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Abstract. Shake-up of a two-electron system is investigated in the strong
infrared laser field limit, both theoretically and experimentally. During tunnel
ionization the electron shakes-up a second electron to an excited bound state.
Theoretically, a complete analytical theory of shake-up in intense laser fields is
developed. We predict that shake-up produces one excited oy, D;' state in =~ 105
ionization events. Shake-up is measured experimentally by using the molecular
clock provided by the internuclear motion. The number of measured events is
found to be in excellent agreement with theory.

Besides shake-up there are a wealth of multi-electron phenomena in strong
laser fields that cannot be treated analytically. Therefore we introduce the
multi-configuration time-dependent Hartree-Fock (MCTDHF) method as a new
approach towards the numerical solution of the time-dependent Schrédinger
equation arising in ultrafast laser dynamics. MCTDHF approximates the exact
wave function by several Slater determinants. By doing so the method produces
a lower dimensional, non-linear system of coupled differential equations compared
to the original Schrédinger equation. MCTDHF is capable of modeling non-
perturbative multi-electron dynamics including correlation effects of up to 10
active electrons. We discuss the theoretical foundations of our approach and
describe our one dimensional implementation.

To assess the reliability and efficiency of MCTDHF we test the method on
two examples, using the harmonic quantum dot and the one-dimensional Helium
in strong laser pulses as models. We find rapid convergence for quantities like
ground state population, correlation coefficient, and single ionization towards the
exact results. The method converges, where time-dependent Hartree-Fock fails
qualitatively.

By using one dimensional MCTDHF calculations we then investigate
ionization of multi-electron systems. Our analysis reveals the key physical process
underlying ionization of complex systems. The laser induced multi-electron
dynamics depend on the ratio of laser frequency, w, to plasmon frequency, wm,
discriminating two different regimes. In the over-resonant limit, w > wy,, tunnel
ionization is destroyed. lonization takes place by a classical over the barrier
mechanism. In the under-resonant limit, w < wym, tunnel ionization remains
dominant, but is weakened by a polarization induced growth of the tunneling
barrier.

1 Parts of this work have been published as
M. Kitzler et al. Phys. Rev. A, 70:041401(R), 2004
J. Zanghellini, M. Kitzler, T. Brabec, and A. Scrinzi. J. Phys. B, 37:763, 2004
J. Zanghellini et al. Laser Physics, 13:1064, 2003
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Chapter 1

Introduction

Since the advent of quantum mechanics, a lot of interest has been focused on the dynamics of
molecular systems. Over the years many theoretical approaches have been formulated and tested
in detail. Interestingly, although the basic equation of quantum mechanics is time-dependent
most of these theories concentrate on the time-independent Schrodinger equation using the fact
that separation of variables is possible if the Hamiltonian itself is time-independent. In the last
two decades, however, the time-dependent formulation has attracted much more interest [1]. Not
only is it conceptually simpler, as it requires the solution of an initial value instead of an eigenvalue
problem, but the numerical techniques of today are much more efficient than previous methods.
Moreover, time-dependent descriptions appeal to one’s intuition, simply because experiments are
often discussed, both by theorists and experimentalists, in a time-dependent language.

This has been especially true, since a new area in physics has been sparked by newly de-
veloped high-power ultrashort laser pulses, with field strengths that exceed the electric field
strength in an atom by orders of magnitude, and with time scales that rival electron oscillation
periods in atoms and small molecules [2]. Experimental developments - like laser control of the
motion of small molecules [3], attosecond pulses [4], and ultrashort electron bunches [5] - increase
interest in the dynamics of the electronic hull of atoms and small molecules in strong fields, since
tracking of electrons within a few tens of attoseconds (10718s) resolution will soon be possible
[6]. But theoretical calculations lag behind experimental possibilities in that an exact quantum
mechanical solution of the dynamics of multi-electron systems is far beyond reach [7]. As of yet,
at most two interacting electrons can be described [8, 9, 10]. These calculations rank among the
most demanding tasks of present day high performance computing. The problem becomes clear
if one looks at a the full solution of the Schrédinger equation of nitrogen for instance. For a fixed
nucleus (Born-Oppenheimer approximation) the electronic wave function contains 7 co-ordinates,
neglecting spin. Considering only 10 points of the wave function in each of the three spatial di-
rections, would result in 102! numbers. To store this wave function, assuming four bytes per
number, one would need 5.7 x 1012 CDs, each with a capacity of 700MB. This incredible amount
of data would have to be processed at each time step.

Hence approximate methods are indispensable. Most prominent, we mention the single
active electron (SAE) approximation, one of the corner stones of the theory of intense laser
matter interaction [11, 12, 13]. It is based on the assumption that only the most weakly bound
electron of an atom or molecule interacts with the laser field. The other electrons remain inert.
Although this has proven to be a good approximation for atoms and small molecules [14] recent
experiments [15, 16] have clearly demonstrated that for the description of more complex systems,
such as molecules and clusters, the SAE approximation fails.
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Clearly, correlated effects like non-sequential double-ionization 17, 18] cannot be taken into
account by the SAE approximation. In the strong field regime non-sequential double-ionization
can be understood in terms of the recollision model [19]; an ionized electron quivers in the laser
field and can collisionally ionize another electron upon returning to its parent ion. However, for
X-ray pulses the mechanism is different. Here, the first electron is ionized by absorbing one X-ray
photon and shakes off a second electron on its way out [17, 20]. Thus an interesting question is
whether or not shake off is possible in the strong field regime, too. In chapter 2 we address the
efficency of shake off in deuterium in strong laser fields experimentally by measuring the shake
off rate and theoretically by utilizing a time-dependent Keldysh-like approach [21].

Unfortunately the applicability of this Keldysh theory is limited. The interaction of strong
laser pulses with complex systems requires the handling of both many-body processes and non-
perturbative dynamics, each by itself poses difficult theoretical and computational problems. This
has spawned great interest in the development of approximate, numerical methods beyond SAE
calculations that capture the essential physics and are still computationally feasible. The two
main approaches investigated so far are the time-dependent density functional (TDDF) theory
[22, 23] and the time-dependent Hartree-Fock (TDHF) method [24, 25, 26, 27, 28, 29]. Both
methods do not perform well in describing correlated multi-electron dynamics. Moreover, neither
method allows convergence to the exact result, which makes it hard to determine the quality
of a calculation. Thus, up to now there has not been a conclusive fully quantum mechanically
description of, e.g. the unexpected stability of molecules [15, 16, 30] and small clusters [31] in
laser fields. To complicate matters, effects of collective excitation, correlation, screening, or the
impact of the external field on internal dynamics have had to be treated in an ad hoc manner.

This motivates our development of a multi-configuration time-dependent Hartree-Fock (MCT-
DHF) method. It is designed for few (< 10) electron systems, and allows the systematic inclusion
of correlation and explicit inclusion of superposition and excited states. MCTDHEF is fully based
on first principles and it takes an intermediate position between a full solution of the time-
dependent Schrodinger equation (TDSE), which is essentially limited to two-electron systems,
and TDDFT, which still is plagued by fundamental problems [32].

We will introduce the MCTDHF method in chapter 3 and provide a detailed overview of
its theory. In the course of the discussion we clarify its relation to standard methods and we
establish a simple picture of the MCTDHF method. We outline the implementation of our one
dimensional (1D) MCTDHF program package!.

In chapter 4 we demonstrate the applicability of MCTDHF by comparing its results to
(numerically) exact solutions of the TDSE for two 1D examples. Indeed, this test will show that
MCTDHF provides a rapid convergence to the exact results, where other methods fail not only
quantitatively, but even qualitatively.

In chapter 5 we apply MCTDHF to study the ionization dynamics of model multi-electron
systems. We identify the main physical effects determining ionization in multi-electron systems,
which we find are molecular size and geometry, electron mobility, and polarizability. In particular,
the polarizability adds a correlated multi-electron component to tunnel ionization resulting in a
suppression of ionization. Despite the 1D nature of our calculations, reasonable agreement with
experiments shows that the essential effects of tunnel ionization are successfully captured by our
1D analysis.

Finally, we conclude this work with a summary of the main issues in chapter 6.

1 The MCTDHF program package is written in FORTRAN 90 by (in alphabetical order) Jeremie Caillat, Markus
Kitzler, Armin Scrinzi, and Jiirgen Zanghellini. For further details on the MCTDHF-package, please contact
Armin Scrinzi, armin.scrinzi@tuvien.ac.at .



Chapter 2

Shake-up excitation during optical tunnel
ionization

The dominant contribution to non-sequential ionization of atoms in s%rong laser fields is recolli-
sion. The first electron is ionized, accelerated in the laser field, and kicks out a second electron
during recollision [33]. The dominant contribution to non-sequential ionization of atoms in X-ray
pulses is shake-off. The first electron is ionized by absorbing one X-ray photon and shakes off a
second electron on its way out [17, 20].

Little is known about the role of shake-off and shake-up in the strong field regime, although
shake-off was originally suggested to be the dominant mechanism in strong field double ionization
[18]. In this chapter! the gap is closed. Shake-up (SU) in strong laser fields is investigated
experimentally and theoretically. Shake-up is used here as the generic term for all excitations
generated by the ionizing electron on its way out. SU in atoms and small molecules is expected
to be weak. Our analysis is driven by the fact that SU is bound to become prominent in larger
molecules, where the energy spacing between ground and excited states becomes small.

Experimentally, we report the first observation of shake-up excitation during strong field
ionization. The measurement is done in Dy. SU creates charged ions at a distance close to the
internuclear distance of the neutral molecule. In this way a signature at the high energy end of
the kinetic energy spectrum of the ionic fragments is created, from which SU can be identified.
A ratio of SU excitation of ¢, to tunnel ionization of 2 x 10~3 is measured in Dy. Deuterium
was chosen for a number of reasons. First, all excited states of D; are relatively simple and
therefore, allow a clean identification of shake-up. Second, as a two-electron system, electron-
electron correlation effects can be calculated without too many approximations, facilitating the
theoretical analysis.

On the theoretical side, we develop an analytical theory of shake-up in strong laser fields that
is in excellent agreement with experiments. The SU excitation process proceeds in two stages
referred to as SU1 and SU2 here. In the terminology of x-ray double ionization, SU1 and SU2
correspond to the SU and the two-step one photon (T'S1) processes, respectively. SU1: The two-
electron wavefunction contains components of all one electron states. Each of these components
can lead to tunneling, resulting in regular ionization for the ground state and in shake-up for the
excited state component. SU2: On its way out the electron creates an electric dipole field that
causes non-adiabatic transitions to excited states. Our theory complements existing theoretical

1 This chapter has been submitted to Phys. Rev. Lett. by the authors I. Litvinyuk, F. Légaré, P. W. Dooley, D.
M. Villeneuve, and P. B. Corkum (experiments), as well as J. Zanghellini, A. Pegarkov, C. Fabian, and T. Brabec
(theory), 2004.
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work on atomic SU1 [34, 35, 36] and determines for the first time the value of the dipole-induced
SU2 contribution. SU2 is found to be the dominant mechanism in Ds.

The theoretical analysis is performed in two steps. SU1 is governed by the part of the
wavefunction under the barrier up to the classical birth point at which the electron penetrates
the barrier. Tunneling takes place in a fraction of the laser period so that the quasi-static
molecular (MO) ADK theory [13, 14] can be applied. SU2 takes place after the electron has been
born in the continuum and is calculated using a time dependent, Keldysh-type method [21, 37].

Following MO-ADK {14] we find the ionization rate for SU1 as

2/kj—|m’|-1
B%(m/) 1 2k3 ’ 23
() — 3 3 N
WO = 2 T [ |0 P |73 ) 2

m’

where the laser electric field is denoted by £(¢t), [ and m are the angular and magnetic quantum
numbers, and B;(m') = Y, Cy; D!, Q(l,m') with D!, ... and Q({,m’) defined in Ref. [14]. The
index j € {0, 1} refers to the ionic o, and o, states, respectively. The coeflicient Cy; is obtained
from matching the tunneling wavefunction under the barrier to the corresponding, field free,
asymptotic components of Dy 4. We find Cpp = 2.5 and Co; = 1.1. Terms with [ > 0 are
negligible for Dy. Further, x; = 1/21,;, where I,,; = (I, — I;) is the ionization potential of Do,
I, is the binding energy of the D, o, state, and I; is the binding energy of the Dj states. The
difference to conventional ionization is that tunneling depends on the eigen-state the remaining
electron ends up after ionization. For j = 0, the bound electron remains in the ground state and
conventional ionization takes place. For j = 1, the second electron gets bound in the ionic o,
state. Shake-up results from the fact that the D, wavefunction contains components of all single
electron bound states, which is a manifestation of its correlated nature. The ionization rates for
regular and shake-up ionization are different, as the ionization potential and the coefficient Cj;
depend on the final ionic bound state.

The second contribution, SU2, is calculated by a Keldysh-type approach that yields the
2-level equations

i% = Ipao(t) — pFa(t)ai(t), (2.2)
iS2 — hay(t) — pFa(t)aos), (2.3)

for the D molecule in the field of the electron leaving the ion after ionization. Here, ao(t) and
a1(t) are the probability amplitudes of the field free o4 and o, D;" states. The term

T

pFq= |‘jc—|3 (2.4)

is the dipole contribution to the interaction between tunneling and bound electrons. For the sake
of simplicity we assume that the laser electric field and therewith the trajectory of the tunneling
electron are parallel to the z-axis. Then, u = pg cos(p) is the dipole component along 2, ¢ is the
angle between z-axis and molecular axis, and uo is the dipole moment along the molecular axis.
The dipole moment in the plane perpendicular to the molecular axis is zero for homo-nuclear
diatomic molecules. The electric field F; = 1/d?, where d measures the distance of the ionized
electron from the center of the molecule. The electron is born at time ¢o at the classical turning
point

do = gcos(tp) + %, (2.5)
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Figure 2.1. The main figure shows the measured distribution of correlated D' fragments resulting
from irradiating D, with 3 x 10'* W/cm?, circularly polarized light. The upper right figure shows the
momentum sum for the two fragments. The pair was considered coincident if the sum was less than 10
atomic units. The potential energy diagram for D, is in the lower right. The laser pulse will singly-ionize
D., leaving D] in the o, state. Shake-up will leave D7 in the excited o, state, resulting in greater kinetic
energy release.

and is then accelerated by the laser field following the trajectory
d(t) = do + E(to) (t — t0)?/2. (2.6)

The coupled equations (2.2) and (2.3) are solved by diagonalization. We use the standard
transformation [38]

(a0,a1) = U(bo, b1) (2.7)
where
U11 = U22 = COS({), and U21 = —U12 = sin({). (2.8)
Further,
&)= - %arctan [%] , (2.9)
Qt) = 2uFy4(t) (2.10)

is the Rabi frequency, and A = I} — Iy. Finally, bg, b, are the probability amplitudes of the
adiabatic eigenfunctions, dressed by the dipole field Fy of the escaping electron. Adiabatic
means that equations (2.2) and (2.3) are diagonalized and solved exactly in the limit of a time-
independent field Fy. In this limit no shake-up occurs. However, for a time-dependent field, as
a result of the time derivative of U in the Schrédinger equation, off-diagonal elements always
exist and are responsible for non-adiabatic transitions. SU2 is given by the probability for a
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non-adiabatic, dipole-induced excitation times the ionization probability which is

/00 gekﬁ(to,t)dt
T

2

v1(to) = wo(to) (2.11)

with

blto, ) = /t | /AT, (2.12)

Equation (2.11) presents a general expression for non-adiabatic transitions. SU ionization takes
place in the weak field limit, @ <« A. In this limit, integration of (2.11) yields

2

'Ul(tO) - wO(tO) Adg(to) + Aﬁ(tol;do(to) [E(f) + E(—&)] ’ (213)
where
2(6) = (1 - g exp(© Ea(6), (2.14)
&(to) = Av/2dp(to)/E(ta), (2.15)
and

Eu(e) = /E ” dtexp(—t)/t (2.16)

is the tabulated exponential integral. For negative £ the principal value of F; has to be taken.

Our analysis reveals the following intuitive picture of SU2. When the tunneling electron
is born at £y, the bound electron is in the adiabatic ground state dressed by the dipole electric
field, which contains components of the field-free, excited states. However, the population of
the field-free excited states is only virtual. In the limit, where the ionized electron is removed
infinitely slowly from the ion, the remaining bound electron will make an adiabatic transition
from the dipole-field dressed to the dipole-field free ground state, i.e. the bound electron will
remain in the ground state. In reality, the ionized electron leaves the nucleus with finite velocity
and non-adiabatic transitions take place, which are the source of SU2.

The theory has been tested by experiments relying on the concept of the ”molecular clock”.
First ionization will set in motion a nuclear wave packet on the ground state potential energy
surface of DF. The potential surfaces of D2 and of its ions are shown in the inset of Fig. 2.1.
This motion is well known from theory and experiment [5]. If an electronic excitation were to
occur at some later time, the excited molecule would dissociate, with fragment kinetic energy
directly reflecting the time delay between ionization and excitation. That allows us to distinguish
instantaneous excitation, taking place at the internuclear separation of the neutral molecule,
from delayed excitation and ionization, which may happen at later times and larger distances,
characteristic of enhanced ionization [39, 40] or re-collision [5]. We assume that the most likely
state of DJ to be excited is oy, the lowest energy excited state. If the o,, state is populated at
the time of ionization and the molecule dissociates on that potential energy surface, the fragment
kinetic energy (= 9 eV) will reflect the internuclear separation of the Dy ground state.
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Figure 2.2. The dots represent the experimental measurement of kinetic energy release per D fragment,
shown with a log scale. The solid curve is the calculation. Two laser intensities are shown. Only for the

higher intensity of 10'® W /cm? is there evidence of shake-up events above 8 eV. The measured branching
ratio is 2 x 1075,

The extremely low probability of such events would prevent their observation over the noise
background if we could only detect a single ion fragment. Fortunately, during dissociation on
the o, surface of Df the remaining electron will ionize as the molecule passes the enhanced
ionization region. The second ionization step has little influence on the fragment kinetic energy.
Most importantly, this process produces a pair of correlated deuterons, which can be detected
in coincidence. Conservation of momentum introduces a severe constraint that allows us to
dramatically improve the signal to noise ratio for detection of deuterons resulting from double
ionization of Dy. We estimate that such momentum-correlated detection allows us to confidently
observe events with relative probability higher than 108 in respect to single ionization.

The experiment used 40 fs, 800 1J pulses produced by a Ti:sapphire regenerative amplifier
operated at 500 Hz. To remove any contribution from re-collision, the pulses were circularly
polarized. The pulses were focused inside a vacuum chamber (background pressure 10~° Torr)
by an f/2 on-axis parabolic mirror (f = 50 mm) on a beam of deuterium molecules. We estimate
our focal spot diameter and confocal parameter to be 5 um and 100 um, respectively.

The molecular and laser beams intersected orthogonally inside a uniform acceleration time-
of-flight mass spectrometer (240 mm overall length, 200 mm ion flight distance, 70 mm internal
diameter) and were mutually perpendicular to the time-of-flight axis. The molecular beam was
heavily skimmed such that its width along the laser beam propagation direction was 40 um
FWHM. This ensured that few molecules were outside the high intensity region of the laser
focus.

Ions were accelerated by the uniform electric field onto a time- and position-sensitive delay-
line anode detector. This detector, in conjunction with a multichannel, muitihit time-to-digital
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Figure 2.3. Relative shake-up rates in D2 as a function of internuclear distance. Curve 1 (SU1) depicts
w1 /wo, see equation (2.1). Curve 2 (SU2), depicts v1/wo, see equation (2.13). The rates have been
averaged over ¢, the angle between laser electric field and molecular axis. Shake-up is calculated at the
intensity 8 x 1014 W/cm?. Curve 3 shows A, the energy difference between the ionic g4 and o, states of
Df.

converter, allowed simultaneous measurement of both ion arrival times (with 500 ps resolution)
and positions in the detector plane (with 250 um resolution) for up to sixteen ion impacts per
laser pulse. From the time and position data, the three-dimensional initial velocity vector was
computed for each detected ion. The recoil momentum distribution of surviving D ions was
measured to determine the intensity at which molecules ionized, as described previously [41].

Figure 2.1 represents the kinetic energy distribution of all detected deuterons at 3x 104 W/cm?
intensity. The enhanced ionization [39, 40] peak at 3 eV per fragment dominates the kinetic en-
ergy distribution. The smaller bond softening [42] peak is seen at 0.6eV. For double-hit events
the total (sum) momentum for each deuteron pair was histogrammed (inset to figure 2.1). The
peak at low total momentum represents true coincidences, since momentum conservation requires
that the momenta of the two deuterons must sum to zero. The high momentum tail of the dis-
tribution comes from accidental coincidences, i.e. when deuterons from two different molecules
are detected within one event.

The observed width of the true coincidence peak is mainly determined by the width of the ion
recoil momentum distribution in circularly polarized light (=~ 4a.u. of momentum). Additional
contributions to the peak width result from the distribution of longitudinal velocities of D4 in the
molecular beam (= 2a.u. of momentum) and the momentum resolution of the detector (=~ 1a.u.
of momentum).

In our analysis we define a correlated double-hit as having a total momentum in the range of
0-10 atomic units of momentum to safely include all possible single molecule events. About 15% of
all events were correlated double-hits, reflecting the 50% detection efficiency for the first deuteron
and the 30% efficiency of detecting the second fragment. The second deuteron is less likely to be
detected due to the dead times of the MCP and anode constant fraction discriminators.

The histograms of kinetic energy (per fragment) of all correlated events at two different
laser intensities are shown in figure 2.2. The kinetic energy was calculated in the center-of-mass
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frame for each molecule. At 3 x 101 W/cm? [figure 2.2(a)] we observe no correlated events with
fragment energies near 9eV, with the high energy tail of the enhanced ionization peak extending
to 7.5eV. Only a single event with fragment energies above 7.5eV was observed, and its kinetic
energy (14eV per fragment) was too high to attribute it to D, excitation. Thus at this intensity
we can impose an upper limit on the probability of instantaneous excitation to be less than 1075,

However, at 101°* W/cm? we do see a distinct high energy band at around 9eV extending
beyond the edge of the enhanced ionization peak [figure 2.2(b)]. Though the number of counts
is small, it is statistically significant and allows us to estimate the branching ratio between the
ground and first excited state of DJ to be about 2 x 10~5. At this intensity the single ionization
of D is saturated and raising the intensity even further would not increase the probability of
excitation.

The kinetic energy of the fragments was calculated by solving the nuclear wavepacket prop-
agation on the o4 and o, D; surfaces [43]. Ionization and shake-up populate the two ionic
surfaces according to the rates (2.1) and (2.13). Non-adiabatic population transfer, caused due
to the launching of the wavepacket presents a numerical artefact and is filtered. Ionization of DF
is calculated by using numerically determined ionization rates [44]. The numerical results are
found to be in excellent agreement with experiment, see figure 2.2.

The excellent agreement between theory and experiment allows us to determine parameter
regimes in which SU will make a dominant contribution to non-sequential, correlated ionization.
From the inspection of equations (2.1) and (2.13) it becomes clear that SU has to be significant
for large molecules, where the energy spacing between the levels becomes small. As a clean mea-
surement in large molecular systems is not straight forward, we suggest the following experiment.
The decreasing energy spacing can be emulated by using dissociating or excited vibrational wave
packets of diatomic molecules, for which the internuclear distance increases and the energy spac-
ing decreases. In Figure 2.3 SUl and SU2 are plotted versus internuclear distance of Da. At
an internuclear distance of 3.5a.u. the level spacing is ~ 3 eV, which is a typical value found in
complex molecules. The ratio of tunneling to SU ionization becomes == 10~!. This reveals the
dominant contribution of SU to the ionization of large molecules. SU2 is larger than SU1 over
the whole parameter range and therefore presents the leading shake-up mechanism.




Chapter 3

The multi-configuration time-dependent
Hartree-Fock (MCTDHF) method

In this chapter we will introduce the multi-configuration time-dependent Hartree-Fock (MCT-
DHF) method. Starting with the core approximation of MCTDHF we derive the MCTDHF
evolution equations. By comparing MCTDHF to other methods its benefits will become appar-
ent and we will be able to classify MCTDHF with regard to standard methods. This leads to
a simple picture in understanding MCTDHF. Finally, we focus on the implementation of the
current MCTDHF-program package.

3.1 The MCTDHF theory

We are interested in the solution of the time-dependent Schrodinger equation (atomic units are
used throughout, unless otherwise stated) in Born-Oppenheimer approximation for an atom or
molecule with f electrons in a time-dependent electric field (typically arising from ultra-short
laser pulses),

0¥
Here the Hamiltonian, H, and the electronic wave function ¥ = ¥(a;, ...,z ¢;t) are time-dependent.
The electron co-ordinates, xy, ..., @y, describe not only the three spatial co-ordinates r; but also
the spin co-ordinates s;, i.e. z; = {r, s;}.
In MCTDHF one approximates the exact wave function, describing the dynamics of f elec-
trons, by the ansatz

U(xy, ..., 25 t) = % Z Z Aj iy () [05, (1) ® ... @ 95, (8)] (=1, ..., 5), (3.2)
Th=1l gp=1

where both, the linear expansion coefficients A4j, . ;,(t) and the n expansion functions ¢;(x;t),
known as single-particle functions (SPF) or spin orbitals, are time-dependent.

For the following it is convenient to introduce a short-hand notation, where we omit the
tensor product sign, i.e.

l@j‘...@jj> = lipj‘ Q... Q0 ﬂajf> . (33)

10
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As the number of SPF| n, increases, the wave function gets more accurate. In the limit
n — oo the ansatz is complete. Note that the computational labor, however, increases strongly
with n. Without proof we mention that n should obey

f=1=2n=1 and f22=n-f=2k ke{0,1,2,..}, (3.4)

otherwise there will be redundant configurations.
The ansatz (3.2) is not unique and therefore requires additional constraints {45],

(pi(0)|9;(0)) = é;5, (3.5)
(pi(t)|@5(t)) = —i{wi(t)|g|e; (). (3.6)

Here g denotes a Hermitian, but otherwise arbitrary, single particle operator. For simplicity, we
usually set g = 0. However, we will briefly discuss other, nontrivial settings of g in §3.1.1. We
want to point out that the constraint (3.5) together with (3.6) guarantees ortho-normality of the
SPF for all times. Finally, it follows from the normalization condition (¥{¥) = 1 that

n n

> D Mg = 1 (3.7)

Until now we have made no reference to the anti-symmetry of the electronic wave function.
As the Hamiltonian and therefore the propagation equations are fully symmetric under exchange
of electrons, an initially antisymmetric wave function stays antisymmetric during propagation. It
is therefore sufficient to demand that the initial coefficients Aj, . ;, be fully anti-symmetric with
respect to their indices, i.e.

Ajycdnedtods = —Ajrdtedeeds (3.8)

This restricts the number of independent expansion coefficients to (’;) Equivalently we can
therefore rewrite (3.2) as

@Y= D A, O ]en O A A, B), (3.9)

1<1<...<js<n

where the multi-sum now has to be carried out over all "sorted” multi-index (j;...55) and
1
lois A Agps,) = Wil ST1)PP s ® .. ®9;,) (3.10)
>

denotes the normalized, fully antisymmetric tensor product or Slater determinant. Here P is the
permutation operator and the summation has to be carried out over all permutations.

Our implementation of MCTDHF is based on the multi-configuration Hartree (no Fock)
method of [45], from which it differs in the anti-symmetrization of the electronic wave function.
In the subsequent derivation of the MCTDHF evolution equations we therefore closely follow
{45].

The time evolution equations for A;, . ; , and ; are obtained from the Dirac-Frenkel varia-
tional principle [46, 47]

(6¥]id, — H|¥) =0. (3.11)

Note that it is sufficient to derive the evolution equations for one particle only, since, due to
the exchange symmetry, they must be identical for all particles. To derive the equations we will
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always single out the ”symbolically first” particle. However, as electrons are indistinguishable we
will omit a special labeling.
Following [45] we define the single-hole function

1 n n
WY = (| T) = — Atin i, l@in0i,) s 3.12
|¥®) = (@il ) 77 2 ,;1 ta...dy iz Pis) (3.12)

which is defined as a linear combination of products of f—1 SPF that do not contain the expansion
function for the first co-ordinate. With its help the total wave function may be expressed as

|¥) = Xn: lwIJ("> : (3.13)
=1
Further, we define the matrix of the mean field operator
(H) ;1= <\1/<J'>‘H|\p<'>>, (3.14)
the density matrix
Pl = <‘Il(")|‘l/(’)> =(f =1 D A, Al (3.15)
j2<...<js

as well as the projector on the space spanned by the SPF
P = "lp;) (wil - (3.16)
j:l
Performing the variation in (3.11) and using the definitions above, keeping in mind that
.3 <\1:(i)|<p,-,...¢jf> <ij1...50jf| —p <\Il(j)| , (3.17)
J1=1 ir=1

and

(¥ R| %) = 3™ (1) sl (3.18)
=1

one obtains, after rather technical calculations, the non-linear equations [45]

n n f =
iAjbuj] = Z Z <‘pj1""ijlHl(plx"'(Pl/>Ah.--l/ - ZZgjiylAljl‘-ji—lji-}-bnj/’ (319)

=1 ip=1 i=1 =1

gle +(1—P) [p~' (H) —g1] o, (3.20)

ip

with @ = (J¢1),...,|¢n))! in vector notation, 1 denoting the identity matrix and the matrix
element g;; = (p;lg|ed).

Again, we emphasize that the MCTDHF evolution equations include the numerically exact

results as a limiting case. Let us, for the moment, suppose g = 0. Then, for n — oo, the
SPF span the hole space (1 — P = 0) and (1 — P) in equation (3.20) results in a vanishing
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time dependence of ¢. The expansion functions become equivalent to the time-independent
basis functions of the exact scheme and equation (3.19) reveals the Schrédinger equation. If
we suppose ¢ to be independent of time, i.e. ¢ = 0, even though they may not span the hole
space, then (3.19) represents the major scheme used for most of the current time-dependent wave
packet propagations. Therein the configurations are fixed and only the expansion coefficients are
varied, which corresponds to a full configuration-interaction (CI) approach. Unfortunately in
Cl-calculations often unmanageable numbers of configurations are required.

In the limit of n = f one obtains the single-configuration (time-dependent) Hartree-Fock
method [28].

Finally, for f = 1 the equations (3.19) and (3.20) ’implode’, due to the restriction in equation
(3.4), leaving

1A = (p1|H|p1) A1, (3:21)
i|¢1) = Hlp1) — 1) {1 [He1), (3:22)

behind. Formally inserting the former in the latter equation retrieves the exact Schrédinger
equation.

Besides the good convergence of MCTDHF, which we will demonstrate in chapter 4, the true
power of the method lies in its favorable scaling behavior with the number of electrons. Whereas
the storage amount in a straight-forward discretization of the Schréodinger equation with P grid
points increases exponentially with the number of particles f, i.e. P3/, MCTDHF grows as

n
memory ~ (f) +nP3 (3.23)
Here, the first term reflects the growth in the coefficients and the second is given by n SPF
per particle. Note that in any case the evolution equations are three dimensional at the most.
Therefore it seems possible to study correlated dynamics of few electron systems with up to 10
electrons without making severe approximations.

3.1.1 Choosing constraints

We have derived the MCTDHF evolution equations without explicitly defining the single-particle
constraint operator g. For simplicity, we usually set g = 0. We want to point out that this,
however, does in no means affect the quality of the MCTDHF wave function. For two different
but otherwise arbitrary constraint operators g and g, respectively, the corresponding sets of
evolution equations are connected by a similarity transformation [45]:

By = 30 30 (00, e (O, A 320

=1 lf:l
é = U, (3.25)

with U = expli(g — g)t] and g;; = (pj|&|¢:), g analog. Thus proofing the independence of
the MCTDHF wave function of a specific constraint. Only the numerical effort required for
integration of the evolution equations may differ.

For atomic and molecular systems we are concerned with the total Hamiltonian, H, which
may be split into two parts, namely

f f
H(zy, .., zp5t) = 3 Hi(ze;t) + _ Ha(re, a)- (3.26)
x=1

A>K
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Here H; (x;t) denotes the single-particle part, consisting of operators depending on only a single
co-ordinate (including the interaction with the laser pulse), and Hy(r., 7)) = 1/|r. — 7|, the
particle-particle interactions. By setting

g(x;t) = Hi(=; ), (3.27)

the constraint operator g in (3.6) takes the role of a ”single-particle Hamiltonian” describing an
uncorrelated motion. The evolution equations now read as

n n

° iAjl..,j, = E Z <<p]'1...(,0jj|H2|9011...(p1f>A[1“_[f (328)
L=1 lg=1

i =Hile + (1 - P)p~! (Hy) . (3.29)

We may interpret these equations as an interaction representation of the original scheme: while H;
stands for the unperturbed Hamiltonian, Hy defines the perturbation, including all correlation
effects. Only the correlational part, Hz, propagates the coefficients A;, ;. For disappearing
correlation A;, . ; , remains constant. Contrary to the discussion for vanishing constraint operator,
here, the SPF ;(x;t) are in motion even if the set of expansion functions span the hole space.

The advantage of the interaction formulation is that it allows the usage of numerically
favorable split-step methods [48, 49].

3.1.2 Mean field operator and projector

In the abstract formulation of the evolution equations (3.20) the computational labor is well
hidden in the calculation of the mean field operator (H),

(H) ;= <\1/<f>|H]\11(’>> ,
= Ef: <\I!(j)|H1(:c,€;t)‘lII(l)> n Zf: <\Il(j)lH2(r,¢,r)\)I\Il(l)> . (3.30)
k=1 A>K

Here the Hamiltonian, H, has been split into operators H; and Hg, according to (3.26), acting on
one and two particles only, respectively. The single hole function, ¥/ is given by (3.12).

By changing names of the integration variables and using the anti-symmetry property (3.8),
we may simplify (3.30) and obtain

(H) jo=piaHa(et) +(F =1 D D A%, s Auie iy [(‘szlH2(=c1,x2)|sotz)m2

2,82 33,03 Jayendy
f—2
+ {0 [Hi(@2 ) [Pn),, + 5 (Piapjs [Ha(@1, 22)| P2 010) s, o, (3.31)

Here p is the density matrix (3.15), and the index on the brackets indicates integration over
the given co-ordinate(s). Since in the above equation the last two terms of the sum in squared
brackets are no functions of x; but constant, their effects in the MCTDHF evolution equation
(3.20) are annihilated by the projector (1 — P). Thus a simplified mean field operator

(H) j1 = pjpHi(z1;8) + (F - 1) Z Z A;jzjs,,,ijllzjg...j]

J2.l2 Jay-d s

X i, (t) | Ha (1, 22) |01, (2)) ., (3.32)
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may be used, with p;; =3 arenis A;sz___jf Aljy..j ’- The physical meaning of the mean field oper-
ator is apparent in the above equation: while the first term is the usual one-particle Schrédinger
equation, the second term represents the averaged interaction of one SPF with all others. Adding
the suppressed constant terms in {3.32 would only result in an unitary transformation. Note that
contrary to standard multi-configuration methods, the matrix of the mean-field operator, (H), is
time-dependent.

The computational labor to evaluate (H) is demanding. To compute the complete density
matrix p a (naive) operation count, OC, gives

f-1
However, evaluating the interaction term is even more expensive. The sum over js...j5 consists

of ( f’_‘2) non-zero elements. For fixed j3...75 j,72 and !, lp, respectively, can assume 2(”_£+2)
values. Therefore, given the function (p;, |Ha(x1, z2)|¢1,) on a x; grid with P points, the total

(naive) operation count is
OC((H)) < [2("‘5“)}2 (f’_‘2>P (3.34)

Note that the naive way of summing leads to an operation count which can easily be intractable:
e.g. n =10, f =8, P = 1000, we have 3 x 107. This example illustrates the main bottleneck of the
MCTDHF approach: the computation of the mean field operator, (H). Its evaluation together
with the calculation of the projector, P, requires efficient computation of three dimensional (3D)
and 6D integrals. It is therefore mandatory to express Hz in some kind of multi-pol expansion,
thus reducing the operation count drastically. Practicable strategies are currently a main research
topic of our group and others. In Ref. [45] a reduction of high-dimensional integrals (here 6D)
to lower dimensions (3D) by a product representation is described, which naturally matches the
product-expansion of the solution. For the 3D discretization itself, a variety of strategies are being
investigated, including discrete variable representations, self-adaptive grids, and “cascading” or
“multilayer” techniques as described in Refs. {50, 51]. It is important to notice that the extension
to 3D, in principle, only affects the factor functions, whereas the scaling behavior with respect
to f and n is independent of dimensionality. As yet we have developed a 1D MCTDHF-code, in
which the evaluation of the integrals is a minor problem. An outline of the implementation is
given in §3.3 or [52].

0C(p) < n? (" - 1). (3.33)

3.2 Understanding MCTDHF

We will demonstrate the meaning of the MCTDHF-ansatz by means of an example, containing
two one-dimensional (1D) particles. For simplicity we will not take spin into consideration.
Following equation (3.9), MCTDHF makes the ansatz

1
V2

The expression in squared brackets including the normalization constant is called a Slater deter-
minant. Thus MCTDHF consists in approximating the exact wave function as linear combination
(weighted by the coefficient A;,;,) of different Slater determinants. Apparently, since the expan-
sion coefficients and functions are time-dependent, an additional constraint [equations (3.5) and

n-1 n
S0 455 @) lei (15805, (z2:) — 04, (m15 )05, (225 8)] . (3.35)

1=132>51

U(zy,z0;t) =



Understanding MCTDHF 16

"1

L]

—
= ° l el
N

[v
=

3

Figure 3.1. Approximation of a 2-dimensional, correlated wave function ¥(z;, z2;t) as a sum of 6 deter-
minants, indicated as rectangular patches. The expansion functions ¢; belonging to their corresponding
determinant are drawn along the axes in their respective color.

(3.6)] is needed. Without loss of generality and analog to the usual case of a time-independent
expansion, it is most convenient to impose ortho-normality on the expansion functions. The
principle of MCTDHF can be seen in figure 3.1. The fully correlated wave function ¥(z,,zs;t)
is approximated by 6 Slater determinants, implying 4 expansion functions per particle. Thus the
wave packet is reassembled in a kind of ”"patch work”. Each patch represents one single Slater
determinant. Note, however, that the patches do not overlap as a consequence of the imposed
orthogonality.

In figure 3.1 we have, for simplicity, assumed the single electron orbitals to be of rectangular
shape. However, we emphasize that generally, the expansion orbitals will be a priori unknown. It
is important to note that not only the expansion coefficients evolve with time, but the single par-
ticle orbital, too. Hence MCTDHF may be interpreted as a truncated configuration-interaction
(CI) expansion, in which both, coefficients, Aj;, ;,(t), and orbitals, ¢;(z;t), are optimized. For
every time step and fixed number of configuration an optimal expansion is warranted by the varia-
tional principle (3.11). Thus resulting in a compact representation of the wave function and hence
compressing the necessary storage amount. MCTDHF scales linearly with the number of expan-
sion functions, while the expansion coefficients grow as (’;) However, it is applicable to more
complex systems because already with small configuration numbers (typically n — f € {4, ...,8})
the "essential physics” is covered, i.e. the number of physically important expansion orbitals,
is always much smaller than the number of time-independent basis functions in conventional
approaches. Therefore MCTDHF scales more slowly, allowing the treatment of small molecules
beyond state of the art 2-electrons-calculation in a numerically converged way. Further, as MC'T-
DHF is a linear combination of different determinants, superpositions and exited states can be
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represented inherently.

By increasing the number of configurations MCTDHEF allows a systematic inclusion of corre-
lation. It is therefore quite distinct from other theories like the state specific expansion approach
(SSEA) [53]. While in the latter it is necessary to identify the major correlation effects and to
adjust the approximated expansion accordingly, MCTDHF does not require any a priori knowl-
edge.

These advantages are achieved at the expense of linearity and locality, since the evolution
equations in MCTDHF are both, non-linear and non-local. Just as time-dependent Hartree-Fock
(TDHF), also MCTDHF with a finite number of configurations suffers, in principle, from the
problem of non-linearity of the evolution equations which may lead to a violation of the su-
perposition principle [54]. However, in the case of MCTDHF this problem is greatly reduced,
which can be illustrated on the counter-example for TDHF used in [54]: MCTDHF, by con-
struction [equation (3.35)], can describe the superposition of, say, a fractional occupation of the
neutral ground state (one configuration) plus a state consisting of a polarized ionic core with one
electron far removed (second configuration). This is a situation, where TDHF manifestly fails.
Analogously more complex superposition states may require additional configurations, but in the
theoretical limit of infinitely many configurations the wave function converges towards the linear
time-dependent Schrédinger equation.

In atomic structure theory analyzing multi-configuration wave functions is usually done in
terms of the first-order density matrix [55]

v (], T1;t) =f/\I/(m'l,a:g,...,:cf;t)\Il*(ml,...,a:f;t)d:z:g...da:f. (3.36)

The diagonal elements v, (z, x; t)dx give the probability for finding a particle within the volume
dx at the position  (including spatial and spin coordinates), while all the other particles have
arbitrary positions. In the framework of MCTDHF +; is easily computable,

n@,zit) = Y o=@ t) (), (0@} (x;1), (3.37)
7,i=1
i) = D Ajnis DA, 5, ). (3.38)
2501

Thus the matrix 4; nicely summarizes the many Slater determinants in the wave function in just
a few values. Note that 9, is connected to the MCTDHF density p via transposing.

Of special interest, concerning the interpretation of the MCTDHF wave function, is the case
where «; and 4, respectively, are diagonal. These diagonal elements are known as the natural
orbital occupation numbers (NOON) and the respective eigenvectors as natural orbitals (NO)
[56). The NOON values sum up to the total number of particles and can be interpreted as the
averaged occupation of each NO. As these orbitals maximize the NOON by diagonalization, it has
been shown [56] that NO provide the most rapidly convergent expansion. This is, however, not
true for MCTDHF as NO and other SPF span the same space [57]. By choosing the constraint
operator accordingly any set SPF can by transformed by a unitary transformation into NO.
Nevertheless, NO and NOON in particular provide an important check on the quality of the
MCTDHF representation of the wave function, since small natural populations indicate that the
MCTDHF expansion is essentially converged.

With regard to an interpretation of multi-configuration wave functions other, equally useful
choices of orbitals, are possible. However, for a more thorough discussion we refer to [58].



Implementation of the MCTDHF-package 18
3.3 Implementation of the MCTDHF-package

From a computationally point of view, the most problematic element of the MCTDHF evolution
equations is the necessity for a frequent solution of multi-dimensional integrals [equations (3.19)
and (3.20)]. Different strategies have been suggested to allow an efficient computation of these
integrals [45, 49, 51, 50]. So far, we have successfully implemented a 1 dimensional (1D) version of
the MCTDHF method!, where these problems are reduced. However, the fundamental difficulty
is preserved in the 1D implementation, too. The following explanations may therefore not only
be a documentation to the current 1D MCTDHF package, but present a guideline for further
expansion of the MCTDHF code to higher dimensions.

3.3.1 One dimensional realization

In the 1D formulation, « = {r, s}, the MCTDHF evolution equations (3.19) and (3.20) remain
unchanged. However, in the current implementation we have chosen to associate the spin part of
the electron with the SPF, rather than the co-ordinate, i.e.

(xlp;) = pi(r,s) — pj(r) ® s;. (3-39)

This is meaningful, if we assume that none of the operators mixes spin and spatial space. Hence
we neglect any relativistic effects. The general structure of the equations, however, remains
unchanged.

For space discretization second order finite differences at equidistant points are used. That
is, we use the approximations

dp(r) _ plr + Ar) — p(r — Ar)

ar 2Ar +0[(ar)?), (3.40)
%p(r T r)— T r—Ar
T - e A =Rt = 80 ojany), (3.42)

Integration in space is approximated by simply averaging

r+Ar
/ o(r)dr s EOF ‘P2(’" A7) A, (3.42)

The resulting ordinary differential equations in time are solved directly by using a variable order,
variable step size explicit Runge-Kutta method. For error estimation in the time integration,
extrapolation based on mesh halving is used. A typical (relative) propagation accuracy of 1078
per step was chosen.

For numerical reasons the MCTDHF evolution equations (3.19) and (3.20) have been slightly
modified.

Equation (3.20) requires the inversion of the density matrix, p. As the dimension of the
density matrix is very small, the numerical effort is negligible. However, problems may arise if
the matrix is (almost) singular. p is singular if the population of a natural SPF vanishes. But
such an unpopulated state does not contribute to the wave function of the system. To avoid any

1 The MCTDHF program package is coded in FORTRAN 90, written by (in alphabetical order) Jeremie Caillat,
Markus Kitzler, Armin Scrinzi, and Jiirgen Zanghellini. If you want to use the MCTDHF-package please contact
Armin Scrinzi, armin.scrinzi@tuvien.ac.at
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problems with respect to the inversion we use a regularized form of the original density matrix,
ie.

p—p+el, e<l. (3.43)

Here € is a number much smaller than unity (typically ¢ = 10~!?) and 1 denotes the unity
matrix. Note that such a regularization changes only the time evolution of weakly populated
states. Others remain almost unaffected. In our tests the error was below the propagation
accuracy.

The ortho-normality relation (3.5) is explicitly enforced after every Runge-Kutta step using
the Gram-Schmidt method.

To avoid reflections of outgoing parts of the wave function at the simulation boundaries we
artificially change the single-particle Hamiltonian H; () by adding complex absorbing potentials?,
CAP(r) [59], i.e.

H,(r) — Hy(r) + iCAP(r) (3.44)
_ T|T—Tcap| A
capp) = { 1meos () ¢ lal> me (3.45)
0 : else

Zcap denotes the point where the CAP is switched on and Ic,p, gives the distance to the simulation
boundary. Investigations on the dependence on the CAP showed for ’good’ (smooth) absorption,
lcap > 50 should be chosen.

We have already pointed out, that the bottleneck of MCTDHEF is the evaluation of multi-
dimensional integrals. In particular this problem is, in 1D, most pronounced while computing
the mean field operator, (H). In §3.1.2 we have demonstrated that evaluating (H) requires
the calculation of integrals of the form {p;,(re;t){Ha(r1, 72}, (re;t)). Here Ho denotes the
columbic repulsion of the electrons. By its very nature this interaction is multi-dimensional and
non-separable. The MCTDHF algorithm, however, requires the potential to be represented as
a linear combination of products of 1D functions. Otherwise the computational labor easily
becomes un-doable, see §3.1.2.

8.8.1.1 Product expansion of the electron-electron interaction
We seek to approximate the electron-electron interaction,
1

modeled by a ”smoothed Coulomb” potential [60], where a denotes a shielding parameter to avoid
singularities, as a sum of products of 1D functions, i.e.

Ho(z,y) = (3.46)

Ha(z,y) ~ Y wili(z)Vi(y), (3.47)
i=1

where m is a number ideally much smaller than the number of discretization points, P, for each
SPF ¢;(z). In the limit m = P, (3.47) gets exact. The approximation of Ha(z,y) happens in
two steps

2 CAP are known as negative imaginary potentials (NIP), absorbing boundary conditions (ABC) or optical
potentials, too.
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V(r)/[Hartree]

Figure 3.2. Approximation of the potential Hz(r) = Ha(x — ) (thick full line) with *triangular”-shaped
expansion functions (thin lines). I and II refer to regions of different width of the expansion functions.
Finally the circles mark the discrete and approximated potential, H5PP(r) (see text).

(i) Ha(z,y) is interpreted as a function Ha(r) of the single independent variable r = z — v,
sampled at certain points r;,¢ € {1,..,m1},m; < P and approximated linearly in between
(similar to a finite element approach). Thus reducing the number of necessary grid points
from P to m;.

(ii) This approximated potential is then factorized by the Approzimationstheorem of Schmidt
[61], leading to the final expansion length m.

ad (i) The operator Hy(r) is approximated as follows:

my
H3PP(r) ~ ZHZ(Ti)Xi(T —ri, Ary, Arf), (3.48)
i=1
- l+r/ArF . ArF>Fxr>0
(- +y — -
Xt(ra Ar ,AT )'— { 0 else (349)

where Ar;” +Ar§' denotes the "width” of the expansion function x;. By requiring r;; = r,-+A'ri+
and Ar;,, = Ar} it is guaranteed that in between neighboring sample points, r;+; and r;, two
expansion functions are overlapping only. The basic idea of this approximation is to sample not
every grip point, for which (3.48) would be exact, but just a few and to approximate the remaining
points linearly. This is illustrated in figure 3.2. The potential, Hy(r), is sampled with triangular
shaped expansion functions (thin lines) given by (3.49), which are weighted by the value of the
operator at the sample point (left hand side of figure 3.2). The right hand side of figure 3.2
shows the values of the approximated potential at different grid points. The sample points, for
which (3.49) is exact, are marked with big circles, while the points in between are denoted by
small circles. The latter quite accurately follow the exact potential (thick line). Note that the
distance between the sample points is increasing for increasing || with very little loss of accuracy.
This is made possible due to the slow change in Hy(r) for » — oo, allowing 'broader’ expansion
functions x;. In figure 3.2 the region II marks an area, in which the expansion functions are twice
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as "broad” as in region I. The choice of the sample points and sampling intervals is governed by
physical reasoning. We will come back to it shortly.

ad (ii) The Approzimationstheorem of Schmidt [61] requires an eigenvalue decomposition of the
symmetric positive semi-definite potential density matrix,

my

Ty =Y HP(z; — vi)H3P (20 — w:), (3.50)

i=1

where z; and y; denote the ith grid point, 1 < ¢ < my, of the one-dimensional grid = and y,
respectively. May U; denote the ith eigenfunction of I then the initial potential H3’?(z — y) can
be expressed as

m
H3PP(z; — w) = Y wili(z;)Us (i) ~ Ha(zs, w1). (3.51)
i=1

Note that this expansion, setting V;(y) = U;(y), is exactly the desired expansion of (3.47). The
expansion weights w; is given by the overlaps between the potential and the eigenvectors,

wi =y > H(z; — w)Ui(z)Vi(w) = £V, (3.52)
j=1l1=1

where A; denotes the ith eigenvalue of I'. Since the eigenfunctions are complete over the grid
points, m;, this expansion is exact for m = m;. The representation is proven to be optimal in
the L2-sense. That is, the £2 error

2

m m m my
A= [HPP(z — ) = ) wili()Us(w) | = D A (3.53)
j=1i=1 i=1 i=m+1

is minimal [61).

Additionally we control the accuracy of the approximated potential by giving certain regions
of space, e.g., small |z| and [y|, more weight (implying higher accuracy) than others, since the
effect of the electron-electron interaction is negligible if the electrons are far apart. Given the
weight function Q(z,y) > 0, equation (3.50) is modified by

H3P(2,y) - VQ(z, ) H3™ (2, y). (3.54)

In figure 3.3 we show a representative example of the (relative) error distribution as function of the
electron coordinates of the outlined expansion. With only 97 functions U;(z) on a 1000x 1000 grid,
one obtains relative accuracies of < 1% within a range 20 around the coordinate origin that well
exceeds the size of our model atoms and molecules studied subsequently. The approximation fails
in the far region for double ionization, where |z| and |y| are large simultaneously, describing post-
ionization electron momentum distributions for (non-sequential) double ionization incorrectly.
However, total double ionization may still be reproduced correctly.

To conclude this chapter, we have presented the MCTDHF method in detail. MCTDHF is a
numerically efficient approach to solve the time-dependent many-body Schrodinger equation for



Implementation of the MCTDHF-package 22

50
0.04

0.02 0.03

-50
0.01

100

Figure 3.3. Relative error distribution of the electron-electron potential expanded as in (3.47) with
m = 97 (see text) as function of the electronic co-ordinates (in a.u.). Within a range +20 around the
origin of the co-ordinate system the accuracy is better than 1%.

systems of indistinguishable particles ("fermions”). It is fully based on the Dirac-Frenkel vari-
ational principle, is thus a formally exact approach, and it is not limited to the perturbation
regime. Further, it presents a generalization of the TDHF method. Instead of using a single
Slater determinant, in MCTDHF one expands the multi-electron wave function into several de-
terminants, or ”configurations”. Due to its favourable scaling behaviour compared to standard
methods the method allows to go beyond state of the art calculations of 2 electron systems.
Therefore it seems possible to study the correlated dynamics of few electron systems with up to
10 electrons without making severe approximations. So far, we have successfully implemented a
one-dimensional ” toy model” In the following chapter we will assess the reliability and efficiency
of the MCTDHF approach and determine the number of configurations needed for convergence
based on two examples.




Chapter 4

Testing the MCTDHEF method

The aim of this chapter is to assess the reliability and efficiency of the MCTDHF approach and to
determine the number of configurations needed for convergence. This is done by considering two
one dimensional (1D) examples, namely the laser driven motion of two electrons in a harmonic
oscillator potential and the electron dynamics of a Helium atom irradiated by a short, intense
laser pulse. In both cases we solve the time-dependent Schrédinger equation (TDSE, atomic
units are used throughout unless otherwise stated)

1V (zy,zo;t) =H(I1,.’I)2;t)\1’(.’£1,$2;t) (4.1)

for a two-electron system with fixed nucleus, described by the Hamiltonian H, by using the
MCTDHF ansatz and comparing with their (numerically) exact counterparts. We investigate
quantities like the ground state occupation, correlation coefficient, and single and double ioniza-
tion, where we find convergence of MCTDHF towards the full TDSE results with a moderate
number of configurations. For certain observables like the time evolution of the ground state oc-
cupation or double ionization, where TDHF is known to fail, this represents not only a gradual,
but a qualitative improvement, while the computational efficiency of TDHF is retained.

4.1 The one dimensional harmonic quantum dot

We first test our approach on the laser driven dynamics of two 1D electrons in a harmonic oscil-
lator potential, for which a semi-analytic solution is available for comparison. The Hamiltonian
H in equation (4.1) for the harmonic quantum dot reads

1

The interaction between the electrons is modeled by a “smoothed Coulomb” potential [60] with
shielding parameter a. The electrons are coupled to a monochromatic laser field with frequency
w and amplitude &y, which is described in dipole approximation and length gauge. Finally, Q
denotes the frequency of the harmonic oscillator.

The Hamiltonian (4.2) separates when expressed in new coordinates

1 02
H(z,y;t) = —5(82 + 35) + -5—(:1:2 +4%) + + (z + y)€osin(wt).  (4.2)

R=_(z+y), and r=z—y, (4.3)

1
2
23
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which allows to write the spatial part of the wave function in the factorized form
¥ = e~ g(r)e(R; 1). (4.9)

The factors ¢(r) and (R;t) are determined by the equations

21.2
ed(r) = (—af + Q4 + \/ﬁ}m) #(r). (4.5)

and
iW(R;t) = [—%3%_ +Q%R? —2RE&, sin(wt)] Y(R;t), (4.6)

The lowest eigenvalue € belongs to an z < y exchange symmetric, even function ¢(r), i.e. the
singlet ground state. While (4.5) can in general only be solved numerically, the solution of the
harmonic oscillator problem (4.6) can be given in closed form [62] for an arbitrary initial state
wave function ¥(R;0), which we have chosen as the field free ground state.

To determine the correlation of a system we use a measure suggested in [63]. The idea of
that measure is based on the existence of an uniquely defined representation of the wave function
in terms of single-electron orbitals, for which the single-particle density matrix becomes 2 x 2
block-diagonal. In this canonical representation one writes the wave function as

Y(x,y;t) = Zpi(t)qh(ﬂc,y; t), (4.7)

where ®; denotes a Slater determinant consisting of the two single-electron orbitals belonging to
the same diagonal block and |p;|? is its occupation probability. Correlation is identified with the
number of different determinants ®; needed to approximate the exact wave function. Normaliza-
tion of ¥ requires ), |p;|? = 1. A “degree of correlation” K is defined as the following measure
for the “length” of the sum (4.7)

1
Kit)==——— (4.8)
> lpi(®)*

K does not depend on a specific representation of the wave function, except for choosing the
single-electron coordinates (z,y). For practical purposes it is useful to note that K can be
calculated without explicit reference to the canonical representation by using the single-particle

density operator ~;, whose kernel is given by

n', z;t) =/\Il(a:’,y; t)U* (z,y; t)dy. (4.9)
The eigenvalues of ; are the desired expansion coefficients |p;|2.

For our tests we have chosen 2 = 0.25 (broad harmonic potentials) and a = 0.25, where
correlation is high (K = 1.695). We used a lattice range of £10 with uniform grid spacing
of 0.1. The execution time of the program on a 1.8 GHz PC for a typical calculation with 15
configurations was less than 1 hour.

Table 4.1 lists the ground state energy E, of the system together with the degree of corre-
lation K, as a function of the number 5 of MCTDHF configurations. In contrast to real atomic
and molecular systems, the ground state energy of the harmonic oscillator is strongly modified by
correlation. The correlation energy, i.e. the difference between single configuration Hartree-Fock
and the exact energy is Ey — F = 0.3547. For 15 configurations the overlap | (\1115|\Il°°)|2 between
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Table 4.1. Initial energy F,, and degree of correlation K, for an increasing number of configurations 7.

71 = oo refers to the exact values.

n Eq~Eoo Kp—Koo
non=() B = K, o=
2 1 1.1795 0.4301 1.0000 —0.4100
4 6 1.0214 0.2384 1.3568 —0.1996
6 15 0.8261 0.0016 1.7260 0.0181
8 28 0.8255 0.0009 1.7150 0.0117
10 45 0.8250 0.0002 1.7029 0.0045
12 66 0.8249 0.0001 1.6998 0.0027
[N 0.8247 0.0000 1.6951  0.0000
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Figure 4.1. Electron density p(z,z;0) for the ground state wave function and an increasing number of
configurations 7. (n = oo refers to the numerically exact solution.) The result for 7 = 15 coincides with
the exact result within the resolution of the plot.

the MCTDHF and the exact ground state wave function is 0.99939. Convergence beyond that
value is rather slow with an overlap of 0.99989 for 66 configurations. It is interesting to note that
K, does not increase monotonically with n. This indicates that with fewer configurations the
populations |p;|> may be more evenly distributed for the variationally optimal energy E, than
for a large number of configurations.

The ground state electron density distribution calculated by MCTDHF is plotted in figure 4.1
for various numbers of configurations. Good agreement is achieved for more than 6 configurations.
Note that in the correct result the electrons tend to accumulate at two separate maxima, which
differs qualitatively from the TDHF electron density with a single maximum at the center.

Next we investigate the time-evolution of our system. We find that correlation, K, varies only
weakly during the evolution, not exceeding the level < 10~5 even at field strength £ = 1. We use
the overlap of the time-dependent wave function with the ground state | (¥ (z, v; 0)|¥ (z, y; t))|* to
monitor the convergence of the dynamical behavior of the system. Figure 4.2 shows the overlap
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Figure 4.2. Probability of being in the ground state | (¥, (z, y; 0){¥,(z,y; t))]? for an increasing number
of configurations 7 (1 = oo refers to the numerically exact solution) in the presence of an electric field of

strength €9 = 1 and frequency w = 8. The result for = 15 coincides with the exact result within the
resolution of the plot.

for the parameters €9 = 1 and w = 8(). In single-configuration one sees significant deviations
from the exact result. At times, the probability is overestimated and, more importantly, at other
times it is reduced to almost 0. With 6 configurations the probability curve changes significantly
giving a first estimate of the error of the single-configuration Hartree-Fock. Already the curve
with 15 configurations coincides with the exact calculation within a maximal absolute error of
0.004582, which may be considered satisfactory accuracy.

4.2 The one dimensional Helium atom

The Helium atom is known to be one of the most strongly correlated atomic systems and serves
as the basic testing ground for multi-electron calculations. Here we use a 1-dimensional Helium
model to investigate the performance of MCTDHF in describing single and double ionization.

The total time-dependent Hamiltonian H in equation (4.1) for our 1D Helium atom irradiated
by a laser field €(¢) reads

2 2 1

1
H(z,y;t) = —=(32 + 82) — - +
(I Yy ) 2( y) \/$2+b2 \/y2+b2 \/((E—y)2+b2

+ (z + y)E(2), (4.10)

where the electron-electron interaction and the electron-nucleus interaction are modeled by the
usual “smoothed Coulomb” potential with shielding parameter b. We set b = 0.7408 and solved
the TDSE numerically on the full 1+1 dimensional grid and by MCTDHF on the corresponding
1-dimensional grid. The lattice range is chosen to +200 with a uniform grid spacing of 0.2.
Propagating the field-free Hamiltonian in imaginary time results in a singlet ground state energy
of Ey = —2.9022, which approximates the 3D ground state energy of 3D Helium.

Table 4.2 lists the ground state energy FEp, of our Helium model together with the degree
of correlation K,(0) as a function of the number 7 of MCTDHF configurations. Both values
vary only little with the number of configurations. As in the case of the harmonic quantum
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Table 4.2. Ground state energy Fo,, and degree of correlation K,(0) for an increasing number of
configurations 7 for the 1D helium atom. 7 = oo refers to the numerically exact values.

Eg,n—Eo,00 Kp(0)~Koo
n =3 FEo, 2t K,(0) KalPrre®

0,00

2 1 —2.8830 —6.62 x 10~ 1.00000 —1.66 x 10~ 2

4 6 —2.8993 —9.91 x 10~* 1.01598 —8.98 x 10~*

6 15 —2.9019 —1.07 x 107 1.01684 —5.38 x 10~°

8 28 —2.9022 —3.10 x 10~° 1.01690 7.92 x 10~¢
10 45 —2.9022 —6.17 x 10~ 1.01690 6.00 x 10~°
12 66 —2.9022 —2.17x107% 1.01690 3.23 x 107¢
0 —-2.9022 0.00 1.01690 0.00

dot, they converge towards the exact values with increasing number of configurations. While
correlation has a relatively little effect on the total energy, it strongly modifies the wave function
at larger distances, where it produces noticeable pinches in the probability density along the
diagonal x = y. This is shown in figure 4.3, where logarithmic contour maps of the ground state
probability density for various number of configurations are plotted. It is well known that a single
configuration calculation does not reproduce those bumps, but with increasing configurations the
structures are recovered. This can be quantified by the overlap: With = 15 configurations
| (¥15(x, ¥; 0| Voo (z, y; 0))|2 = 0.99994, where ¥, denotes the numerically exact solution. For
7 = 45 the agreement is excellent, overlapping the exact wave function to 99.999%.

In order to analyze the dynamic quality of our approach the Helium model is irradiated
by a short, intense, linearly polarized laser pulse with frequency w = 0.1837a.u. (wavelength
A = 248 nm) and peak amplitude £y = 0.1894 a.u. (peak intensity I = 1.26 x 10"W/cm?). Thus
the laser field has the form

&(t) = Eof(t) sin(wt), (4.11)

where the envelope f(t) is chosen to be trapezoidal, with 2-cycle turn-on and turn-off and a
2-cycle flat top.

To investigate the dynamic properties we show logarithmic contour maps of the probability
density at the end of the laser pulse for various configurations (figure 4.4). All sub-figures
are dominated by probability flows along the z and y axis, indicating single-ionization, but
differ in their distribution off the axes, representing double-ionization. While Hartree-Fock fails
completely to account for double-ionization, higher configuration calculations do exhibit two-
electron detachment. None of the tested configurations shows the pronounced avoidance of the
wave function along the potential ridge (z = y), which is a known artefact of TDHF methods
[24, 29]. MCTDHTF still does not correctly reproduce two-electron distributions, but total double
ionization is well reproduced, as will be demonstrated below.

We now turn to a more quantitative investigation of the ionization process. To this end we
define various multi-photon absorption probabilities [29, 64] and calculate them at the end of
the laser pulse at time t = 6Ty, where Ty = 2 /w denotes the cycle duration of the laser. The
probability of being in the ground state is estimated by

P® = | (¥(z,4;0)|¥(z, 4;6TL)) I* (4.12)
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Figure 4.3. Logarithmic contour maps of the ground state probability density of Helium for various
configurations 7. (n = oo refers to the numerically exact solution.) Contours differ by a factor of 10,
representing 0.1 for the innermost line.

For an estimate of total bound state population after the pulse we replace the (unknown) excited
two-electron bound states of the system by products of single-electron bound states. Let ¢;
denote a complete set of field-free bound states for the atomic ion. The probability of finding
two electrons in bound states is then estimated as

D P = D1 {8:(2)05()|¥(z,3:6To)) |* (4.13)

2y
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Figure 4.4. Logarithmic contour maps of the probability density of Helium at the end of the laser pulse
(peak intensity I = 1.26 x 10**W/cm?) for various configurations 7. (1 = oo refers to the numerically
exact solution.) Contours differ by a factor of 10.

The probability Pt of single-ionization is calculated as
Pr =2 | [ dol GI¥ 6T - 3 Piy| (414)
i )

while the double ionization probability P2+ is given by

P*=1-Pt-)"P,, (4.15)
i,



The one dimensional Helium atom 30

Table 4.3. Probability of total ionization P! of a 1D Helium atom at different intensities for an
increasing number of configurations 7. = oo refers to the numerically exact values.

I=1.26-10"*W/cm® I =5.00-10"W/cm?

tot tot tot tot
pLet_pto Pptot_pto

n n= (721 Prt'oz Pz P,?’t Pz
2 1 0.1548 —0.4120 0.7936 —0.0978
4 6 0.2210 —0.1606 0.8474 —0.0367
6 15 0.2241 —0.1488 0.8265 —0.0604
8 28 0.2476 —0.0596 0.8323 —0.0538
10 45 0.2485 —0.0565 0.8325 —0.0536
12 66 0.2555 —0.0296 0.8388 —0.0464

o0 00 0.2633  0.0000 0.8797 0.0000

Table 4.4. Multi-photon ionization of a 1D Helium atom at an intensity of I = 1.26 x 10'W/cm? for
an increasing number of configurations 7. 7 = oo refers to the numerically exact values.

n PO-PY PF-pP} p2t_p2t
non=() R SR opr BE pne B
2 1 0.8923 0.1032 0.1488 -0.3734 0.0059 —0.7859
4 6 0.8533 0.0550 0.1963 —0.1734 0.0246 —0.0428
6 15 0.8308 0.0272 0.2051 —0.1364 0.0189 —0.2645
8 28 0.8264 0.0217 0.2225 —0.0631 0.0250 —0.0272
10 45 0.8188 0.0123 0.2201 —0.0732 0.0283 0.1011
12 66 0.8129 0.0050  0.2281 —0.0395 0.0273 0.0622
oo oo 0.8088 0.0000 0.2375 0.0000 0.0257  0.0000
Finally we get the total ionization probability
Pt = pt 4 p?t, (4.16)

Table 4.3 lists the total ionization probabilities depending on the number of MCTDHF con-
figurations 7 for two different intensities. We first note, that at both intensities ionization is
underestimated. Further table 4.3 confirms the insufficiency of TDHF. Including more configu-
rations does significantly reduce the error, resulting in errors of roughly 5% for n = 28. A further
reduction of the error is possible, but with soaring costs.

At an intensity of I = 1.26 x 10'5W/cm? significant double ionization takes place as can
be seen in table 4.4, where the multi-photon ionization probabilities are listed. As figure 4.4
implies, the TDHF approximation fails completely to describe double-ionization, but higher con-
figurations do agree on predicting double-ionization probabilities of about 2.5%. Already with
6 configurations one can account for the essential physics, predicting a 4 times higher double
ionization probability as TDHF. Convergence to results better than that needs a large number
of configurations making the calculation computationally expensive.



The one dimensional Helium atom 31

Summing up we have demonstrated that by systematic inclusion of correlation the MCT-
DHF method provides a good approximation of time-dependent multi-electron wave functions.
We have tested our approach on two highly correlated two electron systems. For bound states
dynamics MCTDHF provides a rapidly convergent expansion. For ionizing systems MCTDHEF is
capable of describing the strongly correlated process of double ionization correctly. A quantita-
tive description of single and double ionization within an accuracy of 5% can be achieved with
reasonable number of configurations. We have detected no artefacts of the method as they were
reported about time-dependent density functional theory [32]. The demonstrated convergence
behavior and moderate increase of problem size with the number of electrons makes MCTDHF
a powerful approach for the calculation of the correlated dynamics of many electron systems
in strong fields, where calculations with up to 10 active electrons and a significant amount of
correlation may be feasible.



Chapter 5

Ionization dynamics in multi-electron systems

The interaction of intense laser fields with matter results in optical field ionization. An exact
quantum mechanical treatment of this process is beyond current computer capabilities [7]. How-
ever, in noble gas atoms [65, 13] and in small molecules [66, 14] theories based on the single active
electron (SAE) approximation excellently describe experimental findings. The SAE approxima-
tion rests upon the assumption that only the weakest bound electron interacts with the laser field.
However, non-sequential ionization of atoms [18, 67] and recent experiments as the unexpected
stability of larger molecules against ionization [68, 15, 30, 69] clearly reveal the multi-electron
nature of strong laser field-matter interaction. To identify the corresponding effects - at least in
principle - we present a 1D MCTDHF analysis of ionization of complex, extended systems.

Both, single- and multi-electron phenomena play an important role in complex materials. As
both effects are closely intertwined, it is helpful to investigate them separately. Therefore, this
chapter is organized in the following way. The first part of it is devoted to the investigation of
single electron effects in complex systems. Whereas in the second part the analysis is generalized
to the multi-electron case.

In the following, we perform calculations for f = 1, n = 1, and f € {2,4}, n = 8 as well
as f = 6, n = 12. In the multi-electron case, a further increase of n changes the ionization
yield by less than +1% indicating convergence to the exact multi-dimensional wavefunction. The
Schrédinger equation is solved on a 1D-grid with a uniform grid spacing of 0.15 and 4000 grid
points. To avoid reflection at the simulation boundaries, complex absorbing potentials are used.
The ground-state wavefunction is found by propagating the field free Hamiltonian in imaginary
time. For details of the numerical technique see [52].

We investigate the ionization yield of a single electron in a square well potential with ion-
ization potential, I, = 0.25, depending on the well width L. I, is kept constant by adjusting the
well depth D accordingly. The total Hamiltonian reads

H(z;t) = % [i(?z + A(t)r — Dexp [— @i’ﬂ) w] . (5.1)

[

Here ¢ denotes the speed of light and A the vector potential of the laser. The laser field has
the form £(t) = —A(t) = £ f(t) cos(wt), with peak amplitude £ = 0.038, frequency w = 0.057
and Gaussian envelope f(t), duration 10fs FWHM. To numerically model the square well, a
super-gauss (exponent 10) is used.

Figure 5.1 shows the ionization yield of a single electron in a square well versus its width.
The first feature is the sharp rise of the ionization probability for modest well widths, L < 10,

32
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Figure 5.1. Ionization probability of a single electron in a square well potential versus its width, b,
calculated quantum mechanically (full line), analytically [equations (5.2) and (5.3), dashed line], and
classically (dotted line). The ionization potential, I, = 0.25, is kept constant by adjusting the well
depth accordingly. The system was exposed to a 800 nm, Gaussian laser pulse of duration 10 fs FWHM
and peak electric field strength, & = 10'® Wem™2. The arrow indicates the case where the transition
frequency from ground and first excited state equals the laser frequency.

which is in contradiction to atomic ionization theory. Following atomic ionization theory, the
Keldysh parameter [65], v = wr/&, with £ = \/2Tp , indicates that for our parameters (y = 0.34)
ionization is to occur predominantly via tunneling. But atomic tunnel ionization theory depends
on & and & only [13], predicting an ionization probability independent of L, since the atom
essentially is modeled as zero-range potential. A correction to atomic tunnel ionization theory
has been developed to account for molecular extension and was successfully applied to small
hydrocarbon molecules [70]. It was, however, interpreted differently. We therefore calculate the
tunnel ionization rate for a square well potential following {13], which yields

2k3
w(t) = ¢(L)x? exp [—T(t):l (5.2)

cos?(kL/2) exp(kL)

o(L) = cos?(kL/2) — kL/2 + (k/2k) sin(kL) (5-3)

Here, k = 1/2(D — I,), and the structural correction factor, c, is determined by the magnitude of
the absolute squared of the asymptotic ground-state wavefunction in the classically non-allowed
region. In the limit of L — 0, D — —oo, the parameter ¢ — 1, and the tunneling rate of
a 1D delta-function potential is recovered. It follows from equation (5.3), that with increasing
system width a larger portion of the ground state wave function is pushed into the classically non-
allowed region. Thus increasing the ionization rate. In fig. 5.1 we have compared the numerical
and analytical ionization yield. For L < 6 the agreement is excellent. Note that equation (5.3)
depends exponentially on L, hence explaining the sharp rise of the ionization yield.

For larger L (6 < L < 13) the numerical and analytical ionization yield differ by a factor of
up to 2. This difference arises due to the increased density of bound states for larger well widths.
Thus the electron mobility picks up, too, and the electron is pushed adiabatically towards the
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tunneling barrier. As a result, the wavefunction under the barrier increases, and ionization is
enhanced. This effect is not included in the analytical expression (5.3), since Keldysh theory deals
with the motion of the electron under the potential barrier only, and ignores the dynamics inside
the well [15]. For values L > 13 equation (5.2) loses its validity, since this regime is characterized
by the onset of barrier suppression, leaving the system totally ionized.

It therefore surprises that for large L > 25 the ionization yield drops, as it is shown in figure
5.1. Further, for L > 80 ionization is completely inhibited. Since the transition frequency o1
between ground and first excited state is rather small (Qo; < 0.05), the density of bound states
is extremely large. Thus the mobility of the electron is high, too, and its dynamic is close to the
motion of a free electron. A free electron moves 180° out of phase with the electric laser field
strength. Thus, contrary to the case of L < 13, the electron is pulled away from the tunneling
barrier, hence suppressing tunneling ionization. This is illustrated by the inset of figure 5.1.
There we show the electron probability distribution at the peak of the laser pulse for L = 10
(dashed line) and L = 55 (full line). The response of the electron is similar to the motion of
electrons in over-resonantly driven oscillators [71].

Our calculations identify two regimes of laser-matter interaction, which are governed by the
relation of w to 2p;. The arrow in figure 5.1 denotes the case of Qg = w. As Qp; decreases with
increasing well length, the area left and right to the arrow present the under- (97 > w) and the
over-resonant ({297 < w) limit, respectively. While the under-resonant regime is accessible via
quantum mechanics only, the over-resonant case is dominated by the driving force, allowing a
classical description, too.

As the wavefunction is pushed away from the tunneling barrier, one would expect ioniza-
tion to be suppressed. Still, appreciable ionization takes place. Inspection of the wavefunction
dynamics shows that the electron absorbs energy, when it hits the potential well barrier. The
electron collides during each half cycle with the potential barrier and absorbs energy, until its en-
ergy is large enough to escape over the barrier. We have dubbed this mechanism laser de-phasing
heating (LDH). The strength of LDH scales with the ratio of electron excursion amplitude to
well width. Therefore, ionization in figure 5.1 drops to zero for increasing L.

LDH is a classical process. This follows from a comparison of the quantum result to classical
simulations. A set of trajectories, with starting points covering the classically allowed part of the
potential well, is launched. The trajectories are weighted with the probability of the ground state
wavefunction. The initial velocity is calculated by v; = £,/2(I, — D). The classical equations
of motion are solved subject to these initial conditions. The ionization probability is determined
by the sum over the weight of the trajectories that are free after the laser pulse. The result
is depicted by the dotted line in figure 5.1. The agreement with the quantum results is good,
proving the classical nature of LDH ionization.

We now turn our attention to the more sophisticated multi-electron case, namely the model
of a 4-electron system with Hamiltonian

4

4
1
H(zy,.ozat) = Y [Hi(zst) + Y —————— | .
; ;\/(:L‘i—xj)?'f‘l

Here, the electron-electron interaction is simulated by a non-singular, soft-core Coulomb poten-
tial, and H;(z;t) denotes the single-particle operator given by equation (5.1) with the parameters
set to I, = 0.448, L = 100, Ag = 800nm, Gaussian envelope, and FWHM 7 = 6fs.

Our analysis shows that ionization by LDH and suppression of tunnel ionization also exists
in the multi-electron case. This is corroborated by the excellent agreement between quantum

(5.4)
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Figure 5.2. Quantum mechanical (full squares) and classical (open squares) ionization probability
versus laser intensity of a square well potential with 4 electrons (I, = 0.448). The laser parameters are:
wavelength A¢ = 800nm, and 7pwum = 6fs (Gaussian). Inset: normalized excursion of the center of
gravity of the electron density at the peak of the laser pulse (upper part), phase relation between laser
electric field and the center of gravity motion of the electron density (lower part) versus L (Intensity,
I =5x1013W/cm?).

and classical calculations for the 4-electron system depicted in figure 5.2, where we show the
ionization probability as a function of laser peak intensity.

In multi-electron systems the transition between under- and over-resonant behavior is more
complex than in the single-electron case discussed above, as in addition to single-electron exci-
tations collective effects play a strong role. In unbounded materials the collective response is
determined by the plasma frequency w, = /4wpe with pg the electron density. In finite systems,
such as in molecules and in clusters, the resonance frequency is changed by a geometry dependent
factor. In our 1D model the resonance is, like in spherical clusters, determined by the plasmon
(Mie) frequency, wm = wp/V/3.

The inset of figure 5.2 shows that collective effects dominate over single-electron excitations.
We have plotted the normalized excursion amplitude of the center of gravity of the electron density
at the peak of the laser pulse (upper part), and the phase relation between laser and electron
oscillation (lower part) as a function of L for I = 5 x 10!3W/cm?. By using po = (f/L)? with
f =4 we find that w,, = w at L = 40. This is in accordance with the position of the resonance
in the inset. With decreasing b the electron motion changes from over-resonant, 180° out of
phase to under-resonant, in-phase motion with the laser electric field. This can be understood in
terms of the dynamic polarizability, a(w) = ag/(w?, — w?), with ag the static polarizability. For
w < wy, the dynamic polarizability goes over into the static polarizability, whereas for w > w,,
the polarizability changes sign explaining the 180° phase change.

Typical plasma frequencies of large molecules, of clusters, and of condensed matter lie be-
tween = 0.035 (1eV) and = 1 (27.2eV). Therefore, in most of these media the over-resonant limit
is not reached. Suppression of tunnel ionization and LDH are important in nano-structures, such
as quantum wells and quantum dots, and in semiconductors [72], where electron density and
plasma frequency can be tailored by doping. The dependence of the electron dynamics and of
ionization on laser wavelength and electron density opens novel ways to control carrier dynamics
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Figure 5.3. lonization (defined as loss of norm within the simulation boundaries) of 2 (full line), 4
(dashed line), and 6 (dashed dotted line) electron molecules (I, = 0.3) by an 800nm laser pulse and
duration 10fs FWHM (Gaussian) in a multi-configuration time-dependent Hartree-Fock (left) and a
(single configuration) TDHF (right) approach.

in nano-structures.

In the remainder of the chapter we generalize ionization in the under-resonant limit to multi-
electron systems. This limit applies to the interaction of infrared laser light with most molecules
and clusters. Even in the under-resonant regime, the plasmon frequency plays an important
role in ionization. Recently it was suggested that non-adiabatic transitions to excited states can
take place [15], resulting in an enhancement of ionization. Our analysis shows that the plasmon
resonance plays a dominant role in the non-adiabatic regime of ionization. Here, we focus on the
adiabatic limit w < wy,, where transitions to excited states, such as the plasmon resonance, can
be neglected, and a(w) = aq.

Our multi-electron system is described by a model potential consisting of a chain of f
Coulomb nuclei with 1 electron per nucleus. The total, time-independent potential reads

(5.5)

1
V(zlv :l:4) - ZVI xl) + Z>: \/m:
i>i

f
j=1V (z— Jd)2 + an

with d the distance between adjacent nuclei. Note that in the asymptotic limit this potential goes
over into a Coulomb potential. The laser field is coupled in dipole approximation and velocity
gauge. Figure 5.3 shows the dependence of the ionization probability as a function of the intensity
for molecules with f = 2, 4, and 6 centers. The ionization potential for all 3 cases is kept constant,
I, = 0.3. The remaining parameters are: d = 1.4, a. = 1, a, is adjusted to keep I, constant,
A = 800nm, 7pwym = 10fs, and a Gaussian pulse shape. In contrast to our discussion of the
single electron case, here ionization is reduced for longer molecules. This interesting feature is
consistent with recent experimental findings [15, 16]. Note, however, that for identical parameters
a single configuration calculation reveals a different picture as can be seen in figure 5.3, too. In
contradiction to above mentioned experiments, TDHF predicts an increased ionization probability
for larger molecules. As in the previous example of non-sequential double-ionization MCTDHF
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Figure 5.4. Ionization probability of the HOMO electron versus laser peak intensity. Full triangles:
4-electron molecule (I, = 0.261); empty squares: corresponding SAE calculation. Full squares: 2-electron
He (I, = 0.9); empty circles: He SAE calculation. The laser parameters are: wavelength Ao = 800nm,
and 7rwam = 6fs (Gaussian). Inset: tunneling barrier in the presence (full) and absence (dotted) of
electron polarization.

converges, where TDHF {fails qualitatively. This indicates that suppression of ionization is caused
by electron correlation, which cannot be taken into account by single-configuration calculations.

In the following the multi-electron effects are identified by a comparison of multi-electron
and SAE-electron systems having the same ionization potential. The SAE potential is assumed
to be a smoothed Coulomb potential outside the leftmost and rightmost nucleus of the molecule
considered below, and constant inside. The well depth is chosen to obtain the same I, = 0.261
as for the 4-electron molecule, which is modeled by d = 3.5, a, = 2.25, and a. = 0.81. Finally,
the laser pulse is Gaussian, Ap = 1500nm, and 7 = 10fs.

The comparison of SAE (empty squares) and 4-electron (full triangles) calculations in figure
5.4 reveals that multi-electron effects dominate tunnel ionization. Despite the same ionization
potential, the 4-electron saturation intensity of ionization is by a factor of 5 larger than the
SAE result. Taking the 1D nature of our analysis and experimental uncertainties into account,
this result is in reasonable agreement with measurements, where an increase of the saturation
intensity by factors of 3-8, as compared to SAE theory, was obtained [68, 15, 30].

It is interesting to make the same comparison for He. From comparison with experiments it
is known that the SAE approximation works well for noble gases. For a. = 0.55 and a,, = 0.55
the ionization potential of He, I, = 0.9, is obtained. The 2 electron {full squares) and the SAE
(empty circles) calculation in figure 5.4 coincide, giving the first proof of the validity of the SAE
approximation.

Finally, the physical origin of the violation of the SAE approximation in complex systems
needs to be identified. In the single electron case we have seen that the electron is pushed against
the tunnel barrier by the laser field. In the multi-electron case the same process polarizes the
molecule. The resulting modification of the molecular potential results in an increase of the
tunneling barrier, as is shown in the inset of figure 5.4. The inset shows the potential of nuclei,
remaining bound electrons, and laser field as felt by the tunneling electron (full line) at the peak
of the laser pulse, where the polarization is maximum. The dotted potential is calculated from
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the field free 4-electron wavefunction, where the molecule’s polarization is zero. Comparison of
the two curves reveals a polarization caused increase of the molecular tunneling barrier.

Our analysis revealed the key parameters determining ionization of complex systems, which
are, size, geometry, and polarizability. It showed that in particular the increased polarizability
makes ionization of complex materials fundamentally different from noble gas atoms. The ratio
of laser frequency, w, to the resonance frequency, wy,, of collective electron motion determines
the dynamic polarizability and therewith the response of the electrons to the laser field. We
identified two distinct ionization mechanisms in the over- (w > wy,) and under-resonant regime
(w € wm).

In the over-resonant limit the electrons move 180° out of phase with the laser field, and
therewith away from the tunneling barrier. As a result, tunnel ionization is suppressed and
classical over-the-barrier ionization becomes dominant. In the under-resonant limit the electrons
are pushed towards the tunneling barrier, creating a polarization that increases the tunneling
barrier and reduces ionization in agreement with the reduction of ionization observed in large
molecules [15, 30, 68].



Chapter 6

Conclusions

We have studied multi-electron ionization in molecules in a non-perturbative, strong field regime.
To investigate the laser-molecule interaction we have applied two different, time-dependent ap-
proaches. Both methods permit to consider non-linear excitation dynamics of multi-particle
systems and the role of inter-electron correlations in strong-field ionization.

In particular we have analyzed shake-up excitation in Deuterium theoretically as well as
experimentally. Our theoretical analysis is performed in two steps:

(i) an electron ionizes via tunneling described by the quasi-static molecular ADK-theory.
(ii) after the electron is born in the continuum the interaction of the electrons is calculated using
a time-dependent Keldysh-type method.

This analytical model excellently agrees with experiments. We found that shake-up produces one
excited o, D state per 10° ionization events. Our theory predicts the shake-up mechanism to
be efficient for large molecules, where the energy spacing between the levels becomes small.

However, the method summarized above is particularly tailored to model shake-up. Its
general scope of application is essentially restricted to the description of two active electrons.
To overcome this limit we have introduced the multi-configuration time-dependent Hartree-Fock
(MCTDHF) method.

MCTDHEF is a numerical efficient approach to solve the time-dependent Schrédinger equa-
tion. In contrast to time-dependent Hartree-Fock, here the exact wave function is expanded
in several Slater determinants. Thus increasing its accuracy while remaining computationally
feasible.

We have tested our approach on highly correlated two electron systems and demonstrated
that by systematic inclusion of correlation the MCTDHF method provides a good approximation
of time-dependent multi-electron wave functions. For bound states dynamics MCTDHF provides
a rapidly convergent expansion. For ionizing systems MCTDHF is capable of describing the
strongly correlated process of double ionization correctly. A quantitative description of single
and double ionization within an accuracy of 5% can be achieved with reasonable number of
configurations. We have detected no artefacts of the method.

From a computational point of view, the key property of the method is the favorable scaling
behavior when compared to straight-forward discretization of a multi-electron system. Whereas
the number of points in straight forward discretization grows exponentially with the number of
particles f, MCTDHEF scales linearly o n > f for the factor functions ¢. The demonstrated
convergence behavior and moderate increase of problem size with the number of electrons makes
MCTDHEF a powerful approach for the calculation of the correlated dynamics of many-electron
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systems in strong fields, where calculations with up to 10 active electrons and a significant amount
of correlation may be feasible.

The present demonstration of the MCTDHF method is only in 1D. The main challenge for
extending the method to 3D is finding a discretization of the 3D factor functions ¢(£), which
allows efficient computation of 3D and 6D integrals. This is currently a main research topic of
our group. However, it is important to notice that the extension to 3D, in principle, only affects
the factor functions, whereas the scaling behavior with respect to f and n is independent of
dimensionality.

We have applied MCTDHEF to study ionization of (model) 1D multi-electron systems. Our
analysis shows that ionization in complex systems is radically different from noble gas atoms.
Ionization in molecules is governed by four key parameters, that are size, geometry, electron
mobility, and polarizability. In particular the polarizability adds a correlated multi-electron
component to tunnel ionization, which depends strongly on the ratio of the laser frequency to
the frequency of collective electron motion. Despite the 1D nature of our calculations reasonable
agreement with experiments shows that the essential effects of tunnel ionization can be captured
by a 1D analysis.
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