
DISSERTATION

Omnix: An Open Peer-to-Peer
Middleware Framework

Engineering Topology- and Device-Independent Peer-to-Peer
Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

o.Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Institut für Informationssysteme

Abteilung für Verteilte Systeme (El84-1)

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Univ.-Ass. Dipl.-Ing. Roman Kurmanowytsch
roman@infosys.tuwien.ac.at

Matrikelnummer: 9327324
Brunnerstr. 28/12

A-1230 Wien, Österreich

Wien, im Februar 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Omnix: An Open Peer-to-Peer Middleware Framework

Engineering Topology- and Device-Independent Peer-to-Peer Systems

Ph.D. Thesis

at

Vienna University of Technology

submitted by

Dipl.-Ing. Roman Kurmanowytsch

Distributed Systems Group, Information Systems Institute,
Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria

1st February 2004

© Copyright 2004 by Roman Kurmanowytsch

Advisor: o. Univ.-Prof. Dr. Mehdi Jazayeri
Second Advisor: a.o. Univ.-Prof. Dr. Gabriele Kotsis

Abstract

In this thesis, we present Omnix, a Peer-to-Peer (P2P) middleware framework. P2P mid-
dleware provides an abstraction between the application and the underlying network by pro-
viding higher-level functionality such as distributed P2P searches and direct communication
among peers.

P2P networks build an overlay network, a network on the network. The central idea of
this dissertation is to apply the well-established ISO OSI layered model on P2P middleware
systems. A layered P2P architecture helps to identify separate parts of a complex system,
allows changes to the system without affecting other layers and makes maintenance easier
due to modularization. The main advantages of having such a layered P2P middleware are:
independence from the underlying network and the P2P topology.

This dissertation proposes a P2P middleware architecture consisting of three layers: the
Transport Layer, the Processing Layer and the P2P Network Layer. The Transport Layer
(which can be compared to the Physical Layer of the OSI model) is responsible for providing
an abstraction to the network primitives provided by operating systems or libraries. This
makes Omnix independent from the underlying network protocols and the devices and allows
Omnix to run on heterogeneous devices. The Processing Layer (an analogy to the Data Link
layer) provides an error free connection to remote peers and allows additional services to
be plugged in. The P2P Network Layer comprises the routing algorithm, thus describes the
topology (or structure) of the P2P network.

Omnix has a pluggable architecture that allows different components to be plugged in
based on the requirements of an application, the capabilities of the device the application is
running on, the number of peers involved, etc. Custom-tailored P2P middleware systems can
be constructed, thus, increasing the flexibility of communication architectures that are built
upon it. Applications that use Omnix are provided an API that is not affected whenever the
underlying topology has to be changed or adapted.

Since testing P2P networks is hard to accomplish due to the large amount of peers re-
quired to get significant results, Omnix provides a way of testing P2P applications using this
middleware framework. By replacing the communication layer by a virtual network, it is
possible to simulate a network of virtual peers on a single computer without the necessity of
changing the application on top of it.

Along with Omnix, several plugins are provided to demonstrate the versatility of the
framework. They provide the functionality to run Omnix on normal PCs, on handheld com-
puters (e.g., Compaq iPAQ) and on Java-enabled mobile phones.

Kurzfassung

Diese Dissertation stellt Omnix vor, eine Peer-to-Peer (P2P) Middleware. P2P Middle-
ware Systeme bieten eine Schnittstelle zwischen der P2P Kommunikation-Infrastruktur und
der darüber liegenden Applikation an. Dienste wie zum Beispiel das Suchen in einem P2P
Netzwerk oder die direkte Kommunikation zwischen Peers werden dabei angeboten.

P2P Netzwerke bilden ein virtuelles Netzwerk auf einem existierenden Netzwerk. In
dieser Dissertation wird das anerkannte OSI (Open Systems Interconnection) Netzwerk-
Schichtenmodell der Internationalen Organisation für Standards (ISO) auf P2P Netzwerke
angewendet. Das Schichtenmodell hat den Vorteil, dass komplexe Systeme in kleinere Teile
aufgeteilt werden können, dass Schichten verändert werden können, ohne einen Einfluß auf
die Schichten darunter zu haben und dass die Wartbarkeit und Erweiterbarkeit solcher Sy-
stem erhöht wird. In einem P2P Netzwerk bedeutet das hauptsächlich eine Unabhängigkeit
von der zugrundeliegenden Netzwerk-Technologie und der Struktur des P2P Netzwerkes
selbst.

In dieser Dissertation werden drei Schichte vorgeschlagen: die 7rans/w?t-Schicht, die
Processmg-Schicht und die P2P Netzwerk-Schicht Die Transport-Schicht kann mit der phy-
sikalischen Schicht des ISO Modells verglichen werden. Sie ist dafür zuständig, den Zugang
zum Netzwerk transparent, und daher auch unabhängig vom eingesetzten Netzwerkproto-
koll, zu machen. Die Processing-Schicht (welche an die OSI Sicherungsschicht angelehnt ist)
erzeugt einen fehlerfreien Verbindungskanal und bietet darüberhinaus noch weitere, wichtige
Dienste an. Die P2P-Netzwerk-Schicht beinhaltet die Routing-Algorithmen und beschreibt
daher die Struktur des P2P Netzwerkes.

Omnix verwendet eine komponenten-orientierte Architektur die es erlaubt, das System
den Erfordernissen anzupassen. Die dadurch gewonnene Flexibilität erlaubt es, Omnix für
viele verschiedene Zwecke auf unterschiedlichsten Geräten einzusetzen, ohne jedoch dabei
die Schnittstelle zur Applikation zu verändern.

Für das Testen von Applikation, die auf Omnix aufbauen, kann die Netzwerkkommuni-
kation durch ein virtuelles Netzwerk ersetzt werden, dass es erlaubt, mehrere Tausend Peers
auf einem einzelnen Computer zu simulieren. Dabei ist es nicht notwenig, die Applikation
selbst zu ändern.

Um die breite Ersetzbarkeit von Omnix zu demonstrieren, werden verschiedene Module
angeboten, die es erlauben, Omnix auf einem PC, einem Handheld (z.B. Compaq iPAQ) oder
einem Mobiltelefon mit Java.

Acknowledgments

Many people directly or indirectly contributed to this dissertation.

I am greatly indebted to my wife Hemma for her patience and mental support during the
stressful time of writing this dissertation. She was always willing to let me work until late
in the evening while she was taking care of our one year old daughter. Her enduring support
and understanding made this dissertation possible. I am also grateful to my parents for then-
continuous support over the long years of my education.

I would also like to thank my advisor Prof. Dr. Mehdi Jazayeri who introduced me to
research and provided an environment where I was able to look into many research areas and
work with interesting people. His feedback has been invaluable in structuring and writing
this dissertation. I further offer my sincerest gratitude to Prof. Dr. Gabriele Kotsis, who
displayed a great deal of flexibility and kindness.

Doing research at the Distributed Systems Group of the Information Systems Institute at
the Vienna University of Technology was an incredible experience. I would like to acknowl-
edge the work and dedication of the people working there.

Special thanks go to my colleague and friend Clemens Kerer, who was always willing to
listen to my ideas and point me to new directions. I would like to express my appreciation for
all the efforts he made in numerous joint projects which has provided me with a great deal of
enjoyment over many years. Thanks must also be given to Engin Kirda, who made working
at the Distributed Systems Group at any time a lot of fun. He always provided encouraging
words when they were most needed.

I thank Michael Loibl, Johannes Schmidt and Reinhard Steiner for their input into this
thesis by working on various sub-projects in the course of their master theses.

This dissertation is dedicated to my children Lea and Noah.

Roman Kurmanowytsch
Vienna, Austria, February 2004

Contents

1 Introduction 1

1.1 Problem description in a nutshell 2

1.2 Omnix 3

1.3 The Program Committee Scenario 3

1.3.1 The Setting 3

1.3.2 Computer Support for the Review Process 4

1.3.3 Using Omnix in the Meeting 4

1.3.4 A Second Meeting 5

1.3.5 Alternatives 6

1.4 Contributions 6

1.5 Stakeholders 7

1.6 Structure of this Thesis 7

2 Concepts & Technologies 9

2.1 Various definitions of "Peer-to-Peer" 9

2.2 Peer-to-Peer: An old new idea 10

2.2.1 Evolution of computing 10

2.2.2 Some application domains of P2P applications 11

2.2.3 Historical P2P systems 13

2.2.4 The context has changed 14

2.3 Topologies 15

2.3.1 PureP2P 15

2.3.2 Server-based P2P 17

2.3.3 Hybrid P2P 18

2.4 Myths about P2P 18

3 Peer-to-Peer Topologies 21

3.1 Evaluation 22

3.2 Summary 36

Design of Omnix 38

4.1 Requirements 38

4.2 Architecture 40

4.2.1 Overview 40

4.2.2 The "Physical Layer" 43

4.2.2.1 Transport 43

4.2.2.2 Core . 46

4.2.3 Common Services 46

4.2.3.1 Pipelines 47

4.2.3.2 Processing modules 48

4.2.4 The P2P Network Layer 50

4.2.4.1 Context Switcher 50

4.2.4.2 Topology modules / Omnix API 51

4.3 Streaming 54

Omnix Protocol 61

5.1 Requirements for a P2P protocol 61

5.2 Overview 63

5.3 Message types and structure 64

5.3.1 Request / Response 65

5.3.2 Headerfields 66

5.3.3 Body 67

5.4 Security 68

5.5 Protocol Alternatives . 69

Programming Aspects of Omnix 72
6.1 Changing the lower layers of Omnix: Transport and Processing 72

6.1.1 Transport 73

6.1.2 Message processing 75

6.1.2.1 The Loopback module 76

6.2 Implementing topologies 77

6.2.1 The NetworkModule interface 78

6.2.2 Nimble Groups 80

6.2.2.1 Topology 80

6.2.2.2 Messages exchanged 80

6.2.2.3 Implementation 81

6.2.3 Wild mesh 84

6.2.3.1 Topology 85

6.2.3.2 Messages exchanged 85

6.2.3.3 Implementation 86

iii

6.3 Advanced issues . 88
6.3.1 Quality of Service 89

6.3.1.1 Transport QoS 90
6.3.1.2 Streaming QoS 90

6.3.2 Firewalls and NAT 91
6.3.2.1 The peer 91
6.3.2.2 The proxy 93
6.3.2.3 Proxying streams 93

6.3.3 Bridging topologies 93
6.3.4 Different topologies, same network 95
6.3.5 Connection-oriented vs. connectionless communication 97

6.4 Testing 99
6.5 Omnix in a pervasive environment 103

6.5.1 Supporting J2ME 104

7 Applications using Omnix 106
7.1 Simplix - a P2P Service Engine 106
7.2 Donare - a hybrid P2P file sharing application 109
7.3 An experimental study 110

8 Evaluating Omnix 113
8.1 The role of Omnix in the P2P area 113
8.2 Meeting the criteria . . 114

8.2.1 Platform independence 115
8.2.2 Small footprint 116
8.2.3 Topology-independence 117

8.2.3.1 Changing topologies 120
8.2.4 Openness 123
8.2.5 Testing 124
8.2.6 What cannot be evaluated? 124

8.3 Comparison to other middleware systems 126
8.3.1 Mobile agents 126
8.3.2 Overlay networks 127
8.3.3 Peer-to-Peer middleware 128
8.3.4 Overview of middleware comparison 134

9 Conclusion and Future Work 138
9.1 Analysis of this Dissertation 139
9.2 Ongoing and Future Work 140
9.3 Concluding Remarks . 141

A Protocol Statuscodes 143

B Message Syntax in Augmented Backus-Naur Form 145

Bibliography 147

IV

List of Figures

2.1 P2P topology classes . . 15

4.1 The layered, modular architecture of Omnix 39

4.2 Walk-through of sending a message in Omnix 41

4.3 Walk-through of sending a message in Omnix 42

4.4 Support for heterogeneous devices and protocols 43

4.5 The Transport module interface 44

4.6 Sequence of actions in the Communication Layer. 45

4.7 Omnix-Core dispatching between Processing Layer and transport modules. 46

4.8 Example of processing modules in the message pipelines 48

4.9 The Processing module interface 48

4.10 Processing Messages in the message pipelines 49

4.11 TheOmnixAPI. . . 52

4.12 The StreamManager interface 56

4.13 The StreamReceptor interface 56

4.14 The StreamControl interface 57

4.15 The StreamRequestor interface 57

4.16 The StreamProvider interface 58

4.17 Opening a stream as a server. 59

4.18 Opening a stream as a client 60

5.1 Examples of message flows in Omnix 64

5.2 The general structure of Omnix messages 65

5.3 The request line structure 65

5.4 An example for a request line 65

5.5 The response line structure 66

5.6 An example for a response line 66

5.7 Structure of a header line 66

5.8 Example of header lines in a Omnix message 67

6.1 The Transport module interface 73

6.2 Initializing a transport module 74

6.3 Sending a message in the UDP transport module 74

6.4 Receiving a message in the UDP transport module 75

6.5 Starting and stopping the UDP transport module 75

6.6 The processing module abstract class 76

6.7 The Loopback module 77

6.8 Network interface of topology modules 78

6.9 Excerpt from the Module interface 79

6.10 NetworkModule interface of topology modules 79

6.11 The nimble group P2P topology 80

6.12 Injecting service descriptions in a Nimble group 82

6.13 Searching within a Nimble group 82

6.14 Receiving search results within a Nimble group 83

6.15 Receiving search requests within a Nimble group 84

6.16 The wild mesh P2P topology 85

6.17 Sending search requests to connected peers in a wild mesh network 87

6.18 Processing a search request in the wild mesh topology module 88

6.19 Receiving search results within a wild mesh topology module 89

6.20 Rerouting requests to a proxy 92

6.21 Mixing topologies in a single P2P network 96

6.22 Opening a socket in the transport module (J2SE vs. J2ME) 105

6.23 Omnix running on a J2ME device emulator. 105

7.1 Simplix architecture 107

7.2 Example of categories in Simplix 107

7.3 Web-Interface of the Simplix application 108

7.4 Donare architecture 109

8.1 The JXTA architecture 131

VI

List of Tables

3.1 Comparison of P2P topologies 37

6.1 Routing example in Simix 102

7.1 The testbed for testing the reference implementation 110

7.2 Performance of Omnix in a server-based P2P topology I l l

7.3 Performance of Omnix in a Nimble group I l l

7.4 Performance measures of JXTA I l l

8.1 Comparison of P2P topologies 1/2 136

8.2 Comparison of P2P topologies 1/2 137

A.I Protocol status codes 144

vu

Chapter 1

Introduction

One might believe P2P systems are mainly used for illegal music-swapping and
little else, but this would be a rather hasty conclusion.
Hari Balakrishnan et al. [1]

With the ongoing advancements in the computing area, the number of different comput-
ing devices dramatically increased. While there were, back in the old days, only a couple
of big mainframe machines around the world1, nowadays millions of PCs and laptops are
sold every year. Processing power has also found its way into many more devices, among
them handhelds, mobile phones, embedded devices and sensors, thus creating a vast, hetero-
geneous environment of different devices connected together.

With the increasing computing power in every device, the traditional client-server archi-
tecture, where clients with less capabilities connect to a central server, no longer suffices. The
sheer number of these devices, their heterogeneity and the increasing connectivity among
them calls for another communication paradigm where the communication is brought to the
edges of the network, away from the servers (i.e., so-called hot spots) that can no longer cope
with the increasing requirements. The Peer-to-Peer (P2P) approach is taking this direction.
The main advantages of P2P are, among others, increased robustness, fault-tolerance, and
scalability.

In many application domains, P2P can be used as the underlying communication plat-
form. Section 2.2.2 lists some of these use cases, shows how P2P is used to enhance them
and gives examples of existing systems. There already exist some P2P middleware systems
that support developers using P2P communication in their applications. Examples of such
P2P middleware systems are JXTA [2], Pastry [3], Groove [4], or BASE [5].

Most of these systems fail to provide full versatility in respect to the application domain
where they can be used. This is due to the fact that they are not able to employ arbitrary
P2P network topologies. The topology of a P2P network influences many aspects of a P2P
network. It (among other things) 1) defines how peers are connected, 2) how messages are
routed in the network, 3) influences the scalability and stability of a system, and 4) possibly
sets limits to the search functionality. Hence, for a P2P middleware, it is crucial to be able to
adapt the P2P topology to the needs of the application on top of it [6].

'"The number of Unix installations has grown to 10, with more expected.", The Unix Programmer's Manual,
2nd Edition, June 1972

1

CHAPTER 1. MTRODUCTION 2

What is also missing in most existing P2P middleware systems is the support for het-
erogeneous devices. The reason for this shortcoming is that they do not provide a clear
separation between those parts that are responsible for accessing the network primitives pro-
vided by the operating system or the virtual machine and the remainder of the middleware
system. Therefore, it is impossible to use the systems on other networks or operating systems
without adapting the middleware system as a whole.

What we see is a lack of standardization in the P2P area. This is analog to the prob-
lems experienced in distributed systems in the mid-1970's. At that time, various protocol
suites like the system network architecture (SNA) by IBM or the protocols designed by the
ARPANET existed, with no interoperability between them. To mitigate this problem, in 1977
the British Standards Institute put forth the idea for a common standard for communication
infrastructures. As a consequence, the International Organization for Standardization (ISO)
created the 7-layer OSI model2 and made it standard in 1979. This standard, which helped
to provide interoperability between different protocols and made the protocols independent
from the underlying devices, is clearly missing in the P2P area.

The main advantages of using a layered model such as the ISO OSI model are:

• Layering helps to identify and understand separate pieces of a complex system.

• The communication between different systems do not require changes to the underly-
ing hardware or software.

• Maintenance and updating is easier due to modularization.

The disadvantage of layering is the complex data exchange between the adjacent layers.

1.1 Problem description in a nutshell

Peer-to-Peer middleware systems provide services by creating an
overlay network on existing networks. Existing systems do not
employ a layered structure (e.g., as the ISO OSI model) for this
network or do not fully cover the lower layers. Hence, they do
not allow to replace transparently 1) the underlying network or
device, 2) the protocols used, or 3) the topology (i.e., routing) of
the overlay network.

2The American National Standards Institute (ANSI) proposed this model, which has been originally de-
signed by a group at Honeywell Information Systems in 1977 under the name Distributed Systems Architecture
(DSA).

CHAPTER 1. INTRODUCTION 3

1.2 Omnix

To provide a common ground for existing and new P2P applications, we propose an open P2P
middleware system design that, like the OSI model, helps to cover a wide range of protocols
and devices and does not impose any restriction on the application on top of it. This is, by
all means, not an easy task as it may sound because the right balance between technological
beauty and usability is crucial for a middleware system (as for any other system). What does
it help to have a technologically perfect design solution, when it is not feasible that it will
ever be implemented?3 For example, it must not be the case that the system gets so complex
that it can no longer run on less capable devices such as a handheld computer. For these
reasons, we do not intend to apply the ISO OSI model as a whole on P2P but to identify a
system design that provides best flexibility while still being useful.

In this dissertation, we take the first step and propose a P2P middleware system design-
Omnix-that provides a separation of and clear interfaces between the networking primitives
provided by the device (or operating system, virtual machine, communication libraries, etc.),
the routing algorithm and the application.

Omnix provides a consistent API to the application layer that has been crafted to cover
most of the functionality of existing and conceived P2P systems. Chapter 8 discusses to
which P2P topologies the API can be applied and where shortcomings exist. In addition,
various existing components (e.g., delivery guarantee mechanisms or security) can be easily
extended and support the creation of P2P services without the exigence of building the P2P
system from scratch.

1.3 The Program Committee Scenario

This section shows an example usage scenario for the Omnix P2P middleware platform.
It shows how Omnix can be used by applications that require a communication platform.
Furthermore, it exemplifies how Omnix helps to reduce the time an application programmer
needs to changé from one P2P topology to another (and why this would be necessary) and
how to enable P2P applications to run on different devices, always using the same code.

1.3.1 The Setting

A program committee of an international conference is meeting at the Vienna University
of Technology. The purpose of the meeting is to discuss submitted papers and to agree
on which of these papers to accept. Before this meeting, the submitted papers have been
distributed among the committee members for reviewing. Each paper has been assigned to
2-3 people, taking into account their area of interest and research. Depending on the number
of submissions, each reviewer got 10-20 papers for reviewing.

The meeting starts in the morning. Every committee members brings her assigned pa-
pers (as PDF files) and the corresponding reviews to the meeting. After they have told the

3As an example: in the IP network, most protocols (e.g., SMTP, HTTP) do not have an interface between
the Session layer and the Presentation layer, simply because it would increase complexity.

CHAPTER 1. INTRODUCTION 4

secretary how they like their coffee, the committee members start the meeting by looking at
the first submitted paper scheduled for this morning session.

One of the assigned reviewers of the paper gives a short overview of the paper. She talks
about the problem definition, the proposed solution and the soundness of the paper. The other
reviewers of this paper add some comments where appropriate. After this short introduction,
the program committee decides whether the paper should be accepted or not. They follow
the suggestion of the three reviewers and accept the paper.

This process is repeated with the other papers scheduled for this morning.

1.3.2 Computer Support for the Review Process

There are a lot of ways how computers and a network of computers can help to streamline
the review process and to support the committee members in their decision to accept or to
reject a paper.

In this scenario, I want to concentrate on the papers assigned to the reviewers, the cor-
responding reviews and the decision making process of whether a paper gets accepted or
not.

Since each paper is only assigned to 2 or 3 reviewers, the other committee members see
the paper for the first time at this meeting. Before they decide in favor or against the pa-
per, they might want to have a look at it or want to have a glance at the reviews of the three
reviewers. Without computers, each paper must be copied as many times as committee mem-
bers are involved. This is also true for the 2-3 reviews available for each of the submitted
papers. This would not only create tremendous work for the person responsible for making
the copies but would also be a waste of paper.

It would be easier to collect all papers and their reviews electronically on a central server.
Hence, before the meeting starts, the reviewers upload their reviews to the central server. The
participants of the meeting then can easily access the paper currently discussed. Furthermore,
the person could also access the reviews for the submission in question and have a look at it.

A computer program could also help the process of deciding in favor of or against a
submission. If all committee members have a program where they can vote for or against the
paper, the results could be collected and interpreted at a server.

1.3.3 Using Omnix in the Meeting

One the program committee members is Alice4 When she arrives at the meeting in the morn-
ing, she downloads the software onto her laptop. The software is implemented in Java and
uses the Omnix middleware (not that she is quite interested in this fact).

When she first runs the software, she is asked for her name and the password (which has
been issued when she arrived at the meeting). The software checks whether the username
and password are correct by connecting to the server, which has been installed for this meet-
ing only. After that, she has to specify the location of the PDF files she was supposed to
review and also to provide the reviews. The software automatically uploads the PDF files

4She seems to be very popular as she appears in many example scenarios.

CHAPTER 1. INTRODUCTION 5

and the reviews to the central server. From this point on, the other committee members can
access the papers and the reviews.

What was the role of Omnix so far in this scenario?

The software that Alice started in the morning is an application that uses the Omnix P2P
middleware. Omnix is configured to use a topology module that requires a central server.
At the time when Alice provides a username and a password, the application uses Omnix to
request the server to authenticate the given credentials. After that, the application asks Alice
to upload the assigned PDF files and the appendant reviews. Again, the application uses the
topology module of Omnix to send the files to the central server.

The process of deciding whether a submitted paper gets accepted or not is also supported
by the application. Alice presses a button to indicate a "aye" or "nay". The software sends
this decision to the server which holds this information for the applications of the other
participants. The chairperson can collect this information and present the outcome of the
voting.

1.3.4 A Second Meeting

Unfortunately, the meeting took longer than anticipated. Only two thirds of all papers have
been processed. To make things worse, a social event (visiting a "Heurigen") is scheduled in
the afternoon. The committee members decide to proceed with the meeting at the restaurant.
For this purpose, they put all files and information on their (network-enabled) iPAQs and
Palm computers.

It is clear, that they will not have access to the server installed at the University. Hence,
they have to cope without a central server and switch to a another form of group collabora-
tion. It is not feasible to change the software in this short amount of time. Therefore, they
decide to stick to the same software.

Omnix allows this because it does not require a central server. By using another topology
module, the do no longer need a central server but communicate directly with each other. The
local technician provides a new topology module for download at the web server.

While, at the University, the reviewers upload the PDFs and the corresponding reviews
to the server, they keep these files on their local machines and share them with the other
participants at the restaurant. Searching for a PDF file or a review is done the same way.
The difference is that the topology module does not send the search request to the server but
sends it to the other devices in the vicinity. Instead of downloading the files from a server,
they download the PDFs and reviews directly from the reviewers' devices.

The voting is done the same way. Instead of sending the verdict to a single address,
the decision whether a paper gets accepted or not is sent to all participants, including the
chairperson who gets the results from all participants and is then able to make a conclusion.

But there is an problem. Alice uses a Palm handheld computer which has a Java version
that is not fully compatible with the Java 2 Standard Edition (i.e., it uses network access
libraries that differ from the Standard Edition). Hence, before the group leaves the Univer-
sity, she quickly downloads a plugin for the Omnix middleware that allows to use the Java
network primitives provided by the Palm handheld device. The decoupling from the applica-

CHAPTER 1. INTRODUCTION 6

tion and the topology in use makes this simple replacement of the underlying transport layer
feasible.

As a result, the committee meeting can proceed at the Heurigen without any problems.

1.3.5 Alternatives

It would be, of course, possible to use another P2P middleware. The most widely used
middleware is JXTA. It also provides P2P primitives like sending messages and to search for
meta-information in the P2P network.

The application described above would be different in the way that the two scenarios
described above would have to be implemented separately by the application programmer.
Since the application is only supposed to be used at the University where a central server
is available, it is possible (or maybe even likely) that the application programmer did not
consider to cover the aspect that the central server is not available. It is more likely that the
programmer provides a backup server in case the server crashes.

Furthermore, JXTA does not run on small devices (with some limited exceptions; more
on JXTA in Section 8.3.3). This may not be a major restriction, but it means that the software
using JXTA cannot run on anything like a normal PDA or a mobile phone.

1.4 Contributions

The aim of this thesis is to create an open P2P middleware framework that can be used in
conjunction with various devices, network protocols and P2P topologies. Existing P2P mid-
dleware systems are either very heavy-weight and complex or not open for other networks or
P2P topologies. Our objective is to create a layered P2P middleware system that represents
a compromise between flexibility and complexity.

Reference for application developers

To show the need for an open P2P middleware, we perform a study of classes of P2P
topologies. With the help of several evaluation criteria, we explore how the topology in-
fluences several aspects of a P2P system. The conclusion from this evaluation is that a
P2P middleware, if it should be usable for arbitrary applications and use cases, devices and
networks, must not use a fixed P2P topology. This study is also a work of reference for
application programmers who have to choose the best fitting P2P topology for their purpose.

Identifying the requirements and a design for an open P2P system

Based on this evaluation, we identify five fundamental requirements for an open P2P
middleware system: platform independence, small footprint, topology-independence, open-
ness, and support for testing the application by simulating a P2P network. To the best of our
knowledge, there exists no P2P middleware system that fully covers all these requirements.
For this reason, we devise an architecture of a P2P middleware system {Omnix) that meets

CHAPTER 1. INTRODUCTION 7

all of the aforementioned requirements by using layers. The layered structure of Omnix al-
lows to replace single layers without affecting the rest of the system. The Omnix API allows
applications using this middleware to access the services of the lower layers independently
of the topology in use.

Designing an adequate open P2P protocol

Furthermore, we identify important requirements for an open P2P protocol (among them:
low network usage, topology independence, reliability, transport protocol independence, and
support for multiple hops) and present a protocol that fulfills these requirements. The Omnix
reference protocol uses a light structure that requires very low costs for parsing, processing
and generating of messages.

Covering a wide range of devices

This thesis further contributes a Java implementation of the P2P middleware architecture,
which is able to run on heterogeneous devices (e.g., mobile phones, handhelds, or PCs),
thus enabling many pervasive computing scenarios that are not possible with existing P2P
middleware systems. Omnix is the first initial step in allowing the creation of flexible P2P
applications that are platform and topology-independent.

1.5 Stakeholders

There are three roles that might have a strong interest in the Omnix P2P middleware system.

• Application programmers. The Omnix P2P middleware system is targeted at being
used by application programmers who need a P2P infrastructure for the communi-
cation between program instances. Its versatility makes it possible to use Omnix in
various contexts (e.g., groupware applications, file sharing, meta-data search, gaming,
etc.).

• System contributors. Since Omnix provides an abstraction between the middleware
framework and the topology of the P2P network, it is possible for third parties to
provide so-called topology plugins. If, for example, a P2P topology can be applied to
more than one use case, it may given (or sold) to other application programmers.

• System administrators. Once a P2P system using Omnix is deployed, a system admin-
istrator is responsible for maintaining the network. Various tasks like the replacement
of topology plugins (if necessary) or the setup of proxy peers (see Section 6.3) are then
part of the system administrator's task.

1.6 Structure of this Thesis

The remainder of this dissertation is structured as follows.

CHAPTER 1. INTRODUCTION 8

Chapter 2 presents the concepts and technologies used in this dissertation. It includes
an introduction to P2P networks, defines the terminology and points out where P2P systems
may be used as a communication platform.

Chapter 3 covers the related work in respect to existing P2P networks. It discusses the
various topologies of P2P networks currently available and conceived. In this chapter, eval-
uation criteria are defined and applied on these topologies.

Chapter 4 describes the architecture of Omnix. It first details the advantages of this
architecture over other approaches considered in the design phase of Omnix. Furthermore, it
delves into advanced issues like firewalls and NAT, proxying, changing topologies, bridging
between topologies, etc.

Chapter 5 defines the requirements for a protocol and introduces the reference protocol
for the Omnix middleware framework.

Chapter 6 focuses on a reference implementation of Omnix. It emphasizes the versatility
of the Omnix architecture by showing implementations for PCs, handheld computers and
mobile phones. It details how a certain level of security is achieved and presents ways of
testing and running applications using the Omnix P2P framework.

Chapter 7 gives an overview of applications using Omnix as the underlying P2P com-
munication infrastructure. These applications include a file sharing application, a generic
service engine and an experimental study providing some performance measures.

Chapter 8 evaluates the Omnix architecture in respect to other P2P middleware systems
and the lessons learned from developing P2P applications on top of Omnix.

Chapter 9 concludes this dissertations by summarizing the essential contributions of this
thesis. In addition, potential directions for further research are discussed.

Chapter 2

Concepts & Technologies

I can see peer-to-peer computing being made the flavor of the day by the wireless
community and working its way back into mainstream data processing.
Simon Phipps, Chief Technology Evangelist at Sun Microsystems, Inc. [7]

2.1 Various definitions of "Peer-to-Peer"

Especially when it comes to P2P different opinions about what this term comprises exist.
The most common definition of this "buzzword" reads, "A network of nodes that can act as
server and client at the same time". Well, most people working in this field would agree that
this is statement is not wrong. The problem is, that this definition is not complete. It leads to
questions like, "Is a network relying on a central server like Napster P2P?".

Clay Shirky [8] defines P2P as a way of accessing decentralized resources at the edges of
the Internet with unreliable connectivity and dynamic IP addresses. Further, P2P must be in-
dependent of the DNS (Domain Name System [9]) and must have no significant dependence
on central servers. The first part of this definition resembles the initial definition above. The
reason why a P2P network should be ready for unreliable connectivity and changing IP ad-
dresses is obvious: many P2P users are using modem connections what leads to very slow
and brief connections. Furthermore, whenever a user makes a dial-in connection he/she gets
probably another IP address. This means that the P2P system should not expect a node (or
peer) to be available at the same address at all time. Dial-in connections also sometimes
do not have a DNS name and can therefore only be addressed by their IP address. This is
the reason why Peer-to-Peer systems should not rely on the DNS. The part of the definition
above that sometimes gets overlooked is the independence of a central server. Napster, the
best example for a system that got the P2P name tag, relies on a central server.

One might argue whether P2P must not make use of a central service. It would help
reliability and scalability (among other crucial requirements for distributed systems) a lot
but the reason for Napster's success was not its technological beauty, but the fact that it
worked. Users did not complain about Napster using a central server. On the contrary, it is
very hard, still not impossible, to deliver the same service Napster offered by using a server-
less solution. A more detailed comparison of such P2P systems is given in section 3.1.

The peer-to-peer working group [10] defines P2P as follows: P2P is the sharing of com-

CHAPTER 2. CONCEPTS & TECHNOLOGIES 10

puter resources and services by direct exchange between systems. Peers can act as servers
and clients, assuming whatever role is most efficient for the network. This part of the defini-
tion makes it almost impossible to match it with the definition of Shirky [8]. That some peers
act as server and some as client is nothing special and is reality in today's P2P systems. The
problem is the requirement that the peer assumes the role that allows the network to be most
efficient. It is questionable whether this is possible without a central server coordinating the
peers and the communication flow between these peers. Anyway, the definition does not
prohibit the usage of central servers. Nevertheless is this definition particularly interesting
because it does not only include the direct exchange between systems (as any other P2P def-
inition) but also includes the goal to make the use of network bandwidth most efficient. This
aspect might become important when P2P systems are used in a closed domain like within a
company network (referred to as Enterprise P2P).

By the definition of webopedia.com [11], P2P is a type of network in which each work-
station has equivalent capabilities and responsibilities. The first part of the definition is not
always true. P2P systems have to take into account that some peers have less capabilities
than others (e.g., bandwidth, processing power, storage space, etc.). If the first part only
refers to the software, it is also not fully correct. Peers do not necessarily have to be equal.
There are P2P systems imaginable where different types of devices have different P2P soft-
ware running, tailored to the capabilities of the device (e.g., a mobile phone maybe does not
provide services, but only accesses services of the network). The second part is also mis-
leading. While in simple P2P networks like Gnutella all peers have the same responsibility
(i.e., forwarding and processing search requests), in newer P2P systems, depending on the
capabilities, selected peers take more responsibilities than others. They provide, for exam-
ple, information about other peers to improve search performance or scalability. Examples
for such systems are some distributed hashtables and the FastTrack network.

Another definition, which is used in this document, reads as follows, "Peer-to-Peer is the
exchange of information between systems that can act as clients and servers. These peers
should be able to work without a central server but should also be ready to make use of such
a server if it is necessary to fulfill its tasks, adds to the efficiency of the system or is more
convenient for the user. A P2P system should not rely on static IP addresses and reliable
network connectivity." It is also possible to reverse the definition and state that a server-
based peer-to-peer network should also be able to function even when the central server is
not reachable. The aim of this definition is to stress that a server-less P2P system have some
disadvantages and should therefore not refuse acceptance of a server just for the sake of it.

2.2 Peer-to-Peer: An old new idea

2.2.1 Evolution of computing

During the history of computers several evolutionary steps occurred. Back in the (not so)
old days, computers were once thought of as big, monolithic machines. Limited to small
numbers, these mainframe computers were housed in big rooms and operated by skilled
technicians.

The growing number of computers, their reduction in size, and the increasing connectiv-

CHAPTER 2. CONCEPTS & TECHNOLOGIES 11

ity among them made place for the client-server paradigm. Servers provided information and
processing power to multiple client computers. Different approaches of how much work is
shifted from the server to the client exist. The simplicity of this model made it very popular
and is one of the reasons why the client-server paradigm is still widely used on the Internet.

The next trend was the so-called three-tier architecture. In this model, the work is parti-
tioned into three parts: 1) the presentation, which is responsible for displaying information
2) the processing of the data, and 3) back-end services such as databases. Each of these parts
could run on different machines, providing increased flexibility and scalability.

The increasing processing power of modern computers, the huge number of computers
connected to the Internet, and the fact that computing capability has moved into almost every
device imaginable gave rise to the next big evolution in networked computing, the Peer-to-
Peer (P2P) paradigm.

In P2P computing, the client/server paradigm is replaced by a model where every com-
puter is both a server and a client. This has the effect that information is no longer concen-
trated on central servers (so-called "hot spots") but provided by each computer (i.e. "peer"),
utilizing the full bandwidth of the Internet. The idea behind P2P is to bring the communica-
tion to the edges of the network because using centralized hot spots are no longer scalable
due to the increasing size of information provided these days. Furthermore, the usage of
the currently underutilized processing power of the computers connected to the Internet is
also made possible with P2P model (a remarkable example is Seti@HOME [12]). Main ad-
vantages of P2P are the the robustness of the network, the fault tolerance and the combined
performance.

The exchanging of files over the Internet has shown the vast potential of P2P systems.
But there is more to P2P than just sharing music and video files over the Internet.

2.2.2 Some application domains of P2P applications

More and more companies and scientific researchers are now searching for new ways of
applying P2P technology on known problems. For most of these problems, traditional client-
server solutions exist and are in use.

There are two reasons for what seems to be like reinventing the wheel again. The first
one is the fact that some problems can be solved better by using P2P. Compared to the client-
server paradigm, P2P offers more robustness, fault-tolerance, scalability, processing power,
bandwidth, etc. Hence, in certain use cases, P2P is superior to the client-server model.

The second reason is the hype around P2P file sharing systems. In this "gold rush",
people are now trying to apply the same technology on everything else, whether it makes
sense or not ' .

There are many application domains where P2P systems are in use:

Instant messaging A convenient way of communicating with a small group of selected peo-
ple (e.g., friends, family members, etc.). Usually, a central server is used to store user
profiles and to have a list of registered users. While communication takes place bet-
ween the peers, searching for other people is done using the server. One of the reasons

'Or, worse, some systems are named P2P although they are not

CHAPTER 2. CONCEPTS & TECHNOLOGIES 12

why a server is needed is the ability to send messages to other persons (i.e., peers).
If the target peer is not online, the system has to store the message until the target
peers becomes online again. This would be, of course, also possible with a server-less
P2P system, but the price would be an increased complexity and a certain probabil-
ity of messages getting lost. Examples for such systems are Napster [13], ICQ [14],
threedegrees [15], and Jabber [16].

File exchange There is little dispute about the usefulness of P2P file sharing applications.
While downloading files is always done directly between peers (or via a proxy peer
to enable anonymity), the way of searching for these files differs in many P2P appli-
cations. Some use central servers (e.g., Napster) while others send search requests
directly to other peers (e.g., Gnutella [17], Freenet [18], and FastTrack [19]).

Collaboration Collaboration is not a typical example for the usefulness of P2P technology.
It is about having people having the same view or different views on shared infor-
mation. This would typically call for a server storing this information. This way, the
information is available to all members without the necessity of having the information
provider or contributor online or the data distributed to all other participants. But there
are use cases where P2P technology comes in handy. One example could be ad hoc
collaboration of devices in an environment where no connection to a server exist (e.g.,
people are meeting in a place where no connection to the Internet is available). In this
scenario, people would communicate (and collaborate) in a server-less P2P manner.
One perfect example for this use case is Groove [20]. It uses a server to store shared
information but is also able to provide collaboration services without the existence of
such a server.

MIPS sharing One of the major assets of the Internet is its combined processing power,
which is currently vastly under-utilized. To utilize these resources, user are asked to
download and install programs that are able to do a small part of a complex computa-
tion while the computer is not used (e.g., while the screen saver is running). Examples
for MIPS sharing systems are Seti@HOME [12] and Genome@HOME [21]. In this
category of P2P applications, the social aspect is very important. Were it not for the
search for extraterrestrial life or cancer research, not many people would be willing to
share their processing power (hence, there must an incentive for users to share com-
puter resources, be it money, public well-fare or the like). Furthermore, this type of
P2P application can only function with a central server that is coordinating the distri-
bution of computation tasks and the validation of the results.

Lookup services Most of the scientific P2P research is done in the area of lookup services.
This is not very surprising because searching is one of the major challenges in P2P
networks. Most of the P2P systems that are optimized for lookup services are using
distributed hashtables (DHT), which are capable of searching with logarithmic com-
plexity. The drawback of most of these systems is the fact that they are only able to
search for numbers (in case they are searching for strings, they are searching for nu-
merical representations of these strings). Examples for such systems are PAST [22],
Chord [23], and P-Grid [24].

CHAPTER 2. CONCEPTS & TECHNOLOGIES 13

Mobile ad hoc communication Ad hoc communication, especially when it is done among
mobile devices (i.e., the devices are connected directly via a wireless communication
link), is the best example for the usefulness of the P2P paradigm. Devices connect
to each other in an ad hoc manner. Due to the limited communication capabilities of
mobile devices (such as mobile phones or handheld devices), frequent disconnections
may occur. When mobile devices are connected together, there is no guarantee that a
central server may be available. Hence, ad hoc mobile communication must not rely on
the existence of such a server. All these characteristics also apply to the P2P paradigm.
There exists only a small number of P2P systems that can be used in conjunction with
small devices, among them GnuNet [25] and JXME [26] (JXTA for J2ME - the Java 2
Mobile Environment).

Content Distribution P2P can also be used for the distribution of information or files
(sometimes called ESD - electronic software distribution). Instead of having a central
source that emits files to the destination computers directly, a P2P network may dis-
seminate files while avoiding hot spots in the network. The load (i.e., the bandwidth,
CPU power, throughput, etc.) is distributed over the whole network. This concept is
successfully used, for example, by Intel where software is distributed to international
branches in a P2P style. This system can be compared to a push system. The advantage
is that there is no need for a fixed environment of push server and proxies.

Middleware The most demanding use case for a P2P system is its use as a middleware
platform. P2P middleware systems provide services such as distributed search or peer
discovery to higher-level applications. As will be discussed in Chapter 3, different
kind of P2P systems have a limited set of application domains. Depending on the
structure (or topology) of the P2P network, various use cases may become feasible or
impossible. If a P2P system is needed as a middleware, the use case turns the balance
which P2P system best fits the requirements. Only a few P2P systems may be used as
a P2P middleware platform. Among those are JXTA [27] and Omnix.

Fora comprehensive list of P2P applications, see [28].

Schoder et al. [29] identifies the following challenges in the P2P area (among others):
1) Network control (the size and structure of a P2P network can not be predicted exactly),
2) Security, especially if the whole Internet community is allowed to access the information
and services a peer is providing, 3) Interoperability (how to connect two or more proprietary
P2P networks) and 4) Metadata (how to describe the information and services shared in the
network and how to search these descriptions). In addition, several other challenges exist
such as the bypassing of firewalls and NAT configurations.

Although the P2P paradigm will have a great potential in the future, in many cases it is
more advisable to apply the client-server paradigm for the sake of performance, security, or
simplicity.

2.2.3 Historical P2P systems

The idea of having independent computers connected with each other without the use of a
central organizational unit is not new. One of the best known examples is the Usenet, which

CHAPTER 2. CONCEPTS & TECHNOLOGIES 14

dates back to 1979. Two students from the Duke University of North Carolina, Tom Truscott
and Jim Ellis, had the idea of connecting two computers to exchange information with the
Unix community. The result is the today's Usenet network. It is a collection of independent
computers exchanging chat messages without any central authority.

In 1982, the Corvus Omninet was developed. It had been used to share the expensive
harddisks with other computers. There was no central authority to accomplish this.

Another example is the FidoNet (created by Tom Jennings in 1984), which - like Usenet
- is used for exchanging messages in a decentralized way. The reduction of modem (or
telephone) time was the idea behind this system. In 1992, 30,000 nodes in the Fidonet were
approximated.

One of the biggest example of P2P networks is the IP network itself. In 1962, the U.S.
Air Force asked the RAND Corporation to analyze how it could keep control over its forces
after a nuclear attack. The result was a completely decentralized, fault-tolerant and robust
network of nodes, the so-called ARPANET, the predecessor of the Internet.

All these systems experienced the same problems as the P2P systems developed in the
recent years (i.e., scalability, security, fault-tolerance, etc.). Hence, it makes sense to look at
these "old" systems and learn from them.

2.2.4 The context has changed

Experienced computer scientists smile when they look at the hype around P2P. For them, the
idea is not all that new. Having computers connected directly without a central administrative
authority is not new and has been implemented in various computer networks, among them
the IP network.

But there is one major difference that changes a lot: connectivity.

To illustrate this, a few examples are in order. The Usenet, for example, is often labeled
as a P2P network, but it is a network of servers, set up and maintained by a (relatively) small
number of system administrators. The millions of people using the Usenet are clients that
connect to one of these servers. Without these servers, nobody would be able to exchange
messages in the Usenet (because it would not scale). The Internet's mail system is also a
kind of a P2P network. Mail transfer agents (MTA) can connect directly to each other for
exchanging mails. Again, in this case the peers are professionally maintained servers for
many people who connect to these mail servers. The communication pattern between the
people and the MTAs is client/server. The IP network itself is also considered as a classical
P2P network. But even in this case, some differences exist. The peers (i.e., the endpoints
of the IP network) are using the services of fixed, central servers (such as routers, gateways,
etc.) for the communication. They do not support the communication of other peers nor do
they have any effect on the structure of the network. Furthermore, if a new endpoint is added
to the network, this is usually done manually (e.g., by changing the routing tables; although
this does not apply to dial-in clients of ISPs, of course).

All these examples do not fully apply to the idea of the "modern" server-less P2P
paradigm, but there are a lot of similarities. In the server-less P2P paradigm, only peers
exist, without any supportive infrastructure (with one exception: the network, of course) nor
central services (e.g., DNS). There is no other authority that decides how peers are connected

CHAPTER 2. CONCEPTS & TECHNOLOGIES 15

(a) Wild mesh (b) Structured P2P (c) Server-based P2P

(d) Hybrid P2P

Figure 2.1: P2P topology classes

or how communication should flow between peers. The network is defined and maintained
by the peers themselves. Millions (maybe soon billions) of peers are connected directly.
The problems like naming, discovery, security, etc., that have been solved before for the
client/server model now have to be considered again and existing solutions re-evaluated.

2.3 Topologies

P2P systems can be differentiated by their use of a central server, but there exists no clear
separating line. Different hybrid models exist that make it impossible to categorize them only
into server-less vs. server-oriented P2P networks. This sections provides an overview over
these topologies and shows some general advantages and drawbacks that all P2P systems
have in common. The term topology refers only to the structure of the overlaying P2P
network, not the IP network beneath. It comprises peers and the connections between these
peers, which may be directed and have different weights: it can be compared to a graph with
nodes and vertices connecting these nodes. Defining how these nodes are connected affects
many properties of P2P networks, as the following sections will show. A more detailed
discussion of the properties of P2P networks is given in section 3.1. Note that the terms
"Pure P2P" and "Hybrid P2P" are not used in the same way as in other literature (e.g. Yang
et al. [30]). A more fine-grained definition is used to show the differences between the
respective P2P systems more clearly.

2.3.1 PureP2P

A pure P2P system is a network of nodes that do not depend on a central server. Peers
are directly interconnected and send search messages to their neighbors. In some P2P net-
works each peer receiving a search request searches its local database, returns the result and
in parallel forwards the search request to one, some or all of its neighbors (depending on

CHAPTER 2. CONCEPTS & TECHNOLOGIES 16

the protocol). Since there is no central organizational unit, the peers have to maintain the
topology and connectivity by themselves.

The advantage of pure P2P systems is the fact that there is no single point of failure
(i.e. central server) which results in an enhanced survivability of the P2P network. One
disadvantage of a fully distributed P2P network with no central authority is the disability of
updating the system thoroughly. It is possible to build the protocol and the software in a
way that allows central-server-driven updates but there is currently no P2P system in use that
exhibits this ability. The most important problem of pure P2P systems is the bootstrapping
process. When the P2P software is first started on a machine, at least one peer of the overall
system must be known in order to be able to connect to the network. In most cases, this
is usually done by providing a fixed, well-known server that serves a list of some of the
P2P peers. Another possibility would be to employ connections to random IP addresses in
certain address ranges that provide acceptable probabilities. But this solution is regarded
as very unfriendly and therefore only a last resort. A P2P system that contacts a central
server only once for obtaining a list of other peers can still be regarded as a pure P2P system
because further interaction with the server is not necessary.

In pure P2P networks, two schools of thoughts exist. The first one (of which Gnutella is
an example) is very minimalistic but provides high flexibility. The other optimizes perfor-
mance while, in turn, the search functionality is limited. Here, both variants will be taken
for evaluation.

"Wild Mesh"

The wild mesh-style P2P model (Figure 2.1a) is very simple. Each node holds an arbi-
trary amount of connections to other nodes. Incoming search requests are processed locally
and, in parallel, sent to the connected nodes until the TTL (time-to-live) is reached. The con-
nections are chosen on a random basis. A node does not have a specific place in the network
where it belongs to.

The topology is flat, there exists no hierarchy (if connection preferencing is not consid-
ered). Evaluating such P2P models is very hard due to its indeterministic connection states.
Still, there exist some evaluations of the Gnutella (a perfect representative for the wild mesh
P2P) network (among others [31], [32], [33], [34]). One output is that the network tends to
build clusters. Clusters have a high degree of connectivity within, but only a few connections
to other clusters.

Some of the information presented here about wild mesh P2P networks is based on lit-
erature about Gnutella, since Gnutella is a wild mesh P2P network par excellence and only
little information on wild mesh P2P networks in general is available.

Structured P2P

At the other end of the spectrum of pure P2P networks are those systems that do routing
based on the content that is provided (e.g. [22], [23], [35], [36], [37], [38]). Günther [39]
gives an overview on how this topology could be related to Gnutella. Typically, peers work
together like a big distributed hashtable (Figure 2.1b). A function is used to compute a
number based on the content (or the description of the content). This hash number is then
used as an identification number in a distributed data structure, hi some systems, searches

CHAPTER 2. CONCEPTS & TECHNOLOGIES 17

for a specific number begin at the root of the structure and narrow down the number with
every step down the hierarchy. At the end, either the peer that holds the information has been
found or at least the peer that holds the information on where to find the actual content. The
topology is not necessarily restricted to a tree. Hypercubes or other constructs (like multi-
hypercubes [40]) might also be used to organize the search space by numbers. However, in
the following only a tree will be used for simplicity reasons.

Whenever a peer joins the network, it may become part of the tree. In some P2P networks,
the content itself is shifted to the peer whose ED matches best the ID of the content. In other
systems, only meta-data about the shared information is transferred. Expanding the structure
is usually triggered by exceeding the size of the routing table, the workload on peers, or other
criteria.

2.3.2 Server-based P2P

As the name indicates, server-based P2P systems (Figure 2.1c) rely completely on a central
server or on a set of well-known servers (Figure 2.1c). There are different ways how a
central server might be used. The server can provide search and indexing facilities (e.g.
Napster [13]), authenticate users and encryption key distribution (e.g. Grokster [41]) or
coordinate the work of the peers (e.g. Seti@HOME [12]).

There are several advantages when using a central server. The protocol can be easily
changed and improved without having the problem of convincing all clients to support this
protocol (although this is not always regarded as an advantage because a protocol should
always be designed in a way that it is flexible enough). Further, the usage of a central server
helps security. Authentication and authorization mechanisms can be employed because all
significant traffic (e.g. search requests, login, etc.) is going through a single organizational
unit, the server. This may be not important when it comes to distributed file sharing but
security becomes definitely an issue when the P2P system is to be deployed in a corporate
environment. Along with security billing is also much more easier to manage in a P2P system
that can rely on a central server.

On the other side, there are drawbacks with central-server-based P2P networks as well.
Obviously, the central server represents a single point of failure. This is not only a technical
problem but also a legal one. As Napster has shown, using a central server is not a problem
when it comes to efficiency and stability (as stated in Milojicic et al. [42]). It is more a legal
issue that brought the fall of Napster. But this is not a general problem of P2P systems - as
long as they are used to share legal content. Still, denial-of-service attacks are a potentially
big threat to central servers (as for any other central server like www.cnn.com).

According to the definition given in Section 2.1, P2P systems may take advantage of a
central server but should also be prepared to function without such a service. An example for
this functionality is Groove [20]. Groove instances may connect to a central server for storing
information permanently. In the absence of a central server, computers running Groove can
still interact and provide most of the functionality.

CHAPTER 2. CONCEPTS & TECHNOLOGIES 18

2.3.3 Hybrid P2P

A hybrid P2P system (Figure 2.Id) uses also servers for indexing and searching. The differ-
ence to the server-based approach described above is, that these servers are chosen from the
pool of all peers currently online. The concept of using a hybrid P2P was first widely used
in the FastTrack [19] network. Certain criteria like bandwidth, latency and CPU power are
used to elect the appropriate "server" (in FastTrack they are referred to as "SuperNodes").
A normal peer connects to a SuperNode and sends a list of all shared files. Search requests
are sent to the SuperNode only, which, in turn, forwards the message to other SuperNodes.
Every SuperNode receiving a query searches the local database of shared files (those made
publicly available by the "client" peers).

The advantage of this system is that it combines the advantages of Napster (fast searches)
with those of Gnutella (no single point of failure, survivability). This makes it a strong P2P
model, a fact that has also been proven by the wide acceptance of P2P file sharing tools
using the hybrid approach (e.g. Kazaa [43] and Grokster [41]). There is also an effort using
so-called search hubs in the Gnutella network (see [44] and [45] for more details).

The term "hybrid P2P" is not clearly defined. Yang et al. [30] regard server-based P2P
as a hybrid P2P system as opposed to a pure P2P system.

In a hybrid P2P system, peers complying to some criteria become special peers (in Fast-
Track: SuperNodes). Hence, the definition of P2P that every peer acts as a server and a client
no longer holds. To accommodate this fact, this model is called a "hybrid P2P" system in
contrast to a "server-based" model. In this document, this definition for "hybrid P2P" will
be used.

Note that a set of centralized P2P servers could also be interconnected. This is not re-
garded as a hybrid P2P network since the servers themselves are still fixed and must be
known to the peers.

2.4 Myths about P2P

P2P did have a difficult start because people were unsure what P2P exactly is. When Napster
was introduced, it was called the first P2P application. But later, when Gnutella came out,
Napster was no longer considered P2P because, after all, it used a server. As a consequence,
people came up with ideas on how to differentiate between P2P systems and those that are
not. Today, there exist so many definitions of what P2P is that it is even harder to tell whether
a distributed system is P2P or not.

This led to the creation of several myths about P2P. The following list deals with the most
common misconceptions about P2P and tries to solve some of these usual misunderstandings.

• P2P does not allow any central coordination.

The advantage of P2P is that it does not have a central authority that is a bottleneck
for system performance and a single point of failure. The idea behind P2P is to dis-
tribute the workload, the bandwidth usage, the content, etc. over the network instead
of putting this altogether on a single machine (or on a very expensive server farm).

CHAPTER 2. CONCEPTS & TECHNOLOGIES 19

But there are two things to be considered before banning any kind of server from the
P2P world. First, there are P2P topologies (and actual systems) that do take advan-
tage of a server. In Napster, for example, the server was used to collect the meta-data
of all shared files and to provide a search facility. Napster, however, was a P2P sys-
tem because downloads were performed directly between peers. Only the searching
had been provided by the server (which, obviously, reduced the burden of the server
significantly).

The second, and even more important reason for a central coordination in a P2P net-
work is the bootstrapping, a problem that every P2P system is confronted with. If you
are starting a peer for the first time, it does not know a single address of another peer
in the network. Hence, it first has to connect to a central server (or, at least, to a set of
well-known peers, which is not so much a difference) to get a list of available peers.
Once the peer is connected, it does not require the server anymore (when it is restarted,
a peer may use a list of peers recorded in previous sessions). Hence, the server is vital
to interconnect all peers.

• A distributed system is only a P2P system, if it 1) supports temporary network ad-
dresses and 2) allows the peers significant autonomy.

As a general rule, this statement is too restrictive. If a P2P system requires permanent
network addresses, it may be used in closed areas where this prerequisite can be ful-
filled (e.g., in companies, universities, etc.). This "rule of thumb" (or "litmus test")
has been created with public file sharing P2P systems in mind. For this use case, the
above stated rule is perfectly true, but it does not apply to other scenarios where it is
not a necessary assumption that network addresses are not permanent.

The degree of significant autonomy (however significant can be interpreted) is also not
a good indication whether a distributed system is a P2P system or not. There exist so
many different nuances of peer autonomy that it cannot be taken as a sign for a P2P
system.

• All peers in a P2P system are of the same type.

In most cases, this is true. A peer typically is implemented in the same way as any
other peer. This is true for, as an example, Gnutella where all peers have the same
responsibilities. It is also true for hybrid P2P systems where peers may have different
responsibilities, such as FastTrack, because every peer should be ready to take over
any role in the network.

But the point is that it is not a general requirement for P2P systems to have all peers
equal in a P2P system. Depending on the topology, it might be the case that peers are
different (e.g., if two different topologies are connected by a bridge). It would be too
restrictive to define a P2P system only as a system of equals only because popular file
sharing systems do it this way. With the development of new topologies that provide
even more scalability and reliability, it is definitely feasible that peers are no longer
equal but depend on the device they are running on, the bandwidth of the Internet
connection, the processing power, and much more.

• P2P does not scale.

CHAPTER 2, CONCEPTS & TECHNOLOGIES 20

In the recent years, some theoretical studies about the scalability of P2P have been
published, either in favor of the P2P approach (e.g., Schollmeier et al. [31]), or against
it (e.g., Ritter [32]). It is very hard to assess the scalability of a given P2P system.
But it is completely impossible to tell whether P2P itself is scalable. Because there are
so many topologies with different ways of increasing scalability, it cannot be foreseen
how scalable P2P really will be. In the past 5 years, new P2P systems with new topolo-
gies have been introduced, each increasing scalability significantly (e.g., a distributed
hashtable has only logarithmic - depending on the number of hosts in the network -
complexity for searching).

What definitely can be said is that P2P is more scalable than the client/server archi-
tecture. Due to the fact that the load of distributed searches, downloads, maintenance
messages, etc. is taken off from a single server and distributed over all peers in the
network, no bottleneck that reduces the scalability of the network exists.2

The next chapter delves into the evaluation of P2P topologies. It discusses the various
classes of P2P topologies and evaluates them by choosing relevant criteria.

2As an example: FastTrack, the most popular P2P file sharing application, has constantly more than 2.5
million users online.

Chapter 3

Peer-to-Peer Topologies

Architects of P2P systems claim thousands, millions, even billions will interact
in a seething, transient pattern of communication. Can we really achieve guar-
antees in the chaotic P2P environment?
John Kubiatowicz [46]

A myriad of Peer-to-Peer (P2P) systems exist, all having some advantages and draw-
backs. P2P is also no longer just used for sharing music files over the Internet. An increasing
number of P2P systems are used in corporate networks or for public welfare (e.g. provid-
ing processing power to fight cancer). System developers are more and more using the P2P
paradigm for the underlying communication architecture of their applications (e.g., in the
pervasive computing area).

Every P2P system has its own set of characteristics which make them more or less useful
for the intended purpose. These characteristics are mainly influenced by the underlying
topology of the P2P system. Before a system developer chooses a particular P2P system
for communication, she has to evaluate which P2P system best meets the requirements of the
application. If an ill-fit P2P system is taken, various problems (e.g., scalability, functionality,
security, etc.) may be the result.

Due to the ongoing advancements in the P2P area, this chapter compares P2P topologies,
but not actual P2P system implementations (as, for example, in [47] or [42]). For this pur-
pose, a classification for P2P topologies is needed and introduced in this chapter. This survey
gives an overview of the advantages and challenges different P2P topology classes have. The
aim of this evaluation is to provide a work of reference to application programmers to choose
the right P2P network topology. Depending on the requirements the application has to meet,
the system designer could use this evaluation to find the best fitting type of P2P system for
her application.

Defining a model for a P2P network

For the purpose of this evaluation, we use a simplified model of a P2P network: it is
a collection of nodes connected over a network. There cannot be any assumptions about
the capabilities of the peers (i.e., processing power, the type of connection, the available
bandwidth, etc.) be made. Peers may connect to and leave the network anytime. Each

21

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 22

node provides some content or services that other peers can access. For each file or service
shared, the peer has to provide a description (or meta-datd) that can be searched by other
nodes. Due to the absence of a global index of this data, the main responsibility of the P2P
network (i.e., all peers combined) is to provide this search functionality. Depending on how
the nodes are connected, different ways of searching are feasible. In general, a peer searching
for information sends a so-called search request to one or several other nodes. These nodes
then process this search request by either running a search in their own set of meta-data
descriptions or by forwarding the message to other nodes in the network. Message can take
multiple hops (i.e., they are forwarded multiple times) until they reach their goal. Once the
content is located at a remote peer, it is typically accessed directly.

3.1 Evaluation

Comparing topologies of P2P systems is very complex because the topology of a P2P net-
work influences nearly all aspects of the system. Surveys in the P2P area (like [42] or [48])
use various characteristics like Robustness, Efficiency, Scalability, etc. to evaluate existing
P2P applications. [6] uses these evaluation criteria and some more to provide a broad evalu-
ation of P2P systems.

In the following, those criteria that have the highest impact on the usability of a P2P
system have been chosen to evaluate classes of P2P systems.

Ad hoc mobile communication

The topology of a P2P network has an high impact on its ability to handle mobile ad hoc
communication. Mobile ad hoc communication means that P2P devices connected through
a wireless communication facility (e.g. WLAN or Bluetooth) communicate directly without
the need for a link to the Internet. Ad hoc mobile communication will gain more importance
in the future. It is expected that small, network-enabled devices (e.g. sensors) will create a
P2P network enabling pervasive and ubiquitous computing [49].

Wild mesh: The wild mesh topology has many advantages when it comes to ad hoc mo-
bile communication. Its decentralization makes it a good candidate for this type of commu-
nication. There is no need for a central server and the communication may start immediately
without setting up the topology. On the other side, due to the lack of routing tables, a lot of
unnecessary traffic is created which might incur high battery and bandwidth consumption,
which is a problem for mobile devices.

Structured P2P: In this context, devices are typically connected in a micro or pico cell.
Content-based P2P networks are more designed to work efficiently with huge amounts of
data in a global setting. The overhead of at first building the tree structure before the ac-
tual communication can start could be too costly, considering that small devices with only a
limited timeframe for communication are involved. The frequency of disconnections and re-
connections of peers is another problem when using a structured P2P network in a MANET
(mobile ad hoc network). Mobile peers would be too volatile to be relied on in a tree in-
dexing meta-data or holding actual content. Taking into account that mobile peers do not

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 23

necessarily have high bandwidth capabilities and CPU power, the usage of these peers in a
tree might not be a good idea.

Server-based P2P: In the case that mobile devices are directly connected via a wireless
network, no central server might be available. Hence, it is not possible to use this topology
for ad hoc mobile computing, unless one the involved devices decides (or gets elected) to run
the server. In this case, communication will be concentrated on this single device. Hence,
the overall communication load would be taken away from the less capable devices.

Hybrid P2P: Hybrid P2P networks have some advantages over other topologies. One
SuperNode must be elected before information exchange could start. Although it introduces
more complexity (compared to wild mesh P2P networks) to the initiation of the communica-
tion, the advantage of having servers may be a good trade-off. The fittest devices involved in
the communication could become SuperPeers helping less capable devices to minimize the
workload.

Connectivity overhead

The fact that peers are very volatile (i.e. they may suddenly disconnect and reconnect
with another IP address) forces most P2P systems to be able to handle such characteristics.
Since it is likely that peers are only online for a very short period (see [50]), the P2P system
has to strive to reduce costs (in terms of bandwidth and CPU power necessary) for closing
the hole opened by the missing peer and for reintegrating the peer when it is back online. A
general rule is that the more structured the P2P network is, the more effort is necessary to
integrate new peers and compensate disconnected peers.

Wild mesh: In a wild mesh network, there is virtually no connectivity overhead. As-
suming that a peer has a list of other peers, it connects to another peer in the list only if
an existing connection breaks down. This is possible because the network does not have to
maintain a specific topology. There is no need for finding special neighbors or building up
routing tables. When a new peer enters the network, it may connect to any peer (if there are
no limitations like connection preferencing).

Structured P2P: Compared to the other classes of P2P networks, content-based routed
P2P networks pay the highest penalty for leaving or joining nodes. When a peer joins the
network, it has to find a place in the tree (or whatever structure is used), all routing tables in
the proximity have to be updated, and data has to be transferred to the new node. In networks
where not only meta-data but the content itself is stored, a lot of information may be trans-
ferred when a new node arrives. When a node leaves the network, again the routing tables of
all predecessors, children or siblings have to be updated. Content that was stored by the peer
has to be replicated again.

Server-based P2P: The overhead of connecting to a server depends on the actual imple-
mentation. It is necessary that the server receives information about all the files and services
a peer is sharing. If a peer reconnects to a server, it may be the case that the server still

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 24

has this information in its database. Then, only changes have to be sent to the server. If
the server does not cache this information, the complete meta-data has to be transferred to
the server. Depending on the frequency of connections or disconnection, this traffic might
impose a problem.

Hybrid P2P: As in a server-based topology, clients have to upload information to a
"server." The difference is that in this topology, servers (or SuperNodes) cannot be relied
upon. When a SuperNode ceases to exist, peers connected to such a SuperNode have to
connect to another SuperNode and transmit all meta-data information again. This could be
a rather costly process, depending on the size of the meta-information available. The result
is that the connectivity overhead in hybrid P2P network is comparatively high. For normal
peers it is very cheap. They only have to check a single connection, the one to the SuperPeer.

Fault resilience

This criteria deals with the question: What happens, if a peer disconnects without any
warning? Does this affect the other peers? Is there a loss of information? In general, P2P
networks have to take into account that peers are not reliable at all. The structure of a P2P
network (i.e. its topology) has a high impact on its fault resilience.

Wild mesh: In wild mesh P2P system, the loss of connection to a peer is not so critical
since the system is designed not to rely on specific peers or central servers. Pure P2P net-
works show a very high resilience compared to other topologies. According to Cohen et al.
[51], power-law networks with an exponent of at most 3 are very rugged when it comes to
random peer breakdowns. Gummadi et al. [52] claim that with a fraction of up to

1 + (1 - mT-2JV3-Tp^) (3.1)
3 — T

lost nodes the network still survives, which means that the network does not split into two
disjunctive parts. Given that the minimum node degree m is 1 and the maximum node degree
N is 20, up to 59.8% of all nodes may breakdown before the network is divided (if r is 2.3,
as stated by Gummadi et al.). In [53], the power-law exponent is 2.07 while Jovanovic et al.
[33] found -1.4 as the value for r .

Structured P2P: There exists almost no literature on fault resilience (in respect to quan-
titative evaluations) of structured P2P systems. Wang et al. [54] describe how to enforce
resilience to failure in structured P2P networks. However, it is still hard to compare the re-
silience of one structured P2P network with that of another structured P2P network due to
the lack of a common evaluation process. Usually, when a peer disconnects, other peers are
trying to fill the gap. This way, the communication overhead is considerable but this way,
information has a higher availability. A typical value for the number of messages needed to
replace a disconnected peer is O(log2 n).

Server-based P2P: It is not hard to imagine that server-based P2P networks are very fault
resilient (as long as the server is available, of course). If a client disconnects from the net-
work, it does not have any impact on all the other clients. It only affects those peers that

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 25

are using services provided by this peer. It might be even the case, that information that has
been uploaded to the server is still available when the owner is no longer available (it does
not have always be the case that only meta-data instead of real data is uploaded to a server).
This has the advantage that meta information about files or services could be acquired for
future reference when the owner is back online. The only risk in a server-based P2P network
is the server. If the server (or the cluster of servers) is no longer available, the complete
system is-obviously-rendered useless.

Hybrid P2P: The fault resilience of hybrid P2P networks depends on certain implemen-
tation issues. Generally, the loss of a normal peer has only little effect on the network. As
in server-based P2P network, only the server (or SuperNode) has to handle this situation.
More severe are the implications when a SuperNode ceases to exist. If this is the case, the
combined meta-data information of all connected peers is instantly not available. This infor-
mation is not lost, but all connected peers have to connect to another SuperNode and upload
this information again.

Message count

One important metric when comparing P2P systems is the average amount of messages a
search request implies and how many hops these messages take. This metric is more impor-
tant for pure and hybrid P2P systems because the amount of messages and their hop count is
highly predictable in a server-based P2P system: it is always 1 (as long as the central server
is not a cluster of multiple servers). The other type of message that has to be considered are
those messages that are needed to maintain the topology of the P2P network. This includes
simple Is-Alive messages (like PING messages in Gnutella) or messages needed to build and
maintain the routing tables. This type of message is not so important to the user as is the case
with search requests but the complexity of the P2P network has an high impact on the band-
width consumption of structural (or maintenance) messages. In the literature, the number
of messages used to search for information is the primary key for comparing P2P networks.
Sometimes, Landau's notation (or also known as the ö{.) notation) is used to describe the
costs for searching in a P2P network. This might not always be useful. It is true that this
notation describes the upper bound but, as an example, the possibility to omit constants (e.g.
O(lEl0 * logn) equals to C?(logn)) makes it very imprecise for P2P networks where not
millions of peers are involved.

Wild mesh: Due to its very low complexity, wild mesh systems might use search mes-
sages to keep up the structure (hence, they combine these two tasks). Gnutella gives an
example on how to reduce the cost for maintaining the system. Peers are found by evaluat-
ing forwarded result messages.
The basic idea of searching in wild mesh topologies is to send search requests to a set of
neighbors, which process the search request and forward it to their neighbors. This process
stops when a certain hop count (the so-called TTL - time to live) has been reached. Typically,
search results return on the same route as the search request. Hence, all peers that forward a
request see the response and are able to update their caches and list of known peers according
to the data in the returned message. From the searching peer's point of view, responses are
received sporadically. In most cases, the client shows the results that have been received so

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 26

far while still waiting for further response messages. This method of searching has the effect
that a single search request creates an avalanche of subsequently forwarded messages. The
total number of messages sent over the network in one direction is (theoretically)

t-i

2n^(n-l)' (3.2)

where n is the average number of live connections a peer has and t the typical TTL (time-to-
live). Obviously, not a very efficient search strategy, regarding both the amount of messages
sent and the accuracy of the routing algorithm. Jordan Ritter presents in his paper [32] some
interesting computations on the amount of traffic generated only by search requests and the
appendant result messages in the Gnutella network. Schollmeier et al. [31] show in their
work that this is only theory that does not apply to the real-world Gnutella network. One
of the reasons they give is that the network is finite. The formulas used in [32] only apply
to a infinite network size. Furthermore, Gnutella's topology is not a tree, which would be a
prerequisite for the worst-case scenario. The Gnutella network shows a lot of loops, which
prevents messages from multiplying by the number of connected neighbors every hop. An-
other reason why the number of search messages does not explode as depicted in [32] is the
small-world property of Gnutella (see Jovanovic et al. [33]), which means that there is a
high clustering coefficient in the network. The conclusion of Schollmeier et al. is that the
probability of having a tree as Gnutella's topology is near to zero. Anyway, it is clear that
the flooding algorithm of Gnutella is still far from perfect.
Improvements like depth-first iterative deepening [55] (which is used in artificial intelli-
gence), random walks [56] or Directed BFS [57] have been proposed recently. They provide
some significant changes to the efficiency of the search mechanism but exhibit longer search
times or less search results. The conclusion is that wild mesh P2P systems are, despite all
efforts to minimize the traffic, still the most inefficient and most bandwidth-consuming type
of P2P networks.

Structured P2P: The average path length of a lookup is approximately equal for all
widely known structured P2P networks. For CAN, the mean path length is O (| n s) (which

can be transformed to O(n*)) in a d-dimensional space. Chord has a typical path length of
O(logn), in Pastry it is O(log2i> n) (which equals to O(logn)). Tapestry has also, as Chord
or Pastry, O(logn) as the cost for searching in the network [54]. In all formulas, n is the
number of peers connected to the network. The number of messages needed to search for
information in a structured P2P network can be reduced by increasing the size of the routing
table. The more entries in the table are available, the higher the chance that the message
finds its way faster to the destination. However, this comes at the price of higher bandwidth
consumption for maintaining the routing table.
No matter how useful these assessments are: structured P2P networks provide a very efficient
search functionality. Compared to any other server-less P2P system, this kind of topology
provides the most efficient (which is not necessarily the best) search method.
The other type of message that is sometimes not even mentioned in the literature about struc-
tured P2P systems is the maintenance message. There exists little information on how many
messages are necessary to keep up the structure. Periodic messages are needed to ensure
that peers are still online, If a peer does not send a message in a specific interval or does

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 27

not respond to a recurrent message, actions have to be taken to ensure the robustness of the
structure. It is safe to assume that structured P2P networks have the highest costs for main-
taining the structure as it completely relies on a fully functional topology that does not allow
to be separated.

Server-based P2P: For peers, the number of messages used to search for information
is exactly one (maybe more in the event that the server is not reachable and another server
has to be contacted). So this is pretty efficient from the peer's point of view. However, the
complexity for the server may be a little bit higher. As Yang et al. [30] point out, there
are different ways of how servers in a cluster can be connected. They could be working
together in a chain. The first server processes the request and forwards the search request to
the next server in the chain if it was not able to come up with enough search results. The
message is forwarded as long as the minimal number of search results is not reached. The
search can start anywhere in the chain as long as the chain is a loop. The chain is not fixed.
Any server could be used as the next hop to get better load balancing. The next possibil-
ity would be to replicate all the information that is available on the servers. If every server
has knowledge about all meta-information stored in the cluster, no additional messages are
necessary to process the query. The third way of organizing the information on the server's
side is to distribute the content according to some algorithm (as in a hashtable). This has
the advantage of enhanced load balancing but has also the problem that meta-information
with multiple keywords may be found on multiple servers. Finally, all servers in a server
cluster could be completely loosely coupled. No information is exchanged between these
servers. The search horizon of a peer is limited to the peers that are connected to the same
server. The complexity for searching is 0(1) (regarding the number of messages needed).
According to [30], the chained architecture is the best choice for large scale systems like file
sharing. The worst scenario is the loosely coupled architecture because the number of search
result is limited more than scalability is achieved.

Hybrid P2P: The assessment of the number of messages used to process a query has
two facets in a hybrid P2P network. From the viewpoint of the normal peer the number of
messages is one. That can hardly be beaten by any other P2P topology that does not use a
central server. For the SuperNodes, the situation is a little bit different. When a SuperNode
receives a search request, it processes it locally (i.e. it searches the local database) and, in
the case that not enough search results have been found, forwards the search request to one
of the other SuperNodes. This forwarding is done until enough search results have been ac-
cumulated.
The other type of message necessary in an hybrid P2P network is the maintenance message.
It is needed to check whether the SuperNode is still available and whether the connected
peers are still online. Since a lot of peers could be connected to a SuperNode (up to several
thousands), the rate at which connected peers should report in must be chosen carefully. Fur-
thermore, SuperNodes themselves should verify that the other known SuperNodes are still
alive.

Scalability

The most commonly used criteria for defining the scalability of a P2P system is the

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 28

amount of peers it is able to handle without exceeding the bandwidth available. Other mea-
sures as CPU power, memory consumption, etc are mostly ignored, which is understandable
because the primary bottleneck of a peer is its bandwidth.1 Estimating the scalability of a
P2P model is a very difficult tasks due to the dynamic nature of the peers and the connections
between them.

Wild mesh: The dynamics of wild-mesh P2P networks make it almost impossible to esti-
mate how well the network scales. Many papers (e.g. [32], [33], or [59]) deal with scalability
issues of Gnutella. It is undisputed that a wild-mesh P2P network without any optimizations
like connection preferring, search hubs, caching, etc. is not scalable. [60] reports that the
Gnutella network is limited to approximately 10 queries per second, which is created by
10.000 to 30.000 peers. One reason for the lack of scalability of pure P2P networks in gen-
eral (and especially in wild mesh P2P networks) are peers with low bandwidth connections.
Since peers do not only send search requests but also relay search requests for other users,
the low bandwidth capability of these users is very soon exhausted.

Structured P2P: In the world of pure P2P networks, structured topologies that act as a
distributed hashtables have the highest chances of being scalable. The problem is that not a
single structured P2P system has ever been used on an Internet-scale. There exists no real-
world data on the scalability of these systems. There do exist simulations but it is very hard
to simulate all the side-effects that could happen in the real world.
Scalability also depends on the usage of the P2P system. When the majority of messages
transferred is used to search for data, these systems are scalable up to millions (or more?)
nodes. This is also fortified by the fact that the average search path has only log n hops. This
means that in a network of 1,000,000 nodes it takes only six hops to reach the node that holds
the requested information. However, if there are considerably more updates (i.e. joining or
leaving nodes, changed content, etc.) than searches, scalability of these system declines. The
typical cost for inserting or removing a node is O(log2 n) messages. Still, this is not a big
disadvantage.
In systems where content (or meta-data) is moved to those places where it is expected to
reside, there is another issue to be considered. What if there exist a lot of information items
that are to be located in the same area, so-called hotspots? Since peer capacity is finite, there
might be soon no free resources (in terms of memory and CPU power) left. Hence, content
may not be stored where it is expected. If this happens, there are two ways of resolving the
situation. The first step is to split the search space into fragments, making place for other
peers to take over parts of the information. The second possibility would be to use replication
techniques to build clusters of peers that establish a virtual node in the structure.

Server-based P2P: It is very difficult to tell whether a server-based P2P network is scal-
able. Many factors have to be considered when evaluating the scalability. It is not sufficient
to simply say that this kind of topology is not scalable because there is a single bottleneck. It
is also a question of what should be achieved with this P2P network. The application domain
influences whether server-based P2P systems are scalable enough. The average message

'According to Backx et al. [58] most P2P system only consume about 1% of CPU power and at most 3%
of the available local file transfer rate.

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 29

size, the frequency of search requests, the rate of joining and leaving peers and the internal
implementation of the server mainly affect the scalability of the system. The latter point is
especially interesting because different schemes of arranging servers in a cluster may pro-
vide different search horizons and, therefore, scalabilities. Additionally, the type of users
connected to the network are important. If most of the users have a slow modem connection,
server-based P2P networks may scale better than pure P2P networks. The same applies to
small devices. If peers are not able to be part of a pure P2P network, server-based P2P net-
works may be better. The bottom line is that the scalability of a server-based P2P network
has obviously a limit (the limit of the server) but this limit could be high enough.

Hybrid P2P: Whether a hybrid P2P system is scalable depends, as in the case of a server-
based P2P system, on the requirements it should fulfill. If it is necessary that a search request
visits all SuperNodes to guarantee complete search results, it is hard to argue that this sys-
tem is scalable. If, on the other side, only a limited number of matching files is necessary
to make a successful search result, the hybrid P2P system is scalable (there is no upper limit).

Search functionality
Different P2P networks provide different ways of searching for information. Ideally, the

topology of a peer-to-peer network should not have an impact on the search functionality (or
expressiveness). Unfortunately, this is not true. It is the case that any P2P system can adopt
a meta-data model like that provided by Kazaa. But there are exceptions.

Wild mesh: Since there exists no routing that is strictly based on content, the way in
which content is described has no influence on the behavior (i.e. the routing) of the network.
A problem that most likely occurs in wild mesh P2P networks is the heterogeneity of the
peers. If the network is only defined by the protocol (as is the case with Gnutella), it is not
clear how searches are actually performed at the peer. This could lead to unexpected search
results. The reason why especially wild mesh P2P might have this problem is the fact that
the peers are very loosely coupled in this topology. There exists no central authority that
might enforce standard compliance.

Structured P2P: A disadvantage of typical content-based routed P2P networks (dis-
tributed hashtables) is their search functionality. Usually, a peer can only search for a num-
ber. This search functionality is useful where a single ID is sufficient to identify content.
There are plenty of use cases where this approach is sufficient. Still, in some use cases
it might be not satisfactory to search only for a specific key (or key-phrase). In the most
widely applied use case of P2P networks, the sharing of files, it is necessary to search for
more information than simply the filename (or parts of it). A solution would be to register
all elements of the meta-data available for a file. But this could mean that a single file is
registered several (ten to hundred) times in the network.
The résumé is that searches in distributed hashtables is, while very efficient, afflicted with
major constraints.

Server-based P2P: The search functionality of a server-based P2P network is not limited
by the topology at all. It fully depends on the implementation of the search functionality in

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 30

the server and the server architecture.

Hybrid P2P: As in wild mesh and server-based topology, the search functionality of
the P2P network only depends on the implementation. There exists no restriction by the
topology itself. Hybrid P2P system have the same problem as wild mesh P2P systems: the
search functionality is typically not defined by the protocol or the topology. In structured or
server-based P2P network, the way in which searches are performed is known. In hybrid P2P
networks, different implementations with the same content could produce, although adherent
to the protocol, different search results.

Search results
There are several ways of evaluating search results. One measure would be to analyze the
hit rate (or the rate of false positives). This identifies how many search results really match
the requested information. But the hit rate mostly depends on the granularity of the meta-
data model used. Hence, the hit rate will not be taken for a comparison of topologies. It is
more interesting to look at how many messages are necessary to get a satisfying result. The
number of messages vs. the result-satisfaction ratio depends highly on the routing algorithm
used. Another aspect when looking at the quality of search results is their completeness.
Does the P2P system provide complete searches? Complete searches means that searching
for a file that is shared by another peer is guaranteed to succeed.

Wild mesh: In wild mesh P2P networks, the unstructured routing has very bad effects on
searching. A search message gets relayed until the TTL has been reached. In the worst case,
when a search request is sent out, a total of

t-i

i=0

hosts are reached (where n is the average number of live connections a peer has and t the
typical TTL). So, when the initiating peer has found what it is searching for, it cannot stop
the message from propagating and wasting bandwidth.
When searching in a wild mesh P2P network, messages containing search results are coming
in arbitrarily. There is no point in time where the client can be sure that no more search
results may be expected. Furthermore, due to the very frequent change of peers currently
online, two identical search requests do not necessarily provide the same results. Peers are
coming and going frequently which has the effect that messages are forwarded to different
peers any time a search request is sent. Another problem with searching in wild mesh P2P
networks is the fact that only peers that are currently online will process a search request.
Since the average time a peer is online is very low (e.g., from just a few minutes to an hour),
most of the peers that participate in the network cannot be searched. Another drawback of
this kind of P2P network is that searches are not complete. This means that it is not guaran-
teed that a peer can find the information even if it is available in the P2P network. Only a
small subset of the overall network may be covered by a single search request.

Structured P2P: Structured P2P networks have the highest probability of finding content
if it is available. The technique of placing the content exactly where it can be found again (as

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 31

in normal hashtables) has the effect that search messages will find the requested information
in any case. Search requests are always forwarded to peers that have a higher probability of
storing the information (or, in other words, whose key is nearer to the requested key of the
content).The only reason why an information could not be found is when the peer holding the
information in question is no longer available. Replication techniques mitigate this problem.

Server-based P2P: Whether server-based P2P networks are able to provide guaranteed
search results and how many messages are necessary depends solely on the server cluster
architecture (if it is a cluster at all). If the cluster is arranged in a way that there is no in-
formation exchange between the servers (be it replication of stored meta-data information
or the forwarding of search requests), the search horizon is limited and therefore complete
search results impossible. If, on the other side, a chained architecture is used or information
is replicated among all servers in the cluster, search results can be guaranteed (as long as
they are available). Yang et al. [30] provide a more exhaustive comparison of these cluster
architectures.

Hybrid P2P: Once a hybrid P2P network has reached a certain size, search results cannot
be guaranteed to be complete due to scalability reasons. Although SuperNodes may forward
search requests to other SuperNodes, it is infeasible that all SuperNodes may be reached
while maintaining scalability.

Security

P2P networks offer a lot of security threats and challenges that may be a reason why com-
panies are still skeptical about using P2P software in their environment. The most important
problem is authentication. How does a peer know that the remote peer that it is talking to is
really the peer it claims to be. Shared secrets are no solution because then every pair of peers
must have a singular secret key, which is impossible regarding the potentially huge amount
of peers. An answer to this problem would be to use public/private key pairs. But then, a
central certification authority would be necessary to verify the public key of the remote peer.
This is not feasible in pure P2P systems and in mobile ad hoc networks, where no connec-
tion to a central server is available. Another way of solving this problem is to use a so-called
"Web of Trust" [61]. This means that public keys are not accredited by a central authority
but by other peers that are trustworthy (Sundsted [62] gives an overview on how to use this
technique in P2P networks). But this system is not as strong as a central authority because as
the chain of trust gets longer, the probability of errors increase (which is more a social than
a technical problem). Instead of using a certification authority, centrally issued smart cards
are a promising attempt to mitigate this problem. The code running on the smart card can
provide the necessary authentication mechanisms. Since tampering with smart cards is very
hard, this appears to be a very practical solution. Still, P2P networks that want to support
devices with no smart card reader attached will not be able to support this solution.

The next problem is the question of authorization. Now that we have established the
identity of the remote peer, how do we know what access right it might have. This informa-
tion might be kept central (e.g. this group of peers/people do not have access to all account
files), but there is no virtue in doing that. Another solution would be to issue certificates to
the peers describing what they are allowed to do. In this case, a central authority to maintain

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 32

certification revocation lists might be desirable for flexibility.

Encryption is the third big cornerstone of security. But in contrast to AA (Authentication
& Authorization), encryption of communication between peers not knowing each others has
been solved (see, for example, SSL [63]). Peers might also use the existing infrastructure
used for authentication to use public/private key encryption. P2P systems that use encryption
are, among others, Freenet [18], FastTrack [19] and Locutus [64].

So far, obvious security issues have been discussed. P2P networks, however, bear other
security challenges as well. Among them is the verification of content provided by the remote
peer. Is the other peer really providing the file it claims to share? One solution would be
download a portion of the file and verify this part (if it is possible), for example by verifying
the digital signature [62]. Another form of content verification (as used in SETI@Home [12])
is to give multiple peers the same task and compare the results returned by the peers. This
way, a peer is not forced to trust the results of a single peer.

One problem that all P2P systems have in common is the antagonism between authentica-
tion and anonymity. MostP2P systems use some sort of pseudonym that does not necessarily
have a relationship to the real identity of the user. As a result, security must be considered
already at the design phase of the development of the topology. "We add security later."™is
an argument for many experimental P2P systems, which should make users very suspicious
as it is very hard to make an existing system secure if it has not be designed to be so.

Wild Mesh: There exist many scientific and non-scientific reports and papers about the
security problems of P2P networks in general and of Gnutella especially (e.g. [65], [66],
[67], [68], [69]). But most of the problems described in these articles also apply to other P2P
topologies. Bandwidth consumption in corporate networks, security concerns about faulty
software that shares more information than the user is aware of, unencrypted communica-
tions and much more are not problems of wild mesh P2P networks alone.

There are only a few security problems that apply only (or mostly) to wild mesh P2P
networks. Especially in this kind of network authentication is a very delicate task. Without a
central certification authority, there is no way a peer can be authenticated. Alternatives like
the web of trust may be a solution but are not as strong as a centralized trusted third party
(as, for example, the server in the server-based P2P model could be).

Wild mesh P2P networks are the only topology where only the content provider does also
provide the search functionality. In other topologies, the owner of the file or services sends
meta-data (or the file itself) to those peers (or servers) that are responsible for it. Hence, in
wild mesh networks, there is no third party that may filter inappropriate content like spam
or "guarantee" a working search service. A peer may return anything it wants, regardless
whether it is related to the actual search query or not. This actually happened in the Gnutella
network [70] where malicious peers (from Flatplanet.net) returned spam content when they
received a search request.

The completely distributed nature of this kind of P2P network poses also the problem
that detection of malicious hosts creating tons of useless search requests is harder than in
any other P2P network. A peer constantly sending search messages and thus flooding the
network is not restricted by the protocol to send these messages always to the same set of
neighbors. This is also a problem for server-based or hybrid P2P system but there, the list

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 33

of potential receivers of these messages is considerably smaller than in pure P2P networks.
With a smaller set of peers receiving search messages, the detection of peers flooding the
system is easier (although it is still not child's play).

Structured P2P: Structured P2P networks have roughly the same problems as wild mesh
P2P networks when it comes to security. There are, of course, differences but they have in
common that there is no central authority (or trusted third party) that may be used to achieve
authentication and, as usual, peers should not trust other peers that they are doing what they
are supposed to do.

What is different in structured P2P networks is that peers that provide content do not nec-
essarily provide the search functionality for that content. Usually, the content or meta-data
describing the content is transferred to those peers that are responsible for it. Hence, there is
a (small) possibility that spam, fake files or other unsolicited content could be removed from
the structure by other peers than the owner.

What could be a advantage could also be a drawback. Now that another peer is respon-
sible for the information provided, how can we be sure that the information is not altered by
malicious peers? A solution to this problem would be to encrypt the data which makes only
sense in P2P networks that are used as a personal storage facility (as in Pastry).

Server-based P2P: Having a single server in a P2P network has some advantages over
other topologies. The server could be used to authenticate users (or peers). The server could
be used, for example, as a trusted third party for public key certification. The server could
also be used for electronic commerce, as it is the case with [71].

Since all peers are connected to the same server (or server cluster), changes to the pro-
tocol (or the peer software) could be easily spread by forcing peers to update the protocol.
This would be much harder in a wild mesh P2P network where there is no incentive to
change the peer software if it still works with (some) other peers. This may be considered
as a drawback as well because peers might be forced to update the software against their will.

Hybrid P2P: Hybrid P2P networks have roughly the same security risks as pure P2P
networks. Authentication is almost impossible to achieve. It is also questionable whether
other peers are trustworthy enough to become SuperNodes (in FastTrack, there is supposedly
a second level of SuperNodes manages the SuperNodes and has also a Blacklist of peers that
should not become SuperNodes).

Furthermore, it is very easy to sabotage the system by becoming a SuperNode and pro-
vide no or only a useless search functionality. But this only affects a local part of the net-
work. All other peers and SuperNodes should not be affected by this malicious peer. Hence,
it should not be allowed to a peer to make itself a SuperNode.

Small devices

Small devices are supposed to play an important role in P2P networks in the future [49].
The use of many small devices like sensors creates a lot of information. The question is
how this huge amount of information can be processed. P2P networks may be a solution for
this problem due to their ability to combine the computing power of many machines. But it

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 34

does not suffice to use just any P2P network for linking heterogeneous devices together. So,
the question is whether a P2P system supports small devices; e.g. by not forwarding traffic
through these devices. When working with small devices, special care has to be taken that
the available resources are not wasted. Low CPU power, limited operating system possibil-
ities (i.e. no threads), low bandwidth capabilities, small displays and many other problems
arise when designing systems for small devices. Devices could be, among others, PDAs,
mobile phones or sensors.

Wild mesh: Whether a P2P system can be used on small devices, depends on the appli-
cation domain of the P2P network. When the P2P network is only needed to exchange email
addresses and synchronize calendars in an ad hoc network, wild mesh P2P networks would
be a good choice. In cases where a lot of traffic is produced, other topologies might be better.
The routing algorithm of pure P2P systems is the biggest problem for small devices. The idea
of this topology is that every peer contributes to the system in the same way. This approach
is very inefficient when devices with very limited CPU power and bandwidth are involved.
In this case, a separation between powerful peers and peers with limited capabilities (as
in server-based or hybrid P2P systems) is necessary. However, there are also advantages
compared to other P2P topologies. Small devices may also be mobile devices, which typi-
cally have a limited transmission range. So, a resilient P2P network that allows for frequent
disconnections is favorable. Furthermore, in a wild mesh P2P network, no additional com-
munication to set up the network (e.g. finding or electing a central server) is needed. By
issuing a broadcast, every peer in the area may be found and included in the P2P network.
For ad hoc networks with adjusted bandwidth requirements, wild mesh P2P networks might
be the best solution.
Structured P2P: The low number of messages needed to search for content in structured P2P
networks may lead to the conclusion that they are a good choice for small devices. However,
there are a few things to be considered. Small devices have typically only a limited memory
capacity. Hence, it might be not possible for such devices to store a routing table. If the
device is only a small sensor with very few capabilities, it might be impossible to insert it in
a structured P2P network. On the other side, routing tables are not very big (usually log n
entries). Another problem that might occur is that in some distributed hashtables, all peers
are requested to be part of the structure. Hence, no differentiation between powerful and
small peers is made. Therefore, these devices might become very soon a bottleneck in the
P2P network. At least, care should be taken that small devices are not placed in hotspots or
along the routes to hotspots.

Server-based P2P: Server-based P2P networks are particularly interesting for small de-
vices. Devices would be able to send their data to a central server for further processing.
There is no interaction with the other devices involved. A limiting factor is the scalability of
the system. If there are too many devices connected to a single server, other topologies might
fit better. It is also assumed that the costs for sending data to the server is not higher than
sending data to other peers (i.e. the power used for transmitting data over a WLAN network).

Hybrid P2P: The beauty of the hybrid P2P topology is its flexibility. Depending on the
configuration and the environment at runtime, it could be used as a wild mesh or as a server-

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 35

based P2P network. If there exists at least one powerful peer in the nearby, this peer could
become a SuperNode and provide bandwidth and CPU power to all small devices that are
connected to this SuperNode. Hence, small devices have to maintain only a single connec-
tion to the SuperNode and do not have to provide any search functionality. If the design of
the network allows the replication of data, it would even be possible to replicate all informa-
tion to the SuperPeer and the small device could disconnect to save power and bandwidth.
If there is no powerful peer available, all peers could start as SuperNodes. This would have
the effect that all peers are equal, which would create a wild mesh P2P network. Hence, no
complex restructuring is necessary although this also means that searches are less efficiently
processed.

Vulnerabilities
In addition to general security problems like encryption, authentication etc. there is also

the threat of having vulnerabilities in a P2P systems. This means that not a single peer might
be attacked by malicious peers (or lawyers) but the whole network. An important aspect, for
example, is the existence of a single point of failure. Another question is whether the system
is safe from attacks by individuals or organizations (as proposed in the US, where the RIAA
wants to actively attack peers sharing content protected by intellectual property laws [72]).
There are several other questions, like: Is there a single point of failure? Can peers take
the identity of other peers (if it is useful in attacking the system)? Can the P2P network be
corrupted by peers that reply with false positives for every request? Can a peer push itself
into a position (e.g. a SuperNode) where it can do more harm than "normal" peers? These
questions depend not solely but to a considerable degree on the topology of the network.

Wild Mesh: A way of disrupt or even destroy (at least for a short time) a wild mesh P2P
network is to create a lot of peers that may even provide useful data. This situation could
be used in two ways to mutilate the system. First, when creating a lot of peers that do not
provide any content, these peers could be used to fill up the "neighborhood set" of other
normal peers. Every peer has live connections to a specific number of other peers. The more
of these bogus peers are within this set of peer, the better for the attacker. This way, the
malicious peers can infiltrate the system and hinder normal peers from finding content. A lot
of highly connected hosts may also be used to fragment the network in many small pieces.
If all bogus peers shutdown at the same time (the so-called "meltdown"), many normal peers
loose communication and the network gets split up in many small fractions. It would take
some time until the network is connected again. However, this technique is very costly and
needs a lot of processing power and bandwidth to be accomplished. The RIAA tried to use
this technique but had to give up due to costs and the inefficiency of this attack.

Structured P2P: Most widely known structured P2P networks (or distributed hashtables)
have been designed to perform efficient searches and to remain stable, even in the face of
tremendous peer losses. What has been treated like a stepchild is the resilience to malicious
peers.

The best way to sabotage a structured P2P system is to attack content hotspots and routing
hotspots (or, in other words, those peers where a lot of traffic is coming through, if they are
identifiable), One possibility would be to overcrowd hotspots with similar keys. This does

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 36

not have the effect that the normal data cannot be found anymore. What it does is that those
peers responsible for these keys get overloaded with information. There is slight possibility,
depending on the implementation of the P2P network, that the correct content is removed
to make room for this new (fake) data. More probable is that other peers are used to split
the information stored on the hotspot. Hence more peers are needed to hold the inserted
information. This could lead to unbalanced structures where a lot of peers are bound to a
single place. Sophisticated accounting mechanisms as, for example, in PAST mitigate this
problem.

Another way of doing a lot of damage to structured P2P systems is to insert malicious
peers into the network. These peers could be used to route messages to other destinations
than they are supposed to. This way, loops could be generated. Since loops are not possible
if all peers work correctly, there is maybe no technique designated for detecting loops.

Compared to wild mesh P2P networks, there are some advantages when having a dis-
tributed hashtable. The most obvious one is that flooding would take much more bandwidth
on the attacker's side to flood the network. Messages do not grow exponentially as in wild
mesh P2P networks.

Server-based P2P: The good news is that in this kind of technology there is only a single
point that is vulnerable. The bad news is that it the most important part of the system. If the
central server is down, the P2P network does not work.

There are several ways how the server could be rendered useless. A DDOS (distributed
denial of service) attack could be used to flood the server with search requests or fake mes-
sages making the server believe new peers join the network. This is especially dangerous
because the attacker has only to concentrate on a single machine (or cluster) instead of mul-
tiple peers, as is the case in the other topologies presented here. Furthermore, the law could
be a reason to stop the server (a possibility not too far-fetched). Generally, the central server
could be unreachable for trivial reasons like a disconnection from the Internet by the ISP.

Hybrid P2P: As in server-based P2P networks, if a SuperNode ceases to exist, the data
stored by this SuperNode is no longer available. The connected peers have to find another
SuperPeer to connect to. Hence, the data is not lost but unavailable for a certain period of
time. But what happens if many SuperNodes disconnect at the same time (because all of
them belong to the same evil company)? Since peers store addresses of potentially many
other SuperNodes, this kind of attack is not very promising.

In file sharing networks, jurisdiction might concentrate on SuperNodes because they
could be accused of supporting copyright infringement. It is questionable whether this is
still possible if the user does not know whether his/her peer is a SuperNode or not and has
no possibility of influencing this decision.

3.2 Summary

Four classes of P2P topologies are discussed in this chapter: wild mesh, structured, server-
based and hybrid P2P systems. There exists no clear dividing line between these four flavors

CHAPTER 3. PEER-TO-PEER TOPOLOGIES 37

of P2P models. All of them could be somehow related to the others with some minor dis-
tinctions. However, even these small differences influence the applicability of P2P systems
for certain use cases.

For the choice of the right P2P topology, it is important to know what exactly it is needed
for. Requirements like scalability, survivability, support for ad hoc networking are as im-
portant as, for example, information about the ratio of search requests per second vs. the
frequency of joining and leaving nodes or the size of the memory a peer might have.

Ad hoc mobile communication
Connectivity overhead
Fault resilience
Message count
Scalability
Search functionality
Search results
Security
Small devices
Vulnerabilities

Wild Mesh
good
poor
good
poor
poor
good
poor
poor
good
good

Structured
average

poor
average

good
good
poor
good

average
poor

average

Server
poor
good
good
good

average
good
good
good
good
good

Hybrid

good
average
average
average
average

good
average
average
average
average

Table 3.1: Comparison of P2P topologies.

Table 3.1 summarizes the strengths and weaknesses of the topologies regarding the eval-
uation criteria used in this chapter.

In this work, some aspects of P2P networks have been evaluated with different topology
classes. It was not the goal of this chapter to evaluate existing P2P system but rather the
underlying topologies these systems have.

However, this is not the end of the story. The next generation of P2P systems will have
to employ a flexible topology. It will not be sufficient to just choose a topology and do
everything on top of that. It is more likely that the topology must adapt itself to the require-
ments and capabilities of the underlying network and hardware. In some cases, a wild mesh
topology fits better than the others while in other cases, another topology might be more
appropriate.

What is needed is a P2P system that allows to change its topology according to the
requirements of the application. The design of such a system is presented in the next chapter.

Chapter 4

Design of Omnix

Peer-to-peer is [...] not an application, it's an infrastructure.
Chris Shipley [73]

This chapter deals with Omnix, a topology- and platform-independent P2P system car-
ried out as part of this thesis. This chapter presents the challenges dealt with in the design
of Omnix. It includes a detailed discussion of the architecture and the design of the major
building blocks of Omnix, and discusses the topology module interface.

4.1 Requirements

The goal of designing a layered P2P middleware architecture can be broken down to the fol-
lowing main requirements. In addition, some requirements have been identified that cannot
be directly deduced from the need for a layered architecture. We nevertheless consider them
as being important to provide a useful P2P middleware system.

Platform-independence

To achieve true platform- (or device-) independence, the connecting points between the
P2P middleware and the underlying operating system services must be replaceable. That
means an interface must be designed to create an abstraction of the underlying OS. Fur-
thermore, the middleware must be stateless: whenever the device running the middleware is
restarted, it is not guaranteed that the information of prior sessions is still available. Finally,
the middleware must not use any language-specific functionality (e.g., Java RMI, DCOM,
etc.).

Small footprint

In the context of platform-independence, it is also important for a middleware system to
have a small footprint. To be able to run the middleware on a wide range of devices (with
varying capabilities; e.g. mobile phones, PDAs, or embedded systems), the middleware must
be as small as possible. To achieve this goal, only a thin core should be used in combination
with additional components and libraries. This approach can be compared with microkernels
as opposed to monolithic kernels in operating systems.

In addition to the ability to run on various devices, it is also important to produce as little
overhead as possible. On resource-constrained devices such as mobile phones, only little

38

CHAPTER 4. DESIGN OF OMNIX 39

Application

P2P Network Layer

Topology Module Topology Module
(Gnutella) ; {Fasttrack)

Processing Module
(Decrypt)

Processing Module
• (Logging) J

In - Pipeline

Processing Module
(Encrypt)

Processing Module
(Reroute)

Out - Pipeline

Processing Layer

Transport
(UDP) '

Transport
(TCP)

Communication Layer

Core

Transport
(J2ME) . . .

Operating System / Virtual Machine

Figure 4.1 : The layered, modular architecture of Omnix.

memory and CPU capacity should be consumed by the middleware. At the time of writing,
a typical J2ME enabled mobile phone, for example, allows an application with a maximum
size of 64 kB.

Topology-independence

As shown in Section 2.2.2 (and in greater detail in [6]), being independent of the P2P
network structure is an important requirement for a general purpose P2P middleware. Al-
though it is not entirely impossible to meet the requirements of all possible use cases with
one specific P2P topology, it may be a tremendous challenge (if not impossible) to achieve
this in a efficient way. As an example, distributed hashtables could be used (somehow) for
searching files based on meta-data but it is not the best solution.

Since we cannot tell for what purposes a P2P middleware will be used (the use cases
described in Section 2.2.2 are only a subset of all possible scenarios), the P2P middleware
must be able to adapt its topology. This flexibility not only comprises the independence of
the topology at compile time but should also enable the application to change the topology
according to its requirements at runtime.

Openness

The P2P middleware must be designed in a flexible and extensible way. This includes
the network protocol used, the structure of the message, the ontology of the content of such
messages as well as the way how messages are processed.

The main reason for this requirement is: adaptability. Omnix must Application pro-

CHAPTER 4. DESIGN OF OMNIX 40

grammers must be able to change every aspect of the middleware platform that affects its
functionality. An example where this might be needed is the heterogeneity of existing P2P
systems. It might be desirable to modify the middleware in a way that it uses standard
Gnutella messages to communicate with other peers. This would enable communication
with other, proprietary P2P networks. The challenge in this case is to provide an interface
that covers the commonly used aspects of P2P networks.

Testing

One of the most difficult tasks in the creation of P2P systems is the evaluation of the
network. There are many properties of an P2P network that needs evaluation before it can
be safely used on an Internet-scale: 1) overall performance of the network (i.e., the average
throughput of the network connections) 2) the average time until a satisfying search result is
obtained 3) the localization and the removal of hot spots and hot routes in the network 4) the
scalability of the system and 5) much more.

There are many ways how a P2P system can be tuned to change its properties. In the
Gnutella network, for example, the number of average connections a host maintains, the
typical hop count of search requests, or the introduction of so-called search hubs have great
effects on the performance and scalability of the system.

It is obvious that these changes cannot be made easily once the system is running on
thousand of nodes. Hence, it is very important to get experience on how the system reacts
to configuration changes and how to find the optimal settings beforehand. This can either be
done by employing difficult mathematical methods (of which the results may not be trust-
worthy due to the sheer complexity of the problem) or by facilitating simulators. A more
detailed discussion about the assets and drawbacks of various simulators is given in Section
6.4.

Hence, Omnix must provide means to simulate thousands (or millions) of nodes in a
virtual P2P network.

4.2 Architecture

This section presents the architecture of Omnix. For each component of the architecture,
it will be shown how it contributes to fulfill the requirements described in Section 4.1 and,
where appropriate, alternative designs are discussed and evaluated.

4.2.1 Overview

The Omnix middleware is located (like any middleware) on top of the operating system and
provides an interface to an application on top of it. This interface provides a set of services
that allows the application to access the functionality of the P2P middleware.

Omnix itself is divided into three layers, the Communication Layer, the Processing
Layer, and the P2P Network Layer. Figure 4.1 shows a high-level view of these layers
with their main components.

The Communication Layer (which can be compared to the physical layer of the OSI
model) is responsible for the actual sending and receiving of point-to-point messages to and

CHAPTER 4. DESIGN OF OMNIX 41

Application

Processing Module Processing Modulo -
. (Vtatty)--- • ftogojnjj

PnKesdtgMxMa •' Jrocesjhä Mo**»

3

Processing Layer

Pipeline

* Transport
(UDP)

Transport
(TCP)

Transport
(J2ME)

Communcation Layer

1001001101
01100

Virtual Machine

Figure 4.2: Walk-through of sending a message in Omnix.

from peers across the available "physical" network (e.g., the Internet). It consists of transport
modules and a core module that is needed for the coordination of all transport modules in
this layer.

The Processing Layer (an extension of OSI's data link layer) deals with the processing
of incoming and outgoing messages. It consists of two message pipelines, one for the peer's
outgoing and one for its incoming messages. A message pipeline comprises a list of pro-
cessing modules, each acting upon a received or to-be-sent message. Processing modules
provide basic services like, for instance, encryption/decryption of messages.

The P2P Network Layer (a combination of the network layer and the transport layer)
consists mainly of Topology Modules, which are coordinated by the Context Switcher. It is
thé topology module that contains the most important part of the P2P middleware: routing.
The Omnix API allows the application to access the services provided by the middleware.

Typically, middleware operates only in the upper layers [74] (e.g., provide services on
top of TCP/IP or TJDP/IP). But this is no longer true in the P2P area. The reason for this
is that P2P networks create an overlay network, a network on the network. P2P middleware
has to start again at the physical layer (the name is kind of misleading because we do not
actually access the physical layer but those primitives provided by the operating system).
Omnix only covers the layers 1 to 4. The reason for this design decision was that, to enhance
flexibility, the layers 5 (Session) and 6 (Presentation) should be covered by the application
(as an analogy: in the Internet, TCP/IP covers only the layers 1 to 4, too. All protocols in the
layers 5 to 6, like SMTP, HTTP, FTP, etc., have their own structure tailored to the specific
use case).

CHAPTER 4. DESIGN OF OMNIX 42

Application

P2P Network Layer

"Piocessha Module

(VMM —

^ • ".

Processing UaJule

» • (t o o o h * • • - •

Pipeline . • ' ; ' . J

4)
fKocessfco Module-

(9s)r>) : ;

Processing Modulo

- (Räume» ,

; ' - Out-Pipel ine . . .

ProcesSBig Layer

Communication Layer

Figure 4.3: Walk-through of sending a message in Omnix.

Figures 4.2 and 4.3 exemplify how the different parts of the system work together: when
an application wants to send a message (Figure 4.2) to another application residing on a
peer across the network, it calls the invoke() method specified in the Omnix API 0 . This
method requires information such as the contact information of the target peer (e.g., an IP
address) and the content of the message. The topology module then creates a self-describing
message object out of this information and puts it into the outgoing message queue (i.e. the
out-pipeline) of the processing layer © , where it gets processed by the installed processing
modules. A module, for example, adds security-related features like a digital signature © .
Once the message has passed the outgoing processing pipeline, it is given, via the Core 0 ,
to the appropriate transport module which conveys the message over the network 0 . The
Core chooses the correct transport module according to the system's configuration.

On the target peer's side (Figure 4.3), the message is received by a transport module
0 , parsed and put into the incoming message pipeline by the Core 0 . In the incoming
pipeline, the message gets processed in the same way as in the outgoing pipeline on the
sender's side. The digital signature is verified by one of the installed processing modules 0 .
After the pipeline the context switcher gets hold of the message 0 . According to the meta
information stored in the message, the message is dispatched to one of the topology modules
installed 0 . Finally, the message is forwarded to the application above 0 .

Note that it is not compulsory to use the components of the Processing Layer or the P2P
Network Layer. It is also possible for an application to directly access the Communication
Layer. This way, applications enjoy an even higher flexibility, which might be necessary if
the Omnix API does not provide the required means for a specific functionality.

CHAPTER 4. DESIGN OF OMNIX 43

Transport
(UDP)

k

Transport
(TCP)

4

/
^—->^

Core

Transport
(Bluetooth)

>

Transport
(IrOA)

i

>

Communication Layer

Figure 4.4: Support for heterogeneous devices and protocols.

In the following sections, the components of the Omnix architecture and mechanisms are
described in more detail.

4.2.2 The "Physical Layer"

4.2.2.1 Transport

Supporting heterogeneous platforms and protocols

Almost every P2P system currently available has only been built for working in the Inter-
net's IP network (i.e., they are using plain TCP/IP or higher-level protocols such as HTTP or
TLS, which are all based on the IP network). Omnix takes the next step and embraces other
network types as well (e.g., Bluetooth).

The problem that we see is that there exists no common network access interface for
all these types of networks. Bluetooth, for example, for which third party libraries like
BlueDrekar [75] or OpenBT [76] are needed, cannot be accessed in the same way as the IP
network.

The solution to this problem is an abstraction layer between the communicating soft-
ware and the underlying networking services provided by the operating system, the virtual
machine, by additional libraries. Having such an abstraction makes it possible to provide
a common interface to all types of networks and protocols without the necessity of chang-
ing a single line of code in the remainder of the system or the application. To achieve this,
Ömnix uses so-called transport modules. A transport module is responsible for sending and
receiving messages between two peers. How the network is actually accessed to perform
these operations is transparent to the upper layers. For the Core, which sits on top of these
transport module, it makes no difference whether a transport module accesses the IP net-
work, uses Bluetooth for communication, sends a message to another peer via infrared link

CHAPTER 4. DESIGN OF OMNIX 44

public interface Transport extends Runnable {

public void addlnputMessageListener(MessageListener ml);
public boolean removelnputMessageListener(MessageListener ml)

public boolean sendMessage(Message msg);

Figure 4.5: The Transport module interface.

or uses some other network technology (Figure 4.4). Figure 4.5 shows the Java interface of
the transport module.

Allowing multiple protocol structures

Normally, a message would be simply processed by a parser. But this is no longer suf-
ficient if the middleware is supposed to support multiple protocols at the same time (e.g.,
SOAP requests, Gnutella messages, CORBA method invocations, etc.). This is necessary,
for example, if a peer wants to use two or more protocols, to build a bridge between different
P2P networks. Furthermore, the middleware can then be used for more than just one type
of communication (e.g., using one protocol for instant messaging while another protocol is
used for sharing files).

To solve this problem, a Proxy must be used. For each message received, a so-called
MessageParserProxy iterates through the list of available MessageParsers and picks the first
one that claims to be able to parse the given message (the MessageParser can make this
decision by parsing the message headers, for example). The complete workflow of this task
is depicted in Figure 4.6. This way, the structure of the message is open to changes.

Once the message is parsed, it is passed to a list of subscribers (MessageListener) that
have registered to get informed in case a new message has been received. One of these
components is the Core.

Making networking transparent

A key requirement when using a layered architecture is not to rely on any network-
specific libraries above the transport module level. Hence, it is not possible to use, for
example, a Java S o c k e t or I n e t A d d r e s s object in the Core or above, as they are only
valid in an IP network. It is crucial that the networking part are completely encapsulated
in the transport modules. Above that, only generic components must be used. Therefore,
Omnix does not use any J a v a . n e t classes outside the transport modules.

The Communication Layer is designed so that transport modules are completely inde-
pendent from each other (to be more precise, they are not allowed to depend on the existence
of another component, as it would create a dependency that might not be fulfilled by the
system's configuration). This has the advantage that multiple transport modules can be used
in parallel, which allows an application to use various communication protocols at the same

CHAPTER 4. DESIGN OF OMNIX 45

TransDort Module MessageParserProxv Parse rModule Messaoel istenerfl

Message received

parse

Message object

able to parse?

yes / no

parse

Message object

process Message

Figure 4.6: Sequence of actions in the Communication Layer.

time. A peer, for example, could connect to peers in the nearby via Bluetooth while other
peers are contacted using an Internet connection.

Providing a flexible network address abstraction

To identify a peer in the IP network, an address.port pair is sufficient. In other types
of networks, however, this is no longer the case (as, for example, in Bluetooth). Hence, it
is necessary to use a network independent addressing scheme above the transport modules.
JXTA achieves this by assigning a globally unique ID to every peer in the network. It uses
only this ID to address remote peers. Whenever a message is sent to a remote peer, the
component responsible for sending the message has first to determine the actual address of
the destination peer by resolving the ID.

Omnix provides the abstraction of a Contact, which represents a remote peer. The content
of a Contact is not fixed and depends on the type of the network, but would be in most cases

CHAPTER 4. DESIGN OF OMNIX 46

3: reply From the upper layers J

Processing Module
(Decrypt)

Processing Module '
(Logging)

in - Ppeline

i

Processing Module
(Encrypt)

Processing Module
(Reroute)

Out-Pipeline

Processing Layer

(Eprocess message 4: process message

- ' ! ' _ _ _ _ _ - - — — " * "

1 : message received n
Communication Layer

(5: send message

Transport
(UDP)

Transport
(TCP)

Figure 4.7: Omnix-Core dispatching between Processing Layer and transport modules.

a URI-like identifier (e.g., an IP address). However, a Contact can also be a unique ID or a
set of descriptions (e.g., the Message Bus [77] uses an addressing scheme that uses multiple
tuples describing the destination).

Upper layers use Contact objects without knowing the internal structure or the actual
addressing scheme hidden behind the interface. Thus, it is not necessary for any lookup
mechanisms when a message is sent to a remote peer.

4.2.2.2 Core

The Core is responsible for organizing the transport modules and for dispatching messages
between the Processing Layer and the transport modules. If a message has been received by
a transport module, it is passed to the Core, which delivers it to the In-Pipeline (explained in
Section 4.2.3.1) of the Processing Layer. If the Core gets a message from the Out-Pipeline,
it must determine which transport modules to use for the sending of the message (this infor-
mation is stored in the message or in the system's configuration). If no transport module is
specified, a default transport module is used. Figure 4.7 shows these steps schematically.

4.2.3 Common Services

Allowing pluggable components to change the behavior of the system

In the OSI model, the second layer {Data Link) is mainly responsible for providing a
channel free of detected errors. Omnix provides this functionality and more in this layer.
The main task of this layer is to provide common services for all types of P2P systems and

CHAPTER 4. DESIGN OF OMNIX 47

to keep the Core as thin as possible. We decided to introduce pluggable components that can
process incoming and outgoing messages.

The important aspect in this context is that these pluggable components are in a layer
between the transport layer and the routing layer (i.e., the P2P Network Layer). Hence,
plugins in this layer operate on point-to-point messages between two peers. This makes
it possible to introduce services that are necessary for all P2P topologies (e.g., encryption,
error correction, logging, etc.). In JXTA, there exists no such pluggable layer between the
Messenger and the routing layer.

4.2.3.1 Pipelines

Organizing the components

How can these plugins can be managed by the Omnix middleware? If a message is
received or to be sent, it has to be processed by the processing modules. In the design
of Omnix, we has do decide, whether plugins should be autonomous or work in concert.
Furthermore, we had to decide whether plugins should process messages sequentially or
whether loops should be allowed.

We decided to design processing modules to work autonomous (i.e., they are not allowed
to depend on the output of other processing modules). The reason for this decision was
that modules should have a specific objective that they can reach without the help of other
modules. This increases robustness as a module works in any system configuration.

The next design decision we had to make was whether Omnix should use a structure of
plugins that allows loops and conditional branches. The problem with this approach is be
that the complexity of the system (i.e., of the processing modules) would demand special
logic in the processing layer (e.g., to detect and avoid infinite loops). As the processing
layer can only provide simple, point-to-point services we do not consider such a complex
organization of plugins as necessary. Hence, we decided to arrange processing modules in
linear pipelines.

The Processing Layer consists mainly of two pipelines (or channels). One pipeline is for
outgoing messages and the other for incoming messages. If a message has been received by
the Core, it is put into the In-Pipeline while outgoing messages from the upper layers are
passed through the Out-Pipeline.

A pipeline is a list of Processing Modules (Section 4.2.3.2). If a message is sent through
a pipeline, it gets processed by each of the processing modules sequentially. Specified by
the system's configuration, arbitrary processing modules may be inserted into the pipelines.
This way, Omnix can be easily extended with additional functionality. Figure 4.8 shows an
example of how messages are passed through the processing pipelines.

If a message has passed the In-Pipeline (i.e., no processing module has consumed or
discarded the message), it is forwarded to the P2P Network Layer. In the other direction, if
a message has gone through the complete Out-Pipeline, it is passed to the Core which takes
care of sending the message via a transport module.

Each module may stop the message from being processed further. Either the module re-

CHAPTER 4. DESIGN OF OMNIX 48

Message
received

send
Message

Core

Processing Module
, (togging)

• Processing Module .
- ' (Reroute^ . a

In-Pipe!ino

Processing Module
' ' (Security) " . •

| Encrypt j

Processing Moduls
{Uncompress)

Out-Pipellno

Processing Module
~ (Add Contact Info)

Figure 4.8: Example of processing modules in the message pipelines.

turns an error that tells the pipeline not to proceed with processing the message (e.g., because
the message content is corrupt) or indicates that the module has consumed the message (i.e.,
the message has reached the final destination). Examples of what processing modules could
be used for are given in Section 4.2.3.2.

It is also desirable to modify pipelines in the Omnix framework at runtime. It is possible
to add new processing modules to the pipeline and to remove existing ones. For instance, if
a peer needs an authentication module, it may download it from a trusted website and install
it in the two pipelines at runtime (note that it is not necessarily the case that all peers in a
P2P network must have the same processing modules installed).

4.2.3.2 Processing modules

public abstract class Module {

public int receiveRequest(Request req) { return MOD_OK;
public int receiveReply(Reply rep) { return MOD_OK; }

public int sendRequest(Request req) { return MOD_OK; }
public int sendReply(Reply rep) { return MOD_OK; }

Figure 4.9: The Processing module interface.

As described in Section 4.2.3.1, Processing Modules can be used as a flexible and exten-
sible way of changing the behavior of the Omnix framework.

Processing message objects

So far, it is not clear what a processing module can actually do with an incoming or
outgoing message. Since modules are arranged sequentially in the pipeline, the interface
between the pipeline and the processing module plugin can be very simple (e.g., processing
modules do not have to interact with other processing modules).

CHAPTER 4. DESIGN OF OMNIX 49

l*X

Processing Module
(Reroute)

[LJÈïïSL !" "̂ *"
Processing Module

(Soaiity)

f Encrypt " j

- I " ..-•-';

In-Poeline

Processing Module
(Uncompress)

Response Encrypt message!

(a)

Core '

Processing Module
(Logging)

Processing Module
(Reroute)-

Processing Module
(Securay)

I Encrypt |

p J In-Pioeline

Processing Module
(Uncompress)

Out-Ptpeltne

(b)

Figure 4.10: Processing Messages in the message pipelines.

Figure 4.9 shows the interface between a processing module and the pipeline that it is
attached to. A module is prepared to process incoming and outgoing messages. A mes-
sage could either be a request or a response. In each of these cases, the modules get the
opportunity to process the corresponding message.

A module can process a message in the following five ways:

• Ignore the message (default): In this case the module takes no action on receiving
the message. The message is passed on to the next module in the pipeline without any
modifications.

• Change the content: The processing modules might change the content of the message
before it gets further processed by the other modules in the pipeline. An example could be a
module that restores compressed data to its original format.

• Silent processing: A module can also process the message without changing the mes-
sage. An example could be a processing module that logs all incoming and outgoing mes-
sages.

• Send a message The processing module could also send a message in response to
a request received. This message could either be a response back to the originator of the
message or a new request to anther peer.

• Discard the message It is also possible for a message to discard the message com-
pletely. This would make sense, for example, if a sending peer is on a blacklist or if the
incoming request is not allowed.

Figure 4.10 shows another example of how a processing module can define the behav-
ior of the system, (a) A message received by the Communication Layer © is put into the
In-Pipeline ©. The processing module that is responsible for encrypting and decrypting
messages gets the message and checks whether the message is encrypted Q . In this see-

CHAPTER 4. DESIGN OF OMNIX 50

nario, the message is not encrypted. Hence, the module creates a response indicating that the
sending peer must encrypt the message with the encryption key attached to the response 0 .
(b) Eventually, the sending peer sends the message again, this time encrypted with the public
key of the receiver © . Again, the message gets to the processing module in the In-Pipeline
but this time passes the test ©.

Processing modules could be used, among many other things, for creating a reliable
channel between two peers by verifying incoming messages and resending messages if no
feedback is provided. The processing layer thus meets (and exceeds) the requirements of the
OSI data link layer.

4.2.4 The P2P Network Layer

This layer combines OSI's Network and Transport layers. The first one is responsible for
providing the routing in the network (the most complex part of networking) while the latter
is mainly used for keeping track of multiple connections and-potentially-providing reliable
connectivity. The challenge that we face here is how to separate the routing algorithm from
the P2P services an application typically would need. To solve this problem, we propose
an interface that allows an application to use common P2P middleware services without
imposing restrictions on the topology of the underlying P2P network.

4.2.4.1 Context Switcher

Supporting multiple topologies and P2P networks — at the same time

When an application is using a conventional P2P middleware, it would be connected to
other peers in a network using a fixed topology. We aim to provide a P2P middleware that
allows an application to connect to multiple P2P networks at the same time. As pointed out
in Section 4.1, one of the requirements for a P2P middleware would be to support multiple
topologies.

Hence, in addition to provide access to multiple P2P networks at the same time, Omnix
must also allow that these P2P networks use different network topologies. Each P2P network
may have its own topology that is completely independent from the other P2P networks that
the application is connected to.

This functionality is achieved by Topology Modules. A topology module implements
the routing within the P2P network. Depending on the topology of the network, different
routing algorithms are required. In a wild-mesh network, a peer would send a search request
to its neighbors while in a server-based network, the search request would be sent to a central
server. All the properties and functionalities that make out a P2P topology are encapsulated
in a topology module.

The problem that we face here is, that, if multiple topology modules are installed, it
is no longer clear which topology module should receive incoming messages (which also
means that incoming messages cannot be assigned to a network). To solve this problem,
each message should provide a network identifier. All peers in a P2P network must use the

CHAPTER 4. DESIGN OF OMNIX 51

same network identifier (which could be a simple string describing the purpose of the P2P
network). If a message does not provide such an identifier, it is assigned to the default P2P
network.

The Context Switcher is responsible for this coordination of various topology compo-
nents. Incoming messages are forwarded to the proper topology modules (thus providing
multiple connections as in the Transport layer) and applications can use the ContextSwitcher
to access the topology modules.

4.2.4.2 Topology modules / Omnix API

Providing an abstraction of the routing algorithm

As indicated in Section 4.2.4.1, a Topology Module is the place where the topology (i.e.,
the routing) of a P2P network is located in Omnix. A topology module contains the logic
that decides how the topology of the P2P network should be constructed. The logic affects
how the peer responds to incoming search requests, where outgoing search requests should
be sent to, how peers in the neighborhood are detected, and much more.

For instance, a topology module representing a wild-mesh network such as Gnutella,
would receive incoming search requests, process and forward them to other connected peers
(with a decreased time-to-live). Note that a topology module does not have to cover all
aspects of a P2P network. In a server-based P2P network, there exist two roles of peers.
The first one is the normal peer that connects to the server and the other one is the server
itself. Although these roles belong to the same topology, they do not have necessarily to be
implemented in the same topology module.

For the application, it should not make a difference which topology module is used to
communicate with other peers. If an application is searching for a file, it is not important
for the application to know which topology is employed to perform the search. To meet
the requirement of topology-independence, Omnix provides a generic abstraction of these
topology modules. By using a general interface that Omnix provides, the application may
access all topology modules in a uniform way. Hence, the application is not bound to a
specific topology but might use any topology available without the necessity of changing a
single line of code in the application itself.

Specifying an topology-independent service interface

The challenge here is to identify the functionality that is 1) useful within a P2P network
and 2) that can be provided by most, if not all, P2P systems currently available. By analyzing
the network primitives required by different classes of P2P systems, we identified the set of
method depicted in Figure 4.11 to be sufficient to cover a wide range of P2P systems and ap-
plication domains. ' An implementation of a topology module does not have to implement all
functions of this API. If a method is not implemented, an exception is raised and, hopefully,

'Dabek et al.[78] propose a similar approach for structured P2P networks only, which allows them to intro-
duce a more detailed API.

CHAPTER 4. DESIGN OF OMNIX 52

handled gracefully by the application.

public interface Network {

public String search(SearchDescription sd, SearchResultListener srl)

public String inject(ServiceDescription[] sd) ;
public String remove(ServiceDescription[] sd);

public ServiceDescriptionf] injectedLocally();

public String subscribe(EventSetDescription esd);
public String unsubscribe(EventSetDescription esd);
public void notify(Everitlnfo ei);

public byte[] invoke(Contact c, String method, byte[] data);

Figure 4.11 : The Omnix API.

The following list gives an overview of the methods defined by the Omnix topology mod-
ule interface.

Search
This is the most vital method in a P2P network. It lets the application search for meta-data
describing the information or services shared in the network. It is not defined how the search
should be performed: it is completely up to the topology module itself. There can be no
guarantee about the success of the search. Search results may not exist or may be received
after a long delay and not as a single block of information. Every time a search result is re-
ceived, it is immediately forwarded to the given SearchResultListener (i.e., the application).
The search method must not be blocking (e.g., until a search result has been received).
The ontology and structure of search requests are not defined by the Omnix framework. How
search messages and search result messages look like is defined by the application. Omnix
provides SearchDescription as the interface between the application and the topology mod-
ule to define the search terms.
Although it might be possible to find a general structure and ontology that covers all possible
aspects of searching in arbitrary P2P networks, this is not really desirable. The advantages
we would gain by such a system (e.g., the Resource Description Framework - RDF [79]) do
not justify the complexity that it creates at the same time. The reasons for this decision are
the goal to keep the Omnix framework easy to use and also to have a small footprint, which
would not be possible with a very complex search ontology.
The Omnix framework takes a different approach. It lets the application handle the structure
of the search messages and their results (because they know best about the structure of these
messages). The only requirement is that the corresponding components implement a generic
interface provided by Omnix. This is necessary so that the lower layers of Omnix can access
the search request and search result specifications in a way that can be transferred over the
network.

CHAPTER 4. DESIGN OF OMNIX 53

Inject
Content that can be searched for in à P2P network has first to be published, advertised, or
injected into the system (in the form of meta-data describing the shared content). The mid-
dleware must not impose any restriction on the type of the data injected. It is within the
scope of duties of the topology module to define what should happen if an application injects
information (e.g., sending it to a central server of storing it in a local database).
As with search requests, the Omnix framework just requires that whatever information is
injected into the network, adheres to a given interface (ServiceDescription). This interface
is needed so that the data structure describing the information to be injected can be accessed
by the lower layers of Omnix. There is no implication on the structure, data type or ontology
of the service description.

Remove
Removing injected meta-data from a P2P network might be a very complex task. Omnix can-
not provide any security mechanisms to prevent malicious peers from removing data from
the network without permission (e.g., by allowing peers only to remove the content that has
been inserted by the same peer before). Since Omnix has no information about the infor-
mation shared over the network nor how this information is distributed over the network, it
is impossible to provide any security mechanisms. This functionality must be provided by
the topology module. Furthermore, the removal of an information cannot be guaranteed in
general. If, for example, an artifact is distributed over the network automatically after the
injection, it might well be impossible to remove all copies of this artifact.

List local descriptions This method provides a list of all service descriptions stored lo-
cally on a peer. While this might sound unusual in many P2P networks (because the service
descriptions stored on a local peer are usually the ones that have been inserted by the appli-
cation), this method makes sense in distributed hashtables and some special forms of wild
mesh systems (e.g., Freenet [18]). In both systems, injected content gets either automatically
distributed to remote peers or cached at routes between a provider and the consumer. This
method might prove useful if an application wants to screen for what (potentially illegal)
content it shares system resources.

Subscribe / Unsubscribe / Notify
P2P networks using Omnix can also be used as an event-based system (see [80] for an in-
troduction to event-based systems; PeerWare [81] and DERMI [82] are example P2P event-
based systems). Omnix only provides generic interfaces for the definition of subscriptions
and notifications. This provides the highest degree of flexibility possible. For Omnix, it is
only important that the information regarding subscriptions and events can be transported
over the network. When an application subscribes for an event, it uses the EventSetDe-
scription interface, which is provided by the topology module. Omnix does not specify the
functionality, the content, or the structure of this EventSetDescription. This structure can be
very simple (e.g., by identifying a channel by its name) or very complex (e.g., the specifica-
tion of a set of correlated events).
To produce an event in an event-based P2P system, the application can use the notify method.
The content of the event and the description of where this event belongs to (i.e., which chan-

CHAPTER 4. DESIGN OF OMNIX 54

nel) is not restricted by Omnix. It just needs a way of getting this information in a form that
can be transferred over the network.

Send (Invoke)
For direct communication between peers, peers can also invoke "remote methods". These
methods cannot be compared to higher-level communication facilities like CORBA (Com-
mon Object Request Broker Architecture), RMI (Java's Remote Method Invocation) or RPC
(Remote Procedure Call). Those systems are unfortunately infeasible in Omnix because they
1) need (potentially) scarce resources (i.e., bandwidth and memory space) and 2) they are not
supported on all devices that Omnix should be able to run on (e.g., mobile phones). Hence,
method invocation in Omnix uses the standard sendreceive pattern, which can be compared
to sending a normal message and waiting for a response.
A remote method invocation in Omnix consists of the contact information of the remote
peer, a textual representation of the method name and the arguments used for the invocation
(as a binary array). The return value is also binary encoded so that it can be transferred by
the Omnix system. There is no restriction on the content of the binary data. For instance, it
could be a serialized Java object.

Separating the routing from the content

The main disadvantage of this design is that there is not a strict separation between the
P2P networking layer and the application. It is obvious that there must be some binding
between them. If, for instance, an application wants to inject some information about a
service offered, a distributed hashtable topology module must have access to the description
(because it needs a key based on the content that can be used for the hashtable).

Hence, there is a possible dependency between the topology module and the application
on top of it. To face this problem, Omnix provides default structures that may be used for
most use cases. These structures can be used in a very flexible way.

Designing an interface that would meet the aggregate requirements of all possible P2P
applications could be possible, but the increased complexity of the result would render the
complete middleware less usable (and less attractive). We decided to provide an open inter-
face and, to keep the layered structure to some extent, a default implementation that suffices
for most applications.

Section 8.2.3 shows that the methods introduced in the Omnix API are sufficient for all
P2P topology classes (see Section 2.3) and use cases (Section 2.2.2).

4.3 Streaming

Identifying communication classes in a P2P network

Typically, in P2P networks three classes of message exchanges exist:

CHAPTER 4. DESIGN OF OMNIX 55

• Maintenance: To keep up the structure of the P2P network, it might be necessary
to communicate with other peers in the network. The most common example is the
sending of periodic message to other peers in the (network) neighborhood to verify
that they are still reachable. If a remote peer is no longer available, it has to search
for another peer that it can connect to. The complexity of this task depends on the
topology chosen. Another example is that peers have to continuously search for other
peers to complete (or improve) their routing tables.

• Search related: This kind of message is used for searching content or services in the
P2P network (no surprise here). There are typically two message types: requests and
responses. The request contains a (maybe incomplete) description of the desired infor-
mation (e.g., some pattern that can be matched with meta-data). The response contains
a list of descriptions of artifacts (e.g., files, services, names, etc.) that match the search
specification. Note that in most cases this kind of message does not contain the actual
information itself but meta-information about where to find it. This is important for the
searching peer. So, it can browse through the description data instead of downloading
all information directly (which could be painstakingly slow) before selecting the exact
match.

• Streaming: Once the desired information is located, it has to be downloaded or ac-
cessed (in the case of services). While the first two classes of communication typically
consist of small packets (i.e., they are message-oriented), downloading files (or in gen-
eral: any kind of bi-directional communication with large amounts of data) calls for
streaming (small amounts of data can, of course, be transmitted in a message-oriented
way). When streaming, not single, small packets are sent to the remote peer but a chan-
nel is opened to transmit continuous data with increased throughput and reliability. An
example for a stream is the TCP/IP protocol which creates a connection-oriented con-
nection to another host.

The JXTA core implementation is completely message-oriented (i.e., it does not provide
streams). There exist additional projects like p2psockets [83] that build this feature into
JXTA.

Designing an open streaming architecture

The most simplistic solution would be to let the application on top of Omnix deal with
the creation and use of streams (e.g. by using a TCP stream). This way, Omnix would only
be responsible for locating the data without any means to acquire the data. This has the
advantage that the application would have full control over the streams which would reduce
the complexity of the interface between the application and Omnix.

Unfortunately, this is not possible. The first reason for this is the possibility of firewalls
between the server and client peer. A firewall might not allow incoming connections to the
server peer. Another problem in this context are NAT (Network Access Translator) configu-
rations. The solution would be to contact the server peer and ask it to create a stream to the
client peer. But it does not make sense to let the application programmer create this func-
tionality while Omnix could do this as well. The second reason why it is not desirable that

CHAPTER 4. DESIGN OF OMNIX 56

an application on top of Omnix opens a channel itself is: platform independence. While it is
possible to open a channel (e.g., a TCP/IP connection) on a normal PC or a handheld device,
it is impossible on a Bluetooth device or a mobile phone without changing the code of the
application.

Hence, there is a need for an abstraction between connection-oriented streams and the
underlying network protocols. This is achieved by the StreamManager (Figure 4.12).

public interface StreamManager {

public String requestStream(Contact remotePeer, String context,
StreamReceptor receiver);

public void addStreamReceptor(StreamReceptor sr);
public void removeStreamReceptor(StreamReceptor sr) ;

Figure 4.12: The StreamManager interface.

Establishing a stream

In the following, we describe the interactions of the various components of the open
streaming architecture for opening a stream to a remote peer.

If the StreamManager of a peer detects that a remote peer wants to create a stream, it
iterates through the list of so-called StreamReceptor?, (Figure 4.13; typically provided by
the application), asking each to analyze whether it is willing to accept the incoming stream
request. Information about the stream, provided by the connecting peer, helps the Stream-
Receptors to evaluate the relevance of the requested stream (e.g., by providing the name of
the file that should be uploaded).

public interface StreamReceptor {

public boolean analyzeStream(Contact c, String context)
public void takeoverStream(Contact c, String context,

StreamControl sc);

Figure 4.13: The StreamReceptor interface.

Once a StreamReceptor has accepted to take over the stream, the StreamManager opens
the stream and passes it to the StreamReceptor in form of a StreamControl (Figure 4.14).
Note that it is necessary to use a generic StreamControl component that encapsulates the
networking aspects of streaming to ensure true platform independence (e.g., it would not be
possible to pass a S o c k e t object to the StreamReceptor because a J2SE-Socket does
not exist on a Java-enabled mobile phone). A StreamControl contains an identifier and
two streams, one for each of the two directions the communication might take place. If

CHAPTER 4. DESIGN OF OMNIX 57

no StreamReceptor is willing to take over the stream, the StreamManager returns an error
message to the requesting peer.

public interface StreamControl {

public InputStream in();
public OutputStream out();

public String streamID();
public void closet);

Figure 4.14: The StreamControl interface.

If an application wants to open a stream to a remote peer, it instructs the StreamManager
to do so and registers as a StreamRequestor (Figure 4.15). The StreamRequestor is similar to
the StreamReceptor. The difference is that the StreamRequestor cannot, once it has requested
the StreamManager to open a stream, refuse to accept the established communication link.

3

public interface StreamRequestor {
public void takeoverStream(StreamControl se)

Figure 4.15: The StreamRequestor interface.

Providing a network- and protocol-independent abstraction of streams

To provide complete platform-independence, it is not possible for the StreamManager to
directly use the network primitives provided by the operating system or virtual machine. As
in the case of transport modules, it is necessary to have an abstraction between the Stream-
Manager and the underlying network. This abstraction is achieved by the use of so-called
StreamProvider components (Figure 4.16). A StreamProvider provides all functions neces-
sary to create a connection-oriented communication link with another peer. For each type
of network, a different StreamProvider might be used. For example, StreamProvider com-
ponents could be used for the TCP/IP protocol, some proprietary Bluetooth protocol, or for
anything else that can provide streaming. For the StreamManager, it does not make a differ-
ence how the communication is achieved in the StreamProvider (i.e., the interface is always
the same) as long as the communication takes place.

Providing tailored streams

A StreamProvider, in conjunction with StreamControls, may not only be seen as an ab-
straction for using sockets (and the like). It is rather a possibility to tailor streams to the
requirements of the application. If streaming, for example, is used for Voice over IP (VoIP),
the StreamControl object may be an implementation of the Real-Time Transport Protocol

CHAPTER 4. DESIGN OF OMNIX 58

5

public interface StreamProvider {
public Contact createServerSocket(String streamID,

StreamRequestor sr);
public StreamControl connectToServer(String streamID, Contact c)

Figure 4.16: The StreamProvider interface.

(RTP, [84]), which in fact runs on top of UDP. Hence, the stream is not necessarily a normal
stream (in the sense of TCP, for example) but can be anything that transmits data. Depending
on the use case, different StreamProvider might be used. For downloading a file, a Stream-
Provider with a reliable connection is needed. When streaming real-time audio or video, it
is more important that the StreamProvider can guarantee that the stream is continuous. Sup-
porting streaming while on the move or QoS (Quality-of-Service) are additional features that
are also possible.

The central part of streaming is the StreamManager itself. It is the central controlling
component that manages the registered StreamProvider and StreamReceptors. It is also re-
sponsible for establishing a stream-connection across firewalls and NAT configurations.

Establishing a connection to a peer behind a firewall

When a peer wants to create a stream (e.g., a TCP connection) to a remote peer, it might
be the case that the firewall installed at the remote peer does not allow incoming TCP con-
nections. In this case, the stream has to be opened in the other direction. To support this
feature, the StreamManager must allow two ways of opening a stream:

• As a server: (Figure 4.17) The StreamManager instructs a StreamProvider to accept
incoming connections and sends a message containing a connection request to the re-
mote peer's StreamManager. The remote StreamManager iterates through the list of
StreamReceptors the application has installed and picks the first one that accepts the
stream. The resulting StreamControl (i.e., a representation of the actual established
stream), which is returned by the StreamProvider, is handed to the StreamReceptor
(i.e., the application). The initiating StreamManager gets a corresponding StreamCon-
trol object from the StreamProvider, which is passed to the StreamRequestor (i.e., the
application). Now, the applications on both sides have full control over the stream (as
StreamRequestor and StreamReceptor).

• As a client: (Figure 4.18) It might be the case that a peer is not able to accept incoming
connections (e.g., because a firewall blocks incoming TCP connections). In this case,
the StreamManager can also be configured to try to connect the other way round. When
the application wants to create a connection to another peer, the StreamManager sends
a message (again, via the Core and a transport module) to the remote peer. This mes-
sage requests the remote peer to accept a connection. The remote peer searches for
a StreamReceptor willing to take over and, if successful, brings the StreamProvider
to wait for an incoming connection (e.g., the remote StreamProvider opens a server

CHAPTER 4. DESIGN OF OMNIX 59

fitreamFteqimstor StreamMananfir fitreamProvirtern

open stream

StreamControl

wait for connections

connect information

request stream

StreamControl

stream accepted

fitraamMananer fitreamRecfintorfl StreamPrnvitiprfi

accept?

yes / no

create stream
J

StreamControl

StreamControl

Figure 4.17: Opening a stream as a server.

socket and waits for incoming connections). Having done this, the remote peer sends
back a response to the local peer. This response must include information about how
and where to access the remote peer's StreamProvider (e.g., the port number). Af-
ter receiving the response, the StreamManager instructs its StreamProvider to open
a streamed connection to the remote StreamProvider and returns the corresponding
StreamControl object. The StreamManager forwards this StreamControl to the initial
StreamRequestor.

By default, the StreamManager first tries to create a streaming connection as a server.
If this does not succeed (e.g., because the remote peer accepted the connection but no con-
nection has been established - possible due to a firewall), the StreamManager automatically
makes a second attempt in the other direction. Hence, the StreamManager provides a simple
service for dealing with firewalls and NAT configurations.

However, this is only a best effort service. If both peers are not able to accept incoming
streamed connections, it is impossible with this implementation of the StreamManager to
create a working communication link. However, the flexibility of Omnix allows the Stream-
Manager to be replaced by another implementation. Another StreamManager, for instance,
could use a central server to connect two peers behind firewalls. Both peers connect to the

CHAPTER 4. DESIGN OF OMNIX 60

local

StreamRenuestor StrftamMananpr StreamProvidfirfi

open stream

StreamControl

request

connect information

connect

StreamControl

StmamMananar KtrpamRenentnrn StrsamPrnviriarn

itream (as client)

accept?

yes / no

wait for connections

connect information

create stream

StreamControl

StreamControl

Figure 4.18: Opening a stream as a client.

same server, which would then be used as a proxy, forwarding the data streamed to the server.

Load balancing

Furthermore, the StreamManager does not necessarily have to be on the same machine as
the StreamProvider. Since StreamManager and StreamProvider are replaceable, they could
themselves use the network for communication. This would have the advantage that the
StreamManager could do, for example, load-balancing among the available StreamProviders.
This could be useful in P2P networks with central servers.

In this chapter, we introduced Omnix, a middleware framework for P2P networks. By
using a layered architecture, Omnix is able to adapt itself to the requirements of the applica-
tion. By using plugins it can be customized to run on various devices, use arbitrary network
protocols or employ any network topology that seems fit. What has not been covered by this
chapter is the connecting link between two peers, the protocol. The design for an open P2P
protocol is presented in the next chapter.

Chapter 5

Omnix Protocol

If everyone on campus turned off the outbound KaZaA traffic, approximately
50% more bandwidth could be freed for other Internet traffic.
Jintae Lee [85]

The protocol plays an important role in a P2P network. It specifies how information is
exchanged between two end-points. Note that it does not (necessarily) define the topology of
the network. Depending on the purpose of the network, the protocol must support distributed
searches (e.g., for peers, artifacts, users, etc.), direct communication between two peers,
accessing files and services, etc.

5.1 Requirements for a P2P protocol

In the course of designing Omnix we identified the following requirements as being vital for
an open P2P protocol:

• Topology independent: Since the purpose of the Omnix P2P framework is not deter-
minable, the protocol must be independent of the use case and the topology. Hence,
the protocol must only provide means for connecting two peers. It must not rely on
the existence of a network service infrastructure (such as DNS). This way, restrictions
on the overall topology of the network are impossible.

• Arbitrary content: The protocol must be able to transport any type of content. It should
not impose any restrictions on the payload of the protocol (e.g., no binary data).

• Reliable: It cannot be guaranteed that the underlying transport protocol is reliable.
While TCP is fairly reliable, for example, this assumption cannot be made when using
UDP, infrared communication, Bluetooth, etc. Reliability can be achieved by sending
acknowledgment-message on incoming messages. This way, a sending party can re-
send a message if no corresponding acknowledgment has been received. The protocol
must support acknowledgments to messages and ways to match messages and their
corresponding acknowledgments.

61

CHAPTERS. OMNIXPROTOCOL 62

• Transport protocol independent: The P2P network protocol must be independent of
the underlying transport protocol used (e.g., TCP, UDP, Bluetooth, etc.). This means
that the protocol must not make any assumptions on the type of transport network
(e.g., connection-oriented vs. connectionless). Furthermore, the addressing scheme
must be independent of the underlying transport protocol. For instance, it would not
make sense to use IP address/port pairs for connecting two peers over an infrared
communication link.

• Small messages: It is necessary that the protocol is not too "verbose". It is a require-
ment that messages sent over an Omnix P2P network are as small as possible. This
is necessary because there cannot be any assumptions made about the capabilities of
a peer. If a device has only a limited memory capacity, it may not be able to process
large messages. Furthermore, the protocol must not rely on the existence of streams. If
streams are needed (e.g., for the exchange of large chunks of data), a StreamManager
should be used.

• Secure: It is easy to say that the protocol must be secure. But this does not specify
what security means in this context. There are a lot of security aspects to be cov-
ered: secrecy - or confidentiality - (has to do with keeping information out of hands
of unauthorized users), authentication (deals with determining whom you are talking
to before revealing sensitive information), non-repudiation (how can you prove that
somebody has "really" sent a message although she denies it), and integrity control
(makes sure that a message has not been altered between sender and receiver). The
protocol must support all four security aspects. This sounds more sophisticated than it
is. The major work is done by the peers. The protocol just has to support these aspects
(e.g., by allowing encryption of parts of the message).

• Firewall/NAT savvy: Firewalls and NATs are major problems in Internet-scale P2P
networks. The protocol must support the traversing of firewalls and NAT boxes. There
exist three ways how this can be achieved. 1) by using ports that are typically open for
incoming requests (e.g., the HTTP port 80), 2) by using connection-oriented, persistent
connections to the outside (which are used by remote hosts to connect to the local host
behind the firewall), and 3) by using a proxy that is used to traverse a firewall or NAT
box. The first two ways are not very "system-administrator friendly". They force
an administrator to parse HTTP connections and to disallow outgoing connections.
Furthermore, there is no guarantee that the first two ways always work (e.g., what
if two communication partners are behind a firewall?). The third solution has the
advantage that it would be in accordance with the system administrator (she is the one
who has to install the proxy peer) and reliable. The bottom line is, that the protocol
must support the use of proxy peers that forward messages to the original destination
peer.

• Simple structure: The structure of a message must not have a high complexity so that
devices with limited capacity are also able to process it. This has the effect that no
high-level message structures like XML may be used because they typically require
special libraries for parsing and creating such structures. On a mobile phone, for
instance, it is quite cumbersome to parse XML messages. Hence, simplicity is one
of the requirements for a protocol in Omnix.

CHAPTER 5. OMNIX PROTOCOL 63

• Multi-hops: In some topologies (e.g., distributed hashtables), a message needs multi-
ple hops (i.e., it is forwarded by peers until it reaches its final destination). If this is the
case, the response may be sent back either directly to the initiating host or by using the
same route in the reverse direction. The protocol must support both ways. The latter
could be provided by recording a list of visited hosts on the way from the sender to the
receiver.

Omnix can be used in conjunction with any protocol, such as (among others) SOAP,
CORBA, or RMI. Nevertheless, to meet the aforementioned requirements, we designed a
flexible protocol that can be easily extended. It has similarities with the HTTP [86] and SIP
[87] protocols. The following sections will show how the protocol works in general, explain
the structure of the messages, and discuss how messages are processed.

5.2 Overview

The Omnix protocol mainly deals with the communication between two peers. The sending
peer sends a request to the remote peer, which in turn sends back a response, providing
information about the processing of the request. There are no semantics associated with a
request. It may be a search request, an instant message, the current time, etc. The response
may be a status report, a requested artifact, etc. For every request received, a peer must send
back a response.

A peer is required to send back a response after processing the request. If, within a certain
time interval, no response has been received, the sending peer sends the request again. If the
processing of a request takes a longer period of time, the processing peer should send back
a provisional response, indicating that the request has been received successfully and a final
response will be sent later.

Messages can also be forwarded to other peers (a scenario not very unlikely in a P2P
network). There may be several reasons for a peer to do this. Search requests are typically
forwarded to other peers that may have the desired information. It is also possible that a
proxy peer is used to forward messages to peers behind a firewall. If a peer forwards a
message, it adds its address to the top of the list of visited hops (i.e., peers) contained in the
forwarded message.

Responses take the same route as the request, but in reversed order. This has many
advantages: if a proxy has been used to bypass a firewall, the same proxy can be used to
bypass it in the other direction. Furthermore, peers on the route may cache the information
contained in the response for future requests. If a peer receives a response, it checks whether
its address is on top of the list. If this is the case, it removes its address from the message and
forwards the response to the next hop (i.e., previous hop for the corresponding request), until
the response has reached the peer that has initiated the request (i.e., when the list of visited
hops contains the sender's address only). If this address is not correct, the peer may discard
the message.

Figure 5.1 shows examples of how messages could be sent through a P2P network.

Peers may also send a "Redirect" response (Figure 5.1-b), telling the initiating peer to
instead contact the peer specified in the response. This could be useful, for instance, in

CHAPTER 5. OMNIX PROTOCOL 64

Sender: Peer A
Recipient: Peer X
Via: Peer B
Via: Peer A
MsgID: 1

Message
Sender Peer A
Recipient: Peer X
Via: Peer A
MsgID: 1

Response
Sender: Peer X
Recipient Peer A
Via: Peer B
Via: Peer A
MsgID: 1

Response
Sender: Peer X
Recipient: Peer A
Via: Peer A
MsgID: 1

Response
Sender: Peer C
Recipient Peer A
Via: Peer A
MsgID: 2

Message
Sender: Peer A
Recipient: Peer C
Via: Peer A
MsgID: 2

Message
Senden Peer A
Recipient: Peer B
Via: Peer A
MsgID: 1

Response
Sender: Peer B
Recipient: Peer A
Redirect-To: Peer C
Via: Peer A
MsgID: 1

(a) (b)

Figure 5.1: Examples of message flows in Omnix.

distributed hashtables where a peer does not want to forward messages but rather redirect the
client to the next peer.

A request may contain content (i.e., the payload of the message). This content is
application-specific and has no relevance for the Omnix protocol. It may be any binary
data, including normal text.

5.3 Message types and structure

This section deals with the messages used in the Omnix protocol. Omnix has only two
message types: Requests and Responses. Unlike other protocols that specify message types
for every class of message exchanged between peers, Omnix uses a single pair of messages,
which can be used arbitrarily. They are the building blocks for higher-level communication
flows.

The Omnix protocol is text-based. This is necessary because simple peers may not be
able to parse complex structures such as XML. The format of the messages can be compared
with the Session Initiation Protocol (SIP, [87]) and the Internet Message Format (see [88]).
Both message types, Requests and Responses have a single header line, multiple header
fields, an empty line signaling the end of the header fields, and a content (Figure 5.2 shows
a simplified version of the message structure). In this dissertation, message structures are
described using the Augmented Backus-Naur Form (ABNF, [89]). Appendix B gives an
overview of the reference message structure in Omnix.

CHAPTERS. OMNIXPROTOCOL 65

message = requestline / responseline
*messageheader
CRLF
[messagebody]

Figure 5.2: The general structure of Omnix messages.

5.3.1 Request / Response

The semantics of a request (e.g., whether it is a search request, an instant message, the
invitation for a game of chess, etc.) is specified by the requestline (Figure 5.2). It is defined
by the sending component of a peer, which could be a processing module, a topology module,
or the application itself.

The requestline consists of a method, an URI, the protocol used, and the version of the
protocol (Figure 5.3).

requestline = method SP requestURI SP
protocol "/" version CRLF

Figure 5.3: The request line structure.

The method of a request indicates the purpose of the request. Omnix does not have
any restrictions on the method. It may be any string that contains no white-spaces. What
methods are used is only defined by those modules that want to exchange information with
other peers. The requestURI in the request is also application (or module) specific. Omnix
only provides the space for such an URI, but does not define how this space should be used
by the application. Typically, the address of the destination peer (or the name of a service
at a remote peer) is specified in this field. The protocol, which is also a single text, is also
arbitrary. It may be the case that a single application wants to use more than one protocol
for communicating with remote peers. The version field is used for determining the version
of the protocol used. If a module receives a request, it must make sure that it understands
both the protocol and the version. If this is not the case, the module must not process the
message. Figure 5.4 shows an example for a request line. In this example, the message is a
search request for a file. The protocol's name is "Omnix", the version is 1.0.

SEARCH file OMNIX/1.0

Figure 5.4: An example for a request line.

A responseline has the structure shown in Figure 5.5. It contains the protocol and version
identifier used in the corresponding request. Furthermore, a statuscode indicates the outcome
of the processing of the request. As in the HTTP protocol, the statuscode is a three-digit

CHAPTER 5. OMNIX PROTOCOL 66

number. There exist classes of Statuscodes (identified by the first digit of the code). Appendix
A provides a short overview of the different classes of Statuscodes.

responseline = protocol "/" version SP
statuscode SP reasonphrase CRLF

Figure 5.5: The response line structure.

In addition to the status code, a response also contains a so-called reason phrase, which
is a plain-text, human-readable translation of the status-code. This text could be used either
for making debugging easier or to display it to the user of the application. Figure 5.6 shows
an example for a responseline.

OMNIX/1.0 400 Not found

Figure 5.6: An example for a response line.

Appendix A shows all status codes and accompanying reason phrases currently defined
in the Omnix protocol.

5.3.2 Header fields

A message can contain multiple header fields. Header fields hold information about the
sending peer, the target peer, the content of the message (e.g., encoding, MIME-type, etc.),
the length of the message body, and much more. Header fields are similar to the header fields
defined in HTTP or SIP, although some small differences exist (see below).

While Omnix defines only a small number of headers that have to be present in a valid
Omnix message, applications (and modules) may freely introduce new header fields. For
instance, a topology module may add information like importance, duration of validity, etc.
to a message.

A header field is a key/value pair, separated by a colon. Header field values may contain
ISO 10646, UTF-8 [90] encoded characters. It is possible to use binary data in header fields
(which may prove useful if a header field contains, for example, a binary encryption key).

messageheader = headername COLON *WSP headervalue CRLF

Figure 5.7: Structure of a header line.

As shown in Figure 5.7, Omnix has some limitations compared to SIP or the Internet
Message Format. In Omnix, all information in a header field value must be encoded in a
single line. It is not allowed to use a CRLF element within a header field value. Furthermore,

CHAPTER 5. OMNIX PROTOCOL 67

the headername must immediately be followed by a colon, instead of allowing an arbitrary
amount of white spaces in front of the colon. After the colon, white spaces may be used.

Typically, the ordering of headers is not important. There is one notable exception: the
Via header. The Via header is used to record the route from the emitting peer to the target
peer. This route is necessary so that the response can take the way back that the request
came along before. At every hop (starting with the sending peer), a Via header is added on
top of the list of header fields. This information is then copied into the response and used for
finding the way back.

Figure 5.8 shows an example for typical header fields in a message. The message shows
that the peer at the address 195 . 34 .15 0 . 72 has sent a message to 128 . 1 3 1 . 1 7 2 .113 .
This message has been routed through a proxy (at 1 2 8 . 1 3 1 . 1 7 2 . 1) .

To: 128.131.172.113:10000
From: 195.34.150.72:3602
Via: 128.131.172.1:3602
Via: 195.34.150.72:3602
Content-Length: 2323
MsgID: 3985

Figure 5.8: Example of header lines in a Omnix message.

It is also possible to encrypt parts of the message headers (so that only the final receiver is
able to decipher the message). It is obvious that some header fields must remain plain text so
that forwarding peers in the middle of the transfer are able to forward the message correctly.
These header fields are: To, From, Content-Length, all Via headers, and the MsgID. All other
header fields may be encrypted by the sending peer.

There is a distinction between required and optional header fields. Required header fields
are those that are necessary to successfully deliver a message at the target peer. If a message
does not provide the required header field, a peer may drop the message. Optional header
fields are those that may be freely added to the message. Required header fields are To, From,
Via, and MsgID.

5.3.3 Body

An Omnix message may contain arbitrary binary content, which is defined either by the
application, a topology module, or a processing module. The content is placed below the
header fields, separated by an empty line (which must be in place even if no content is
contained in the message).

If a message contains content, it must specify at least the size of the content, by using
the Content-Length header field. This field is necessary because the transport module that
receives the message does not know how large the content may be (especially if the message
is transferred over a connection-oriented communication link such as TCP). In addition to the
length, optional header fields like Content-Type, Content-Encoding, or Content-Language
may be used.

CHAPTER 5. OMNIX PROTOCOL 68

Unlike in HTTP, in Omnix both request and responses may contain content. There is,
however, a limitation of the size of the content. Since it may be the case that messages are
transported with small-sized packets (e.g., UDP), the size of the content must be as small as
possible. The maximum size of the message is defined by the transport modules.

5.4 Security

This section discusses how the four security aspects defined on page 68 can be achieved with
the Omnix protocol.

• Secrecy: Secrecy, or confidentiality, can be achieved by encrypting parts of or the
whole message, so that it can only be read by the target peer. Encrypting the complete
message is problematic because it makes it impossible for peers in the middle (e.g.,
proxies) to forward the message to the destination peer. Hence, Omnix allows the
encryption of parts of a message by specifying the header fields that must remain
plain-text. The other header fields may be encrypted by any means chosen by the
application, topology module, or processing module. There is no restriction on the
encryption method employed.

Note that it is also possible to encrypt messages between two hops along the route of
the message. Hence, if a message is sent in plain-text through a proxy, the proxy may
encrypt the message before it is forwarded to the next hop, where it may be decrypted
and forwarded as plain-text again.

As stated in Section 5.3.2, Via fields must not be encrypted. Hence, the route of a
message is recorded in plain-text in the message. To hide the route of a message
from snoopy peers, a hop in the middle (e.g., a proxy) may remove the Via headers (a
process called Via-hiding). This is only possible if this peer saves the removed list of
Via headers. When a response is received (which takes the same route as the request,
but in the reverse direction), the peer must restore the saved list in the response, so
that the message finds its way to the originator of the request. This method implies
that the proxying peer must be stateful (instead of a state-less peer that only forwards
messages regardless of previous messages).

If a peer wants to encrypt the complete channel to another peer (i.e., everything -
including header-lines and required header fields - sent over the wire is encrypted,
such as through a SSH-tunnel), this can be implemented by the transport modules.
There is no need for Omnix to provide support for this type of encryption.

• Authentication: There are many ways how authentication can be achieved in Omnix.
Either by using a shared secret or with the use of public-key encryption. It is not the
scope of this document to discuss the various methods of achieving authentication.
Authentication schemes like those used in the HTTP protocol (i.e., the basic or the
digest authentication scheme) may be used in the same way in Omnix. However, it is
important to note that in Omnix both parties may require authentication (as opposed
to the HTTP protocol, where only the client must authenticate itself).

CHAPTER 5. OMNIX PROTOCOL 69

If a peer receives a message and requires authentication, it sends a message with status
code 401 (Unauthorized). Upon receiving this message, the sender must resend the
initial request with authentication credentials.

• Non-repudiation: It is hard, if not impossible, to assure non-repudiation. One attempt
to achieve non-repudiation is using digital signatures with a public-key infrastructure.
This way, only the holder of the private key can produce the digital signature. Is this
enough? Unfortunately, not. It may be the case that only the owner of the private key
is able to sign a message. But it cannot be proven that the owner of the private key was
the only one who had the private key at the time when the message has been signed.
Hence, a peer may sign a message and afterward claim that the private key was already
compromised at that time. Hence, non-repudiation cannot be achieved in Omnix. Still,
it is possible to use digital signatures to achieve a certain level of non-repudiation.

• Integrity control: A typical way of providing integrity control is to use digital signa-
tures. In most cases, they are a hashsum, encrypted with the private key of the creator
of the message. The receiver is then able to create the same hashsum (if the message
has not been modified) and verify it by decrypting the hashsum enclosed in the mes-
sage. Signatures can be embedded in an Omnix message by using multipart MIME
contents in the message body (more on this can be found in [91]).

Omnix itself does not provide a public-key infrastructure (e.g., a Certification Authority).
If an application needs such a feature, it may implement processing modules that provide that
functionality.

Except for non-repudiation, every aspect described in the requirements are possible in
the Omnix protocol. If there is a way of providing non-repudiation, it may be easily added
as a processing module to the Omnix P2P framework.

5.5 Protocol Alternatives

It is legitimate to ask why Omnix uses a new protocol instead of applying one of the existing
protocols. There are so many P2P systems out there. Is there not a single one that can be
used for Omnix? The answer is: not really. This section discusses this topic and shows why
existing protocols (a few examples are given) are not suitable for the requirements listed on
page 61.

The Gnutella protocol (version 0.4) [92], for example, has a fixed structure. Depending
of the type ! of the message, different message structures are used, each having a fixed set of
fields. For most fields, the length is also exactly specified. It is not designed to support the
addition of new information to a Gnutella message. It would be possible to add information
to certain messages (e.g., the Query message), but this would mean that this information has
to be encoded in the search string. Hence, although possible, the Gnutella protocol does not
fit the requirements of Omnix.

The Napster protocol [93] has the same restrictions as the Gnutella protocol. There
exists only a limited number of message types and those messages have a fixed structure and

'Gnutella 0.4 only knows five message types: Ping, Pong, Query, QueryHit, and Push.

CHAPTER 5. OMNIX PROTOCOL 70

partially a fixed length. It is further based on a client/server architecture and does not support
concepts like forwarding messages to other peers (including loop detection and the like). For
obvious reasons, it is completely unsuitable for Omnix.

Also not usable is the Freenet protocol [18], which provides strong security mecha-
nisms. These mechanisms are needed to provide user anonymity. This has a very high
price. Searches can only be performed on IDs, not on arbitrary meta-data defined by topol-
ogy modules or applications.

P2P networks that act as distributed hashtables may have no restrictions on the structure
or the content. The main problem of such protocols is that they are designed for a fixed
topology (i.e., that of a distributed hashtable, however it may be organized). They use spe-
cial routing algorithms with routing tables and have proprietary ways for maintaining these
routing tables and to discover other peers. Furthermore, routing is based on the usage of
numbers for searching. Hence, full meta-data search is not possible in such systems.

This list could be easily extended by other P2P protocols with similar problems. The
bottom line is that P2P protocols are tailored to their use. The only notable exception of a
P2P protocol, that 1) is not closed and 2) can be used as a generic P2P protocol is JXTA.
Unfortunately, for two reasons even JXTA is not suitable. On one hand, JXTA has a more-
or-less fixed topology, using so-called PeerGroups to divide the P2P network. Hence, JXTA
is not fully topology-independent. On the other hand, JXTA uses XML, which has two
implications:

• XML is known to be very "verbose". The generic, hierarchical structure of XML
makes it necessary to use additional space and information for organizing this struc-
ture. Hence, the messages would need more bandwidth, processing power and memory
- resources that may not be extensively available on small devices.

• To parse an XML structure, additional libraries are needed. Typically, these libraries
have a considerable footprint, which hinders their use in small devices with limited
capacities. There do exist some XML parsers with a relatively small footprint (e.g.,
XMLtp [94] or MinML [95K which has a size of approx. 9 KB). These small parsers
typically ignore the validation of XML documents using DTDs or Schemas. While this
may be ignored in normal applications, this is a shortcoming when XML documents
are received from remote peers (where the content should be validated before it is
processed).

After eliminating the possibility of using existing P2P protocols, the next question is
whether any generic communication systems (i.e., middleware) could be used. It is obvious
that middleware systems like Java RMI oder DCOM are not suitable for Omnix because they
do not provide platform independence. Reasonable alternatives would be open protocols like
SOAP [96], XML RPC [97] or CORBA. The disadvantage that they have is that they are too
heavy-weight for small devices (e.g., such as a mobile phone or an embedded device running
Java), mostly due to their extensive use of XML (with the exception of CORBA, of course,
which nevertheless has a lot of communication overhead, too).

Anyway, the Omnix P2P framework allows the replacement of the protocol used. An
application programmer (or a provider of third-party components for Omnix) may use any
protocol that seems fit. The protocol implementation provided with Omnix should be used

CHAPTER 5. OMNIX PROTOCOL 71

because it is designed to meet all necessary requirements (and is most likely to be used by
other applications).

The next chapter provides information about the programming aspects of Omnix. It
demonstrates how various modules can be written to change the behavior and capabilities of
the middleware framework. It also discusses special topics like Quality of Service (QoS),
Firewalls, and the testing of applications using Omnix.

Chapter 6

Programming Aspects of Omnix

Never be afraid to try something new. Remember, amateurs built the ark; pro-
fessionals built the Titanic.
Anonymous

When an application programmer wants to use Omnix as the underlying P2P commu-
nication infrastructure, she has to find an optimal combination of the various components
that can be used with Omnix. Depending on the use case the most important decision is
which topology module to pick for the P2P network. Since it is very cumbersome to change
a topology module once it is installed on hundreds (or more) nodes, it is beneficial to choose
the best topology module before the application is shipped. In order to find the right deci-
sion, the programmer could use the testing facilities provided by Omnix (see Section 6.4).
With this P2P simulator, different topologies (and processing modules) could be tested and
an optimal system configuration found.

This chapter shows the versatility of Omnix by demonstrating how it can be used with
various topologies. Examples show how components can be written with a few lines of code.
Furthermore, advanced issues and the application of Omnix in a pervasive environment are
discussed. Eventually, a case study is presented to show how Omnix contributes to the
problem of programming topology-independent P2P networks efficiently.

6.1 Changing the lower layers of Omnix: Transport and
Processing

One of the major goals of Omnix was not to create YAPS ™(Yet Another P2P System) but
to create a framework that would allow application programmers to change every aspect of
a P2P system. Those aspects include the structure and ontology of messages, the routing
algorithm, security issues (e.g., encryption, digital signatures, etc.), supported platforms,
and much more. Hence, one of the requirements of Omnix was to make it a framework for a
collection of exchangeable components.

The following sections show, on the basis of simple examples, how the modules in the
transport layer and in the processing layer can change the functionality of the Omnix system.

72

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 73

6.1.1 Transport

While the purpose and functionality of the transport modules is explained in Section 4.2.2.1,
this section deals with the practical advantages of using replaceable components for the
network communication by showing implementation examples.

public interface Transport extends Runnable {

public void addlnputMessageListener(MessageListener ml) ;
public boolean removeInputMessageListener(MessageListener ml)

public boolean sendMessage(Message msg);

public void s t a r t () ;
public void s t o p () ;

Figure 6.1: The Transport module interface.

Taking a closer look at the Transport interface

Figure 6.1 shows the most important features of the Transport interface denned in Om-
nix (which extends the R u n n a b l e interface so that every transport module is running in a
separate thread, thus not blocking other parts of the middleware or the application).

The methods shown in lines 3 and 4 are necessary to allow other components to register
(or to unregister) as a MessageListener. It is possible to register multiple MessageListener.
Whenever a message has been received by a transport module, it iterates through the list of
registered MessageListener and passes the message to every one of these. One MessageLis-
tener that will probably be registered is the Core.

The sendMessage is called - the name gives it away - when the transport module is
supposed to send a message over the network. The start() and stop() methods are used to
tell the transport module when to listen for messages and when to shutdown the network
connection.

Implementing a Transport module with a few lines of code

In the following, an example transport module will be presented, which uses datagram
socket communication to exchange information with other peers. Figure 6.2 shows how the
example transport module is initialized. Note that it uses a MulticastSocket object so that it
can also be used to transmit and receive multicast or broadcast messages.

The next step is to allow the Core (or any other component that has access to this trans-
port module) to send a message to a remote peer. For this purpose, the transport module
must implement the sendMessage method. This method just takes the message object, which
contains all the information necessary to send the information (see Figure 6.3). The getPay-
load method of the message object is responsible for converting the actual message into a

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 74

public class MulticastTransport implements Transport {

public MulticastTransport() {
multicastSocket = new MulticastSocket();

.} • . .

Figure 6.2: Initializing a transport module.

binary array that can be sent over the network (line 3). The transport module does not (and
should not) have anything to know about the structure of the message. Hence, it is possible
to replace the structure and ontology of the message in the layers above without changing
the code in the transport layer.

public boolean sendMessage(Message msg) {

byte[] payload = msg.getPayload();

InetAddress toaddr = InetAddress.getByName(msg.getTo());
DatagramPacket dp = new DatagramPacket(payload, 0, payload.length,

toaddr, DEFAULT_PORT);

return multicastSocket.send(dp);

Figure 6.3: Sending a message in the UDP transport module.

The next two lines (5 to 7) retrieve the destination address from the message object and
create the datagram packet (in this simplified scenario, the default port is used instead of
retrieving the port information from the destination address as well). Finally the message is
sent to the target peer. It does not make a difference whether the message was a request or a
response, an Omnix message or a message with a modified structure, etc.

Every transport module is run in a separate thread (this is the reason why the receiving
of messages is implemented in the run() method specified by the R u n n a b l e interface).
The receive Method (line 6) blocks until a message is received. Once a message has been
received, it is parsed by a MessageParser and put into a Message object. After that, the
transport module passes the message to all subscribed MessageListeners.

What is left is to start and stop the transport module. To start the module, it has to create
a new thread and start itself. ' Stopping the thread is done by setting the variable runLoop
f a l s e (as shown in Figure 6.5). This way, the run() method stops and the transport module
ceases to accept incoming packets.

These are the main parts necessary to create a transport module. The separation of con-
cerns in Omnix requires a transport module only to deal with the networking aspects (send-

'A design alternative would have been to start the transport module from the outside but the decision was
made this way to increase the flexibility of the transport module.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 75

public void run() {

while(runLoop) {

DatagramPacket dp -new DatagramPacket(buf, buf.length)
multicastSocket.receive(dp);

Message msg - MessageParser.parse(dp.getData());
msg.setTransport(this);

for (int i=0; i < l i s t e n e r s . s i z e () ;
MessageListener ml = l i s t e n e r s . g e t (i) ;
ml.receiveMessage(msg);

Figure 6.4: Receiving a message in the UDP transport module.

public void start() {
Thread t = new Thread(this)
t.start();

public void stop() {
runLoop = false;

Figure 6.5: Starting and stopping the UDP transport module.

ing and receiving of messages). Everything else is done in the layers above. The Transport
module interface allows the seamless exchange of transport modules.

6.1.2 Message processing

The processing modules, which reside in the Processing Layer of the Omnix framework,
are necessary to deal with incoming messages and to adapt outgoing messages. Processing
modules are arranged in pipelines. Omnix uses pipelines for incoming and outgoing mes-
sages. When a message is put into the pipeline, every module in the pipeline gets a chance
to process the message (the list of possible actions in given in Section 4.2.3.2, page 48). In
this section, a few examples of how a processing module can be implemented to change the
functionality of the P2P system are given.

Providing a default implementation for processing modules

Figure 6.6 shows the Module interface (which, in fact, is an abstract class) that all pro-
cessing modules have to adhere to. An abstract class is used instead of a code-less interface
to minimize the effort for creating new modules. This way, only the required code has to be

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 16

inserted without having to care about all implementation details.

The initialize() method is used to pass parameters to the module. These parameters can be
defined in the configuration file where the module is included. The most important methods
of this interface are the four methods that deal with the transmission of messages. When a
message has been received and put into the in-pipeline, the receiveRequest or receiveReply
method of every module in the pipeline is called, depending on the type of the received
message. The default implementation in the abstract class is just to tell the pipeline that
the consecutive modules should take care of the message (i.e., by returning the pre-defined
MOD_OK flag). If, on the other side, a module wants to process incoming messages, it changes
the default implementation of one of the receiveX() methods.

The same is true for outgoing messages. If an application, a topology module or another
processing module sends out a message, the message is also put into a pipeline: the out-
pipeline. In the out-pipeline, the sendRequest() or sendReplyf) methods are called, again,
depending on the type of the message to be sent.

Finally, the start() and stop() methods are defined to let the Omnix framework activate or
shutdown processing modules. These methods could be necessary if at the beginning or the
end of the lifetime of a processing module, special has to be taken (e.g., contacting a server
or saving information on a disk).

public abstract class Module {

public void initialize(Hashtable properties) {}

public int receiveRequest(Request req) { return M0D_OK;
public int receiveReply(Reply rep) { return MOD_OK; }

public int sendRequest(Request req) { return MOD_OK; }
public int sendReply(Reply rep) { return MOD_OK; }

public void start() {}
public void stop() {}

Figure 6.6: The processing module abstract class.

In the following, examples of how processing modules contribute to the functionality of
Omnix are given.

6.1.2.1 The Loopback module

Processing orphan messages

A special status has the so-called Loopback processing module, which is supposed to
be installed at the end of the in-pipeline. Every message that has not been consumed by
any other preceding processing module is collected by the Loopback module. It creates

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 77

a response with a status code that indicates that the requested resource or service has not
been found and sends it to the requesting peer. Figure 6.7 shows how this functionality is
implemented in a few lines. In case a response has been received and consumed by any other
module, it is ignored and removed from the pipeline.

public class Loopback extends Module {

public int receiveRequest(Request req) {
req.createReply(N0T_FOUND) .send();
return MOD_DONE;

public int receiveReply(Reply rep) {
return M0D_DONE;

Figure 6.7: The Loopback module.

Connecting the ContextSwitcher with the two Pipelines

The observant reader might notice that if this module is installed in the in-pipeline of
the Processing Layer, the P2P Network Layer (in form of the ContextSwitcher) would never
get any message. However, technically the ContextSwitcher itself is just another process-
ing module in the pipeline. Hence, although hidden by the layered, higher-level, abstract
architectural model of Omnix depicted in Figure 4.1, this is the interface between the Pro-
cessing Layer and the P2P Network Layer. Therefore, the Loopback module is placed after
the ContextSwitcher and gets only those messages, that even the P2P Network Layer did not
consume.

6.2 Implementing topologies

The following sections give examples of how P2P topologies could be implemented in the
Omnix P2P framework. To do this, all steps necessary to program a complete topology are
discussed and the interfaces provided by Omnix explained. The implementations presented
in this section are only shown with the help of (Java-like) pseudo code because featuring the
complete code is not necessary for the understanding of the code. In addition to the code, this
section also highlights which messages are used to convey search requests, system messages
(see page 54), etc. over the network. To demonstrate the usage of Omnix, we take two simple
topologies: Nimble groups and a wild mesh topology. More complex topologies can be built
the same way, as shown in Chapter 8.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 78

6.2.1 The NetworkModule interface

The interface that has to be implemented by a topology module (and thus defines the func-
tionality of a topology module) is described in this section. A topology module has two
major responsibilities:

• A topology module has to implement the methods described in Section 4.2.4.2 (page
51). Those methods provide means for inserting content into the network, searching
for information, send messages to other peers, etc. These method comprise the inter-
face to the application on top of the Omnix framework.

• On the other side, a topology module must also have an interface to the communication
layer. It must be able to receive messages from and send message to other peers.

Hence, a topology module has two major access points where it can be used by the other
components of the system: the application and the lower communication layers in the Omnix
framework.

Providing an interface to the application above

The connecting link for the application is provided by the Network interface, which has
to be implemented by every topology module. This interface, which is shown in Figure 6.8,
provides the application all necessary methods for participating in the P2P network. Note,
that it is not required for a topology module to implement all the methods depicted in Figure
6.8 (except for the search method).

public interface Network {

public String search(SearchDescription sd, SearchResultListener sr l) ;

public String inject(ServiceDescription[] sd) ;
public String remove(ServiceDescriptionf] sd) ;

public ServiceDescription[] injectedLocally();

public String subscribe(EventSetDescription esd);
public String unsubscribe(EventSetDescription esd);
public void notify(Eventlnfo ei);

public byte[] invoke(Contact c, String method, byte[] data);

Figure 6.8: Network interface of topology modules.

Accessing the lower levels of Omnix

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 79

To be able to accomplish all these tasks, the topology module also needs to be accessed
by the communication layers of Omnix (i.e., the communication layer must be able to pass
messages to a topology module). This is all done via the Module interface. This interface is
the same that is used in the Processing Layer. Hence, technically, a topology module could
also be used as a standalone processing module. This Module interface is shown in Figure
6.9.

public abstract class Module {

public int receiveRequest(Request req) { return MOD_OK;
public int receiveReply(Reply rep) { return MOD_OK; }

Figure 6.9: Excerpt from the Module interface.

A topology module has only to care about the two method shown in Figure 6.9: re-
ceiveRequest and ReceiveReply. Whenever a message is received by the Transport Layer
and processed by the Processing Layer, the message is conveyed to the topology module
through these two methods (depending on the type of the message). The topology module is
then able to process the message (i.e., by searching its local database in case a search request
has been received).

The result: the NetworkModule

The combination of the two interfaces described above results in the NetworkModule
interface (Figure 6.10), which is the actual P2P network module interface. As exemplified
in line 4 of this figure, all methods other than search throw an exception if they are not
implemented by a topology module.

public abstract class NetworkModule extends Module implements Network {

public String inject(ServiceDescription[] sd) {
throw new NotImplementedException("Not^implemented");

Figure 6.10: NetworkModule interface of topology modules.

Equipped with this interface, a topology module is able to receive messages (sending
messages does not require a interface for the topology module) and to be accessed by the
application. What is left is the implementation of the functionality that is needed to create a
P2P network (i.e., P2P topology). Examples for such topology modules are given in the next
sections.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 80

6.2.2 Nimble Groups

Nimble groups are the plainest form of P2P networks imaginable. They have only limited
use due to their reduced scalability. Still, nimble groups may be interesting when few devices
are connected without the existence of a server.

6.2.2.1 Topology

The topology of nimble groups is very simple. Every device is connected to any other device
using broadcast (or multicast) algorithms or by sending the same information to each peer
connected (see Figure 6.11). This way, all devices attached get the same view on the same
information available (i.e., search requests, system messages, etc. - it depends on the imple-
mentation whether search responses are directly sent back to the initial peer or also shared
with all other peers). An example for a nimble-style P2P network is Groove. In Groove
networks, program instances send messages to all others in the same workspace. Hence,
all Groove instances share the same information (e.g., a shared browser, a drawing board
editable by every workspace members, etc.). To have a common view of the information
provided, nimble groups do not use a central server.

Figure 6.11: The nimble group P2P topology.

Nimble groups are typically not scalable because information has to be conveyed to every
peer within the group. While this is easily achieved in a local network by using broadcast
algorithms, this is almost impossible in an Internet-wide group with more than just a bunch
of peers. The costs for sending messages increase exponentially with each peer joining the
group.

6.2.2.2 Messages exchanged

What kind of messages are necessary in a Nimble group?

Depending on the complexity of the Nimble group, different message classes exist. What
all systems have in common is that they provide means for searching content at other peers
or to send direct messages to other peers (e.g., a chat message, a URL for the shared browser,

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 81

etc.). These messages can be either sent via broadcast (or multicast) messages or directly to
each of the peers in the group.

Unicast vs. broadcast in Nimble groups

If broadcast algorithms are used, there is typically no need for system messages to acquire
information about other peers in the group. Still, these message might be convenient to get
additional information on the network (e.g., the number of peers connected and their status).
If messages are sent in a unicast form to the other peers, additional messages for detecting
peers in the network neighborhood are necessary. Typically, these messages are broadcast
messages (there is no other way how other peers can be detected without a central server).
To detect a drop out of one of the peers, isAlive messages have to be sent repeatedly.

If the complexity of the Nimble group is very high, additional messages are needed.
If, for instance, a new peer joins the group, it must get all information that the other peers
already have. Furthermore, if an (optional) central server is used for storing information
persistently, messages supporting this functionality are also needed.

6.2.2,3 Implementation

The Nimble-group topology module presented in this section is a very simple one. It does
not support anything else than placing content in the network and to search for this content.

Meta-data describing the actual shared data (or services) is represented by using the Sim-
pleServiceDescription class, which is provided by Omnix. It is a simple class that provides
key/value pairs and a method for converting these pairs in a binary array so that it can be
sent in an Omnix message (and, of course, a method for parsing such an array to restore
information transferred over the network).

Injecting meta-data in a Nimble group

The easiest thing to implement is the inject method, which is merely passing the Ser-
viceDescription object to a local storage object (called SimpleServiceDescStorage), which is
again a helper component that comes with Omnix. The SimpleServiceDescStorage compo-
nent (with the name of sds in our code example) takes the service description and stores it
in its memory. Figure 6.12 shows how an array of ServiceDescription objects is put into the
storage component.

Searching for data in a Nimble group

The next step is to allow the application to search for data in the network. The topology
module has to craft a search request that can be sent to the other peers. This search request
must contain specific information so that the other peers are able to understand the request.

Figure 6.13 shows how a search request can be constructed. The variable multicastAd-
dress is defined by the Omnix system. Since the topology modules does not know which
transport module is used to convey the search request (which means that it does not know

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 82

public String inject(ServiceDescription[] sd) {

for (int i=0; i<sd.length; ++i) {
sds.addServiceDescription(sd[i]) ;

return null;
}

Figure 6.12: Injecting service descriptions in a Nimble group.

7

public String search(SearchDescription sd, SearchResultListener srl) {

Request searchReq = new Request();

searchReq.setTo(multicastAddress) ;
searchReq.setMethod("SEARCH");
searchReq.setProtocoiName("OMNIX");
searchReq.setProtocolVersion("1.0") ;

9

searchReq.setContent(sd.searchTermO);
searchReq.send();

listeners.add(searchReq.getMessagelD() , s r l) ;

return searchReq.getMessageID();

Figure 6.13: Searching within a Nimble group.

what addressing scheme is used), it can only use this variable as a multicast address. The
values of the request entities method, protocol name and protocol version can be arbitrarily
set by the topology module. But care has to be taken that the other peers use the same values.

The content, which is the specification of the search request, is provided by the SearchDe-
scription component, which provides a method searchTerm. This method returns a binary
representation of the search term (e.g., a regular expression).

Note that the search method is not blocking until a search result has been received. This
would be impossible because there is no point in the time of execution where it can be
determined whether all search results have been received. The application must provide a
SearchResultListener component. This component is used by the topology module to report
back search results received from other peers.

Eventually, the message is sent and the ID of the message is returned as an identifier for
the search request.

Collecting and processing search results

The next step when searching in the P2P network is to process received responses from

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 83

other peers (hopefully with appropriate search results). If the topology module receives a
response, it calls the method addResult of the SearchResultListener component provided by
the application and refers to the corresponding search request with the message DD.

9

i public int receiveReply(Reply rep) {
2

Transaction t = rep.getTransaction()
Request r = t.getReguest();
if (r.getSenderModuleO != this) {

return MOD_OK;

if (rep.getStatusCodeO == OK) {
10 ServiceDescriptions sds = new SimpleServiceDescriptions() ;

sds.parseDescriptions(rep.getContent());
12 .

SearchResultListener srl = listeners.get(rep.getMessageID())
srl.addResult(rep.getMessageID(), sds .getDescriptions());

return MOD_DONE;

Figure 6.14: Receiving search results within a Nimble group.

Figure 6.14 demonstrates how messages containing search results are processed by the
Nimble group topology module. The receiveReply method is part of the NetworkModule
interface.

When a reply is received, a topology module must make sure that it is indeed the sender
of the corresponding request. This is done with help of the Transaction component attached
to the Request/Reply pair (lines 3 to 7). A Transaction is used to match Request and cor-
responding Replies (which have the same message ID; see Section 6.3.1.1 for more details
on transactions in Omnix). The module checks whether it is the sender of the appendant
request. If this is not the case, it simply returns a code indicating that other modules should
take care of that.

Extracting the search result from the messages received

If the message is a reply to a request sent by this topology module, it further checks
whether the reply has a status code of 200 (i.e., if its not an error - see Appendix A for a list
of status codes defined in Omnix). Having done that, the service descriptions are extracted
from the reply and parse by a ServiceDescription component. The resulting array of service
descriptions is then passed to the application, which is done through the SearchResultLis-
tener the application has provided while calling the search method. The correct SearchRe-
sultListener is retrieved from a collection of result listeners and identified by the message
ED.

That is everything necessary to implement the interface to the application on top of Om-
nix. The second part is to provide a search functionality to other peers. Figure 6.15 shows

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 84

how this can be done in a few lines.

public int receiveReguest(Request req) {

if ((ireq.getProtocolNameO .equals("OMNIX"))
(!req.getProtocolVersion().equals("1.0"))
(!req.getMethod().equals("SEARCH"))) {

3

4

5

6

r e t u r n MOD_OK;

SearchDescription sd = new SimpleSearchDescriptionf);
sd.parseTerm(req.getContent());
ServiceDescriptions result = sds.search(sd);

Reply rep = req.createReply(OK);
rep.setContent(result.getBytes()) ;
rep.send();

return MOD_DONE;

Figure 6.15: Receiving search requests within a Nimble group.

Sharing data with other peers

When a topology module receives a request, it must first make sure that it understands
the meaning of this message. To do this, it must know exactly about the method used in the
message, the protocol version and the protocol number. If one of these values do not match
the topology module, it should not process the message (as can be seen in lines 3 to 8). In
this code example, the message is passed on to the next module.

If the message is understood by the topology module, it parses the content (i.e., the
payload) of the e message into a SearchDescription component (if this fails - for instance,
because the content has another format - an exception is raised and an error message is
automatically returned to the remote peer). After that, the local database of injected service
descriptions is searched and the result stored in a ServiceDescriptions component, which is
just a container of multiple ServiceDescription objects.

The remainder is just creating a reply, putting the search result into this object and send
it to the remote peer that requested the search. Finally, the method returns a status code
indicating that the message should not be further processed (i.e., it has been consumed).

The next section shows how a little bit more complex topology can be implemented in
Omnix.

6.2.3 Wild mesh

Although wild mesh P2P networks are a little bit trickier than Nimble groups, they still have
a low complexity. They are deemed to be very silly topologies because they have limited

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 85

scalability. Still, they have some advantages that other P2P network do not have (see Chapter
3).

6.2.3.1 Topology

In a wild mesh topology, a peer has only a small set of neighbor peers that it connects to. How
this set is acquired and the size of this set depends on the implementation. As a reference,
in Gnutella a peer typically maintains only four connections to other peers. The structure of
the network itself cannot be predicted because a peer may connect to any other peer in the
network. As Figure 6.16 indicates, a wild mesh P2P network does not necessarily have a
perfect structure.

Figure 6.16: The wild mesh P2P topology.

Search messages are forwarded along the open connections a peer has. If a peer receives
a search request, the message is forwarded to the other peers that is is connected to. After
a pre-defined number of hops, the message is removed from the network. Replies typically
take the same route back as the request took before. This way, intermediate peer may cache
search results and learn about other peers in the network.

6.2.3.2 Messages exchanged

Keeping up the topology and searching for content

In a simple wild mesh network, three classes of messages are used. The first one is used
to search for information in the network. A peer sends a search request to the set of connected
neighbor peers. If a peer receives such a search request, it searches the local database and
forwards the search request to its set of neighbor peers. This is repeated until the maximum
hop count of the message has been reached.

The next type of message in a wild mesh network is the response message. It contains
(hopefully) meta-data about and pointers to the desired information, files, services, etc. Re-
sponse messages typically use the same route as the request, but in the reverse direction
(obviously). This has two reasons: peers in between the sender and the receiver can store the

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 86

content of the search result in its local cache so that future search requests can be enriched
by this extended information. Furthermore, peers in the middle may learn about other peers
in the network very easily (if the search result contains a list of peers visited on its way from
the content provider to the content requestor). This way, a peer may compile huge lists of
other peers in the network.

The last message class necessary in a minimal wild mesh network is the so-called IsAlive
message, which is necessary to ascertain whether all peers in the set of connected peers
are still available. Hence, peers send a message (in Gnutella, it is called a Ping) to then-
neighbors and await a response. If this response is not received within a certain time-interval,
the connection to this peer is closed and a new one is opened to another peer (from the huge
list of other peers mentioned above). This way, a peer has a consistent number of active links
to other peers in the network.

6.2.3.3 Implementation

In this section, the most important aspects of how to program a wild mesh P2P topology
module in Omnix are presented. These include the insertion of content into the network as
well as searching in the network.

There are many similarities to the functionality of the Nimble group topology module
presented in Section 6.2.2. Injection, for instance, is exactly the same. If the applica-
tion wants to insert a service description, the topology module simply puts it into its local
database, without the necessity of creating a network connection to any other peer.

Sending a search request to multiple peers

Searching in a wild mesh P2P network is a little bit more complicated than in a Nimble
group. The reason for this is that search messages are not plainly sent to other peers in the
nearby (e.g., by using broadcast communication) but sent directly to a pre-defined set of
remote peers - those that the peer is connected to. The implication is that the peer first must
acquire a list of connected peers. This is usually done by sending a request to a central server
which holds a list of known peers. Once a peer has connected to one of these peers, it may
collect new addresses.

So, when the application wants to search for information, it calls the method search of
the topology module (here, we can see that it does not make a difference for the application
which topology module is actually used - be it a Nimble group, a wild mesh network, or any
other topology). The wild mesh topology module sends a request to a list of connected peers
(as shown in Figure 6.17).

In contrast to the Nimble group topology module described above, the wild mesh topol-
ogy module iterates through a list of connected peers (as shown from line 9 to 13) and sends
the same search request to each one of these. Replies are processed the same way as in the
Nimble topology module (see Figure 6.14), but with a little extension that will be explained
later in this section.

Implementing multi-hop messages with minimal effort

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 87

public String search(SearchDescription sd, SearchResultListener srl) {
2

Request searchReq = new Request();
searchReq.setMethod("SEARCH");
searchReq.setProtocolName("OMNIX");
searchReq.setProtocolVersion("1.0");
searchReq.setContent(sd.searchTermO);

for (int i=0; ioct iveContacts . length;

searchReq.setTo(activeContacts[i].getAddress())
searchReq.send();

listeners.add(searchReq.getMessageID(), s r l) ;
return searchReq.getMessagelD();

Figure 6.17: Sending search requests to connected peers in a wild mesh network.

If the wild mesh topology module receives a search request from another peer, it has to
do two things. First, it has to search its local database and return matching results, and it
has also to forward the message to its set of connected peers. Figure 6.18 shows how this
functionality can be achieved in Omnix in a few lines of code.

The first part of the processing search requests is the same as in the Nimble group topol-
ogy module. It has to check whether the received request has the correct protocol name and
version, and is a search request. Then, the local database is searched and a reply containing
the result is sent. In addition to that, the wild mesh topology module has also the duty to
forward search requests to other peers (but only, if the search request has not already reached
the maximum hop count, which is determined by the TTL value included in the search re-
quest). Figure 6.18 shows how the search request is forwarded to the list of connected peers
(which are contained in the activeContacts component).

Preventing loops and message duplicates automatically

Two important things are missing in this code example. First, in a wild mesh P2P network
a peer has to make sure that it detects search request duplicates (either caused by different
peers forwarding a search request to the same peer or by loops). This is done by the Omnix
framework by comparing the message IDs and is therefore not required in the topology
module.

The second part would have been to check whether one of the connected peers (in the
activeContacts list) has already received this message, which is determinable by the list of
visited peers in the search request. This list of visited peers in the search request is managed
by the Omnix framework. When a request is sent to another peer, the Omnix framework
automatically appends a Via header (see page 67) with information about the sending peer

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 88

public int receiveRequest(Request req) {

// check whether the message is a search request and
// process the search request locally
// (see Figure 6.15, lines 3-16)

int ttl = StringUtils.parseIntSafely(req.getHeader(TTL), 0)
if (ttl > 0) { . ' .

9

req.setHeader(TTL, --ttl);

for (int i=0; ioctiveContacts. length;
req.setTo(activeContacts[i].getAddress());
req.send();

return M0D_D0NE;

Figure 6.18: Processing a search request in the wild mesh topology module.

(i.e., address and port information). This information is used to prevent a message from
being sent to an already visited peer.

When a response is received, it automatically removes the top Via header which should
be this peer's address. The information contained in the Via header is also vital for sending
back responses in a wild mesh network.

Transporting a reply back on the route the request used

As shown in Figure 6.19, the wild mesh topology module forwards a received reply in
case that it has not issued the appendant request (line 6). This is done by getting a list of
peers the request has visited on its route to the peer that has originally sent the reply (this Via
list is copied from the request to its response). The top entry of this list (lines 8 to 9) is the
next hop of the response's route to the sender of the request. In addition to that, the topology
module also makes use of the Via header to expand the list of known peers (line 11).

What is left is to check from time to time whether connected peers are still alive. This
can be done in a separate thread which periodically sends requests to the connected peers. If
the peers do not send a response within a certain time interval, the peer is removed from the
activeContacts list and a new, random entry from the list if known peers is chosen.

6.3 Advanced issues

This section deals with more general (and more complex) aspects of Omnix, which are not
apparent at first sight. It highlights how the more advanced features of Omnix contribute to
creating a versatile P2P framework with a broad range of possible applications.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 89

5

6

7

8.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public int receiveReply(Reply rep) {
2

3 Transaction t = rep.getTransaction();
Request r = t.getRequest() ;

if (r.getSenderModuleO != this) {

ViaList vias = rep.getVias();
Via nexthop = vias.getLastVia();

contacts.add(vias.getContacts());

rep.setTo(nexthop.getAddress());
rep.send();

} else {

// inform application about search result.
// (see Figure 6.14, line 9-15)

r e t u r n M0D_D0NE;

Figure 6.19: Receiving search results within a wild mesh topology module.

6.3.1 Quality of Service

Transport QoS vs. P2P QoS

When talking about the QoS of networking in Omnix, two separate issues have to be
dealt with. On one side, Omnix has to ensure that messages exchanged with other peers
are guaranteed to be delivered. Hence, the framework must provide means to ensure that
everything possible is done to deliver a message to the target peer. On the other side, QoS in a
P2P network could also include the functionality of the P2P system itself. Hence, the quality
of service of a P2P system could also be determined by its scalability or fault-resilience.
Furthermore, a P2P system's ability to perform a successful search in the network if the
desired information is available (e.g., in a wild-mesh network, this guarantee cannot be given,
while in a server-based network this would be technically possible) might also be used as a
measurement for the QoS.

In this section, Quality of Service (or, QoS) is only applied to networking. It does not
include any other part of the Omnix P2P framework than the transport layer and the streaming
component. The reason for this is the fact that the QoS of the P2P network itself entirely
depends on the implementation of the topology module. The fault tolerance in case of lost
connections between peers, for instance, is determined by the topology of the network, not
by the Omnix framework. The number of messages a peer has to process per second to
maintain the structure of the P2P network is also determined solely by the applied topology.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 90

Hence, the Omnix P2P framework cannot influence any of these QoS aspects.

For this reason, this section concentrates on discussing how QoS can be achieved in the
transport layer and in the streaming component.

6.3.1.1 Transport QoS

Maintaining QoS in the transport layer means that the communication infrastructure of Om-
nix makes sure that everything possible is done to successfully transmit a message to the
destination peer. In Omnix, this could be done in two different ways, both have their advan-
tages and drawbacks.

Where to place transport QoS in the Omnix framework?

The first solution would be to use so-called transactions.2 The transaction module, resid-
ing in both pipelines of the Processing Layer, are used to re-transmit messages if no response
has been received or a request is repeatedly received although a response has already be sent
to the requestor. The most important advantage of putting this functionality into a process-
ing module is that it works for all transport modules the same way. Hence, programmers of
transport modules do not have to think about this type of QoS in their implementation be-
cause it is already provided by the framework. Furthermore, this helps also to reduce the size
(i.e., footprint) of transport modules because common functionality is out-sourced to a single
component in the processing layer. Omnix comes with a prototype Transaction module that
provides this functionality. The drawback of this approach is that this Transaction module
is not able to take the different implementations, network types, communication protocols,
etc. used in the transport modules into account. If, for example, a network module uses a
connection-oriented link (e.g., TCP/IP) to a remote peer, this module is not needed and may
consume viable resources.

This problem leads to the second possible solution: implementing QoS directly in the
transport module. Having QoS measures at the source of the problem, more complex features
could be used to achieve a high QoS. Providing QoS could be as easy as using reliable
communication protocols such as TCP. However, it fully depends on the implementation of
the topology module and is therefore not part of the Omnix P2P framework.

6.3.1.2 Streaming QoS

The Omnix framework provides means for opening a stream between two peers (see Sec-
tion 4.3). For this purpose, a StreamManager uses pluggable components (called Stream-
Provider) that are responsible for creating the stream and to return a handler to this stream
(in form of a StreamControl object).

In Omnix, a reference implementation of a StreamProvider uses TCP/IP connections
to stream data over the network. However, it is possible to add new StreamProvider, that
provide more complex streams than just plain TCP/IP streams.

2The term transaction is typically used in, but not restricted to, the database area. We use this term in the
same context as the authors of the SIP protocol [87], a logical unit of work.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 91

What would be the reason to use another connection-oriented protocol than TCP, one
might ask? The answer to this is that different applications call for different types of streams.
A simple example is real-time multimedia streaming. In real-time audio or video streaming,
it is more important to have timely delivery of data instead of re-sending lost packets (be-
cause they would be received long after they have lost their significance). Hence, for real-
time multimedia transmission, TCP/IP would be a bad choice. It fact, real-time protocols
mostly use UDP.

One example for a StreamProvider could be one that supports the Real-Time Transport
Protocol (RTP). RTP has been designed to send data with real-time characteristics over a
network. Real-time data may be audio or video information but RTP is not limited to that
specific kind of data. Any other application that requires a protocol allowing continuous
streaming of data might use RTP. RTP supports a wide range of underlying networks and
protocols, but in the realm of the Internet, UDP is preferred for its ability of multicasting. A
short introduction to RTP is given in [98].

RTP includes a companion control protocol, the RTP Control Protocol (RTCP), that is re-
sponsible for feedback on the quality of the data transmission, session member identification
and providing information about all session members. This is achieved by the hosts sending
information in RTCP packets to all session members periodically. Sender and receiver re-
ports allow the detection of transmitting problems and their nature (whether they are local or
global). The RTCP requires control packets to be sent periodically the same way as the data
packets.

So, there are a lot of things to do to get QoS in a stream. Still, all this could be im-
plemented in a StreamProvider and executed by a StreamControl object and is therefore
completely separated from the application using it.

6.3.2 Firewalls and NAT

How a P2P system can deal with the problem of bypassing restrictive firewalls and NAT
boxes is explained on page 62. Omnix is open for every one of the three possibilities pre-
sented there. It may be configured to use TCP over port 80, to maintain outgoing connection
so that other peers are able to use these connections to contact the peer, or to use a proxy that
forwards messages through the firewall.

The third possibility is considered to be the most "systemadministrator-friendly" ap-
proach (we don't want to annoy the sysadmin, do we?). It has the advantage that, when
set up correctly, it works guaranteed. This cannot be said about the other two solutions.
Hence, this section will mainly focus on how to create and use a proxy with the Omnix P2P
framework.

6.3.2.1 The peer

Using a proxy to communicate with the world behind the firewall

There are two possibilities where a peer might need the help of a proxy peer. First, it

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 92

may be the case that the firewall does not allow the sending of messages to remote peers.
Second, the firewall may hinder remote peers to send messages to peers inside the firewall.
In both cases, the Omnix framework allows the application and/or any module to cope with
the situation.

If the client is not permitted to send messages directly to other peers in the network, it
must be configured to send these messages to a proxy instead, which then forwards to the
message to the target destination.

Differentiating between target-peer address and next-hop address

It is not the responsibility of a transport module to detect whether a message should be
sent to the address defined in the message or to the proxy's address (as it is only concerned
about sending the message directly to another communication endpoint). Hence, a process-
ing module is used to cover this functionality. Such a module could replace the destination
address of the target peer by the address of the proxy peer. For this reason, a message object
must include two addresses. One of the target peer and one of the next physicalhop (i.e., the
proxy) of the message. The first address (the To: address) never changes in a message. The
other one (called Network-To:) always denotes the address of the next peer on the route from
the sender to the receiver. A simple proxy transport module is shown in Figure 6.20. If a
message is about to be sent, the module simply sets the Network-To address.

public class Reroute extends Module {

public int sendRequest(Request req) {
req.setNetworkTo(proxy-address);
return MOD_OK;

public int sendReply(Reply rep) {
rep.setNetworkTo(proxy-address);
return MOD_OK;

Figure 6.20: Rerouting requests to a proxy.

Every transport module than has to check whether the Transport-To: field is set. If this is
the case, this address will be taken instead of the address in the To: field as the destination.
Note that the Transport-To: will not be transmitted over the network.

With these four simple lines of code, the peer is now able to use a proxy for every outgo-
ing message. But how do the other peers know, that they may not be able to send requests to
this peer directly? How does a peer announce that the remote peers have to send messages
for this peer to the proxy peer instead? The solution is that peers include their contact in-
formation in every request sent out. This information can be used to tell other peers which
proxy to use if they want to send messages to this peer. But for a client peer, it is hard to
determine how the proxy peer should be contacted from the outside (e.g., which port should
be used?). Hence, including this information in the message should be done by the proxy.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 93

6.3.2.2 The proxy

Adding routing information to messages passing a proxy

If a proxy receives a request that should be sent to a remote peer outside the firewall (or,
more general, outside the proxy's domain), it has several tasks to do before the message can
be forwarded to the destination peer. It has to add a Via header field, which every hop on the
route from the requestor to the destination peer should add to the message. This way, it is
possible to trace the route from sender to recipient and it is also necessary to allow responses
also be routed through the proxy (if responses take the same route back as the request took
before; this is accomplished by running down the list of visited peer stored in the Via header
fields).

If an incoming request wants to pass the firewall, it has to do this via a proxy. The
question of how a remote peer gets the information that a peer inside the firewall can only
be accessed via a proxy, is still not answered. The solution is provided by the proxy. If it
forwards an outgoing request, it automatically appends information about how to contact the
sender in future requests. This information is stored in the Contact field.

If a proxy receives a request, it simply forwards it to the peer indicated in the To header
field. If, on the other side, a response is received, it removes the top Via header (which should
be the address of the proxy itself) and forward the response to the next address in the next,
now top, Via header entry.

6.3.2.3 Proxying streams

If normal messages have to be proxied, it might be as well the case that streams have to be
sent through a proxy to bypass a firewall. As with transport modules, StreamProvider should
not be required to support the usage of proxies. Hence, this functionality is put into the
StreamManager, which is responsible for 1) setting up the stream to the proxy instead of the
destination peer and 2) to instruct the proxy where to forward the streamed data to. For this
purpose, the proxy must create two streams, one that accepts a stream from the sending peer
and a second one opened to the target peer. When information is received from the sending
peer, the proxy automatically puts this information in the stream to the target peer.

6.3.3 Bridging topologies

Connecting two heterogeneous P2P networks

Omnix supports a peer to be concurrently connected to multiple networks with different
topologies. This fact could be used to build a bridge between two non-compatible P2P
networks.

Currently, every P2P system uses its own protocol to maintain connectivity of the net-
work, to search for information and to access information (e.g., downloading a file, drawing
on a shared blackboard, etc.). The reasons for this diversity of protocols are manifold. Each

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 94

P2P system uses a protocol that best fits the requirements of the application. In the Gnutella
network, for example, only a fixed set of 5 messages with a rigid structure are defined. The
messages are structured in a way so that they use minimum bandwidth. Groove, on the other
side, uses complex and encrypted XML messages to convey information to other peers. The
protocol and the routing algorithm determine the functionality of the P2P network. Hence,
they are chosen to meet the requirements in an optimal way. Peers of different P2P sys-
tems cannot be interconnected easily. They maybe 1) use different network protocols for
communication (e.g., UDP vs. TCP), 2) use fixed, different port numbers, 3) use different
encodings, ontologies and structures for messages, 4) have different semantics of messages,
5) support different services, 6) use different routing tables, and 7) have different security
measures.

Is it always possible to connect two P2P networks?

So, is it still possible to interconnect different P2P networks? The answer is yes, but
it depends on the systems to be connected. It only makes sense where there is an overlap
of functionality. The Gnutella network and the FastTrack network could be easily inter-
connected. If a SuperPeer in the FastTrack receives a search request, it creates a Gnutella
network and sends it to other peers in the Gnutella network. The incoming results are then
forwarded to the requesting FastTrack client peer. Accessing the file in the next step must
also be done via the same SuperPeer. Hence, it must present itself as the provider of all
resources found in the other network. Otherwise, it would be impossible to access the files
in the alien network.

It does not make sense, for instance, to connect an instant messaging P2P system with a
file sharing P2P system. On the other side, it would be possible to connect different types
of P2P networks, but then only a small subset of messages could be forwarded to the other
network. For example, Groove and Gnutella could be connected although they have a com-
pletely different application domain. Still, it could be possible to use a Gnutella client to
search for files in a Groove network (this would also be possible in the other direction). But
every other functionality of Groove (e.g., chat, shared browser, etc.) could not be forwarded
into the Gnutella network.

To interconnect two different P2P networks in Omnix for each protocol used, a separate
transport module that parses and generates messages of this protocol is necessary. These
transport modules decode incoming messages into a generic Message object. A topology
module is then able to read the information stored in the Message object.

Where to place the connecting point of two P2P networks

There are two ways how two P2P systems could be connected. Either a topology module
understands both networks and is able to translate between the two protocols, or an applica-
tion on top of Omnix uses two different topology modules. In the following, advantages and
drawbacks of both ways are explained.

• Multiprotocol topology module: It is possible to write a topology module that is able
to support more than one topology (i.e., P2P system). If it receives a message from one

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 95

system, it simply forwards it to the other system. It has full control over all messages
exchanged with both P2P networks.

• Application on top of two topology modules: In this case, two separate topology mod-
ules are used to connect two P2P networks. If a topology module receives a message,
it informs the application when then forwards the message to the other network by
using the second topology module.

The first solution has clearly the disadvantage that this single module could not be used
to connect one of the involved P2P systems with a third one. It would only support a fixed set
of P2P systems. The advantage, however, of this approach is that it provides full flexibility
over both networks. The drawback of the second solution, albeit being very flexible, is that
it is restricted to the interface between topology modules and applications, which is defined
by Omnix. Hence, the application has less flexibility than a topology module. Hence, the
first solution would be preferable.

6.3.4 Different topologies, same network

Connecting peers with different topology implementations

This section deals with mixing different topologies in a single network. This situation is
possible when a network is in the process of switching from one topology to another. But
there are also scenarios where it might be desirable to mix two or more topologies in a single
network.

An Omnix peer could be the member of multiple networks. The mapping between mes-
sages and the different networks is done by putting the network's name into the message
(Section 4.2.4.1 provides a more detailed explanation of the notion of networks in the Om-
nix framework).

One might argue that a mix of different topologies is just another topology. But this is
not valid in this context. In this section, mixing is not done statically. It is not clear for every
peer in the network which topology the complete network has (unlike today's P2P networks,
where every peer is aware of the overall topology - which does not necessarily mean that
they know the actual peers).

Technically, it is possible that peers in a network use the same protocol, the same message
semantics and syntax, but different topologies. This means that that depending on the peer's
topology module, different routing algorithms are employed. Figure 6.21 shows a simpli-
fied example of how different topologies could be connected. In this figure, three network
topologies are combined: a wild mesh network (e.g., as Gnutella), a server-based network
(such as Napster), and a distributed hashtable like Chord [23].

If Peer A receives a message from the wild mesh sub-network, it forwards it (as a client)
to the central server also available in the network (Peer B). If a result is found at the server, it
returns it to the client, which then forwards the response back to the originator of the search
request. In parallel, the server may also forward the search request to another node which is
part of a third topology (Peer C). This is not only valid for search request. Any other message

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 96

Figure 6.21 : Mixing topologies in a single P2P network.

defined in the network could be transported beyond the borders of a single topology. All that
is necessary is that the protocol supports the traversal of varying topologies (i.e., it must be
able to carry the information required for all topologies involved). In a wild mesh network,
for instance, a list of visited hosts and the time-to-live (TTL) information must be stored in
the message.

An important aspect in a P2P network - loop detection - might be a challenge in a
network of mixed topologies. A distributed hashtable usually performs loop avoidance by
sending messages only to peers that have a higher chance of being at the target destination.
In a server-based network, there is no need for loop-detection at all. These two topologies
might have problems with a wild mesh topology attached to the network, because it requires
that peers actively check whether a message has been received before. This is not only
important for loop detection but it also necessary to detect repeatedly sent messages (in a
wild mesh network, there is no routing strategy that forbids two different peers to send the
same message to the same destination). Hence, it is not sufficient to simply connect two or
more topologies together. Every topology module has to implement all measures necessary
to avoid loop detection in general (e.g., as in the wild mesh topology).

Having established that it is technically possible to mix two or more topologies may be
interconnected, the next question is whether it makes sense to purposely mix topologies or
whether there are circumstances where topologies are mixed accidentally.

Adding another topology to a P2P network may be reasonable if some peers are not
capable of meeting the requirements of the original topology. A handheld device is a good
example for such a case. Having only limited resources (such as a low bandwidth connection,
low CPU capacity, etc.), it is generally not a good idea to connect this device to a wild
mesh network. The sheer number of messages would exceed the capabilities of the device.
Hence, it is necessary to connect the handheld device to a server (e.g., within the group or the
company), which is then connected to the wild mesh network. The handheld device stores all
shared data on the central server and is not bothered with search requests from other peers,

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 97

because all messages are sent to the server. The result is a mixture of topologies: a small
server-based P2P network is connected to a wild mesh network.

If a group of peers has requirements that cannot be met by the original topology, these
peers may use an alternative topology but stay connected to the original P2P network. A
group of people exchanging large amounts of data may want to keep the traffic within their
group. Still, if they want to search in the overall network, they are still able to issue search
request to other peers outside their group. This scenario could be configured by having a
large hybrid P2P network, while the group is connected as a Nimble group. A single peer is
needed to forward "global" search requests to the hybrid P2P network.

Having multiple topologies in a single network may not only be needed due to special
requirements but there exist also scenarios where it is inevitable - at least for a short time
- to mix topologies. If a system administrator decides to change the topology of a network
(e.g., because a new P2P topology would allow more search messages per second), it cannot
change all peers at the same time. If lucky, the sysadminmay be able to automatically change
the topology at all peers currently online. Still, the other peers would not be affected by this
change and would still use the former topology. It may be necessary to support also these
peers until all of them have switched topologies.

The example scenarios described above show that it is useful to support multiple topolo-
gies in a single P2P network. Still, it is worth noting that the routing algorithms of the
various topologies only apply to search requests. Accessing shared files or services is still
done directly in most cases (a notable example would be Freenet, where direct connections
between provider and consumer do not exist).

6.3.5 Connection-oriented vs. connectionless communication

This section discusses the advantages and drawbacks of connection-oriented vs. connection-
less communication protocols.

Connection-oriented communication means that when two devices exchange informa-
tion, at first a handshake is performed. This is needed to create a virtual channel from one
endpoint to the other. Packets are routed through this channel and are received in the same
order as they were sent. Furthermore, connection-oriented protocols also support some sort
of delivery guarantees. If a message has not been received, the sender automatically re-
sends the packet. Packets typically have a continuous number that allows the receiver to
detect missing packets. The handshake mechanism is used to synchronize the two endpoints.
It could also be used to change the characteristics of the connection (e.g., QoS settings).
Connection-oriented communication requires bi-directional communication. If communica-
tion only flows in one direction, it is not possible for the two endpoints to agree on a virtual
channel;

Connectionless communication, on the other side, does not provide any of the afore-
mentioned features, such as delivery guarantees or the correct ordering of received packets.
There is no handshake protocol and no dedicated virtual channel. The sender simply sends
packets to the receiver without making sure that the packets reach the receiver or even check-
ing whether the receiver is still online. Delivery guarantees and packet ordering have to be
implemented in the application layer (according to the ISO OSI layer model [99]).

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 98

There is no doubt, that in a P2P middleware framework, both kinds of protocols should
be supported. But, the question is which protocol should be preferred? In Omnix, the default
transport protocol used is UDP, a connectionless protocol. The reasons for this decision are
given below:

• Delivery guarantee: Having delivery guarantees (if such a thing exists; it would be
more appropriate to call it "best effort") is generally desirable in protocols. But con-
nectionless protocols do not support such a feature. Hence, it must be implemented on
top of the protocol (which is done in Omnix in the Processing Layer). Having such a
service paves the way for small, effective protocols - hence it is no longer necessary
to use connection-oriented protocols.

• Performance: Connection-oriented protocols typically need some time and bandwidth
to establish the connection. If a peer only wants to send a single message, this overhead
would not be justifiable. Furthermore, the feature typically supported in connection-
oriented protocols (such as delivery guarantees or the correct ordering of received
packets) also add to the bandwidth requirements of the protocol itself. It may be as
well the case that these services are not required by the P2P network. In this case, a
connectionless protocol would suit better (e.g., although being a streaming protocol,
the Real-Time Transport Protocol (RTP) uses UDP instead of TCP due to the high
overhead of the TCP protocol).

• Agility: In a P2P network, peer typically connect and disconnect at a frequent rate.
When a connection-oriented protocol is used, a virtual channel between the two peers
is created. This is typically done by the operating system that provides this functional-
ity. A connection between two end-points has to be shutdown cleanly - otherwise, the
operating system would have to wait for a timeout until it detects that the remote end-
point is no longer available (TCP, for example, tries to resend packets for a pre-defined
period of time). This behavior may be undesired in a P2P network with frequent dis-
connections. Connectionless protocols may be used to fine tune this functionality.

• Complexity: When using a connection-oriented protocol, the handshake has to be per-
formed first. In many protocols (such as HTTP, SIP, etc.) this overhead is reduced
by keeping connections between endpoints open, even after the communication has
finished. These lines are kept open to avoid the tedious handshake if the same two
endpoints want to communicate again. Hence, every peer has a pool of open connec-
tions to other peers. The management of this pool (including keep-alive timeouts for
connections, the maximum number of connections, etc.) is not too complex, but still
is not reasonable in a P2P network, because connections may be cut off frequently.

• Congestion: In the TCP protocol, the receiver sends an acknowledgment upon the re-
ceipt of a packet. If the receiver has an asymmetric connection (e.g., DSL or Cable),
upload bandwidth is typically lower than download bandwidth. Hence, the acknowl-
edgment packets get slower to the sender than the actual content to the receiver. This
has the effect that the sender has to wait until the acknowledgment packet has been
received before it can send the next packet, although the receiver's download capacity
would allow for a faster transmission of information. Using a connectionless protocol
would mitigate this problem.

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 99

However, the Omnix protocol also supports connection-oriented transport protocols (e.g.,
by supporting header-fields such as Connection, which determines whether the connection
should be kept alive or not).

6.4 Testing

The exceedingly distributed nature of P2P applications makes it very difficult to test a P2P
application before it is installed on millions of computers on the Internet. But verifying the
correctness of a P2P application is vital, because it cannot be easily exchanged by a never
version once it is spread over the network. So what can be done to test a P2P application at
development time?

Mathematical models vs. simulations

There are typically two ways: either the correctness of the software is verified using
mathematical models or a simulator is used to simulate thousands or millions of peers inter-
acting. Using mathematical models only is not desirable because it could only be used with
a very simple model that does not necessarily reflect the real world (it would be too complex
and therefore impossible). Examples for an analysis of a distributed system in general are
given in Jogalekar et al. [100] and Keidar [101] whereas the analysis of a P2P network is
exemplified in [102]. Simulations are more complex and can therefore be seen as a way to
verify whether the simpler mathematical model is valid. Hence, simulation should be used
in addition to analysis to better understand the dynamics and forces in a P2P application.

A closer look at existing network simulators

The problem of testing large distributed systems by using simulations is not new and
has been widely addressed in the scientific literature. NEST [103], for example, simulates a
network within a single Unix process, which has the advantage that no networking is needed
to simulate a virtual network. Instead of sending packets from one virtual host to another,
messages can be exchanged by passing reference pointer to the shared memory. In addi-
tion, debugging the tested application is easier if the instances of the application reside on a
single machine. In NEST, the virtual network is accessed by using NEST-specific methods,
such as sendm(), recvm() or broadcast) (for sending, receiving and broadcasting messages
respectively). Since time-related commands like time() or sleep() are no longer usable in
an emulated environment, replacements are offered. There are, of course, some differences
to normal network operation. Since all emulated hosts run in a single process, NEST uses
interrupts to iterate through all hosts. This means that virtual hosts get a limited amount
of CPU cycles and are then interrupted. Special methods are provided to keep NEST from
interrupting critical tasks that must be finished before the next virtual host gets its turn.

Another system, which is a little bit more sophisticated, is EMPOWER [104]. By modi-
fying the network device driver of *nix systems, EMPOWER uses a local network of a few
machines to emulate a way bigger network. If a virtual host sends a message to a (virtual) IP
address, the simulator must translate this virtual address to the address of the actual computer

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 100

that runs the virtual destination host. This is done by employing so-called Virtual Routing
Mappings. Instead of using normal routing tables, virtual routing tables help finding the cor-
rect target machine. EMPOWER is even able to simulate packet delays, ranging from a few
milliseconds to a second and above. Obviously, if two machines host a multitude of virtual
hosts, the physical network link between these two machines is shared by all virtual hosts.
The resulting network congestion is a problem for getting adequate results.

There exist many more systems, among them VINT (Virtual InterNetwork Testbed,
[105]), ENDE (End-to-end Network Delay Emulator, [106]), One (The Ohio Network Em-
ulator, [107]), Delayline ([108]), JEmu ([109]), and Seawind ([110]). Riley et al. [I l l] list
further systems, such as Opnet [112] (which is able to simulate a few hundred nodes), Glo-
MoSim [113] and the LBNL network simulator (ns) [114] (for a few thousand nodes), TED
[115] (for tens of thousands of nodes), [116], [117], and the Parallel / Distributed ns [118]
(for a few hundred thousand simulated nodes).

In the area of network simulation, a lot of problems are still unresolved. Floyd and
Paxson [119] and Riley and Ammar [111] list the following common problems of existing
network simulators:

• Scalability: According to the Internet Software Consortium [120], in January 2003
the Internet consisted of approximately 170 million hosts. It is quite a challenging
task to simulate this amount of hosts. The authors of [111] state that simulations
with packet-level detail would take too long to produce reasonable results and that the
resulting amount of data would be too large. They estimate that approximately 2.9Z?11
messages are sent in the Internet per second. Hence, if a simulator is able to simulate
one million message per second, the simulation would take 290,000 seconds and about
1AE13 bytes of memory for each simulated second. Riley and Ammar further state
that by 2008, estimated 300 million CPU seconds would be necessary to simulate a
second of the Internet.

Therefore, the Internet is simply too big for simulation.

• Network heterogeneity: Today's Internet is a carrier for a multitude of different pro-
tocols. Protocols such as HTTP, SMTP, FTP, IRC, and many more share the same
physical links of the Internet. This protocol mix with a lot of interdependency makes
it particularly difficult to simulate the Internet.

But not only the tremendous diversity of protocols is a stumbling block for successfully
simulating the network. The Internet itself, which is a composition of many diverse
network technologies and administrative domains, is very heterogeneous. Different
types of physical links, with different bandwidth and latency, exist. Furthermore, some
links are point-to-point while other are broadcast links (e.g. in a WLAN). Routes are
asymmetric and the packet loss rate is not deterministic. The congestion at routers in
the Internet can not be easily simulated.

Generally, it is very hard to understand how a large IP network reacts to some protocol
or topology changes.

Another example for the heterogeneity of the Internet are the different implementations
of the TCP protocol. Different implementations have different behaviors under certain

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 101

circumstances, which makes it nearly impossible to simulate such a simple protocol as
the TCP protocol.

• Accuracy: As explained above, the major problem of simulating the Internet is its
scale. Hence, a more simplified model has to be used to simulate the Internet. The
next question is whether this simplified model is accurate enough. Simulation and
analysis of the Internet can only be applied to a conceived model of the real world. It
is restricted to the current form of the Internet, not taking into account what the Internet
will look like in a few years. Important aspects like pricing, future killer applications
(as was P2P a few years ago) and new devices will shape the future Internet. Further-
more, the Internet does not have a fixed topology but changes dynamically [121].

It is not clear how to verify the accuracy of a simulation. Since Internet-scale simula-
tion is not feasible, a simplified model of the Internet with just a few thousand hosts
and data flows has to be applied. There exists no measure to determine the accuracy
of such a model. There is a risk that a too simplified model would neglect key aspects
of the Internet.

• Significance: Most simulators are subject to limitations in size and complexity. They
must not be used to just produce numbers that show the performance of a distributed
algorithm. Simulations are rather good for helping to understand the interactions bet-
ween protocols and hosts. Therefore, it is questionable whether results drawn from
simulations are significant enough.

Nevertheless, as stated in [119], this does not mean that simulating networks is futile. It
is useful for understanding how protocols behave and to support mathematical models.

Simulating a P2P network

In the area of P2P computing, little is published about network simulators. Notable ex-
ceptions are the Query-Cycle Simulator [122] and the NeuroGrid P2P Simulator [123]. The
Query-Cycle Simulator simulates a file sharing network such as Gnutella. In a single cy-
cle, the simulator lets all virtual peers issue queries and collect the corresponding responses.
After that, statistics of the collected data can be created. For each virtual node, the Query-
Cycle Simulator models individual files that are shared in the network. The authors of [122]
state that this is important because a random distribution of shared files would not exhibit
real-world properties (e.g., it would not create clusters of peer interacting, as it is in the real
Gnutella network). Furthermore, it is important to use multiple variations of ontologies and
attribute values for meta-data to get a better understanding of the dynamics of the protocol.

Tailoring simulations to the requirements ofP2P networks

Why is it necessary to have a dedicated P2P simulator if so many generic network sim-
ulators are available? The answer is that generic network simulators are too complex for
simulating P2P systems. When testing a P2P application, it is reasonable to test the inter-
actions of as many peers as possible. Furthermore, when testing a P2P application, other

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 102

factors than network congestion, the simulation of routes or the interaction with other proto-
cols (things that are typically simulated in network simulators) are especially important. It is
more interesting, for example, to see how many messages a node has to process in a specific
time frame. It is also worth testing how nodes react to changes in the topology, to check what
happens if a connection has been dropped, how changing peer uptime, session duration, peer
activity levels, and the number of search requests and responses influence the behavior of the
P2P system. Typical network simulators do not aim at testing these properties.

For these reasons, a project called Simix has been started to help simulating P2P applica-
tions on top of Omnix. In Simix, multiple peers can be started in a single virtual machine.
Instead of using real socket communication, Simix provides a transport module that trans-
lates the sending of messages into a method invocation. Due to the fact that all layers above
the transport layer are completely independent from the layer below, no changes have to be
made to the Processing and P2P Network layers. One of the biggest advantages of Simix is
that not a single line of code has to be changed in the application (which is not possible in
normal simulators, as, for example, explained above in the case of NEST).

Each simulated (virtual) host may have an individual connection (with parameterized
upload bandwidth, download bandwidth and packet loss rate). It is also possible to start
multiple instances of Simix and to connect them to a large network simulator. If a message
has to be transported to a virtual host in a remote Simix simulator, RMI is used to transport
the message to the destination host.

Simulating routing in the Internet

The number of routing hops between two peers is approximated by taking the Leven-
shtein distance between two virtual IP addresses. Table 6.1 shows an example of how the
number of hops is computed between a peer at address 209.247.228.201 and another peer at
address 209.245.127.64. This is,of course, a rough approximation to the real routing algo-
rithm in the IP network. But it is virtually impossible to get an accurate model, as the routing
in IP networks is highly dynamic (and we had to start somewhere). We are currently working
on a refinement of this model by using virtual routers that build a graph. When a message is
sent from one virtual router to another one, the shortest path between these routers is used to
convey the message to the destination peer.

Hop#
0
1
2
3
4
5
6

Address
209.247.228.201
209.247.228.0
209.247.0.0
209.0.0.0
209.245.0.0
209.245.127.0
209.245.127.64

Table 6.1 : Routing example in Simix.

Simix allows the creation of arrays of virtual peers. To increase scalability of the simu-

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 103

lator, it uses lazy loading (i.e., a peer is started when it is first accessed or triggered).

The disadvantage of simulators is that there is no possibility for having a UI for each
virtual peer running. Hence, peers must be either working autonomous or be triggered by an
external automatism. At the time of writing, Simix does not provide such an automatism as
it is unpredictable how to access the functionality of the P2P application on top of Omnix.
This step requires additional coding from the application tester.

6.5 Omnix in a pervasive environment

Supporting small devices

Computers were once thought of as big expensive machines that were housed in large
rooms and that were maintained by groups of skilled technicians. Today, computers not only
have moved out of these large rooms and the protection of their keepers, but computing capa-
bility has moved into almost every device imaginable. Concurrently with the miniaturization
and widespread availability of processors have come advances in mobile computing. Hand-
held devices such as PDAs (e.g., the new generation devices such as the Compaq iPAQ) and
mobile phones (e.g., the Nokia Communicator) have been increasing in popularity and have
also been getting more powerful.

The universal availability of mobile devices and their ability to communicate with one
another (using communication technologies such as Bluetooth, Wireless LAN and UMTS)
is now giving rise to a pervasive or ubiquitous computing environment (see [124], [125],
[126]) in which devices autonomously detect each other's presence and attempt to interact
with each other in order to provide some routine or other hitherto unimaginable services
for humans. The missing piece to making this vision into reality, however, is comparable
advances in fundamental software abstractions and technologies.

One important software abstraction that is still required for mobile devices is middleware
that provides a higher level access to the networking and communication means provided by
handheld devices. In the last couple of years, Peer-to-Peer (P2P) middleware support for
handheld computing devices has been gaining attention. This is because the P2P paradigm
has many advantages when it comes to ad-hoc mobile communication. The aspect of decen-
tralization in the P2P paradigm makes it a good candidate for this type of communication.
There is usually no need for a central server and the communication may start immediately
without setting up a specific infrastructure.

P2P middleware systems for mobile devices aim to provide an abstraction between the
P2P network and the applications that are built on top of it. These middleware systems offer
higher-level services such as distributed P2P searches and support direct communication
among peers. Such systems often provide a pre-defined topology that is suitable for a certain
task (e.g., for exchanging files).

As described in Chapter 3, choosing the best topology depends on the intended applica-
tion. This also applies to the field of pervasive computing. Pervasive computing per se is not
a fixed use case but an umbrella of a large set of applications, each having its own character-
istics, advantages, drawbacks, and - of course - best fitting network topology underneath. It

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 104

is not very sage to lump together all possible applications by using only a single P2P network
topology. Furthermore, it is very likely that multiple applications will run on a single device.
It does not make sense that all applications are compelled to use the same P2P topology and
it does not make sense either to let every application have its own P2P networking implemen-
tation, as resources are typically limited on a mobile device. In addition, different devices
possibly provide different APIs for accessing the network. In the worst case, an application
has to be adapted to each mobile device it is supposed to run on.

Omnix, with its layered architecture and its support for multiple P2P topologies at the
same time would be a remedy for these problems. By only changing the transport modules
at the bottom of Omnix, application can run on many different devices without the need to
change a single line of source code. In addition, a single instantiation of Omnix would be
sufficient to support a wide range of P2P topologies and therefore P2P networks. There is
no need that every application comes with its own implementation of a P2P stack. This also
helps to save limited resources on mobile devices.

To prove Omnix's ability to run on small devices, a transport module for the Java 2
Mobile Edition (J2ME) has been implemented.

6.5.1 Supporting J2ME

Java 2 Mobile Edition (J2ME) is a framework for bringing Java technology into small de-
vices with network capability, ranging from pagers over mobile phones to high-end PDAs
(Personal Digital Assistants). J2ME defines classes (or configurations) of mobile devices
with similar features. For each class, J2ME defines a configuration of required classes and
optional packages.

Currently, there are two configurations defined, each optimized for the processing power,
network capabilities, and memory capacity given respectively: the Connected Device Con-
figuration (CDC) and the Connected Limited Device Configuration (CLDC). While the first
is intended for more capable devices such as TV set-top boxes and high-end PDAs (i.e., typ-
ically devices with a 32-bit CPU and at least 2 MB of RAM), the CLDC covers devices with
even more limited resources, among them mobile phones and low-end PDAs.

On top of these configurations, different profiles can be defined. Each profile specifies
which classes must be supported and which are optional. In CLDC, there is one profile
currently defined, the Mobile Information Device Profile (MIDP, version 2). This profile
includes a few utility classes (e.g., for networking and local data storage) and some additional
packages that deal with the user interface of the supported devices.

Omnix provides full support for the much more demanding CLDC configuration, as it
uses the classes provided by the MID profile to access the network. This is a good exam-
ple for the necessity of using a component-oriented framework. By simply replacing the
transport module, Omnix can be used on different devices. For the other components in the
Omnix framework, it does not make a difference which transport modules is actually used.
Figure 6.22 depicts an example of the incompatibilities between the Java 2 Standard Edi-
tion (a) and the Java 2 Micro Edition (b). They use different APIs to access to the virtual
machine's networking functions (in this case, to open a datagram socket).

Figure 6.23 shows a real application of Omnix written for the J2ME MID profile. It

CHAPTER 6. PROGRAMMING ASPECTS OF OMNIX 105

(a.) MulticastSocket multicastSocket = new MulticastSocket();

(b) UDPDatagramConnection dc = Connector.open("datagram://:");

Figure 6.22: Opening a socket in the transport module (J2SE vs. J2ME).

allows to search and view BibTex references in a Nimble group P2P network.

T.KÜ

1

Keywords

M

m
oth«rpeer(£)

;

ED
found

1
Category • No category

I Search result:
I ®PeerWare; Core Middleware

Support for Peer-To-Peer
and Mobile System s
fTeihreport)

Minui

Figure 6.23: Omnix running on a J2ME device emulator.

In this chapter we have exemplified how to create various plugins (or modules) for the
Omnix framework and discussed theoretical aspects. Chapter 7 gives an overview of appli-
cations that are actually using Omnix as the underlying P2P communication infrastructure.

Chapter 7

Applications using Omnix

This chapter gives a short introduction to some of the programs that are using Omnix as the
underlying P2P middleware. Two applications written to show the applicability of Omnix
and an experimental study of Omnix are presented.

7.1 Simplix - a P2P Service Engine

The first application we wrote on top of the Omnix framework was a service engine (with
the name of Simplix) that can be seen as a very simple analog to a Servlet engine.

In Simplix, each peer is sharing information in form of files or dynamic services. When
a peer searches for information, it can use one or more keywords to search among the meta-
data stored at the remote clients. The number or type of services provided at a peer is not
fixed. The use of so-called SimplixServices (which are comparable to Servlets) allows to
extend the functionality provided by a peer.

Figure 7.1 shows a high-level view of the architecture of Simplix. On top of Omnix is
the Simplix Service engine which is designed to manage arbitrary Simplix services. When
a search request is received by Simplix, it passes this search request to each of the installed
Simplix services, collects their results and sends back the combined result to the requesting
peer. A list of existing Simplix services is given below.

Each Simplix service may be assigned to one or more categories. A category is simply
a keyword like "Multimedia", "Person", or "Document". The list of categories defined in a
Simplix network is not fixed and can be determined by the system administrator. It is not
necessary that all peers share the same set of known category names (although it is clearly
favorable). Categories allow peers to limit the search horizon, eliminating all search results
that do not fit the requested categories.

The set of categories in a Simplix network can be hierarchical, meaning that one or more
categories can be a subset of a common category. An example is given in Figure 7.2 where
the search for an artifact with category "File" returns all search results that have either the
category "File", "Multimedia" or "Document". If a peer searches for the root category ("/"),
it simply gets all artifacts that match the given keywords, regardless of their category.

Some of the services existing at the time of writing are:

106

CHAPTER 7. APPLICATIONS USING OMNIX 107

•j! Simplix Service
(Barnes S

:'"' Nobles)

Simplix Service Engine

Omnix
P2P Network Layer

ContextSwitcher. '

Omnix
Processing Layer

Figure 7.1: Simplix architecture.

Figure 7.2: Example of categories in Simplix.

People: This service takes a set of contact files in a directory and allows other people
to search for this information. This Simplix service uses LDIF files (short for LDAP
Data interchange Format, see [127]), which is used by many personal information
managers (PIM). The People service is useful in a large company when a person with a
specific profile is needed (e.g., when searching for people who are experts in Windows
security). The People service returns a short summary of the contents of the LDIF file
together with a URL where the complete file can be downloaded.

References: Since every researcher has her own set of BibTeX references, this service
allows to share these BibTeX references with other researchers. It takes a BibTeX
file and allows other peers to search for any field in the file and returns the complete
matching BibTeX entry. Figure 7.3 shows an example of a search result returned by
another peer. Figure 6.23 (page 105) shows this service used on a mobile phone.

Books: This service acts as a proxy for the search facility provided by the online

CHAPTER 7. APPLICATIONS USING OMNIX 108

bookstore Barnes & Nobles (BN) [128]. It takes an incoming search requests, parses
the keywords and issues a corresponding search request to the BN website. The result
returned by BN is then transformed back into a Simplix search result containing the
first ten matches and sent back to the requestor.

— Prcjsct

t m(üivsiu**efi at at

0 <ai

: Cm» MWdiûvrare Suppen rw f>««-Ta-Pcer and Mou» System {

Peer-ta-Pw Wording Group. 'wrtpitp/Awiw p2pwg wg/J) (Mise)

Peer-tß-Pssr Harnessing the Power of O ö TgÊîinoiogi&s (Boo*.)

Cfiwcf: A Scalable Pçer-To-Pe&r lookup Service fw i i Applications O

Pe«--to-F*er Systems (tnprocmSngi)
«Td HKtcr CwdtrMcaru

9 : ywt$J I coa paring

ting h*c*s For pçer-fc-Pew Syiwm«

Hit^Pfler Computing (Tt

y: Scslatde, 0tcenfr3lir«î Ol^ectlocstwn, sM HDOöt>g fer Large-Scale Peet-to-Peer Syitaxw (

PAST). (A] Larga-Staiîr, er-to-feer Stcssgö U

(In proceed in tj
d Computing TU« l«erj«ctwn <?(Weft Servie«. P2P, »na G

An Er*iant"flP"«r to-Paw N^ftwort.

î g Ccr«sr*s la

Figure 7.3: Web-Interface of the Simplix application.

With Simplix, a peer can search among registered persons, books, BibTeX references
and much more with a single search request.

There exists also a Web interface to the Simplix system so that it is not necessary to have
the Simplix system installed to search for information (i.e., it can be accessed remotely).
Figure 7.3 shows a Screenshot of this Web-Interface of the Simplix application. On the left
side, the user can enter keywords and select one or more categories to search for. The search
result is presented on the right side of the Browser window, grouped by the found categories.

The advantages of Omnix that we experienced when building Simplix was that it can
be used on any devices that has a Java heartbeat (Figure 6.23 shows Simplix running on a
mobile phone). The implementation on the mobile phone just required to write a small UI
that accesses the services provided by Simplix.

Furthermore, we took advantage of the fact that the topology of the underlying P2P
network is not fixed. When Simplix was built, a Nimble group was used as the P2P topology
(because it was the only available at that time). Later on, we were able to replace this
topology by a more scalable wild mesh topology seamlessly (i.e., without changing the code
of any of the components or services of Simplix on any device).

CHAPTER 7. APPLICATIONS USING OMNIX 109

7.2 Donare - a hybrid P2P file sharing application

The second application that has been built with the help of Omnix is Donare [129]. It is a so-
phisticated hybrid P2P network that has roughly the same technical structure as the currently
most popular P2P network, FastTrack [19]. The system provides SuperNodes to collect
meta-data on shared services and files, and to process or forward search requests to other
SuperNodes.

Donare is located on top of the Processing Layer of Omnix, thus not using the P2P Net-
work Layer. The reasons for this are that it uses many sophisticated networking techniques
such as traffic shaping, load balancing, route optimization, etc. (which is much easier to han-
dle when using the communication infrastructure directly), and to show that an application
is not required to use only the top layer of Omnix.

Connector» _

Donars Node Manager

Omnix

Processing Module
• (Decrypt) •

Processing Module
(Logging)

' . In-Pipelne

Processing Module
(Encrypl) , •

: .-on

Processing Module
(Reroute) .

Processing Layer

-Pipeline

Omnix
Communication Layer

Figure 7.4: Donare architecture.

Figure 7.4 shows an overview of the Donare architecture. The Node manager is respon-
sible for loading, configuring and managing all attached services (more on services in a
moment) and the connections among services. A Connection is a point-to-point connection
between two services (regardless of whether these services are on different hosts or not).
This connection is responsible for providing stable communication to the other communica-
tion endpoint. Periodical ping messages ensure that communication failures are detected.

Services can be provided to remote peers, to other services or to the user. A UI service,
for example, could contact a file searching service to search for files in the network (using
remote services). Services, for example, may open connections to other peers to send search
requests. The modularization of Donare allows to add arbitrary services to the system. The

CHAPTER 7. APPLICATIONS USING OMNIX 110

services implemented at the time of writing are a UI service and the services necessary to
build a hybrid P2P network that allows peers to search and download files. It uses regular
expressions to search for meta-data stored at the SuperNodes.

Donare shows that Omnix can be used to build very sophisticated P2P networks. It is
planned to redesign Donare in a way that it can be used as a topology module.

7.3 An experimental study

This section deals with a evaluation of the reference implementation provided with Omnix.
This experimental study is mainly to provide a better understanding of how the Omnix P2P
middleware framework performs. Although the reference implementation of Omnix has not
been optimized for speed, low memory consumption or scalability (e.g., the storage of meta-
data is done in memory with the help of a single hashtable - not a very good solution once
the data exceeds a few megabytes, but sufficient for the purpose of these tests), it is still
useful for getting a lower bound of the performance of Omnix.

For the purpose of this study, we chose two different topologies - Nimble group and
server-based topology - to determine whether the used topology influences the performance
of the system.

#

1
2
3
4
5

CPU [MHz]
2000
1800
800
700
500

RAM [MB]

512
1024
256
256
256

Table 7.1: The testbed for testing the reference implementation.

To perform this study, five peers have been created in a local area network. Table 7.1
shows the list of computers used for this test. The connection between these machines is a
100 MBit Ethernet switched network. Java version 1.4.1 has been installed on all of these
computers. In the server-based topology, computer # 1 has been used as the server. The
slowest computer (# 5) has always been used to issue the search requests. In both topologies,
we inserted 1,000 files into the network and ran 10,000 consecutive search requests to get
meaningful average values of the time consumed by the Omnix components.

Table 7.2 demonstrates the performance of Omnix when using a server-based P2P topol-
ogy. With a server-based topology, injecting a file results in a message sent to the server
containing meta-data about the file. Search requests are also sent to the central server. These
two operations, inject and search, are evaluated in Table 7.2. It shows how much time the
Omnix stack took to process outgoing (Local stack send) and incoming (Local stack receive)
messages, both at the client and at the server. The Total local stack value shows how much
time Omnix consumed totally to process a request/reply transaction. The Total operation
value shows the time the complete operation needed to perform the inject or search action
(including the time necessary for searching in the database of shared files).

CHAPTER 7. APPLICATIONS USING OMNIX 111

Local stack send
Local stack receive
Total local stack
Total operation

Client (#5) Server(#1)

Inject [ms]
5.82
2.15
7.98

78.06

0.47
0.38
0.86
1.11

Client (#5) Server (#1)

Search [ms]
6.36
0.79
7.15

24.05

0.98
1.50
2.48
4.74

Table 7.2: Performance of Omnix in a server-based P2P topology.

As Table 7.2 shows, Omnix only needs a few milliseconds to send and receive messages
before they are either sent over the network or passed to the application on top of Omnix.
The relatively high total operation time of the client is due to the time necessary to send the
request and the reply over the network.

Local stack send
Local stack receive
Total local stack
Total operation

Client (#5)

6.55
2.60
9.16

333.03

Peer (#1) Peer(#2)
Search [ms]

0.89
1.17
2.06
4.19

1.07
1.35
2.43
4.23

Peer(#3)

2.37
2.50
4.88
9.21

Peer(#4)

2.74
2.60
5.35

10.71

Table 7.3: Performance of Omnix in a Nimble group.

Table 7.3 shows the same test performed with a Nimble group. In this setting, four peers
(#1 - #4) are sharing 1,000 files each. The "client" peer (#5) issues 10,000 search request
to all members of the group. The time for injecting the files has not been recorded because
in this topology, the meta-data is stored locally in the topology module. Hence, the time
for storing this information can be ignored. For the four "server" peers, searching means to
receive a search request, process it and send back the search results.

As in the case with the server-based P2P topology, the client consumed only a few mil-
liseconds to process incoming and outgoing messages. The most interesting information in
this table is the total operation time of the client peer. Due to the fact that all peers are con-
tacted at the same time, the latency of the network increases tremendously. With all peers
transmitting information at the same time, the average search for files requires more than 0.3
seconds.

Local stack send
Local stack receive

Client Server
Inject [ms]

11.76
-

-
10.84

Client Server

Search [ms]
7.07

-
-

11.02

Table 7.4: Performance measures of JXTA.

In addition, we performed comparable tests with the reference implementation of JXTA

CHAPTER 7. APPLICATIONS USING OMNIX 112

Version 2.0. We measured the time needed to publish an advertisement remotely and to
search for an advertisement. The configuration for these tests was an Athlon 900 MHz PC
with 256 MB of RAM. We used JDK version 1.4.1_02 and JXTA build Jan 5 14:37 2004.
The results of these tests are shown in Table 7.4. All tests were performed local on this
machine.

We did not collect information about the time responses took in the JXTA framework but
the figures presented in table 7.4 are sufficient to show that Omnix is 4 to 5 times faster than
JXTA (when taking the results of Peer #3 for comparison).

The purpose of this evaluation was to demonstrate the performance of Omnix (with of
two different topologies). We have shown that Omnix only consumes a few milliseconds to
perform its tasks, which is a result from our efforts to keep the Omnix P2P middleware as
small and efficient as possible.

Chapter 8

Evaluating Omnix

We are going back to the roots, to what the Internet is really all about.
Ray Ozzie about P2P [130]

This chapter analyzes the Omnix P2P middleware framework and the concepts of topol-
ogy and platform independence, and using a middleware for P2P networks. The evaluation
of Omnix is particularly difficult because the P2P computing area is comparatively young
and general evaluation methods for P2P systems are just starting to evolve. The main prob-
lem in the evaluation of Omnix is that it is - in the strict sense - not a P2P system itself.
Since it is only a P2P middleware where, to make matters worse, nearly all components of
the system can be replaced, it is quite a challenging task to assess the usefulness of Omnix.

The following sections deal with the question of what can be evaluated and what not.
Eventually, they discuss the advantages and drawbacks of Omnix.

8.1 The role of Omnix in the P2P area

Although the Omnix framework is designed to be as versatile as possible, there are of course
domains where Omnix is more useful than in others. In the following, those areas where
we see a clear benefit of Omnix are listed. It shows where Omnix fits in the world of P2P
middleware.

• P2F'Research: The (intentionally) simple structure of Omnix allows to create new P2P
topologies very easily. It enables P2P researchers to take existing P2P application and
experiment with different topologies. An idea for a new topology can be implemented
and tested this way. Other P2P middleware systems (e.g., JXTA) also provide topology
independence, but with a considerable higher complexity (e.g., the JXTA Endpoint
Service interface defines 31 methods alone; see page 131).

• Repetitive application development: If an application programmer is building P2P
systems she should always use the topology that best fits the requirements of the target
system. With Omnix, there is virtually no need for learning to work with the different
topologies as the interfaces to the middleware do not change. Hence, it is not necessary
to learn different APIs.

113

CHAPTER 8. EVALUATING OMNIX 114

• Development for heterogeneous devices: The Java1 reference implementation of the
Omnix covers a wide range of devices, from PCs over handheld devices to mobile
phones. This allows application programmers to use the same middleware on hetero-
geneous devices thus enabling various pervasive computing applications.

• Rapid prototyping: Omnix allows to build P2P applications with just a few lines of
code. This enables application developers to build small P2P applications to assess
the usefulness of P2P for a specific application. Together with the ability to replace
the topology and the underlying network protocols, this provides a powerful tool for
building simple P2P applications very quickly.

There are of course a few areas where Omnix does not fit very well. If, for example, a
very fast implementation of a P2P network is needed, Omnix would not be a perfect can-
didate. The reason for this is the component-oriented design of Omnix which will always
be inferior (in terms of timing) to a tailored P2P application. Another example would be an
application that needs other networking primitives than the ones provided by the Omnix API
(see Section 4.2.4.2). '

8.2 Meeting the criteria

Before an evaluation of a system can be performed, it is necessary to define with regard
to what it should be evaluated. (The question of what can be evaluated is not as much as
important as the question of what should be evaluated in Omnix.) What are the important
and novel aspects of Omnix that are worth looking at?

The best starting point is the assessment of whether the requirements for an open P2P
middleware system specified in Section 4.1 are fulfilled. The requirements are as follows
(for more details see page 38):

• Platform-independence: Omnix must run on a large variety of devices with differ-
ent capabilities. Furthermore, it must not rely on any programming language-related
structures or services (such as Java RMI, COM+, etc.).

• Small footprint: Since Omnix is supposed to be a middleware that should run on a large
range of devices, it is one requirements that is has a comparatively small footprint (in
terms of size of code and the usage of system resources).

• Topology-independence: One of the key requirements of Omnix is that it is topology
independent. This is necessary so that Omnix can be used for a large variety of P2P
applications.

• Openness: It is important that the APIs used in Omnix are sound enough so that other
components can be written and included in Omnix.

• Testing: Omnix must allow for easily testing P2P applications. Hence, it must support
the usage of P2P network simulations.

1 It is of course feasible to implement Omnix in other programming languages; see Section 8.2.1

CHAPTER 8. EVALUATING OMNIX 115

Furthermore, it is worth looking at the default implementations of the transport, process-
ing, topology, and streaming modules provided with Omnix. Since they are not optimized
for performance, throughput, low latency, etc. they are merely used to show differences bet-
ween different topologies (and therefore give proof that different topologies have different
advantages and drawbacks) and how the Omnix system itself performs.

8.2.1 Platform independence

To achieve platform independence, Omnix uses a component-oriented approach that allows
to replace all parts of the framework that interact with the operating system. An example for
such a component is the transport module. It is responsible for accessing the network (i.e.,
sending and receiving messages). It fully abstracts how the module accesses the network
functions of the operating system. Furthermore, from outside the transport module it does not
make a difference which type of network is accessed (be it an IP or Bluetooth network). Since
these different types of network may have different types of addressing schemes, Omnix uses
an abstract Contact interface that represents a remote peer. A Contact implementation could
also represent a single ID (e.g., a number) along with the ability to lookup the actual address
of the Contact in a (maybe central) database. Hence, the network addressing scheme and the
network access itself is transparent behind a generic interface.

This is also true for the streaming facilities of Omnix. For every type of stream, a different
StreamProvider may be used. There is no need for the application or other parts of the Omnix
framework to directly access any network functionality of the operating system (or the virtual
machine, as it is the case in Java).

The Omnix middleware is-to some extent-stateless, which means that it does not need
any memory to save any state. If a peer is restarted, it does not require any information of
prior runs. There are, however, conditions where a state might be necessary. If a processing
module that ensures that messages reach their target (by resending a message if no response
has been received) is inserted into Omnix, it clearly needs state information (where the state
is the status of the sent message). Hence, it cannot be guaranteed that Omnix is fully stateless.

The next question is on which devices the Omnix implementation may be used. At the
time of writing, Omnix has been successfully tested on desktop computers, on handheld
computers (Compaq iPAQ H3660) and on a mobile phone simulator (running J2ME MDDP
2.0, see Section 6.5.1). Since the MIDP specification is very low profile, it runs on virtually
anything that provides Java and a connection to the network. Note that this is only valid for
the actual implementation of Omnix. Omnix, as a conceptual framework, is not bound to
the Java language (as explained above). Omnix itself needs a system that allows to access
the network and to parse text messages. Furthermore, it is required that the system supports
multi-threading. Hence, it is not feasible that Omnix can be implemented on very small
devices such as SmartCards in the near future.

A valid question would be whether it makes sense to provide a platform independent
middleware platform as long as the application on top of it would probably not be platform
independent. The answer to this question is that it is true that multiple devices would re-
quire different implementations of the application. But, the benefit of having a platform
independent middleware is that it always provides the same API, the same services and the
same communication protocol. Only the application has to be adjusted to the target device

CHAPTER 8. EVALUATING OMNIX 116

(evidently, as the GUI most probably has to change, too). The advantage of having a single
system instead of multiple systems just talking the same network protocol is explained in
Section 8.2.5.

Although the reference implementation of Omnix has been written in the Java program-
ming language, it is completely independent from it. The reasons for this are as follows:
it uses only standard socket networking (or whatever network protocol, such as Bluetooth,
is used) to communicate with other peers. It does not use any third party middleware (e.g.,
CORBA or Java RMI) for communication. Using standard network communication has the
advantage that it is very likely supported by a wide range of programming languages.

Omnix uses only plain-text communication to exchange information with other peers. It
does not use any Java-related structures, such as serialized Java objects or the like. Every
Omnix message can be parsed with a normal text parser. It does not require any conversion
or additional libraries.

This does not mean that application cannot send binary or proprietary data with Omnix.
The content of the messages is arbitrary and can be anything the application chooses to
send. But the message headers (the envelope, so to speak) and all other messages sent by the
Omriix framework (and its components) can be easily parsed.

One might argue that in times of existing Common Language Runtimes (see [131] or
[132]) supporting different programming languages is not as much as important as it used to
be. But, on the other hand, Omnix is also intended to run on very small devices (see next
section) and therefore be implemented in special languages that cannot be covered by such
Common Language Runtimes.

8.2.2 Small footprint

To be able to run on small devices (e.g., mobile phones, embedded systems, etc.), the im-
plementation has to have a relatively small footprint. The Java implementation of Omnix
has a size of approximately 70 kB (note that the implementation of the components included
in this package have been optimized to be as small as possible). At the time of writing, a
typical mobile phone allows applications to have a maximum size of 64 kB. Hence, the ref-
erence implementation is too big for a real mobile phone (not to mention the additional size
required by the application on top of it). But it is very likely that this memory boundary will
soon dissolve. Then, the advantage of Omnix is that multiple applications can use the same
middleware.

Another aspect of a small footprint is the processing complexity of the implementation.
When receiving a message of average size, it takes Omnix approximately 0,79 milliseconds
until the message is delivered to the application. When an application sends a message,
it takes about 5,62 milliseconds until the message has been sent over the network. These
values 2 have been recorded on a 500 MHz AMD K6 machine with 256 MB RAM. Although
these figures reflect only a reference implementation, they visualize that Omnix only needs
a minimum of resources.

2In the tests performed, the size of message has been randomized. The average message size was ap-
proximately 200 bytes. The figures presented here are average values over a test series of 1,000 consecutive
messages.

CHAPTER 8. EVALUATING OMNIX 117

One of the main reasons for the small size of Omnix is that it does not require any
third party libraries for processing messages (e.g., XML parsers). All it needs are the Java
functions provided by the J2ME MIDP 2.0 specification.

8.2.3 Topology-independence

Topology independence is one of Omnix's major advantages over other P2P systems. For
this reason, it is especially important to evaluate whether Omnix can really be used for any
topology, and if, to what extent.

Topology independence can be exploited in two ways: statically and dynamically. In the
first case, the application developers uses an arbitrary topology module for her application
before it gets deployed. This way, Omnix allows to use the same services, supported net-
works, etc. without sticking to a specific topology. Topologies could be, theoretically, also
exchanged after the application is deployed. But this task is very delicate and is described in
more detail in Section 8.2.3.1.

Since it is impossible to evaluate the feasibility of implementing all existing topologies
with Ömnix, this section uses the classification of P2P systems introduced in Section 2.3.
There exist three major classes of P2P network topologies: pure P2P networks (with wild
mesh and structured networks), server-based P2P networks, and hybrid P2P networks. On
the basis of this classification, for each class of topologies an example topology is picked for
evaluation.

In the following, Omnix is evaluated whether it can be used in conjunction with all of the
four classes of P2P topologies. This has to be done from two viewpoints: 1) is it possible to
write a topology module that meets all the requirements of a topology, and 2) is the Omnix
API presented in Section 4.2.4.2 sufficient to utilize the full functionality of the topology
module.

• Wild mesh: A typical scenario for a wild mesh network is a file sharing application.
To make things more figurative, an example for such an application may be beneficial:
Gnutella. In Gnutella, peers can search for files at other peers, can download them, and
can share files with other participants. To maintain connectivity of the system, peers
keep open connections to a small number of other peers, sending periodic messages to
check whether they are still reachable.

The question is whether this functionality can be achieved with Omnix. When sharing
files, the application uses the inject() method. The wild mesh topology module simply
stores the meta-data locally. Removing this information is done the same way with
the removef) method. When an application wants to search for files at other peers,
it calls the search() method. The wild mesh topology module then sends a search
request to a number of remote peers (as an Omnix request). Received responses are
passed to the application. If a peer receives a search request, it searches its local
database and returns the list of found items. In addition, it forwards the search request
to other peers, until the time-to-live limit has been reached. All this can be easily
done in a topology module by using standard Omnix messages. If an application has
found something relevant, it can download it by using the StreamManager to open
a connection to the remote host. The wild mesh topology module can send periodic

CHAPTER 8. EVALUATING OMNIX 118

messages to its neighboring peers to check whether they are still online and responsive.
It is also possible to pack a list of known peers into a message to disseminate the
address of other peers.

Therefore, it is feasible to create a P2P network with a wild mesh topology. A reference
implementation of a wild mesh file sharing network has been created.

A special form of the wild mesh P2P topology is the nimble group, where all peers
are directly connected (e.g., by a broadcast link, such as a local Ethernet network or
a wireless LAN). The implementation of this topology is much more simple because
peers do not have to maintain a list of alive peers. Search requests are simply sent to
all other peers. A reference implementation for the nimble group exists as well.

• Structured P2P: What all structured P2P topologies have in common is that they use
some sort of number to 1) identify the artifact shared in the network and to 2) find a
path to the peer that most likely holds information about this artifact. Hence, a struc-
tured P2P topology module has to be able to create an unique, reproducible identifier
from some data (since this is done by the topology module autonomously, this is not a
problem). When an application wants to inject data into the network, an ID is created
and the data is sent en route to the peer that is responsible for this data (as identified
by the ED). This can be done with normal Omnix request/reply messages. A peer has
to have an internal routing table. This table holds information about peers and their
respective range of identifiers they are responsible for. When a peer searches for infor-
mation (or has to forward an incoming search request), it looks up the internal routing
table and sends the request to the best matching peer. The routing table is maintained
by periodically sending lookup and is-alive messages to other peers. Removing files,
if supported by the network, can be done by using the remove() method.

The Omnix API provides the full functionality necessary to search in a structured P2P
network, to share data in the network and to remove it. In addition, it also allows to
check which data is stored on the local peer.

The only problem that could arise when using a structured P2P topology module is
that it is the only topology module that has to understand the meta-data semantically.
This is necessary to create the ID number that is so vital for the system. It might be
the case that a topology module has to be adapted to the meta-data ontology used by
the application. On the other side, this is not necessary if both parties use the same
ontology (e.g., as the one that is used by Omnix by default).

• Server-based P2P: In a server-based P2P network, injections are done by sending the
data to the central server. If a search is performed, the search request is simply sent
to the server, which processes the search request and sends back a response to the
requestor. There is no third party involved in this communication.

In this case, two different topology module implementations are necessary. The imple-
mentation of the client and the one of the server. If a client peer wants to inject data, it
creates a request, packs the méta-data into the body of the message and sends it to the
server. The server extracts the data from the message and stores it in its local database.
If a client searches for information, it again sends a request to the server - this time

CHAPTER 8. EVALUATING OMNIX 119

with a search expression. For both cases, on the client side the API provides all means
to accomplish these tasks.

On the server side, the topology module could be either completely network-oriented
(which means it does not provide any functionality to the application on top of if) or
it may also provide the functionality to inject and search data. Either way, both the
messaging infrastructure of Omnix and the Omnix API provide full functionality for
this topology.

Since instant messaging has been provided in Napster (version 1), a server-based P2P
topology module might as well implement the methods for subscribing/unsubscribing
to channels and to send information to other peers directly.

• Hybrid P2P: The hybrid P2P topology is a mixture of the wild mesh network and the
server-based P2P network. In a hybrid P2P network, many normal peers are selected
to be SuperNodes. Normal peers use this SuperNode as a server, which means that
they send injected data to this SuperNode as well as search requests. If a SuperNode
cannot fulfill a search request, it forwards it to a neighboring SuperNode.

All these communication elements have been implemented either in the wild mesh
P2P topology module or in the server-based P2P topology module. The election (or
selection) of the SuperNodes is done by the topology module autonomously and does
not require any application input (or action).

Hence, implementing a hybrid P2P topology module is feasible in Omnix, with the
exception that the application is not able to influence the decision of whether the local
peer should become a SuperNode or not. Technically, this drawback is not severe as
the topology module can be implemented to configure the system in an optimal way
(i.e., by choosing the right SuperNodes). On the other side - especially in times of a
DMCA (Digital Millennium Copyright Act) [133] - it is maybe important to disable
the ability to become a SuperNode. However, this may also be done by changing the
settings of the hybrid P2P topology directly.

What all topologies have in common is that they only provide the search functionality.
They do not provide means for accessing the shared service of file. This can be done by
using the StreamManager or by using the alternative commands of Omnix, such as invoke().
The reason for this decision is that Omnix does not have any knowledge about the nature of
the shared service (or file). Hence, it does not make sense to provide additional methods for
accessing it besides the invoke() method and the possibility to open a stream to the remote
peer.

It is also a common characteristic that the Omnix API does not provide any means to
change the behavior of a topology module. This would be sometimes advantageous (e.g.,
if the application could advise a hybrid topology module not to become a SuperNode). A
possible solution Would be to introduce a generic method for changing the settings of a
topology module. The problem is that it would create a dependency between the application
and the underlying topology module because it is possible that, when switching topologies,
the new topology module might not understand what the application "is trying to say". Still,
this possibility is an open issue and is considered as future work.

CHAPTER 8. EVALUATING OMNIX 120

The result is that the Omnix P2P middleware framework is topology-independent (with
minor exceptions). It cannot be predicted what P2P topologies the future will bring but it
is can be expected that the Omnix framework will be generic (but still useful) enough to
provide them. What has to be done when changing topologies and what the ramifications are
is explained in Section 8.2.3.1.

8.2.3.1 Changing topologies

The ability to seamlessly change topology without the necessity of changing code in the
application using the Omnix P2P framework is generally possible. Over the last five years,
evolution in the P2P area has shown that P2P topologies matured over time. It all started with
a fault-prone - because having a single point of failure - server-based P2P network (Napster)
and continued with an ineffective wild mesh P2P network (Gnutella) which could not cope
with the vast number of users. Then came the hybrid P2P networks which have considerable
scalability and stability. Finally, scientific P2P system using distributed hashtables emerged,
but never hit the big market. This short list is only valid for P2P applications in the file
sharing area. In other areas, development is still in its infancy. Groove, for instance, is a very
good example for a successful P2P application outside the file sharing domain, but its lack
of scalability calls for better topologies that support the application domain of groupware.

When designing a P2P middleware (what Omnix is intended to be), there cannot be
any assumptions made on the use case nor the requirements of the application. For a P2P
middleware, it is important to be able to adapt to the needs of the application. Thus, it must
provide a way to use arbitrary topologies (supporting a fixed pool of varying topologies was
not an convincing and future-proof option).

This section deals with the question of what happens when a topology has to be re-
placed. There are two ways how topology modules could be replaced: either statically (i.e.,
by changing a configuration file and restarting the application) or dynamically (i.e., at run-
time).

Changing topologies statically

The easiest way to change the topology of a network is to change the configuration file
of Omnix and restart the application. The Omnix framework then uses the new topology
module to communicate with the other peers. This sounds very simple, but has some impli-
cations not visible at first sight. Clearly, it is not sufficient to change the topology module in
a single peer. It is necessary to replace the topology modules at all peers in the network for
the following reasons:

• Message types: Every topology module may use its own set of messages exchanged. If
a peer changes replaces its topology module, it might be the case that the new topology
module issues messages that are not understood by the other peers that still use the
prior topology module. For example, in a server-based P2P network, a normal peer
would not understand an incoming search request because it does not expect to receive
one.

CHAPTER 8. EVALUATING OMNIX 121

• Meta-data ontology: The meta-data ontology and structure used to describe services or
files shared may differ from one topology module to another. In a distributed hashtable,
a single number is sufficient to search for content but in a typical file sharing network,
complex meta-data may be used for describing search requests and shared services. If
the topology modules use different meta-data models, they cannot communicate with
each other.

• Routing: Routing in a topology module not only may but for sure is different from
other topology modules. Hence, the overall routing process no longer works and pro-
duces unpredictable message flows. Even if topology modules use the same type of
messages and share the same meta-data syntax and semantics, it may be the case that
search requests cannot be fulfilled successfully because the messages never arrive at
their target destination. Furthermore, it may be the case that additional information in
messages is necessary for some routing algorithm (as an example, a wild-mesh net-
work needs the time-to-live (TTL) information in messages, which is not present in
server-based networks or nimble groups).

Hence, if the topology of a network has to be changed, every peer in the network has
to replace its topology module. Otherwise, the operability of the network would not be
guaranteed.

The issue of changing topologies raises the question of where meta-data information is
made persistent in Omnix. Applications are able to inject files or services into the network.
But what happens if the application stops and then restarts? Does the application layer have
to inject all the information again or does the topology module store this information? The
answer is that it is clearly the responsibility of the topology module to store injected meta-
data persistently. The reason for this is simple. In some P2P networks, topology modules
do not store injected information locally but sends this information to other peers in the
network (e.g., in distributed hashtables). Hence, the application at the peer that actually
holds the (alien) information does not have any knowledge about it. If this peer restarts, the
previously stored information would be lost. Therefore, the topology module is responsible
for storing meta-data information persistently. Why is this important? If a topology module
is replaced by another one, all data contained in this topology modules is lost. Hence, the
application must inject all data into the new topology module (i.e., in the newly established
P2P network).

Changing all topology modules in a P2P network concurrently might be a demanding
task, to say the least. It is only possible in a comparatively small network, such as a P2P
network in a small company. In large P2P networks (e.g., with several thousand peers up to
Internet-scale networks), this is not feasible. In this case, it would be necessary to automate
the task of changing the topology module.

Changing topologies dynamically

Supporting dynamic updates (or replacements) of topology modules is clearly favorable
in medium to large P2P networks. It means that the peers in a P2P system collectively detect
that a new topology module has to be installed. Topology modules could then be downloaded

CHAPTER 8. EVALUATING OMNIX 122

or automatically propagated through the network and then installed at every peer. This may
sound like a straight forward process, but comprises some challenging problems.

The most important question is how the system "detects" that there is a necessity for
updating or replacing a topology module. There are two possibilities: either a system admin-
istrator responsible for the P2P network decides to change the topology or the system detects
this need in an autonomous way.

The first solution is easier and more feasible than using an autonomous network. If the
system administrator wants to use a new topology module, it simply informs all peers (in
a P2P way, of course) that they have to install this topology module. After a short while,
a peers should have received the message and installed the new topology. Reasons for a
topology change might be a lack of scalability, the addition of new services, the need for
increased bandwidth, etc.

The latter solution (having an autonomous network) implies that all peers in a Internet-
scale P2P network come to a consensus about the need to change the topology module. In
a large P2P network it is clearly impossible to reach an agreement with all peers. Hence,
only a subset of peers must be able to build a qualified authority that is allowed to change
the topology of the network. Some P2P networks employ special peers that watch over the
functionality of the P2P network itself (such as the FastTrack network, where peers in a layer
above the SuperNodes control the SuperNodes). These peers may use some sort of election
algorithm to decide whether another topology should be applied. This is theoretically correct,
but is almost impossible in practice. How do peers determine the state of all peers in a - by
definition - highly decentralized network? How can it be measured automatically when a
new topology should be applied; how are the thresholds defined? Even if it is possible to
determine that a new topology module should be used because the old one is not sufficient
enough: Which topology module should be chosen to solve the problems? If a peer is told to
update its topology module: how does it know that this update request is authorized (and not
issued by a single, malicious peer)? Since all these questions are not answered, autonomous
P2P are very unlikely in the near future. Hence, the only feasible way is to have a central
authority that has control over all peers in the network.

But there are additional problems ahead. How does the word get to every peer in the
network? Peers are not required to be online all the time. If the request to update the
topology module is not received by a peer, how does it know about it? A possible solution
would be to periodically contact a central server to check whether important update messages
are pending. Another solution would be that peers are storing these requests and send them
periodically until they get acknowledgments from all peers in their contact list. This is
definitely not the best solution because peers may vanish for a long time. In addition, it
might be the case that the network is separated, which means that the message would not
reach all peers in the network.

Anyway, since a new topology module would use another protocol name or, at least, an-
other protocol number, peers with old topology would then be forced to update their topology
module to be able to communicate with the other peers.

If a peer changes its topology, the information stored at this peer is lost (because it is
stored in the topology module). If this is the case, the Omnix framework must inform the
application that it has to reinject the data into the network.

CHAPTER 8. EVALUATING OMNIX 123

8.2.4 Openness

Omnix has been designed as an open framework with exchangeable topologies. One of the
main reasons for this approach was to provide maximum flexibility in how the middleware is
used. Furthermore, it makes it possible to improve individual components over time without
touching the other components.

The main technical characteristics of a P2P system are: the protocol used, the topology of
the system (including the routing algorithm) and the ontology of the meta-data. This section
deals with the question whether Omnix is fully flexible and extensible with respect to these
characteristics.

The protocol (be it UDP, TCP, Bluetooth, etc.) is arbitrary selectable in Omnix. The
notion of transport modules allow to use any protocol3 Since it is not necessarily the case
that other protocols use a URI-schema for addressing resources (or peers), Omnix uses a
general Contact interface as a reference pointer for remote peers (in most cases, this Contact
implementation would be an IP address). The main shortcoming of having the abstraction of
the transport layer is that there cannot be any proprietary access to the transport module (via
the normal transport API). If, for example, an application wants to influence whether a TCP
transport module keeps connections open (instead of tearing them down after the message
has been transmitted), it is not possible because there cannot be any standardized way of
communicating this information. The reason for this is that this kind of information would
be unusable (and maybe unintelligible) for other transport module than the TCP module. If
this customization is inevitable, the transport module could provide proprietary methods for
modifying the module. Another solution would be to create a generic method for changing
the settings of a transport module. This, however, has the same negative impact of creating a
dependency between the upper layers and the transport module. A solution to this problem
is subject to further research.

The structure of a message determines what information is conveyed in the message.
A very simple message structure (e.g., a Gnutella message, where only a small set of in-
formation could be stored) is always inferior to a more complex message structure (say, for
example, an XML message) but has the advantage of being smaller and easier to process. De-
pending on the use case of the P2P application, different message structures would be more
favorable. Therefore, Omnix does not use a fixed message structure but lets the application
programmer to change it arbitrarily.

In addition to the structure of a message, it is also interesting to evaluate the ontology of
the content of an Omnix message. While the structure of the message represents the envelope
of the content of a message, the content itself is the information (with all its semantics)
provided by the application. The standard Omnix message allows arbitrary bytes to be placed
in the content. Hence, it is possible to send plain-text messages as well as serialized objects.
It is further possible to replace the complete message object by a new one that allows other
forms of content (e.g., a real-time media stream - whether it makes sense or not). In Omnix,
the application programmer can use any arbitrary ontology for the data transported.

The ability to use the Omnix middleware as a framework where third parties can con-
tribute transport modules, processing modules or topology modules was one of the design

3Although it is very likely that other modules than TCP or UDP will not be needed, as almost every other
protocol supports the conveyance of IP packets.

CHAPTER 8. EVALUATING OMNIX 124

goals. Whether this has been achieved is tightly coupled to the evaluation of the usability of
the components in the three Omnix layers in question.

Since Omnix uses well-defined interfaces for all three layers (including additions like
the StreamManager component), it is very easy to include additional components (as long as
they adhere to the interfaces, of course).

But Omnix is not limited to the replacement of components only. It would also be pos-
sible to replace everything below the Omnix API by another P2P system. As an example,
a Gnutella peer implementation (just as an example, any other P2P system implementation
could be used, e.g. JXTA) could use the Omnix interface to communicate with the appli-
cation. In this example, there would be nothing left but the Omnix API. The advantage of
this is that the Gnutella implementation could be easily replaced by another system without
changing the source code of the application on top of it. Section 8.2.3 shows that the Omnix
API is adequate for this purpose.

8.2.5 Testing

The theory on how to test a P2P application is covered in Section 6.4. Using mathematical
methods for testing an application using Omnix cannot be done without having the applica-
tion at hand. For each combination of transport, processing, and topology modules, along
with the application on top of it, different mathematical models apply. Hence, it is not pos-
sible to provide any useful means for mathematically testing an Omnix P2P application.

What remains is testing an application by simulating a large network of virtual peers. By
replacing the transport module of the Omnix framework, it is very easy to create a virtual
network. Multiple instances of the same application could be run on a single computer,
connected by the same network-simulating transport module. Omnix provides a testing
tool called Simix, which translates network connections into method invocations at other
instances of the application. More information on Simix is given in Section 6.4. At the time
of writing, Simix is a working prototype.

8.2.6 What cannot be evaluated?

The evaluation of the framework and the evaluation of the actual implementation have to be
separated. The first one deals mostly with concepts and methodologies and those parts of the
implementation, that are not replaceable components. The latter is to assess the soundness
and usefulness of the implementation at hand. This includes all kinds of modules such as
transport modules (e.g., for UDP, TCP, etc.), processing modules (e.g., transactions, logging,
etc.), and topology modules (e.g., server-based, wild mesh, etc). These modules include also
stream related modules (e.g., the StreamProvider) and message related modules (e.g., the
MessageParser).

The second part, the evaluation of the application, cannot be done generally because
Omnix is, after all, a framework. Hence, it is designed so that many parts of the system can
be replaced by other components. Those modules that are used by default by the Omnix
middleware framework have not been optimized for latency, throughput and other evaluation
criteria used in distributed systems. Furthermore, they can easily be replaced and therefore

CHAPTER 8. EVALUATING OMNIX 125

make a general evaluation useless. By replacing one or more components, a completely
different P2P system with different properties and behavior is created. 4 However, Section
7.3 provides some evaluations using these reference implementations but they are merely
performed to demonstrate the performance of Omnix with different topologies.

So, what exactly cannot be evaluated? The following list answers this question in more
detail:

• Topology implementation: It is not the aim of this evaluation to compare the effective-
ness of different topology module implementations. Note that this only refers to the
implementation of topologies. It is quite within the scope of this dissertation to com-
pare different topologies but this does not include reference implementations of these
topologies.

Hence, this evaluation does not include figures such as the number of messages ex-
changed between peers (globally or during a session) because this value might even
differ between two different implementation of the same topology. In a wild mesh
network, for example, the number of pings per second, the time-to-live of a message
or the number of open connections to other peers depend on the implementation. An-
other example is the size of a routing table, as this also depends on the implementation
and can vary, even if two implementations have the same topology. Furthermore, the
efficiency of loop detection algorithms and the avoidance of repeated messages is also
not influenceable by the Omnix framework.

• Size and structure of messages: The size and the structure of the information trans-
ported in messages sent through Omnix is not determinable. It depends completely
on the ontology used to define the structure of the message content. Omnix does not
impose any ontology but uses interface abstractions to access the content of messages.
What theoretically could be evaluated is the minimal size of a message as an empty
message still needs some information (e.g., the address of the recipient). On the other
side, the structure of the message itself is also not fixed (e.g., by using alternative
Message and MessageParser components).

• Usefulness of the meta-data: A major aspect of any P2P network is its use of meta-data
to describe the content (e.g., files, services, etc.) shared. If a P2P network uses a poor
meta-data ontology (e.g., such as the one used in Gnutella where only the filename can
be used to search for files) there is less a chance to find the desired content.

Omnix does not use any kind of meta-data as it is only the carrier of information. It
does not have semantic information about the content transported between peers. The
creation and parsing of meta-data lies within the responsibility of the application on
top of Omnix. Hence, there is no way how Omnix could be evaluated in respect to
anything related with the ontology of meta-data.

• Scalability: The scalability of a P2P system mostly depends on the topology used (as
shown in Chapter 3). As Omnix is topology independent, it cannot evaluated to which
extend the P2P framework scales. Scalability is tightly coupled with the system's

4This is like evaluating the performance of an operating system without caring what kernel modules are
installed. ;

CHAPTER 8. EVALUATING OMNIX 126

ability to distribute traffic among the participating peers, according to their capabilities
and the distribution of the content (among other things). These aspects are not specified
(and therefore not influenceable) by Omnix.

• User activity, session duration, etc. For the evaluation of a P2P network, it is important
to have information about the typical user activity, the average session duration or the
number of leechers 5 and many other things that influence the scalability, usefulness
and performance of a P2P network. These figure depend on the P2P application on top
of Omnix and the engagement of the P2P participants. Since the type of application
is not imposed by Omnix, these figure cannot be evaluated in Omnix. From this it
follows that Omnix cannot be evaluated as a normal P2P application.

What cannot (and should not) be evaluated at all is the application on top of Omnix
because it is a generic purpose middleware which does not impose any use case on the
application.

8.3 Comparison to other middleware systems

This section discusses those areas of distributed computing that are related to P2P networking
in general and P2P middleware systems in particular. Of the distributed system concepts that
are related to P2P, we identified mobile agents and overlay networks as being closest.

8.3.1 Mobile agents

Mobile agents have a similar concepts as P2P. It consist of a network of independent nodes
that both consume services provided by others and provide services themselves. There is
(technically) no need for a central coordination of the participating nodes of the network.
Nodes can search for information (or services) provided by other nodes and, if desirable,
access these services. Hence, mobile agents are P2P systems (if no central authority is
needed).

The major difference between P2P and mobile agent systems is, that mobile agent sys-
tems do not send static messages to the other nodes in order to find or access services but
send little pieces of executable code that runs on the target machine (i.e., where it accesses
the services provided locally). The resulting distinction between P2P and mobile agents is
that:

• Mobile agent perform their own search on the data provided by the hosting agent
system. Therefore, mobile agents are much more flexible in searching the network for
data. It is not restricted to a specific search protocol or ontology of meta-data. With this
flexibility, mobile agents couid perform complex search queries over multiple nodes.

5Leechers are participants in a P2P network that only consume content or services shared by others but do
not share anything themselves.

CHAPTER 8. EVALUATING OMNIX 127

• It is possible, that the routing algorithm is no longer implemented in the node but on
the mobile agent itself. This would enable mobile agents to find their path through the
network that best fits the requirements of the assigned task. In some P2P systems, this
is not possible as the topology of the system imposes where the agent should travel to
(e.g., in distributed hashtables). It also implies that the agent hosting system provides
information about the communication links available.

One of the drawbacks of mobile agents system, which is probably the reason why mobile
agents never hit the big market, is security. In P2P systems, static messages are sent that are
parsed and processed by each node. In mobile agent networks, executable code is transferred
and executed locally on a peer. There are a lot of security problems related to that (e.g., the
danger of malicious code, the problem of safe resource allocation to agent processes, etc.).

An example for a system that builds a bridge between P2P and mobile agents is Anthill
[134]. An anthill, a complex adaptive system (CAS), is used as an metaphor for this mobile
agents system. A node is called a nest in the Anthill system. A nest receiving a request from
the local user creates one or more ants to process this request. These ants are autonomous
mobile agents that travel through the network to process the request. The service provision-
ing is delegated to ants.

A nest consists of three components: the ant scheduler, the communication layer and the
resource managers. The ant scheduler is responsible for running ants on the local system
securely (i.e., in a sandbox) and in a fair way. The communication layer has the task to find
new nests (i.e., peers) in the network and to move peers to other nests. The resource manager
offers the resources and services provided by the nest (e.g., the file system of CPU cycles).

When a task is assigned to one or more tasks, these ant travel through the network until
the request has been successfully processed or the TTL (time-to-live) has been reached.
Ants do not communicate directly but can leave information at a nest that can be accessed
by succeeding ants. Routing is performed by the ants. The communication layer of a nest
manages a set of neighbors that can be accessed by ants. An ant can then choose the next
hop on its journey.

The communication layer is the lowest layer of the Anthill architecture. The access to the
network, the detection of new peers (by using its own routing algorithm) and the detection
of unreachable peers are combined in this single layer.

8.3.2 Overlay networks

An overlay network is a network on top of another network. An example for such a setting is
any existing P2P network. It creates a network of peers on top of the IP network. Typically,
the nodes in the upper network are connected independently of the underlying infrastructure
(an exception is, for example, PAST), which means that a connection between two nodes in
the upper layer require two or more connections between nodes (e.g., routers) in the lower
layer. The reason for this new layer of network is that the nodes can be connected based on
other criteria than physical connectivity. An overlay network could, for example, connect
nodes based on the distance between their unique IDs, thus creating a distributed hashtable.
Nodes could also be connected according to their geographical distance (which not neces-
sarily relates to their underlying network proximity), as done in the FastTrack network. It is

CHAPTER 8. EVALUATING OMNIX 128

the node content but not the location within the physical network that is the decisive factor
for the decision which nodes to connect.

Older P2P networks such as Gnutella, which use flooding algorithms for searching
among the peers, do not fully utilize the advantages an overlay network could provide. The
main purpose of distributed hashtables, on the other side, is to build an optimal overlay
network that routes messages most effectively to the nodes where the desired information
resides (which introduces some other limitations).

The main difference between an overlay network per se and a P2P network is that the
nodes in an overlay network may be part of a fixed infrastructure. A good example for this is
the MIT RON (Resilient Overlay Networks) project [135]. It builds an overlay network over
the IP network with the aim to improve robustness of communication link. If, for example,
a communication link between two university breaks down, the RON system tries to find
another route via a third party, thus bypassing the failed link.

8.3.3 Peer-to-Peer middleware

Chapter 3 discusses most of the P2P systems currently available by breaking them down into
groups of P2P systems. This section gives an overview of the P2P systems that are explicitly
targeted at being a P2P middleware. They do not have a specific use case (e.g., file sharing)
nor is their number particularly high.

MoCha

MoCha [136] (short for Mobile Channels) provides simple communication mechanisms
for mobile hosts. Two hosts are connected by a channel. Hosts can create channels, write
into channels, read from channels, and finally terminate a channel. This channel acts as a
communication buffer between the two endpoints. It does not require a central authority to
maintain these channels. Each endpoint has a reference pointer to the other endpoint's part
of this shared buffer. If a host moves from one location to another, existing buffers are not
moved but a new buffer is created and linked to the previous buffer. The following example
demonstrates how this channel linking works:

Imagine two peers, A and B, linked together by a buffer X. If peer B moves to a new
location, it creates a new buffer between the new location and the previous one (but does not
inform A about the location change). When peer A wants to send a message to B, it first tries
to write into the buffer of B at the former location. Before doing this, A detects that B is no
longer available at the previous location and follows the pointer to the new location of B. A
immediately stores B's new location.

MoCha does not provide any higher level services. It is a very low level communication
infrastructure. It does not provide any mechanisms for finding other peers or for searching
among other peers. Hence, there is no overall topology or interconnection between peers.

eComP

CHAPTER 8. EVALUATING OMNIX 129

The extrovert-Computing Platform (eComp, [137]), provides a very promising commu-
nication infrastructure for tangible, communicating devices (so-called eGadgets). It is part
of the EU-funded Disappearing Computer Initiative [138].

It creates a pervasive environment by providing communication facilities for passing
messages between peers. Each eGadget (which represents a device) has a set of plugs (or,
connection points). Two peers can interact by creating a connection between two plugs (thus,
creating a synapse, which is comparable to the concept of pipes between two peers).

A combination of eGadgets creates a Gadgetworld. An example for a Gadgetworld could
be a room, where each device (e.g., a lamp, a light sensor, the refrigerator, etc.) could be
an eGadget. The main target of eComP is to combine these individual eGadgets to a single
service, which has a higher value than the sum of all individual services.

In the room example (where a light sensor and a lamp are part of the Gadgetworld), the
light sensor might use the plug of the lamp to switch it on when it becomes too dark.

For this P2P system, it is crucial, of course, to find other eGadgets in the nearby. This is
done in two ways. First, an eGadget broadcasts a message to all those devices that are within
its communication range (depending on the type of communication used - e.g., Infrared,
Bluetooth, WLAN, etc.), this could range from a few meters to a few hundred meters). To
improve the results, it can also issue a search request which then is forwarded by all peers
in the nearby, hence creating an indirect link between those devices that are not able to
communicate directly (often called a scatternei). The scalability of this system is therefore
very limited.

eComP uses XML as the carrier of information (see Section 5.5 for the ramifications of
using XML). It uses a very small subset of the possibilities of XML and therefore does not re-
quire a full XML parser. The protocol stack of eComP is as follows (top-down): the interface
layer, the resource management layer, the routing layer, and the physical layer. It supports
various platforms, such as PDAs, mobile phones, etc. The implementation of eComP is com-
patible with the Connected Device Configuration (CDC) of J2ME (see Section 6.5.1), which
is not as restrictive as the CLDC configuration.

Mobile MOM

The Mobile Message Oriented Middleware (Mobile MOM, [139]) provides a messaging
middleware for mobile hosts. For this purpose, a central Message Broker is used that stores
all messages that are to be delivered to mobile hosts. Once the mobile hosts connects to this
message broker, it can download all waiting messages. To bring the message nearer to the
client, Mobile MOM message agents, are located at the base-stations that services the mobile
host. This combination of mobile host and message agent allows to adjust the exchange of
information to the properties (e.g., low bandwidth) of the link between the base station and
the mobile host.

Mobile MOM is more a client/server architecture than a P2P system. There is no direct
communication whatsoever between two hosts. The communication completely depends on
the central server.

Virtual Plant Protocol

CHAPTER 8. EVALUATING OMNIX 130

The Virtual Plant Protocol (VPP, [140]) is mainly aimed at industrial plants, where sen-
sors, machines, etc. are automatically combined to a P2P system. It is, however, not limited
to this purpose.

VPP can be used as a communication middleware between Virtual Industry Devices
(VED). These devices are not necessarily connected by a IP network (in fact, it is very
unlikely) but often use alternative networks, such as the Controller Area Network (CAN,
[141]) or a fieldbus. Hence, it cannot rely on a specific addressing scheme. Therefore, it uses
a generic addressing scheme that can be used in arbitrary networks.

The Virtual Plant Protocol does not use any central authority for maintaining connec-
tivity among the peers but is self-configuring, which means that routing tables are created
dynamically. Every peer can request information about other peers in the network. If a peer
forwards a message, it automatically checks the content of the message for the existence
of other peers. The topology created by the Virtual Plant Protocol is not scalable, but it is
sufficient for the intended purpose.

If a peer sends a message, it automatically includes the route to the destination peer (so
that intermediary peers do not have to have knowledge about the route to the destination
peer). Along the path from the sender to the receiver, each peer in between adds its address
to the message, so that a response message takes the same way back (thus assuring that the
response will find a way back): The message body follows the SOAP specification. Hence,
it uses XML for structuring the content of the messages.

XMIDDLE

XMIDDLE [142] is a P2P middleware for mobile hosts. It does not assume the existence
of a fixed network or a central authority. It connects peer directly, peers are not used to
forward messages to other peers.

In XMIDDLE, each peer organizes its content in a tree structure (i.e., XML). It provides
primitives for operating on these trees and to share branches of them. If a peer wants to access
the content of another peer, it connects to one of the shared branches. This is comparable
to the mounting of a remote file system share. If a remote tree branch has been "mounted",
the peer can read and manipulate the data offline. XMIDDLE provides the mechanisms for
reconciliation when the mounting peer and the owner of the branch are again connected. If
a peer wants to modify an alien branch and has a connection to the owner of that branch, it
requests the owner to perform the modification. After that, the owner informs all connected
peers about this change. The modification itself is represented by using XMLTreeDiff [143].
For specifying the links between peers, XMIDDLE uses standard XML techniques, namely
XLink [144] and XPath [145].

XMIDDLE provides the primitives Connect, Disconnect, Link, and Unlink. It does not
provide a functionality for searching content in the overall data tree.

iMobile ME

iMobile Micro Edition [146] - which is based on the iMobile Standard Edition - provides

CHAPTER 8. EVALUATING OMNIX 131

JXTA applications

JXTA community sendees
Sun JXTA " - Indexing

.services -Searching
-FOs sharing

Peer commands

Peer groups . Peer pipes

Security

.IYTA m m

Peer monitoring

Operating System / Virtual Machine

Figure 8.1: The JXTA architecture.

a communication platform for mobile devices.

It consists of a small service platform on each mobile device (consisting of so-called
devlets and infolets for user interaction and service provisioning respectively). Each device
has an inbox and an outbox queue. When a device sends a message, it puts it into the local
outbox queue. When it connects to the network, it synchronizes with a central server, getting
all waiting messages while sending those in the outbox to the central server.

This system uses a server-based P2P topology. The reason why this is not really a P2P
system is that all communication is performed via the central server. In Napster, the cen-
tral server was used for searching only - the download of the actual data has been performed
directly between the peers. However, it is also planned to integrate direct communication bet-
ween devices (with broadcast or multicast) into the system where a central authority would
no longer be necessary.

The implementation of the iMobile ME for Palm handheld devices is based on the CLDC
configuration of J2ME.

JXTA

The only other P2P middleware that is closely related to Omnix is Project JXTA [2] [147],
which was initiated by Sun Microsystems. JXTA itself is, as Omnix, primarily a system
architecture, but also an actual implementation.

Figure 8.1 shows the architecture of JXTA on a conceptual level. It can be broken down
in three layers: the core layer (which is mainly responsible for establishing the P2P network
structure, the communication, etc.), the services layer (which provides P2P functionality
such as indexing, searching, and file sharing) and the applications layer (where the P2P
application resides).

CHAPTER 8. EVALUATING OMNIX 132

The reference implementation architecture, which is far more complex, proposes six pro-
tocols:

Endpoint Routing Protocol: helps peers to route a message from the sender to the receiv-
ing peer.

Peer Resolver Protocol: is used to send queries to other peers within the group.

Rendezvous Protocol: transports messages between peers in a peer group.

Peer Discovery Protocol: permits to discover any published peer resources within a peer

group.

Peer Information Protocol: provides a set of messages to obtain a peer status information.
This protocol can be used to assess whether a peer is still available.

Pipe Binding Protocol: To create a virtual channel between two peers, the Pipe Binding
Protocol creates a pipe between them. A pipe is a virtual channel where data can flow in one
direction from the sending peer to the receiving peer.

At all levels, JXTA uses XML for the communication between peers. To reduce the size
of messages exchanged, it allows to binary encode the messages. When two peers want
to exchange information, they create a pipe for communication. The specification states
explicitly that pipes are not reliable and not connection oriented. To get streams in JXTA, a
project called p2psockets [83] has been created. It has the goal to reimplement Java sockets
on top of JXTA.

In JXTA, peers are organized as groups mainly to limit the propagation of queries (among
other reasons). JXTA does not provide any means to manage membership in a group (such
methods have been removed from the specification).

The scalability of JXTA cannot be assessed as it does not enforce any strategies for
discovery.6 However, the JXTA system relies on the discovery protocol every time 1) a
message is sent, 2) a peer binds itself to a pipe, 3) a peer is looked up, and 4) an advertisement
is looked up. Hence, the discovery protocol is used very often.

Comparing JXTA with Omnix

JXTA requires every peer to parse and generate XML messages. This may be a serious
problem on computing devices with resource limitations such as mobile phones and Personal
Digital Assistants (PDAs). (Section 7.3, presents an experimental study of Omnix where
performance measures of JXTA are also shown for reference.) [148] gives a short overview
of the main problems of using JXTA with J2ME. The verbosity of XML and the need for
a XML parser makes it a bad candidate for devices with low CPU power and slow network
connections. In order to cope with the problems JXTA has on handheld devices, the JXTA
for J2ME project [26] tries to use normal JXTA peers as proxies to JXME peers to take over
some of their responsibilities.

The most important difference between JXTA and Omnix on a conceptual level is that
JXTA does not provide any abstraction of the underlying network primitives, which is also
reflected in the reference implementation, as the following example shows: components

6JXTA version 2.0 uses a hybrid topology for this purpose.

CHAPTER 8. EVALUATING OMNIX 133

of higher level layers make use of packages and classes, which are not provided on J2ME
devices. Hence, if JXTA has to be used on a J2ME device, many parts of the system have to
be replaced, instead of just the lowest layer.

JXTA provides a large set of services (e.g., security), which are attractive to high-level
P2P application programmers (i.e., normal users). The aim of Omnix is to provide interfaces
for the lower layers of the OSI model. The advantage of Omnix is that its implementation
is much thinner than JXTA (e.g., the implementation of the Endpoint Service Protocol has
twice as much lines of codes as the complete Omnix implementation). It is, of course, possi-
ble to replace most parts of the JXTA system, but this comes with a high level of complexity
(e.g., the Endpoint Service interface defines 31 methods combined). Omnix not only enables
application programmers to replace all layers of the system but also aims to reduce the com-
plexity for this task7.

Groove

Groove is a collaboration software based on the principle of a shared workspace, where
all members of a group (i.e., those in the workspace) share the same view. Tools are used
to operate in this shared workspace. Typical tools are a shared browser, a shared drawing
board, or a file archive. The tools can be extended by third parties.

For the communication between peers, XML is used entirely. In addition, all communi-
cation in Groove is encrypted. Whenever a user changes something within the workspace,
all other members of the workspace get informed about this change. If a peer works offline,
it stores all changes and commits them en bloc. When changes are made while the peer is
online, this information is transmitted to all other peers in real time. Hence, they see the
changes as they are made, allowing people to collaborate on the same artifact. Since this
can be very costly, Groove also uses the so-called "Asymmetric Files feature", which does
not automatically upload files to all members of the group if a peers places it in the shared
workspace.

Therefore, all peers of a workgroup communicate with each other directly and individ-
ually (as the transmission between two peers is encrypted point-to-point). Groove provides
servers that are used to detect new peers in the network and to help peers with lower band-
width to distribute changes. These servers are also used to store content if one or more peers
are offline (or not reachable - possibly due to a firewall) and therefore cannot see the changes
made at that time.

It provides higher level services, such as distributed searches, workflows, offline working,
and much more. Groove is also planned to be a "Web Services Access Point", which means
that it exports its functions as web services (using the SOAP protocol). Several servers are
available for Groove: Relay Server, Enterprise Integration Server, Enterprise Management
Server, and an Audit Server.

Groove is targeted at small workgroups, as the communication takes place between all
peers. With the increasing number of workgroup members, the communication overhead
increases tremendously^ Hence, it does not scale very well. At the time of writing, Groove is

7 As an example, version 2 of the JXTA implementation, which has been released in mid 2003, now uses a
hybrid P2P topology. Thus, resolver queries are no longer forwarded to edge peers in the network.

CHAPTER 8. EVALUATING OMNIX 134

only available for the Windows platform.

8.3.4 Overview of middleware comparison

Table 8.1 and Table 8.2 compare the various P2P middleware systems with Omnix. At the
time of writing, no information about an implementation of some of the P2P middleware
systems has been published. Hence, only a limited number of comparison criteria apply.
Hence, all answers marked with an asterisk are assumptions (based on possibility, not on
probability) that could not be verified at that time.

The following evaluation criteria have been chosen:

• P2P middleware: It is a real P2P middleware or just a normal communication middle-
ware? As a litmus test, it is not a P2P middleware if two communication endpoints
have to know each other before the middleware is used.

• Higher level P2P services: Does it provide other services than message passing? Typi-
cal examples for higher level services are distributed searches and the access of shared
services or content.

• Support for mobile hosts: Does it support the mobility of peers? This is usually the
case when the system allows a host to move during an ongoing communication.

• Support for small devices: Is the system theoretically running on a small device? If it
uses XML or does only run on Windows, this is usually not the case.

• Topology independent: Does it support arbitrary topologies?

• Server-less: Does it require a central server for the communication? Hence, a P2P
middleware is considered server-less if the server is not absolutely necessary.

• Programming language independent: Is it possible to implement the system in other
languages than the one for the reference implementation? This is usually not the case
if programming language specific mechanisms have been used (e.g., RMI, DCOM,
etc.)

• Platform-independent: Is it possible to run the middleware on various platforms (i.e.,
devices)? This requires that the implementation is not bound to a specific hardware or
operating system.

• Scalable: Is the middleware scalable? If a system uses a central server, it usually not
as scalable as a fully decentralized system. If a middleware system is not P2P, the
question whether it is scalable is futile (and therefore marked with the fsymbol).

• Network/protocol independent: Does it support different communication protocols and
networks? Typical examples are Bluetooth, TCP/IP, UDP/IP, etc.

• Support for testing: Does it allow to test the application in a virtual P2P network
without changing the application?

CHAPTER 8. EVALUATING OMNIX 135

To summarize the evaluation presented in this chapter: For each of the requirements de-
fined in Section 4.1, we discussed how and to what extent Omnix addresses it. The evaluation
of topology independence, as it is one of the most important aspects, has two parts: 1) we
show that Omnix is able to work with different topologies and 2) we discuss the possibilities
of changing topologies at design-time and runtime. The evaluation shows that Omnix meets
all the stated requirements. A comparison of Omnix with P2P systems and related tech-
nologies is also presented, showing the advantages of Omnix over other P2P middleware
systems.

P2P middleware

Higher level P2P services

Support for mobile hosts

Support for small devices

Topology independent

Server-less

Programming language independent

Platform-independent

Scalable

Network/protocol independent

Support for testing

MoCha

No

No

Yes

Yes

No

Yes

Yes (*)

Yes(*)

Yes (f)

Yes(*)

No

eComP

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

No

No

No

Mobile MOM

No

No

Yes

Yes

No

No

Yes

Yes

No

No

No

VPP

Yes

No

No

Yes

No

Yes

Yes

Yes

No

Yes

No

00

II
p

Table 8.1: Comparison of P2P topologies 1/2.

as

n

P2P middleware

Higher level P2P services

Support for mobile hosts

Support for small devices

Topology independent

Server-less

Programming language independent

Platform-independent

Scalable

Network/protocol independent

Support for testing

XMIDDLE

No

Yes

Yes

No

No

Yes

Yes

Yes

Yes (f)

Yes

No

iMobile ME

No

No

Yes

Yes

No

No

Yes

Yes

No

Yes

No

JXTA

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Groove

Yes

Yes

Yes

No

No

Yes

Yes

No

No

No

No

Omnix

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

tn

I

Table 8.2: Comparison of P2P topologies 1/2.

Chapter 9

Conclusion and Future Work

I think there is a market for maybe five computers worldwide.
Thomas J. Watson, Chairman of IBM, 1943

The second important trend we are preparing for is called "pervasive comput-
ing'^...] So the networked world [...] will extend further to interconnect perhaps
a trillion "intelligent"devices.
Louis V. Gerstner, Chairman and CEO of IBM, 1999 [149]

Peer-to-Peer (P2P) computing has been increasingly gaining popularity. According to
CacheLogic [150], 70% of the traffic over ISP networks is caused by P2P file sharing. 95%
of the upstream traffic over the last mile is due to P2P networking. On average, 5 million
people are participating in a P2P network at any point in time. 35 million Europeans have
used a P2P system to download music files. Approximately 50% of campus traffic is used
by P2P file sharing systems [85].

This is not only an impressive list of numbers but also shows that it is essential to improve
the way in which P2P systems work, how they are connected, how they take advantage of
the different capabilities of the peers involved. All these aspects are represented by the
topology of a P2P network. P2P is a relatively new area. The past five years have seen a
lot of movement in this field. After Napster and Gnutella, further improvements emerged:
hybrid P2P topologies, hypercubes, distributed hashtables and many more. ' These advances
in P2P computing have been mainly aimed at file sharing. In other application domains,
different characteristics apply (e.g., lower bandwidth utilization). It is also likely that the
recent improvements of P2P topologies are not the end of the road.

Also relatively new in the P2P area are upcoming P2P middleware systems. P2P middle-
ware systems offer an application programming interface for a P2P network. Services such
as distributed searches, direct communication among peers, etc. are transparently hidden be-
hind a higher-level interface. The fast development of new P2P systems makes it somewhat
hard for an application developer to choose which P2P system to use as an underlying com-
munication middleware. Those few P2P systems that can be used as a P2P middleware have

1 An example for the fast pace of P2P development is the Gnutella network: although it was one of the most
influencing P2P systems it has been used for approximately 2 years only before it virtually died.

138

CHAPTER 9. CONCLUSION AND FUTURE WORK 139

a fixed topology. As shown in Chapter 3, the topology has a high impact on the usability
for specific application domains and use cases. Conventional P2P middleware system lack a
great deal of flexibility by using a fixed topology. It is possible to achieve most use case sce-
narios by almost any P2P topology, but this comes at a high price (i.e., increased bandwidth
utilization, less scalable, etc.). There is no such thing as a. perfect topology than can be used
for any use case.

What is missing is an open standard for P2P networks, where applications can access
the services provided by P2P systems in a uniform way. If a P2P middleware would exist
that allows the replacement of the underlying topology without changing the interface to the
application using it, it would be possible to write a P2P application without having to deal
with the shortcomings of one or the other P2P topology. If a P2P topology turns out to be a
bad choice, it would be easily possible to replace it by another one.

As an example: Gnutella (once a state-of-the-art P2P system) was scalable to a few tens
of thousands of nodes. FastTrack, a successor which uses a more sophisticated topology, has
more than 2.5 million users at any point in time (without any hint that this is the upper limit).
With an open middleware, applications on top of Gnutella could easily switch to the hybrid
topology of FastTrack without changing the application itself.

Omnix is the first step in this direction. It allows the creation of P2P applications that are
independent from the topology, the programming language and the device that it is running
on.

9.1 Analysis of this Dissertation

To get a better understanding of the commonalities and differences of the various P2P topolo-
gies, we compiled a list of P2P topologies and classified them in a survey. The result are the
three main topology classes: pure P2P (with wild mesh and structured topologies as sub-
groups), server-based P2P and hybrid P2P. Using this classification, we evaluated the vari-
ous P2P networks with respect to their scalability, performance, and many more criteria. The
resulting conclusion is that there exists no P2P topology that can be used for all use cases
effectively. It shows that there is a need for an abstraction between the P2P application and
the underlying P2P middleware and its topology.

The consequential product from this evaluation is a generic API. It allows to use higher-
level services of P2P networks without the necessity of differentiation between the various
topologies beneath. An application programmer using this API does not have to know which
topology is used to provide the services he/she is accessing. The validity and usability of the
interface has been evaluated in Section 8.2.3.

To support the thesis that topology independence is important for a P2P middleware, an
implementation of such an open, generic P2P middleware has been written. This application
provides the aforementioned interface to hide the underlying topology implementation. To
raise the level of the application and to further prove that the generic interface is also valid
for other devices than normal PCs (with respect to the lower device capabilities), it has been
build in a component-oriented way that allows to use the middleware on small devices such
as mobile phones.

Since Omnix is an open middleware, plugins can be used to change the behavior of

CHAPTER 9. CONCLUSION AND FUTURE WORK 140

the P2P system. It is possible to change the topology, the message structure, the ontology
of the meta-data, the way in which streams are created and maintained, and much more.
In the course of this implementation, a protocol has been specified that can be used with
arbitrary topologies and message content. Omnix deliberately does not use any higher-level
standards such as XML, SOAP, RMI, CORBA and the like to keep peer implementations
as small as possible. It is, however, possible to adopt these techniques if necessary. The
component-oriented design of Omnix allows the testing of P2P applications by simulating
a virtual network with thousands of nodes. By only replacing the lowest layer of Omnix, a
non-intrusive testing of an application is possible (which means that the application does not
have to be changed at all for testing).

A comparison of Omnix with conventional P2P middleware systems has been performed.
The result is that there exists not a single P2P middleware system that has the same charac-
teristics as Omnix.

Along with this Dissertation, several sub-projects have been started to explore some de-
tails of the Omnix middleware in more depth. One of these projects was Donare, a master
thesis about the application of Omnix for a hybrid P2P system with traffic shaping and load
balancing. Another interesting project, Simix, dealt with the creation of a testbed for Omnix
applications. What is still ongoing work is the creation of a security P2P infrastructure (based
on the notion of trust) in Omnix. In Chapter 7, an experimental study has been presented to
demonstrate how Omnix performs with different topologies.

Along with the detailed discussion of topologies in Chapter 3, the results of the experi-
mental study confirm the initial thesis that the topology has a tremendous impact on the use
case and that it is important for a P2P middleware to be independent of the underlying P2P
topology.

9.2 Ongoing and Future Work

The concepts and implementation presented in this dissertation are the basis for several
projects currently going on or planned in the future. As Omnix is a topology-independent
middleware, there are many ways how it can be extended. In the following, a list of ongoing
work and open research problems is given.

We are planning to create additional topology modules to explore whether the Omnix
API can be improved (if necessary). This is definitely a process over time because it is very
likely that new P2P topologies will emerge frequently. It is also planned to create a module
that allow the Omnix to communicate with JXTA peers.

One of the most interesting aspects of the Omnix API is the question of how the applica-
tion can have access to the proprietary mechanisms of topology modules or other components
of the middleware (as discussed in Section 8.2.4).

An ongoing project deals with security aspects in Omnix. It tries to create a so-called Web
of Trust to authenticate peers in a P2P network. The main challenge in a P2P environment is
that there is no central authority to check the credentials of a remote peer. It is part of this
project to examine how different P2P topologies affect the usefulness of such algorithms.

The Simix project, which is a simulation environment for Omnix, is also ongoing work.

CHAPTER 9. CONCLUSION AND FUTURE WORK 141

We are currently working on an improved routing algorithm for the connections between two
virtual peers. Furthermore, we are looking into possibilities to improve the usability of the
system and the creation of statistics. We also plan to look into more detail how individual
user behavior can be simulated and configured.

Since Omnix has been designed to work on small devices such as a mobile phone, we
are planning to look into possibilities to port Omnix to even smaller devices, such as embed-
ded devices or SmartCards. With the widespread availability and miniaturization of mobile
devices, the demand for P2P architectures in ubiquitous computing environments grows. It
is also for this reason that we want to port Omnix to other programming languages (e.g., C).
This step is necessary to make Omnix available to a wide range of application programmers.

The support for platform-independent storage of meta-data is also an open issue. Topol-
ogy modules are responsible for storing the shared meta-data persistently. Because this has
to be done in a platform-independent way, we are planning to create an interface for compo-
nents that are responsible for storing the shared meta-data persistently, e.g. on a disk, in a
database or in memory.

One of the most demanding challenges in Omnix is the seamless transition from one
topology to another. While it is comparatively easy to manually replace a topology module
by another (e.g., by changing a single line in a configuration file), it is harder to do this
automatically. How does a peer know that it has to change the topology module? How can the
peer be sure that the request for changing the topology has been issued by an administrator
with the right credentials (this is also the rationale behind creating a security infrastructure
for Omnix)? Where does a peer get the new topology module from? How does a peer get
informed when it was not online at the time the topology change request has been issued
to all peers? For some of these questions we do have answers but it still requires a lot of
research necessary until automatic change of the topology becomes reality.

Currently, the definition of the meta-data ontology lies within in the responsibility of the
topology module. We are looking into ways of creating a generic meta-data ontology that can
be used with any topology. This would help to make the topology completely independent
from the application. Omnix provides a very simple ontology with key/value pairs that is
probably sufficient for most topologies.

9.3 Concluding Remarks

P2P is an idea, not a system. Many P2P systems with different topologies evolved in the
recent past. In this dissertation, we have shown that the topology of a P2P network has a
great deal of impact on the usability, scalability, meta-data, and bandwidth utilization (among
other aspects as well). It is safe to assume that other P2P topologies will emerge in the future.
To cope with the challenges that come with the increasing usage of P2P technologies even in
small, embedded devices (in the area of pervasive, ubiquitous computing) it is necessary to
adapt the P2P topologies to the respective use cases.

The Omnix P2P middleware provides an abstraction from the underlying P2P topology
and thus allows the application programmer to always use the same API and the same ser-
vices provided by the P2P network without depending on a single topology or the device it
is running on.

CHAPTER 9. CONCLUSION AND FUTURE WORK 142

We proposed a layered architecture that is loosely based on the ISO OSI model. Ornnix
defines the components of the four lowest layers of the model: physical, data link, network,
and transport. The upper layers were deliberately not touched as we do not believe it to
be feasible to specify interfaces for these layers that would not impose restrictions on the
usability of the system.

Appendix A

Protocol Statuscodes

The following list shows the various classes of status codes.

• lxx Informational: Responses with status codes starting with a " 1 " indicate that the
request has been received by the target peer and is now being processed. This may
be necessary if the processing may take more time. If this response is not sent back
by the processing peer, the sending peer may assume that the request has not been
received by the target peer. A lxx response does not indicate the end of a request/reply
transaction. The initial peer (i.e., the requestor) must still wait for a final response. If,
for example, a peer is forwarding a search request to another peer, it may send back a
message reporting this fact. The response received from the remote peer may be sent
back to the initial peer as a final response.

• 2xx Success: This class of messages indicate that the request has been received, ac-
cepted and processed. Typically, a 2xx response contains also the desired information
(if applicable).

• 3xx Redirection: With this kind of response the target peer informs the initial peer,
that the required resource is not (or no longer) available at this peer. This information
could also augmented by a pointer to another location where the requested information
can be retrieved.

• 4xx Client Error: If a peer sends a request which is contains bad syntax, uses a wrong
protocol name or version, or cannot be processed by the server (e.g., because the re-
quested file does not exist), the target peer sends back a response with a 4xx status
code.

• 5xx Server Error: A 5xx error code is returned if an internal error in the server-peer
has occurred. Reasons for such an error could be a defective component or misconfig-
uration.

143

APPENDIX A PROTOCOL STATUSCODES 144

Status Code
100
181
182

200

300
301
302
305
380

400
401
403
404
405
407
408
413
480
482
483
485
486

500
501
503
505

Reason Phrase
Trying
Message forwarded
Queued

OK

Multiple choices
Moved permanently
Moved temporarily
Use Proxy
Alternative Service

Bad Request
Unauthorized
Forbidden
Not found
Method not allowed
Proxy authentication required
Request-timeout
Request-entity too large
Temporarily unavailable
Loop detected
Too many hops
Ambiguous
Busy here

Server internal error
Not implemented
Service unavailable
Version not supported

Table A. 1 : Protocol status codes.

Appendix B

Message Syntax in Augmented
Backus-Naur Form

In the following, the message structure of the reference Omnix protocol (described in Chap-
ter 5) by using the Augmented Backus-Naur Form [89], which is an often used extension of
the Backus-Naur Form for Internet specifications.

message

messagebody

requestline

method

requestURl

protocol

version

responseline

statuscode

reasonphrase

- requestline / responseline
requiredheaders
*messageheader
CRLF
[messagebody]

= *OCTET

= method SP requestURl SP
protocol "/" version CRLF

= 1*CHAR

= 1*CHAR

= 1*CHAR

= 1*CHAR

= protocol "/" version SP
statuscode SP reasonphrase

= 3DIGIT

= 1*CHAR

145

APPENDIX B. MESSAGE SYNTAX IN AUGMENTED BACKUS-NAUR FORM 146

messageheader = headername COLON *WSP headervalue CRLF

headername = 1*CHAR

headervalue = *OCTET

requiredheaders = to
requiredheaders =/ from
requiredheaders =/ l*via
requiredheaders =/ msgid

to = "To" COLON *WSP headervalue CRLF

from = . "From" COLON *WSP headervalue CRLF

via = "Via" COLON *WSP headervalue CRLF

msgid = "MsgID" COLON *WSP headervalue CRLF

COLON = ":"

Bibliography

[1] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Looking up data in p2p systems. Communications of the ACM, 46(2):43^8, 2003.

[2] Project JXTA, http://www.jxta.org/, 2003.

[3] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science,
2218,2001.

[4] Groove Networks, http://www.nfcr.org/, 2003.

[5] Christian Becker, Gregor Schiele, Holger Gubbels, and Kurt Rothermel. Base - a
micro-broker-based middleware for pervasive computing. In Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications (Per-
Com 2003), pages 443-451, March 2003.

[6] Roman Kurmanowytsch. An Overview of Peer-to-Peer Topologies. Technical Re-
port TUV-1841 -2003-04. Distributed Systems Group, Technical University of Vienna.
2003.

[7] NewScientist.com news service. May 23, 2003, http://www.newscientist.com/news/
news.jsp?id=ns99993764.

[8] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O'Reilly & Associates, Mar. 2001. http://www.oreilly.com/catalog/peertopeer/.

[9] P. Mockapetris. Domain Names - Implementation and Specification (RFC 1035),
http://www.ietf.org/rfc/rfc 1035.txt, 2002.

[10] Peer-to-Peer Working Group, http://www.p2pwg.org/, 2002.

[11] Webopedia, http://www.webopedia.com/, 2003.

[12] SETI@Home. SETI@Home homepage, http://setiathome.ssl.berkeley.edu/, 2001.

[13] Napster. Napster homepage, http://www.napster.com/, 2002.

[14] ICQ, http://www.icq.com/, 2003.

[15] threedegrees homepage, http://www.threedegrees.com/, 2003.

147

BIBLIOGRAPHY 148

[16] Jabber Software Foundation. Jabber homepage, http://www.jabber.org/, 2003.

[17] Gnutella: The Gnutella homepage, http://gnutella. wego.com/, 2001.

[18] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
distributed anonymous information storage and retrieval system. Lecture Notes in
Computer Science, 2009:46-??, 2001.

[19] The FastTrack Protocol, http://www.fasttrack.nu/, 2002.

[20] Groove. Introduction to Groove, Groove Networks White Paper, 2000.

[21] genome@HOME. genome@HOME homepage, http://genomeathome.stanford.edu/,
2001.

[22] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage
utility. In HotOS VIII, Schloss Elmau Germany, May 2001.

[23] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceed-
ings of the ACM SIGCOMM, San Diego, August 27-31 2001, 2001.

[24] Karl Aberer. P-grid: A self-organizing access structure for p2p information systems.
2001. http://lsirwww.epfl.ch/publications/CoopIS2001 .pdf.

[25] GnuNet. Gnunet homepage, http://www.ovmj.org/GNUnet/, 2003.

[26] JXTA for J2ME, http://jxme.jxta.org/, 2002.

[27] Li Gong. Project JXTA: A technology overview. Technical report, SUN Microsys-
tems, April 2001. http^/www.jxta.org/project/www/docs/TechOverview.pdf, 2002.

[28] O'Reilly P2P Directory, http://www.openp2p.eom/pub/q/p2pxategory, 2003.

[29] Detlef Schoder and Kai Fischbach. Peer-to-peer prospects. Communications of the
ACM, 46(2): 14-??, February, 2003.

[30] Beverly Yang and Hector Garcia-Molina. Comparing hybrid peer-to-peer systems. In
The VLDB Journal, pages 561-570, Sep 2001.

[31] Rüdiger Schollmeier and Gero Schollmeier. Why peer-to-peer (p2p) does scale: an
analysis of p2p traffic patterns. In Second IEEE International Conference on Peer-
to-Peer Computing, Use of Computers at the Edge of Networks (P2P, Grid, Clusters).
IEEE, 2002.

[32] Jordan Ritter. Why Gnutella Can't Scale. No, Really, http://www.darkridge.com/
~jpr5/doc/gnutella.html, 2001.

[33] Mihajlo A. Jovanovic, Fred S. Annexstein, and Kenneth A. Berman. Scalability is-
sues in large peer-to-peer networks - a case study of gnutella http://www.ececs.uc.edu/
~mjovanov/Research/paper.html. Technical report, University of Cincinnati, 2001.

BIBLIOGRAPHY 149

[34] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design, 2002.

[35] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content addressable network. In Proceedings of the 2001 ACM SIGCOMM
Conference, pages 161-172, 2001.

[36] Karl Aberer, Philippe Cudre-Mauroux, Anwitaman Datta, Zoran Despotovic, Manfred
Hauswirth, Magdalena Punceva, Roman Schmidt, and Jie Wu. Advanced peer-to-peer
networking: The p-grid system and its applications. Praxis der Informationsverar-
beitung und Kommunikation, 25, 2002.

[37] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. A scalable
and ontology-based p2p infrastructure for semantic web services. In Second IEEE
International Conference on Peer-to-Peer Computing, Use of Computers at the Edge
of Networks (P2P, Grid, Clusters). IEEE, 2002.

[38] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing, 2001.

[39] N. J. Günther. Hypernets - good (g)news for gnutella, February 2002.

[40] Mayur Datar. Butterflies and peer-to-peer networks. In Proceedings of ESA 2002
(LNCS), 2002. http://dbpubs.stanford.edu/pub/2002-33.

[41] Grokster homepage, http://www.grokster.com/, 2002.

[42] Dejan S. Milojicic et al. Peer-to-peer computing. Technical report, HP Laboratories
Palo Alto, 2002.

[43] Kazaa Media Desktop. Kazaa homepage, http://www.kazaa.com/, 2002.

[44] Kelly Truelove. Gnutella: Alive, well, and changing fast http://www.openp2p.com/
pub/a/p2p/2001/01/25/truelove0101.html, 2001.

[45] Lime Wire homepage, http://www.limewire.com/, 2002.

[46] John Kubiatowicz. Extracting guarantees from chaos. Communications of the ACM,
46(2):33-38, 2003.

[47] Karl Aberer and Manfred Hauswirth. An overview on peer-to-peer information sys-
tems. In Proceedings of Workshop on Distributed Data and Structures (WDAS-2002),
Paris, France., 2002.

[48] Ilya Zaihrayeu. Data-sharing p2p systems: Open problems. UNITN, June 2003.

[49] David Barkai. Keynote speech: Internet distributed computing: The intersection of
web services, p2p, and grid computing. In Second IEEE International Conference
on Peer-to-Peer Computing, Use of Computers at the Edge of Networks (P2P, Grid,
Clusters). IEEE, 2002.

BIBLIOGRAPHY 150

[50] Bugra Gedik. Determining Characteristics of the Gnutella Network, http://www.cc.
gatech.edu/~bgedik/research/mini-projects/mini-projectl/F%inalReport.htm, 2002.

[51] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet to
random breakdowns. Physical Review Letters, 85, 2000.

[52] P. Krishna Gummadi, Stefan Saroiu, and Steven Gribble. A measurement study of
napster and gnutella as examples of peer-to-peer file sharing systems.

[53] Lada Adamic, Rajan Lukose, Amit Puniyani, and Bernardo Huberman. Search in
power-law networks. Physical Review E, 64(046135), 2001.

[54] Shengquan Wang, Muralidhar Krishnamoorthy, and Dong Xuan. Analyzing resilience
of structured peer-to-peer systems. Technical report, Department of Computer Sci-
ence, Texas A&M University, 2002.

[55] Richard Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1), 1985.

[56] Qin Lv et al. Search and replication in unstructured peer-to-peer networks, http://
www.cs.princeton.edu/~qlv/download/searchp2p-full.pdf.

[57] Beverly Yang and Hector Garcia-Molina. Improving search in peer-to-peer networks.
In 22nd International Conference on Distributed Computing Systems (ICDCS'02),
pages 5-14. IEEE, 2002.

[58] Peter Backx, Tim Wauters, Bart Dhoedt, and Piet Demeester. A comparison of peer-
to-peer architectures. In Proceedings of Eurescom Summit 2002, Heidelberg, Ger-
many, 2002.

[59] Serguei Osokine. The flow control algorithm for the distributed 'broadcast-route'
networks with reliable transport links, http://www.grouter.net/gnutella/flowcntl.htm.

[60] Clip2 DSS. Bandwidth Barriers to Gnutella Network Scalability, http://dss.clip.com/,
2000.

[61] Patrick Feisthammel. Explanation of the web of trust of PGP, http://www.rubin.ch/
pgp/weboftrust.en.html, 2002.

[62] Todd Sundsted. The practice of peer-to-peer computing: Trust and security in peer-to-
peer networks, http://www- 106.ibm.com/developerworks/security/library/j-p2ptrust/
?dwzone=security, 2002.

[63] Netscape. Introduction to SSL, http://developer.netscape.com/docs/manuals/security/
sslin/contents.htm, 2002.

[64] Locutus. Locutus homepage, http://locut.us/, 2003.

[65] Laura Chappell. Security alert, just say gno!, http://www.nwconnection.com/2001 D9/
gnutel91/. Novell Connection, pages 33-35, 2001.

BIBLIOGRAPHY 151

[66] Neil Daswani and Hector Garcia-Molina. Query-flood DoS attacks in Gnutella. In
Proceedings of the 9th ACM conference on Computer and communications security,
2002.

[67] Unwanted Links. Gnutella Peer to Peer File Sharing, http://www.unwantedlinks.com/
Guntella-alerthtm, 2002.

[68] Vincent Berk and George Cybenko. File Sharing Protocols: A Tutorial on Gnutella,
http://www.ists.dartmouth.edu/IRIA/knowledgeJbase/p2p/p2p_full.htm, 2002.

[69] Demetris Zeinalipour-Yazti. Exploiting the security weaknesses of the gnutella pro-
tocol, http://www.cs.ucr.edu/~csyiazti/cs260-2.html, 2002.

[70] John Borland. Gnutella girds against spam attacks, http://news.cnet.com/news/
0-1005-200-2489605 .html, August 2000.

[71] PayPal. The PayPal homepage, http://www.paypal.com/, 2003.

[72] Hilary Rosen. Statement of Hilary Rosen (Chairman and CEO Recording Indus-
try Association of America) before the Subcommittee on Courts, the Internet and
Intellectual Property Committee on the Judiciary U.S. House of Representatives,
http://www.house.gov/judiciary/rosen092602.htm.

[73] James Evans and James Niccolai. Peer-to-Peer Will Have Life After Napster, http:
//www.pcworld.com/news/article/0,aid,41642,00.asp, February 2001.

[74] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems. Prentice Hall,
2002.

[75] IBM alphaworks. BlueDrekar, http://www.alphaworks.ibm.com/tech/bluedrekar,
2003.

[76] AXIS Communications. AXIS OpenBT Stack, http://developer.axis.com/software/
bluetooth/, 2003.

[77] J. Ott, C. Perkins, and D. Kutscher. A Message Bus for Local Coordination (RFC
3259), http://www.faqs.org/rfc/rfc3259.txt, 2002.

[78] F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a common api for structured
peer-to-peer overlays. In Proceedings of the Second International Workshop on Peer-
to-Peer Systems (IPTPS 2003), Berkeley, CA, February 2003.

[79] Ora Lassila and Ralph R. Swick, Editor). Resource Description Framework (RDF)
Model and Syntax Specification, W3C Recommendation, http://www.w3.org/TR/
1999/REC-rdf-syntax-19990222, 1999.

[80] Adam Rifkin and Rohit Khare. The Evolution of Internet-Scale Event Notification
Services: Past, Present, and Future, http://www.ics.uci.edu/~rohit/wacc, 1998.

[81] Gian Pietro Picco and Gianpaolo Cugola. PeerWare: Core Middleware Support for
Peer-To-Peer and Mobile Systems. Technical report, Dipartimento di Electronica e
Informazione, Politecnico di Milano, 2001.

BIBLIOGRAPHY 152

[82] Carles Pairot, Pedro Garcia, and Antonio F. Gomez Skarmeta. DERMI: A Decentral-
ized Peer-to-Peer Event-Based Object Middleware, 2003. Submitted to IEEE ICDCS
2004.

[83] p2psockets. http://p2psockets.jxta.org/servlets/ProjectHome, 2003.

[84] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications (RFC 1889), http://www.ietf.org/rfc/rfcl889.txt, 1996.

[85] JintaeLee. An end-user perspective on file-sharing systems. Communications of the
ACM, 46(2):49-53, 2003.

[86] R. Fielding et al. Hypertext Transfer Protocol - HTTP/1.1 (RFC 2616), http://www.
ietf.org/rfc/rfc2616.txt, 1999.

[87] J. Rosenberg, et al. SIP: Session Initiation Protocol (RFC 3261), http://www.ietf.org/
rfc/rfc3261.txt, 2002.

[88] P. Resnick, Editor. Internet Message Format (RFC 2822), http://www.ietf.org/rfc/
rfc2822.txt, 2001.

[89] D. Crocker, Ed., P. Overell. Augmented BNF for Syntax Specifications: ABNF (RFC
2234), http://www.ietf.org/rfc/rfc2234.txt, 1997.

[90] International Organization for Standardization (ISO). ISO/IEC 10646-1, International
Standard, Information technology, "Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane", UTF-8 is described in
Annex R, published as Amendment 2, 1993.

[91] J. Galvin, S. Murphy, S. Crocker and N. Freed. Security Multiparts for MIME: Multi-
part/Signed and Multipart/Encrypted (RFC 1847), http://www.ietf.org/rfc/rfcl847.txt,
1995.

[92] Clip2. The Gnutella Protocol Specification v0.4, http://www.aduni.org/courses/java/
handouts/Gnutella_Protocal.pdf, 2001.

[93] Name unknown (drscholl@users.sourceforge.net). Napster Messages, http://opennap.
sourceforge.net/napster.txt, 2000.

[94] Thomas Weidenfeller. A tiny XML parser/processor in Java, http://mitglied.lycos.de/
xmltp/, 2001.

[95] John Wilson. MinML a minimal XML parser, http://www.wilson.co.uk/xml/minml.
htm,1999.

[96] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Proto-
col (SOAP) 1.1, http://www.w3.org/TR/SOAP/, 2000.

[97] Dave Winer. XML-RPC, http://www.xmlrpc.com/, 2003.

BIBLIOGRAPHY 153

[98] H. Schulzrinne and J. Rosenberg. Internet Telephony: Architecture and Protocols.
Computer Networks, 31(3), February 1999.

[99] J. Day and H. Zimmermann. The OSI Reference Model. Proceedings of the IEEE,
71(12): 1334-1340, December 1983.

[100] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 11(6):589-??, 2000.

[101] Idit Keidar. Challenges in evaluating distributed algorithms. Future Directions in
Distributed Computing, Lecture Notes in Computer Science, 2584:40-44, 2003.

[102] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolu-
tion of peer-to-peer systems. In ACM Conf. on Principles of Distributed Computing
(PODC), Monterey, CA, July 2002.

[103] D. F. Bacon, J. Schwartz, and Y. Yemini. Nest: A network simulation and prototyping
tool. In Proceedings of the USENIX Winter 1988 Technical Conference, pages 71-78,
Berkeley, CA, 1988. USENIX Association.

[104] Pei Zheng and Lionel M. Ni. Experiences in building a scalable distributed network
emulation system. In 9th International Conference on Parallel and Distributed Sys-
tems, Taiwan, ROC, December 2002.

[105] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed
Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu.
Advances in network simulation. Computer, 33(5):59-67, 2000.

[106] Ikjun Yeom and A. L. Narasimha Reddy. ENDE: An end-to-end network delay emu-
lator tool for multimedia protocol development. Multimedia Tools and Applications,
14(3):269-296,2001.

[107] M. Allman and S. Ostermann. One: The Ohio Network Emulator, 1996.

[108] David B. Ingham and Graham D. Parrington. Delayline: A wide-area network emula-
tion tool. Computing Systems, 7(3):313-332, 1994.

[109] J. Flynn, H. Tewari, and D. O'Mahony. Jemu: A wireless network emulator for mobile
ad hoc networks, proceedings of the first joint iei/iee symposium on telecommunica-
tions systems research, dublin. pages 6-, November 2001.

[110] M. Kojo, A. Gurtov, J. Mannner, P. Sarolahti, T. Alanko, and K. Raatikainen. Seawind:
a wireless network emulator, proceedings of 11th gi/itg conference on measuring,
modelling and evaluation of computer and communication systems (mmb 2001), rwth
aachen, germany, 2001.

[I l l] George Riley and Mostafa Ammar. Simulating large networks: How big is big
enough? In Proceedings of First International Conference on Grand Challenges
for Modeling and Simulation, Jan. 2002.

BIBLIOGRAPHY 154

[112] S. Bertolotti and L. Dunand. Opnet 2.4: an environment for communication network
modelling and simulation. In Proceedings of the European Simulation Symposium,
October 1993.

[113] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomosim: A library for parallel
simulation of large-scale wireless networks. In Workshop on Parallel and Distributed
Simulation, pages 154-161, 1998.

[114] S. McCanne and S. Floyd. The lbnl network simulator, 1997. http://www.isi.edu/
nsnam.

[115] Kalyan S. Perumalla, Richard Fujimoto, and Andrew Ogielski. TED - a language
for modeling telecommunication networks. SIGMETRICS Performance Evaluation
Review, 25(4):4-l 1,1998.

[116] James Cowie, David M. Nicol,, and Andy T. Ogielski. Modeling the global internet.
In Computing in Science & Engineering, volume 1, pages 42-50, January 1999.

[117] Dhananjai Madhava Rao and Philip A. Wilsey. Simulation of ultra-large communi-
cation networks. In Proceedings of Seventh International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, pages 112—
119, 1999.

[118] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. Parallel / distributed ns, 2000. http:
//www.cs.gatech.edu/computing/compass/pdns/index.html.

[119] S. Floyd and V. Paxson. Difficulties in simulating the internet, ieee/acm transactions
on networking, to appear, available at http://www.aciri.org/floyd/papers.html.

[120] Internet Software Consortium. Internet domain survey, 2003. http://www.isc.org/ds/.

[121] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling internet topol-
ogy. IEEE Communications Magazine, 35(6): 160-163, June 1997.

[122] Mario Schlosser, Tyson E. Condie, and Sepandar D. Kamvar. Simulating a p2p file-
sharing network.

[123] NeuroGrid. Peer to peer simulation, http://www.neurogrid.net/twiki/bin/view/Main/
PeerToPeerSimulation, 2003.

[124] Debashis Saha and Amitava Mukherjee. Pervasive computing: A paradigm for the
21st century. Computer, 36(3):25-31, March 2003.

[125] Andrew C. Huang, Benjamin C. Ling, and Shankar Ponnekanti. Pervasive computing:
What is it good for? In MobiDE, pages 84-91, 1999.

[126] M. Satyanarayanan. Pervasive computing: Vision and challenges, August 2001.

[127] G. Good. LDAP Data interchange Format, Request for Comments 2849, http://www.
ietf.org/rfc/rfc2849.txt, 2000.

BIBLIOGRAPHY 155

[128] Barnes & Noble, http://www.barnesandnoble.com/.

[129] Reinhard Steiner. Donare - ëin flexibles, modulares peer-to-peer system. Master's the-
sis, Vienna University of Technology, Institute for Information Systems, Distributed
Systems Group, May 2003.

[130] Eric Pfeiffer. Peer-to-peer computing is all about access, http://www.forbes.com/
2001/05/15/0515p2p.html, May 2001.

[131] Erik Meijer and John Gough. Technical overview of the common language runtime.

[132] Don Box. Essential .NET, Volume I: The Common Language Runtime. Addison-
Wesley, 2002.

[133] DMCA. The digital millenium copyright act of 1998, pub. 1. no. 105-304, 112 stat.
2860 (oct. 28), 1998.

[134] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A framework for the development
of agent-based peer-to-peer systems. In 22th Int. Conf. on Distributed Computing
Systems, Vienna, Austria, July 2002.

[135] D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay network.
In 18th ACM Symp on Operating Systems Principles (SOSP), Banff, Canada, October
2001.

[136] Farhad Arbab and Marcello Bonsangue. Mocha: A middleware based on mobile
channels. In Proceedings of 26th Annual International Computer Software and Ap-
plications. 26-29 Aug. 2002 Oxford, UK, pages 667-673. IEEE Comput. Soc, Los
Alamitos, CA, USA, August 2002.

[137] Achilles Kameas, Irene Mavrommati, Dimitris Ringas, and Prashant Wason. ecomp:
An architecture that supports p2p networking among ubiquitous computing devices. In
Second IEEE International Conference on Peer-to-Peer Computing, Use of Computers
at the Edge of Networks (P2P, Grid, Clusters). IEEE, 2002.

[138] The Disappearing Computer Initiative, http://www.disappearing-computer.net/, 2003.

[139] Do-Guen Jung, Kwang-Jin Paek, and Tai-Yun Kim. Design of MOBILE MOM: Mes-
sage Oriented Middleware Service for Mobile Computing. International Workshops
on Parallel Processing, pages 434-??, Wakamatsu, Japan, September 1999. ACM.

[140] Manel Velasco, Pau Marti, and Josep M. Fuertes. Peer-to-peer communication for
virtual industrial devices. In Proceedings of the IEEE International Workshop on
Factory Communications Systems, Västeras, August 2002.

[141] K. Etschberger. Controller Area Network (CAN), Basics, Protocols, Chips, Applica-
tions. IXXAT Automation, English edition, 2001. ISBN: 3-00-007376-0.

[142] C. Mascolo, L. Capra, and W. Emmerich. An XML-based Middleware for Peer-to-
Peer Computing. In IEEE International Conference on Peer-to-Peer Computing, Use
of Computers at the Edge of Networks (P2P, Grid, Clusters), 2001.

BIBLIOGRAPHY 156

[143] IBM alphaWorks. XML TreeDiff http://www.alphaworks.ibm.com/tech/xmltreediff,
1999.

[144] Steve DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink) 1.0.
Technical report, World Wide Web Consortium, Jun 2001.

[145] James Clark and Steve DeRose, Editors. XML Path Language (XPath), Version 1.0,
W3C Recommendation, http://www.w3.org/TR/xpath, 1999.

[146] Yih-Farn Chen, Huale Huang, Bin Wei, Ming-Feng Chen, and Herman Rao. imobile
me - a light-weight mobile service platform for peer-to-peer mobile computing. In
Workshop on Internet Technologies, Applications and Social Impact (WITASI2002),
Wroclaw, Poland (October 10-11), 2002.

[147] Sun Microsystems Inc. JXTA v2.0 Protocols Specification, 2003.

[148] Jonathan Knudsen. Getting Started with JXTA for J2ME, http://wireless.java.sun.
com/midp/articles/jxme/jxta, 2002.

[149] Louis V. Gerstner. Shareholders Speech 1998, Chicago, Illinois, April 28, 1998, http:
//www.ibm.com/lvg/annual98.phtml.

[150] CacheLogic. http://www.cachelogic.com/, 2003.

PERSONAL INFORMATION

Name

Address

Telephone

Fax

E-mail

MAIN RESEARCH INTERESTS

EDUCATION AND ACADEMIC

ADVISORS

•May 2000-to date
• October 1999

RECENT RESEARCH PROJECTS

AND COLLABORATIONS

•2001,2002,2003
• 2001

• 2000-2002
•2000

• 1999-2000

TEACHING

Lab
Seminar

Mise

SELECTED RECENT

PUBLICATIONS (MAXIMUM OF 3)

CURRICULUM VITAE

KURMANOWYTSCH, ROMAN

Technical University of Vienna, Information Systems Institute,
Distributed Systems Group, 1040 Vienna, Austria

[••43-1] 58801-18419

[-»43-1] 58801-18491

roman@infosys.tuwien.ac.at

Peer-to-Peér Computing: Engineering an Topology-Independent Open Standard for Peer-to-
Peer Systems

Mobile Computing: Mobile collaboration, Pervasive Computing
Distributed Systems: Load balancing, Self-adaptation, Distributed Searches

PhD: Distributed Systems Group, TU Wien (Advisor Mehdi Jazayeri)
Dipl-lng.: Distributed Systems Group, TU Wien (Advisor Mehdi Jazayeri)

Vienna International Festival Web presence
MOTION (Mobile Teleinformation Network), 2 Year EU-funded project
Austrian Academy of Science Web presence
SPARTA (Security Policy AdaptationReinforced Through Agents), 2 Year EU-funded project
Visiting researcher at the Hewlett Packard Laboratories in Bristol, UK

Computer Networks (SS 2001, SS 2002, SS 2003)
Mobile Computing (WS 2001), Software Engineering (SS 2002),
Pervasive Computing (SS 2003), Software Engineering (WS 2003)
Research Supervision of MS Students

With Engin Kirda, Clemens Kerer, and Schahram Dustdar, OMNIX: A topology-independent
P2P middleware, Ubiquitous Mobile Information and Collaboration Systems (UMICS),
KlagenfurtA/elden, Austria, 2003

With Mehdi Jazayeri and Engin Kirda, Towards a Hierarchical, Semantic Peer-to-Peer
Topology, IEEE International Conference on Peer-to-Peer Computing, Linkoping, Sweden,
September 2002

With Clemens Kerer and Engin Kirda, A Generic Content Management Tool for Web
Databases, IEEE Internet Computing, August 2002

