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Abstract

3D surface-scanning -the capture of an object's shape, or more formal the acquisition of a

(dense) set of 3D coordinates on the object's surface- is in the focus of this diploma thesis.

3D Surface Scanning is becoming more and more important, and it has a wide variety of

applications ranging from prototyping and in-process inspection, via medicine and biometrics

to the entertainment industry. In this thesis an overview of the hardware to obtain surface

samples (3D scanners) and the algorithms used for the reconstruction process are given.

These reconstruction algorithms compute meshes from the measured data (usually a set of

points, rarely color information and estimated surface normals), which are intended to give

a good representation of the scanned object's shape.

In Part I we will �rst describe non-contact range measurement methods. Based on these

distance measuring methods we will demonstrate a wide variety of usual 3D scanning prin-

ciples. Furthermore we will give a more detailed description of specially selected scanning

systems.

Part II is concerned with surface reconstruction algorithms. We will discuss selected algo-

rithms in su�cient detail that a basic understanding of their procedures is given, and that

an implementation is straightforward.

In Part III we will �nally present the 3D laser scanner experiment in our laboratory that

has been developed during this thesis to serve as a test environment and our self-developed

scanning software we have used for data-handling. Furthermore, the stages of the surface-

reconstruction process are illustrated, and an impression of our datasets is given.



Kurzfassung

3D Ober�achenscanning -das Erfassen der Form eines Gegenstandes, oder mehr formell das

Erfassen eines (dichten) Datensatzes von Ober�achenpunkten- ist Thema dieser Diplomar-

beit. 3D Scannen gewinnt immer mehr an Bedeutung und �ndet ein breites Anwendungsspek-

trum, das vom Prototypenbau und der Qualit�atskontrolle �uber die Medizin und die Biometrie

bis zu Anwendungen in der Unterhaltungsindustrie reicht.

In dieser Arbeit wird sowohl auf die Hardware, die f�ur den Scan-Prozess erforderlich ist, als

auch auf die Rekonstruktions-Algorithmen eingegangen. Die Aufgabe der Rekonstruktions-

Algorithmen besteht darin, aus den durch den Scanvorgang gewonnen Daten (meist nur die

Koordinaten der Ober�achenpunkte, gegebenenfalls Farbinformation, und N�aherungen f�ur

die Oberachennormalen) das abgetastete Objekt m�oglichst gut zu rekonstruieren.

Im ersten Abschnitt werden zun�achst Methoden der ber�uhrungslosen Entfernungsmessung

beschrieben. Auf diesen aufbauend wird dann ein �Uberblick �uber verschiedene 3D Scan-

prinzipien gegeben. Anschlie�end werden ausgew�ahlte Systeme ausf�uhrlicher abgehandelt.

Der zweite Abschnitt befasst sich mit Rekonstruktionsalgorithmen, dabei werden die einzel-

nen Algorithmen so detailliert behandelt, dass ein grundlegendes Verst�andnis �uber deren

Arbeitsweise gegeben wird und eine direkte Implementierung m�oglich ist.

Im letzten Abschnitt beschreiben wir den 3D Laser-Scanner in unserem Labor, der im Rah-

men dieser Diplomarbeit entwickelt wurde, um eine Testumgebung zu scha�en und unsere

selbst entwickelte Software, die f�ur den Scan- und Rekonstruktionsprozess eingesetzt wird.

Weiters werden die verschiedenen Stufen des Rekonstruktionsprozesses dargestellt und ein

rekonstruiertes Objekt exemplarisch pr�asentiert.
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Chapter 1

Introduction

3D surface scanning, the capture of an objects shape, is designated as the acquisition of a

(dense) set of 3D coordinates on the objects surface and has widespread applications. Just

to name a few of the disciplines that consider surface scanning as important: In medicine

3D scanning systems are used by dentists, in plastic surgery, or to align 3D volumetric

data (obtained by NMR,CT) of the patient to his current position (determined by a surface

scan) on the operation table. Also in-process inspection and reverse engineering make use of

3D scanners. In combination with fast prototyping procedures 3D copiers can be realized.

Archaeology bene�ts from 3D scanning as well, since the conventional measurement of the

artefacts is often time consuming- because of their complex shapes. The obtained 3D models

can be used for later restoration or in virtual museums. Of course, 3D models have become

important in the entertainment industry, where they are used for computer games and for

special e�ects in motion pictures. Here 3D scanners o�er a way to digitize models that are

made of clay, for example, a method which is often faster than to the use 3D modelling

software.

Each of these various applications needs special requirements. For many applications mea-

suring precision is most important. Other applications necessitate large measurement ranges,

portability, ease of use and reasonable short scanning times.

Therefore many di�erent scanning systems are available. In a �rst overview, provided by

Figure 1.1, the systems are classi�ed by their range measurement methods.

In chapters 3 and 4 some examples of 3D scanning systems are described in more detail.

In the following chapter we will start with a description of the various range measurement

methods.

2
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Non -Contact 3D shape
measurements

Light wave
λ= 0.5 … 1 µm

Microwave
λ= 3 … 30 mm

Ultrasonic wave
λ= 0.1 … 1 mm

Time-of-flightTriangulation Interferometry

Optical coherent
Time-of-flight

Coherence radar

Holography

Photogrammetry

Depth from shadow

Structured light

Pulsed
Modulation

Pseudo-Noise (PN)
Modulation

Constant Wave (CW)
Modulation

Depth from focus

Figure 1.1: Non-Contact 3D shape measurements according to [19].



Chapter 2

Range Measurement

In this chapter we will describe distance-measurement techniques based on triangulation,

interferometry and time-of-ight. A graph of the performance of these various methods is

given in Figure 2.1.

Figure 2.1: Performance map of optical 3D measurement systems [18].

2.1 Triangulation [13]

This ranging technique has been known and used by nature for millions of years. It is, in the

form of stereo-vision, together with the depth-of-focus system (which can also be considered

to belong to triangulation systems), the basis for human depth perception. Triangulation

is a geometrical approach, where the target is one point of a triangle of which the two

remaining points are known in the measurement system. The distance of the target can

then be determined by measuring the triangle's angles or the triangulation base. In literature

passive and active triangulation techniques are distinguished.

4
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Figure 2.2: Passive Triangulation [13].

2.1.1 Passive Triangulation

Passive techniques rely on observing the same point from two di�erent sites A and B of a

known distance x and measuring the viewing angles � and � with respect to the base AB,

as illustrated in Figure 2.2. The observed point's distance z can then be calculated using

the following equation:

z =
x

1
tan�

+ 1
tan�

(2.1)

Since each point to be measured must be identi�ed from both viewing positions unambigu-

ously, passive triangulation techniques require a scene with high contrast. Stereovision is

one famous 3D realization of passive triangulation. This technique uses at least two cameras

to observe the scene from di�erent angles. Using 2D-correlation, typical object features are

found and compared in both images. From the position of each feature's centroid in both

separate images, the angles � and � can be deduced and the distance can be calculated

with Equation 2.1, assuming that the distance of one camera from the other, as well as their

orientations are known. The e�orts of such computation must not be underestimated. Shad-

owing e�ects are also typical problems, which all triangulation systems have to cope with.

Stereovision works pretty well for certain de�ned scenes, preferably chosen with rich contrast

and relatively at objects. For typical industrial scenes, however, it is often not suitable.

Though the shadowing problem can be minimized by enlarging the number of cameras and

realizing \multiple viewpoint triangulation systems", this improvement has to be paid for

by an enormous increase in computation complexity. Nevertheless, shadowing and the need

for signi�cant contrast in the targeted scene remain a problem. Additionally, cost and the

overall system size -one major drawback of triangulation systems anyhow- increase with the

number of cameras.

Another famous member of passive triangulation systems is the theodolite.
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Figure 2.3: Active Triangulation [13].

2.1.2 Active Triangulation

Active triangulation, as illustrated in Figure 2.3, uses a light source to project a point (in

the simplest case) to the scene, which is observed by a position sensitive detector. Rather

than measuring angles directly, active triangulation is based on the similarity of triangles,

the object triangle and the image triangle, which is fully de�ned by the optical axis of the

imaging device, the focal length h of the system, and the position of the point projection x0

on the detector. Knowing the displacement x of the light source from the imaging device,

the distance z of the target can be determined:

z = h � x
x0

(2.2)

the distance resolution �z estimates to:

�z =
1

h
� z

2

x
� �x0 (2.3)

Hence for a good distance resolution �z small absolute distances z, a large triangulation base

x and a good local detector resolution �x0 are required.

A large triangulation base means that the sensors cannot be built arbitrarily compact and

are sensitive to shadowing e�ects. Shadowing e�ects can be limited by the use of multiple

sensors. An interesting approach to this issue is the circular triangulation sensor developed

by Wolf and Beck [20, 21]:

The focused laser beam emitted from the laser diode is projected onto the object surface and

a spot is formed on the surface to be measured, as shown in Figure 2.4, 2.5. The scattering

light from the spot is partly condensed by a rotation-symmetric condenser lens onto a ring

shaped PSD (Position Sensitive Detector) array. The measuring distance in the direction of

the axis of a projected beam is detected by calculating the average radius of a ring-shaped

detector according to the triangulation principle. The main advantage of this laser probe is

that the measuring distance can be detected using only parts of the scattering light. This

helps to overcome the problems typically found with conventional triangulation laser probes,

where shading-e�ects at steps or other shape discontinuities can cause problems by loss of
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Figure 2.4: Circular Triangulation [20].

Figure 2.5: Working principle of the circular triangulation laser probe [21].
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Figure 2.6: Range errors using traditional triangulation methods. (a) Reectance discon-

tinuity. (b) Corner. (c) Shape discontinuity with respect to the illumination. (d) Sensor

occlusion [14].

signal. Also the measuring uncertainty can be signi�cantly improved. The working distance

of this laser probe type is 85mm and the measuring range is 20mm. A resolution of 2�m

can be attained with this probe.

Generally active triangulation systems are suitable for a widespread scope of range measure-

ments. Drawbacks are shadowing e�ects, low resolution (compared to interferometry) and

improper detection of the illumination pattern due to textures, corners or partial occlusion

introduces extra errors, as illustrated in Figure 2.6.

2.2 Interferometry

Interferometric techniques use collinear beams, so no shadowing e�ects appear and in addi-

tion they are not sensitive to textures.

Interferometry is described by the superposition of two (or more) monochromatic waves re-

sulting in another monochromatic wave of the same frequency �, but with di�erent phase

and di�erent amplitude. For interference the waves need to have coincident frequency, po-

larization and a �xed phase-di�erence. This phase di�erence can be estimated by observing

the evolving interference pattern.

In the best known interferometer setup, the Michelson interferometer, illustrated in Figure

2.7, a laser beam (monochromatic and coherent) is split into two beams by a beam splitter.

One beam is directed to a mirror of constant displacement x1 (reference path) whereas the

other beam is targeted onto the object at a variable distance x2 (measurement path). Both

beams are reected back to the beam splitter, which superimposes them onto an integrating

detector.

Considering the fact that each beam has to travel the distance forth and back to the splitter

we have a path di�erence of (2x2 � 2x1), thus we obtain the interference equation

I = I1 + I2 + 2
p
I1 � I2 � cos

�
2� � (2x2 � 2x1)

�

�
(2.4)

where I1 and I2 are the optical intensities of the two beams U1 and U2.

This method allows very precise distance-measurements, but it is restricted to a unambiguous

measurement range of �
2
. Interferometry can also provide incremental values:



CHAPTER 2. RANGE MEASUREMENT 9

Figure 2.7: Michelson Interferometer [13].

If the object is moved in relation to the interferometer, the arising intensity-extrema at

the detector -on a minimum follows a maximum after a further displacement of �
4
- can be

counted easily.

However, incremental measurement is a severe restriction in many cases.

It also has to be mentioned that interferometry runs into problems when applied to rough

surfaces. If the surface(-height) varies in the order of � in the area of the measurement spot,

no meaningful interference patterns can be obtained due to speckle e�ects.

2.2.1 Multiple Wavelength Interferometry (MWI) [6]

Both limitations can be overcome by Multiple-Wavelength Interferometry, which is also a

coherent method, but it o�ers great exibility in sensitivity by an appropriate choice of the

di�erent wavelengths, leading to synthetic wavelengths.

For instance, let us consider two-wavelength interferometry using the optical wavelengths �1
and �2. For an interferometric path di�erence z, the phases �1 and �2 corresponding to the

wavelengths �1 and �2 are given by

�1 = 2�
2z

�1
; �2 = 2�

2z

�2
(2.5)

The phase di�erence between �1 and �2 is given by

�� = �1 � �2 = 2�
�
2z

�1
� 2z
�2

�
= 2�

2z

�
(2.6)

Thus the phase di�erence can be considered to be sensitive to a new synthetic wavelength

�, which can be expressed as

� =
�1�2
�1 � �2

(2.7)

Therefore, the use of two slightly di�erent wavelengths permits the generation of a new

synthetic wavelength much longer than the individual optical wavelengths. The range of non-

ambiguity of the phase di�erence ��, which is also known as the synthetic phase, is therefore
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Figure 2.8: Multiple Wavelength Interferometry: separation of the wavelengths [6].

increased compared to the range of non-ambiguity of classical interferometry. Moreover, the

sensitivity of the measurement is reduced and Multiple-wavelength-interferometry can thus

be operated on rough surfaces.

Two-wavelength interferometry can be accomplished by injecting two wavelengths simulta-

neously into the interferometer, and by optically separating them at the output using a prism

or a grating, as shown in Fig. 2.8.

Both interference signals are then detected individually. The synthetic phase can be deter-

mined by measuring the interferometric phases at both wavelengths, and by computing the

di�erence. However, this method only works for relatively large wavelength di�erences and

thus small synthetic wavelengths (< 1mm), since both wavelengths have to be separated by

means of a prism or a grating. Moreover, this method requires interferometric stability at

the optical wavelength, which is di�cult to achieve in applications where reduced sensitivity

is desired and su�cient. Alternative methods can be used to solve this problem by detecting

the total interference signal without any optical separation of the two wavelengths.

Superheterodyne detection, introduced by D�andliker et al. [8], enables high resolution mea-

surements at arbitrary synthetic wavelengths � without the need for interferometric stability

at the optical wavelengths �1 and �2 or separation of these wavelengths optically. This is of

great importance for range-�nding and industrial distance measuring of large distances with

sub-millimeter resolution.

In Superheterodyne Interferometry we apply a frequency shift fi to each wavelength (the

superposition of the original and the shifted signal is called heterodyne modulation)

U1 =
p
I1 exp (i�1) exp (i2��t) (2.8)

U2 =
p
I2 exp (i�2) exp [i2� (� + f) t]

The interference signal, which is given by I = jU1 + U2j2 then becomes

I (t) = I1 + I2 + 2
p
I1I2 cos (2�ft+��) (2.9)

where �� = �2 � �1.
Thus for every wavelength we have a signal of the form
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I�1 (t) = B0 +B1 cos (2�f1t+��1) ; I�2 (t) = C0 + C1 cos (2�f2t+��2) (2.10)

Assuming incoherent superposition the total intensity equals to

I (t) = I�1 (t) + I�2 (t) = A0 + A1 cos (2�f1t+��1) + A2 cos (2�f2t+��2) (2.11)

Further assuming A1 = A2 = A12 the time dependent part can be written as

I (t)0 = A12 cos [2� (f1 � f2) t+ (��1 ���2)] � sin [2� (f1 + f2) t+ (��1 +��2)] (2.12)

Because f1 � f2 is chosen to be small compared with f1 and f2, the detector output has
the form of a carrier-suppressed amplitude-modulated signal with carrier (f1 + f2) =2 and

modulation frequency (f1 � f2) =2. After amplitude demodulation, one therefore gets

Idem (t) = A12 cos [2� (f1 � f2) t+ (��1 ���2)] (2.13)

This signal at f = f1 � f2 makes it possible to directly measure the phase di�erence
��1 ���2 = 4�z=� which is now only sensitive to the synthetic wavelength �.
The phase-measurement is performed electronically by a comparison with an optically gen-

erated reference signal having ��1 ���2 = 0. A typical setup is shown in Figure 2.9.

Figure 2.9: Two-wavelengths superheterodyne interferometer set-up. P: polarizers; BS:beam

splitters; PBS: polarizing beam splitters; �/4: quarter-wave plate; AOM: acousto-optical

modulators [6].

2.2.2 White Light Interferometry / Coherence Radar [13]

Another way to enlarge the measurement range is to use light sources of low coherence

length. Such interferometers (white-light interferometers or low-coherence interferometers)

make use of the fact that only coherent light shows interference e�ects. If the optical path

di�erence between the measurement and reference paths is higher than the coherence length

of the light, no interference e�ects appear. For a path di�erence in the order of magnitude



CHAPTER 2. RANGE MEASUREMENT 12

Figure 2.10: White light correlogram [11].

of the coherence length, however, interference takes place. The strength of interference is

depending on the path di�erence between the reference and object beams as shown in Figure

2.10. Maximum intensity is achieved if the pathlengths of the reference- and the object beam

are equal, thus absolute distances can be measured.

White-light interferometry with a Michelson-interferometer can be considered as the obser-

vation of the autocorrelation-function of the light signal.

2.2.3 Conoscopic Holography [57, 58]

In classical holography an interference pattern is formed from the object and the reference

beams using a coherent light source. These beams propagate with the same velocity, but

follow di�erent geometrical paths.

In conoscopic holography the object and reference beams of the coherent holography are

replaced by the ordinary and the extraordinary components of a single beam propagating in

birefringent media (Figure 2.11).

Figure 2.11: Principle of Conoscopic Holography [58].
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An uniaxial (birefringent) crystal has di�erent indices of refraction (di�erent velocities of

propagation) along practically equal geometrical paths depending on the polarization of the

incident light.

The ordinary refraction index, nO, is isotropic; the extra-ordinary refraction index, nE (�),

is a function of �, which is the angle between the optical axis of the crystal and the direction

of propagation, and is given by

nE (�) = nO +�n sin
2� (2.14)

where �n = nO � nE.
Thus from a single incident ray, two superposed rays emerge from the crystal with a phase

di�erence �' at orthogonal polarizations.

The two beams are naturally coherent and therefore this technique allows to generate holo-

grams, even with non-coherent light. This is a key advantage of conoscopic holography.

For small angles � this phase di�erence is estimated by

�' = (2�=�) (L= cos�)�n sin2� � (2�L=�)�n�2 (2.15)

where L is the length of the crystal and � is the optical wavelength.

In order for both rays to interfere, an analyzer (polarizer) aligns the directions of the electrical

�elds.

In the system sketched in Figure 2.12, P (x; y; z) is a monochromatic non-coherent point

source. The system is composed of an uniaxial crystal, with its optical axis parallel to the

axis of the system, between two circular polarizers, a polarizer and analyzer.

Figure 2.12: Light propagation in uniaxial crystal [57].

The light intensity is detected by a camera at the recording plane.

I(R;P ) = I(P )

�
1

2
+
1

2
cos

�
2�L�n

(x� x0)2 + (y � y0)2
z2�

��
(2.16)

where the distance z (the depth coordinate) enters as a parameter of the fringe spacing.

The fringe periods can be precisely measured to determine the exact distance to the point

measured.
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The important physical parameter is the di�erence of the optical path length (geometrical

path length multiplied by index of refraction). In a coherent holographic system the varia-

tions of the geometrical path length are interferometrically recorded, whereas in a conoscopic

holographic system the refraction index changes are recorded; the two beams have the same

path. This reduces the problems of stability of the system and coherence requirements and

produces holograms, even with non-coherent light. The output of the system is a holo-

gram since it contains all the data about point P , its intensity, its lateral position and its

longitudinal coordinate.

2.3 TOF (Time-of-Flight) Ranging [13]

Measurements of distances by TOF methods are indeed straight forward. If we are able

to measure the time a signal has to travel from the emitter to the object and back to the

receiver, the travelled distance can be computed easily (assuming the velocity of propagation

of the signal is known and constant).

Figure 2.13: Basic principle of an (optical) TOF ranging system [13].

One can �nd time-of-ight measurement systems in nature's navigation solutions for dolphins

and bats, which use this sensor system for both navigation and object tracking (hunting).

Moreover, humans have also used TOF techniques for a long time, for example by dropping

rocks down deep holes and waiting for the echo or by trying to estimate the distance of a

lightning discharge by evaluating the time delay between the lightning and the associated

thunder.

All these examples of TOF methods are based on the propagation of sound.

Nature favors acoustic over optical TOF measurements, due to the relative low propagation

velocity (�343m/s at 20�C) compared to light.
Thus for technical application travel times (even for distances in sub mm ranges) can be

measured directly by nowadays state of the art.

However, due to di�raction limitations (� = 0.1 . . . 1mm), they are not suited for range
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measurements with high angular resolution, at an acceptable size of the measurement system,

so we will focus on optical TOF methods in the following.

A typical setup is illustrated in Figure 2.13.

An advantage of TOF compared to triangulation is the possibility of a compact sensor with

the emitter located next to the receiver. This way emitted and detected beams are collinear

and shadowing e�ects will not appear.

But there is a price to pay, and in this case it is obvious: since the propagation velocity of

light is very high (c=2.99792458.108m/s) the travel times of the signal are very short, thus

the basic problem of establishing a TOF ranging system is the realization of a su�ciently

accurate time measurement. Considering the fact that the light pulse travels the path twice

(forth and back) a measured time of 6.67ns corresponds to a distance of 1m, thus a time

accuracy of better than seven picoseconds is required for a distance resolution of 1mm.

TOF methods can be classi�ed by the way of modulation of the measurement beam.

In the following we will discuss Pulsed -, Continuous Wave- (AM, FM . . . ) or Pseudo Noise

Modulation (a combination of both) methods.

2.3.1 Pulsed Modulation [13]

Pulsed light operation, as illustrated in Figure 2.13, is the most obvious method of operating

a TOF system, because the time of ight is measured directly. The actual time measurement

is performed by correlation of a start and stop signal with a parallel running counter. The

advantage of using pulsed light is the possibility of transmitting a high amount of energy

in a very short time. Thus the inuence of background illumination can be reduced and

a high short-term optical signal-to noise (and signal-to-background) ratio is attained while

maintaining a low mean value of optical power. This is an important factor for eye-safety,

which is the limiting criterion for many measurement applications. Furthermore, it reduces

the demand on a very high sensitivity and signal-to-noise ratio of the detector, thus enabling

long distance measurements. However, at the same time the receiver must o�er high dynam-

ics and a large bandwidth. The basic problem for the receiving path is to exactly detect the

arrival time of the back-scattered light pulse. This is because (1) the optical threshold is not

a �xed value but changes with background and distance of the object, and (2) atmospheric

attenuation leads to dispersion of the light pulse and attens the slope of the received pulse.

It is also tricky to produce very short light pulses with fast rise and fall times, which are

necessary to assure an accurate detection of the incoming light pulse. Current lasers or laser

diodes, the only optical elements o�ering the required short pulse widths at su�ciently high

optical power, still su�er from relatively low repetition rates for the pulses, which are typ-

ically in the range of some 10 kHz. Such low repetition rates drastically restrict the frame

rate for TOF scanners.

Nevertheless, due to the advantages gained concerning signal-to-background ratio, most of

today's TOF range�nders are operated with pulsed modulation.

High Precision Time Measurement [25]

In the following we will give an impression how the time measurement is realized:

For resolutions down to millimeters it would be necessary to count the ticks of a clock running

at about 200 GHz which is di�cult to do.
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Figure 2.14: Block diagram and operating principle of a TDC [25].

Figure 2.15: Principle of the time interpolator in the TDC described in [25].

Instead this task is usually performed by a TDC (Time to Digital Converter). A schematic

diagram of a TDC is given in Figure 2.14.

The core of the TDC is a clock counter system running at about 100 MHz (higher frequencies

would be hard to handle).To get a better resolution than 1=f the delay between clock signal

and start impulse (T1) and also between clock signal and stop impulse (T2) is interpolated

by a time to voltage converter (Figure 2.15), where a capacitor is discharged with constant

current during the input time interval.

Since the start and stop signal is not synchronous to the clock, the error of the interpolators

can be assumed as random, therefore averaging leads to higher resolutions.

In case of the special setup shown in Figure 2.14 the end mark of T1 (T2) is not taken from

the �rst but from the second clock pulse following the start (stop).

This is done to avoid errors when the start or stop pulse occurs near the rising clock edge

and the ip-op would cause an additional propagation delay, the so called \Excess Delay".
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Figure 2.16: Principle of optical phase-di�erence time of ight method using CW [26].

2.3.2 Continuous Wave (CW) Modulation [13]

Instead of directly measuring a light pulse's turn-around time, the emitted wave is RF (radio-

frequency) modulated and the phase di�erence between emitted and received signal is used

for the calculation of the distance.

In Figure 2.16 the principle of a CW method based device is shown which uses only one

modulation frequency (homodyne modulation).

CW-modulation o�ers the possibility of using alternative modulation-, demodulation- and

detection-mechanisms. Compared to pulsed modulation a larger variety of light sources

is available for this mode of operation because extremely fast rise and fall times are not

required. Di�erent shapes of signals are possible; sinusoidal waves or square waves are

only two examples. For CW-modulation the phase di�erence between sent and received

signals is measured, rather than directly measuring a light pulse's turn-around time. As

the modulation frequency is known, this measured phase directly corresponds to the time

of ight, the quantity of interest. The use of several modulation frequencies is known as

heterodyne operation or frequency shifting. Especially heterodyne mixing o�ers the powerful

possibility of synthetically generating beat frequencies. Thus the unambiguous distance

range is increased while maintaining absolute accuracy. However, this requires relatively

high bandwidth and linearity for both transmitting and receiving path.

The homodyne operation works with one single frequency and does not necessarily require

a large bandwidth.

Additionally, a large variety of intelligent CW modulation techniques is available, but similar

to interferometry the measurement range is limited by the unambiguous range to �=2.

2.3.3 Pseudo-Noise (PN) Modulation [26]

Pseudo noise modulation generally is a band-spreading technique, originally developed for

communication. Band-spreading means that a larger bandwidth is used than it would be

necessary for transmitting the data alone, but it o�ers a better signal to noise ratio and the

possibility of encrypting and hiding transmission of data.

A pseudo noise sequence is a random-like but periodic sequence of \+1" and \�1" and has
to be formed following strict rules. In [28] a more detailed information on PN generators,
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Figure 2.17: Autocorrelation-function of a PN sequence with 2n -1 bits [28].

properties and applications of PN modulation is given. The origin of the name pseudo-noise

is that the digital signal has an autocorrelation function (Figure 2.17) which is very similar

to that of a white noise signal.

The autocorrelation function is demonstrated with the following PN Sequence (n=3)

Ra(� = 0)

pn(0) = +1 + 1 + 1� 1 + 1� 1� 1
pn(0) = +1 + 1 + 1� 1 + 1� 1� 1

Ra(� = 0) +1 + 1 + 1 + 1 + 1 + 1 + 1; � = 7

Ra(� = 1)

pn(0) = +1 + 1 + 1� 1 + 1� 1� 1
pn(1) = +1 + 1� 1 + 1� 1� 1 + 1

Ra(� = 1) +1 + 1� 1� 1� 1 + 1� 1; � = �1
PN modulation is very interesting to TOF applications, because this sharp autocorrelation

function allows detecting even small shifts between synchronous signals.

Figure 2.18: Principle of optical time of ight method using PN [26].

The principle of a PN range�nder system is shown in Figure 2.18.

A transmitter emits the PN code which is detected by a receiver. Due to travel time the

signals are shifted relative to each other. The received signal is matched with the reference

signal of the PN generator, by using delay lines (DLL) or changing the frequency of the

generator. These adaptations and the measurement of the autocorrelations allow the com-

putation of the travelled distance. An advantage over the CW modulation is the possibility

of having a large unambiguous range Zmax, that is given by the clock period of the generator

TBit = 1=fBit and the number of bits in the PN-sequence
�
2N � 1

�
:
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Zmax =

�
2N � 1

�
TBitc

2
(2.17)

With an increasing number of bits not only the unambiguous range becomes larger, the

sensitivity of the correlator and so the precision of the range�nder increases as well.

However, the number of bits should be chosen reasonably because the maximum measuring

time rises in order of ((2N � 1)TBit)2. Similar to pulsed modulation PN o�ers a good signal
to noise relation but also needs transmitters and receivers with a high bandwidth, therefore

restricting the choice of light sources and detectors.



Chapter 3

Overview of Non-Contact 3D

Scanning Systems

In the previous chapter we described di�erent methods of range-mesurements, in this chapter

we will discuss how we can apply these methods to 3D data acquisition.

In general range-mesurement sensors allow only a 1D measurement, i.e the distance mea-

surement of one point in the 3D scene. To capture the whole scene, we would have to use

many of such sensors in parallel, but this appears to be impractical due to the large size and

the enormous demand on additional electronics. Therefore in most 3D scanning systems, the

object is moved relatively to the 1D detector, and every point has to be measured serially.

This movement is either performed by a calibrated motion stage or the beam is deected by

a motor driven mirror system. Most of these scanning beam systems are bulky and sensitive

to vibrations [13].

In the following the di�erent systems are summarized according to their range measurement

method.

3.1 3D Scanning Systems based on Triangulation [15]

Triangulation is one of the most common methods for acquiring range data. Although

this technology has been in use for over two decades, its speed and accuracy has increased

dramatically in recent years with the development of geometrically stable imaging sensors

such as CCD's and position sensitive (lateral e�ect) photodiodes.

Researchers and manufacturers have used optical triangulation scanning in a variety of ap-

plications. In medicine, optical triangulation has provided range data for plastic surgery

simulation, o�ering safer, cheaper, and faster shape acquisition than conventional volume-

tric scanning technologies. In industry, engineers have used triangulation scanners for ap-

plications that include -as an example- postal package processing and printed circuit board

inspection. Triangulation scanners also provide data to assist computer graphic applications,

such as digital �lm production.

Triangulation systems are available for distance measurement ranges from mm-range (depth

of focus) to 100km range (photogrammetry).

20
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3.1.1 Photogrammetry (Passive Triangulation)

Photogrammetry is one of the oldest methods for 3D data acquisition. In the photogram-

metric process an object is reconstructed by a set of photos taken from di�erent points of

view. Photogrammetry is based on passive triangulation and will be discussed in more detail

in the next chapter.

3.1.2 Depth from Focus and Defocus [27]

This technique obtains depth information by actively controlling camera parameters. It

is a passive monocular triangulation method, therefore in contrast to stereo methods (like

photogrammetry) no correspondence between two or more images has to be established.

There are two distinct scenarios for using depth focus information for depth recovery:

Depth from Focus

The distance to one point is determined by having a sequence of images in progressively

better focus.

The main issue is to �nd a measure for the quality of the focus. An ideal measure of

the quality of the focus should be expressed by a function that is unimodal, monotonic

and should reach its maximum only if the image is focused. With such a criterion for the

quality of the focus, the optimal focus-interval is found by a quick search algorithm, like the

Fibonacci-search [65].

Depth from Defocus:

By taking a small number of images under di�erent lens parameters, the depth at all points

of the scene can be determined. This method uses direct relationships among the depth, the

camera parameters and the amount of blurring in the images. Since the camera parameters

can be calibrated, the depth can be expressed by the amount of blurring change correspond-

ingly. However, as with passive stereo vision the scene must have enough texture for the

blurring to be detected.

The system demonstrated in [27] can determine the depth within the measurement range

(�2,5m) with a relative accuracy of 1/200.

3.1.3 Structured Light (Active Triangulation) [54, 34]

Structured light scanners project a known light pattern onto the 3D surface of the object to be

modelled. In its simplest variant (apart from spot illumination) this consists of illuminating

the object (being scanned) with a stripe of light and observing it with a detector (typically

a CCD camera) placed at a known angle with respect to the light source. The side-to-

side wiggles of the observed stripe correspond to the shape of a contour on the object;

mathematically, we may determine the 3D locations of points on this contour by computing

the intersections between the camera rays and the plane of the projected light stripe (refer

to Figure 3.1).
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Figure 3.1: Layout of a single-camera, single-source triangulation system. The 3D positions

of points on the object are determined by the intersection between the camera ray and the

plane of light produced by the illumination source [34].

Structure of Illumination [15]

The structure of illumination can take a variety of forms. A beam of light forms a spot on

a surface and provides a single range value. By passing the beam through a cylindrical lens,

a light stripe can be projected onto an object to collect a range pro�le (Figure 3.1).

It has also been tried to project multiple spots or multiple stripes onto an object for more

parallelized shape acquisition, though multiple steps are usually required to disambiguate

the detected light patterns.

Typically LCD (Liquid Crystal Display) projectors are used for the projection of these pat-

terns.

When the reected light is imaged onto a sensor by lenses, the single point and stripe

illuminations o�er the advantage that at any instant all intersections of the light with the

object must lie in a plane. Since lenses image points in a plane to points in another plane,

the sensor can be oriented to keep the beam or sheet of light in focus, thus reducing depth

of �eld problems. When the focal plane is tilted, the image plane must also be tilted so as

to satisfy the Scheimpug-condition [17]:

tan� =M tan� (3.1)

where � and � are the tilt angles of the focal and image planes, respectively, as shown in

Figure 3.2, and M is the magni�cation on the optical axis.

The resulting triangulation geometry has the property that the focal-image and lens-planes

all intersect in a single line.

Multiple-point and multiple-stripe systems generally cannot take advantage of this optimal

con�guration, because the illumination usually does not lie in a single plane.

Type of Illumination [15]

The type of illumination can be either coherent or incoherent. Coherent light sources such

as lasers o�er several distinct advantages over their incoherent counterparts. First, lasers

can be held in tight focus over a long range. Second, since laser light is tuned to a single
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Figure 3.2: In order for all points along the center of the laser sheet to be in focus, the angles

� and � are related to one another by Eqn 3.1 [15].

wavelength, the sensor can be coated with a bandpass wavelength �lter, decreasing the

sensitivity to ambient light. In addition, the optical system does not have to be corrected

for chromatic aberrations, and elements such as prisms can be simply used. Usually lasers

used in triangulation also do not have problems with heat dissipation, whereas incoherent

illumination sources of su�cient power frequently do. The disadvantages of using lasers are

laser speckle (random coherent interference due to surface roughness) and the need for special

safety precautions for lasers operating at visible and invisible (ultraviolet) wavelengths.

Object-Capturing [34]

Having a spot or a stripe as an illumination pattern the object must be moved with reference

to the scanner, to obtain dense 3D information. Illumination patterns like "multiple stripes"

allow to capture a scene with a single shot. For 3D model acquisition (complete models

of rigid objects), the object must be moved relative to the scanner (or the scanner moved

relative to the object) in order to obtain and integrate views of the object from all sides.

In both cases this movement is usually performed by a calibrated motion stage. There are

also hand-guided scanning systems where the position (all 6 degrees of freedom: 3 linear

coordinates and 3 angles of orientation) of the triangulation sensor is captured by a tracking

system. This tracking system can be acoustical or optical, which involves that the operator

must not obscure the sensor, or magnetically, like in the Polhemus-Fastscan system.

Polhemus Fastscan [23]

The Polhemus Fastscan is a hand-guided laser triangulation scanner.

The device consists of a laser stripe projector and a CCD camera to obtain depth information

of the illuminated area. The scanner is moved over the object of interest by hand. The

position of the scanning head is acquired by a magnetic tracking system collecting all 6

degrees of freedom. The magnetic tracking system has the advantage that it needs no line

of sight between the scan head and the detector (usually �xed to the object). However, the
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magnetic tracking system can be disturbed by metallic objects in the surrounding area, thus

the scanner is restricted to non-metallic, opaque materials.

Figure 3.3: Polhemus Fastscan: Handguided scanhead with laser stripe projector, CCD-

camera, magnetic tracking system (transmitter); the tracking system-receiver is placed near

the object [23].

A similar system is available from Steinbichler [66], which uses an optical instead of the

magnetic tracking system.

Line Triangulation 3D Scanner in our Laboratory [64]

In his Diploma Thesis S. Pelech developed a 3D Laser-Scanning System based on Line

Triangulation. He built a scanner with high precision and low system costs. The scanner

uses a cylindrical lens to widen up the laser beam, and projects it onto the object of interest,

that is mounted on a rotation- and translation stage. The stripe of light is orientated

perpendicular to the axis of rotation as shown in Figure 3.4. The costs of the scanner were

kept low by the use of o�-the-shelf-components.

The imaging-sensor is a standard CCD video-camera. By the use of a subtile calibration

process the inuence of the lens distortion was eliminated and thus an excellent resolution

of �0.1mm was achieved. A further contribution to attain this high resolution is the rather

large triangulation angle of 45�. This however makes the scanner vulnerable to shadowing

e�ects. In order to minimize those, the laser-line is observed from two directions. For a

consistent calibration and low overall costs this is done with the help of a rotating (central)

mirror, instead of two CCD-cameras.

The scanner has a cylindrical working volume of 400mm in length with a diameter of 200mm,

and achieves a precision of �0.1mm; a slice is scanned in �1.5 min. The scanner thus
competes commercial systems but can be inexpensively built using standard components.

We will later use scan data-sets produced with this scanner to verify our software and to

compare them with our scanning system.

Cyberware Desktop 3D Scanner Model 15 [67]

This scanner is also based on laser light-sheet triangulation, and is closely related to the

system described above. The main di�erence is that here the laser-line and the axis of
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Figure 3.4: Optical path and directions of motion [64].

Figure 3.5: Photograph of the prototype system.
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rotation are parallel. The scan-head is moved by a translation stage to obtain a range

image. In order to acquire a range image from another point of view, the turntable with the

object is rotated. The scanner samples �15000 points per second, and has a resolution of
�0.3mm, but it is limited to rather small objects (250mm x 150mm x 75mm). A complete

object scan lasts for about 1-2h.

Figure 3.6: Cyberware Desktop 3D Scanner Model 15 [16].

3.2 3D Scanning Systems based on Interferometry

As already mentioned above in the chapter concerning range measurement techniques, single-

wavelength interferometry is not very suitable for 3D-scanning applications, since it su�ers

from a small unambiguous range and the measurement can be disturbed by rough surfaces

(speckle e�ect), whereas other interferometric methods are quite common.

With multiple-wavelength interferometry scanning-beam-systems can be realized that o�er

a precision of a few 10�m over a measurement range of �200mm.
White light interferometric methods like the Coherence-Radar allow highly accurate absolute

distance measurements and �nd their applications for example by measuring circuit boards

in quality control or in dermatology to determine the roughness of human skin [12].

Sensors based on Conoscopic Holography provide high precision measurements and are robust

against temperature drifts, vibrations, surface texture variations and shadowing e�ects [59].

3.2.1 Multiple Wavelength Interferometry (MWI) [7]

Distance sensors based on TOF methods allow for large measurement ranges, but their

resolution is limited to a few tenths of a mm. Since the precision of triangulation sensors is

determined by their triangulation-angle, they may not be suitable for surfaces with holes or

steep edges, whereas MWI systems bene�t from a comparably high distance resolution and

their collinear measuring beams. The measuring range and precision of MWI systems can be

adapted to speci�c applications by a proper choice of the virtual wavelength. Theoretically

the distance-resolution of MWI is only limited by the roughness of the sample surface. A

system based on heterodyne modulation as described in section 2.2.1 is presented by Trautner
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Figure 3.7: Measuring head of a multiple-wavelength range-scanner [7].

et al in [7]. There two di�erent con�gurations are examined, one with a virtual wavelength

of � = 2mm and a second with � = 347mm. For the larger wavelength they were able to

achieve a measurement resolution of 0.7mm and 60�m for the smaller one. They proposed

that by increasing the intensity of the light source and an improved setup a resolution down

to 10�m should be possible. Furthermore they are planning to extend their system by using

two virtual (three optical) wavelengths. The larger wavelength would be used for a coarse

measurement of the sample and detailed information would be gathered by the smaller one.

Thus in combination of both a measurement range of �200mm and a resolution of 10�m

should be achieved.

3.2.2 Conoscopic Holography [58, 59]

As stated earlier, Conoscopic Holography is a holographic technique based on light propaga-

tion in uniaxial crystals. Since its discovery in 1985 at the California Institute of Technology,

it was targeted as a general-purpose, three-dimensional, optical sensor. Optimet produces

sensors which can be adapted to various working ranges by using di�erent lenses. Working

areas are from �0.5mm to �250mm and a resolution of about 1/8000 of the working range

can be attained. An illustration of such a system is given in Figure 3.8.

The probe emits a laser beam that is reected by a beam splitter and hits the object being

measured. Scattered light returns from the object through the beam splitter and birefringent

crystal and is then detected by the sensor's CCD camera. The birefringent crystal modi�es

the speed of each light ray di�erently in accordance with its angle with respect to the crystal

axis. This creates a high contrast fringe pattern on the CCD camera. The angle of the light

ray is a function of the distance between the reference plane and the laser spot projected on

the object. The distance can therefore be determined by analyzing the characteristics of the

created pattern.

A typical application for these high-precision single-point measurement sensors are non-

contact CMMs (Coordinate Measurement Machine), where the probe is rastered over the

sample by motion-stages.

These non-contact CMMs have the advantage over contact CMMs that they are also suitable
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Figure 3.8: Schematic of the Conoprobe (a sensor based on Conoscopic Holography) [59].

for soft materials and higher scanning speeds are possible, since one axis is measured in

motion, and there is no need for a slow approach of the measurement tip to the object.

There are also sensors available that provide a 2D pro�le in a single run, thus a full 3D

surface area pro�le is obtained in a single axis scan. They are used, for example, in in-

process inspection systems, that observe objects on a conveyor belt.

3.2.3 Coherence Radar [9, 12]

A coherence radar is an optical 3D range sensor based on white light interferometry. It is

basically a Michelson interferometer (Figure 3.9).

Figure 3.9: Experimental setup of the Coherence Radar (left) [12], Sensor in a portal setup

(right) [10].

The object of interest and the reference mirror are illuminated by a plane wave. The illumi-

nation source is chosen to have a large spectral bandwidth, thus the coherence length of the

source is short and good contrast fringes will be obtained only when the two paths of the

interferometer are closely matched in length.
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The in-depth scan is done by moving the surface of the sample along the optical axis. During

this movement the interference contrast is observed for each camera pixel, and the vertical

peak position is detected.

Thus the range measurement is done in parallel for each camera pixel and the scanning time

only depends on the measurement-range.

In contrast to triangulation systems the measurement accuracy is independent of the distance

between object and sensor, also no shadowing e�ects arise, since the measurement uses

collinear beams. An advantage over coherent interferometry is the ability to scan also rough

surfaces.

The system described in [10] achieves a resolution of 1�m, features vertical scan velocities

4-70�m/s, and the measuring �eld is scalable from 1mm2 to 100mm2:

Note that by replacing the reference mirror with a master object the direct measurement of

deviations between object under test and master object is possible with a Coherence Radar

as well.

3.3 3D TOF-Scanning-Systems

3.3.1 Acoustic Position Tracker

Acoustic positioning systems bene�t from the relatively low propagation velocity of sound.

Considering a sound velocity of 340m/s,we need to measure times of �0,3�s to scan details
as small as 0.1mm, which can be performed easily by counting pulses from a MHz oscillator.

On the other hand, due to the large wavelength, "scanning sonic-beam systems" are not

available, because of their low spatial resolution. Thus the only acoustic scanning systems

are position trackers. A typical arrangement is shown in Figure 3.10.

Figure 3.10: Accousitc Position Tracker Setup [55].

It consists of a probe that emits ultrasonic acoustic waves which are received by a detector

array. To compute the position and the direction of the probe, it uses at least two emitters,

working at di�erent frequencies or emitting their signals in a special pattern.
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Figure 3.11: Freepoint 3D Scanner [56].

The position of the probe is computed by the travel-time of the signals. Travel time mea-

surements are made within a de�ned time-window to minimize the e�ect of reections from

nearby surfaces.

It is possible to build scanners with a scanning-volume of several m3 achieving a resolution

down to 0.1mm.

This is quite a good performance, but there are a few limitations to ultrasonic digitizers:

One of the problems associated with ultrasonic devices is that the digitizing probe needs to

be in the line of sight of the detector array. If the operator or model obscures one of the two

beam-paths the system it cannot operate accurately.

Another problem is that the sound-propagation velocity is a�ected by atmospheric condi-

tions, like humidity, temperature and air pressure.

As a solution the Freepoint 3D Scanner from GTCO [68] features an automatic calibration

procedure to determine the velocity of sound:

As shown in Figure 3.10 there is a calibration assembly nearby the scanner. Each time the

position of the probe is tracked, the time of ight is compared to a reference measurement

made by a separate emitter and detector placed at a well known distance.

The Freepoint 3D Scanner (Figure 3.11) is capable of scanning a volume up to 2,4m x 2,4m

x 4,8m with a resolution of 0.1mm.

3.3.2 \Scanning beam" 3D Scanners (optical TOF) [22]

A laser range measurement system can be used to gather entire 3D scenes by sequentially

scanning a beam across the observed object.

A high-end product based on this principle is manufactured by Riegl [22], a small Austrian

company that has a long experience in optical range�nding technology.

The components of the scanning system (refer to Figure 3.12) and the principle of operation

according to [22]:

The range�nding electronics (1) of the 3D scanner is optimized in order to meet the re-

quirements of high-speed scanning (fast laser repetition rate, fast signal processing, and

high-speed data interface).

The vertical deection ("line scan") of the laser beam (2) is realized by a polygon (3) with

a number of reective surfaces. For high scanning rates and/or a vertical scan angle # up to

90�, the polygonal mirror rotates continuously at adjustable speed. For slow scanning rates



CHAPTER 3. OVERVIEW OF NON-CONTACT 3D SCANNING SYSTEMS 31

Figure 3.12: Scanning head and schematic of the Riegl 3D Scanner [22].

and/or small scanning angles, it is oscillating linearly up and down. The horizontal scan

("frame scan") is provided by rotating the complete optical head (4) up to 360�.

The gained information -range, angle, signal amplitude, and target color- is provided via a

parallel data output.

The scanner has a measurement range from 2 to �400m (depending on the surface reectiv-
ity) an averaged distance resolution of 5mm, an angular resolution of 25 mrad and is capable

of scanning �10000 pts/s.
As a special feature the scanner is also available with a true color channel, allowing to

determine the color of each laser measurement. In Figures 3.13, 3.14 one can get a few

impressions of the performance of this scanner. The Colosseum in Rome was scanned in

�eld-of-view of 80� x 80� yielding a total number of 1.2x106 Points. The entire scan was

accomplished in 3min 25s.
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Color-Encoded Range Image True-Color Image (passive channel)

Figure 3.13: Colosseum scanned with the Riegl 3DScanner [22].

Figure 3.14: Rendered 3D-scene with true-color-texture [22].



Chapter 4

Selected 3D-Scanning Systems

In the following we will present three scanning systems in more detail.

� Terrestrial or Close-Range Photogrammetry

� a Real-time Structured-Light range-scanner

� and a 3D Time-of-Flight-camera

Photogrammetry was selected because of it's importance and widespread applications. The

two latter were chosen, because of they o�er a new approach to 3D-scanning and may

inuence future scanner designs.

4.1 Terrestrial or Close-Range Photogrammetry

[31, 32]

Photogrammetry is a technique of making reliable measurements of objects (2D or 3D) by the

use of (usually multiple) images. According to [31] close range- or terrestrial photogrammetry

is the application of photogrammetry where the measured distances are small (�<300m)
compared to those of air or satellite picture processing. There is a further classi�cation

based on the number of images to process: singleview- (not suitable for 3D measurements)

stereo{ and multipleview-photogrammetry. The geometrical background of photogrammetry

is central perspective mapping. The following section will provide a short overview of the

photogrammetric process (refer to Figure 4.1).

To reconstruct the object of interest from the photographs, it is necessary to have a network

of reference points. If the object lacks signi�cant points, which are easily identi�ed, it has

to be signalled, which is usually done by retroreective stick-on targets. The position of

these control points have to be measured in order to obtain an \object-coordinate system",

a reference system between the photographs and the real world, which will be used later to

determine the camera positions, view angles, and for scaling.

The main thing of data collection is to take pictures of the object from two or more di�erent

points of view.

Pre-processing involves �lm processing, enlargement and digitizing (obviously only necessary

if analogue cameras were used), storage and the calculation of the object coordinate system

from the reference points.

33
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Figure 4.1: The photogrammetrical procedure acccording to Luhmann [31].

Figure 4.2: Parameters of inner orientation [31].
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Calculation of the inner-orientation (refer to Figure 4.2) means, that the position of the

image with respect to the centre of projection is determined (H(x0; y0); c) and lens-distortion

(�x0;�y0) is compensated.

The main part of the lens distortion is radial-symmetric; a smaller radial-asymmetric and

tangential part is due to a misalignment of the lenses in the objective.

Camera calibration must be associated with each image. This identi�es which camera/lens

combination was used when actually the image was taken, and it provides the analytical

software with critical information such as the focal length of the camera, the size of the

image, and distortion parameters of the lens. Camera calibration is accomplished by using

a number of test photographs which are taken of a specially designed calibration �eld.

To compute the orientation and position of the cameras relative to the object (exterior

orientation) at least three control points have to be identi�ed in each picture.

The parameters that have to be calculated are the translation vector X0 (X0; Y0; Z0) and

the angles of the rotation matrix R(!; '; �).

Figure 4.3: Central projection and exterior orientation [31].

Equation 4.1 explains how an image-point P0(x0; y0;�c) is mapped to an object point X :

X = X0
1

m
R (!; '; �)

0@x0 � x00y0 � y00
�c

1A (4.1)

where R(!; '; �) is the Rotation{matrix, and m is the unknown scale parameter.
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It is for this scale parameter, that it is not possible to reconstruct the object coordinates

from a single picture. The scale parameter m can be expressed by Z leading to the following

\collinear- equations", where rij are the components of the Rotation-matrix R(!; '; �).

X = X0 + (Z � Z0)
r11 (x

0 � x00) + r12 (y0 � y00)� r13c
r31 (x0 � x00) + r32 (y0 � y00)� r33c

(4.2)

Y = Y0 + (Z � Z0)
r21 (x

0 � x00) + r22 (y0 � y00)� r23c
r31 (x0 � x00) + r32 (y0 � y00)� r33c

(4.3)

A known exterior orientation allows the various photographs to be mathematically tied

together and tied to the control point coordinate system.

If the orientation parameters of all photographs are known and homologous (identical) points

are found in two or more images, this point can be determined in the object coordinate system

by spatial intersection from two or more images.

In practice the most di�cult step is to identify homologous points in the images. (This is

usually denoted Correspondence Analysis.)

4.1.1 Correspondence Analysis [69]

In [31] Correspondence Analysis is stated to be an \ill-posed problem" because due to oc-

clusion points need not be visible in all pictures, ambiguous object structures lead to several

(possibly matching) points, and object texture with low contrast causes unstable and noise

sensitive solutions.

A method to avoid this problem is structured-light-scanning; it will be treated in the next

chapter.

The strategies of Correspondence Analysis can be listed as follows:

� In area-based matching the correspondence between two image areas is determined by
the similarity of their grey values. The cross correlation and the least square correlation

are the well-known methods for area based matching.

� The feature-based matching determines the correspondence between two image features
(points, edge elements, short edges or lines and small regions).

� In structural-matching/relational-matching not only image features but also their re-
lation (is above is parallel, . . . ) are used for identifying corresponding points.

Hierarchical methods are used in many matching algorithms in order to reduce the ambiguity

problem. They are employed (like sifters) from coarse to �ne. The results achieved on one

resolution are considered as approximations for the next �ner level. For this task images are

represented in a variety of resolutions, leading to "image pyramids".

Due to central perspective mapping there is a powerful constraint that limits the search

area for homologous points: for the special case of stereo-photogrammetry (two identical

cameras with a view direction normal to their base) the Correspondence Analysis has to be

carried out only in the x-parallaxes of the point of interest from one picture to the other.

Thus if the pictures were taken from arbitrary but known positions, the search region can

be limited to a small rectangle as shown in Figure 4.4. Also the number of ambiguous points

can be reduced by epiplanar-geometry if there are multiple images covering the same region

of interest (refer to Figure 4.5).
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Figure 4.4: Epiplanar-geometry [31].

Figure 4.5: Correspondence-Analysis in image-triple using "Kernlinien" [31].
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Figure 4.6: Data ow in Bundle Block Adjustment [31].

4.1.2 Bundle Block Adjustment [31]

Bundle block adjustment �rst suggested by Schmid in 1958 [72] is a di�erent approach

where exterior and interior orientation parameters and object coordinates of tie points are

calculated by least squares adjustment. It is the dominating method nowadays because

the simultaneous determination leads to the highest accuracy and the demand for high

computational power can be well satis�ed nowadays.

For every point in a picture we have 2 observations:

x0 = x00 � c
r11 (X �X0) + r21 (Y � Y0) + r31 (Z � Z0)
r13 (X �X0) + r23 (Y � Y0) + r33 (Z � Z0)

(4.4)

y0 = y00 � c
r12 (X �X0) + r22 (Y � Y0) + r32 (Z � Z0)
r13 (X �X0) + r23 (Y � Y0) + r33 (Z � Z0)

(4.5)

which we need to calculate the following unknowns.

� With each camera there are (except for lens distortion) 3 undetermined values (x0; y0; c)
from inner orientation,

� with each picture 6 unknown values (X0; Y0; Z0; !; '; �) from the exterior orientation

and

� 3 unknowns (X; Y; Z) for each point in a picture:

This over-determined equation system is linearized and solved iteratively by least squares.

An example of a successful photogrammetric reconstruction is given in Figure 4.7. An

accuracy of �0.25mm on critical surfaces and points, �5mm on other surfaces was achieved
and the object was modelled by hand during post processing.
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Figure 4.7: Example of a photogrametric reconstruction [32].

4.2 Structured-Light Range Scanning for Moving Scenes

[34]

In the following a radical new design of a real-time scanning system developed by Rusinkiewicz

et al. at the Stanford University will be discussed.

Rusinkiewicz took part in the \Digital Michelangelo" project [33], where a high accuracy

custom built scanner was used for scanning Michelangelo's David in the Academic Gallery

of Florence.

Figure 4.8: Digital Michelangelo Project [33].

The scanning of this approximately 7m high statue not only demonstrated the use of 3D

scanning in humanities, it also showed some drawbacks of current systems:

The equipment was very expensive and two scanners were needed: one motor driven laser-

stripe scan-head for the automatic-scan of the main parts, and a smaller one operated by

hand, which was used to accomplish the scanning in hardly accessible areas, e.g. for hole-

�lling.

These scanners were di�cult to use and the scanning process took a sta� of 30 people several

months. Also thousands of hours were spent afterwards on the post processing of the data



CHAPTER 4. SELECTED 3D-SCANNING SYSTEMS 40

(scan-data merging and hole �lling).

4.2.1 Objectives of the Scan-System-Design

With this experience in mind, the aim was to build a fast, inexpensive and easy to use 3D

model acquisition system.

Rusinkiewicz et al. distinguish between object scanning (a single 3D image is taken from a

rigid or non rigid object) and 3D model acquisition (build complete models of rigid objects).

Instead of only focussing on the hardware, their approach was to optimize the entire scanning

pipeline.

Starting with the hardware they looked for a scanning process that allows for getting as many

data as possible from a single \shot"; they decided to use structured light as the scanning

method.

Since they optimized every part of the scanning pipeline for speed (with a few trade-o�s to

accuracy) it was possible to set up a real-time scanner which gave them the opportunity to

implement innovative features, which in turn helped to meet the goals of a�ordable cost and

ease of use.

To keep the cost of their system low, they used o�-the-shelf components. Additionally they

estimated that a major part of cost is the calibrated motion stage, which is needed to get

data from di�erent points of view. In their design there is no need for a motion stage; the

model is moved by hand relative to the scanner.

As mentioned earlier post processing and hole �lling of the model usually demands skilled

personal and plenty of time.

In the past the problem of hole-�lling has been addressed by more or less satisfying algorithms

that calculate the next best position of the scanner relative to the object for eliminating

obscured surfaces and scanning the remaining parts of the object. But all these algorithms

have their drawbacks. Inspired by the software-bundle that comes with the 3D Modelmaker

(a hand-guided, joint arm scanner by Cyberware [67]) and that gives an immediate feedback

of the scanned scene, their real-time scanning-pipeline o�ers a chance to the operator to

see the already scanned surfaces and the areas of missing data (holes) and thus allows an

interactive planning of the next positions.

4.2.2 Concept of the Scanning System

The model acquisition pipeline is illustrated in Figure 4.9. A pattern varying in time,

consisting of black and white stripes, is projected onto the scene using a commercial DLP

(Digital Light Processing) image projector. A standard NTSC video camera is used to

capture video frames. The frames are processed to �nd and track the boundaries between

the stripes, and a range image is obtained for each video frame. Successive range images are

aligned to each other, integrated into a 3D grid, and rendered in real time.

A few aspects of this concept have to be discussed in more detail.

4.2.3 Alignment of Multiple Scans

One important stage of 3D model acquisition (not restricted to structured light scanners)

is the alignment of the range images that were obtained from di�erent views. Classical
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Figure 4.9: Real-time model acquisition pipeline [34].

Figure 4.10: Photograph of the prototype system [34].

systems take bene�t from their motion-stages, where \known motion" allows to determine

the relative positions of the di�erent range images.

A second way of obtaining the alignment between range images is to place a tracker on

either the object or the scanner. Although Rusinkiewicz et al. have chosen not to use this

option because of accuracy and cost considerations, they believe that in many circumstances

it would provide substantial bene�ts in the context of his proposed pipeline.

The option they use for alignment in their pipeline is based on relating individual scans to

each other based on the geometry in overlapping areas.

This automatic alignment of 3D shapes has been studied extensively in the computational

geometry- and computer vision communities, mainly in the context of aligning two scans

with completely unknown initial orientation. The Iterative Closest Points algorithm (ICP)

introduced by Chen [35] has become the most frequently used method since it converges

to the correct scan-to-scan alignment with high accuracy, if a good initial guess is given.

Usually �nding a good initial position is a major problem with ICP, but because of their

fast scanning system they can assume that the positions from successive scans are close to

each other. Since the introduction of the ICP algorithm in 1991 many variants have been

developed which can be classi�ed by the selection of points they use for comparison, by

the point matching algorithm, how they weigh and reject pairs and by their error metric.

Rusinkiewicz made exhaustive studies which methods were most suitable for his demands

and he �nally adapted Pulli's algorithm [36] for real time use.

Also a lot of time was spent on developing a suitable illumination pattern.
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4.2.4 Illumination Pattern

In literature di�erent methods are described; each of these depend on certain assumptions,

how the scene transforms the projected light into the camera image.

Some of these methods are color coded which inhibits assumptions on the reectivity of the

scene. Another class of scanners encodes information into a pattern in a certain neighborhood

of projector pixels, which involves (local or global) spatial coherence assumptions. A third

way of encoding information into the projector signal is to group pixels versus time rather

than space. For example the projector pixels are turned on and o� over time; thus when a

camera pixel records a particular on- and o�- intensity pattern, the corresponding projector

pixel can be identi�ed (temporal coherence is assumed).

The design space for projected light illumination patterns can therefore be described in terms

of the reectance, of the spatial coherence, and the temporal coherence assumptions they

make. The strength of a spatial coherence assumption can be measured by the number of

pixels involved: if the patterns that have to be identi�ed in a given camera image require

a minimum of n pixels, then the smallest identi�able features in the scene must occupy at

least n camera pixels. The reectance assumption impacts the range of colors permitted in

the scene, as well as the spatial frequency of textures.

For real-time scanning Rusinkiewicz introduced an illumination pattern based on local (spa-

tial and temporal ) coherence assumptions.

� Most of the time, two horizontally adjacent camera pixels will see the same surface.

� Most of the time, the reectance of two horizontally adjacent pixels is similar.

� Most of the time, projected features that persist for n frames can be used in making
correlations. In the presented system n = 4 was chosen.

From these assumptions he deduced a time varying stripe-boundary code.

Stripe-boundary means that the triangulation plane is de�ned by the boundary between

two stripes instead of the stripes themselves. This matches the goal of �nding corresponding

points (projector{ and camera pixels) by 2 adjacent pixels and leads to high accuracy because

the boundary can be determined with subpixel accuracy. In order to allow the greatest

possible variation in scene reectance, the system uses only black and white stripes.

Since the stripes on either side of a stripe boundary can each be assigned m = 2n (16)

di�erent codes over time, then roughly m � (m � 1)=240 directed stripe boundaries can be
identi�ed in a camera image.

To keep the stripe borders easy to track a few limitations have to be made:

Borders that do not change over time (all black 0000 next to all white 1111) cannot be

distinguished from texture boundaries and thus have to be avoided.

A further limitation arises with \ghost-boundaries" (boundaries between stripes of the same

color). Illumination patterns without any ghost borders would lead to codes consisting of

too many frames since there are only 2n (16) permanent visible borders.

Hence they allowed for ghost borders, but to keep it easy to identify them there is at the

most one \ghost" between two visible borders, and a given stripe boundary will be visible

at least at every other frame.

A graph with all allowed borders and the maximal-length code that matches the above

constraints (found by brute force computation) are shown in Figure 4.11.
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Figure 4.11: We look for a traversal of the 55 edges in this graph (with the understanding

that each edge may be traversed once in each direction), with the added constraint that

red and green edges must alternate along the path. A black edge may be substituted for

either red or green. As mentioned in the text, the edge between 0000 and 1111 is missing:

we disallow this stripe boundary as a valid code, since it is too easy to confuse with static

texture. At right, a maximal-length (2 * 55 = 110 directed edges, 111 nodes) traversal [34].

4.2.5 Layout and Results

The layout of the system determines its working volume and resolution. For the scan pre-

sented below, the camera and projector are positioned 20cm apart from each other, with a

triangulation angle of 21 degrees. This con�guration produces a working volume approxi-

mately 10cm across. Near the front of the working volume, samples are spaced roughly every

0.5mm in Y (parallel to the stripe direction) and every 0.75mm in X (perpendicular to the

stripes).

On the whole this real time scanning system performs well for scenes without high-frequency

textures. A scan rate of 60Hz is achieved The object may be moved, rather slowly, with

a velocity up to 1cm/s. An example of a scanned object (after postprocessing) is given in

Figure 4.12.

It has to be mentioned that the quality of this post-processed surface di�ers strongly from

the output obtained by the real-time scanning pipeline. Because after the data acquisition

during an o�ine post-process more time consuming algorithms can be used for the merging

alignment and surface reconstruction, having the real-time surface as an initial guess.

4.2.6 Improved Illumination Pattern [37]

Despite of the subtle design of the illumination code there is still room for improvement:

� The \ghosts" sometimes lead to ambiguity in decoding.

� The code is not capable of capturing surface textures.

In [37] a new approach, the (b, s)-BCSL (Boundary Coded Structured Light) illumination

pattern, is presented. It is the augmented basis of Rusinkiewicz's code eliminating ghost

boundaries and it also allows to capture texture. The entire code uses b colors and consists
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Figure 4.12: Photograph of the original (left) and reconstructed object (right) The entire

scan was accomplished in �4min. From the recorded 1830 range images only a tenth of them
was used for reconstruction (�600000 sample points) [34].

of s slides, thus [b (b� 1)]s distinct borders can be coded. Despite the advantage of coding
more information into a single frame by the use of color based codes, grey-codes are preferred

since they are less sensitive to scene texture. By an innovative step this limitation can be

eliminated: In [37] it is proposed that at every second frame the complementary pattern (of

the previous one) is projected onto the object's surface (leading to a total of 2�s slides). Thus
it is possible to recover the ambient light component (uR; uG; uB), the local intensity transfer

factor (rR; rG; rB) of the surface and the projector intensity for each channel (pR; pG; pB).

If the camera characteristic is linear, the sensor clips intensity at a maximum value. The

digitized intensity per channel (RGB) is given by:

Ii = min(ui + ri � pi; Iimax) (4.6)

Supposing that IRmax, IGmax and IBmax are never achieved the intensities are given by:

(IR; IG; IB) = (uR + rR � pR; uG + rG � pG; uB + rB � pB) (4.7)

It is possible to estimate the parameters ui and ri if the projector, sensor and object are �xed

in relative positions, and produce sequential projected patterns varying pi. As mentioned

previously, the idea was to project two complementary slides, that is, if pi = 0 on �rst slide

then pi = 1 on second. Ii = ui when pi = 0, and ui + ri when pi = 1.

If just the maximum value per pixel for each channel between the complementary slides is

taken, it will be equivalent to recovering the value of each pixel as if it were illuminated

with white light coming from the projector, that is , p = (1; 1; 1). Equivalently, if the

minimum value per pixel for each channel is taken, the ambient light, that is, p = (0; 0; 0)

is recovered. One problem in the use of color coding is the cross-talk between the RGB

sensors. In that respect, color �delity can be improved by a color correction pre-processing

step that takes into account the response of the projector-camera system. The traditional

use of color in coding restricts the object surface reectivity, because one would not want

to modify the projected color when acquiring the surface. By projecting complementary
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Figure 4.13: (3,2)BCSL Code projected on a bunny [37].

slides, the reectivity restrictions are eliminated. From the signal transmission point of view

we are introducing redundancy on the transmitted message replicating it on complementary

slide. This is a good procedure as it reduces the probability of errors and the code-word

read can be checked to assure the correctness of the received message. Note that the use

of complementary colors allows to recover both the stripe and scene colors using only two

slides. The considerations above are valid for all pixels, except at stripe boundaries. At

those locations, one can recover color by interpolating the information from neighbor pixels

at both sides of the boundary.

An example of the (3,2) BCSL code is given in Figure 4.13.

Concluding, the (b,s) BCSL Code seems to be one of the most promising illumination pat-

terns. However, it has to be adapted for real-time use and currently there is no working

prototype-system.

The given �gures are rendered with the BMRT (Blue Moon Rendering Tools) [71] package

using data sets from the Stanford 3D Scanning Repository [70].

4.3 Non-Scanning 3D TOF-Camera [13]

In his doctoral thesis [13] Lange presents an all-solid-state 3D time-of-ight range camera

(based on CW-modulation) that does not require any mechanically moving parts.

Instead of scanning a laser beam and sequentially acquiring the range data point-wise, the

entire scene is illuminated with a modulated light surface. In order to perform a 3D mea-

surement, as illustrated in Figure 4.14 the received light has to be demodulated which leads

to the desired phase-di�erence between transmitter and receiver. This however, necessitates

the use of a 2D-electrooptical demodulator and detector to measure in parallel the distances

of some hundreds or thousands of points of the observed scene.
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Figure 4.14: Principle of a non-scanning 3D TOF-camera [13].

The 2D detection itself can be performed with CCDs or (active) photodiode arrays, also

called active pixel sensors (APS). However, in contrast to discrete photodiodes, these 2D

detectors integrate the incoming light in every pixel and so the temporally coded information

is lost. Thus one would need an electrical demodulator in every pixel, which demodulates

the photocurrent of the pixel's photodiode. In contrast to the 1D-case, for an imaging 3D

application such electrical 2D-demodulation devices are not available. Therefore the main

e�ort was to design a customized photoASIC (Application Speci�c Integrated circuit) to

realize this array of \demodulation pixels". So we will also focus on the detector array and

�rst demonstrate two demodulation techniques.

4.3.1 Demodulation and Sampling

By demodulating we mean extracting the information that is contained in a signal beside

its carrier. In this case the received light is modulated in intensity and phase, where the

phase modulation is caused by the 3D-information of the scene. Thus in order to measure a

distance, the phase delay of this modulated light signal must be measured in the receiver.

Demodulation by cross correlation (homodyne mixing)

The signal's amplitude and phase can be extracted by synchronously demodulating the

incoming modulated light within the detector. Demodulation of a received modulated signal

can be performed by correlation with the original modulation signal. This process is known

as cross correlation. The measurement of the cross correlation function at selectively chosen

temporal positions (phases) allows the phase of the investigated periodical signal to be

determined. The correlation function 'sg (�) is de�ned as follows:

'sg (�) = s (t)
 g (t) = lim
T!1

1

T

T
2Z
�T
2

s (t) � g (t+ �) dt (4.8)

With the received optical input signal s(t), the modulation amplitude a and phase ' and

the demodulation- or correlation signal g(t) de�ned as

s (t) = a (1 + cos (!t� ')) and g (t) = cos (!t) (4.9)

the correlation function c (�) can be calculated:
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c (�) = 'sg (�) = lim
T!1

1

T

T
2Z
�T
2

a (1 + cos (!t� ')) � cos (!t+ !�) dt = a

2
cos (!� + ') (4.10)

By evaluating his function for di�erent phases !� the phase ' and the amplitude a of the

received signal s (t) can be recalculated.

Demodulation by DFT-Analysis (temporal sampling)

Another, slightly di�erent approach is to sample the modulated signal synchronously to

the emitted signal. Sampling always means to convolute the input signal with a sampling

function, in this case a rect(t=�t) function.

rect(t=�t) is

�
1 for jtj � �t=2
0 for jtj > �t=2 (4.11)

Assuming that we sample a periodic signal we can use the equations of the DFT (Discrete

Fourier Transform) in order to calculate both amplitude and phase of the base frequency

and the harmonics contained in the signal.

Having a dataset with N pairs of values xk, fk = f(xk) where the xk are equally spaced

xk+1 = xk +�x...(k = 0; 1; :::N � 1), we can calculate its discrete Fourier-coe�cients efn:
efn = 1

N

N�1X
k=0

e�
2�ink
N fk (4.12)

These Fourier-coe�cients contain the same information as expressed by the inverse DFT:

fk =

N
2
�1X

n=�N
2

e
2�ink
N efn (4.13)

Applying Equation 4.12 to N sampled intensity values Ik, the n
th harmonic of the detected

light-intensity eIn is given by:
eIn = 1

N

"
N�1X
k=0

cos(
2�nk

N
) � Ik + i

N�1X
k=0

sin(�2�nk
N

) � Ik

#
(4.14)

Therefore the magnitude of the nth coe�cient equals

an =
1

N

vuut"N�1X
j=0

cos(
2�nk

N
) � Ik

#2
+ i

"
N�1X
j=0

sin(�2�nk
N

) � Ik

#2
(4.15)

Having determined these coe�cients we can interpolate the data points using Equation 4.13:

f (t) = a0 +

242 N
2
�1X

n=1

an cos(2�n
t

T
� 'n)

35+ aN
2
cos(2�

N

2

t

T
) (4.16)
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with

'n = arctan

2666664
N�1X
k=0

Ik sin(
2�nk
N
)

N�1X
k=0

Ik cos(
2�nk
N
)

3777775 (4.17)

These general equations can be simpli�ed for the given application. Since the emitted signal

is sinusoidally modulated, and the sampling is synchronous to the emitted signal, the detected

light is given by the o�set and the base frequency (no harmonics) components described by

Equation 4.16.

The sampling of the optical input signal is illustrated in Figure 4.15. A0:::A3 represent the

integrated (equally spaced) sampling points. The above equations for the phase ', amplitude

A and o�set B of a sinusoidal signal obtained by A0:::A3 are rewritten to:

Figure 4.15: Optical sinusoidally modulated input signal, sampled with 4 sampling points

per modulation period. The signal frequency of 20MHz de�nes the unambiguous distance

range of 7.5m [13].

' = '1 = arctan

�
A1 � A3
A0 � A2

�
(4.18)

B = a0 =
A0 + A1 + A2 + A3

4�t
(4.19)

A = 2a1 =
�

�t sin �

q
(A3 � A1)2 + (A0 � A2)2

2
(4.20)

The factor �
sin �

is to compensate for the attenuation of the measured amplitude which is

caused by the integration over a �nite sampling interval.

Here � is de�ned as

� =
��t

T
(4.21)

For the demodulation in the 3D-TOF camera the length of the sampling interval �t was

chosen to be T=2. This operation mode achieves the best overall performance, since it o�ers

the most e�cient use of the available optical power and additionally, for shorter integration

intervals, a higher system bandwidth would be required. Furthermore to increase the SNR
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Figure 4.16: Physical demands on a demodulation pixel [13].

(signal to noise ratio) the sampling is performed accumulatively over several periods. The

repetitive sampling makes the detection insensitive to other frequencies than the sampled

one, therefore the detector pixels are sometimes referred to as "lock-in pixels".

4.3.2 Demodulation Pixels

The demodulation procedure implemented in these pixels is based on temporal sampling of

the optical wave as described above. Thus the physical demands on the detector array can

be summarized in four principal tasks (Figure 4.16):

(a) Conversion of incoming photons to electron-hole pairs, (b) fast separation of optically

generated charge carriers (sampling-shutter mechanism),(c) repeated, noise free addition of

these separated photoelectrons and (d) storage of the acquired sampling points.The CCD

principle was chosen for the realization of all these demands, since it allows for a nearly

loss-free addition and directed transport of electric signals in the charge domain.

To achieve an optimum of light sensitivity (optical �ll-factor) and high dynamic range, 3

di�erent chip designs were explored.

Multitap Lock-In CCD

Figure 4.17: Multitap lock-in pixel: cross-sectional view [13].

In the Multitap-layout the photogate is serially attached to a 4-phase CCD line, the pipeline

CCD. The generated photoelectrons are shifted to the left. By proper modulation of the

gates, each CCD element carries one sample point of the received signal after four shifts.

In order to perform a repetitive sampling, the acquired charge carriers are transferred to a

second CCD line, the readout-CCD. This process is indicated by the grey arrows in Figure

4.17.
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This design is exible regarding the number of storage sites and thus would be suitable

for more complex demodulation, but since the in-pixel storage acquires room the optical

�ll-factor is just �5%. In addition, this design is restricted to sampling frequencies below
1MHz, since the charge transfer from one latch to the other in the pipeline CCD is rather

slow. However, this drawback can be partly overcome by another production process.

4-Tap Lock-In Pixel

Figure 4.18: Four-tap lock-in pixel cross-sectional view (only two storage sites are shown)

[13].

In this design (Figure 4.18) the photosensitive area is surrounded by 4 (charge) storage sites,

o�ering better speed and �ll-factor (�7%). Every storage cell requires only one transfer
gate for the accumulative demodulation. However one problem is that due to production-

inaccuracies the e�ciency of the transfer gates are varying, resulting in an inhomogeneous

response of the 4 sampling points and therefore demodulation errors occur.

Single Tap Lock-In Pixel

The limitations of the above designs are mainly caused by the implementation of the 4

independent in-pixel storage cells. In the single-tap con�guration each pixel has just one

storage site and thus the optical �ll-factor is maximized, but as a trade-o� the sampling

points have to be acquired serially and stored externally.

The principle of the demodulation-process is given in Figure 4.19. By applying proper gate

voltages to the photogates, the potential gradient in the semiconductor can be inuenced.

During the sample interval the charge carriers generated by photo-conversion under the pho-

togates are accumulated in the "integration" cell, whereas in-between the sampling intervals

by reversing the control voltages the charge carriers are shifted to the dump location (refer

to Figure 4.19).

The main drawback in this design is the serial sampling,which makes the phase measurement

sensitive to time-varying illumination or fast moving objects in the scene. Further half of

the available optical power is wasted, since half of the time the generated photoelectrons

are moved to the dump di�usion. But due to its outstanding speed (>20MHz) and optical

�ll-factor (�22%) this is the �nal design the system is based on.

4.3.3 System

The prototype has a demodualtion-array of 64x25 pixels. The scene is illuminated by multiple

LEDs driven with a square wave signal, but due to the LED's low pass characteristic the
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Figure 4.19: Single-tap lock-in pixel: illustration of the sampling-process [13].

emitted light is sinusoidal. With the modulation frequency of 20MHz an unambiguous

distance of 7.5m is realized. At 10Hz frame-rate even for non-cooperative targets an accuracy

of 10cm is achieved. An illustration of a range-pattern is shown in Figure 4.20.

Figure 4.20: Scene (desk, door, student) scanned with 10Hz framerate [13].

The accuracy of the system is principally given by two factors: The wavelength of the

emitted light, (which itself is restricted by the bandwidth of the demodulation pixels), and

the resolution of the phase-measurement. This phase-resolution is limited by the quantum

noise of the incident light and dark-noise. For higher resolutions the SNR has to be increased,

which can be achieved by better optical �ll-factors, higher illumination intensities and more

e�ective demodulation techniques.

The system performance may be strongly increased in the future due to the ongoing minia-

turization in microelectronics. Generally speaking, this is because devices become faster

with decreasing minimum feature size and hence, higher demodulation frequencies (beyond

100 MHz) will become possible. Also by a special lens design (optoASIC) the �ll-factor may

increase up to 100 % and in combination with better demodulation concepts frame-rates of

50Hz and more are predictable.
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Chapter 5

General Statement of the Problem

In Part I of this thesis di�erent systems to scan object surfaces have been described. The data

obtained by those systems are a set of unorganized 3D coordinates of the sampled surface

(which is often called a point-cloud). However, this is only one part of the 3D acquisition

pipeline. For example, visualization or CAM applications, require that the surface has to

be reconstructed, which means that we would have to know each single point of the surface.

This is a classical reconstruction problem, not all information is available and the original

shape can only be approximated. This leads us to the main problem: The geometric notion

of "shape" has no associated formal meaning. This is in sharp contrast to other geometric

notions, such as diameter, volume, convex hull (refer to the Appendix), etc. [1]. So the shape

formed by a set of points is rather a vague notion and there are many possible interpretations.

Since we can't have a general de�nition of "shape", each algorithm has to restrict itself to

one interpretation. Thus beside a stringent formulation of the shape the algorithm has do

de�ne a set of rules, how to interpolate or approximate the surfaces from a given set of

points. For example, these rules are concerned with the selection of points that are used for

the approximation of a local tangent plane, with the interpolation of neighboring points and

how to deal with boundaries.

Depending on additional information of the sampled dataset (surface normals, sample den-

sity, . . . ), on demands of the resulting surface (approximation or interpolation of the sample

points, smoothness, watertightness), and on computing power, di�erent algorithms have

been and are currently in use. In the following a few of them will be covered.
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Chapter 6

Hoppe's Algorithm

The algorithm presented in [39] is one of the �rst used for surface reconstruction from an

unorganized point-set. In contrast to former algorithms, no structure of the data is assumed.

The only input-information needed is a set of points X = fx1;x2; :::;xng � R3 on or near
an unknown manifold U (a non intersecting surface). As an output the algorithm produces

a simplicial surface1, that approximates U . The data points xi are assumed to have a noise

less or equal �, and the sample-density2 is denoted by �:

6.1 Basic Principle [39]

The algorithm is based on an implicit representation of the surface with the help of a distance-

function edU and consists of the following steps (refer to Figure 6.1):
� computation of a signed distance function edU : D ! R, where D � R3 is a region near
the data and X = fx1;x2; :::;xng is close to the zero set Z(edU). This distance function
equals zero for points on the estimated surface eU .
� a contouring algorithm to approximate the zeroset Z(edU) by a simplicial surface.

The contour-tracing is a well-studied problem so we will focus on the computation of the

signed distance function.

6.2 The Signed Distance Function [39]

The signed distance function edU(p) from an arbitrary point p 2 R3 to a known surface U
is the distance between p and its closest point z 2 U , multiplied by �1, depending on
which side of the surface p lies. To decide on which side the interior and the exterior of U

is situated, we need an local approximation of the surface. This is achieved by computing

oriented tangent planes for each point xi of the point set.

1A simplical surface is a piecewise linear surface with triangular faces.
2� does not reect a "density" in a physical sense; here it is understood as the maximum distance of two

neighboring sample points.
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Figure 6.1: 2D-illustration of the two stages of the reconstruction algorithm [40].

6.2.1 Tangent Plane Estimation

The tangent plane Tp(xi) associated with the data point xi is represented as a point oi,

called the center, together with a unit normal vector bni.The signed distance of an arbitrary
point p 2 R3 to Tp(xi) is de�ned to be

disti(p) = (p� oi) � bni: (6.1)

The center and normal for Tp(xi) are determined by collecting the k points of X nearest

to xi; this set is denoted by Nbhd(xi) and is called the k-neighborhood of xi (In [39] k is a

user-speci�ed parameter, whereas in [40] the neighborhood of xi consists of all points that

are within a ball with radius � + � centered at xi.)

OiOi

yk Nbhd(xi)k Nbhd(xi)

ni

Least Squares
Fitting!

ni

Least Squares
Fitting!

Figure 6.2: k-neighborhood and estimated tangent plane [41].

The center and unit normal are computed in a way that the plane fdisti(p) = 0g is the
least-squares best �tting plane to Nbhd(xi). The center oi is taken to be the centroid of
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Nbhd(xi). To compute the normal bni, the covariance matrix CV of Nbhd(xi) is formed.

This is the symmetric 3x3 positive semi-de�nite matrix

CV =
X

y2Nbhd(xi)

(y � oi)
 (y � oi) (6.2)

where 
 denotes the outer product vector operator3. If �1i � �2i � �3i denote the eigenvalues
of CV associated with the unit eigenvectors v1i , v

2
i , v

3
i , respectively, bni is chosen to be

either v3i or -v
3
i . This selection determines the orientation of the tangent plane, and it must

be done so that nearby planes are consistently oriented.

6.2.2 Consistent Tangent Plane Orientation

Let us assume two points xi;xj 2 X are close to each other. Ideally, when the dataset

is dense and the surface is smooth, the corresponding tangent planes Tp(xi) = (oi; bni),
Tp(xj) = (oj; bnj) are nearly parallel, i.e. bni � bnj � �1: If the planes are consistently
orientated, then bni � bnj � +1; otherwise, either bni or bnj should be ipped. We can model
this problem as a graph optimization.

Let us consider the following graph G: This undirected graph G = (V ;E) contains a vertex

i 2 V for each tangent plane Tp(xi) and edges (i; j) 2 E connecting two vertices in this

graph, if the centers oi and oj of the corresponding tangent planes are su�ciently close

(kxi � xjk < � + �). A straight forward implementation would be to assign to each edge

a cost of bni � bnj, and �nd a combination of +bni or �bni; that the total cost of the graph
is maximized. However, in [40] Hoppe proved that there exists no algorithm to solve this

problem in a reasonable amount of time. So he �nally opted for a greedy algorithm, where

edges that connect nearly parallel planes are favoured. This was achieved by assigning a cost

of 1�jbni � bnjj to each edge (i; j), computing the minimal spanning tree4 (MST) of this graph,
and then propagate through this graph, having the planes properly orientated, meaning thatbni � bnj > 0.

ni

nj

ni

nj

xi

xj

xi

xj

δρ + δρ +

Figure 6.3: Consistent tangent plane orientation [41].

3If a and b have components ai bj respectively, then the matrix ai 
 bj has aibj as its ij-th entry.
4The Minimal Spanning Tree (MST) is the collection of edges that join all points in a set together, with

the minimum possible sum of edge values.
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6.2.3 Implementation

Having computed the orientated tangent planes, the distance function for a selected point p

simply equals:

edU(p) = disti(p) = (p� oi) � bni (6.3)

Where oi is the center of the tangent plane that is next to p. This works well for surfaces

without boundaries (closed surfaces), whereas surfaces, that might have boundaries require

a slightly more sophisticated computation.

Concerning datasets with a sample density � and a noise �, a point z on the tangent plane

can only belong to the surface U if the smallest distance between z and any point xi 2 X is

less than �+ �. Thus the distance function has to be extended by checking if the projection

z of a point p onto the tangent plane Tp(xi) = (oi; bni) is on the surface U .
Procedure 6.1 Signed Distance Function (p)

1: i index of tangent plane whose center is closest to p
fCompute z as the projection of p onto Tp(xi)g

2: z := p� ((p� oi) � bni) � bni
3: if d(z; X) < (�+ �)

fd(X; Y ) denotes the Hausdor� distance, which is simply the distance between the closest
points of X and Y .g

4: edU(p) := (p� oi) � bni f= �kp� zkg
5: else

6: edU(p) = undefined
fThe unde�ned values are used by the contouring algorithm to identify boundaries.g

7: return edU(p)

6.3 Contour Tracing

Contour tracing, the extraction of an isosurface5 from a scalar function, is a well-studied

problem. For the implementation a variation of the Marching Cubes algorithm [38] was

chosen that samples the function at the vertices of a cubical lattice and �nds the contour

intersections within tetrahedral decompositions of the cubical cells. To accurately estimate

boundaries, the cube size should be set so that edges are of length less than �+�. In practice

it is often convenient to set the cube size somewhat larger than this value, simply to increase

the speed of execution and to reduce the number of triangular facets generated.

6.4 Algorithm Complexity and Conclusion [41]

Hoppe's simple algorithm can reconstruct surfaces of arbitrary topology and deals with

boundaries in a natural way, as a drawback the resulting mesh is very dense and cannot

5Isosurfaces are shapes described by mathematical functions.
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preserve sharp features. These drawbacks are solved in an extended version of this algorithm

as described in [40]. However the algorithm has to deal with a complexity of O(n2) subdivided

as follows:

� k-nearest neighbors to a given point O(n+k*log(n))

� Nearest tangent plane origin to a given point O(n)

� MST graph O(n2)



Chapter 7

Three Dimensional Alpha-Shapes

Based upon earlier work dealing with two dimensional alpha-shapes [3], the extension to

three dimensions is presented in [1]. The algorithm described computes the shape formed

by a set of points in R3, the �-shape, with a performance of O(n2) in the worst case.
The �-shape is a well-de�ned polytope1, derived from the Delaunay Triangulation (refer to

the Appendix) of the point set, with a parameter � 2 R controlling the desired level of detail
as illustrated in Figure 7.1.

Figure 7.1: Two tori (800 points, 12197 triangles). The points are randomly generated on

the surface of two linked tori. Six di�erent �-shapes for values of � decreasing from top to

bottom and left to right are shown. The �rst shape is the convex hull, for � = +1; the last
shape is the point set itself, for � = 0. The �-value used in the fourth frame neatly separates

the two tori. A further decreasing � disassembles the shape [1].

1A polytope is the generalization to any dimension of a polygon in two dimensions, and a polyhedron in

three dimensions.
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7.1 Intuitive Description [2]

Imagine a huge mass of ice-cream making up the space of Rd (d = 2; 3) and containing the
points S as \hard" chocolate pieces. Using one of these sphere-formed ice-cream spoons we

carve out all parts of the ice-cream block we can reach without bumping into chocolate pieces,

thereby even carving out holes in the inside (e.g. parts not reachable by simply moving the

spoon from the outside). We will eventually end up in an (not necessarily convex) object

bounded by caps, arcs, and points. If we now straighten all \round" faces to triangles and

line segments, we have an intuitive description of what is called the �-shape of S. And what

is � in the game? � is the radius of the carving spoon. A very small value will allow us to

eat up all of the ice-cream except for the chocolate points S. On the other hand a large

value of � will prevent us even from moving the spoon between two points since it is far too

large. So we will never spoon up ice cream lying in the inside of the convex hull of S, and

hence the �-shape for �! 1 is the convex hull of S (refer to Figure 7.2 for explanation).

Figure 7.2: Demonstrating the process of constructing the ��shape in a 2D analogue (where
the ice-cream spoon is simply a circle) [2].

7.2 Terms and De�nitions

The description above will help us to understand the terms of a more precise de�nition given

in the following.

General Position (GP)

The following assumptions ensure that the Delaunay Triangulation of the point set S is

unique.
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� GP1: no 4 points of S lie on a common plane and no 5 points lie on a common sphere.

� GP2: for any �xed � the smallest sphere through any 2,3 or 4 points of S has a radius
di�erent from �.

If the point set does not meet the general position criteria, it is still possible to apply the

�-shape algorithm by using a technique called SoS (Simulation of Simplicity) [4, 1] which

\stimulates" an in�nitesimal perturbation of the points, so that they are in general position

afterwards [2].

�-ball:

De�nition: For 0 < � <1 let a �-ball be an open ball with radius �. Furthermore a 0-ball

is a point and a 1-ball is an open half-space. Now a certain �-ball b (at a given location) is
called empty if b \ S = ;.

�-hull:

De�nition: The �-hull of S denoted as H� is de�ned as the complement of all empty

�-balls.

�-exposed simplex:

De�nition: In Rd any subset T � S of size jT j = k+1, with 0 � k � d, de�nes a k-simplex
�T that is the convex hull of T , also denoted by conv(T ). The general-position assumption

assures that all k-simplices are properly k-dimensional. For 0 � k � d � 1, a k-simplex �T
is said to be �-exposed if there is an empty �-ball b with T = @b\S, where @b is the sphere
or plane bounding b. A �xed � thus de�nes sets Fk;� of �-exposed k-simplices for 0 � k � 2.

Figure 7.3: An example of an �-exposed simplex (a line segment) for the case d = 2 [2].

Formal de�nition of an �-shape:

De�nition: The �-shape of S, denoted by S�, is the polytope whose boundary consists of

the �-exposed triangles in F2;�, the edges in F1;� and the vertices in F0;�.

@S� = f�T : T � S; jT j � d and �T �-exposedg
The k-simplices in Fk;� are also called the k-faces of S�.
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We still have to specify which connected components of R3� @S� are interior and which are
exterior to S�. Imagine that we �x the value of � and notice that for each �-exposed triangle

�T there are two (not necessarily empty) �-balls, b1 6= b2, so that T � @b1 and T � @b2.
If both �-balls are empty then �T does not belong to the boundary of the interior of S�.

Otherwise, assume that b1 is empty and that b2 is not. In this case �T bounds the interior

of S�. More speci�cally, the interior of S� and the center of b1 lie on di�erent sides of �T .

7.3 Observations on Alpha-Shapes

Since we now have a precise de�nition of an �-shape let us have a look at some of its

properties:

The �rst observation is quite descriptive if you think in terms of the "ice cream scenario" at

the beginning of this chapter:

Observation 1: lim�!0S� = S; lim�!1S� = conv(S)

The next two observations are very valuable for its implementation:

Observation 2: If �T is an ��exposed simplex of S then �T 2 DT (S), where DT (S) is
the Delaunay Triangulation of S.

Proof: The statement de�nitely holds for d-simplices �T because in this case the �-ball

coincides with the circumsphere (or great circle, respectively) of T . So let �T be a k-simplex

for k < d and assume �T =2 DT (S). Move the center of the empty �-ball continuously while
adjusting the ball's radius so that the points of T always lie on its boundary. Since �T
cannot lie on the boundary of the convex hull of S (for then it would be in DT (S)), the ball

eventually moves to a position where it bumps on another point q 2 S n T 2. Figure 7.4

shows a sketch for d = 2 and a 1-simplex. If jT [ fqgj = d+1 we have found thus an empty

Figure 7.4: An ��exposed simplex of S is in the Delaunay-Triangulation of S [2].

circumsphere of d+1 points which means that �T[fqg and its face �T lie in DT (S). However

if jT [ fqgj < d+ 1 we repeat the process until the �-ball touches d+ 1 points. �
Observation 2 implies Observation 3, but due to its importance it is mentioned separately

here:

2S n T means the elements of the set S diminished by the elements of the (sub)set T .
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Observation 3: For any 0 � � � 1 we have @S� � DT (S).
Knowing that the border of the �-shape @S� -that is what we are �nally interested in- is a

subset of the Delaunay Triangulation, it is su�cient to inspect only the Delaunay triangles,

edges and vertices for the computation of @S�: If there exists an empty ball with radius �

touching them, they are part of @S�:

Although this method is straightforward, it has several drawbacks. Having a �xed value of

�, the test for �-exposed triangles is quite simple, since there are only two balls touching all

vertices of a certain triangle, but considering edges or vertices we have to deal with in�nite-

simal many balls, that have to be checked for emptiness, therefore an elaborate computation

is required.

Edelsbrunner and M�ucke [1] invented a more e�cient implementation where a simple test

(the �-test) is used to accept a simplex as part of S� and in addition the algorithm computes

the �-shape for all values of � implicitly.

The idea behind their implementation is to compute �rst a simplicial complex -the �-complex

C�- which has the same boundary as the �-shape, and then to specify an interval for each

simplex of C�(S); for which values of � this simplex is part of the boundary @C�.

�-complex:

De�nition For a given point set S � R3 and 0 � � � 1, the �-complex C�(S) of S is a
simplicial subcomplex of DT (S). A k-simplex (0 � k � d) �T 2 DT (S) is in C�(S) if the
two conditions (C) hold:

� (C1): The radius of its circumsphere �T < � and the circumsphere (centered at �T ) is
empty, or

� (C2): �T is a face of another simplex in C�(S).

Notice that this is actually the set of all simplices in DT (S) satisfying (C1), enlarged by as

many faces ful�lling (C2) as needed to make the set a simplicial complex. The condition

(C1) is called the �-test here. In contrast to @S�, the �-complex can contain d-dimensional

simplices; on the other hand, C�(S) contains all points S by de�nition (which need not be

the case for S�).

In [2] proofs are given that this constructed polytope has indeed the �-shape as its boundary

as illustrated in Figure 7.5 :

@C�(S) = @S�(S) (7.1)

7.4 Implementation [2]

Since it is not really obvious how to compute the implicit representation of the �-shape for

all values of �, a plain but straightforward approach consisting of 3 steps, where steps 2 and

3 have to be repeated for every value of � is presented here:

1. Compute the Delaunay Triangulation of S, knowing that the boundary of our �-shape

is contained in it.
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Figure 7.5: The �-shape, Delaunay Triangulation and the �-complex of a point set S for

d = 2 [2].

2. Then determine C�(S) by inspecting all simplices �T in DT (S): If the circumsphere

of �T is empty and the radius �T < � (this is the �-test) we accept �T as a member of

C�(S), together with all its faces.

3. All d-simplices of C�(S) make up the interior of S�. So we have to extract the boundary

of C�(S) in order to obtain @S�(S).

To make this algorithm work we need three things. First, the Delaunay Triangulation (which

is not a problem, there are algorithms to do that). Then, a test to check whether or not the

�T -ball is empty. This too can be done, for instance, by checking whether p lies in the said

ball for every p 2 S n T . Finally, we need a way to see whether a simplex �T in C� lies on
the boundary. For this, let us assume that the Delaunay Triangulation algorithm returns

(in addition to the triangulation) for every simplex, whether or not it is on the boundary

@conv(S) of the convex hull. Then the boundary of the �-shape can be determined using

Observation 4.

Observation 4: Let �T be a simplex in C�(S). If �T 2 @conv(S), then it is obviously on
the boundary of C�(S). Otherwise, it is in the interior of C�(S) i�

3 all of the simplices in

DT (S) properly containing �T lie in C�(S) too.

7.4.1 Implicit Representation

As already mentioned in the simple algorithm stated above, steps 2 and 3 have to be passed

for each value of � separately. Edelsbrunner's algorithm computes the �-shape implicitly for

all values of �. This is achieved by specifying an interval BT (aT ; bT ) of �-values for every

simplex �T in DT (S), when it is part of the boundary of C�(S).

�T is

8<:
not in C� (for � < a)

in @C� (for � 2 (a; b))
interior to C� (for � 2 (b,1))

3i�: if and only if.



CHAPTER 7. THREE DIMENSIONAL ALPHA-SHAPES 65

The calculation of these intervals is treated in detail in [2].

7.5 Conclusion

The implementation of the �-shape algorithm is quite simple and leads to good results on

equally dense sampled surfaces.

The main drawback of �-shapes is obvious - it is the proper choice of the parameter �:Usually

this is an interactive process where � is varied until the result "looks good", but for data

sets with varying density no satisfying result is possible with "classical" �-shapes.

But there are extensions to cope with this problem:

� weighted �-shapes

� density scaling

� anisotropic scaling

A brief overview of these extensions is also given in [2]. A commercially successful version

of the �-shape (Geomagic Studio [5]) is using further proprietary extensions.

Hoppe points out another problem in [40]: If the sample X is noisy, or if the underlying

surface U is not su�ciently smooth, the �-shape ofX will in general have �nite thickness, and

not be, as one would desire, a 2-dimensional manifold. It may be possible, as a post-process,

to \atten" such an �-shape into a surface.



Chapter 8

Power-Crust Algorithm

The Power-Crust [42] is a new de�nition of a shape derived from sample points of a 3D object

surface. The algorithm presented in the following is based on theMedial Axis Transformation

(refer to the Appendix). At �rst an approximation of theMedial Axis (refer to the Appendix)

is computed and then an inverse transformation to produce the surface representation. The

algorithm can be applied to arbitrary datasets and the output will result in a watertight

boundary of a three-dimensional polyhedral solid (the Power-Crust) and an approximation

of the Medial-Axis (the Power-Shape). There exist theoretical guarantees, that the Power-

Crust of a pointset is close to the sampled surface, if the pointset ful�lls the sampling

condition of an "r-sample" which will be explained below. (Refer to Figure 8.1 for a �rst

impression.)

Figure 8.1: A set of input points from the surface of an object, the watertight output mesh,

and a simpli�ed version of the approximate inner-medial axis [42].

8.1 Sketch of the Algorithm

The Medial Axis Transformation can be described as a representation of an object by in-

�nitesimally many balls touching the object's surface in at least two points tangentially and

66
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having maximal radii. Furtheron these balls do not intersect the object's surface and are

either completely interior or exterior of the object. Since the surface is unknown and we

only have a point-cloud, this transformation cannot be applied directly. If we try �tting

empty balls of maximal size in the same way into the "interior" or "exterior" of the sampled

points, there will be many balls with centers close to the surface intersecting the object's

boundary. To avoid this, only a subset of these balls is used. Per sample point, only the

two balls with centers farthest from the sample point (one in the outside and one in the

inside) are selected. The centers of these balls are called the Poles and the balls themselves

are referred to as Polar Balls. The union of the inner Polar Balls already gives a good

approximation of the object's shape and the outer Polar Balls form a good approximation

of the complement of the object. The centers of these balls are vertices of the approximated

Medial-Axis (the Power-Shape), and the Power-Crust is the set of polygons (not necessarily

triangles) consisting of all points, that have the same Power-Distance (a weighted distance

function, where the weight is based on the radii of the balls) to an adjacent inner and outer

ball, representing the object's surface.

8.2 Geometric De�nitions [42]

Let F be the boundary of a three-dimensional object. To avoid having to deal with points

located towards in�nity, we assume that F is contained in a bounded open region Q. F

divides Q into interior and exterior solids.

Medial Axis Transformation (MAT):

We represent a ball B = Bc;� � Q by its center c and radius �. We state that B is empty

(with respect to F ) if the interior of B contains no point of F . A medial ball is a maximally

sized empty ball; that is, it is completely contained in no other empty ball. The center of a

medial ball is either a point with more than one closest point on F , or a center of curvature

of F .

De�nition: The Medial Axis Transform of a surface F is the set of medial balls. The

centers of the medial balls form the Medial Axis of F ; the MAT includes the radii as well.

We could equivalently de�ne the Medial Axis as the set of all points with more than one

closest point on F . Notice that either way the Medial Axis includes both, a part inside

of F and a part outside of F . The Medial Axis of a three-dimensional solid is generally a

(non-regular) two-dimensional surface, but it accurately reects the topology of the solid in

that it has the same connected components, loops, and so on.

Power-Diagram:

De�nition: The Power-Distance dpow between an ordinary unweighted point x in R3 and
a weighted point c represented by a ball Bc;� is

dpow(x; Bc;�) = d
2(c;x)� �2

Here function d represents the usual Euclidean distance.
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Figure 8.2: Picture of a 2D Power Diagram. Each weighted point c is represented by a ball

Bc;�, where the point is the center of the ball and the weight is represented by the radius �

[43].

De�nition: The Power-Diagram is a kind of weighted Voronoi Diagram (refer to the Ap-

pendix). It is the subdivision of Q into cells, each cell consisting of the points x 2 Q closest
-in the sense of the Power-Distance dpow- to a particular weighted point v 2 V ; Figure 8.2
gives a two-dimensional example.

The advantage of using dpow rather than some more natural weighted distance function is

that the Power-Diagram has polyhedral cells and can be computed by essentially the same

algorithm as the usual Voronoi Diagram. As in Figure 8.2, the face of the Power-Diagram

separating the cells of two intersecting balls is a subset of the plane where the boundaries of

the two balls intersect.

8.3 Further De�nitions [42]

Constructions of the Poles, the Power-Crust and the Power-Shape are based on special

properties of the Voronoi Diagram of a set of points densely distributed on an object surface.

Clearly it is not possible to give theoretical guarantees that the reconstructed surface is close

to the original. For arbitrary sampled point sets we will therefore need to de�ne a condition

when the sampling is su�ciently dense. In practice, we want to implement the algorithm in

order to give good results even when this assumption is not met.

Sampling assumption:

For the analysis we assume, that surface F is smooth and without boundary. Our assumption

concerning the density of sample S is taken from [44]:

De�nition: The Local Feature Size function, f(x), is the minimum Euclidean distance

from point x to any point of the Medial Axis. S is an r-sample from F when the distance

from any point x 2 F to the nearest sample is at most rf(x).
The theoretical guarantees are proved for values of r as small as 0:06, but in practice samples

with r < 0:5 are treated quite well.

In the de�nition f(x) serves as a local measure of \level of detail" on F ; when the Medial

Axis is close to the surface either the curvature is high or some other patch of the surface
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is nearby. Note that when F is smooth, the distance from any point to the Medial Axis is

strictly greater than zero. At a sharp corner of F the Medial Axis meets the surface and

according to our de�nition the sampling density would have to be in�nite.

Poles:

In two dimensions each Voronoi vertex converges to the Medial Axis if the sample density

increases towards in�nity. Unfortunately this does not hold for three dimensions. Even if the

sample-density is arbitrarily high, there will be Voronoi vertices close to the objects surface

and far away from the Medial Axis. These critical Voronoi vertices are dual to the centers

of very at tetrahedrons in the Delaunay Triangulation and the corresponding Voronoi balls

cause the "warts" in the MAT as illustrated in Figure 8.3.

The concept of Poles was �rst introduced in [44, 45] to cope with this problem. To get a

better approximation of the Medial Axis only a subset of the Voronoi vertices is selected;

for each Voronoi cell only two vertices are selected: the Poles. The selection of these special

vertices is motivated by the following observation:

Figure 8.3: A point-cloud from the surface of a foot model, the union of all inner Voroni balls

and the union of the corresponding set of interior polar balls, forming a good approximation

of the shape [43].

Where the sampling is dense, the Voronoi cell of every sample-point s is long and skinny and

perpendicular to the surface. This happens because in directions tangent to the surface the

Voronoi cell is bounded by the proximity of other samples on the same local patch of surface;

(Refer to Figure 8.4 for some intuition.) The Voronoi cell of s extends perpendicularly away

from the surface. It cannot extend much farther than the Medial Axis, because there s is no

longer the closest surface point and samples on some other patch of surface will be closer.

Thus, the Voronoi vertices at the two ends of the long and skinny Voronoi cell should lie

near the Medial Axis. This motivates the selection of the Poles as an approximation of the

Medial Axis.

De�nition: The Poles of a sample s 2 S are the farthest vertex of its Voronoi cell in the
interior of F and the farthest vertex of its Voronoi cell on the exterior of F .

Let V be the set of Poles, for all s 2 S. If S is a dense sample, the set V of Poles excludes

Voronoi vertices close to F and forms a good estimate of the Medial Axis, albeit as a discrete

set of points. Note also that the vectors from s to its Poles approximate the surface normals

at s.
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Figure 8.4: The Voronoi cell of sample s is long and skinny and perpendicular to the surface

[42].

Polar Balls:

De�nition: A Polar Ball Bc;� is a Voronoi ball, having a Pole at its center c, and a radius

� which is the Euclidian-distance to the nearest sample point.

Power-Crust:

The Power-Crust is the estimated surface of the algorithm. For a formal de�nition we

consider the Power-Diagram of the Polar Balls, which subdivides R3 into a set of cells.

De�nition: The Power-Crust is the boundary between the Power-Diagram cells belonging

to inner Poles and Power-Diagram cells belonging to outer Poles.

Since most points of the interior solid bounded by F are inside the union of the inner Polar

Balls, and outside of the union of outer Polar Balls, they belong to cells of the Power-

Diagram corresponding to inner Poles. Similarly most points in the exterior solid belong to

cells corresponding to outer Poles. A two-dimensional face of the Power-Crust separates cells

corresponding to an inner and an outer Pole. The two Polar Balls should intersect shallowly,

if at all, since the inner Polar Ball is mostly inside the object and the outer Polar Ball is

mostly outside. Thus the Power-Crust face lies near the boundaries of both unions of balls,

and hence near the boundary F of the object.

Power-Shape:

The de�nition of the Power-Crust implies a way to connect the Poles to form a topologically

correct approximation of the Medial Axis as a simplicial complexM , which we call the Power-

Shape. The vertices of M are the Poles themselves. Inner Poles whose cells are adjacent

in the Power-Diagram are connected by simplices in M , as are adjacent outer Poles. The

Power-Shape is a subset of the weighted Delaunay Triangulation (also known as the regular

triangulation) dual to the Power-Diagram, just as the Delaunay Triangulation is dual to

the usual unweighted Voronoi Diagram. While the Medial Axis of F is a two-dimensional

surface, the Power-Shape generally contains some very at, but solid, tetrahedra.
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Figure 8.5: A two-dimensional example of the Power-Crust construction:

a.) An object with its Medial Axis (shown in violet). b.) The Voronoi Diagram of a point

sample S from the object boundary, with a Voronoi ball surrounding one of the Poles. In

2D all Voronoi vertices can be considered Poles but not in 3D. c.) The inner and outer Polar

Balls. The in�nite Polar Balls degenerate to half spaces. d.) The Power-Diagram cells of

the Poles. e.) The Power-Crust and the Power-Shape of the interior solid [43].

8.4 Basic Algorithm [42]

Overview

The basic algorithm is a straightforward reection of our strategy: First estimate the MAT,

and then use it to de�ne the surface approximation (refer to Figure 8.5).

1. Adding vertices of a bounding box

2. Compute the Voronoi Diagram of the sample points S

3. For each sample point compute its Poles.

4. Compute the Power-Diagram of the Poles.

5. Label each Pole either inside or outside.

6. Compute the Power-Diagram faces separating the cells of inside and outside Poles as

the Power-Crust.

7. Compute the Delaunay Triangulation faces connecting inside Poles as the Power-Shape.
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Adding vertices of a bounding box

To avoid dealing with Poles in in�nity, we add a set Z of eight points, the vertices of a

large box surrounding F to S so that both Poles of each sample in S are bounded. In our

implementation, this box is �ve times larger than the minimum bounding box of S.

Voronoi Diagram

The computation of the Voronoi Diagram is as usual, the main time-consuming part of the

algorithm. In [42] Kern Clarkson's Hull [73] has been chosen which performs O(n2) in the

worst case, but applied to a dataset of sampled surfaces a computation in near linear time

is achieved.

This is approved in a recent report [46] of Delaunay Triangulations applied to data from

scanned surfaces, where the best performing algorithms are capable of triangulating 1E+6

points in about 400 seconds on a Pentium III workstation.

Selection of the Poles

Having computed the Voronoi Diagram of the sample points S, the two Poles for each sample

point s are selected. A Pole is a vertex in the Voronoi-Diagramm. The �rst Pole p1(s) is

simply the farthest Voronoi vertex v of the Voronoi cell surrounding s. The other Pole p2(s)

is the farthest vertex such that the two vectors from s to p1(s) and s to p2(s) make an angle

of more than �=2:

It can be proved, if F is an r-sample for an r small enough -that p1 and p2 are indeed the

farthest Voronoi vertices of s on either side of F .

Computing the Power-Diagramm

A Delaunay Triangulation program with the special distance function dpow has to be adapted

for this task.

Labeling Poles inside or outside

Having computed the Power-Diagram of the Polar Balls, a graph on the Power-Diagram cells

is de�ned: Two cells are connected in the graph if they share a two-dimensional face. In

addition, two cells are connected if they belong to the two Poles of the same sample s. By

traversing this graph the Poles are labeled "inner" or "outer".

The determination is based on two lemmas:

� If one Pole of s is the outer Pole the other is the inner and vice versa.

� If Polar Balls of neighboring Poles intersect shallowly they are likely to be of the
opposite kind, otherwise deeply intersecting Poles are likely to be of the same kind

(both inner or both outer).

A naive algorithm would begin by labeling Poles adjacent to points forming the bounding

box Z as outer and then propagating labels as follows:
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Figure 8.6: An inner and an outer Polar Ball can intersect shallowly, if at all, because the

dense set of samples separates them. Angle � measures the depth of the intersection [42].

If a Pole p, labeled "outer", has got an unlabeled neighbor q, this neighbor is also regarded

as outer, provided the Polar Balls of p and q intersect deeply (that is, the angle � in Figure

8.6 is large).

And for each sample s for which p is a Pole (there might be more than one), the other

Pole of s is labeled "inner". Inner Poles are labeled similarly: Deeply intersecting neighbors

get labeled "inner", and the opposite Pole of the same sample gets labeled "outer". But

because the sampling assumption is not met everywhere, a naive implementation could fail

dramatically - once an error is made, it propagates.

As a solution, the order in which the Poles are propagated is determined by using the

following greedy heuristic: Since an unlabeled Polar Ball can be "inner" or "outer", based

on the labels already assigned, the labels of the most con�dently identi�ed Poles are marked

and propagated �rst.

In [42] this strategy is observed performing successfully on all sample data sets.

8.5 Extensions [42]

Applied to well sampled datasets the Power-Crust is geometrically close to the original

surface, but in practice many datasets do not meet the sampling condition. Hence to produce

good results the following extensions are added:

Omitting Poles:

The quality of the Power-Crust depends on how well Polar Balls approximate the MAT.

Above we mentioned that well sampled datasets result in skinny Voronoi cells. In practice,

due to not smooth surfaces or too sparse sampled datasets, this is not ful�lled and the Polar

Balls give no suitable approximation for the Medial Axis.

Thus for a robust implementation a lower bound of f(s) is calculated for every sample point

s. Then both Poles of s are checked, if their distance to s, d(s;p1;2) is greater than this lower

bound of f(s), if it is not, this Pole is omitted:

It has been observed, that the computation of the Power-Crust from this partial MAT

produces still good models.
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Sharp corners

Near a sharp corner, the Poles on the inside of the corner will fail the above `skinnyness'

test, while those on the outside will pass. But discarding only the Poles on the inside of the

corner causes the Power-Crust algorithm to collapse and to round o� the corner. Instead,

if the user indicates that the model contains sharp corners, we discard both p1 and p2 for

any sample that fails the `skinnyness' test. Nearby Power-Crust faces extend into the region

which is left uncovered by the discarded Poles, extending adjacent smooth surfaces linearly

into the empty region, until they meet at a sharp angle. Figure 8.7 shows a two-dimensional

example of this behavior.

Notice that a sharp edge can be reconstructed nicely even though there are no sample points

on the edge itself.

Figure 8.7: Forming of sharp corners by ommiting poles on the inside and outside [42].

Holes:

Basically the Power-Crust is a watertight surface, however, to represent objects having holes

a further extension is needed. The idea behind this is that small holes due to undersampling

are �lled but large ones are left open. Holes can be characterized by a deep intersection

of adjacent inner and outer Polar Balls. So polygons with deep intersecting Polar Balls

(compared to a user speci�ed parameter) are omitted.

8.6 Conclusion

Power-Crust is an algorithm with theoretical guarantees and leads to well shaped watertight

objects on r-sampled datasets. We observed the Power-Crust to produce a good approxima-

tion to the original surface even if the dataset does not ful�ll the sampling conditions.

As a drawback the Power-Crust algorithm introduces extra points in the output and produces

a polyhedral not necessarily a triangulated surface [50].



Chapter 9

Cocone Algorithm

The Cocone is a surface reconstruction algorithm, based on the Crust [44] algorithm. Cocone

computes a piecewise linear approximation to a smooth surface without boundaries from a set

of sample points. The estimated surface consists only of triangles and in contrast to Power-

Crust no extra points are generated, therefore all vertices are sample points; in addition

all faces are Delaunay-Faces. It is also more e�cient in the way that only one Delaunay

Triangulation is needed. It can be proved that the algorithm produces a surface that is close

to the original (sampled) surface, when applied to an "-sampled (see below) dataset. We

will also shortly discuss extensions of the basic algorithm.

9.1 De�nitions [48]

Let the surface � be a smooth manifold without boundaries embedded in R3.

Local Feature Size:

We de�ne a distance function called Local Feature Size:

The Local Feature Size function, f(x), is the minimum Euclidean distance from point x to

any point of the Medial Axis (refer to the Appendix).

"-sample:

We use the same sampling condition as described above in the Power-Crust Algorithm:

A sample P of � is an "-sample if each point x 2 � has a sample point p 2 P that
kx� pk � "f(x)
In the following we will denote any ray from p to a point y 2 Vp as by.
Poles:

The farthest Voronoi vertex vp in Vp is called the positive Pole of p. We call bvp = vp � p,
the Pole vector for p. If Vp is unbounded, vp is taken at in�nity, and the direction of bvp is
taken as the average of all directions given by the unbounded Voronoi edges.
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Cocone (Co-Cone):

The set Cp =
�
y 2 Vp : \by; bvp > �

2
��

	
is called the Cocone of p. In words: Cp is the

complement of the double cone (clipped within Vp) with apex p and an opening angle of
�
2
� � around the axis aligned with the Pole vector bvp. See Figure 9.1 for an example of a

Cocone.

Figure 9.1: The Cocone clipped in the Voronoi cell of a sample point p in two dimensions

(left) and three dimensions (right).� denotes the sampled surface. In the left the Cocone

(the Complementary Cone) is shaded, in the right its boundary is shaded [47].

Restricted Voronoi-Diagram:

A cell in the restricted Voronoi Diagram Vp;� is de�ned as the intersection of a Voronoi cell

VP with �. VP;� = fVp;� = Vp \ � j p 2 Pg

Restricted Delaunay Triangulation:

As with Voronoi Diagrams we can de�ne a simplicial complex dual to the restricted Voronoi

Diagrams.

k + 1 points in P form a Delaunay k-simplex �T , if their restricted Voronoi cells have a

non-empty intersection:

DP;� = f�T j \Vp;� 6= 0 where p is any vertex in �Tg
Speci�cally, an edge pq is in DP;� i� Vp;� \ Vq;� is non-empty, a triangle pqr is in DP;� i�

Vp;� \ Vq;� \ Vr;� is non-empty.

9.2 Theoretical Background

Since our sampling condition is based on the local feature size f(x) we will mention two

helpful properties of f(x) �rst:
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Lemma (Lipschitz Continuity):

f(x) � f(y) + kx� yk (9.1)

for any two points x and y in �.

Lemma (Feature Translation):

For any two points x and y in � with kx� yk � "f(x) we have

kx� yk � "

1� "f(y): (9.2)

The lemmas below demonstrate, that the Pole-vector bvp of a sample point p gives a good
approximation of the surface normal np at p and that the surface-normals from neighboring

sample points do not vary much for "-sampled pointsets and small values of ".

Lemma (Medial Lemma):

Let m1 and m2 be the two Medial Axis points which are the centers of the two Medial Balls

at p. The Voronoi cell Vp must contain m1 and m2.

Lemma (Normal):

Let v be any point in Vp with kv � pk � �f(p), furtheron let P be an " sample of �. Then

\(v � p);np � arcsin
"

�(1� ") + arcsin
"

1� " (9.3)

Lemma (Pole):

The angle between the normal np at p and the Pole vector bvp satis�es
\np; bvp � 2 arcsin "

1� " (9.4)

Lemma (Normal Variation):

Let x and y be any two points with kx� yk � �f(x) for � < 1
3
. Then we have

\nx;ny �
�

1� 3� (9.5)

Lemma (Edge Normal):

The angle \tpq;np is more than �
2
� arcsin kp�qk

2f(p)

\tpq;np �
�

2
� arcsin kp� qk

2f(p)
(9.6)

A proof all of these Lemmas is given in the Appendix of this thesis.
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9.3 Basic Algorithm

The main theorem in [47] states, that from a set of triangles -which will be referred to as

the candidate triangles T - a 2-manifold N can be extracted that is geometrically close and

homeomorphic1 to the original surface �; if the following three conditions are met:

1. T contains all triangles whose dual Voronoi edges intersect �. (This is equivalent to

the set of all restricted Delaunay triangles)

2. Each triangle in T is small, that is, the radius of its circumcircle is much smaller than

the distance to the Medial Axis at its vertices.

3. All triangles in T are "at", that is, the triangle normals form small angles with the

surface normals at their vertices.

In [47] further proofs are given, that all restricted Delaunay triangles ful�ll the conditions 2

and 3, thus the restricted Delaunay Triangulation gives a good approximation of the original

surface. Unfortunately, to compute the restricted Delaunay Triangulation, the surface must

be known in advance. As a solution the restricted Voronoi Diagram is approximated using

the concept of Co-Cones (as explained below), by computing a set that includes all of the

restricted Delaunay triangles (and maybe some more). This set is pruned to extract a

manifold surface as an output [48].

So the complete Cocone algorithm consists of the following steps:

� Delaunay Triangulation of the pointset P () calculation of the Voronoi Diagram VP ,

� approximation of the restricted Voronoi Diagram VP;� and calculation of the candidate
triangles T ,

� extract a manifold N out of T .

9.3.1 Approximation of the Restricted Voronoi Diagram [48]

First we observe that each restricted Voronoi cell Vp;� is almost at if the sample-density is

su�ciently high. This follows from the Normal Variation Lemma, as points in Vp;� cannot

be far apart if " is small. In particular Vp;� lies within a small neighborhood of the tangent

plane �p at p. So we need two approximations: (i) an approximation for �p (or equivalently

to np), (ii) an approximation for Vp;� based on the approximation of np. Concerning these

observations Vp;� must lie within the volume of the complement of a double cone. In the

following it will be shown that this cone-complement is the Cocone Cp having an opening

angle of �
2
��, where � � �

8
for an "-sample with " � 0:1.

Recalling the Pole Lemma, the Pole vector bvp approximates np (the surface normal at p)
well: In particular the angle between \np; bvp is smaller than � = 2arcsin "

1�" .

Furthermore, considering the Edge Normal Lemma we can show that the angle between

np and the vector from p to any point y in its restricted Voronoi cell is at least � =
�
2
� arcsin "

2(1�") .

1topologically equivalent
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Figure 9.2: The positve pole bvp helps to estimate the normal np and the cocone helps to
calcualte Vp;� [48].

Proof: The distance ky � pk � "f(y), since y 2 Vp;� and P is an "-sample. By the

Lipschitz Lemma f(y) � f(p) + ky � pk giving f(y) � 1
1�"f(p), and hence ky � pk �

"f(y) � "
1�"f(p). Plugging this into the Edge Normal Lemma yields the result. �

The conclusion of these two observations is, that the angle between bvp and the ray from
any y 2 Vp;� to p is at least � � �:Therefore the restricted Voronoi cell Vp;� is completely
contained between in the Cocone of p with

� � �
2
� � + � (9.7)

as illustrated in Figure 9.2. By plugging in the values of �; � we obtain:

� � arcsin "

2(1� ") + 2 arcsin
"

1� " (9.8)

For an "-sample with " � 0:1 we obtain generous upper bounds:

� � "+ �
8
� " = �

8
: (9.9)

Now having determined the opening angle of the Cocone, the computation of the candidate

triangles is straightforward. For every Voronoi cell Vp we mark all edges of the cell, that

contain at least one point that is in the Cocone Cp: If an edge is marked by all of its

three adjacent Voronoi cells we accept its dual Delaunay triangle as a candidate triangle.

Obviously this set contains all restricted Delaunay triangles, but probably a few more, so we

have to reject triangles as will be explained in the following section.

9.3.2 Manifold extraction [48, 49]

This step �rst prunes away triangles that are incident to sharp edges; an edge e is sharp,

if any two consecutive triangles around it form an angle of more than 3�
2
. Edges with a

single triangle are also sharp by this de�nition. This pruning is carried out in an cascading
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manner, since by deleting these triangles other sharp edges can be created. After pruning

we still retain the set of restricted Delaunay triangles, since adjacent restricted Delaunay

triangles of su�cient dense sampled datasets do not meet at sharp angles. However, the

remaining triangles may still not form a surface. They may form "layers" creating a non-

manifold. A manifold surface is extracted out of this possibly layered set by walking inside

(or outside) the space covered by these triangles. In addition these triangles have to be

orientated consistently as well.

A pseudo code of the cascading pruning step is listed below where the candidate triangles

are referred to as K.

Procedure 9.1 PRUNING(K)

1: Pending := 0

2: for each edge e 2 K
3: Pending:push(e)

4: while Pending 6= 0
5: e := Pending:pop()

6: if IsSharp(e)=true

7: for each t 2 e:Triangles
8: K := K n ftg
9: for each e0 2 t:Edges n feg
10: Pending:push(e0)

11: return K

First the stack Pending is initialized empty (line 1). Then all edges in the complex K are

pushed onto this stack (lines 2 and 3). Together with every triangle t we sort a list Edges of

its edges. With each edge e we store a set Triangles of triangles incident to e. We assume

that we have a function IsSharp that requires an edge e as input and returns true if e is

sharp and false if e is not sharp. As long as the stack Pending is not empty, an edge e is

popped from the stack. If this edge is sharp, all those incident triangles are removed from

the complex K. All edges other than e that are incident to the deleted triangle are pushed

onto the stack Pending (lines 4-10), since these edges may become sharp due to the deletion

of of the triangle t. Finally the reduced complex K is returned (line 11).

The next step WALK extracts a manifold.

First we initialize the set Surface empty (line1). Then we choose an arbitrary triangle t from

the complex K, orient it and insert it into the Surface (lines 2 and 3). Next we initialize

the stack Pending empty (line 4). From the orientation of the chosen triangle t we derive

an orientation for all edges incident to t. These edges are stored in a �eld Edges associated

with every triangle. We denote an oriented edge e by �!e . For each oriented edge �!e of a
triangle t we push a pair (�!e 0; t) onto the stack (lines 5 and 6). As long as the stack Pending
is not empty we pop its top element (�!e 0; t) (line 8). If the edge e is not processed so far we
use the �eld processed to mark it processed and compute the surface neighbor of (�!e 0; t); i.e.
the triangle t0incident to e that "best �ts" t (lines 9-11). If t0 does not exist, the triangle

t is incident to a boundary. Otherwise we insert t0 in the set Surface (lines 12 and 13).

We assume that the function SurfaceNeighbor orients t0 such that its orientation matches
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the orientation of t and push all the pairs of orientated edges �!e 0 besides �!e incident to t0
together with the triangle t0 itself onto the stack Pending (lines 14-15). Finally we return

the surface Surface (line 16).

The above method works under the assumption, that the surface is orientable, i.e., surfaces

like the M�obius strip are not allowed.

Procedure 9.2 WALK(K)

1: Surface := 0

2: choose arbitrary oriented t 2 K
3: Surface:insert(t)

4: Pending := 0

5: for each e 2 t:Edges
6: Pending:push((�!e ; t))
7: while Pending 6= 0
8: (�!e ; t) := Pending:pop()
9: if e:processed=false

10: e:processed :=true

11: t0 :=SurfaceNeighbor(K;�!e ; t)
12: if t0 6= 0
13: Surface:insert(t0)

14: for each �!e 0 2 t0:Edges n f�!e g
15: Pending:push((�!e 0; t0))
16: return Surface

The walking step uses a function "SurfaceNeighbor", which selects the topmost triangles

among a set of triangles incident to e whose normals (orientated according to the orientation

of t) make an angle smaller than �
2
with the normal of t, see Figure 9.3.

Figure 9.3: The surface neighbor of the right dark shaded triangle is the topmost triangle

among the light shaded triangles [49].
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9.4 Conclusion and Extensions

In theory Cocone produces a piecewise-linear manifold close to the sampled surface. In

practice the required sampling assumptions are often not met and the manifold extraction

is not eminently robust.

There are several extensions to the basic algorithm:

� In [49] a boundary detection (based on the geometry of the Voronoi cells, in particular
the ratio of cell-height to width) is described. Thus together with an adapted manifold

extraction surfaces with boundaries can be constructed as well.

� Tight-Cocone [50] produces watertight surfaces, using Cocone for a preliminary surface
computation. This extension consists of a hole detection and a hole �lling step.

� Super-Cocone [51] is a variant of the Cocone algorithm intended to deal with very

large datasets. This is achieved by partitioning the pointset into octree-boxes, and

then carefully matching adjacent surface patches. The reconstruction of pointsets with

2 million points is accomplished in about 100 minutes using a Pentium III workstation.



Part III

Experiments
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Chapter 10

Experimental Setup

The aim of this thesis was to establish a 3D surface scanning environment as a basis for

further developments. We extended a commercial touch-probe scanner to contactless oper-

ation and developed a user friendly software package for the scanning- and reconstruction

process. In this chapter we will describe this scanning system, the reconstruction software

and present some results.

10.1 Hardware

Our scanner is built upon a commercial hand-guided 3D touch-probe scanner, the Immersion

Microscribe 3DX [74],that was available in our laboratory.

Figure 10.1: Photograph of the 3D scanning-system in our laboratory.
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10.1.1 Touch-Probe Scanner

The Microscribe 3DX is a hand-guided touch-probe scanner. The working principle is rather

simple. The scanner -looking like a robot arm- has several segments made of carbon-�ber

tubes, that are linked by articulated joints. Thus the arm can be moved in any direction.

The last segment of the arm -referred to as stylus- has a metal tip representing the actual

sampling position. In each of the articulated joints in-between two segments of the arm there

is an optical sensor measuring the angle between these two segments. The Microscribe has

5 degrees of freedom therefore there are 5 of these angular decoders. The scanner's heavy

base houses a microprocessor that provides each of the decoded angles by communication

via a RS232-interface.

During the scanning process the sampling probe is moved by hand across the surface of the

object of interest.

Knowing all the angles of the joints and lengths of each segment the position of the stylus

tip (the direction of the stylus as well) can be computed.

The arm itself is counterbalanced and features low friction bearings to provide a smooth and

e�ortless manipulation.

The optical decoders in the joints work similar to those in a computer mouse. Since they are

only capable of providing incremental information, the scanner must be calibrated. This is

achieved by setting up the scanner in a given initial position, where each of the arm's joints

form de�ned angles.

The overall arm length determines the maximum scanning volume. This is a sphere with

about 1m in diameter. In practice the measuring volume is always smaller since the stylus

tip needs to touch the object and thus the freedom of movement of the other arm's segments

is limited. The achieved position accuracy of �0.3mm is quite good.

The hand-guided operation allows selective sampling with varying point densities, since only

one point is captured in a single measurement step. On the other hand scanning is rather

time consuming. Furthermore to obtain a su�cient dense sample data set and to avoid

over-sampling a skilled operator and an indication or feedback of already scanned parts is

necessary. The contact based measurement allows to scan even transparent media, but there

are several drawbacks. If too much force is applied the metal tip can scratch the object,

moreover during the measurement the object to be digitized can be displaced and thus the

measurement disturbed. In addition when sampling objects with rough or complex surfaces

it is di�cult to keep the stylus tip in contact with the surface.

To avoid all these problems, this scanner has been extended into a non-contact system by

adding a laser triangulation sensor.

10.1.2 Laser Triangulation Sensor

We were looking for a small distance sensor with high precision and so have �nally chosen

the optoNCDT 1400, a laser probe that is manufactured by Micro Epsilon [61].

The Micro Epsilon optoNCDT 1400 (refer to Figure 10.2) is an optoelectronic displace-

ment measurement system with an integrated digital signal processor. The system measures

distances without contact against a wide variety of material surfaces, using the (active)

triangulation principle. A laser diode projects a visible light spot onto the surface of the

target. The spot is imaged onto a CCD-array by the receiver lens. In the integral controller
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Figure 10.2: Schematics and photography of the laser probe [61].

the measured values are digitally processed; an analog current signal is available as output.

The sensor has a rather small triangulation-angle of �30� and is thus not very vulnerable to
shadowing e�ects.

This probe allows the measurement of distances in the range between 25 and 75mm with an

accuracy of 20�m. The sampling rate is 1kHz.

The limited measurement range is no constraint to the scanner, because a larger range would

lead to higher inaccuracies due to the limited angle resolution of the scanner.

An advantage over laser stripe projections is that the intensity is higher and therefore the

measurement is more robust against textures and surfaces with low reectance.

We experienced that measurements of the probe were reliable even for such "non-cooperative"

objects, but to avoid any problems concerning surface texture our test objects were painted

white.

10.1.3 Mounting the Laser Triangulation Sensor

One thing in extending the scanner to non-contact operation is to physically mount the laser

probe onto the arm's stylus. We �rst thought of mounting the laser-probe onto the digitizer

so that the beam is coaxial to the arms' stylus. However, since this means the tip has to be

replaced and therefore the calibration of the arm would be hard to realize, we opted for a

setup where the stylus and the laser beam are collinear. As a further bene�t of this setup

we can use both the laser probe and the stylus for measurements. As a drawback we have to

know two additional o�set-parameters compared to a coaxial mounting (the displacement of

the laser-probe relative to the axis of the stylus tip). All three o�set-parameters are found

by an interactive calibration process:

By targeting the same point once with the tip and then again with the laser spot, we get three

equations and thus the three o�set parameters can be calculated by the scanning software.

This process involves human skills of observation (targeting the same point), hence for a more

automated implementation we suggest to have a special "calibration-target" that features a

small cavity (so that the stylus tip has a de�ned position) and a light detector just below

this mark. Thus, if the laser spot is projected exactly onto the calibration point the signal

of this detector can be used to trigger the calibration process. However since our probe

mounting kept the probe �rmly in place we did not need to calibrate very often. Therefore

satisfying calibration-parameters were found by using the above mentioned method re�ned

by averaging.

Having the laser probe physically attached to the scanner with a holder precisely milled of
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a foamed urea block, the next step is to combine the distance measurement from the laser

probe with the position of the stylus in order to calculate the coordinates of the laser spot

projected onto the surface.

To make the current signal of the laser-probe available to the computer it was converted into

a voltage and then digitized by a 12 Bit AD-converter attached to the USB-port of our com-

puter, the "BMC-Messysteme" MEM-ADDA-USB [75] interface. Knowing the displacement

of the sensor relative to the stylus, the stylus direction, and the beam length the position

of the light spot can be calculated. In practice this calculation is very simple since in the

routines of the SDK (Software Development Kit) for the scanner parameters can be set to

operate the scanner with others than the standard stylus tip. Thus prior the calculation of

the tip position we set the parameters according to the o�set values respectively the beam

length.

Unfortunately the selected AD-converter has a sampling rate of �100Hz, which is rather
slow and thus lead to a timing problem as explained below:

10.1.4 Addressing the timing problem

Since for a single measurement we need to gain information from the stylus and the beam

length, the total measurement time increases, furthermore since the measurements are per-

formed successively there is an delay between each measurement.

The problem with this delay is that for measuring the coordinates of one point we need both

informations simultaneously. We �rst thought of determining the delay between the request

of a measurement value and its sample point in time -for both the stylus tip coordinates and

the laser-beam length. If we then use in our program a (compensating) delay between both

measurement-requests we could thus retrieve measurements values of a certain point in time.

However, since we did not work with a real-time operating system we have no guarantee that

instructions are carried out in an exact time slot, therefore this attempt is not practicable. An

ideal solution would be to trigger both measurements with an external signal. Unfortunately

our scanner is not capable of processing such an input so we �nally decided for a simpler

approach. Assuming that the stylus is moved during the (short) measurement time without

a shift of direction, we can give an upper bound for the error by the following procedure:

First the coordinates of the stylus tip are checked then the length of the laser beam and

afterwards the stylus position is tracked again. Then we evaluate the coordinates for both

situations and if the di�erence between them is smaller than a given threshold (in the order

of �0.2mm) we accept the average of both measurements otherwise it is ignored. The trade-
o� of this concept is a further decreasing scan-rate, an additionally introduced inaccuracy,

and still no con�dent measurement.

With this method the total point-measurement time increase from 2ms to 10ms (compared

to contact operation).

10.1.5 Scanning Procedure

After the scanner is calibrated, it is ready for the digitizing process. The scanner is controlled

by two foot pedals. Since we can use both the stylus tip and the laser-probe for digitizing, we

assigned the left pedal for non-contact operation (being more comfortable) and the right to
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retrieve points with the stylus tip (o�ering a higher scan-rate and for scanning transparent

media).

In the non-contact mode the scanning itself is somehow similar to airbrush-painting, but

instead of spraying paint the laser-spot is swept across the surface and thus sample points

are acquired.

The laser probe has a limited measurement range, so the distance to the surface of the

object must not be arbitrary. To give feedback of the measurement range there are three

LEDs indicating when the probe is working (green), the measurement range is exceeded

(red), or when the optimal working range is reached (orange). Since the scanning software

keeps track of the measurement range this limited measurement range may be seen as an

advantage: If during the scanning process the laser is not projected onto the object, usually

the measurement range is exceeded and thus no points of the background are sampled.

Before digitizing an object the operator has to take care that the object's surface can be

accessed well in all areas (with the scanner's probe). For larger objects this is not always

possible. As a solution we tie every object to a coordinate system determined by three

surface points.

Having this �xed coordinate system we allow the object to be turned and moved. Then any

displacement is identi�ed by these control points again and the primary scanned data can

be aligned with the new position.

10.1.6 Accuracy and Performance

It is not very easy to exactly determine the precision of the modi�ed scanner.

By the conversion to non-contact mode we have introduced several sources of errors. The

achieved precision of the coaxial probe mounting has to be questioned, and the increased

length of the last arm segment -due to the laser-beam- has to be taken into account as well.

Considering the laser-probe alone we have to think of its measurement error, the size of

the laser-spot, and the resolution of the AD-converter. Further inaccuracy is -as already

mentioned above- caused by non-simultaneous measurements of the laser-probe and the

digitizer arm.

To give a rough estimation for the scanner's accuracy we assume in the following a perfect

coaxial mounting of the laser-probe and a precisely known o�set.

For the static error we can ignore the timing problem and if we take into account that the

increased arm length is rather small (compared to the overall arm length), and the error

of the AD-converter can be neglected as well, we can give an lower bound for the overall

error by simply summing up the errors of the laser-probe (�0.1mm) and the digitizer arm
(�0.22mm) resulting in �0.3mm.
If we take the timing problem into account the accuracy further decreases. Here an estimation

can be given by the sum of the static error and the value of the threshold for the allowed

movement during the measurement (as mentioned in the section "Addressing the timing

problem").

However, in practice a measurement error smaller than �0.5mm has been observed.

The maximal scan-rate we measured is about 100 points/s.
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10.2 Software

During this thesis a scanning software package, "SCANDESK" was developed. The software

was written in Visual C++ 6.0 making use of the Visual Toolkit (VTK) [60], a powerful open

source, freely available, software system for computer graphics. E�orts have been undertaken

in our software to make it comfortable and easy to use. SCANDESK provides the following

functionality:

� communication with the scanner (retrieving sampled points)

� visualizing the already scanned points

� decimation of the scanned data to reduce noise and redundancy

� surface reconstruction and visualization

� smoothing for a more convenient representation

� exporting the generated surface in "STL"-format so that further processing (external
viewer/editor, CAM...) is possible.

10.2.1 Sampling

SCANDESK provides a scanner-setting dialog where all the parameters for the scanner can

be set. This includes a simple calibration routine to estimate the o�set between the laser-

probe and the stylus.

Once the scanner is successfully connected, the pedal status, stylus position, direction, and

laser beam-length are monitored continuously. To achieve a rapid update of the measured

values, this is realized in a separate thread of the program. Only if a movement of the

digitizer arm is detected, either (depending on the pressed pedal) the stylus's or laser probe's

coordinates are calculated. If the measurement appears to be valid, the 3D coordinates are

"reported" to the main thread of the SCANDESK. There these coordinates are successively

added to the sampled point set only if a pedal is pressed and the laser-probe is used within

its measurement range. The obtained point cloud is displayed for an interactive operation.

Thus in addition to a fast surface representation algorithm (realized by Gaussian splatting)

[60] regions of undersampling can be spotted by the operator.

10.2.2 Decimation

Decimation of the obtained sampled points prior to reconstruction is important for two

reasons: First, since the computation-time for the reconstruction process strongly depends

on the number of points, sampled points that do not carry signi�cant information on the

surface-topology should be singled out. Second, the noise of the dataset can be reduced by

averaging. Both is of great importance especially for our system, since it o�ers the possibility

to scan areas with varying point-densities. This is primarily an advantage with respect to

automated scanning systems, however, excessive scanning can increase both redundancy and

noise on the sampled data.

To examine the amount of redundancy contained in the point-set, algorithms have been

developed that observe a neighborhood of a point and evaluate the local density of this
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neighborhood, the variation of the estimated surface normals, or the change of other param-

eters like color (not used here). The more variation is detected, the more weight is assigned

to the speci�c point. In a second step according to these weights the dataset is decimated.

We implemented a simple decimation algorithm, only based on the local density of the point-

set. In this algorithm a ball with a given radius around each sample point is observed and

all the points contained in this ball are substituted by their centroid. Besides speeding up

the reconstruction, this algorithm is mainly intended to decrease the noise of the sampled

points. Thus a good (initial) guess for the radius of the ball is the scanner-accuracy.

We also experimented with a slightly more sophisticated algorithm, where we did not "con-

centrate" the dataset contained in a ball around an arbitrary chosen point, instead we

determined the point in this neighborhood with the maximum local density.

This variant, however, is much slower especially when the radius (and thus the number

of neighbors) increases. We observed, that the achieved improvement did not justify the

increased computing time in practice.

10.2.3 Reconstruction

SCANDESK is able to compute a simplicial surface having either the scanned points or an

imported point-set as input.

For this reconstruction process from 3 di�erent algorithms are available

� a simple version of Hoppe's algorithm

� the Power-Crust and

� the Tight-Cocone algorithm

We did not re-implement any of this algorithms ourselves, instead we used the vtkSurfac-

eReconstructionFilter (Hoppe's algorithm) [60], the Windows port of the Power-Crust [42]

kindly provided by Nina Amenta , and the Tight-Cocone [50] by courtesy of Tamal Dey.

The variant of Hoppe's algorithm can be used for a fast representation of the surface by

selecting a large value for the sample spacing-parameter, as a trade-o� the reconstructed

model is poor of details. While the algorithm performs quite well on equally dense samples,

it can produce surfaces with artefacts and is not competitive to the Power-Crust- or Cocone

algorithm.

Power-Crust o�ers the best looking results but it su�ers from high computation time and

memory consumption, and its poor implementation -that was available to us- often caused

computer-crashes. Thus in practice we prefer using the Cocone algorithm resulting in com-

parable good models but computation is faster and more stable. The performance di�erence

between the Power-Crust and the Cocone algorithm is mainly due to the di�erent algorithms

used for triangulation. Thus the Power-Crust could strongly bene�t from a more e�cient

implementation.

10.2.4 Smoothing

Often the reconstructed surface looks somehow crinkled. This distortion is caused by noise in

the underlying point cloud. In most cases a more convenient representation of the scanned
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object can be achieved by smoothing the generated surface mesh. In general smoothing

algorithms reduce high frequency information in the geometry of the mesh. This reduces

the noise, but also diminishes the amount of detail in the smoothed mesh, thus excessive

smoothing should be avoided.

We used the vtkSmoothPolyDataFilter provided by the VTK [60]. This algorithm is a

variant of (�rst order) Laplacian smoothing. The algorithm proceeds as follows: For each

vertex v in the mesh a list of vertices is computed, which contains all vertices v0 that are

directly connected to the vertex v. Next, an iteration phase begins over all vertices v, where

the new position vnew of the vertex is given by the centroid of these adjacent vertices v
0.

In this algorithm, the smoothing itself is controlled by two parameters, the number of iter-

ations and a relaxation factor �. As shown in Equation 10.1, this parameter � de�nes the

ratio of the displacement between the original and the new position, in relation to the dis-

tance between the centroid of the to the vertex v adjacent vertices (adj(v)) and the original

position of v.

vnew = v � �

24v � 1

jadj(v)j
X

v02adj(v)

v0

35 (10.1)

This is one of the simplest and most common smoothing methods used for meshes. The

method is inexpensive to compute but it does not guarantee an improvement in the mesh

quality (as described in [63]) and the surface may shrink towards its centroid.

A better approach is presented by Mencl in [62], where a combination of alternating applica-

tion of Laplacian smoothing of second order and edge swapping is reported to reduce noise

successfully. However this has not yet been implemented here.

10.3 Stages of the Surface Reconstruction Process

In the following we will illustrate the stages of the reconstruction process. To verify our

software we have used datasets obtained by scanning with the Line Triangulation 3D Scanner

in our Laboratory [64] (briey described in chapter 3). We have chosen this scanner as a

reference system, because of its excellent accuracy we can expect a good reconstruction. In

addition we wanted to show the scanner's full potential, which was not possible with the

previously used algorithms.

Our object of interest is a small gypsum bust of Johann Strauss (approximately 100mm

in height). by scanning the bust with the Line Triangulation Scanner we have acquired a

point-cloud with �120 000 points that is reconstructed using Tight Cocone.
A direct reconstruction of the original scanned date gives already a good representation (see

Figure 10.3).

By application of the decimation algorithm, the number of points is decimated to �58 000
points and the noise in the dataset is signi�cantly reduced, whereas not much detail is lost,

as demonstrated in Figure.10.4.

By �nally smoothing the surface we get a very satisfying reconstruction of the original object

(Figure 10.5).
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Figure 10.3: Original data: point-cloud 121.816 points (left), reconstructed surface (right).

Notice the artefact on the left hand side of the head, that is due to a violation of Cocone's

sampling assumptions.

Figure 10.4: Decimatied Data: point-cloud 58.148 points (left), reconstructed surface (right).
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Figure 10.5: Photograph of the gypsum bust (height �100mm) (left), �nal reconstruction
after Decimation and Smoothing (right).

10.3.1 Example of Scanned Data

To test the capabilities of our developed scanner we sampled the head of the bust and

reconstructed the object. As demonstrated in Figure 10.6 our scanner works properly, but

it cannot compete with the Line Triangulation Scanner scanner in terms of precision.

Figure 10.6: Reconstruction of the decimated data (14018 points) after smoothing.
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10.4 Conclusion and Outlook

The aim of this diploma thesis was giving an introduction and overview of the topics involved

in 3D Surface Scanning and to build a scanning system for practical use. Our idea was to

achieve a high accuracy by performing single point measurements only and accept a low

scan-rate as the trade-o�.

Unfortunately the experiments exhibit that is was rather a �rst step than a �nal working

solution.

We were able to set up a working system, but we are not entirely satis�ed with the achieved

reconstruction of the scanned objects (refer to Figure 10.6). We believe that the rather poor

reconstruction is mainly due to two reasons. First the scanning data is arbitrarily dense

(depending on the skill of the operator) and second for the small object that has been used

as an example the accuracy of our scanning system is not su�ciently high. The low accuracy

results in noisy surface meshes. The main factors for the low accuracy are the precision of

the digitizer arm, and the low sampling rate of the AD-converter. Since we have no inuence

on the touch-probe scanner's accuracy we only see potential for improvements by the use of

a faster AD converter.

Although we observed that the implemented surface reconstruction algorithms (Cocone,

Power-Crust) preformed very well on other sample data sets, they ran into problems with

the data obtained by our scanner. This is due to the non-uniform sampling density. Along

the paths where the probe is moved, the point density is signi�cantly higher than in other

directions. These variations are miss-interpreted by the reconstruction algorithms and can

result in holes of the surface mesh. To minimize these e�ects we successfully employed our

point-decimation algorithm. On the other hand by applying the decimation algorithm, the

amount of detail is reduced as well.

The hand-guided operation of our scanner o�ers the possibility to selectively scan certain ar-

eas, but in combination with single-point measurements it is very time demanding to achieve

a dense sampling (even with the provided feedback capability of our software). Therefore we

would recommend using a 2D probe (a sensor with laser stripe projection) instead of the 1D

laser probe. Although the accuracy is likely to further decrease, the scanning will become

much more comfortable and the scan rate will dramatically increase. Thus by averaging the

(denser) point cloud statistical errors can be eliminated, which will provide a higher pre-

cision. However, a similar system is already available on the market, and our touch-probe

scanner has too few degrees of freedom for such a line sensor. At least one more axis (for

the direction of the laserstripe) would be necessary for a comfortable operation.

Concluding we see our scanner not as a stand-alone solution, in fact it might be better

suitable for complementary scans and for hole �lling, or to digitize objects with a highly

symmetric shape.

Also in our software there is room for improvement. A better smoothing algorithm, and

(manual or automatic) editing tools for eliminating unwanted or erroneous sample points as

well as a reimplementation of the Power-Crust algorithm (using faster Delaunay Triangula-

tion routines) would give further impacts to the usability of the software.
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Appendix A

Geometric De�nitions and Proofs

A.1 Glossary

A.1.1 Convex Hull [52]

Preliminary De�nition: A subset S of the plane is called convex if - and only if - for

every pair of points p,q in S, the line segment pq is completely contained in S.

Convex Hull De�nition: The convex hull conv(S) of a set S is the smallest convex set

that contains S.

A.1.2 General Position

De�nition [1]:

A point set S is in General Position, if:

� R2 : no 3 points of S lie on a common line and no 4 Points lie on a common circle

� R3 : no 4 points of S lie on a common plane and no 5 Points lie on a common sphere

These assumptions ensure that the Delaunay Triangulation of the point set S is unique and

not degenerated.

A.1.3 Simplex

De�nition [1]:

In Rd any set T of size jT j = k+1, with 0 � k � d, de�nes a k-simplex �T that is the convex
hull of T . The general-position assumption assures that all k-simplices (plural of \simplex")

are properly k-dimensional.

A.1.4 Voronoi Diagram [1]

De�nition: For a point p 2 S, de�ne Vp, the Voronoi cell of p, as the set of points x 2 R3
that the Euclidean distance between x and p is less than or equal to the distance between

x and any other point of S. Vp = fx 2 R3 : 8q 2 S � fpg ; kx� pk � kx� qkg. Each
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Voronoi cell is a convex polyhedron, and the collection of all Voronoi cells, one for each point

of S, de�nes the Voronoi Diagram of S, denoted by V (refer to Figure A.1).

The vertices of this diagram are called Voronoi vertices. In 3D a Voronoi vertex v is shared

by the cells of at least four samples, which are all closest to v. The Voronoi Ball at v is the

ball centered at v passing through its closest samples.

Figure A.1: Voronoi Diagram (left) and Delaunay Triangulation (right) of a point set in a

plane [48].

A.1.5 Delaunay Triangulation [1]

A �nite point set S � R3 de�nes a special triangulation known as the Delaunay Triangulation
of S. Assuming General Position of the points, this triangulation is unique and decomposes

the convex hull of S into tetrahedra. The triangulation is named after the Russian geometer

Boris Delaunay (also Delone). As explained below, the Delaunay Triangulation of S is dual

to another complex de�ned by S; known as the Voronoi Diagram.

De�nition 1 [1]: The Delaunay Triangulation of a point set S in Rd is the set of all
(0 � k � d) k-simplices �T = conv(T ), T � S, jT j = k + 1; for which there are empty open
balls b with @b \ S = T .
A triangle is in the Delaunay Triangulation if - and only if - its circumscribing ball is empty.

An edge is in the Delaunay Triangulation if - and only if - its circumscribing ball is empty.

An alternative de�nition shows that the Delaunay Triangulation is dual to the Voronoi

Diagram (refer to Figure A.1):

De�nition 2 [48]: k + 1 points in P form a Delaunay k-simplex �T , if their Voronoi cells

have a non-empty intersection:

DP = f�T j \Vp 6= 0 where p is any vertex in �Tg
So in Rd each k-simplex �T in DP is dual to a d� k dimensional Voronoi face.
In R3 the Delaunay Triangulation contains four types of simplices dual to each of the four
types of Voronoi faces. Delaunay vertices are dual to Voronoi cells, Delaunay edges are dual

to Voronoi facets, Delaunay triangles are dual to Voronoi edges and Delaunay tetrahedrons

are dual to Voronoi vertices.
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A.1.6 Medial Axis [43]

The Medial Axis of an object is the closure of the set of points with more than one closest

point on the surface of the object (refer to Figure A.2). Notice that a point of the Medial Axis

is the center of a ball touching the surface in at least two points, but completely contained

in the object. The union of all of these balls completely �lls up the object. The Medial

Axis Transformation is the representation of the object by this set of balls. Notice that the

Medial Axis can be considered as the continuous version of the Voronoi Diagram - the set of

points with more than one closest point on the input point set S gives the Voronoi Diagram.

Figure A.2: Example of a two dimensional Medial Axis [43].

A.2 Proofs

We will reproduce the proofs used in the Cocone algorithm, as given in [48]:

A.2.1 De�nitions

The surface � is a smooth manifold without boundaries embedded in R3.

Local Feature Size We de�ne a distance function called Local Feature Size:

f : �! R where f(x) is the least distance to any point of the Medial Axis of any x 2 �.

"-sample We use the same sampling condition as described above in the power crust

Algorithm:

A sample P of � is an "-sample if each point x 2 � has a sample point p 2 P so that

kx� pk � "f(x)

In the following we will denote any ray from p to a point y 2 Vp as by.
Poles:

[48]: The farthest Voronoi vertex vp in Vp is called the positive pole of p. The negative pole

of p is the farthest point p� 2 Vp from p so that the two vectors from p to vp and p� form
an angle of more than �

2
.We call bvp = vp � p, the pole vector for p. If Vp is unbounded, vp
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is taken at in�nity, and the direction of bvp is taken as the average of all direction given by
the unbounded Voronoi edges.

A.2.2 Lemmas

Lemma (Lipschitz Continuity): f(x) � f(y) + kx� yk
for any two points x and y in �.

Proof: Let m be a point on the Medial Axis so that f(y) = ky �mk. By triangular
inequality,

kx�mk � ky �mk+ kx� yk, and
f(x) � kx�mk � f(y) + kx� yk �

Lemma (Feature Translation): For any two points x and y in � with kx� yk � "f(x)
we have

kx� yk � "
1�"f(y).

Proof: We have

f(x) � f(y) + kx� yk
f(x) � f(y) + "f(x)
f(x) � 1

1�"f(y)

Plug the above inequality in kx� yk � "f(x) to obtain the result. �

Lemma (Medial Lemma): Let m1 and m2 be the two Medial Axis points which are the

centers of the two Medial Balls at p. The Voronoi cell Vp must contain m1 and m2.

Proof: Denote the Medial Axis Ball with center m1 as B. The ball B meets the surface �

only tangentially at more than one point, one of which is p Thus, B is empty of any point

from �, and in P particular. Therefore, the center m1 has p as nearest point in P . By

de�nition of the Voronoi cells, m1.must be in Vp. Similar argument applies to the other

Medial Axis point m2. �

Lemma (Normal): Let v be any point in Vp with kv � pk � �f(p), further let P be an
" sample of �. Then

\(v � p);np � arcsin "
�(1�") + arcsin

"
1�" .

Proof: Let m1 and m2 be the two centers of the Medial Balls touching � at p where m1 is

on the same side of � as v is. Both m1 and m2 are in Vp by the medial Lemma. The line

joining m1 and p is normal to � at p by the de�nition of the Medial Balls. Similarly the

line joining m2 and p is also normal to � at p. Therefore, m1, p and m2 are collinear (refer

to Figure A.3). Consider the triangle pvm2. We are interested in the angle \m1pv which

is equal to \(v � p);np. From the triangle pvm2 we have

\m1pv = \pvm2 + \vm2p

to measure the two angles on the right-hand side, drop the perpendicular px from p onto

the segment vm2. The line segment intersects �, say at y, sincem1andm2 and hence v and

m2 lie on opposite sides of �. Furthermore y must lie within Vp since any point in the line

segment joining two points v and m2 in a convex set Vp must lie within the same convex

set. This means y has p as nearest sample point, and thus

kx� pk � ky � pk � "f(y) by "-sampling condition.
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Figure A.3: Illustration for Normal Lemma [48].

Using the Feature Translation Lemma we get

kx� pk � "
1�"f(p)

We have

\pvm2 = arcsin
kx�pk
kv�pk � arcsin

"
�(1�") as kv � pk � �f(p), and

\vm2p = arcsin
kx�pk
km2�pk � arcsin

"
1�" as km2 � pk � f(p).

The assertion of the lemma follows immediately. �

Lemma (Pole): The angle between the normal np at p and the pole vector bvp satis�es
\np; bvp � 2 arcsin "

1�"
Proof: Since the Voronoi cell Vp contains the centers of the Medial Balls at p, we must have

kvp � pk � f(p). Thus, plugging � = 1 in the statement of the Normal Lemma we obtain
the result immediately. �

Lemma (Normal Variation): Let x and y be any two points with kx� yk � �f(x) for
� < 1

3
. Then we have

\nx;ny � �
1�3� .

Proof: Let `(t)denote any point on the segment xy parameterized by its distance t from x

Let x(t) be the nearest point on � for l(t). The rate of change of normal nx(t) at x(t) is n
0
t

=
dnx(t)
dt

as t changes. The total variation in normal between x and y is

\nx;ny �
R y
x
jn0tj dt � kx� ykmax

t
jn0tj.

The surface � is squeezed in between two Medial Balls at x(t). These two balls cannot be

larger than the curvature ball at x(t): This means � cannot turn faster than the larger of

the two Medial Balls at x(t), refer to Figure A.4. We have

dt � (f(x(t))� kx(t)� `(t)k) sin d�
As sin d�! d� where d�! 0

jn0tj = lim
d�!0

��d�
dt

�� � 1
(f(x(t))�kx(t)�`(t)k) �

1
(f(x(t))��f(x))

since

kx(t)� `(t)k � kx� `(t)k � �f(x):
Also,
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Figure A.4: Illustration for Normal Variation Lemma [48].

kx(t)� `(t)k � kx� `(t)k+ kx(t)� `(t)k � 2�f(x).
By Lipschitz Continuity Lemma f(x(t)) � (1� 2�)f(x): Therefore
jn0tj � 1

(1�3�)f(x)
\nx;ny � kx� yk 1

(1�3�)f(x) �
�

1�3� . �

Lemma (Edge Normal): The angle \tpq;np is more than �
2
� arcsin kp�qk

2f(p)

Proof: Consider the two Medial Balls sandwiching the surface � at p. The edge pq cannot

completely lie inside any of these balls. So the smallest angle pq formed with np cannot be

Figure A.5: Illustration for Edge Normal Lemma [48].

smaller than the angle pq formed with np when q is on the boundary of any of these two

balls. In this case it is obvious from Figure A.5 that

sin� = kp�qk
2km�pk �

kp�qk
2f(p)

. Therefore,

\tpq;np = �
2
�� � �

2
� kp�qk

2f(p)
�



Appendix B

SCANDESK Manual

The SCANDESK is a software package for use with the scanning and reconstruction process.

It communicates with our scanner and is also used for data processing and visualization.

B.1 Installation and Components

The following �les are required:

scandesk.exe the main program

vtkCore (version 4.2) this package contains the VTK-DLLs used by scandesk.exe

lmscn32.dll dynamic link library for the communication with the scanner

mem.ocx an ADO object, providing the communication with the AD-converter

tcocone.exe DOS command-line version of the Tight Cocone algorithm

powercrust.exe DOS command-line of the Power-Crust algorithm

orient.exe add-on to the Power-Crust, that takes care for a consistent orientation

simplify.exe reduces the complexity of the Power-Crust output

lmscn.dat ASCII- �le containing control parameters of the scanner

ReconParams.dat ASCII- �le containing settings for the reconstruction algorithms

It is necessary to have all the executable �les and the dynamic link libraries in the system

path.

B.2 User's Guide

SCANDESK is a multiple document application, therefore several projects can be opened

simultaneously. The screen is divided into four panes (refer to Figure B.1), on each of them

an independent and di�erent view of the data (scanned and reconstructed) can be chosen.

The program is controlled by the buttons in the toolbars. There is the Standard Windows

Toolbar (for �le handling, printing and screenshots), a View Toolbar, the Scanner Tool-

bar, and the Data Manipulation Toolbar. Clicking on them with the left mouse button

usually starts a procedure whereas right-clicking on the buttons in the Scanner- and Data

Manipulation Toolbar displays a dialog for setting parameters of these procedures.

In the statusbar are displayed: the actual coordinates of the probe of scanner and the number

of scanned points of the Pointcloud Object .

102



APPENDIX B. SCANDESK MANUAL 103

Figure B.1: SCANDESK - Screenshot.
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B.2.1 Data-Objects and File-Handling

Internally SCANDESK uses three di�erent data-objects for every project:

� The Pointcloud Object -a set of points representing the scanned data

� The Surface Object -a mesh of the (reconstructed) object

� The Vertices Object -a set of points, that contains all the vertices of the surface mesh.

The following �le formats are supported:
.asc a set of points in ASCII format: x y z

.pts a set of points in ASCII format: p x y z

.asd a set of points according to the dxf ASCII format

.stl stereolithography format (ASCII or binary)

.vtk Visual Tool Kit �le-format (ASCII or binary)

.o�, .jv Geomview �le-format

By opening a �le either a set of points or a polygonal mesh can be loaded.

The point data is assigned to both, the Pointcloud Object and the Vertices Object, whereas

gridded data is (additionally) assigned to the Surface-Object.

Figure B.2: Save File Dialog.

The Save-dialog has two additional controls compared to the standard dialog. There is a

radio button that is used to indicate which object is to be stored (the point cloud or the

surface mesh with the vertices) and second a check box "binary". If this one is checked, the

data is written in binary instead of ASCII format (if supported).
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B.2.2 The View Toolbar

This toolbar provides view-changing functionality (Zoom, Pan, Rotate...), and controls the

visibility of the Pointcloud-Object , the Vertices-Object , the Surface-Object ,

and the coordinate axis .

Using the left mouse button the visibility is toggled only in the active pane, whereas the

right mouse button a�ects all panes.

B.2.3 The Scanner Toolbar

Activate Scanner

When this button is activated the program attempts to connect the scanner using the pa-

rameters from the "lmscn.dat" �le.

Right-clicking on the icon brings up the Connection Settings Dialog, by which the connection

parameters (serial port, baudrate, channel...) can be set, further the scanner o�sets can be

entered directly or estimated by starting the calibration process.

Switch to Slice Scanning

In this operating mode points are sampled into parallel planes with a de�ned normal distance.

(Parameters for both the plane normal and the normal distance can be set by right-clicking

on this button.)

Set Reference Points

By activating this button the user is asked to mark 3 reference points with the scanner.

These reference points are later used to identify the position of the scanned object.

Right-clicking brings up a dialog that provides loading (or saving) these points from (or to)

a �le.

Transform Data to new Position

Having the scan data tied to the reference points (by either running the "Set Reference

Points"- method or loading them from a �le), with this feature the scan data can be matched

to the object's current position. This gives the possibility of continuing a suspended scan.

Starting this procedure the program asks for marking the three reference points again (the

order in which this is done is important). Then it calculates the new position of the object

and aligns the scan data to this position.
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Figure B.3: Surface Reconstrution Settings Dialog.

Pause Scanner

With this button the scanner can be paused and thus computing power saved.

Note that during the execution of the reconstruction-algorithms the scanner is paused auto-

matically.

B.2.4 The Data Manipulation Toolbar

The data manipulation toolbar provides the functionality for surface reconstruction, smooth-

ing, and point-set decimation:

Surface Reconstruction

By clicking this button the surface reconstruction is started.

By clicking on the icon with the right mouse button the settings dialog is displayed.

This dialog is used to select a reconstruction algorithm and to set the required parameters.

Further this parameters can be loaded or saved from or to a �le.

Power-Crust Options

� -R This parameter is an estimate for the sampling density constant. 1.0 or larger

turns it o� (default = 0.6). Used to estimate whether Voronoi cells are \well-shaped",

for handling noise and for the detection of sharp-corners. This is the r in r-sampling,

that is, the minimum distance to the nearest sample on the surface, as a fraction of

distance to the medial axis. When r is small, sampling is expected to be very dense,

the Voronoi cells are expected to be really long and skinny and the poles of fat Voronoi

cells are thrown away. On noise-free inputs with no sharp corners, the value for -R
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can be set >= 1 to get (probably) a good reconstruction from a sparser input sample.

Setting -R small might help to get good reconstructions from dense but noisy samples.

� -w is cos(� � �), where � is the angle between \deep" intersecting balls (default =
0.3). Some poles might fail to be labeled by the regular algorithm. This parameter is

passed on a second-pass clean-up function for trying to label unlabeled poles. The -w

value should be made smaller when there are a lot of messages about `unlabeled pole'.

� -m multiplier. The �rst thing the algorithm does is to multiply all the oating point

numbers in the input by this multiplier and round them into integers.

Tight-Cocone Options

� -r The larger the value of this parameter, the stricter Tight-Cocone gets in choosing
triangles (default = 1.0).

Hoppe's Algorithm Options

With the Sample Spacing parameter the spacing of the 3D sampling grid is set. If it is not

set, a reasonable guess will be made. This parameter controls the level of detail and thus the

computation time. The larger the value of this parameter, the faster is the reconstruction.

Gaussian Splatting Options [60]

The method of Gaussian splatting injects the input points to a sample grid and computes

for each of these voxels a scalar value according to a Gaussian distribution:

f(x) = ScaleFactor * exp( ExponentFactor*(r/Radius)2)

where p is a given point, x is the current voxel sample point, and r is the distance jx-pj.
A surface of this values is extracted by a contour tracing algorithm.

The parameters that can be set are the number of voxels (per dimension), the Radius and

the ScaleFactor.

Surface Smoothing

By pressing this button Laplacian smoothing is applied to the Surface Object.

This �lter can be toggled on and o�, by left-clicking on the icon; the Settings dialog is

displayed by right-clicking.

The parameters for the smoothing algorithm are:

� The Number of Iterations: This is the number of passes the smoothing is performed
over the entire surface mesh.

� The Relaxation Factor, determines how strong a surface vertex is moved towards the
centroid of its adjacent vertices (in a single pass).
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Figure B.4: Smoothing Settings Dialog.

Figure B.5: Decimation Settings Dialog.

Point Decimation

The Point Decimation �lter reduces the number of points in the Pointcloud Object.

The decimation �lter can be toggled on and o�, by left-clicking on the icon; the Settings

dialog is displayed by right-clicking. The following parameters can be set

� Minimal Distance: this is a threshold for the nearest distance (between every two
points) in the Pointcloud Object

� Fast mode: By deactivating the checkbox a more sophisticated decimation algorithm
can be selected. This algorithm achieves a slightly better decimation, but takes much

more time for the computation.
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