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Deutsche Kurzfassung

Das theoretische Studium des Quark-Gluon Plasmas gewinnt immer mehr an
Bedeutung seit Teilchenbeschleuniger wie das SPS, der RHIC, oder der sich
im Bau befindliche LHC die erforderlichen hohen Energiedichten in Schwerio-
nenkollisionen erreichen, die es erlauben, diesen neuen Materiezustand expe-
rimentell zu untersuchen. Einfache Anwendungen der Quantenfeldtheorie im
Rahmen einer störungstheoretischen Entwicklung nach der Kopplungskon-
stante versagen bei hohen Temperaturen, und trotz eifriger Bemühungen,
die Situation in den Griff zu bekommen, haben wir quantitative theoreti-
sche Aussagen über den Phasenübergang nur von Gittersimulationen. Diese
wiederum versagen für ein Quark-Gluoii Plasma bei hohem chemischem Po-
tential und niedrigen Temperaturen, wie man es im Kern von dichten Sternen
vermutet. Large-iVy-QCD - das ist Quantenchromodynamik (QCD) mit ei-
ner großen Zahl von Quark-Sorten (number of quark flavors - Nf) - erlaubt
es, Wechselwirkungseffekte von thermodynamischen Größen wie dem thermi-
schen Druck oder der Entropie exakt in der effektiven Kopplung g^ oc g2Nf
für alle Temperaturen T und chemische Potentiale /ig zu berechnen. Dies
macht Large Nf QCD zu einem idealen Testwerkzeug für verschiedene Nä-
herungsmethoden.

In der vorliegenden Arbeit präsentieren wir das exakte Large-Nj Resultat
für den thermischen Wechselwirkungsdruck in der kompletten T-^g-Ebene in
einem Bereich, in dem der Einfluss durch den Landau-Pol numerisch vernach-
lässigt werden kann. Für kleine Werte der Kopplung vergleichen wir unser
Resultat mit existierenden störungstheoretischen Ergebnissen in der Litera-
tur, einschließlich der aktuellen Berechnung des Drucks durch Vuorinen für
endliche Temperatur und chemisches Potential sowie einer älteren Rechnung
von Freeman und McLerran für verschwindende Temperatur und hohes che-
misches Potential. Unsere numerische Genauigkeit erlaubt uns, existierende
störungstheoretische Koeffizienten zu verifizieren und zum Teil sogar zu ver-
bessern, und auch störungstheoretische Koeffizienten zur sechsten Ordnung
in der Kopplung numerisch zu bestimmen, die analytisch bislang noch nicht
berechnet wurden. Für verschwindendes chemisches Potential berechnen wir
lineare und nicht-lineare Quarkzahl-Suszeptibilitäten. Wir zeigen, dass das
moderate Skalierungsverhalten, das durch die Quarkzahl-Suszeptibilitäten
nahegelegt wird, ziemlich abrupt bei \i,q > 7rT zusammenbricht, aber dass
dieser nicht-pertubative Effekt in fxq immer noch in guter Näherung durch
die Ergebnisse von Vuorinen bei kleinen Kopplungen und endlichem T be-
schrieben wird. Nur für T <C /ig versagt auch dieser Zugang, und wir kommen
in den Bereich der sogenannten Non-Fermi-Flüssigkeit, die im Gegensatz zur
klassischen Fermi-Flüssigkeit von langreichweitigen, quasistatischen trans-
versalen Eichbosonen dominiert wird. In diesem Limes können wir nicht nur
den bereits bekannten führenden TlnT" 1 Beitrag zur spezifischen Wärme
vervollständigen, sondern auch über die führende Ordnung eine störungs-
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theoretische Reihe mit anomalen gebrochene Potenzen ji(3+2n)/3^ ^
dynamische Abschirmung verursacht werden, angeben. Wir berechnen deren
Koeffizienten analytisch bis zur Ordnung T7/3 und finden, dass diese tatsäch-
lich das führende anomale Verhalten der vollen QED und QCD bestimmen
(also bei endlichem Nf).
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Abstract

The theoretical study of the quark gluon plasma gains increasing interest
as particle accelerators like the SPS, RHIC, or the currently built LHC will
reach sufficiently high energy densities in heavy ion collisions that allow us to
probe this new state of matter experimentally. Straightforward application of
quantum field theory at high temperatures fails in a perturbative expansion
in the coupling constant, and despite some effort during the last decades to
improve the situation, so far quantitative theoretical knowledge about the
phase transition merely comes from lattice simulations. Lattice simulations
on the other hand fail for a deconfined quark-gluon plasma at large quark
chemical potential and small temperatures which is expected to be found in
the core of dense stars. Large Nf QCD - that is quantum chromodynamics
with large number of quark flavors - allows one to calculate thermodynamic
properties like the interaction contribution of thermal pressure or entropy
exactly in the effective coupling g^ oc g2Nj for all temperatures T and
chemical potentials fj,q. This makes large Nf QCD an ideal testing ground
for various approximation methods.

In this work we present the exact large Nf NLO calculation of the ther-
mal interaction pressure in the whole T-/xg-plane where the presence of the
Landau pole is negligible numerically. For small values of the coupling we
compare our results to existing perturbative results in the literature, in par-
ticular the recent calculation by Vuorinen for finite temperature and chemical
potential or an older calculation by Freedman and McLerran for zero tem-
perature and high chemical potential. Our numerical accuracy allows us to
verify and even improve some of the existing perturbative coefficients, and
to predict new coefficients to the sixth order in the coupling numerically
that have not been calculated analytically yet. For larger couplings we de-
termine where perturbation theory ceases to be applicable. At zero chemical
potential we calculate linear and non-linear quark number susceptibilities.
We show that the moderate scaling behavior suggested by the quark num-
ber susceptibilities breaks down rather abruptly at nq > TTT, but that this
non-perturbative effect in fiq can still be reproduced well by the calculation
by Vuorinen for small couplings and finite T. Only for T -C Mg also this
approach breaks down and we enter the range of a so-called non-Fermi liq-
uid, which in contrast to a classical Fermi liquid is dominated by long-range
quasi-static transverse gauge-boson interactions. In this limit, we complete
the previously known leading TlnT" 1 contribution to the specific heat, and
also to go beyond this order to find a series involving anomalous fractional
powers T(3+2n)/3 caused by dynamical screening. We calculate their coeffi-
cients analytically up to order T7/3 and find that these contributions indeed
determine the leading anomalous contribution in full QED and QCD (i.e. at
finite Nf).



'xin ji chi bù liäo rè döu fu: Those of impatient heart can not eat hot tofu (bean curd).
(traditional Chinese saying)
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Prolog

LHC/CERN in Swiss, 20072

SWOOOOSH....Ü!
"Oh my god! What was that?" - "They are trying to smash us!" - "Oh

mum! I wanna get out!". A bunch of hysterically screaming lead ions flying
almost at the speed of light can barely fight the 8.36 Tesla magnetic fields
(some 100,000 times the strength of Earth's magnetic field) that keep them
on spiraling orbits in the Large Hadron Collider (LHC).

SWOOOOSH....Ü!
"Aahhh!" - "That was VERY close!!! I can't believe they are doing this

to us!". With only 27 km collider circumference, the ion bunches approach
themselves some 11,000 times per second.

SWOOOOSH...Ü!
"Ok, that's it! Let us oooouut!!" - "They already ripped off an electron

from me! What else do they wanna do?". The darkness in the collider is tan-
• talizing, as are the 1.9 K (some -270°C) coldness from the 5,000 surrounding
-super-conducting magnet coils.
r SWOOOOSH.JU

"I'm cold!!!" - "Brrrr... I'm freezing!!!". "You'll feel warmer soon", Old
uncle Joe tried to soothe them. In his billions of years of life he had gone
through many phases. So far he had survived everything.

SWOOOOSH...U!
"What the..!" - "They are not... no!! Don't tell me they want to smash

us into..." - "..into the Quark Gluon Plasma!!!"
SWOOO - KABOOM!!!!

Let me not go into too much detail - it's a horrible view: atoms are
smashed head on head, their inner protons and neutrons are torn apart,
even the formerly strictly confined up- and down-quarks end in a disgusting
soup of unconfined quarks and gluons, whining and wincing only as shock
fronts penetrate them. But this is science: Scientists have to take the loss of
some lead atoms for the sake of knowledge about the Quark Gluon Plasma
(QGP).

2Data in this prolog are taken from the LHC design performance website 2003 [1].



Chapter 1

Introduction

1.1 The experiment

The study of the quark-gluon plasma in heavy ion collision experiments
is one of the focal points of contemporary high energy physics. Histori-
cally, scientists smashed elementary particles since the 1930's with Earnest
Lawrence's invention of the cyclotron, which improved earlier attempts with
linear accelerators tremendously. In a cyclotron, charged particles from elec-
tron or ion sources are accelerated on a circular orbit before they hit a target.
Even higher energies can be reached with synchrotrons, first constructed at
the General Electric Research Laboratory for the University of California,
Berkeley, in 1949. Contrary to the continuous beam of a cyclotron, the
synchrotron works with beam pulses which ride on electro-magnetic waves.

Modern particle accelerators like the Super Proton Synchrotron (SPS)
at CERN or the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Na-
tional Laboratory are based on this concept of the synchrotron, relying on
several steps of particle acceleration. For example, heavy ions at RHIC are
produced in the Tandem Van de Graaff by static electricity. These particles
are then carried to the Booster synchrotron where they are accelerated to
37% the speed of light, before they are transfered to the Alternating Gra-
dient Synchrotron where they reach 99.7% the speed of light. From there
they will be injected into the first RHIC ring in clockwise direction or into
the second RHIC ring in counter-clockwise direction, where particles will be
collided into one another in one of the six interaction points of the ring [2].

It is interesting to note that for proton-anti-proton collisions like in the
LHC one only needs one collider ring instead of two, as positively charged
protons and negatively charged anti-protons can travel clockwise and counter-
clockwise in the same magnetic field. However, the LHC also has two col-
lider rings to also allow for lead-lead collisions, proton-lead collisions, proton-
oxygen collisions, or collisions of protons with other light ions [3]. A summary
of accelerators that are producing or will produce the quark-gluon plasma



CHAPTER 1. INTRODUCTION

Name

SPS
RHIC
LHC

Location

CERN
Brookhaven

CERN

Year

1994
2000
2007

Energy

160 GeV
200 GeV

7TeV

Beam

lead ions
gold ions

proton,lead

Orbit

6.9 km
3.8 km
26.7 km

Table 1.1: Particle accelerators that produce or will produce the quark gluon
plasma (QGP). The year marks the date of starting operation for search of
the QGP, center-of-mass energy is given per nucléon for SPS and RHIC. The
abbreviations of the names mean Super Proton Synchrotron (SPS) [5], Rel-
ativistic Heavy Ion Collider (RHIC) [2], and Large Hadron Collider (LHC)

[1]-

is given in table 1.1. Besides hadron colliders (using ions or protons) which
will probe the quark-gluon plasma, future collider plans also include lepton
colliders as CERN's proposed electron linear accelerator CLIC (Compact
Linear Collider), or muon colliders. Since leptons are fundamental particles
(contrary to hadrons which consist of quarks and gluons), these colliders are
especially apt for precision measurements of particle properties. [4]

The press releases about evidence for the production of the quark-gluon
plasma in heavy ion collisions at the SPS were first announced in 2000 [6].
Only indirect observations are possible since the QGP formed in the initial
stage is quickly turned into a system of hadrons - a process called "hadroniza-
tion". Detection of single quarks is not possible due to color confinement,
a property of strong interactions at low energies, according to which quarks
must always combine to color-neutral hadrons before being able to travel
to the detector. A number of experiments was necessary before scientists
dared to announce the discovery of the QGP: The theoretical analysis of the
measured hadron abundances resembles a state of "chemical equilibrium"
at a temperature of about 170 MeV which marks the quark-hadron transi-
tion. In particular, there is an observed enhancement of hadrons containing
strange quarks by a factor of 2 to 15 (depending on the hadron), relative
to proton-induced collision, and an observed suppression of the charmonium
states J/ij) and ip' [7] which contain charm quarks with masses of about 1.2
GeV, much higher than the transition temperature of about 170 MeV. Direct
observations of the QGP via electromagnetic radiation at the SPS are diffi-
cult due to high backgrounds from other sources. Higher energies at RHIC
and the LHC may allow for better observation of the plasma radiation and
enable detailed studies of the early thermalization processes and dynamical
evolution of the quark gluon plasma. These experiments might also help
to study the order of the phase transition and to locate the tricritical point
within the QCD phase diagram, where the first-order transition changes into
a crossover behavior.
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quark-gluon plasma

non-Fermi liquid

superconductor
308 MeV

Figure 1.1: Schematic QCD phase diagram of strongly interacting matter.

1.2 QCD Phase Diagram

Depending on temperature and particle density, matter exists in various
phases. Just like water can exist in the familiar phases of solid, liquid, or
gaseous state with phase transitions between them, so will it enter a new
phase of a plasma (ionized gas) at high enough temperature to break up
chemical bonds and to ionize hydrogen and oxygen atoms. If the tempera-
ture still increases, matter undergoes another phase transition where quarks
and gluons, which are the constituents of protons and neutrons, leave their
nuclear confinement to form a quark gluon plasma. On the lower end of
the temperature scale, matter may exist in the phase of a Bose-Einstein
condensate, suprafluids, or superconductors.

The fundamental theory describing quarks and gluons is the theory of
strong interactions, quantum chromodynamics (QCD). Unlike electromag-
netism, which becomes stronger as the mutual distance decreases, strong
interaction gets weaker. As a consequence, quarks, the fundamental parti-
cles of QCD, are confined in packages of three (called "baryons", like protons
and.neutrons).or two ("mesons", e.g. pions) at low temperatures. Any at-
tempt to separate confined quarks rather produces a new quark-antiquark
pair from the gluon field in-between that combines with the separated quarks
so that no single quark or net color charge can be observed.

In figure 1.1 we see a schematic view of the QCD phase diagram. Strongly
interacting matter can exist in three distinct phases, depending on temper-
ature T and chemical potential p: the hadronic phase (confined to hadrons
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as a hadron gas or nuclear matter), the quark-gluon plasma, and the color-
superconducting quark-matter. Our world is located on the lower line of the
diagram around the phase transition of 308 to 313 MeV, in the form of hadron
droplets (nuclei). Temperature T is given in units of MeV which can be con-
verted to Kelvin using the Boltzmann constant kß = 1.3807 x 10~23J/K =
8.617 x 10"5eV/K. For a nice day of 27°C we get 27°C « 300 K « 25.9 meV.
The core of our sun has a temperature of about 1.6 x 107K « 1.35 keV. To
get to the quark-gluon plasma we still need to increase temperature by five
orders of magnitude to at least 170 MeV.

The other axis of the diagram shows the quark chemical potential /z. The
term "chemical potential" may be misleading since we deal with temperatures
and densities far from ordinary chemistry, but it denotes a useful quantity
that is applicable to any thermodynamic system: The chemical potential is
the change in the energy of the system when an additional constituent par-
ticle is introduced, with the entropy and volume held fixed (or equivalently
the change in the Helmholtz free energy with temperature and volume held
fixed). For systems containing different species of particles, there is a sepa-
rate chemical potential associated with each species. If the particles can be
transformed into one another, particle species with higher chemical potential
will transform into a species with lower chemical potential, releasing heat.
Therefore in an equilibrium state of several species, the chemical potentials
of all species must equal each other. At zero temperature, (infinite) nuclear
matter has a ground state at a quark chemical potential of // = 308 MeV.
This is the nucléon mass mjv ~ 939 MeV minus the binding energy 16 MeV
divided by three for the average energy per quark or quark chemical poten-
tial. In our everyday life we find nuclear matter density only in atomic nuclei
- the droplets in which quarks are confined. Only if we increase the pres-
sure of the system so that all droplets start touching and overlapping each
other, we can build a phase of infinite nuclear matter. Up to this point, the
pressure of the system at zero temperature is zero, because any compression
just means decrease of the void space between the droplets. If the density
is increased beyond the point where the droplets start to touch, pressure
will start to increase, too. This is the so-called liquid-gas phase transition
between the hadron gas and nuclear matter.

The pressure always changes continuously if we change from one phase to
another, but if its first derivative with respect to T is discontinuous, we call
this a phase transition of first order. If the first derivative of the pressure
is continuous, but its second derivative is discontinuous, we have a second
order phase transition. Finally, if the pressure is continuous to all orders, but
there is a rapid change in pressure, we can talk of a crossover. Usually, points
of phase transition in the diagram form a line that starts at one of the axis
of the diagram and may terminate at a critical point. Also the first-order
liquid-gas phase transition has a critical point for a temperature of about 10
MeV where the transition becomes second order. Above this temperature
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one cannot distinguish between the gaseous and the liquid phase.
Below a temperature of 170 MeV and chemical potential of about 350

MeV, quarks stay confined in hadrons. If we further increase temperature
and/or quark density, we arrive at the quark-hadron phase transition at
which quarks cease to be bound in individual nuclei and become either a
deconfined quark-gluon plasma or a color superconductor. For a range of
medium quark chemical potential, the phase transition is of first order, but
for higher temperatures and smaller chemical potentials there is a critical
point below which we only have a crossover, as suggested by lattice calcu-
lations. Particle detectors like SPS, RHIC or LHC probe will probe the
quark-gluon plasma in a range around this tricritical point. This is also the
path that our universe took in early times, some 20-30 /xs (« 170 MeV) after
the big-bang, starting with high temperature and a quark chemical poten-
tial of about 10~6MeV passing the quark-gluon phase transition down to our
universe temperature of 2.725 K [8] and an average quark chemical potential
of about 313.6 MeV [9].

For small temperatures and high chemical potential we enter the phase
of a color superconductor [10, 11]. This phase has been studied extensively
during the last decade, and its theoretical foundations include concepts taken
from the theory of ordinary superconductors: In ordinary superconductors,
electrons are bound together by phonon interactions into Cooper pairs. Color
superconductivity occurs because in the anti-triplet channel there is an at-
tractive interaction between two quarks at the Fermi surface [12, 13]. These
quarks then condense in the new ground state of the system by forming
Cooper pairs. Depending on T, color superconductivity can again be classi-
fied in different phases: If only up and down flavors are involved, we have a
2-flavor color superconductor (2SC), for three flavors including the strange
quark we have a color-flavor-locked (CFL) phase. Other phases studied in-
volve a color-spin-locked (CSL) phase and a polar phase. Matter may further
occur in the form of crystalline LOFF (named after Larkin, Ovchinnikov,
Fulde and Ferrell) where Cooper pairs with nonzero total momentum are
favored [14]. Color superconductivity may exist up to a temperature of 6 to
60 MeV [15], above which we enter the quark-gluon-plasma phase.

For small to medium temperature ranges, the QGP may be described
as a non-Fermi liquid. It is called "Non-Fermi", because its behavior cannot
entirely be described by the classical (Landau-) Fermi liquid theory of non-
interacting cold fermions. This is due to transverse gauge bosons (transverse
gluons) which are not screened at small temperatures due to the properties
of dynamical screening. We have long-range, quasi-static interactions which
give anomalous contributions to thermodynamic quantities like the specific
heat. Such non-Fermi liquid behavior might have influence on astrophysical
calculations, for example the cooling rate of proto-neutron stars [16]. Non-
Fermi liquid behavior also appears in solid state physics experiments, for
example in the specific heat of the YbRli2Si2 crystal [17, 18].



8 CHAPTER 1. INTRODUCTION

1.3 Outline

This thesis is organized as follows:
In chapter 2 we will introduce large Nf QCD where the number of quark

flavors Nf is sent to infinity while the effective coupling geß oc g2Nf stays
of order 1. We will see that this theory is exactly solvable in the effective
coupling at next-to-leading order of the l/Nf expansion. Also, the scale
dependence is completely solvable to this order. Therefore this theory is
particularly suitable for testing other perturbative and non-perturbative ap-
proaches against this limit. In contrast to lattice gauge theory, large Nf can
be readily extended to finite fi.

In chapter 3 we will explore the non-Fermi-liquid regime of the large
Nf theory. We will derive the pressure and the specific heat perturbatively
and show that beyond the leading logarithm there are anomalous fractional
powers and we calculate their coefficients up to order T7/3 in the specific
heat. We will see that fractional powers appear from the transverse gluon
propagator whose calculation is carried out in careful detail, but both, longi-
tudinal and transverse contributions to the pressure are needed to complete
the leading logarithm of the specific heat.

The final chapter 4 gives a summary and an outlook.



Chapter 2

Large Nf

2.1 Introduction to Large Nf QCD

2.1.1 Why Large Nft

Large Nf QCD is quantum chromodynamics (QCD) with the number of
quark flavors Nf assumed to be large (Nf —> oo) and the strong coupling
as = g2/(4ir) —> 0 assumed to be small so that the effective coupling (which
we will define later) g2^ ~ g2Nf ~ asNf ~ 0(1) stays of order 1. Also, the
number of colors Nc stays small Nc ~ 0(1).

Why do we want to study Nf -» oo? After all, in our everyday world we
only experience two quark flavors, that are the "up" and "down" quarks with
'masses of the order of 1-10 MeV. For the quark gluon phase transition at a
^temperature of about 170 MeV, only one more quark flavor, the "strange"
quark with a mass of about 80-155 MeV [19], will play a considerable role
in the thermal state. Even if we consider the other known quark types
"charm", "bottom" (also called "beauty"), and "top" (which is barely called
"truth" anymore) with masses beyond a GeV, we end up with a total of
Nf < 6 quark flavors. Clearly, the aim is not to realistically model QCD,
but to study the theory in a well defined limit that turns out to be exactly
solvable up to next-to-leading order in an 1/Nf expansion while containing
essential physics of the full theory.

Ideally, we would like to solve full QCD, but so far only approximate nu-
merical results from lattice simulations are available (at least for small n/T),
but with not completely understood systematic uncertainties. For tempera-
tures far above the intrinsic scale of QCD, T 3> AQCD> we expect the coupling
g to get small [20]. Due to this property of strong interaction, called asymp-
totic freedom, we can expand the theory in terms of small g. It turns out
that a strict perturbative expansion of thermodynamic parameters like the
pressure in terms of the small coupling g would only work for ridiculously
high temperatures and fails to work for the interesting region of tempera-
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ture values slightly above the phase transition Tc or the QCD scale AQCD:

Successive orders in perturbation theory show very poor convergence. But
this is not the only problem: Hot QCD has an intrinsically nonperturbative
scale in the magnetostatic sector at wave numbers A; ~ g2T. For the pressure
this means that perturbation theory ceases to work at order g6T4 [21, 22].
For other observables, this might even mean stricter restrictions to an ex-
pansion in g: Nonperturbative corrections are suppressed only by a power
of g2 for photon emissivity [23], a power of g for the Debye screening length
[24, 25], or even not suppressed at all but appear at leading order in the case
of the baryon number violation rate [26, 27]. But even in theories without
the problem of a nonperturbative magnetostatic scale like in hot QED, the
poor convergence of the perturbative series remains [28, 29, 30, 31, 32].

There have been attempts to improve the situation by reorganizations or
partial resummations of the perturbative expansions of hot QCD. In scalar
models where one already meets similar difficulties of poor convergence [33],
Karsch et al. [34] proposed to keep a screening mass unexpanded at any
given order of the loop expansion and to fix this mass by a stationarity
principle, which technically means subtracting a mass term from the bare
Lagrangian and adding it to the interaction part. This successful approach
was extended to QCD by Andersen et al. [35, 36, 37, 38, 39, 40] by replacing
the simple mass term by the gauge-invariant hard-thermal-lop (HTL) action
[41, 42], a method which they termed HTL perturbation theory. Another
approximation method is based on «^-derivable approximations [43, 44] for
2PI skeleton diagrams advocated by Blaizot et al. [45, 46, 47, 48, 49]. Here,
the starting point is an expression of the thermodynamic potential in terms
of dressed propagators, where bare propagators are functionals of the full
propagators that have to satisfy a stationarity condition. Truncation in this
scheme does not happen in terms of the coupling g, but one resums diagrams
to a given loop order of the 2PI skeleton diagrams.

All of these approaches show improved convergence properties, but it is
difficult to tell to what extent these resummations can predict the correct
behavior of full QCD. Apart from the necessary condition that these theories
should coincide with perturbative QCD at very small couplings (correspond-
ing to temperatures far beyond the scope of current collision experiments),
only lattice calculations [50, 51] could give truly independent indications as
to which resummation scheme to trust. Lattice theory on the other hand
works more like a "black box" for theorists and provides only limited insight
into the actual underlying physics, like screening effects or collective modes.
One has therefore been looking for simpler theories that could be solved ex-
actly, so that other resummation schemes could be tested within that simpler
framework. One such theory is large-iV scalar field theory with </>4 interac-
tion [52, 53] with an exactly solvable N —> co limit. Another limit that has
been studied in the past is the large N limit of a scalar field theory in 6
dimensions with cubic interactions [53] that mimics QED with N flavors. It
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is richer than large N ^4-theory in that self-energies vary with momentum
and wave-function renormalization is needed just like in full QCD. Yet, this
theory involves instabilities which prevents one from direct comparisons to
QCD. A more appealing test bed is large Nf QCD.

Besides being exactly solvable up to next-to-leading (NLO) order in 1/Nf,
large-Nf QCD contains the same complicated frequency and momentum de-
pendent gauge field screening and damping as full QCD and its perturbative
series shows similarly poor behavior as full QCD. One should keep in mind
though that since large Nf QCD only resembles part of the full QCD theory,
we do not expect large Nf to give any useful predictions for a small number
of flavors. In fact, with a running coupling that leads to a Landau pole (like
in QED) and excludes the possibility of confinement, large Nf at NLO is
quite different from full QCD. Also, the leading order contributions to full
QCD in an expansion in the coupling g are numerically dominated by sub-
leading powers of 1/Nf for small Nf, as we will see in the next section. Yet,
large Nf can be regarded as an important test theory, and any resummation
scheme had better get close to the exact NLO result in the large Nf limit.
On the other hand, even if a theory turns out to reproduce the right large
Nf limit, that does not guarantee that it will correctly predict the full QCD
result. After all, large Nf is a test theory, but contains a lot of the physics
of full QCD, so if we can do this test, let's better do it.

2.1.2 Comparison to strict perturbative expansion in g

It is instructive to see which terms of perturbation theory survive in the
large Nf limit. Strict perturbation theory has a long tradition. An overview
over the known coefficients is given in figure 2.1. The leading order result
to the pressure of perturbative QCD is just the Stefan-Boltzmann pressure
of non-interacting quarks and gluons. The first non-trivial contributions to
this result proportional to as were calculated independently by Shuryak and
Chin in 1978 [54, 55] by calculating one- and two-loop vacuum graphs. The
next order already turned out to be non-analytic in as and required the
resummation of an infinite subset of diagrams. This was done by Kapusta
to order aj [56] and Toimela to order a%lnas [57]. Subsequent orders
demanded new tools for evaluating sum-integrals by Arnold, Zhai and Kas-
tening [28, 29, 58], or the introduction of dimensional reduction [59, 60, 61]
by Braaten and Nieto [62]. The last perturbative series coefficient that has
be calculated so far for full QCD is the o?s In as coefficient by Kajantie, Laine,
Rummukainen, and Schröder [63, 64]. The order a^ coefficient is completely
non-perturbative as pointed out by Linde [21] and Gross, Pisarski, and Yaffe
[22]. Recently the perturbative result has been extended to finite chemical
potential by Vuorinen [65].

In this perturbative series the effect of large Nf is straightforward to be
seen: Since we keep the quantity asNf ~ 0(1) of order one while we send
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Perturbative calculations of QCD at high T//z

^( ^ ) ^ ( % )
+ 1237.2 + 15.97Nf - OAlZNj

+(1 + i^)* {-799.2 - 21.96JV/ - 1.9W]

}
+ {1139.8 + 65.89 AT/ + 7.653NJ

C(ß)N}} (^

Planck 1900

Shuryak/Chin 1978

Kapustal979

Toimela 1983
Arnold&Zhai 1995

Zhai&Kastening 1995

Braaten&Nieto 1996

Kajantie, Laine,
Rummukainen &

Schröder 2002

* extension to ßq ^ 0 : Vuorinen 2003
* C(ß) = 0.040...for fi = irT (A.I.&A.Rebhan 2003, see section 2.5.2)
* ?!: completely non-perturbative (Linde 1980; Gross, Pisarski & Yaffe 1980)

Figure 2.1: Known coefficients for the pressure of perturbative QCD by
2003. The coefficient marked as ?! denotes the breakdown of perturbation
theory in the order a%. Only a few coefficients of this series contribute
to the NLO contribution of the large-iVf limit, namely those of the form
afNf'. Particularly, terms containing a logarithm of the coupling lna s do
not survive the large-Nf limit. The large-Nf coefficient C(ß) of order
has been extracted numerically from the exact NLO result.
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Nf —» oo and as —> 0, the leading order (LO) contribution to the pressure
is just given by the contribution proportional to Nf. P = 7ir2NfT4/60.
Actually, this contribution is infinitely large for Nf -^ oo, but we can always
subtract this known leading order contribution to obtain a finite correction
at next-to-leading order (NLO). Prom figure 2.1 we see that now all orders in
the coupling as contribute to the large Nf NLO result which are of the form
o?sN

Pf with p = 0, 1, §, 2, | . A graphical comparison of the partial sums
of the series against the exact large Nf NLO calculation will be presented
below in figure 2.8.

2.1.3 Outline

The pressure in large Nf QCD was first calculated by Moore for zero chemical
potential [66]1 and successively extended to finite chemical potential [68].
In the following sections we will present the exact large Nf result for the
thermal pressure and some derived quantities thereof like the quark number
susceptibilities or the entropy. The theory inevitably contains a Landau
pole. We will study its effect on the result and show for which range of
the coupling the effect of the Landau pole is negligible. At zero chemical
potential we compare the exact large Nf result of the pressure and the quark
number susceptibilities with known results from thermal perturbation theory
[29, 58, 69] obtained at small chemical potential where dimensional reduction
[59, 70, 61] is applicable. We verify the recent three-loop result of Vuorinen
[71] on quark number susceptibilities numerically in the large Nf limit as well
as a numerical coefficient in the pressure at zero temperature obtained long
ago by Freedman and McLerran [72, 73]. For small values of the coupling
g, our numerical accuracy allows us to extract a number of perturbative
coefficients at order g6 that are not yet known from analytical calculations.

It is remarkable that large Nf can be safely calculated all the way down
from large temperatures and zero chemical potential to large chemical po-
tential and zero temperature for effective couplings g^ < 20, which is a
main advantage compared to lattice gauge theory. For a long time, the so-
called "sign problem" prohibited calculations of fermions with finite chemical
potential on the lattice. Only recently there has been important progress re-
garding calculation of thermodynamic quantities within lattice gauge theory
[74, 75, 76, 77, 78, 79]. Using the large Nf limit, we can test the scaling
behavior noticed in lattice calculations by Fodor, Katz, and Szabo [75] and
find that it breaks down rather abruptly at y,q > TTT. We can also test the
range of applicability of dimensional reduction by comparison to perturba-
tive calculations at finite temperature and chemical potential by Vuorinen
[65], where we study the effect of the choice of the renormalization scale.

The first published version contained an unfortunate coding error which was revealed
and corrected by an independent calculation involving the author of this thesis [67].
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(A)

Figure 2.2: Diagrams contributing to the large Nf limit. At leading order
(LO) of the order O(Nf) there is only the fermion loop (A) contributing.
At next-to-leading order (NLO) of order 0(1) there is an infinite number of
diagrams contributing (B) which can be resummed by the Schwinger-Dyson
method.

At small temperatures T < /J we enter the region of a non-Fermi-liquid
behavior, which will be studied in detail in the next chapter.

Further discussions on the large Nj limit can be found in the literature
by Peshier [80] on the quasiparticle picture [81, 82, 83], who points out
the large differences between large and small Nf QCD with respect to the
different strong coupling behavior and questions the immediate significance
of a comparison within large Nf NLO. A detailed discussion of the HTL-
quasiparticle picture of QCD with respect to large Nf and its implications
on 2PI «/»-derivable approximations [45] is given by Rebhan [84].

2.2 Pressure at Large-Nf QCD

In the following we want to calculate the thermal pressure in the large Nf
limit. As we already already mentioned there are indeed two quantities
that are involved in the limit: The number of flavors Nf and the coupling
g. By forming the limit Nf —> oo we actually keep the effective coupling
Seff ~ 92Nf of order 1. In this sense, a suppression by a factor 1/Nf is
equivalent to a suppression by a factor g2. We will see how this provides
a very strong ordering principle for diagrams in the large Nf expansion.
There are no special assumptions on the number of colors. We will calculate
the pressure at next-to-leading order (NLO) where the theory can be solved
exactly, that is to all orders in the effective coupling, apart from possible
difficulties introduced by a Landau pole that we will discuss later. We will
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follow the original approach of references [66, 67] and define the effective
coupling as

2 _ g2NfCFdF
QCD,

(2.2.1)

g2Nf, QED.

where Cp is the quadratic Casimir of the representation containing the
fermions and dp and dx are the dimensions of the fermionic and adjoint
representations. This allows us to treat the two cases of massless QCD and
ultrarelativistic QED the theory at the same time. Since the coupling runs in
these theories, we need to know the ß function. The one-loop ß function for
QCD, that is a SU(N) gauge theory with Nf fermions in the fundamental
representation, is given by

For sufficiently small Nf, that is Nf < yiV, the ß function is negative, which
means that QCD is asymptotically free. In the limit of Nf —» oo we see that
this behavior changes as the sign of ß(g) gets positive and large Nf therefore
is no more an asymptotically free theory. The ß function then becomes

~ ~ 6 ^ " - (2-2-3)

This relation turns out to be exact at leading order in 1/Nf, even if we
add higher loop beta function contributions (see for example reference [85])
to the one-loop result (2.2.2) because they are diagrammatically suppressed
at least by a factor of 1/Nf oc g2. We can solve the renormalization scale
dependence exactly, giving

1 5Ä (2-2.4)

This theory contains a Landau pole of the order of AL ~ ß exp(67r2/g2ß) •
Following reference [66] we define the Landau scale AL such that the vacuum
gauge field propagator diverges at Q2 = AL. The vacuum gauge field prop-
agator is defined as D~^ = q2 — q^ + IIvac with nvac from equation (2.2.9)
below, which leads to

AL = ßuse5/6e67r^9^ißMs). (2.2.5)

This Landau singularity means that the exact definition of the theory is
ambiguous unless the UV completion is specified. But that should not hinder
us from doing finite temperature calculations since the ambiguity for the
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thermal pressure at NLO is suppressed by a factor (max(T, /X)/AL)4. AS

long as we stay well below the Landau pole with temperature T and chemical
potential /i, we can expect to get results which are not afflicted by the UV
incompleteness of the large Nf theory.

The pressure can be calculated by computing the diagrams contributing
to the free energy, which is the trace of the sum of all 1PI vacuum bubble
graphs. At leading order in the l/Nf expansion we only have one diagram -
that is the bare fermion loop in figure 2.2. To obtain the thermal pressure,
we subtract off the vacuum part of the diagrams. The leading order pressure
is thus given by

It is well-known how to calculate this contribution for finite temperature and
chemical potential and the pressure is given by

The leading order contribution in the pressure is thus of order Nf and strictly
speaking infinitely large in the limit of Nf ->• oo. Of course, we can always
think of this as the leading contribution to an expansion in terms of l/Nf
with large but finite Nf.

The next-to-leading order (NLO) of this expansion is proportional to
Nf = 1. We can calculate it from the gauge boson loop with an arbitrary
number of fermion loop insertions (plus corresponding counterterm inser-
tions), which are all of order JV9. For each fermion loop insertion we get a
factor Nf and a factor g2 from the two vertices, thus just our effective cou-
pling g2Nf oc g2

s ~ 0(1). Any additional bosonic or ghost insertion would
give factors of g2 or higher, without introducing new fermion loop factors of
Nf, and are thus suppressed by at least a factor of g2 oc l/Nf. Therefore
this gauge boson loop is all there is to NLO. It can be resummed by the
standard Schwinger-Dyson resummation. Its contribution to the pressure is
(again subtracting the vacuum part)

n,even

~ S ( 0 MlDô'riQ) + iC:(Q))) (2-2.8)

where the trace runs over group and Lorentz indices. The vacuum part of
the gauge-boson self energy is given by

( ^ |) (2.2.9)
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and the one-loop bosonic self-energy can be calculated via

nG(Q) = ^ n ^ ( Q ) - [vac] = 2UT(Q) + UL(Q), (2.2.10)

nH(Q) = noo(Q)-[vac] = -§nL(Q) (2.2.11)

where IIG and ü # will be calculated in the next section in equations (2.3.21),
(2.3.22), and (2.3.26). These cannot be given in closed form except for
their imaginary parts [67], but are represented by one-dimensional integrals
involving the fermionic distribution function n/. Using this decomposition
of the self energy, the trace of the resummed propagator can be rewritten as

(2.2.12)
if we choose an appropriate gauge in which D$l factorizes in the same way as
II, as for example in the Feynman gauge [DQ1YU(Q) = rfvQ2. Any gauge
dependence drops out to our order of interest, since we only regard the
difference between thermal and vacuum contributions. We can now perform
the sum over Matsubara frequencies in the usual way of replacing it by a
contour integral that is deformed appropriately. The result is then given by
[66]

w? f ^ [2^ [2 ( K + ^ 1 I m ln(?2 "ql+RT+"̂ (2-2

/ r , i
([nb + -

! L _

with the bosonic distribution function n;,(w) = \/{eullT — 1) coming di-
rectly from the sum over even frequencies qo = 2nirT. When evaluating the
integrals above exactly by numerical means, we can safely integrate parts
proportional to rib m Minkowski space, since those are exponentially ultra-
violet safe. For terms without rib more care is required. We will refer to the
former contributions as "n(,"-parts and the latter as "non-n;," contributions.
The "non-rib" contributions are potentially logarithmically divergent, unless
a Euclidean invariant cutoff is introduced [66]. We will discuss this point in
more detail in section 2.4.

For non-vanishing chemical potential ß we use the fermionic distribution
function

which enters via the gauge boson self-energy expressions HT and
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2.3 Leading-order gauge boson self-energy

The leading-order gauge boson self-energy in the large Nf limit is diagram-
matically represented by a gauge boson propagator containing one fermion
loop insertion. In the imaginary time formalism it can be written as

~ 2 2 f d 3 k f ° ° d k 0 f ° ° dq0 , , . w ,
fg

zgz I -—3 I —I —po{ko,k)po(qo,q)

a + g^m2) (2.3.1)

with q = k — p. The constants g and TT can be adjusted to fit various au-
thor's conventions (see also the conventions used in appendix B). We follow
Weldon's conventions [86] by setting g2/^ = — 1. The fermionic Boltzmann-
factor is given by n(ko) = \/(ek°lT + 1) and the spectral function is given
by po(ko,k) = 27re(A;o)Ä(A;g - k2 - m2) = *-(6(k0 - ek) - S(k0 + ek)) with
e(ko) = ko/\ko\ and ek = Vk2 + m2. We can find a spectral form of the self
energy by using

dpo nß- r=
7-

.3.
Z -

which is valid for any complex z [87, eq (3.1.36)]. The spectral density is
then given by

/" d3k f°° dk0 f°° dq0J ^ 3 J -^ J -̂^ J
x (n(fe0) - n(g0)) 2nô(po - k0 + qo)IßV (2.3.3)

with

The spectral density is manifestly real which will simplify our calculations.
Since the spectral density will play an important role, we will try to push
its calculation as far as we can. After integrating over qo, we are left with
with an expression depending only on kß = (fco,k) and p^ = (j>o,p)- A
transformation of variables k11 —> —k'ß + p11 in the part proportional to
n(qo) = n(ko — po) leaves all other parts invariant up to minus signs. It
basically replaces n(ko —po) by — n(-k'o) = n(k'o) — 1 so that we can replace
(n(«o) - n{qo)) by (2n(fco) — 1) in equation (2.3.3). If we use z = cos# as
the angle between pk = pkz, we can express

1 ]c2 4- n2 — (k — rl \2

po(ko - po, k - p) = 2 7 ^ 0 - Po )^S ( z - 2lp ° ) (2-3.4)
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and integrate over z in / -Â^ = j^p J^ dz Jo°° k2dk. Analogous to Weldon
[86] we can then define

IG = 9ßVIßu = -kl + k2+Pl-p\ (2.3.5)

I H = u f i u v I ß U = ^ ( k 2 - p 2 + { k o )

with uß = (1,0,0,0) and integrate over ko- This is the last integral that we
can do analytically. The spectral density turns out to be antisymmetric in
ko meaning 7r(fco,k) = — 7r(—&o5k). The final result for the spectral density
of the self-energy can then be written as a sum of two parts that only differ
by the sign of po

p) = ir~£(po,p) - T4( - -PO,P) , (2.3.6)

xe(k - po)6{\k - p\ < \k - po\ <|fc + p|)

with X = G or H as in

IG = IG(ko = k) = p2
0-p

2, (2.3.8)

ïH = IH{k0 = k) = -{2k+p-po){2k-p-po).

The 0-function stems from the integration over z with — 1 < z < 1 and its
usage here means 0(true expression) = 1 and 6 (false expression) = 0.

Self-energy in the complex energy plane

Starting from the spectral form (2.3.2) we can calculate the self-energy in
Minkowski or in Euclidean metric or anywhere between in the complex plane.
To compare our results to the real-time formalism we start with the self-
energy with Feynman prescription

ÖFCPO.P) = n(po + tpoe,p). (2-3.9)

Separating ^ ^ = ^ — Î-KÔ{X) with P denoting the principal value, and
knowing that vr(fco) k) is a real function, we can easily separate this equation
into real and imaginary parts

RenF (po,p)= / -^n(p'0,p) r , (2.3.10)
J-oo 2 7 r PQ ~ Po

~ 1
lmUF{po,p) = ~^{Po)^{Po,p)- (2.3.11)
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In the general case we can write

-po)2 + b2 (a-po)2 + l

where we separated real- and imaginary parts. By using the antisymmetry
property of the spectral density (2.3.6) we can finally write

a — po a+po
(a-po)2

— I I ——7T (POiP
J 2TT

where all integrals to be evaluated are real. Particularly for the case a —> 0
and b — u: ̂  0 we recover the result for the Euclidean metric

fi n(w + £,p), (2.3.14)

n+(pp) °

( 2-3- l 5 )

ReÜEud(iuj,p) = /
V-oo 2TT

I m n ß u d ( i w , p ) = 0 . (2.3.16)

Minkowski space results

Plugging our self-energy (2.3.6) in the expressions (2.3.10) above we get the
Minkowski space results. First we note that we can write the integral over
Po that we have to deal with in a simple way since p and A; are positive:

roo

/ dPoe(k -po)d(\k -p\ < \k-po\ < \k+p\)f(Po)
J-oo

dpofipo) — / dpofypo) I
-p J2k-p J

/ ç2k—p r2k+p >

+9(p - k) I / dpof(po) - / dpof(po)
\J—p Jp J

rp r2k+p

= / dpof{po) - / dpof{po). (2.3.17)
J-v J2k-p
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The resulting integral for the real part can then be written as

n(k) - -

x / dp'o- dp'0\{ -
U-p J2k-p i\PO-Po

p

PO+Po

Using

(2.3.18)

Po - Po Po + Po

and

= -P'o - (P'o - P 2 ) (logdPo -Pol) + log(|Po +PoD) (2.3.19)

Po-p'o Po+Po

= i [8kp'o - p'l -(2k-p- Po){2k + p-Po) log(|p'0 - pol)

(2.3.20)

we finally arrive at the real part of the self-energy that is stated in Weldon's
paper [86]

RenG (p 0 ,p) = - ^

and

x 2p
log

2k
2k

+ p

+ P
o + P
o - p

2k
2k

- P o
- P o

+ P
-P

(2.3.21)

,,#fdH"w-§
x

P
Po+P
Po - P

(2fc+po+p)(2fc+po-p)
4p

(2fc-po-p)(2fc-po+p)
4p

log

log

2k + po + p

2A; + po - p

2A; - po - p

- po + p
J . (2.3.22)

Note that Weldon already subtracted the T = 0 vacuum part and replaced
n(k) — 5 by n(k). For the imaginary part no further calculation is necessary
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and we can simply relate the imaginary part of the self-energy to its spectral
density (2.3.6)

lmîlx{po,p) = -\e(po) {^x(po,p) - vr+(-po,p)) • (2.3.23)

We are left with integrals over k that can be solved analytically. We rewrite
the integral over k for the sign- and the 0-function as

dke(k - po)6{\k - p\ < \k - po| < \k + p\)f(k)

PO+P
oo r 2—r 2

f(k)dk - 9(p0 - p) y ^ f(k)dk. (2.3.24)

The function f(k) is one of the following f(k) = n(k), kn(k), or k2n(k) if
we already subtract the vacuum part from n(k) — ̂ . This leaves us with the
following integrals

/•OO

= / n(k)dk = -x+ Tlog(ex/T + 1),
J X

= /
Jx

T2T2 T2

6 2
3f°° r3

F3(x) = / k2n{k)dk = —- + x2T log(ex/T + 1)
Jx 3

+2xT2Li2{-ex/T) - 2T3Li3(-e I/T) (2.3.25)
with Lin(a;) being the polylogarithm function. The functions F{(x) have the
property that Fi(x ->• 00) -> 0 and Ft(x > 0,T -> 0) ->• 0. The thermal
contribution to the imaginary part of the self-energy can then be written as

f

-«(-» " P) ( ^ ( ^ y ^ > " ̂ f 1 ^ ) ) ] (2-3-26)

with X = G or H and

H n{k)ïGdk = (pl-p2)Fi(x), (2.3.27)
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F±(x) = f n(k)!H(±Po,p,k)dk = ^-JLFX{X) T 2p0F2{x) + 2F3(x).
Jx z

(2.3.28)
Using symmetric and antisymmetric versions of these functions F% = {F£ +
Fx)/2 and F$ = (F+ - i ^ ) / 2 we can rewrite equation (2.3.26) as

lmnx(p0,p) = - ^ ( P o ) ( - y ) ^ (2-3.29)

- C(PO -

This way of writing is especially convenient for calculating the G-part of the
< self-energy, since FQ = 0 vanishes.

Euclidean space results

To obtain the results in Euclidean space we start from equation (2.3.15) with
7T+. As in the case for the Minkowski metric, we can simplify the integral
over po with sign- and 0-function according to equation (2.3.17) and we are
left with real integrals of the basic form

I ^ , p O , p ) = -pi + (u2 +pü) log(u , 2 +Po) (2-3.30)

and

/ dPou2
- 4/cwarctan ( - j

I 2 - p2 - u?) log(W
2 + pi). (2.3.31)

For uj2 + PQ > 0 there is no danger of running into singularities. Using the
integral limits for po from — p to p and 2k — p to Ik + p as in (2.3.17) we can
write the self-energy in the Euclidean metric as

RenG(tW)P) = { - Ç
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ReUH(iuj,p) = (-Çj^.JJdk(n{k)-^j (2.3.33)

+ (2A; - p ) 2

x \2k + ^ - ^ — log =

2kb) ( 2k-p p 2k + p
arctan h 2 arctan arctan

P \ (rf IJJ Ul

This is in principle the result given by reference [66] up to the appearance
of the arc tangents in the last line. The expression given there can be fully
recovered by using arctan(z) = ^ilog(l — iz) — \i\og{l + iz) for complex z
and gathering the sum of logarithms into one logarithmic expression

a r c t a n ÜLlE + 2 arctan ^ - arctan
w u UJ

However this expression should be used with care. If one takes the principal
branch of the logarithmic expression on the r.h.s., one obtains results that
might differ from the arc tangent expression by some multiple of n. Solving
for the branch-cut, that is where the expression inside the logarithm equals
— 1, one finds that expression for real w, p, and k can be written as

1

arctan = - I log ^f +

(2.3.35)
where one should take the principal value of the arctan and log expressions
involved. As shown in equation (2.3.16) the imaginary part of the self-energy
in the Euclidean space vanishes.

Complex Result

The result in the complex plane allows us to link results in Minkowski space
and Euclidean space by great arcs. The safest way to obtain the result
in the complex plane is to start with equation (2.3.13), where all integrals
involved are real, and the result for the self-energy is separated into real and
imaginary part. Starting point are the following indefinite integrals

= —po - 2ab [ arctan — 1- arctan —-— I
V o b }

-\{a2 - b2 + p2) (log(62 + (a -p0)2) + log(b2
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, 9 .2 9\ / a ~ PO
= —(a—b — p ) a r c t a n — h arctan

a + Po\
\ b ' b )

+ab (log(62 + (a - po)2) + log(62 + (a + p0)
2)) .

Analogous results for F^ e and i ^ m can be easily derived with any symbolic
integrator. We combine these integrals according to equation (2.3.17) to
form the result in general complex plane (X — G or H):

^ n(k) - I ) 1 (2.3.38)

- p)) ,

P) + FC71 (2k - p)) .

For b ̂  0 the expressions in the logarithms are positive, and the arc tangent
functions stay finite, so that there is no danger of crossing a branch cut or
encountering other singularities. Therefore these expressions are safe to be
used in calculating the arc between Minkowski and Euclidean space.

Again, to subtract the vacuum part, just replace (n(k) — ^) by n(k).

2.4 Landau pole ambiguity

In the pressure formula (2.2.13) that we intend to integrate, we had two
different kinds of contributions that we called "rib" and "non-n&". We already
mentioned that the former are safe to be calculated in Minkowski space: for
large go the bosonic distribution function suppresses the integrand exponen-
tially by O(exp(—qo/T)), while for large q but moderate qo, the thermal self-
energy has an exponentially small imaginary part Imll ~ exp(—(q — qo)/2T)
as can be seen from the exact result for the imaginary part of the self energy
in Minkowski space (2.3.26), knowing that the functions Fi from (2.3.25)
vanish exponentially as their argument increases. For the "non-n;," parts in
(2.2.13) the situation is more subtle.

The "non-nj," parts are not exponentially suppressed for large qo- Also,
in the region where qo ~ q, the self-energy functions are only suppressed by
\jq so that they might cause UV divergencies that should be studied. It is
best to go into Euclidean space and study the relevant terms of the pressure
function (2.2.13). In the limit of small T2/Q2 , the logarithms involved can
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be expanded, giving

Q2 + iivac + n T , , Q2 + nyaC + n L

The functions Ily and HL can be expanded using (2.2.10) and (2.2.11) and
the expressions for ReYlciiu, p) (2.3.32) and ReTl}{{i(jJ,p) (2.3.33). One can
expand the two functions in the limit T2 -C Q2 by series expansion of the
expression within the brackets in terms of small A; and then performing the
k integration for each order of k separately. The result is given by [66]

ReIIG(ia;,p)

?eff

77T2 (3a;2- g2) 4 2487r4(5a;4- 1 ( W + g4) 6 8

45(Q2)2 315(Q2)4 ^ K h

(2.4.2)

45(Q2)2 945(Q2)4 [ h [ }

The integration over the first term of the series (2.4.1) with the vacuum
self-energy from (2.2.9) then gives

i r d*Q 2 n r + n L 77r2T4
ggff r

27 (27r)4Q2 + n v a c - 45 J ( 2 T T ) 4 { Q 2 f 1 - g 2
e S u s

(2.4.4)
By simple power counting we see that this integral is potentially logarith-
micly divergent. However, if we perform the angular integral over the 4-
sphere first, we see that the contribution JdfÎ4(3w2 — q2) — 0 vanishes for
any distance |Q|. Since the rest of (2.4.4) is a function of Q2 only, any
regularization or cutoff which respects Euclidean invariance will be UV well
behaved. It is important to average over the Euclidean four spheres first, be-
fore integrating over the radius |Q|. If we first perform one of the integrations
w or g first, and then integrate over the other variable without respecting
Euclidean invariance, we might get spurious logarithmic divergencies. Of
course, as long as we choose the upper integration limits such that in the
end we integrate over the complete 4-sphere, nothing should happen (except
for numerical cancellations to become more demanding). Integrating over a
4-dimensional cylinder in the cj/q space, or cutting out a four-dimensional
cube might bring in potentially logarithmic contributions for a large cutoff
Q. But numerically it is easiest to integrate over the surface of the 4-sphere
for a fixed Q, and then integrate over the radius up to the cutoff.

Introducing a cutoff might cause gauge fixing dependence. For Lorentz
and Coulomb gauges this turns out not to be the case because the self-energy
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is gauge invariant as large Nf is basically an Abelian theory up to NLO. By
the very same procedure as above, it can furthermore be shown that the
introduction of an Euclidean invariant cutoff can be applied safely also to
finite chemical potential.

As in references [66, 67] we apply a cutoff and stop the d^Q integration
at Q2 = OAL, varying the value of a between 1/4 and 1/2 to estimate the
irreducible ambiguity.

In reference [66], the "n&" terms from equation (2.2.13) were calculated
in Minkowski space. Terms without n& were computed along a complex
frequency contour which ran up the Minkowski axis to cjmax < ALandau V&
for some a < 1, then along the great arc to Euclidean space, and back
down to Co = VOmax ~ 92; finally, a Euclidean integration of the n& free
term was performed over 4-spheres in Euclidean space up to Q2 < A j ^ ^ a .
In reference [67] a simpler way of calculating the integral was pursued: all
pieces linear in n;, were calculated in Minkowski space, and all terms without
rib were calculated in Euclidean space. By actually performing calculations
in both ways, we had a rather non-trivial numerical check on the result
which finally helped to reveal a coding error in the original result published
[67, 66]. In the numerical implementation both ways turned out to agree
within numerical errors of about 10~5. The term after the vanishing leading
term in equation (2.4.1) is of the order (n^+n|)2/(Q2+rivac)2 ~ T8 so that
the ambiguity introduced by the Landau pole is of the order O(T8/ALandau).

2.5 Results and discussion

In Fig. 2.3 we display our exact results2 for the interaction pressure P — PQOC

Nj, where the ideal-gas limit

has been subtracted, for the entire \i-T plane (but reasonably below the scale
Landau pole). For this we introduce an angle <f> = arctan ^ and encode the
magnitudes T /AL and /VAL through the running coupling 52

ff(/ÏMs) with
AMS = 1^T'1 + M2 according to (2.2.5).

We found that the ambiguity arising from the presence of a Landau pole
reaches the percent level for g2

s ^ 28, where A L / \ A T 2 T 2 -I- /x2 ^ 19. At
larger coupling (corresponding to larger T and/or ß), this ambiguity grows
rapidly and will be shown in the two-dimensional plots below by a (tiny) red
area.

In the following we shall compare the exact large-JV/ result with known
results from perturbation theory at high temperature and small chemical

2 Tabulated results are available on-line at http://hep.itp.tuwien.ac.at/~ipp/
data/.
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SeffM
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Figure 2.3: Exact result for the large-iV^ interaction pressure P — PQ nor-
malized to Ng(-K

2T2 + p2)2 as afunction of g2
e(ßus) with fi^ = 7r2T2 2

which is the radial coordinate, and </> = arctan ^p.

potential, where dimensional reduction is an effective organizing principle,
and with results at zero temperature, where dimensional reduction does not
apply. We also investigate to what extent quark number susceptibilities
at vanishing chemical potential determine the behavior at larger chemical
potential.

2.5.1 Comparison to dimensional reduction

Dimensional reduction is a method of expressing the static properties of a
(3+l)-dimensional field theory at high temperature in terms of an effective
field theory in 3 space dimensions [22, 60]. In the imaginary time formalism,
all nonstatic modes involve the temperature scale, so integrating them out
to obtain an effective field theory on scales «C T leaves only the static modes
with zero Matsubara frequency. The dimensionally reduced theory involves
the color-electric screening scale gT and a dimensionful coupling g2T which
is also the scale of color-magnetic screening. The perturbative result for the
thermal pressure of hot gauge theories with fermions has been obtained by
using this approach in reference [62] at zero chemical potential to order g5.
The analytic result of dimensional reduction through order g5 with complete
analytic dependence on arbitrary T and p was calculated by [65] and in the
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large Nf limit this reduces to

P-Po
N„ DR

— u2T2 4- ^-
4\ „2

32

where the effective field theory parameter nig is given by

Q 2 \ r 2 4
, äfi ] £eff _ ffeff

and the coefficient of order gA is analytic in T and /x and given by

4TTT

7T2

2 ' 15 C(-3) 3 C(-l

14 + 247 - 3 2 ^ = ^ \ + ^-. (43 + 36T)

96T4 {3H(3,1) + 8N(3, z) + 3N(3, 2Ä) - 2N(1, z)}

with the definitions from [65]

(2-5.6)

n,^), (2.5.7)

H(w) = *(w)+ *(«;*). (2.5.8)

Here, n is assumed to be a non-negative integer and w a general complex
number. £ is the Riemann zeta function and ^ is the digamma function
^(w) = F'(w)/T(w). Note that despite the appearance of complex quantities
in (2.5.4) the coefficient äß3 is real as it has to be.

For later usage we also present the effective field theory parameter of the
coupling from dimensional reduction

g ) ] +O(5e
6
ff). (2.5.9)
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The expansion of the pressure in terms of small /J./T is given by

P-P

26 + 32 In 2 - 247 2 2
7 r ^

where the terms oc <?gff and involving \i have been first obtained by Vuorinen
[71]. The contribution to order g5 arises from the NLO correction to the
effective-field-theory parameter m?E, which at finite \i was first computed in
reference [69]. An alternative way of writing (2.5.3) is given by

(2.5.11)
with the function

V(x) = - 2 7 - 4 1 n 2 - 2 R e ^ ( ^ ( l + ia;)). (2.5.12)

For small x this function can be expanded as

^ T r ) (2.5.13)
n=l ^ '

with a radius of convergence of 1, which corresponds to ß = irT. The
only nonanalytic terms in g^ to the pressure in the dimensionally reduced
effective field theory at large Nj stem from the "plasmon term" oc m3

E. As can
be seen from the expansion in figure 2.1 of the perturbative QCD pressure,
the logarithms ln(g) do not survive the large Nf limit.

In figure 2.4 we plot the result obtained from dimensional reduction by
Vuorinen [65] in the large Nf limit. In this plot we choose a naive renor-
malization scale of /ÜMS = ^/i^T)2 + ß2. By comparison to figure 2.3 we see
that the small coupling range is well reproduced for couplings g2

s < 9 for
smaller ß/T but deviates considerably for larger n/T. This is partly due to
the choice of the renormahzation scale which apparently is not the best. The
exact result is independent of the choice of the initial renormahzation scale.
More precisely the scale dependence of the exact result enters only via the
coupling geff(fiMs) and results can be easily converted from one renormal-
ization scale to another by applying the renormalization scale dependence
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Figure 2.4: Dimensional reduction (DR) result of the pressure (PDR —
Po)/(Ng(ir2T2 + fj?)2) in the large Nf limit in the same range as in fig-
ure 2.3. The renormalization scale is chosen as /2MS = y/{nT)2 + /z2 for
TTT = /XMS sin cf> and p = /XMS COS (j>.
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relation (2.2.4). In the perturbative result this holds true only up to the
order of perturbative accuracy. Numerically, due to truncation to a certain
order in the coupling, the pressure not only depends on the renormalization
scale indirectly via the coupling <7eff(wvis)> but also directly, since higher
order contributions that would fix the renormalization scale dependence are
not taken into account. The result will therefore in general differ whether we
started from a renormalization scale ß\ and rescaled the resulting pressure
according to (2.2.4) to a renormalization scale ß\ —> ß2, or if we directly
calculated the perturbative result with the latter renormalization scale ß2-
Therefore, for perturbative results there is this additional question of which
renormalization scale to choose.

A possible optimization is provided by the FAC (fastest apparent conver-
gence) scale, which is derived by demanding that the effective-field-theory
parameter rn\ from (2.5.11) vanishes to order g*s and all higher orders. This
means solving In e l / ^^ 7 r T + | ^ ( ^ ) so that we obtain

MMs(FAC-m) = TrTexp [ | - lE - | © ( ^ ; ) ] • (2-5.14)

For fj, = 0 this expression reduces to /ZMS (FAC-m) = 7rTe2~7E while for
T = 0 it is given by /ZMS (FAC-m) = 2/zeä.

In figure 2.5 we see the difference between the pressure obtained from
dimensional reduction to the exact large Nf result for this FAC-m renormal-
ization scale. As in the three-dimensional plots we vary temperature T and
chemical potential // depending on the angle (f> = arctan2^. The result is
given for values of the coupling 0 < g^s < 24 where the ambiguity introduced
by the Landau pole is negligible numerically. In the plot we rescaled the di-
mensionally reduced pressure by the exact renormalization scale dependence
(2.2.4) to the scale /2MS = \/(7rT)2 + /i2 to allow for unified comparison. The
lines enclose those areas where the difference is less than ±10~5, ±10~4, or
±10~3 in units of the normalized pressure. 10~3 is about the size of the
NLO results, and thus marks the breakdown of the agreement between the
two approaches (100% deviation). Notice that there is always a factor 10 of
increase of the inaccuracy between neighboring lines of the contour plot. We
have very good agreement for y2

ff < 7, but this value slowly decreases as the
ratio fj,/T is increased. Only for small angles <j> ^ 20° the behavior changes
considerably and the ranges of good agreement shrink faster with decreas-
ing n/T. For the FAC-m scale dimensional reduction gives lower values of
pressure than the exact large Nf result for <j> > 25° and higher predictions
for smaller ß/T. In between there is a transition from negative to positive
differences which of course is of no real relevance to the error ranges in the
plot.

Another natural choice for scale might be to apply FAC to g\. This
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Figure 2.5: Difference between the pressure obtained from dimensional re-
duction to the exact large Nj result for the FAC (fastest apparent conver-
gence) renormalization scale /XMs(FAC-m) = 7rTexp(^ — JE — \T^{^r)) f°r

different values of (f> — arctan ^ and g^g, normalized to Ng{n2T2 + /i2)2.
The result of the dimensionally reduced pressure is rescaled by the exact
renormalization scale dependence (2.2.4) to the scale ßMS = \/(7rT)2 + /J2

to allow for unified comparison.
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Figure 2.6: Same as figure 2.5 except that the scale is now FAC-g instead
of FAC-m, that is applying fastest apparent convergence to g%. Contrary to
the FAC-m scale, the error is now always positive, meaning that dimensional
reduction at this renormaiization scale always overestimates the exact result.
Apart from that the error of the FAC-g scale is comparable to the one of the
FAC-m scale.
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produces in the Nf —y oo limit

/2Ms(FAC-g) = TrTexp J-7 £ - fafy

which curiously is just a factor 1/y/e smaller than the FAC-m scale but shows
otherwise exactly the same functional dependence on /i and T.

Figure 2.6 shows the difference of the pressures now for the FAC-g scale.
It is conspicuous that this time there is no sign change in the plot. Indeed,
contrary to what we saw in figure 2.5 for the FAC-m scale, the difference
between P^R and Pexact = -FkLO is now always positive, meaning that di-
mensional reduction at this renormalization scale always overestimates the
exact result. But apart from that, the absolute value of the errors of the
FAC-g scale plot is comparable to the one of the FAC-m scale. One should
not be irritated by the horizontal line in figure 2.5 at ^ « 25° where the
range of small error is extended to larger values of the coupling g^H : This
merely indicates the change of sign of the error.

Having such good agreement for a wide range of <f) and g^, it seems
tempting to try to improve the result by averaging over the two scales: Tak-
ing the arithmetic mean of the two scales FAC-m and FAC-g we obtain a scale
that is a factor ( l '+ l/v

/ê)/2 « 0.803265.. smaller than the FAC-m scale.
Remember that the FAC-m and FAC-g scale are directly proportional to
each other with /2Ms(FAC-g) = /xMs(FAC-m)/\ß « 0.606531/JMs(FAC-m)
so that the arithmetic mean scale is also proportional to them.

Figure 2.7 shows the remarkable agreement that follows from this choice
of scale: The thermal pressure of dimensional reduction agrees to the exact
large Nf result for <f> > 65° over the whole range of couplings. If we look at
smaller couplings g^s < 10, the two results agree perfectly down to (j> > 35P.
Only below <j> < 30° the spreading of errors does not differ much from that of
the scales FAC-m and FAC-g separately. One should note however, that this
might be a mere coincidence in the large Nf limit and that no real conclusion
can be inferred from this result for finite, smaller Nf. After all, for finite Nf
FAC-m and FAC-g are not necessarily proportional to each other (except for
fj, = 0 where both are simply proportional to the temperature T).

2.5.2 Pressure at zero chemical potential

At zero chemical potential we shall study in more detail the convergence
properties and renormalization scale dependences of perturbation theory on
the one hand, and the Landau pole ambiguity of our large Nf result on the
other hand. In figure 2.8 we give the numerical result of the thermal pressure
as a function of g%s(ß = /ne~lET). The perturbative results depend on the
value of the renormalization point ß, which we vary between irT and A-nT.
In order to compare the different perturbative results with the exact large
Nf result, we use the exact running coupling (2.2.4) to rescale everything
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Figure 2.7: Same as figures 2.5 and 2.6 except that the scale is now chosen as
the arithmetic mean of the two scales FAC-m and FAC-g. We see remarkable
agreement for <j) > 65° over the whole range of couplings down to </> > 35°
f° r 9eS ~ 10- Below </> < 30° the spreading of errors does not differ much
from that of the scales FAC-m and FAC-g separately.
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Figure 2.8: Exact result for P^ho/Phee as a function of glg(n = Tre 7ET),
rendered with an abscissa linear in g^, in comparison with and two sets
of perturbative results through order g4 and g5 with renormalization point
chosen within a power of 2 of 2TTT; The line marked "FAC-m" corresponds
ß = ireï~lET where the perturbative result to order g4 coincides with the
one to order g5. The line marked "FAC-g" corresponds to the renormalization
point ß = ire~lET and shows the result through order g5.

to ß = •ne lET. We see that the perturbative result through order g5 gives
reliable results only for effective couplings g^s < 4. If the perturbative result
to order g5 is optimized by fastest apparent convergence of nig (FAC-m)
from equation (2.5.14) which for (JL = 0 means the scale ß = irei~lET, the
agreement with perturbation theory is improved and extends to g%s « 7.
Figure 2.8 shows for comparison also the FAC-g scale.

Figure 2.9 shows the same thermal pressure as figure 2.8, but with the
perturbative results varied between n/e and fie where p = ire~1ET which is
in fact the FAC-g scale. The central line of the g5 result is just the FAC-g
line from the previous plot. The central line of the gA result also corresponds
to the FAC-g scale. Different from the FAC-m scale, the FAC-g scale stays
not the same from order g4 to order p5, but instead changes noticeably.
Remember that the FAC-m scale was just chosen such that the g4 and the g5

results lie on top of each other. Figure 2.9 also includes the arithmetic mean
of the two FAC scales which is i(FAC-m + FAC-g) = ^(1 + l/Ve)FAC-m =
^(y/e + l)FAC-g. It turns out that this line is almost indistinguishable from
the exact result. Only for larger values of <7gff can one see a tiny deviation
from the exact result.

The exact large Nf result flattens out for higher values of g%s and reaches
a minimum at g\s « 12. For this coupling, ALandau — 480T and the ambigu-
ity introduced by the Landau singularity is completely negligible. For still
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Figure 2.9: Same as figure 2.8 only with renormalization point chosen within
a power of e of /i = Tre~lET. The FAC-g result is not explicitly marked, but
coincides with the scale choice of \i in this plot. Therefore the central line
of the g5 result shows the FAC-g up to order g5, and the central line of
the g4 result shows the FAC-g result up to order g4. Note that unlike the
FAC-m result, the FAC-g result differs considerably from order g4 to order
g5. Plotted in this graph is also the arithmetic mean of the two FAC scales
as described in the text. This line is almost indistinguishable from the exact
result.
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Figure 2.10: The result for PNLo/Pfree up to g*s = 35 and with different
cutoffs.
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Figure 2.11: Exact result for the interaction pressure at zero chemical po-
tential as in references [66, 67] but as a function of gls(fiMS = KT) or, al-
ternatively, log10(AL/7rT). The dashed line is the perturbative result when
the latter is evaluated with renormalization scale /ÏMS = AFAC = 7rex/2~7T;
the dash-dotted lines include the numerically determined coefficient to or-
der pgff (with its estimated error) at the same renormalization scale. The
result marked "g\s = g^s" corresponds to choosing ßus such that the order-
5çff coefficient vanishes and retaining all higher-order terms contained in the
plasmon term oc mz

E. In this and the following plots the (tiny) red band
appearing around the exact result at large coupling displays the effect of
varying the cut-off from 50% to 70% of the Landau scale AL-

higher values the pressure rises and starts to exceed the free theory pressure
at <7gff > 28, as can be seen in figure 2.10. This occurs at a coupling for which
ALandau/21 < 34. While this still seems to be a reasonably large number, the
numerical result starts to become sensitive to the cutoff just where the pres-
sure approaches the free one. The four curves displayed in figure 2.10 show
the result of varying the parameter a in the UV cutoff VöALandau in the
Minkowski and Euclidean parts of the calculation (ajvf and aß respectively)
from a = 1/4 to a = 1/2. The numerical result is rather insensitive to this
below gig « 25, but very sensitive in the region where the pressure starts to
exceed the free one.

In figure 2.11 we show the pressure at n = 0 and compare with even higher
orders of perturbation theory. Here the result is presented as a function
of gls(ßus = TTT") and not divided by the free NLO contribution from the
pressure, but with the ideal-gas limit from equation (2.5.1) subtracted. In the
plots we also give the corresponding values of the Landau pole log10(AL,/7rT)
to different values of the effective coupling gls. This plot also contains the
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result up to g^g which is not known analytically yet, but obtained from
our numerical results at small coupling. For small coupling the agreement
of our numerical results with perturbation theory is sufficiently accurate so
that we can numerically extract coefficients to this order as follows: From
the pressure in dimensional reduction (2.5.10) we can infer by applying the
exact running coupling of large Nf (2.2.4) that the ggff-term in the pressure
at fj, = 0 has the form

V
jY - « „ \ A - i - i ~ " • - m ( 2 . 5 . 1 6 )

Notice the appearance of the (as yet) unknown constant CQ. For small values
of <7gff, perturbation theory is expected to give excellent agreement with the
exact result, so that we can actually use our (numerically obtained) exact
result to determine unknown coefficients in the perturbative series. By least-
square fitting we obtain numerically the estimate CQ = +20(2).

In real, finite-Nf QCD this result corresponds to the NJg6TA coefficient
of the pressure. As we saw in figure 2.1,the purely gluonic contribution
oc NfÇ6T4 of the same coupling order g6 is completely nonperturbative.

In the figures 2.8 and 2.9 the agreement between exact result and per-
turbative result up to order g^s was limited to a range of about g%s < 9. In
figure 2.11 we show the improved result that remains accurate up to g^s ~ 16
by including our numerical estimate of the (^-coefficient and using /2FAC-

The agreement with the exact result can even be further improved by fixing
the renormalization point such that the g^s coefficient vanishes and keeping
all orders of the odd terms in geff by leaving the plasmon term oc m\ unex-
panded in ggff. The result of this procedure is indicated by the gray area in
figure 2.11. Obviously the result now gets very close to the exact result. Of
course, this procedure does by no means guarantee that an analogous scheme
for real QCD with finite Nf will produce similarly convincing results, but
we can take it as another indication of the observation that keeping the pa-
rameters of the dimensionally reduced theory unexpanded can improve the
convergence of thermal perturbation theory [88].

Figure 2.12 shows a comparison of the ^-derivable 2-loop result in the
HTL approximation (full lines) and in the next-to-leading approximation
(full lines ending in dashed lines) as performed by Rebhan [84]. In the
^-derivable approach of reference [46], a fermionic gap equation had been
assumed that turned out not to be compatible with the limit of large Nf. As
is shown in [84], the originally quadratic gap equation for the fermions does
not comply with the Casimir scaling in the large Nf limit and that this limit
would favor a linear dependence on the asymptotic mass M^. The new gap
equation (16) in reference [84] reproduces qualitatively the nonmonotonic
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Figure 2.12: Comparison (taken from reference [84]) of the ^-derivable 2-
loop result in the HTL approximation (full lines) and in the next-to-leading
approximation (full lines ending in dashed lines), for ß = T and 4TTT, and the
exact result for the pressure in the limit of large Nj. The gray lines denote
the next-to-leading approximation with quadratic fermionic gap equation
considered in reference [46], but which Rebhan argues in reference [84] needs
to be replaced by equation (16) therein. The Debye mass appearing on
the lower axis of the plot is related to the effective coupling via TTID/T =
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Figure 2.13: Comparison (taken from reference [89]) of the NLO HTLpt
prediction for the O(iV9) contribution to the free energy, the exact numerical
in the large Nf limit, and the perturbative prediction accurate to g5 as a
function of geS(/iDR.) = ^/sf9(|J^DR) = 27r-v/s/as(^DR,) where /iDR = vre~7T.
Dots indicate the point at which there is no longer a real-valued solution to
the gap equation for m£>. The renormalization scale n is varied by a factor
of e around /^DR and the perturbative g5 result is evaluated at the central
scale.

behavior in g^s of the exact result. By a curious coincidence, for N = 3
and Nf = 3 the revised gap equation has exactly the same solutions as the
uncoupled quadratic gap equations that have been previously in use. Only
for Nf > 3 there exists a coupling where the fermionic mass ceases to grow
monotonicly with g. Because of this coincidence, the numerical changes in
the previous results of [46] are almost completely negligible.

Figures 2.13 and 2.14 show the HTLpt (Hard Thermal Loop - perturba-
tion theory) comparison to the large Nf limit by Andersen et al. [89]. The
plots show the NLO HTLpt prediction for the O(iV9) contribution to the
free energy, the perturbative prediction accurate to g5, and the exact result
up to NLO in the large Nf limit. It should be noted, however, that both the
HTLpt and the 2-loop ^-derivable results are perturbatively accurate only
up to and including order g^ff, where the perturbative result is rather ill-
behaved. As noticed in [89], the HTLpt predictions for both the free energy
and the Debye mass (which was also discussed in [89]) seemed to diverge
from the exact result around geg ~ 2 regardless of the scale that was chosen;
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Figure 2.14: Same as figure 2.13 only with the renormalization scale \i varied
by a factor of 2 around 2TTT. The perturbative g5 result is again evaluated
at the central scale. [89]

however, for both quantities, choosing the scale to be ^ =
seemed to reasonably reproduce the exact results. The authors of [89] con-
cluded that their result is comparable to the performance of the ^-derivable
approach in the large Nf limit in figure 2.12.

2.5.3 Quark number susceptibilities

Linear quark number susceptibility

The (linear) quark number susceptibility is defined as the first derivate of
the quark number density M = N/V with respect to chemical potential (see
also appendix C.2),

Figure 2.15 displays the exact large-iV/ result for the interaction part of x
at zero chemical potential as a function of geg (or alternatively log10(AL,/7rT)).
Similar to the thermal pressure, the result is nonmonotonic, but the mini-
mum already occurs at g^s(irT) « 8.6, and the free-theory value is recovered
at <7gff(7rT) « 22.5, where the Landau ambiguity is still well under control
since A L / T « 100 at that coupling.

The perturbative (dimensional reduction) result can be read from the
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Figure 2.15: The interaction part of the quark number susceptibility at \i = 0
compared with strict perturbation theory to order g^s and g^s, respectively,
with renormalization scale varied about TTT by a factor of 2.

linear term in \J? of (2.5.10) and gives

X-Xo
NgT2

n d P-Po

Ng

9Js
48TT4

" 8TT2 +

13

r
16TT5\/3

- I n (2.5.18)

The coefficient of ggff has only recently been obtained in [71] in a three-loop
calculation. We can confirm its closed-form value by a numerical fit, which
gives agreement with an accuracy of 2 x 10~4, thus providing a good check
on both our numerics and the analytical calculations of [71]. This level of
accuracy allows us to also extract the order-g6 term as (for /ZMS = KT)

xL
No

= -4-55(9, x ( « ) ' (2.5.19)

In Fig. 2.15 we show the perturbative results to order g^s and gfg, vary-
ing the renormalization scale about TTT by a factor of 2 (now without the
improvement of keeping effective-theory parameters unexpanded). The value
MMS

 =
 KT is in fact close to /ÎFAC where it makes no difference whether m?E

is kept unexpanded or not. We find that the quality of the perturbative
result for the susceptibility is comparable to that observed in the pressure,
with /ÏMS = TT being close to the optimal choice.
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Figure 2.16: The interaction part of the higher-order quark number suscep-
tibility d2(x — Xo) at ß = 0 compared with strict perturbation theory to
order g^s and g^s, respectively, with renormalization scale varied about TTT
by a factor of 2. The coloured bands of the <7gff-results cover the estimated
error of the numerically extracted perturbative coefficients.

Higher-order quark susceptibility

We also computed explicitly the higher-order susceptibility diP/dßA\ti=o
(which has been investigated in lattice QCD with Nf = 2 in reference [79]).

Our exact result in the large-iVf limit is shown in figure 2.16. In this
quantity, we find that the nonmonotonic behavior observed above in the
pressure and the linear susceptibility is much more pronounced. The min-
imum now occurs at g2

s « 3.7, where perturbation theory is still in good
shape, and the free-theory value is exceeded for g2

s ^ 9. Using (2.5.10) we
find to order g5

d2 X-Xo
Ng

P-Po

Ng

d2 P-Po
Nn M=o

(2.5.20)

4TT4 Air5
r , A * M S . . „ l

8TT6 L 4TTT

7 .,„, 31

In the original publication of these results [68] the coefficient appearing at
order <?4

ff has been numerically extracted as C4 = —7.02(3). In the meantime,
the complete ß dependence of the dimensional reduction result to order 4
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has been worked out in reference [65] from where one can obtain the exact
result

C4 = - - ^ - 1 2 1 n 2 + ^C(3) = -6.9986997796998... (2.5.21)
12 o

The complete agreement with reference [65] provided on the one hand an
independent check on the correctness of the 3-loop calculations of [65] and
on the other hand a check on the accuracy of our numerical analysis.

Using (2.5.21) we can extract the term of order g^ in equation (2.5.20)
as — 39(l)<7gff/(1287r8) for ß = nT. The perturbative results to order g^ïï and
to order g^iï are compared with the exact result in figure 2.16. This shows
that the accuracy of the perturbative result again improves by going from
order g^ to order g^, but the renormalization scale dependence increases
sharply at large coupling.

Pressure at larger chemical potential from susceptibilities

With regard to the attempts to explore QCD at finite chemical potential by
means of lattice gauge theory [75, 76, 77, 78], it is of interest how well the
pressure at larger chemical potential can be approximated by the first few
terms of a Taylor series in ß2.

In reference [75] it has been observed that the ratio of AP = P(T, ß) —
P(T,fj, = 0) over the corresponding free-theory quantity AP0 is practically
independent of ß for the range of chemical potentials explored. This is
also realized when quasi-particle models are used for a phenomenological
extrapolation of lattice data [90, 91] in a method introduced by Peshier
et al. [83]. In figure 2.17 we show the deviation from this "scaling" at
higher values of n/T by considering the quantity ÖP = P(T, fi) — P(T, 0) —
5XU=o(M2 + ß4/{2n2T2)) divided by P ^ e

o = N9TT2T4/45. The combination
(ß2 + fiA/(2n2T2)) appearing therein is such that a replacement of P and
X by their interaction-free values PQ and xo makes ÔP vanish identically.
(As can be seen from the above perturbative results, 8P also vanishes for
the leading-order interaction parts oc g2fj.) In the exact large-Nf results of
figure 2.17 we observe that for coupling g2

ff < 4 the deviation 6P is at most
a few percent of F^LO f°r A*/̂ " ~ 7r> but ^ rapidly grows for /x/T > n. This
is in fact also nicely illustrated by the 3-dimensional plot of the pressure in
figure 2.3, which has a rather conspicuous kink at (f) = 45° corresponding to
M = TTT.

It turns out that including the exact higher-order susceptibility at fj, — 0
does not lead to a better approximation of the pressure at larger chemical
potential. The dashed lines in Fig. 2.17 correspond to 5P = P(T,n) —
P(T,0) - %-xU=o - ^rf^rU=0' While this slightly improves matters at
small /i/T, it results into even quicker deviations for larger ß/T.

It is of course impossible to say whether this behavior would also appear
in real QCD, but since it occurs already at comparatively small geft in the
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Figure 2.17: Deviation from the scaling observed in Ref. [75] in lattice QCD
for small chemical potential in the quantity ÔP = P(T,/J.) — P(T,Q) —
5XU=O(M2 + M4/(2?r2:r2)) (full lines) and in ÖP = P{T,n) - P(T,0) -
^ l M - 4 r 0 l A = o (dashed lines), both normalized to P$f0 = N9TT2T4/45,

for<4(7rT) = 1,4,9,16.

large-Nf limit, where the peculiar nonmonotonic behavior of the pressure as a
function of geg does not yet arise (the minimum in the normalized interaction
pressure occurs at g^{irT) « 14), it may be taken as an indication that
extrapolations of lattice data on the equation of state from small chemical
potential to large fi/T are generally problematic. If anything, real QCD
should be more complicated because of the existence of phase transitions
which are absent at NLO in the large-Nf limit.

2.5.4 Pressure at zero temperature

Our exact result for the thermal pressure at zero temperature and finite
chemical potential is given in figure 2.18 as a function of g%s(ßMS = lA- In
contrast to the pressure at zero chemical potential and finite temperature,
the interaction pressure divided by fiA is monotonically decreasing essentially
all the way up to the point where the Landau ambiguity becomes noticeable.

The thermal pressure at zero temperature and large chemical potential
for QED and QCD has been obtained to order gA long ago by Freedman and
McLerran [72, 73]. At this order, there is a non-analytic zero-temperature
plasmon term ex gA ln(g), whose prefactor is known exactly, but the constant
under the logarithm only numerically. The transposition of their result,
which has been obtained in a particular momentum-subtraction scheme, to
the gauge-independent MS scheme can be found in references [46, 92]. The
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Figure 2.18: The interaction part of the pressure at zero temperature and
finite chemical potential as a function of g%g(ßMS = ß) or, alternatively,
log10(AL/V), compared with the perturbative result of Preedman and McLer-
ran [72, 73] to order g4

ff, and our numerically extracted order-Pgff result, both
with renormalization scale in the perturbative results varied around /2MS = M
by a factor of 2. The coloured bands of the g^s-results cover the error of the
numerically extracted perturbative coefficients.

large-iVf limit of this result reads

P-Po

T=0 32TT4 L 2TT2 3 /X ^

(2.5.22)
and involves one of the numerical constants computed in reference [72],

79 7T2 7 1og(2) 2 6
- — « 0.536, (2.5.23)

where b has an integral representation, given in equation (II.3.25)3 of ref-
erence [72], that apparently cannot be evaluated in closed form. With bet-
ter computer equipment, b can however be evaluated numerically to higher
accuracy than that given in [72] as b = —1.581231511..., which leads to
(74 = 0.5358316747....

The accuracy of our numerical results is sufficiently high to confirm the
correctness of the result for C\ with an accuracy of ~ 2 x 10~4. With the
knowledge of the exact value of C4 we can also extract, with lower precision,

3 Note that there is a typo in the equation mentioned: Comparison with equation
(II.3.24) shows that there is a missing exponent 2 after the second set of large round
parenthesis in equation (II.3.25) of [72] as pointed out by [68].
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the next coefficients at order ggff, which again involve a logarithmic term:

P-P0 (2.5.24)

16 , 2 MMS , 16

In figure 2.18 we also study the renormalization scale dependence and
apparent convergence of the perturbative result. We have varied /2MS about
ß by a factor of 2, and it emerges that the larger values are somewhat favored.

At low temperature T -C /z, dimensional reduction does not occur. If one
nevertheless considers the effective-field-theory parameter m2

E of (2.5.11) in
this limit, one finds that the function V(x) therein approaches - 2 (In22+7),
so that the T -> 0 limit of m2

E exists and reads

m E ^K'

Fastest apparent convergence applied to this quantity would suggest
2e2/i « 3.3//. This turns out to be not as good as the choice of 2/t, though
slightly better than ßus — V-

The region of low temperature T -C /i might be readily explored in the
large Nf limit, where it gives rise to anomalous contributions of the pressure
in the context of non-Fermi liquid. We will study this region in the next
chapter.



Chapter 3

Non-Fermi Liquid

3.1 Introduction

3.1.1 From ideal gas to non-Fermi liquid

What is a non-Fermi liquid? The straightforward answer is to start from the
ideal gas and extend the model layer by layer: The ideal gas is a statistical
description of non-interacting point-like particles. If we go to low temper-
atures, we cannot neglect quantum mechanics and we have the choice of
describing either bosons, which leads to the Bose-gas and to Bose-Einstein
condensation at very low temperatures, or fermions, called (ideal) Fermi
gas. Still, the Fermi gas is an accumulation of non-interacting fermions. If
we turn on short-range interaction we get to the description of a (Landau-)
Fermi-liquid. Thermodynamic quantities will mostly show the same order
of dependence on the temperature T as in a Fermi gas, but their magnitude
might change drastically. Finally, if the interactions we introduce change the
dependence on T qualitatively, which is the case for long-range quasi-static
interactions, the system cannot be described by the quasi-particle picture of
the Landau-Fermi-liquid theory, and is therefore called a non-Fermi-liquid.
Thus, a non-Fermi liquid is a cold gas/liquid of fermions with long-range in-
teractions that change the behavior of a Landau-Fermi liquid qualitatively.

The ideal gas of not too dense, not too cold, and "non-interacting" (ac-
tually only interacting by elastic impact for thermalization) particles obeys
the ideal gas law pV = NkßT. While simple and universal, this law is not
sufficient to calculate all thermodynamic quantities like energy or entropy of
the system. To calculate the energy for a fixed number of particles E(S, V),
we need an additional quantity, for example the specific heat Cy = T (^)v,
which depends on the inner degrees of the ideal gas. Each degree of freedom
in every particle of a system will contain the same energy on average so that
the specific heat is given by

CV(T) = {-NkB (ideal gas) (3.1.1)

51
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for / degrees of freedom per particle and the Boltzmann constant kB. For
pointlike particles in three dimensions / = 3, for molecules of two atoms
for example there is one additional degree of freedom for rotation and one
for the change of bond length so that / = 5. The specific heat is an ex-
tensive quantity, but we can divide by the volume Cy = Cy /V = ^nkB

which now depends on the particle density n = N/V. Note that the specific
heat for an ideal gas is independent of temperature. The entropy of the
system can be calculated for example by integrating (ffi)y = Cy/T and the

Maxwell relation (§y-)T = [QT) = NkB/V which for the ideal gas gives

S(T, V) = Cy ln(T/T0) + NkB \n{V/V0) + S{T0, VQ). Statistical distribution
of quantities like the mean velocity is given by the Maxwell-Boltzmann dis-
tribution function, which is not valid anymore for small temperatures where
quantum mechanics starts to play a role. Here we have to use Bose-Einstein
statistics for bosons or Fermi-Dirac statistics for fermions.

The ideal Fermi gas is a description of cold, non-interacting fermions
[93, 94]. Examples include electrons in metals and semiconductors (when
the Coulomb interaction between them is neglected), as well as neutrons
in a neutron star (again when neglecting the interaction). Fermions obey
the Pauli principle: no two fermions with the same quantum numbers can
be in the same energy state. As a consequence, fermions will fill up the
Fermi sphere in momentum space - if one possible momentum is occupied
by a fermion, the next fermion has to go to the next higher momentum. (If
they differ by a quantum number, e.g. the spin, then they might occupy
the same energy level.) The particle density corresponding to a completely
filled Fermi sphere of radius PF in momentum space for a spin 1/2 fermion
gas is given by n = N/V = pF/(3n2h3) at zero temperature. The number-
density distribution for T = 0 is a step-function: 1 for energy states below
the Fermi energy, and 0 for energy states above. For non-zero temperature,
the number-density distribution is given by the Fermi-Dirac distribution n =
[e{t-v)l(kBT) _|_ i ) - 1

j where the chemical potential is just the energy on the
Fermi surface at zero temperature M|T=O = £F = Z{PF)- The specific heat
can be calculated from the energy change due to the Fermi-Dirac distribution
at non-zero temperature. It is given by

7T2

Cv(T) « —k2
BD{eF)T + O(T3) (ideal Fermi gas)

^ (3.1.2)

with a density of states factor D(e) = ^V{m/h2)zl2ell2 and the Fermi

energy eF = |^(37r2iV/y)2/3 = pF/(2m) = kBTF. We see that the specific
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heat of the ideal Fermi gas grows linearly in T for small temperatures. This
is in contrast to the specific heat of an ideal gas (3.1.1) that is independent
of temperature. Another striking difference to the ideal gas is the pressure:
Since the fermions fill up the Fermi sphere, only a small fraction of fermions
can be in the ground state. As a consequence, the pressure of a Fermi gas
is nonzero even at zero temperature. This is in contrast to the pressure of
an ideal gas that would be zero (pV = NkßT). This so-called degeneracy
pressure stabilizes a neutron star (Fermi gas of neutrons) or a White Dwarf
star (Fermi gas of electrons) against the inward pull of gravity.

If we include (short-range) interactions between the fermions, we call
the system a Fermi liquid. A description of Fermi liquid was first given in
1956 by Landau [95, 96] and is thus commonly dubbed Landau-Fermi-liquid
theory. It can be applied to liquid ^He (which contains 2 protons, 1 neu-
tron and 2 electrons - an odd number of fermions per atom - such that the
atom itself is a fermion1), as well as to the electrons in a normal metal.
Landau-Fermi-liquid theory is qualitatively very similar to the theory of an
ideal Fermi gas in which quasi-particles take the role of the non-interacting
particles of the Fermi gas. Quasi-particles are collective excitations of the
macroscopic system with certain energy e and momentum p. The properties
of quasiparticles are mainly characterized by the dispersion relation e(p).
Quasi-particles might have finite lifetime which gets sufficiently long in the
vicinity of the Fermi surface to allow for a description similar to the par-
ticles in a Fermi gas. Strictly speaking, only certain kinds of interaction
lead to the Landau-Fermi liquid, for example quasi-particles should still be
fermions. (If there are attractive forces that favor a pairing of the fermions
into bosons, the description of the Landau-Fermi-liquid is not applicable
anymore.) Since the quasi-particles are fermions, they also fill up the Fermi
sphere in momentum space. Quasi-particles always have a spin 1/2 spec-
trum. If the underlying particles had spins different from 1/2, this would
lead to a degeneracy of the energies of the quasi-particles so that each branch
corresponds to a spin 1/2 quasiparticle. The velocity of a quasiparticle is
defined as VF = (d^/dp)\p-PF. In the non-relativistic case one can introduce
the effective mass of the quasiparticle as m* = PF/VF- With this definition,
the specific heat can be derived as

CV{T) « VT^fk2
BT + O(T3 lnT). (Landau-Fermi liquid) (3.1.3)

Ölt

The only difference to the formula (3.1.2) in the leading order contribution
is that the particle mass m is replaced by the effective mass m* of the

'Note that liquid ^He with an even number of fermions per atom forms a boson gas and
is a superfluid below 2.17 K. At this temperature, ^He behaves like a Landau-Fermi liquid.
Only at much smaller temperatures, around 2.7 mK, two atoms of 2He align themselves
to give an overall spin s = 1 and angular momentum 1 = 1 and also form a superfluid.
This effect was found in 1971 by Osheroff, Lee, and Richardson who in 1996 received the
Nobel prize for their work.
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quasi-particle. We still have the same linear dependence on temperature2

[97]. Note also that the next order contribution changes from O(T3) for
the Fermi gas to O(T3lnT) for the Landau-Fermi liquid [98]. Not only the
specific heat, but also other thermodynamic quantities like compressibility
or spin-susceptibility show the same qualitative temperature dependence as
in the Fermi gas, but might have different coefficients. The classical Landau
Fermi liquid theory was extended to relativistic Fermi systems, enabling the
study of high density matter with weak interaction via scalar and vector
meson exchange [99]. As mentioned, not every kind of interaction leads to a
Landau-Fermi liquid: If the interaction favors a pairing of the fermions, we
effectively deal with a Bose gas. (In fact, in a Fermi gas arbitrarily small
attractive forces lead to Cooper pairing of fermions.) If we have long-range,
quasi-static interactions, the quasi-particle description is also not valid any
more, and we obtain non-Fermi-liquid behavior.

Anomalous contributions to the specific heat were first calculated by
Holstein et al. [100] who found a deviation from the linear dependence on
T by a term proportional to TlnT"1 . For very small temperatures T, the
temperature dependence will actually be dominated by the TlnT" 1 term.
For QCD, quasi-static transverse gauge boson interactions further lead to
a series with fractional powers of T. The specific heat of this non-Fermi
liquid is given by (now with the usual quantum-mechanical natural units of

Cv = Cv/V « fj?qT—-l- + ..Tin..T"1 (non-Fermi liquid)

+..T5/3 + ..T7/3 + O(T3 lnT) (3.1.4)

where the coefficients were first calculated in 2003 [101] and will be presented
in the following sections.

3.1.2 Non-Fermi liquid

A "non-Fermi liquid" is in principle any thermodynamic system of fermions
that goes beyond the classical Landau-Fermi liquid description (including
for example Cooper pairing of fermions and color superconductivity). Here
we will narrow its usage to a Landau-Fermi liquid that is changed quali-
tatively by the introduction of long-range interactions. It was noticed by
Holstein et al. [100] in 1973 when studying the de Haas-van Alphen effect3

2For a Bose liquid the specific heat grows proportional to the cube of the temperature
Cv = V27r2T3/(15(/m)3) with the sound velocity u - e/p [96].

3The de Haas-van Alphen effect states that magnetization shows an oscillatory depen-
dence on the inverse magnetic field if the magnetic field is strong enough, T < fißB <?C ß
with the Bohr magneton /AB — eh/(2me) times the magnetic induction B still smaller than
the chemical potential \i [96, 102]. A determination of oscillations in the magnetization
M as a function of the inverse magnetic field \/H (the de Haas-van Alphen effect) for
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that long-range interactions lead to a deviation from the linear temperature
dependence of the specific heat for small T. In order to explain the special de
Haas-van Alphen oscillations in some noble metals in a slight modification
of the original model, a current-current interaction, which in contrast to the
Coulomb potential is not screened at zero frequency, leads to an anomalous
contribution to the specific heat of the form TlnT" 1 . The coefficient of this
term is of the order ~ a(vF/c)(m*/m)2 ~ 10~5 smaller than that of the
dominant term linear in T for non-relativistic QED applications, so origi-
nally it was argued that this anomalous contribution cannot be the cause for
measurable effects. (A factor of 4 that was missing in the original calculation
was corrected by [103] so that the leading log correction to the specific heat
is Cv = (3oPF/367T2)TlnT~1). While this contribution implies that the en-
tropy of the non-Fermi liquid exceeds the entropy of a Landau-Fermi liquid
below some temperature, it is not possible to infer at which temperature this
happens without complete knowledge of the argument of the logarithm: As
long as we take the logarithm of a dimensionful quantity lnT, we are missing
the information on the relevant scale for the appearance of the anomalous
behavior.

Long-range interactions are generally screened in the presence of a large
Fermi sea. The reason why this does not happen for transverse gauge bosons
like photons is that gauge invariance prevents them from acquiring a mass,
unless gauge invariance is spontaneously broken (as in superconductors). An
electron gas interacting via transverse gauge bosons shows non-Fermi liquid
behavior depending on the number of space dimensions D. The specific
heat is proportional to Cy ~ TlnT" 1 only in D = 3 dimensions. For
D < 3 dimensions, Cv ~ TD/3 while for D > 3 the system behaves like an
ordinary Landau-Fermi liquid [103, 104]. In this sense D = 3 corresponds to
a quantum critical point with respect to variation of the dimension.

A recent calculation of non-Fermi-liquid corrections using renormaliza-
tion group resummation techniques in reference [105] suggests a different
leading nonanalytic behavior of the specific heat proportional to T3lnT,
which actually is of the same order as ordinary Landau-Fermi liquid correc-
tions coming for example from electron-phonon interactions [98, 106, 107,
108]. However, the starting point of reference [105] already neglected dia-
grammatic contributions which would give TlnT" 1 corrections.

It is sometimes assumed that the anomalous contributions to entropy
or specific heat will hardly play any role at all, since color superconductiv-
ity (CSC) will dominate dense quark matter long before non-Fermi liquid
behavior becomes effective [109, 110]. The argument is based on simple di-
mensional analysis of the energy scale, and compares the critical temperature
of color superconductivity to the scale where the leading log correction be-

different orientations of the field has been the most successful method for mapping out
the shape of the Fermi surface of metals [102].
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comes as large as the leading contribution, that is where non-Fermi liquid
becomes nonperturbative. Using the known formulae for the CSC critical
temperature and our complete leading logarithm contribution presented in
the following, we can calculate the perturbative correction stemming from
non-Fermi liquid effects. As we will see in figure 3.6 of section 3.6.2, pertur-
bative NFL corrections to the specific heat are of the order of 10%-20% at
the CSC critical temperature for g ~ 0(1) and of the order of g/(3y/2) for
small g. Moreover, quark components which do not participate in the for-
mation of diquark condensates will produce non-Fermi-liquid behavior even
in the color superconducting phase.

Non-Fermi liquid behavior may therefore occur in astrophysical situa-
tions, for example the cooling rate of proto-neutron stars [16] if they involve
a normal (non-superconducting) degenerate quark matter component.

In solid state physics experiments, non-Fermi-liquid behavior has been
measured in so-called heavy-fermion metals [111], for example in the specific
heat of the recently analyzed YbRh2Si2 crystal [17, 18]. There, T lnT" 1 has
been demonstrated experimentally over more than an order of magnitude
in the vicinity of the quantum critical point for non-Fermi liquid behavior.
At ambient pressure there are only a few undoped compounds that show
non-Fermi-liquid behavior, like UBei3 [112], CeNi2Ge2 [113], or CeCu2Si2

[114]. Other heavy fermion metals can be tuned to a quantum critical point
by varying for example doping, pressure, or magnetic field.

In the following we will show how the specific heat for ultradegenerate
QED and QCD can be calculated from the pressure integral we used for
calculating the large Nj limit. Non-analytic contributions in T come from
transverse gauge boson contributions. We will complete the leading logarith-
mic contribution T lnT" 1 in that we calculate the argument of the logarithm.
Beyond this contribution, dynamical screening gives rise to anomalous frac-
tional powers j I(3+2n)/3

) for which we calculate the coefficients up to and
including order T7/3.

3.2 Entropy at small temperatures

We want to study thermodynamic quantities in the region of small temper-
ature T <C fj,. The anomalous contributions that we would like to calculate,
can be located in the entropy density

from which the specific heat can be derived. One might expect that the
"n(," contributions containing the Bose-Einstein distribution in the pres-
sure (2.2.13) are negligible compared to the "non-rift" contributions, because
ni,(uj) = l /(ew /T — 1) will vanish exponentially with small T for each (fixed)
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u. However, we will see that "rift" contributions actually cannot be neglected
for a region with w < T and that they are the source of anomalous terms in
the low-temperature series.

Looking at the "non-n ,̂" contributions first (which are those parts of the
calculation that we have to integrate in Euclidean space and which require
the introduction of a cutoff due to the Landau pole), the corresponding part
of the entropy is given by

- T | - ^ + ̂ j ^- In — (3.2.2)

-0.328(1) x l n | j + 0.462(5)1 + O(5e
6
ff ln f fef f)| + O(T3).

We see that the coefficient at order g^s is the same as the g^ part of the
strictly perturbative result for the pressure. The latter is also known as the
exchange term [20] and coincides with the <?gff part of (2.5.10). Here we have
also numerically extracted the order-g4 ln(g) corrections from the exact large
Nf result of *Snon.n6 at small coupling.

The dash-dotted lines in figure 3.1 show the exact (NLO large Nf) re-
sult for Snon-nb for different couplings <7gff(̂ MS = ̂ ) = 1, 4, and 9 and small
temperatures 0 < T/fj. < 0.15. In this range of temperatures, Snon.nb is well
approximated by the linear term (3.2.2). The dashed lines in figure 3.1 show
the "rift" contributions to the specific heat in the large Nf limit evaluated
numerically. For small T we see that these parts cannot be neglected. For
sufficiently small T/fx, Snb is positive and even dominates so that the total
result for the entropy turns out to exceed its free-theory value for a certain
range of T/fx. The size of the range where the the anomalous contribu-
tion dominates in the entropy gets larger with increasing g^. The largest
part of the positive and nonlinear contributions at small T//x in fact comes
from the transverse vector-boson modes. These are only weakly dynamically
screened at small frequencies and completely unscreened in the static limit
because of gauge invariance. We will see that it is the transverse part of the
"non-ri(," term that will fully contain the temperature-dependent anomalous
contribution. The large Nf limit will allow us to calculate the anomalous
contributions in a very straightforward manner, so let us start by looking
more closely at the transverse contribution.

3.3 Transverse contribution

We started our large Nf calculation from equation (2.2.13) which gives the
pressure associated with the gauge boson loop with a resummed fermion loop
insertion. All interesting non-Fermi liquid (TlnT, T5/3, and T7/3) behavior
to the specific heat arise from the thermal part, the "non-nj," part, of the
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Figure 3.1: The interaction part of the entropy at small T//x for g^s(ßMS =
ß) = 1, 4, and 9. The "non-nj," contributions (dash-dotted lines) are negative
and approximately linear in T with a coefficient agreeing with the exchange
term oc g^s in the pressure at small coupling; the "nt" contributions (dashed
lines) are positive and nonlinear in T such that the total entropy exceeds the
free-theory value at sufficiently small T/p. Transverse gauge boson modes
dominate the anomalous contribution in the "non-n&" part.
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transverse propagator. In the following, we will calculate the contribution
to the pressure coming from the transverse part

PT,nb _ f dAq f°° dq0r
We will start with a motivating calculation for the leading logarithmic con-
tribution to the pressure and systematically extend this calculation to finally
obtain the anomalous Fermi liquid contributions up to and including order
T7/3_

3.3.1 Leading log contribution

To calculate the pressure at small T, we start from equation (3.3.1) where we
can write the argument function as Im In a; = arctan(Ima:/Rea;) as long as
Re x is positive. Keeping this in mind, we use the following low-temperature
approximations: We first neglect the real part of Re(IIj' + 1 1 ^ ) ~ 0 + 0{q2

))
so that the main contribution comes from q2. For the imaginary part we only
go through order O(q) (the complete results for real and imaginary parts of
UT are given in appendix D) so that we use the following expression

, 9 9 x ~9eft^lJ'2(lo6{ß — oVUß71"?) ,
Imln(g - go + ^T + H-vac) — arctan —— ^— . (3.3.2)

We first apply the g-integration of the form

rQm i / „3 / „6 \ \
I 9 QO -*- I 3 ^ Qm I Qm \ \/ dq q arctan — = - I nqm — 1qm arctan h go In I 1 -I—5"

(3.3.3)
<7o

for a maximum upper bound gm. From the imaginary part we see that
qm = 2/i. We are left with the following go integration which gives

4TT f°° dqo 2 ffpff^ (-\ ^Qm \
= ——̂  I -p=, ——go I 1 + In —s—2— INg

6 "%

(3.3.4)
727T2

with 7 E - ^C'(2) — 1.14718. One does not have to worry about first ex-
panding in small go and then integrating go from 0 to oo: The bosonic
distribution function n\> = l/(exp(go/T) - 1) ensures that for small T only
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small values of go ^ T a re sampled in the integrand - larger go contribu-
tions are suppressed exponentially. We find the contribution to the entropy
density S = S/V = (dP/dT)Vili as

We can also form the specific heat Cy = Cy /V at constant volume and
number density which for unit-volume is given by [115]

Ï
(3.3.6)

where M is the number density M = N/V = (dP/dfijry- The application
of this formula including the leading-order contribution is given in equation
(C.I.5) from appendix C. We find that to leading order the coefficient of the
logarithm remains the same for entropy and specific heat. There is only a
shift by —1 in the sublogarithmic term

This first version of the result already includes the correct pre-factor of the
leading logarithmic contribution of the specific heat as given in the literature.
It confirms the calculation of reference [103] who also found the leading log
contribution CV = (QOPF/367r2)TlnT"1 as the specific heat correction, and
even goes beyond this known result in that dimensional dependence and the
constants "under" the logarithm are determined. But the term proportional
to T (the argument of the logarithm) still calls for improved approximations
and should not be trusted yet: It will change by inclusion of higher order
terms as we will see in the next section.

3.3.2 Straightforward improvements

It is possible to retain another term and replace 4^2 by (4/^2 + q2) in (3.3.2).
This will enable us to obtain the correct leading contribution to the q-
integration even for larger q. The integral over the arc tangent involves
roots of some cubic equation, but it is still solvable. After performing the
small-go expansion, the result is almost the same, up to an additional term.

(3.3.8)
Using qm — 2/j,, this term only contributes by a shift of +3/2 inside the
braces. The second integral is straightforward and leads to the following
pressure
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and its corresponding entropy

It is also possible to add the vacuum term which also contains a part
proportional to q2: Instead of q2 in the denominator of (3.3.2) we could
start with

. q2 - q2 + n r + Evac ~ q2 + q2^ In ̂  + O(q2) + O(q3). (3.3.11)

The calculation will be almost unaffected, only in the final step we need to
2 —

change g2
ff -» g2fi/(l + |^f In ̂ ^ ) . It is clear that this only gives corrections

subleading in g2^. In fact, this substitution is nothing else than a change in
scale as given by the exact scale dependence of geg in (2.2.4).

Another extension that we should consider is the T-dependence of the
self-energies. Up to now we tacitly assumed constant self-energies HT(T) =
Hr(0) at small T, but this is a simplification which might affect the next-
to-leading order in temperature. We find the following temperature depen-
dencies:

2

lmUT(q0,q,T) = Imnr(g0,q,0) - T2^q00(2fj, - q) + O(gg), (3.3.12)
\lq
2 2

ReUT(qo,q,T) = ReUT(qo,q,0)+T2^-+ O(q2
0) + O(q3). (3.3.13)

The leading order contributions turn out to have the same order as the T = 0
terms, so that our calculation does not change qualitatively. Introducing new
variables

7T2T2

X = 1 + -JJ3-, (3.3.14)

Y = 1 + ̂ Ç - f k l n ^ (3.3.15)
36/r QITZ y^S

we can write the resulting pressure as

effectively adding T4 contributions to the pressure (or equivalently T3 con-
tributions to the entropy or the specific heat). This expression reduces to
(3.3.9) if we set T ->• 0 in X and Y.

We should also consider consistently including higher order terms of q
and qo in the arctan arguments of (3.3.2) or (3.3.8). In the next section
we will see how this will eventually lead to an integral with a tenth degree
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Figure 3.2: Integrand for the g-integration g2lmln(g2 — q% + Ily + Ilvac) for
ß = AMS/2 = 1, 9o = 0.2, g2

s = 1. The solid line shows the exact result
that follows from the full T = 0 self energy expressions, the dashed line
shows the result with Rellr expanded through order O(q2,) and O(q2) and
6(2ß — \q ± qo\) replaced by 0(2// — q). The parameter qo = 0.2 is chosen
this large as to clearly show the three different ranges. We will see that the
error introduced by changing regions I and III by our approximation only
contribute at order O(q%) or higher, whereas the main contribution for lower
orders only comes from region II, if the dashed line is integrated from qo to
2/x.

polynomial in the denominator that cannot be readily solved. We have
to introduce approximations in order to factorize the polynomial to obtain
doable integrals, and we shall carefully check that we don't omit any vital
contributions while applying our approximations.

3.3.3 Approximations to order T3

We want to carefully examine the full integrand of (3.3.1) and study which
kind of approximations can be applied consistently up to order T3. For
T — 0 an. exact solution of the real and imaginary parts of the gluon self
energy HT and HL can be given (see appendix D, equations (D.1.8), (D.I.9),
(D.I.15), and (D.I.16)). These solutions contain expressions like ln|g —ço| or
6(2/j, — |ço i q\) so that the g-integration naturally splits into three regions.
The full line in figure 3.2 shows the exact integrand. The dashed line in
the figure shows the integrand that we want to use: We resolve all absolute
values in the integral in a region qo < q < 2/j,, and expand the real part
Re(IIr + Ilyac) through order O(q%) and O(q2). Also, as before, we replace
8(2fj, — \qo±q\) by 9(2fj, — q) so that our inverse transverse propagator D^} =
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g2 - g2, + n T + Ilvac for T = 0 reads

67T2 [ 2

(3.3.17)

(3.3.18)

All powers of higher order in q or go m (3.3.18) are suppressed at least by a
factor of g2

ff. The expansion in the first line of (3.3.18) in g is a priori only
justifiable for anomalous contributions that arise from a region of small go
and small g. Actually, the g integral gives contributions all the way up to
0 < q < 2/i and higher order contributions in g contribute to the argument
of the leading logarithm TlnT" 1 . These corrections will be suppressed by
<7gff at least so that we neglect them for the moment.

Both real and imaginary part can be extended from region II between
go and 2/J, — go to the integration region go to 2ß, and we should verify that
this procedure does not introduce an error to the order of interest. In the
following we will explicitly examine to what order the regions I and III will
contribute.

In region I we can argue by the maximum upper bound of the integrand:
The arc tangent function limits the integrand to n/2 so that the integral can
maximally contribute with J0

90 q2\dq = nq^/ß. This is a result of order gjj

that can be neglected if we expect results of the order go Ingo, % , o r % •

In region III the argumentation is more subtle. If we expand the exact self
energy functions in a region 2/x - go < g < 2\i + g and integrate them in this
interval, we obtain as a leading order contribution —72irg2^Trfj,2qQ/(Aß(72ir2 +
13ggff - 12<?gff In ^ - ) ) + O(ql). This result is quadratic in the leading order
of go and could therefore not be neglected as such. However, it turns out
that this contribution exactly matches the quadratic contribution that one
would obtain from extending the approximating formula from region II to
region III and integrating it between 2\i - go and 2/z. This is also suggested
by figure 3.2 where the triangle in region III of the exact solution is replaced
by a rectangle of half the width of our dashed approximate expression. So by
integrating our region II formula from go to 2/LZ, we actually reduce the error
to order O(gjj). In the following we can expect to obtain correct expansion
terms below third order in go by integrating out our approximating functions
(3.3.17) and (3.3.18) from ç0 to 2\i.
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3.3.4 Momentum integration

We will integrate (3.3.1) using our approximating functions (3.3.17) and
(3.3.18), abbreviated conveniently as Re (containing only the explicit terms
given in (3.3.17) omitting higher order contributions) and Im, using integra-
tion by parts.

f2*1
 2 Im , g3 Im 2ß f2» g3 Re Im' - Im Re'

/ g arctan——dg = —-arctan—— — / — ^ ^—ctg.
Jan Re 3 Re„„ L 3 R e 2 + I m 2L

(3.3.19)
The first part of this integral poses no problem, and it is straightforward to
expand the result in terms of small go:

g3 Im
—- arctan —
3 Re

2/i 2 2

= —^— h C/(g0J. (o.o.20)
9o

As it should be, this result is independent of whether we start the integration
from ço or from 0. The second part of the integral is more demanding as we
get a bulky polynomial in the denominator. (To simplify the following ex-
pressions, we will set /ZMS = 2/i, thereby getting rid of logarithmic constants,
and reintroduce them only in the final result):

57600/zVg6 (Re2 + Im2)
= g10

 ( 57600 /TT 4 + 14405
2

ffMVg2 + 95
2

ff9
4)

+q8 (75/zV [l28ffe
2

ff+3<4-15367r2] q2
0 + 120ffe

2
ff/x

2 [glg-Wir2] g4)
+g

6(l800<7e
2

f f[64 + 5e
2

ff] A 2<7o

- 2 0 / i 4 [4805
2

ff7r2 - 28807T4 + ff4
ff(-92 + 15TT2)] g4)

^6 [192TT2 + 5e
2

f f(-16 + 5TT2)] 9
4

(-7200^4
f f^

8 [-8 + 7T2] qt + 6OOffe
4
ffM

67r2go6 +

t + eOO&VVgo8 + 2 5 ^ A * 4 T 2 9 O ° ) • (3-3.21)

Bearing in mind that this is just the denominator of the integrand, a direct
integration seems impossible: This is a polynomial of tenth degree in q, or
given the fact that only even powers of q appear, we have to cope with a
quintic at least. Performing rational integrals requires knowledge of the roots
of the denominator (see appendix E.I, equation (E.I.6)). But for a quintic,
solutions in form of root expressions can not be given anymore in general.
However, all we need is an expansion of the final integral in terms of go, that
is for small go- Can we therefore locate those terms of this polynomial that
are important to low order terms of the go expansion? A first naive approach
of simply expanding the denominator in terms of small go will certainly fail,
because also our integration variable q can become small at the same time.
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A possible solution might be found in the pole structure of this expression
for small q0 as plotted in figure 3.3. The location of the poles reveals some
symmetry, and presumably only a few terms from the polynomial (3.3.21)
determine this structure. In the following we will see how to extract these
terms.

Pole structure

We obtain (what we will call) the "low-order front" of the polynomial by first
retaining only the leading order in go for each order of q separately, and then
keeping only the leading order terms in q for each order of qo. Applying this
procedure to our polynomial (3.3.21), we first get terms of the orders q10,
Q8Qoi 969o> 949o> 929o> an<^ Qo which are the relevant terms for small qo. Prom
the three terms proportional to g2, we can omit g8gg and Ç6ÇQ for small q and
go so that we are left with only four terms that fully determine the leading
order behavior of the integrand denominator for small q and qo:

(3.3.22)
This "low-order front" uniquely characterize the small qo and small q pole
structure. The first three terms will not change even if we include higher-
order terms of q or qo from the beginning of the calculation in (3.3.17): higher
order contributions in go are shielded by the q$ term, higher order terms in
q are shielded by the q10 term (for small q where the small qo pole structure
appears) and all other power mixtures in between are shielded by this low-
order front of four terms. It should be noted however that in the expansion
of (3.3.17) also negative powers of q appear for higher order qo corrections
that add terms of the order {qo/q)2n with 2n > 6. Their omission turns out
to be negligible since we restricted our integral to the region qo < q and the
coefficients of this series quickly get smaller.

Still, we are left with a quintic whose general solution cannot be given in
form of root expressions. Let us see, if we can reproduce the pole structure
suggested by figure 3.3. As a first guess we would start with

Re2 + Im2 « \ (A + g6) (F + q4) (3.3.23)

which would give four poles arranged in a square at a distance Fll4 and six
poles arranged in the shape of a honeycomb at a distance A1/6. Expanded,
this term gives AF + Aq4 + Fq6 + q10. We can read off A from the q4

term A = 54
ff/z

4q2/(167r2) which determines F from the constant term as
F = q4. This already explains the main features of the pole structures.
Unfortunately, our low-order front is not correctly reproduced yet. This is
not dramatic for the additional Fg6-term, because it is sub-leading to the
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Figure 3.3: Pole structure of the truncated absolute squared transverse prop-
agator Re2 + Im2 at \i = /2MS/2 = 1, <7o = 0.05, g%g = 1 in the complex q-
plane. This 10-pole structure arises from the special form of truncation that
we chose in (3.3.17). For small ço the 10-pole structure naturally decomposes
into a rectangular structure with the four poles in the middle at the order
of \q\ « qo, while the six surrounding poles, prominently arranged in the
shape of a honeycomb, stay at the order \q\ « (g^gf^qo/Air)1/3. While the
inner four poles basically contribute to the leading logarithmic contribution,
it is these outer six poles that give rise to anomalous Fermi-liquid behavior
of order T5/3 and T7/3. Corrections to this simple picture will be discussed
in the text. The plot is multiplied by \q\~3 which does not change the pole
structure since the propagator contains an overall factor of q6, but merely
makes the poles have similar heights in this plot.
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low-order front, but the term proportional to q2 is not reproduced at all.
Therefore we have to extend our guess slightly:

Re2 + Im2 « \ (A + q6) (F + Gq2 + q4) = Do (3.3.24)

where we can determine G — — 2(TT2 — 8)g2,/71"2- I n this waY w e change the
inner pole structure from a square to a rectangle. We can now calculate
the integral. Since we know how to factor our denominator, we can apply
partial fraction decomposition and reduce the integral (3.3.19) to doable
simpler integrals

where we abbreviated the numerator as N — ç3(ReIm' — ImRe')/3, the
original denominator as D = Re2 + Im2, and its first factorization as DQ
from (3.3.24). Applying this procedure, we obtain the following result:

The result looks insofar good as we obtain the same leading order logarithm
as from our first approach (3.3.8) if we take (3.3.20) into account, and we
obtain anomalous qQ' and q0' contributions. However, those are not com-
plete yet, as we will see soon. This integral is only the first of a series that
we can form: If we denote the terms we neglected in the denominator as
8DQ = D — Do, we can write an expansion series that should contain the
complete result:

fN, f N , fN, fNÔDOj fNÔD2

(3.3.27)
Again, as before, by partial fraction decomposition, all of the integrals on
the right hand side are doable. Looking at the second term in this series, we
again find contributions of the order q0 and qQ :

5/3
Although we expect to calculate a correction contribution, the q0' term
turns out to be twice as big as the first one. Apparently the series does
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not converge fast enough. The third term in the series / N SD^/D^dq again
seems promising for it starts at order O(q0'

3) and does not contain a çj, 3

term anymore, but still we would like to find a more controlled kind of
approximation.

Completing the hypercube

The problem of the series lies in the correction 8DQ which is of the order
9o- This order is not enough to compensate negative orders of go that are
introduced by powers of the denominator Do- We could ask if it is possible
to shuffle the q% terms from SDQ into Do in such a way that DQ remains a
product of a fourth-order and a sixth-order polynomial. In this way we could
form a new denominator D\ with a corresponding 6D\ = D — D\ = O(ÇQ)
and we could expect a faster converging series in terms of go- It turns out that
it is indeed possible to complete the square - or actually the 10-dimensional
hypercube - up to a given order of qo so that corrections are higher-order in
qo by the following procedure: We start from

Re2 + Im2 = L{a + bq2 + cqA + dq6 + eq8 + fq10}

+(B + CG + F)q6 + {C + G)q8 + q10} (3.3.29)

where a, 6, c, d, e, and / can be read off from (3.3.21). We already determined
A, F, and G before. SDQ contains q2, contributions for qw, qs, and q&, and
we have three variables left: B, C, and M. This should not be too difficult,
since the mixing terms BF, BG, CF, ... naturally turn out to be of higher
order in qo. We can summarize the procedure as follows:

M

A -»

V T

G ->

C -»

c
M

a
Ail

Ail
e -

~ 0(%
2),

' M G ~ 0(a2)

B -» ^ ~ O ( g 0
2 ) (3.3.30)
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where the coefficients are series expanded in go and truncated to form poly-
nomials. In our case we get the following assignments

3g e
4

f f+ 1 2 8 g e
2

f f - 1 2 2 8 8 2

7 6 8 ^ 9o>

Qo,
7 T 2 -

G ~>

(3.3.31)

Using these in (3.3.29) we obtain a correction term 8D\ of the order 0{qo).
It is possible to pursue the same strategy again to get rid of the O(ÇQ) term
in the 5D\ correction to form a D2 result by the very same procedure as
above, including the next order term in each variable. ÔD2 would then be a
correction of order O(ql).

Let us see how this new denominator D\ changes the result. There are
many terms involved in this calculation, so it is best to let a computer do all
integrals each of which is doable just as before. Here is the final result:

- I"" N daJqo Dx
dq ~qo Dx 127T

l I l n 3 2 7 r M l I

5 2 f f g t s N
1 " 32" " 2Ô48J32 2Ô48J

. (3.3.32)

Another calculation shows that the correction to this result f N 6D\/D\dq

is already of order O(q\ ' ) . Also, using the second correction J N/D2dq

gives the same result up to O(ql) so that we can now trust the q0' and q0'

coefficients.
Just to give an impression of how the series would continue, we give the

Qo coefficient of the expansion (3.3.32)

-2(?r2 - 16)\/7r2 - 4 (7r-2arctan

-8(3TT2 - 16) In 10247T \ + O^J 1 / 3 ) . (3.3.33)
5 J
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Note that this expansion results from the terms explicitly given in equations
(3.3.17) and (3.3.18). Including higher order contributions of qo and q in
(3.3.17) will change the higher order coefficients of ges given here.

3.3.5 Pressure, entropy and specific heat

As before, we calculate pressure by integrating over qo and entropy and spe-
cific heat from derivatives thereof. We introduce the following abbreviations

C\n = —r 7K ÖC (^)i (o.o.o4)

^ i i / T t1 + 1?>' (3-3"35)

_ 82V3 W ) V 3 r ( f K ( f ) 2 4
Cl0/3 - ( 1 ) ( 3 3 3 6 )

Note that inclusion of higher order terms in qo and q in equation (3.3.17)
may change the higher order coefficients in geff given here. The leading order
in <7eff for each coefficient is complete though. The results are

+c8 /3T8/3 + c10/3T10/3 + O(T4 lnT),

327T/X _
(3-3-38)

+ f cj/aTV' + yC10/3T'/3 + O(T3 lnT).

Figure 3.4 shows a comparison between a full numerical result and the
series expansion for small T for the transverse rift-part of the entropy in
the large Nj limit. Clearly, the leading order contribution of the curves is
accurately reproduced by the small-T expansion for different g^ of 1, 4, or
9 in a region T/fi < ges/{^2)- This is also the region where the complete
large-Nf result for the low-temperature entropy exceeds the ideal-gas value
in figure 3.1.
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Figure 3.4: Transverse n&-contribution to the interaction part of the low-
temperature entropy density in the large-Nf limit for the three values g^B =
1,4,9. The heavy dots give the exact numerical results; the full, dashed, and
dash-dotted lines correspond to our perturbative result up to and including
the TlnT"1 , T5/3, and T7/3 contributions.

3.3.6 Higher order corrections

We can now apply full temperature-dependence of the self energies and keep
the renormalization scale ßus explicitly in our formulae as in section 3.3.2.
Our final result for the pressure reads as follows: Using the following di-
mensionless quantities

X = 1 +

Y = 1 +

and the following abbreviations

7 r 2 T 2

g e
2

f f

36/ i2 6TT2

Gin =

C8/3 =

ClO/3 =

2
71

( MY'

ffeff

32y
4k

(3.3.40)

(3.3.41)

(3.3.42)

(3.3.43)
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we can write the resulting pressure as

PT,nb _ 9W^ ( 32^ U

+c8 / 3T8 / 3 + c lo/3T10/3 + 0{TA lnT). (3.3.45)

The temperature corrections of X and Y only contribute to order 0(T4) so
that in a strict expansion sense, this expression reduces to (3.3.37) up to
ln/ÏMS terms.

Let us finally note that with the tools presented here, it seems a straight-
forward but tedious task to calculate the complete O(T4) contribution to the
pressure (or the 0(T3) contribution to entropy or specific heat). First, from
the region II integral we expect a T 3 l nT contribution to the entropy as is
suggested by the (still incomplete) contribution in equation (3.3.33). Then
we have to take a careful look at regions I and III again, which could start
contributing at this order. Finally, the temperature dependencies of the self-
energies in equations (3.3.12) and (3.3.13) will also start contributing at this
order via higher corrections similar to the X and Y functions above. In a
full O(T3 In T) calculation of the entropy, all of these terms would have to
be taken into account.

3.4 Longitudinal contribution

For the longitudinal "nf,"-part from our starting equation (2.2.13) we cannot
neglect the real part of the self-energy Hi compared to the vacuum self
energy as we did in equation (3.3.2). We have to add a term

2 2

ReUL(q0,q) = ^ - + O(q2
0) + O(q2) (3.4.1)

which is absent in the transverse part. This contribution does not vanish
for small qo and q and actually simplifies the calculation. This time we can
expand the arc tangent for small argument arctan x ~ x so that we can write

•ml-tf - 4 + n. + IW) * * ' W -2^f% f "<**>. (3,,)
Q2 + (Ct»2)/*2

Performing the g-integration as before we get

Q m rtftoff*'.™ (3.4.3)
Jo Q2 + (ffM2)/7r2

,2 ,,2

47T *

This integral can be performed exactly, so here and in the following step
there is no need for any truncation so far. From this integral Q we get the
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pressure as

Q[
87T3 7 O 7T e 9 ° / T - 1

and the entropy density as

SL,nb

The logarithm can be expanded giving

' ) + 0 ( T 3 ) - (3-4-7)

3.5 Full result

Let us take together all the results we obtained so far. We have three main
contributions to the entropy correction

S - So = Snon-nb + Sr,nb + $L,nb (3.5.1)

with <Snon-n6 from equation (3.2.2), Sr,nb from (3.3.38), and «Sx,̂  from
(3.4.7). So is the ideal-gas value per unit volume obtained from (2.5.1)
and is given by

Using the following abbreviations

we can write the final result to the entropy correction as

S-So

- O{TA) (3.5.4)

and for the specific heat as

Cv-C°v g\
Ng 36TT2

(3.5.5)
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with the ideal-gas contribution of the specific heat as calculated in appendix
C

3.5.1 Extension to full QED and QCD

Having calculated the large Nf result of entropy and specific heat, the natural
question is how these results translate back to the full theory of QED or
QCD. It turns out that for entropy and specific heat of QED and QCD all
we calculated so far in the first few orders of T -C \i is actually all there is.

In fact, our NLO expression for the pressure at large Nf (2.2.13) can be
seen as the starting point for an expansion of small g but finite, smaller Nf
in the regime T/n <C g with an error of order g4. This is because bosonic
loop insertions that we could omit in the large Nf limit are also negligible
in this regime to the order of interest. The pressure would then be given by

(3.5.7)

where N = 3, Ng = 8 for QCD, and both equal to one for QED. The tem-
perature T is assumed to be the smallest mass scale in the problem. DT
and DL are the spatially transverse and longitudinal gauge boson propaga-
tors at finite temperature T and (electron or quark) chemical potential //
obtained by Dyson-resumming one-loop fermion loops, and .Dyac is the cor-
responding quantity at zero temperature and chemical potential, just as in
equation (2.2.13). This expression is sufficient to obtain results up to (but
not including) order T4 in the pressure or to order T3 in the entropy for the
regime T//z <C g. Since the fractional powers T5/3 and T7/3 are included in
these bounds they indeed give the anomalous behavior also to full QED and
QCD.

In order to obtain the anomalous terms through order T7/3 one actually
only needs the following terms of the real transverse part of the propagator
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(3.3.17) where we only keep the lowest orders in qo/q and qo/fJ-

+ O(g2
effq

4
0). (3.5.8)

These are the necessary terms to give the same "low order front" as presented
in equation (3.3.22).

For T/fi <C g the anomalous contributions we calculated for the pressure
are actually negligible compared to zero-temperature contributions ~ g^/j,4

which we omitted in our starting formula (3.5.7) and which can be found for
QED and QCD to order g4 in references [72, 73]. However, when calculating
the entropy density S = (dP/dT)yiti or the specific heat, these terms drop
out and we obtain the correct low temperature series expansions for QED
and QCD by the results calculated above in equations (3.5.4) and (3.5.5).

A useful way of understanding the organization of the series expansion
is to make explicit that T/fi is the smallest scale by writing T/n ~ ffeff
with ô > 0. The terms in the expansion(3.5.4) then correspond to the
orders g^5 ln(c/geft), ge^ ' ' , and g^ ' ' , respectively, with a truncation
error of the order gl£3S• The expansion parameter in this low-temperature
series is T/(gegii), which is also the scaleless parameter appearing in the
argument of the leading logarithm of (3.5.4) and (3.5.5), but interestingly
only after the transverse and the longitudinal contributions have been added
together. The combination geg[i is the scale of the Debye mass at high
chemical potential, whose leading-order value is run = geff/V71"- I n fact, the
calculation of the coefficients in (3.5.4) required keeping the leading-order
"hard-dense-loop" (HDL) part of the gauge boson propagator [116, 117], in
particular the dynamic screening in (3.3.18), but also a HDL correction to
the real part of the transverse self energy in (3.5.8). The above calculation is
therefore in a certain sense another application of HDL resummation [117],
which thus turns out to be necessary also for a perturbative treatment of the
low-temperature regime T//J, < j .

Summarizing, we have found that for the entropy and the specific heat
(but not for the pressure) the expressions given in (3.5.4) and (3.5.5) already
give the leading order contribution for full QED and QCD in a regime of

g with gls = g2Nf for QED and 5
2

ff = g2Nf/2 for QCD.

3.6 Discussion

3.6.1 Specific heat

The specific heat Cy = Cy/V is an important quantity for potential phe-
nomenological applications in astrophysical systems. Figure 3.5 shows the
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Figure 3.5: The perturbative result for the specific heat, normalized to the
ideal-gas value, to order T5/3 and T7/3 (lower and upper curves, respectively)
for two particular values of as in two-flavor QCD (chosen for comparability
to reference [118]) and geg « 0.303 for QED. The deviation of the QED
result from the ideal-gas value is enlarged by a factor of 20, and the plot
terminates where the expansion parameter (TT2T) /(gegfj,) « 1.

ratio of Cv as given by (3.5.5) to the ideal-gas value Cv for QCD with two
massless quark flavors. We compute the ratio for two values for as which
have been used also in reference [118] and which correspond to one-loop
running couplings with renormalization point 0.5 GeV (full line) and 1 GeV
(dashed line). The upper limit of the shaded bands give the result to order
T5/3 and the lower band to order T7/3. Alternatively we can think of the
two QCD bands as roughly corresponding to QCD with a quark chemical
potential of 0.5 GeV and the total variation corresponding to different renor-
malization schemes with minimal subtraction scale varied between fi and 2//.
The critical temperature for the color superconducting phase transition may
be anywhere between 6 and 60 MeV [15], so the range T//x > 0.012 in figure
3.5 might correspond to normal quark matter. We will explore this region in
more detail in the next section, looking at the anomalous correction at the
critical temperature of color superconductivity. While it is certainly ques-
tionable to apply perturbative results for a3 > 0.65, figure 3.5 suggests that
the anomalous feature of an excess of the specific heat over its ideal-gas value
may possibly come into play in astrophysical situations, in particular in the
cooling of (proto-)neutron stars [16, 119, 120]. The anomalous correction
Cy/Cy > 1 should be compared to the ordinary perturbative estimate for
Cv/Cv based on the well-known [20] exchange term oc g2 (which requires
T/fi » g). The latter would predict Cv/Cv < 0.6 for as > 0.65.

In figure 3.5 we also show the effect on QED, where ges =
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^/4TT/137 « 0.303. Here the range of temperature, where the specific heat
exceeds the ideal-gas value, and the deviations from the latter, are much
smaller (the deviations from the ideal-gas value have been enlarged by a
factor of 20 in figure 3.5 to make them more visible). As mentioned, the
effect of the anomalous contribution to the specific heat remains small in
QED, but it might play a noticeable role in the thermodynamics of a normal
quark matter component of neutron or proto-neutron stars.

3.6.2 Effect near the CSC critical temperature

It has been argued recently that color superconductivity (CSC) will dominate
dense quark matter long before non-Fermi liquid behavior becomes effective
[109, 110]. The argument is based on simple dimensional analysis of the
energy scale, which for the 2SC color superconducting gap is given by [109,
121, 122, 123, 124, 125, 126]

E = bb'oßg-5 exp(-c/g), (3.6.1)

and for non-Fermi liquid effects is given by

Ê = b/j,gexp(-xc/g'2), (3.6.3)

NL

This NFL result is obtained from equating x times the coefficient of the
leading order T contribution to the T inT" 1 coefficient from the NFL entropy
correction (3.5.4) (for the specific heat (3.5.5), b gets another factor e). The
parameter x gives the kind of NFL correction: for x < 1, E gives the energy
scale for corrections of the order x\ for x ~ 1 we get into non-perturbative
NFL correction regime. Note that the pre-exponential factor b'o in the color
superconducting energy gap (3.6.1) stems from non-Fermi liquid behavior
through the quark-selfenergy [127, 124, 128].

In references [109, 110], the energy scale for color superconductivity is
related to the energy scale where NFL effects get nonperturbative. For a
2SC system, the energy scale of the critical temperature of the color super-
conductor Tc is related to the gap energy (3.6.1) by Tc = Ee^/n [126]. It
is clear that for arbitrarily small couplings g the critical energy Tc <x E will
be larger than the NFL energy Ê. Thus, nonperturbative NFL effects will
not play a role because color superconductivity will set in already at higher
temperatures.
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Figure 3.6: Non-Fermi liquid correction at the critical temperature Tc of the
color superconductor as a function of the coupling g for entropy and specific
heat. The factor x is the rate of the next-to-leading order contribution
a TlnT" 1 to the leading order (Stefan-Boltzmann) contribution oc T.
The shaded bands give the result including T5/3 (lower limit of band)
and T7/3 (upper limit of band) contributions in the NLO expression. For
g < 5, non-Fermi liquid corrections are perturbative (x < 1) and the size
of correction is given by x for the specific heat and the entropy. For g > 5
nonperturbative NFL contributions cannot be neglected. For asymptotically
small g —> 0 the correction is linear x = g/(3\/2).
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On the other hand, if we are interested in when perturbative corrections
cannot be neglected, it boils down to a choice of the size of corrections we
wish to regard, entering via the parameter x: Indeed, if we want to study
NFL corrections of the order of g by setting x = g in (3.6.3), we find the
same parametrical energy dependence oc exp(—c/g) for Tc and Ë. Here of
course the magnitudes of c, c, and the large exponential prefactor b start
to play a role and one has to be more careful. Solving for the correction in
Tc = Ë gives

£ ïLjiïL. (3.6.5)

From another point of view, this is just the correction x = CyLO(Tc)/Cv°(Tc)
evaluated at the critical temperature Tc(g) = Tc(E(g)) for each coupling g for
the NLO contribution oc TlnT" 1 . Figure 3.6 shows the dependence of the
size of the correction x on the coupling g for the specific heat and the entropy.
According to this plot, below g < 5 we are in the perturbative NFL regime
where our formulae (3.5.4) and (3.5.5) are well applicable, as can be seen
from the shaded bands in the plots which show the result including T5/3 and
T7/3 contributions. These are the biggest corrections that we expect to see
from perturbative non-Fermi liquids because for higher temperatures T > Tc

the NLO corrections get smaller, and for smaller temperatures T < Tc we
are in the color superconducting phase. Since the color superconductor gap
equation (3.6.1) might not be valid in this coupling range anymore, this plot
should be treated with care. The only purpose of this plot is to show that
from the gap energy given above, one can not readily derive that perturbative
NFL effects could be neglected. Indeed, the energy gap formula might break
down for g as low as g > 0.8 [129].

For small g the correction decreases linearly as x = g/(3\/2). This is
iarger than naively expected from the perturbative NLO NFL term oc g2 In g
and an effect of the exponential decrease of the critical temperature Tc with
exp{-c/g).



Chapter 4

Summary and Outlook

In this thesis we calculated pressure, entropy, and specific heat of the high-
temperature and high-density quark-gluon plasma in the limit of a large
number of quark flavors. The theoretical understanding of the quark-gluon
plasma is of current interest, as existing heavy-ion colliders start to reach en-
ergy densities that allow for observation of this new state of matter. In the
low-temperature but high-density region, the quark-gluon plasma features
non-Fermi-liquid behavior with anomalous contributions to thermodynamic
quantities. In this thesis we derived for the first time in a detailed calcula-
tion the low-temperature series beyond leading-log accuracy and including
anomalous fractional powers.

We have focused on large Nf as the theoretical limit in which we let the
number of flavors go to Nf —» oo and the coupling g —t 0 such that the effec-
tive coupling <7eff oc g2Nj stays of order 0(1). We argued that this theory is
of particular interest because it is exactly solvable up to next-to-leading order
(NLO) in the 1/Nf expansion and thus provides an ideal test for resumma-
tion schemes that try to overcome the poor convergence properties of strict
perturbative expansions of thermodynamic quantities like the pressure. The
NLO large Nf limit technically corresponds to resumming a boson loop with
any number of fermion insertions which can be resummed by the Schwinger-
Dyson method. Although we cannot give a closed form of the NLO pressure,
we can numerically evaluate the result with a small error introduced by a
cutoff due to a Landau singularity in the coupling. Given that the renor-
malization scale dependence is exact to the order of interest, we have an
exact result for all couplings and renormalization scales. We calculated the
pressure for the whole range of temperature and chemical potentials where
the error introduced by the cutoff is negligible numerically. For small values
of the coupling, our numerics turned out to be sufficiently accurate to allow
comparison to perturbation theory and to extract coefficients in the pertur-
bative expansion of the pressure that had not been calculated analytically
before. This table shows a summary of our predictions:

81
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Coefficient

P: Ce
X- Ce

d2
X/dfi2: C4

Pr=o: Cetin

PT=O- C6

Predicted value
+20(2)
-4.55(9)
-7.02(3)
+3.18(5)
-3.4(3)

Equation
(2.5.16)
(2.5.19)
(2.5.20)
(2.5.24)
(2.5.24)

Confirmed
not yet
not yet

-6.9986997..[65]
not yet
not yet

Since the original publication of the predicted values in [68] so far only one
has been confirmed by an analytic calculation. The other four constants still
need to be confirmed by means of an analytic calculation.
For larger values of the coupling, we studied the convergence properties of
perturbative series including renormalization scale dependence and the FAC
(fastest apparent convergence) scale applied to mE (FAC-m) and to g2

E (FAC-
g) at zero chemical potential. The latter choice leads to quite accurate
results up to g2^ ~ 9. We further studied the scaling from pressure at small
chemical potentials to higher chemical potentials and noticed an unexpected
breakdown at about fx « vrT. This might indicate a generic obstruction for
extrapolating lattice data from /J C T to /J > T.

In the second part of the thesis we examined the region of small T and
large ß more closely and found non-Fermi-liquid behavior in an anomalous
series expansion of the entropy and specific heat for small temperatures in-
volving a leading TlnT" 1 term and fractional powers j'(2n+3)/3. We gave a
brief overview of the theoretical picture from the ideal gas to the non-Fermi
liquid. While the classical ideal gas shows no temperature dependence in
the specific heat, the ideal Fermi gas and the Landau-Fermi liquid show a
linear dependence on temperature in the specific heat. Only the introduction
of long-range interactions changes this behavior qualitatively: The leading
TlnT""1 contribution in the entropy or the specific heat cannot be explained
by classical Landau-Fermi liquid theory anymore and the system is therefore
called a non-Fermi liquid. In our case long-range interactions are introduced
by transverse gauge boson interactions which are only weakly screened at
low frequencies go and not screened at all in the static limit of go —>• 0. We
showed that the anomalous leading logarithmic contribution leads to a range
where the entropy exceeds the ideal gas value of the entropy for small tem-
peratures. We calculated the leading log coefficient in a straightforward way,
confirming a result by reference [103]. We further completed the argument
of the leading logarithm and went beyond the leading order to find anoma-
lous contributions to order T5/3 and T7/3 in the entropy and the specific
heat. These contributions indeed come from transverse "non-n(," parts (i.e.
contributions in the original expression of the pressure that do not contain
a factor of the bosonic distribution function n\,) and we calculated them by
spotting a "low order front" in the denominator of the pressure integral which
we can factor into a sixth order and a fourth order polynomial, hiding higher
order terms in the frequency qo in a correction term. The final result for the
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entropy and the specific heat turns out to be readily applicable to full QED
and full QCD in a range where T/fj, <C geff- F° r the entropy we found the
result

S .

O(T3) (4.0.1)

from which the specific heat can be derived as

Cv -_ ^

^ ß / O(T3) (4.0.2)

with

We pointed out a possible implication in astrophysical situations, namely
the cooling rate of proto-neutron stars, and calculated the effect of the
non-Fermi-liquid contributions near the critical temperature of color-super-
conductivity. We found that while non-perturbative non-Fermi-liquid be-
havior might play a role for g > 5, there are non-negligible perturbative
non-Fermi-liquid effects for g ~ 0(1) of the order of 10% — 20% compared
to the leading order contribution, and that perturbative non-Fermi-liquid
effects are of the order of g/(Zy/2) for small g.

In the appendix we calculated the Feynman rules trying to match dif-
ferent conventions in the literature, gave a derivation of the specific heat at
next-to-leading order and presented the zero-temperature limits of the boson
self-energy with one fermion insertion. Finally, we provided a Mathematica
extension that is necessary in order to correctly calculate the fractional power
series. This calculation involves a series expansion that depends crucially on
assumptions about the variables involved that standard symbolic manipula-
tion programs implicitly ignore.

Possible extensions to the work presented here first of all include im-
provement of the non-Fermi-liquid series expansion. Within the large Nj
limit, the T3 contribution might be of special interest. With the tools pre-
sented here it seems straightforward to calculate it, but one has to take into
account that disproportionately more contributions have to be considered at
this order. Apart from higher orders in T, the series expansion could also be
pushed towards higher orders in the coupling
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The analytic treatment of non-Fermi-liquid behavior presented in this
work paves the way for various possible applications: One could try and
repeat the calculation of neutron star cooling rates with the improved series
expansion presented here; one could study the interplay of the effects of
the non-Fermi-liquid contributions with color superconductivity; finally, one
could extend the analysis to the nonrelativistic case (i.e. include fermion
masses) which may be of interest in view of the recent experimental findings
[17] in condensed matter physics.



Appendix A

Abbreviations

2PI 2 Particle Irreducible

2SC 2-Flavor Color Superconductor

CFL Color-Flavor Locked

CSC Color Superconductivity

DR Dimensional Reduction

FAC Fastest Apparent Convergence

HDL Hard Dense Loop

HTL Hard Thermal Loop

ITF Imaginary Time Formalism

Large Nf Large number of Quark Flavors

LHC Large Hadron Collider

LO Leading Order

NLO Next-to-Leading Order

PMS Principle of Minimal Sensitivity

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

QGP Quark Gluon Plasma

RHIC Relativistic Heavy Ion Collider

RTF Real Time Formalism

SPS Super Proton Synchrotron
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Appendix B

QCD Feynman rules

B.I Motivation for a unifying approach

The theoretical description of the quark-gluon plasma is based on quantum
field theory (QFT). Its application to a 'Many-Body Problem' using tools
from statistical mechanics started in the late 1950s. In the mean-time the
theoretical tools improved dramatically, for example by reorganized pertur-
bation theory in the 1990's, and it is no wonder that a plethora of conventions
and notations have been invented so far. The drawback of this kind of sci-
entific independence is that it renders comparison between different authors
often a tedious task. In this chapter we will try to find a formal "common
denominator" for modern literature on thermal field theory, whilst providing
a brief introduction to Feynman rules and some basic diagrams we will be
using later on.

We will use the Imaginary Time Formalism (ITF) for the statistical de-
scription of the quantum field. This formalism is based on the observation
that the statistical density matrix for a system p(ß) = exp(-ßH) with in-
verse temperature ß = 1/T looks similar to a quantum mechanical time
evolution operator ex.p(iHt) if one uses formally imaginary time t —» iß.
It is therefore tempting to simply rotate QFT formulae from zero tempera-
ture, as taught in modern textbooks like Peskin and Schroeder [130], in the
complex time plane to finite temperature in ITF. Unfortunately, naive com-
parisons quickly result in missing factors of —1 or i, so that it seems worth to
invest some effort in locating the sources of discrepancies. In the end we will
see that only two factors determine the sign discrepancies for Feynman rules
between various conventions, namely the sign in the generating functional,
which we will call J, and a factor in the covariant derivative g.

Let us start by looking at the gluon propagator, which basically resem-
bles the photon propagator up to group factors. It can be found in various
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definitions in the literature:

+ (A 1 )&&

*-±r* 1 Oill/(s (i n
Q2 y0»» ^ ^^ Q2

Equation (B.I.I) for T = 0 can be found in Peskin and Schroeder [130],
p. 297, equation (B.1.2) applies to the ITF and is the definition of Blaizot
and Iancu [131], p. 176, while equation (B.I.3) is the ITF definition according
to Le Bellac [132], p. 107. The first two equations make use of the Minkowski
metric gßV = diag(l, —1, —1, —1) while the third equation does not. We can
unify the first two equations, using the following "generic" equation:

where we introduced a "generic constant" x whose value resembles different
definitions. Here we can identify x — i f°r t n e T = 0 case in equation (B.I.I)
and x = —1 for the ITF in equation (B.1.2). We cannot easily identify
equation (B.I.3) with this method, though, because it uses Euclidean metric.
We will see later how we can convert results obtained in this work from
Minkowski metric to Euclidean metric.

Another example of using different definitions is the covariant derivative.
In [130], p. 490, it is defined as Dß = d^-igAp"-, while [131], p. 171, defines
the covariant derivative with a positive sign Dß = d^, + igA?lt

a. Again these
two definitions can be easily unified, using the generic equation:

Dß = dß + ggAlta (B.I.5)

with 3 = — i in the first case and g = +i in the second. Itzykson and Zuber
[133], p. 584, use yet another convention ~g = — 1.

Yet another striking difference concerns the definition of the generating
functional. While [130], p. 290, defines the generating functional for T = 0

Z[J] = fvcf>exp \i I

we can find the following definition for ITF in [131], p. 28,

Z\j]=Af [ W ) e x p ( - [ dr [d3x(CE(x) - j(x)</>(x
J 4>(o)=<t>(ß) I Jo J

(B.1.7)
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where the Euclidean Lagrangian CE basically equals the negative Minkowski
Lagrangian—C in the common Minkowski metric. Defining a "generic" position-
integral as

for T = 0

we can again combine the two equations to form the generic equation

Z[j}=M f

with s = i, J = 1 for T = 0, and s = 1, J = 1 for ITF.
What we shall find in the following is that the Feynman rules can be de-

rived basically from these three generic definitions presented here, namely the
definition of the propagator (B.I.4), the definition of the covariant derivative
(B.I.5) and the definition of the generating functional (B.1.9). From these
definitions we can derive the QCD Feynman rules. In the end the Feynman
rules will in a simple way depend on the constants x, g, and J.

B.2 Derivation of Feynman rules

In the following we will present the key equations that define constants like x,
<7, or 's. The aim is to unify the Feynman rules for T = 0 and the Imaginary
Time Formalism (ITF). We use natural units h = c = 1.

Metric

Equations in both formalisms can be formulated using the Minkowski metric

gßu = <T = diag(l, - 1 , - 1 , -1 ) . (B.2.1)

In the case of the imaginary-time formalism we adopt the definition of
Blaizot and Iancu [131] and write xß = (ZOJX) = (*o — *T>X) with 0 <
T < ß, with the inverse temperature ß = T~l, and kß — (&o,k) = (i^n)k)
with u)n = 2nnT for bosonic fields or ujn — (2n + 1)TTT for fermionic fields.
This definition has the advantage that the scalar product of position and
momentum vector still has the form of the Minkowski metric:

kßx
ß = koxo — k x — u)nT — kx . (B.2.2)

We define the generic position integral to be

4z for T = 0
rS drfd3x for ITF. (B '2-3)

Analogous "generic" definitions can be given for the position integral and
the Dirac 5-function.
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Lagrangian

In all textbooks compared in this paper, the Lagrangian takes the following
form:

C = ~F^F'"'a + ̂ i(ip-m)iji/,j. (B.2.4)

The covariant derivative TJ) = 7ßDß is defined as

Dß = dß + ggAa
ßt

a (B.2.5)

with 5 = i, — 1, or —i. We use the commutation relation of the generators
ta of the Lie algebra of the gauge group in the fundamental representation

[ta,tb] = ifabctc (B.2.6)

where fabc are the structure constants of the group. The commutator of the
covariant derivative

[£>„, £>„] = gg (dßAl - dvA
a
ß + iggfabcAb

ßAl) ta = ggF^t* (B.2.7)

defines the field strength tensor F£v. The adjoint representation is given by
{tbG)ac = ifabc- In this representation the covariant derivative is given by

(Dß)ac = dß6ac + iggAb
ßf

abc. (B.2.8)

The generating functional for gluons can be written as

Z[j) =Af [[VA^exp \ï j ' àix{c + ~jjva{x)Aa
ll{x))\ (B.2.9)

with 7 = i for T = 0 and ? = — 1 for imaginary time formalism. We usually

find j = 1 in both cases. For the quarks which are fermions we have to

consider two anticommuting fields and the generating functional takes the

form

VipVipexp \s dAx(C

(B.2.10)
with rj = 1. For ghost fields there is a similar generating functional.

Propagators

Starting from the generating functional (B.2.9) we can write the two-point
correlation function as

Z[0]
j=0
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We can rewrite the generating functional by a shift of the gauge field
Aa

ß(x) = A'aß{x) + (-J/x) $àAyGab
v{x - y)jwb{y) where the Green's function

^ x — y) satisfies the generic equation

- y) (B.2.12)

with x = * for T = 0 and x = - 1 for ITF. Here we already added the
Faddeev-Popov term -(dM£)2/2£ to the Lagrangian. The shift of A£(z)
does not affect the result of the integral and we can rewrite1 the generating
functional (B.2.9) as

Z[j] = Z[0]exp I - ^ J d4x Id4yj^aGH(x - y)fb{y) (B.2.13)

Using this result, we can calculate the two-point correlation function (B.2.11)
as _

<0| TAl^AÏi^) |0) = ^ G j ( x i - x2). (B.2.14)
SX

As expected, this expression is independent of the constant j . We can calcu-
late the Green's function for the momentum space by Fourier transforming
equation (B.2.12):

G#(*) = -X [g^ + (f - 1 ) ^ ) Sab. (B.2.15)

This is the form that we already introduced in equation (B.I.4). We can
now write the Fourier transform of the two-point correlation function

momentum , , „ , ,
, external helds propagator

integral
(B.2.16)

Written in this way, the connection to the Feynman rules is clear and we
can readily read off the propagator that will be used in calculating Feynman
diagrams:

_i „ .
= ~~Gf„(k) (B.2.17)

'in the literature this procedure is often referred to as "completing the square".
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It is interesting to see that the last line is actually independent of x a n d
thus independent of our choice of defining the propagator Gab{x). It merely
depends on the definition of the generating functional (B.2.9).

For fermions we can derive the propagator in a similar way starting from
the generating functional equation (B.2.10). Again, we can shift the fermion
field by introducing the fermionic Green's function Slp (x — y) which satisfies

(iß - m) S${x -y) = àôW(x - ytfiUxA (B.2.18)

with 14><4 being the unit matrix in the space of the anticommuting 7-matrices
and a a generic constant. Similarly as above, we can write the two-point
correlation function of two fermionic fields as

^ - y) (B.2.19)

and we find for the propagator used in the Feynman rules

iS?(p) (B.2.20)

s p — m s p — m z + ie

Finally we have similar results for the ghost field. The ghost Green's
function satisfies

G%{x -y)= c6ac8^(x - y) (B.2.21)

with the generic constant Z. This Green's function gives the two-point cor-
relation function

(0| Tca{Xl)^{x2) |0) = ^Gfh{Xl - x2) (B.2.22)

and the ghost propagator for the Feynman rules

a • b - 1 ~ - 1 tab

'^— - K°3<*> = I F
 (a2-23)

Vertices

We use the field strength tensor from equation (B.2.7)

F% = dßA
a

v - dvAl + iggfabcAb
ßAl (B.2.24)
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to calculate the expression we need for the Lagrangian (B.2.4)

\ = -±(dßAZ&'Al'a-dliAlff'A'M)} (B.2.25)

The first line in equation (B.2.25) gave the gluon propagator (B.2.12).
The following two lines can be treated as small perturbations with the order
parameter g and contribute to the Feynman rules as 3-boson vertex (second
line) and 4-boson vertex (third line). We can calculate the 3-boson vertex
for example by calculating the 3-point function

(tt\TAl{x)Ab
v{y)Ac

p{z)\n) = J dAx(dAggfAA)\O) (B.2.26)

= (0| AAA |0) + Tggf (0| AAA f{8A)AA |0) + ...

and applying the Wick theorem. After some careful calculation we get for
the 3-boson vertex

a,fi

(B.2.27)

where we use the short notation (k — p)p = kp — p?'. For the 4-boson vertex
we can start similarly from a 4-point correlation function and obtain

(B.2.28)

c,p

by
The part of the Lagrangian (B.2.4) that describes the fermions is given

) ; • j = A (iß - m) 8^ + iggipn^A^iPj (B.2.29)
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where we used the covariant derivative ilj) = i^ßdß + ïgg^ AaJ,a from equa-
tion (B.2.5) . The first part of equation (B.2.29) gave the fermion propagator
(B.2.20) while the second part gives the quark-gluon vertex

a,fi

(B.2.30)

Similarly we can write down the Lagrangian part for the ghost fields

Cghost = ? {-dßDa
ß

c) cc = c? (-d^Sac) cc + c? (-iggfabcd»Ab
ß) cc

(B.2.31)
where we used the adjoint representation of the covariant derivative (B.2.8).
Note that the derivative in the second part acts on both the gauge field
Ab and the ghost field cc. The first part determined the ghost propagator
(B.2.23) while the second part gives the following Feynman rule:

(B.2.32)

In this Feynman rule qß denotes the momentum of the outgoing ghost.

Euclidean metric

We can now transform our results into Euclidean metric. In deriving the
Feynman rules we did not make use of the metric gßI/ other than contracting
momentum vectors like kßkß or momentum and position vectors as in the
Fourier transform k^xß. The latter is taken care of by our generic definitions
of the integrals (B.2.3) and delta functions. The former just needs "undo-
ing" the contractions. Since we started with lower indices at the beginning
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(B.2.26), resulting in propagators with lower indices and vertices with upper
indices, we now have to "pull down" all indices. That is

kß _> gw'kp,, (B.2.33)

such that in our formula there are only vectors kß, pß, qß, ... with lower
indices.

We could have done the complete calculation by using the Euclidean
metric this way, so we can simply replace

9n» = gT -> - V (B.2.34)

and write k2 = gßUkßkv -» -5ßVKßKv = —K2, where we use capital letters
to denote vectors K2 = KßKß = K\ + K\ + K\ + K\ in the Euclidean
metric.

For example the gluon propagator (B.2.15) becomes

( t "

For vertices we have to pull down all indices, so for example the 3-boson
vertex (B.2.27) changes to

(sg)9fabc {g^9pp'{k - p), + < W ; ( p - q)ß. + g^g^'iq - k)u.)

(K - P)p + ôvp{P - Q)p + 5Pß{Q - K)„). (B.2.36)

In the case of slashed quantities $ we apply the same transformation and
write

i = lßPß = 9ßß'lßPß> -»• -ößßHßPß> = -F- (B.2.37)

The fermion Green's function (B.2.20) then becomes

S^13(p) = à—^—6ab -> -à-^—èab. (B.2.38)
v ' i>-m F + m y '

B.3 Comparison with literature

Values for constants

We want to compare our "generic" results to various results of Feynman
rules in the literature. The results are summarized in table B.I. The first
constant ? describes the sign in the Lagrangian of the generating functional
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Reference
Peskin & Schroeder [130]
Itzykson & Zuber [133]
Le Bellac, QSFT [134]
Huang [135]
Le Bellac, TFT-M [132]
Blaizot & Iancu [131]
Kapusta [136]
Le Bellac, TFT-E [132]

M/E
M
M
M
M
M
M
M
E

T
To
To
To
To

RTF
ITF
ITF
ITF

s

i
i
i
i
i

+1
+1
+1

9
—i
- 1
+i
+i
+i
+i
+i
+i

X
i
i
i
i
i

- 1
- 1
- 1

a

i

i

i
- 1
+1
- 1

c

- 1
+1

Table B.I: Comparison of definitions given in literature. "M/E" means the
metric (Minkowski or Euclidean), T stands for temperature T = 0 (To),
Imaginary Time Formalism (ITF) or Real Time Formalism (RTF). Le Bellac
[132] gives two sets of Feynman rules which are compared independently.
Only s~ and g~ are relevant for the sign changes in the Feynman rules.

Z = expÇs f C) and can be obtained by comparing equations in the literature
to equation (B.1.9). Another way is to compare the propagators of the
Feynman rules as in equations (B.2.17), (B.2.20), and (B.2.23). These are
independent of the sign of the Green's function (x, &, c) and are usually
given in a table of Feynman rules. A first consistency check can be applied
here to see whether the definitions of the three kinds of propagators (gluon,
quark, and ghost) are consistent with each other.

The next constant g appears in the definition of the covariant derivative
Dß = dß + 'ggAa

lxt
a (B.2.5). The next three constants x, CT, c for the gluon,

quark, and ghost Green's functions respectively are not used in all books.
They are not essential for the Feynman rules, though, as they do not enter
the equations of the Feynman vertices and Feynman propagators.

Vertices

Table B.2 shows the prefactors of the Feynman rule vertices of the 3-gluon
(B.2.27), 4-gluon (B.2.28), quark-gluon (B.2.30), and ghost-gluon (B.2.32)
interactions. Before results from literature can be compared to our generic
results, some obvious transformations have to be made: These include rela-
belling indices, using the antisymmetry property of the structure constants
fabc, or flipping signs because of different orientation of momentum vectors.

Our results agree with most of the authors. At T = 0 in the Minkowski
metric our results perfectly agree with Peskin and Schroeder [130], Itzykson
h Zuber [133] and Le Bellac [134]. In the imaginary time formalism in
Euclidean metric our results agree with Le Bellac [132]. We calculated the
prefactors for Euclidean metric in table B.2 by applying the transformation
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Reference

Generic - Minkowski

Peskin & Schroeder [130]
Itzykson k Zuber [133]
Le Bellac, QSFT [134]
Huang [135]
Le Bellac, TFT-M [132]
Blaizot & Iancu [131]
Kapusta [136]

3-Gluon

sg
1

—i

- 1

- 1
t ( t )

4-Gluon

a?
—i

i
—i

-i±i <
—i

- l ( t )
- 1

Quark
tsg

t ( î )

1
—i

—i
- 1 ( T )

- 1 ^ + 1 <«

Ghost

-'sg
- 1 ( * )

+i
1

1
-t(t)

—i

Generic - Euclidean

Le Bellac, TFT-E [132]
sg
i

w
1

-isg
1

+sg

+i

Table B.2: Prefactors of Feynman rule vertices. T h e vertex equations are
given in (B.2.27), (B.2.28), (B.2.30), and (B.2.32) for the 3-gluon, 4-gluon,
quark-gluon, and ghost-gluon vertices respectively. If results differ from lit-
era ture (marked by •<) then the l.h.s. of ^ denotes the generic value and
the r.h.s. denotes the value from literature. The ghost vertex of Peskin and
Schroeder (*) is wrong in the book (+1) , but corrected in the online list of
er ra ta [137]. Blaizot and Iancu (t) do not give the Feynman rules explicitly,
so the values in the table are the generic ones. Peskin and Schroeder and
Huang (*) do not give the quark indices in the graphs, resulting in a possible
± 1 factor from the antisymmetric s t ructure constants .
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rules from Minkowski to Euclidean metric of section 9.
The results of Itzykson & Zuber [133] use structure constants Ca\,c = ifabc

and momentum vectors pointing outwards instead of inwards. Taking care
of these obvious changes, their results are in accordance with our generic
Feynman rules.

Our results do not agree entirely with Kapusta [136] in imaginary time
formalism with Minkowski metric. There are relative sign errors —1 in the 3-
gluon vertex and in the quark-gluon vertex. His group generators are labelled
no. _ ^a

In the case of Huang [135] Feynman rules disagree in a weird way for the
3-gluon vertex, the 4-gluon vertex and the ghost vertex. In the case of the
ghost vertex, the momentum of the boson enters the Feynman rule instead
of the momentum of the anti-ghost as in the rest of the literature cited.

Peskin and Schroeder [130] do not provide quark indices i, j in their Feyn-
man graphs. A swapping of the quark indices results in a relative minus sign
— 1 stemming from the antisymmetric nature of the representation matrices
(ta)ij = ifia^ = —(ta)ji. It is assumed that incoming quarks correspond to
the second matrix index and outgoing quarks correspond to the first matrix
index, matching the indices in the fermion interaction Lagrangian (B.2.29).

Conclusion

Only two generic constants determine the prefactors of all Feynman rules: J
and ~g. The factor J i s determined by the generating functional (B.I.9). It
is % in the case of T = 0 or the Real Time Formalism (RTF). In the case
of Imaginary Time Formalism (ITF) it takes the value — 1, corresponding to
the change of sign in the time-component from XQ -» — ir and dxo —>• — idr0

in the exponent of the generating functional.
The second essential generic constant is <?. Its choice is less motivated

physically, but merely a matter of taste.
Together, these two constants (s = i or —1, g = -i, —1, or +i) explain

the prefactors of propagators and vertices used in Feynman rules.
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B.4 Summary of rules

The constants s and ~g can be determined by comparison with the following
formulae. In standard literature g~ assumes the values —i [130], —1 [133], or
+i [138, 132, 134]. The constant s~ takes the value % for zero temperature
field theory or real time formalism and —1 for imaginary time formalism.
An overview of these constants can be found in the tables B.I and B.2 of
section B.3.

Lagrangian

= ~ (dß ^

-idßA
a

uggfabcA»bAuc + ^g2g2fabcfadeAb
llA

c
ilA'ldA'/

$i {iß - m) Sijf/fj + igg^i-fAl^j

{-dßdß8
ac) cc - iggfabce1dß{Ab

1c
c)

Generic integral and Generating functional

(B.4.2)

Covariant derivative and Field strength tensor

cAbAc
u (B.4.3)

Feynman propagators

In the following, the arrow means conversion from Minkowski space result
to Euclidean space result (Minkowski —>• Euclidean).

—Gab(k) (BAA)
sx
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(B.4.5)
P

- 1 - 1

s f> — m p 2 — m2 + ie

sP2 + m2

= -^Gfh{k) =-^-r ^ ^ - , (B.4.6)
k

Vertices

(Minkowski —>• Euclidean)

sc

c,p

(B.4.7)

{SßU{K-P)p

+6„p(P - Q)ß

+8Pß{Q-K)v)

c,p

(B.4.8)

+facefbde(gfWgf"7-gß'7g'/p)

+facefbde(6ßl,6pa-8tl<T6„p)
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a,fi
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(B.4.9)

6,/x

a

(B.4.10)

Green's functions

d2gßV - f1 - ̂

I — X I 9uv i 9

- m

- y)

-x ( ^ ^

4x4

(B.4.12)

(B.4.13)

= ap2 -
-a—-—Sij (B.4.14)

m

(B.4.15)

(B.4.16)
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Appendix C

Thermodynamic relations

C.I Specific heat at NLO

The specific heat can be calculated from the entropy by a transformation of
thermodynamic quantities which can be found in [115]

where S is the entropy density

and M is the particle number density

In order to calculate the next-to-leading order (NLO) specific heat in large-
l y we have to expand this equation around the leading order contribution
(2.5.1). The denominator takes the form

V dfj, ) T \dn2 ) T

and the specific heat can then be written as

C-V = Ly + Ly

with the leading order (LO) contribution

103
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and the next-to-leading order (NLO) contribution

(
(C.1.5)

with NLO-contributions of S and P. The ideal-gas limit of the specific heat
contains, apart from the LO-contribution, a term proportional to iV9 and is
given by

( C , 6 )

C.2 Derivative relations

For the calculation of quark susceptibilities from the pressure in section 2.5.3,
we evaluated the derivative with respect to a squared quantity. The deriva-
tion with respect to a squared quantity can be obtained as follows, using

The chain rule then works as follows

dg(Hri) dg(f{Vi)) ,
—dp- = dt = 9 d T

Similarly for the second derivative we obtain

=9 ( c -2 2 )

(c.2.3)

In the case of a quadratic lowest order term of the series expansion of / (/i)
we can further write

r/(M)
ß=0

(C.2.4)

This is however only valid if /(/i) = O(fJ?). If f(n) contains a linear term, the
l.h.s. vanishes, while the r.h.s. diverges. Similarly, for the fourth derivative
we see that ô V W = 24 but d2{ß2)2/{dß2)2 = d2t2/dt2 = 2 so that we
can write the following relationship if f(n) only contains positive even orders
in ß up to O(//4), i.e. /(/z) = cp? + O(/x4):

r/M (C.2.5)



Appendix D

Gauge boson self-energy

D.I Exact result at T = 0

In this section we will extend the calculation of the leading order gauge boson
self-energy from section 2.3 to the limit of finite chemical potential /i and
zero temperature T = 0. In this region, the fermionic distribution function
from equation (2.2.14) is given by the step-function

nf(k, T = 0, y) = | (0(/i - k) + 0{-y - k)) (D.I.I)

and we can explicitly calculate the real and imaginary parts of the bosonic
self energy for Minkowski space.

Imaginary part

In the equations (2.3.25) we can calculate the functions F{ using the T —> 0
limit of the fermionic distribution function (D.I.I) which give

f ^ x ) , (D.1.2)

r°° 2 2

F2(x) = / k
J X

f°°
F3(x) = / k2nf

J X

3 — X3

6

The resulting functions can be further simplified. Using the following defi-
nitions

U(qo,q) =

V(qo, q) = (2fi-q- qo){2fJ- + 2q - q0),

W(qo,q) = 6(qo + q)V(qo,q)+9(-qo-q)V(-qo,-q),

105
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we get

lmG(qo,q) = ^(q2 - q2
0) {U(\qo\, q) - U(-\qo\,q)} , (D.1.6)

lmH(qQ,q) = - - L - {W(\q0\,q)U(\q0\, q)-W(-\qQ\,q)U(-\qQ\,q)} .(

From these we get the self-energies

lmUL(q0:q) = ~9^l~q2°] {W(\qo\,q)U(\qo\,q)

-W(-\qolq)U(-\qo\,q)}, (

lmUT(qQ,q) = ^ ^ { [W(\qO\,q) + 6<?2] U(\qo\,q) (

Real part

Also for the real part we can give the exact solution in the limit T —> 0.
Starting from (2.3.21) and (2.3.22) the momentum integration can be ana-
lytically done since the distribution function reduces again to a step function
for zero temperature. Rearranging the result, we can write

S(qo,q) = {-I2ti2qo + {2q-qo){q + qo)2)ln\qo + q\ (D.I.11)

+ (2/i -2q + q0) (2/J + q + q0)
2 In |2/x + q + qo\.

We use the following abbreviation to keep a lot of terms in dense notation

t 0 , q) = R(qQ, q) - R{qQ, -q) + R(-q0, q) - R{-qQ, -q) (D.I.12)

and similarly for 5^ (just replace R by 5). Then the real part of G and H
can be written as

ReG(qo,q) = ^

ReH(qo,q) =

Therefore the exact solution for the real part of the self-energies in Minkowski
space is given by

+(q2 ~
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D.2 Approximations to second order in frequency

We can calculate the following T —> 0 limits in Minkowski space by using
our exact formulae for the imaginary part of the self-energies (D.I.8) and
(D.I.9). In the following we will use these equations in a regime where
0 < go ^ 9) A1- This is a reasonable assumption, as the bosonic distribution
function 715 will probe smaller and smaller go if we let T -» 0. In this limit we
can simplify our functions (D.I.5) to U(qo,q) —> (2/J. — qo — q)0(2ß — q) and
W(qo, q) —> V(qo,q)- (Actually in U(qo,q) we could have used 6(2fj, — qo — q)
which would make the following expressions slightly more complicated, but
it naturally reduces to 0(2ß — q) as soon as we expand qo around 0.) The
functions G and H from (D.I.6) and (D.I.7) then become

«), (D.2.2)

where the ^-functions come from the step-function shape of the fermionic
distribution function at zero temperature. These are exact solutions in the
limit of T —> 0 and qo —¥ 0. Furthermore, for the real parts of G and H we
can provide the following expansions in small qo:

ReG(qo,q) = ^ { V + q [(2/i - q) ln|2ji - q\ + 2qlnq

q) In |2/i + q\]} + O(q2
0), (D.2.3)

ReH(qo,q) = ^ - {8fJ,2q - (2/i - q)2((i + q) ln|2/i - q\ + 2q3 Ing

q)2In|2/i + q\} + O(q2
0), (D.2.4)

with the chemical potential fi.
We can combine the functions G and H to form the self-energies HL and

IIx according to (D.I.8) and (D.I.9). Again, for the imaginary part we get
nice analytic expressions in the limit of small T and go:

a , ) , (D.2.5)

()(2/1 d . (D.2.6)

Since this is valid for small go, it makes sense to expand these expressions
for small go. The first coefficient in the go-expansion reads

lmUL(qo,q) = - g 2
s

{ ~ ^ ^qo9(2^ - g) + O(q2), (D.2.7)
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lmUT(q0,q) = - f f g f f ^ g ^ \^{2n - q) + O(q2
0), (D.2.8)

and for the real parts

2

ReUL(q0,q) =

q)2 In |2/i + q\) + O(q2
0),

2

ReUT(q0,q) = ^ - {A^q + (2fi-q)(2^2+ M + 2q2) In |2/i - 9 | (D.2.10)

+4g3 Ing - (2/i + g)(2/z2 - /ug + 2g2) In |2/* + g|}

For the temperature-independent vacuum contribution the imaginary part
vanishes for small qo, ImIIvac(<707<?) = O(QQ) while the real part takes the
value

f ( ^ 2 ~ | ) + °^o) (D-2.11)

with the renormalization scale ß.



Appendix E

Fractional power expansion

Ë.1 Introduction to Puiseux series

The first time fractional powers appear in (3.3.8). In this section we want to
analyze where fractional powers come from and which terms determine their
coefficients.

Series involving fractional powers are also known as Puiseux series [139].
They appear because one expands around a singular point that does not
have a Taylor or Laurent series with integer powers at this point. A simple
expansion where the singular point is inherent is

x x3l2

exp(^)«l + x / i+ - + — - + O(x2) (E.I.I)
2 0

which can be easily derived by variable substitution x = y2. Another kind
of example is

f{x) = (x + x2f3 « x^ + "Ç- - °Ç + O

In this case the famous Taylor series formula

fix) « /(0) + /'(0)s + /"(0)y + ... (E.1.3)

would give 0 + ooa; - oox2/2 + ... and clearly fails to work. One has to pull
out the singular part of the function and perform the Taylor series on the
rest:

[x + x2f3 = x1?3 (1 + x)l'z = *V3 (i + | _ Ç + o(x3)\ (E.1.4)

which gives the result above. In this way, one can obtain fractional power
series also from more complicated function compositions.
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The simplest example of fractional powers of the kind we encountered
appear in the following expression (for positive A, M, B, and C)

J Qn 6M

5/3 AC2TT 7/3
9° 9

36£2M2

Without the g2^2, term in the denominator (that is C = 0) we would just get
the leading logarithmic contribution and integer powers of qo (as one can also
see from the series by setting C = 0). It is this additional term Cq2q\ that
determines additional fractional power terms. The integral can be calculated
using the following formula [140] for square-free g(x) and deg(/) < deg(g):

where a is the set of all roots of g(a) = 0. In our case we get a sum over
roots of a cubic equation which first have to be expanded for small qo- We
can motivate the exponents by

7/3 3 11/9
xIn (x + x1/3) = I lnz 5/3 £ £ ^ 4) ((x + x ) I lnz + z +

but we cannot explain factors of ir/y/3 appearing in the coefficients of (E.1.5):
They only appear together with pure fractional coefficients like T5/3 and
T7/3, but not in the T3 coefficient. We can give an idea of their appearance
by this simple sum over roots

but to fully calculate the complete coefficients of the series in (E.1.5) it seems
unavoidable to plug in the roots of the denominator into (E.I.6).

In the course of the qo expansion, terms from the roots of the denomi-
nator of (E.1.5) contain expressions like -9By/~M + V3y/27B2M + 4C3gg
which upon symbolic series expansion reduce to — 9By/M + 9vB2M. This
expression is zero for positive B and non-zero for negative B which would
result in two completely different series. It turns out that from the beginning
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of the expansion, B and M have to be assumed to have a certain sign, in
our case to be positive quantities, in order to get the correct series. Unfortu-
nately, symbolic manipulation programs do not readily allow for this choice
(in the course of an expansion, B is not considered equal to vB2 which
in our case means the implicit assumption that B is negative.) A possible
way to accomplish the series expansion also for positive B in Mathematica
is presented in the next section.

For the sake of completeness we also give the other integrals with the
same denominator as (E.1.5) but different odd powers of q in the numerator:

Ja,

9max Aqql _ An 5/3 ACn 7/3

+ Bql + Cq2q2 Q % %_

q2q2 Q ~

36\/3ß10/3M5/3

J Qa

A (35 +

+O(q5
0) (E.1.10)

Note that equation (E.1.9) contains the same fractional power coefficients as
equation (E.1.5) up to a factor -C/(3M). This is because the combination

I
is a series in integer powers of go-

E.2 Workaround for Mathematica

Assume positive

The calculation of fractional powers crucially depends on a series expansion
which in the current version of Mathematica [141, 142] is not straightforward
to calculate. As a simple example, let us calculate the series of

-A + VA2 + x ,^n^
s = , (E.2.1)

-A + VA2 + 2x
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Expressions of the form of the denominator or numerator naturally appear
when solving quadratic, cubic, or quartic equations. The series of s delicately
depends on whether A is positive or negative. We get the following series
expansion for \x\ < A2/2:

s cz

1 X x2 ^ ^ 0(x5) iovA>0,
2 8A2 8A4 128A6 128A8

(E.2.2)
x bx

1 " 4 ^ +

Trying to calculate the series symbolically results in subexpressions of the
form — A + VÂ2 which is not automatically reduced to 0. Therefore Math-
ematica does not recognize that for positive A l'Hospital's rule has to be
applied to calculate the series elements as x —> 0. Unfortunately, even
in the most recent version of Mathematica (which by the time of writing
is Mathematica 5.0 [142]) commands like Assuming[{A>0}, ...] or options
like Limit[s ,x—>0, Assumptions—»{A>0}] are applied only before or after
a series calculation and not in the course of the calculation, and there-
fore only provides a solution which is valid for — A + vA2 ^ 0 which is
satisfied by negative A. Trying to plug in positive A in the resulting se-
ries unfortunately gives the wrong result, as can be checked numerically or
by plotting the functions. We get a complete nonsense result by the sim-
ple Mathematica command s+O[x]~3//PowerExpand -» 1+ComplexInfin-
ity x+Indeterminate x~2+O[x]~3 since series expansion (implicitly) assumes
A < 0 while Power Expand assumes A > 0.

In order to get the correct result, we have to modify the standard be-
havior of the internal Power[..] function: Whenever we find an expression
(xa)b with positive x, we immediately expand it to xab. Our rules also in-
clude (xay)b —>• xabyb for x > 0 and its standard-case for a = 1. We use
Length[Cases[ListOfPositives,x]] > 0 to check whether x is part of varlist of
positive variables. The attribute HoldRest is set first, so that expressions are
only evaluated after the power rules have been modified. After calculation,
the power rules are reset to their original state, and the new result is re-
turned. The following routine also expands the Log[..] function accordingly.

SetAttributes[AssumePositive, HoldRest];
AssumePositive[varlist_, expression.] :=

Block[{ListOfPositives = va r l i s t } ,
(•Andreas Ipp, Sept 12, 2003*)
(•First we change Power Rules*)
Unprotect[Power, Log];
Power[Power[x_ / ; (Length[Cases[ListOfPositives, x]]

> 0), n_.]*y_, m_] := Power[x, n*m]*Power[y, m];
Power[Power[x_ / ; (Length[Cases[ListOfPositives, x]]
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> 0), n_], m_] := Power[x, n*m];
Log[Power[x_ /; (Length[Cases[ListOfPositives, x]] > 0),

n_.]*y_] := n Log[x] + Log[y];
Log[Power[x_ /; (Length[Cases[ListOfPositives, x]] > 0),

n_]] := n*Log[x]; Protect [Power, Log];
(•There is a bug if we try to use FullSimplify[ . . ] ,
so we turn the Error Message off *)

Off [Pattern::"nodef"] ;
(*Then we evaluate expression*)
{expression,
On[Pattern::"nodef"] ;
(*and finally we change rules back to original state*)
Unprotect[Power, Log];
Power[Power[x_ /; (Length[Cases[ListOfPositives, x]]

> 0), n_.]*y_, m_] =.;
Power[ Power[x_ / ; (Length[Cases[ListOfPositives, x]]

> 0) , n_], m_] =.;
Log[Power[x_ / ; (Length[Cases[ListOfPositives, x]]

> 0), n_.]*y_] =.;
Log[Power[x_ / ; (Length[Cases[ListOfPositives, x]]

> 0) , n_]] =.;
Protect[Power, Log];

}[[l]](*but we take the expression from before -
in th is way we don't have to introduce a new variable*)

Now it is straightforward to calculate the series above: Use AssumePos-
itive[{A}, s + O[x]"5] for the upper series and AssumePositive[{B}, s +
O[x]~5 / . A -> -B] / . B -> -A for the lower series in (E.2.2). AssumePos-
itive can take any list of variables, e.g. AssumePositive[{a, 6}, Vab2ccP] —>
y/abVcd?. Possible extensions to this routine might include Abs[x] —> x or
UnitStepfz] -> 1 for x > 0.
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