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Abstract

Field area networks extend computer networking to the level of sensors and

actuators. EIB (European Installation Bus) is an open and well-established

representative of this group used in building automation for connecting intelli-

gent wall switches and light dimmers. Integration with other networks is a key

point in leveraging its potential. The OSGi (Open Services Gateway Initiative)

defines a dynamic, service-oriented framework for Java-based software compo-

nents. It is especially intended to deliver flexible functionality to gateways

interconnecting wide-area and local networks, while remaining independent of

any particular network technology or application scenario.

The present thesis is concerned with bringing together these two technologies.

For this purpose, the relevant background is explored first, covering aspects of

home automation in general as well as EIB and the OSGi platform specifically.

Then, the parts of the EIB network stack especially relevant for communication

over gateways are identified, and suitable ways to represent them within the

context of the OSGi environment are developed. A modular approach is taken

towards exposing this functionality. At its foundation, a low-level interface

allows the full use of all features of EIB while already relieving higher-level

components from many aspects of data frame assembly as well as hiding the

peculiarities of different communication controllers. A prototype implementa-

tion of this base component is presented as well, providing a convenient generic

foundation for various kinds of EIB related development work.

On top of this base abstraction, further modules can add exactly the function-

ality needed for a particular application. Specifically, a component allowing to

access application-related functionality in EIB devices is described. Maximis-

ing the usefulness of this interface, a technology-neutral, generic abstraction

for the functionality available in building automation installations is proposed.

This representation, aimed at systems of limited size, allows data points to be

freely grouped according to topological and functional points of view.



Kurzfassung

EIB (Europäischer Installationsbus) ist eine offene und weit verbreitete Netzwerk-
technologie für den Feldbereich. Sie kommt im Bereich der Gebäudeautomation
zum Einsatz, wo sie Sensoren und Aktuatoren wie intelligente Schalter und Dim-
mer verbindet. Ihr Potential kommt insbesondere bei der Integration mit anderen
Netzwerken zur Geltung. Das OSGi-Konsortium (Open Services Gateway Initiative)
beschreibt ein dynamisches, serviceorientiertes Framework für Java-basierte Soft-
warekomponenten, welches insbesondere dazu gedacht ist, Gateways an der Schnitt-
stelle zwischen lokalen und Weitverkehrsnetzen mit flexibler Funktionalität auszu-
statten. Nichtsdestoweniger ist es unabhängig von spezifischen Netzwerktechnologien
oder Anwendungsfällen.

Die vorliegende Arbeit beschäftigt sich damit, diese zwei Technologien zusammen-
zuführen. Zu diesem Zweck erfolgt zunächst eine Aufarbeitung der relevanten Grund-
lagen, wobei Aspekte der Heimautomation im Allgemeinen ebenso behandelt werden
wie Spezifika des EIB und der OSGi-Plattform. Daraufhin werden jene Teile des EIB-
Protokollstapels identifiziert, die besondere Relevanz für die Kommunikation über
Gateways aufweisen und geeignete Wege für deren Darstellung im Rahmen der OSGi-
Umgebung entwickelt. Für die Abbildung dieser Funktionalität wurde ein modularer
Ansatz gewählt, dessen Basis von einer Schnittstelle gebildet wird, die, obwohl sie
den vollen Zugriff auf alle Merkmale des EIB erlaubt, für übergeordnete Komponen-
ten bereits zahlreiche Aspekte der Konstruktion von Datenrahmen übernimmt und
Eigenheiten unterschiedlicher Kommunikationshardware verbirgt. Eine Prototypim-
plementierung dieser Basiskomponente, die eine allgemein einsetzbare Grundlage für
verschiedene Entwicklungen im Umfeld von EIB bildet, wird ebenfalls vorgestellt.

Basierend auf dieser grundlegenden Abstraktion können weitere Module exakt
jene Funktionalität hinzufügen, die für eine bestimmte Anwendung relevant ist. Ins-
besondere wird eine Komponente beschrieben, die den Zugriff auf anwendungsbezo-
gene Funktionalität in EIB-Geräten erlaubt. Um den Nutzen dieser Schnittstelle zu
maximieren wird eine technologieindifferente, generische Abstraktion der von Gebäu-
deautomationssystemen bereitgestellten Funktionalität vorgeschlagen. Diese Dar-
stellung hat Anlagen beschränkter Größe zum Ziel. Sie erlaubt die freie Gruppierung
von Datenpunkten nach topologischen und funktionalen Gesichtspunkten.
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1 Introduction and Motivation

The term “Smart Home” has grown increasingly popular over the last years.

Although it is also associated with the aspect of using innovative building ma-

terials and techniques, mainly in order to reduce energy consumption, the key

ingredient which makes a home a “smart” one seems to be extensive automa-

tion. A home where lights and heating turn up to the preferred level automat-

ically when the tenant comes back from work or maybe even the refrigerator

sends a notice to a mobile phone to warn that its door has been left open cer-

tainly means more comfort for the average consumer. But it means even more

to high-risk groups like the elderly or disabled people. For them, it opens up

the possibility to live on their own, staying in their familiar environment. This

is of ever-increasing importance as the average population ages.

1.1 “Smart” Wiring

For this vision to become reality, it is obviously necessary to have the required

electromechanical and electronic devices like motorized windows blinds and

motion sensors installed in the first place. Wiring them the traditional way,

however, can only fulfil very basic requirements. For example, it is not possible

to have a single switch near the door which allows to turn off all lights in the

house and close all blinds.

For this, it is necessary to break the direct connection between the switches

and the devices they control. This can be achieved by installing a central unit

to which both all switches and all devices to be controlled are connected. This

control unit would contain relays to power the lights, which can be activated

and deactivated in any suitable pattern derived from the switch inputs.

This way, it is no longer one certain wall switch that closes the contact to

have a lamp supplied with power. This association is maintained within the

control unit. Separating logical from physical connections offers a high degree

of flexibility: The lamp may easily be controlled from multiple switches, each

far from the other and possibly even on another electrical circuit. In case it is

desired to have another switch control the lamp, it is no longer necessary to

1
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Actuators

Control Unit

Sensors

Bus System with Intelligent NodesCentralised System

Figure 1.1: Centralised vs. Bus-Based Automation System

physically change the wiring. For such a modification, it is sufficient to change

the set-up of the control unit.

Such an approach, however, requires considerable lengths of cable. Yet,

many of them will only carry control information. Separating it from power

distribution will significantly reduce the size of the necessary cable harnesses,

since control information can be transmitted using much lower voltage and

current and thus using finer cables. For switches, this is straightforward. For

power consuming devices, it can be achieved by separating the control relays

from the central unit.

Even then, many of these wires will only transfer one single piece of on/off

information—by either being live or not—, which is still inefficient. This can

be improved by replacing these connections with a computer network. For this,

all switches and devices have to be made intelligent by adding the necessary

communications hardware to make them self-contained network nodes. Thus,

they can share a single cable to transport all of the control information. Such a

solution is often referred to as “smart” (in contrast to “traditional”) wiring, as

it allows a maximum of additional functionality with a minimum of additional

cabling. Figure 1.1 illustrates this transition. Intelligent devices even can

maintain the bindings between cause and desired effect themselves, eliminating

the need for a central unit.

Networks like these reach out to the lowest level of automation technology

containing the sensors and actuators which directly interact with the environ-

ment, known as the field level. Consequently, they are referred to as field area

networks (FANs).

2



1 Introduction and Motivation

FANs need to transfer control data robustly in a cost-effective way. While

control messages contain only small amounts of data, challenges are to be

found elsewhere. In building automation, data have to be collected from and

distributed to dispersed stations, which only participate infrequently in com-

munication. In the automotive area, as another example, range is limited but

messages are far more frequent and often have to meet real-time requirements.

Several specialized network technologies tailored to these specific requirements

are available on the market.

Sensors collect information from the environment. In building automation,

this includes wall switches, motion and temperature sensors. Actuators allow

the automation system to act upon its environment. Which devices are to be

regarded as actuators depends on what is considered the “environment” to be

influenced. If it is the perceived light intensity or the state of the window blinds

(which would match the—unanimously accepted—stance taken with sensorics),

then individual luminaries and blinds drives would count as actuators. The

popular position is, however, to consider these devices part of the environment

and refer to their control relays as actuators.

In most field area network technologies, stations are connected to one single

cable. Due to their bus-style network topology, these designs are frequently

referred to as field buses. Many of them offer both a more flexible topology

and more complex functionality than this rigid term would suggest, however.

The European Installation Bus (EIB) is a well-established representative of this

group expressly aimed at enhancing electrical installations in buildings.

1.2 Gateways and OSGi

The additional possibilities field area networks can bring to electrical building

installations are definitely an improvement. Yet, integrating them with other

networks offers further evident benefits.

If, for example, video and audio equipment in the home are connected via

their own “home entertainment network”, interconnecting it with the instal-

lation FAN would allow the sound system to play the tenant’s favourite easy-

listening music whenever the lighting scene for relaxation is activated. The

other way round, the home theatre system may have the window blinds closed

and the lights turned down when setting to watching a film. To achieve this,

messages have to be converted between the two networks, which will most prob-

3
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Figure 1.2: Residential Gateway Using Software Components

ably be entirely incompatible. A device which accomplishes this task is termed

a gateway.

While this is already attractive, some of the most interesting capabilities a

“smart home” can offer require a connection from the devices installed within

to the outside world. Popular examples include checking whether all doors

were really left locked and closed from one’s way to work and pre-heating the

sauna while still commuting home. Again, a gateway is needed to connect the

FAN to whatever WAN (Wide Area Network) seems appropriate, be it the

telephone system or the Internet. Such a residential gateway may also provide

WAN connectivity to other local networks, forming a “bridgehead” where all

information sources converge.

This key position makes the residential gateway highly attractive to compa-

nies which see a business opportunity in selling services to the tenant via the

devices in his or her home. Unlike telephone and cable TV companies, which

still had to take care of the physical network connection of the end devices

for their services, they would leverage already existing local networks to pro-

vide services related to, for example, safety and security, electronic commerce

(like automatic replenishment for a “smart fridge”), health care monitoring or

communication.

While a number of gateways which allow the remote monitoring and control

of an EIB installation are readily available, their capabilities are fixed. Thus, it

is not possible to extend them in case the envisaged application is not covered

by any of the available products. In this case, a completely new solution would

have to be developed —even if a large part of the entire project would actually

be the same as in an existing product.

This is inconvenient for service providers. Adding more flexibility to the

gateway is not a problem technically, but will incur additional complexity.

4
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Dispatching a technician at every service subscription or cancellation is not

acceptable, let alone requiring end users to make the necessary adjustments.

Outsourcing this complexity to data centres while keeping to standard gate-

ways on-site is no panacea either, since it does not allow flexible preprocessing

and filtering of data before they leave the subscriber’s home. What is needed

is a gateway with modular functionality (as in Figure 1.2) which can be ad-

ministrated from a distance so that once the local interfaces are set-up by a

qualified technician, software modules using these interfaces can be deployed

remotely.

The Open Services Gateway Initiative (OSGi) has taken to the task of pro-

viding such an environment. It has defined an open service-oriented software

component framework where software components can interact in a defined way

and can be installed and uninstalled on demand at run-time. Although Java-

based, the software platform is designed to be usable in the resource-limited

environment of an embedded device. Since all management aspects of an OSGi

platform can be controlled remotely, it effectively enables end users to deal with

the subscription of services rather than configuration and management issues.

For an example of how such a service could look like, assume that a home

is equipped with a video intercom system for the doorbell. This intercom

system is connected to a residential gateway, which contains an OSGi service

platform. A telecommunications company may offer to extend this intercom

system to the tenant’s mobile phone in case he is not at home. When a home

owner subscribes to this service, a piece of software is downloaded to the OSGi

platform (probably for a monthly fee).

Whenever the door bell is pushed but not answered, the software opens a

connection to a back end server at the telecommunications company, where the

video and audio from the door station are processed into a form suitable for

mobile equipment. From there, they are relayed to the mobile phone, so that

the tenant may talk to the person waiting at the door as if he or she was at

home. In case it turns out to be a friend, he/she may decide to let him or her

in—which is made possible by the door lock being connected to the residential

gateway as well. The back end server may also offer to record a message in

case the subscriber is not reachable on the phone.

In a similar way, a service provider could act as a trusted agent in a home

care situation, deciding which measures to take and for whom to open the door

in case of an emergency (indicated by the patient pressing an emergency button

or telemedical monitoring).

5
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To perform its task, the software component implementing these services

needs to access the intercom system and the door opener through well-defined

interfaces. These have to be provided by appropriate driver services, as they

are known in OSGi terms. Likewise, a suitable interface for EIB devices is

needed to access their functionality.

It is important to note that it is not necessary to place an OSGi-based

gateway entirely under the (remote) control of a services provider. Although

OSGi places its main focus on this business model, great care is taken to keep

the specified environment open to alternative forms. These include placing the

entire management of the gateway into the hands of the end user. In the case

of home automation, such considerations are not only a matter of convenience,

but trust, since giving access to the devices in a “smart home” may be as good

as handing over the door key.

1.3 Benefits

Obviously, an OSGi driver service for EIB will allow OSGi-based service of-

ferings to include the capabilities of EIB devices. For a control network like

EIB, interesting applications are to be expected mainly in the areas of remote

control (including load management), device diagnostics and maintenance and

safety/security.

A service exposing the functionality offered by building control networks in

a way which is independent of the underlying FAN design would be of special

benefit. Such an interface would allow service providers to easily extend their

offerings to incorporate various control network technologies.

Outside this specific setting, OSGi still remains an open and proven platform

supporting the dynamic configuration of software components with powerful

remote management capabilities. An OSGi driver service will provide a reusable

component enabling software designers to interact with the EIB on a high level

of abstraction while retaining a small footprint for the overall solution.

Besides all kinds of experimental work, this could especially jump-start EIB

gateway development. The OSGi environment makes it easy to combine various

drivers and other application components. Thus, the modular concept of OSGi

allows gateways to provide flexible and extensible functionality and maximise

their use by integrating multiple, diverse network technologies.

Presenting the control network data in a way which allows them to be ac-

cessed by multiple client components would provide further benefits. This

6
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would make it easy to provide multiple control points from where to interact

with the devices installed—no matter whether locally or from remote. While

one service may provide a control panel on the TV set, another may choose to

present the data via a secured WWW page.

Although remote services are not (yet) of significant interest in functional

buildings, a software component for EIB access may nevertheless prove useful

in this context as well. In larger installations, it could be combined with drivers

services for higher-level backbone and automation networks to create custom

tailored gateways with reduced implementation effort.

1.4 Task and Structural Overview

The task of this thesis is to provide a solid grounding in EIB and OSGi and

investigate ways for their integration. A suitable representation of the func-

tionality provided by EIB devices to software operating on the OSGi platform

is of particular interest. Also, an implementation of fundamental functionality

to test the basic concepts in practice shall be provided, which can serve as an

extensible basis for further research and development.

Consequently, the prerequisites necessary to understanding the further expo-

sition are presented first. Chapter 2 examines the setting where the resulting

gateway software is to be placed. Here, clarification of the meaning of the term

“Home and Building Automation” is sought. Also, the scope of automation

networks in the home is discussed, with a special focus on the role of gateways.

Chapter 3 discusses the key concepts and properties of EIB. Its unique model

of communication is presented as well as an overview of the complete network

stack and aspects of configuration and integration with other networks (includ-

ing an overview of existing gateway solutions).

Chapter 4 covers the OSGi Service Platform specification, with a special

focus on related software engineering concepts and including specific challenges

when developing software for this environment. As with Chapter 3, the goal

is to give a mainly technical overview while going into enough detail to allow

understanding the design decisions taken further on.

Chapter 5 then motivates and presents the design of the base components

developed for accessing EIB devices from within OSGi environments. It also

discusses the issues surfacing when trying to bring these worlds together. The

prototype implementation of the fundamental module which unifies the han-

dling of the various physical media and bus access hardware solutions available

7
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is covered as well as an experimental concept for making the configuration of

EIB devices accessible in an open way.

Finally, Chapter 6 proposes a technology-neutral, generic representation of

narrow-band building control functionality for small to medium sized, chiefly

residential, installations. Like the interface presented in Chapter 5 hides the

details of the underlying EIB hardware, this abstraction even further minimises

the amount of context-specific knowledge needed for the development of client

services.
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2 Home and Building Automation

Webster’s Dictionary [21] provides (among others) the following, rather un-

wieldy definition for the word “automation”:

[... the] automatically controlled operation of an apparatus, process,

or system by mechanical or electronic devices that take the place of

human organs of observation, effort, and decision.

When taking a look at what people do day in, day out in all kinds of buildings,

one can easily find a number of situations where machines could step in to help,

like:

• turn off the light as you leave,

• turn down the heating as long as a window is open for airing or

• close the blinds when the summer sun blazes into the room.

To make this possible, one has to allow machines to make the necessary

interventions. For example, one has to replace manually operated light switches

with relays and install motor-driven window blinds. Besides these “organs of

effort”, one has to add “organs of observation”, like presence detectors, window

contacts, but also simple push buttons to receive explicit commands from the

user.

All these sensors and actuators have to be connected to a central automation

system (the “organ of decision”). Intelligent sensors and actuators may also

handle these decisions on their own, in a distributed way.

The choice of examples above illustrates the functions widely associated with

home and building automation—above all, lighting and window blinds; at sec-

ond thought, probably, sophisticated heating, ventilation and air conditioning

(HVAC) solutions. However, there are many more functions which can be au-

tomated: Doors can be locked and unlocked (maybe even opened and closed)

remotely or according to timer programmes. Even if remote operation of door

locks is not desired (e. g. for cost or security reasons), their state can at least
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be made available for monitoring via cell phone or from the porter’s desk to

save the trouble of having to check them personally. In a residential setting,

the dishwasher could have the TV set display a notification that the load has

finished while you were watching, or an automatic irrigation system could look

after watering the garden plants. In a larger building, the HVAC system may

automatically contact the service engineer if some part has failed.

Although the terms “home” and “building” have so far been referred to

more or less in the same breath, they have considerably different meanings

attached to them in the field of home and building automation. Here, “home”

refers to a small scale installation in residential context.1 It is most often

associated with an owner-occupied detached house or flat. “Building”, on the

other hand, is generally short for “functional building”, implying the presence

of a significantly more complex automation system. The following paragraphs

will examine some characteristic features of these two settings and explain why

gateways are essential components in both.

2.1 The Networked Home

In the home, electric and electronic devices which could potentially be inte-

grated into an automation system can be divided into several groups according

to their function:

• Lighting and window blinds

• HVAC systems, including water heating

• White goods (household appliances), like a washing machine or stove

• Brown goods (audio/video or home theatre equipment, game consoles)

• Communications equipment, both on and off premises

(intercom system, telephone)

• Information processing and presentation equipment

(PCs, Tablet PCs, PDAs, . . . )

1While this term seems reasonably well-defined, the ubiquitous “smart home” is more of
a moving target: What makes a home “smart” seems to be related to whatever aspect
of technology is currently popular. Some years ago, this was home automation, while
nowadays the focus has shifted more towards information (and infotainment) systems,
like the “smart fridge”.

10
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• Security and access control

• Safety alarm systems2

• Special domains, for example stair lifts

Technically, PCs are ideally suited for purposes of visualization, monitoring

and control. They can offer rich user interfaces for tasks like the setting up

of complex timer programmes or reviewing history logs and also have ample

processing power and data storage capability. In practice, however, the unstable

nature of a general-purpose home PC definitely warrants the installation of

dedicated control panels, if such functionality is desired.

When considering the necessary communications infrastructure, one should

not let oneself be confused by the fact that some of the above devices han-

dle high bandwidth data, like media streams. For automation purposes, only

control information is relevant3, which is comparatively narrow-band in nature.

2.1.1 The Present: Automated Devices

Within every of these groups, automated solutions are available. Many of them

are commonplace in the average first-world household and, though some are of

significant complexity, generally not perceived as something special. Time def-

initely was when washing machines were being advertised as “fully automatic”.

Yet, control data remains confined within the boundaries of individual de-

vices. Although some of them have remote sensors or detached control panels,

these are merely “satellites” of their main units. The ambient temperature

sensor for the central heating boiler cannot perform useful duties on its own,

and neither can it usually be attached to any other device to do so. The same

holds, for instance, for remote display panels available for certain “avant-garde”

white goods.4

2Security alarm systems will alert to actions with malicious intent, like burglaries. Safety
alarms provide warning in case of failing systems or accidents (strictly speaking, conse-
quences of negligence), like a gas leak or fire.

3Recall the dictionary definition on page 9.
4Alarm systems are a special case: By the nature of such systems, remote sensors have

an integral part in their overall functionality. Thus, standard interfaces have evolved,
providing a certain amount of exchangeability concerning these sensors. Yet, these inter-
faces are as simple as requiring a single electrical connection to be made or broken, and
standardization thus merely concerns permissible voltages and currents. Still, the remote
sensors are quite useless without the main unit.
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Automated event sequences encompassing two or more independent devices

are rare, and existing approaches are most often manufacturer-specific. Gener-

ally, devices are not even able to supply information to others. If they do—like

it is the case with brown goods, which routinely exchange audio and video

signals—no control interaction is involved.

Besides the communication between devices within the home, many applica-

tions could also profit from a control connection to the outside world. Today,

most households possess wide-area communications links—-at least the tele-

phone line, and to an increasing amount broad-band Internet access as well.

Yet, the lack of internal connectivity bars local devices from leveraging those

unless they are equipped with a dedicated interface. Such dial-out boxes are

currently popular with alarm systems, but not so with other appliances, since

their installation requires significant effort.

2.1.2 Making the Connection: Control Interfaces

Obviously, any automation concept promising to integrate multiple devices has

to find a defined way of accessing their functionality. Finding such an interface

can be quite demanding for more complex devices, like a washing machine.5

Fortunately, there are many devices whose function—and thus the interface—is

trivial to describe: either they are powered, or not. These simple devices are

mostly found in the field of lighting, like lamps or light switches, but also in

others, like window contacts or irrigation pumps. They can be integrated into

an automation system simply by providing a relay, which supplies or withdraws

power, or by checking whether current is allowed to flow.

This interface is actually so straightforward that its simplest implementation,

time switch adaptor plugs, are available at every supermarket. But although

the functionality of a single lamp is trivial to describe, it is not as trivial to

have many of them operate in a coordinated way. Thus, a seemingly simple

function like lighting scene memory still possesses high novelty value. A mul-

titude of products and systems are on the market, which significantly differ in

features and performance. This does not only concern whether control data are

transmitted using separate cables, via the mains network or by radio. It also

touches issues like scalability, open interfaces to the outside or the capability of

transferring more than simple on/off information, like temperature values for

HVAC control.

5Standard Interfaces for white goods are only just beginning to emerge (cf. Section 6).
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Even the simpler ones among these systems are advertised as “home au-

tomation solutions” in a way that makes it easy to overlook other aspects of

automation in the home. In contrast, when appliances offer new automated

functions, advanced as they may be—for instance, to give a state-of-the-art

example, if a dishwasher examines the dishwater for remaining food particles

and lengthens or shortens the program accordingly—, the novel feature will not

be referred to as an advance in automation.

Obviously, the term “home automation” is actually reserved to marketing

inter-device automation (in contrast to intra-device automation, as with a

washing machine) solutions. The reason may very well be that it already con-

veys the notion of automating the entire residential environment, not just a

single appliance. Still, it seldom appears in everyday usage, probably due to

its technicality.

2.1.3 The Future: Automated Homes and Remote Services

In the future, control interfaces will be standard on all devices in the house-

hold. This will allow to take advantage of synergetic effects, making the whole

installation actually more useful than the sum of its parts alone. For example,

the machinery necessary for providing lighting scenarios—a comfort detail—

can also be used to turn on all lights in case of an alarm triggered by the

security system, providing an additional burglar deterrent. Applications like

this one which bring together functionality from two or more of the fields men-

tioned above are especially rare at present. There are no established standards

to bridge the gap, and since these fields are traditionally covered by differ-

ent manufacturers, proprietary solutions cannot step in, either. Likewise, they

can be expected to increasingly communicate with the outside world, both as

transmitters and receivers of control data. This may, for instance, include an

oven which receives tailor-made cooking instructions for an instant meal via the

Internet after scanning a bar code (or RF tag) from its packaging. Certainly,

communication will not be limited to control data, but include information

and media as well (consider instructions for the preparation of the instant meal

shown in large print on a nearby display as an example).

Technically, all of this is already possible, and devices offering a significant

part of this functionality are already available on the market. Still, they are

far from being commonplace. Both product range and market can reasonably

be expected to broaden (and prices to be falling), as it was the case with cell
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phones over the last decade. When exactly this future is to become present, is

unclear, however.

2.1.4 The Role of Gateways

It would in theory be perfectly possible to have all in-home devices equipped

with the same single network technology to ensure universal connectivity. From

a practical point of view, though, it is very probable that several different ones

will be in parallel use. Three main reasons for this will be outlined in the

following.

First, different applications have different demands on their communica-

tion infrastructure. Transmitting live video, for instance, requires significantly

higher bandwidth than switching a lamp on or off. But the capability to han-

dle high bandwidth comes at the price of restrictions in other aspects, given a

fixed level of technological maturity. For transmitting high-quality live video

over a wire, one currently has the options of handling unwieldy cables (as it

is the case with twisted-pair Ethernet cable) or limiting the range of the net-

work (as with “FireWire”, IEEE 1394). Differences in requirements are not

limited to bandwidth, but also concern protocol issues. For example, mecha-

nisms to handle isochronous data (or other Quality of Service criteria) are not

necessary for control networks. Implementing features without practical value

would mean wasting resources in network nodes. Thus, although eventually IP

networks will probably reach the field level, there will still be a niche for field

area networks in home and building automation for a considerable time.

Secondly, even if applications could be based on the same network technology

from a technical point of view, one has to consider the matter-of-fact power of

market development. The device groups listed at the beginning of this section

are traditionally (and probably will be in future) covered by different manu-

facturers. Understandably, they are reluctant to give up their well-established

solutions for the benefit of a common standard. Another, more subtle, exam-

ple of such a non-technical obstacle is that insurance companies prefer security

systems to be self-contained for easier certification. This complicates using

possible synergy effects with narrow-band control applications, although these

two groups would be a fine match regarding sensors, actuators and required

bandwidth.

Third, one also has to consider the fact that the life of buildings is signifi-

cantly longer than the innovation cycle in communications technology. There

may be cases where old technologies do not offer certain desired new function-
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ality, but still perform satisfactorily. Therefore, the new technology is often

installed in parallel. For example, integrating loose goods into a home automa-

tion system would offer interesting possibilities, like vacuum cleaners which

automatically stop or turn low when the door bell rings, floor and desk lamps

which are included in lighting scenes or the ability to monitor how much power

was consumed for ironing clothes. To achieve such integration, “plug and play”

support is instrumental. Yet, current field bus designs (like EIB) only target

fixed installations, and thus neither have nor need the respective support. A

number of apt candidate technologies exist to solve this problem, which will all

be able to coexist with present-day field bus installations. Yet, which one will

become standard will not be decided any time soon.

Obviously, devices which can connect diverse networks play an essential role.

Gateways can unite different network designs to form a single “home area net-

work” without requiring all devices to use a single technology. The individual

sub-networks can be tailored to the respective fields of application (and be

provided by different manufacturers). A gateway also allows to integrate new

technologies while protecting existing investments. As a residential gateway,

it will provide wide area access to local devices. In this case, connecting it to

all in-house networks will maximise its benefit. Such benefit is not limited to

remote control. In enabling devices to communicate with the outside world, a

suitable residential gateway allows companies to offer value-added remote ser-

vices for products (like automatically adjusting the oven for preparation of an

instant meal, as mentioned in the previous section) or to retrieve maintenance

information.

Holding such a key position will, however, not only maximise the potential

benefit, but also the negative consequences in case of functional deficiencies.

The gateway has to be designed to handle the expected communication load

without being a performance bottleneck. Also, it introduces a potential single

point of failure. Therefore, it should not interfere with the operation of the

networks connected more than necessary to allow basic operation to continue

in case of such a failure. Especially with residential gateways, appropriate

privacy and security measures have to be taken, since they provide a wealth of

information and extensive control facilities in a particularly exposed location.
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2.2 Building Automation

As mentioned earlier, the term “building” generally signifies a functional build-

ing (like an office, school or hospital) and implies a larger automation installa-

tion. Here, the focus is different from the residential setting discussed so far.

While an increase in personal comfort, safety and security is seen as the main

use of a home automation system, building automation systems are installed

for the reason of economic utility.6 The ability to control and optimise the use

of a large number of energy consuming devices, allows immediate considerable

financial savings to be made.7

Besides this aspect of increasing economic efficiency through saving energy,

there is also the aspect of saving money by saving time. Examples here would

be pre-set defaults for blinds and lighting in a conference room to reduce the set-

up time for presentations or reducing the need for security personnel to make

their round by showing from the porter’s desk where in the building lights are

still on, blinds down or doors open. Finally, there are also cases where elec-

trical installations reach such a degree of complexity that building automation

systems are needed to fulfil the demands made on their functionality at all, like

in theatres or convention halls.

The list of devices which are eligible for participation in a building automa-

tion system is not different from the one drawn up for home automation on

page 10. What does differ is the relative strength of the groups (consider white

and brown goods on the one and lifts on the other hand) as well as envisioned

application scenarios (for example, integration of the home theatre system with

blinds and lighting versus escalation management of technical alarms). This

results in device groups being considered with different priority for integration

into an automation system.

As another difference, functions which can in the home be provided by single

devices will be provided by entire systems as buildings get larger (and, thus, the

complexity of these tasks increases). These systems are themselves automated

to a high degree and often use some kind of private network to connect the

participating devices.

6This also includes higher rental fees expected for “value-added” property, which is one
reason for comfort options present in functional buildings as well.

7The large scope of control is key: Although a block of flats will have considerable overall
power consumption as well, the individual flats form separate spheres of control. Yet,
one would again apply the term “building automation” if the property manager of such
a block of flats is using an automation system to centrally control the exterior lighting,
elevators or local heat distribution.
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On the whole, the considerations presented in the previous section consider-

ing the role of gateways hold as well for building automation. Yet, there is a

difference: While it is a relatively new idea to collect information at a single

point in homes, larger buildings traditionally already have such a point where

information sources converge—in most cases, this is the porter’s desk. Also,

there is less need to hand this data over to external service providers, as main-

tenance or security personnel is permanently present and can be reached using

internal communications infrastructure. There is, of course, no clear-cut divid-

ing line for these transitions as functional buildings can be of very different size

and management policies vary.

Yet, bringing monitoring and control of several building disciplines together

in one place does not automatically mean integrating them into a single, unified

management system. Doing so can increase service quality and efficiency, for

example by automatically relaying the fault notification from the HVAC system

to the pager of the resident technician. Also, it allows to create a common user

interface which will provide better usability and may also save money spent

otherwise on training necessary for the handling of different systems. Moreover,

data can easily be relayed to other locations, like the facility manager’s office to

provide a basis for calculation and planning. Obviously, gateways are needed

to provide this integration.

The use of gateways to allow the free choice of the appropriate communica-

tions infrastructure for different applications has already been discussed. An

additional consideration has to be included when dealing with large installa-

tions: Field buses are ideally suited to connect reasonably large numbers of

simple-structured devices. Yet, their performance is too limited to accom-

modate the overall amount of data generated by control events in very large

buildings, especially if all these data are to be concentrated in a single point

for monitoring. This problem is addressed by dividing the field network into

smaller units (for example, one per floor) and connecting these zones through

a higher-performance backbone network.

Thus, a hierarchy of networks emerges, which is illustrated in Figure 2.1:

The field level, which connects sensors and actuators; the automation level,

which serves as a backbone for the field level networks, but may also have

more complex devices connected directly; and the management level, which
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Field Level

Automation Level

Management Level

M
M

Figure 2.1: Network Levels in Building Automation

provides an unified top-level view.8 Gateways are needed to mediate between

the different network technologies used at these levels.

There are very small chances for this conversion to be perfect, since gateways

are by definition sitting atop the communications stack. For example, certain

information items may be compulsory on one side but optional on the other.

They will have to be replaced by default values, but requirements on both sides

of the gateway—and thus sensible default values—may change. Therefore, the

advantage of flexible and possibly modular technology is present here as well.

8This hierarchy and the level names used are those chosen by CEN TC 247, a European
standardization committee concerned with building automation. Depending on circum-
stances, different structures may be appropriate.
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EIB (European Installation Bus) is a field area network designed to enhance

electrical installations in homes and buildings. Thus, its technical concept

is focused on incorporating devices which are installed in a fixed place and

permanently connected. Main application areas of EIB solutions are lighting,

the control of window blinds and HVAC systems.

The following chapter explores key characteristics of EIB with regard to the

task of creating a gateway software component. First, an overview of core tech-

nical and organizational properties is given. Next, the group communication

model unique to EIB is introduced, which is essential to understand for being

able to combine the functionality of individual nodes into a working system.

Then, the network stack is discussed. Of the available communication media,

special emphasis is given to twisted-pair wiring. Being the physical medium

EIB was originally designed around, it is the key to understanding the proto-

col. Concerning medium independent layers, focus is placed on the semantics

of the services defined by the Application Layer. To finish off the developer’s

perspective, the available infrastructure for node development is discussed as

well as readily available solutions for the integration of EIB into heterogeneous

environments—the backdrop of an EIB OSGi driver service. The chapter fin-

ishes by looking at how EIB now forms a part of the KNX standard.

For further reference, the EIB Handbook [16] (respectively its successor, the

KNX Handbook [27]) is the authoritative source.1 Secondary literature on EIB

is almost entirely limited to German-language books directed at integrators and

installers, like [30] and [41]. While these texts go into great detail in describing

the planning, setting up and troubleshooting of an EIB system, [14] addresses

audiences more interested in technical background information.

1Key parts of the EIB Handbook covering the protocol stack are currently also available
for free download from the EIBA web site.
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3.1 Overview

The design of EIB is powerful enough to create tailor-made complex installa-

tions for large buildings. Nevertheless, it is also being marketed for upscale

home automation. Rather high component prices, however, limit its spread

in the latter field. The technology is well established in Europe’s German-

speaking countries, with a great variety of components being readily available

from multiple companies. Although their products are compatible, companies

use different brand names to refer to EIB technology in their product ranges.

3.1.1 Core Technical Properties

The clear alignment of EIB towards electric installations in buildings is visible in

a number of properties. Most obviously, devices come in housings appropriate

for this field. Rail mount housings, for example, allow them to be mounted

in a distribution box easily. Here, the standard DIN rail can be extended to

provide bus connectivity in addition to being a mechanical fixture. This is

accomplished by a piece of printed circuit board inserted into the recess of the

rail. The copper tracks this data rail provides remove the need for stringing

bus wires between devices sharing a rail.

Also, many flush mount devices are available. While rail mount housings are

frequently used for switching and dimming actuators, flush mounting is espe-

cially suited to sensors, like push buttons or a temperature adjustment knob.

With EIB, such devices are frequently split into two parts: Standard modules

providing bus connectivity (so-called Bus Coupling Units, BCUs) which fit into

a standard installation socket are combined with different application modules,

which contain the user-visible part. The necessary connector (Physical Exter-

nal Interface, PEI) is standardised as well. This principle is very similar to

the one used with conventional flush mount switches, where the same switch

mechanics can be used with various cover plates. It significantly facilitates the

creation of design variants.

These standardised housing form factors ensure that integrators have a choice

of interchangeable components by different manufacturers for most applica-

tions. This does not only offer increased flexibility when creating an EIB sys-

tem: The dramatically reduced risk of vendor lock-in also proves beneficial in

maintenance.

The bus wiring was designed to comply with the demands of professional

electricians as well. EIB uses cables which can be threaded into pre-laid con-
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duiting and allows arbitrary branching—just like the standard mains distri-

bution. Nonetheless, a fully fledged EIB installation can cover up to several

thousand metres2 and contain tens of thousands of devices, with data traffic

still remaining reasonably robust against interference. More recently, the abil-

ity to use the mains for communication instead of dedicated wiring (powerline

communication) and radio transmission3 were added to the list of available

physical media, offering alternative paths for renovation tasks and situations

where no cables can be tolerated at all. All of them can be mixed and matched

within an installation as needed.

With all currently available physical media, EIB operates at data rates

around 10 kBit/s. While this is sufficient for the applications envisaged, the

limited margin on allowable bus load demands careful planning of more com-

plex installations. Such considerations have to include the traffic generated by

individual devices as well as the total number of nodes. Certainly, more ad-

vanced transmission techniques could have allowed higher data rates. Yet, the

standard dates back to before 1990, when implementing these (provided they

were already researched) would most probably have resulted in unacceptable

hardware cost. Today, one should expect the comparatively simple design to

allow communication controllers to be sold cheaply. However, prices have been

maintaining a high level for years, and there is currently no sign of them going

to drop in the foreseeable future.

Designed to provide reliable performance, EIB is a peer-to-peer network sys-

tem. Access to the communication medium is handled using a distributed

algorithm. Likewise, the mapping between sensor inputs and desired actua-

tor actions is maintained in a decentralised way. By avoiding the need for a

central station controlling these aspects (as still present in Figure 1.1), such a

design eliminates a potential bottleneck and single point of failure. It allows

functionality to degrade gracefully in case of node failures. This is a desirable

quality in the functional areas covered by EIB. For instance, the failure of a

single light can in most cases be easily tolerated, but complete loss of lighting

due to anything but a mains power failure will not be acceptable.

2EIB is by no means intended to be a wide area network. However, a network reaching
multiple locations in every room of a multi-storey building will exhibit a considerable
accumulated lead length as well.

3Radio transmission is already defined under the umbrella of KNX, the follow-up standard
to EIB (cf. Section 3.9). Nevertheless, it is backward compatible.
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3.1.2 Organizational Background and Standardisation

Until recently, the EIB specifications were managed by EIBA (EIB Associa-

tion). EIBA was founded in 1990 by a number of European installation tech-

nology companies involved in the development of EIB to oversee the then-new

standard.

In 2002, EIB merged with BatiBus and EHS (European Home System) to

form the new KNX standard. KNX accommodates these legacy standards in an

inclusive manner. Thus, every device designed in correspondence with the EIB

Handbook [16] is automatically KNX compliant. Although EIB is now correctly

known by the name of KNX TP1/PL110 S-Mode, “EIB” will definitely stay as

a label for a specific, subset of KNX functionality for quite some time and will

be used in this manner in the remainder of this thesis.

The definitive and binding specification for KNX [27] is centrally maintained

as a consortium standard by Konnex Association. It encompasses the complete

network protocol as well as application-level interworking profiles. It also regu-

lates basic system components like transceiver ICs and BCUs. The specification

is openly available to interested parties at non-discriminatory conditions.

KNX is also documented through formal standards. The relevant family of

European Standards is EN 50090. It is maintained by CENELEC TC 205

(Home and Building Electronic Systems, HBES) in cooperation with Konnex

Association. The normative process is also coordinated with CEN TC 247,

which is concerned with building controls and has in the past also defined

standards covering EIB technology (in particular [18], which also includes the

BatiBus and EHS protocols). However, the information available by way of

formal standards will inevitably always be less comprehensive and up-to-date

than the material available directly from Konnex Association.

Konnex Association does not only coordinate further development of the

specification, but is also involved in intellectual property rights (IPR) man-

agement. This activity is necessary since implementations of the standard

will necessarily touch IPR property (i. e. patents) of companies which have

contributed material to the common specification. Konnex Members automat-

ically gain the necessary IPR licenses with no additional expenses besides the

fixed membership fee.

The association also maintains certification schemes and associated logo pro-

grammes for standard compliance of devices. For this purpose, the specifica-

tion also contains elaborate conformity test procedures on both the software
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and hardware level. Detailed minimum requirements on other basic system

components like cables and connectors are given as well.

The certification activities are not limited to devices, however. The flexibility

of EIB necessarily entails a certain complexity (and intricacy, in places). Being

able to influence the operation of the system in many aspects opens up equally

many possibilities for error. Lest large numbers of half-working EIB installa-

tions should ruin the reputation of the technology as a whole, manufacturers

(and Konnex Association as their representative) have a strong interest to see

it in the hands of well-trained professionals only. To this end, standardised

training programmes are offered. Only after passing the associated examina-

tion participants are entitled to bear the “EIB Partner” logo. These courses are

held by independent training centres, which in turn have to apply to Konnex

Association for certification to ensure an appropriate quality level. Obviously,

particularly easy access to all aspects of system configuration (maybe even to

end users) is neither necessary nor desired in this concept.

3.1.3 Configuration

For planning an EIB network and properly setting up the participating devices,

EIBA4 maintains and distributes a single, official standard PC software pack-

age. This Microsoft Windows-based software is called the ETS (EIB Tool Soft-

ware, Engineering Tool Software). The ETS assists with defining the project

in a structured way and is able to configure certified EIB devices of any man-

ufacturer regarding appropriate behaviour and communication relationships.

All of this is possible via the network, without the need for a special physical

connection to the target device. It also provides bus monitoring functions for

troubleshooting.

Compliance with this tool is a certification requirement for EIB (and KNX)

devices. Manufacturers are required to supply the necessary device descriptions

along with their hardware. Tools for their creation are provided by EIBA as

well. The ETS can also be extended by way of plug-ins, should the configuration

of a device require it. Only a minor number of devices need further, additional

set-up tools. For interacting with such external tools, the ETS supports the

export of project files.

4Despite the transition to KNX, with Konnex Association taking over all other tasks, EIBA
retains responsibility for specification, marketing and sales of the software tool set for
organizational reasons. Konnex Association is required to lay the necessary foundation
regarding standardization and certification requirements to actively promote the single
tool.
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Thus, the ETS ensures uniform handling of planning and configuration for

every certified EIB component. This vendor-neutral approach is a distinctive

feature of EIB. It makes multi-vendor systems usable in practice as it allows an

integrator to mix and match products from the entire selection available with-

out incurring excessive effort in setting up the system. Besides this obvious

advantage, a vendor-neutral configuration tool also facilitates the standardiza-

tion of trainings as well as actually holding them. It also introduces a stability

factor, offering a predictable long-term perspective.

For all its benefits, the common tool approach definitely involves trade-offs

as well. Obviously, it closes the door on competition as a possible source for

innovation and improvement. Such improvements may include alternate modes

of interaction, like a simplified mode for beginners offering fewer options—

and thus fewer possibilities for erroneous configuration. In trying to broaden

the market, various manufacturers attempt to fill this gap by offering different

proprietary configuration approaches. These allow to circumvent the ETS when

restricting the system to the specific manufacturer’s subset of EIB devices.

Further configuration abilities can still be accessed by using the ETS, if needed.

While one software tool is closely modelled on the ETS, another adopts a

more graphical approach with dramatically reduced configuration possibilities.

Other solutions entirely do without a PC, delegating configuration to a con-

troller component, which is integrated in a device providing certain runtime

functionality. In one case, this is a rail-mount actuator—which as a controller

will even automatically detect connected sensors and actuators—, while the

other is a simple control desk.

As an aside, it should be noted that due to the very nature of EIB (disregard-

ing alternative configuration approaches) the ETS project file is needed even

for minor changes to the configuration, like the switch-on time for a stairway

light, adding an additional switch or replacing it in case of failure. Without

this data, modifications will incur excessive work or even be impossible. Thus,

this project file should be considered an integral part of the system.

3.1.4 Competitors

Of the already limited number of field area network designs addressing the

domain of home and building automation, some further confine themselves to

specific aspects of the field, like DALI (Digital Addressable Lighting Interface)

[24], or only allow systems of very limited size, like X10. When narrowing the
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choice to universally applicable peer-to-peer field bus systems comparable to

EIB in flexibility and performance, LON and LCN emerge as main contenders.

LON (Local Operating Network) was designed with utmost flexibility in

mind. It should be applicable to all kinds of control systems where field bus

technology could potentially be of benefit. For example, it offers a compre-

hensive range of network media, data rates and transmission ranges. On the

protocol level, aspects like the selection of services to be supported, the pre-

sentation of data or even the address length are free to choose for the system

designer. Its communication protocol, called LonTalk, is disclosed via United

States and European formal standards [3, 18]. To denote the overall solution

built from LonTalk, various physical media definitions and the API of standard

hardware components, the “LonWorks” trademark is used.

The downside of this flexibility is that two arbitrary LON-based devices are

usually far from even being able to exchange data, let alone interpret it in a

meaningful way. To ensure interoperability in spite of these numerous degrees

of freedom, LonMark profiles prescribe a specific subset of LON technology to

be used as well as behavioural aspects. None of these requirements are laid

down as a formal standard, however. Under this umbrella, a number of in-

teroperable solutions for building automation have emerged. Still, LON-based

solutions generally require higher competence from system integrators. They

are therefore considered to be better suited to complex applications where far-

reaching control of technical aspects is required. As a result, LON technology is

very rarely applied in home environments. Nonetheless, it has definitely gained

a foothold in building automation.

In contrast to LON, LCN (Local Control Network) was developed with a

very specific focus on home and building automation. Consequently, it shares

some properties with EIB, like devices being offered in rail-mount or installation

socket compatible flush-mount housings. LCN, however, takes a quite different

technical approach in places, with the manufacturer frequently highlighting

them against (actual or perceived) weaknesses of EIB. Although some are not

necessarily the clear advantage that they may seem at first sight, LCN actually

possesses some rather interesting features.

One difference, for example, is that it does not split functions into separate

modules as it is popular with EIB. Rather, LCN uses monolithic nodes which

contain both sensors and actuators as well as logic and timer functions. Such a

module can immediately replace a conventional wall switch. However, compa-

rable sensor/actuator combinations are available for EIB as well, even if they

are not that popular. On the other hand, LCN uses a free strand in standard
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mains distribution cables for communication instead of requiring to lay sep-

arate cabling. This is actually especially convenient since four-wire cable is

popularly used for installation at any rate. LCN also embeds more information

in network telegrams, making ad-hoc modification of actuator behaviour easier.

Nevertheless, assessing the potential of LCN technology is difficult since the

specifications are proprietary and not disclosed. LCN also lacks the backing of

large component manufacturers. It is practically a single-vendor system.

3.2 Group Communication

EIB group communication allows to pass a piece of information to an arbitrary

number of receivers by way of a single message. This is achieved by making

use of a publisher-subscriber model. The sender uses a logical group address

as destination address. Receiving stations know which group (or groups) they

belong to, and accordingly either ignore or process incoming messages.

Thus, a sender does not require information which nodes will actually be

receivers of its message. Any node can elect to subscribe to a group without

the publisher knowing. Actually, it is neither necessary nor possible for a node

to determine which other nodes will act as publishers or subscribers to a specific

group address. The knowledge concerning which nodes participate in a certain

group communication relationship is distributed over all nodes in the system.

Figure 3.1 illustrates the resulting communication model. It shows how an

additional publisher and subscriber can enter a group communication rela-

tionship without any modification to the original communication partners.5

Obviously, the set-up presented would not be possible when using maintained

contact switches. Their rocker would remain in position even if the state of the

lights was changed using the other switch, creating an inconsistency. Therefore,

intelligent building installations generally use momentary contacts in switch

sensors to avoid this kind of restriction when influencing the state of an actua-

tor from multiple places. This does not only include obvious cases like corridor

lighting, but also every kind of central control functionality.

Now, one might argue that switches need not consist of two separate halves

for issuing “on” and “off” commands as they do in the example. A single

button toggling the state of the light at every press by alternately transmit-

ting “1” and “0” messages would suffice. Although this is correct, such an

5In practice, one usually would not install a second actuator for the sole purpose of con-
trolling two lamps in parallel, but of course connect them both to the power output of
the first.
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Sensors “publish” 
status updates by 
transmitting mes-
sages containing “1” 
or “0” with destina-
tion group address 
“n” when their corre-
sponding half is 
pushed

Actuators 
(“subscribers”) acti-
vate (or deactivate) 
their output when 
receiving a mes-
sage containing “1” 
(or “0”) addressed 
to group “n”

An additional switch and lamp may be installed at the worktop; if 
the same group address is used, any switch will control both 

lamps in parallel (without any change to the basic installation)


Basic installation: Switch by the kitchen door 
controls ceiling lamp

I

0

I

0

Figure 3.1: EIB Regular Operation: The Publisher/Subscriber Model

approach introduces additional complexity. It requires the switch to keep track

of the controlled actuator’s state, even if the latter is changed by another node.

Otherwise, it would again exhibit inconsistent behaviour, requiring two presses

whenever the state it assumes the actuator to be in does not correspond with

reality.

In practice, one usually would not install a second actuator for the sole

purpose of controlling two lamps in parallel, but connect them both to the

power output of the first. Extending the simple example shown in Figure 3.1,

an additional requirement shall be added which will put the second actuator

to good use: While the switch near the door should only turn on the ceiling

lamp, the switch at the worktop should turn on both lights to create ergonomic

working conditions. The switch at the worktop should however only turn off

the worktop lighting, while its counterpart near the door shall turn off both

lights, as it will mostly be used when leaving the kitchen.

Figure 3.2 illustrates how to achieve this. Still, one group containing both

actuators is needed, which can be used by the “off” half of the switch by the

door and the “on” half of the one at the worktop to switch both lights. In

addition, two new groups have to be formed with the respective actuators as

sole members. These allow the lights to be turned on and off separately. Each

actuator is now member of two logical groups.
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I

0

I

0

Group 2: Ceiling Lamp Only

Group 1:

Both Lamps

Group 3: Worktop Light Only

Door

WorktopWorktop

Ceiling

Figure 3.2: EIB Regular Operation: Group Addressing, Advanced Example

Again, the desired effect could also be brought about using single push but-

tons. This however can definitely be considered an advanced exercise requiring

in-depth knowledge of EIB. Problems like this are usually approached using

PLCs (Programmable Logic Controllers) with EIB interface.6

3.2.1 Group Objects and Shared Variables

EIB uses a shared variable model to express the functionality of individual

nodes and combine them into a working system.7 Every device publishes several

application related variables which expose specific aspects of its functionality.

They will usually either be data sources providing information to other devices,

or data sinks which carry out certain actions according to the information

received. Examples for the former would be the position of a switch; for the

latter, the control input of a relay. These application related variables are

6Instead of using a fully fledged PLC, one can also manage with a simpler variant providing
only a predefined set of certain logic functions, known as “logic modules” in the EIB
world. The key to the solution lies in the following observations (SD and SW being the
switches at the door and worktop respectively, LC the ceiling and LW the worktop light):

LW cannot be turned on using SD

Every time a press of SD results in turning off LC , LW has to be turned off, too

Thus, one can use SD to toggle the state of LW and use a logic module to echo all (and
only) “off” messages to LC . The same holds for SW , vice versa. Another variant would
be to make use of the fact that after toggling one light, the other one will always be
in a constant state (i. e. LW always off after pressing SD, LC always on after pressing
SW ). EIB switches usually can output different commands to different group addresses
at different actuation edges. Thus, they could toggle one lamp when being pushed and
force the other to its constant state when being released. While this will save the logic
module, the lamps will not switch at exactly the same time.

7Despite the state-based semantics of this model, the underlying communication is event-
based.
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referred to as group objects.8 It should be noted that these usually represent

a single value only and thus are loosely related at best to the notion of an

“object” in object-oriented programming.

Group objects of various devices are grouped at set-up time to form network-

wide shared variables. The values of all group objects assigned to the same

group will be held consistent by the nodes’ system software. Continuing the

above example, this would allow the switch to control the relay by linking the

state of their respective group objects. Group membership is defined individ-

ually for each group object of a node.

Group objects can also belong to multiple groups.9 This is a key feature

of EIB, which allows elegant realization of central functions. By including all

light switching actuators in the house in a common group besides their standard

control group, a master switch by the door can easily turn them all off when

the owner is leaving the house. In this case, however, the illusion of a purely

state-based model can no longer be maintained. Since a group object cannot

assume two—possibly different—shared values at once, it will keep the state of

the last update.

Usually, data sources will actively publish new values, although a query

mechanism is provided as well. For this, a group member which is to respond

to the query with the value of its associated group object has to be chosen

manually. There are also situations where this mechanism cannot be usefully

applied. This includes the case of overlapping groups.

No limitations exist concerning the semantics associated with the individual

group objects. This binding is entirely within the local responsibility of a node

application. Thus, the same message from a master switch may turn off a light

as well as cause a sun blind to go down.

Every group of communication objects is assigned a unique group address.

This address is used to handle all network traffic pertaining to the shared value.

Thanks to the publisher-subscriber principle, the group address is all a node

needs to know about its communication partners.

Installations will often run into large numbers of group addresses. Therefore,

it is useful to assign these using a scheme indicating the functionality associ-

ated. Usual practice is to have the four most significant bits form the main

group, while the eleven (or alternatively eight) least significant bits describe the

8Historically, group objects are also known as “communication objects”.
9Currently available BCUs allow update notifications to be sent to a single group only. This

however does not restrict the expressivity of the model, since one can always form a new
group which includes all intended receivers.
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sub group. In the case of an eight-bit sub group, the remaining bits form the

middle group. The group address 32767 therefore reads 15/2047 in two-field

or 15/7/255 in three-field notation. This division however is relevant exclu-

sively for visual presentation, not operation. Any field values (or entire group

addresses, for that matter) can be chosen freely. Returning to the example

shown in Figure 3.2, the three group addresses could share a common main

and middle group representing “Lighting” and “Kitchen”.

Figure 3.3 illustrates what was discussed so far by showing which steps are

involved in turning on a light using EIB. Simple user applications, like those

for polling a switch and operating a relay, are usually hosted by the BCU in

addition to the standard implementation of the EIB network stack. They can

use the BCU’s Physical External Interface for exchanging arbitrary signals with

the application module.

The look-up process the network stack performs concerning the association

of group objects and group addresses is simplified for the purpose of this illus-

tration: Actually, no such integrated lookup table exists, but multiple ones are

used, as will be detailed in Section 3.6.

3.2.2 Interworking

For the EIB network stack, the contents of shared variables are opaque octet

strings only. Yet obviously, all group objects of a group need to use a common

encoding to assure that the shared value will be interpreted in a consistent way.

For this purpose, the EIB Interworking Standard (EIS) defines a standardised

bit-level syntax for various variable types, including Boolean values, signed and

unsigned integers of multiple widths, time/date and floating-point values. At

set-up time, the ETS ensures that only group objects of compatible type are

combined. For this purpose, EIS also defines code numbers for various physical

units.10 Yet, no information concerning the type or unit of a shared variable is

ever exchanged over the network.

EIB devices interact by exchanging trigger information only, mostly Boolean

values. The same Boolean value may directly control the state of a relay, but

it may be used to trigger a time delay switch as well—without the publisher

knowing. Instead of being encoded in control messages, most of the behaviour

of a device is defined at set-up time (using the ETS) and stored in non-volatile

memory.

10Partially, these numbers also cover more than the mere unit, like “wind speed” (or direc-
tion) instead of simply km/h or degrees, but this is not done on a systematic basis.
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1: Wall switch 
is pushed

2: Bus Coupling Unit 
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3: User applica-
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at input port

4: User application up-
dates associated 
group object

5: EIB network stack imple-
mentation recognises 
group object update

6: Network stack looks up 
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with this group object 7: Network stack sends a value 

update request message ad-
dressed to this group

8: Network stack recog-
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Figure 3.3: EIB Regular Operation: End-to-End Overview

For illustration, Figure 3.4 shows how this is done for a switching actuator.

The top level unit governing device functionality is the application. Available

parameters and group objects depend on this choice. Application parameters

are used to fine-tune the desired behaviour. Only values which are expected to

change frequently are made available for run-time exchange via group objects,

which in this example are all of Boolean type.

By concentrating on the average case, this approach helps to keep network

traffic low at the expense of ruling out dynamic change of less-often used pa-

rameters. It also keeps the interface between applications simple, increasing

the likeliness that any two devices will be able to exchange data. Together

with the fact that individual group objects can be bound freely, it offers high

flexibility. Yet, it makes EIB rely on qualified integrators to build working

solutions by manually selecting and matching appropriate behaviour.
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Application
Program Parameters Group Objects

Switch

Logic Operation (None/AND/OR)
Contacting Behaviour (Make/Break)
Power-on Behaviour (Off/On/Last State)

Switch (in)
Logic Input (in)
Feedback (out)

Stairway
Lighting
Switch

Logic Operation (None/AND/OR)
Contacting Behaviour (Make/Break)
Stairway Lighting Duration (minutes)

Switch (in)
Logic Input (in)
Feedback (out)

Delayed
Switching

Logic Operation (None/AND/OR)
Contacting Behaviour (Make/Break)
Switch-On Delay (minutes)
Release Delay (minutes)

Switch (in)
Logic Input (in)
Feedback (out)

Figure 3.4: EIB Example Device: Switching Actuator

For the most part, EIS does not standardise any behavioural aspects. It does,

however, define profiles (referred to as “types”) for the control of actuators for

light dimmers and sun blind drives. Their definitions each describe a set of

interacting shared variables, called sub functions. For “Dimming,” these are

Position: A Boolean value; turns off the dimming actuator or sets it to full

brightness

Value: A 8-bit unsigned integer value; sets the actuator to the given output

level (0 . . . off, 255 . . . full brightness)

Control: A signed integer value (−7 . . . +7); every message increments or

decrements the output set point (also an 8-bit unsigned integer) by 2|n|+1.

The actual output value is to approach the set point at a rate of 64 units/s.

A zero control message will stop such a transition at the currently present

value.

Devices implementing this profile will usually also allow the integrator to define

differing behaviour, for example to assume the last brightness value when being

switched off and on again instead of going to full brightness.

The EIS type “Drive Control” has the following two sub functions, both of

which are based on Boolean values:

Move: Sets the blind into upward or downward motion (respectively causes it

to open or close, if it operates in horizontal direction).
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Step: While the blind is moving, any message shall cause it to stop; after being

stopped, messages shall cause short-timed gradual upward or downward

movement. This type of movement is usually associated with adjusting

the slat angle.

Rather than actually modelling the behaviour of a drive actuator, this profile

seems to have been created with the intent of supporting the popular behaviour

of wall switches for sun blind control. These often consist of a double throw

rocker and will set the sun blind into opening or closing motion after a long

press. Any short press will stop the motion. A variant is to have the blind move

only while the rocker is being held down and stop as soon as it is released.

In either case, further short presses will adjust the slat angle. The two sub

functions correspond immediately to these long and short actuations.

Contrary to the general high-level communication model of EIB, the Control

and Step sub functions do not follow state-based semantics. With these sub

functions, actuator behaviour is not associated with the current value of a

shared variable, but with the individual messages otherwise used for delivering

value updates. In this event-based model of communication, two (or more)

subsequent updates to a group object containing the same value are no longer

automatically idempotent.11

There is no obvious, compelling reason for this decision. For example, the

command for relative set point change provided by the Control sub function

could be replaced by an “in-motion” state (possibly even including the desired

dimming speed) comparable to the Move sub function. It can be assumed that

an event-based approach simply seemed more convenient to the designers of

these profiles.

With one exception (which will be detailed below), these profiles do not

provide for retrieving status information. Unlike with a simple switching

actuator—without time delay functionality—, querying the inputs will not help

either. With the command-oriented sub functions, there simply is no state

which could be queried. The drive Move sub function does not provide very

much interesting information. It will only reveal the last direction the blinds

were moving in; they may have reached the end position or may have been

stopped in midway. The group object associated with the Value sub function

is not required to be updated when the output level changes.

The exception mentioned is the Position sub function. The group object

associated with this sub function is required to change its state to “off” when

11They still can be, as in the case of multiple Control stop messages; but this depends on
the semantics of the individual control event.
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the actuator output level goes to zero in response to control activity on the other

sub functions. Likewise, it shall change to “on” on every transition from zero

to a non-zero brightness. This status is not only intended for query purposes,

but also for active transmission on every such change.

While this seems appealing at first sight, such a bidirectional communication

object requires especially careful attention when designing the communication

relationships of an EIB system. As an example, consider a lecture hall equipped

with separate lights for the lecturer’s desk and the auditorium. These are to

be dimmed independently. In addition, a master switch shall be provided to

quickly turn on or off both lights. This can be achieved in a straightforward

manner by forming three groups. While two of them connect the Control sub

function of the individual dimming actuators to the switches controlling them,

the third includes both Position sub functions and the master switch.

Now assume a pilot light showing the state of the desk light is to be added

near the master switch since it is hard to see whether it was left on from this

position on a bright day. Simply allowing the desk light dimming actuator to

transmit its Position status and include the pilot light with the master switch

group may seem the obvious solution at first sight. Yet, this way the status

information will not only control the pilot light, but the auditorium light as

well. The latter will, for example, be forced to full brightness whenever the

desk light leaves the “off” state. Thus, a separate group has to be formed.

Very probably to reduce the potential for such errors, the EIS suggests to

keep group objects unidirectional (i. e. either data sources or sinks) and provide

separate group objects for any status output. It is likely that the design of the

EIS dimming profile preceded the inclusion of this recommendation.

3.3 The OSI Reference Model

Since sending messages over a network is a complex issue, it is useful to break

it up into a hierarchy of multiple layers providing subsequent abstractions.

The OSI (Open Systems Interconnection) Reference Model [25] was developed

by ISO in the late 1970s to provide a guiding principle for developers, the

intention being that designing communication systems according to a common

model should facilitate data exchange between them. Although it is heavily

influenced by the (then dominating) structure of telephone networks and does

not map well to today’s computer networks and programming practices in many

aspects, it is still a valuable and accepted reference for discussing the structure
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of a communications system. Nevertheless, it is common consent that the OSI

model should not be taken as a straight-away model for implementation. Since

EIB is aligned with the OSI model, this section will introduce some of its key

concepts and terminology for use in the following sections covering the EIB

protocol. For a more detailed discussion, see (for example) [44].

As is widely known, the OSI reference model uses seven layers, summarized

here in bottom-up order:

• The purpose of the Physical layer (1) is to transfer single bits over the

communication medium. Here, the physical properties of the communica-

tion medium (including connectors) and signalling method (for example,

voltage levels) are of interest.

• The Data Link layer (2) provides point-to-point connections between two

stations and is concerned with issues like medium access control.

• The Network layer (3) handles routing. Its duty is to determine which

of the potentially many ways possible telegrams should take through the

network to reach their destination.

• The Transport layer (4) is responsible for providing reliable end-to-end

connections between sender and receiver.

• The Session layer (5) is associated with issues like user identification and

authentication and the management of the possibly multiple parallel or

subsequent connections associated with a communications session.

• The Presentation layer (6) handles issues of data representation and en-

coding.

• Finally, the Application layer (7) offers services of immediate use to the

application. Depending on the envisioned use of the communication sys-

tem, this could be file transfer, electronic mail, turning on and off a light,

or modifying a piece of virtual shared memory.

Layers 5 and 6 did not become very popular with network designers for

various reasons. For EIB (as with many others), they are left empty. Repeaters,

bridges, routers and gateways connect network segments or different networks

at the Physical, Data Link, Network and Application layer, respectively.

Every layer provides a precisely defined set of services to the one above it.

To implement them, it will in turn make use of the services of the layer be-

low. This way of communication defines the “physical” path data units take
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Layer N

Layer N-1

N-PCI N-SDU

N-PDU = (N-1)-User Data

N-User Data

(N-1)-SDU(N-1)-PCI

(N-1)-PDU

(N-2)-SDU

Figure 3.5: The OSI Model: Data Units

and only takes place between adjacent layers. Conceptually, however, any

layer communicates with its peer layer in the remote communication partner

only. The particular protocol they use is not of concern to layers above and

below.12 Thus, communication systems built according to this model will con-

tain a “stack” of independent protocols. The popular terms protocol stack and

network stack have their origin here.

The data units exchanged at layer N are referred to as (N)-protocol data units

or (N)-PDUs. They contain the protocol control information (PCI) needed by

the peer layers to contain their joint operation. In most cases, they will also

contain user data transmitted on behalf of the higher layer (or application).

The PCI is usually attached to these service data units (SDUs) as a header,

or sometimes also trailer. PDUs are exchanged with the peer layer using the

services of the next lower layer (N-1), which for its purposes will regard them

as SDUs. Figure 3.5 illustrates this process. Layer 2, 3, 4 and 7 PDUs are

usually referred to as Frames, Packets, Telegrams and Messages, respectively.

Service users and service providers (neighbouring higher and lower layers,

respectively) interact by exchanging service primitives. These are:

Request (.req), made by the service user to invoke a function,

Indication (.ind), issued by the service provider to indicate an event, possibly

a remote request,

Response (.res), sent by the service user to answer a remote request, and

Confirmation (.con), returned to a service user upon receipt of a response.

12The OSI reference model does not define any protocols. While such were published as
separate standards, they have never taken hold.
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Figure 3.6: The OSI Model: Service Primitives

When a service involves the exchange of all four primitives, as shown in

Figure 3.6, it is referred to as a confirmed service in OSI terms. A service which

does not include a response from the remote service user (and consequently, no

confirmation), is called an unconfirmed service.

The EIB specification extends this scheme by introducing additional types of

confirmations. In addition to a response from the remote service user, these can

be based on a response of the remote peer layer or simply the local lower layer

confirming the successful execution of the request (called a local confirmation).

The service user will receive a confirmation after every request. Moreover,

a local confirmation for responses is added. Unfortunately, the specification

documents do not refer to the resulting possible modes of communication in a

consistent manner.

Primitives are invoked through uniquely identifiable service access points

(SAPs). A service can provide any number of SAPs. The SAP it is issued at

is implicitly associated with a primitive. This concept becomes clearer when

thinking of SAPs as phone sockets of a private branch exchange, which are

associated with specific extension numbers.

3.4 Twisted-Pair EIB

The mainstay physical medium of EIB is twisted-pair (TP) cabling. A single

wire pair (2 x 0.8 mm diameter) is used for both data and power transmission.

Although recommended, shielding is not mandatory. Proper sheathing and

resistance against mechanical and thermal stress is required for EIB certified

cables to allow them to be threaded into pre-laid conduiting, in immediate
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Figure 3.7: EIB Network Topology

vicinity of the mains wiring. Still, SELV (Safety Extra-Low Voltage) conditions

are maintained on the EIB network itself.

3.4.1 Topology

The physical segments of an EIB network are called lines. A line can accom-

modate up to 256 devices in free topology. Loops are permissible, but should

be avoided. Terminating resistors are not required. The maximum allowable

accumulated cable length of a line is 1,000 m. Since EIB networks provide link

power, one bus power supply unit (BPSU) per line is required. BPSUs contain

a 30 V DC supply and a choke for signal shaping.

Since the original EIB specification (referred to as TP64 ) allowed only 64

devices per electrical segment, devices with two segment connections forwarding

all messages in both directions were introduced. Thus, a line would be made up

of up to four electrical segments. Although more of a bridge in OSI terminology

since they buffer telegrams, these devices were termed line repeaters. With

the current TP256 specification, lines coincide with electrical segments. Line

repeaters can still be useful in special cases to extend the overall length of a line

up to 4,000 m or even further if non-standard—yet compatible—solutions like

fibre optic transmission are used, which are offered by certain manufacturers.

Lines can be connected by routers (referred to as couplers) to form a tree

structure, as illustrated in Figure 3.7. Up to 15 lines (in this case frequently

referred to as sub lines) can be connected by a main line to form a zone. A

maximum of 15 zones can in turn be coupled by a backbone line. No loops are

38



3 EIB

allowed.13 Usually, levels of this hierarchy will be matched to the division of

a building (or complex of buildings) into its structural elements like individual

buildings, staircases, floors, offices, apartments or rooms. Overall, an EIB

installation can accommodate more than 60,000 end devices.

Couplers will only forward messages which would not reach their destination

otherwise. Thus, locality of information is exploited to reduce the overall load

on the network by segmentation. This is not sufficient, however, if central

monitoring and control of the entire installation is desired. In this case, the

amount of traffic flowing to (and possibly from) the monitor station will quickly

exceed the load limit of the EIB network on the backbone line. The obvious

solution is to switch to a higher-speed backbone connection. For this purpose,

methods for tunnelling of EIB data frames over Ethernet (EIBnet) [19] and

arbitrary networks using the Internet Protocol (EIBnet/IP) are included with

the EIB specifications.

3.4.2 Standard Message Cycle

Stations share the communication medium by way of asynchronous time di-

vision multiplexing. The contention protocol used is CSMA (Carrier Sense/

Multiple Access) with bit-wise arbitration.

EIB employs balanced baseband signal coding. A logical “0” is encoded as

a negative voltage imprinted on the DC supply voltage, created by a current

pulse within the sender. It is always followed by a positive compensation pulse

supplied by the BPSU choke, yielding a constant component free signal cycle

overall. A logical “1” is identical with the idle state of the transmission medium.

Thus, the transmission of a logical “0” will always dominate the medium.

A sending station will always examine the state of the bus line in parallel

(listen-while-talk). In case it encounters a “0” value it did not transmit, it

assumes a collision and cancels the transmission. The other station can continue

its transmission undisturbed.

Data are transmitted with a rate of 9.6 kBit/s, yielding a bit time of 104 µs.

Figure 3.8 illustrates the timing of the Layer 2 message cycle. Data frames are

of variable length. After a pause of 15 bit times, the receiving node responds

with an acknowledgement frame. It consists of a single character containing

information whether reception was successful, erroneous or unsuccessful since

13Strictly speaking, though, the hierarchy is only tree-like since sub lines may be attached
to the backbone directly. This rather odd feature should not be used in practice and has
been omitted from the illustration.
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Figure 3.8: Medium Access Timing for Twisted-Pair EIB
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the receiver was too busy to process it. Before any station may attempt to

transmit another frame, the line has to be kept idle for at least 50 bit times.

Stations intending to send a message with standard or low priority have to

wait for three additional bit times, giving precedence to messages with system

or high priority and frames repeated due to negative or missing acknowledge-

ment. In the latter case, it is usual practice to re-send the frame up to three

times. Acknowledgement frames (also referred to as immediate acknowledge-

ment) are associated with the Data Link layer and significant for communi-

cation on the same electrical segment only. Couplers will therefore positively

acknowledge every frame they pass on, buffer it and autonomously repeat its

transmission on the other interface, if necessary.

3.4.3 Format of the Standard Data Frame

Twisted-Pair EIB makes use of character-oriented asynchronous start-stop sig-

nalling. Characters contain eight data bits, even parity and one stop bit (8e1)

and are always followed by two idle bit times.

The format of the standard data frame is shown in Figure 3.9. The char-

acter corresponding to octet 0 is sent first (corresponding to the direction of

reading). Within every octet, however, individual bits are sent in ascending

order of significance, i. e. from right to left when looking at the illustration.

The illustration also specifies the OSI layers associated with the functionality

supported by its various fields.
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Octet 0 contains the frame priority, which was already mentioned. Priority

bit patterns are chosen so that frames with higher priority will win the arbi-

tration cycle over ones with lower priority. The repeat flag marks frames which

are retransmitted due to the sender not receiving a positive acknowledgement.

Without this information, a receiver could not tell a repeated message from a

mere duplicate in case it received both messages intact. This can, for example,

happen when the acknowledgement frame is destroyed.

EIB uses two distinct types of station addresses, individual (also referred to

as physical) and group. The frame source address will always be an individ-

ual address, while its destination may be specified as an individual or group

address.

The individual address of an EIB node is closely related to its position within

the topological structure of the network. It specifies the number of the zone

and (sub-)line the device resides in as well as its device number within the

line. Zero values in any of these fields designate special entities: Line couplers

(device number is zero), main lines (line number is zero), backbone couplers

(line and device number are zero) and the backbone line (zone and line numbers

are zero).

Since individual addresses are unique within an installation, any collisions

will be resolved after the transmission of the frame source address is completed.

The individual addressing scheme is maintained on other physical media sup-

ported by EIB as well to ensure a consistent topological view. Especially on

open media like Power Line, however, this topology will only be logical instead

of both logical and physical as with twisted-pair cabling.

Group addresses are purely logical identifiers. Stations privately maintain a

list of groups they are members of, comparing destination addresses of incoming

frames against it to determine whether they are addressed. Every device is

member of group 0, which is used for broadcast messages. In case of a group

as destination address, multiple acknowledgement frames may be returned.

Since they will be superimposed on one another, acknowledgement character

bit patterns are chosen specifically to ensure negative acknowledgements will

overwrite positive ones. Identification of duplicate frames by way of the repeat

flag is especially important in this case, since a single addressee (which may have

been busy) returning a non-positive acknowledgement will cause the sender to

retransmit. Yet, all others may have received the frame in perfect condition.

For frames with an individual address as destination, couplers can immedi-

ately determine whether an incoming frame is to be forwarded to the other line

by comparing their own individual address with the frame destination. For
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frames addressed to a group, they maintain a routing table which is automati-

cally created by the ETS.14

The routing counter ensures that a frame will appear in seven physical seg-

ments at maximum to avoid frames circulating endlessly due to errors in the

network set-up. Its initial value (usually six) will be decremented by every cou-

pler (and line repeater) passing on the frame. Frames whose routing counter

is at zero will not leave the segment. The special value of seven is never decre-

mented, allowing to disable this mechanism for diagnostic purposes. Apart

from properly initializing the routing counter, the OSI network layer is empty

for EIB end devices (i. e. devices other than couplers and line repeaters).

Finally, the length field specifies the size of the Network Layer Service Data

Unit (N-SDU), which can be one to 16 octets. The frame is concluded by

the check octet, which contains an odd horizontal parity value calculated over

all preceding frame octets. Together with the even vertical parity information

contained within the protocol characters it enables the receiver to perform

cross parity checking. This way, arbitrary double-bit errors can be detected.

In principle, correction of single-bit errors is also possible, but not performed

by current communication controllers.

3.4.4 Other Frame Formats

The standard message frame presented is, although by far the most frequent,

not the only format possible. All formats use the same control octet, but

with different values for the two most significant bits. “00” at this position

identifies an extended data frame, which extends the maximum permissible

frame length beyond the 23 character limit and contains additional type bits

for future protocol extensions.

Poll requests (“11”) allow a station to request status data from up to 15 other

nodes with minimal protocol overhead in master/slave fashion. All participat-

ing devices have to share the same physical segment, and the data returned

are limited to one character each. Responses have to be sent in a narrow time

slice following the request frame (the message cycle can be roughly likened to

a standard data frame with multiple subsequent acknowledgement characters).

Every slave station is assigned a constant, specific position in the answer se-

14This table cannot be built automatically, since no service exists which would allow to
determine the individual addresses of group members. No services using group addressing
are acknowledged on higher layers than Layer 2, which would be the prerequisite for an
“auto-learning” router. Given the static structure of EIB communication relationships,
there also is no need for such a function.
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quence (“slot number”). The master station inserts fill characters for slaves

which fail to respond to ensure synchronisation. Polling groups are especially

useful for high-frequency liveness checking of sensors in security applications,

and are only supported on twisted-pair EIB.

3.5 Other Physical Media

Powerline (PL) EIB uses the existing 230 V mains wiring as its transmission

medium. Data are transmitted on the phase and neutral conductors using

spread frequency shift keying (SFSK) with a middle frequency of 110 kHz. A

logical “0” is encoded by injecting a 105.6 kHz sine wave, while a frequency of

115.2 kHz corresponds to a logical “1”. Data Link layer octets are transmit-

ted as 12-bit characters, with the additional four bits being utilised for error

correction. The data rate used is 1200 bits/s.

Since senders cannot dominate the medium, access conflicts cannot be re-

solved during transmission. Thus, EIB-PL uses a CSMA/CA (Carrier Sense/

Multiple Access with Collision Avoidance) mechanism which strives to min-

imise the chance for collisions from the outset. This is achieved by requiring

stations to obey additional graduated, randomly chosen waiting periods before

starting transmission.

The frame format adds some medium specific extensions to the TP frame.

The latter is prepended with a 4-bit training sequence for input gain control

and a 16-bit preamble necessary for medium arbitration. The TP frame is then

followed by a 16-bit domain address, the upper 8 bits of which are reserved.

The domain address (also referred to as system ID or installation ID) al-

lows to subdivide the physical network—i. e. the mains cabling—into logically

independent medium instances. Ideally, however, it should only be used in ad-

dition to physical separation by band-stop filters for privacy and performance

reasons. Other than that, the addressing scheme is identical with twisted-pair

EIB. Zone and line number of individual addresses are usually referred to en

bloc as the subnetwork address.

With EIB-TP, multiple acknowledgement frames returned in response to a

data frame using group addressing are superimposed onto one another. This is

not possible on the powerline medium. Therefore, a single group responder has

to be selected during set-up for providing the immediate acknowledgement.15

15Note that this setting only concerns the Data Link layer. It is not related to the selection
of appropriate responders to queries for the state of shared variables.
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For installation of EIB-PL on a triple phase mains network it has to be

ensured that data frames can also be received on devices connected to another

phase. This can be achieved either via a passive element (phase coupler) or an

active repeater. The EIB-PL repeater will echo frames which are not followed

by an immediate acknowledgement to all three phases. Since this will include

the one where the transmission originally originated, it has to be considered

in the message cycle. In an installation containing a repeater, transmitting

stations do not automatically resend frames for which they receive no Layer 2

acknowledgement, but first wait for the repeater to do so.

When powerline is used as a supporting medium in a twisted-pair EIB instal-

lation, PL subnetworks are usually included at the level of sub lines, with TP

being used for the upper hierarchy levels. In this case, it is useful to separate

PL subnetworks with band stop filters for performance reasons even if they

share the same domain address.

Besides powerline, radio frequency (RF) signalling can also be used as an

alternative transmission medium. The first EIB-RF design was completed and

ready for production at the turn of the millennium, but was never standardised

since the responsible company decided to withdraw from the field of home and

building automation. Today, it is of historical interest only. Since 2003, the

KNX standard includes a completely new design for the RF medium, which can

also be used to augment existing EIB systems. It uses an extended addressing

scheme which differs significantly from twisted-pair EIB, but an automatic

translation scheme is provided for integration. This standard also provides for

unidirectional devices to enable the construction of low-cost, battery powered

sensors.

Regarding standardisation of the use of infrared (IR) light as a physical

medium, only a draft document exists. Besides providing a bidirectional mode

(which relays standard TP frames over an IR link with minimal modifications),

it specifically addresses the needs of remote control handsets.

For both RF and IR transmission, various proprietary solutions offering tight

integration with EIB are readily available. It should however be noted that all

these additional physical media, even if they allow devices to connect without

explicitly setting up a physical connection, will not make EIB a “plug and play”

system since it still lacks the necessary protocols.
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Figure 3.10: EIB Network Stack and Application Environment

3.6 Medium Independent Layers

The EIB protocol stack is aligned with the OSI model. Its structure is illus-

trated in Figure 3.10. The Session and Presentation layers are left empty, as

it is frequently the case with field area networks. Beyond the OSI Application

layer, EIB offers a standardised application environment, referred to as “User

Layer”.

3.6.1 Overview

The design of EIB is based on the assumption that regular operation will fre-

quently include addressing groups of communications partners simultaneously.

Consequently, logical group addressing based on the publisher-subscriber prin-

ciple is provided on the lowest layer possible, making it a native protocol fea-

ture. Medium access control and frame format on twisted-pair cabling as well

as the publisher-subscriber principle have already been introduced in Sections

3.2 and 3.4.

The necessary table of group addresses a node is subscribed to is maintained

by the Data Link layer as well. Incoming frames will be passed to upper layers
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when their destination address appears in this table or matches the individual

address of the node.

The Transport layer provides broadcast, multicast and unicast unreliable

datagram services as well as reliable point-to-point connections. Multicast and

broadcast services are implemented on top of the group addressing facility of

Layer 2, while the remaining services use individual addressing. All datagram

services rely on the best-effort semantics offered by Layer 2 and are restricted

by its maximum frame length.

While Layers 1 to 4 implement protocol functionality, the purpose of the

Application layer is to define end-to-end semantics of services for maintenance

and regular operation, which will be detailed in the following passages. Ser-

vice requests by and responses from the Layer 7 user are mapped to Protocol

Data Units and passed to the peer Application layer of the receiver by way of

appropriate Transport layer services. Likewise, incoming PDUs are mapped to

appropriate indications and confirmations.

The User layer places an additional level of abstraction between Layer 7 and

the user application. On the one hand, it eases the handling of shared variables,

allowing the user application to use them in a way similar a local variables,

while being notified on external updates. On the other hand, it autonomously

handles incoming network management calls, allowing application programmers

to concentrate on the actual application. Conceptually, this functionality is

broken up into a number of Server entities.

3.6.2 Horizontal Run-Time Communication

This part of the Layer 7 provides two services for the communication between

sensors and actuators according to the shared variable model (as described in

Section 3.2). They use the Transport layer multicast facility (which in turn is

based on Layer 2 group addressing).

GroupValue Read is a confirmed service to retrieve the current value of a

shared variable from the network. GroupValue Write is an unconfirmed service

to indicate to group members that the value of a shared variable has changed

and provide them with the new value.

Application layer primitives refer to group objects only, which therefore act

as Application Layer Service Access Points (A-SAP). The association between
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group objects and group addresses is maintained by Layer 7.16 This clearly

separates network management issues (i. e. communication relationships) from

application functionality. In the following, the service primitives involved are

introduced.

GroupValue Write.req causes the network stack to transmit the value associ-

ated with the A-SAP for perusal by interested subscribers. It is usually

invoked whenever this value has changed.

GroupValue Write.ind informs the Layer 7 user that a value update for a

certain A-SAP was received.

GroupValue Read.req causes the network stack to transmit a poll request for

the value associated with an A-SAP. Any number of responses (including

none) can be expected. These may also contain differing values.17 The

system integrator is responsible for ensuring useful responses by select-

ing a single station—which can be assumed to be in possession of the

correct value—to answer. For this purpose, Layer 7 users may ignore

GroupValue Read indications.

GroupValue Read.con informs the Layer 7 user about the value associated

with an A-SAP as seen by another group member. It corresponds to

GroupValue Write.ind, but does not imply that new information is

available. It The GroupValue Read.req which caused the activation of

this primitive need not have been issued locally.

GroupValue Read.ind informs the Layer 7 user that a request for the current

value associated with an A-SAP was made by another node. It is free to

answer (or ignore) the request.

GroupValue Read.res corresponds to GroupValue Write.req, but is only

sent in response to GroupValue Read.ind.

3.6.3 Network Management

Commonly, the term Network Management is used to describe the making

of all necessary provisions for transmitting data actually useful from a user’s

16Actually, the Application layer does not directly operate on group addresses, but on Trans-
port layer SAPs. These identifiers are mapped one-to-one to group addresses by Layer 4.
This additional level of indirection is necessary for implementation reasons only.

17This is due to the fact that group objects may be associated with multiple groups, as
discussed in Section 3.2.
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perspective. In the EIB management model18, a distinction is made between

management procedures whose semantics are sufficiently defined by Application

layer services and others which demand specific knowledge about the internal

structure of the device being managed. The latter are referred to as Device

Management functions. Implementation independent network management is

effectively restricted to the assignment of individual addresses.

IndividualAddress Write allows to set the individual address of a node.

The desired value is transmitted via broadcast. Usually, the node to be affected

is designated manually by pressing a button on this device, which will cause

it to enter so-called programming mode. Devices not in programming mode

will ignore the telegram. A variant of this service identifies the target node

by including its unique serial number in the telegram. Corresponding services

exist to read out the individual address of devices placed in programming mode

or possessing a certain serial number.

The purpose of Memory Read and Memory Write (on unicast connection-

oriented communication relationships) is to read respectively to modify the

content of memory locations within the communication controller. DeviceDe-

scriptor Read provides a unique identifier for the implementation structure

of a target device, which specifically includes memory locations of management

resources like the group address table.

Optional corresponding services (UserMemory Read and Write) exist to ac-

cess memory in an external application processor in cases where the user ap-

plication is not hosted by the BCU. By way of these services, a logical ad-

dress space of 64 KB can be addressed. Mapping of these logical to actual

memory locations is within the responsibility of the application processor.

UserManufacturerInfo Read serves to identify the associated memory map

in this case.

Traditionally, management resources were solely accessed by directly writing

to the memory of the communication controller using these services. On current

communication controllers, these resources can be accessed in a more structured

way through the use of interface objects.

3.6.4 Interface Objects

EIB interface objects serve to provide access to management resources in an

implementation-independent way. Instead of requiring data points (called prop-

18Although being aligned with the OSI model, EIB—like all networks in widespread use
today—does not attempt to implement the OSI network management model.
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Figure 3.11: EIB Interface Objects

erties) to reside at specific memory locations, it allows a property client to refer

to them via standardised IDs. This will typically be a PC based tool or con-

troller, but could as well be the local user application. Properties of related

functionality are grouped into objects. The resulting structure is shown in

Figure 3.11.19 Every property ID implies certain semantics associated with

the property value. For example, property ID “12” holds the manufacturer of

the device. This information is encoded as an 8-bit unsigned integer, which is

uniquely associated with the name of the manufacturer.

The value of a property is retrieved by passing its object index and prop-

erty ID to the PropertyValue Read service. To determine which interface ob-

jects are available, the property client iterates through object indices, retrieving

the object type by requesting the value of the property with the well-known

ID 1. While the meaning of property ID 1 is (obviously) independent of the

object type, other property IDs may be unique to a specific object type.

For every object type, a basic set of mandatory properties is specified, which

the property client can immediately access by stating their ID. Modifications

are possible using the PropertyValue Write service, which works in analogy

to PropertyValue Read.

For information about additional properties available, the property client

can step through property indices, passing them to the PropertyDescrip-

19Note that property and type IDs shown are partially fictitious and for illustration only.

49



3 EIB

tion Read service. Meta data returned include both the property ID and a type

identifier which allows to correctly display the value data even if the property ID

is unknown. This self-description mechanism reduces the a priori knowledge

necessary to interact with a yet unknown device and thus significantly improves

ad-hoc management.

Access to properties can be secured by assigning them access levels. Every

access level is associated with a single, static 32-bit secret key, which has to be

presented by a property client before access is granted. In this case, connec-

tion oriented access is necessary while otherwise properties can be accessed on

connectionless communication relationships as well.

System interface objects are related to system management and include the

Device Object—holding general information like the device serial number—,

the Address Table Object, the Association Table Object and the Application

Program Object.

In addition, every device can provide any number of application interface

objects related to the behaviour of the user application. On the one hand,

their properties can hold application parameters that are normally modified

during set-up time only. On the other hand, they can contain run-time values

normally accessed through group objects.

Although this facility could in principle also be used for horizontal commu-

nication (i. e. between sensors and actuators), no situation is conceivable where

this would be of benefit. Instead, this mode of communication is intended for

vertical access. For example, it allows a central monitoring station to retrieve

parts of the process image spontaneously. When using group objects, this de-

mand would have to be prepared at set-up time by establishing a proper group

communication relationship.

3.7 Node Development

Standardised communication controllers—BCUs—have a key role in enabling

uniform handling of devices by ETS. Therefore, they are highly relevant to

system developers as well.

When targeting the development of a new field device (sensor or actuator),

BCUs and BIMs (Bus Interface Modules) provide a convenient platform. They

implement the network stack including the User Layer and can also co-host

simple user applications. This allows to create new applications without get-

ting involved with the details of network communication more than absolutely
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necessary. Both commercial and open-source IDEs (Integrated Development

Environments) are available.

BCUs and BIMs are based on MC68HC05 and MC68HC11 family microcon-

trollers, which are pre-loaded with EIB system software. Their digital I/Os

and analogue inputs are connected to the standardised 10-pin PEI connector.

While BCUs come with housing and EMC20 shielding, BIMs do not, allowing

for tighter integration into manufacturer-specific solutions. Available versions

vary in EEPROM and RAM size (which, for example, affects the maximum size

of the group address table) and execution speed. Also, two system software

variants exist, which mainly differ in that System 1 does not support inter-

face objects. Also, System 2 employs more complex load control procedures

for management resources, like the application program. For high-volume de-

signs, the transceiver ICs and microcontrollers used in BCUs and BIMs are also

available separately.

Since the processing power of a BCU is limited, more complex user applica-

tions have to be run on a separate microprocessor. In this case, the application

processor can access all EIB-related functionality provided by the BCU (includ-

ing support for group objects) using the PEI as a serial interface. Alternatively,

the processor can implement the entire communication stack down to the MAC

(Medium Access Control) sub-layer itself, using a standard transceiver IC for

connection to the EIB medium. Especially the Layer 2, however, is complex to

implement, not at least due to its tight timing requirements. This also entails

high certification costs.

Therefore, the TP-UART IC offers a more convenient solution. It interacts

with the application processor on the level of Layer 2 frames via an asyn-

chronous interface (UART). Of the Layer 2 services, only the determination

whether its node is being addressed or not is left to the application controller.

While use of the TP-UART will significantly soften the timing constraints to

be met, they are not removed entirely. For example, the application processor

has to respond whether an acknowledgement frame is to be generated within

less than 1.7 ms of receiving the destination address. This is due to the fact

that the TP-UART just relays frames without further processing or buffering

(except to compensate for speed differences between the EIB and the applica-

tion processor interface). As a positive side effect, this offers more flexibility

regarding the frame format. For example, whether a frame is in standard or

extended format is entirely irrelevant to the TP-UART.

20Electromagnetic Compatibility
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Certified software implementations of the remaining EIB protocol stack are

available for MSP430 and AT-Mega microcontrollers. These will also provide

standardised “device models” which allow the ETS to handle the configuration

of nodes built around this solution. Essentially, this amounts to an emulation

of BCU behaviour.

For applications with even higher demands on processing power or on the

human-machine interface, PC-based solutions come into play. Connection to

the EIB is usually accomplished using serial communication with a BCU. Addi-

tionally, USB interfaces are available for “legacy-free” PCs. As an alternative,

approaches accessing the EIB by way of an intermediate network gain impor-

tance, as will be detailed below.

For Microsoft Windows based systems, EIBA offers a certified software com-

ponent called Falcon which provides a high-level API for accessing function-

ality throughout the network stack. For the Linux operating system, which

provides an interesting perspective toward cost-effective embedded platforms,

both commercial and open-source kernel level drivers for BCU access as well

as TP-UART based serial interfaces are available. Finally, the Eiblet API [35],

with an implementation available free of charge, allows Java applications to

interact with an EIB system at multiple levels of abstraction.

3.8 Integration

Even if many appliances integrate EIB natively and considerable improvements

can be achieved through its use alone, integrating it with other networks offers

further evident benefits. This includes tunnelling to support various remote

access scenarios, routing to extend both range and bandwidth, and gateways.

As a field area network, EIB is well-suited for transporting narrow-bandwidth

control data. Yet, large building automation systems will generate lots of data,

which are to be collected in a single place for data acquisition and central

control. Since high-volume data transfer is out of scope of FANs, other network

technologies have to step in and act as a backbone to smaller FAN segments.

A straightforward approach is to use them as an alternative transport

medium, encapsulating FAN protocol frames in the host protocol. This method,

called tunnelling, can be used for connecting FAN segments with a high-

performance backbone to overcome limitations of the FAN protocol regarding

bandwidth, range or both. It also offers an alternative to physically de-couple

applications like remote configuration or visualization from the bus line.
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Figure 3.12: EIBnet/IP

Although tunnelling can perfectly cover certain fields of application, it has

two main drawbacks. First, the fact that the host network remains transparent

to FAN end devices will inevitably cause timing problems when the latency of

the former exceeds the range acceptable for the FAN protocol. Second, it is only

applicable to scenarios where all participants can handle the FAN protocol. In

cases where this requirement is not convenient or acceptable, information has

to be converted at the application level using gateways.

Regarding Internet connectivity, official IP tunnelling support for EIB has

been existing for years. Since it was marketed as extending ETS for remote

access (iETS), the server component on the EIB side is called iETS server.

Falcon can use this transparently as an alternative bus access method instead

of a locally connected BCU.

Currently, a working draft for IP tunnelling and routing (EIBnet/IP) is

undergoing voting for inclusion into the EIB specification. With EIBnet/IP

routing, EIBnet/IP routers take the place of backbone or line couplers.

IP multicast is used by an EIBnet/IP client to discover EIBnet/IP servers

and for routing. Retrieval of further descriptive information on an EIBnet/IP

server and tunnelling is handled via IP unicast. Although EIBnet/IP leverages

the practical omnipresence of IP technology, it will in most cases be advisable

to keep the automation network logically separated.
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EIBnet/IP explicitly does not address security issues to keep the protocol

lean and reduce the processing power required in EIBnet/IP routers. This is

done on the assumption that the backbone IP network will be tightly supervised

and highly restricted or closed to network traffic from the outside. The use of

EIBnet/IP in an Intranet or over a VPN (Virtual Private Network) connection

only is suggested as a key countermeasure against all threats.

Besides allowing more fine-grained handling of security issues, such separa-

tion also simplifies performance considerations. It may be achieved by routing

and/or firewalling, with authorised users able to open VPN tunnels as shown in

Figure 3.12. It is the task of the firewall to handle authentication, authorization

and encryption to avoid burdening EIBnet/IP servers with these tasks.

For future releases, the integration of gateway functionality into EIBnet/IP

with the capability to handle both regular and maintenance operation is

planned as well. Until then, a variety of proprietary implementations for in-

terfacing not only with IP but all kinds of other networks (including ISDN,21

POTS,22 PROFIBUS-DP23 and Bluetooth) are available on the market. Albeit,

these are, as a general rule, limited to group communication.

For BACnet [1], a network protocol dedicated to building automation and

control, the situation is different. The mapping between EIB and BACnet

objects is laid down in both standards [2, 19]. Together with the specification

of EIB tunnelling on Ethernet (EIBnet), a defined integration of these systems

is ensured. Still, semantic differences remain to be bridged by the system

integrator through proper gateway set-up.

For high-demand visualization and facility management, various PC software

packages exist which will connect to the EIB locally or via tunnelling, if nec-

essary through multiple ports. Besides standard soft PLC, logging and alert

escalation functionality, some products will also automatically dispatch work

orders and handle room management.

Additionally, any OPC-enabled software can be used by way of one of the

OPC servers for EIB available from various vendors (including EIBA). OPC

(OLE for Process Control, Open Process Control) is a de-facto standard for

providing an open interface for process control, automation and visualisation on

Windows platforms. Originally based on the Microsoft OLE (Object Linking

and Embedding) component object model, OPC server components provide

21Integrated Services Digital Network (digital telephony)
22Plain Old Telephone System (analogue telephony)
23A field bus popular in industrial automation
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standardised methods for accessing data residing in PLCs, field bus devices

and other process control equipment.

Still another way of connecting to the EIB is through one or more gate-

ways via an intermediate automation level network. A variety of compact, rail

mounted embedded IP gateways is available, which will additionally provide

other features like:

• ISDN TA24 or POTS modem in addition to Ethernet interface (for dial-up

Internet access or WAP server)

• HTTP/WAP server

• Various messaging possibilities, including escalation management (e-mail,

fax, SMS, voice call)

• Logic functions (including timer functions and lighting scenarios), par-

tially with visual set-up

• Logging (data acquisition)

• Time servers

• Visualization

• Media integration (brown goods)

Which of these functions are actually implemented in a particular device is

related to the intended sales market. Some of these functions are not relevant

for large-scale building automation, since they will be handled by the central

server (like visualization and data acquisition), yet nonetheless of interest for

smaller buildings. In the home environment, entirely different functionality

comes to the front, like for instance being able to make a voice call to the

gateway to receive a one-time PIN which can be used to access the gateway from

an Internet café without fear of eavesdropping. For home use, outsourcing of

visualization functionality to data processing centres is offered as well. Besides

personalised portal sites, they will provide remote services like dispatching voice

calls in response to an alert condition.

24Terminal Adapter
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3.9 The Future of EIB: KNX

In 2002, EIB merged with BatiBus [18] and EHS (European Home System)

[18] to form the new KNX standard. Although EIB is now correctly known by

the name of KNX TP1/PL110 S-Mode, “EIB” will definitely stay as a label for

a specific subset of KNX functionality for quite some time.

Besides the “KNX Handbook” [27] provided by Konnex Association, KNX is

documented through formal standards as well. The relevant family of European

Standards is EN 50090. It is maintained by CENELEC TC 205 (Home and

Building Electronic Systems) in cooperation with Konnex Association. The

normative process is also coordinated with CEN TC 247, which is concerned

with building controls and has in the past also defined standards covering EIB

technology.

From the perspective of EIB, the transition to KNX brings about certain

extensions to the well-known protocol stack, none of which are mandatory

to implement. Regarding physical media, an additional twisted-pair (TP0),

an additional powerline (PL132) and the RF medium already mentioned in

Section 3.5 were added. For both TP media, a specification which allows bus

power to be provided in a distributed way by any device instead of requiring

dedicated BPSUs was introduced.

KNX also offers new configuration modes. While compliance with the single

tool ETS (referred to as S-Mode (System) configuration) will be a requirement

for all KNX devices, additional mechanisms are available in parallel.

E-Modes (Easy) aim to provide installers with easier and less error-prone

(albeit less powerful and flexible) ways of linking devices without need for

ETS. This is accomplished by

• Push buttons: The installer pushes special buttons on the devices which

are to work together.

• Logical tags: Devices which have the same tag number set (for example,

via a code wheel) will cooperate.

• Central controllers: This mode, making use of a dedicated controller

device, is similar to the proprietary approaches outlined in Section 3.1.3.

While the E-Modes like EIB/S-Mode are targeted at the installation domain,

A-Mode (Automatic) is intended for the integration of loose goods, in particu-

lar white goods. A-Mode devices will autonomously integrate themselves into
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the network in a “plug-and-play” fashion, establishing the necessary commu-

nications links without user intervention.

Since E- and A-Modes cannot rely on an integrator’s competence to combine

the data points of node applications into a properly working system, inter-

working issues are given ample room in the KNX specification. Functional

blocks for various application domains are being specified, which describe sets

of group objects and interface object properties with clearly defined seman-

tics. Instead of the free binding possible in S-Mode, E- and A-Modes always

link data points at the granularity of functional blocks. Functional blocks also

prepare the ground for a more visual way of configuration using PC-based tools.

A functional block encapsulates a specific solution for one given task of an

application. For example, the application model “Heating” includes a func-

tional block “Hot Water Boiler”. Unlike the legacy EIS types for dimming and

drive control, the data points of functional blocks specifically include (typically

persistent) behavioural parameters. For example, the functional block “Dim-

ming Actuator Basic” also includes data points for setting various delays. It

also goes far beyond the EIS profile in other aspects, although almost all added

functionality is defined as optional. Although, while the profile was reworked

significantly, certain not immediately convincing design decisions were carried

on. While feedback is finally mandatory, it can still optionally be implemented

by making the set-point control data points bidirectional. Also, step-wise dim-

ming is still controlled in an event-based manner by transmitting the desired

relative set point change.

Devices are not expected to implement the KNX specification in its entirety.

Rather, they are expected to select a subset (profile) appropriate for the sales

market intended. Consequently, certification is also done against specific pro-

files. With simpler configuration modes and other aspects aimed at accom-

modating resource-limited devices within the KNX standard, KNX opens up

paths into the mass market.

Also, endeavours to clarify and restructure the specification can be identified.

This specifically includes issues of terminology. For example, where the EIB

specification would refer to “communication objects” and “EIB distributed ob-

jects”, KNX uses “group objects” and “interface objects”, respectively. Also,

EIB “physical addresses” are now known as KNX “individual addresses”, ac-

knowledging the introduction of open media where these addresses no longer

correspond with the physical topology of the network. Although the present

thesis is concerned with EIB, it fully endorses the new, clearer terminology

wherever applicable.
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As an aside, the EN 50090 family of standards also includes a draft describing

issues related to residential gateways. It however does not seem to have reached

any further significance.
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The Open Services Gateway Initiative (OSGi) is a non-profit technology con-

sortium formed in February 1999. Its core task is to develop and promote an

open specification for a gateway platform supporting the delivery of remote ser-

vices (a service gateway). This specification is available free of charge from the

OSGi website. Implementations are not subject to payment of royalties to the

OSGi, although certain elements may be subject to IPR claims by third parties.

The OSGi is also involved in the certification of compliant implementations.

The OSGi platform is centred on a lightweight service-oriented component

model. It provides a Java-based environment where multiple software modules

execute concurrently, collaborating to provide their functionality both to one

another and to the outside. These can be added, modified and withdrawn at

runtime, allowing the overall behaviour of an OSGi-based service gateway to

be dynamically configured.

The OSGi architecture follows a three-tier computing model. In this model,

gateways bring together local devices and remote back end servers. Its pri-

mary focus is on the delivery of electronic services over public networks to the

consumer environment. It is designed to handle the complexity of an operator

based network with multiple independent, external service providers. OSGi

platforms thus allow to mix and match service components from different ven-

dors to exactly suit a particular business plan or specific end-user demands.

Supporting this architecture where gateway operators control large numbers

of service platforms situated on the customers’ premises, the design includes

a powerful concept for remote management. Its policy-free approach allows

to control all management aspects through a communication channel free of

choice. This specifically includes aspects of provisioning.

Also, considerable attention is paid to security issues. The OSGi platform

security model specifically addresses the fact that software provided by possi-

bly competing vendors will be installed in parallel. It places special emphasis

on preventing components from interfering with one another, whether uninten-

tionally or on purpose.

59



4 The OSGi Platform

It is the aim of the OSGi to leverage existing computing and network infras-

tructures through a platform-independent, network agnostic design. The same

inclusive attitude is maintained towards existing standards.

Addressing the resource limitations present in embedded gateway configura-

tions, the minimum Java package footprint required is a subset of the Java 2

Micro Edition Connected Device Configuration (CDC) 1.0 /Foundation Pro-

file 1.0.

Although the open service provider model described forms the primary ref-

erence architecture, setting the course for the development of the platform

specification, OSGi-based solutions are expressly not limited to it. For exam-

ple, the service platform need not be placed at the end user. It can remain

within immediate control of the operator, possibly as a logical instance on a

back end server. Such an approach is suited more to services related to network

operation, like bandwidth monitoring. An example for such a virtual gateway

model is presented in [23].

In an industrial environment, OSGi platforms provide a way for integrating

proprietary islands of control into a coherently manageable system. Equally,

they can be of benefit in a scenario where management is done entirely by the

end user. For example, the renowned Eclipse IDE uses an OSGi framework to

support its dynamic plug-in concept. This shows that although the platform is

(or once was) designed with gateway applications in mind, the core framework

design in particular is generic enough not to preclude other use.

The Service Platform specification maintained by OSGi is now available in its

third edition [34]. The framework proper has remained effectively unchanged

since its initial release in May 2000. In addition, the specification defines

a set of standard service APIs. Besides supplementing the core framework

with respect to management issues, they provide support for typical issues in

gateway applications like logging or communication. This modular approach

also helps ensure backward compatibility, which is a declared goal of OSGi.

While the initial focus of OSGi specifically concerned residential gateways

and home automation, nowadays the focus has shifted towards a more hori-

zontal approach applicable to other markets as well. This specifically includes

automotive systems, but also areas like consumer electronics, mobile phones

and security products. This change is reflected in the different standard ser-

vices which were added to subsequent specification releases.

Several commercial and open-source implementations of the framework ex-

ist, most of them accompanied by implementations of the standard services.

They are being employed in a significant number of projects. The OSGi web
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site provides a comprehensive overview of related activities of OSGi member

companies.

The remainder of this section introduces key aspects of the framework and

describes a selection of standard services. Besides, it presents related concepts

and discusses specific challenges arising when designing OSGi-based software.

For further information (besides the authoritative source [34]), [11] provides

practical hints for development. Although it discusses the first specification re-

lease, it gives valuable insights on framework concepts. A brief overview of pos-

sible use cases in residential environments, reference architecture entities and

framework mechanisms describing the second release can be found in [32]. The

services included with the third specification release are covered in [29], which

also describes a number of commercial products incorporating OSGi technol-

ogy and outlines a specific example for OSGi-based development in academia,

highlighting the resonance it has found within the scientific community.

4.1 Related Concepts and Technologies

This section will discuss two major software engineering concepts forming the

backdrop to the design of the OSGi platform specification. Software “com-

ponents” and “services” are popular terms—component technologies are even

in widespread use—, yet both seem to lack a canonical definition to this day.

The following paragraphs aim to illuminate this background of both OSGi and

selected other Java-based technologies often referred to in one breath with it.

4.1.1 Component-Based Software Engineering

Component-based software engineering (CBSE) is a core principle of software

reuse. Although it is today a widely accepted concept and supported by nu-

merous technologies, no universally agreed characterisation for software com-

ponents exists. A frequently quoted definition originates from [43]:

“A Software Component is a unit of composition with contractu-

ally specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is subject

to composition by third parties.”

Another influential source is the notion of a component within the UML

(Unified Modeling Language) [6], which considers it
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“[. . . ] a physical and replaceable part of a system that conforms to

and provides the realization of a set of interfaces.”

This definition emphasises the far-reaching (although not entirely unani-

mous) consent that components should be binary units. Like OOP1 advocates

the separation of concerns and data hiding on the source level, component

technologies are expected to heed these principles on the binary level. Com-

ponents represent logically cohesive parts of a system. The functionality they

encapsulate is only reachable through well-defined interfaces, ideally allowing

components to be replaced transparently to modules using them.

Ideally, complete applications would be assembled by customising and con-

necting components without actually writing code in the traditional sense. If

supported by the execution platform, this binding may even take place at run-

time.

Different component models concentrate on various further aspects, like cer-

tain mandatory properties, interfaces, or allowable modes of interaction. For

example, JavaBeans or ActiveX Controls require support for composition by

visual builder tools. These aspects are closely related to the capabilities offered

by the respective component frameworks. For instance, frameworks for Enter-

prise JavaBeans2 provide components with support for security, distribution

and persistence.

4.1.2 OSGi as a Component Model

As will be detailed in Section 4.2, software is deployed into an OSGi environ-

ment in the form of so-called bundles containing sets of Java class files. Gateway

operators define the overall functionality of the gateway platform by choosing

appropriate bundles, which will each provide a coherent subset. Bundles inter-

act through well-defined interfaces (referred to as services) only. Which bundle

offers a certain service is not of interest to clients.

Going by the definitions just cited, bundles clearly emerge as components

within the OSGi framework. Yet, unlike in other component models, bundles

cannot be instantiated multiple times. Instead, they can implement the same

service interface multiple times, with variations in behaviour. Upon closer

1Object-Oriented Programming
2It should be noted that the “plain” JavaBeans and Enterprise JavaBeans (EJB) component

models are drastically different despite their nearly identical names. While the former
is geared towards rapid development of GUI (Graphical User Interface) applications, the
latter is tuned towards server-side, database centric software.
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scrutiny, other details appear besides this one which suggest that attributing

the role of components within the OSGi framework to bundles alone would not

give a complete picture of its properties and capabilities [8]. Still, it seems

justified to consider bundles as components and services as their interfaces for

the purpose of general discussion, as is done in the present thesis.

Another unconventional property of the OSGi model is that components are

not manually bound to another to achieve the desired application. Therefore,

the concept of a static assembly found in other component models does not

exist.3 Bundles in need of a service dynamically and autonomously discover

and bind to it when it is made available by another bundle. The precise policy

they follow in doing so is defined by the bundle developer. Accordingly, service

dependencies are not tracked and managed by the framework.4

To support this dynamic process, bundles are given considerable autonomy.

Each of them is associated with an independent thread of execution. Together

with the lack of static composition this makes bundles look more like inde-

pendent applications rather than components at first sight. Because of this,

bundles are sometimes referred to as “service applications” (which however

should be avoided if possible due to its potential for confusion).

Not attempting to manage dynamic dependencies is a key example of how

the OSGi framework is designed to be lightweight by concentrating on essen-

tial functionality. While a framework like EJB—to pick a drastic example—

undoubtedly provides more features, the resulting overhead would be detrimen-

tal instead of beneficial in the resource-limited environments targeted by OSGi.

With the latter, lightweight design is applied in terms of concepts, code size

and package footprint. If needed, additional functionality can still be added by

way of appropriate bundles.

4.1.3 Service-Oriented Architectures

Service Orientation is a rather novel software engineering concept. As might

be expected given the fact that the term “service” is at least as overloaded

with different interpretations as is “component”, a precise definition seems

even farther from reach. At any rate, the essence of any such approach is to

concentrate on the service a piece of software (or combination of hardware and

software) can offer to a user—which may be a human or yet another piece of

software. Concepts in this field are not limited to the better internal structuring

3Neither does the need for components to provide design-time support like JavaBeans do.
4An extensive effort to add service dependency management to OSGi is presented in [9].
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of complex software. Especially recent ones strongly emphasise the commercial

aspect: “Sell Services, not Software.” This goes far beyond application servers

or outsourcing payroll processing. In the future, business cases are expected

to be created around the exchange of process input and output data (over

networks) on much a finer scale. It was not until the advent of the Internet

that such ideas could gain momentum.

The vision of service-oriented computing is to tailor the the technical in-

frastructure towards immediately providing business services. In such an all-

encompassing service-oriented architecture (SOA), like described in [36], open

marketplaces exist where service providers publish the services they offer. Po-

tential service users can discover these and select an appropriate one for binding

into different applications or business processes. Service aggregators compose

different vendor’s services into combined offerings, in turn becoming service

vendors again. This services market is supported by an infrastructure of “meta

services” addressing issues of composition and management.

This process is to be of highly dynamic nature, with on-demand procurement

and purchase of software services being possible. Composite services would

eventually be created in an ad hoc manner for one-time use, serving a particular

user demand at a particular point in time. In [4], this is likened to buying a new

car. Here, the supporting process is already flexible and fast enough to allow

customers to create their desired car by combining option elements instead of

having to select from a predefined stock.

Composition is a key concept in SOAs. To understand this, one has to

consider that the underlying technical infrastructure is (by common consent)

best exposed in an as abstract and generic way as possible. The value of these

services is considered to grow the more implementation details they hide.

Considering the example of a print service, issues like the control protocol of

the printer or when its toner cartridge has to be exchanged5 are not of interest.

Only key service parameters and qualities, like the paper format the output is

to appear on or whether black and white or full colour output is desired, are

to be visible to the outside.

Whether such a base service will actually be sold separately to a customer is

a matter of circumstances. For example, proof printouts will be complimentary

when a large ad campaign is being commissioned, but the same colour laser

prints may as well be sold separately by a copy shop.

5This example assumes copy-shop like circumstances. Things would be different when the
printer is offered free of charge for customers to use on their premises on the basis of a
fee per printed page.
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This means that the technical infrastructure will be represented as a pool of

long-lived base services, which are carefully designed to expose as little (imple-

mentation) context as possible to make them usable in a variety of situations.

The specific, possibly fleeting context of a particular business opportunity can

then be reapplied by composing these into a derived offer [37].

Generally, services should represent highly cohesive functional units, both

to present a meaningful unit of purchase as well as to reduce the complexity

of the binding process. The semantic aspects of a service need to be precisely

defined in an open contract, which also has to cover non-functional aspects,

like parameters concerning quality of service. To enable the service user (or

aggregator) to quickly choose among offerings, standardised representations for

such contracts have to be sought.

To ensure an extensive services market, services need to lend themselves to

composition in other ways as well. Specifically, they need to break the limits

of platform or language specific frameworks. Also, it should be possible to mix

and match services provided by different vendors.

4.1.4 Service Orientation in Practice

A number of software infrastructure solutions is designed to support the im-

plementation of service-oriented architectures. Others just may be inspired by

their underlying concepts in finding new ways for structuring software. This

is often referred to as service-oriented programming (SOP) [5, 7]. At any rate,

specifications will only address selected parts of the large spectrum.

At the core of all such approaches is the idea of concentrating on what a

piece of software does, rather than on how it does it. So far, the picture is

not very different from component-based approaches as described above, which

also frequently use the term “service” to describe the functionality exposed by

a component via an interface. As a specific example, [6] states that

“[. . . ] components provide [. . . ] services through [. . . ] interfaces,

which, in turn, other components can discover and use.”

Yet, while components and services are not orthogonal concepts and have

a considerable degree of overlap, they are complementary in that service ori-

entation is primarily concerned with usage patterns of software, while CBSE

addresses implementation concerns. Although component software can be con-

sidered the foundation of service-oriented architectures, it is important to un-

derstand that application of one of these concepts does not imply the presence
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of the other. Within a service-oriented architecture, the term “service” will

always have overtones of additional concerns going beyond those traditionally

associated with component interfaces.

Also, distribution was only added to the concept of CBSE at a later stage,

while SOP implies the context of a (in most cases highly) distributed system

from the outset. Consequently, the demand that distributed services should

be as independent from a certain hardware platform, operating system and

programming language as possible forms a focal point of interest. Supplement-

ing the creed of service orientation presented above, this could be expressed

as service providers publishing what they do, but hiding what they actually

are. A suitable open interface abstraction allows the seamless integration of

legacy systems, allowing software (or rather system) reuse at a high level of

functionality [42].

This goal is typically accomplished by requiring service providers and users

to communicate via well-defined network protocols. For example, SOAP (Sim-

ple Object Access Protocol) enables platform-independent interaction between

Web Services, which currently eclipse all other service-oriented architectures in

popularity.

Alternatively, a proxy software component could be deployed to client ma-

chines which exhibits a precisely defined interface, but hides the protocol used

to communicate with the actual back-end application server. Although such

an approach will forfeit the benefit of total platform independence, it may al-

low more efficient data handling, resulting in cleaner (and less error-prone)

implementation and better run-time performance [20].

The use of run-time environments masking the underlying platform (like

those of Java or .NET in particular) will help to increase the range of clients

such a proxy will be able to run on. Also, the server should retain control

over the proxy component to be able to update it in case, for example, the

communication protocol is to be updated. Java Applets were the pioneering

concept to answer this demand. JNLP (Java Network Launching Protocol, also

known as Java Web Start) follows in their footsteps. With JNLP, the Applet

approach is extended towards larger applications while maintaining key features

like the sandbox, which is essential for running foreign, potentially malicious

code. Downloaded applications will be cached, and incremental updates are

automatically run when parts of them are changed on the remote server. Still,

JNLP is aimed at traditional (if Web-centric) client-server applications which

essentially confine themselves to presenting a front end to a data source located

on a remote server, up to and including the user interface. The user is bound
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to a single service provider at a time. Also, a remote service accessed this way

is not available for further composition.

For the issue of how to keep service users up to date in case of modifications

to a service to arise, the service has to be changed in the first place. Managing

the functionality of a heterogeneous collection of highly distributed, always-

on servers is a challenge in itself. The JMX (Java Management Extensions)

architecture describes a popular API for remote management which is often

used in conjunction with EJB solutions. It provides a flexible infrastructure for

accessing management resources exposed by components via freely selectable

communication protocols.

Returning from these technicalities of handling distributed services to the

issue of dynamically bringing together service providers and users, Jini emerges

as the probably most widely known Java-based technology which focuses on

this key feature of advanced SOAs. Jini is designed to enable spontaneous

networking, with as little human intervention as possible. Users can discover

the presence of services they would like to bind to through dedicated lookup

services, which also allow them to keep track of events like the arrival and

departure of providers. The problem of discovering these lookup services in the

first place is addressed as well. Communication between service providers and

users is handled via a proxy mechanism as described above. Services are leased

for a defined period of time. When a user does not renew its lease, a provider

can assume it to be gone and reallocate the associated resources. Jini is (at in

its original design) not concerned with services in their dimension as business

cases.

The Apache Avalon Project is an example for service-oriented concepts being

applied at the node level. Its goal is to provide a framework for server-side Java

code with flexible functionality, building upon (although extending far beyond)

the Servlet concept. With Avalon, service providers and users are software

components residing on the same physical platform. Its framework includes

facilities for service discovery, composition and life cycle management.

Finally, the specification of the OSGi service platform can be considered

service-oriented in multiple ways (although the term actually never appears

in [34]). First of all, it is specifically designed to support a distributed infra-

structure of service providers, aggregators and consumers maintaining business

relationships (although it is not concerned with details of any of these).

Beyond this, the programming model it promotes wholeheartedly espouses

SOP as well. Not only are interface implementations referred to as services,

but bundles may actually publish and withdraw them at any time. A service
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Figure 4.1: Architectural Overview of the OSGi Platform

registry keeps track of currently available services to enable discovery, com-

position and refinement by prospective users. The possibilities for registering

service meta data are limited, however.

Bundles will often act as proxies for services hosted remotely by providers

(yet another notion of “service” in the context of OSGi). Billing these on a per-

use basis is allowed for. The coexistence of components provided by possibly

competing providers is addressed through an appropriate security infrastruc-

ture. Remote management support includes the provisioning of components

and switch-over to other gateway operators.

OSGi devotes its specification efforts entirely to defining an execution en-

vironment. Any protocols the platform may use for outside communication—

with remote services, local networks or management clients—are not considered

on purpose and left to be defined by appropriate components.

Although specialised technologies (like those touched upon above) may cover

particular concerns of service orientation in greater depth, OSGi is unique

in addressing them in a comprehensive and well rounded-out manner while

keeping a small footprint. Where applicable, it still lends itself to combination

with such solutions through its open design.

4.2 Framework Architecture

The OSGi platform is built upon a Java runtime environment, which con-

tributes essential features for a dynamic component architecture like dynamic

class loading with late binding. It also significantly assists in attaining key

design goals like platform independence and security against malevolent code.

68



4 The OSGi Platform

Also, the orientation of Java towards network programming in general (and

the Internet in particular) corresponds well with the aims of the OSGi archi-

tecture. Figure 4.1 illustrates the relationship of the elements present within an

OSGi service platform. Service application components, which are referred to

as bundles, can access functionality provided by the framework, the underlying

Java VM (Virtual Machine), and the operating system (by using native code

libraries) as needed.

4.2.1 Bundles

Bundles represent the packaging and delivery unit within the OSGi frame-

work. Format-wise, these are standard Java Archive (JAR) files, which may

not only contain any number of Java classes and native code libraries (also for

different hardware and operating system platforms—the framework will assist

in selecting the appropriate ones), but also resources (like static HTML pages

and images) and documentation.

Only a single instance of a bundle exists at any given time within the plat-

form, which is uniquely qualified to the framework by the location its JAR file

was retrieved from (typically an URL, which may point to a local file system

as well as an HTTP server). Every bundle is associated with its own thread

of control. The life cycle operations a bundle will be subjected to therefore

encompass being installed (the JAR file is retrieved from the bundle source

location to the OSGi platform), started, stopped, updated (the JAR file is re-

placed by a newer, backward compatible version) and uninstalled (all traces of

the bundle are removed).

The JAR Manifest headers are extended to include OSGi-related informa-

tion, like the so-called Bundle Activator. This class provides hooks into the

bundle code which will be called by the framework when the bundle is started

or stopped. At start-up, the activator class will be passed the bundle context

object, which is the entry point for accessing all framework-related function-

ality. Since every bundle has its own context object, the framework can keep

track of which one performed a certain operation (for example registering a

certain service). The headers also provide information about which additional

packages (including requirements for specific minimum versions) are necessary

for the bundle to run. These will will in turn be supplied by other bundles.

This mechanism replaces the static class path concept and allows to dynami-

cally resize and update the runtime environment.
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Normally, the framework ensures that a bundle can only be started if these

dependencies are satisfied. To support the ’Class.forName’ idiom used by (non-

OSGi) libraries in case the names of required packages (e. g. drivers) are not

known until run-time, it is also possible to specify packages for dynamic import.

This will defer dependency resolution to class instantiation time.

Exported packages are made available to importers as soon as the exporting

bundle is installed. They will remain exported as long as all importing bundles

are uninstalled. This process is unrelated to the exporting bundle being started

or stopped.

The framework ensures that every package is only exported by a single bun-

dle, which may lead to the situation that a bundle will not use the ones it

declared for export, but those of another bundle instead. This is necessary

since every bundle has its own class loader for reasons of security and life cycle

management. Thus, every bundle lives in a separate name space. While this

prevents bundles from interfering with one another in case both accidentally

(or maybe intentionally) pick identical package and class names, it also pre-

vents the intentional exchange of objects. Thus, the loading of shared class

definitions has to be delegated to the class loader of the exporting bundle by

all others.

4.2.2 Services

Bundles collaborate6 by mutually providing and using services. A bundle can

provide any number of services (including none), and services can in turn be

used by any number of bundles. In Figure 4.2, the Surveillance bundle uses

the Sensor Event Notification service of the Field Bus Access bundle to receive

alerts from a motion sensor. In case the surveillance system is armed, it will use

the Lighting Scene Recall service to turn on all the lights in case an intruder is

detected and notify the owner using the SMS service provided by the Messag-

ing bundle. Entirely independent of these actions, the Home Theatre Control

bundle can recall the proper lighting scene for watching a film if needed.

Within the context of OSGi, the term “service” in the narrower sense refers to

a Java interface definition with (externally) agreed-upon semantics. A bundle

using a service will only import the interface class. An appropriate implemen-

tation (called a service object) can be selected at run-time, potentially from

multiple available choices. This approach de-couples specification and imple-

6While package sharing is necessary for bundles to have a common definition of classes
whose instances they wish to exchange, it is not the intended model of interaction.
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Figure 4.2: OSGi Component Interaction: Bundles and Services

mentation of a service and allows programmers to bind to its specification only.

It is important to note that the bindings between bundles providing and using

services are established (and removed) entirely at run-time.

Service discovery is provided through a registry maintained by the frame-

work. Here, bundles can register any number of services. Since in many cases,

possibly different bundles will register multiple service objects implementing

the same service, a set of descriptive properties (key/value pairs) may also be

recorded along with the registration. Other bundles interested in a specific

service can then look it up using the interface name and, if needed, specifying

filter criteria (in RFC-1960 LDAP filter syntax) over these properties. The

framework returns a set of objects encapsulating references to corresponding

services. These contain the entire set of properties as specified with their reg-

istration for the client to examine. Once a suitable service is found, the client

bundle uses the ServiceReference to obtain a Java reference to the service

object. This process is illustrated in Figure 4.3. It also shows how bundles

only export the interface class to allow other bundles to register services with

the same interface while retaining control over the service object.

The OSGi framework also provides support for Service Factories. Usually,

all clients of a service receive a reference to the same service object that was

registered. This process is invisible to the latter. Service Factories however

will be notified by the framework every time a new bundle obtains the service

or releases its last reference and can provide customised versions of the service

object to every bundle. This allows to associate service related resources with
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client bundles, for example to keep them from interfering or to clean up after

they have left.

4.2.3 Core Design Features

Bundles may register and get as well as withdraw and release services at any

time. Since it is vital for bundles to react to these changes in their environment,

the framework provides an appropriate event mechanism. Events are broadcast

in the case of registration, withdrawal, or the change of properties of a service

as well as in response to changes in a bundle’s life cycle and when the framework

was restarted or has encountered errors.
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For remote administration, all administrative framework functions (in partic-

ular, bundle life cycle management, but also reporting features) are available

through services. This “policy-free” approach leaves gateway operators free

to choose a suitable communication channel for management by selecting an

appropriate interface bundle.

Security in the framework rests upon the Java 2 security architecture.

Though it is optional for a framework vendor to implement, significant consider-

ation is devoted to it by the OSGi specifications. All parts of the API which are

considered security relevant require appropriate permissions, which are granted

on a per-bundle basis. The OSGi specification defines three additional stan-

dard permissions for access to the administrative functions of the framework,

service registration and access and import/export of packages. Bundles are free

to define additional custom permissions.

4.3 Standard Services

In addition to the framework proper the OSGi specifications define a number of

standard services, of which an OSGi platform can contain any subset (including

none at all). Some serve to map existing Java standards to the dynamic nature

of the platform, while others are uniquely OSGi-related. In the following, a

brief high-level overview over these services is given, roughly grouped by their

purpose.

4.3.1 Framework Extensions

Since the OSGi framework API is to be kept backward compatible as much

as possible, even very closely related functionality is added in the form of

additional services.

The Package Admin service addresses the issue that uninstalled bundles

cannot be removed from the environment while packages they have exported

are still in use by active bundles. This both wastes resources and bars the

importing bundle from using the updated version until package dependencies

are resolved again when the framework is restarted. The Package Admin service

allows to selectively refresh updated packages by automatically stopping, newly

resolving and restarting all bundles which depend on them.

The start-up and shut-down ordering of bundles can be controlled using the

Framework Start Level service. This can for example be used to implement a

“safe mode” where only bundles fully trusted not to cause erratic behaviour
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are started. The Framework will distribute appropriate events when packages

are refreshed as well as when the current start level changes.

Extending the framework security architecture, which is only concerned with

protection against malicious code only, the User Admin service adds capabil-

ities for role-based authorisation of human users. It is designed to support

various authentication methods. The Permission Admin service offers a stan-

dard interface for changing the platform policy configuration or even grant

permissions just-in-time during bundle installation.

Last in the series of framework extensions is the Service Tracker utility,

which helps to track services a bundle depends on. It allows to specify a set of

services by service interface name (and properties filter expression, if needed)

for which events are generated if a matching service is added to or removed

from the registry (or its properties modified).

4.3.2 Device Access

The OSGi Device Access concept assumes devices connected to the gateway are

to be represented as device services, provided by appropriate driver bundles.

Driver bundles are expected to build a hierarchy of device abstractions (for

example, a Camera Service on top of a Generic USB Device service). The

process of creating such a hierarchy is termed refinement. While these services

and bundles are not fundamentally different from others, the Device Access

service aims to automate the refinement process. This includes the automatic

selection, possibly download and installation of matching driver bundles based

on the evaluation of specific service properties, without any operator or user

interaction.

A service signifies that it represents a device by providing the DEVICE CAT-

EGORY property with its registration. The concept of a device category as

defined by OSGi Device Access comprises a service interface and service regis-

tration properties with defined semantics together with match values to allow

ranking potential drivers by how well they could refine (i. e. make use of) the

capabilities of this device. A generic driver which only matches the device

category, for example, could probably only provide basic functionality and will

thus be ranked lower than another, which matches the exact make and model

(given by the registration properties) as well and can be expected to provide

access to enhanced features. Owing to the goal of application independence

heralded by OSGi, the Device Access specification does not define any such

device category, however.
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Figure 4.4: OSGi Device Access: Driver Refinement

Whenever a device service is registered with the framework, the Device Man-

ager7 presents its DEVICE CATEGORY (together with all other properties) to all

available Driver Locator services. These return locations of appropriate driver

bundles. The Device Manager installs and starts them all and subsequently

requests a match value from every driver, which may also communicate with

the device in question in order to determine it. The driver with the highest

match value is then asked to attach to the service and will register one or more

refined devices. If no driver is found, the device service is informed and may

withdraw its service registration and register anew with other properties (like

a more general device category) to increase the chance for a refining driver to

be available.

As an example, consider the situation illustrated in Figure 4.4. A gateway

platform is equipped with an USB interface. A pre-installed bundle (called a

base driver) monitoring the USB detects that a new device was connected to

the bus, whereupon it registers a “generic USB device” service. The methods

of this base device service allow as much communication and expose as many

properties of the new device as possible without specific knowledge of device

internals. For a USB device, this will include the device class, manufacturer

and product IDs. This information is used to obtain the best matching driver.

The winning driver bundle then binds to the base service object and registers a

more abstract, refined device service (in the example, “camera service”), which

makes use of the capabilities of the base device service.

The OSGi specification also contains recommendations to facilitate the inte-

gration of an OSGi platform into Jini communities and networks using UPnP

(Universal Plug ’n Play). The Jini Driver service will discover available Jini

7A private, conceptual entity of the Device Access service.
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services, retrieve their proxy objects and register them with the OSGi frame-

work. Thus, OSGi bundles can use Jini services without even being aware of

the the fact that the Service Platform is Jini enabled, as long as they know

which service interface name to look for. For every UPnP device, an appro-

priate device service is registered, which can be used by every bundle that is

familiar with the UPnP way of modelling devices. Specifically enabled bundles

may also export services to Jini communities and publish UPnP devices. This

part of the specifications is presented in [15].

4.3.3 Communication

The HTTP service provides a lightweight WWW server which allows bundles

to provide both static resources and dynamic content. For the latter, it makes

use of the Java Servlet API. It also allows easy integration of basic authen-

tication and especially lends itself to provide simple browser-based access to

status and commands of a service. The HTTP service offers the possibility to

provide browser-based access to status and commands of a service. Requests

are mapped onto registered providers of static resources or Servlets according

to the part of the alias name space they registered for. Static resources will

be translated into a local URL, which can in turn be mapped to a bundle re-

source or the local file system. The HTTP service also allows the association

of appropriate MIME types to content.

Java provides a powerful communication mechanism by allowing applications

to extend URL Stream and Content Handlers in run-time. The registration of

such an extension, however, is a one-time-only action and cannot be revoked,

which is inappropriate for use within the OSGi environment. Therefore, the

URL Handlers service hides the underlying mechanism and provides a service

that allows scheme and content type handlers to be removed along with the

bundle providing them.

In addition, the OSGi environment specification has also adopted the Java

2 Micro Edition Connector framework, which enables applications to use com-

munication protocols without having to deal with implementation details. For

this purpose, a set of interfaces defining the capabilities necessary for a certain

type of connection (for example, constructing, sending and receiving a data-

gram) are defined. Depending on the requested connection scheme (a protocol

identifier, like sms: or socket:), an application is required to implement the

appropriate interface. The OSGi IO Connector service adds the possibility to

have bundles extend the supported schemes at run-time.
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The specification also proposes a name space for the use with these and

other transport mechanisms, which allows nested domains using different name

server technologies and is capable of designating both entities within an OSG

and arbitrary external entities.

4.3.4 Management

Since the concept of a local console is incompatible with the majority of use

cases for OSGi gateways, the Log service provides a central place to store error

and debug information. It resembles the logging facility introduced in Java 2

Standard Edition 1.4, but is more lightweight in nature. It logs entries with

time, severity level, the ID of the calling bundle, a clear-text message and an

optional Exception object in case of an error. A limited history of the log is

kept by the log service, but it also provides an event mechanism to distribute

log events as they occur.

To allow the customisation of bundle behaviour, the Configuration Admin

service offers a uniform way to provide them with a persistent set of param-

eters. Bundles participating in this scheme register an instance of Managed-

Service with the framework. Its interface contains a callback method which

the Configuration Admin service will use to provide the configuration target

with its current parameter set. This is done both at the initial registration

and whenever changes are made to the parameter set. Multiple configuration

targets are supported for service factories. Adjustments made by way of the

Configuration Admin service usually immediately affect the global behaviour

of a bundle, that is, all services it provides to other bundles. Bundles can

inform management tools about the configuration parameters they accept by

implementing the Metatype specification. This information can for example

be used to automatically generate appropriate management user interfaces or

be mapped to other metatype languages for use with an existing management

system.

The Initial Provisioning specification addresses the question of how a man-

agement agent (i. e. one or more management bundles which connect to the

operator’s back-end management system) is initially loaded onto a service plat-

form. Besides bootstrapping, a method for re-provisioning is defined as well to

allow hand-over of the service platform management to another operator, who

is possibly using a different management system.
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4.3.5 Wiring

The Wire Admin service supports to “wire” together services which register

themselves as producers or consumers of data. As such, it effectively introduces

the concept of static assemblies to the OSGi platform, albeit in a simple form.

Example producers include a switch, a temperature sensor, but also a GPS

receiver providing the current geographical position, while consumers may be

a lamp, a heater or a navigation system.

Producers and consumers will usually not be aware of each other and do not

need to hold each other’s service object. They are, however, notified if a wire

is attached to or removed from them. Both can specify multiple “flavours”

(class names) for the data they can use to exchange information to increase the

chance of compatibility. Both pull and push semantics are supported. In the

first case, the consumer polls the producer (via the wire) for the current value.

In the second, the producer calls the consumer (again via the intermediate

wire object) every time the value it provides has changed. To avoid flooding a

consumer with unnecessarily frequent updates, a wire may apply filter criteria

based on time intervals or value thresholds.

For cases where such a huge number of information items is to be delivered

that registering them as separate producers or consumers would overwhelm

the service registry, the concept of composite producers and consumers is sup-

ported. Also, the Wire Admin service may be used to connect external entities

(like a TV set and a DVD player) by exchanging addressing information only,

without unnecessarily relaying all data through the gateway.

4.3.6 Measurement

The Measurement class is a utility to simplify the common problem of correctly

handling measurements of physical values. It encapsulates a numerical value

together with its (numerical) error, SI unit and time stamp. It provides sup-

port for calculations with such values by tracking the resulting numerical error

as well as the derived unit in case of multiplication and division operations.

Addition or subtraction of measurements with different units are prevented.

The Position class is defined with location-based services for vehicles in mind,

which profit from a consistent way of handling geographic positions. It uses

Measurement objects to contain latitude, longitude, altitude, track and speed

of an object at some point in time and will usually be used in conjunction with

the Wire Admin service.
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4.3.7 Structured Data Storage

The Preferences Service provides a simplified subset of the Java 2 Standard

Edition 1.4 Preferences API. It allows bundles to store information in a struc-

tured tree-like manner that will persist across the bundle life cycle. Unlike the

standard Java properties utility class, it also supports different data types and

default values.

The Extensible Markup Language (XML) is a popular way to describe com-

plex structured data in an open and portable manner. Not all XML Parsers

are equivalent in function, however, and not all bundles have the same require-

ments on an XML parser. Java 2 specifies a common way of registering XML

parsers as extensions (JAXP, Java API for XML Processing). The XML Parser

Service specification defines a utility to support this mechanism in an OSGi

Service Platform. It allows sharing of XML parsers in the form of bundles and

provides interested bundles with the possibility of finding a suitable parser.

4.4 Challenges in Service Design and

Implementation

Certainly, the key challenge in service design is the design of a good service

interface with respect to the qualities generally desirable in service-oriented

architectures. Besides hiding (and thus leaving open) as many implementation

details as possible, it should lend itself to a variety of contexts. The interface

should present a generalised view of the task it encapsulates, leaving efficiency

and performance considerations to be addressed by different implementations.

It should represent a highly cohesive unit of functionality with minimum outside

coupling while staying as orthogonal to other services as possible. A service

should focus on a specific task; not more, but not less either.

Ideally, the service interfaces they expose should be the only points of con-

tact between OSGi bundles. If not possible otherwise, objects shared with

other bundles through the same reference should be kept immutable whenever

possible to avoid inadvertent coupling. Especially on the OSGi platform, there

is also the issue of protecting bundle secrets to avoid mischief being done by

code assuming a wrong identity. Access to the context object of a certain bun-

dle will, for example, allow other bundles to request services in its name—and

possibly let it pay the associated service charge for them.
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Also, the required Java package footprint should match the target platform.

As a general rule—which applies to OSGi standard services as well as any other

standard API—one should always consider whether an existing API could be

suited to a routine task (like, for example, logging) before inventing one’s own.

Limited available resources on the target platform can complicate this decision,

however, especially when only a relatively small subset of a feature-rich API

could be utilised.

The highly dynamic and long-lasting nature of an OSGi environment presents

even further challenges to the service designer. Above all, one has to account for

services the own code depends on not being available. This situation does not

only have to be addressed at bundle start-up. Since services are able to leave—

and return—at any time, it is necessary to use the framework event tracking

mechanisms to avoid calling “dead” code, be able to notify own clients and take

up standard operation again automatically when the service depended comes

online again.

The same diligence is necessary as well whenever resources are held on behalf

of a client. A bundle cannot depend on client bundles to clean up on services

they use before leaving the active state. Even if they are properly designed to

do so, a software failure may prevent them. Although the framework will auto-

matically release held services when a bundle stops, it has no way of accounting

for resources allocated by way of these services.

In the simplest case, this affects object references within the JVM. There-

fore, references held on other bundles’ objects should be nullified when no longer

needed to allow them being garbage collected. Otherwise, referenced but un-

used objects may cause the JVM to run out of memory over time [22]. While

this could be addressed through the use of weak references, resources outside

the JVM cannot be handled this way, since finalizers are not guaranteed to be

called at any specific point in time [33].

It is therefore necessary for service providers to associate such resources with

the bundle that requested them to be able to release them manually. While

the standard way is to use a service factory, the Whiteboard Approach [11, 28]

offers an interesting alternative. By having event listeners register with the

framework rather than the event source itself, the latter can take advantage

of the automatic clean-up done by the framework to assist in releasing the

allocated resources, since it will be notified when the listener service disappears

from the registry and can act accordingly. The Whiteboard approach especially

lends itself to situations involving a publisher-subscriber relationship.
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Finally, the multi-threaded environment entails the need for synchronisa-

tion—and consequently, the possibility of deadlocks. This can involve relatively

simple cases like two bundles which mutually depend on services provided by

each other and are programmed to delay registration until this dependency is

satisfied. Other issues may be less obvious. For example, events broadcast by

the framework in response to changes in the service registry are delivered syn-

chronously. A bundle declaring the corresponding event handler synchronized

and calling the framework in response to withdraw its own service—in the same

handler method—will run a high risk of halting the framework.

Deadlock situations may, among others, be the cause for a thread calling for-

eign code (like an event listener) not to return. A bundle should to be prepared

for this possibility. Generally, concurrency-related issues require careful atten-

tion as design flaws involving race conditions are almost impossible to discover

by testing.

All these issues are aggravated by the fact that—by the very nature of a

component framework—much of the code a bundle interacts with will be of

foreign origin (and thus a “black box” with eventually uncertain behaviour).
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The OSGi platform strongly encourages a component-oriented approach to soft-

ware design. Following up on this approach, a modular concept for making the

functionality of EIB networks accessible in an OSGi environment will be pre-

sented. First, this chapter will discuss the issues arising when these two tech-

nologies are to be brought together and motivate the proposed solution. The

following sections describe the service interfaces of the two core components.

The prototype implementation of the low-level bus access service is covered as

well. Finally, possible extensions of these core services are outlined, includ-

ing a concept with the goal of supporting the automated configuration of EIB

networks.

5.1 High-Level Design Considerations

The worlds of EIB and OSGi are quite different conceptually. While OSGi

heralds “zero administration”, the ability to adapt to changes dynamically

and with as little management intervention as possible, EIB strongly relies on

a qualified administrator even for small modifications to the system set-up.

Besides this general attitude towards change, their fundamental mechanisms of

communication differ as well.

Before working out this aspect, however, this section reviews the require-

ments for an EIB representation within a gateway platform. Finally, it is

examined which parts of the EIB protocol stack are especially relevant for ful-

filling the demands made and the design approach chosen on the basis of these

considerations is delineated.

5.1.1 Requirements and Possible Benefits

Owing to the purpose of a gateway discussed in depth in Chapter 2, the primary

task of an EIB access service will be to allow the exchange of data with EIB

devices in regular operation. In the spirit of the network-independent nature

of OSGi, the data should not be locked into a representation specific to a
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particular protocol or language, but be made available to other bundles in an

open form for further processing. This may not only include conversion to

another network protocol, but also other uses like for example local logging.

It would be desirable to minimise the context specific knowledge client bun-

dles have to be provided with by offering suitable abstractions for services of-

fered by EIB devices. This will include recording descriptive information with

SAPs and mapping value representations to their Java counterparts as far as

possible. For example, service users would probably like to turn on the light in

the living room by setting an appropriately named value to “true” rather than

writing a more or less cryptic hexadecimal value to a similarly cryptic group

address.

The service should work with the broad base of existing devices. This does

not only mean that different physical media should be accommodated, but also

that it should not depend on protocol features which are not widely supported.

Furthermore, the integration of the gateway into an EIB system should be

made as easy as possible.

Using the gateway as a bridgehead for maintenance would be of interest as

well. While attempts to dethrone the ETS as the tool of choice for setting

up entire EIB systems are not likely to be crowned by success (and are out of

scope for a gateway device anyhow), the modification of selected application

parameters has a more realistic perspective.

Values which are safe to be changed without in-depth system knowledge, for

example dimming speeds or the power-on duration of a hallway light, could

be exposed for modification by end users. Yet, it is practically infeasible to

change the configuration of most existing EIB devices without support from

their manufacturers or EIBA, as parameter data are stored at undocumented

memory locations. Interface objects would offer an open alternative, but are

not widely implemented yet.

At any rate, the ability to use the gateway as an iETS (EIBnet/IP tunnelling)

server would certainly provide added value. EIB routing (again, specifically

regarding EIBnet/IP) could be attractive likewise. Given the fact that an

OSGi service will present a convenient high-level abstraction for EIB access, it

should also lend itself to experimental prototype development. Yet, while its

design should not preclude the realisation of additional and future demands like

those outlined, it still has to comply with the main requirement of providing a

lean interface for data exchange in regular operation.

83



5 OSGi/EIB Integration

5.1.2 EIB and the OSGi Device Access Model

One might expect that a suitable mapping of EIB networks into the OSGi envi-

ronment would consist of services representing individual EIB devices, possibly

leveraging the OSGi Device Access mechanism. This is inappropriate for a

number of reasons, however.

The OSGi Device Access mechanism is designed to allow the platform to au-

tomatically adapt to changes in its environment without operator intervention.

To this end, it is necessary that the networks it is connected to support some

kind of automatic device discovery mechanism and provide a standard way

for devices to provide enough information to allow the selection of a matching

driver. Traditional EIB, however, being designed for a field of application where

change is expected to be infrequent, provides neither. Without this basis, the

automatic device refinement process is pointless.

While these issues could be worked around (by manually registering the

needed information, if necessary), one encounters a more fundamental problem

when attempting to expose functionality of a node as an OSGi service, as sug-

gested in most OSGi-related literature [11, 15, 34]. This approach contains the

tacit assumption that a device driver can “talk” to its target device without

further ado to trigger some action. But due to the publisher-subscriber con-

cept, access to application functionality of EIB devices in regular operation is

associated with shared variables rather than devices. This means one cannot

specifically change the state of a certain actuator, one can only do so through

changing the state of the group (or one of the groups) it belongs to.

Even if accessing regular functionality using ad-hoc point-to-point communi-

cation was possible—as it could be once the EIB Interface Object communica-

tion mechanism will be implemented by a significant number of devices—, the

issue remains that some device may silently maintain an assumption regarding

the state of an actuator. Should the gateway improperly interfere with control

of this actuator, the assumption will no longer match reality and probably re-

sult in erratic behaviour. This problem is not specific to EIB, but especially

frequent here, since status feedback is not required by the protocol. In fact,

this is a deliberate omission since it would thwart the performance benefit of

multicast addressing in large installations.1

These observations entail two main consequences. First, exposing EIB nodes

as OSGi device services is the wrong approach as far as group communication

1For a large number of lights to be turned on or off at once, a single group telegram—which
is processed by all switching actuators—suffices. Yet, requiring all these actuators to
return separate confirmations would result in substantial traffic again.
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is concerned. Since the service access points of an EIB network are actually

values shared via group addressing, these should be the entities to be exposed

by OSGi services. Secondly, group communication relationships within the

EIB network have to be designed taking into consideration the functionality

to be provided by the gateway. It has to be ensured that group addresses

exist which allow it to address devices with precisely the required granularity

and that no other nodes are left with a stale state assumption due to such an

intervention. Should the system contain more than one line, routers also have

to be configured properly to ensure that messages related to relevant shared

variables are propagated from and to the gateway. All this means that expert

knowledge is required to insert a device into an EIB network. Given the state

of art, this knowledge will have to be supplied by a skilled individual.

5.1.3 Consequences and Overview

When looking at the EIB protocol stack (as shown in Figure 3.10) with the

above discussion in mind, its clear vertical division should catch the eye. It

enables to conveniently pick the parts which need to be supported.

Obviously, full support for horizontal run-time (i. e. group) communication

is required. A client bundle has to be provided with support comparable to the

one the EIB application environment provides to the user application. This

includes maintaining the state of a shared variable, being able to transmit

updates and receive change events. Vertical run-time communication—being

explicitly intended for the purpose of central monitoring and control—would

be of interest as well, but is only scarcely supported in devices. Moreover, this

way of communication will not provide change notification.

On the other hand, the benefit of supporting device management functional-

ity is limited. This does not only include the Application layer services neces-

sary for configuring other devices, but also the respective User layer servers for

making the configuration of the gateway accessible to EIB management clients,

specifically the ETS.

Actually, supporting incoming device management requests seems appeal-

ing, since the gateway will need to be incorporated in the overall EIB network

configuration. This, as was discussed above, needs specific management inter-

vention. Theoretically, the EIB protocol is flexible enough to transmit arbitrary

configuration data, like extended textual descriptions for shared variables. In-

tegrators could simply record the necessary data in ETS, which would then

be transmitted together with the group addresses assigned. No further steps
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would be required to set up the gateway, minimising the additional knowledge

required from integrators.

In practice, however, it is unlikely that the necessary ETS support (probably

in the form of a plug-in) can be added any time soon due to the significant

efforts—and financial implications—entailed by the compulsory certification.

As an interim solution, a “dummy device” representing the gateway can be

included when defining the network set-up in ETS. The exported project data

can then be completed and transferred to the gateway using a separate tool.

Since device management2 is the only part of the EIB network stack which de-

pends on connection-oriented relationships, this functionality can be left aside

at first. Actually, this removes the need for the entire Transport layer, since

multicast addressing is effectively provided at Layer 2.

When transparent accommodation of physical media and underlying hard-

ware while retaining the option to add arbitrary elements of the protocol stack

at a later time is desired, available options quickly boil down to implementing

the Data Link layer interface. The services of the EIB Data Link Layer do

not place tight real-time requirements on clients and allow uniform access to

the physical media available. Exposing this interface as an OSGi service pro-

vides the desired hardware abstraction while retaining maximum flexibility in

handling upper-layer protocols.

This interface can immediately be used for tunnelling and routing applica-

tions (including EIBnet/IP), provided the source address of outgoing frames

can be set freely. It can also support a component supporting group commu-

nication, which would take care of the assembly of the proper Layer 7 PDUs

and possibly caching of shared variable values. Such a group communication

service would also be a good place to provide support for the conversion of

variables from EIS into Java syntax.3 As the EIB Network layer is practically

empty for end devices, such a module would be able to sit directly on top of

the Data Link layer abstraction. Likewise, a component for accessing interface

object properties could be added equally easily.

Actually, all these components can even operate in parallel as long as the

base abstraction allows multiple clients. This allows the separation of concerns

regarding network operations in a vertical way in addition to the exclusively

horizontal divisions of the standard protocol stack. Obviously, the resulting

2Access to protected interface object properties is limited to connection-oriented commu-
nication as well. “Safe-to-change” properties can be assumed to be freely accessible,
however.

3Such functionality is already outside the EIB network stack, strictly speaking.
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flexibility has to be handled carefully. The gateway operator has to ensure that

competences are clearly divided between such components, either based upon

of the addresses they are prepared to process (group or individual) or by means

of handling non-intersecting protocol aspects only which can be unambiguously

discerned by their respective PDUs. Also, complications are bound to occur

since such a division was not intended by the designers of the EIB network

stack. For example, while extending the standard Transport layer to allow

concurrent outgoing connections is straightforward, this issue is not as trivial

for incoming connections, which do not provide a means for determining the

appropriate handler (as do for example IP port numbers).4 Especially as long

as one keeps to the “natural” vertical divisions of the protocol stack, however,

the fine-grained decomposition possible provides clear benefits in enabling the

resulting overall solution to be as lightweight as possible.

Adopting such an approach also suggests multiple horizontal divisions, which

raises concerns regarding performance. Although the latter would certainly be

optimised by implementing an EIB access service largely in native code with

no more than a thin Java interface layer, it seems a viable approach to sacrifice

some of it for added flexibility. Since interactions between OSGi services are

effectively implemented as direct method calls, the incurred overhead can be

expected not to be inadequate. Actually, [38] describes a modular gateway

architecture whose individual modules communicate via IP, even carrying the

overhead of the network stack at each call—obviously with no further prob-

lem. Moreover, the low data rate of EIB will not allow more than a few dozen

messages per second5 (of practically negligible size each) to enter the system

in the first place. So, it seems viable to opt for utmost flexibility by putting

an abstraction hierarchy in place, with the low end only encapsulating which

cannot be addressed adequately from within the Java environment, specifically

tight real-time requirements and hardware-dependent issues. Further compo-

nents can then fill in exactly the parts of the network stack (and functionality

beyond it) as needed.

The following sections will describe a low-level interface and a group commu-

nication support component aligned with this concept. While this covers the

parts of the EIB network stack which have been identified as most important

4A possible solution to determine the appropriate handler service would be to always accept
an incoming connection and offer the first frame—which contains the Application Layer
PDU—to all clients in turn, then break the connection if no handler accepts.

5The theoretical peak value for Twisted-Pair EIB is 48 GroupValue Write messages per
second.
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(and provides a clear path for adding the remaining parts), the question how

individual devices are to be represented suitably remains open still.

As was discussed, due to the design of the EIB network stack representing

individual devices as OSGi services will only prove beneficial when maintenance

aspects are of interest. Even then, such an approach is not straightforward since

EIB provides neither discovery nor sufficient self description mechanisms.6 Yet,

Section 5.1.2 suggested that these issues could be worked around. The finishing

section of this chapter attempts to live up to this promise by outlining a vision

of an advanced driver architecture which would expose maintenance aspects of

EIB devices in the form of a hierarchy of device services based upon successive

refinement. These service, would also provide open, high-level access to the

configuration of the EIB devices they represent. Still, the restriction holds that

such an architecture could only come to life with the necessary configuration

data being supplied by manufacturers or EIBA.

Regarding possible ways for presenting application-related functionality, it

seems clear that it will have to be exposed separately from any services rep-

resenting individual devices since group addressing is so deeply rooted in the

EIB protocol. Also, semantic information has to be provided to client services

to enable them to actually make use of the shared variables made accessible

to them. Also, these variables need to be grouped and sorted according to

their functionality. These issues merit further investigation and will be covered

thoroughly in Chapter 6.

5.2 EIB Frame Service

The EIB Frame service (EFS) provides the capability to exchange EIB Data

Link layer protocol frames with other EIB devices. Its purpose is to encapsu-

late hardware dependencies and particularly timing-sensitive aspects. This is

achieved by modelling its interface on the services provided by the EIB Data

Link layer, which also provides uniform access to the different physical media

available. Although access to and custom handling of almost all elements of

the protocol frame is provided, the client is spared most of the tedium of frame

assembly and disassembly.

Besides the Data Link protocol control information, the EFS also takes care

of encoding and decoding the Network Layer control field (routing counter).

Since end devices do not need to further process this information, the EIB

6Interface Objects will alleviate the second problem, but are not widely implemented yet.
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Figure 5.1: Hardware-Software Collaboration

Frame Service also covers Network Layer functionality for them. Routers, on

the other hand, have the freedom to implement arbitrary routing functionality

on top of the EFS.

As illustrated in Figure 5.1, an implementation will have to be specific to

the EIB communication controller used and the corresponding low-level device

driver of the host operating system. Depending on them (and the amount of

specification conformance desired), it will provide a particular subset of the

features accessible through the common service interface. For example, a TP-

UART based solution can easily allow the dynamic configuration of a node’s

physical and group addresses, while a BCU is not designed for this information

to be changed frequently.

To allow a client service to check on the actual capabilities of the service ob-

ject implementing this interface, the latter will advertise its actual capabilities

(for example, the number of group addresses supported) as service properties

together with its service registration. Should the client service choose to request

unimplemented functionality nevertheless, an exception will be raised. Global

settings are managed via the Configuration Admin service. For example, the

default source address for outgoing frames is made available as a configuration

property. When it is changed, a TP-UART based node will simply change the

corresponding internal variable, while a BCU-based one will need to write the

change to the communication controller’s EEPROM using local maintenance

mode. Since this is an expensive operation, the BCU-based implementation will

not accept requests for frame transmission with another than the default source

address, effectively restricting changes to bundles which possess the necessary
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Figure 5.2: EIB Frame Service: Information Flow

administrative permission to access the Configuration Admin service. Other

examples for configurable settings include whether the EIB hardware interface

is operating in standard or bus monitor mode or whether a repeater is installed

in an Powerline EIB system.

5.2.1 Service Interface

Figure 5.2 shows how the EFS interacts with clients and the environment. It

is withdrawn when communication with the EIB is not possible for any reason

and re-registered as soon as connectivity returns. Such exceptional conditions,

which may be of interest to an operator, are passed to the log service.

To transmit a frame, a client service simply calls the appropriate method on

the EFS service object. This method will not return until an acknowledgement

from the remote Data Link Layer was received or the local Data Link Layer

gave up retrying. The result is then returned as the method return value.

To satisfy special requirements, one method allows to specify a maximum

of control information: priority class, routing counter value, source address,

destination address and user data. For normal use, an overloaded method is

provided where the EIB Frame Service will supply default values as configured.
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In order to allow different parts of the network stack to be handled by sep-

arate components, the EIB Frame service provides support for multiple client

services using the Whiteboard approach. To receive incoming frames, client ser-

vices register themselves with the OSGi framework as EIBFrameIndication-

Listener, passing as service properties the source or destination addresses of

frames they are prepared to process. The EIB Frame Service tracks these regis-

trations and causes acknowledgement frames to be sent in response to matching

incoming data frames. The latter are then distributed to all clients which de-

clared interest.

When a client is stopped, its listener service registration is automatically

removed by the framework. Since it also notifies users of a removed service,

the EIB Frame service can accordingly modify its list of addresses. Thus,

the list of incoming frames to acknowledge (which can be considered resources

external to the framework as discussed in Section 4.4) can be kept accurate over

time. Using the Whiteboard pattern to leverage the service registry for storing

information related to service interactions also has further benefits. Client

services do not have to re-register as listeners after periods of unavailability of

the partner service, and the communication relationship is immediately visible

for management purposes.

Since bus monitor mode indications differ in significant details from indi-

cations generated in regular operation mode (in particular the inclusion of

repeated frames), a separate handler method is included on the listener inter-

face. Listeners need not implement it if not needed. With usual bus access

hardware, entering bus monitor mode entails the deactivation of normal com-

munication, although set-ups are imaginable which may provide both at the

same time. The interface is designed to accommodate this possibility. The

listener interface also contains a handler for error indications (which will for

example be delivered in case the properties describing the relevant addresses

could not be parsed).

The EIB Frame Service interface also accommodates polling mode. In the

unlikely case that the local node is to act as slave, poll octets to be returned are

provided as service properties of a listener service, which is otherwise empty

except for an error handler.

Source and destination addresses are encapsulated by the immutable util-

ity class EIBAddress, which also provides high-level methods for constructing,

parsing and comparing them. It also covers the needs of Powerline EIB and

allows to describe address ranges. EIBAddress also defines and supports an

unambiguous string notation for the representation of EIB addresses.
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Figure 5.3: EIB Frame Service: Class Diagram

Figure 5.3 shows the relationship of the interfaces and classes making up the

EIB Frame Service in the style used in [34]. The interfaces which are exported

are shown in bold. They reside in a package separate from the one holding

the implementation classes (although they belong to the same bundle). The

service interfaces which are registered with the framework are marked with a

black triangle in the lower right corner.

To minimize unwanted dependencies between the EIB Frame Service and a

client service, the factory pattern is employed for EIBAddress objects. Instead

of invoking a constructor on EIBAddress, client services request instances via

a method on the EIBFrameService interface. EIBAddress objects are used

to qualify received and transmitted frames. This is indicated by the dashed

lines. For simplicity, the polling group responder interface is omitted from the

illustration.

5.2.2 Prototype Implementation

A prototype implementation of the EIB Frame Service was realised on a Linux

system using the TP-UART driver available from [13], which provides access to
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the TP-UART as a character-oriented device. The Gatespace SGADK, which is

no longer distributed, provided the necessary OSGi platform implementation.

The class structure is shown in Figure 5.4. Access to the low-level driver had

to be handled entirely by native methods, since it relies on ioctl() calls to

define the destination addresses of received frames it will pass on and acknowl-

edge. Also, blocking reads were used to avoid busy waiting for incoming data.

Yet, the bundle had to remain able to respond to stop requests. Defining the

read operation in a native method allowed to let it time out using the select()

system call. After every time-out, a check is made whether a stop request was

received. If this is not the case, the cycle starts anew.

This design proved especially useful as it turned out that the driver would

not check for error conditions (for example due to the failure of bus power)

after the initial open() call. Therefore, the device file is closed and reopened

(“pinged”) regularly in this loop to allow withdrawing EIBFrameService when

EIB access is not available. In this case, the driver is continuously polled as

well to detect connectivity to reappear again.

This main loop is contained in TPUARTMonitorThread, a singleton7 which is

started by the bundle activator (contained in Activator). At bundle start-up,

7Singletons are denoted by a “1” in the upper right corner. TPUARTMonitorThread is also
an active class, as can be seen from its strong border.
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the ConfigurationManager is activated as well, which causes it to register its

callback with the Configuration Admin service. The name of the device special

file is passed to the bundle as a configuration property and is maintained as a

static variable within the native library. Since the OSGi specifications call for

configuration properties to be echoed to the service registration, the Configu-

rationManager also maintains the service properties of the EIBFrameService.

Only a single implementation of the latter exists. Its method for transmitting

frames is synchronized, which ensures that write accesses to the low-level driver

will not overlap.

Whenever a frame is received, TPUARTMonitorThread constructs an appro-

priate Indication according to the current mode of operation (standard or

bus monitor) and passes it to IndicationMultiplexer for distribution. This

class is responsible for maintaining the list of EIBFrameIndicationListeners

present (by listening to service events issued by the framework) and configuring

the low-level driver accordingly. The state of every listener service is encapsu-

lated as an instance of DispatchTarget. Every DispatchTarget is associated

with its own DTCaller thread, which is used to invoke the callbacks of the

listener. This allows events to be dispatched in a timely manner despite slow

or malfunctioning listeners. Should a DTCaller not be ready again when the

next indication is to be delivered, a second one is created for the sole purpose

of delivering a failure notification to the respective listener, which is suspended

from receiving further indications until both caller threads have returned.

For testing purposes, a prototype EIB Frame Service client bundle was im-

plemented as well. It presents a graphical user interface for interacting with

the service, which is shown in Figure 5.5. Its main window indicates whether

an EFS instance is currently registered (multiple concurrent instances are not

supported). If so, its service properties are shown. A minimal client for the

Configuration Admin service is implemented as well to allow changing the op-

eration mode of the EIB Frame Service. Any number of Frame Service client

windows can be created on request. Each of them implements an independent

EIBFrameIndicationListener, processing and displaying either bus monitor

or standard mode indications. Standard mode clients also allow the transmis-

sion of EIB data frames. For the graphical user interface, AWT8 was cho-

sen over Swing for its thread-safe nature. This simplified the implementation,

as changes to the display can be made directly from the indication handler

method.

8Abstract Windowing Toolkit
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Figure 5.5: EIB Frame Service: Screenshot of Prototype Client

5.3 EIB Group Communication Service

A service supporting EIB horizontal runtime communication obviously has to

provide an implementation of the appropriate services of the EIB network stack

as described in Section 3.6.2. Since the necessary Application layer services are

specifically designed for synchronising group objects with a maximum length of

14 octets only, every message related to publishing or requesting a shared value

fits within one Data Link layer frame. Consequently, this task merely involves

the correct interpretation and generation of six bits of Layer 7 protocol control

information.

Translating transmitted values between the EIS bit-level syntax and appro-

priate Java data types is another important task of the EIB Group Commu-

nication service illustrated in Figure 5.6. Besides transmitting updates of a

shared variable to other group members, it will also monitor any given group

address, maintaining a copy of the last value distributed to this address via the

network for the use of client bundles.

Clients wishing to monitor the state of a particular shared variable register an

appropriate listener service with the framework, including the group addresses

to monitor as service properties and are notified in case of an update. This
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pattern of event distribution is very similar to the one employed by the EIB

Frame Service.

Upon a request for the state of a particular shared variable, its cached value

is returned. Read requests to be issued to the network have to be called for ex-

plicitly. They will automatically refresh the cache. In both cases, it is required

that the particular group address was previously registered for monitoring. The

local cache is refreshed as well when a new shared variable value is written to

the network. In this case, clients are notified of the change in the same way

as they would be when the update is received via the network to ensure a

consistent view.

In much the same way as EIBAddress, a utility class provides the conversion

of EIS to Java types. The manager service passes byte arrays encapsulated

by this utility class to listeners, which have to apply the proper conversion by

calling the appropriate getAs...() method.

The EIB Group Communication service will also act as group responder, if

requested. It is necessary to keep in mind, however, that it can act only within

the limits of the given topology and routing set-up. It is therefore necessary to

ensure that group addresses to be written or listened to can actually pass from

their source to their destination.

5.4 Advanced Driver Architecture

This section outlines a vision of representing EIB devices which would permit

to make their configuration accessible to other services in an open, high-level

way. Also, it would enable the remote management of EIB systems where

tunnelling is not applicable due to excessive network delay.
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Figure 5.7: “Smart” Driver Architecture

The architecture presented in Figure 5.7 makes use of OSGi device refinement

to identify devices and expose maintenance related functionality in subsequent

steps. It assumes the existence of a Transport layer service. Appropriate

Application layer PDUs are assembled by the driver services themselves.

The refinement process starts with the Node Enumerator Service being pro-

vided with the address of a previously unknown device (it could also conduct

scans of given address ranges to find one—or more—of them). It will then reg-

ister a base device containing environment related information, like its physical

location (not the location of effect), wiring (e. g. whether a combined device is

wired as a blinds or a series actuator) and its individual node address (which it

will make available for change). Base devices can also provide their device de-

scriptor (also referred to as mask version) since this ID can always be retrieved

in an implementation independent manner using a dedicated device manage-

ment service. The device descriptor specifies the communication controller

(Bus Access Unit, BAU) of the device in question.

Since different BAUs have their specific ways to retrieve and modify device

configuration data, the next refinement step is to select an appropriate driver

on the basis of this device descriptor. This driver is then able to retrieve the

manufacturer ID and application version, which it registers alongside with its

representation of a configurable device. Configurable devices provide high-level
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methods to load a new application and to access the address and association

table, handling access protection where needed.

Using this information, the Device Manager can select a matching application

driver. This driver possesses semantic information about the application loaded

on the EIB device which may include a standardized description of its function

(switch, push button, staircase light, . . . ) or whether assumptions about the

state of communication partners are made. A configurable device may be split

up into multiple logical devices (for example representing multiple channels).

Application drivers also maintain the association between group addresses

and their group objects. This means it would theoretically be possible to

connect representations of group objects (for example, by way of the Wire

Admin service), with the application drivers automatically modifying the con-

figuration of the participating devices. Incompatible assignments would be

prevented thanks to the semantic information held by the driver services. It is

also conceivable that the configuration of any routers present on the network

is updated automatically as well. Such a solution would actually encapsulate

the expert knowledge currently provided by the system integrator within the

driver services.
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Abstraction

In Section 5.1.1, the need for representing the application functionality of EIB

devices which becomes accessible through an interface component in a way

suitable for the use of other bundles was mentioned. Obviously, it would be

desirable to use a wide-spread, standard representation to maximise the choice

of components which can be combined with the provided abstraction. This

would be in the interest of service providers, gateway operators and end users

alike. Yet, there is no comprehensive, widely accepted standard. Actually,

there even seems to be only a handful of potential candidates.

The functional blocks defined by the KNX interworking profiles certainly are

most closely related to EIB technology-wise. Although they look promising—

Konnex Association even has entered a cooperation with the European Com-

mittee of Manufacturers of Domestic Equipment (CECED) with the goal of

defining interworking profiles for white goods—, they are still in the making.

The same holds for the standardised UPnP Device Control Protocols (DCPs)

[45], of which only a handful are published yet—with merely two (“HVAC”

and “Lighting Controls”) being relevant to home automation. Notwithstand-

ing that, UPnP seems to have considerable support. Specifically, UPnP was

declared the successor for the “Home Plug&Play” set of interworking profiles

[12] defined by the United States-based CEBus Industry Council, none of which

however seem to have ever been implemented by any significant number of prod-

ucts. Also, Echelon presented a UPnP bridge for LonMark1 devices. LonMark

in itself provides a considerable source of functional profiles as well, which are

albeit strongly oriented towards LonWorks.

In the field of building automation, the BACnet standard [1] is already well-

established. It was specifically designed to bring diverse “islands” of control

together on the automation level to provide unified monitoring and command

capabilities from a single workstation or control room master display. Yet,

BACnet imposes a necessarily very technical point of view, dealing with alarms,

1cf. Section 3.1.4
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events and object access (analogue input, loop controller) on an abstract level,

limiting its usefulness for home automation purposes.

So, none of the available candidates seems a perfect match. Furthermore,

all these standards deal with functional blocks. On reflection, this would ac-

tually be a limitation within an EIB system, where data points can be bound

individually. Here, every group address could be considered a device in its own

right.

Taking this idea one step further, one could expose them as individual ser-

vices. This opens up interesting possibilities. Permissions can actually be

assigned at the level of individual data points in this case. Also, they can quite

easily be registered as individual Producer or Consumer services, allowing them

to be connected using the Wire Admin service.

Actually, there is no reason to confine these data points to EIB shared vari-

ables. Data points (or even entire functional blocks, after breaking them up

into their individual elements) from entirely different technological contexts

can be accommodated as well. Thus, a technology-neutral representation is

achieved.

6.1 Architecture Overview

The remainder of this chapter will present an interface to be used by OSGi

services presenting added value to the end user during regular operation. Its

task is to supply them with status information of and accept control mes-

sages for FAN devices. Its aim is to present the available control points in a

uniform, technology-agnostic way, so that client services need not deal with

specifics of a particular FAN. Although state-based in its nature, it also pro-

vides an event-based update notification service. It is explicitly not intended

to provide a generic way of addressing set-up and configuration issues, as their

intimate relation to the specifics of a field bus design makes this a highly

involved task. The FAN (or possibly multiple FANs or other automation sys-

tems) whose functionality is exposed through this interface are assumed to be

properly pre-configured. This also includes properly setting up the gateway as

a communicating party to enable it to actually receive all information to be

exposed and access functionality of other nodes without unwanted side effects.

The binding of client services to these data points is expected to be accom-

plished manually by an operator or the end user him/herself. For this purpose,
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Figure 6.1: System Architecture

a scheme for enriching them with semantic information is proposed, which

allows to present data points clearly arranged for easy identification.

As shown in Figure 6.1, components specific to their particular field bus

designs will implement this interface, translating the network-specific to the

common representation and addressing device-specific issues.

For EIB, these driver components2 will build upon the protocol stack com-

ponents presented in the previous chapter. Since the application level com-

munication paradigm of EIB is state-based as well, it will in many cases be

sufficient to maintain a 1-to-1 relationship between a data point service and

an EIB shared variable. A single bundle will be sufficient to perform this

translation for any number of such values, like temperature sensor readings

or wall switches. Nevertheless, a driver can also perform arbitrary additional

processing, like a moving average.

More complex devices like dimming or drive actuators are controlled through

multiple group addresses and will require more effort regarding conversion into

the common representation. They are therefore likely to be covered by device-

specific drivers. By providing them with access to exactly the same shared

variables as the device they represent (as well as internal parameters), such

drivers can internally reproduce its behaviour. This way, they could provide

the permanent status feedback demanded by the top-layer abstraction even if

2The use of the term “driver” should not obscure the fact that the OSGi Device Access
specification is not involved in this concept in any way—except for aspects of nomencla-
ture.
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it is not available from the device (as it is for example the case with drive

actuators).

All components shown in Figure 6.1 are services within the OSGi environ-

ment. No assumption is made concerning their combination into bundles for

deployment. The following sections will present the key concepts of the abstrac-

tion proposed—breaking functionality up into a pool of uniform data points and

reapplying structure by arranging these in tree-like manner according to the

effect perceived.

6.2 A Pool of Data Points

The abstraction proposed aims to provide a simple model for representing the

functionality available within a building automation network in a bus technol-

ogy independent way. It is specifically targeted at the residential application

domain and smaller-sized functional buildings and confines itself to handling

control information only. An important goal is to support the construction of

a clearly structured and immediately comprehensible user interface for moni-

toring and control purposes as well as binding data points to client services.

The abstraction provided can be used by any OSGi service. This may be an

HTTP server which presents a control panel for local or remote use, a service

which will send an SMS when the washing machine is detected to be spilling

water or one implementing any of the technologies discussed in [40]. It should

be noted that these services need not be IP-based. As an example, consider

an SMS service which operates using a GSM modem connected directly to the

OSGi platform host.

Besides remote services, purely local applications (as for instance presence

simulation) can easily be implemented as well on top of this abstraction. Al-

though the host becomes a single point of failure in this case (which suggests

that elementary functionality should not rely on logical connections made this

way), this is a perfectly viable approach for comfort functions.

A key benefit of a technology independent abstraction is to ease the work of

service providers and gateway operators, who are spared of having to provide

and administrate multiple versions of a service with otherwise identical value

to the end user. Moreover, it also plays an important role for local integration.

Although one will initially select a single FAN technology to cover all demands,

one may simply not have the choice for later additions. This may be due to

the fact that the chosen technology does not support some new requirement,
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like device discovery, which is indispensable for the integration of loose goods.

Such an abstraction also allows to cleanly integrate OSGi services as data

point providers. For instance, the presence simulation component may allow

its activation and deactivation this way.

The approach chosen is a state-based one, breaking down system functionality

into values of primitive type. Every of these data points is represented in a

uniform way. Technology independence is achieved by using real-world objects

and properties as entities in the representation of the process image. This

high-level semantic information is presented in textual form to the user only,

however. Behavioural aspects are explicitly not addressed by this model.

As a consequence, complex devices providing multiple points of control are

exposed as a set of unrelated data points. This is not a problem regarding

interaction with other software components, but certainly one for human users.

To enable them to pick the right data point from this pool, another main

constituent of the approach proposed is a concept for associating data points

with additional semantic information pertaining to their effect location and

purpose. This concept is not limited to data points belonging to the same

node, but has universal applicability.

6.3 Functional Aspects

Every data point is registered as a separate service object. In addition to a

common service interface, a set of required property keys is specified, which

enables client services to query the Service Registry for data points meeting

specific criteria.

Although the state-based approach used may be reminiscent of the EIB

application-level communication model, there are some major differences.

First, the semantic information associated with data points is available for

perusal by examining their service properties during regular operation. Sec-

ondly, this information is not related to field bus nodes, but associated with

real-world entities. Third, the state-based paradigm is applied with full con-

sequence. In an EIB system, data sinks are explicitly free to silently change

application related status associated with a group variable. For example, an

actuator controlling a stairway light usually switches off after a pre-set time-out

without announcing the state change on the network. In contrast, data points

are required to accurately reflect the status of their associated real-world entity

at any time. This has to be ensured by the respective driver component, by
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• Persistent unique identifier (PID)

• Object affected (air, door lock, water, glass, HVAC control, . . . )

• Property of object (temperature, state, presence, integrity, . . . )

• Read/only (sensor) or read/write (actuator)

• Data type descriptor (constant with specified mapping)

– Boolean, long int, float, string, . . .

– Time stamp, day of week, time of day

– OSGi Measurement

– State Set

– Event (memory store/recall)

• Physical unit or state labels

• minimum/maximum value

Figure 6.2: Data Point Properties

dead reckoning if necessary. That way, the entire state of the system is always

available.

Despite this obvious benefit, a purely state-based model cannot accommo-

date actions like the sending of an alarm message, which do not possess state

by their very nature. To be able to include such functionality in the data point

model as well—for example, to have a panic button trigger it—, a special type

of data point representing an event is provided.

Furthermore, one has to be aware of certain implications of a state based

model with respect to consistency. For example, it is necessary to always

separate set points from data points reflecting actual values. While this may

be obvious when regarding the room temperature, dimmers capable of smooth

transitions between light values will give rise to the same problem. Only when

the effects of a control interaction are instantaneous and unconditional (for

example, switching a simple light), set point and actual value can be folded

into the same data point.

Also, special care has to be exercised whenever data points affect or imply

the state of others. For example, a data point exposing a “house mode” control

with the states “away” (all lights off) and “festive” (all lights on) will have to

be able to assume at least a third state (probably “custom”) to reflect the very

likely condition that some lights will be turned on, while others are not. Again,

not all situations where this rule applies are this obvious.
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The properties of a data point are enumerated in Figure 6.2. The “Property”

property holds the aspect sensed or controlled of the real-world object described

by the “Object” property (e. g. “speed”). This “Object” is defined in a way

independent of the specific use this information is put to (i. e. “wind”, not

“thunderstorm warning”). Both the “Object” and the “Property” property

can hold free-form text.

In addition to the standard set of native Java data types, a means of spec-

ifying a certain day of week or time of day is included for the use with timer

programmes. Also, data points which can enter a number of discrete, mutually

exclusive states can be described properly. If present on the platform, the OSGi

Measurement utility class can be leveraged as well.

Each of these types is associated with a specific constant value, which allows a

client component to automatically generate appropriate user interface elements.

For the same purpose, Boolean and multi-state types are accompanied by a set

of state labels. The physical unit of numerical values can be provided as free

text.

Concerning interaction with other services, it is obvious that multiple clients

have to be supported. To ensure consistency, no read accesses must occur

during the value being written. Implementing this requirement using the Java

programming language is straightforward by declaring read and write access

methods as synchronized.

For notification on update events, the Whiteboard approach again offers an

elegant solution. By registering a single listener service, an interested party

can receive update events from all data points. To identify the event source,

its PID will accompany every notification.

The concept of a pool of data points integrates perfectly with the OSGi

Wiring scheme. Given a suitable user interface, being able to “wire” data

points can offer the end user a powerful, yet reasonably easy-to-handle tool for

customizing platform functionality. Also, logging functionality based on time

intervals as well as value thresholds can be implemented in a straightforward

fashion. Yet, such criteria can only be associated with a single data point.

Concerning security and privacy, the OSGi framework already provides the

necessary mechanisms to ensure that only trusted bundles are able to use data

point or even low-level services unless they are given the proper permissions.

Finer granularity of access control can be achieved by requiring these services

to keep track of their client bundles by implementing a Service Factory. This

could then be used to grant write access to a certain data point to trusted

components while limiting others to read access.
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Figure 6.3: Data Points: Semantics Distribution and Binding

If a client bundle provides an entry point for user authentication (like the

HTTP service), this information can be passed to the data point service ad-

dressed. Another extension would be to limit the frequency of access for certain

bundles or users as a privacy measure. For example, remote meter reading could

be allowed once a month only.

All these approaches benefit from having data points available as separate

services for more fine-grained control. Although all these efforts are void as

soon as an attacker gains access to the EIB physical medium, they raise the

barrier for attacks via a remote connection.

6.4 Presentation

As has been detailed already, individual data points hold only information

associated with the capabilities of a FAN device. Yet, this alone is insufficient

for the end user, for whom the actual use delivered by such a device within his

or her living environment is relevant.

Therefore, the concept proposed includes two persistent tree data structures

holding information pertaining to the location of effect and purpose of data

points. Every tree node is labelled with a free-text description and references

a list of data point via their PIDs. Client components still access functionality

associated with data points using the respective service interfaces of the latter.

They will only be concerned with the tree data when the need arises to identify

a data point they are dealing with towards human users. This concept is

illustrated in Figure 6.3.
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Regarding the topological structure, storing the location of effect was chosen

over referring to the physical location of the associated node for the reason

of three specific characteristics of the envisioned field of application. First,

nodes are frequently installed in distribution cabinets, with passive cabling

leading to the—often drastically different—actual location of effect, which is

the one relevant to the end user. Secondly, an approach strictly aligned with

physical topology cannot easily accommodate higher-level functions, such as

one that allows to switch off all power outlets on the ground floor reachable by

small children. Last, but not least, EIB as a wide-spread representative uses a

communication model which renders such an approach plainly impossible.

Therefore, an approach is adopted which from a technical point of view can

be considered function-oriented (as opposed to structure-oriented) [31, 40] in

that it entirely disregards the underlying FAN topology. Yet, far from ignoring

structure, it imposes it on the functional attributes of data points. Maintaining

it in tree structure helps to ensure consistency better than having every data

point hold this information individually (consider renaming “mezzanine” to

“first floor”).

While a data point will only appear once in the tree structure describing the

location of effect (so it is fully qualified by its path plus its object and aspect), it

may appear multiple times in the one describing its purposes. Window blinds,

for example, keep out the sun as well as potential intruders.

Although the actual design of the user interface is not prescribed, Figure 6.4

shows a possible example. Part of the available locations of effect and purpose

are displayed on the left-hand and right-hand sides respectively. The list of

data points is filtered according to the tree nodes selected. No restrictions are

made at first. Next, the selection is narrowed to data points related to the

living room. Finally, the scope of view is further limited to security-related

data points within this room.
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Figure 6.4: Data Point Presentation: Possible User Interface
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Extensive control networking lies at the heart of ‘smart” homes and buildings.

EIB is a popular and reasonably powerful field bus technology aimed explicitly

at this purpose. Besides a unified approach towards configuration, one of its

key assets is the wide range of components available. This is further multiplied

by the fact that bindings of device data points can be determined individually.

This flexibility however entails a certain complexity, requiring special training

from integrators.

Yet, especially its high-level communication model, which is based on a com-

bination of value-based semantics and overlapping groups, can prove trouble-

some. The design of the behavioural EIS types in particular can be considered

questionable, as the state-based nature of the EIB application-level communi-

cation model was found not to be consequently implemented.

By connecting control networks with one another and the outside world,

gateways undoubtedly have a central role in leveraging the potential of the

former. OSGi offers a powerful framework to dynamically configure their func-

tionality. Nevertheless, the platform is open for various uses and not fixed on a

particular business model. It allows the run-time combination of software com-

ponents, while still remaining suitable for resource-limited devices. It supports

a service-oriented infrastructure as well as a matching programming model.

Its advantages, however, come at the price of subtle dependencies providing

pitfalls to the unwary software engineer. Taking into account that a gateway

platform should operate continuously, a defensive style of programming seems

definitely recommended.

Concerning the integration of these two worlds, it has become apparent that

EIB cannot fully exploit the dynamic capabilities of an OSGi environment due

to their static nature. Moreover, bringing them together is not straightforward

owing to the fact that, concerning regular operation, the functionality of devices

can only be accessed by addressing groups of nodes. Specifically, it is necessary

to consider the functionality to be exposed by the gateway when configuring

an EIB network. In spite of these difficulties, a solution was proposed which

provides the optimum support possible for device driver components. In that, it
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surpasses solutions already on the market, like the EIB driver bundle available

for the ProSyst “mBedded Server” [39, 46]. This product only offers very basic

assistance for group communication (for example, no translation of EIS types)

and will not serve multiple clients. Therefore, it will not support fine-grained

decomposition of the EIB protocol stack.

For technology-neutral representation of FAN functionality, a consequently

state-based, data point driven solution was adopted. Data points are associ-

ated with extensive meta information, allowing the automatic construction of

user interfaces. The concept also includes update notifications for clients and

is designed for immediate integration with OSGi Wiring. In addition, basic di-

rections for ensuring security and privacy were given. Regarding presentation,

the drawbacks of an approach oriented on the FAN physical topology were dis-

cussed. Consequently, a function-oriented approach was taken, which relates

data point functionality to real-world entities meaningful to the end user. Nev-

ertheless, it imposes a clear structure on the functional properties of a data

point, replacing the physical topology by a tree of locations of effect. The

ProSyst “mBedded Server” product also includes a control unit abstraction,

which however has an obviously different focus than the approach presented

here.

Concerning future directions, switching over to an open-source OSGi imple-

mentation would prove valuable to better analyse potential deadlock situations.

Also, the EIB Frame Service could be designed even more robust by implement-

ing indirection to the service object.

Further, the new possibilities introduced by KNX should be investigated.

This includes the integration of the new “plug-and-play”-related features (A-

Mode) introduced by the KNX standard, which allow to exploit the dynamic

nature of an OSGi platform more fully. Regarding E-Modes, the gateway could

also serve as a configuration controller. In addition, the proprietary Internet re-

mote service architecture announced by EIBA and Konnex Association should

be examined for possible integration as soon as it is actually published.

Also, support for further FANs technologies needs to be implemented. Here,

LonWorks comes to mind specifically as it is widely used in building automa-

tion and a comprehensive solution for device access is readily available [10].

Considering spontaneous networking protocols, the integration of the approach

presented here with Jini and UPnP-enabled networks will further increase its

usefulness.

110



7 Conclusion and Outlook

Finally, the work of the ISO/IEC Home Electronics Standards working group

(briefly described in [47]), especially its HomeGate standard for residential

gateways, should be taken into account as well.

The most promising aspect of this work seems to be the generic control

abstraction. An article based on the present thesis [26] was accepted for pre-

sentation, which strongly suggests that this concept should be pursued further,

for example by providing for frequency-based access permissions.
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List of Abbreviations

N.B. Only abbreviations not in current use which appear fre-
quently in the present thesis are included.

API Application Programmer’s Interface

BAU Bus Attachment Unit

BCU Bus Coupling Unit

BPSU Bus Power Supply Unit

EIB European Installation Bus

EIBA EIB Association

EIS EIB Interworking Standard

ETS EIB Tool Software, Engineering Tool Software

FAN Field Area Network

HVAC Heating, Ventilation, Air Conditioning

KNX KNX (Konnex)

LSB Least Significant Bit

MSB Most Significant Bit

OSGi Open Services Gateway Initiative

PDU Protocol Data Unit

PEI Physical External Interface

PL Power Line

PLC Programmable Logic Controller

RF Radio Frequency

SAP Service Access Point

TP Twisted Pair

112



Bibliography

N.B. Many of these documents are published in printed form as well as on the
World Wide Web. Owing to the volatile nature of the Web, the electronic
version is not referenced in these cases.

[1] ANSI/ASHRAE 135 (2001): BACnet – A data communication protocol

for building automation and control networks.

[2] ANSI/ASHRAE 135 Addendum d (2001): BACnet – A data communica-

tion protocol for building automation and control networks.

[3] ANSI/EIA/CEA-709.1 (1999): Control networking standard.

[4] Keith Bennett, Paul Layzell, David Budgen, Pearl Brereton, Linda

Macaulay, and Malcolm Munro. Service-based software: The future for

flexible software. In Proc. 7th Asia-Pacific Software Engineering Confer-

ence (APSEC 2000), pages 214–221, 2000.

[5] Guy Bieber and Jeff Carpenter. Introduction to Service-Oriented Program-

ming (Rev 2.1). Available at http://www.openwings.org/download/

specs/ServiceOrientedIntroduction.pdf, April 2001.

[6] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling

Language User Guide. Addison Wesley, 1998.

[7] Humberto Cervantes. The concept of service. Available at http://www-

adele.imag.fr/BEANOME/serviceconcept.htm, March 2003.

[8] Humberto Cervantes and Jean-Marie Favre. Comparing JavaBeans and

OSGi towards an integration of two complementary component models.

In Proc. 28th Euromicro Conference on Component Based Software Engi-

neering, pages 17–23, 2002.

113



Bibliography

[9] Humberto Cervantes and Richard S. Hall. Automating service dependency

management in a service-oriented component model. In Proc. 6th Work-

shop on Component-Based Software Engineering (CBSE), May 2003.

[10] Sergey Chemishkian. Building smart services for smart home. In Proc.

IEEE 4th International Workshop on Networked Appliances, pages 215–

224, 2002.

[11] Kirk Chen and Li Gong. Programming Open Service Gateways with Java

Embedded Server Technology. Addison-Wesley, 2001.

[12] CEBus Industry Council. Home Plug & Play Specification 1.0. Available

at http://www.cebus.org/Files/hpnp10.zip, 1998.

[13] Deggendorf University of Applied Sciences High-Tech Center for Modern

Communication Systems. EIB Linux driver. Available at http://www.

hto.fh-deggendorf.de/komm/englisch/elinux.html, 2003.

[14] Dietmar Dietrich, Wolfgang Kastner, and Thilo Sauter, editors. EIB –

Installation Bus System. Publicis MCD, 2001.

[15] Pavlin Dobrev, David Famolari, Christian Kurzke, and Brent A. Miller.

Device and service discovery in home networks with OSGi. IEEE Com-

munications Magazine, 40(8):86–92, August 2002.

[16] EIB Association. The EIB Handbook Series 3.0, 1999.

[17] EN 50090: Home and building electronic systems (HBES).

[18] ENV 13154-2 (1998): Data communication for HVAC applications – Field

net – Part 2: Protocols.

[19] ENV 13321-2 (1997): Data communication for HVAC applications – Au-

tomation net – Part 4: EIB.

[20] Ted Farrell. Service-oriented architecture. Java Developer’s Journal, 9:12–

14, April 2004.

[21] Philip Babcock Gove, editor. Webster’s third new international dictionary

of the English language, unabridged. G. & C. Merriam Company, 1981.

[22] Ethan Henry and Ed Lycklama. How do you plug Java memory leaks?

Dr. Dobb’s Journal, 25(2):115–119, February 2000.

114



Bibliography

[23] Bruce Horowitz, Nils Magnusson, and Niclas Klack. Telia’s service delivery

solution for the home. IEEE Communications Magazine, 40(4):120–125,

April 2002.

[24] IEC/EN 60929 Annex E (2003): Control interface for controllable ballasts.

[25] ISO/IEC 7498-1 (1984): Information technology – Open systems intercon-

nection – Basic reference model: The basic reference model.

[26] Wolfgang Kastner and Georg Neugschwandtner. Service interfaces for

field-level home and building automation. Accepted for presentation at

the 5th IEEE International Workshop on Factory Communication Sys-

tems (WFCS’2004).

[27] Konnex Association. KNX Specifications, Version 1.1, 2004.

[28] Peter Kriens and BJ Hargrave. Listener pattern considered harmful

(draft). Available at http://www.osgi.org/devzone (White Papers sec-

tion), 2001.

[29] Choonhwa Lee, David Nordstedt, and Sumi Helal. Enabling smart spaces

with OSGi. IEEE Pervasive Computing, 2(3):89–94, July-September 2003.

[30] Hannes Leidenroth. EIB-Anwenderhandbuch. Verlag Technik, 2003.

[31] Maxim Lobashov, Gerhard Pratl, and Thilo Sauter. Applicability of Inter-

net protocols for fieldbus access. In Proc. 4th IEEE International Work-

shop on Factory Communication Systems, pages 205–213, August 2002.

[32] Dave Marples and Peter Kriens. The Open Services Gateway Initiative:

An introductory overview. IEEE Communications Magazine, 39(12):110–

114, December 2001.

[33] Joel Nylund. Memory leaks in Java programs. Java Report, 4(11):22–30,

November 1999.

[34] OSGi Alliance. OSGi Service Platform Specification, Release 3. IOS Press,

2003.

[35] Robert Ott and Heinrich Reiter. Connecting EIB components to dis-

tributed Java applications. In Proc. 7th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA ’99), volume 1,

pages 23–26, 1999.

115



Bibliography

[36] Michael P. Papazoglou and Dimitrios Georgakopoulos. Service-oriented

computing. Communications of the ACM, 46:25–28, October 2003.

[37] Randall Perrey and Mark Lycett. Service-oriented architecture. In Proc.

2003 Symposium on Applications and the Internet (SAINT 2003) Work-

shops, pages 116–119, 2003.

[38] Gerhard Pratl, Maxim Lobachov, and Thilo Sauter. Highly modular gate-

way architecture for fieldbus/Internet connections. In Proc. 4th IFAC

Conference on Fieldbus Systems and Their Applications 2001 (FeT’2001),

pages 293–299, 2002.

[39] ProSyst Software AG. ProSyst mBedded Server EIB Package API Docu-

mentation. Available at http://dz.prosyst.com, 2002.

[40] Thilo Sauter, Maksim Lobashov, and Gerhard Pratl. Lessons learnt from

Internet access to fieldbus gateways. In Proc. 28th Annual Conference of

the IEEE, volume 4, pages 2909–2914, 2002.

[41] Rainer Scherg. EIB planen und installieren. Vogel, 2002.

[42] A. Sillitti, T. Vernazza, and G. Succi. Service oriented programming: a

new paradigm of software reuse. In Proc. 7th International Conference on

Software Reuse: Methods, Techniques, and Tools (ICSR 7), volume 2319

of Lecture Notes in Computer Science, pages 269–280. Springer, 2002.

[43] Clemens Szyperski. Component Software – Beyond Object-Oriented Pro-

gramming. Addison-Wesley, 1998.

[44] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, third edition,

1996.

[45] UPnP Forum. Standardized device control protocols. Available at

http://www.upnp.org/standardizeddcps/.

[46] Dimitar Valtchev and Ivailo Frankov. Service gateway architecture for a

smart home. IEEE Communications Magazine, 40(4):126–132, April 2002.

[47] Kenneth Wacks. Home systems standards: achievements and challenges.

IEEE Communications Magazine, 40(4):152–159, April 2002.

116


	Introduction and Motivation
	``Smart'' Wiring
	Gateways and OSGi
	Benefits
	Task and Structural Overview

	Home and Building Automation
	The Networked Home
	The Present: Automated Devices
	Making the Connection: Control Interfaces
	The Future: Automated Homes and Remote Services
	The Role of Gateways

	Building Automation

	EIB
	Overview
	Core Technical Properties
	Organizational Background and Standardisation
	Configuration
	Competitors

	Group Communication
	Group Objects and Shared Variables
	Interworking

	The OSI Reference Model
	Twisted-Pair EIB
	Topology
	Standard Message Cycle
	Format of the Standard Data Frame
	Other Frame Formats

	Other Physical Media
	Medium Independent Layers
	Overview
	Horizontal Run-Time Communication
	Network Management
	Interface Objects

	Node Development
	Integration
	The Future of EIB: KNX

	The OSGi Platform
	Related Concepts and Technologies
	Component-Based Software Engineering
	OSGi as a Component Model
	Service-Oriented Architectures
	Service Orientation in Practice

	Framework Architecture
	Bundles
	Services
	Core Design Features

	Standard Services
	Framework Extensions
	Device Access
	Communication
	Management
	Wiring
	Measurement
	Structured Data Storage

	Challenges in Service Design and Implementation

	OSGi/EIB Integration
	High-Level Design Considerations
	Requirements and Possible Benefits
	EIB and the OSGi Device Access Model
	Consequences and Overview

	EIB Frame Service
	Service Interface
	Prototype Implementation

	EIB Group Communication Service
	Advanced Driver Architecture

	A High-Level Control Abstraction
	Architecture Overview
	A Pool of Data Points
	Functional Aspects
	Presentation

	Conclusion and Outlook
	List of Abbreviations
	Bibliography

