simple manner. Imitating the RecObj mechanism is not an
aim of the harvesters. One should explore a true persistency solution like CARF for such
tasks.

Another powerful idea is to have python pickle files [13] as an additional back-end.
This could allow for a very straightforward and powerful way to analyze data, with e.g.
hippodraw [7] or ROOT-python — bypassing ROOT files altogether, while keeping ROOT'S
supreme histogramming capabilities. Two other potential new back-ends are an optimized
binary format, and the legacy HBOOK tuple format, which is still the default in e.g. the
Belle collaboration.

One final idea that should be presented here, is to have data written to and read from
network streams. For example, a TcpDataHarvester and a TcpDataSeeder would be a nice
tool — recycling much of the TxtData(Harvester|Seeder) or the BinaryData(Harvester| Seeder)
code seems reasonable. A potential use case could be "online" visualization of an event via
the visualization toolkit presented in Sec. B.3. A TcpDataHarvester and a TcpDataSeeder
would also be a major step towards a "harvester server". The only missing piece of code
would then be just glue code that combines all the required components into a piece of
server code: the user would write to a TcpDataHarvester that passes the data to the Tcp-
DataSeeder which may reside on another machine. This simple reuse of already existing
components can create the functionality that is comparable to Belle's ntuple-server ([68]).
Code reuse should also make the development of converters trivial: they are nothing but
a seeder and a harvester "glued" together.

B.3 Visualization

CMS has one official large visualization project: IGUANA [96]. IGUANA is currently
actively developed; it is extremely feature rich. The graphics it produces are both aes-
thetically appealing and functional. Still, a separate special purpose visualization tool has
been written in the context of this PhD thesis. The reasons for this development are man-
ifold. One main motivation was simply "it could be done" ; other reasons may seem more

144 APPENDIX B. TOOLS

tt_i»client 1"

::file("dhtp://server/tmp/fi!e.root")
Tq)Harvester

(using BinaryHarvester)

::file("dhtp://server/tmp/file.pickle")
TcpHarvester

(using BinaryHarvester)

t t client2'

::file(7tmp/file.root")
RootHarvester "server"

Unix daemon at "server"
TcpSeeder

(using BinarySeeder)

j

::file(7tmp/file.pickle")
PickleHarvester

::file("dhtp://localhost/anp/file.root")
TcpHarvester

(using BinaryHarvester)

Online monitoring,
egging, backup,...

FIGURE B.13: A vision of what a future harvesting usage could look like. Three client
applications talk to one central Unix daemon via the DataHarvester Transfer Protocol
(dhtp). The server passes the requests to local harvesters.

convincing:

• The author wanted to have a visualization toolkit that does not depend on CERN(HEP)
tools, CERN(HEP)-specific setups, etc. A toolkit that depends only on standard
tools is easier to setup, maintain, and port.

• A special purpose tool, evidently, focuses on the task at hand. It can be tailored
better towards the use case.

• For our specific context it can be much simpler and faster than IGUANA.

• There is no user base that needs to be served (at least not yet). This directly
translates into maximum freedom for the code writer.

The concept itself is implemented in two well separated parts. One part consists of
the object harvesting classes. As has been mentioned earlier, many of the objects saved
by the object harvesters can be visualized. This part of the visualization code resides
within ORCA. The other part is the visualization package itself. It is completely dis-
joint from ORCA. In fact it needs no HEP-specific tool at all. Data reading is done in
a DataSeeder implementation that "ships" with the rest of the visualization code. For

B.3. VISUALIZATION 145

Eile fibjcct» Ç_onfig View Shortcuts

Choose a configuration variable.

Connotation DIBWAS

C onnQtabcn'Foitf C olor
Connotation FontName
CmmotatumFonlSize
EübpsoidConnotes
EJSpïoid EnùssiveColorb
EDip s oïd ', Enus nveColon s
• I

, • . ' B-Msion" at (.U7986,-.145101,8.10614)
l<-06 0 0

COT- 1*06 0

Dlaanca to lazt ob;at: $400 SSum

FIGURE B.14: Screenshot of a VertexSimpleVis visualization of a 66 event; two B mesons -
3.4 millimeter apart from one another - are discernible on the plot (magenta spheres), one
of which is selected and described in the text window.

graphics, Coin3D [4] — an OpenGL-based technology — is used. The coin3d viewer is
embedded in and surrounded by Qt [15] widgets. For a Screenshot see Fig. B.14.

The event plots throughout this thesis are results of this tool, unless stated otherwise.

146 APPENDIX B. TOOLS

B.3.1 The offline program

It is not the aim of this section to give a complete description
of the offline visualization program. Rather it shall give an
overview of the main design features.

(a) The visualization is closely tied to the Coin3d
library. This is a deficiency rather than an asset, al-
though it is a very convenient one for the programmer.

(b) All objects are data harvester maps: (map<string,
MultiType>). Data are consistent by convention only,
not by design. Apart from a few evident drawbacks,
this has a large number of pros.

(c) All aspects of all drawable objects can be
changed at runtime. This is done via a Manipula-
tor class (see Fig. B.15) — and by virtue of (b) one
manipulator class is enough for all objects!

(d) As many global aspects as possible should be con-
figurable at runtime. Fig. B. 14 shows the "config-
urable changer". The configurables, too, are map<string,
MultiType>.

color

description

dxt

dyz

dyy

tel

cfcy

bide

id

mag

name

2

y

2

cyan

undcf

0.001594:4

-0.00161193

0 00I6331S

•0.002:0746

0.00223791

000307154

0

RV5

1

RecVeiiex

0.747S:9

-0.734514

-5.9:23s

(e) Configuration options, view, etc. must be "store-
able". They are put in a file in a DataHarvester- FIGURE B. 15:
compatible form. Manipulator

(f) One must be able to save manipulated event data
to a file. This feature is still missing.

B.3.2 Download

The offline code can be downloaded as a tarball at:
h t tp : //wwwhephy.oeaw.ac.at/uSw/w/walten/www/dist/vis.tar.gz

I*

B.4 Vertex-specific 6-tagging analysis tools

A vertex-specific package for 6-tagging analysis tools has been introduced only recently to
ORCA by the author. The code base derives from a few more heavy-weight analysis classes
of the fr-tagging group. It has since its creation evolved into a package that is better suited
towards the needs of the vertexing group. As the persistency backend ROOT has been
abandoned in favor of the data harvesting tools (see Sec. B.2). The BTaggingHarvester
has been introduced as the package's central class, which takes a pair < BTaglnputObject,

B.5. ASSOCIATORS 147

BTagOutput > as its input and produces a few tuples from the information that is contained
in the STL pair. All 6-tagging related results shown in Ch. 6 are produced with this package.

B.5 Associators

«pABC»
TïackAssoclator

+simlracks(const RecTrack S): SimTrackPtrContainer
+recTracks<const TkSimTrack S): RecTrackPtrContainer
+clone(): TrackAssodator *

«pABC»

VertexAssoclator
+simVertices(const RecVertex 6): SLtVartexPtrContalner
+recVertices(const TkSimVertex &): RecVertexPtrContainer
+clone{): VartexAssodator *

TABLE R.I: The track and the vertex associator interfaces.

In order to be able to perform studies that compare reconstructed objects with Monte
Carlo truth, "links" between reconstructed objects and the simulation objects are needed.
Classes that return such links are called Associators in CMS lingo. In the process of this
PhD thesis a few minor contributions to track association and vertex association have been
made, some of which shall be presented here.

B.5.1 Track association

Track association defines the task of associating TkSimTracks with RecTracks and vice versa.
ORCA currently sees two implementations: one that associates by hits (TrackAssociatorBy-
Hits) and one that associates by a distance criterion between TkSimTracks and RecTracks
(TrackAssociatorByPulls). Association by pulls requires a distance measure. Two classes
have been implemented: TrivialTrackDistance simply compares the absolute value of track
momenta. TrackDistanceByChiSquared tries to propagate the two tracks onto one common
surface. It then computes a x2 criterion (with 5 degrees of freedom) between the tracks.

Clearly, association by hits can be expected to produce the most meaningful results.
It should be used wherever possible. Real life, though, has a few arguments against an
exclusive usage:

• It cannot be used with the VertexFastSim (Sec. 2.2.2) package, since this fast simula-
tion package produces no hits.

• Persistent RecTracks in ORCA > 7.6.0 are stored neither with their hits nor with an
association.

Hence, an associator that operates by pulls and performs as reliably as the association-by-
hits is desirable. One cannot assume that association by hits serves as an absolute baseline.
There may well be cases in which an associator-by-pulls returns a more meaningful result

148 APPENDIX B. TOOLS

than the by-hits algorithm. This makes a quantitative comparison difficult. Still, in the
context of this thesis two comparisons were conceived. At first, we tried a track-by-track
comparison between a by-pull associator and the standard by-hit associator. For every
SimTrack it was checked, whether or not the two associators agreed on a RecTrack. Another
test plots the number of RecTracks associated with each TkSimTrack. If one assumes that the
track reconstructor produces reasonable results, then the deviations from 1:1 associations
can be seen as indications of weaknesses of the associator. The test was performed against
a J/t/j (j) —>• K+K~fi+n~ decay. Only the (highly collimated) SimTracks of the decay
were considered (4 per event), but all the RecTracks of the whole signal event were used
(« 10 — 30 per event). 2000 events (= 8000 tracks) were considered. Table B.2 shows the
test results. TrackDistanceByChiSquared with a high cutoff (Xcut ^ 5000 — 10000) performs
reasonably well. Note that fortunately the cutoff value is not "critical" — over a range of
two magnitudes (1000 - 100000) the results vary only by one percent. Finally it shall be
repeated that for VertexFastSim-generated events, a "perfect" track associator is available:
TrackAssociatorByMap, see Sec. 2.2.3.

Name
ByHits
X 2<50
X2 < 200
X2 < 1000
X2 < 2000
X2 < 5000
X2 < 10000
X2 < 20000
X2 < 100000
S(m) < 4%
ö(m) < 7%
ô(m) < 15%

(%)
100
89.7
93
96.2
97.1
97.5
97.4
97.3
96.3
87.3
87.7
85.9

0
672
1420
1150
885
809
757
705
635
482
633
422
210

1
7328
6580
6850
7056
7014
6660
6077
5281
3694
4992
4098
2101

2

58
176
570
1188
2018
2369
1815
2194
2239

3

1
1
12
28
55

1341
448
896
1495

4

1
2
11
92
97
277
961

5

22
12
89
533

6

3
19
267

7

4
126

8

1
52

9

16

TABLE B.2: Results of the track association tests for J/tß (/> —>• K+K fi+n tracks. The
column marked as "(%)" denotes the congruence with the by-hit associator. The other
columns show how often n RecTracks were associated with one SimTrack. "x2 < • • • " rows
mark a TrackDistanceByChiSquared measure, "£(m)" denotes the use of TrivialTrackDistance.

B.5.2 Vertex association

A VertexAssociator has to be able to associate RecVertices with SimVertices and vice versa.
We can divide the set of VertexAssociators into two categories: association by tracks, and
association by distance. ORCA currently has one class per category. VertexAssociatorBy-
Track associates according to the associations between the SimVertices' SimTracks and the

B.5. ASSOCIATORS 149

RecVertices' RecTracks. It relies on a TrackAssociator. VertexAssociatorByDistance uses a
distance measure to determine the compatibility between the vertices. ORCA owns a class
that measures the weighted distance in 3d, and one that measures in 2d. Both can be used
for this associator.

150 APPENDIX B. TOOLS

CHAPTER C

Plots and Tables

This chapter contains all plots that are considered too lengthy, too technical, and/or
too detailed for the main chapters.

151

152 APPENDIX C. PLOTS AND TABLES

I Resolution, Jy 1$, Adaptive, g-coord

d[cm]

Resolution, Jy / », Kaiman, z-coord I

600

500

400

300

200

100

9

: Ü
r I |

~ J 1

r / \

.08 -0.06 -0.04 -0.02 0 O.CK

stats

D M -W

Pnb 1JSS*-18
CanttMttCoc») «SB.1t 118

CeMtanVT^O O H « " «
MMflfTM) -OJXnO» ±0.0008«

^ J _ . . 1

0.04 0.06 OX ï
diem]

I Standardized residuals, Jy / 0, Adaptive, z-coord j

600

500

400

300

200

100

0

Comtanqcore)

MMflfCOf«)
agn«c°») m m j 0.010»

10
d[cm]

I Standardized residuals, J y / » Kaiman

FIGURE C.I: Comparing AVF with KVF, J/ip (f) channel.

I Resolution, x. Adaptive, z-coord I

RMS

ISB.4SI.S
I h n t c n) •aoooiMStOjQooam

OA108S:
CofMUnKTalQ
MMnfTaB) «XOIMSUXOOITM

4.15 -0.1 -0.05
d[cm]

Resolution, t, Kaiman, z-coord I

200

160

160

140

120

100

60

60

40

20

0

M
M

- J

/ \

Stats
EntriM
HMD -0J
RMS

nee

SUJS764

Con*MKCor«> 124.117J

Btgma(Cara) aoi1S3±OJ)O000

ItanCTaB) -O.0O1GS2 ±0000101

~h f \

-0.15 -0.1 -0.05 0.15
d[cm]

Standardized residuals, t, Adaptive, z-coord L.
' - ^ • - • - • I . . . i i • I... ft c 1 i • - ..M m m C

600

500

400

300

200

100

0

4.002141
2-283

0

ComtmtfCor*) S18.7tU

MMD(Cer*) 4.01028t 0.01742
aoRMCCen)

44128 ±0.8137
10 ±0.1«BW(T«H

10
diem]

FIGURE C.2: Comparing AVF with KVF, r channel.

153

Resolution, cB, Adaptive, z-coord

700

600

500

400

300

200

100

: Pi

T . . i_. . i — ^ Y f r , . i . , . . t .

-0.02 -0.015 -0.01 -0.005 0

I

RMS

Prob
COMM
MMfCc
BivnXC

NMnfTa

\V
0.005 0.01

Stata

«Cor») I

«•) 1A7M»
or*) O0O1TM

•) «nioosi
•il) ojjosm

0.015 0.02

O.OM007

1.1M*-10
3Ott114
U31»0S

t 0.0000»

ta000221

d[cm]

Resolution, <X, Kaiman, z-coord J

100

80

60

40

20

yi

Stats
Enbrh» *1«1

RMS 0.0OH91
Prob atMH
Comt«it(Ccn) SO-gaiU«

MMOfCor*) 0.0003333 t 0.Q091*«

CMkttnltTa» MJt±2^S
naMirr« -OjOoosistaamBO

7 . . h i i i i i i i i l . . .
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0-02

d[cm]

I Standardized residuals, cB, Kaiman, z-coord

FIGURE C.3: Comparing AVF with KVF, cc channel.
I Resolution, qq. Adaptive, z-coord I

diem)

I Resolution, qq. Kaiman, z-coont

•OJ2 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
d[cm]

I Standardized residuals, qq. Adaptive, z-coord I s t * "

700

600

500

400

300

200

100

0

MMn 0010*7
RM3 1.171
Prab 0.1*3
ContttnUCon) M11U
•hXCora) 0.01J121O0117»
Slgnu<Cai«) 1j029i0A10
ConstmtfTiU) 8.131t 0^*7
MOT(T1!)

I Standardized residuals, qq, Kaiman,

120

100

80

60

40

20

10
d[cm]

HM» 0.134S

ms usa
Prob 0J7S08
ConalantfCora) mj±4J0
UUn(Con) IUM831t0iOa3l
8lgma(Cor.) 1.302 ±0463

contantrrifl) 204310.70
087810428

10to1

10
dlcm]

FIGURE C.4: Comparing AVF with KVF, qq channel.

154 APPENDIX C. PLOTS AND TABLES

I Failure (out of 1000). Adaptive fitter, cc I

0 OUI OSO 0.03 0.04 0X15 0X16 0.07 0.08 0.09
Pfe'l-cut

I Failure (out of 1000). PVR fitter, cc

Resolution, cC, Adaptive, z-coord |

700

600

500

4O0

300

200

100

0

" / 1
: / \
: 1 |

Stats

y_n uox»
R1I9 aOM807

Prab l.1»»10

CcraanQCci») 630J1114

OgnuCCan) aoai7Wia{D0051

CofMonavO t i j 7 i 7 . n

MMR(TUQ 4.7t1^0Sl U 1 M I

Slgim(TM0 OJOBBtnt VlOOXtt

•0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
d[cm]

Resolution, cc, PVR, z-coord I

600

son

400

300

200

100

n

— J

: rfll I

- it
: 1 H

' I 1i 1 v

Stats
emriM . ma

RMS O.004OM

Prab «.72S*-11

ComtmtCora} S1&411OS

ÜMn(Cora) Miaa-05± S.324»45

SlgnM<Can) a0O1SS4 ± 0.000052

ComantfTtf) T U 7 ± 7.13

MMO(T*B) (UMOIOIItaOOOISM

Slgir»<TifflJ O.0W111±0.O002M

•asa -0.01 s -o.oi -o.oos o oxns o.oi 0.015 0.02
djcm]

| Standardized residuals, eg, Adaptive, ' - c o o " * ! s t a t s

700

600

500

400

300

200

100

0

-O00807»

1480

ComtanttCon) G07Jt«J

MMn<Cora) O0062GS ± O013SH

S)|pm(Cof«) 1.114 t<U»11

C0Mtant(Tifl) LSS3tO2E5

MM<Tri) a*49±IJT4

Standardized residuals, eg, PVR, z-coord L Stats

10
d[cm]

7859
Msan OO1103

RMS . 1^88

Prob 0JM30S

Conctanqcot«) S4ois t BJO

M«M(Cora) O01241 ±001320

Slgma(Cora) 1.14 ±001

ConstantfTBD) 1^85 ±0253

Mnn(TsU) -O5381 ± 1 .TB36

1 0 ± 1 J S

- 8 - 6 - 4 - 2 0 2 4 6 8 10
d[cm]

Zero

I Failure [PVR fitter, cc, cut at 0.05] - reasons I

no m m * found

FIGURE C.5: Comparing AVF with PVF, cc channel.

155

I Failure (out of 1000), Adaptive fitter,!

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0X9

Failure (out of 1000), PVR fitter.-c I

110-

I Resolution, t, Adaptive, z-coord

250

2 0 0 -

RKS 0JS4CT

Prab i.9B*-i>

Co«mant(Cen) 181.4 ± M

MMnfCon) -0.0001 MB ±OJ0042t1

8lgnw(Cara) 0410U10.00073

co(mmtT>n) 44.J11 a .»

-O.0O1W3lO.0O1T»

ao73ia ± aooiTi

I Resolution, t, PVR, r-coord

250P

200

-0.15 -0.1 -0.05 0.05 0.1 0.15
dtcmj

I Standardized residuals,!, Adaptive, z - c o o r d l

600

500

400

300

200

100

Km -0003141

Prab 0

ConM»d(Cara) 318.7 ± B J

•00102810J>1742

<L9091tO0iaS

Comt-rtfT"D) 8JT2t 0.403

10±0.1

10
d[cm]

I Standardized residuals, x, PVR, z-coord

I Failure [PVR fitter,!, cut at 0.05)-reasons I

900 F

Zero

FIGURE C.6: Comparing AVF with PVF, r channel.

156 APPENDIX C. PLOTS AND TABLES

LinPtFinder

SubsetHSM(-i)
HSM(-1)
LMS(-1)
SubsetHSM(IOO)
HSM(100)
AdaptiveApex(Weighted.Mtv)
Adaptive Apex(U nweig hted, Mtv)
TrimmingApex(Weighted,Mtv)
TrimmingApex(Unweighted,Mtv)
LinearApex(Unweighted,Mtv)
Fsmw(exp=0 f=0.5 c=10 np=-1)
Fsmw(exp=-0.5 f=0.5 c=10 np=-1)
Fsmw(exp=-1 f=0.5 c=1O np=-1)
Fsmw(exp=0 f=0.3 c=10 np=-1)
Fsmw(exp=-0.5 f=0.3 c=10 np=-1)
Fsmw(exp=-1 f=0.3 c=1O np=-1)
Fsmw(exp=0 f=0.6 c=10 np=-1)
Fsmw(exp=-0.5 f=0.6 c=10 np=-1)
Fsmw(exp=-1 f=0.6 c=10 np=-1)
Fsmw(exp=0 f=0.4 c=10 np=-1)
Fsmw(exp=-0.5 f=0.4 c=10 np=-1)
Fsmw(exp=-1 f=0.4c=10np=-1)
Fsmw(exp=-2 f=0.5 c=1O np=-1)
Fsmw(exp=-2 f=0.4 c=10 np=-1)
Fsmw(exp=-2 f=0.3 c=10 np=-1)
Fsmw(exp=-2 f=0.6 c=10 np=-1)
Fsmw(exp=-2 f=0.5 c=50 np=-1)
Fsmw(exp=-1 f=0.5 c=50 np=-1)
Fsmw(exp=-2 f=0.5 c=20 np=-1)
Fsmw(exp=-2 f=0.5 c=30 np=-1)
SMS(-1)
SMS(100)
ISMS(-1)
ISMS(100)
FixedSMS(-1)
FixedSMS(IOO)
ISMS(200)
Default

RMS
[ßm]

38
37

196
61
54

565
691
148
147

1101
38
38
38
38
38
38
40
40
40
38
38
38
38
38
38
40
38
38
38
38
89

127
29
56

233
265
33
49

ce
ÖFit

[fim]
29
27
41
37
38
35

793
35
33

1145
27
27
27
28
28
28
27
27
27
27
27
27
27
27
28
27
27
27
27
27
28
32
23
31
46
53
27
33

fail
%o

0
0
2
0
0

202
556
21
16

446
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
2

10
0
0

t
[ms]
3.5
3.4
3.4
0.8
0.7

63.8
60.2
56.1
51.3

51
17.6
17.6
17.8
14.4
14.4
14.4
18.9
18.9
18.9
16.1
16.1
16.1
17.6
16.1
14.4
18.9
17.6
17.6
17.6
17.6

121.7
2.1
159
2.7

121.7
2.1
8.2

3

RMS
[yum]

37
32

237
41
48

477
724
135
202

1128
33
33
33
33
33
33
35
35
35
34
34
34
33
34
33
35
33
33
33
33

141
166
35
33

239
288
30
43

CFit

H
25
24
44
31
32
34

858
32
37

1275
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
28
31
22
28
41
49
26
29

fail
%o

0
0

11
2
0

239
568
28
29

512
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
6
0
1

15
16
1
0

t
[ms]

4
3.9
3.9
0.8
0.8

71.7
67.8
63.8
59.5
58.1
25.5

27
25.4
20.1
20.1
20.1
27.5
27.5
27.5
22.9
22.9
22.9
25.4
22.9
20.1
27.5
25.4
25.4
25.3
25.4

207.8
2.1

270.1
2.7

207.7
2.2
8.1

3

TABLE C.I: Resolutions and failure rates of different LinearizationPointFinders for quark
pairs.

157

LinPtFinder

SubsetHSM(-i)
HSM(-1)
LMS(-1)
SubsetHSM(IOO)
HSM(100)
AdaptiveApex(Weighted,Mtv)
Adaptive Apex(U nweig hted, Mtv)
TrimmingApex(Weighted,Mtv)
TrimmingApex(Unweighted,Mtv)
LinearApex(Unweighted,Mtv)
Fsmw(exp=0 f=0.5 c=1O np=-1)
Fsmw(exp=-0.5 f=0.5 c=1O np=-1)
Fsmw(exp=-1 f=0.5 c=1O np=-1)
Fsmw(exp=0 f=0.3 c=1O np=-1)
Fsmw(exp=-0.5 f=0.3 c=1O np=-1)
Fsmw(exp=-1 f=0.3 c=1O np=-1)
Fsmw(exp=0 f=0.6 c=1O np=-1)
Fsmw(exp=-0.5 f=0.6 c=1O np=-1)
Fsmw(exp=-1 f=0.6 c=1O np=-1)
Fsmw(exp=0 f=0.4 c=10 np=-1)
Fsmw(exp=-0.5 f=0.4 c=1O np=-1)
Fsmw(exp=-1 f=O.4c=1O np=-1)
Fsmw(exp=-2 f=0.5 c=1O np=-1)
Fsmw(exp=-2 f=0.4 c=1O np=-1)
Fsmw(exp=-2 f=0.3 c=1O np=-1)
Fsmw(exp=-2 f=0.6 c=1O np=-1)
Fsmw(exp=-2 f=0.5 c=50 np=-1)
Fsmw(exp=-1 f=0.5 c=50 np=-1)
Fsmw(exp=-2 f=0.5 c=20 np=-1)
Fsmw(exp=-2 f=0.5 c=30 np=-1)
SMS(-1)
SMS(100)
ISMS(-1)
ISMS(100)
FixedSMS(-1)
FixedSMS(IOO)
ISMS(200)
Default

J/ip c
RMS
[pan]
744
744
833
744
744
615
821
645
781
761
757
657
614
742
668
606
753
646
608
744
670
618
625
578
569
620
599
625
606
598
740
740
736
736
711
711
736
578

p —> K

[/un]
61
61

139
61
61
59

323
65

179
267
66
68
69
61
61
64
65
66
66
61
61
65
70
63
63
68
68
65
70
70
62
62
60
60
63
62
60
64

fail
%o

194
194
170
194
194
220
277
213
260
240
183
147
142
197
164
147
185
150
144
194
166
143
156
140
142
158
134
140
148
143
162
162
162
162
173
173
162
140

+ß-
t

[ms]
0.2
0.2
0.2
0.2
0.2
1.9
1.8
1.3
0.8
0.7
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.5
0.2
0.6
0.2
0.5
0.2
0.4
0.2

T

RMS
[/an]
1018
1020
1035
1018
1020
895
868
900
876
924

1028
1017
993

1027
1022
1000
1034
1023
1002
1019
1019
993
970
967
977
977
983

1009
970
979

1022
1022
1010
1010
1018
1018
1010
967

± —* -ïï-

O"Fit

[/un]
780
780
937
780
780
643
560
593
553
642
878
822
769
681
787
725
864
849
791
780
801
761
774
755
729
794
797
789
768
785
877
877
876
876
830
830
876
755

t7T+7T"

fail
%o

379
378
384
379
378
354
404
346
329
369
377
366
349
376
371
352
375
364
345
379
372
355
323
323
325
319
331
356
322
323
379
379
382
382
384
384
382
323

t
[ms]

0.1
0.1
0.1
0.1
0.1
1.8
1.6
1.1
0.7
0.7
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.1
0.2
0.2
0.1
0.1
0.2
0.1

TABLE C.2: Resolutions and failure rates of different LinearizationPointFinders for low-
multiplicity jets. See the text for detailed description.

158 APPENDIX C. PLOTS AND TABLES

CHAPTER D

Acronyms

TLAs are a PIA.

source unknown

AIDA Abstract Interfaces for Data Analysis [19]

API Application Program Interface

ATLAS A Toroidal LHC Apparatus [1]

A V F AdaptiveVertexFitter

A V R AdaptiveVertexReconstructor

CARF CMS Analysis and Reconstruction Framework [67]

CLHEP a Class Library for High Energy Physics [2]

CAOH Closest Approach On Helices

CMS Compact Muon Solenoid

COBRA Coherent Object-oriented Base for Reconstruction, Analysis and simulation [66]

CMSIM CMS Simulation [33]

DAF Deterministic annealing filter

DAQ Data Acquisition

159

160 APPENDIX P. ACRONYMS

DST Data Summary Tape

ECAL Electromagnetic Calorimeter

FAMOS FAst MOnte carlo Simulation

FSMW Fraction-of Sample Mode with Weights

G AC Global Association Criterion

GSF Gaussian Sum Filter

GUI Graphical User Interface

GUT Grand Unified Theory

HCAL Hadronic Calorimeter

HSM Half Sample Mode

HLT High Level Trigger

HEP High Energy Physics

IGUANA Interactive Graphics For User ANAlysis [96]

KM K-Means

K V F KalmanVertexFitter

LCG LHC Computing Grid [9]

LEP Large Electron Positron collider

LHC Large Hadron Collider

LMS Least Median of Squares

LS Least (sum of) Squares

LVF LinearVertexFitter

MC Monte Carlo

MSSM Minimal SuperSymmetric Model

mSUGRA minimal SUperGRAvity

M V F MultiVertexFitter

M V R MultiVertexReconstructor

161

NDF Number of degrees of freedom

LTS Least Trimmed Sum of Squares

ORCA Object Oriented Reconstruction for CMS Analysis [38]

OSCAR Object oriented Simulation for CMS Analysis and Reconstruction [37]

PAW Physics Analysis Workstation [12]

PIA Pain In the Ass

PtCA Point of Closest Approach

P V R PrincipalVertexReconstructor

P V F PrincipalVertexFitter

RMS Root Mean Square

QFT Quantum Field Theory

SMS Small Median of Squares

SPC Super-paramagnetic clustering

STL Standard template library

SUSY Supersymmetry

SVF SequentialVertexFitter

TLA Three Letter Acronym

T T M D TwoTrackMinimumDistance

UML Unified Modeling Language [17]

VRML Virtual Reality Markup Language

VQ Vector Quantization

Index

annealing
as a vertex finder, 56
in the adaptive fitter, 77

apex point, 45-48
finding, 46
fitting, 46

association
track, 144-145
vertex, 145-146

AVF, 77
AVR, 99

6-tagging samples, 28
black holes, 6
Boltzmann distribution, 88
6-tagging, 8-9

caching
in MVF, 82

calorimeter
electromagnetic, 12
hadronic, 12

calorimetry, 12-13
clustering

agglomerative, 48
divisive, 50-52

convex hull, 41
correlations

in the VertexFastSim package, 30

data acquisition, 14
data compression, 52
data seeding, 139

tcp, 140
dendrogram, 49

Deterministic annealing, 39
distance matrix, 69

effective energy, 88
event builder, 14
expectation-maximization algorithm, 89
extended gauge groups, 8

finding-through-fitting, 51
FSMW, 38

GAC, 57
ghost tracks, 64
Gravitational clustering, 39
grid, 14
GSF, 85

harvester
abstract, 134
closing, 137
data, 137
graphics, 139
meta data, 137
objects, 137
pickle, 140
root, 134
tcp, 140
text, 134

harvesting, 131, 136
Higgs, 3, 4
high level trigger, 14
HSM, 38

J/1> 0, 71

K-means, 54

162

INDEX 163

Kernel estimator, 38
kinematics

and the MVF, 85
kohonen, 53

large extra dimensions, 6
leptoquarks, 8
linearization point finder, 68-73
little higgs, 8
LMS, 38, 79

error estimation, 79

M3V, 39
MÀMF, 39
Minimum message length, 59
mode finder, 37
Moore's law, 20
MSV, 39
MTV, 39
MultiType, 133
muon chambers, 13

MVF, 81

Newton-Kantorowitsch method, 118-120

object seeding, 139
persistency, 35
pickle files, 140
pixel detector, 11
primary vertex finding

with pixel tracks, 40
prior information, 90
prior information (on vertex position), 85
T) (pseudo-rapidity), 11
PVR, 51

quantum mechanics
analogy with adaptive method, 91-92

Randall-Sundrum, 8
Riemann fit, 19

self organizing map, 53
silicon microstrips, 11

standard model, 3
standard scenarios, 32-34
string balls, 8
supersymmetry, 4-6

track smearing
in the VertexFastSim package, 29

triangle inequality, 49-50

vector quantization, 52-54
vertex fitting

adaptive, 76
least squares methods, 74
T i\ ira Ti
J-11VJ.U, I

multi, 81
trimmer, 76

vertex reconstructor
adaptive, 51
agglomerative, 48
best solution, 59
deterministic annealing, 56
divisive, 50
ghost track, 64
non-hierarchic, 52
principal, 51
seeding, 55
super finders, 57
super-paramagnetic clusterer, 56
vertex suppression field, 65
voting, 63
zvtop, 64

vertex suppression field, 65
vertexgun

persistent, 35
visualization, 140-142
voting schema, 60

order dependence, 63
resolving ambiguities, 61

Weiß regions in the SPC, 56

zvtop, 64

164 INDEX

Bibliography

[1] ATLAS, A Toroidal LHC Apparatus. http://atlas.web.cern.ch/Atlas/.

[2] CLHEP — A Class Library for High Energy Physics,
http ://wwwinfo.cern.ch/asd/lhc++/clhep.

[3] CMSIM Events Page.

http : //cmsdoc. cern. ch/cmsim/pictures/cmsim_events. html.

[4] Coin3d. h t tp : / /www.co in3d .org .

[5] The DataGrid Project, http://cern.ch/eu-datagrid.

[6] HEPVIS. ht tp: / /www-pat . fnal .gov/graphics/HEPVis/www.

[7] Hippodraw. h t t p : / /www.s lac .S tan fo rd .edu /g rp /ek /h ippodraw/ .

[8] The Large Hadron Collider.
h t t p : / / lhc-new-homepage.web.cern.ch/ lhc-new-homepage/ .

[9] LHC Computing Grid Project, h t t p : / / l e g . web. c e rn . ch/LCG/Overview. htm.

[10] The MINUIT software package.
http ://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs
/minuit/index.html.

[11] ORCA's vertex subsystem.
http ://cmsdoc.cern.ch/cms/Physics/btau/management/activities
/reconstruction/vertex/vertex.html.

[12] PAW - Physics Analysis Workstation, http : //wwwasd. web. cern. ch/wwwasd/paw/.

[13] Pickle - Python object serialization.
http ://docs.python.org/lib/module-pickle.html.

[14] POOL, Pool Of persistent Objects for LHC.
http ://legapp.cern.ch/project/persist/.

165

166 BIBLIOGRAPHY

[15] Qt. http://www.trolltech.com/products/qt/index.html.

[16] SEAL, Core Libraries and Services Project, h t tp : / / sea l .web .ce rn .ch / sea l / .

[17] UML, Universal Modeling Language, http://www.uml.org.

[18] K. Abe et al. Time Dependent B®—B® Mixing Using Inclusive and Semileptonic B
Decays at SLD. Nuclear Instruments and Methods in Physics Research A, 446:53-58,
2000.

[19] Academic Software Organization. AIDA, Abstract Interfaces for Data Analysis,
h t tp ://wwwasd.web.cern.ch/wwwasd/lhc++/AIDA/.

[20] W. Adam, R. Friihwirth, A. Strandlie, and T. Todorov. Reconstruction of Electron
Tracks with the Gaussian-Sum Filter. CMS-RN-2003-001.

[21] W. Adam, R. Friihwirth, A. Strandlie, and T. Todorov. Reconstruction of Electrons
with the Gaussian-Sum Filter in the CMS tracker at LHC. CMS-CR-2003-012.

[22] S. Agostinelli et al. GEANT4: A simulation toolkit. Nuclear Instruments and Meth-
ods in Physics Research A, 506:250-303, 2003.

[23] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson. Phys. Lett. B, 513:232,
2001.

[24] D. S. Bailey et al. FAMOS, CMS Fast Simulation, h t tp : //cmsdoc. cern. ch/f amos/.

[25] M. Bengtsson and P. Roivainen. Using the Potts glass for solving the clustering
problem. International Journal of Neural Systems, 6:119-132, 1995.

[26] D. R. Bickel and R. Friihwirth. On a fast estimation of the mode: comparisons to
other robust estimators with applications. 2003. under review.

[27] P. Billoir and S. Qian. Fast vertex fitting with a local parametrization of tracks.
Nuclear Instruments and Methods in Physics Research A, 311:139-150, 1992.

[28] M. Blatt, S. Wiseman, and E. Domahy. Super-paramagnetic clustering of data. Phys.
Rev. Lett, 76:3251-3254, 1996.

[29] R. Brun et al. ROOT, h t tp : / / roo t . ce rn .ch .

[30] M. Cavaglià, S. Das, and R. Maartens. Will we observe black holes at the LHC?
Class. Quantum Grav., 20 No 15, 2003.

[31] The Large Hadron Collider, conceptual design. Technical report.

[32] A. Chamblin and G. C. Nayak. Black Hole Production at LHC: String Balls and
Black Holes from pp and Lead-lead Collisions. Phys. Rev. Lett, D66, 2002.

BIBLIOGRAPHY 167

[33] C. Chaxlot et al. CMS Simulation Facilities. Technical Report CMS TN 93-63.
h t tp : //cmsdoc. cern. ch/cms im/cms im. html.

[34] CMS Collaboration. Addendum to CMS Tracker TDR. Technical Report CERN/L-
HCC 2000-016.

[35] CMS Collaboration. CMS — Technical Homepage,
h t tp ://cmsdoc.cern.ch/cms.html.

[36] CMS Collaboration. The Compact Muon Solenoid, ht tp: / /cmsinfo.cern.ch.

[37] CMS Collaboration. Object oriented Simulation for CMS Analysis and Reconstruc-
tion, h t tp ://cmsdoc.cern.ch/oscar.

[38] CMS Collaboration. ORCA, CMS OO Reconstruction,
h t tp ://cmsdoc.cern.ch/orca.

[39] CMS Collaboration. The Compact Muon Solenoid, technical proposal. Technical
Report CERN/LHCC 96/45, CERN 1996.

[40] CMS Collaboration. The tracker project, technical design report. Technical Report
CERN/LHCC 98-6 CMS TDR 5, 15 April 1998.

[41] S. Cucciarelli, M. Konecki, D. Kotlinski, and T. Todorov. Track-Parameter Evalua-
tion and Primary-Vertex Finding with the Pixel Detector. CMS-NOTE-2003-026.

[42] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. B, B 39:1-38, 1977.

[43] J. D'Hondt, P. Vanlaer, W. Waltenberger, and R. Friihwirth. Sensitivity of robust
vertex fitting algorithms. Technical Report CMS Note 2004/002, 2004.

[44] S. Dimopoulos and G. Landsberg. Black holes at the LHC. Phys. Rev. Lett.,
87:161602, 2001. arXiv:hep-ph/0106295.

[45] S. Dimopoulos and Roberto Emparan. String Balls at the LHC and Beyond. Phys.
Lett, B526:393-398, 2002.

[46] K. V. Driessen and P. Rousseuw. Computing LTS regression for large data sets.
Technical report, University of Antwerp, 1999.

[47] N. Estre. Caractérisation des détecteurs silicium, recherche de vertex et étude du
potentiel de découverte d'un boson de Higgs chargé léger dans l'expérience CMS.
PhD thesis, Université Claude Bernard - Lyon 1, 2004.

[48] N. Estre, E. Chabanat, and P. Vanlaer. Deterministic Annealing for Vertex Finding
at CMS. Technical Report CMS Note, in preparation.

168 BIBLIOGRAPHY

[49] P. Filzmoser, private communication.

[50] R. Frühwirth. Application of Kaiman filtering to track and vertex fitting. Nuclear
Instruments and Methods in Physics Research A, 262:444, 1987.

[51] R. Frühwirth et al. Vertex reconstruction and track bundling at the lep collider using
robust algorithms. Computer Physics Comm., 96:189-208, 1996.

[52] R. Frühwirth, M. Regler, R. Bock, H. Grote, and D. Notz. Data Analysis Techniques
for High-Energy Physics. Cambridge University Press, Cambridge, 2000.

[53] R. Frühwirth and T. Speer. A Gaussian-Sum Filter for Vertex Reconstruction. CMS-
CR-2004-002.

[54] R. Frühwirth and A. Strandlie. Track fitting with ambiguities and noise: a study of
elastic tracking and nonlinear filters. Computer Physics Communications, 120:197-
214, 1999.

[55] R. Frühwirth, A. Strandlie, W. Waltenberger, and J. Wroldsen. A review of fast
circle and helix fitting. Nuclear Instruments and Methods in Physics Research A,
502:705-707, 2003.

[56] R. Frühwirth and W. Waltenberger. Adaptive Multi-vertex fitting. Proc. 14th Int.
Conf. on Computing in High Energy Physics (CHEP 04), Interlaken, Switzerland,
2004. HEPHY-PUB-798/04.

[57] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements of
Reusable Object Oriented Soßware. Addison-Wesley, 1995.

[58] J. E. Garcia. Little Higgs searches at LHC. 2004.

[59] GEANT3 Collaboration. GEANT3.
h t tp : //wwwasdoc. web. cern. ch/wwwasdoc/geant_html3/geantall. html.

[60] GEANT4 Collaboration. GEANT4. h t tp : / /cern .ch/geant4 .

[61] A. Gersho and R. M. Gray. Vector Quantization And Signal Compression. Kluwer,
Boston, 1992.

[62] F. Gianotti. Physics beyond the Standard Model at LHC. Talk given at the Physics
at LHC conference, Vienna, July 2004.

[63] S. B. Giddings and S. Thomas. High energy colliders as black hole factories: The end
of short distance physics. Phys. Rev. D, 65:056010, 2002. arXiv:hep-ph/0106219.

[64] D. Horn and A. Gottlieb. Algorithm for Data Clustering in Pattern Recognition
Problems Based on Quantum Mechanics. Phys. Rev. Lett., 88(1), 2002.

BIBLIOGRAPHY 169

[65] R. M. Hristev. Matrix Techniques in Artificial Neural Networks. Master's thesis,
University of Canterbury, Christchurch, New Zealand, 2000. alternate title: "Matrix
ANN", available in electronic format.

[66] V. Innocente et al. COBRA, Coherent Object-oriented Base for Reconstruction,
Analysis, and simulation, ht tp : / /cobra . web. cern. ch/cobra.

[67] V. Innocente, L. Silvestris, and D. Stickland. CMS Software Architecture: Software
Framework, services and persistency in high level trigger, reconstruction and analysis.
Computer Physics Communications, page 140, 2001.

[68] R. Itoh and S. Ichizawa. Status of BELLE event processing framework based on a
SMP-server cluster system. 1995. BELLE-NOTE-07.

[69] D. J. Jackson. A topological vertex reconstruction algorithm for hadronic jets. Nu-
clear Instruments and Methods in Physics Research A, 388:247-253, 1997.

[70] V. Karimäki. Effective vertex fitting. Technical Report CMS Note 1997/051.

[71] T. Kohonen. Self-organized formation of topologically correct feature maps. Biolog-
ical Cybernetics, 43(l):59-69, 1982.

[72] S. Kundu. Gravitational clustering: a new approach based on the spatial distribution
of the points. Pattern Recognition, 32:1149-1160, 1999.

[73] A. Leike. The phenomenology of extra neutral gauge bosons. Phys. Rept., 317:143-
250, 1999.

[74] M. Liendl. Design and Implementation of an XML based object-oriented Detector
Description Database for CMS. PhD thesis, Vienna University of Technology, 2003.

[75] M. Lindström. Track reconstruction in the ATLAS detector using elastic arms. Nu-
clear Instruments and Methods in Physics Research A, 357:129-149, 1995.

[76] W. Mitaroff, G. Richter, and W. Waltenberger. Detector-Independent Vertex Recon-
struction Toolkit VERTIGO. Proc. 14th Int. Conf. on Computing in High Energy
Physics (CHEP 04), Interlaken, Switzerland, 2004. HEPHY-PUB-797/04.

[77] W. Mitaroff and W. Waltenberger. A Vertex Reconstruction Toolkit and Interface
to Generic Objects (VERTIGO). Proc. 7th Int. Conf. on Linear Colliders (LCWS
04), Paris, 2004, LCnote LC-TOOL-2004-017.

[78] N. Polonsky. Supersymmetry — Structure and Phenomena. Lect. Notes Phys.,
M68:l-169, 2001. Report-no: MIT-CTP-3164.

[79] K. Prokofiev. A kinematic fit and a decay chain reconstruction library. CMS-AN-
2004-020.

170 BIBLIOGRAPHY

[80] L. Randall and R. Sundrum. A large mass hierarchy from a small extra dimension.
Phys. Rev. Lett, 83:3370-3373, 1999.

[81] T. G. Rizzo. Black Hole Production at the LHC: Effects of Voloshin Suppression.
JHEP, 0202, 2002. SLAC-PUB-9127.

[82] K. Rose. Deterministic annealing for clustering, compression, classification, regres-
sion and related optimization problems. Proc. IEEE, 86 (num ll):2210-2239, 1998.

[83] K. Rose, E. Gurewitz, and G. C. Fox. Statistical mechanics and phases transitions
in clustering. Phys. Rev. Lett, 65 (num 8):945-948, 1990.

[84] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John
Wiley & Sons, New York, 1987.

[85] D. W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization.
Wiley and Kegan Paul, 1992.

[86] G. Segneri and F. Palla. Lifetime based 6-tagging with CMS. Technical Report CMS
Note 2002/046.

[87] T. Sjöstrand. Pythia — the Lund Monte Carlo Event Generator.
ht tp: / /www.thep. lu .se/ torbjorn/Pythia.html.

[88] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, and E. Norrbin.
Computer Phys. Commun., 135, 2001. LU TP 00-30, hep-ph/0010017.

[89] T. Speer, K. Prokofiev, and R. Frühwirth. Vertex Fitting with the Kaiman Fil-
ter Formalism in the ORCA Reconstruction Program. Technical Report CMS IN
2003/008.

[90] M. Spira and P. M. Zerwas. Electroweak symmetry breaking and Higgs physics. 1997.

[91] D. Stickland. ORCA: The Design, Implementation, and Deployment of a Functional
Prototype OO Reconstruction Software for CMS. Proc. Computing in High Energy
and Nuclear Physics CHEP'00, 2000.

[92] A. Strandlie. Adaptive methods for the reconstruction of charged tracks in a noisy
environment PhD thesis, University of Oslo, 2000.

[93] A. Strandlie and R. Frühwirth. Error analysis of the track fit on the Riemann sphere.
Nuclear Instruments and Methods in Physics Research A, 480:734, 2002.

[94] A. Strandlie, J. Wroldsen, and R. Frühwirth. Treatment of multiple scattering
with the generalized Riemann sphere track fit. Nuclear Instruments and Methods
in Physics Research A, 488:332, 2002.

BIBLIOGRAPHY 171

[95] A. Strandlie, J. Wroldsen, R. Friihwirth, and B. Lillekjendlie. Particle tracks fitted
on the Riemann sphere. Computer Physics Communications, 131:95, 2000.

[96] L. Taylor et al. IGUANA, Interactive Graphics for User ANAlysis.
h t tp : / / iguana.cern.ch.

[97] The LEP Collaborations and the LEP Electroweak Working Group and the SLD
Heavy Flavour and Electroweak Groups. A Combination of Preliminary Electroweak
Measurements and Constraints in the Standard Model. Technical Report CERN-
EP/2001-098 (hep-ex/0112021).

[98] A. C. Villanueva, J. A. H. Morata, and J. J. G. Cadenas. RecPack, a general recon-
struction tool-kit. Conference Record of IEEE-NSS 2003, Portland (USA), October
2003.

[99] T. Virdee. Requirements from experiments in year 1. Prepared for 12th Chamonix
LHC Performance Workshop, Chamonix, France, 3-8 March 2003.

[100] C. S. Wallace and D. L. Dowe. Minimum Message Length and Kolmogorov Com-
plexity. Computer Journal, 42:270-283, 1999.

[101] W. Waltenberger et al. New developments in vertex reconstruction for CMS. Nuclear
Instruments and Methods in Physics Research A, 502:699-701, 2003.

[102] A. Weingessel, E. Dimitriadou, and K. Hornik. A Voting Scheme for Cluster Algo-
rithms. In G. Krell, B. Michaelis, D. Nauck, and R. Kruse, editors, Neural Networks
in Applications, Proceedings of the Fourth International Workshop NN'99, pages 31-
37, Otto-von-Guericke University of Magdeburg, Germany, 1999.

[103] C. Weiser, b-tagging, review talk, 2004. h t tp : / /agenda.cern .ch/
askArchive.php?base=agenda&categ=a041643&id=a041643s5t5/transparencies.

[104] M. Winkler. A comparative study of track reconstruction methods in the context of
CMS physics. PhD thesis, Vienna University of Technology, 2002.

[105] M. Zickler. Vergleich der Liebesdarstellung in Hartmanns von Aue "Iwein" und
Wolframs von Eschenbach "Parzival". Master's thesis, Universität Wien, 2004.

It is not for nothing that the scholar invented the PhD thesis as his principal
contribution to literary form. The PhD thesis is the perfect image of his world. It
is work done for the sake of doing work - perfectly conscientious, perfectly laborious,
perfectly irresponsible.

Archibald Macleish, "The Irresponsibles"

Curriculum vitae

Dipl.-Ing. Wolfgang Waltenberger
Gumplowiczstraße 1/4/21
1220 Wien

Geboren am 10. Dezember 1974 in Gmunden(À).
Verheiratet (Manja Zickler), ein Kind (Fabian, 21. Juli 2000).

Ausbildung, Berufspraxis

1980 - 1985 Volksschule
Ebensee (A)

1985 - 1993 Gymnasium
Bundesgymnasium Gmunden (A)

Aug 1991 - Jun 1992 R. J. Reynolds High School,
Exchange student, Winston-Salem
NC (USA)

Okt 1993 - Mai 2001 Studium
Techn. Physik, Technische Universität Wien
Diplomarbeit (März 2001):
"Towards 2d Quantum Gravity With Fermions"
1998 - 2000 Studienassistenz

Zentraler Informatikdienst der TU Wien
1998 Linux-Trainer am Wifi Wien

1995 - 1996 Tutor im EDV Labor für
Architektur und Raumplanung, TU Wien

Jun 2001 - Dez 2001 Computerphysiker am Institut für Hochenergiephysik,
Österr. Akademie der Wissenschaften

Dez 2001 - Okt 2004 Dissertation "Development of Vertex Finding
"and Vertex Fitting Algorithms for CMS"
Aug/Sep 2003 Local organizer der Cern School of

Computing, Krems an der Donau (A)

seit Jan 2004 Webmaster der Seite h t tp : //www. t e i lchen . at

