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Kurzfassung

Die vorliegende Dissertation besteht aus einem zweiteiligen Aufsatz, der von der Fach-
zeitschrift Computer Methods in Applied Mechanics and Engineering zur Veröffentlichung
angenommen wurde.

Bei Stabilitätsverlust in Form von symmetrischem Verzweigen lässt sich eine qualitative
Verbesserung des Nachbeulverhaltens einer ursprünglich imperfektionssensitiven Struktur
durch Umwandlung in eine imperfektionsinsensitive Struktur durch Modifikation der ur-
sprünglichen Struktur erzielen. Die Klassifikation einer Struktur als imperfektionssensitiv
oder imperfektionsinsensitiv hängt vom initialen Nachbeulverhalten ab, das oftmals für das
gesamte Nachbeulverhalten relevant ist. Die Erforschung von Versteifungsformen, welche
die vorgenannte Umwandlung ermöglichen, ist sowohl von wissenschaftlichem als auch
technischem Interesse.

Koiters initiale Nachbeulanalyse wird im Rahmen der Finiten Element Methode (FEM)
zur Herleitung mathematischer Beziehungen benutzt, die eine Differenzierung zwischen
verschiedenen Formen der Umwandlung von Imperfektionssensitivität in Imperfektionsin-
sensitivität gestatten. Diese Analyse dient zur Herleitung theoretischer Resultate, welche
die Verifikation spezieller numerischer Resultate erlauben. Der Großteil der in dieser Ar-
beit beschriebenen numerischen Berechnungen wurde mittels .der FEM durchgeführt, ohne
dabei jedoch auf Koiters initiale Nachbeulanalyse zurückzugreifen.
_ In der Arbeit werden neue mathematische Bedingungen für symmetrisches Verzweigen

bei nicht linearen Vorbeulpfaden präsentiert. Für den Spezialfall linearer Vorbeulpfade
sind diese Bedingungen trivial erfüllt. Es wird gezeigt, dass die Menge jener Lösungen
von Koiters initialer Nachbeulanalyse, die durch das Verschwinden eines speziellen Lastpa-

. rameters gekennzeichnet ist, vollständig ist. Dieses Verschwinden stellt eine notwendige,
nicht aber hinreichende Bedingung für den Übergang von Imperfe~tionssensitivität zu
Imperfektionsinsensitivität dar. Versuche zur Realisierung dieses Uberganges beinhal-
ten die Vergrößerung der Dicke der Struktur, die Erhöhung der Steifigkeit einer geeignet
angebrachten, ursprünglich nicht vorhandenen Feder und die Verminderung des Stiches
der Struktur. Die Resultate dieser Untersuchung beziehen sich auf verschiedene Arten
der Umwandlung von imperfektionssensitiven in imperfektionsinsensitive Strukturen sowie
auch das Fehlschlagen des Versuches einer solchen Umwandlung.

Ein wichtiger Bestandteil der numerischen Untersuchung sind begleitende lineare Eigen-
wertanalysen. Sie beruhen auf dem sogenannten konsistent line~isierten Eigenwertprob-
lern. Zumeist weisen die resultierenden Eigenwertkurven beim Ubergang von Imperfek-
tionssensitivität zu Imperfektionsinsensitivität besondere geometrische Eigenschaften (Sat-
telpunkte oder Flachpunkte) im Verzweigungspunkt auf.

Eine der Schlussfolgerungen besteht d8!in, dass eine gleichförII).ige Vergrößerung der
Dicke der Struktur nicht geeignet ist, den Ubergang von Imperfektionssensitivität zu Im-
perfektionsinsensitivität zu bewerkstelligen. Als weitere Schlussfolgerung ist anzuführen,
dass eine Verminderung des ursprünglichen Stiches der imperfektionssensitiven Struktur
zum Übergang von Verzweigungsbeulen zu einer Sitatution ohne Stabilitätsverlust führt.
Diese Reduktion ist allerdings mit einer starken Abnahme des Stabilitätsgrenze verbunden.
Hingegen führt eine Erhöhung der Steifigkeit einer an der Struktur geeignet angebrachten
elastischen Feder in der Regel zur Umwandlung einer imperfektionssensitiven in eine imper-
fektionsinsensitive Struktur. Zusätzliche Stützen bei ursprünglich imperfektionssensitiven
Strukturen scheinen daher geeignet zu sein, die gewünschte Umwandlung zu erzielen.



Abstract

This doctoralthesis consists of the two parts of a paper accepted for publication in the
journal Computer Methods in Applied Mechanics and Engineering, denoted as (I) Theory
and (II) Numerical Investigation.

In case of loss of stability by means of symmetric bifurcation, a qualitative improvement
of the postbuckling behavior of oi-iginally imperfection-sensitive elastic structures is their
conversion into imperfection-insensitive structures by means of modifications of the original
design. Such a conversion is restricted to symmetric bifurcation. Designation of a structure
as either imperfection sensitive or insensitive depends on the initial postbuckling behavior
which often is relevant to the entire postbuckling response. The search for speCific modes
of stiffening that resultin the aforementioned conversion is of fundamental as well as of
practical importance.

Koiter's initialpostbuckling analysis is applied in the framework of the Finite Element
Method (FEM) to deduce mathematicalrelations associated ~ith the transition from im-
perfection sensitivity to insensitivity. This mode of analysis primarily serves the purpose of

. deducing important theoretical results which facilitate the verification of specific numerical
results. Most of the structural analyses reported in this work are performed by means of
the FEM, but without regard for Koiter's initial postbuckling analysis.

New mathematical conditions for symmetric bifurcation from nonlinear prebuckling
paths are presented. For the special case of linear prebuckling paths, these conditions are
satisfied trivially. In the framework of sensitivity analyses also topics such as hilltop bifur-
cation and transition from' bifurcation buckling to no loss of stability are addressed.' The
completeness of the set of solutions from Koiter's initial postbuckling analysis that involve
the vanishing of a specific load parameter as a necessary (but not sufficient) condition for
the transition from imperfection sensitivity to imperfection insensitivity is demonstrated.

Attempts to achieve the aforementioned conversion include the increase of the thick-
ness of the structure and of the stiffness of a spring attached to the structure, respectively,
and the reduction of the rise of the undeformed st.ructure. The results of this investiga-
tion include different modes of conversion from imperfection-sensitive into imperfection-
insensitive structures as well as failure to achieve such a conversion.

An important ingredient of the numerical investigation are accompanying linear eigen-
value analyses based on the so-càlled consistently linearized eigenproblem. At the transition
from imperfection sensitivity to insensitivity, the resulting eigenvalue curve, in general, has
specific geometric properties (saddle points or planar points) at the bifurcation point.

One of the conclusions is that increasing the stiffness of a structure by means of a uni-
form increase of its thickness does not result in the conversion from imperfection sensitivity
into insensitivity. Another one is that reducing the initial rise of an imperfection-sensitive
structure eventually results in the transition from bifurcation buckling to no loss of sta-
bility. Unfortunately, such a reduction is associated with a decrease of the stability limit.
Increasing the stiffness of an elastic spring, suitably attached to the structure, however, usu-
allyenables its conversion from an imperfection-sensitive into an imperfection-insensitive
structure. Hence, additional supports of a' structure may be effective means to achieve the
desired conversion.
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Abstract

A qualitative improvement of the initial postbuckling behavior of imperfection-sensitive elastic
structures is their conversion into imperfection-insensitive structures by means of modifications
of the original design. Such a conversion is restricted to symmetric bifurcation. Koiter's initial
postbuckling analysis is applied in the framework of the FEM to deduce mathematical relations for
the transition from imperfection sensitivity to insensitivity, which may be achieved byadditional
supports of the structure. This conclusion as well as several other conclusions from the theoretical
investigation reported in Part I of this paper are corroborated by the results from a comprehensive
numerical investigation documented in Part II of this work.

Key words: symmetric bifurcation buckling, imperfection sensitivity, conversion into
imperfection insensitivity, Koiter's initial postbuckling analysis, finite element method

1 Introduction

"This Euler column is imperfection insensitive" and "that cylindrical shell is imperfection
sensitive" ... students of structural engineering all over the world have heard such state-
ments in the classroom, and practicing structural engineers from all parts of the globe have
read them in the technical literatUre. Some of them may have come to the conclusion that
the unfavorable mechanical diagnosis of imperfection sensitivity must be accepted as it is.
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In the opinion of the writers, however, the acceptance of such a diagnosis would ignore
the existence of remedies. An obvious remedy is the conversion of imperfection-sensitive
into imperfection-insensitive structures by means of modifications of the original design. It
leads to a qualitative improvement of the initial postbuckling behavior of the structures,
which often has a strong influence on the entire postbuckling structural response. The title
of the present paper refers to such a conversion which is the objective of this work.

One of several topics treated in this paper is design sensitivity analysis of the initial
postbuckling behavior of elastic structures. It plays a great role in the state-of-the-art.
In a paper on design sensitivity analysis of "non-linear structures", Mroz and Haftka [9]
also discussed the postbuckling behavior. The first analytical work on design sensitivity
analysis of the postbuckling behavior was presented by Godoy [4]. It is restricted to consid-
eration of the first non-vanishing term in a series expansion for the load parameter. In an
extension of [9], Mroz and Piekarski [10] included imperfection insensitivity as a constraint
condition for optimization of the structural behavior. Bochenek and Kruzelecki [2] pro-
posed an approach to optimize the postbuckling behavior, which is based on determination
of the maximum buckling load under the constraint that the structure is just no longer
imperfection sensitive. In a paper on structural optimization of the postbuckling behavior,
Bochenek [1] mentioned the necessity to introduce constraints assuring symmetric bifur-
cation, which is obviously needed for the conversion of an imperfection-sensitive into an
imperfection-insensitive structure.

The present paper consists of two parts: (I) Theory and (II) Numerical Investigation.
Section 2 of Part I deals with Koiter's initial postbuckling analysis in the context of

the Finite Element Method (FEM). It is emphasized that this mode of analysis primarily
serves the purpose of deducing important theoretical results in Part I, which facilitate the
verification of specific numerical results in Part II. Most of the structural analyses reported
in Part II are performed by means of the FEM, but without regard for Koiter's initial
postbuckling analysis. Section 3. is devoted to symmetric bifurcation. In Section 4, new
mathematical conditions for the transition from imperfection sensitivity to imperfection
insensitivity are presented. Section 5 refers to the general case of nonlinear prebuckling
paths. In the framework of sensitivity analyses also topics such as hilltop bifurcation and
transition from bifurcation buckling to no loss of stability are addressed. Section 6 covers
the special case of linear prebuckling paths. Section 7 deals with the completeness of solu-
tions from Koiter's initial postbuckling analysis, which are characterized by the vanishing
of the first one of those terms in the aforementioned series expansion for the load para-
meter, that normally do not vanish for symmetric bifurcation. The Conclusions of Part I
(Section 8) are followed by four Appendices. Appendix A is devoted to the computation of
the coefficient tensors for Koiter's initial postbuckling analysis in the context of the FEM.
The Appendices Band C contain mathematical details related to Sections 2, and 3 and
7, respectively. Appendix D contains a description of mathematical properties of the so-
called consistently linearized eigenvalue problem. The investigation of these properties is
motivated by the need to ensure the completeness of those specific solutions for the initial
postbuckling paths, which were mentioned in the context of the brief description of the
contents of Section 7. Moreover, these properties permit verification of theoretical results
for limiting cases "by inspection" of corresponding eigenvalue curves.
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Part II of the paper consists of three Sections: 1 Introduction, 2 Numerical Investigation,
and 3 Conclusions.

Among the topics that are not treated in this paper are (a) multiple bifurcation, (b)
material nonlinearity, and (c) imperfections.

Re (a): The increase in mathematical complexity would outweigh the added value of
information resulting from consideration of multiple bifurcation.

Re (b): The increase in programming work would outweigh the added value resulting from
an extension of the present work to material nonlinearity, the more as such an
extension would still not include plasticity.

Re (c): Consideration of imperfections must be preceded by comprehension of the perfect
situation, which is the main goal of the present work.

This work is firmly embedded in the FEM. As mentioned previously, mathematical
details that are related to the paper are given in Appendix A. Preliminary numerical
studies on the influence of mesh refinement on the numerical results presented in Part II
of this paper [12] were performed routinely. They are not documented in the paper.

2 Koiter's initial postbuckling analysis in the context of the FEM

The starting point of the theoretical investigation is Koiter's initial postbuckling anal-
ysis (Koiter [8]). Fig. 1 refers to such an analysis. Point C denotes the bifurcation point.
Point D is located on the secondary path. This point is characterized by the load level
À = ÀD and the corresponding displacement ü(ÀD) + VD. Primary and secondary paths

U

/
/.

\' - +
/\,1') U,À + V ''TI

secondary path

À ü'À(~(7]D))
primary path

Uc

Fig. 1. Initial postbuckling analysis at the bifurcation point C

are represented by piecewise smooth curves U = ü(À) and U = u+(7]) = ü(~(7])) + v+(7]),
respectively, where 7] is a path parameter. For static, proportionalloading,

G(u, À) := FI (u) - P(À) = 0 (1)
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is a necessary and sufficient condition for equilibrium of mechanical systems discretized
by the FEM (Zienkiewicz and Taylor [14]). FI (u) is the vector of the internal node forces
whereas P(,x) = Po + XP is the vector of the external node forces. Po and f> are given
vectors of reference nodal loads.

One solution of (1) is the primary path u = ù(,x). Assuming that ù(,x) is known, a
(non-linear) coordinate transformation

(2)

is performed such that (v = 0, TJ = 0) ~ (uc, 'xc). Substituting (2) into the expression for
G(u,'x) contained in (1), yields the definition of the out-of-balance force in terms of v and
TJas

(3)

The secondary path represents a non-trivial solution v = v+(TJ) of G+(v, TJ)= O. Adopting
Koiter's concept of an initial postbuckling analysis (Koiter [8]), G+(v, TJ) can be expressed
as a Taylor series. Choosing the bifurcation point C as the reference point characterized
by Vo = 0 and TJo = 0, one obtains

G+(v, TJ) = G+(O, 0) + G;v .v + G;7j TJ+ ~G;vv : v 0 v + G;v7j'v TJ+ ~G;7j7jTJ22 2
1 +: 1 +. 1 + 21+ 3+ '6 G 'vvv . v 0 v 0 v + 2 G ,VV7j. v 0 v TJ+ 2 G ,V7j7j.v TJ + '6 G '7j7j7jTJ

+ O(v 0 v 0 v 0 v, v 0 v 0 v TJ,v 0 V TJ2,V TJ3,TJ4) . (4)

The computation of the first-order tensors (vectors) G;7j, G;7j7j, G;7j7j7j, , second-order
tensors (matrices) G;v, G;V7j, G;V7j7j, ... , third-order tensors G;vv, G;vv7j, , fourth-order
tensors G ;vvv, ... , etc., is explained in Appendix A. Each single term in (4) represents a
vector-valued function of v and TJ.

Assuming a sufficiently smooth solution for both v+(TJ) and 5..(TJ), these functions can
be formulated as series expansions (Koiter [8], Reitinger [11]):

(5)
(6)

where Vl, V2, V3, ... are the residual vectors and 'xl, 'x2, 'x3, ... are load coefficients as-
sociated with the secondary (postbuckling) path. The residual vectors determine the de-
formation pattern of this path. The load coefficients govern the type of bifurcation, i.e.
symmetric/unsymmetric and imperfection sensitive/insensitive, noting that unsymmetric
bifurcation is always imperfection sensitive.

Substituting (6) and (5) into (4) and re-ordering the resulting relation according to the
order of TJ, yields

4



3 (- - - 1 2-+ 1]' KT' V3 + ),2 KT,). 'Vl + ),1 KT,). -V2 + :2),1 KT,).). - VI

+ KT,u : VI Q9 V2 + ~ ),1 KT,u). : VI Q9 VI + ~KT,uu : VI Q9 VI Q9 VI)

+ 1]4.(see App. B) + 1]5.(see App. B) + 1]6.(see App. B) + 0(1]7) = O. (7)

For this work the coefficient vectors of 1]1, 1]2, ... , and 1]6 are needed. Because of the
relatively great length of the expressions for the coefficients 1]4,1]5,and 1]6,they have been
transferred to Appendix B. Underlined matrices in (7) and in other expressions in this
Section vanish in case of linear primary (prebuckling) paths. Such matrices also occur in
Sections 4, 5, and 7, and in the Appendices. However, in these Sections and in Appendix D
they are not underlined because the special case of linear prebuckling paths is not explicitly
considered therein.

For (7) to be satisfied, each expression in parentheses must vanish separately. The
resulting relations allow to compute VI, ),1 and V2, ),2 and V3, ... , ),5 and V6 successively
(Reitinger [11]). The following brief demonstration is restricted to computation of VI, ),1

and V2, and ),2' It starts with setting the coefficient vector of 1]1equal to zero, which gives

(8)

where VI is the eigenvector. Setting the coefficient vector of 1]2equal to zero and premul-
tiplying it by vi, enables computation of ),1 as

),1 = _~ vfKT~U: VI Q9 VI

2 vfKT,). -VI

Eq. (9) can be rewritten formally as

where

and

b
o

= _~VfKT,_u : VI @ VI

2 vfKT,). 'Vl

(9)

(10)

(11)

(12)

The motivation for this formulation is consistency with relations which will be presented
in the following.

Setting the expression for the coefficient vector of 1]2equal to zero, yields

(13)

with ),1 according to (9). From (13) V2 can be computed, noting that KT has a rank one
deficiency at the stability limit, with VI as the eigenvector (see (8)). Eq. (9) ensures that

5



the right-hand side of (13) is orthogonal to the eigenvector V 1. Setting the coefficient vector
of TJ3 equal to zero and premultiplying it by vi, enables computation of .À2 as

(14)

Eq. (14) can be rewritten formally as

(15)

where

(16)

represents a so-called nonlinearity coefficient which vanishes trivially, i.e. because of KT"u =
0, in case of linear prebuckling paths,

(17)

and

(18)

with

(19)

By analogy to (15), the following formal relations are obtained by setting the expressions
for the coefficient vectors ofTJ4,TJ5, and TJ6 in (8.1) (see the Eqs. (B.4)-(8.6)) equal to zero
and premultiplying the resulting relations by -vi /viKT'À VI:

a~.À13 + b~.À12 + C~.ÀI + d~= 0 with d~ = e~ -.À3,

o'l.À1
4 + bl.À1

3 + êl.À1
2 + dl.ÀI + êl = 0 with êl = fI - .À4 ,

al.À15 + bl.À1
4 + ël.À13 + d1.À12 + el.ÀI + JI = 0 with it = 91 - .À5'

The coefficients ai, 0,1, and al are given as

(20)

(21 )

(22)

(23)

Just as aI, these coefficients vanish trivially in case of linear prebuckling paths. Hence, they
also represent nonlinearity coefficients. The coefficients bi, bl, and bl are given as

6



(24)

(25)

(26)

The expressions for the coefficients c7, II, ël, which will be needed later, are given in
Appendix C.

3 Symmetric bifurcation

Symmetric bifurcation is characterized by

(27)

If this condition is not satisfied by the original structure and for the given loading, it
must be enforced in the course of the conversion process (Bochenek [1]). This may require
modifications of the original design which, for different reasons, are unfeasible. Irrespective
of the feasibility of such modifications, this step is beyond the scope of the present work.

For symmetric bifurcation, some of the coefficients of (la), (15), and (20)-(22) must
vanish. In this context, the term "vanishing" means that the respective coefficient is zero
for arbitrary values of a design parameter K. Additionally, some of the remaining coefficients
may vanish. This may either be the case for arbitrary or for specific values of K. The ones
that must vanish are underlined in the following array:

ao bo,

al !!l s.,
a* b* * d7 ,1 .-1 Cl

al !!l Cl dl ~,

al bl Cl dl el II.
Substitution of (18) into

Cl = a

(28)

(29)

(30)

(31 )

(32)

(33)

(see (29)) yields

(34)

with dl according to (19). Substitution of (C.3) with .À3 = a into (21.2) and insertion of
the result into

(35)

7



(see (31)) gives

(36)

with aI, b2, and d3 according to (16), (C.2), and (CA), and with À2 according to (34).
The vanishing of bo, Cl, dj, êl, an,? JI (se~ (28)-(~2)) are necessary conditions for Àl = O.

To explain why also bl, bi, bl and dl, and bl and dl vanish for symmetric bifurcation (see
(29)-(32)), at first, (15) is rewritten as

(37)

Symmetric bifurcation requires

Substitution of (38.1) into (37) yields the two roots

bl(Àd2 = --.
al

The relations

satisfy the condition for a double root of (15), given as

b1
2

- 4al Cl = O.

(38)

(39)

(40)

(41 )

Hence, Àl = 0 is a double root of (15). The logic of this result provides the rationale for
(40.1). This result is not affected by al = 0 which may occur either for a specific value or
for arbitrary values of 1'\,.

Substitution of

bi = 0, di = 0, (42)

(see (30)-(32)) into (20)-(22) yields the following relations:

( *) Hr2 Cl (ai =1= 0) (Àdl = 0, (43)Àl + ai Àl = 0 ---7 (Àd2,3 =:f: - ai '

( À12 + ~:) À12 = 0 (âl =1= 0) (Àdl,2 = 0, [f; (44)---7 (Àd34 =:f: --:-,, al

( 4 CI 2 el ) (äl =1= 0) (Àdl = 0,Àl + -:-Àl + -:- Àl = 0 ---7

al al

8

(45)



Hence, for ci =I- a and el =I- 0, ÀI = a is a single root of (20) and (22), respectively, and for
ê1 =I- a a double root of (21).

In contrast to the underlined coefficients in (28)-(32), which must vanish for arbitrary
values of /\', ci is a coefficient that may vanish for arbitrary values of /\'. Substitution of

into (43.1) yields

Àl3 = a -+ (À)1,2,3 = O.

Hence, ÀI = a is a triple root of (20). Substitution of (C.1) into (46) results in

with b2 according to (C.2). Solving (36) for À2, gives

(46)

(47)

(48)

(49)

Because of (48), the discriminant in (49) vanishes:

b2
2

- 4al (d3 - À4) = O.

Elimination of b2 in (50) by means of (48) yields

In addition to ci, also ai may vanish for arbitrary values of /\'. For

(43) does not hold. The Eqs. (52) are associated with

el = el(/\') = O.

Substitution of (53) into (45.1) yields

(50)

(51)

(52)

(53)

(54)

Hence, ÀI = a is a triple root of (22). Substitution of (C.5) with À3 = a into (53) results in

(55)

Substitution of (52.1) into (C.6) and of the so-obtained result for b4 into (55) gives

(56)

9



In addition to (52), al may vanish for arbitrary values of "', i.e.

(57)

In this case, also (37) does not hold.
If (46) holds true, al and >'2 vanish for the same value of "', for which, following from

(48), b2 = O. This is not the case, if (46) is not valid. Rewriting (36) as

(
~) 2 + b2 (~) + al _ a

>'2 d3 - >'4 >'2 d3 - >'4

and specializing (58) for

gives

The two solutions of (60) are

(58)

(59)

(60)

(61)

As follows from (61.2) for b2 =I a and d3 - >'4 =I 0, (>'2h =I o.
Remarkably, symmetric bifurcation from nonlinear prebuckling paths is associated ei-

ther with

(62)

where vj is the j-th eigenvector of the so-called "consistently linearized eigenprobleml: (see
Appendix D), or with

T - (23.1)
VI KT,ÀÀÀ VI = a ----t a~ = a (see (46.1)). (63)

Eq. (62) occurs together either with ci(",) =I a or with ci("') = a -7 Eqs. (48) and (51),
whereas Eq. (63) only occurs together with ci("') = O. The Eqs. (62) and (63) result in two
different modes of disintegration of an expression that holds for unsymmetric bifurcation
from nonlinear prebuckling paths (see (145)-(147)).

4 Triples of values >'4' ah ai for >'2 = a

_ This Section refers to the general case of nonlinear prebuckling paths. Hence, KT,ÀÀ =I 0,
KT,ÀÀÀ =I 0, ....

la



Following from (34),

(64)

Substitution of (64.2) into (36) gives

(65)

The triples of values À4, aI, at for À2 = 0, which will be presented in the following,
determine whether a transition from imperfection sensitivity to imperfection insensitivity
occurs and, if it does, how it occurs.

For

or

(66)

~ al -- 0KT,.UVI = 0 ~

À2k = 0, k = 1,2, ... ,

and ar =1= 0, (67)

(68)

(see Part II of this work [12]). Substitution of (27) and (68) into (6) yields

~(17)= Àc = const. (69)

Such a transition was investigated by Tarnai [13] and by the authors of Part II of this
work [12] for the case of a bar-and-joint assembly composed of rigid members and elastic
sprmgs.

For

À2 = 0 and À4 < 0 (see Part II of this work [12]) .

For

(16) T - (23.1)
KT,).). VI = 0 ~ al = 0 and VI KT,).).). VI = 0 ~ ar = 0,

À2 = 0 and À4 = 0 (see Part II of this work [12]) .

The Eqs. (73) are associated with

and, thus, with imperfection sensitivity (see Part II of this work [12]).
Hence, for À2 = 0, the following triples of values À4, al, at are obtained:

11

(70)

(71)

(72)

(73)

(74)



ai = 0

KT,ÀÀ VI = 0, ai = 0 V > 0
/ (limiting cases)

À4

V?KT'ÀÀ VI = 0, j i' 1
ai< 0

Fig. 2. Half-axes ).4 ::; 0 and al ::; 0 as geometric loci of all points associated with ).2 = 0

),4 = 0, al< 0, a~ < 0, (75)
),4 = 0, al = 0 (with KT'ÀÀ VI = 0) , a~ > 0, (76)
),4 < 0, al = 0 (with KT'ÀÀ VI =/:. 0) , a~ = 0, (77)
),4 = 0, al = 0 (with KT,ÀÀ VI = 0) , a~ = O. (78)

The thick parts of the two lines in Fig. 2 show the geometric loci of all points in the
),4-al plane of the ),2-),4-al space, which are solutions of (36) with ),2 = O. It is seen that
these geometric loci are restricted to the two half-axes ),4 :::; 0 and al :::; O.This seems to be
the consequence of the restriction to symmetric bifurcation, excluding, e.g. the possibility
of ),1 = 0, ),2 = 0, ),3 =/:. 0, .... Another consequence of this restriction is the fact that
only five out of the eight octants into which the three-dimensional space can be divided by
the ),2-),4-al coordinate system are geometric loci of triples of values (),2, ),4, ad that are
solutions of (36) (see Fig. 3). The octants I, II, and IV are characterized by

(80)

(79)T- (see (D.11)) and T-
VI KT,À VI = -1 VI KT,ÀÀ VI 2:: 0,

octant V by

T- (see (D.11)) and T-
VI KT,À VI = -1 VI KT, ÀÀ VI:::; 0 ,

al al

À4

al

À2
IV

-al -al
À2

-À4

Fig. 3. Five octants as geometric loci of triples of values ().2, ).4, ad for ).c > 0
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and octant VII by

(81)

or by

(82)

all of which correlate with À = Àc > a (see Fig. 1). A positive value of Àc can always be
achieved by means of a suitable definition of a positive reference load.

5 General case: nonlinear prebuckling paths

5.1 Sensitivity analysis

Fig. 4 shows qualitative plots of eight curves À2 = À2(~), À4 = À4(~), al = al (~).
For each point on these curves Eq. (8) holds. Each curve contains at least one point T,
characterized by

(83)

The plane curve S=T F in Fig. 4(e) is the limiting case of space curves of the form shown
in Fig. 4(d). The vertical line S=T F=T in Fig. 4(f), the horizontal line S=T F=T
in Fig. 4(h), and point S=F=T in Fig. 4(g) represent degenerations of space curves. The
arrows on the curves in Fig. 4 correspond to the increase of the value of the design parameter
~. The starting point of such a curve is denoted as S and the final point as F. The starting
points in Figs. 4( a)-4( d) and the final points in Figs. 4( a)-4( e) are arbitrarily chosen points.
The final points in Figs. 4(f)-4(h) refer to "final situations" (transition from bifurcation
buckling to no buckling). The corresponding values of ~ are ~s and ~F > ~s. In line with
the purpose of this paper, reflected by its title, S is restricted to

(84)

If the sign of inequality holds in (84) (see Figs. 4(a)-4(d)),

(85)

where ~T is the value of ~ corresponding to point T. The sign of equality in (84) holds for
S=T (see Figs. 4(e)-4(h)) with

(86)

In Fig. 4(e), À2(~) 2: 0, À4(~) = 0, al(~) 2: 0, in Fig. 4(f), À2(~) = 0, À4(~) = 0, al(~) < 0,
in Fig. 4(g), À2(~) = 0, À4(~) = 0, al(~) = 0, and in Fig. 4(h), À2(~) = 0, À4(~) < 0,
al(~) = o. As shown in Fig. 4(b), À2(~ = ~F) may be negative. Point H is a bifurcation
point coinciding with a snap-through point. In Figs. 4(f)-4(h), F=T represents the point of
transition from bifurcation buckling to no buckling, denoted as N. It is characterized by the

13



a,

(a) (b)

al

horizonllll
pl projection "\ À,

F~~----------
À2

À2

(C) (cl)

al a,

À,

F

/- .
--~À2 À2

horizontal pl
projection

(e) (f)
a, a,

(g) (h)

Fig. 4. Qualitative plots of curves ).2 = ).2(1\;), ).4 = ).4(1\;), al = al (1\;), with (at least) one point
T().2 = 0, ).4, al)
[I\; refers to the stiffness of a vertical elastic spring attached to the vertex of a pin-jointed bar
(Fig. 4(a)) and of a van Mises truss (Fig. 4(b)) and to the center of a cylindrical panel with
two different thicknesses (Figs. 4(d) and 4(e)), respectively, at which a verticalload is applied;
to the thickness of the panel (Fig. 4(c)); and to the initial rise of the pin-jointed bar (Fig. 4(f)),
of the truss (Fig. 4(g)), and of the panel without and with the spring (Fig. 4(g) and Fig. 4(h),
respectively); details of the three structures are given in Figs. 1, 4, and 9 in Part II of this work
[12]]
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degeneration of the secondary paths to one point each on the respective load-displacement
diagram, coinciding with a saddle point on this curve. The dashed curves in Fig. 4 are the
projections of the respective curves onto the ..\2-..\4 plane. SO and FO are the projections of
Sand F onto this plane.

According to Fig. 4, at point T, with the exception of Figs. 4(a) and 4(f) for which (48)
does not hold, al = O. A distinctive feature at point T(..\2 = 0, "\4, al = 0) are the two
different modes of vanishing of al' In contrast to the situation at point T in Figs. 4(d) and
4(h), which is characterized by ..\4 =I 0, at point T in Figs. 4(b), 4(c), 4(e), and 4(g), with
..\4 = 0,

( 16)
----t al = 0, (87)

which is a stronger condition than the vanishing of the quadratic form vfKT,).). VI'

Another distinctive feature of the curves ..\2 = ..\2(K), ..\4 = ..\4(K), al = al (K) at point T
(..\2 = 0, "\4, al = 0) follows from the first two partial derivatives of (48) with respect to K,

which are obtained as

Specialization of the Eqs. (88) for ..\2 = 0 and al = 0 gives

(89)

At point T(..\2 = 0, "\4, al = 0) also ..\2)/£ may vanish, which is the case at this point in
Figs. 4(c) and 4(g), and at points T in Fig. 4(h). In contrast to point T in Fig. 4(c), at
point T in Fig. 4(g) and at points T in Fig. 4(h),

Differentiation of (16) with respect to K yields

_ 1 [(2vfKT,).). VI,,, +vfKT,).)." vd vfKT,). VI
a1'''--2 (vfKT,)'Vl)2

_ (2 vfKT,). VI,,, +VfKT,)." VI) vfKT,).). VI] .
(vfKT')' Vl)2

Specialization of (91) for al = 0, considering (16), and for ai,,, = 0 results in

where

(90)

(91)

(92)

Substitution of (93) into (92) gives

15
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At point T in Fig. 4(g) (von Mises truss), because of (87.1), (94) disintegrates into two
parts. At points T in Fig. 4(h), because of (63.1), (94) disintegrates into two other parts.
At point T in Fig. 4(g) (cylindrical panel), because of (63.1) and (87.1), (94) disintegrates
into three parts.

Table 1 contains the values of '\2"" '\4, and al for points T('\2 = 0, '\4, ad in Figs. 4(a)-
4(h). The topic of completeness of these solutions will be addressed in Section 7.

Table 1
Values of >'2,K., >'4, and al for points T(>'2 = 0, >'4, al) in Figs. 4(a)-4(h)

I Fig. 4() ~ a b c d e f g h

>'2,K. #0 #0 0 #0 >'2(1):) ~ 0 >'2(1):) = 0 >'2(1):) = 0 >'2(1):) = 0

>'4 0 0 0 <0 >'4(1):) = 0 >'4(1):) = 0 >'4(1):) = 0 >'4(1):) < 0

al <0 0 0 0 al(l>:) ~ 0 al(I>:)<O al(l>:) = 0 al(l>:) = 0

In the following, the individual plots of curves '\2 = '\2(1):), '\4 = '\4(K), al = al(K) in
Fig. 4 will be discussed.

5.2 Discussion of Figs. 4(a)-4(h)

Each point ofthe eight curves in Fig. 4 is associated with Eq. (8). An arbitrary point of
the curves in Figs. 4(a) and 4(b) is additionally associated with Eq. (62) and an arbitrary
point of the curves in Figs. 4(c), 4(d), and 4(e) with Eq. (63).

Each point T of the eight curves in Fig. 4 is associated with the Eqs. (64). Point
T in Fig. 4(a) and points T in Fig. 4(f) are additionally associated with (66). Point T in
Figs. 4(b), 4(c), 4(e), and 4(g) is additionally associated with (67.1) and (72.1), respectively.
Moreover, point T in Fig. 4(b) is also associated with (67.2), whereas point T in Figs. 4(c)
and 4(e) is also associated with (72.2); point T in Fig. 4(g) mayalso be associated with this
relation. Point T in Fig. 4(d) and points T in Fig. 4(h) are additionally associated with (70) .

• Fig. 4(a). At point T,

'\2 = 0, '\4 = 0, '\6 = 0, ... , al < 0 , a~ < 0 . (95)

At this point, the transition from imperfection sensitivity into imperfection insensitivity
occurs. At point I,

• Fig. 4 (b). At point T,

16

(16)
--+

(16)
--+

al = 0, a~ > o.

al = 0, a~ > o.

(96)

(97)



At this point, the transition from imperfection sensitivity into imperfection insensitivity
occurs .

• Fig. 4(c). In contrast to Figs. 4(a) and 4(b), Fig. 4(c) does not indicate a conversion from
an imperfection-sensitive into an imperfection-insensitive structure at point T. However, a
transition from .À4 > 0 to .À4 < 0 occurs at this point of the space curve. As mentioned pre-
viously, point H is a bifurcation point coinciding with a snap-through point. This situation
is referred to as hilltop bifurcation (Fujii [3]). As will be shown in the following, point H
represents an improper cusp of the space curve in Fig. 4(b), characterized by al = -00.

Hilltop bifurcation is restricted to octant VII in Fig. 3. Thus,

(98)

Obviously, hilltop bifurcation is associated with imperfection _sensitivity.
In order to prove that al = -00 for point H, KT,). and KT,).). are expressed in terms

of a path parameter ( and inserted in (16):

(In contrast to the path parameter Tl (see (2)), ( refers to the primary path.)
At point H,

d.À = 0 ---+ .À,~ = 0 .

Insertion of (100.2) into (99) and consideration of

.À,~~ < 0

and of the fact that the first term in parentheses in (99) remains finite, results in

al = -00, q. e. d.

Furthermore, at point H,

(99)

(100)

(101)

(102)

(103)

indicating the aforementioned improper cusp of the space curve .À2 = .À2(K), .À4 = .À4(K),
al = al(K) in Fig. 4(c).

As mentioned previously, the parameter of the space curve illustrated in Fig. 4(c) refers
to the thickness of a cylindrical panel (see Part II of this work [12]). According to ex'"
pectation, the uniform increase of the thickness of this structure results in an increase of
the buckling pressure. However, it does not result in the desired conversion of the initial
postbuckling behavior from imperfection sensitive into imperfection insensitive.
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• Fig. 4(d). Point S is assumed to be a point located on the space curve shown in Fig. 4(c).
Hence, the space curve in Fig. 4(d) can be thought of as being the second part of a sequence
of two curves, the first of which is a portion of the space curve shown in Fig. 4(c). Because
of the transition from À2 < 0 to À2 > 0 at point T, a conversion from an imperfection-
sensitive into an imperfection-insensitive structure occurs. In contrast to the situation at
point T in Figs. 4(a)-4(c), characterized by À4 = 0, however,

(104)

• Fig. 4(e). This Figure refers to the special case S=T of the general situation illustrated
in Fig. 4(d). Hence, point S=T agrees with point T in Fig. 4(c). Fig. 4(e) is characterized
by

(105)

• Fig. 4(f). Point S=T is assumed to agree with point T in Fig. 4(a). Hence, the thick
verticalline in Fig. 4(f) can be thought of as being the second part of a sequence of two
curves, the first of which is a portion of the space curve shown in Fig. 4(a). Point F=N=T
refers to the previously mentioned limiting case of transition from bifurcation buckling to
no buckling. It is characterized by

(106)

indicating saddle points on the primary paths and the degeneration of the secondary paths
to these points, respectively (see point C in Fig. 5(a)). Hence, the second term in paren-
theses in (99) is an indeterminate expression. Application of de L'Hospital's rule to this
expression gives

(107)

Since the first term in parentheses in (99) remains finite,

(a) (c)

(108)

Fig. 5. Degeneration of secondary paths to a point on load-displacement curves [saddle point
(Fig. 5(a)) and point of inflection (Figs. 5(b) and 5(c)), respectively]
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The eigenvector of the singular matrix KT follows from specialization of the infinitesimally
incremental equilibrium equation

- -
KTdu = dÀP

for dÀ = O. Thus, du is the eigenvector of KT'

(109)

• Fig. 4(g). Point S=T is assumed to agree with point T in Fig. 4(b) and Fig. 4(c),
respectively. Hence, the origin of the system of reference in Fig. 4(g) can be thought of
as being the second part of a sequence of curves, the first of which is a portion of the
space curve shown in Fig. 4(b) and Fig. 4(c), respectively. At point T, (67.1) holds true.
Expressing KT,).). in terms of the path parameter ~, gives

- -
KT,~~ À,~ -KT,~ À,~~

(À,~ )3
vfKT,~vI

À,~

Substitution of (110) into (67.1) yields

(110)

(111)

Point F=N=T refers to the limiting case of transition from bifurcation buckling to no
buckling, characterized by (106) and Fig. 5(a). Application of de L'Hospital's rule to the
indeterminate expression (À,~~/ À,~ )VI gives

(112)

Hence, for this limiting case,

(113)

which indicates that KT,~ is a singular matrix with VI,~ as the eigenvector. As occurs for
the limiting case associated with point F=N=T in Fig. 4(f),

KTdu = o . (114)

• Fig. 4(h). Point S=T is assumed to agree with point T in Fig. 4(d). Hence, the thick
horizontal line in Fig. 4(h) can be thought of as being the second part of a sequence of
curves, the first of which is a portion of the space curve shown in Fig. 4(d). At point T,
(70.1) holds true. Consequently, the expression in parentheses in (99) must vanish. Thus,

(115)
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Point F=N =T refers to the limiting case of transition from bifurcation buckling to no
buckling, characterized by (106) and Fig. 5(a). Application of de L'Hospital's rule to the
indeterminate expressions in (115) yields

Vr,~KT'~~Vi,~vr,~KT'~ Vi,~

Because of >.,~~= 0 and >.,~~~i= 0,

(116)

(117)

Just as point C in Fig. 5(a), also point C* in Figs. 5(b) and 5(c) refers to the transition
to no loss of stability. (As far as Fig. 5( c) is concerned, this transition is irrelevant because it
is preceded by snap-through.) However, in contrast to the situation at point C in Fig. 5(a),
where KT is just still singular, at point C* in Figs. 5(b) and 5(c), KT has just become
regular.

To investigate the situation at this point, Eq. (109) is rewritten as

- -
KTü,..\= P.

Differentiation of (118) with respect to >. gives

- -KTü,..\..\ +KT,..\ Ü,..\ Ü,..\ = O.

At point C*, (119) disintegrates into

KTü,..\..\ = 0 and KT,..\ Ü,..\ Ü,..\ = o.

Since KT is regular,

Ü,..\..\= o.

Expressing Ü,..\..\ in terms of the path parameter ç, yields

Substitution of (122) into (121) and consideration of >.,~ #- 0 results in

(118)

(119)

(120)

(121)

(122)

(123)

Since (121) represents a global property in the sense that all active degrees of freedom are
concerned, (123) must disintegrate into

Ü,~~ = 0 and >.,~~= 0 .
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Eq. (121) must not be confused with the vanishing of the second derivative of specific
degrees of freedom with respect to À, such as

(125)

where

(126)

Numerical examples concerning the modes of transition from bifurcation buckling to no
buckling illustrated in Fig. 5 will be presented in Part II of this work [12].

6 Special case: linear prebuckling paths

In the first paragraph of Subchapter 5.2, referring to the general case of symmetric
bifurcation from nonlinear prebuckling paths, the assertion was made that an arbitrary
point of the first two curves in Fig. 4 is associated with

(127)

and of the next three curves with

TK- 0 (23.1) * 0VI T,>.>.>.VI = ----7 al = .

These conditions are the reason for restrictions on the curves À2 = À2(/'l:), À4

al = al (/'l:) in Fig. 4.
For the special case of bifurcation from linear prebuckling paths,

- (16)
KT,>.>. = 0 ----7 al = 0, K- 0 (23.1) * 0T,>.>.>.= ----7 al = . (129)

Hence, the relations (127) and (128) are satisfied trivially. Because of the absence of non-
trivial relations replacing (127) and (128) for the special case considered, there are no
restrictions on the plane curves À2 = À2 (/'l:), À4 = À4 (/'l:), analogous to the ones for the
general case.

Eq. (34) does not contain a term that vanishes for the special case of linear prebuckling
paths. Hence, irrespective of whether the prebuckling paths are nonlinear or linear,

(130)

Because of (129.1), the first term on the right-hand side of (36) vanishes trivially for the
special case of linear prebuckling paths. Hence, (36) is reduced to

(131)

The expressions for dl (see (19)), b2 (see (C.2)), and d3 (see (CA)) do not contain terms
that vanish for the special case of linear prebuckling paths.
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Following from (130),

(132)

Hence, the condition for À2 = 0 is the same as for the general case (see (64)). However, the
additional conditions associated with (64) for the general case, which where mentioned in
the second paragraph of Subsection 5.2, are satisfied trivially for the special case of linear
prebuckling paths.

Substitution of (132.2) into (131) gives

(133)

which agrees with (65). Following from (131),

(134 )

Following from (130) and (133), for

(135)

(136)

Figs. 6(a) and 6(b) show plots of two curves À2 = À2(11:), À4 = À4(11:), which contain one
point T and one point Q each, for which

(137)

respectively. In Fig. 6( c), these two points coincide.

s

(a) (b) (c)

Fig. 6. Plots of curves >'2 = >'2(1);), >'4 = >'4(1);), with one point T(>'2 = 0, >'4) and one point Q(>'2,
>'4 = 0) each
[1>; refers to the ratio of the length of the rods of a pin-jointed bar. All rods are connected by
hinges. Rotational and extensional springs are attached to the hinges (the three illustrations refer
to different values of the spring constant of the extensional spring); details of the structure are
given in Fig. 17 of Part II of this work [12]]
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7 Completeness of solutions from Koiter's initial postbuckling analysis, con-
taining À2 = 0

For bifurcation from nonlinear prebuckling paths,

(138)

where (see (D.14))

In general, al =I- O. Eq. (138) follows from specialization of (D.6) for

Clj = 0 , j =I- 1 ,

(139)

(140)

resulting from substitution of Àt = À into (D.lO). [Àt - À is the first eigenvalue and vt
is the corresponding eigenvector of the so-called consistently linearized eigenproblem (see
Appendix D). At the stability limit, Àt = À = Àc and vt = vI-J

Distinctive features between unsymmetric and symmetric bifurcation from nonlinear
prebuckling paths follow from

(141)

where

(142)

resulting from derivation of (D.13) with respect to À, consideration of (D.11), and special-
ization of the result for vt = VI, and

(143)

following from derivation of (D.10) with respect to À and specialization of the result for
Àt = À and vt = VI' [À; - À is the j-th eigenvalue and v; is the corresponding eigenvector
of the consistently linearized eigenproblem (see Appendix D).]

Substitution of (138) into (142) yields

(144)

where use of (16), (23.1), and (139) was made. Substitution of (138) with (139), and of
(144) into (141) gives

n

v~ ,.X>, = 3 (a12 + an VI + L Clj,). vj .
j=2
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Following from (62) and (63), respectively, for symmetric bifurcation from nonlinear
prebuckling paths, (145) disintegrates either into

or into

(146)

1\ a~ = O. (147)

In contrast to the second expression for vi ,ÀÀ, the first expression only involves VI'

For the special case of >'2 = 0 within the framework of symmetric bifurcation from
nonlinear prebuckling paths (points T in Figs. 4(a)-4(h)), dl = 0 (see (64)). For point T in

Fig. 4(a): * vi,ÀÀ = 3 (a1
2 + an VI, (148)v1,À = alVl,

Fig. 4(b): KT,ÀÀ VI = 0
(16)

al = 0, (149)~
(138),(139)

vi,À = 0,
(146.1)

* 3 * (150)~ ~ v1,ÀÀ = a1vl,

Fig. 4(c): KT,ÀÀ VI = 0
(16)

al = 0, (151)~
(138),(139)

vi,À = 0,
(147.1)

vi,ÀÀ = 0, (152)~ ~

Fig. 4(d): T- (16)
al = 0, (153)VI KT,ÀÀ VI = 0 ~

(138),(139) (147.1)
n

vi,À = 0, * L * (154)~ ~ VI ,ÀÀ= Clj,À Vj ,
j=2

Fig. 4(e): same as in Fig. 4(c),
Fig. 4(f): same as in Fig. 4(a),
Fig. 4(g): same as in Fig. 4(b) or Fig. 4(c),
Fig. 4(h): same as in Fig. 4(d),

Hence, for the special case of >'2 = 0 within the framework of symmetric bifurcation, dl = 0
and vi,À is either parallel to VI (see (148.1)) or zero (see (150.1), (152.1), and (154.1)). If,
for this special case, vi,À is parallel to VI, then also vi,ÀÀ is parallel to VI (see (148.2)). If
vi,À is zero, then vi,ÀÀ is either parallel to VI (see (150.2)) or orthogonal to VI with respect
to KT,À (see (154.2) and (D.7.2)), or zero (see (152.2)). Because of

(155)

it follows from (146) that the Eqs. (148) and (150) represent a complete subset of solutions
for vi,À and vi ,ÀÀ associated with >'2 = O. For the same reason and because of the fact
that in case of (155.2) al and >'2 necessarily vanish for the same value of K, (see Section 4),
it follows from (147) that also the Eqs. (152) and (154) represent a complete subset of
solutions for vi,À and vi,ÀÀ associated with >'2 = O. Because of (151.1),

(156)
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Hence, for the respective value of I\, the general disjunction expressed by (155) exceptionally
becomes a conjunction. The sum of the two aforementioned subsets of solutions for vi'À
and vi ,ÀÀ associated with À2 = 0 represents the complete set of such solutions.

For symmetric bifurcation from linear prebuckling paths, the relations (127) and (128)
are satisfied trivially. Hence, the preceding considerations are irrelevant. There is no con-
dition for À2 = 0 in addition to dl = 0 (see (132)).

8 Conclusions

• Conversion from imperfection-sensitive into imperfection-insensitive structures requires
symmetric bifurcation. If this condition is not satisfied by the original structure and for
the given loading, it must be enforced in the course of the conversion process. This may
require modifications of the original design which, for different reasons, are unfeasible.

• Symmetric bifurcation from nonlinear prebuckling paths is associated either with

(see (62))

or with

(see (63)) .

• Eq. (62) occurs together either with ci(K:) =I 0 or with ci(K:) = 0, the latter resulting in

2alÀ2 + b2 = 0 (see (48)) and À4 = -a1À22 + d3 (see (51)).

Eq. (63) only occurs together. with ci(K:) = 0 --7 Eqs. (48) and (51). The Eqs. (62)
and (63) result in two different modes of disintegration of an expression that holds for
unsymmetric bifurcation from nonlinear prebuckling paths (see (145)-(147)) .

• The geometric loci of all points in the À4-al plane of the ÀTÀ4-al space, which are
solutions of

(see (36))

with À2 = 0, are restricted to the two half-axes À4 ~ 0 and al ~ 0 (see Fig. 2). This
restriction seems to be a consequence of the condition for symmetric bifurcation,

À I = À3 = ... = 0 (see (27)),

which is stronger than the conditions ÀI = 0 and À3 = 0 on which the above expression
for À4 is based .

• The relations (66) and (67), respectively, refer to modes of conversion from imperfection-
sensitive into imperfection-insensitive structures, which are characterized by

(see (68)) .
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• The relations (70) refer to a mode of conversion from imperfection-sensitive into imperfection-
insensitive structures, which is characterized by

(see (71)) .

• À2 = 0 is a necessary but not a sufficient condition for the transition from imperfection
sensitivity to imperfection insensitivity. For

such a transition does not occur (see point T in Fig. 4(c)). This situation is characterized
by

(see (78.2) and (78.3)) .

• Hilltop bifurcation is characterized by

(see (98) and (102), respectively) .

• The transition from bifurcation buckling to no loss of stability is characterized by

À,~ = 0 , À,~~ = 0, VI = 0 (see (106)) ,

indicating the existence of saddle points on the primary paths and the degeneration of
the secondary paths to these points, respectively (see point C in Fig. 5(a) ).

Alternatively,

ü,~~= 0 , À,~~ = 0 , (see (126)) ,

indicating the existence of points of inflection on the primary paths and the degeneration
oft he secondary paths to these points, respectively (see point C* in Figs. 5(b) and 5(c)).

• For the special case of linear prebuckling paths,

KT,>.>. = 0, KT,>.>.>. = 0, (see (129)) .

Hence, (62) and (63) are satisfied trivially.

• For this special case, in contrast to the general case of symmetric bifurcation from non-
linear prebuckling paths, À2 = 0 mayalso occur jointly with À4 > 0 (see Fig. 6(b)) .

• To each point on a space curve À2 = À2(,.), À4 = À4(,.), al = al (,.) (see Fig. 4) a curve
Àr(À) can be related, which is part of the solution of the consistently linearized eigen-
problem (see Appendix D). It was shown that the curves Àr(À) related to point T(À2 = 0,
À4, al) in Fig. 4 (with the exception of Figs. 4(a) and 4(f)) have specific geometric prop-
erties at the bifurcation point Àr = À.
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• The investigation of these properties was motivated by the need to ensure the complete-
ness of the solutions for the initial postbuckling paths with >'2 = 0 for the general case
of symmetric bifurcation from nonlinear prebuckling paths (see (148)-(154)) .

• Reducing the initial rise of an imperfection-sensitive structure eventually results in the
transition from bifurcation buckling to no loss of stability. However, such a reduction is
associated with a decrease of the stability limit. Increasing the stiffness of a structure by
means of a uniform increase of its thickness does not result in the conversion from imper-
fection sensitivity into insensitivity. Increasing the stiffness of an elastic spring, suitably
attached to the structure, however, usually enables its conversion from an imperfection-
seI).sitive into an imperfection-insensitive structure. Based on these conclusions from Part
II of this work [12], it seems that additional supports of a structure may be effective means
to achieve the desired conversion .

• A challenge for future scientific work is to investigate the effectiveness of different modes
of additional support of the original structure, which are feasible from the design stand-
point, to accomplish such a conversion.
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Appendices

A Coefficient tensors for Koiter's postbuckling analysis in the context of the
FEM

Because of successive application of the chain rule, the expressions for some of the
coefficient tensors in (4) become relatively lengthy. Introduction of special tensor-valued
functions and of a rule for differentiation, which combines partial and directional deriva-
tives, allows to write these expressions in comparatively compact form.

In the standard FEM, G,u is referred to as the tangent stiffness matrix KT(u). For
proportionalloading, G,u does not explicitly depend on À. Nevertheless, a matrix curve

ÀE3clR, (A.I)

may be defined along the equilibrium path u = ù(À). This matrix function is identical
with the tangent stiffness matrix KT(À) in papers by Heinwein [5], Heinwein and Mang [6],
and Heinwein et al. [7]. In the present paper, KT(À) indicates equilibrium states on the
primary path whereas KT( u) refers to configurations which, in general, represent out-
of-balance states. The main objective of introducing the above definition of KT(À) is to
increase the compactness of the expressions for the coefficient tensors in (4).

The tangent, curvature, and higher-order derivatives of the matrix curve (A.I) along
the equilibrium path are computed as follows:

KT,À (À) = G,uu 'ù,À , (A.2)
KT,ÀÀ (À) = G,uuu : ù,À @ù,À +G,uu 'ù,ÀÀ , (A.3)

KT'ÀÀÀ (À) = G,uuuu: ù,À @ù,À@ù,À +3 G,uuu: ù,À@ù,ÀÀ +G,uu ,ù'ÀÀÀ , (A.4)

The chosen notation emphasizes that these relations only hold for points located on the
primary path ù(À).

To increase the compactness of the notation, a special rule for differentiation of deriva-
tives of a tensor-valued function A(u, À) with respect to the load parameter À is introduced:

ad _
[A(u, À)],À:= aÀ A(u, À) + da A(u + aU,À (À), À)la=ü .

Applying (A.5) to the tangent stiffness matrix KT(u), yields

(A.5)

KT,À (u, À) = [KT(u)] ,À = [G,u (u)]'À

= :À G,u (u) + :ala~'u (u + aÙ,À (À)) = G,uu (u). ù,À (À). (A.6)

Specialization of (A.6) for points on the primary path gives KT'À (ù(À), À) = KT'À (À).
The partial derivative aKT(u)jaÀ = aG,u (u)jaÀ vanishes because, as mentioned previ-
ously, G,u does not explicitly depend on À. Nevertheless, differentiation according to (A.5)
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generates functions which are defined in the whole domain of (u, À). In contrast to these
functions, the ones according to the Eqs. (A.2)-(A.4) are only defined along the primary
path u(À).

As an example, KT,uÀÀ (u, À) = [KT,uÀ (u)]'À will be computed in the following:

KT,uÀÀ (u, À) = [KT,uÀ (u)]'À = [G,uuu (u) . u,À (À)] ,À

= ::.. (G,uuu .it" ) + :" la~: ,uuu (u +<> it" (:..)) . it" ]

= G,uuu ,u,u +G,uuuu: u'À@u'À . (A.7)

Comparison of this result with the one obtained from differentiation of (A.3) with respect
to u yields the symmetry relation KT,uÀÀ = KT,ÀÀu' Analogous symmetry relations hold
for all other mixed derivatives.

Further simplifications follow from the function G(À) : J ---+ ]Rn as:

- -
G'À = G,u 'U'À +G'À = KT' U'À -P = 0,
G'ÀÀ = G,uu: U,À@U,À +G,u 'U,ÀÀ= 0,

(A.8)
(A.9)

(A.1O)

(A.11)

Eq. (A.8) expresses a trivial identity which directly results from the definition of the primary
path u(À). The Eqs. (A.9), (A.1O), (A.11), ... allow successive computation of the vectors
u'À' u,ÀÀ, u,ÀÀÀ,.... Because of det G,u lUG = det KTIÀG = 0, the evaluation of these
vectors at a bifurcation point C requires use of their limits, as À ---+ Àe. Moreover, the
above relations cause the vanishing of the vectors G;1) Ie, G;1)1) Ie, G;7)7)1)Ie, .

Computation ofthe first-order coefficient tensors (vectors) G;1)' G;1)1), G;7)7)1), , second-
order tensors (matrices) G;v, G;V1)' G;v1)1)' ... , third-order tensors G;vv, G;vv1)' , fourth-
order tensors G;vvv, ... , etc., appearing in (4), follows a simple pattern. All ofthem depend
on v and TJand must be expressed in terms of G(u, À). Let A +(v, TJ) := A(u(>-(TJ))+v, >-(TJ))
be one of these tensor-valued functions. The differential of this function can be written as

dA + (v, TJ)= A;v (v, TJ). dv + A;1) (v, TJ)dTJ
= dA(u(>-(TJ)) + v, >-(TJ))
= A,u .dv + [A,u ,u,À +A,À] >-'1)(TJ)dTJ.

Comparison of the Eqs. (A.12) and (A.13) yields

A;v (v, TJ)= A,u I(u,À)=(ü().(1)))+v).(1)))

A;1) (v, TJ) = [(AlU ,u,À +A'À) >-'1)]l(u,À)=(Ü().(1)))+v,).(1)))

(A.12)

(A.13)

(A.14)

(A.15)

Eventually, the coefficient tensors in (4) are obtained by evaluating the expressions for
these relations at the bifurcation point C: (v,TJ) = (0,0) (or (u,À) = (u(Àc),Àe)).
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Gt7) Ic
Gtvv Ic

Table A.I contains the coefficient tensors as occurring in (4), evaluated at C. Note that
G,u). = KT,). = G,).u = -P,u = o.

Table A.I
Coefficient tensors for Koiter's post-buckling analysis in the context of the FEM, evaluated at the
bifurcation point C

= (G,u )Ic = KT('xc)
_ - (A.9) -

= (G,u .u,). +G,). )Ic 'x'1/ = 'xl G,). = 0

= (G,uu )Ic = KT,u (uc)
+ I ( - \ ) I (A.6) \ K ( \) (A.2) - (\)G 'v7) c = G,uu 'u,). /\'1/ C = /\1 T,). UC, /\C = 'xl KT,). /\c

Gt1/1/ Ic = (G,uu: Ù,). 0ù,). +G,u 'ù,.>..>.)Ic (>"1/)2 + (G,u 'Ù,). +G,). )Ic >"7)7)
- (\ )2 G- 2 \ G- (A.9){A.1O) 0
- /\1 ,).). + /\2 ,). -

Gtvvv Ic = (G,uuu )Ic = KT,uu (uc)

Gtvv7) \c = (G,uuu 'Ù,). >"7))Ic = 'xl KT,uu (uc) .ù,). (,xc) = 'xl KT,u). UC, ,xc)

GtVT/1J Ic = (>',~ KT,).). +>"T/1J KT,). )Ic = ('xd2 KT,).). ('xc) + 2'x2 KT,). ('xc)

Gt1JT/T/ Ic = 0
Gtvvvv Ic = (G,uuuu )Ic = KT,uuu (uc)

GtVVV7) lc = (G,uuuu ,ù,). >"1/)Ic ='xl KT,uu). (uc, 'xc)

G tVV7)1/ Ic = [(G,uuuu: Ù,). 0ù,). +G,uuu .Ù,).).) (>"7))2 + (G,uuu 'Ù,). >"T/1J)] Ic

= ('xl)2 KT,u).). (uc, 'xc) + 2'x2 KT,u). UC, 'xc)
- 3- - - - --

GtVT/1J7) Ic = ('x,1/) KT,).).). ('xC) + 3 'x,7) 'x'T/1J KT,).). (,xC) + 'x'7)1/1/KT,). ('xc)

G t7)T/1J1/Ic = 0
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Eq. (7) can formally be expressed as

(B.1)

where the coefficients a, b, ... , f represent vector-valued expressions. The expressions for
a, b, and c are contained in (7). In order to write the comparatively lengthy expressions
for d, e, and f, not contained in (7), more concisely, the abbreviations

A : U 0 V ---+ A uv , B :u 0 v 0 W ---+ B uvw , o •• , u, v, w E ~n, (B.2)

will be used in what follows. It is noteworthy that all of these expressions result in vectors
in jRn. To obtain the expressions for d, e, and f, the symmetry relations

KT,u: v0w = G,uu: v0w = G,uu: w0v = KT,u: w0v (B.3)

for arbitrary vectors v, w E ~n, must be used.
Making use of Table A.1 and of Eqs. (4) and (5), the coefficients d, e, and f are obtained

as

31- 2(1- 1 )d = ÀI 6KT'ÀÀÀVI + ÀI 2KT'ÀÀV2 + 4KT'UÀÀ VIVI

( - - 1)+ ÀI À2 KT,ÀÀVI + KT,À V3 + KT,uÀ VIV2 + 6KT,uUÀ VIVlVI

+ À2 (KT'À V2 + ~KT'UÀ VIVI) + À3 KT,À VI + KTV4 + KT,u VIV3

1 1 1+ 2KT,u V2V2 + 2KT,uu VIVIV2 + 24KT,uuu VIVlVIVI, (BA)
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and

51- 4(1- 1 )f =)'1 120 KT,>..X).>.>.VI + >'1 24 KT,>.>.>.>.V2 + 48 KT,u>.>.>.>. VI VI

(
1- 1- 1 1 )+ >'13 >'2 6KT,>.>.>.>.VI + 6KT,>.>.>.V3 + 6KT,u>,>,>, VIV2 + 36KT,uu>.>.>. VIVlVI

[
1 - (1 - 1 ) 1-+ >'12 >'3 2KT,>.>.>.VI + >'2 2KT,>.>.>.V2 + "4KT,u>.>.>. VIVI + 2KT,>.>.V4

1 1 1 1 ]
+2KT,u>,>, VIV3 + "4KT,u>,>, V2V2 + "4KT,uu>,>, VIVIV2 + 48KT,uuu>,>, VIVIVIVI

+ >'1 [>'4 KT,>.>. VI + >'3 (KT,>.>. V2 + ~KT,u>.>. VI VI)

+ >'22 ~KT,>,>,>,VI + >'2 (KT,>.>.V3 + KT,u>.>. VIV2 + ~KT'UU>'>' VIVlVI)

- 1 1
+ KT,>. V5 + KT,u>' VIV4 + KT,u>. v2v3 + 2KT,uu>. VIVjV3 + 2KT,uu>, VIV2V2

11]
+6KT,uuu>, VIVIVIV2 + 120KT,uuuu>, VIVIVIVIVI

+ >'22 (~KT,>,>,V2 + lKT,u>.>. VIVI) + >'2 (KT,>. V4 + KT,u>. VIV3

1 1 1 )
+2KT,u>, V2V2 + 2KT,uu>, VjVIV2 + 24KT,uuu>, VIVIVjVj

( - - 1)+ >'3 >'2 KT,>,>,VI + KT,>. V3 + KT,u>' VIV2 + 6KT,uu>, VIVIVj

(
- 1 )-+ >'4 KT,>. V2 + 2KT,u>' VI Vj + >'5KT,>. VI

- 1 1
+ KTV6 + KT,u VIVS + KT,u V2V4 + 2KT,u V3V3 + 2KT,uu VIVjV4

1 1 1
+ KT,uu VjV2V3 + 6KT,uu V2V2V2 + 6KT,uuu VjVIVIV3 + "4KT,uuu VIVjV2V2

1 1
+ 24KT,uuuu VjVjVjVjV2 + 720KT,uuuuu VIVjVIVjVjVI' (8.6)
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For the general case of nonlinear prebuckling paths, the coefficients cr, ÎI' and el,
occurring in the Eqs. (20), (21), and (22), respectively, are needed. Abbreviations according
to (8.2) are used. Premultiplying the coefficient of ÀI in (BA) by -vi jviKT'), VI, yields

(C.1)

with al according to (16) and

(C.2)

Premultiplying those terms in (B.5) by -vi jviKT,). VI, which do not contain )'1, and
considering (8), gives ÎI - À4, where

(C.3)

with aI, bl, and b2 according to the Eqs. (16), (17), and (C.2), respectively, and

(CA)

Premultiplying the coefficient of ÀI in (8.6) by -vijvfKT')' VI, yields

(C.5)

with al and br according to (16) and (24), respectively, and

(C.6)

with ar according to (23.1),

(C.7)

and

(C.8)
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D Mathematical properties of the consistently linearized eigenproblem

To each point on a space curve À2 = À2 (fi,), À4 = À4 (fi,), al = al (fi,) (see Fig. 4) a curve
Àr(À) can be related, which is part of the solution of the so-called consistently linearized
eigenproblem. The mathematical formulation of this eigenproblem reads (Heinwein [5])

[KT + (À* - À)KTl,\] v* = 0, (D.l)

where À* - À is the eigenvalue and v* is the eigenvector. For v* = vt = VI, because of (8),

(D.2)

representing the load level at the stability limit.
It will be shown that, in general, the curves Àt(À) related to point T (À2 = 0, À4, al) in

Fig. 4 have specific geometric properties at the bifurcation point Àt = À. The investigation
of these properties is motivated by the need to ensure the completeness of the solutions for
the initial postbuckling paths with À2 = 0 for the general case of symmetric bifurcation
from nonlinear primary paths (see Section 7). Moreover, these properties permit verification
of theoretical results for limiting cases "by inspection" of the corresponding curves Àt(À).
In view of the complexity of some of the relevant mathematical expressions, no practical
alternative is available.

Derivation of (D.l) with respect to À gives

Writing (0.3) for the first eigenpair, which is a function of .x, yields

[À~,,\KT,,\ +(À~ - À)KT,,\,\] v~ + [KT + (À~ - À)KT,,\] v~,,\ = o.

Premultiplication of (0.4) by vtT and use of (D.l) gives

Expressing vr,'\ in terms of the eigenvectors vj, j = 1,2, ... , n, results in

(D.3)

(0.4)

(0.5)

(D.6)

Inserting (D.6) into (0.4), premultiplying the obtained relation by v;r, j =I- 1, and making
use of the orthogonality conditions

(D.7)

following from (D.l), gives

(À~ - À)v?KT,,\,\ v~ + v? [KT + (À~ - À)KT,,\] CljVj = o.
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Writing (D.I) for the j-th eigenpair, which is a function of À, and premultiplying the
obtained relation by vy, yields

vY [KT + (Àj - À)KT,,\] vj = 00

Insertion of (D.9) into (D.8) results in

(D.9)

(DolO)

In order to determine Cll, vi is normalized such that

(D.ll)

implying Ài(À = 0) > 0, which can always be achieved by means of a suitable definition of
a positive reference load. Derivation of (Doll) with respect to À gives

(D.12)

Substitution of (D.6) into (D.12) and consideration of (D.7.2) results in

(D.13)

Specializing (D.13) for the stability limit by setting vi = VI and comparing the relation
for Cll with (16), it is seen that

(D.14)

Apart from exceptional cases, which will be treated later, specialization of (D.5) and
(D.lO) for the stability limit Ài = À yields

and

Clj = 0 , j =I- l,

respectively. Substituting (DoI6) into (D.6), gives

(D.15)

(D.16)

(DoI7)

In order to show that the nonlinearity coefficient al is proportional to the curvature of
the eigenvalue curve at the bifurcation point, (D.3) is differentiated with respect to À:

[À:,\,\ KT''\ +(2À:,\ -1)KT,,\,\ +( À* - À)KT,,\,\,\ ] v*

+2 [À:,\ KT,,\ +(À* - À)KT,,\,\] v:,\ + [KT + (À* - À)KT,,\] v:,\,\ = 00
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Writing (D.18) for the first eigenpair and specializing the obtained relation for the bifur-
cation point by inserting the Eqs. (0.2) and (0.15) and setting v! = VI, gives

Premultiplication of (D.19) by vi and consideration of (8) yields

TK->'* _ VI T,).,)., VI
l').,)., - T - .

VI KT,)., VI

Comparison of (0.20) with (16) shows that

which proves the correctness of the preceding assertion.
Specializing (0.21) for al = 0 and (0.17) for Cll = al = 0, gives

and

(D.19)

(0.20)

(0.21)

(0.22)

(D.23)

respectively. Hence, point I in Fig. 4(a), point T in Figs. 4(b)-4(e) and 4(g), and points T
in Fig. 4(h) correlate with special points on the corresponding curves >.j(>.) and v!(>') at
the bifurcation point >.j = >..

• Point I in Fig. 4(a). Substitution of (148.2) into (0.19) and consideration of (8) gives

At point l,

(0.24)

( 16)
---7 al = O. (0.25)

Following from (0.24) and (0.25),

(0.26)

In Part II of this work [12] it is shown numerically that the curve >.j(>.) related to point I
in Fig. 4(a) has a saddle point at the bifurcation point >.j = >..

• Point T in Fig. 4(b). At this point, (0.24) and (0.25) (which is equal to (149)) hold.
Consequently, >'! ,).,).,= O. In Part II of this work [12] it is shown numerically that the curve
>.r(>.) related to point T in Fig. 4(b) has a saddle point at the bifurcation point >.j = >..
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• Point T in Fig. 4(c). At this point, (D.24) and (D.25) (which is equal to (151)) hold.
Consequently, >'i,ÀÀ= O. However, in contrast to the situation at point T in Fig. 4(b), the
curve >.i (>.) related to point T in Fig. 4(c) has a planar point at the bifurcation point
>'i = >., >'i,À= O. Hence, in addition to >'i,ÀÀ= 0, also >'i,ÀÀÀ= O. This assertion is based
on the following observation: the curvature of the curve >'i(>') related to an arbitrary point
on the space curve in Fig. 4(c), has a maximum value at the bifurcation point >'i = >.,
>'i,À= O. Hence,

= 0, (D.27)

From (D.27.1),

Derivation of (D.18) with respect to >. results in

[>'~ÀÀÀKT'À +3 >'~ÀÀKT'ÀÀ + (3 >':À-2) KT,ÀÀÀ +(>.* - >')KT'ÀÀÀÀ]v* +
3 [>'~ÀÀKT,À + (2 >'~À-1) KT,ÀÀ +(>. * - >.)KT,ÀÀÀ ] v~À +
3 [>':ÀKT'À +(>.* - >.)KT'ÀÀ] v:ÀÀ+ [KT + (>.*- >.)KT'À] v:ÀÀÀ = o.

(D.28)

(D.29)

Writing (D.29) for the first eigenpair and specializing the result for the bifurcation point,
i.e. for >'i = >., >'i,À= 0, >'i,ÀÀÀ= 0, and vi = VI, gives

At point T in Fig. 4(c), (D.19) disintegrates into

>'~'ÀÀ= 0, KT'ÀÀ VI = 0 (see (151)), v~'ÀÀ= 0 (see (152.2)).

(D.30)

(D.31)

Hence, the only difference between the disintegration of (D.19) at point T in Fig. 4(c) and
the one at point T in Fig. 4(b) is the vanishing of vi'ÀÀ at the former. Eq. (D.31.1) holds
in addition to >'i = >., >'i ,À= 0, and >'i,ÀÀÀ= O. Therefore, as shown numerically in Part II
of this work [12], the curve >.i(>') related to point T in Fig. 4(c) has a planar point at the
bifurcation point >'i = >..

Inserting (D.13) into (D.17) and specializing the result for (D.31.2), gives

V~'À = O.

Substitution of (D.31.1) and (D.32) into (D.30) results in

- -
-2KT,ÀÀÀ VI + KTV~'ÀÀÀ = O.
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Premultiplication of (D.33) by vi and consideration of (8) results in

r - (23.1)
VI Kr"uÀ VI = 0 ---t ai = 0 (see (152.3)) . (D.34)

For reasons of completeness, the situation at point H in Fig. 4( c) will be investigated
in the following. Specializing the ratio of the two quadratic forms in (D.5) for the stability
limit by setting vr = VI and making use of (D.20) and (D.21), gives

(D.35)

Substituting (D.35) into (D.5), yields

Because of

Ài - À = 0 and al = -00 (see (102)),

(D.36)

(D.37)

(D.38)

the expression for Àr,À IÀi =À is an indeterminate expression. (In the following, l>.i=À will be
omitted.)

Inserting (99) into (D.36), results in

\ * _ (Àr - À) À,~~ (_ viKr,~~VI À,~ )
"'l,À- (À)2 r- \ +1

,~ VI Kr,~ VI "',~~

Application of de L'Hospital's rule to the indeterminate expression (Àr-À)/(À,~)2 in (D.38)
and consideration of (100.2) gives

(D.39)

resulting in

(DAO)

which agrees with the numerical result for hilltop bifurcation reported in Part II of this
work [12]. Substitution of (102) into (D.21) yields

(DAI)

which indicates that the curve Àr(À) has a singular point at Àr = À .

• Point T in Fig. 4(d). With exception of (D.31.2) and (D.31.3), the relations for point T
in Fig. 4(c) also hold for point T in Fig. 4(d). At this point, (D.19) disintegrates into

- -Ài ,ÀÀ = 0 and - Kr,ÀÀ VI + Krvi ,ÀÀ = o.
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Premultiplication of (DA2.2) by vi and consideration of (8) yields

Premultiplication of (0.33) by vi and consideration of (8) results in

T - (23.1)
VI KT,>..>.>,VI = 0 --t a~ = o.

(OA3)

(OA4)

The Eqs. (DA3) and (DA4) are associated with À! ,>.>.= 0 and À! ,u>. = O. Hence, as shown
numerically in Part II of this work [12], also the curve À!(À) related to point T in Fig. 4(d)
has a planar point at the bifurcation point À! = À.

• Point T in Fig. 4(e). The situation at point S=T in Fig. 4(e) is the same as the one at
point T in Fig. 4(c). Therefore, the curve À!(À) related to point S=T in Fig. 4(e) has a
planar point at the bifurcation point À! = À.

• Point F=N=T in Fig. 4(f). Substitution of (106) into (99) yields an indeterminate
expression for al' With the help of de L'Hospital's rule, the result for this expression is
obtained as

Because of

À~ - À = 0 and al = -00 ,

À~,>.I>'i=>' = 2 (À~ - À)I>'i=>' al (see (0.36))

(DA5)

(OA6)

(OA7)

is an indeterminate expression. By means of de L'Hospital's rule, the result for this expres-
sion is obtained as

À~,>.= -1,

which agrees with (DAO). Moreover,

(see (0 Al )).

(DA8)

(DA9)

• Point T in Fig. 4 (g). The situation at this point is the same as the one at point T in
Fig. 4(b) (von Mises truss) and in Fig. 4(c) (cylindrical panel), respectively. Hence, the
curves À!(À) related to point T in Fig. 4(f) have a saddle point (von Mises truss) and a
planar point (cylindrical panel), respectively, at the bifurcation point.

Fig. 0.1 (von Mises truss): The curve in Fig. O.l(a) that contains the bifurcation point
(point C) and the dash-dotted curve in this Figure show the functions À!(À) and À;(À),
both related to point T in Fig. 4(b) (von Mises truss), which represents a limiting case (see
(97)). At point C, À! = À, À!,>. = 0, and À!,>.>.= O. For À> À!, KT is an indefinite matrix.
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Fig. D.l. Eigenvalue curves related to (a) point T in Fig. 4(b) representing a limiting case, and
(b) point F=N =T (see Fig. 4(g)) representing the final situation of this limiting case

Consequently, eigenvalue functions may become complex functions. For À > ÀR, where ÀR

refers to point R in Fig. D.1(a), Ài(À) and Àj(À) are conjugate complex functions.
To understand the situation at point R=C in Fig. D.1(b), which is associated with

the final situation F=N =T of the aforementioned limiting case, the one at point R in
Fig. D.1 (a) must be understood. To understand the latter, the situation for À > ÀR in
Fig. D.1(a) must be investigated. For that purpose, À* and v* in (D.1) are replaced by

(D.50)

where Re( ) and lm( ) denote the real and the imaginary part, respectively, of the term in
parentheses. This gives

(D.51)

The real and the imaginary part of (D.51) are obtained as

(D.52)

and

(D.53)

Premultiplication of (D.52) by Re(viT) and of (D.53) by lm(vf) and addition of the so-
obtained relations yields

Re(v~T) {KT + [Re(À~) - À] KT'À} Re(v~) +
Im(v~T) {KT + [Re(Àr) - À] KT'À} lm(v~) = O. (D.54)

Premultiplication of (D.52) by Im(viT) and of (D.53) by Re(vf) and subtraction of the
first one of the so-obtained relations from the second one results in

(D.55)
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Substitution of (D,55) into (D.54) gives

Re(viT)KTRe(vi) + Im(viT)KTlm(vi) = O.

At point R, the eigenvalue Ài - À is still real. Hence,

(D.56)

(D,50,l)
----t (D.57)

(D,58)

The eigenvalue represents a double root of the consistently linearized eigenproblem. The
dash-dotted curve in Fig. D.1(a) is the eigenvalue curve that joins the eigenvalue curve,
which contains point e, at point R. Since, for À > ÀR, the two eigenvalue functions Ài - À
and À; - À are conjugate complex functions:

Ài = Re(Ài) + i Im(Ài) , À; = Ài = Re(Ài) - i Im(Ài) .

Substitution of (D.57) into (D.52) and (D.53) yields

[KT + (Ài - À)KT,).] Re(vi) = 0 and [KT + (Ài - À)KT,).] lm(vi) = 0, (D.59)

respectively, resulting in

Re(vi) = lm( vi) .

Substitution of (D.60) into (D.50.2) gives

vi = (1 + i) Re(vi).

Consequently,

v; = vi = (1 - i) Re(vi) .

Inserting (D.60) into (D.56) and (D.55), yields

Re(viT) KT Re(vi) = 0 and Re(viT) KT,). Re(vi) = O.

(D.60)

(D.61)

(D,62)

(D.63)

Writing (D,l) for the first eigenpair and premultiplying the so-obtained relation by viT,
yields

ViT [KT + (Ài - À)KT,).] vi = O.

Substitution of (D.61) into (D.64) gives

2i Re(viT) [KT + (Ài - À)KT,).] Re(vi) = O.

Eq. (D.65) disintegrates into (D.63). Consequently, (D.64) disintegrates into
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Substitution of (D.61) into (D.5) results in

Because of (D.63.2) and of

Àr - À =I a and Re(vrT)KT''\'\ Re(vr) f= 0,

Obviously,

(D.67)

(D.68)

(D.69)

(D.70)

The final situation F=N =T of the limiting case T is characterized by the coincidence
of points C and R (see Fig. D.1(b)). Hence, the eigenvalue represents a double root of the
consistently linearized eigenproblem. Its value is zero, i.e.

Àr - À = À; - À = o.

For this limiting case, the Eqs. (106), (113), and (114) hold, i.e.

By analogy to (D.n.3) and (D.72.4),

(D.n)

(D.n)

(D.73)

As regards the eigenvalue function À7(À) - À, the term "limiting case" means that at
point C of the eigenvalue curve (see Fig. D.1(a)),

(D.74)

indicating a saddle point. In contrast to the limiting case, the underlined relation in (D.74)
does not hold for the standard case. The term "final situation" (of the limiting case) means
that at point R=C of the eigenvalue curve (see Fig. D.1(b)),

(D.75)

indicating a saddle point of higher order. In contrast to this "final situation", which is
associated with the transition to no buckling (see Fig. 5(a)), the doubly underlined relations
in (D.75) do not hold for the standard situation of the limiting case.

Fig. D.2 (cylindrical panel): The curve in Fig. D.2 that contains the bifurcation point
(point C) and the dash-dotted curve in this Figure show the functions À7(À) and À;(À),
both related to point T in Fig. 4(c) (cylindrical panel). At point C, À7 = À, À7,'\= 0,
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>'i,>.>.= 0, and >'i,>.>.>.=O. For>. > >'R, where >'R refers to point R in Fig. D.2, >'i(>.) and
>';(>') are conjugate complex functions.

As regards the eigenvalue function >'i(>.) - >., the term "limiting case" means that at
point C of the eigenvalue curve (see Fig. D.2),

(D.76)

indicating a planar point. In contrast to the limiting case, the underlined relation in (D.76)
does not hold for the standard case which differs from the one for the von Mises truss by
the existence of the condition (D.76.4). The term "final situation" (of the limiting case)
means that at point C,

(D.77)

indicating the aforementioned saddle point of higher order. In contrast to the "final situ-
ation", which is associated with the transition to no buckling (see Fig. 5(a)), the doubly
underlined relation in (D.77) does not hold for the standard situation of the limiting case.

>.*

R

.'#

/>.*J

(a)

Fig. D.2. Eigenvalue curves related to point T (see Fig. 4(c)) representing a limiting case

• Points T in Fig. 4(h). The situation at points T in Fig. 4(h) is the same as the one
at point T in Fig. 4(d) (cylindrical panel). Hence, the curves >'i(>.) related to points T in
Fig. 4(h) have a planar point at the bifurcation point. Consequently, Fig. D.2 and (D.76)
also apply to the points T in Fig. 4(h), whereas (D.77) also applies to the final situation
F=N =T of this limiting case.
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Conversion from Imperfection-Sensitive into
Imperfection-Insensitive Elastic Structures II:

Numerical Investigation *
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Abstract

A qualitative improvement of the initial postbuckling behavior of imperfection-sensitive elastic
structures is their conversion into imperfection-insensitive structures. Attempts to achieve such
a conversion include the increase of the thickness and of the stiffness of a spring attached to the
structure, respectively, and the reduction of the rise of the undeformed structure. Four different
structures serve as objects of the numerical investigation. The results of this investigation include
different modes of conversion from imperfection-sensitive into imperfection-insensitive structures
as well as failure to achieve such a conversion. They corroborate the theoretical results reported
in Part I of this work.

Key words: symmetric bifurcation buckling, imperfection sensitivity, conversion into
imperfection insensitivity, numerical investigation, finite element method

1 Introduction

In order to improve the mechanical behavior of imperfection-sensitive structures, it
is not only important to investigate the influence of a stiffness increase on the prebuck-
ling behavior and the stability limit. What is equally important is knowledge about the
influence of such an increase on the postbuckling response. This was recognized e.g. by
Bochenek and Kruzelecki who have dealt with optimization of the postbuckling behavior
of elastic structures (Bochenek and Kruzelecki [1]). In case of loss of stability by means
of symmetric bifurcation, a qualitative improvement of the postbuckling response in con-
sequence of stiffening is the conversion from an originally imperfection-sensitive into an
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imperfection-insensitive structure. Designation of a structure as either imperfection sensi-
tive or insensitive depends on the initial postbuckling behavior (Koiter [4]) which often is
(but certainly need not be) relevant for the entire postbuckling response. In any case, the
search for specific modes of stiffening that result in the aforementioned conversion is of
fundamental as well as of practical importance.

In Part I of this work [5], Koiter's initial postbuckling analysis [4] is applied in the
context of the Finite Element Method (FEM) (Reitinger [6]) to deduce mathematical re-
lations associated with the transition from imperfection sensitivity into insensitivity. Such
a transition can obviously only be achieved for symmetric bifurcation. Ofspecial interest
are the first two non-vanishing coefficients in the polynomial expression for ~(7]) in Koiter's
initial postbuckling analysis (see Eq. (6) in Part I of this work [5]), namely À2 and À4. The
coefficient À2 plays an essential role in the mathematical expression for the slope, and the
coefficients À2 and À4 in the one for the curvature of (suitable projections of) the postbuck-
ling paths at the bifurcation point. In fact, the sign of the slope of the postbuckling path at
the bifurcation point is equal to the sign of À2. For À2 = 0, which is a necessary condition
for the transition from imperfection sensitivity into insensitivity, the sign of the curvature
of the postbuckling path at the stability limit is equal to the sign of À4. Hence, imperfection
sensitivity is characterized by À2 < 0, and imperfection insensitivity by À2 > o. If À2 = 0,
the sign of À4 is relevant, and if À2 = a and À4 = 0, the sign of À6.

For the investigation of different modes of transition from imperfection sensitivity into
insensitivity, the following relationship between À2 and À4 has been derived (see Eq. (36)
in Part I of this work [5]):

(1)

where al (see Eq. (16) in Part I of this work [5]) is referred to as nonlinearity coefficient
because it vanishes trivially for linear prebuckling paths, and b2 and d3 are parameters
depending on directional derivatives of the stiffness matrix KT (see Eqs. (C.2) and (CA) in
Appendix C of Part Iof this work [5]). The coefficient al is closely related to the curvature
of the curve Àr (À) (which in turn is closely related to the eigenvalue curve Àr (À) - À of the
consistently linearized eigen problem (Heinwein [3])), at the stability limit (see Eq. (D.2l)
in Part I of this work [5]). The sign of al is opposite to the one of the curvature of this
curve at the stability limit.

It is re-emphasized that, with the exception of the first and the last example, Koi-
ter's initial postbuckling analysis is actually not used to compute postbuckling paths in
the present numerical investigation. Primarily, it serves the purpose of deducing important
theoretical results and verifying specific numerical results. Rather, the structural analyses
of examples 2 and 3 are performed by means of the FEM, using the finite element program
FEAP [la] with a modification (Heinwein [3]) of a shell element developed by Simo et
al. [7,8]. Each numerical analysis of load-displacement paths is complemented by an ac-
companying linear eigenvalue analysis. Results are presented in form of load-displacement
diagrams including the primary and the secondary path and of the aforementioned curve
Àr(À). (Although, strictly speaking, Ài(À) - À is the eigenvalue curve, Ài(À) will, in general,
be referred to as this curve.)
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Fig. 4 in Part I of this work [5] shows qualitative illustrations of eight '\2-'\4-al curves,
with '\2, '\4, and al depending on a design parameter 1'\,. Each curve contains at least
one point T, at which '\2 = 0, which is a necessary condition for the transition from
imperfection sensitivity into imperfection insensitivity. In the following, numerical examples
are presented which refer to the eight curves shown in Fig. 4 in Part I [5]. The purpose
of each one of these examples, which are characterized by nonlinear prebuckling paths,
is conversion of the structure from imperfection sensitivity into insensitivity. Finally, one
example with linear prebuckling paths will complete the numerical investigation.

2 Numerical Investigation

A pin-jointed bar (see Subchapter 2.1), a von Mises truss (see Subchapter 2.2) and a
shallow cylindrical shell (see Subchapter 2.3) serve as examples with nonlinear prebuckling
paths. Originally, each one of these three structures is imperfection sensitive. The aim of
the numerical investigation is the conversion from imperfection-sensitive into imperfection-
insensitive structures. Attempts to achieve this goal include different strategies such as the
increase of the thickness of the structure, the increase of the stiffness of an elastic spring
attached to the structure, and the reduction of the rise of the undeformed structure, termed
as initial rise.

Another pin-jointed bar (see Subchapter 2.4) serves as the example with linear pre-
buckling paths. Here, the strategies of stiffening include the attachment of elastic springs
as well as the change of the length of one of the bars.

2.1 Example 1: Pin-jointed bar with two degrees of freedom

Consider the plane pin-jointed bar in Fig. 1, composed of two rigid bars of length I and
three linear-elastic springs with stiffnesses Cl, C2, and C3, loaded by a vertical nodal force
,\P at joint 1 of the structure; P is the reference force and ,\ is a dimensionless load factor.

..........F

Fig. 1. Geometric properties of a pin-jointed bar with two rigid rods
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The displacements of the three joints, V I, U2, V 3, are expressed in terms of the two
angles <P and ß (see Fig. 1). For joint 2, only the displacement normal to the line connecting
joints 1 and 3 is considered. (Therefore, V2 is treated as a scalar.) VI, U2, and V3 are given
as follows:

VI = (Xl - Xd E2

U2 = X2

= (2l sin <Pcos ß - 2l sin <Po) E2

= l sinß, (2)

The total potential energy of the structure is obtained as

II = II(<p, ß, À) = U(<p, ß, À) + W(<p, ß, À),

where

is the strain energy and

(3)

(4)

(5)

is the potential of the extern al load. With the notation of Eq. (1) in Part Iof this work [5],
the equilibrium equations of the considered discrete mechanical system are given as

(6)

The displacements and the load-displacement functions of the primary and secondary so-
lution path satisfy (6). They are obtained as

ßI (<p) = 0,

À I (<p) = - 2lci (sin<p - sin <Po) + 2lc3 (cos <p - cos <Po) sin<p ,
cos <p

and

II( [
4C

3 ]ß <p) = I arccos (4 ) A. cas <Po ,
C3 - C2 cos 'f'

I I 8lC3 (C2 ) sin <p
À ( <p) = --- - - CI ----;;, cos <Po + 2lci sin <Po ,

4C3 - C2 4 cos 'f'

respectively.
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The angle associated with bifurcation of equilibrium or snap-through is obtained as

<Pin! = i:arccos (_4_C_3_ cos <Po)
4C3- C2 (

C3cos <Po)and <Pst = i:arccos 3 ,
C3- Cl

(9)

respectively. Based on (6), the initial postbuckling analysis can be performed analytically
and the linearized eigen problem (see Appendix D in Part I of this work [5]) can be solved
analytically.

2.1.1 Increase of spring stiffness Cl

This situation refers to Fig. 4(a) in the companion paper [5]. The design parameter K,

is the stiffness Cl of the spring attached to joint 1. Three different values of Cl, referring
to points 5, T, and I in Fig. 4(a) in Part I of this work [5], are considered. The geometric
properties, the spring stiffnesses, and the resulting values for À2, À4, and al are listed in
Table 1. Load-displacement paths and corresponding eigenvalue curves are shown in Fig. 2.

Table 1
Geometric properties (dimensionless), spring stiffnesses (dimensionless), and results (),2, ),4, ad
from initial postbuekling analysis

geometric properties spring stiffnesses

l = 10 K,= Cl

cPo = 0.9 [rad] C2= 6

C3= 10

point S T I

K, = Cl 0.0 1.5 5.6

),2 -21.99253 0 60.06497

),4 -4.48822 0 12.25802

al -0.02131 -0.009915 0

The main parts of interest are the stretch of the primary path before the stability limit
and the (projection of the) secondary path (into the UI-À plane). These parts are shown as
solid lines. The dashed parts of the curves refer to the stretch of the primary path between
the stability limit and the return of the secondary to the primary path. The stability limit
is denoted as C, and the snap-through point as D. Fig. 2(b) shows the corresponding
eigenvalue curves Ài(À) and À;(À), where Ài(À) refers to the bifurcation mode and À;(À)
to the snap-through mode.

The slope oft he eigenvalue curve Ài(À) at the bifurcation point C is zero (see Eq. (D.15)
in Part I of this work [5]), whereas the slope of À;(À) at the snap-through point D is -1
(HeInwein [3]). For Cl = 0, the structure is imperfection sensitive (À2 < 0). An increase
of the spring stiffness improves the postbuckling behavior and the structure eventually
becomes imperfection insensitive.

The condition Cl = C2/4 represents the so-called borderline case (transition point T in
Fig. 4(a) in Part I of this work [5]), i.e. À2 = 0, À4 = 0, À6 = 0, ... (see Eq. (95) in Part
I of this work [5]). For Cl ~ 5.6, al becomes zero (see Eq. (96) in Part I of this work
[5]), i.e. the eigenvalue curve has a saddle point at the bifurcation point (see Eq. (D.26)
in Part I of this work [5]). This situation refers to point I in Fig. 4(a) in Part I of this
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Fig. 2. (a) Load-displacement paths and (b) corresponding eigenvalue curves of a pin-jointed bar
for three different values of the spring stiffness CI

work [5]. Hence, for this example, the change of the sign of the curvature of the eigenvalue
curve is not associated with the transition of the structure from imperfection sensitivity
into insensitivity.

2.1.2 Reduction of initial rise of the structure
In the following, the influence of a reduction of the rise of the undeformed truss on the

initial postbuckling behavior will be investigated. This example refers to Fig. 4(f) in the
companion paper. The design parameter /'\,is the initial angle <Po ofthe structure. Geometric
properties, spring stiffnesses, and resulting values for '\2, '\4, and al for three different values
of <Po, referring to points S=T and F=N =T in Fig. 4(f) in Part I of this work [5], are listed
in Table 2.

Table 2
Geometric properties (dimensionless), spring stiffnesses (dimensionless), and results ('\2, '\4, al)
from initial postbuckling analysis

geometric properties spring stiffnesses

l = 10 Cl = 1.5

/'\,= CPo [rad] C2 = 6.0

C3 = 10.0

point S=T F=N=T

/'\,= CPo 0.90 0.70 0.55

'\2, '\4 0 0 0

al -0.009915 -0.057356 -00

51



The degeneration of the horizontal secondary path (borderline case) to a single point on
the primary path is of interest. The condition for this degeneration is obtained as

(10)

Load-displacement paths and corresponding eigenvalue curves for the considered values of
CPo are shown in Fig. 3. As the initial rise of the structure decreases, the buckling load is
decreasing.

The slope of the corresponding eigenvalue curve Àt(À) at the bifurcation point is equal
to -1 (see Eq. (D.48) in Part Iof this work [5]) and the curvature is infinite (see Eq. (D.49)
in Part I of this work [5]). The notation C=D in Fig. 3 could be misleading insofar as this
point, which represents the transition to no loss of stability, is neither a bifurcation point
nor a snap-through point. For CPo = 0.50, the load-displacement path is monotonous and
does not contain a bifurcation point.

</>0 = 0.90 </>0 = 0.70 </>0 :::::: 0.55 </>0 = 0.50

o o---<e-+---+-----+ff4--+__- 0 0
o 10 20 30 VI 0 10 20 30 VI 0 10 20 30 VI

(a) load-displacement paths
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Fig. 3. (a) Load-displacement paths and (b) corresponding eigenvalue curves of a pin-jointed bar
for four different values of the angle 4;0

2.2 Example 2: von Mises truss

The second example is a von Mises truss with an elastic spring attached to the load
point. This example refers to Fig. 4(b) in Part I of this work [5]. Fig. 4 contains the
geometric data, the values of the cross-sectional area A, the moment of inertia I, the
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modulus of elasticity E, the shear modulus C, and the value of the reference load ? u
indicates the vertical displacement at the load point and >. is a dimensionless load factor.

h 40 cm
l 400 cm

A 396 cm2

I 12982 cm4

ih E = 3102.75 kN/cm2
u )..p

G 1193.37 kN/cm2=
p 40.0 kN

Fig. 4. Geometric properties of a von Mises truss with an attached spring

o 10 20 30 40 50 )..

20
o
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20

-40

-20

Fig. 5(a) contains load-displacement paths for a von Mises truss without a spring.
The slope of the postbuckling path at the stability limit is negative (>'2 < 0). Hence, the
structure is imperfection sensitive.

Fig. 5(b) shows the corresponding eigenvalue curves >'i(>') and >';(>'), referring to the
bifurcation mode and the snap-through mode, respectively. The slope of the eigenvalue
curve >'i(>.) at the bifurcation point C is zero (see Eq. (0.15) in Part I of this work [5]),
whereas the slope of >';(>') at the snap-through point D is -1 (Heinwein [3]). The curvature
of the eigenvalue curve >'i(>.) at the bifurcation point is positive. Hence, the nonlinearity
coefficient al is negative (see Eq. (0.21) in Part I of this work [5]).

In the following, the eigenvalue curve >';(>') will only be shown for the case that the
bifurcation point C coincides with the snap-through point D (hilltop buckling) or if snap-
through is the relevant mode of loss of stability. Fig. 5(b) also contains the eigenvalue
curve >'j(>'). For>. > >'R, where >'R refers to point R, >.i(>.) and >'j(>.) are conjugate
complex functions (see also Figs. 0.1 and 0.2 in Part I of this work [5]).

601)..* .... '*...<'2
50 ..•.. ~ ..... ~
40 )..j ~D )..*=)..

30

(a) load-displacement paths (b) eigenvalue curves

Fig. 5. (a) Load-displacement paths and (b) corresponding eigenvalue curves of a von Mises truss
without a spring

2.2.1 Increase of spring stiffness c
The original von Mises truss is imperfection sensitive. In order to achieve a conversion

into an imperfection-insensitive structure, a spring is attached to the hinge. Fig. 6(a) con-
tains load-displacement paths of the von Mises truss for three different values of the spring
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Fig. 6. (a) Load-displacement paths and (b) corresponding eigenvalue curves of a von Mises truss
for three different values of the spring stiffness c

stiffness c. Fig. 6(b) shows the corresponding eigenvalue curves Àr(À). For c = 24 kN/cm,
the structure is still imperfection sensitive (À2 < 0). For c ~ 40.8 kN/cm, À2 = 0, À4 = 0,
À6 = 0, ... , representing the previously mentioned borderline case (see Eq. (97) in Part I
of this work [5]). Hence, the postbuckling path is horizontal. For a larger spring stiffness,
the structure is imperfection insensitive (À2 > 0). Thus, the increase of the spring stiffness
leads to an improvement of the postbuckling behavior.

Fig. 6(b) shows that the borderline case is associated with a saddle point of the eigen-
value curve ÀHÀ) at the stability limit. Hence, in contrast to the previous example, the
nonlinearity coefficient al vanishes nontrivially at the point of transition from imperfection
sensitivity to insensitivity (see Eq. (D.22) in Part I of this work [5]). For the imperfection-
sensitive truss (c < 40.8 kN/cm), the curvature of this curve is positive (al< 0), whereas
it is negative (al> 0) for the imperfection-insensitive truss (c > 40.8 kN/cm).

2.2.2 Reduction of initial rise of the van Mises truss
In the following, the influence of a reduction of the initial rise on the initial postbuckling

behavior will be investigated. This will be done for two different values of the spring stiffness
c. One value is associated with the borderline case, Le. with imperfection sensitivity, and
the other one with imperfection insensitivity .

• c ~ 40.8 kN/cm. The spring stiffness of a von Mises truss with a horizontal postbuckling
path (borderline case) is kept constant, whereas the initial rise of the truss is reduced.
This example refers to Fig. 4(g) in Part I of this work [5]. Figs. 7(a) and 7(b) show load-
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h = 40 cm h = 32 cm h ~ 25.2 cm h = 24 cm
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(a) load-displacement paths
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(b) eigenvalue curves

Fig. 7. (a) Load-displacement paths and (b) corresponding eigenvalue curves of a von Mises truss
with c ~ 40.8 kN/cm for four different values of the initial rise h of the truss

displacement paths and corresponding eigenvalue curves, respectively, for four different
values of the initial rise h of the truss.

As mentioned previously, the original von Mises truss is imperfection sensitive. At first,
the postbuckling behavior does not change when the initial rise of the truss is reduced. For
h ~ 25.2 em, however, the postbuckling path degenerates to a point on the primary path,
which is a saddle point (see Eq. (121) in Part I of this work [5]). Hence, a transition to no
loss of stability occurs, as was found to be the case for example 1. (Again, point C=D is
neither a bifurcatio,n point nor a snap-through point.) For h = 24 em, the load-displacement
path is monotonous and does not contain a bifurcation point.

Irrespective of the rise of the structure, the eigenvalue curve Ài (À) has a saddle point at
the stability limit (see Eqs. (D.74) in Part I of this work [5]). For À > ÀR, where R refers to
the respective points in Fig. 7(b), Ài(À) and Àj(À) are conjugate complex functions. For the
truss with h ~ 25.2 em, C=R, indicating a saddle point of higher order (see Eqs. (D.75)
in Part I of this work [5]). Hence, al is always zero (see Eq. (D.21) in Part I of this work
[5]). For h = 24 em, the eigenvalue curves Ài(À) and À;(À) do not intersect the line À*=À,

which is consistent with the absence of a stability limit .

• c = 60 kN/cm. This von Mises truss is imperfection insensitive. Figs. 8(a) and 8(b)
contain load-displacement paths and corresponding eigenvalue curves Ài(À), respectively,
for three different values of the initial rise h of the von Mises truss.

When h is reduced, the originally nonmonotonous primary path eventually becomes
monotonous. However, analogous to the situation illustrated in Figs. 3(a) and 7(a), the
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h = 40 cm h = 28 cm h ~ 24.4 cm
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Fig. 8. (a) Load-displacement paths and (b) corresponding eigenvalue curves of a von Mises truss
with c = 60 kN/cm, for three different values of the initial rise h of the truss

postbuckling response does not change in the sense that the slope of the postbuckling path
at the bifurcation point C remains the same if h is reduced. For h ~ 24.4 em, a transition
from bifurcation buckling to no loss of stability occurs. The postbuckling path degenerates
to a point on the monotonous primary path (see also Fig. 5(b) in Part I of this work [5]).
In contrast to the situation at point C=D in Figs. 3(a) and 7(a), where KT is just still
singular, at point C* in Fig. 8(a), KT has just become regular (see comment on Fig. 5(b)
in Part I of this work [5]).

The curvature of the eigenvalue curve Àr(À) at the stability limit is negative as long
as bifurcation buckling occurs. Hence, al is positive (see Eq. (D.21) in Part I of this work
[5]). For h ~ 24.4 em, al = O. The situation at C is analogous to the one at point C=R
in Fig. 7(b). (In contrast to Fig. 7(b), the eigenvalue curve Àj(À) has been omitted in
Fig. 8(b).)

2.3 Example 3: Shallow cylindrical shell

The third example is a shallow cylindrical shell with an elastic spring attached to the
load point. Fig. 9 contains the geometric data and the values of the rise of the shell, h, the
modulus of elasticity E, the shear modulus C, and the reference load F. u indicates the
vertical displacement of the load point A of the shell and À is a dimensionless load factor.

Fig. lO(a) contains load-displacement paths of the shell without the spring, for a thick-
ness of 6.35 em. This structure is imperfection sensitive. Fig. lO(b) shows the corresponding
eigenvalue curves Àr(À) and À;(À), where Àr(À) refers to the bifurcation mode and À;(À) to
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Fig. 9. Geometric properties of a shallow cylindrical shell with an attached spring
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Fig. 10. (a) Load-displacement paths and (b) eigenvalue curves of a shallow cylindrical shell
without a spring

the snap-through mode. The curvature of the eigenvalue curve >.r(>.) at the stability limit
C is negative. Hence, the nonlinearity coefficient al is positive (see Eq. (0.21) in Part Iof
this work [5]).

In the following, the eigenvalue curve >'2(>') will only be shown for the case of hilltop
buckling or if snap-through is the relevant mode of loss of stability.

2.3.1 Increase of thickness of shell
At first, the influence of an increase of the thickness of the shell, t, on the initial

postbuckling behavior is investigated. The starting value of t is 3.35 cm; the final value
is approximately 13.3 cm. This example refers to Fig. 4(c) in the companion paper [5].
Figs. l1(a) and 12(a) contain load-displacement paths for altogether five different values
of t. Figs. 11(b) and 11(c) contain details of load-displacement paths and corresponding
eigenvalue curves >.r{>.), respectively, in the vicinity of the stability limit for the first three
values of t. Fig. 12(b) shows the eigenvalue curves >.r(>.) and >.;(>.) for the remaining two
values of t.

Each one of the five investigated shells is imperfection sensitive. For the thinnest shell
(t = 3.35 cm), for which >'2 < 0, >'4 > 0, the slope of the postbuckling path at the stability
limit is negative, whereas the curvature is positive. The secondary path has a snap-through
point (point D'). For the shell with t ::::::6.35 cm, the slope of the postbuckling path at the
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t = 7.35 cm
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(C) details of eigenvalue curves

Fig. 11. (a) Load-displacement paths, (b) details of these paths and (c) of the corresponding
eigenvalue curves in the vicinity of the stability limit C of a shallow cylindrical shell for three
different values of the shell thickness

stability limit is zero (À2 = 0). For shells with t > 6.35 em, this slope is again negative
(À2 < 0). However, for these shells, for which À4 < 0, the curvature oft he postbuckling path
at the stability limit is negative. Thus, À2 = 0, À4 = 0, associated with À6 < 0, represents
a maximum of the slope of the postbuckling path at the stability limit. It is characterized
by a negative curvature.

For the shell with t ::::::8.1 em, hilltop buckling occurs (see Fig. l2(a)). If the thickness is
further increased, loss of stability occurs by snap-through. For t ::::::13.3 em, the postbuckling
path degenerates to a point on the primary path, which coincides with a point of inflection.
In contrast to the situation at point C=D in Figs. 3(a) and 7(a), where KT is just still
singular, at point C* in Fig. l2(a), KT has just become regular (see comment on Fig. 5(c)
in Part I of this work [5]).
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Fig. 12. (a) Load-displacement paths and (b) corresponding eigenvalue curves of a shallow cylin~
drical shell for two different values of the shell thickness

The curvature of the eigenvalue curves Àr(À) has an extreme value at the bifurcation
. Ch' d b \ * ( \) \ \ * 0 d \ * 0 (D.34) in [51 * 0 (pOlnt , c aractenze y Al A = A, Al,À = , an Al ,ÀÀÀ = ----t al = see

Eq. (D.27) in Part I of this work [5]). For t ::::::6.35 em, the eigenvalue curve Ài(À) has a
planar point at C. Hence, in addition to ar = 0, al = 0 (see Eqs. (D.28) and (D.34) in Part
I of this work [5]). For the thinnest shell, the curvature is negative (al> 0), whereas it is
positive (al< 0) for the shell with t = 7.35 em. A further increase of the thickness leads
to a change of the mode of loss of stability from bifurcation buckling via hilltop buckling
to snap-through. For hilltop buckling, the slope of the eigenvalue curve Ài(À) at H(C=D)
is equal to -1 and the curvature becomes infinite (al = -00) (see Eq. (102) in Part I of
this work [5]). The eigenvalue curve Àr(À) associated with the thickest shell has a saddle
point at C (al = 0).

Figs. 11 and 12 show that stiffening of the structure by means of a uniform increase of
the thickness results in an increase of the stability limit but not in the desired conversion
from imperfection sensitivity into imperfection insensitivity.

2.3.2 Increase of spring stiffness c
A spring is attached to the load point (point A in Fig. 9). The stiffness of the spring,

c, represents the design parameter. The investigation is performed for two different values
of the shell thickness t.
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Fig. 13. (a) Load-displacement paths, (b) details of these paths and (c) of the corresponding
eigenvalue curves in the vicinity of the stability limit C of a shallow cylindrical shell with t ~ 6.35
cm, for three different values of the spring stiffness

• t ;::::;:6.35 em. This example refers to Fig. 4(e) in the companion paper [5]. Figs. 13(a)
and 13(b) contain load-displacement paths and details of these paths in the vicinity of the
stability limit, respectively, for three different values of the spring stiffness c. Fig. 13(c)
shows details of the corresponding eigenvalue curves >'i(>.) at the stability limit C. For the
shell without the spring (c = 0), the slope of the postbuckling path at the stability limit
vanishes (>'2 = 0). Moreover, >'4 = 0 (see comments on Fig. l1(a)). Since >'6 is negative,
the structure is imperfection sensitive. Increasing the stiffness of the spring, leads to an
increase of the slope of the postbuckling path at the stability limit. Hence, >'2 becomes
positive. However, >'4 remains zero (see Eq. (105) in Part I of this work [5]), whereas >'6

remains negative. This explains why the postbuckling path has a snap-through point, D'.
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c=O c ~ 15 kN/cm c = 50 kN/cm
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Fig. 14. (a) Load-displacement paths, (b) details of these paths and (c) of the corresponding
eigenvalue curves in the vicinity of the stability limit C of a shallow cylindrical shell with t = 7.35
em, for three different values of the spring stiffness c

This point disappears after a further increase of the spring stiffness .

• t = 7.35 em. This example refers to Fig. 4(d) in the companion paper [5]. Figs. 14(a)
and 14(b) contain the load-displacement paths and details of these paths in the vicinity of
the stability limit, respectively, for three different values of the spring stiffness c. Fig. 14(c)
shows details of the corresponding eigenvalue curves Ài(À) at the stability limit C. The
slope of the postbuckling path at the stability limit is negative (À2 < 0). Hence, the
unstiffened shell (c = 0) is imperfection sensitive. For c ~ 15 kN/cm, the slope of the
initial postbuckling path becomes zero (À2 = 0). Since À4 < 0, the shell is still imperfection
sensitive. If c is further increased, the structure becomes imperfection insensitive (À2 > 0).
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Hence, for a spring stiffness of c ::::::15 kN / cm a conversion from an imperfection-sensitive
into an imperfection-insensitive structure occurs. Since À4 stays negative, the curvature
of the postbuckling path at C remains negative. This is the reason for the existence of
a snap-through point on the secondary path (point D'). A further increase of the spring
stiffness eventually leads to a monotonous secondary path, similar to the previous example
(see Fig. 13).

The curvature of the eigenvalue curve Àr(À) has an extreme value at C, characterized

by Àr = À, Àr,~ = 0, and Àr ,~~~= 0 (D.3~n [5] ar = 0 (see Eq. (D.27) in Part Iof this work
[5]). It is positive for the unstiffened shell, zero for c::::::15 kN/cm, and negative for larger
values of c. Hence, for the point of transition, in addition to ar = 0, al = 0 (see Eqs. (D.28)
and (D.34) in Part I of this work [5]), indicating that the eigenvalue curve Àr(À) has a
planar point at the stability limit.

2.3.3 Reduction of the initial rise of the shell
In the following, the influence of a change of the initial rise of the shell on the initial

postbuckling behavior will be investigated. This will be done for two different pairs of values
of the shell thickness t and the spring stiffness c.

• t ::::::6.35 em) c = O. This pair of values refers to point T in Fig. 4(c) in Part Iof this work
[5]. Because of À2 = 0, À4 = 0, and À6 < 0, the respective structure is imperfection sensitive.
The thickness of the shell and the stiffness of the spring are kept constant, whereas the
initial rise of the structure is reduced. This example refers to Fig. 4(g) in Part I of this
work [5]. Figs. 15(a) and 15(b) contain load-displacement paths and details of these paths
in the vicinity of the stability limit C, respectively, for three different values of the initial
rise h of the shell. Fig. 15(c) shows details of the corresponding eigenvalue curves Àr(À) in
the vicinity of C. At first, the postbuckling behavior at C does not change when the initial
rise of the shell is reduced. For h ::::::4.0 cm, however, the postbuckling path degenerates to
a point on the primary path, which is a saddle point (see Eq. (121) in Part I of this work
[5]). Hence, a transition to no loss of stability occurs.

For the shell with h = 8 cm and 6 cm, respectively, the eigenvalue curve Àr(À) has a
planar point at the stability limit (see Eqs. (D.76) in Part I of this work [5]). For the shell
with h ::::::4.0 em, the eigenvalue curve Àr(À) has a saddle point of higher order at C (see
Eqs. (D.77) in Part I of this work [5] and comments on Fig. 7(b)). Hence, al and ar are
always zero (see Eqs. (D.21) and (D.28) together with (D.34) in Part I of this work [5]).

• t = 7.35 em) c ::::::15 kN/cm. The shell with a thickness oft = 7.35 cm and a spring stiffness
of c::::::15 kN/cm refers to point T in Fig. 4(d) in Part Iof this work [5]. The thickness of
the shell and the stiffness of the spring are kept constant, whereas the initial rise of the shell
is reduced. This example refers to Fig. 4(h) in Part I of this work [5]. Figs. 16(a) andI6(b)
contain load-displacement paths and details of these paths in the vicinity of the stability
limit C, respectiyely, for three different values of the initial rise h of the shell. Fig. 16(c)
shows details of the corresponding eigenvalue curves Àr(À) in the vicinity of C. Because of
À2 = 0 and À4 < 0, the respective structure is originally imperfection sensitive. When the
initial rise of the shell is reduced, the slope of the postbuckling path at C remains horizontal,
whereas the curvature increases. For h ::::::6.0 cm, the postbuckling path degenerates to a
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Fig. 15. (a) Load-displacement paths, (b) details of these paths and (c) of the corresponding
eigenvalue curves in the vicinity of the stability limit C of a shallow cylindrical shell with t = 6.35
cm, for three different values of the initial rise h of the shell

point on the primary path, which is a saddle point (see Eqs. (121) in Part I of this work
[5]). Hence, a transition to no loss of stability occurs.

For the shell with h = 9 em and 7 em, respectively, the eigenvalue curve Ài(À) has a
planar point at the stability limit (see Eqs. (0.76) in Part I of this work [5]). For the shell
with h ::::::6.0 em, the eigenvalue curve Ài(À) has a saddle point of higher order at C (see
Eqs. (0.77) in Part I of this work [5] and comments on Fig. 7(b)). Hence, al and ai are
always zero (see Eqs. (0.21) and (D.28) together with (D.34) in Part I of this work [5]).
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Fig. 16. (a) Load-displacement paths, (b) details of these paths and (c) of the corresponding
eigenvalue curves in the vicinity of the stability limit C of a shallow cylindrical shell with t = 7.35
em and c ~ 15 kN/cm, for three different values of the initial rise h of the shell

2.4 Example 4: Pin-jointed bar with linear prebuckling paths

For structures with linear prebuckling paths,

KT,À>.>' = 0 :::} a~ = 0, (11)

(see Eqs. (129) of Part I of this work [5]). The eigenvalue curves degenerate to horizontal
straight lines. In contrast to the situation for nonlinear prebuckling paths, no information
can be extracted from ,\*(,\) = const.

Consider the plane pin-jointed bar in Fig. 17, composed of two rigid members of length
l, one rigid member of length k.l, one linear-elastic spring with the stiffness Cl and one with
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Fig. 17. Geometric properties of a pin-jointed bar with three rigid rods

the stiffness C2, and one linear-elastic rotational spring with the stiffness ccp. The structure
is loaded by two vertical nodal forces XP at joints 1 and 4; P = -E2 is the reference force
and À is a dimensionless load factor. The angles 'PI and 'P2 of the deformed system are
expressed in terms of the horizontal displacements of joints 2 and 3, u:

'PI = arcsin (¥) and 'P2 = arcsin (:l) . (12)

The displacements of the three joints 1, 2, and 4 can also be expressed in terms of u:

VI = (l-lcos'Pd (-E2) = l{l-cos[arcsin(¥)]} (-E2) = Ud-E2),

V2 = UEI = U2EI, (13)

V4 = (l - l cas 'P2) (-E2) = l { 1 - cas [arcsin (:J]} (-E2) = U4 (-E2),

where use of (12) was made. The total potential energy of the structure is obtained as

II= II(u, À) = U(u, À) + W(u, À), (14)

where

(15)

is the strain energy and

(16)
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is the potential of the externailoads. With the notation of Eq. (1) in Part I of this work
[5], the equilibrium equation of the considered discrete mechanical system is given as

aIT
G(u,À) = au = O. (17)

From (17), the function À(u) describing the load-displacement behavior is obtained as

Setting u = 0 in (18), yields the stability limit as

1 ( 2) kÀc = Àbij = l Ccp+ C2 [ 1+ k .

The function À(u) can be expanded as a series (see Eq. (6) in Part I of this work [5]):

where the first three nonvanishing load coefficients are obtained as

(18)

(19)

(20)

À2=6k(1~k) [3 [(-3+3k+k2)ccp-3[2(1-k+k2)C2+3e[2cIJ, (21)

1 [( 2 3 4)À4=120k3(1+k)[5 -15-15k+5k +25k +9k Ccp

- 15[2 (1 + k - 3 e + k3 + k4
) C2

+15k2[2(-2+2k+e)CIJ, (22)

À6 = 1680 k5 /1 + k) [7 [( -105 - 105 k - 35 k2 - 35 k3 + 77 k4 + 203 k5 + 75 k6) Ccp

- 105[2 (1 + k - k2 - k3 - k4 + k5 + k6) C2

+105k2[2(1+k-2k3-k4)CIJ. (23)

The load parameters À2, À4, and À6 depend on the stiffnesses of the two extensional springs,
C2 and Cl, the stiffness of the rotational spring, ccp, and on the ratio of the length of the
right and the left column, k.

In the following, these parameters will be varied. For all examples, [ = 2 m. Fig. 18
contains À2-À4 curves, where T=T(À2 = 0, À4) and Q=Q(À2, À4 = 0). S denotes an arbitrary
starting point and F an arbitrary final point (see Fig. 4 in Part I of this work [5]).
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(a) (b) (c) (d)

Fig. 18. Plots of curves >'2 = >'2(1\;), >'4 = >'4(1\;), with one point T(>'2 = 0, >'4) and one point Q(>'2,
>'4 = 0) each

• Ccp = 5 kNmjrad, Cl = C2 = O.The factor k is chosen as the design parameter, Le. I\; = k.
Table 3 contains the values of >'2 and >'4 for five different values of k. The respective >'2->'4

diagram is shown in Fig. 18(a).

Table 3
Results (>'2, >'4) for Ccp = 5 kNmjrad and Cl = C2 = 0, for five different values of I\; = k

point T Q

I\;=k 0.700 0.791 0.850 0.904 1.000

>'2 -0.144 0.000 0.072 0.128 0.208

>'4 -0.440 -0.184 -0.075 0.000 0.094

With increasing value of k, the length of the right column of the pin-jointed bar in Fig. 17 is
increasing. The conversion from an imperfection-sensitive into an imperfection-insensitive
structure (point T) occurs before the transition from >'4 < 0 to >'4 > 0 (point Q) .

• Ccp = 10 kNmjrad, Cl = 0, C2 = 1 kNjm. Again, the factor k is chosen as the design
parameter, i.e. I\; = k. Table 4 contains the values of >'2 and >'4 for five different values of
k. The respective >'2-..\4 diagram is shown in Fig. 18(b).

Table 4
Results (>'2, >'4) for Ccp = 10 kNmjrad, Cl = 0, and C2 = 1 kNjm, for five different values of I\; = k

point Q T

I\;=k 0.900 0.967 1.000 1.053 1.100

>'2 -0.284 -0.143 -0.083 0.000 0.064

>'4 -0.164 0.000 0.063 0.143 0.199

For this example, the transition from >'4 < 0 to >'4 > 0 (point Q) occurs before the
conversion from an imperfection-sensitive into an imperfection-insensitive structure (point
T).

In the following, the parameters will be modified such that the conversion from imper-
fection sensitivity into imperfection insensitivity occurs simultaneously with the transition
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from À4 < 0 to À4 > 0, and, hence, results in T=Q. If À2 = 0 and À4 = 0, the sign of À6
indicates whether the structure is imperfection sensitive or not. Therefore, also the value
of À6 will be listed .

• Ccp = 10 kNmlrad, Cl = 0.366636 kNlm, C2 = 1 kNlm. Again, the factor k is chosen as
the design parameter, i.e. K, = k. The values of Ccp and C2 are the same as in the preceding
example. The value of Cl is chosen such that À2 = À4 = o. Table 5 contains the values of À2
and À4 for three different values of k. The respective À2-À4 diagram is shown in Fig. 18(c).

Table 5
Results (..\2, "\4) for Ccp = 10 kNmlrad, Cl = 0.366636 kN 1m, and C2 = 1 kN 1m, for three different
values of K. = k

point T=Q

K.=k 0.930 0.948589 0.960

..\2 -0.040 0.000 0.024

..\4 -0.046 0.000 0.026

..\6 -0.097 -0.044 -0.015

At point T=Q, À6 < O. Hence, the structure is still imperfection sensitive .

• Ccp = 0, C2 = 1 kN 1m, k = 1. Instead of k, the stiffness of the vertical spring, Cl, is
now chosen as the design parameter, i.e. K, = Cl. The resulting À2-À4 diagram is shown in
Fig. 18(d). In this case, the parameters À2, À4, À6, ... are obtained as

(24)

Specializing the system for Cl = C2 = 1 kN1m, yields a horizontal postbuckling path:

(25)

Following from (25.1) and (25.2), T=Q. Tarnai [9] has studied a structure with such a
postbuckling behavior in the framework of an investigation of "zero stiffness structures".

3 Conclusions

Three structures with nonlinear and one with linear prebuckling paths were chosen to
verify the theoretical findings presented in Part I of this work [5].

Nonlinear prebuckling paths. Depending on the kind of modification of the original struc-
ture, for symmetric bifurcation a conversion of the original structure from imperfection
sensitivity into insensitivity is possible.

• Increasing the stiffness of the structure by means of a uniform increase of its thickness
does not result in the desired conversion from imperfection sensitivity into imperfection
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insensitivity. Expectedly, such an increase yields an increase of the stability limit. The
limiting case .À2 = 0, .À4 = 0, .À6 < 0 is associated with a change of the sign of .À4 but not
with one of .À2. Hence, .À2"t = 0 and .À2,M =J. 0 (see Table 1 in Part I of this work [5]).

• Increasing the stiffness of an elastic spring, suitably attached to the structure, enables its
conversion from an imperfection-sensitive into an imperfection-insensitive structure. Two
different modes of transition from imperfection sensitivity to imperfection insensitivity
were found to exist: (a) .À2 = 0, .À4 < 0, and (b) .À2 = 0, .À4 = 0, .À6 = 0, ....

Re (a): If the spring stiffness is further increased, .À2 > 0, .À4 < O. This situation is
characterized by a snap-through point on the postbuckling path.

Re (b): This mode is characterized by horizontal post buckling paths .

• Reducing the initial rise of an imperfection-sensitive structure eventually results in the
transition from bifurcation buckling to no loss of stability. This transition is characterized
by the degeneration of the secondary paths to one point each, which coincides with a
saddle point on the respective primary path. The reduction of the initial rise of the
structure is associated with a decrease of the stability limit. Hence, from a practical
viewpoint, the aforementioned transition from bifurcation buckling to no loss of stability
is counterproductive.

Linear prebuckling paths. Irrespective of whether the prebuckling paths are nonlinear or
linear, the condition for .À2 = 0, for the case of symmetric bifurcation, is dl = 0 (see Part I
of this work [5]). For nonlinear prebuckling paths, additional conditions were shown to exist
(see Part I of this work [5]). They involve the matrices KT,.\À and KT,AAA, which vanish
trivially for the special case of linear prebuckling paths. Hence, for this special case the
aforementioned additional conditions do not exist. Consequently, the restrictions on the
modes of conversion from imperfection-sensitive into imperfection-insensitive structures
(see the projections of the curves .À2 = .À2(K:), .À4 = .À4(K:), al = al(K:) onto the .À2-.À4
plane in Fig. 4 in Part I of this work [5]) do not exist. This could explain why Figs. 18(a)
and 18(b) seem to have no counterpart in the general case of symmetric bifurcation from
nonlinear prebuckling paths.
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