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Kurzfassung

Tone Mapping (Farbtransformation) ist der letzte Schritt eines jeden photo-
realistischen Bilderzeugungsverfahrens. Aufgrund der Nichtlinearit�aten und
der vorhandenen Einschr�ankungen des Farbraums und des dynamischen Ver-
haltens des zur Darstellung verwendeten Ger�ats ist es n�otig, eine Farbtrans-
formation auf die berechneten Farbwerte anzuwenden.

Wir beschreiben den Stand der Forschung im Bereich Transformations-
methoden und einige neue Methoden. Der Hauptbeitrag dieser Arbeit liegt
in der interaktiven Abgleichung von Kontrast und Blende sowie in Methoden
mit minimalem Informationsverlust und Messung des einfallenden Lichts.

Die interaktive Abgleichung erm�oglicht die Darstellung der Szene
mit einer gew�unschten Beleuchtungs-Stimmung, selbst wenn die Beleuch-
tungswerte in �ktiven Einheiten berechnet wurden.

Die Methoden mit minimalem Informationsverlust basieren in gewisser
Weise auf dem Ansatz des Photographen. Die Farbtransformation wird nur
auf ein bestimmtes Farbintervall angewandt, welches automatisch gew�ahlt
wird. Der urspr�ungliche Kontrast aller Pixel in diesem Intervall bleibt er-
halten. Dar�uberhinaus ist die auf Fehlerbeschrnkungen basierende Methode
eine Erweiterung von Schlicks Verfahren.

Die Methode zur Messung des einfallenden Lichts basiert ebenfalls auf
einer in der Photographie �ublichen Vorgangsweise. Diese Methode erm�oglicht
die genaue Reproduktion von Farben. Selbst wenn die durchschnittliche
Reexion einer Szene sehr klein oder gro� ist, wird diese Methode die ur-
spr�unglichen Farben reproduzieren k�onnen, eine Eigenschaft, die konkurri-
erenden Methoden fehlt. Die Grundidee ist, die einfallende Beleuchtung
durch simulierte Lichtmessung in der Szene zu messen und die daraus resul-
tierende Skalierung auf die berechneten Farbwerte anzuwenden.

Neben diesen eigenen Beitr�agen werden andere relevante Ans�atze be-
sprochen. Wir beschreiben die Transformation von Tumblin und Rushmeier,
die Kontrast-basierte Methode von Ward, das weitverbreitete Verfahren mit
Durchschnittsbildung, den exponentiellen Ansatz von Ferschin et al., Schlicks
Abbildung, ein auf Sichtbarkeit beruhendes Verfahren zur Farbtransforma-
tion von Larson et al. und einen visuelle Adaption ber�ucksichtigenden Ansatz
von Ferwerda et al.

Leider gibt es keine letztg�ultige L�osung zur Farbtransformation. Jede
Methode hat St�arken und Schw�achen, und der Benutzer sollte die geignete
Methode w�ahlen k�onnen.

Die Arbeit endet mit der Pr�asentation eines Algorithmus zur Berechnung
der Farbbilddi�erenz. Eine gute Metrik zur Bewertung des Farbabstandes
zweier Bilder wird in der Computergraphik oft ben�otigt, ist aber nicht leicht



zu konstruieren. Die in dieser Arbeit beschriebene Metrik beruht auf der
menschlichen Wahrnehmung und arbeitet im Bildbereich. Eine Fourier- oder
Wavelet-Transformation ist daher nicht n�otig, was das Verfahren schnell und
intuitiv macht. Diese Methode ist die einzige, die explizit den Abstand des
Beobachters zum Bild in Betracht zieht.



Abstract

Tone mapping is the �nal step of every rendering process. Due to display
devices' nonlinearities, reduced color gamuts and moderate dynamic ranges
it is necessary to apply some mapping technique on the computed radiances.

We described mapping methods that are considered to be state of the art
today, and some newly developed techniques. The main contributions of this
thesis in tone mapping techniques are interactive calibration of contrast and
aperture, minimum information loss methods and incident light metering.

The interactive calibration technique makes it possible to display a desired
scene lighting atmosphere if the radiance values are rendered in �ctitious
units.

Minimum information loss techniques are based, in a way, on the pho-
tographers' approach. The mapping function is applied only on a certain
radiance interval, which is chosen automatically. The original contrast of
all pixels inside the interval is preserved. Furthermore, the bounded error
version of the minimum loss method is an extension of Schlick's method.

The incident light metering method was inspired by the photographers'
approach, too. This method makes it possible to reproduce original colors
faithfully. Even if the average reectance of a scene is very low, or very high,
this method will reproduce original colors, which is not the case with other
methods. The idea is to measure the incident light using di�usors in the
scene, and then to compute a scale factor based on the incident light and
apply this scale factor on the computed radiances.

Beside these, other tone mapping techniques are described in this work.
We described Tumblin and Rushmeier's mapping, Ward's contrast based
scale factor, the widely used mean value mapping, an exponential mapping
introduced by Ferschin et al., Schlick's mapping, a visibility matching tone
operator introduced by Larson et al., and a model of visual adaptation pro-
posed by Ferwerda et al.

Unfortunately there is no ultimative solution to the tone mapping prob-
lem. Every method has its strengths and weaknesses, and the user should
choose a method according to his or her needs.

Finally, this thesis ends with a color image di�erence algorithm. A good
image metric is often needed in computer graphics. The method described
here is a perception based metric that operates in the original image space
(there is no need for Fourier or wavelet transform), what makes the whole
method fast and intuitive. This is the only method that stresses distance
dependency explicitly.
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Chapter 1

Introduction

Computer graphics is one of the newest visual media. It has become es-
tablished as an important tool in design, entertainment, advertisements, �ne
arts, and many other applications, where images are needed. One of the many
�elds of computer graphics is image synthesis, often called rendering. Photo-
realistic rendering turns the rules of geometry and physics into pictures that
could hardly be distinguished from photographs. Local illumination methods
can render images ignoring the impact of objects on the illumination of other
objects in the scenes. Therefore, if local illumination methods are used, shad-
ows, penumbras, specular reections and refractions, di�use interreections,
etc., cannot be taken into account. On the other hand, global illumination
models, ray tracing and radiosity (the two most popular), try to model light
in an environment. Of course, such methods take much more time (local
illumination methods are implemented in modern graphics hardware), but,
as stated before, the results can not be distinguished from photographs.

Every rendering process consists of two steps. The �rst is the computing
of luminance values, and the second is the mapping of the computed values
to the values appropriate for displaying on common display devices. There is
a lot of research dealing with the �rst step, but the second step is surprisingly
often neglected, although it is far from trivial. Actually there are just a few
authors dealing with this problem, in contrast to hundreds of researchers who
are improving the �rst rendering step. Our work is primarily concerned with
the �nal step of the rendering process. It is assumed that image is rendered,
and oating point values of pixels' color components are known. We will not
deal with methods that are used to compute these values. The oating point
image will be called the "raw image".

In the ideal case the raw image should be mapped to the display device so
that the displayed image creates the same sensation in the viewer as would
have been experienced by seeing the real environment. Unfortunately, there

1



CHAPTER 1. INTRODUCTION 2

are many obstacles to realizing this ideal. These include the display devices'
nonlinearities, limited color gamut, limited display device contrast, changing
lighting conditions in the viewing environment, human vision rules, the basic
limitations of representing 3D reality as a 2D projection, etc. Some of these
obstacles will be explained later.

Various mapping methods are described in this work. Some methods take
into account the above mentioned problems, or at least some of them, while
other, more simple methods, do not. Some familiarity with color science,
radiometry and photometry is necessary to understand this work, therefore
chapter 2 deals with color science basics, radiometry and photometry and
some aspects of human vision are described in chapter 2 as well.

Chapter 3 describes various display devices. Actually CRT as the most
used display device in computer graphics, slides, and some printers are de-
scribed. Data measured by the authors are also given in this chapter.

In chapter 4 linear scale factor methods are introduced. Probably the
most widely used mapping is the use of a single scale factor which maps
the average luminance to 0.5 input value, assuming that the display device's
input range is [0,1], and that the device has linear response. Unfortunately,
such scale factor can not reproduce the original atmosphere of the scene.
Actually it will display the scene lit by a very weak light source, and the
same scene lit by a very strong light source as being the same image, because
of linearity of the integral operator in the rendering equation [ArKi90].

An interactive mapping technique introduced by Matkovi�c and Neumann
in [MaNe96] makes it possible to display images with the proper atmosphere if
this is known. The method uses two parameters called contrast and aperture,
and maps the raw image according to subjective user settings. The interactive
calibration mapping method is one of the contributions of this thesis. At the
end of the fourth chapter a contrast based scale factor proposed by Greg
Ward [Ward94] s described. Ward's mapping makes di�erences just visible
in the real world become just visible in the displayed image. If the visibility
analysis is crucial (e.g. the design of emergency lighting) this could be the
right mapping method. Improvements of this method are introduced by
Ferwerda et al. [FPSG96] and Ward et al. [LaRP97] and they are described
in the next chapter.

In chapter 5 non-linear scale factors are introduced. A mapping technique
proposed by Schlick [Schl94] is described �rst. Schlick's method is actually
a computational improvement of the logarithmic mapping based on Weber's
law. This is an automatic method that yields good results if the overall raw
image contrast is not too high. Further, a non-linear mapping technique
as suggested by Ferschin et. al. in [FeTP94] is described. Ferschin et al.
introduced a method which suppresses the inuence of a few very bright
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pixels inuencing the average too much. If luminances in the raw image are
computed in absolute units, the appropriate atmosphere based on preserving
the original brightness, could be reproduced using Tumblin and Rushmeier's
mapping technique. This method is introduced in [TuRu93] and [TuRu91],
and this is still one of the most comprehensive solutions of the raw image
mapping problem. Unfortunately it is solved only for gray scale pictures.
The method is described in section 5.3, and section 5.4 describes a model of
visual adaptation introduced by Ferwerda et al. [FPSG96]. The model of
visual adaptation is based on the Ward's model. Here the rules of human
adaptation are taken into account. Even temporal e�ects well known from
real life (e.g. the inability to see when entering a cinema until the eyes have
adapted) can be simulated in computer graphics using this mapping method.
Chapter 5 �nishes with an overview of the visibility matching tone operator
[LaRP97]. This is a further improvement of Ward's original operator.

Chapters 6 and 7 describe the main contribution of this thesis. Methods
described in this chapters were introduced together with L�aszl�o Neumann
[NeMP96], [NMNP97]. The whole family of methods called minimum in-
formation loss mapping is described in chapter 6. The main idea is to �nd
the clipping interval so that minimum amount of information is lost, thereby
preserving the original contrast of all correctly displayed pixels. Two vari-
ants are described, in the �rst the color component is assumed to be essential
information, and in the second the pixel is treated as essential information.
The second variant is called the minimum area loss. The method works espe-
cially well in back light scenes, which are often displayed as too dark if average
value mapping is used. The methods are not conditioned by knowledge of
absolute units. Another possibility is to limit allowed information loss, and
�nd the smallest contrast interval which still satis�es limited error condition.
Of course, in this case the original contrast is not always preserved.

Chapter 7 describes incident light metering in computer graphics. Inci-
dent light metering is a well known method in professional photography and
the movie industry. In fact, it was used at the beginning of the photogra-
phy era by portrait photographers. Although it is not practical for amateur
photographers (light should be measured at the subject position, not at the
camera), it can be implemented in computer graphics. It overcomes the
problem of average mapping, where a very bright scene (e.g. a snow covered
mountain) and a very dark one (e.g. a heap of coal) are displayed as medium
gray (or close to it), which makes the bright scene too dark and the dark scene
too bright. When incident light metering is used, raw images are mapped
correctly, and the absolute units should not be known. We recommend using
this method when absolute units are not known (which is most often the case
due to di�culties in getting appropriate data for light sources and materials)
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and the scene settings are not usual (e.g. very bright, or very dark scenes,
scenes with back light etc.). Note that bright or dark scene here does not
mean well or poorly lit scene, but rather the scene with low or high object's
reectances. Actually, this is the only method that will reproduce selected
colors even for the scenes with very low or very high average reectance. The
tone mapping part of this thesis ends with chapter 7.

The next chapter, perception based color image di�erence, presents a
new algorithm, developed together with L�aszl�o Neumann, for computing the
di�erence between two images. A good image metric is often needed in com-
puter graphics. All progrssive rendering methods should check convergance
somehow, lossy compression algorithms should be evaluated, sometimes the
resulting images of various rendering or tone mapping techiques are com-
pared, etc. The most often used metric in computer graphics is the mean
squared error. Unfortunatelly it does not corespond to human perception,
and sometimes images that look similar can have larger di�erence than ob-
viously di�erent images, when the mean square metric is used.

Two recent papers by Rushmeier et al. [RWPSR95] and Gaddipati et
al. [GaMY97], deal with perception based image metrics. They compute
the image distance either in Fourier or in the wavelet space, which makes
them computationally expensive and not intuitive. The color is not handled
completely correctly in these two approaches.

We introduce a new method that operates in the original space and han-
dles the color more accurately.

This thesis ends with results and conclusion chapters.



Chapter 2

Color Science Basics

Since a familiarity with radiometry, photometry, color science and human
vision is necessary to understand this work, this chapter will describe some
color science and human vision basics. It would be impossible to cover the
whole area of color science or human vision in a single chapter. Many books
have been written on the above subjects [WySt82], [Boyn92], [Hunt92], and
they are still not completely understood. Therefore, all we want here is to
give a brief overview that will help to follow this work successfully.

The way we see objects around us depends on three factors. The �rst
one is light. It is clear that we can not see if there is no light. Most of
us have experienced, also, di�erent perception under di�erent lighting con-
ditions (remember ladies checking the clothes colors in front of the shop in
the daylight). The second one is the object characteristics itself. Some ob-
jects are red, some are blue, etc. The third subject involved in color vision
is the human observer. It is impossible to describe the color sensation in
our mind. Actually, it is impossible to describe any sensation. All we can
say is that some color looks like some other, but this is actually not a de-
scription of color. Nevertheless, there is the way of measuring colors, and
light, and these methods will be described next. We will start with light
measuring (radiometry and photometry), then proceed with colorimetry and
�nally describe some human vision characteristics that are interesting for
tone mapping techniques.

2.1 Photometry and Radiometry

From our experience with black and white photography, we know that we
can see and recognize an object without knowing its hue. On the other hand
we know that color photos conwey much more additional information. In

5



CHAPTER 2. COLOR SCIENCE BASICS 6

order to understand color perception we have to be concerned with spatial
as well as with chromatic vision. Since there will be no vision without light
let's describe light itself, �rst.

2.1.1 Light

Humans have wondered throughout history how we are able, through the
sense of vision, to discern the nature and color of objects far removed from
our bodies - objects with which we are obviously not in contact. The ancient
Greek philosophers correctly reasoned that something must pass between our
eyes and the objects we see. Plato developed an emanation theory of vision,
which says that an inner �re gives rise to visual rays shooting outward from
the eye. Other philosophers either accepted the emanation theory or used
some other approach to explain human vision.

During the middle ages, Arab natural philosopher Alhazen rejected the
emanation theory of vision. He was convinced that an optical image similar
to the one produced by a pin-hole camera is produced in the eye.

During the Italian Renaissance, the great scientist-painter Leonardo da
Vinci developed perspective drawing, and speculated about human vision.
He was convinced that there is some kind of image inside the eye. As the
laws of light refraction and the nature of light were unknown then, da Vinci
could not develop his theory successfully.

The seventeenth century marks the start of the modern era for the study
of light and vision. Spectacle lenses had been discovered by 1285, and positive
lenses have been used to improve the performance of the pin-hole camera.
Kepler understood how the lenses worked in the telescope he was using. He
correctly believed that there is also some kind of retinal image in our eye,
but the vision in its totalty was still not clear to him.

Throughout the period of history described so far, nothing was known
about the physical nature of light. Isaac Newton was the �rst who realized
that white light is composed of the whole spectrum.

Nowadays, it is well known that light is electromagnetic radiation. The
electromagnetic spectrum extends from very low frequency radio waves,
through microwaves, infrared, visible and ultraviolet light to x-rays and
gamma rays. Our eyes respond to the visible light. If we want to detect
the rest of the electromagnetic spectrum, special instruments ranging from
radio receivers to scintillation counters are required. An exact description
of electromagnetic radiation requires a thorough knowledge of quantum elec-
trodynamics and Maxwell's electromagnetic �eld equations which is beyond
the scope of this work. The visible spectrum is considered to have the wave-
lengths between 380 and 770 nm. It means if electromagnetic radiation of
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such wavelength hits our eye, we will see it. The perceived color depends on
the wavelength of the radiation. We will deal with measuring light indepen-
dently from the wavelength �rst.

2.1.2 Radiometry

Radiometry is the science of measuring light in any portion of the spectrum.
Therefore, the color is not important to the radiometry.

Light is radiant energy. Electromagnetic radiation transports energy
through space. A broadband source, like the Sun, emits the energy through-
out most of the spectrum, while, on the other hand, single-wavelength laser
emits radiation only at one speci�c wavelength.

We can de�ne spectral radiant energy, which is the amount of radiant
energy per unit wavelength interval at wavelength �, as:

Q� = dQ=d� (2.1)

Radiant ux is then de�ned as:

� = dQ=dt (2.2)

where Q is radiant energy, and t is time. Spectral radiant ux is de�ned as
�� = d�=d�. Radiant ux density is the radiant ux per unit area at a point
on the surface. There are two possibilities. The ux can be arriving at the
surface (radiant ux density is then called irradiance):

E = d�=dA (2.3)

And the ux can be leaving the surface (radiant ux density is then referred
to as radiant exitance):

M = d�=dA (2.4)

There are also spectral forms of radiant ux densities, E� and M�.
If we think of a ray of light arriving at or leaving a point on a surface in

a given direction, then radiance is simply an in�nitesimal amount of radiant
ux contained in this ray. Actually the ray should be an in�nitesimally
narrow cone with its apex at a point on a surface. The cone has a di�erential
solid angle d! that is measured in steradians. Of course, a ray intersecs the
surface at angle �. Therefore a projected area dAcos� instead of the area dA
should be used. The de�nition of radiance is then:

L =
d2�

dA(d!cos�)
(2.5)

Unlike radiant ux density, the de�nition of radiance does not distinguish
between ux arriving at or leaving the surface. Spectral radiance, as radiance
per unit wavelength interval at wavelength � is also de�ned.
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Figure 2.1: CIE photometric curve for photopic, V(�), and scotopic V'(�)
[WySt82]

2.1.3 Photometry

Photometry measures visible light in units that are weighted according to
the sensitivity of the human eye. Our eye is a complex, nonlinear, detec-
tor of electromagnetic radiation with wavelengths between 380 and 770 nm.
The sensitivity of the human eye varies with the wavelength. Figure 2.1
shows the CIE photometric curve (CIE stands for Commission Internationale
d'Eclairage - International Commission on Illumination). This curve tells us
that a light source of strength 1 W=m2steradian will appear brighter if it
emits light of wavelength 550 nm, than the same strength light source that
emits light of 440 nm wavelength. Actually, all that photometry does is the
weighting of radiometric units using the CIE photometric curve. The only
di�erence between radiometry and photometry is in their units of measure-
ment. All radiometric units have their photometric counterparts. We will
mention only luminance as the counterpart of radiance. In fact it is just
photometrically weighted radiance. Note that digital image synthesis simu-
lates the light in an enviroment, and as a result radiances (or luminances) of
particular wavelengths are computed. This radiances are stored in the raw-
image, which is then mapped to the display device, using one of the mapping
techiques.

Up to now color nas not been taken into account. The next section,
colorimetry, will give us a brief overview of color.
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2.2 Colorimetry

Colorimetry is the science of measuring colors. Although each of us can
perceive colors slightly di�erently, the CIE has de�ned a standard observer.
A set of standard conditions for performing color measuring experiments
has also been proposed by CIE. A number of color matching experiments
have been performed under these standardized conditions. Color matching
experiments consists of choosing three particular light sources, that emit light
on the white screen, where three projections overlap and form an additive
mixture. On the other side of the screen a target color is projected, and
an observer tries to match the target light by altering the intensities of the
three light sources. The weights of light sources are in the range [�1; 1].
Negative weights are allowed, as it is not possible to match all colors using
only positive weights. A negative weight does not mean subtracting color
from the additive mixture, but rather adding this color to the target color.
After many experiments using light sources of the wavelengths red=700 nm,
green=546.1 nm and blue is 435.8 nm [WySt82] color matching curves as
shown in �gure 2.2 were proposed by CIE.

Figure 2.2: The r, g, and b color-matching curves [WySt82]

As it was inconvenient to have negative values in the matching functions
CIE proposed a linear transformation of matching functions resulting in CIE
�x, �y and �z matching functions, as shown in �gure 2.3. Note that there are
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Figure 2.3: The �x, �y, and �z color-matching curves [WySt82]

no negative values in these matching functions.
Now if the surface reectance, and the light source distribution are known,

their product de�nes color as C(�), and the weights XYZ can be found using
the following equations:

X =
Z 780

380
C(�)x(�)d� (2.6)

Y =
Z 780

380
C(�)y(�)d� (2.7)

Z =
Z 780

380
C(�)z(�)d� (2.8)

The weights, X, Y and Z de�ne a color in the CIE XYZ space. Note that it
is possible that two objects with di�erent spectral reectance, under certain
illuminantion, appear the same, i.e. have the same CIE XYZ values. The
CIE XYZ is a 3D linear color space, and it is quite awkward to work in it
directly. It is common to project this space to the X+Y+Z=1 plane. The
result is a 2D space known as the CIE chromaticity diagram. The coordinates
in this space are usually called x and y and they are derived from XYZ using
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the following equations:

x =
X

X + Y + Z
(2.9)

y =
Y

X + Y + Z
(2.10)

z =
Z

X + Y + Z
= 1� x� y (2.11)

As the z component bears no additional information, it is often omitted. Note
that since xy space is just a projection of the 3D XYZ space, each point in
xy corresponds to many points in the original space. Actually the missing
information is luminance Y. Color is usually described by xyY coordinates,
where x and y determine the chromaticity and Y the lightness component of
color. Figure 2.4 shows the CIE xy chromaticity diagram.

Chromaticity diagrams can give us a lot of useful information on a partic-
ular color. The horseshoe shaped curve represents the whole spectrum. The
straight line connecting the lowest wavelength blue and the highest wave-
length red is called the \purple line" and does not represent spectral colors.
The white point lies somewhere inside the diagram, depending on the light
source used (e.g. D65 light source is de�ned to simulate day-light and has
x = 0:312727 and y = 0:329024). If a line is drawn through the white point
and a particular xy color, then the ratio between this point to white point
distance, and the spectral line to the white point distance gives us the color
saturation. If the color is close to the spectral line its saturation is high.
The dominant wavelength which determines a color's hue is determined by
the intersection of the line with the spectral line. An interesting property of
the xy chromaticity diagram is that all possible mixtures of colors x1y1 and
x2y2 are given by the straight line connecting these two points. It is clear
that all the possible mixtures of the three colors x1y1, x2y2 and x3y3 then lie
inside the triangle determined with those three points. Now, it is clear that
the color gamut of any display device using three primaries (like a standard
CRT monitor) is only a subset of all visible colors.

In spite of all the useful characteristics of the CIE xy chromaticity di-
agram, it lacks one very important characteristic. Namely, if the distance
between any arbitrary two points is the same as the distance between an
other point pair, the perceived distance will not be the same. In the worst
case, if the perceived distances are the same, actual distances can di�er as
much as 20 times. In order to correct this, researchers are trying to �nd a
perceptually uniform color space. It has, unfortunately, still not been found.
CIE proposed two alternatives as improvements compared with CIE xyY
space. These are CIE LUV and CIE LAB. Although they are referred to
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Figure 2.4: CIE xy chromaticity diagram

as perceptually uniform color spaces by some authors, they are not. Just
for comparison, two perceptually equally distant color pairs, can di�er in
the CIE LUV distance as much as 4 times. This is a signi�cant improvement
compared to 20 times by original space, but it is still not perfect. Conversions
between CIE XYZ and CIE LUV are de�ned with the formulas:

L� = 116 � 3

s
Y

YWhite

� 16 (2.12)

u� = 13 � L� � (u0 � u0
White) (2.13)

v� = 13 � L� � (v0 � v0White) (2.14)

where

u0 =
4 �X

X + 15 � Y + 3 � Z
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v0 =
9 � Y

X + 15 � Y + 3 � Z
The distance between two colors in the CIE LUV space can be computed

using CIE LUV color di�erence formula:

�E� =
p
�L� +�u� +�v� (2.15)

2.3 Human Vision

Up to now we have seen how light and colors can be measured. But what hap-
pens when light reaches our eye? It hits the photoreceptors on the retina, and
they send the signal through nerves to the brain, where an image is formed.
As stated before, it is possible that each one of us creates di�erent image
from the same stimuli. As we can not describe our sensation, it can not be
quanti�ed in any way, either. The complete vision system is not completely
understood yet, but there are many known human vision characteristics. A
lot of research is done in the laboratories, under special conditions. E.g.
the observer has adapted to a certain light level (it can even take half an
hour or more to fully adapt to some conditions), he or she sees only a small
portion of the whole visual angle and so on. Sometimes, results of such ex-
periments are applied on computer generated images, viewed in a complex
environment, that is far from the ideal laboratory settings. That is the fact,
that should always be in our mind, when evaluating various tone mapping
methods. In this section we are going to describe various characteristics used
in various tone mapping techniques. There are a lot more known human
vision characteristics, but they are beyond the scope of this work.

The light intensity range that we experience every day is huge. The ratio
of light at noon on a sunny day and the moonlight can be as much as 10
million. As stated before this light hits photoreceptors in our retina, namely
rods and cones. Rods are extremely sensitive to light and provide achromatic
vision at scotopic levels of illumination (10�6 to 10 cd=m2). They provide
achromatic vision, and that is the reason why we can not see colors in dark
surroundings. The cones (there are three types of them) are less sensitive,
but provide color vision at photopic levels of illumination (0:01 to 108 cd=m2).
Note that both systems are active at light levels between 0:01 and 10 cd=m2.
This range is called the mesoptic range. Unfortunately the mesoptic range is
the poorest researched, and this is the range that is exercised by computer-
based o�ce environments with CRT monitors and subdued lighting.

What happens after the light hits photoreceptors? The signal travels
by neural units to the brain where an image is formed. It is interesting,
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that despite the fact that incoming light can have a dynamic range of nearly
14 log units, the neural units can transfer the signal having the dynamic
range of only about 1.5 log units. It is obvious that there is some adaptation
mechanism involved in our vision. It means that we adapt to some luminance
value, and then we can perceive data in a certain dynamic range near the
adaptation level. One of the most important characteristics that changes
with di�erent adaptation levels is the just noticeable di�erence.

2.3.1 Just Noticeable Di�erence

According to Weber's law, from the beginning of the century, the ratio �L=L
of the just noticeable di�erence �L and the luminance L is constant, and
equals 0.02 for a wide range of luminances. Nowadays there are better de-
scriptions of just noticeable di�erence, and it is clear that it is not constant
but depends on the adaptation level, and can be approximated using Weber's
law just at certain adaptation levels.

The mapping function proposed by Greg Ward in [Ward94] relies on the
work of Blackwell conducted in the early 1970s. Using a briey ashing dot on
a uniform background Blackwell established the relationship between adap-
tation luminance, La, and just noticeable di�erence in luminance �L(La)
as:

�L(La) = 0:0594 � (1:219 + L0:4
a )2:5 (2.16)

That means that if there is a patch of luminance La+�La on the background
of luminance La it will be discernible, but the patch of luminance La + �,
where � < �La will not.

A more complex function for the whole range of human vision is used
by Ferwerda et al. [FPSG96], and later by Larson et al. in [LaRP97]. It
accounts for both rod and cone, response, and is given in equation 2.17.

log(�L(La)) =

8>>>>>><
>>>>>>:

�2:86 if log(La) < �3:94
(0:405log(La) + 1:6)2:18 � 2:86 if �3:94 � log(La) < �1:44
log(La)� 0:395 if �1:44 � log(La) < �0:0184
(0:249log(La) + 0:65)2:7 � 0:72 if �0:0184 � log(La) < 1:9
log(La)� 1:255 if log(La) � 1:9

(2.17)
Ferwerda et al. [FPSG96] and Larson et al. [LaRP97] also exploit the

changes in visual acuity. Visual acuity is the measure of the visual system's
ability to resolve spatial details. It drops o� signi�cantly for low illumination
levels. Actually it is about 50 cycles=degree at 3 log cd=m2 and drops o� to
about 2:2 cycles=degree at �3:3 log cd=m2.
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Ferwerda et al. also used the time aspect of adaptation. We are all
familiar with the fact that we can not see immediately after entering the
cinema if the �lm has already begun. After some period of time we can see
the details again. Using Ferwerda's model it is possible to simulate such time
changes of adaptation in computer graphics.

2.3.2 Brightness as a Function of Luminance

Let us now consider the brightness perception. Brightness is the magnitude
of the subjective sensation produced by visible light. The light intensity
can easily be measured, but brightness as a subjective phenomena cannot
be exactly measured. Nevertheless, brightness is often approximated as log
luminance, or luminance powered to 1/2 to 1/3 depending on the authors.
More precise studies showed that there is no one single formula, but rather
the brightness-luminance relation depends on the adaptation level and the
surrounding light. We will describe the work of Stevens et al. [StSt63]
extensively used by Tumblin and Rushmeier in developing their tone mapping
operator in this section.

Stevens et al. [StSt63] devised the \brils" units to measure the subjective
value of brightness. According to Stevens 1 bril equals the sensation of
brightness induced in a fully dark-adapted eye by a brief exposure to a 5
degree white target of 10�6lambert (1�lambert) luminance.

Note that two images with di�erent luminance values can have the same
brightness values, and appear to be the same. The reason lies in the adap-
tation mechanism, and the inability of neural units to transfer high dynamic
range signals from the retina to the brain. Actually we are very poor judges
of absolute luminances, all that we can judge is the change in luminance, i.e.
the brightness.

What did Stevens do? He measured brightness as a function of luminance
and adaptation by using \haploskopic matching". That means he tried to
match the brightness when one eye is dark adapted (standard condition for
brightness measuring) and the other eye is adapted to a test value. Brightness
comparison between two eyes was made quickly, before either could change
adaptation level signi�cantly. Measured brightness is then:

B = K � (Rtarg �Rthresh)
n (2.18)

where B is brightness in brils, Rtarg is radiance of target in millilamberts,
Rthresh is threshold of detectable radiance in millilamberts (this depends on
the adaptation radiance), and n and K are constants, dependent on the
strength of the adapting �eld. For full dark-adaptation Rthresh = 0, n = 0:33,
and K = 10.
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Stevens proposed the next equation from his measurements:

log10(B) = 0:004 � [(S � 27) � (8:4�R)� 108] (2.19)

where, assuming Lw is adapting, white background luminance in lamberts
and Ltarg is target luminance in lamberts, S = Lw in dB, where 0 dB =
1010 lamberts

S = 10 � log10( Lw

10�10
lamberts) = 100 + 10 � log10(Lw)

and R is the target luminance di�erence in dB

R = S � 10 � log10( Ltarg

10�10
lamberts) = (10 � log10(Lw)� 10 � log10(Ltarg)

After substituting S and R expressions in equation 2.19 we can write the
�nal equation:

log10(B) = � � log10(L) + � (2.20)

where B is brightness in brils, L is viewed (target) radiance in lamberts, Lw

is luminance of white surround and

� = 0:4 � log10(Lw) + 2:92

� = �0:4 � (log10(Lw))
2 + (�2:584 � log10(Lw)) + 2:0208

These complex formulas provided by Stevens are, unfortunately, neither
valid nor accurate when applied to more complex images. They are valid for
laboratory settings only. Bartelson and Breneman [BaBr67] have measured
many test photographs in order to �nd appropriate brightness versus lumi-
nance function for more complex images. They have proposed an extended
formula for complex scenes:

log10(B) = � + � � log10(Rrw)�  �R�
rw (2.21)

where �; �; ; and � are parameters dependent on viewing conditions and
are given graphically.

2.3.3 Brightness as a Function of Reectance

Up to now brightness was considered only as function of luminance. As
luminance is the product of incoming illumination intensity and reectance
(for non-emitting surfaces) the same luminance can be obtained from surfaces
having di�erent reectances by changing the illumination. Franck [Fran94]
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showed that reectance inuences perceived brightness as well. This is valid
only for complex scenes, and his conclusion is based on an experiment. There
is still no quantitative data or suggested formulas, but he claims that a white
surface will always appear brighter then a black surface of the same luminance
when cues to the reectances are present, as is frequently true in digital image
synthesis. This fact is often neglected, but obviously should be taken into
account by tone mapping functions.

2.3.4 Adaptation and Veiling Luminance

Up to now we have been talking about adaptation luminance without saying
to which luminance a human observer would adapt. It is assumed that we
will adapt to the luminance of our �xation point which approximately covers
one visual degree (1:5�, by some authors). Just to make things a little bit
more complicated, the adaptation luminance depends on the surrounding
luminances as well. The inuence of the surrounding is not large, but if
there are some glare sources in the periphery, the veiling luminance should
be taken into consideration.

Bright glare sources in the periphery reduces contrast visibility because
light scattered in the lens obscures the fovea. The inuence of the veiling
luminance to the adaptation luminance is well documented in the literature,
and we will present here a model introduced by Moon and Spencer [MoSp45],
because this is the model used by Larson et al. in [LaRP97].

Moon and Spencer proposed the next formula for the corrected adaptation
luminance La:

La = 0:913 � Lf +
K

�

Z
�>�f

Z L(�; �)

�2
� cos(�) � sin(�)d�d� (2.22)

where La is the corrected adaptation luminance in cd=m2, Lf is the average
foveal luminance in cd=m2, L(�; �) is the luminance in the direction (�; �),
�f is foveal half angle, � 0:00873 rad(0:5�), and K is the constant measured
by Holloday [Holl26], 0:0096.

It is obvious from the above equation that the periphery contributes less
than 9% to the adaptation luminance. If there are no bright sources in the
periphery this inuence can be neglected.

2.3.5 Contrast Sensitivity Function

The contrast sensitivity function described here will be used to develop the
color image metric described in chapter 8. Contrast sensitivity is sometimes
called visual accuity [LaRP97], [FPSG96]. We will use the term contrast
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sensitivity here, since we have used this terminology throughout chapter 8.
Mannos and Sakrison [MaSa74] proposed a model of the human contrast
sensitivity function. The contrast sensitivity function tells us how sensitive
we are to the various frequencies of visual stimuli. If the frequency of visual
stimuli is too high we will not be able to recognize the stimuli pattern any
more. Imagine an image consisting of vertical black and white stripes. If the
stripes are very thin (i.e. a few thousand per millimeter) we will be unable to
see individual stripes. All that we will see is a gray image. If the stripes then
become wider and wider, there is a threshold width, from which on we are
able to distinguish the stripes. The contrast sensitivity function proposed by
Manos and Sakrison is

A(f) = 2:6 � (0:0192 + 0:114 � f) � e�(0:114�f)1:1 (2.23)

f in equation 2.23 is the spatial frequency of the visual stimuli given in
cycles/degree. The function has a peak of value 1 aproximately at f =
8:0 cycles/degree, and is meaningless for frequencies above 60 cycles/degree.
Figure 2.5 shows the contrast sensitivity function A(f).
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Figure 2.5: Contrast sensitivity function

The reason why we can not distinguish patterns with high frequncies is
the limited number of photoreceptors in our eye. There are several other func-
tions proposed by other authors, but we choose the above function [MaSa74]
because it can be simply analitically described. The same function is also
used by Rushmeier et al. [RWPSR95] and Gaddipati et al. [GaMY97], which
was another motivating factor in using this function.



Chapter 3

Display Devices

Since the main goal of most rendering processes is to display the image for
human observation, we should examine some display media characteristics
in order to use this media properly. Rendered images can have a dynamic
range of several thousands, and even more. As stated in the previous chapter
our visual system operates in an impressive dynamic range. Unfortunately,
display media dynamic ranges are quite small. For example, a CRT monitor,
which is the most widely used display media in computer graphics has a
dynamic range of up to 100! Obviously, huge dynamic range raw images
should be mapped somehow to the relatively small dynamic range of display
devices. An ideal display media would have a dynamic range that equals that
of human vision capabilities, and would have the possibility of displaying
luminances as low as the threshold of human vision, and as high as the
maximum still perceivable luminance. It should be capable of reproducing
visible colors, as well. Although such devices have long been in existance in
acoustics, they will not be available in the video media for a long time.

There are two kinds of display media, light-emitting like CRT or, in a
way, projected slides, and light-propagating, like photos or prints, which do
not emit light themselves. Light propagating media is suitable for displaying
solid colors by means of an external light source, while the other group has
gamuts exceeding the solid colors and has the capability to display more
saturated colors. E.g. the saturation of CRT blue can never be achieved
with photo paper.

There are three major problems concerning display devices. The �rst is
the display devices' non-linear response, the second is the limited dynamic
range and the third is the limited color gamut.

Practically all display media have nonlinear characteristics. Fortunately,
that is not such a big problem, as long as the user is aware of it. If the
characteristic of the device is known, some correction can be done, and the

19
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device will act as a linear device. The situation is more complex for display
chains. Let us take a chain of CRT ! negative color �lm ! photo paper,
or a chain �lm-writer ! color slide ! photo paper. It means, an image is
displayed on the monitor, then photographed, and �nally a print is made
from color negative �lm (this is valid for the �rst chain). For such chains the
last link is important, and inputs to the �rst link should provide the desired
results at the chain's end. In other words, if the photo is made from a slide,
which is made by a �lm recorder and the input to the �lm recorder is a TIFF
�le, it is not important how this TIFF �le looks on the CRT, or when the
slide is projected. All that matters is that the �nal print looks satisfactory.
Of course the �nal print depends on many variables. They include the type
of �lm used, the quality and temperature of the developing chemicals (in the
above case there are two developments), the length of time the �lm is in the
chemicals, the type of photo paper used etc. There are also some inuences
from one color channel to others in all color media, some additivity failures
[ToHe89] and so on. It is obvious that it would be quite di�cult, if not
almost impossible for the common user, to take into account all the above
mentioned di�culties. What the common user should do, is to check the
linearity of the device (chain) and the available device contrast.

The second, and more complex problem is the limited device contrast. As
mentioned earlier, huge contrast raw images should be mapped to relatively
small contrast display devices. This is, actually the most challenging part
of most tone mapping techniques. We have measured CIE Y values of the
photography made from the slide from the �lm recorder. Figure 3.1 shows
the results. Input values to the �lm recorder are on the x axis, and the CIE
Y values of the last chain link - photo, are on the y axis. Achieved contrast
was 74:7=4:0 = 18:675.

Typical device contrasts are given in table 3.1, the ideal values and values
that we have measured on common available devices are given in the table.
Note quite a big di�erence in photo contrast. We have measured the contrast
of photos that are automatically processed by Kodak. Some professional
laboratories in Vienna are o�ering better service, but at, approximately, six
times the cost of the usual Kodak service. We assume that the contrast in
this case would be greater, and closer to the theoretical maximum.

The third above mentioned problem is the display devices' limited color
gamut. There is a lot of research done in gamut mapping. Throughout this
work, we will apply simple color components clipping, in case they exceed
the device gamut. This approach can lead to hue changes in some cases, but
more advanced gamut mapping techniques are out of the scope of this work,
and can be found in [GeAl89], [HoBe93], [WoAB94].

The most widely used media for computer graphics are the CRT monitor
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Figure 3.1: Measured characteristic of a photograph print made from slide

Display media Typical contrast Measured contrast
CRT 50-200 50
Photographic prints 100 18.675
Photographic slides 1000
Newsprint printed in B/W 10

Table 3.1: Typical display device contrasts

and color printer, for sure. Figure 3.2 shows the color gamut of a typical
monitor, and a printer. The gamut of a printer using highly saturated inks is
shown as well. It is obvious from this �gure why is it impossible to reproduce
monitor images on the color printer perfectly.

We �nd the slides and CRT the most interesting media, therefore they
will be explained in a simpli�ed, yet for us su�cient way next.

3.1 Slides and Goldberg Rule

An image is created on a slide as the result of a chemical process. The light
arriving on the �lm through the lenses causes some chemical reactions on
the emulsion that is on the �lm, and an image is formed. The �lm is then
processed, and eventually processed once more to obtain photographic prints.

Various �lms are often described using an \H-D" plot (H-D stands for
Hurter and Dri�eld who devised them in 1890 [JaMe66]). An H-D plot
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Figure 3.2: Color gamut of printer and CRT

describes a density as a response to a given exposure. Let us de�ne exposure
and density next.

Exposure is de�ned as the product of the irradiance incident upon the
photosensitive surface (I) and the time during which the surface is exposed
(t):

E = It (3.1)

Photographic exposure is usually given in photometric rather than radio-
metric units. In equation 3.1, I is given in lumens=m2 or lux and exposure
is then in lux � sec. In the cases where the incoming ux is a continuous
spectral distribution, the exposure is given by the integral:

E =
Z
E�d� =

Z
I�td� (3.2)

The measured response of a photographic material is given in density.
Density is a unitless, logarithmic measure that indicates the opacity of an
emulsion that results from processing.

Transmission density is used for describing the response of photographic
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�lm. It is de�ned as:
DT = log101=T (3.3)

where T is a transmittance value, T 2 [0; 1], that gives the ratio of light
transmitted through an emulsion to the quantity of light incident to it. There
is also the reective density DR which is used in describing the response of
photographic papers.

Let us consider now, a color slide with characteristic curves as in �g. 3.3.
The horizontal axis shows the logarithm of the exposure, the vertical axis
shows the densities in the r,g,b channels.

The density ranges of the three color channels are somewhat di�erent from
another, hence an achromatic gray can only be produced in the coincident
part of the density ranges. It can be seen in �g. 3.3 that the density ranges
exceed 3. In linear terms: the contrast exceeds 1000! The corresponding
illumination range on the horizontal axis is [�2:5;�0:1]. Values less then
�2:5 and greater then �0:1 cause no change in densities (so called \fog"
and \are" regions). That means, roughly, that the logarithm of the range
of exposition is 2:4, a value of about 250 on a linear scale! This is much
higher than the displayable e�ective contrast on any other medium. Dynamic
ranges of black and white glossy photo papers can be up to 60, but for
all other media including color photos and prints it is signi�cantly smaller,
in a range of 10 to 40. In photography, only the straight curve sections
are convenient. Moreover, the standard is a paper print made from the
slide, perceptionally correct for a contrast rendering of 1:1. This means that
we want to reproduce the original contrast of 50 as 50 on the �nal print.
Therefore, the really applicable range of contrast for exposures does not
exceed the value of 45, that is about 1:65 in log10 (actually the recommended
contrast value in photography is 32). For instance, on the horizontal axis of
�g. 3.3 the section [�0:25;�1:9] may be applied. This corresponds to the
density range [0:2; 2:7] on the vertical axis. That means that the original
scene contrast of � 45 is mapped to a contrast of � 316 on the slide.

Slide gamma is de�ned as the slope of the straight part of the character-
istic seen in �g. 3.3. Slide gamma values vary from 1.5 to 1.7, and this is the
reason why the scene contrast is enlarged on the slide. The question emerges
why the gamma value is not 1. Obviously, on a paper print (enlargement)
gamma must be 1, otherwise the print would not be equivalent to the original
appearance. Remember that we want to reproduce original contrast exactly.
This is possible since photo papers have gamma values as well. Enlargements
from slides are made on so called positive papers, with gamma values less
than 1. The resultant gamma is the product of the gammas of the slide and
of the positive paper, in fact, about 1. Actually the original scene contrast
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Figure 3.3: The characteristic curves of Kodak Ektachrome Panther 100x
Professional

will be enlarged on slide, and then again decreased by the use of a positive
photo paper. Similarly, soft color negatives, with gamma values less than 1,
and enlargement papers of hard gradation (with gamma values over 1) have
resultant gamma values of about 1. The original contrast is changed on slides
due to a  value of 1.5 to 1.7. Even the color components are changed from
r, g, b to r, g, b . The question emerges how it is possible that slides are,
despite all these facts, perceived correctly when projected. A projected slide
enlarges the original contrast, but the perceived image looks correct. The
Goldberg rule gives us the answer [Schr81]. The Goldberg rule states that
the way we see something depends in an exponential way (Goldberg-Gamma)
on the surrounding lighting. If the human eye is adapted to a very dark sur-
rounding, a Goldberg-Gamma value of 1.5 to 1.7 gives perceptually correct
results. For eyes adapted to brightness the Goldberg-Gamma decreases down
to 1. That is one of the reasons why slides viewed in a well lit room do not
look satisfactory, but when they are projected in a dark room they are just
perfect. In other words, our visual system reduces the contrast in the dark
surrounding, and high contrast projection is perceived as normal contrast
image. On the other hand if a slide is viewed in a bright surrounding, its
contrast is too high, and it looks somehow contrast-less. This paradox that
high contrast image seems to have low contrast, and a low contrast image
looks as full of contrast will be described in the section 4.2.

Note, that it would be possible to exploit slide characteristic in another
way. We could compute a raw image, and compress the original contrast of
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let's say 300 to 50, and use it as input to the �lm writer. The resulting slide
will then increase input contrast to the original 300 value. In this case the
slide should be viewed in a well lit room, placed on a di�use light source. If
there were a big enough slide, it would outperform all common display media
this way.

3.2 CRTs

CRT monitors are the most widely used display devices in computer graphics.
A CRT (cathode ray tube) is the essential part of all CRT monitors. It
contains three electron guns which emit narrow streams of electrons. The
streams pass through deection coils that band the beam up, down, right and
left. The inside of the front face of the CRT is coated with three di�erent
phosphors, each of them emits light of certain wavelength when struck by
electrons. The intensity of light depends on the number of incident electrons.
There are various phosphors, but red, green and blue emitting type phosphors
are used in common monitors. As all displayable colors are formed from an
additive mixture of red, green and blue, it is clear that the color gamut of a
CRT monitor is a subset of all visible colors.

We will examine some CRT monitor characteristics next. Just as before,
we are interested in the monitor response to various input values. Unfortu-
nately this response is not linear. For a CRT with N displayable levels, the
luminance of grade i, Li can usually be approximated by:

Li =
�
i

N

�display
(3.4)

where i = 0; 1; 2; : : : ; N . The value of display, of course, is slightly di�er-
ent for each color channel.

We have measured Li for the red, green and blue color channels of an
SGI color monitor. The results are shown in �gure 3.4. It can be seen that
default gamma correction is not perfect, but it is close to linear response.
For most applications it will be su�cient.

Although it seems in (3.4) that the CRT contrast is in�nite (the lowest
luminance value is 0), there is no real 0 luminance, i.e. the CRT emits
some radiance even for i=0, (if the measured characteristics in the �gure 3.4
are observed carefully it can be seen that there is some emittance even for
0 input level (best seen for red and blue guns), and there is always some
reection from surrounding light on the screen [ToHe89]. If you look at the
switched o� display in a lit room you will see it is far from totally black.
This unwanted luminance level that is proportional to the ambient light is
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Figure 3.4: Red, green and blue gun response after -correction

added to the image. It means that in (3.4) a constant proportional to the
ambient luminance level should be added. The ambient luminance decreases
the CRT contrast and the gamut as well. Figure 3.5 illustrates the problem.
It shows how gamut changes with the increase of ambient light.

There is a lot of research done on the calibration of the CRT monitor
[Durr87], [Hall89]. Actually the characteristic changes as time passes, it
depends on room temperature and even on the orientation of the monitor
(inuence of the Earth magnetic poles [Fitz89]). All of these inuences are
relatively small, and they are not so important for the common user.

The CRT contrast depends on the ambient illumination level, on user
settings, and on particular device characteristics. For the same CRT the
contrast can vary from 20 to 100. The best would be to measure the particular
CRT and to work in a room with a constant illumination. Of course, in this
case the device settings once set, should not be changed any more. The
Goldberg-Gamma should be taken into account for CRTs as well. In dark
rooms the Goldberg-Gamma should be set to 1.5, in dim surroundings to 1.2
(default setting for TV). When a CRT is viewed in very bright surroundings
the Goldberg-Gamma decreases to 1. Goldberg-Gamma correction can be
done simultaneously with display gamma correction. Instead of display in
(3.4), display=Goldberg should be used. More exact relationships than the
Goldberg rule are described in the RLAB color space for luminance and
chromatic adaptation [Fair94].

Figure 3.4 shows the measured CIE Y of the red, green and blue color
channel. It can be seen on the y axis that the maximum values of Y are not
the same. The blue gun emits the lowest maximum intensity, and the green
gun the highest. If we are interested in computing an equivalent luminance
image from our rgb image, then each of the color channels should be properly
weighted. For this particular monitor, the weights can be computed from
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Figure 3.5: Chromatic gamut of CRT for ambient illumination covering a
range of �ve log units. [Layc83]

maximum intensities as:

rweight =
Lred max

Lred max + Lgreen max + Lblue max

(3.5)

gweight =
Lgreen max

Lred max + Lgreen max + Lblue max

(3.6)

bweight =
Lblue max

Lred max + Lgreen max + Lblue max

(3.7)

For our monitor, the weights are rweight = 0:268, gweight = 0:667 and bweight =
0:065.

We have measured chromaticies CIE x and y values for our monitor as
well. It is interesting that chromaticies for a particular phosphor were not
constant as expected. The measured CIE x,y chromaticies are shown in �gure
3.6. We suppose the reason lies in the fact that there are some cross e�ects
among phosphors. There can be also some error caused by the measuring
instrument at low intensities. Figure 3.6 shows gamuts for intensities 10, 30,
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50, 70,. . . , 250. The chromaticies change decreases with higher intensities.
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Figure 3.6: Change of phosphor chromaticies with increasing intensities

Note that the weighting functions computed in eq. 3.5 using maximum
intensities, can be computed from chromaticies as well. Each phosphor has
a dominant wavelength, and the CIE photometric curve gives a weighting
factor for each of the three phosphors. Assuming our phosphor chromaticies
have CIE x,y coordinates and dominant wavelength values as given in table
3.2, corresponding weights are: rweight = 0:324, gweight = 0:631 and bweight =
0:045. These results are similar to the results obtained using the maximum

x y �

red 0.617 0.334 610
green 0.278 0.614 545
blue 0.154 0.058 463

Table 3.2: CIE xy coordinates and dominant wavelength of three phosphor
primaries

intensities. Errors are due to non-perfect measuring conditions.



Chapter 4

Linear Scale-Factor Methods

From now on, we will assume that the display device is calibrated, such that
it has linear response and input range [0,1]. This input range corresponds to
[0,255] for R, G and B color channels for today's standard devices. Through-
out this work "n" will be used for the device input value, n 2 [0; 1], and "L"
for the computed luminance value, L 2 [0;1]. Our intention is to describe
the various functions n = f(L).

Most rendering software is still not able to render a raw image in absolute
units. Rendering in absolute units can be quite a tricky job. When absolute
units are required the exact data for light sources and materials are needed.
This data is hard to get or measure, and sometimes the tolerance range of
given data is too high. Data for arti�cial light sources can be obtained from
the manufacturers and if natural light is used then the time of day, latitude
and sky conditions should be taken into account. The data needed to de�ne
BRDFs for materials used in the scene is far more di�cult to �nd than light
source data is. The BRDF depends both on the chemical composition of the
material and on the condition of the surface (smooth, rough, oxidized, etc.).
Furthermore many common materials do not have spatially uniform BRDFs.
Because of all these reasons most rendering tools still work with �ctitious
units. Some methods take absolute units into account and can not be used
with raw images rendered in �ctitious units.

Although human vision certainly does not use a linear scaling function,
this group of mapping methods renders acceptable results for a wide range
of applications. Its strengths are its simplicity and speed, and if the right
method is chosen, the results can be acceptable for almost all applications if
the raw image dynamic range is not too high.

The reason why linear mapping renders acceptable results, if the right
scale factor is chosen, lies in the adaptation mechanism. If the right \adap-
tation" level is chosen the error introduced by using a linear mapping function

29
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is acceptable. The problem is only to �nd the right scale-factor.
As we want to get various images from computed luminances it is obvious

that these computed values have to be stored. Usually these values are
oating point numbers, one for each color channel (red, green and blue in
most cases). Saving such a oat image is very memory demanding (12 bytes
per pixel). Greg Ward in [Ward92] suggests an elegant way of handling this
problem and introduces a way how a oat image can be stored using only 4
bytes per pixel and achieving almost the same result. There are also two other
raw image formats (one supported by TIFF �le type, and other introduced
by Pixar). The raw image formats are described in the Appendix, as they
are a necessity for this kind of image manipulation.

Another possibility of handling the oat-image size problem is to use a
low-resolution preview picture to �nd the parameters which will be used in
the �nal high-resolution picture. The combination of these two methods
should solve the memory problem even in computers with a very low amount
of memory.

The �rst intuitive solution to the mapping problem is the use of a linear
scale-factor such that the maximum radiance Lmax is mapped to 1,

n =
L

Lmax

(4.1)

This mapping is useless if the light source is visible or the image contrast
is too high. In these cases the �nal image will be too dark. The results of
this mapping method are shown and discussed in the Results chapter. An
improvement of this method, especially popular in the radiosity community,
is the mapping of the largest non self-emitting pixel to 1. Unfortunately, in
the case of strong secondary light sources this method still renders very dark
images. The second drawback is that pixel self-emittance is known only in
the �rst rendering phase, therefore it is not possible to estimate which pixel
is and which is not self emitting from the raw image.

4.1 Mean Value Mapping

Probably the most widely used mapping method today is the mean value
mapping technique. The idea is to map the average radiance to 0.5 input
value, and then clip the values larger than 1 to 1:

n = 0:5 � L

Lave

(4.2)

where Lave is the average radiance value, and n is set to 1 if n > 1.
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According to the above equation, the value 2�Lave will be mapped to 1 and
all values larger than 2 �Lave will be clipped to 1. Obviously the information
in the range [2 � Lave; Lmax] is lost, although there can be some interesting
details. Another problem is the case when few very high radiance values
increase the average too much, making the �nal image too dark. There is
also a problem that arises from the fact that the global illumination solution is
linear in source radiance [ArKi90], that means results for any two light source
strengths are directly proportional. Therefore the mean value mapping will
produce the same images for various light sources' strengths. This problem
cannot be overcome unless absolute units are known. Using �ctitious units
makes it impossible to know whether the scene is supposed to be well lit
or dark. Another drawback of the mean value mapping technique arises
when the average scene reectance is very low or very high. Imagine an
image representing a heap of coal. If the average value (which is low) is
mapped to 0.5 the whole image will be too bright. On the other hand, an
image of snow covered mountains will be too dark. In spite of all these
drawbacks this is still the most widely used mapping method today. Most
of today's rendering software can not produce absolute unit raw images,
and most scenes are not very dark or very bright. These two facts make
it possible to use mean value mapping successfully for most renderings. Of
course, when an appropriate lighting atmosphere or the correct objects' colors
are important, some other mapping should be used. Result images rendered
using the mean value mapping method are shown in results chapter, color
plates 1a, 5a, 9a, 9b, 11a, 14a, and 14b.

4.2 Interactive Calibration

The mean value mapping technique corresponds to the simplest photogra-
phers' approach, where the average light is measured and the aperture is au-
tomatically set such that the average is mapped to the medium gray. More
advanced photographers know that they have to adjust the aperture manu-
ally if the scene is not a typical one. By setting the aperture manually the
�nal photo can be darker or lighter. Photographers also know how to enhance
the overall contrast of the image. Sometimes it is necessary to use a ashlight
even on a sunny day if portraits are shot. Experienced photographers will
choose an appropriate �lm speed as well.

Just as in real life, we did not want to use just the mean value mapping
method, so we have proposed to use interactive calibration. Together with
chapters 6, 7, and 8 this is the main contribution of this thesis.

Up to now we have been describing the mapping functions that are applied
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to the whole raw image. We introduce another approach here, namely that a
clipping interval is selected �rst, and the mapping function is applied to this
interval only. Values outside the interval are simply clipped to the interval
borders.

Our intention is to �nd a clipping interval [s,e]. The start point of the
interval will be mapped to the minimum displayable value and the end point
to the maximum displayable value. Just as in photography the center of the
interval is not always the average value, actually in professional photo this is
almost never true. The interval is found by varying aperture and contrast,
as explained in the next chapters.

4.2.1 Logarithmic Histogram

Logarithmic histograms will be used to explain the idea of this method.
In the real implementation a histogram is never used. It just helps us to
understand the method. Let's explain what the logarithmic histogram is and
what its advantages are. As the log2 (log2 is used in analogy to photography)
is not de�ned for 0, �rst all values that are smaller than a certain minimum
value should be set to this minimum value, and as the size of the histogram
array is limited, the values above the maximum allowed value should be
set to this maximum value. Now, for the log2 values of each of the r, g,
b components, the appropriate histogram array element is increased. The
total number of histogram entries is three times the number of pixels as
each color component is entered separately in the histogram array. Using
a logarithmic instead of a linear histogram has several advantages. A wide
range of luminance values can be represented with a relatively small array,
and the contrast manipulation (introduced later) is easier to explain.

4.2.2 Varying aperture

The interactive calibration method was inspired by photography, but our
intention is not to apply exact photographic methods. We will adopt some
terminology from photography and use it in a simpli�ed way. In this paper
the aperture value is de�ned as 0, if and only if, the average luminance value,
xmean, is in the center of the clipping window on the linear scale. When
displayed on the log scale it is in the upper half of the interval. Setting
the aperture to +1 means shifting the xmean value by 1 on the log2 scale,
which doubles it. In our implementation the aperture can be set to �0:5,
�1, �1:5,. . . ,�3. Of course, the aperture can be set to larger values or a �ner
step can be applied, yet, from the hundred years of photographic experience
and from our experience, this is almost never necessary.
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4.2.3 Varying contrast

In the classical mean value approach the simple scale factor 0:5=xmean is
applied to all values. The next step is to clip all values larger than 1 to 1
and those less than 0 (usually there are no such values) to 0. This approach
clips the values far from the average. Actually, all values that are more than
twice as large as xmean are clipped to 1, which means that some interesting
details, may not be displayed. By varying the contrast and the aperture this
problem can be successfully solved. Let us de�ne the contrast as the ratio
between the largest and the smallest luminance value in a oat image. The
contrast window on the log scale always has the same size for a given contrast
and this is one more reason for using a logarithmic histogram. The original
contrast of a oat image can be anything from as low as 10 or less (although
such low-contrast images are rare) to as high as 1000 or more. Using a larger
contrast interval, less pixels will be clipped, but when they are mapped to
the input values, a low-contrast image will be generated. On the other hand,
the use of a small contrast clipping interval will produce an image which is
considered as a high-contrast image. (See results chapter for visualisation
of this confusing fact). In �gure 4.1 various contrast windows and aperture
settings are displayed, with the logarithmic histogram of the image shown in
results section, color plates 3 and 4.

Figure 4.1: Various contrast and aperture settings



CHAPTER 4. LINEAR SCALE-FACTOR METHODS 34

4.2.4 Mapping of the Interval

Our intention is to �nd the [s; e] interval such that the �nal image (produced
by mapping [s; e] to the display device input values) is satisfactory. This
means that it shows the atmosphere supposed to be in the scene, or that it
shows lots of details in a selected area of the image. The user varies contrast
and aperture settings until the image looks satisfactory. We assume that
the display device is calibrated, has linear response and the ratio between
the maximum and minimum displayable lightness is Cdisplay. We want to
map [s; e] to [1=Cdisplay; 1]. We will call 1=Cdisplay value

00�00. For most CRTs
Cdisplay is about 50, which makes � equal to 0.02. Given the xmean value, the
aperture value a and contrast c, the start point s of the interval is

s =
2 � xmean � 2a

1 + c
=

21+a � xmean

1 + c
(4.3)

and the end point e can be computed as

e = s � c (4.4)

Once the interval is chosen, the mapping for oat red, green, and blue
values can be done. The values outside the [s; e] interval should be clipped
to s and e prior to the mapping. This color clipping produces visible color
distortions in some cases. There are numerous other clipping approaches but
they are out of the scope of this thesis. There are many ways of mapping [s; e]
to [�; 1]. If the chosen contrast c is the same as the available device contrast
Cdisplay, a linear mapping gives the best results. The linear mapping is done
by simply dividing the color components by e. The interval is mapped linearly
to [0; 1] using the following formulas:

R = red=e (4.5)

G = green=e (4.6)

B = blue=e (4.7)

In the case when c di�ers from Cdisplay a linear mapping does not give
satisfactory results. According to human perception rules [StSt63], [Hunt92]
a mapping function of type f(x) = xn can be chosen for appropriate results.
The value of n lies between 1/3 (e.g. in CIE LUV and CIE LAB lightness
formulas) and 1/2 (e.g. in Hunter LUV lightness formulae) [Hunt92]. We
suggest taking n = 0:4 as default value. Two auxiliary values u and v for the
mapping from x 2 [s; e] to y 2 [�; 1] are de�ned as :

u =
f(1)� f(�)

f(e)� f(s)
(4.8)

v = f(1)� u � f(e) (4.9)
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The mapping functions for mapping the red, green and blue values (all
in the [s; e] range) to R,G,B (in the [�; 1] range) are:

R = f�1(u � f(red) + v) (4.10)

G = f�1(u � f(green) + v) (4.11)

B = f�1(u � f(blue) + v) (4.12)

Images mapped using this type of mapping function will be brighter than
those mapped with the linear function, but they will show more details in the
dark part of the image and they will be perceptionally more correct. Now R,
G and B can be used as input to the display device look up table.

4.2.5 Conclusion

We have described a method for mapping calculated luminance values to
values appropriate for displaying. Varying the contrast and aperture, im-
ages with the appropriate atmosphere can be displayed without knowing the
luminances in absolute units. Also, for research purposes, some interesting
parts of the images can be shown with lots of details by setting a small con-
trast and an appropriate aperture value. The introduced methods can save
us additional renderings in most cases, and they reduce the time needed to
produce the �nal image that way. Results strongly depend on the user set-
tings, so this is a completely subjective method. Images mapped using this
method are shown in the results chapter, color plates 2, 3, and 4.

4.3 Ward's Contrast Based Scale-factor

The idea is to display bright scenes as bright and poorly lit scenes as dark,
making the di�erences just visible in the real world just visible on the dis-
play. In other words the visibility in the scene is preserved. The scale-factor
is derived from the contrast sensitivity studies conducted by Blackwell in
the early 1970s (see Human vision section). Blackwell established the fol-
lowing relationship between the adaptation luminance La and the minimum
discernible di�erence in luminance:

�L(La) = 0:0594 � (1:219 + L0:4
a )

2:5
(4.13)

Ward used Blackwell's studies, but we should be aware that all models
described here and based on human perception are only an approximation
of the human vision system, since Blackwell's experiments were conducted
in perfect laboratory conditions that are far from the usual complex viewing
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conditions of a typical work place. Ward wanted to �nd a proportionality
constant between display luminance and world luminance that yields a dis-
play with roughly the same contrast visibility as the actual scene. He wanted
to �nd a multiplier m such that:

Ld = m � Lw (4.14)

where Ld is display luminance at an image point, and Lw is world luminance
at an image point.

The key assumption that enables the calculation of m is that:

�L(Lda) = m ��L(Lwa) (4.15)

where �L(Lda) is the minimum discernible luminance change at Lda, Lda is
the display adaptation luminance and Lwa is the world adaptation luminance.

This assumption makes di�erences just visible in the real world just visible
on the display, and this was the main goal of the whole mapping. Solving
the equation 4.15 for m gives:

m =

"
1:219 + L0:4

da

1:219 + L0:4
wa

#2:5
(4.16)

In order to get the scale-factor which converts a raw image to a display
device input interval [0,1], the maximum display luminance, Ldmax, should
be known. The display adaptation luminance of the viewer, Lda, should be
known as well. Ward suggests to take Lda = Ldmax=2, as he has found that
this is close enough for most applications. The �nal scale-factor n is then:

n =
1

Ldmax

�
"
1:219 + (Ldmax=2)

0:4

1:219 + L0:4
wa

#2:5
(4.17)

Two unknowns are the maximum display luminance which can be mea-
sured, and the world adaptation level. If no other information is available,
the average value of the raw image can be taken as the world adaptation
level although this is not the completely correct way. If the area of interest
in the scene is known, this can be used as the adaptation level. In this way
results can be interpreted as telling us how well a person would see in an
environment while looking at this point. Note that the raw image should be
rendered in absolute units to use this method. This is still not easy for a
common user, but this is the only way the lighting atmosphere can be auto-
matically taken into account. This simple linear scale-factor can be used for
a wide range of applications where lighting simulation is important (archi-
tecture visualisation) and it renders great results. Color plates 9c, 9d, 13a,
13b, 17a, and 17b in results chapter illustrate this method.



Chapter 5

Non-Linear Scale-Factor

Methods

In this chapter non linear scale factors will be described. The motivation
for using non linear scale factors is to be found in Weber's law. This law
derived in the last century states that the ratio of the brightness discrimi-
nation threshold �L and the corresponding brightness L, �L=L is constant
over a wide range of luminances. Logarithmic mapping represents this law.
According to some more recent experiments, exponential mapping would be
more appropriate. These mappings are expensive to compute and always
have some free parameters that should be set for each raw image separately.
Schlick in [Schl94] introduced uniform rational quantization achieving com-
parable or better results than exponential or logarithmic mapping with much
less computational e�ort.

5.1 Schlick's Mapping

As stated above Schlick wanted to introduce a mapping function which would
act similar to a logarithmic function but which would be much simpler to
compute. He proposed the so-called rational mapping function:

n =
p � L

p � L� L + Lmax

(5.1)

This function is intended to account for the non-linearities of both the
display device and human perception. The biggest advantages of Schlick's
mapping are its speed and automatic selection of the parameter p. The map-
ping is fast as it needs only one division, one multiplication, one subtraction,
and one addition.

37
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A free parameter in logarithmic and exponential mapping depends on
many factors such as the adaptation level of the observer, the display device
characteristics, human vision rules, etc. It would be ideal to involve all of
these factors, but it would be computationally very expensive and some of
the human vision mechanisms are not understood yet. There are methods
that include more human vision characteristics, and they will be described
in the next sections.

Schlick has made the assumption that the level of the darkest non-black
gray is what really changes under di�erent viewing conditions and device
settings. The user should �nd the input level of the darkest non-black gray
level M and compute the parameter p according to the following formula:

p =
M � Lmax �M � Lmin

N � Lmin �M � Lmin

� M � Lmax

N � Lmin

(5.2)

The idea is then to map the smallest non-zero pixel value of a raw image
to the darkest non-black gray of a display device. In order to �nd M, Schlick
proposes to display squares of di�erent grays randomly on a black background
and to select the darkest still recognizable square.

Although this mapping is very fast we �nd its use limited to raw images
with a moderate overall contrast value. Using this mapping with some high
contrast raw images led us to unusable results. When we set the parameter
p manually the resulting images were great. The reason why results are
unsatisfactory for very high contrast images, lies in the fact that the mapping
is applied to the whole raw image range. Suppose that there is only one pixel
in the raw image that has a very high luminance value Lmax. This pixel will
cause p to explode, and the whole mapping technique will become useless.

This method is ilustrated in color plates 1c, 6a, 10a, 10b and 10f.
A possible solution for high contrast raw images could be to combine

Schlick's mapping with the minimum information loss method as described
in chapter 6.

Schlick speculated about spatially non uniform mapping in his work as
well, but ended up with just another spatially uniform solution, similar to
the original one.

5.2 Exponential Mapping

This section will describe an exponential mapping method introduced by
Ferschin et al. in [FeTP94]. The main idea of this mapping method is to use
an exponential function that will be not a�ected by a few very dark pixels.
This function has actually been developed from the idea of using a stepwise
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linear mapping function. An exponential function overcomes the problem of
discontinuities in the shadows when a stepwise linear function is used. The
exponential mapping function is:

n = nmax � (1� e
�L

Laverage ) (5.3)

Figure 5.1 shows the exponential mapping function for a hypothetic raw
image with luminances in range [0; 5000], and an average value of 1000. The

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1500 2000 2500 3000 3500 4000 4500 5000

Computed  raw image luminances

average

D
is

pl
ay

 d
ev

ic
es

 in
pu

t v
al

ue
s

Figure 5.1: Exponential mapping

resulting images provide a smooth transition between all luminance gradients.
The authors also introduced an alternative form of compression through the
alignment of a reference white point of the radiosity scene with the white-
point of the monitor actually used. This really interesting approach is realized
by using the radiosity white point in the conversion of the radiosity results to
the CIE XYZ, and then using the display device's white point by converting
CIE XYZ values to the monitor values.

Authors have also experimented with clipping in CIE LUV and CIE LAB
color spaces, and reported no visual di�erences between all three clippings.
Therefore, they suggest using RGB clipping because of its reduced compu-
tational demands.

Note that this method is also an average based method. This means that
the average value will always be mapped to the 0.632 input value, displaying
dark scenes too bright and bright scenes too dark.

The resulting images rendered using this mapping are shown in the results
chapter, color plates 1b and 5b.
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5.3 Tumblin and Rushmeier's Mapping

This mapping method was �rst introduced as a technical report in 1991
[TuRu91] and then in 1993 [TuRu93], and is still considered as state of the
art in tone mapping. Unfortunately, it is developed for gray scale images only.
It is very comprehensive but still not complete. It includes seven di�erent
parameters which should be set by the user, and some of them are not always
available to common users. Just as in Ward's mapping, absolute units are
required here. Note that it cannot be considered as a drawback, it is just a
necessity if the lighting atmosphere is important. If a raw image is rendered
in �ctitious units, it is just not possible to say if the lighting in the scene is
strong or weak.

Tumblin and Rushmeier �nd the inspiration for their work in the fact that
most image synthesis algorithms do not know the di�erence between night
and day - di�erences that are so obvious to the human eye. They wanted to
display the original lighting atmosphere of the raw image in the �nal image.
If the �rey illumination is simulated it should produce a very dark image,
and on the other hand if the scene is lit with a very strong anti aircraft search
light the �nal image should be almost completely white. The process of tone
reproduction is well known in photography, where the original atmosphere of
the scene should be displayed in the photo. Fortunately, computer graphics
have unlimited possibilities in choosing the tone reproduction function. It
can be very complex, and it is still quite easy to implement. Photographers,
on the other hand, are limited with just a few chemicals and photo papers,
and can not develop such sophisticated tone operators.

Tumblin and Rushmeier's (TR) mapping technique uses results obtained
by Stevens et al. [StSt63] regarding the brightness associated with a lumi-
nance at a particular adaptation level. A power law that relates luminance
L measured in lamberts to brightness B in brils at an adaptation level of La

is:
B = 10�a � L�a (5.4)

where �a and �a are:

�a = 0:4 � log10(La) + 2:92 (5.5)

�a = �0:4 � (log10(La))
2 � 2:58 � log10(La) + 2:02 (5.6)

In the �rst technical report [TuRu91] the authors used the average value
as the adaptation luminance, but in the �nal version [TuRu93] they used
another approach. They used the assumption that the eye adapts in an
attempt to keep most brightness near the \brightness constancy" contour of
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8:4 dB0 [StSt63] below La, therefore La is:

log10(La) = Eflog10(L)g (5.7)

where Eflog10(L)g is the expected value of log10(L).
Although Tumblin and Rushmeier are aware that Stevens's data is not

valid for complex viewing conditions and complex scenes (see section Human
Vision), they still used this model, and not the improvement suggested by
Bartelson et al. [BaBr67], because of lower computational cost, and problems
with the root �nding of the extended model.

The TR tone mapping operator attempts to match the brightness of the
real-world luminance with the brightness of the display luminance. By setting
Bw = Bd where Bw represents the brightness of a real-world luminance and
Bd the brightness of a display luminance, and using equations 5.4, 5.5, 5.6
as follows:

Ld = L

�a(w)
�a(d)
w � 10

�a(w)��a(d)
�a(d) (5.8)

Note that �a(d) and �a(d) are functions of the adapting luminance of the
display La(d). According to eq. 5.7, Ld should be known in order to compute
La(d). To solve this problem, the authors suggest taking La(d) as a constant,
since it has little inuence on �a(d) and �a(d). The suggested value is:

La(d) =
Ld maxp
Cmax

(5.9)

where Cmax is the maximum available display contrast, depending on the
display gamma, ambient illumination and maximum available display lumi-
nance Ld max.

Finally the complete tone mapping operator can be written as:

n =

2
64L

�a(w)
�a(d)

Ld max

� 10
�a(w)��a(d)

�a(d) � 1

Cmax

3
75

1
display

(5.10)

This operator is designed to reproduce overall brightness appearance, and
not to reproduce visibility (in contrast to Ward's, Ferwerda's and visibility
matching mapping described later). We tested the TR operator and the
resulting images look a little bit too dark. We suppose the reason lies in the
fact that this mapping operates within the whole range of human vision. The
model functions up to luminances of 3:18�106 cd=m2, and just for comparison,
snow covered ground in full sunlight emits 1:6 � 104 cd=m2 or horizon sky
emits 3:0 � 104 cd=m2 on a day with sunlit clouds. As the bright images are
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reserved for such extreme lighting conditions (search lights), normal light
images tend too be a little bit too dark in our opinion. We have applied
the TR operator on each color channel separately, just as Ward did in the
RADIANCE [Ward94a] package. We are aware that this is not the right way,
but �nding a better way would certainly exceed the scope of this work.

Nevertheless, if the analysis of extreme lighting conditions is important
this could be just the right model. It is complicated to implement this model
exactly, but it is worth trying. Resulting images are shown in the results
chapter, color plates 9e, 9f, 13c, 13d, 17c, and 17d.

5.4 Model of Visual Adaptation

A model of visual adaptation has been introduced by Ferwerda et al. in
[FPSG96]. This model is based on Ward's contrast based scale factor. The
di�erence is in the functions used for just noticeable di�erences. Ferwerda et
al. use the whole set of di�erent functions for scoptic and photopic vision. In
the mesotopic range they use a linear combination of scotopic and photopic
functions.

Visual acuity is also taken into account by this model, and dark image
parts are simply blurred using a Gaussian convolution �lter, since the human
visual system is not capable of resolving details in dark areas (see Human
Vision section).

The temporal aspect of adaptation is also taken into account. It is possible
to simulate an adaptation process over time using this model.

As it is necessary to determine adaptation luminances for using this
model, the authors suggest to assign display adaptation to half the maxi-
mum screen luminance (same as Ward in his contrast based scale-factor),
and the world adaptation to half the maximum of the raw image luminance
(di�erent approach than used by Ward). This is probably the weakest point
of the whole mapping technique. Imagine, for example, one extremely bright
pixel at the edge of the image. It certainly will not inuence adaptation level
that much, as it will seem from this approach.

This is the �rst, and still the only mapping method that accounts for
temporal change in adaptation. Therefore, if such visualisation is needed, this
is the only possible choice of tone mapping. Ward et al. developed a new
visibility matching operator, that borrows heavily from Ferwerda's model,
but the adaptation level determination is much improved. This improved
model will be described in more detail next.
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5.5 Visibility Matching Tone Reproduction

Operator

The tone mapping operator described in this section has not been published
yet. Actually, only a short sketch was published at SIGGRAPH '97, and
the whole paper is available electronically from the RADIANCE WWW site
[RADI97]. We decided to include this mapping in this work as it seems that
this mapping will be widely spread in the future. It is based on Ferwerda's
mapping, but adaptation level determination is improved. In contrast to all
previous methods, that used only one adaptation level for the whole raw
image, this mapping uses many adaptation levels, just as our visual system
does.

The tone mapping process starts with computing a small image where
each pixel corresponds to one visual degree. Actually only center pixels
correspond to the 1 degree angle, but the error introduced in the border
pixels is neglectable. The 1 degree area corresponds to the adaptation area
of our visual system. This small image will be used to determine adaptation
levels at each �xation point. Luminance is converted to brightness simply
by taking the logarithmic values of luminances. Once the auxiliary image is
generated, a logarithmic histogram is built.

A logarithmic histogram is built in the luminance range from the thresh-
old of human vision (10�4 cd=m2) or the minimum auxiliary image luminance,
whichever is larger, to the maximum auxiliary image luminance.

The next step is histogram equalization. Actually this is not the next step
in the fully implemented method, but this is the base of the whole algorithm,
and therefore it is described �rst.

Histogram equalization is a well known technique from image processing.
The cumulative frequency distribution P (b) is needed to equalize a histogram.
P (b) is de�ned as:

P (b) =

P
bi<b

f(bi)

T
(5.11)

where T is the total number of histogram entries, and P (bi) is the frequency
count for the histogram bin at bi. Later on, the derivative of the above
function will be needed as well. The derivative is:

dP (b)

db
=

f(b)

T�b
(5.12)

where

�b =
log(Lmax)� log(Lmin)

N
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andN is the number of histogram bins, therefore �b corresponds to the size of
each bin. Note that since the cumulative frequency distribution is a numerical
integration of the interval, the derivative of the cumulative distribution is the
histogram with an appropriate normalization factor.

A common histogram equalization (but here applied on the raw-image)
would produce an image where all brightness values have equal probability.
The equalization formula can be written as:

Bd = log(Ldmin) + [log(Ldmax)� log(Ldmin)] � P (B) (5.13)

where Bd stands for display brightness, and B for the raw image brightness.
The problem with this approach is that the dynamic range will be compressed
in the regions where there are only a few samples, and it will be expanded
in highly populated regions. This results in an unnatural appearance of the
�nal image, and certainly can not be used as useful tone mapping operator.

Suppose that the 60% of pixels have luminnace lower than 0:1 � Ldmax.
In this case, small original luminnce range ([0; 0:1 � Ldmax) will use 60% of
available display luminances. In order to prevent this unwanted e�ect, Larson
et al. suggest limiting an allowed contrast in a particular region. Actually,
although naive histogram equilasation will propose enlarging of the original
contrast, it will not be allowed. At the beginning they used a linear ceiling,
which can be written as:

dLd

dL
� Ld

L
(5.14)

In this way the contrast can not exceed the contrast obtained by using a linear
scaling operator. Note that dLd=dL is actually the slope of the mapping
function Ld = f(L). Using this type of ceiling the slope of the mapping
function can not exceed that of appropriate linear mapping. From the above
equations it is easy to derive following inequality:

f(b) � T�b

log(Ld max)� log(Ld min)
(5.15)

where f(b) is the frequency count for the histogram bin b.
Using this inequality we can be sure that as long as no frequency count

exceeds this ceiling, the resulting histogram will not exaggerate contrast. If
some histogram bin is too populated, it is simply cut o� and the ceiling proce-
dure is repeated iteratively, until there are no more overpopulated histogram
bins. This process is called histogram adjustment rather than histogram
equalization by the authors.

Up to now, there were no human vision characteristics taken into account
in this process. The authors say that if the raw image is not rendered in
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absolute units, a histogram adjustment, as just described, can be applied to
the raw image. If absolute units are known, the method can be improved.

In the case of absolute unit raw image, the ceiling function is derived
from the just noticeable di�erence functions (see section Human Vision).
The just noticeable di�erence for adaptation level La will be called �Lt(La).
To guarantee that the display representation does not exhibit contrast that
is more noticeable than it would be in the actual scene, the slope of the
operator is constrained to the ratio of the two adaptation thresholds for the
display and actual scene. Note that this is the same principle introduced
by Ward in his contrast based scale-factor [Ward94] and used by Ferwerda
et al. in [FPSG96]. In contrast to the earlier approaches, where only one
adaptation level was chosen, this constraint will be met at all potentional
adaptation levels, making this operator more accurate. The new ceiling is
then:

dLd

dL
� �Lt(Ld)

�Lt(L)
(5.16)

After a similar derivation as with the linear ceiling a ceiling inequation for
f(b) is de�ned as:

f(b) � �Lt(Ld)

�Lt(Lw)
� T�bL

[log(Ld max)� log(Ld min)] � Ld

(5.17)

Just as before, an iterative process leads to the solution. Applying this sort
of ceiling function will produce images that reproduce original visibility on
the �nal image. This operator is further improved by taking the veiling
luminance into account (see section Human Vision).

The formulas described in the Human Vision section are used to incorpo-
rate veiling luminance. This is the computationally most expensive part of
the algorithm, as the sum (integral in the original formulas) has to be com-
puted over all samples for each �xation point using the following equation

Lvi = 0:087 �
P

j 6=i
Ljcos(�i;j)

�2
i;jP

j 6=i
cos(�i;j)

�2
i;j

(5.18)

where Lvi is the veiling luminance for �xation point i, Lj is original �xation
luminance for �xation point j, and �i;j is the angle between sample i and j
(in radians, that is why 0:087 stands at the begining of the eq. 5.18).

Once the veiling luminances Lvi are computed, the original luminances
Li are replaced by Lai using the formula derived from eq. 2.22:

Lai = 0:913 � Li + Lvi (5.19)
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Visual acuity is taken into account, as well. The data used was the same
used by Ferwerda et al., it is described in the human vision section. The dark
image parts are blurred, as the human vision acuity drops with luminance.
Ward et al. used the mip-maps approach well known from texture mapping
to realize various acuities depending on the absolute luminance levels.

The visibility matching tone operator described in this section, tries to
match the visibilities in the original scenes with the display visibilities. Var-
ious aspects of human vision were taken into account, and the produced
images match the visibilities. On the other hand, the �nal images look a
little bit unusual. Maybe that is because we are not used to images and
photos that match the visibility in high range images. This means that if
there is a scene with a window on a sunny day, the new operator will display
the interior and exterior part, and will try to match the visibility in both
parts. It may look unusual to us, as we are used to seeing either the interior
or the exterior in such a case (although we can see both in real life).

If the analysis of visibility is crucial in a rendering process (e.g. simulation
of emergency lighting) this operator should be used. On the other hand, in
everyday use it can sometimes render unusual (that does not mean incorrect)
images.



Chapter 6

Minimum Information Loss

Methods

This chapter describes the whole family of mapping methods called minimum
information loss methods. These methods are one of the contributions of
this thesis. We developed these methods in order to determine exposure
automatically. The methods follow, in a way, a photographers' approach.
The main idea is to place the clipping interval so that a minimum amount of
information is lost, thereby preserving the original contrast of all correctly
displayed pixels.

Just as in interactive calibration (see section 4.2) a raw image histogram
is used in the optimization process.

6.1 Search for the Optimum Contrast Inter-

val

6.1.1 How is it done in Photography?

The method of mean light intensity is the most commonly used method in
non-professional photography since in most cases it gives acceptable results.
According to [Morv84] the method gave good results in 80% of amateur
motifs (the sample was ten thousand motifs). In the remaining 20% the
aperture should be shifted up or down to obtain optimal results. E.g., if
the main subject is in shadow, an average measure causes the main subject
to appear only as a silhouette. For the sake of a display rich in detail, the
aperture often has to be opened by 2 or 3 units, compared to the measured
mean value. This means that the desired result would be obtained from a
mean illumination twice or three times higher on the log2 scale - i.e. the

47
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value 4 or 8 times higher than the average value is displayed as "medium
gray". Thus, the clipping window has to be shifted on the log2 scale up to 3
units compared to values resulting from the average measurement method.
For strong contrast subjects in professional photography, a spot metering is
made for all the typical details, that may result in a subject contrast of even
several hundreds or more. Then, a contrast interval of 32 has to be selected,
which produces the least loss due to the forced clipping. The fundamental
method presented in this work follows that idea.

6.1.2 Mean Light Method in Photography

In photography light measurement techniques work with the assumption that
the scene contrast is 32. The value two times greater than the average mea-
sured lightness will be the white on the picture. The logarithmic middle gray,
which is very near to the perceptual middle gray is 0:18 = 2�2:5 times the
lightness of white or 2�1:5 times the measured average value. All values larger
than the white value (two times average) will be clipped to white, and all
values below white/32=average/16=black will be clipped to black. In other
words, the clipping window on the logarithmic scale is logarithmic middle
gray �2:5. Let us consider an example from computer graphics with classi-
cal mean value linear mapping. We assume a gamma corrected display device
with linear response and input range [0,1]. 0 corresponds to the minimum
displayable luminance level (in our case let it be 1/32) and 1 corresponds to
the maximum displayable luminance value (let it be 1). The values larger
than two times the average value will be clipped to 1, as in photography, but
there is no clipping for low values. 0 absolute luminance will be displayed
as 1/32 in our example. Figure 6.1 illustrates the two approaches. The dif-
ferences in the �nal images are not signi�cant because the main di�erence
occurs in dark image parts where our perception in bright surroundings can
not perceive them.

6.1.3 Main Goal of the Optimization

The main goal of our method is to �nd the interval [A;B] such that B = C �A,
where the C is the given clipping contrast, and that a minimum amount of
information is lost due to the applied clipping. The clipping contrast depends
on the display media, and should equal the maximum displayable medium
contrast. Clipping will be done in the most simple way, thus setting values
larger than B to B, and those less than A to A. As we want the minimum
amount of information to be lost, let us �rst de�ne what information is. Two
approaches will be introduced.
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Figure 6.1: Photographic and CG mean value mapping

In the �rst approach each color component is considered as an equally
important information unit. So minimizing the information loss means min-
imizing the total number of color components clipped. Note that the loss of
e.g. 3% of color components could mean that 3% of the pixels are a�ected
by clipping (if each of these 3% is a�ected in all 3 components) or up to 9%
of the pixels are a�ected by clipping (if all of the clipped color components
belong to di�erent pixels). Usually there are not many pixels clipped only in
one or two components. These are color highlights and saturated colors. As
these pixels make up only a tiny part of an average image, the percentage of
a�ected pixels tends to be close to 3%.

In the second approach the pixel is considered to be the essential infor-
mation unit, so the number of a�ected pixels shall be minimized. Usually
there are no big di�erences between the optimum intervals in these two ap-
proaches, but some di�erence almost always occurs. The �rst approach will
be called minimum information loss, and the second minimum area loss.

6.1.4 Minimum Information Loss

Building a Logarithmic Histogram

The whole optimization process is done on a logarithmic image histogram. A
logarithmic and not a linear histogram is used, because the clipping interval
has a constant size for a given contrast on the log scale. Another reason is
the possibility of building a logarithmic histogram from high contrast images
with a relatively small array. Throughout this chapter log2 is used, although
any other base would yield the same results (the base 2 is chosen in analogy
to photography). While forming the histogram, values below a certain value
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Lmin (log2(Lmin) = lmin) and above a value Lmax(log2(Lmax) = lmax) should
be clipped to these values, as the log2 is not de�ned for 0, and the histogram
array is limited for huge luminance values. The histogram is an array, in
which each array member holds the number of pixels with the corresponding
luminance. The luminance values for each pixel in the raw image are stored in
oat format, so actually each histogram array member represents luminances
in a certain interval. These equidistant histogram intervals are arbitrarily
long, but a �ner histogram yields a more precise result. We will de�ne the
histogram array as H[k], where k 2 [1; kmax], the value lmin corresponds
to H[1] and lmax to H[kmax]. The luminance corresponding to H[k] will
be called Lk and the log2Lk = lk. The di�erence of the logarithms of two
adjacent grades, the elementary histogram interval �, is

� =
l2 � l1
kmax

(6.1)

The size of the clipping interval for a given clipping contrast C is called
CLIP and

CLIP = int(log2(C)=�) (6.2)

A possible choice for the above values could be: Lmin = 2�20, lmin = �20,
lmax = 20, C = 25 = 32, kmax = 8000, then d = 0:005 and CLIP = 1000.
The histogram array is initialized to zero, and then for each color component
of all raw image pixels, H[k] is incremented, where

k = int((log2d� lmin)=�) (6.3)

and d stands for one r, g, or b color component. Note that the raw image
does not need to be stored. The histogram can be built simultaneously with
the calculation of pixel luminances. Note also that the number of histogram
entries (the sum of all H[k]) is three times the number of pixels in the raw
image. After the histogram is formed, the optimum clipping interval has to
be found.

Search for the Optimum Clipping Interval

All we have to do is to apply a discrete algorithm on the histogram formed
in the previous chapter. The length of the interval is CLIP, and we can
�nd its position by shifting the interval along the complete histogram in
discrete steps of one. In each step the error sum is increased by the outgoing
histogram member and decreased by the incoming one. The pseudo code is
given in algorithm 1.
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error :=0;

for i := CLIP + 1 to kmax do

error += H[i];

leasterror := error;

best := 1;

for j := 1 to kmax - CLIP do

begin

error +=H[j];

error -= H[j + CLIP];

if error <= leasterror then

begin

leasterror :=error;

best := j + 1

end

end

Algorithm 1

The optimum clipping interval starts at H[best], and ends at H[best +
CLIP � 1]. The algorithm runs in linear time O(kmax). The actual [a; b]
interval is then:

a = lmin + best � � (6.4)

b = a+ c (6.5)

or in linear scale:
A = 2a (6.6)

B = A � C (6.7)

Now clipping can be done at [A;B] and the �nal image can be generated.
Figure 6.2 shows a logarithmic histogram of the images shown in color plates
1 and 2, and the optimum clipping interval for contrast C=50.

Clipping Error

The simplest is to consider all clipped pixels as contributing to the error
equally, as is done in algorithm 1. This means applying a 0-1 type discrete
error function. Obviously it is not really the same if a pixel with a value
just slightly above B, or one with a value very far from B is clipped to B.
The problem can be solved by applying an error function linearly penalizing
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Figure 6.2: Logarithmic histogram with optimum interval of C=50

the distance from B (or A for the other side of the interval). A combination
of these two error functions, a value limited alternative of the latter can be
used as well. All functions are shown in �g. 6.3. Although it seems that
applying an error function which is not the discrete 0-1 function can increase
the complexity and run time, we will show how an error function of type
c in �g. 6.3 can be applied, and the process still runs in linear time (this
algorithm was suggested by Attila Neumann).

b

c

a

Figure 6.3: Various types of error functions

Let us de�ne the error function as in �gure 6.4. error(a; k) gives the error
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weight of position k for the clipping interval [a; b], where b = a + CLIP .

error(a; k) =

8>>>><
>>>>:

0 for k 2 [a; b� 1]
G for k 2 [1; a� d� 1] [ [b + d; kmax]
(a� k) � G

d+1
for k 2 [b; b+ d� 1]

(k � b) � G
d+1

for k 2 [a� d; a� 1]

(6.8)

G

a b

d CLIP d

kmax

Figure 6.4: Error function

for given G and d:

g =
G

d+ 1
(6.9)

We need one additional precomputed array, e[a]. The array e contains
inuences on the error for each step. It is de�ned recursively. First let us
de�ne f(a) as:

f(a) =

8><
>:

0 for a � 0
f(a� 1) +H[a] for 1 � a � kmax

f(kmax) for a > kmax

(6.10)

and e[0] as:

e[0] =
kmaxX
i=1

error(0; i) =
CLIP+dX
CLIP+1

(i� CLIP ) �G=d �H[i] +G � [f(kmax)� f(CLIP + d)]

(6.11)
Note that e[0] corresponds to the starting position as seen in �g. 6.5.
We will de�ne �e[a + 1] as:

�e[a + 1] = e[a + 1]� e[a] (6.12)
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Figure 6.5: Starting position

e[a] = e[a�1]+g �[f(a+1)�f(a�d)]�g �[f(a+CLIP +d+1)�f(a+CLIP )]
(6.13)

Once the e[a] has been computed, all that has to be done, is to �nd the
minimal e[a] for a 2 [0; kmax�CLIP ], and a is then the starting point of the
interval.

6.1.5 Minimum Area Loss

In this section we are going to explain how the clipped image area can be min-
imized. Our goal is again to �nd an [A;B] interval, of known contrast C, and
clipping all color components outside [A;B] just as in the previous chapters.
Instead of the logarithmic histogram, we should use a 3D representation, to
preserve the information to which pixel each color component belongs. We
will use a discrete space, just as before, and we will use a logarithmic axis for
the same reason we used a logarithmic histogram. The problem of �nding
the interval now becomes the problem of �nding the cube which contains the
most pixels. Note that the cube can only be shifted along the line r=g=b,
as we have to apply the same [A;B] interval to all color components. The
problem is illustrated in �gure 6.6. Although it might seem to be a com-
plex problem from computational geometry it can be solved in linear time.
First note that all pixels that lie outside the sweep formed by moving the
cube cannot ever be contained in the cube. Such pixels can immediately be
considered as error-pixels.

The idea of the algorithm is to pretabulate the inuence of every pixel on
all steps. This is done quite simply with two lists. Let's call them inclusion
and exclusion lists. The inclusion list contains the e�ect on the total error
if the cube is moved forward, so that the pixel is just included in the cube,
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Figure 6.6: Minimum area loss idea

and the exclusion list contains the e�ect on the total error when the pixel
just leaves the cube. The pseudo code is given in algorithm 2.

Pixels outside the cube are considered as equally weighted error-pixels
whether they are near the cube or very far away. The inclusion of various
error functions is straight forward, and although the complexity and the run
time are increased, it can be still done in a linear time.

6.1.6 Mapping of the Interval

Once the optimum clipping interval is found it should be mapped to the
display device's input values. If the clipping contrast equals the display
device's contrast a linear mapping should be used. The implementation is
straightforward. First all values less than A are set to be equal A, and all
values greater than B, are set to be equal B. Now, the [A;B] interval should
be linearly mapped to the [0; 1] input interval.
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ext error := 0;

int error := 0;

error := 0;

for all pixels do

begin

if max(r,g,b) - min(r,g,b) <= CLIP then

begin

I[max(r,g,b)]++;

E[min(r,g,b)]++;

end

else

ext error++;

end

for i:= CLIP + 1 to kmax do

int error := int error + I[i];

least error := int error;

best := 0;

for j := 1 to kmax - CLIP do

begin

int error -=I[j + CLIP - 1];

int error += E[j -1];

if int error < least error then

begin

least error :=int error;

best :=j;

end

end

error :=least error + ext error;

Algorithm 2

6.1.7 Limited Information Loss

Up to now we have proposed a �xed contrast, and we have found a clipping
interval such that the lost information is minimized. Sometimes, for high
contrast images, the information loss will be too high. In this case, we propose
to bound the information loss, and to �nd the smallest clipping interval
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that causes no more than the allowed information loss. As the clipping
contrast will be higher than the display device contrast in this case, a linear
mapping will not function properly any more. In order to match the human
vision characteristics, we propose to apply Schlick's mapping on the clipping
interval. One of the biggest disadvantages of Schlick's mapping technique
is the explosion of the parameter p if the total image contrast is too high.
If there are only few very, very bright pixels in the image, they increase
the overall contrast, and the parameter p explodes. If our limited error loss
scheme is applied, for a proposed error (i.e. 10%1) the clipping contrast will
be smaller than the overall contrast, and Schlick's mapping will produce good
results. If there are few very bright or very dark pixels in the image they will
be clipped and will not contribute to the computation of the parameter p.
Note that almost the same results would be obtained if a linear mapping on
the log scale would be applied. We recommend Schlick's mapping due to its
lower computational cost, and its ability to adjust the �nal image according
to the display media characteristic (the least non-black input level). The
following equation describes Schlick's mapping:

n =
p � L

p � L� L + Lmax

(6.14)

where n is the input level, n 2 [0; 1], L is the luminance value and p is:

p =
M � Lmax �M � Lmin

N � Lmin �M � Lmin

� M � Lmax

N � Lmin

(6.15)

where M is the smallest non-black input level, and N is the number of input
levels. In order to �nd M, Schlick proposes to display squares of di�erent
grays randomly on a black background and to select the darkest still rec-
ognizable square. Of course values Lmin and Lmax in eq. 6.14 should be
replaced with A and B in our case.

Images mapped using these methods are shown in the results chapter,
color plates 1d, 1e, 1f, 6b, 7a, 7b, 8a, and 8b.

1The allowed error is an arbitrary chosen small percentage. From our experience, results
will be satisfactory in most cases if the error is less than 10%.



Chapter 7

Incident Light Metering

All mapping methods described so far were based on raw image radiances
only. As there is no information on objects' reectances in the raw image,
bright and dark objects can not be distinguished. The method described in
this chapter, incident light metering, makes it possible to reproduce original
objects' colors. That means if, e.g., a dark blue color is assigned to an object
in the modelling phase, it will be displayed as dark blue in the �nal image,
even if the whole scene is composed of dark objects (that is the case when
other methods would fail, as described later). The inspiration for this method
came from the incident light metering used in professional photography and
the movie industry.

7.1 Light Metering in Photography

As stated before, the method to be introduced relies on photography analo-
gies. There are two ways how light can be measured in photography:

The �rst is incident light metering. It was used at the beginning of the
photography era by portrait photographers. The main idea is to measure the
light falling on the subject that is photographed. The incident light meter is
placed at the subject position and aimed to the camera (see �g. 7.1). Portrait
photographers had the possibility of walking up to the subject, measuring the
light, and then walking back to the camera to adjust the exposure. Actually,
this is still done in professional photography, and in the movie industry, where
the incident light is measured even outdoors via �ll panels, and stand-ins are
paid to stand around the scene and be metered for light adjustment purposes
(that is the reason why they are called stand-ins).

For landscape photographers it is not possible to walk to the subject
to measure the light, so they use reected light metering only, where they

58
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measure the light coming to the camera from the subject direction (�g. 7.1).
When people started to take photos of moving targets, it was also more
convenient to measure the light from the camera position. Unfortunately, in
contrast to incident light metering, reected light metering is not independent
of subject reectivity or BRDFs of the scene, and the relative preponderance
of light or dark areas in the scene. This is still the biggest drawback of
reected light metering. Nowadays, however, in spite of all its drawbacks, it
is used more often than incident light metering, since a lot of improvements
in reected light metering have been introduced. All these improvements
try to compensate for the subject variations over the imaginary average gray
scene.

Figure 7.1: Reected and incident light metering

Figure 7.2 shows a light meter that can be used for reected and incident
light metering. Note the white hemisphere that acts as a half-space integral.

7.2 Incident Light Metering in Computer

Graphics

In spite of its inability to properly display bright or dark scenes, reected light
metering has been used in computer graphics exclusively up to now. Maybe
the computer graphics community has been inuenced by the fact that this
is the dominant method in photography. It is certainly not convenient for
a photographer to measure the incident light in all cases (and sometimes
it is simply impossible). However, in computer generated images it can be
achieved quite simply, as will be explained now. We will explain the method
for the monochrome (or black and white) case in detail �rst. The extension
to the color case is straight forward and described in the appendix.
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Figure 7.2: Incident and reected light meter

The main idea is to place a limited number of di�usors into the scene. A
di�usor is a half-space integrator used to measure irradiance. In computer
graphics a perfectly di�use surface can be used as the di�usor. Actually, the
outgoing radiance of a surface with perfectly Lambertian BRDF is propor-
tional to the surface's irradiance.

Usually only one di�usor is used in photography, as the photographer
knows the subject of interest in the scene. For computer generated images
more than one di�usor will be used, but the number of di�usors is still low
compared to the number of patches or pixels in the �nal image. We suggest
using e.g. 8 � 8 : : : 32 � 32 di�usors in the scene. The number of samples
required for incident light measuring is lower than the number for measuring
reected light, because the variance of incident light is much lower. Due to
the lower variance, the contrast of irradiance values is also lower than the
contrast of radiance values.

Of course it is possible to allow the user to place di�usors interactively
into the scene, but our intention was to create an automatic method. Once
the di�usors have been placed, the irradiance E of each di�usor should be
computed as:

E =
Z


L(din) � cos�ind! (7.1)

where �in is the incident angle,[�in] = rad, ! is a solid angle, [!] = sr, 

is the hemisphere, L(din) is the radiance in the d incoming direction, [L] =
Wm�2sr�1
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In general, for an arbitrary BRDF �(din; dout) the outgoing radiance for
distributed light sources is:

L(dout) =
Z


L(din) � �(din; dout) � cos�ind! (7.2)

For an ideal Lambertian BRDF

�(L; V ) = const: =
a

�
[sr�1] (7.3)

where a is the dimensionless albedo or reectivity, a 2 [0; 1]. That means
that:

0 � �(L; V ) � 1

�
(7.4)

Inserting a Lambertian BRDF in (7.2) and using (7.1) gives:

Lout = a � E
�

(7.5)

where Lout = L(dout) and has the same value for each dout direction of the
half space.

In the implementation methods to be described later, di�usors will be
realized as perfectly Lambertian, white, elementary metering surfaces, each
with the same albedo value: a = 1. For the sake of simplicity, let us �rst
assume that the lighting is totally homogeneous, i.e. each di�usor receives
the same irradiance value E. Therefore, all of the metering surfaces are the
same, corresponding to (7.5):

Lout
meter =

E

�
(7.6)

The linear scale factor m used to map the original radiance image is then:

m =
1

Lout
meter

=
�

E
(7.7)

Di�erent surfaces in the scene can have di�erent albedo values. How will
they be displayed using the scale factor m? According to (7.5) each surface
emits the radiance Lout = a � E=�. Multiplying this radiance with m (7.7),
results in exactly the albedo "a" being received for displaying. This is the
exact, desired, and correct solution!

In the case of inhomogeneous lighting there is a set of positions with
di�erent Emeter (and Lout

meter) values. From this set, a representative value
should be produced to be used as an appropriate scale factor. Our �rst
idea was to use the average value of a truncated histogram of the metering
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radiances (e.g. the lowest x % and the highest x % of the histogram values
are clipped, with an x between 3 and 10), because some very dark or very
light areas in the image can greatly inuence the average value. The value of
x is completely arbitrarily chosen and can be increased in order to eliminate
the excessive inuence of a dark or light part of the image. To eliminate this
e�ect we use the median value, where x = 50 %. In this general case the
scale factor m is:

m =
1

Lout
median

=
�

Emedian

(7.8)

where Lout
median is the median value of the Lout

meter values of the di�usor set.
In the case of inhomogeneous lighting, this method does not produce the

exact albedo value "a" for di�use surfaces. However, the method o�ers a
good compromise, in general a value near to the original "a". Sometimes the
resulting device input value will exceed 1, in this case we propose to simply
clip such values to 1.

Note that this is a two pass method. In the �rst pass a small irradiance
image is rendered and the scale factor m is found. In the second pass the
original image is rendered in the full resolution and this raw image is then
mapped using the scale factor m from the �rst pass. Of course, there are no
di�usors in the original scene used to render the �nal image.

The irradiance computation is included in some rendering packages (e.g.
RADIANCE [Ward94a]). The irradiance calculation is often used for lighting
engineering purposes. It is interesting that, in spite of this fact, up to now
irradiances were not used to simulate incident light metering in computer
graphics. In the next chapters we are going to explain how irradiance com-
putation can be implemented in most rendering software that uses any kind
of ray tracing or radiosity.

7.3 Irradiance Computation

7.3.1 Simple Ray Tracing without Interreections

The method will �rst be explained for simple ray tracing without interreec-
tions. This is certainly not a physically plausible case, but due to its low
computational cost, it is often used in real time applications (e.g. virtual re-
ality) and it is widely spread in commercially available software. Generally,
the di�usors can be placed in the scene using a regular grid on the projec-
tion plane. This grid resolution can be signi�cantly coarser than the image
resolution. The �rst intersections with scene objects are computed from the
view point, and at these intersection points the di�usors are placed, with the
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same normal as the intersected object's surface. Di�usors are white, per-
fectly di�use surface elements, used only for metering purposes, and are not
visible in the �nal image.

If no interreections are taken into account, the irradiances are inuenced
only by direct illumination from the light sources (sometimes, when an "am-
bient term" is added, it should be added to irradiance values also, simply by
adding a constant to all irradiance values). According to (7.1) irradiance can
be expressed as

E = Camb +
1

r � � �
MX
k=1

Pk
r2k
� cos�k (7.9)

where M is the number of point light sources, Pk is the power of the light
source k, rk is the distance between the light source k and the di�usor, �k

is the incident angle, Camb can be estimated from the average reectivity.
It can be shown that a view dependent ambient term can also be used

for non di�use BRDFs, this is the topic of forthcoming work.
The irradiances are determined for a very low resolution image, which

is not displayed. Of course, it is possible to render the "irradiance image"
in high resolution to illustrate the irradiance distribution in the scene. For
illustration purposes, instead of using white metering elements, all scene
surfaces are set to medium gray (albedo = 0.5) Lambertian surfaces instead
of using their original BRDFs. We call the result of rendering such a scene
a cement image (see Color plates 11b, 15a and 15b). Note that this cement
image is completely independent of the original BRDFs, so it is the same
for various scene attribute settings. It depends only on direct lighting, as
interreections are not taken into consideration, yet.

7.3.2 Distribution Ray Tracing

In distribution ray tracing [Glas95], interreection e�ects are additionally
taken into account. To compute the irradiances in this case, again a low
resolution image will be used for the metering. The di�usors are again placed
into the scene according to a coarse regular grid on the projection plane.
Di�usors are, just as before, elementary, white, perfectly di�use surfaces, not
displayed in the �nal image.

Let us assume a distribution ray tracing method using multiple reected
single rays starting from the view point. Now we place a white di�usor
metering element at each �rst intersection surface point (see �g. 7.3). Each
of these individual di�usors gathers the irradiance from its half space caused
by direct lighting and by interreections. Interreections are realized with
single rays starting from the actual elementary metering surface according
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to a cosine distribution. More precisely, by this rendering calculation the
correct values (see eq. 7.2) are estimated. From these values the median
value is determined and used to compute the scale factor m (see eq. 7.8)
which is then applied to the original radiance image.

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

@@
@@

original BRDF

original BRDF

first intersection-
  white diffusor

view point

light
source

Figure 7.3: Irradiance metering with distribution ray tracing

7.3.3 Radiosity

The incident light metering method can be easily implemented using ra-
diosity as well. During the �nal gathering step a limited number of scene
patches should be replaced by auxiliary light metering patches. These aux-
iliary patches are perfectly di�use white patches that are taken into account
only during the �nal gathering step. In this way their radiosity is propor-
tional to the irradiance and these radiosity values can be used for �nding the
scale factor. Of course, auxiliary patches are not displayed in the �nal im-
age, they are just used to �nd the scale factor. Note that the predominantly
used di�use radiosity method does not use radiance values, but radiosity, B,
which is � times radiance. In this case the eq. (7.5) will be:

B = a � E (7.10)

and the scale factor will be:

m =
1

Bmeter
median

(7.11)
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7.4 Color Case

The incident light metering has so far been described for the monochrome
case. In reality the di�usors gather colored light from half spaces. Color
light can either be caused by color light sources or can be the result of
interreections at "color" BRDFs.

The color case should include the monochrome case as a special case
(here monochrome means that r = g = b, or in the general case the spectral
reectivity �(�i) = const:), as neutral color and lighting. The results should
then be the same as in the monochrome case.

It is possible to introduce more color models for irradiance computation
which satisfy these conditions. These methods are very similar under average
lighting conditions, but they can di�er a lot when used in highly saturated
color lighting (e.g. disco, color neon, theater, �reworks lighting etc.).

Our intention for the color case is to �nd a scalar value f that represents
the irradiance value of the full spectrum. When using a simple 3 channel
model (for lighting and for BRDFs) for a given rgb triplet this value f can
be: f(r; g; b) = Y (r)+Y (g)+Y (b), where Y represents the CIE Y value which
corresponds to the relative lightness and has a maximum value of 100. But
also other functions like f(r; g; b) = (r + g + b)=3 or f(r; g; b) = max(r; g; b)
are appropriate for the neutral color. In the last two models the neutral color
is represented by an rgb triplet where r = g = b. Which formula from these
three should be used? The Y approach is widely used in photography, in
spite of its drawbacks. As stated before this approach gives good results for
average lighting color conditions. Figure 7.4 shows the ideal (human eye)
and the real spectral sensitivity curve of silicon blue cells used in an incident
light meter. To compare the three suggested scalar functions f(r; g; b) we

Figure 7.4: Spectral sensitivity of human eye and Si blue cell
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take a sample scene that consists of a homogeneously lit square, which lies
normal to the viewing direction. One quarter of this square is medium red,
i.e. Y (r) = 0:5 � 20 = 10, and (r; g; b) = (0:5; 0; 0), the second quarter is
medium green, i.e. Y (g) = 0:5 � 70 = 35, (r; g; b) = (0; 0:5; 0), the third
quarter is medium blue, i.e. Y (b) = 0:5 � 10 = 5, (r; g; b) = (0; 0; 0:5), and
�nally the last quarter is neutral, medium gray, i.e. Y (n) = 0:5 � 100 = 50,
(r; g; b) = (0:5; 0:5; 05).

For neutral homogeneous lighting (r; g; b) = (1; 1; 1) irradiance meter-
ing results in a neutral color which should only be scaled with Y = 100 or
(r; g; b) = (1; 1; 1) (for the sake of simplicity, the irradiance to radiance con-
version will not be explained, we only want to illustrate the original color
shift). The resulting colors will be the same as the original, medium red,
medium green, medium blue and medium gray.

Let us see what happens for a blue lighting (0; 0; 1). With light metering
we will measure an irradiance of Y=10, so we should use a scaling factor
of 100=10 = 10, which will make all colors highly (10 times) over-exposed.
More precisely, the red and green square quarters will be black as they have
no blue component, but the blue and gray square quarters will result in
(r; g; b) = (0; 0; 5) which will be displayed as (0; 0; 1) after the clipping instead
of the correct (0; 0; 0:5).

For green lighting, over-exposure will still occur, with (r; g; b) =
(0; 0:71; 0) for the green and gray square quarter, since green has the biggest
Y value, and blue the smallest (see �g. 7.4).

When f(r; g; b) = (r+g+b)=3 is used as an irradiance measuring formula,
for neutral (white) light the result is the same as above. For green and blue
lighting the resulting values are the same (only the corresponding components
are not). For this formula, green will be lighter than before, but blue will
not be so highly over-exposed. The scale factor will be 3 for both lightings,
so instead of the correct 0.5 the corresponding components will be 1.5, i.e. 1
after clipping. The zeros will remain zeros. It is obvious that the above two
methods sometimes produce signi�cant errors.

Finally, the third function f(r; g; b) = max(r; g; b) will be examined. The
idea is to compute the (r; g; b) irradiance value for each di�usor and to store
the maximum value for later median determination. In the above example,
with white, green and blue lighting the new (�ctive) irradiance value will be 1,
and the scale factor will be 1 as well. For white lighting the results are correct
just as before. With blue lighting the red and green square quarters will be
black (which is the correct result), and the medium blue and the medium
gray square quarters will be correctly displayed as (0; 0; 0:5) medium blue.

The results will also be correct for all square quarters with green and
red lightings. We suggest the reader �nds scale factors for various combina-
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tions of lighting (yellow, purple, etc.) and for various color samples. This
method always gives correct or signi�cantly better results than the �rst two
approaches.

In the general case when there are K (K > 3) discrete wavelengths, the
appropriate (r; g; b) triplet should be computed �rst. This can be done by
computing CIE XYZ coordinates �rst, and then converting them to r, g, b.

Sometimes one of the r, g, or b values can become negative, which means
that the color is outside of the device's gamut. At least one of the r, g, b
values will always be positive, however, so the selected maximum f(r; g; b) =
max(r; g; b) (�ctive) irradiance is always positive.

For neutral lighting the new maximum method gives the same result,
for unsaturated lighting it gives a similar result and for saturated lighting
it gives signi�cantly better results than the "Y approach" widely used in
photography.

The incident light metering method is ilustrated in the results chapter,
color plates 9, 10, 11, 12, 13, 14, 15, 16, and 17.

7.5 Conclusion and Future Work

A new approach of mapping luminance values to display devices has been
introduced. The completely new idea of applying the incident light metering
method in computer graphics has been described. Just as in photography, it
gives good results for average scenes, and for complicated lighting condition
scenes as well. It shows its strength even where usual methods based on
reected light metering fail. The new method displays bright objects as really
bright, and dark objects as really dark, independent of the average reectivity
of the scene. All colors are reproduced close to the originally selected patterns
using only a simple linear scale factor which is easy to compute. It works
well for high contrast (e.g. back lit) scenes, too. The method can be used
with or without absolute units. The lighting atmosphere of the whole scene
can be changed if the scale factor m is multiplied with a constant c, where
e.g. c 2 [1=2; 2]. In this way, irrespective of real irradiances, it is possible to
give an image a brighter or darker lighting atmosphere.

An important topic for future work is the use of absolute units in irradi-
ance metering. It would be interesting to combine the incident light metering
with the work done by Tumblin and Rushmeier [TuRu93], combining two im-
portant human vision characteristics this way.
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Color Image Di�erence

A good image metric is often needed in digital image synthesis. It can be
used to check the convergence behavior in progressive methods, or to compare
images rendered using various rendering methods. If images are rendered
using various levels of detail (LOD) it is very important to evaluate if a
certain LOD image is su�cient. Furthermore lossy compression methods
should also be evaluated somehow. Reproductions on various media should
be compared as well. Finally, an image query problem, when the most similar
image to a target image is seeked in the large image data-base, happens to
be another image metric application.

Of course, it is possible to compare two images by averaging pixel by pixel
di�erences. Unfortunately, human vision does not compare images this way,
therefore the results di�er signi�cantly from human comparison. As digital
images are in most cases rendered in order to be observed by humans, a metric
should correspond in some way to human vision. More precisely, if a human
observer would state that the distance between images A and B is greater
than that between images B and C, we expect a metric to give the same
results. Comparing images with the popular mean square error metric (MSE)
produces results that can di�er greatly from human evaluation [Giro93]. Our
intention is not to give the �nal solution for a perceptual metric, but rather
to o�er a simple, e�cient way of how images can be compared in the original
space with one single number.

More complex comparisons transform the image in the Fourier
[RWPSR95] or wavelet [GaMY97] space and perform the comparison there.
Rushmeier et al. [RWPSR95] introduce various techniques for comparing lu-
minance images. They use some ideas from image compression and develop
new metrics. All these metrics are computed after the images are trans-
formed to Fourier space, and the whole method is designed for luminance
images. As luminance images contain no information on color, these metrics

68
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obviously fail for color images, they are intended to be used for gray scale
images only.

Jacobs et al. [JaFS95] have introduced a very fast multi-resolution query-
ing method, which is intended for a di�erent purpose. Their work is based
on the wavelet transform.

Gaddipati et al. [GaMY97] have introduced a wavelet based metric. In
order to compute some coe�cients used by this metric, images should be
transformed to the Fourier space �rst, which makes this metric very compu-
tationally expensive. The whole metric operates on the separate CIE LUV
components, actually only the L� component of the CIE LUV space was
used by the authors, and they did not suggest how other components could
be used and combined with the L� measure.

We are going to o�er a solution for color images in original space using
some human vision characteristics. Of course, it is possible to compute the
luminance of each pixel and then to use a metric for luminance images, but
as stated before, some color di�erences would be lost. Our idea is to �nd the
weighted average of color di�erences of an appropriate set of \area pairs".
The areas will be rectangles, which are quasi-randomly de�ned in the image.
The results of various sizes and numbers of rectangles are combined.

The contrast sensitivity function (see Human vision section) as suggested
by Manos and Sacrison [MaSa74] will be used as the weighting function. The
same function is used by Rushmeier et al. [RWPSR95] and Gaddipati et al.
[GaMY97].

8.1 Contrast Sensitivity Function

The contrast sensitivity function described in the Human vision section is
given for frequencies in cycles/degree. As we want to compute our metric
in image space, frequencies should be converted from cycles/degree to pix-
els/degree. This conversion is simple and follows straight forward from the
viewing geometry for a given viewing distance. Actually the whole metric
is viewing distance dependent. (The other above mentioned metrics are also
viewing distance dependent, although it is not explicitly mentioned in the
above papers). Consider, once more, our picture with the black and white
stripes. Let the stripes be 1 cm wide now. You will agree, the stripes will be
clearly and sharply distinguishable if the image is observed from 50 cm. But
what happens if the viewing distance is, let's say, 100 meters. The image
becomes gray again. Let us derive the cycles/degree to pixels/degree conver-
sion now. Actually we are interested in how many pixels contains one visual
degree. We will denote the viewing distance given in cm as d, the display size
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in cm as W , the display resolution in pixels as R, the width of the display
portion covered by 1 visual degree given in cm as w, and the number of pixels
in w as r (see �g. 8.1).

CRT

W

w

d

α

view point

Figure 8.1: Viewing geometry

From simple geometry follows:

w = 2 � d � tan�
2

(8.1)

r =
w

W
�R =

2 �R � d � tan�
2

W
(8.2)

Now, according to the Shannon sampling theorem [Glas95], the maximum
frequency that can be realized using r pixels is r=2 cycles.

Let us illustrate this conversion using the next example: Our display
device is a CRT monitor. The width of the monitorW is 34 cm. The display
resolution is 1280 pixels, and the viewing distance is 50 cm. We are interested
in the number of pixels r contained in one (� = 1�) visual degree. According
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to (8.2) r is:

r =
2 �R � d � tan�

2

W
=

2 � 1280 � 50 � tan0:5�
34

= 32:854 (8.3)

Since the maximum displayable frequency is r=2, frequencies above 16.427
cycles/degree cannot be displayed. They represent the sub-pixel range (see
�g. 8.2). If we want to exploit our visual system to its maximum we should
move the maximum frequency toward 60 (remember that the contrast sen-
sitivity function is practically 0 above 60 cycles=degree, see section 2.3.5
Contrast Sensitivity Function), either by increasing the viewing distance d,
or resolution R (see equation 8.2). If the distance d is increased further, such
that the maximum frequency goes above 60, we are not able to see the indi-
vidual pixels any more. Larger pixel areas will become the essential image
elements now. Note that if the changes on the pixel basis are important we
can decrease the viewing distance d in order to move the maximum frequency
near the peak of the contrast sensitivity function A(f).
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Figure 8.2: Subpixel range for maximum displayable frequency of 22 cy-
cles/degre

8.2 The Main Idea

Our main idea is to place a limited number of rectangles of various sizes in
an image (more precisely in each of the two images that will be compared),
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then to compute the average color of each rectangle in CIE XYZ color space,
and �nally to convert the average color to the CIE LUV space and compute
the color di�erence using the CIE LUV color di�erence formula:

�E� =
q
(�L�)2 + (�u�)2 + (�v�)2 (8.4)

Color di�erences will be weighted according to the rectangle size and the
contrast sensitivity function. In this way the di�erences that are more vis-
ible to us will be weighted stronger, and they will contribute more to the
�nal distance. CIE LUV space was chosen as it is perceptually more uniform
than CIE XYZ. If there is some noise in the image, it will automatically be
neglected by the contrast sensitivity function, unless it is visible and signi�-
cantly inuences our vision. Actually, more visible di�erences will contribute
to the error more signi�cantly.

As the number of all possible rectangles of various sizes in an image is
huge we are going to use only a subset of all rectangles. We will not allow
very thin rectangles, as we do not think they are so important in the image
comparison. Positions and orientation of rectangles will be chosen quasi
randomly, which makes the metric deterministic.

8.2.1 Algorithm Details

As stated before, we will need a large number of rectangles, of which we need
the average color. In order to compute the average colors of rectangles fast
we use summed area tables [Crow84]. A separate table is built for each of the
three CIE XYZ color components for both images. That makes six tables,
each containing a number of entries equal to the total number of pixels in
the image (assuming that the compared images have the same size). Element
T (i; j) of the table T (see �g. 8.3) contains the sum of values of all pixels
X(x; y) such that x � i and y � j. The average of the rectangle de�ned with
points (k; l) and (i; j) such that k � i and l � j is then:

A =
T (i; j)� T (k � 1; j)� T (i; l � 1) + T (k � 1; l � 1)

(i� k + 1) � (j � l + 1)
(8.5)

Now, only the position and size of the rectangle has to be given to compute
the average with only a few operations.

The weighting of the particular rectangles according to the contrast sen-
sitivity function is done implicitly using importance sampling. The integral
of the contrast sensitivity function g(f) =

R f
0+ A(x)dx is precomputed and

normalized by dividing all values with g(60) (see �g. 8.4).
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Figure 8.3: Summed area table

Randomly sampling over the domain of the inverse of g(f) produces a
frequency distribution as desired, so that no additional weights are necessary
to get a distribution proportional to A(f) (see bottom line in �g. 8.4).

Our idea is to select the position on the y axis quasi-randomly, by doing so,
the metric has some meaning during the computation process as well. Once
the size of a rectangle is determined, the orientation, i.e. longer and shorter
side size, should be determined. The size of the rectangle corresponds to the
rectangle's diagonal, and the maximum allowed ratio of the longer to the
shorter side of the rectangle is the golden section ratio (� = 1:618034 : : :).
We do not allow narrow rectangles as they are not so important in visual
comparison. We speculated using various shapes, but since all shapes will be
covered using a su�cient number of rectangles, we use only rectangles which
make the method fast as well. The orientation of the rectangle is determined
by choosing the angle between the diagonal and the horizontal axis. This
angle is in the range [�min; �max] (see �g. 8.5) and a particular angle is
chosen quasi randomly. When the size and the orientation of the rectangle
are known, the position of the rectangle can be determined. The rectangle
position in the image is also determined by quasi random determination of
its lower left corner. The position domain for this procedure is reduced, such
that the complete rectangle lies within the image. Figure 8.6 shows the �rst
100, 250, 500 and 1000 rectangles placed in an 512 � 512 image, assuming
the maximum displayable frequency is 60 cycles/degree. Although there are
lot of uncovered image areas after 1000 rectangles are placed in the image,
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Figure 8.4: Contrast sensitivity function and its integral + random sampling

this result will rarely be signi�cantly di�erent from �nal solution. According
to our experiments 10000 rectangles will be su�cient in most cases.

Therefore we have a 4�dimensional quasi random problem. We have cho-
sen the Halton sequence [Glas95] to compute these quasi-random numbers.

The Halton sequence for an N-dimensional point xm is de�ned as:

xm = (�2(m); �3(m); : : : ; �pN�1(m); �pN (m)) (8.6)

where pi refers to the ith prime number, and the function �r(m) is the radical-
inverse function of m to the base r. The value of the radical-inverse function
�r(m) is obtained by simply reecting the digits ofm written in base r around
the decimal point. Therefore if m is:

m = a0 � r0 + a1 � r1 + : : :+ an � rn (8.7)

the radical inverse function �r(m) is:

�r(m) = a0 � r�1 + a1 � r�2 + : : :+ an � r�(n+1) (8.8)

As our problem is 4�dimensional we need the �2, �3, �5 and �7 functions.
The size will be chosen using �2, the orientation using �3 and the position in
the image using �5 and �7. Now, the user needs only to set the total number
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Figure 8.5: Possible orientations of the rectangles

of rectangles and the corresponding metric can be computed. Note, that the
metric produces (slightly) di�erent values for di�erent numbers of rectangles,
i.e. for every number of rectangles a di�erent metric is actually de�ned.

If the maximum displayable frequency is much lower than 60 cy-
cles/degree it could be a good idea to subsample the image and to make
the summed area tables correspond to the sub-pixel resolution, e.g. four en-
tries per pixel. In this way sub-pixel areas can be computed, and a pixel size
area can cover four quarters of the neighboring pixels. It seems to us that
a �ner subdivision than four sub-pixels per pixel would be rarely needed.
If the subdivision is not done, the weights of the sub-pixel range should be
somehow added to the highest, still displayable frequency.

The whole idea of placing various rectangles in the image space, over-
comes the drawback of wavelet transforms that various resolution sub-images
have �xed positions. A quarter of an image sized square placed exactly in
the center of the image will never be considered as an entity using wavelet
transforms.

8.2.2 Modi�ed CIE LUV Color Di�erence Formula

We stated before that we want to use the CIE LUV color di�erence formula.
CIE LUV space was designed to approach a perceptually uniform color space,
but it was designed in strictly set laboratory conditions, with adapted ob-
servers. In every day life, we are rarely fully adapted to any particular
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Figure 8.6: First rectangles

luminance level. Most of the time we are in complex environments, where
our eyes do not have enough time to fully adapt to one speci�c luminance
level. The perception in complex environments has still not been studied
extensively. Hunt [Hunt92] and Nemcsics [Nemc93] studied perception in
complex environments. Nemcsics developed a new color space called coloroid
[Hunt92], [Nemc80], [Nemc87], which is designed for complex environments
and solid colors (not for self-emitting media).

It is interesting that Nemcsics reports that just noticeable color di�erence
can be up to 4 times larger in a complex environment, than for the fully
adapted eye. After experiments with 2500 observers Nemcsics concluded
that the brightness L is proportional to

p
Y , rather than to 3

p
Y as proposed

in CIE LUV formula (for a complex viewing environment, of course). We
made a compromise and use a modi�ed CIE LUV formula such that L is
proportional to

p
Y and the chromacity component is computed using CIE
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uv, but as functions of the new L0:

L0 = 10 �
p
Y (8.9)

u0 = f(L0) (8.10)

v0 = f(L0) (8.11)

This method is certainly not one hundred percent correct, but �nding a
better one will exceed the scope of this thesis.

Furthermore, we modi�ed the color di�erence formula as well. Namely it
is known that colors that have a CIE LUV di�erence of less than 1 appear
to be the same. This limit value changes with view conditions, frequency
of stimuli etc. Therefore, if two colors are intended to be di�erent, it is
recommendable to choose colors with a CIE LUV di�erence of 6 or more.

Since we are not able to see color di�erences less than 1, we modi�ed the
di�erence formula so that all original di�erences of less than 1 are set to 0.
Note that this modi�cation makes it possible that images A and B are the
same, images B and C are the same, but images A and C are di�erent. This
is not a metric in the mathematical sense any more, but it has some other
advantages.

Of course the modi�ed di�erence formula should be applied to each par-
ticular rectangle pair and not on the �nal di�erence. In this way, if the total
average di�erence is some small number (e.g. 0.5) it means that there is a
visible di�erence somewhere in the image.

8.2.3 Color Image Di�erence in a Distance Range

As stated before all perception based metrics are distance dependent. If
someone asks us to see if there is any di�erence between two similar printed
pictures, we will move the pictures back and forth in order to see some dif-
ference. This is true if the di�erences are not signi�cant and obvious at
�rst sight, of course. Actually, what we are doing is moving the maximum
frequency on the contrast sensitivity curve, and trying to match it with a
frequency where di�erence appears. There are lots of situations where the
viewing range is limited and known in advance. For example, if some ren-
dered images are to be presented in a classroom, the viewing distance range is
known, it is between the viewing distance of the �rst row, and the viewing dis-
tance of the last row. If images are rendered with some progressive method,
the rendering can be stopped much earlier than if images are intended to be
observed from 50 cm. On the other hand, if some blurring operator is shown,
the lecturer should apply quite a large blurring matrix if he or she wants all
those present at the lecture to see the blurring e�ect. Even in conferences
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and university lectures, images that can not be distinguished are frequently
presented as examples for di�erences. If the perceptual metric is taken into
account such situations can be avoided. The next example could be a display
device in a shopping window. Sometimes a monitor is placed in a shopping
window and some animation is running. Obviously, the distance between the
monitor and the window-glass is the minimum viewing distance, and the dis-
tance between the sidewalk border and the monitor is the maximum distance.
If this were taken into account during the rendering of animation frames, the
rendering time could be shortened signi�cantly. There are numerous other
similar examples, that can save us a lot of extra rendering time. If the im-
age di�erence in a distance range should be computed, the algorithm would
be a little bit di�erent. It is then possible to compute the same number of
rectangles of various sizes, and to apply weighting functions according to the
particular viewing distances.

8.2.4 Image Query

The color image di�erence introduced here can be used for fast image query
as well. We propose to make a low resolution (e.g. 60 � 60) version of
each data-base image. Furthermore, the method will be not view distance
dependent any more. The maximum frequency will be set so that the most
important frequency corresponds to the rectangles of approximately 1=2 to
1=3 size of the reduced images. Then, the �rst 200 rectangles are found,
and average L0, u0 and v0 values are stored in an array. This whole process
is done once, and the L0, u0, and v0 values (200 values for each image) are
stored. Now, the target image is drawn by the user, or submitted somehow
else, and the query begins. The target image is reduced to the low resolution,
200 rectangles are found (note that they will correspond to the pretabulated
data-base rectangles as the whole method is deterministic), and the image
di�erences are computed. The whole data-base does not have to be sorted, we
only want to �nd for example the top 10 images. When the highest di�erence
limit value of the top ten club is known, the current di�erence evaluation can
stop as soon as the sum of rectangle di�erences exceeds this top limit. In
this way, the di�erence computation time will decrease as the top 10 club will
have better and better limits.

8.3 Algorithm Summary

Let us summarize the image di�erence algorithm now. The integration of
the contrast sensitivity function can be precomputed and stored in an array.
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There are two images (let us assume they are of equal size), both contain r,
g, and b values for each pixel. First the r, g, and b values are transformed to
CIE XYZ values, and summed area tables are built for X, Y, and Z values
for both images (6 tables are built). The Halton series can be precomputed
or easily computed on the y. The size of a rectangle is determined, and its
orientation and position in the images using Halton series. Average X, Y, and
Z of the rectangles are computed using (8.5) and colors are converted to the
CIE LUV color space. Now the color di�erence is computed using (8.11) and
this di�erence is added to the total distance. At the end, the total distance
is divided by the number of rectangles and gives us the di�erence between
two images. Algorithm 3 shows the pseudo code of the whole process.

convert rgb values to XYZ values for both images;

build summed area tables for X, Y and Z for both images;

compute cycle/degree!pixel/degree scale factor;

for total number of rectangles do:

begin

select size using precomputed importance sampling;

select orientation using Halton3 series;

select x position of rectangle using Halton5 series;

select y position of rectangle using Halton7 series;

compute average XYZ color of rectangle in both images;

convert XYZ to LUV values;

compute CIE LUV color difference;

add difference to total difference;

end

devide total difference with number of rectangles;

Algorithm 3

8.4 Conclusion and Future Work

We have presented a perception based image metric which can be used when-
ever two images should be compared. Human vision is taken into account us-
ing the contrast sensitivity function given by Mannos and Sakrison [MaSa74]
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as well as the CIE LUV color space which is almost perceptually uniform.
The results are similar to those reported by Gaddipati et al. [GaMY97]. We
�nd our metric more intuitive as it is computed in the original image space.
The newly proposed approach overcomes some wavelet's drawbacks such as
the �xed position of certain frequency levels, as well. There is also no need to
transform the image in order to compute the metric and the color is treated
more accurately due to the use of the CIE LUV color di�erence formula. The
new method can be used for steering the rendering process when progressive
methods are used, for evaluating su�ciency of appropriate levels in various
LOD algorithms, or for an image query from large data bases. It can also
show us if some di�erences will be visible from a certain distance range or
not.

This is certainly not the ultimate metric, but rather one more solution
that works �ne, and can be easily understood. We will try to take into
account some additional human vision properties in the future.



Chapter 9

Results

This chapter will describe results of various tone mapping and image di�er-
ence techniques. Tone mapping techniques will be described �rst.

9.1 Tone Mapping Techniques

We will start with �ctitious unit methods, as most rendering packages are still
not able to render raw images in absolute units. Test image 1 was rendered
using the RADIANCE package [Ward94a], without taking its advantage of
absolute units rendering.

Test scene 1 is a simple, back lit scene consisting of few objects. Strong
back light (window in our case) causes problems for most tone mapping
techniques. Color plate 1a shows the image obtained by the mean value
mapping technique. Since the average value is high, the whole image is too
dark. The exponential mapping technique (Color plate 1b) produces a little
bit brighter image, since the average is mapped to 0.632, and not to 0.5
as by the mean value mapping method. Schlick's mapping technique tries
to display the exterior and the interior part of the scene simultaneously.
Although, this is the only mapping that displays exterior automatically, we
�nd the �nal result still a little bit too dark. The factorM in the computation
of parameter p (see eq. 5.1, 5.2) was set to 2, in Color plate 1c. Note that
this is the best case, and increasing M (which is often needed for various
media) would cause an increase of parameter p.

The minimum information loss methods were tested using the same raw
image. Color plate 1d illustrates the minimum information loss technique.
We have added an error function of type c (see Error Function section). Color
plate 1e shows that there is no visible di�erence. Applying the minimum
area loss method does not show a signi�cant di�erence, either (Color plate

81
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1f). Actually, the di�erences between these three methods will rarely be
signi�cant. The interior of the scene is displayed with a lot of details. The
results of interreections can clearly be seen (color leak on the walls), and
the overall impression corresponds, in a way, to a photo of the scene.

Test scene 1 has the mean value Lmean = 3:882625, and Schlick's param-
eter p = 54:428318, assuming M = 2 (see section Schlick's mapping). Note
that the mean value mapping method will actually display all pixels in the
range [0; 2 �Lmean]. Table 9.1 shows the data for the minimum loss methods.
Starting and ending points of the intervals are shown in the table. Error
function was of type c, with � = 45� and d = 1=3 of the clipping interval.

method a b contrast loss
min. info loss 0.017948 0.897421 50 17.604%
with error fun. 0,020447 1.022327 50 18.867%
min. area loss 0.017998 0.899913 50 18.839%

Table 9.1: Scene 1 minimum loss data

Color plate 2 illustrates the interactive calibration. All images have con-
trast c = 50, and aperture values are -3, -1.5, 0, and 3. This mapping
technique gives us the possibility to examine particular parts of the image.
For example, the reection of the red sphere in the window can be seen when
the aperture is set to 3. On the other hand, interesting interreection details
can be examined if the aperture is shifted to -3 or to even more negative
values.

The next scene is mapped using only the interactive calibration. The
logarithmic histogram of this scene is shown in the interactive calibration
section (�g. 4.1). Color plate 4 shows this scene mapped using contrast 5 and
105, and aperture 0. This is a very low overall contrast image, so mapping
using contrast 5 did not cause signi�cant information loss. Note that the
image mapped using a small contrast window has much higher contrast,
than the image generated with a large clipping contrast.

Scene 3 is a more complex scene rendered using the RADIANCE software.
Color plates 5a, 5b and 6a show the third scene mapped using the mean value,
exponential and Schlick's mapping technique. Note that the mean value and
the exponential mapping methods do not display any details under the table.
On the other hand Schlick's method shows details under the table, but the
overall impression is very poor. The reason lies in the very high overall
contrast of the raw image. This raw image has the mean value Lmean = 1:292
and Schlick's parameter p = 9719:833, assuming M = 2, which is the best
case. The lost information by the minimum information loss methods here is
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very large for a contrast of 50. Table 9.2 shows the data for this scene. The
error function was chosen the same as earlier. As the loss for contrast 50 was
too large, we increased the contrast, so long as the loss was under 10%, and
the new contrast was c = 2300. Of course, it would be incorrect to linearly
map such a large clipping interval, and Schlick's mapping was applied on this
clipping interval. Results of the minimum loss techniques are shown in Color
plates 6b, 7a, 7b, 8c, and 8d. Due to very similar mapping intervals of the
minimum information loss and the mean value mapping, these images will
look almost the same in this case.

method a b contrast loss
min. info loss 0.040442 2.022103 50 28.329%
with error fun. 0,041810 2.090512 50 30.134
+Schlick's mapp. 0.002300 5.290552 2300 9.065%
min. area loss 0.045311 2.265544 50 38.811%

Table 9.2: Scene 3 minimum loss data

All so far shown images illustrate how various �nal images can be gener-
ated from the same raw image. Note that this type of image manipulation is
not possible without the raw image. Once the mapping is done, pixel values
are discretised in the range 0 : : : 255, and every brightening or darkening of
the image will cause a large information loss.

Up to now we have not mentioned incident light metering. As stated
before, incident light metering was designed in order to reproduce original
objects' colors. It will be illustrated using 3 scenes. Comparisons with mean
value, Schlick's, Ward's and Tumblin and Rushmeier's (TR) mapping tech-
niques will be made. In order to apply Ward's and TR mapping methods,
we have used default values suggested by the RADIANCE rendering pack-
age. Note that TR images are a little bit darker, but the settings were the
same as for Ward's mapping technique. Increasing the light sources' strength
drastically, would brighten TR images, but we wanted to examine the di�er-
ence between dark and bright scenes here, and the relative di�erence would
remain the same even for extremely strong light sources.

The results are shown for three scenes.
The idea of color reproduction is illustrated in color plates 9 and 10. Two

simple scenes were rendered using no interreection. The only di�erence
between the two scenes is the color of the room. In the �rst case (left) the
walls are almost white and in the second (right) the walls are dark gray. The
cubes' colors are the same and the light settings are equal as well. The color
bar under each image shows the originally selected cubes' and walls' colors.
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Color plates 10c, 10d and 10e show results of the new incident light mapping.
It can be seen that all colors are reproduced faithfully.

Due to the di�erent average, mean mapping produces di�erent colors
for the two scenes (although the cubes have the same colors and the light
settings are the same). Ward's mapping fails to reproduce the colors as well
as the TR-mapping. Note that all these three alternative mapping techniques
are based on the average scene luminance, and therefore the colors can not
be reproduced faithfully for both cases as the average values are di�erent for
these two scenes. The mapping method proposed by Schlick [Schl94] produces
acceptable images for the �rst two cases. Schlick's mapping depends on a
parameter p, which depends on the total raw image contrast. As the contrasts
of the two scenes are similar, the parameter p does not di�er much. But if
the orange box in the bright scene is substituted by a black box the overall
contrast is drastically increased and Schlick's method fails. The new, incident
light metering method reproduces original colors correctly in all cases. Note
that it would be possible to manually calibrate Schlick's parameter p, but
then the method would not be automatic any more. There is the possibility
to manually adjust the exposure in the RADIANCE package as well, but
again this is no automatic method. Table 9.3 gives data for this scene. The
mean values di�er a lot. The parameter p required for Schlick's mapping is
almost the same for the �rst two settings, but increases for the third. Data
for the median value of radiances are also given in the table. Note that
these values do not di�er much from the mean values. We have used mean
mapping for comparison throughout this paper since this is the most widely
used method. Using the median value of radiances would not a�ect the �nal
results signi�cantly.

dark bright black
room room cube

mean radiance 0.002511 0.01341 0.01339
median radiance 0.001796 0.01432 0.01429
median irradiance 0.009160 0.009160 0.009160

parameter p 1.415 1.267 17.652

Table 9.3: Data for the cubes scene.

The next scene (color plates 11, 12 and 13) is also rendered without
interreections. Again, two di�erent object color settings were used, one with
bright colors, the other with dark colors. Almost all objects are di�erently
de�ned in the two settings, only the Christmas balls are equal. On the other
hand the light de�nition is the same for both settings. The color bar displays
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a selection of three of these colors: box lid, chair and wall.
The results of the new mapping are shown in color plates 12a (scene with

bright surfaces) and 12b (scene with dark surfaces). Color plate 11a shows
the dark scene using the mean value mapping. The bright scene mapped
with the mean value approach looks almost the same, so it is not displayed.
Color plate 11b shows the irradiance image of scene 2 (all objects are di�use,
medium gray).

Color plate 13 shows the same images generated using Ward's and the
TR-mapping. It is obvious that these mappings cancel out the di�erences
which should be visible. Data for this scene is given in tables 9.4 and 9.5.

settings bright dark
images 12a, 13a, 13c 11a, 12b, 13b, 13d

mean value 0.9842 0.2533
Lout
meter 0.7401 0.7401

Table 9.4: Data for the �fth scene (without interreection)

box lid chair wall
bright 0.9 0.2 0.2 0.5 0.1 0.1 0.8 0.8 0.8
dark 0.18 0.04 0.04 0.1 0.02 0.02 0.08 0.08 0.08

Table 9.5: RGB values for color bar 5

Finally, the sixth scene (color plates 14, 15, 16, and 17) is rendered with
interreections. Tables 9.6 and 9.7 show the data for this scene. Color plates
15a and 15b are irradiance images that display the irradiance distribution
in the scene. The intensity was extracted from the r,g,b irradiances using
the max(r,g,b) principle (see Incident Light Metering chapter). Note the
di�erences in the irradiance distribution for dark (color plate 15b) and bright
(color plate 15a) scenes due to interreections (shadows are much brighter
in the bright irradiance image). The reference color bar in plate 16 shows
selected colors for the sofa and the wall in the bright and dark scene. All
other objects change too, except for the tree which remains unchanged. The
results of the new mapping technique are displayed in color plates 16a and
16b.

Mean value mapping was used to map images in color plates 14a and
14b. Again, the mean value method fails to reproduce the originally set
colors. Color plate 17 show the same scene mapped using Ward's and TR-
mapping. Note how the tree becomes signi�cantly brighter with almost all
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methods, only the newly proposed algorithm leaves the tree unchanged (that
it looks a little bit lighter is a perceptual sensation caused by the darker
background).

settings bright dark
images 14a, 15a, 16a, 17a, 17c 14b, 15b, 16b, 17b, 17d

mean value 0.01816 0.04813
Lout
meter 0.04282 0.03183

Table 9.6: Data for the sixth scene (with interreections).

wall sofa
bright 0.3 0.8 0.8 0.87 0.5 0.25
dark 0.1 0.3 0.3 0.18 0.1 0.05

Table 9.7: RGB values for color bar 6

Note that the TR-mapping is intended to be used for a di�erent purpose.
Scenes with various light settings would be displayed di�erent. Images look
a little bit too dark as the method functions in a huge range of luminances
(the method works �ne up to a luminance level of 3:18� 106cd=m2 and just
for comparison a snow covered ground in full sunlight emits 1:6� 104cd=m2

according to [Glas95]). Note that light settings are not extremely low in our
settings, and Ward's images were mapped using the same light levels and
the same software. When using stronger light sources the TR-mapping will
produce brighter images for both scenes, but again corresponding objects will
appear similar although their color de�nition is very di�erent.

The tone mapping techniques results end here. It can easily be seen
from the above examples that there is no mapping technique that can be
recommended for general use, but usually there is at least one technique
that gives satisfactory results for each purpose.
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Color Plate 1

e. Minimum information loss
with error function

f. Minimum area loss

c. Schlick's mapping d. Minimum information loss, C=50

a. Mean value mapping b. Exponential mapping
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Color Plate 2

c. Interactive calibration
a=0, c=50

d. Interactive calibration
a=3, c=50

a. Interactive calibration
a=-3, c=50

b. Interactive calibration
a=-1.5, c=50
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Color Plate 3

c. Interactive calibration, a=-1, c=40

b. Interactive calibration, a=0, c=40

a. Interactive calibration a=1.5, c=40
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Color Plate 4

b. Interactive calibration, a=0, c=105

a. Interactive calibration, a=0, c=5



CHAPTER 9. RESULTS 91

Color Plate 5

b. Exponential mapping

a. Mean value mapping
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Color Plate 6

b. Minimum information loss, C=50

a. Schlick's mapping
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Color Plate 7

b. Minimum information loss, C=2300, Schlick's

a. Minimum information loss, C=50
with error function
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Color Plate 8

b. Minimum information loss, C=2300
linear on log scale

a. Minimum information loss, C=2300
Schlick's, with error function
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Color Plate 9

e. Bright scene, TR mapping f. Dark scene, TR mapping

c. Bright scene Ward's mapping d. Dark scene, Ward's mapping

a. Bright scene, mean mapping b. Dark scene, mean mapping
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Color Plate 10

e. Bright, black cube, incident f. Bright, black cube, Schlick's

c. Bright scene, incident light d. Dark scene, incident light

a. Bright scene, Schlick's mapping b. Dark scene, Schlick's mapping
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Color Plate 11

b. Irradiance image

a. Dark scene, mean value mapping
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Color Plate 12

b. Dark scene, incident light metering

a. Bright scene, incident light metering

Box lid, chair and wall selected colors
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Color Plate 13

d. Dark scene, TR mappingc. Bright scene, TR mapping

b. Dark scene, Ward's mappinga. Bright scene, Ward's mapping
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Color Plate 14

b. Dark scene, mean value mapping

a. Bright scene, mean value mapping
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Color Plate 15

b. Dark scene, irradiance image

a. Bright scene, irradiance image
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Color Plate 16

b. Dark scene, incident light metering

a. Bright scene, incident light metering

Sofa and wall selected colors
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Color Plate 17

d. Dark scene, TR mappingc. Bright scene, TR mapping

b. Dark scene, Ward's mappinga. Bright scene, Ward's mapping

Sofa and wall selected colors
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9.2 Color Image Di�erence

In this section the color image di�erence described in chapter 8 will be il-
lustrated. First, the image series used by Gaddipati et al. [GaMY97] will
be used to test the color image di�erence (CID), the metric introduced by
Rushmeier et al., root mean squared error, and Gaddipati's metric. We have
implemented Rushmeier's metric, although it is not 100% clear which view-
ing distance should be taken into account. We have chosen, in this example,
the viewing distance so that the maximum displayable frequency is 60 cycles
per visual degree for our metric, and the number of rectangles was 5000.
The distance chosen by Gaddipati et al. is also not clear from their paper.
Results are given in table 9.8, and images are shown in color plate 18a. Ta-
ble 9.8 shows the di�erences between images rendered using various number
of slices. This are rendering from a volume visualization done using various
numbers of slices. Root mean squared error method (RMSE) is given for each
component and for luminance image. The results for Gaddipati's metric are
given only graphically in [GaMY97], and therefore they are not so precise.

method 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

RMSE

red 4.162 2.320 1.688 1.276 1.051 0.869 0.770 0.710 0.648

green 1.492 0.938 0.551 0.429 0.327 0.289 0.236 0.218 0.194

blue 4.815 2.655 1.191 1.564 1.282 1.095 0.883 1.027 0.809

Y 0.665 0.386 0.262 0.202 0.163 0.137 0.114 0.111 0.092

Rushm. 16.763 1.108 0.534 0.399 0.206 0.104 0.093 0.060 0.070

Gaddi. 20.0 21.0 4.5 7.1 3.0 3.0 0.8 2.1 1.0

CID 1.490 0.636 0.428 0.346 0.279 0.243 0.211 0.290 0.225

Table 9.8: Results of di�erent metrics for image series 1

Note the increasing di�erence at the end of the series which occurs by
CID, Gaddipati's and Rushmeier's metric. This di�erences are not visible,
but it is interesting that they occur in all three metrics.

Image series 2 in color plate 18b, shows images rendered using progressive
radiosity. Numbers of rays shot is given under each image. We measured the
CID, in order to estimate the su�cient number of rays. Results are given
in table 9.9. Up to now we were always assuming the maximum displayable
frequency is 60 cycles per degree. We have measured the di�erences in the
third image series for increased viewing distances as well. The distance be-
tween the 500K rays and the 1M rays images was measured. Results are
given in table 9.10. The results are valid for a 17 inch monitor, with 1280
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pixels resolution. If it is known that the image will be displayed on such a
monitor, and it will be observed from a distance of 3 meters, it is su�cient
to render the image using only 500K rays. This information can save us a
lot of rendering time.

images 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

CID max. f. 60 3.413 2.710 1.617 1.142 0.797 0.588 0.437 0.271 0.222

Table 9.9: CID for image series 2

viewing distance [cm] CID
50 1.345
100 1.268
150 1.184
200 1.129
300 1.020
400 0.935
500 0.861
1000 0.630

Table 9.10: CID for various viewing distances, image series 2

We have measured the distance between the 50K and the 100K image
using 950000 rectangles. Results are shown in table 9.11. It is clear that the
di�erence converge, and 5000 or 10000 rectangles are su�cient in almost all
cases.

The next example is shown in color plate 19a. This color plate shows an
image series rendered using ray tracing and various numbers of samples per
pixel. We have measured the di�erence between the 40, 80 and 160 samples
per pixel images. Results are given in table 9.12. These results show us that
the 40 and the 160 samples per pixel images can not be distinguished from a
distance of 200 cm. Note that the rendering time was 4 times longer for 160
samples per pixel image.

The �nal example is illustrated in color plate 20. Color plate 20a shows
original ower image, and color plate 20b original crow image. We have
applied 3 � 3 blurring �lter on the ower image (20c), and we have added
some color patches to the original ower image (20d). There is also an image
which has the same luminance, but colors are quite di�erent (20e). Note that
Rushmeier's metric would report no di�erence for this two images. There is
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number of rectangles CID
500 3.375642
1000 3.421180
2000 3.440896
5000 3.412503
10000 3.409281
20000 3.422541
40000 3.419777
80000 3.415657
160000 3.417164
320000 3.417722
640000 3.417656
900000 3.417328
910000 3.417486
920000 3.417535
930000 3.417455
940000 3.417468
950000 3.417440

Table 9.11: CID for various numbers of rectangles, image series 2

viewing dist. 40-160 80-160
50cm 1.878 1.476
100cm 1.409 1.112
200cm 0.789 0.597
400cm 0.380 0.276

Table 9.12: CID for various viewing distances, image series 3
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also a combination of the blurred ower image and the crow image shown
in color plate 20f. Resulting di�erences are given in table 9.13. All CID
di�erences are computed assuming the maximum displayable frequency is 60
cycles/degree, and using 5000 rectangles. Note that the often used root mean
square error method reports a lower di�erence between the ower image with
some color patches added (20d) and the original ower image (20a), than
between the blurred (20c) and the original image (20a). A human observer
would always report a di�erent result.

b c d e f

crow blur 3x3 corrupted constant Y combination b+c

CID CID CID CID CID

a 52.547 3.771 5.098 25.732 30.582

RMSE RMSE RMSE RMSE RMSE

38.948 9.549 5.285 0 28.562

CID CID CID CID CID

b 0 51.595 54.732 50.143 23.489

RMSE RMSE RMSE RMSE RMSE

0 36.930 38.986 38.949 25.770

CID CID CID CID CID

c 0 7.759 27.275 28.110

RMSE RMSE RMSE RMSE RMSE

0 10.584 9.549 26.452

CID CID CID CID CID

d 0 28.406 29.599

RMSE RMSE RMSE RMSE RMSE

0 13.097 26.284

CID CID CID CID CID

e 0 30.579

RMSE RMSE RMSE RMSE RMSE

0 28.725

Table 9.13: Di�erences for image series 3
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Color Plate 18

10 slices 20 slices 30 slices 40 slices 50 slices

60 slices 70 slices 80 slices 90 slices 100 slices

a. Image series 1

50K rays 100K rays 250K rays 500K rays 1M rays

2M rays 4M rays 8M rays 12M rays 16M rays

b. Image series 2
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Color Plate 19

5 samples per pixel 10 samples per pixel 20 samples per pixel

40 samples per pixel 80 samples per pixel 160 samples per pixel

a. Image series 3



CHAPTER 9. RESULTS 110

Color Plate 20

a. Original ower image b. Original crow image

c. Flower image blured using 3x3 matrix d. Corrupted ower image

e. Flower image of the same luminance as a. f. Combination of b and c images
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Conclusion

We have presented various tone mapping techniques and image metrics used
in computer graphics. This is still an open area for further research. There
will be better and better display devices in the future, and tone mapping and
perception based di�erence techniques will become more important.

Unfortunately, we can not say which tone mapping technique is the best.
There are lots of good techniques for various purposes, but there is no one
generally apply-able method. Everyone should choose the appropriate tone
mapping method for a particular goal. If visibility and lighting design is
crucial in some application, the visibility matching or TR mapping method
should be used. Of course absolute units rendering is a necessity in this case.
On the other hand, if the lighting conditions in the scene are unusual (e.g.
back light) minimum loss or interactive calibration techniques could be just
the right choice.

If the correct reproduction of the true colors is important, incident light
metering is the clear winner. This method reproduces selected object colors
faithfully, even if the average scene reectance is very low, or very high (and
this is not the case with other mapping methods).

Contributions of this thesis to tone mapping techniques are interactive
calibration, minimum information and area loss techniques, and incident light
metering.

The last part of this work presented a color image di�erence technique
that operates in the original image space. It is more intuitive than metrics
that operate in transform spaces, and the color is taken into account more
properly. This technique describes also how image di�erence depends on the
viewing distance. This metric is based on the contrast sensitivity function
and CIE LUV space, and it corresponds to human perception.

Currently we are trying to �nd some results evaluation mechanism, that
will correspond to human vision.

111
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We are also trying to �nd a global contrast factor which shall describe
the overall impression of an image, based on human vision. Such a factor
can be used to evaluate tone mapping techniques, and images in general.



Appendix A

Raw Image File Formats

All tone mapping techniques are applied to a raw image. Unfortunately, only
a few rendering packages today o�er the possibility for storing a raw image.
Most rendering packages apply a tone mapping, and only the �nal image
can be stored. In this way, a lot of information is lost. We have seen how
di�erent display media have di�erent characteristics. An image mapped once
for a particular monitor, does not have to be the optimum solution even for
another monitor, and especially not for a printer or some other device. If a
raw image is stored, mapping can be done for each particular device.

Furthermore, when better display devices become common in the future,
raw images can be mapped optimally to the new media.

The reason why raw images are rarely stored is the large storage space
requirement. It is true that storing a raw image as the array of oat triplets
will demand a huge amount of storage place (96 bits per pixel - four times
the usually necessary 24 bits). Compression techniques applied on such �les
do not help a lot due to the very poor entropy characteristics of such �les.
Fortunately there are currently three freely available raw image formats that
overcome the size problem, at the cost of reduced accuracy. They are RA-
DIANCE [Ward94a], the log format proposed by Pixar, and �nally a newly
proposed extension to the TIFF �le format by SGI, logLuv. We will describe
each of these three formats next.

A.1 Radiance RGBE Format

This raw image �le format was �rst described by Greg Ward [Ward92]. It
uses only 32 bits (4 bytes) per pixel, which makes it comparable to the usual
integer �le formats. Furthermore this �le format is much better to compress
than a naive four oats format, which brings additional space savings. The
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idea is to use an 8-bit mantissa for each primary and follow it with a single 8-
bit exponent. The mantissa is usually normalized in oating point formats to
lie between 0.5 and 1. In this raw image format, only the largest mantissa will
certainly lie in this range. Actually, this format favors the largest primary
value, and has a limited dynamic range. The error introduced is negligible,
since in the case of primary values di�erencing in few orders of magnitude,
the largest primary will determine the pixel's color anyhow. The following,
simple example will illustrate this idea. If color is

[0:3 0:02 0:1]

it will be converted to:
[0:6 0:04 0:2] � 2�1

or, in 32 bit oating point format

[153 10 51 127]

Note that in the above example, the exponent �1 was translated to 127.
In order to cover negative exponents as well, some o�set should be added to
the unsigned values. In this case 128 was chosen, which reserves the same
range for values greater than 1 and less than 1. It is possible to adjust
this o�set value if necessary, but since 2127 � 1038 it will rarely be the
necessary. This �le format covers about 76 orders of magnitude with 1%
relative accuracy.

The complete code for encoding the images using the RADIANCE �le
format can be found in the Real Pixels article [Ward92] or on the RADIANCE
WWW page [RADI97].

A.2 Pixar's Log Format

Pixar recognized the need for a raw image �le format in �lm recording.
They developed a log encoding for RGB values, such that they need 33 bits
per pixel. The code is implemented as part of Sam Le�er's TIFF Library
[RADI97], and it is freely available electronically. The code covers about
3.5 orders of magnitude (which is su�cient for �lms), with 0:4% relative
accuracy.

A.3 SGI's LogLuv Format

This is the newest of the three raw image formats mentioned here. It has
been developed at SGI, and is included in Sam Le�er's TIFF Library just as
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Pixar Log format. It uses 32 bits/pixel and it is based on human perception,
which may have a big advantage in the future, when more sophisticated
devices will be available. The new proposed format uses log encoding of
luminance and CIE(u�; v�) encoding of chroma. In this way the luminance
range covers 38 orders of magnitude, and chroma covers all visible colors in
imperceptible steps. The relative luminance accuracy is 0:3% and chroma
errors are always under the visible threshold. This format could be the one
that will be extensively used in the future.
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