
DISSERTATION

Investigation of Fault-Tolerant
Multi-Cluster Clock Synchronization

Strategies by Means of Simulation

ausgeführt zum Zwecke der Erlangung des akademischen
Grades

eines Doktors der technischen Wissenschaften
unter der Leitung von

0.Univ.-Prof. Dr.phil. Hermann Kopetz
Institut für Technische Informatik 182

eingereicht an der Technischen Universität Wien,
Fakultät für Technische Naturwissenschaften und Informatik

von

Alexander Hanzlik
Matr.-Nr. 8853162

Apostelgasse 39, 1030 Wien, Austria

Wien, im September 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Investigation of Fault-Tolerant
Multi-Cluster Clock Synchronization

Strategies by Means of Simulation

Abstract

Distributed fault-tolerant real-time systems are increasingly deployed for
safety-critical applications in automotive, aeronautic and process control do-
mains. Time-triggered systems are becoming the technology of choice due
to their deterministic behavior. A key issue in time-triggered systems is the
establishment of a fault-tolerant global timebase among all nodes of a dis-
tributed application. Most such systems today consist of a single cluster, i.e.
a set of nodes that execute a distributed application in a concurrent manner
communicating over a dedicated communication medium by exchanging mes-
sages. It seems reasonable to build up large real-time systems from several
clusters into so called multi-cluster systems. Such structures impose addi-
tional efforts with regard to inter-cluster communication and inter-cluster
clock synchronization to bring the cluster times into agreement.

In this thesis we will investigate clock synchronization strategies by means
of simulation using SIDERA, a simulation model for time-triggered systems
based on the Time-Triggered Architecture (TTA) and the Time-Triggered
Protocol (TTP). Various multi-cluster setups including fully hierarchical con-
figurations and configurations containing feedback loops are investigated.
Further, a clock synchronization algorithm is presented which provides tight
synchronization even if a majority of nodes runs clocks with quartzes of low
quality.

Simulationsbasierte Analyse
fehlertoleranter Strategien zur

Uhrensynchronisation in
Multi-Cluster Systemen

Kurzfassung

Fehlertolerante verteilte Echtzeitsysteme halten vermehrt Einzug in sicher-
heitskritische Domänen der Automobilindustrie, der Luftfahrt sowie der Pro-
zeßautomatisierung. Zeitgesteuerte Systeme sind aufgrund ihres determin-
istischen Verhaltens für Anwendungen dieser Art besonders geignet. Ein
wesentliches Charakteristikum zeitgesteuerter Systeme ist der Aufbau einer
fehlertoleranten globalen Zeitbasis zwischen allen Knoten einer verteilten Ap-
plikation. Derzeit bestehen die meisten modernen zeitgesteuerten Systeme
aus einem Cluster, also einer Menge von Knoten, die eine verteilte Applika-
tion kooperativ ausführen und über ein Kommunikationsmedium Nachrichten
austauschen. Ein naheliegender Ansatz zur Realisierung großer Systeme
besteht im Aufbau sogenannter Multi-Cluster Systeme aus einzelnen Clus-
tern. Derartige Strukturen erfordern zusätzlichen Kommunikationsaufwand
zwischen den das System konstituierenden Clustern, speziell in Hinblick auf
den Austausch von Zeitinformation, um die Synchronisation der globalen
Zeiten innerhalb der einzelnen Cluster zu ermöglichen.

Inhalt der vorliegenden Dissertation ist die Untersuchung von Synchro-
nisationsstrategien auf der Basis eines Simulationsmodells für zeitgesteuerte
Systeme (SIDERA). SIDERA basiert auf der Zeitgesteuerten Architektur
und dem Zeitgesteuerten Protokoll. Es werden sowohl hierarchische als auch
zyklische Konfigurationen analysiert. Weiters wird ein Synchronisationsalgo-
rithmus entwickelt, der eine enge Synchronisation zwischen einzelnen Knoten
ermöglicht, selbst wenn die Mehrzahl der lokalen Uhren an diesen Knoten
lediglich über Quarze minderer Qualität verfügt.

m

Acknowledgements

I thank Prof. Hermann Kopetz, the head of the institute, for giving me
the opportunity to write a PhD thesis under his guidance besides my full-time
job at SIEMENS Austria. He introduced me to the world of fault-tolerant
distributed systems and supported me in improving my skills in the course
of many interesting discussions.

I want to thank all colleagues at the Real Time Systems Group for a
friendly working atmosphere.

I thank Astrit Ademaj for many hours of interesting discussions in the
field of distributed systems as well as for the fun we had working together.
I'm looking forward working with you on research projects to come.

Günter Bauer, thank you for patiently answering my questions when I
was a newcomer at the institute and in almost all happening there.

Further, I wish to thank Michael Paulitsch for introducing me in the
field of clock synchronization in distributed systems and for discussing im-
plementation specific aspects of SIDERA (sometimes for several hours on the
phone).

Wilfried Steiner brought startup algorithms to my knowledge. Further,
he very thoroughly proof-read this thesis and gave a lot of helpful hints.
Thank you very much.

I thank Leo Mayerhofer for technical support and for organizing and
configuring hardware during early stages of this thesis.

Special thanks go to our secretary Maria Ochsenreiter for administrative
support and for arranging meetings with Prof. Kopetz (which really is a
tough job).

I thank my boss and friend Friedrich Wilhelm for his help and advice
during a critical phase of my life and in my job, and for supporting my
academic activities.

Mom, I thank you for support, your love and for being the best mother
in the world.

Doris, thank you for being my partner and best friend and for sharing a
great time with me.

Last, I thank Achilles Gaggial for the creation of the modern-day espresso
machine.

xIn 1946, Gaggia invented a high pressure espresso machine by using a spring powered
lever system. The first pump driven espresso machine was produced in 1960 by the Faema
company.

This thesis is partly supported by the Austrian Science Fund FWF under
contract number PI6638.

VI

Contents

1 Introduction 1
1.1 Objective of the Thesis 2
1.2 Structure of the Thesis 2
1.3 Related work 4

2 Basic concepts 7
2.1 Terminology 7
2.2 Dependability 8

2.2.1 Threats 8
2.2.2 Attributes 9
2.2.3 Means 10
2.2.4 The Dependability Tree 10

2.3 Time, Instants, Events 11
2.3.1 Time and Space 11
2.3.2 Physical time 13
2.3.3 Time measurement 14
2.3.4 Time standards and time sources 14

2.4 Clocks 15
2.4.1 Physical clocks 15
2.4.2 Local clocks 17

2.5 Clock synchronization 17
2.5.1 Internal clock synchronization 18
2.5.2 External clock synchronization 23
2.5.3 Multi-cluster clock synchronization 26

2.6 The Time-Triggered Architecture 27
2.6.1 Overview 27

vu

2.6.2 The Time-Triggered Model of Computation 28
2.6.3 The Sparse Time Model 29

SIDERA 31
3.1 Overview 31

3.1.1 Software environment 31
3.1.2 Principle of operation 32

3.2 Internal structure 33
3.2.1 Protocol services 33
3.2.2 Communication system topology 42
3.2.3 Transmission delay 42
3.2.4 Fault injection 44

3.3 External structure 45
3.3.1 The configuration file 45
3.3.2 Model output 56

3.4 Model verification 61
3.4.1 Considerations and prerequisites 61
3.4.2 Reference test setup and results 62

Cluster tuning 65
4.1 Cluster calibration - principle of operation 65

4.1.1 Local clock properties 65
4.1.2 Local clock parameters 66
4.1.3 The impact of clock drift 66
4.1.4 Clock calibration 67

4.2 Cluster calibration against an external time reference 72
4.3 Cluster calibration against global time 73
4.4 Cluster calibration against a rate master node 74

4.4.1 Calibration based on explicit timing information from
the rate master node 74

4.4.2 Calibration based on implicit timing information from
the rate master node 76

4.4.3 Stability considerations 77
4.5 Experimental evaluation 77

4.5.1 Objectives of the tests 77

vin

4.5.2 Test cluster configuration 77
4.5.3 Tests setup and results 78

5 Multi-cluster clock synchronization 89
5.1 A new approach 89

5.1.1 External clock synchronization 89
5.1.2 Combining clock state correction and clock rate cor-

rection 90
5.1.3 Integrating internal and external clock synchronization 91
5.1.4 Blackout survivability 91

5.2 Experimental evaluation 93
5.2.1 Objectives of the tests 93
5.2.2 Structure of the tests 93
5.2.3 Test setup 95
5.2.4 Hierarchical configurations 95
5.2.5 Loopback configurations 100

5.2.6 Blackout survivability 105

6 Conclusion 109

Bibliography 112

A Configuration File Structure 121

B Simulation Log File structure 123

C Reference tests 125

Curriculum Vitae 127

IX

List of Figures

2.1 The Dependability tree [Lap95] 11

2.2 External clock synchronization - principle of operation 24

2.3 Multi-cluster clock synchronization - principle of operation . . 27

2.4 TTA cluster 28

2.5 Sparse time ([KO02]) 30

3.1 SIDERA - principle of operation 32

3.2 Local time 34

3.3 Communication medium access strategy 35

3.4 Node states and state transitions 41

3.5 Transmission delay - bus topology 44

3.6 Transmission delay - star topology 44

3.7 Reference Test 1 - Cluster precision 64

4.1 Calibration - principle of operation 73

4.2 Test 1 - Free running nodes 78

4.3 Test 2 - Free running nodes 79

4.4 Test 3 - Cluster precision 80

4.5 Test 3 - Cluster drift rate 80

4.6 Test 4 - Cluster precision 81

4.7 Test 4 - Clock state correction terms 82

4.8 Test 5 - Cluster precision 83

4.9 Test 5 - Cluster drift rate 83

4.10 Test 5 - Clock state correction terms 84

4.11 Test 6 - Cluster precision 85

4.12 Test 6 - Cluster drift rate with rate master node 0 85

4.13 Test 6 - Cluster drift rate with rate master node 1 86

XI

4.14 Test 6 - Cluster drift rate with rate master node 2 86
4.15 Test 6 - Cluster drift rate with rate master node 3 87

5.1 Multi-cluster clock synchronization 90
5.2 Test 1 - System configuration 96
5.3 Test 1 system precision - non-calibrated clusters 97
5.4 Test 1 system precision - calibrated clusters 97
5.5 Test 2 - system configuration 98
5.6 Test 2 system precision - non-calibrated clusters 98
5.7 Test 2 system precision - calibrated clusters 99
5.8 Test 3 - system configuration 100
5.9 Test 3 system precision - external correction term not bounded 101
5.10 Test 3 external clock state correction terms of Cluster 1 - ex-

ternal correction terms not bounded 102
5.11 Test 3 system precision - external correction term bounded . . 102
5.12 Test 4 - system configuration 103
5.13 Test 4 system precision - external correction terms not boundedl03
5.14 Test 4 system precision - external correction terms bounded . 104
5.15 Blackout survivability - system configuration 105
5.16 Blackout survivability - non-calibrated cluster 106
5.17 Blackout survivability - calibrated cluster 107

C.I Reference Test 2 - Cluster precision 125
C.2 Reference Test 3 - Cluster precision 126
C.3 Reference Test 5 - Cluster precision 126

xn

List of Tables

3.1 Node specific offline parameters 35
3.2 Slot entry 36
3.3 Node specific runtime parameters 36
3.4 Message format 38
3.5 Node drift rates 62
3.6 Reference test common parameters 62
3.7 Reference test case specific parameters 63
3.8 Precision (microticks) 63
3.9 Cluster drift rate x 10~5 sec/sec 64

4.1 Local clock properties 66
4.2 Test cluster configuration 78
4.3 Test 2 - Calibrated cluster 79
4.4 Test 4 - MMCFs after calibration against global time 81

5.1 Common parameters 95
5.2 Cluster specific parameters 96

A.I File structure 121
A.2 System specific parameters 121
A.3 Cluster specific parameters 122

B.I File structure 123
B.2 Header structure 123
B.3 Data structure 124
B.4 Sample structure 124

xin

Chapter 1

Introduction

Fault-tolerant distributed real-time systems are more and more used for the
control of safety-critical applications in automotive (drive-by-wire), aeronau-
tic (fly-by-wire) and process control (nuclear power plant monitoring sys-
tems) domains. Time-triggered systems ([Kop98]) are becoming the tech-
nology of choice due to their deterministic behavior. Such systems usually
control objects in the environment by issuing control signals to the objects
under control, based on calculations performed on input signals from these
objects. Due to the distributed characteristics of such systems, there has to
be some mechanism to coordinate activities and to provide a consistent view
of the state of the system to all nodes of the distributed application.

In time-triggered systems like the TTA ([KB03]), SPIDER ([MinO4]),
SAFEbus ([HD93]) or Flexray l, this is done by establishment of a fault-
tolerant global timebase among the nodes of a cluster. A cluster consists
of a set of spatially separated nodes, each maintaining a local clock used to
trigger actions and to timestamp events observed in the system. The nodes
execute a distributed application in a concurrent manner and communicate
by sending messages over a dedicated communication network. For many
applications (e.g. steer-by-wire, ABS) control systems consisting of a single
cluster are sufficient. The establishment of a fault-tolerant global timebase
within a single cluster is realized by bringing the clocks at the nodes into
agreement. This is done by means of internal clock synchronization which is
a well-investigated problem in distributed systems ([LL84], [HSSD84], [ST87],
[RSB90], [CAS94], [AP98]).

A promising approach for the realization of large distributed real-time
systems is clustering, i.e. to build such systems from single clusters into

flexray. http://www.flexray.com

1.1 Objective of the Thesis 1 Introduction

rnulti-cluster systems. This imposes additional efforts with regard to com-
munication and synchronization between the clusters to bring the internally
synchronized cluster times into agreement to form a system-wide global time-
base.

1.1 Objective of the Thesis

The objective of the thesis is the identification of measures and means that
are suitable to provide fault-tolerant, stable and tight clock synchroniza-
tion in time-triggered multi-cluster real-time systems. For our investiga-
tions we will use SIDERA, a simulation model for single-cluster and multi-
cluster time-triggered systems based on the Time-Triggered Architecture
TTA ([KB03]) and the Time-Triggered Protocol TTP ([TTT99]). SIDERA
is a discrete-state simulation model implemented using MATLAB/Simulink
2 that has been especially designed for the investigations and experiments
performed in the course of this thesis.

We rely on a simulation based approach due to the following reasons:

• Dedicated hardware is quite expensive. A TTP node is in the range of
1000 Euro, which makes the costs of experimental multi-cluster setups
of reasonable size hardly affordable.

• An experimental configuration in hardware means considerable efforts
in setup and cabling and impedes the comparison between different
multi-cluster configurations.

• Gathering representative data in real-time execution can take much
time.

• There is only limited control of the behavior of system components.

• A simulation based approach imposes almost no limitation with regard
to system complexity. The only limiting factor is computational power.

1.2 Structure of the Thesis

The next section of this chapter gives an overview of the related work in the
field of evaluation of clock synchronization algorithms by means of simulation.

2 Mathworks. http://www. math works. com

1 Introduction 1.2 Structure of the Thesis

Chapter 2 introduces the concepts the thesis is based on. First, some
terms and their intended meaning throughout the thesis are introduced, fol-
lowed by a short overview of the fundamental concepts of dependability. The
following section is related to the concepts of time and space, the notion of
physical time and to time standards and time sources. We then introduce
the concept of physical clocks and local clocks and give an overview of the
principles of internal, external and multi-cluster clock synchronization. The
chapter closes with an overview of the Time-Triggered Architecture.

Chapter 3 presents SIDERA, a simulation model for fault-tolerant time-
triggered systems, which will be used for the clock synchronization experi-
ments presented in this thesis. We start with the description of the software
environment and the principle of operation of SIDERA. Then, the internal
structure of SIDERA is described in detail: we focus on the protocol services
provided by the Time-Triggered Protocol and how they are implemented in
the simulation model. Further, the simulation of the physical properties of a
distributed system that are covered by SIDERA are described. The following
section discusses the parameters that can be passed to the simulation model
by means of a configuration file as well as the output that is generated by
the model. The last section of this chapter is related to the verification of
SIDERA by means of verification tests against a VHDL model of a TTP/C
controller.

Chapter 4 describes methods and means that improve the quality of syn-
chronization within a cluster. It introduces the notion of node calibration
which aims at manipulation of the frequency of the local clocks such that
they get into better agreement with an external time reference or with the
internally synchronized cluster time. Static and dynamic calibration of the
local clocks are described by formal analysis and evaluated in the course of
experimental setups.

Chapter 5 is related to multi-cluster clock synchronization. We extend the
concepts of dynamic clock calibration within a cluster introduced in Chap-
ter 4 and provide a fault-tolerant clock synchronization algorithm for multi-
cluster systems that is ideally suited for systems in which a majority of clocks
have quartzes of low quality. This algorithm is based on a combination of
clock-state and clock-rate correction. The second part of this chapter is de-
voted to the experimental evaluation of different multi-cluster architectures
with regard to the achievable precision. We present both hierarchical config-
urations and configurations with feedback loops. We also compare the perfor-
mance of our new clock synchronization algorithm combining clock-state and
clock-rate correction with the performance of a multi-cluster clock synchro-
nization algorithm based on clock-state correction only. Further, we compare

1.3 Related work 1 Introduction

the blackout survivability of calibrated clusters and of non-calibrated clus-
ters.

Chapter 6 concludes the thesis. The contribution of the presented work
is summarized and an outlook of the future work is given.

1.3 Related work

[SWGS99] and [WGSS99] survey SimUTC, a framework for simulation of
round-based clock synchronization algorithms in fault-tolerant distributed
real-time systems, using the discrete-event simulation package C+-1- SIM
([LM94]). SimUTC has been developed in the course of the SynUTC 3 project
which is devoted to establishing a time service for fault-tolerant distributed
real-time systems. The toolkit incorporates either real network controllers
or their simulated counterparts.

Cluster simulation ([Gal99], [GP99]) provides a cheap and useful tech-
nique to test single nodes of a distributed application in isolation without
the need to setup the whole system. The idea is to simulate the target system
for the node under test by means of one or more physical nodes connected
to the test node via a dedicated logical line interface.

[PalOO] presents detailed investigations of communication properties of
the Time-Triggered Protocol TTP/C based on a deterministic fault injec-
tion approach with regard to various kinds of faults on the communication
medium and corresponding error detection latencies using TTPSIM, a simu-
lation environment for TTP/C ([PG98]).

[Bau99] investigates the performance and the limits of the clock synchro-
nization algorithm used in the Time-Triggered Protocol TTP/C. The algo-
rithm is analyzed using a VHDL simulation of the hardware the protocol is
executed on. The system response (i.e. achieved synchrony within a cluster
and cluster drift rate from real-time) to altered parameters is presented and
discussed.

[Sch96] compares the performance of different clock synchronization algo-
rithms and clock correction strategies with regard to achievable synchrony by
means of simulation. [Sch95] deals with the simulation of multi-cluster clock
synchronization strategies in the course of the ClockSync project ([Sch94a],
[Sch94b]), which is concerned with the development of a large simulation
model for the synchronization of clocks in a distributed real-time system.

3SYNUTC. http://www.auto.tuwien.ac.at/Projects/SynUTC/

1 Introduction 1.3 Related work

[AP98] analyze the performance of several deterministic clock synchro-
nization algorithms in the presence of clock crash, processor crash, timing,
Byzantine, network omission and network performance failures. A simula-
tion model consisting of n nodes connected through a point-to-point fully
connected network is used for the analysis.

[dAB94] presents a software-based model for fault-tolerant clock synchro-
nization in distributed UNIX environments and analyzes the performance of
a software-based implementation according to variations in CPU and network
load.

1.3 Related work 1 Introduction

Chapter 2

Basic concepts

2.1 Terminology

This section defines some terms and their intended meaning as used through-
out the thesis.

Node, Processor, Process. A node is a computational unit that executes
a part of a distributed application. Each node maintains a local clock.

Cluster. A cluster is a set of spatially separated nodes that executes a
distributed application in a concurrent manner. The nodes communicate via
a dedicated communication network. The network is fully connected if there
is a physical communication link between any two nodes and partly connected
otherwise.

Gateway. A gateway connects two clusters. It consists of two nodes, each
located in one of the interconnected clusters that communicate via a dedi-
cated external communication link.

System. A system is defined to be a computational entity that interacts
with its environment by receiving input signals from the environment and
producing output signals to the environment. The system specification de-
fines the intended behavior of a system.

User. A user is a human or another system that interacts with the given
system at the service interface.

2.2 Dependability 2 Basic concepts

Service. The system service or function is the behavior of the system as
perceived by its user(s). A system is correct if it provides its service according
to the system specification.

2.2 Dependability

Systems that are used in safety-critical environments are usually expected to
fulfill dependability requirements.

Dependability is defined as the basic trustworthiness of a computer sys-
tem that allows people to rely on the service it delivers ([Lap92]). A sys-
tematic exposition of the concepts of dependability consists of three parts:
the threats to, the attributes of, and the means by which dependability is
attained ([ALR01]).

2.2.1 Threats

The threats to dependability are faults, errors and failures.

Fault. A fault is the adjudged or hypothesized cause of an error. A fault
is active when it produces an error, otherwise it is dormant.

Error. An error is an unexpected problem internal to the system that, if
altering the system service, may result in a system failure. An error is detected
if its presence in the system is indicated by an error message or error signal
that originates within the system ([ALR01]). Errors that are present but not
detected are latent errors.

Failure. A system failure is the transition from correct service to incor-
rect service. The ways a system can fail are described by its failure modes
([ALR01]), which characterize failures according to the domain (value/timing
failures), the perception by the system user(s) (consistent/inconsistent fail-
ures) and the consequences on the environment (minor/catastrophic failures).
The failure semantics is the failure behavior of a system likely to be observed
by its users ([Cri91]). A failure model is a way for precisely specifying how a
system or a system component behaves when it fails ([MS92]):

8

2 Basic concepts 2.2 Dependability

• Fail-stop failure
A component fails by ceasing execution without undergoing any incor-
rect state transition and its failure is detectable by other components
([SS83]).

• Crash failure
Like fail-stop, without the guarantee of detectability.

• Omission failure
A component fails by not responding to some input ([CASD85]).

• Timing failure
A component gives a correct response, but either too early or too late.
A late timing failure is also referred to as a performance failure.

• Arbitrary failure
The components failure behavior is completely unspecified ([LSP82]).
A component assumed to fail in this manner may perform unknown,
inconsistent, or even malicious actions.

2.2.2 Attributes

The attributes of dependability are reliability, availability, safety and security.

Reliability is dependability with respect to the continuity of correct ser-
vice. It is also a measure of the time to failure.

Availability is dependability with respect to the readiness for usage. It is
a measure of correct service delivery with respect to the alternation of correct
and incorrect service.

Safety is dependability with respect to the avoidance of catastrophic con-
sequences on the user(s) and the environment of the system. It is a measure
of continuous delivery of either proper service or improper service after a
benign failure or a measure of the time to a catastrophic failure.

Security is the ability to prevent unauthorized access to information (con-
fidentiality) and improper alterations of system service (integrity). Security
is a protective term related to the provision of service to authorized users and
the denial of service to unauthorized users ([Jon98]).

2.2 Dependability 2 Basic concepts

2.2.3 Means

The means to attain dependability are fault prevention, fault tolerance, fault
removal and fault forecasting ([ALR01]).

Fault prevention is attained by quality control techniques employed dur-
ing the design and manufacturing of hardware and software. They include
structured programming, information hiding, modularization, etc., for soft-
ware, and rigorous design rules for hardware. Operational physical faults
are prevented by shielding, radiation hardening, etc., while interaction faults
are prevented by training, rigorous procedures for maintenance, "foolproof
packages. Malicious faults are prevented by firewalls and similar defenses.

Fault tolerance is intended to preserve the delivery of correct service in
the presence of active faults. It is generally implemented by error detection
and subsequent recovery. A common method to achieve fault-tolerance is by
running replicas of the same operation on several distinct processors.

Fault removal is performed both during the development phase and the
operational phase of a system. Fault removal during the development phase
of a system life-cycle consists of verification (checking the specification), di-
agnosis (identification of deviations from the specification) and correction of
these deviations. Fault removal during the operational phase of a system
is done by means of corrective maintenance (identification and removal of
faults on the base of reported errors) or preventive maintenance (uncovering
and removal of faults that might cause subsequent errors).

Fault forecasting is conducted by performing an evaluation of the system
behavior with respect to fault occurrence or activation. Qualitative (ordinal)
evaluation aims to identify, classify and rank the failure modes, or the event
combinations (component failures or environmental conditions) that would
lead to system failures; quantitative (probabilistic) evaluation aims to eval-
uate in terms of probabilities the extent to which some of the attributes of
dependability are satisfied.

2.2.4 The Dependability Tree

Figure 2.1 shows the dependability tree which relates the concepts of depend-
ability discussed in the previous sections.

10

2 Basic concepts 2.3 Time, Instants, Events

- faults
r impairments - - errors

- failures

dependability - - means

L attributes

r fault prevention
r procurement-]L fault tolerance

- validation

- availability
- reliability
- safety
- security

• fault removal

• fault forecasting

Figure 2.1: The Dependability tree [Lap95].

2.3 Time, Instants, Events

The notion of time is very familiar to humans and pervades our daily lives.
Although the omnipresent characteristics of time, we may find it hard to
express in words what time really is.

Many people, if asked to give a definition of time, may answer "I know
well enough what it is, provided that nobody asks me about; but if I am
asked what it is and I try to explain, I am baffled" ([Aug]).

Reasoning about the nature of time as well as the relation of space and
time has a long tradition in the history of mankind.

2.3.1 Time and Space

For a long time men thought of time as something periodical strictly con-
nected to natural events; therefore in many ancient cultures, the Greek and
Roman classical world included, time was mainly conceived with a cyclic
structure ([Sch94c]). Philosophers in the classical times gave time mainly
a practical role, being connected to the changes evidenced by astronomical
phenomena and by the problem of motion. Space was given a greater atten-
tion than time, the latter being considered as a disturbance in the conceptual
systems. Aristotle thought of time and motion defining each other ([Ari91]).

11

2.3 Time, Instants, Events 2 Basic concepts

He perceived the problem of differentiating time from movement since time
cannot cease or change its speed like ordinary motions do. He also perceived
that the uniform circular motion can be used to measure time.

The birth of modern Mechanics put time in a privileged, central position
as the independent variable in the observation and description of motion and
the formulation of the physical laws. Newton looked at time as a container of
events, which homogenously flows independently of anything else: "Absolute
true and mathematical time of itself, and from its own nature, flows equably
without relation to anything external" ([New87]), considering time as an
absolute mathematical entity which can also be called duration. Leibnitz, on
the other hand, thought that space and time only represent relative order
relations and that they do not possess any objective substantiality.

The discussion whether time were an absolute or relative entity was closed
by the fundamental work of Einstein ([Ein55]), as one of the consequences of
which is that time looses its privileged position as the independent variable
for describing natural phenomena by introduction of a four coordinate space-
time continuum used to express the physical laws.

Another consequence which is especially meaningful for distributed sys-
tems is the relativity of the simultaneity which means that we are able to
decide whether events happen simultaneously (i.e. at the same instant) or
not only if they happen under our direct perception which requires spatial
proximity between the location where the events occur and the observer of
the events. To learn from the occurrence of events at remote locations which
cannot be directly observed, some information exchange is required which
can be done only with a finite speed, the speed of light.

For illustration, consider the following example. Assume two observers at
spatially separated physical locations A and B, referred to as obsA and obsß,
each having a local clock. Upon perception of a local event, each observer
sends a message to its counterpart at the remote location. Upon reception of
a message, each observer learns from the occurrence of the remote event. Be
AA,B > 0 the message transmission time between location A and B, assumed
to be constant and known by both observers. We now focus on obs^, the
observer in A. Consider a local event e^ happening at A when o&s '̂s clock
reads t. Assume that obsA receives a message from B when its clock reads
t'. obsA concludes that

was before es if t < t' —

was after CB if t > t' — AA,B

and e# were simultaneous if t = t' —

12

2 Basic concepts 2.3 Time, Instants, Events

Upon perception of each local event, both observers OÖSA and obsß have
to wait for AA,B time units to be able to decide whether some remote event
happened simultaneously to the local event observed.

2.3.2 Physical time

A common view of time is that of a one-dimensional, directed timeline
([Wie 14], [Rus36]) which is made up of an infinite set of instants.

An instant is a cut of the timeline and is defined (Russell 1914) as a set
of events, any two of which are simultaneous and such that there is no other
event which is simultaneous with them at all.

An event is said to be at a particular instant when it is a member of the
set defining that instant. Any two events being at the same instant are said
to be concurrent.

Temporal order of instants is defined by stipulating that one is earlier
than another if there is some event at the former that is earlier than some
event at the latter. If neither instant is earlier than the other, then they
are simultaneous (identical) ([PetO2]). Instants are totally ordered, whereas
events are only partially ordered (there can be many events happening at the
same instant).

The continuum of real time can be modelled by a directed timeline con-
sisting of an infinite set T of instants with the following properties ([Whi90],
p. 208):

1. T is a simply ordered set, that is, if p and q are any two instants,
than either p is simultaneous with q, or p precedes q, or q precedes p,
and these relations are mutually exclusive. Furthermore, if p precedes
q and q precedes another instant r, then p precedes r, and q is said to
be between p and r.

2. T is a dense set. This means, that, if p precedes r, there is at least one
q which is between p and r.

3. T satisfies Dedekinds postulate, namely if Tl and T2 are any two non-
empty parts of T such, that every instant of T belongs either to Tl or
T2 and every instant of Tl precedes every instant of T2, then there is
at least one instant t such that any instant earlier than t belongs to Tl
and any instant later that t belongs to T2.

13

2.3 Time, Instants, Events 2 Basic concepts

2.3.3 Time measurement

is the determination of the size of an interval on the timeline delimited by
two instants, the start event and the terminating event of the interval. This
is done by dividing the timeline into granules (small intervals of equal size)
and by counting the number of granules that "fit" into the time interval to
measure. For any time interval to measure is made up of a finite number of
granules, this method introduces a close relation between time and counting.

The size of a granule itself is derived from the frequency of some periodic
action like a swinging pendulum or a caesium atomic clock. The use of the
caesium atomic clock leads directly to the definition of the physical second
by the International System of Units (SI).

2.3.4 Time standards and time sources

Time standards

The International Atomic Time TAI (Temps Atomique International)
was specified in 1967 by the Bureau International de l'Heure (BIH) and
is the base of the time and frequency standards of the world since 1972
([Mil94]). It is a time standard that can be produced in a laboratory, but it
is in agreement with the second derived from astronomical observations. TAI
defines the physical second as the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two hyperfine levels of
the ground state of the cesium 133 atom. It is a strictly monotonie timebase
without discontinuities.

The Universal Time Coordinated (UTC) is based on astronomic
observations of the rotation of the earth relative to the sun and is the base
of "wall-clock time". There is a known offset between UTC and local wall-
clock time due to timezones and daylight saving times. Because of a slight
irregularity of the rotation of the earth around the sun, the duration of the
UTC second changes slightly over time, deviating from the physical second
provided by TAI. This deviation is corrected by occasionally inserting a leap
second into UTC to maintain synchrony between the UTC and astronomical
phenomena, like day and night. Due to the occasional insertion of a leap
second UTC is not chronoscopic, i.e. it is a timebase with discontinuities.

Time sources

provide access to time standards.

14

2 Basic concepts 2.4 Clocks

The Global Positioning System (GPS) operated, funded and con-
trolled by the U. S. Department of Defense is a satellite-based system that
provides accurate location and timing data worldwide. Provision is done via
specially coded satellite signals that can be processed in a GPS receiver, en-
abling the receiver to compute position, velocity, and time. GPS provides
access to UTC with an accuracy better than 15 nanoseconds. It is an accepted
and widely used time source for military and civil applications ([Dan97]).

The GLObal NAvigation Satellite System (GLONASS) is (similar
to GPS) a satellite-based navigation system that enables global-wide posi-
tioning, velocity measuring, and timing information. The GLONASS system
is managed by the Russian Space Forces for the Russian Federation Gov-
ernment. The time of GLONASS satellites is synchronized to UTC (with
a constant offset to provide chronoscopic behavior) with approximately 15
nanoseconds ([Leb98]).

Galileo is the planned European satellite navigation and time trans-
ferring system and is a project launched by the European Union. Unlike
GPS and GLONASS being not maintained by national defence authorities,
it shall provide guarantees of service, better availability in urban areas and
equal quality of service both for civil and military needs. Galileo is planned
to become fully operational in 2008.

Terrestrial radio stations provide time information that can be used
by time-code receivers in several regions of the world. Receivers, however, are
subject to occasional gross errors due to propagation and equipment failures
([Mil94]). They allow for accuracies of timing information with respect to
UTC in the range of 50 milliseconds up to 10 seconds ([Lic97]).

2.4 Clocks

2.4.1 Physical clocks

Physical clock. A physical clock is a device for time measurement that
contains a counter and a physical oscillation mechanism that periodically
generates an event to increase the counter ([Kop97], p. 48). The periodic
event is called the microtick of the clock. The duration between two con-
secutive microticks is the granularity of the clock. Physical clocks are also
referred to as hardware clocks.

Reference clock. Assume an omniscient external observer who can ob-
serve all events that are of interest in a given context (relativistic effects are

15

2.4 Clocks 2 Basic concepts

disregarded). This observer possesses a unique reference clock z with a very
high granularity compared to any other clock within the observed system.
Reference clock z is assumed to be in perfect agreement with International
Atomic Time TAI. Whenever the omniscient observer perceives the occur-
rence of an event e, it will timestamp this event with the current state of the
reference clock. z(e) is the state of the reference clock at occurrence of event
e. The duration between two events e\ and e^ is measured by counting the
microticks of the reference clock that occur in the interval between z{e\) and
z(e2)- The granularity gk of a clock k is given by the nominal number nk of
microticks of the reference clock z between two microticks of this clock k.

In the following, the state of reference clock z will be referred to as realtime.

Clock drift. The drift of a physical clock k between microtick i and mi-
crotick i + 1 is the frequency ratio between this clock k and the reference
clock at the instant of microtick i. The drift is determined by measuring the
duration of a granule of clock k with the reference clock z and dividing it by
the nominal number nk of reference clock microticks in a granule:

k z(microtickf+1) — z(microtickk)
drift: = 7 (2-1)

nK

The drift of a physical clock consists of a systematic and a stochastic part.

Systematic drift. The systematic drift of crystal oscillators is a constant
deviation of the frequency from the specified nominal value. It is influenced
by the operating environment (especially by variations in temperature) as
well as by aging of the crystal oscillator.

Stochastic drift. In addition to the systematic drift, crystal oscillators de-
viate randomly within a certain range. The reason for this behavior cannot
be discovered. The systematic part of hardware clocks is approximately con-
stant and approximately 100 times larger than the stochastic part ([Sch88]).
The deviations causing the stochastic part of the clock drift are assumed to
follow a symmetric distribution function in a given period of time ([PauO2]).

Drift rate. Because a good clock has a drift very close to 1, for notational
convenience the notion of a drift rate p\ is introduced as

pk = absMmicrotickj-+1) - z{microtickk)
IL

16

2 Basic concepts 2.5 Clock synchronization

The drift rate of a clock k determines the deviation of clock k from reference
clock z in seconds per second. Positive values for pf indicate that clock i
is running slower and negative values for p\ indicate that clock i is running
faster than reference clock z. A perfect clock will have a drift rate of 0.
Real clocks have a varying drift rate that is influenced e.g. by environmental
conditions or aging of the crystal. Within specified environmental parame-
ters, the drift rate of a resonator is bounded by the maximum drift rate p1^^
(typically in the range of 10~2 to 10~7 sec/sec, depending on the quality and
price of the resonator) which is guaranteed by the manufacturer and docu-
mented in the data sheet of the resonator. A typical value for the drift rate
of clocks used in modern computers is in the order of 10~6 sec/sec ([CF94],
[BHHN00], [CAS94]).

2.4.2 Local clocks

Local clock. A local clock is a device for time measurement that contains
a counter, a physical clock and a mechanism that periodically generates an
event to increase the counter. The counter of the local clock can be modi-
fied such that the speed of the local clock can be increased or decreased by
application of an adjustment value or clock state correction term (see Section
2.5). The state of local clock Ci at realtime t is defined as the state of its
hardware clock Hi and the value of the clock state correction term CORRi
at realtime t:

LTCi{t) = Hi(t) + CORRi{t) (2.3)

LTc{ {t) is referred to as the local time of local clock Ci at realtime t ([LL84]).

Clocks whose state can dynamically be altered by application of adjust-
ment values are also termed virtual clocks ([ST87], [CF85], [Sch86]) or
logical clocks ([BHHN00], [CAS94], [RSB90]).

2.5 Clock synchronization

Synchronization is the action of making different processes in a computer
network or different parts of a circuit or different clocks to agree on a same
time reading. In the context of multiprocessor and distributed systems, syn-
chronization ensures that operations occur in the logically correct order, and

17

2.5 Clock synchronization 2 Basic concepts

it allows the establishment of causal implications between events in different
computational units ([Sch94c]).

Clock synchronization algorithms aim at bringing a set of distributed,
spatially separated clocks into agreement. Internal clock synchronization
is the action of bringing all clocks within a set into closer agreement to
each other while external clock synchronization aims at bringing a clock or
a set of clocks into agreement with a reference clock. Clock synchronization
algorithms usually do not synchronize hardware clocks. Instead, they try to
attain synchrony among a set of local clocks by determination and application
of proper adjustment values (see Section 2.4.2).

2.5.1 Internal clock synchronization

Internal clock synchronization aims at establishing synchrony among a set
of clocks such that the maximum deviation between any two clocks can be
bounded by a known and constant value. In the following, the term cluster
time denotes the internally synchronized local times at the nodes within a
cluster. The state of each node's local clock represents this node's view of
cluster time. The cluster drift rate is the drift rate of cluster time against
realtime.

Objectives

Typical objectives of internal clock synchronization algorithms are

• Bounded internal deviation
At any time the deviation between any two correct clocks Ci and Cj
can be bounded by a constant II ([LL84],[HSSD84], [FC95]):

\d{t) - Cj{t)\ < V (2-4)

Ft is called the precision ([Kop97], p.50) and is a measure for the tight-
ness of synchronization within an ensemble of clocks.

• Bounded cluster drift rate
Any synchronized clock C; should read times that are within a linear
envelope of real-time ([CAS94]). That is, there should exist a constant
ß such that for any clock Ci and any realtime t:

X + (7^9) < W) < X> + V + ß)*> (2-5)

18

2 Basic concepts 2.5 Clock synchronization

where X and X' are constants which depend on the initial conditions
of the clock synchronization algorithm execution.

A set of clocks that meets the bounded internal deviation objective is said to
be internally synchronized with precision II.

Requirements

Typical requirements to meet the objectives of internal clock synchroniza-
tion are

• Bounded transmission delay
There is a known upper bound tdei on the time t required for the trans-
mission of a message. Clock synchronization requires the exchange of
clock values among the nodes of a cluster my means of messages. This
requirement ensures that any clock Ci can retrieve the state of any
other clock Cj within a known and upper bound in time.

• Bounded hardware clock drift rate
The drift rate of all hardware clocks if; with respect to realtime can
be bounded by a constant p:

(2.6)Vs, t, s < t : (1 - p)(t - s) < Hi{t) - Hi{s) < (1 + p)(t - s)

Assumptions

Typical assumptions that clock synchronization algorithms go on are

• Initial synchronization
Some algorithms require a bound on the initial deviation of any two
clocks ([LMS85], [LL84]).

• Bounded number of faulty clocks
Algorithms that make no assumptions about the failure semantics of
clocks (see Section 2.2.1) usually guarantee the bounded internal de-
viation objective under the assumption that at most one third of the
clocks are faulty at the same time (e.g. [LL84], [BHHNOO], [ST87]).
This is a consequence of the fact that (in the absence of authentica-
tion), synchronization can be achieved only if fewer than a third of
the clocks in the system are arbitrary faulty ([LSP82], [PSL80]). If

19

2.5 Clock synchronization 2 Basic concepts

the failure semantics can be restricted such that only crash failures
and clock reading failures can occur, a majority of non-faulty nodes is
sufficient to ensure the bounded internal deviation objective ([CF94]).
[MS85] presents a clock synchronization algorithm that guarantees the
bounded internal deviation objective if fewer than 1/3 of the proces-
sors are faulty; otherwise, the processors either detect that too many
faults have occurred or precision diverges bounded, referred to as grace-
ful degradation - reasonable and predictable behavior - as long as no
more than 2/3 of the processors are faulty. S elf-stabilizing clock syn-
chronization algorithms try to reestablish a stable system state and
the bounded internal deviation objective if a majority of processors
becomes faulty. The idea of self-stabilization has first been addressed
by Dijkstra ([Dij74]). It is related to the problem of bringing a system
from any so called illegitimate state to a legitimate state within finite
time. Regarding clock synchronization, a system with a majority of
faulty processors is in an illegitimate state (the bounded internal de-
viation objective is not fulfilled). [DW95] presents two self-stabilizing
protocols for synchronized bounded clocks in the presence of arbitrary
(Byzantine) processor faults. However, the expected stabilization time
of both protocols is exponential in the number of faulty processors
which limits their practical use.

Principle of operation

Internal clock synchronization is the periodic activity of determination and
application of a clock state correction term for each local clock to achieve
agreement among an ensemble of clocks. The action of applying a clock
state correction term to a local clock is referred to as clock adjustment. The
point in time when clock adjustment starts is referred to as synchronization
instant. The realtime interval between two synchronization instants is called
synchronization interval.

Internal clock synchronization is a process that comprises three steps. Every
node periodically

1. Reads the values of the other clocks.
Due to the presence of possibly varying communication delays and due
to the existence of clock drifts, getting an exact knowledge of a remote
clock value is not feasible. Thus, only estimates of the remote clock
values can be acquired ([AP98]). Therefore, the process of reading
a remote clock is also known as remote clock estimation. The clock

20

2 Basic concepts 2.5 Clock synchronization

reading error is the deviation between the real state and the estimated
state of the remote clock at the time the estimate becomes available.

Determines a clock state correction term for its clock
by invocation of a convergence function based on a set of remote clock
estimates. In the following, f(p,X\, ...,xn) denotes a convergence func-
tion / invoked at processor p based on the remote clock readings
xi,...,xn. f denotes the maximum number of tolerated faulty clocks.
Popular convergence functions are:

• Interactive convergence function fe

Also known as egocentric average ([LMS85]), fe returns the av-
erage of all arguments X\ through xn where Xj (1 < Xj < n) is
kept intact if it is no more than u apart from xp (processor p's
own clock reading) and replaced by xp otherwise. A lower bound
for uj is the achievable precision of the clocks to avoid partitioning
of the set of clocks into disjoint subsets running faster or slower
than other subsets. No sorting mechanism is required to elim-
inate faulty clock readings resulting in low complexity of clock
correction.

• Fast convergence function fjc

The Fast convergence function //c ([MS85]) returns the average of
all arguments x\ to xn that are within u of at least n — f other
clock readings. fjc yields high quality precision with the price of
high complexity because of the need to determine for each clock
reading X{ the deviation to all other n — 1 clock readings.

• Fault-tolerant midpoint function fftm

The Fault-tolerant midpoint function fftm ([LL84]) returns the
midpoint of the range of values spanned by arguments X\ to xn

after discarding the f highest and the f lowest values. fftm is based
on the assumption that faulty clocks are running either too fast
or too slow, and that good clocks lie in-between. fftm has higher
complexity than fe due to the necessity of sorting the remote clock
readings.

• Differential Fault-tolerant midpoint function fdftm
fdftm is an extension of the Fault-tolerant midpoint function ([FC97]).
fdftm n a s been proven to be optimal with regard to precision
achievable for logical clocks and is denned as follows:

. , . min(T - O,Xi) + max{T+6,xu)
fdftm(p,x1,...,xn) = i ~2 —

21

2.5 Clock synchronization 2 Basic concepts

where xt = xh/+1,xu = xhrt_f

with xhl < xh2 < xhn, hp ^ hq : 1 < hp, hq < n

where T is p's logical time at invocation time of fd/tm a n d O is the
maximum error induced by the remote clock estimation method.

3. Applies the clock state correction term to its clock.
The clock adjustment policy defines how the clock state correction term
is applied to the local clocks.

• Clock state correction (discrete adjustment)
The clock state correction term is applied at once at each synchro-
nization instant. The local clock is set back of forth according to
the sign of the clock state correction term and is running free till
the next synchronization instant. Another possibility is to spread
the application of the clock state correction term over a longer pe-
riod of time within the synchronization interval or over the whole
synchronization interval. A typical implementation of that mecha-
nism is to divide the synchronization interval into smaller intervals
of equal length and to correct one local clock tick per interval un-
til the clock state correction term is exhausted ([TTT99]). This
strategy is also referred to as clock amortization. It is shown in
[SC90] that adding continuous clock amortization to an existing
clock synchronization algorithm need not affect the precision of
that algorithm if the amortization phase (i.e. the duration of the
"piece-wise" application of the clock state correction term) is no
longer than the synchronization interval.

• Clock rate correction (continuous adjustment)
Clock rate correction aims at manipulation of the frequency of
clocks such that synchronism among an ensemble of clocks is at-
tained by continuous monitoring and manipulation of the frequen-
cies of the local oscillators (e.g. by manipulation of the input
voltage of the resonator), an approach usually used in hardware
based, continuous-update algorithms ([RSB90]).

• Combined approaches
[Sch96] discusses various combinations of discrete and continu-
ous clock adjustment. An approach for fault-tolerant clock state
correction and clock rate correction can be found in [SW99]. In
Chapter 4 we will present a fault-tolerant clock synchronization
algorithm that combines distributed clock state correction with
central clock rate correction.

22

2 Basic concepts 2.5 Clock synchronization

2.5.2 External clock synchronization

External clock synchronization aims at establishing synchrony between a set
of clocks and an external time reference which can be a time standard (see
Section 2.3) or any other external time source that is trusted in. The exter-
nal time reference is provided by one or more reference clocks referred to as
reference time servers ([CF85]). It is the goal of external clock synchroniza-
tion to synchronize a set of local clocks to an external time reference such
that the maximum deviation between any local clock and any reference time
server can be bounded by a known and constant value.

Objectives

Typical objectives of external clock synchronization algorithms are

• Bounded external deviation
At any time the deviation between any correct clock Ci and a reference
time server R can be bounded by a constant A:

\Ci{t) - R(t)\ < A (2.8)

A is called the accuracy ([Kop97], p.50) and is a measure for the tight-
ness of synchronization between a local clock and a reference time
server.

A set of clocks that fulfills the bounded external deviation objective is said
to be externally synchronized to reference time server R with accuracy A.
A set of clocks externally synchronized with accuracy A is also internally
synchronized with precision 2A:

\fi,j : \Ci(t)-R{t)\ <AA\q{t)-R(t)\ <A=> \d{t) - Cj{t)\ <2xA
(2.9)

However, the converse is not true: an initially externally synchronized set
of clocks may eventually drift apart from reference time server R if never
resynchronized to R.

Principle of operation

External clock synchronization is the periodic activity of determination and
application of an external clock state correction term for each local clock to
achieve agreement between the local clocks and an external time reference.

23

2.5 Clock synchronization 2 Basic concepts

NodeA2

Communication network A

Node A4

Figure 2.2: External clock synchronization - principle of operation

Time master node. A time master node ([BPOOb]) is a node which has
access to a reference time server. The time master node periodically accesses
the reference time server and distributes the clock reading obtained from it
to the other nodes within its cluster.

Figure 2.2 shows the principle of operation. In this configuration a GPS
receiver (see Section 2.3.4) is used as a reference time server. Node Al is a
time master node.

Like internal clock synchronization, external clock synchronization is a pro-
cess that comprises three steps. Every clock periodically

1. Reads the values of the reference time server(s)
which are provided by the time master node.

2. Determines an external clock state correction term for its
clock.
In case of more than one clock reading from reference time servers, the
external clock state correction term is determined by invocation of a
convergence function (see Section 2.5.1) based on a set of remote clock
estimates obtained from the reference time servers.

3. Applies the external clock state correction term to its clock
according to its clock adjustment policy (see Section 2.5.1).

24

2 Basic concepts 2.5 Clock synchronization

Requirements

Typical requirements to meet the objectives of external clock synchroniza-
tion are

• Bounded drift rate of the reference time server R
A non-faulty reference time server R synchronized to a time standard
always fulfills this requirement. However, R may be faulty or synchro-
nized to an external time reference that violates the bounded drift rate
requirement.

• Bounded hardware clock drift rate of the local clocks
See Section 2.5.1.

• Bounded transmission delay between R and a time master
node
There is a known upper bound t^ei on the time t required for the trans-
mission of a message between a reference time server R and a time
master node.

• Bounded transmission delay between a time master node and
the other nodes
There is a known upper bound tdei on the time t required for the trans-
mission of a message between a time master node and any other node.
External clock synchronization requires the transmission of clock val-
ues between the reference time server and the local clocks. This and
the last requirement ensure that any clock Ci can retrieve the state of
a reference time server R within a known and upper bound in time and
that the clock reading error (the error in estimating the state of the
reference time server) can be bounded (see Section 2.5.1).

Assumptions

Typical assumptions that external clock synchronization algorithms go on
are

• Bounded number of faulty reference time servers
For fault-tolerant external clock synchronization it is necessary to pro-
vide more than one reference time server. [CF85] derives lower and
upper bounds for the required number of reference time servers depen-
dant on their failure semantics. It is shown that F+l reference time

25

2.5 Clock synchronization 2 Basic concepts

servers are sufficient if only crash failures can occur or if the reference
time servers are detectable faulty (i.e. they provide a detectable wrong
reading when being accessed). It is also shown that 2F+1 reference
time servers are necessary and sufficient to tolerate up to F arbitrary
failures. Generally, there is no correct external clock synchronization
algorithm capable of masking F faulty reference time servers if the total
number of reference time servers is not greater than 2F because the set
of externally synchronized local clocks may be partitioned if there is no
majority of non-faulty reference time servers ([FC97]).

2.5.3 Multi-cluster clock synchronization

Multi-cluster clock synchronization aims at establishing and maintaining syn-
chrony among a set of clusters and is a combination of internal and external
clock synchronization. All clusters within a multi-cluster system establish
internally synchronized cluster times which are in turn synchronized to each
other by means of external clock synchronization.

Objectives

Typical objectives of multi-cluster clock synchronization algorithms are

• Bounded deviation
At any time the deviation between any two correct clocks Ci and Cj
within the multi-cluster system can be bounded by a constant II.

• Bounded system drift rate
Any synchronized clock C, within the multi-cluster system should read
times that are within a linear envelope of real-time.

Principle of operation

Gateway. Clusters are connected via gateways. A gateway consists of two
nodes, each of which belonging to one of the two clusters and communicating
with each other via a dedicated communication link.

Figure 2.3 shows a configuration consisting of two clusters A and B with a
gateway connecting them. Cluster A and cluster B are internally synchro-
nized. Additionally, cluster B is externally synchronized to cluster A's cluster

26

2 Basic concepts 2.6 The Time-Triggered Architecture

Gateway

(fol
?
—D

n•

Nod« A6 Nod«

Figure 2.3: Multi-cluster clock synchronization - principle of operation

time. Node A6 serves as a reference time server, providing its view of the
internally synchronized cluster time in cluster A to node B5, which acts as a
time master node for cluster B (see Section 2.5.2).

2.6 The Time-Triggered Architecture

2.6.1 Overview

The Time-Triggered Architecture (TTA) provides a computing infrastruc-
ture for the design and implementation of dependable, distributed systems
([KB03]). The TTA is designed to meet the requirements of hard real-time
systems. Hard real-time systems are highly dependable systems upon which
the environment imposes stringent timing requirements which must be ful-
filled under all operational conditions. The miss of a single deadline by such
a system (i.e. the system fails to provide a result correct both in the domains
of value and time) may cause catastrophic consequences to the environment
or may endanger human lives. This property separates hard real-time sys-
tems from soft real-time systems, which are deployed in environments where
occasional violations of deadlines have less or no critical consequences.

Figure 2.4 depicts a cluster of the TTA. It consists of a set of Fault-
Tolerant Units (FTUs) that communicate over a communication network
using the Time-Triggered Protocol TTP ([TTT99]). A FTU can consist
of one, two or more nodes that operate in replica determinism. A set of
replicated nodes is replica determinate if all the members of this set have the
same externally visible state, and produce the same output messages at points
in time that are at most an interval of d realtime units apart ([Pol94]). A FTU
provides the specified service without delay even after the failure of a node.
The host part of a node executes the host application, based on the TTP

27

2.6 The Time-Triggered Architecture 2 Basic concepts

Figure 2.4: TTA cluster

part which handles protocol services (startup, clock synchronization, etc.)
provided to the host application. The access to the communication network is
controlled by a cyclic time-division multiple access (TDMA) scheme derived
from a global notion of time.

2.6.2 The Time-Triggered Model of Computation

The TTA is based on the Time-Triggered Model of Computation (TT-Model),
a design methodology for the analysis andrepresentation of large hard real-
time systems ([Kop98]). The TT-Model consists of four building blocks from
which large systems can be built by repetitive use. These are

1. Interfaces which provide access to functions of subsystems and which
are boundaries between subsystems,

2. a Communication system which connects interfaces,

3. Host computers that read data from one or more interfaces, process
data and write data into one or more interfaces and

4. Transducers which connect real-time entities in the environment to
interfaces and vice versa.

It is assumed that each one of these building blocks has access to a globally
synchronized time base of sufficient precision. The establishment of a fault-
tolerant global timebase is a key issue in the TTA and is the topic of the
following section.

28

2 Basic concepts 2.6 The Time-Triggered Architecture

2.6.3 The Sparse Time Model

Dense Time

In a dense time model, time progresses along a dense timeline and events can
occur at any instant on this timeline (see Section 2.3.2).

Assume that all nodes timestamp any event they observe with their local
times (i.e. the state of their local clocks at the time the event occurs). In dis-
tributed systems, clocks cannot be perfectly synchronized due to clock drifts
(see Section 2.4.1) and variations in message transmission delay ([DHS84],
[AP98]). As a consequence, the following scenario is always possible for any
two events e\ and e2 and any two nodes node\ and node^:

• nodei observes e\ and e2 at the same tick of its local clock

• node2 observes ei, its local time proceeds, node-i observes e2

Consequently, node\ considers events e\ and e2 to have happened at the
same time whereas node2 considers event e2 to have happened after event e\.
the view of the precedence of events is not consistent at the two nodes.

This example shows that a consistent ordering of events is impossible if
events are allowed to happen anytime and are timestamped with the granu-
larity of the local clocks.

Global time

In the TTA, the nodes of a cluster establish a global timebase by means of
internal clock synchronization (see Section 2.5.1).

The TTA utilizes the concept of microticks and macroticks ([Kop97]).
Microticks correspond to the local oscillator ticks at each node (see Section
2.4.1), while macroticks represent the global notion of time. Each node gen-
erates a macrotick by selecting a number of microticks and synchronizes its
macrotick by dynamically increasing or decreasing the number of microticks
per macrotick ([PalOO]), according to the clock state correction term that
is delivered periodically by the clock synchronization algorithm (see Section
2.5.1). All nodes adjust their local clocks at the same point in global time.
The internally synchronized global time proceeds in units of macroticks. The
macrotick counter at each node represents this node's view (or approxima-
tion) of global time.

29

2.6 The Time-Triggered Architecture 2 Basic concepts

A global time base is called reasonable, if all local implementations of the
global time satisfy the condition

9 > n, (2.10)

the reasonableness condition for the global granularity g QKop97], p.52)
which ensures that the synchronization error is bounded to less than the
duration between two macroticks.

Sparse Time

In the sparse time model, dense time is partitioned into alternating intervals
of activity and silence as shown in Figure 2.5.

real time
a s a s a

a ... duration of activity
s ... duration of silence

Figure 2.5: Sparse time ([KO02])

All events that occur within an interval of activity are considered to
happen at the same time ([Kop92]).

In a distributed system based on a sparse time model, a consistent, total
ordering of events is always possible if

• the duration of an activity interval is at most the precision of the clock
synchronization and

• the duration of a silence interval is at least four times the duration of
an activity interval ([KO02]).

The availability of a sparse global timebase can be used to deterministi-
cally solve the mutual exclusion problem when accessing shared resources in
a distributed system ([AdeO3]). The access to the communication network
is organized by means of a communication schedule which is determined be-
fore runtime. A node is allowed to send a message within a priori known
time intervals assigned to this node allowing for collision-free access to the
communication network.

30

Chapter 3

SIDERA

This chapter introduces SIDERA, a simulation model for safety-critical fault-
tolerant real-time systems, inspired by the Time-Triggered Architecture TTA
and the Time-Triggered Protocol TTP. SIDERA is an acronym for simulation
model for Dependable itealtime Architectures.

The chapter is structured as follows: we start with an overview, describ-
ing the software environment and the principle of operation. Then, the in-
ternal structure of SIDERA is given; we describe the TTP protocol services
that are covered by SIDERA as well as the simulated physical properties of
the systems under investigation (i.e. possible communication system topolo-
gies, message transmission delays and the occurrence of faults). The chapter
closes with a description of the external structure of SIDERA, containing the
structure of the configuration file and the output that is generated by the
simulation model.

3.1 Overview

3.1.1 Software environment

SIDERA has been developed using MATLAB/Simulink l. Simulink is a soft-
ware package for modelling, simulating and analyzing dynamical systems. It
supports linear and nonlinear systems, modelled in continuous time, sampled
time, or a hybrid of the two. For modelling, Simulink provides a graphical
user interface for building models as block diagrams. Once created, Simulink
models can be run in the MATLAB environment, which is convenient to use,

1 Mathworks, http://www.mathworks.com

31

3.1 Overview 3 SIDERA

but not suitable for simulation models with lots of calculations per simulation
step because simulation time very soon becomes unacceptable (e.g. 12 hours
simulation time for 0.001 seconds realtime). Furthermore, to use SIDERA
one would need to have MATLAB installed and knowledge about how to use
this tool.
Fortunately, MATLAB provides a mean to create stand-alone applications -
the real-time-workshop (RTW), which transforms a Simulink model (which
uses S-functions 2 written in C/C++) to an executable running on the plat-
form for which it has been compiled.
SIDERA is a Win32 application which has been tested under the operating
systems Windows 3 2000 and WindowsXP.

3.1.2 Principle of operation

A SIDERA system consists of an arbitrary number of clusters. The relation-
ship between the clusters is defined via a cluster map which is part of the
SIDERA configuration file. Each cluster consists of up to 64 nodes (which
equals the maximum number of slots that can be handled by the Time-
Triggered Protocol TTP ([TTT99])).
Figure 3.1 shows the principle of operation of SIDERA. At simulation start a
configuration file is read and the simulation runs according to the contents of
the configuration file. The data produced during simulation is written to log
files which can be evaluated when simulation has completed. The following
sections deal with the contents and the format of the configuration file and
the simulation log files.

CONFIGURATION
DATA

)
i/

(\

SIDERA
j

V /

K
)

SIMULATION
RESULTS

Figure 3.1: SIDERA - principle of operation

2 user-programmed functions
3Windows is a registered trademark of the Microsoft Corporation.

32

3 SIDERA 3.2 Internal structure

3.2 Internal structure

SIDERA focuses on the simulation of the following services that are provided
by the time triggered protocol TTP:

• Local time

• Communication

• Global timebase

• Membership

• Protocol error handling

• Startup and réintégration

The simulation covers the functional aspects of the TTP protocol services.
Physical parameters of simulation are

• Communication system topology

• Transmission delays

• Occurrence of faults

3.2.1 Protocol services

Local time

All nodes establish local time (see Section 2.4.2) as shown in Figure 3.2.

Each node maintains a quartz oscillator which is subject to drift. The
systematic and the stochastic part of the drift (see Section 2.4.1) can be ad-
justed individually for each node and have an impact on the duration of the
oscillator tick. The oscillator tick is the input for the node's microtick gener-
ator that produces a microtick each OSC oscillator ticks. The generation of
the macrotick is based on the microtick and the microtick-macrotick conver-
sion factor MMCF that determines the number of microticks per macrotick.
M MC F consists of an integer and a fractional part. The generation of the
macrotick additionally depends on the current value of the clock state correc-
tion term CSCT, which is periodically delivered by the clock synchronization
algorithm. The macrotick counter of a node represents the node's view of
global time (see Section 2.6.3).

33

3.2 Internal structure 3 SIDERA

drift Oscillator

0) PM*R-6

n

osc

oscillator tick

microtick generator

MMCF

J I microtick (mt)

mt/MT converter

CSCT Macrotick generator

*

Macrotick (MT)

Local Visw of
Global Time

Figure 3.2: Local time

Communication

The access to the communication medium is based on a Time Division Mul-
tiple Access (TDMA) strategy. Realtime is divided into slots. Slots are
assigned to nodes. A list of slot entries forms a communication schedule.
Figure 3.3 shows the principle of operation.

Each node traverses the communication schedule in a cyclic manner. A
node enters a slot if its macrotick counter reaches slotstartMme (Table 3.2).
If nodelD (Table 3.1) is equal to LogicalS ender Name, the node is a sender
in the current slot and sends a message when its macrotick counter reaches
msgsendJime, else the node is a receiver. Each node is assigned one slot in
which it is allowed to send. The sequence of slots in which each node sends
at most one message forms a TDMA round.

Global timebase

The central element in the TTA is the global notion of time (see Section
2.6.3). The nodes of a cluster execute a distributed fault-tolerant clock

34

3 SIDERA 3.2 Internal structure

nodelD

ose
MMCF
sys-drift
stoch-drift
gatewayjnode
timejmasterjnode
f ree-running „MT-int

freejrunning-MT -ext

CF
coldstartjmax

di stance Jo-medium

node identifier
oscillator ticks per microtick
microticks per macrotick
systematic drift rate in sec/sec
stochastic drift rate in sec/sec
gateway node flag
time master node flag
free running macroticks
internal clock synchronization
free running macroticks
external clock synchronization
coldstart allowed flag
maximum number of frames allowed to
be sent in state COLD START
distance to communication medium

Table 3.1: Node specific offline parameters

synchronization algorithm and establish a global timebase by periodic ad-
justments of their local clocks according to the clock state correction term
delivered by the clock synchronization algorithm.

Time difference capturing. A node has to know the deviation of its local
clock to the clocks of the other nodes to keep synchronized. Time difference
capturing is the process of estimating the deviation of a local clock to a remote
clock. In a slot with the SYF flag set (Table 3.2), all nodes use the observed
arrival time of an incoming message for the estimation of the deviation of
their local clocks from the sender's clock. For the communication schedule

TDMA round j
(n-1) i

.TDMA round n.

j TDMA round
i (n+1)

to nod»3 ! to nodeO to nodel to nod*2
designed j assigned
to nod»3 ! to nod*0

T I I T i i i i i r
12 [00 3:00 5:00 9:00 12-00 3: CO

sioO ! slot 0 alocl Blot2 slot) j slotO

Figure 3.3: Communication medium access strategy

35

3.2 Internal structure 3 SIDERA

slot start-time
Logical S ender Name
msg send-time
CS
SYF

start time of slot in macroticks
nodelD of the sender
message send time in macroticks
clock synchronization flag
time difference capturing flag

Table 3.2: Slot entry

is available at all nodes, the receivers know the expected arrival time (stored
in the slot entry, Table 3.2). To get the deviation from the sender's clock,
all receivers determine the difference between the observed arrival time and
the expected arrival time in terms of local microticks. The result is stored
in deltas, a push-down stack of depth four that is used for the calculation of
the clock state correction term. Each time an estimate is added to deltas,
the oldest estimate is discarded.

deltas[A]
slot-.number
corr -term.int
corr derm-ext
f rame-ack .counter
frame .invalid-.counter
frame-fail-counter
if rame-counter
estate

time difference capturing stack
current slot number in communication
current internal clock state correction
current external clock state correction
frame acknowledge counter
invalid frame counter
failed frame counter
frames sent in state COLD START
current C-State of controller

schedule
term
term

Table 3.3: Node specific runtime parameters

Internal clock synchronization. At the end of a slot with the CS flag
set (Table 3.2), all nodes calculate an internal clock state correction term
corr-term-int on the base of the estimates contained in deltas according to
the fault-tolerant average (FTA) algorithm ([Kop97], p.62): the minimum
and the maximum estimates are discarded, the internal clock state correction
term becomes the average of the two remaining estimates.

corrJ,erm-int =
deltasi) — min(deltasi) — max(deltasi) ,4

J4 (3-1)

36

3 SIDERA 3.2 Internal structure

Positive values of corrAermJnt indicate that the local clock is running fast,
negative values that the local clock is running slow against cluster time.

Application of the internal clock state correction term. All nodes
periodically adjust the number of microticks per macrotick according to
corrJermJnt. Every freejrunninqJsATjint (Table 3.1) macroticks the du-
ration of the current macrotick is extended/shortened by one microtick (ac-
cording to the sign of corrJermJnt) until corr.termJnt is exhausted. The
local clocks run free afterwards until the next synchronization instant marked
in the communication schedule.

External clock synchronization. The global time of a cluster is exter-
nally synchronized to an external time reference by means of a time master
node in this cluster which has access to a reference time server (see Section
2.5.2). A node with the timejmasterjnode flag set periodically calculates the
deviation from external reference time to local time in seconds and distributes
this deviation to the other nodes at its msg.sendJ.ime (see Table 3.2) in the
delta.ext field of the message (see Table 3.4).
Upon reception of a message from a time master node all nodes calculate
an external clock state correction term corrJerm-ext (Table 3.3) in terms of
local microticks.

Application of the external clock state correction term. All nodes
periodically adjust the number of microticks per macrotick according to
corrJerm.ext. Every freejrunningJÄT_ext (Table 3.1) macroticks the du-
ration of the current macrotick is extended/shortened by one microtick (ac-
cording to the sign of corrJerm-ext) until corrJerm.ext is exhausted. The
local clocks run free afterwards until the next external synchronization in-
stant (i.e. until reception of the next message from a time master node).

Membership service

A membership service provides each node with a consistent view of the oper-
ational state of the other nodes within its cluster. The membership problem
is a well-known and investigated problem in distributed systems. [HS95]
describes the abstract properties of membership. [BPOOa] deal with mem-
bership and clique avoidance mechanisms in the TTA. A formal verification
of the TTP group membership algorithm is given in [PfeOO].

37

3.2 Internal structure 3 SIDERA

Message format. An active node sends a message (frame) each TDM A
round containing the following information:

Time
MEDL-entry
Membership
delta-ext

Time in macroticks
Current slot number in communication schedule
Membership vector
deviation from reference time server provided by
time master node

Table 3.4: Message format

The message entry delta.ext is used by the time master node only. All
other nodes set this entry to 0 when sending their messages.

Membership. The membership vector is a bitfield containing one bit en-
try for each node. Active nodes are set to 1 and inactive nodes are set to
0. The membership vector at a node represents this node's view of the state
of the ensemble of nodes. Each sender considers itself as operational and
sets its corresponding bit in the Membership entry of the message it sends.
Each receiver considers a sender as operational (and sets the sender's bit
in the local membership vector) when it receives a valid frame during the
communication schedule slot assigned to the sender. A frame is valid at the
receiver if sender and receiver agree in Time (with a maximum deviation of
one macrotick), MEDL.entry and Membership, else invalid. A receiver con-
siders a sender as failed (and clears the sender's bit in the local membership
vector) if it receives an invalid frame or no frame at all (null frame) during
the slot of the sender.

Clique avoidance. The clique avoidance algorithm shall prevent the clus-
ter from being partitioned into disjoint subsets, so-called cliques. Cliques are
sets of nodes that consider all nodes within their clique as operational and all
other nodes as failed. To avoid cluster partitioning, each node checks once
per TDMA round whether it is in agreement with a majority of the nodes
within its cluster. This check is based on a set of counters and works as
follows:

Each node maintains a frame-ack.counter, a frame-invalid-counter and
a frame-faiLcounter (see Table 3.3). The node increments the frame^ack-
.counter when it receives a valid frame, the frame-invalid.counter when it
receives an invalid frame and the frameJaiLcounter if it receives no frame

38

3 SIDERA 3.2 Internal structure

at all in the current slot. When a node enters its sending slot (i.e. once per
TDM A round), it checks the counters. If frame^ack.counter is bigger than
the sum of frame_faiLcounter and frame „invalid-counter, it clears the counters
and remains active. Else the node is in disagreement with the majority of
the cluster and quits operation.

Protocol error handling

A node quits operation upon detection of a protocol error. The following
protocol errors are detected and handled:

Clock synchronization error. When the clock state correction term ex-
ceeds half the duration of a macrotick, the node detects a synchronization
error.

Acknowledgement error. The clique avoidance logic has detected that
the node is in disagreement with the majority of the cluster.

Communication system blackout. The node detects that no other node
has sent a frame during the last TDMA round which is the case if

frame „ack „counter + frame Jnvalid .counter — 0 (3.2)

(see Table 3.3).

Startup and réintégration

SIDERA provides a startup service for cluster startup (after initial power-on
of the cluster and for cluster startup after a communication system blackout,
see Section 3.2.1) and a réintégration service for the réintégration of nodes
that have become inactive due to the detection of a protocol error.

[Lön99] analyzes different startup algorithms for TDMA communication
within a group of computers connected via a broadcast bus. [SP01] presents a
startup algorithm for synchronous distributed fault-tolerant systems. Formal
analysis of a TTP-like startup algorithm can be found in [SRSP04].

39

3.2 Internal structure 3 SIDERA

Timeouts. The following node-specific timeouts are of importance for cor-
rect operation of the node in all operational states.

• Startup timeout
The startup timeout T*tartup

 of a node which is assigned TDMA slot i
is equal to the sum of the durations of all slots prior to slot i.

Tstartup = 0 (j • = g ^

rt
s
t
startup = É r / - 1 i f i > 0 (3.4)

Tjlot is the duration of the slot assigned to node j .

• Cold start timeout
The cold start timeout of a node Tf°ldstart is the sum of its startup
timeout T°taTtup and the duration of a single TDMA round T

r o W .

coldstart startup . round /q r\
I,1 — ' j ~r 7 ^O.O^

• Listen timeout
The listen timeout of a node r\lsten is the sum of its startup timeout
^startup a n d t h e d u r a t i o n o f t w 0 TDMA rounds T

round.

listen startup . ^ round /n £?\

This choice for the listen timeout ensures that the longest cold start
timeout is shorter than the shortest listen timeout ([TTT99]).

Node states and state transitions. Figure 3.4 shows the state and state
transition model of a node.

• FREEZE
A node transits to the FREEZE state

— after power-on of the cluster (start of simulation) or

- upon detection of a protocol error (see Section 3.2.1).

The node initializes its internal data structures, starts the listen time-
out (see Section 3.2.1) and transits to the LISTEN state.

• LISTEN
A node transits to the LISTEN state

40

3 SIDERA 3.2 Internal structure

Figure 3.4: Node states and state transitions

— after initialization of its internal data structures.

Upon expiration of the listen timeout the node restarts the listen time-
out and remains in state LISTEN if

— no valid frame was received from any other node and

— the conditions for entering COLD START state are not fulfilled.

COLD START
A node transits to the COLD START state upon expiration of the
listen timeout if

— the node is allowed to enter COLD START state (CF flag is set,
see Table 3.1) and

— ifrarne-counter (see Table 3.3) is less than coldstartjmaz (Table
3.1).

The node broadcasts a frame, increments iframe-counter and starts the
cold start timeout.

Upon expiration of the cold start timeout the node increments
iframe-counter, broadcasts another frame and remains in state COLD
START if

— no valid frame was received from any other node and

— iframe-counter is less than cold^start.max.

If the node is not allowed to broadcast another frame, it starts the
listen timeout and transits to state LISTEN.

41

3.2 Internal structure 3 SIDERA

• ACTIVE
A node transits to the ACTIVE state

- from state LISTEN
upon reception of a valid frame (see Section 3.2.1).

- from state COLD START
upon reception of a valid frame. The i^rame „counter (see Table
3.3) is cleared.

3.2.2 Communication system topology

SIDERA provides simulation of bus and star topologies. It is also possible to
define guardians. A guardian is a unit over which the communication medium
is accessed. The guardian shall prohibit faulty nodes from sending outside
their sending slot in the communication schedule. In a bus architecture, the
bus guardian is a part of the node itself. In a star topology, all nodes access
the communication medium via a dedicated guardian node which blocks all
messages that are faulty or untimely from the guardian's point of view. The
bus guardian approach and the central guardian approach in the TTA are
described in [Tem99] and [BKS03], respectively.

3.2.3 Transmission delay

The transmission delay is the realtime it takes for a message to travel through
the communication medium from a sender to a receiver. The transmission
delay depends on various factors like the physical properties of the commu-
nication medium, the access strategy to the communication medium, the
physical distance between sender and receiver etc. In the TTA, due to the
collision-free TDMA communication medium access scheme, the transmis-
sion delay only depends on the physical properties of the communication
medium and the distance between the sender and the receiver of a message.

For notational convenience, we introduce the notion of a communication
medium with zero transmission delay. For each node, the distance do „medium
(see Table 3.1) in meters can individually be defined. Each node is connected
to the medium via a communication link of distance do jmediurn length. The
communication links are characterized by a signaLspeed in meters per second
which defines the time it takes for a signal to pass through the communica-
tion link. The signal speed accounts for physical properties of the links and
is common to all communication links in a cluster.

42

3 S I D E R A 3 . 2 Internal structure

Be ôi the transmission delay between node i and the communication
medium:

öi = distance Jo-mediurrii x signaLspeed (3.7)

In the following, /\^ns denotes the transmission delay between node i and
node j .

Each node "receives" its own message without delay:

(3.8)

Bus topology

For a bus topology, transmission delay A\rJns between node i and node j is
equal to

Vi,j,\i-j\ = l : Af]ns = «5,- + 6j (3.9)

V», j , \i-j\>l: A T = 5< +Sj + 2x 'J2 5k (3.10)
k=i+î

Equation 3.9 describes the transmission delay between "neighboring" nodes
(i.e. there is no node "between" node i and node j which means that node i is
a successor or a predecessor to node j , respectively). Equation 3.10 describes
the transmission delay between node i and node j with at least one node k
"in-between". Figure 3.5 shows the principle of operation. Assume that
node i sends a message. It follows from Equation 3.9 that node k receives
the message with a delay of

Atrans = 6, + 5k (3.11)

The message from node i passes node k and arrives at node j with a delay of

Al™s = Sk + 5j (3.12)

The transmission delay between node i and node k follows from Equations
3.11 and 3.12 as

AT' + AkT = ôi + 5j + 2xôk (3.13)

which is equivalent to Equation 3.10 with \i — j \ = 2.

43

3.2 Internal structure 3 SIDERA

Nodel Node 2 Node 3 Node 4

ö4

C o m m u n i c a t i o n medium

Figure 3.5: Transmission delay - bus topology

Star topology

For a star topology, the transmission delay
j is equal to

between node i and node

(3.14)

5guardian is the "switching time" which accounts for the delay induced by the
message correctness check performed by the central guardian. Figure 3.6
shows the principle of operation.

Nodel Node 3

Figure 3.6: Transmission delay - star topology

3.2.4 Fault injection

SIDERA provides a fault injection module that allows to test the stability
of the systems under investigation in the presence of faulty nodes and node
failures. A node can exhibit incorrect behavior with regard to

44

3 SIDERA 3.3 External structure

• Crash failures

• Transmission faults

• Clock drift rate faults

A detailed description of the fault injection module is given in Section
3.3.1. Fault injection is necessary for the investigation of the stability of
a system in the presence of faults. [AdeO3] deals with the assessment of
error detection mechanisms in the TTA by means of fault injection. The
assumption coverage under different failure modes in the TTA is investigated
in [BKP95]. [KBP01] is about the toleration of arbitrary node failures in the
TTA.

3.3 External structure

3.3.1 The configuration file

The simulation is started by invoking the executable sidera.exe. The con-
figuration file vnode\jparam.dat has to exist in the current working direc-
tory. There are parameters that are mandatory for the simulation and that
have to exist in the configuration file; optional parameters may be omit-
ted. In the following sections, all parameters of the configuration file are
described. Mandatory parameters are marked with M and optional param-
eters are marked with O. Detailed information about the structure of the
configuration file can be found in Appendix A.

System specific parameters

System specific parameters affect all clusters and all nodes within the system.

1. simJtime (M)
The simulation time in terms of seconds.

2. num-clusters (M)
The number of clusters within the system.

3. ext_corrjratejmax (O)
In a multi-cluster system, this entry defines the maximum external
correction rate in seconds per second, i.e. the maximum rate at which

45

3.3 External structure 3 SIDERA

the cluster time of a slave cluster is drawn towards the cluster time of a
master cluster (see Section 2.5.3). It should be in the order of 10~4 —
to ensure that the drift of cluster time is bounded and that internal
clock synchronization is not affected ([KKMS95], [BPOOb]). This entry
becomes mandatory if num-dusters (see 2) is greater than 1.

4. samplejratejmt-log (O)
The update rate of the microtick log file in terms of seconds. If 0,
microtick logging is disabled.

5. sample-rate Jet Jog (O)
The update rate of the internal clock state correction term log file in
terms of seconds. If 0, internal clock state correction term logging is
disabled.

6. samplejratejectJog (O)
The update rate of the external clock state correction term log file in
terms of seconds. If 0, external clock state correction term logging is
disabled.

7. sample-rateJATAog (O)
The update rate of the macrotick log file in terms of seconds. If 0,
macrotick logging is disabled.

8. sample-rate-user log (O)
This entry is reserved for development purposes and should be set to
0, if defined.

9. cluster-map
In a multi-cluster system, the cluster map defines the relationship be-
tween the clusters and the flow of timing information. It consists of
one entry

• num-duster-map-entries (O)
The number of entries the cluster map consists of. 0 if no cluster
map is needed.

and num-duster -map-entries pairs of

• master (M)
The number of the cluster which is a master to the cluster defined
in entry slave.

46

3 SIDERA 3.3 External structure

• slave (M)
The number of the cluster which is a slave to the cluster defined
in entry master.

entries. Each pair of master and slave entries increments
num.cluster jmap-.entries by one. A multi-cluster system with no clus-
ter map defined consists of nurruclusters (see 2) free running clusters.

Example: The following example shows a cluster map for a system
consisting of three clusters. Cluster 0 is a master to cluster 1 which in
turn is a master to cluster 2.

//Cluster_Map
2
0
1
1
2

//num_cluster_map_entries

//master

//slave

//master

//slave

Cluster specific parameters

Cluster specific parameters affect all nodes of a cluster.

1. numjnodes (M)
The number of nodes within the cluster.

2. slotJenjref (M)
The slot length of a reference cluster configuration in macroticks. In
the current implementation of SIDERA, all nodes of a cluster must
have equal slot length.

3. slotJensim (M)
The slot length that shall be used for the simulation of the reference
cluster configuration in macroticks. By choosing slotJensim smaller
than slotJenjref, simulation time is shortened by the factor
compared to the runtime of the original configuration (one second run-
time in the "real world" equals ^ÎJ^TTS

 s e c o nds simulation time).
The motivation for choosing a shorter simulation slot length than in
the original cluster configuration (shorter simulation time, smaller sim-
ulation log files) is described in Section 3.4.1.

47

3.3 External structure 3 SIDERA

deltaJ) (O)
If not 0, deltaJ) determines the systematic drift rates of the nodes of
the cluster. deltaJ) is uniformly distributed over all nodes of the cluster
within the interval [-%*, +%>] according to Equation 3.15. Be öfm the
systematic drift rate of node i.

if = (- ^ + *) x f'-'e"Je/ (3.15)
2 num.nodes — 1 slotJensim

5. symm-capturing (O)
If 0, the time difference capturing mechanism is asymmetric, else sym-
metric.

6. recover-from-freeze (O)
If not 0, all nodes of the cluster remain in state FREEZE once they
have entered it, e.g. due to a protocol error. This setting is useful
for investigation of stability of cluster designs with regard to clock
synchronization.

7. self .calibration (O)
If not 0, all nodes of the cluster calibrate their local clocks on the base
of their internal clock state correction terms that have been observed
in the first sel f„calibration TDMA rounds after the node has entered
state ACTIVE or after the node has triggered recalibration of its local
clock. A node performs self-calibration whenever it transits to state
ACTIVE. The maximum number of TDMA rounds available for self
calibration is 100 in the current implementation of SIDERA.

8. use-master -dock (O)
If not 0, entry master „clock-.node is the id of the node that shall be
used as the rate master node. If 0, no rate master node exists.

9. master-dock-node (O)
If use-master -dock (see 8) is not 0, this is the id of the node that shall
be used as the rate master node. If not defined and master -dock-node
is not 0, node number 0 becomes the rate master node. A rate master
node never calibrates its local clock. All other nodes calibrate their
local clocks against the clock rate of the rate master node. The idea
behind the rate master node concept is described in Chapter 4 and in
[KAH04].

10. recalibration-threshold (O)
If not 0, this entry defines the maximum clock state correction term

48

3 SIDERA 3.3 External structure

that is tolerated by all nodes. If the absolute value of the clock state
correction term at a node exceeds recalibrationJhreshold, the node
recalibrates its local clock (unless it is a rate master node). The length
of the interval is self-calibration TDMA rounds (see 7).

11. central .guardian (O)
If not 0, entry guardianjnode (see 12) is the id of the node that shall
be used as the central guardian. If 0, no central guardian exists.

12. guardianjnode (O)
If central ^guardian (see 11) is not 0, this is the id of the node that shall
be used as the central guardian. If not defined and central .guardian
is not 0, node number 0 becomes the central guardian.

13. divjßxtjcorr Jterm (O)
If not 0, the external clock state correction term is divided by two before
it is applied. This setting is useful for multi-cluster configurations with
feedback loops where cluster times tend to oscillate as shown in the
course of simulation experiments in Section 5.2.5.

14. time-flooding (O)
If not 0, the cluster performs no cluster startup until there is a valid
time information available from the gateway node the time master node
of this cluster is connected to. This setting is useful for the investigation
of multi-cluster startup scenarios given in [SPHH04].

15. no-duster startup (O)
If not 0, no cluster startup is performed. All nodes immediately enter
state ACTIVE after start of simulation.

16. nosync-nodes (O)
If not 0, the local clocks of the nodes in the cluster are running free,
no clock synchronization is performed.

17. signal speed (O)
If not 0, this entry defines the signal speed through the communication
links in meters per second; it reflects the physical properties of the
communication links and is used for the calculation of the transmission
delay between sender and receiver of a message (see Section 3.2.3).

18. prop -delay -corr (O)
If not 0, the transmission delay induced by signalspeed is corrected
by the nodes at message reception time. That means that the estimate

49

3.3 External structure 3 SIDERA

of the message send time is corrected at the receiver according to the
transmission delay between sender and receiver (see Section 3.2.3).

19. spread-corr Jnt (O)
If 0, a microtick is corrected each macrotick until the internal clock state
correction term is exhausted. If not 0, then a microtick is corrected
each spread-eorr^TUxslotJensim m a c r o t i c k s u n t i l t h e internal clock State

2

correction term is exhausted. IT is the precision of the global timebase
in terms of local microticks (see Section 2.5.1).

20. spreadjcorr jßxt (O)
If 0, a microtick is corrected each macrotick until the external clock
state correction term is exhausted. If not 0, then a microtick is cor-
rected each ^ead-corr^xshtJensim m a c r o t i c k s u n t i l t h e external clock

2

state correction term is exhausted. II is the precision of the global
timebase in terms of local microticks (see Section 2.5.1).

21. Message descriptor list (MEDL)
The MEDL defines the communication schedule of the cluster. It con-
sists of one entry

• numslots (M)

The number of entries the MEDL consists of.

and numslots slot entries consisting of

• LogicalSenderName (M)
The id of the node which is allowed to send in this slot (the owner).

• CS (O)
If not 0, all nodes calculate an internal clock state correction term
for their local clocks at the end of this slot.

• SYF (O)
If not 0, all nodes use the difference between expected and ob-
served arrival time for the estimation of the deviation of their
local clocks from the sender's clock in this slot.

entries. Each set of LogicalSenderName, CS and SYF entries incre-
ments numslots by one.

Example: The following example shows a MEDL for a cluster con-
sisting of four nodes.

50

3 SIDERA 3.3 External structure

//MEDL

4 //num_slots

//slot_0

0 //LogicalSenderName
0 //CS
1 //SYF
//slot_l
1 //LogicalSenderName
0 //CS

1 //SYF

//slot_2

2 //LogicalSenderName

0 //CS

1 //SYF

//slot_3

3 //LogicalSenderName

1 //CS

1 //SYF

Node specific parameters

Node specific parameters affect the node for which they are defined. A node
parameter block consists of the following entries:

1. MMCF (M)
The number of microticks per macrotick. Integer and fractional values
are allowed.

Examples: 20, 19.664

2. OSC (M)
The number of oscillator ticks per microtick.

3. gateway (O)
If not 0, this node is a gateway node.

4. time „master „node (O)
If not 0, this node is a time master node.

5. coldstart-flag (O)
If not 0, this node is allowed to enter state COLDSTART.

51

3.3 External structure 3 SIDERA

6. max-coldstart-frames (O)
If not 0, this is the number of coldstart frames the node is allowed to
send in state COLDSTART. Only taken into account if coldstart-flag
is not 0. A detailed description of the nodes state and state transition
model is given in Section 3.2.1.

7. sys-drift (O)
The systematic drift of the node in seconds per second. Only taken
into account if deltaJ) is 0. Otherwise, this entry is overwritten with a
calculated systematic drift value according to equation 3.15. If deltaJ)
is 0, this entry becomes mandatory.

8. distance do.medium (O)
If not 0, this entry defines the distance between the node and the com-
munication medium in meters. This entry is used for the calculation
of the transmission delay between a sender and a receiver (see Section
3.2.3).

Example: The following example shows the node specific parameters
for a cluster consisting of four nodes. Assume that deltaJ) is set to 0
in the cluster specific parameters.

//Node_0

20
10
1
1
-0.000004

//Node_l

20
10
-0.000002

//Node_2

20
10
+0.000001

//Node_3

20
10
+0.00002

//MMCF

//OSC

//coldstart_flag

//max_coldstart_frames

//sys_drift

//MMCF

//OSC

//sys_drift

//MMCF

//DSC

//sys.drift

//MMCF

//OSC

//sys_drift

52

3 SIDERA 3.3 External structure

Fault injection parameters

SIDERA allows the simulation of node faults and node failures. A node can
exhibit incorrect behavior with regard to

• Crash failures
A nodes transits to state FREEZE once or periodically.

• Transmission faults
A node sends an invalid message once or periodically.

• Clock drift rate faults
A node changes the drift rate of its local clock once or periodically.

1. Crash failures
Crash failure parameters consist of the following entries:

• freezeMtslot (O)
If not 0, the node enters state FREEZE at this slot.

• freeze-duration (O/M)
The number of slots the node stays in state FREEZE.

• freezejnum (O/M)
The node enters state FREEZE for freezejnum times.

• freezejrepeatjrate (O/M)
The node enters state FREEZE every freezejrepeatjrate slots.

If freezejatslot is not 0, all crash failure parameters are mandatory.

Example: The following example shows sample crash failure param-
eters. Node 1 enters state FREEZE in slot 100, slot 150 and slot 200
for a duration of 10 slots.

//Node_l
20
10
1
1

//MMCF

//OSC

//coldstart_flag

//max_coldstart_frames

-0.000004 //sys_drift
//fault.injection
100 //freeze_at_slot

53

3.3 External structure 3 SIDERA

10 //freeze_duration
3 //freeze_num
50 //freeze_repeat_rate

2. Transmission faults
Transmission fault parameters consist of the following entries:

• faulty-msgJnjround (O)
If not 0, the node sends an invalid message in this TDMA round.

• f aultyjmsgJfium (O/M)
The number of invalid messages the node will send.

• faultyjmsgjrepeatjrate (O/M)
The node sends an invalid message every f aulty jms g-repeat jr ate
TDMA round.

If f aulty jmsg -in jround is not 0, all transmission fault parameters are
mandatory.

Example : The following example shows sample message fault pa-
rameters. Node 1 sends a faulty message in round 100, round 150 and
round 200.

//Node_l

20
10
1
1
-0.000004

//MMCF

//OSC

//coldstart_flag

//max_coldstart_frames

//sys_drift

//fault_injection
100 //faulty_msg_in_round
3 //faulty_msg_num
50 //faulty_msg_repeat_rate

3. Clock drift rate faults
Clock drift rate fault parameters consist of the following entries:

• change-drift-atslot (O)
If not 0, the node changes its drift rate in this slot. This is done
by adding Sdri/t to the current systematic drift rate of the node.

54

3 SIDERA 3.3 External structure

• change-drift-factor (O/M)
This entry determines the amount and the direction of the drift
rate change.

Sdrift = sys-drift x change-drift-factor (3.16)

sys-drift is the original value of the systematic drift as defined in
the configuration file.

• changejdriftjnum (O/M)
The systematic drift is changed by Shrift for changejdriftjnum
times.

• changejdriftjrepeatjrate (O/M)
The systematic drift is changed by adrift every
changejdriftjrepeatjrate slots.

If changeAriftjatslot is not 0, all clock drift rate fault parameters are
mandatory.
To change the systematic drift value from a value driftstart to a value
driftend, the value for change-drift,factor has to be calculated ac-
cording to

, , •£. , . drißend - driftstart . .
change-drift-factor = — -— — (3.17)

drift x change-drift .num
If change-drift-factor is constant, change-drift jr'epeatjrate deter-
mines the duration of the drift rate change.

Example: The following example shows sample clock drift rate fault
parameters. Starting at slot 10, node 1 changes its systematic drift rate
from —5 x 10~5 sec/sec to +5 x 10~5 sec/sec within a duration of 80
slots, change-drift-factor was calculated according to Equation 3.17.

//Node_l

20
10
1
1
-0.00005

//MMCF

//OSC

//coldstart_flag

//max_coldstart_frames

//sys_drift

//fault_injection

8 //change_drift_at_slot

-0.1 //change_drift_factor

20 //change_drift_num

4 //change_drift_repeat_rate

55

3.3 External structure 3 SIDERA

3.3.2 Model output

SIDERA produces logfiles for analysis of the simulation runs. The log files
can be divided into the following parts:

• Online log information
is available during a simulation run. It is written to stdout, and can
thus be redirected to a file for documentation and evaluation purposes.

• Offline log information
is not available until the completion of a simulation run.

Online log information

Online log information can be divided into the following groups:

1. State information
Each node logs its state at its message send time (usually once per
TDMA round). The node state information looks like the example
below

R#0002 [0,1] [-3 +11 +7 +4] [I:+5] [P:16] [E:+0] [P:16]
[M:3F] [T:0162]

and consists of the following entries:

• TDMA round (R#0002)
The TDMA round in which the node is sending.

• Node identifier ([0,1])
A node is uniquely identified within a system by a pair of cluster
and node number. In the above example the log information is
from node 1 in cluster 0.

• Time difference capturing stack ([-3 +11 +7 +4])
The time difference capturing stack contains the estimated devi-
ations of the local clock from the clocks of the last four sending
nodes (which have sent in slots with the SYF flag set) in terms of
microticks.

56

3 SIDERA 3.3 External structure

• Internal clock state correction term ([I:+5])
The current value of the internal clock state correction term in
terms of microticks.

• Precision ([P:16])
The current cluster precision in terms of microticks (i.e. the cur-
rent maximum deviation of two node's local clocks within the
cluster).

• External clock state correction term ([E:+0])
The current value of the external clock state correction term in
terms of microticks. For the example above is taken from a sim-
ulation run with a single-cluster system, the external correction
term is always 0.

• System precision ([P:16])
The current system precision in terms of microticks (i.e. the cur-
rent maximum deviation of two node's local clocks within the
whole system). For the example above is taken from a simulation
run with a single-cluster system, system precision is always equal
to cluster precision.

• Membership vector ([M:3F])
The membership vector representing the operational state of all
nodes of the cluster the node belongs to.

• Global time ([T:0162])
The node's current view of the internally synchronized cluster time
in terms of macroticks.

2. State change information
Each time a node undergoes a state change, it generates a log entry.
The node state change information looks like the example below

[0,1] FREEZE -> LISTEN [T:l]

and consists of the following entries:

• Node identifier ([0,1])
A pair of cluster and node number. In the above example the log
information is from node 1 in cluster 0.

• Old state (FREEZE)
The state the node transits from.

57

3.3 External structure 3 SIDERA

• New state (LISTEN)
The state the node transits to.

• Global time ([T:l])
The node's current view of the internally synchronized cluster time
in terms of macroticks.

3. Protocol error information
Each time a node encounters a protocol error, it generates a log entry.
The protocol error information looks like the example below

[0,1] PROTOCOL ERROR: acknowledgement
[0,1] ACTIVE -> FREEZE [T:300]

and consists of the following entries:

• Node identifier ([0,1])
A pair of cluster and node number. In the above example the log
information is from node 1 in cluster 0.

• Protocol error (acknowledgement)
The protocol error the node has encountered.

After the detection of a protocol error, anode transits to state FREEZE
causing a node state change information log entry (see 2).

4. Fault information
Each time a node encounters a fault, it generates a log entry. The fault
information looks like the example below

[0,1] FAULT: clock drift (10 more times)
-0.0005 -> +0.0001 [T:1200]

and consists of the following entries:

• Node identifier ([0,1])
A pair of cluster and node number. In the above example the log
information is from node 1 in cluster 0.

58

3 SIDERA 3.3 External structure

• Fault (clock drift (10 more times) -0.0005 -> +0.0001)
The fault the node has encountered and the remaining number of
faults of this kind to occur during simulation. In case of a clock
drift fault, the systematic drift rate of the node before and after
the fault is also logged.

• Global time ([T:1200])
The node's current view of the internally synchronized cluster time
in terms of macroticks.

5. Simulation results
When simulation has completed, the results are logged. They look like
the example below

RESULTS: \Test_l_A

Cluster* Node drift rates Precision Drift rate

+8.65e-005

+8.73e-005

+8.88e-005

+9.18e-005

+9.33e-005

+9.47e-005

17.30 +9.04e-005

System 17.30 +9.04e-005

and consist of the following entries:

• Test case (Tesi_l_vl)
The name of the current working directory which contains the
configuration file modeljparam.dat.

• Node drift rates (+8.65e-005 ... +9.47e-005)
The drift rates of the different nodes of the cluster in terms of
second per second.

• Precision (17.30)
The precision that has been observed in terms of microticks.

59

3.3 External structure 3 SIDERA

• Drift rate (+9.04e-005)
The cluster drift rate (i.e. the drift of cluster time against simu-
lation time) that has been observed in seconds per second.

Offline log information

Offline log information is written into files in MATLAB raw format. For the
evaluation of these files the MATLAB environment or any tool that is able to
handle files in MATLAB raw format is necessary. The offline log information
file format is given in Appendix B.

Offline log information can be divided into the following groups:

• Microtick log information (microticks.mat)
If samplejratejmt Jog is not 0, the microtick counters of all nodes are
logged with the specified sampling rate.

• Internal correction term log information (corr-terms-int.mat)
If sample-rate Jet Jog is not 0, the internal correction terms of all nodes
are logged with the specified sampling rate.

• External correction term log information (corr^terms-ext.mat)
If sample jrate „ect Jog is not 0, the external correction terms of all
nodes are logged with the specified sampling rate.

• Macrotick log information (MACROTICKS.mat)
If sample-rate JAT Jog is not 0, the macrotick counters of all nodes
are logged with the specified sampling rate.

In the MATLAB environment, the following script can be used to generate
figures from the simulation logfiles.

function y = my_plot (varargin)

% example: my_plot ('microticks')

variable = load (varargin{l>);

dim = size (variable.data);

rows=dim(l);

columns = dim(2);

plot (variable.data (1, 1:columns),

variable.data (2:rows, 1 : columns));

60

3 SIDERA 3.4 Model verißcation

3.4 Model verification

The topic of this section is the verification of SIDERA by means of reference
tests against a VHDL model of a TTPC/C1 controller. [Bau99] contains a
detailed description of the five test cases as well as a discussion of the results
delivered by the VHDL simulation.

3.4.1 Considerations and prerequisites

Reduction of slot length

SIDERA produces considerable amounts of data. A prerequisite for proper
evaluation of the test runs is the logging of the local times at all nodes of a
cluster. The simulation logfile consists of samples. For our reference tests, a
sample contains the simulation time and the local times. For a cluster with
eight nodes, one sample has a size of 72 bytes. If the maximum sampling
rate is specified, a sample is added to the logfile each tick of the simulation
time (i.e. all 5 x 10~9 seconds, that are 2 x 108 samples per second simulation
time).

All reference tests have a duration of 200 slots with a slot length of 186
macroticks. With this configuration, SIDERA produces a logfile of about
half a GB size (5, 3568 x 108 bytes) if only the local times are recorded.
Simulation logfile size can grow to 2 GB size and more if other parameters of
interest are recorded additionally (e.g. the clock state correction terms over
simulation time). To gain test results from reasonable amounts of data, the
slot length used for the reference tests with SIDERA was reduced from 186
macroticks (slotJeri-ref, see Section 3.3.1) to 12 macroticks (slotJensim, see
Section 3.3.1). The reduction of the slot length has to be considered in the
calculation of the systematic drift rates of the nodes 6*tm.

Application of systematic cluster drift rate Ao

The cluster drift rate value Ao is uniformly distributed over all nodes within
the interval [— ,̂ +^ t t]. Table 3.5 shows the assigned systematic drift values
of1 m for the reference test configurations consisting of six nodes according to
Equation 3.15.

The factor f^uim^siL a c c o u n t s f°r t n e different slot lengths and ensures that
the impact of the systematic drift on the local clocks is equal in both models.

61

3.4 Model verification 3 SIDERA

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5

xsim Ap .
0 0 — 2 >
xsim _ I Ap
° 1 — V 2
r s im I Aj^
"2 ~~ V 2
xsim I AJJ_
°3 — V 2
fsim /" Aa
°4 — K~ 2

slot-lenjref
slotdensim
An\ v slotjien-ref

X
slotJ.en-ref
flint le.Tt. firm

slotJLëhjref
slotjensim

lotJensim
lotSenjref

Table 3.5: Node drift rates

Precision measurement

Precision is measured in terms of microticks. This only makes sense if all
nodes of the cluster have the same microtick duration (which is the case in
the reference tests). In case of differing microtick durations at the nodes,
the local times at the different nodes would have to be calculated in terms
of seconds; precision would have to be given in terms of seconds on the base
of the transformed local times.

3.4.2 Reference test setup and results

Number of nodes
Microtick duration
Microticks per macrotick
Macrotick duration
Slot length
Free running macroticks
TDMA round length
Simulation time

6
50
20
10
12
0
72

x 10 9 seconds

~6 seconds
macroticks

macroticks
200 slots

Table 3.6: Reference test common parameters

Tables 3.8 and 3.9 show the results of the reference tests. Precision and
cluster drift rate are given for each test run and compared to the results that
have been achieved with the VHDL reference model. The precision values
available from the VHDL tests are precise, whereas the cluster drift rates
measured in the VHDL tests are approximate values.

The cluster drift rate describes the drift of cluster time from simula-
tion time in seconds per second. It is calculated from the median microtick

62

3 SIDERA 3.4 Model verification

Test
1
2
3
4
5

Ao
0.0005
0.0005
0.0005
0.0005
0.0001

CS flags
Slot 0, 6, 12, ...
Slot 0, 4, 8, ...

Every slot
Every slot

Slot 0, 4, 8, ...

SYF flags
Every slot
Every slot
Every slot

Slot 1, 2, 3, 4
Every slot

Table 3.7: Reference test case specific parameters

counter at the end of simulation time. Positive values indicate that cluster
time is late against realtime, negative values that cluster time is fast against
realtime.

Test 4 with SIDERA becomes unstable after a few slots. Node 5 detects
a clock synchronization error (see Section 3.2.1) in slot number 22 and fails.
Nodes 0, 2, 3 and 4 fail in slot 29, 31, 62 and 81, respectively, due to an
acknowledgement error (see Section 3.2.1). Finally, node 1 fails due to the
detection of a communication system blackout (3.2.1).

Test 4 with the VHDL model shows the following behavior: Node 5 fails
in slot 15 and node 4 in slot 25 due to a clock synchronization error. Nodes
2, 0 and 1 fail in slot 31, 35 and 66, respectively, due to an acknowledgement
error. Finally, node 3 fails due to the detection of a communication system
blackout.

Test
1
2
3
5

SIDERA
16.5322
12.5801
7.9785
3.5469

Reference
16.34825
12.9465
8.230

3.33615

Table 3.8: Precision (microticks)

Figure 3.7 shows the course of cluster precision for Reference Test 1 during
a simulation time of 200 slots. After start of the simulation, the cluster
startup phase takes place (see Section 3.2.1). After expiration of its listen
timeout, Node 0 sends a coldstart frame that the remaining nodes integrate
on. During the cluster startup phase, no clock synchronization takes place
- the local clocks are running free (leftmost peak in Figure 3.7). In slot 12,
all nodes are active and start internal clock synchronization. In Test 1, the
cluster establishes a global timebase with a precision of 17 microticks.

63

3.4 Model verification 3 SIDERA

Test
1
2
3
5

SIDERA
+7.4266
-6.8087
-18.172
-3.7391

Reference
+8
-6
-18
-5

Table 3.9: Cluster drift rate xlO~5 sec/sec

0.5 1 1.5
Simulation time (seconds)

2.5

Figure 3.7: Reference Test 1 - Cluster precision

The course of cluster precision for reference test cases 2, 3 and 5 can be
found in Appendix C.

SIDERA follows the behavior of the VHDL reference model with a max-
imum deviation in precision of 0,3664 microticks (Test 2) and a maximum
deviation in cluster drift rate of 1,2609 x 10~5 seconds (Test 5). In Test 4
SIDERA also behaves very similar to the VHDL reference model: one node
after the other fails due to the detection of a protocol error within a duration
of 84 slots.

64

Chapter 4

Cluster tuning

This chapter describes methods and means that improve the quality of syn-
chronization within a cluster. It introduces the notion of node calibration
which aims at manipulation of the frequencies of the local clocks such that
they get into better agreement with an external time reference or with the
internally synchronized cluster time. Static and dynamic calibration of the
local clocks are described by formal analysis and evaluated in the course of
experimental setups.

4.1 Cluster calibration - principle of opera-
tion

This section shows how the impact of clock drift on internal clock synchro-
nization can be minimized.

4.1.1 Local clock properties

As described in Section 3.2.1, each node generates a macrotick after a given
number of microticks. For the global time within a cluster proceeds in units
of macroticks, the duration of the macrotick has to be the same for all nodes
within a cluster. The microtick duration may be different at the nodes,
because the nodes might have oscillators with different frequencies. However,
we assume that within a cluster all nodes i use oscillators with the same
nominal frequency /r»om. Consequently, the nominal microtick durations are
equal at all nodes of a cluster which in turn means that the granularities of
the approximate global times are about the same in all the nodes ([KO87]).

65

4.1 Cluster calibration - principle of operation 4 Cluster tuning

Table 4.1 sums up the oscillator frequencies and the duration of the microtick
and the macrotick, respectively, which are common to all nodes.

tnom

microtick duration
Macrotick duration

20MHz
50 x lO"9 seconds (= ^)
10~6 seconds

Table 4.1: Local clock properties

4.1.2 Local clock parameters

The local clock parameter of node i MMCF™m defines the number of mi-
croticks per macrotick for node i, based on the node's nominal frequency
jnom Each node i increases its macrotick counter each MMCF™m local
microticks. MMCF™°m consists of an integer and a fractional part. In a
cluster with k nodes, for all nodes i the local clock parameters are

MMCF™m = 20.00, 1 <i<k (4.1)

for the local clock properties defined in Table 4.1.

4.1.3 The impact of clock drift

For the following considerations, we assume that the drift rate pi of all clocks
i is constant within a given time interval T:

Vt,0 <t < T : pi(t) = const = pi (4.2)

We furthermore assume that clock i and reference clock z have the same
nominal frequency

Vi,l <i<k:fi=fx (4.3)

and therefore use the same local clock parameters:

Vi, 1 < i < k : MMCFi = MMCFZ (4.4)

k is the number of nodes in the cluster.

The microtick counter mti(t) of node i at time t is equal to

mti(t) = [txfzx(l - P i) \ (4.5)

66

4 Cluster tuning 4.1 Cluster calibration - principle of operation

The microtick counter at reference clock z (which has a drift rate of 0) at
time t is equal to

mtz(t) = [t x fz\ (4.6)

The macrotick counter MTi(t) of node i at time t is equal to

The macrotick counter at reference clock z at time t is equal to

The deviation between the microtick counters at clock i and reference clock
z at time t follows from Equation 4.5 and Equation 4.6 as

mti(t) - mtz(t) = -[(txfzx P i) \ (4.9)

and the deviation between the macrotick counters at clock i and reference
clock z at time t follows from Equation 4.7 and Equation 4.8 as

i^fj (4-10)

Equation 4.9 shows that the microtick of clock i drifts apart from the mi-
crotick of reference clock z proportional to the value of pi. The same follows
for the macrotick counter due to Equation 4.10.

4.1.4 Clock calibration

For the following considerations we assume that we have no possibility to
interact with the oscillators on a physical level to accelerate or decelerate the
local clocks (e.g. by changing the input voltages of the oscillators).

We can't do anything against the drift of the microtick counter of clock
i. That means, that we cannot change the frequency fo to account for drift
rate pi. However, we can prevent MTi(t) to drift apart from reference clock
z.

67

4.1 Cluster calibration - principle of operation 4 Cluster tuning

Calibration based on the clock drift rate

Calibration of clock i means that we want to bring the macrotick counter of
clock i and the macrotick counter of reference clock z at time t into agreement:

(t) - MT (t) =• mti{t) - mtz{t) U 11)
,{t) - Ml.W => MMCF - MMCF (4.11)

Equation 4.11 is true if clock i is a perfect clock

Vt,0 <t< T:pi{t) = 0 , (4.12)

or if MMCFZ is replaced by MMCFi at clock i such that MMCFi compen-
sates drift rate pf

mtiit) _ mtz(t) _ MMCF. = MMCFz x (i _ pi) (4 1 3)

MMCFZ

If the drift rate of clock i is known, the clock can be calibrated according to
Equation 4.13.

Calibration based on the microtick counter

Clock i can also be calibrated using the microtick counters of clock % and
reference clock z at time t. Again, we want to bring the macrotick counters
of clock i and reference clock z at time t into agreement:

Solving for MMCFi we get

MMCFi = ̂ 4 4 x MMCFZ (4.15)
mtz(t)

The deviation of the microtick counters of clock i and reference clock z at
time t is a measure for the drift rate of clock i against reference clock z.

68

4 Cluster tuning 4.1 Cluster calibration - principle of operation

The impact of calibration on free running clocks

As described in Section 4.1.2, the MMCF consists of an integer and a frac-
tional part. Since any single macrotick is made up of an integer number of
microticks, the fractional part is used to periodically prolong a macrotick by
one microtick. A typical implementation of this mechanism will simply add
up the fraction value at each macrotick until it overflows, at which point in
time the current macrotick is expanded by one microtick ([TTT99]).
Be t{

 k the point in time when non-calibrated clock i generates macrotick

tMT> = k^MMCF^
f z x (l - Pi)

Reference clock z generates macrotick k at

k x MMCF, (

JZ

It follows that
MMCF.

x k x { 1) (

fz 1 Pi
Be TV^J the rate at which the macrotick generation times of clock i and
reference clock z drift apart per macrotick of reference clock z. If follows
from Equation 4.18 that

n»? = T±j -1 (4.19)

Calibrating clock i according to Equation 4.13 we get

MTk _ k x MMCFj _ kxMMCFzx(l - Pi) _ MTk

and therefore
J = 0 (4.21)

V* : tl,Tk - t'MTh = 0 (4.22)

Formally, calibration of clock i against reference clock z leads to perfect
agreement concerning the macrotick generation times: both clocks generate
all macroticks k at exactly the same points in time. In theory, if clock i is
calibrated against reference clock z, there is no need for periodical resynchro-
nization of clock i to clock z because the two clocks are in perfect agreement
at all times. In reality, periodical resynchronization of clock i to clock z is
necessary for the following reasons:

69

4.1 Cluster calibration - principle of operation 4 Cluster tuning

• The drift rate of clock i against reference clock z cannot be measured
with infinite precision (it would take infinite time to do so).

• The measured drift rate of clock i against reference clock z cannot be
accounted for with infinite precision. Due to the binary representation
of the fractional part of the MMCF, there will be digitalization errors.

• A prerequisite for our considerations is the assumption that the drift
rate of clock % is constant during a given time interval T (see Equation
4.2). Clock i may drift apart from reference clock z if running free
longer than T.

We therefore have to reconsider condition 4.22 for calibrated clock i:

Mk : t™Tk - t^T" = kx HfJ, 0 < \n"z
T\ < I— 11 (4.23)

1 Pi

Equation 4.23 shows that calibration brings clock i and reference clock z
into much better agreement; however, clock i will eventually drift apart from
reference clock z if never resynchronized to clock z due to the fact that
calibration cannot account perfectly for drift rate p,.

The impact of calibration on synchronized clocks

For the following considerations, we define the local time (see Section 2.4.2)
at node i at time t as

LTi(t) = MTi(t) x MMCFZ + mU{t) - mti(t™Tt{t)) (4.24)

The term mti(t) — mti(t^Ti^') in Equation 4.24 equals the number of local
microticks that has elapsed since the generation of the last macrotick at node
i. Clock i is synchronized to clock z if clock i periodically brings its local
time into agreement with the local time of clock z. Clock i synchronizes to
clock z by periodically applying a clock state correction term adji(t) to its
local time:

adji{t) = LTi{t) - LTz{t) (4.25)

Be k the number of nodes within a cluster. All nodes run local clocks with
the same nominal frequency and therefore the same granularity.

70

4 Cluster tuning 4.1 Cluster calibration - principle of operation

Precision. We define the precision n(t) of the cluster at time t to be the
maximum deviation between any two node's local times at time t.

V», i <i <k: ir(t) = mox\LTi{t)) - min(LTj(t)\ (4.26)

We define the overall precision FI of the cluster during time interval T to be
the maximum precision observed within that time interval T:

Vt,0 <t <T : n = max{ix{i)) (4.27)

Lemma: Precision between clock i and reference clock z improves if clock
% is calibrated against reference clock z.

Proof: In the following, subset cai denotes calibrated clock i. Be LTicat(t)
the local time of calibrated clock i. We have to show that

Vt,0<t<T: \LTical(t) - LTz(t)\ < \LTt(t) - LTz(t)\ (4.28)

Calibration of clock i against reference clock z brings the macrotick counters
of both clocks into agreement. It follows that

\MTtcal(t) ~ MTz(t)\ < \MTi(t) - MTz(t)\ (4.29)

If clock i is running slow against reference clock z, then the microtick counter
at clock i proceeds slower than the microtick counter of reference clock z. It
follows that

mti{t) - mU{t?Tilt)) < mtz(t) - mtz(t^
T^) (4.30)

tMTi{t) >

We know from Equation 4.20 that calibration of clock i against reference
clock z brings the macrotick generation times into agreement. There is no
impact on the microtick duration of clock i. It follows that

t c a l { t) t

lCal 6

mU{t) - mti(tfji{t)) > mU(t) - mti{tfTi{t)) (4.33)

l(*) - LTz{t)\ < \LTi(t) - LTz(t)\ (4.34)

71

4.2 Cluster calibration against an external time reference 4 Cluster tuning

If clock i is running fast against reference clock z, then the microtick counter
at clock i proceeds faster than the microtick counter of reference clock z. It
follows that

mU{t) - mU{t™™) > mtz(t) - mtz(t^
T^) (4.35)

tMTi{t) < t

After calibration of clock % we get

MTi At)

Kai

mti(t) — mti(tical) < mti(t) — mti(tfIx(t>) (4.38)
=> \LTical{t) - LTz{t)\ < \LTi(t) - LTz(t)\ (4.39)

Figure 4.1 illustrates the principle of operation: at time t, precision is 10
microticks between clock z and clock i and 5 microticks between clock z and
clock j . By bringing the macrotick generation times into agreement such
that

t{MTi) « t(MTz) « t(MTj) (4.40)

precision improves to 3 microticks between clock z and clock % and to 2
microticks between clock z and clock j . Moreover, precision improves from
15 microticks to 5 microticks between clock i and clock j .

4.2 Cluster calibration against an external time
reference

One possibility to improve cluster precision is to calibrate all nodes of a
cluster against an external reference clock. Experimental results concerning
the elimination of the impacts of clock drift by calibration of all nodes of a
cluster against physical time using a GPS receiver can be found in [BPOOb]. It
is shown that the rate at which the local clocks drift apart from reference time
remarkably decreases after calibration.The reduction of the rate at which
the fastest and the slowest node drift apart usually leads to smaller clock
state correction terms, if the nodes are synchronized, which improves cluster
precision.

72

4 Cluster tuning 4.3 Cluster calibration against global time

t(MTi) t(MTz) t(MTj)

I I I I I I I I I I I I I I I
5 10

0 5 10 15 20

I l l l l l l l l l l l
S 10

H+++
2p
ttHiiiliiiini

-3

H

36
clock i

dock j

Figure 4.1: Calibration - principle of operation

4.3 Cluster calibration against global time

Another possibility to improve cluster precision is calibration of all nodes
against global time. Global time is the internally synchronized cluster time
- the common notion of time of all nodes within a cluster (see Section 2.6.3).
As described in Section 2.5.1, all nodes read the local clocks of the other nodes
and calculate a clock state correction term (in terms of local microticks) to
bring their local clocks into better agreement with each other.

Be adji(tj) the clock state correction term that node i applies to its local
clock at time tj. Node i's view of global time at time tj is equal to

Be corri(t) the sum of all adjustments node i has applied to its local clock
till time t:

k

t) = Y, adji{tj), Vtj, 1 <j <k :tj <t (4.42)

Let LT/ree(t) be the local time at node i if no synchronization would have
taken place. LT/ree(t) is equal to node's i local time at time t plus the sum
of all correction terms that have been applied to clock i till time t:

LT{ree(t) = LTi(t) + corn{t) (4.43)

73

4.4 Cluster calibration against a rate master node 4 Cluster tuning

Term corri(t) is a measure for the drift rate of clock i against global time.

We define MT/ree{t) and MTi{t), respectively, as

We want to calibrate clock i by bringing MT/ree(t) and MTi(t) into agree-
ment:

LT!~(t) LUt)
i MMCFZ

Solving for MMCFi, we get

(4 . 4 7)

4.4 Cluster calibration against a rate master
node

We extend the approach presented in Section 4.3 by adding the notion of a
rate master node. A rate master node is a node within the cluster, preferably
one with a quartz oscillator of high quality and therefore low drift rate. The
rate master node never calibrates its local clock:

MMCFmaster = const (4.48)

All other nodes i calibrate their local clocks against global time and the rate
master node's clock. These nodes are in the following referred to as time
keeping nodes.

4.4.1 Calibration based on explicit timing information
from the rate master node

The time keeping nodes calibrate their local clocks on the base of explicit
timing information periodically provided by the rate master node by means
of a message sent from the rate master node to the time keeping nodes.

74

4 Cluster tuning 4.4 Cluster calibration against a rate master node

Be adjmaster(tj) the clock state correction term that the rate master node
applies to its local clock at time tj. The rate master node's view of global
time at time tj is equal to

GTmaster(tj) = LTmaster(tj) - adjmaster(tj) (4.49)

Node z's view of global time at time tj is equal to

i(tj) = LTi(tj) - adji(tj) + adjmaster{tj) (4.50)

Be corrmaster(t) the sum of all adjustments the rate master node has applied
to its local clock till time t

k

corrmaster(t) — ̂ 2 adjmaster{tj), Vtj,l < j < k : tj < t (4-51)

and be corri{t) the sum of all adjustments node i has applied to its local
clock till time t:

k

t) = J 2 adji{tj), Vtj, 1 < j < k : t j < t (4.52)

At time t, the rate master node distributes the sum of its adjustments to
the time keeping nodes. Let LT/ree(t) be the local time at node i if no
synchronization would have taken place. LT/Tee(t) is equal to node's i local
time at time t plus the sum of all correction terms that have been applied to
clock i till time t minus the sum of all correction terms the rate master node
has applied to its local clock till time t:

LT{™{t) = LTi(t) + corrx{t) - corrmasteT{t) (4.53)

Term corri(t) — corrmaster(t) is a measure for the drift rate of clock i against
global time.

Applying LT/ree(t) to Equation 4.47, we get

MMCFt = MMCFZ x LT?*(t) = LTt(t) + corTjjt) - corrmaster(t)
LT(t) LT(t)

75

4.4 Cluster calibration against a rate master node 4 Cluster tuning

4.4.2 Calibration based on implicit timing information
from the rate master node

The time keeping nodes calibrate their local clocks on the base of implicit
timing information periodically provided by the rate master node by means
of time difference capturing. Each time keeping node uses its estimated
deviation from the rate master node provided by the time difference capturing
mechanism (see Section 3.2.1) to calibrate its local clock.

Node i's view of global time at time tj is equal to

GTi{tj) = LTi(tj) - adjiitj) + deltamaster,{tj) (4.55)

Be DELTAi(t) the sum of all time difference capturing values from the rate
master node that node i has observed till time t:

k

DELTAi(t) = J2 deltamaster.(tj),
 v*>> 1 < 3 < k : t3 < t (4.56)

and be corr^t) the sum of all adjustments node i has applied to its local
clock till time t:

k

corr{{t) = Y, adjiitj), V«,-, 1 < j < k : tj < t (4.57)
3 = 1

At time t, all time keeping nodes calibrate their local clocks. Let LT/ree(t)
be the local time at node % if no synchronization would have taken place.
LT/Tee(t) is equal to node's i local time at time t plus the sum of all correction
terms that have been applied to clock i till time t plus the sum of all time
difference capturing values observed from the rate master node till time t:

LT^ee[t) = LTi(t) + coTTi(t) + DELTAi(t) (4.58)

Term corri(t) + DELTAi(t) is a measure for the drift rate of clock i against
global time.

Applying LT/ree(t) to Equation 4.47, we get

MMCFi , ^ ' f " = LT'U + ""><'} t DBLTA'(t) (4.59)

76

4 Cluster tuning 4.5 Experimental evaluation

4.4.3 Stability considerations

Establishing a global timebase by a combination of a distributed clock state
correction algorithm and a central clock rate correction algorithm as lined
out in the last sections remarkably improves cluster precision as will be shown
in the course of the simulation experiments in Section 4.5.

However, adding a central rate master node introduces a single point of
failure into the system. In case of a failure of the rate master node 1, the
central clock rate correction algorithm also fails. The time keeping nodes
will continue to execute the distributed clock state correction algorithm and
remain synchronized until réintégration of the rate master node upon which
the central clock rate correction mechanism becomes available again.

If a system has to tolerate a permanent failure of a rate master node, a
shadow rate master node has to be provided.

4.5 Experimental evaluation

The topic of this section is the experimental evaluation of the analysis of the
last section. For the experiments, we use SIDERA, a simulation model for
the Time-Triggered Architecture (see Chapter 3).

4.5.1 Objectives of the tests

The objectives of the tests presented in this section are

• Verification of the results provided by the formal analysis presented in
the last sections

• Examination of the behavior of a calibrated cluster in the presence of
clock drift faults

• Examination of the impacts on the cluster drift rate if a rate master
node is deployed

4.5.2 Test cluster configuration

For the tests we use the configuration of a representative hardware clus-
ter. The test cluster consists of four nodes. All nodes start with a nominal
MMCFZ of 20.00. Table 4.2 shows the configuration of the test cluster.

1We assume that the rate master node has fail-stop failure semantics (see Section 2.2.1).

77

4.5 Experimental evaluation 4 Cluster tuning

Simulation time
MMCFQ = MMCFX = MMCF2 =
MMCF3 = MMCFZ

Drift rate node 0
Drift rate node 1
Drift rate node 2
Drift rate node 3

0.01 seconds (= 400 slots)

20.00
-4.27246094 x 10~b

-1.89208984 x 10~5

+5.34057617 x 10~6

-2.59399414 x 10~5

Table 4.2: Test cluster configuration

4.5.3 Tests setup and results

Test 1

We let the four nodes run free to determine the drift offsets 2 between the
nodes during simulation time. Figure 4.2 shows the deviation of the local
times (node times) from reference clock z. The x-axis denotes the progression
of node time at reference clock z (which has a drift rate of 0). Nodes 0, 1
and 3 have negative drift rates (i.e. they are running fast against reference
clock z), Node 2 has a positive drift rate (i.e. it is running slow). The
maximum drift offset between node 3 (fastest) and node 2 (slowest) is about
626 microticks.

node 2
node 3
median

0.001 O.OO2 0.OO3 O.OO4 O.OO5 O.OOG 0.007 O.OO8 O.OO9 O.O1
simulation time

Figure 4.2: Test 1 - Free running nodes

2 If two clocks with different clock drift rates are initialized and running free for a
sufficient period of time, their microtick counters will eventually differ.

78

4 Cluster tuning 4.5 Experimental evaluation

Test 2

We let the four nodes run free with calibrated MMCFs. The nodes are
calibrated according to Equation 4.13. Table 4.3 shows the local clock pa-
rameters after calibration.

MMCFZ

MMCFQ

MMCFx
MMCF2

MMCF3

20.00
20.00854492188
20.0378417968
19.98931884766
20.0518798828

Table 4.3: Test 2 - Calibrated cluster

Figure 4.3 shows the deviation of the node times from reference clock z. The
maximum drift offset between node 3 (fastest) and node 2 (slowest) improves
from 626 microticks to about 2 microticks for the calibrated nodes.

'*'• 1
1III] .k u..,tf«d,<.yl a ^ . a i ^

^ — node o
— - node 1

node 2
— node 3

0.001 O.OO2 O.OO3 O.OO4 O.OO5 O.OOS 0.007 O.OO8 0.009 O.O1
simulation time

Figure 4.3: Test 2 - Free running nodes

Test 3

The test cluster is internally synchronized, the nodes are not calibrated
(i.e. all nodes use the nominal MMCFZ = 20.00). Figure 4.4 shows the
course of cluster precision during simulation time. The non-calibrated test
cluster reaches a precision of 12 microticks. Figure 4.5 shows the drift of

79

4.5 Experimental evaluation 4 Cluster tuning

synchronized cluster time against simulation time in terms of microticks.
Cluster time drifts apart from simulation time with a rate of about 286 mi-
croticks/second, which is close to the median drift rate of the nodes (see
Figure 4.2).

O O.OO1 O.OO2 O.OO3 O.OO4 0.005 O.OO6 0.007 O.OO O.OO9 O.O1

Figure 4.4: Test 3 - Cluster precision

O O.OO1 O.O02 O.OO3 0.OO4 0.005 O.O06 O.OO7 O.O08 O.OO9 O.O1

Figure 4.5: Test 3 - Cluster drift rate

Test 4

The test cluster is internally synchronized. All nodes start with a nominal
MMCFZ = 20.00. After cluster startup, each node measures the deviation

80

4 Cluster tuning 4.5 Experimental evaluation

of its local clock from global time for a duration of 3 TDMA rounds and
thereafter calculates a new MMCF according to Equation 4.47. Table 4.4
shows the local clock parameters of the nodes after calibration against global
time.

MMCFZ

MMCF0

MMCFX

MMCF2

MMCF3

20.00
20.025
20.010
19.975
19.955

Table 4.4: Test 4 - MMCFs after calibration against global time

Figure 4.6 shows the course of cluster precision during simulation time. Clus-
ter precision remarkably improves from 12 microticks (see Figure 4.4) to 3
microticks after calibration of the nodes. Figure 4.7 shows that after cali-
bration, the absolute values of the clock state correction terms remarkably
decrease.

O O.OO1 O.OO2 O.OO3 0.004 O.OO5 O.OO6 0.007 0.008 O.OO9 O.O1

Figure 4.6: Test 4 - Cluster precision

Test 5

We drop the restriction that the drift rates of all nodes remain constant over
simulation time (see Equation 4.2). Test 5 is based on Test 4. The only
difference is that the drift rate of node 2 (which is the slowest node) changes

81

4.5 Experimental evaluation 4 Cluster tuning

node O
node 1
node 2
node 3

O 0.001 O.OO2 O.OO3 O.OO4 0.005 0.OO6
simulation time

Figure 4.7: Test 4 - Clock state correction terms

with a rate of +2,4 x 10~6 seconds per TDMA round, starting in TDMA
round 20 (i.e. the clock of node 2 becomes slower).

The recalibration threshold triggers the recalibration of a node against
global time: if the clock state correction term of a node exceeds the recal-
ibration threshold (i.e. the difference between this node's local time and
global time is bigger than the recalibration threshold), the node recalibrates
its local clock against global time. The recalibration threshold for all nodes
is 8 microticks.

Figure 4.8 shows the course of cluster precision during simulation time.
After cluster startup, all nodes calibrate their local clocks against global time
for a duration of 10 TDMA rounds. The calibration phase ends at 0,0011
seconds simulation time from which point in time cluster precision improves
from 12 microticks to 2 microticks. The clock of node 2 starts slowing down
at 0,0023 seconds simulation time, causing cluster precision to deteriorate.
At about 0,004 seconds node 2 detects that its clock state correction term
exceeds the recalibration threshold and starts a recalibration phase of 10
TDMA rounds. Recalibration is complete at about 0,0044 seconds simulation
time from which point in time cluster precision improves from 18 microticks
to 3 microticks.

Figure 4.9 shows the drift of synchronized cluster time against simulation
time in terms of microticks. It can be seen that node 2 drifts apart from
cluster time between 0,0023 and 0,004 seconds simulation time and that
node 2 gets into agreement with the other nodes after recalibration.

Figure 4.10 shows the correction terms the nodes have applied to their

82

4 Cluster tuning 4.5 Experimental evaluation

local clocks during simulation time. It can be seen that the absolute values
of the clock state correction terms of node 2 become bigger as node 2 drifts
apart from global time between 0,0023 and 0,004 seconds simulation time.
After recalibration, node 2 is in almost perfect agreement with the other
nodes causing its clock state correction terms to become minimal.

O O.OO1 O.OO2 O.OO3 0.004 O.OO5 O.OOe O.OO7 O.OO8 O.OO9 O.O1

Figure 4.8: Test 5 - Cluster precision

nods O
node 1
nods 2
node 3

O O.OO1 O.OO2 O.OO3 O.OO4 O.OOS 0.0O6 0.007 O.OO8 O.OOS O.O1

Figure 4.9: Test 5 - Cluster drift rate

83

4.5 Experimental evaluation 4 Cluster tuning

node O
node 1
node 2
node 3

O.O01 0.002 O.OO3 O.OO4 0.O05 0.006
simulation time

Figure 4.10: Test 5 - Clock state correction terms

Test 6

We have the test cluster internally synchronized and calibrated against global
time and a rate master node. As described in Section 4.4 the rate master node
periodically distributes the sum of its clock state correction terms corrmaster

to the time keeping nodes which calibrate their local clocks on the base
of corrmasteT and the sum of their own clock state correction terms corri
according to Equation 4.54.

We perform four test runs with four different rate master nodes. Figure
4.11 shows the precision of the test cluster. After initial calibration, cluster
precision does not exceed 3 microticks, independent of the choice of the rate
master node. Figures 4.12 - 4.15 show the drift of the synchronized cluster
times against simulation time in terms of microticks for the four different
rate master nodes. If compared to Figure 4.2 it can be seen that in all four
test cases the cluster drift rate is determined by the drift rate of the rate
master node.

84

4 Cluster tuning 4.5 Experimental evaluation

O O.OO1 0.002 0.003 O.OO4 O.OO5 0.006 O.OO7 O.OOB O.OO9 O.O1

Figure 4.11: Test 6 - Cluster precision

nodoO
node 1
node 2
node 3

O O.OO1 0.002 O.OO3 0O04 O.OO5 O.OO6 O.OO7 O.OO8 O.OO9 O.O1

Figure 4.12: Test 6 - Cluster drift rate with rate master node 0

85

4.5 Experimental evaluation 4 Cluster tuning

node O
node 1
node 2
node 3

0.001 0.002 O.OO3 0.004 D.OOS O.OO6 0.007 O.OO8
simulation time

0.009 O.O1

Figure 4.13: Test 6 - Cluster drift rate with rate master node 1

-

1 node O
node 1
node 2
node 3

O.OO1 O.O02 O.OO3 O.OO4 O.OO5 O.006 O.OO7 0.OO8 0.009 O.01
simulation time

Figure 4.14: Test 6 - Cluster drift rate with rate master node 2

86

4 Cluster tuning 4.5 Experimental evaluation

nodeO
nods 1
rtodo 2
node 3

O.OO1 O.OO2 O.OO3 O.OO4 O.OO5 O.OO6 0.007 O.OO8 O.OO9 O.O1
simulation time

Figure 4.15: Test 6 - Cluster drift rate with rate master node 3

87

4.5 Experimental evaluation 4 Cluster tuning

88

Chapter 5

Multi-cluster clock
synchronization

This chapter is related to multi-cluster clock synchronization. We extend the
concepts of dynamic clock calibration within a cluster introduced in Chapter
4 and provide a fault-tolerant clock synchronization algorithm for multi-
cluster systems that makes use of this approach.

The second part of this chapter is devoted to the experimental evaluation
of different multi-cluster architectures with regard to the achievable preci-
sion. We present both hierarchical configurations and configurations with
feedback loops. Further, we compare the performance of our new clock syn-
chronization algorithm combining clock state and clock rate correction with
the performance of a multi-cluster clock synchronization algorithm based on
clock state correction as described in Section 2.5.2.

5.1 A new approach

This section elaborates on the extension of the combination of clock state
correction and clock rate correction for single-cluster systems presented in
Chapter 4 to multi-cluster systems.

5.1.1 External clock synchronization

It is the objective of multi-cluster clock synchronization to establish a com-
mon time base in a multi-cluster system. As pointed out in Section 2.5.3,
multi-cluster clock synchronization is a combination of internal and external

89

5.1 A new approach 5 Multi-cluster clock synchronization

clock synchronization. Detailed analysis of the combination of clock state
correction and clock rate correction to improve the quality of internal clock
synchronization in single-cluster systems is given in Chapter 4. We now
extend this approach to multi-cluster clock synchronization.

For this purpose we analyze the external synchronization between the
clusters shown in Figure 5.1. This figure depicts a configuration of two clus-
ters interconnected via a gateway (see Section 2.5.3). A gateway contains
two communication controllers, one for each cluster it is connected to, and a
host computer that can access the registers of both controllers and transfer
data and control signals between them. We assume that in Figure 5.1 time
flows from left to right, i.e. that the right cluster (cluster B) follows the
time established in the left cluster (cluster A) and that the time is relayed to
cluster B by the gateway. The right communication controller of the gate-
way (the time master node of cluster B, see Section 2.5.2) thus initializes
cluster B and performs the rate master function for cluster B. In order to
eliminate any feedback mechanism, the clock rate of the right communication
controller is only controlled by the host computer of the left communication
controller (which acts as a reference time server for cluster B, see Section
2.5.2) but not by the rate correction mechanism in the right cluster. How-
ever, the right communication controller participates as an equal member in
the fault-tolerant clock state correction of cluster B.

Cluster A (high level cluster) Cluster B (low level cluster)

NodeB2
v

NodeBS

Gatew

I1
[5Ti

5.1.2

Figure 5.1: Multi-cluster clock synchronization

Combining clock state correction and clock rate
correction

The reference time server in the gateway (left communication controller in
Figure 5.1) controls the rate of the time master node in the gateway (right
communication controller in Figure 5.1) in.such a manner that

90

5 Multi-cluster clock synchronization 5.1 A new approach

• over the long term, the rate of the time master node in the gateway is
in agreement with the rate of the reference time server in the gateway.
Since this rate is in agreement with the rate master of cluster A, both
clusters progress at about the same clock rate.

• if the clock state in the time master node deviates from the clock state
of the reference time server, then the host computer of the time master
node performs a slight change of its rate such that an agreement be-
tween these two clock state values is attained within an upper bound
in time. The value of this rate change must be below an a priori es-
tablished threshold. This threshold establishes an upper bound for the
clock rate error of cluster B.

5.1.3 Integrating internal and external clock synchro-
nization

The time keeping nodes of the right cluster are not aware of this external
synchronization procedure and do not contain any explicit mechanism for
external clock synchronization. Such a mechanism is not needed because the
time keeping nodes calibrate their local clocks on the base of implicit timing
information from the rate master node as described in Section 4.4.2.

Instead of applying an external clock state correction term that would
have explicitly to be communicated by the rate master node by means of a
message, the time keeping nodes keep in track of the rate master node by us-
ing the time difference capturing values from the rate master node that they
periodically calculate in course of execution of the internal clock synchro-
nization algorithm (see Section 3.2.1). The internally synchronized cluster
time in cluster B follows the clock state and clock rate of the reference time
server in cluster A, which is the objective of external clock synchronization.

5.1.4 Blackout survivability

It is the goal of external clock synchronization to bring the internally syn-
chronized cluster time into agreement with an external reference time. This
is done by means of time master nodes which are connected to reference time
servers and which provide timing information for all nodes within their clus-
ters. The reference time server may be a time source (see Section 2.3.4) or
a node in another cluster providing its cluster time as an external reference
time.

91

5.1 A new approach 5 Multi-cluster clock synchronization

However, the external reference time may not always be available. A
loss of the external reference time signal is in the following referred to as a
blackout. A blackout can be caused by

• a failure of the reference time server

• a failure of the time master node

• a failure of the source providing the external reference time
A satellite based time source may be unavailable from time to time.

• unavailability of the reference time signal due to environmen-
tal conditions
A satellite based time service may not be available e.g. in tunnels or
underground car parks.

A blackout due to failures of one reference time server or of one time
master node can be avoided by replication. However, nothing can be done
against a failure of the time source or in case of unavailability of the reference
time signal due to environmental conditions.

Therefore, a blackout is a scenario to reckon with which must be handled
properly by the system under consideration. An externally synchronized sys-
tem is only internally synchronized for the duration of the blackout and may
arbitrarily drift apart from the external reference time. When the reference
time signal becomes available again, the system has to be resynchronized to
this reference time signal.

This resychronization process can become costly if the amount of system
drift during the blackout phase is high. It may be necessary to initialize the
local clocks within the system and to restart the synchronization process.
During this initialization phase, the system service is not available.

With blackout survivability we denote the ability of a system to "sur-
vive" short external synchronization gaps without the necessity to initialize
the whole system after the end of a blackout. In the following, we assume
that the system under consideration consists of a single cluster externally
synchronized to a receiver providing access to a time source (e.g. a GPS
receiver).

In Section 4.5 we present experiments with free running clocks calibrated
against a reference clock. It is shown that free running calibrated clocks
drift apart from the reference clock with a much smaller rate than free run-
ning non-calibrated clocks. This result should also apply to a cluster which

92

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

is calibrated against GPS time and which looses external synchronization:
the calibrated cluster time should drift apart from GPS time with a much
smaller rate than a non-calibrated cluster. Consequently, the deviation be-
tween cluster time and GPS time should be remarkably smaller at the end
of the blackout which in turn facilitates resynchronization of cluster time to
GPS time.

We revisit the blackout survivability problem in Section 5.2.6 where we
perform experiments with a calibrated and a non-calibrated cluster.

5.2 Experimental evaluation

The topic of this section is the experimental evaluation of multi-cluster clock
synchronization algorithms by means of simulation runs using SIDERA (see
Chapter 3).

We will perform experiments with systems consisting of two and three
clusters. The experiments cover both hierarchical configurations and config-
urations with feedback loops.

5.2.1 Objectives of the tests

The objectives of the tests presented in this section are

• Analysis of the performance of our new algorithm for multi-cluster clock
synchronization

• Comparison of the performance of our new algorithm to a multi-cluster
clock synchronization algorithm based on clock state correction

• Examination of multi-cluster systems with feedback loops

• Examination of the blackout survivability of calibrated clusters

5.2.2 Structure of the tests

This section elaborates on the structure of the tests and detailly describes
the internal structure of calibrated and non-calibrated clusters.

• Multi-cluster clock synchronization based on clock state cor-
rection

93

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

- Internal clock synchronization
The nodes execute a distributed clock synchronization algorithm
in course of which they periodically determine an internal clock
state correction term. Each node applies the internal clock state
correction term to its local clock by means of state correction. The
achievable precision (see Section 2.5.1) depends on the drift rates
of the local clocks. In the course of the following experiments,
such a cluster will be denoted as a non-calibrated cluster.

- External clock synchronization
The time master node (see Section 2.5.2) periodically determines
the deviation of its local clock from the local clock of the reference
time server (see Section 2.5.2) and communicates this deviation
to the other nodes within its cluster by means of messages. The
time master node and the other nodes determine an external clock
state correction term which they apply to their local clocks by
means of state correction. The achievable accuracy (see Section
2.5.2) depends on the precision of the externally synchronized non-
calibrated cluster as well as on the drift rates of the reference time
server and the time master node.

Multi-cluster clock synchronization based on clock state cor-
rection and clock rate correction

— Internal clock synchronization
In each cluster there is at least one rate master node, the other
nodes are time keeping nodes (see Section 4.4). The nodes ex-
ecute a distributed clock synchronization algorithm in course of
which they periodically determine an internal clock state correc-
tion term. Each node applies the internal clock state correction
term to its local clock by means of state correction. Addition-
ally, all time keeping nodes periodically adjust the rate of their
local clocks on the base of implicit timing information from the
rate master node as described in Section 4.4.2. The rate master
node serves as a reference for the clock rate within its cluster.
The achievable precision (see Section 2.5.1) depends on how good
the drift rates of the local clocks can be brought into agreement
(which cannot perfectly be done, see Equation 4.23). In the course
of the following experiments, such a cluster will be denoted as a
calibrated cluster.

— External clock synchronization
In an externally synchronized cluster, the time master node (see

94

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

Section 2.5.2) always serves as a rate master node (see Section
4.4). The time master node periodically determines the devia-
tion of its local clock from the local clock of the reference time
server (see Section 2.5.2) and slightly changes the rate of its local
clock such that an agreement with the clock state of the reference
time server will be attained within an upper bound in time. For
the time keeping nodes follow the rate of the rate master node
(see above), there is no need for any explicit external clock syn-
chronization mechanism. The time keeping nodes are not aware
of that they are externally synchronized (see Section 5.1.1). The
achievable accuracy (see Section 2.5.2) depends on the precision
of the externally synchronized calibrated cluster as well as on how
good the drift rates of the local clocks of the reference time server
and the time master node can be brought into agreement.

5.2.3 Test setup

For the experiments, we use cluster configurations from the model verifica-
tion tests performed with SIDERA (see Section 3.4). Table 5.1 shows the
simulation parameters common to all test runs. Table 5.2 shows the cluster-
specific simulation parameters, the precision and the cluster drift rate that
have been observed for the different clusters in the model verification tests.

Number of nodes
Microtick duration
Microticks per macrotick
Macrotick duration
Slot length
Free running macroticks
TDMA round length
Simulation time

6
50 x 10~9 seconds
20
10~6 seconds
12 macroticks
0
72 macroticks
200 slots

Table 5.1: Common parameters

5.2.4 Hierarchical configurations

We start with the investigation of hierarchical system configurations. Hi-
erarchical means that the flow of timing information is unidirectional. A
cluster that serves as an external time reference for another cluster is neither

95

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

Cluster

1
2
3

Ao

0.0001
0.0005
0.0005

CS flags

Slot 0, 4, 8, ...
Slot 0, 4, 8, ...
Slot 0, 6, 12, ...

SYF flags

Every slot
Every slot
Every slot

Precision
(microticks)

4
12
17

Drift rate
xlO-5 s/s

-5
-6
+8

Table 5.2: Cluster specific parameters

implicitly nor explicitly externally synchronized to the cluster time of that
cluster.

Test 1

We connect Cluster 1 and Cluster 2 in a hierarchical manner such that Cluster
2 is externally synchronized to the cluster time of Cluster 1. The gateway
consists of Node 3 in Cluster 1 and Node 3 in Cluster 2. Timing information
flows from Cluster 1 to Cluster 2. Figure 5.2 shows the system configuration.

Figure 5.2: Test 1 - System configuration

Figure 5.3 shows the system precision in case that Cluster 1 and Cluster
2 are non-calibrated clusters. In this case, the system reaches a precision of
13 microticks.

Figure 5.4 shows the system precision in case that Cluster 1 and Cluster
2 are calibrated clusters. Compared to Figure 5.3, system precision improves
from 13 microticks to 5 microticks.

96

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

Figure 5.3: Test 1 system precision - non-calibrated clusters

O O.5 1 1.5 2 2.5 3 3.5

Afn^^
4.5 5

X 1O~3

Figure 5.4: Test 1 system precision - calibrated clusters

97

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

Test 2

We add Cluster 3 to the configuration used for Test 1. Cluster 3 is externally
synchronized to the cluster time of Cluster 2 which in turn is externally
synchronized to the cluster time of Cluster 1. The gateway between Cluster2
and Cluster 3 consists of Node 3 in Cluster 2 and Node 3 in Cluster 3. Timing
information flows from Cluster 1 to Cluster 2 and from Cluster 2 to Cluster
3. Figure 5.5 shows the system configuration.

Figure 5.5: Test 2 - system configuration

Figure 5.6 shows the system precision in case that Cluster 1, Cluster 2
and Cluster 3 are non-calibrated clusters. In this case, the system reaches a
precision of 17 microticks.

Figure 5.6: Test 2 system precision - non-calibrated clusters

Figure 5.7 shows the system precision in case that Cluster 1, Cluster 2 and

98

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

Cluster 3 are calibrated clusters. Compared to Figure 5.6, system precision
improves from 17 microticks to 7 microticks.

O O.5 1 1.5 2 2.S 3 3.5 4 4.5

Figure 5.7: Test 2 system precision - calibrated clusters

99

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

5.2.5 Loopback configurations

We continue our investigations with loopback system configurations. Loop-
back means that the flow of timing information is not unidirectional anymore.
A cluster that serves as an external time reference for another cluster may
be implicitly or explicitly externally synchronized to the cluster time of that
cluster. This is done by means of feedback loops.

If feedback loops are used, calibration of the clusters makes no sense
because cluster calibration is done by means of a central rate correction
algorithm based on the drift rate of a dedicated rate master node (see Section
4.4.3). The intention of using a central rate correction algorithm for a multi-
cluster system is that the drift rate of the whole system shall follow the
rate of a dedicated rate master node as described in Section 5.1.1 which
is only meaningful in hierarchical configurations where the flow of timing
information is unidirectional. We therefore did not evaluate the implications
of feedback loops for multi-cluster systems with calibrated clusters.

Test 3

We connect Cluster 1 and Cluster 2 in a hierarchical manner such that Cluster
2 is externally synchronized to the cluster time of Cluster 1. Additionally,
we feed back the timing information from Cluster 2 to Cluster 1 such that
Cluster 1 is also externally synchronized to the cluster time of Cluster 2. The
gateway consists of Node 3 in Cluster 1 and Node 3 in Cluster 2. Timing
information flows from Cluster 1 to Cluster 2 and vice versa. Figure 5.8
shows the system configuration.

1

c
2

C

1 ")

1)

{ 2]

{ 2)

{ 3)

TT11
(3)

(4)

(4)

CJLJ

CJLJ

(6)

CJLJ

Figure 5.8: Test 3 - system configuration

Figure 5.9 shows that the system achieves a precision of 18 microticks.

Compared to the hierarchical configuration (see Figure 5.3), system pre-
cision deteriorates remarkably. Another remarkable characteristics of Figure
5.9 is that system precision oscillates between 18 and 5 microticks, a devia-
tion which is remarkably larger than in Figure 5.3.

100

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

Figure 5.9: Test 3 system precision - external correction term not bounded

Figure 5.10 reveals the reason for this behavior. Due to the feedback loop,
there is a mutual approximation of the cluster times of Cluster 1 and Cluster
2. Cluster 1 tries to follow the cluster time of Cluster 2 which in turn tries to
approximate the cluster time of Cluster 1. Due to the mutual approximation
of the cluster times the external clock state correction terms determined by
the two clusters are too big, leading to overoscillation phenomena.

Figure 5.10 shows the course of the external clock state correction term
of Cluster 1 over simulation time. It can be seen that the external clock
state correction terms oscillate between positive and negative values due to
the overcompensation of the external deviation to the cluster time of Cluster
2. The external clock state correction terms applied by Cluster 2 show the
same behavior.

One obvious possibility to overcome the problem of overoscillation of the
cluster times of Cluster 1 and Cluster 2 due to the mutual approximation of
the cluster times is to bound the external clock state correction terms applied
by the two clusters. All nodes in Cluster 1 and Cluster 2 divide their external
clock state correction terms by 2 before application. This remarkably reduces
the oscillation of the cluster times and improves precision as shown in Figure
5.11. The system reaches a precision of 14 microticks, which is almost the
precision achieved with the hierarchical configuration (see Figure 5.3).

101

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

; j

î !
i

-

1

;

i

1

1 t j

j

Figure 5.10: Test 3 external clock state correction terms of Cluster 1 - exter-
nal correction terms not bounded

Figure 5.11: Test 3 system precision - external correction term bounded

102

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

Test 4

The system configuration is equal to that of Test 2 (see Section 5.2.4) with the
exception that we added a feedback loop from Cluster 3 to Cluster 1. Timing
information flows from Cluster 1 to Cluster 2, from Cluster 2 to Cluster 3 and
from Cluster 3 back to Cluster 1. Figure 5.12 shows the system configuration.

Figure 5.12: Test 4 - system configuration

Figure 5.13 shows that the system achieves a precision of 24 microticks.

Figure 5.13: Test 4 system precision - external correction terms not bounded

If compared to the hierarchical configuration (see Figure 5.6), system
precision deteriorates remarkably. Another remarkable characteristics in the
course of system precision shown in Figure 5.13 is that system precision
oscillates between 24 and 9 microticks, a deviation which is remarkably larger
than in Figure 5.6. Again, the reason for this behavior is the feedback loop

103

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

between Cluster 3 and Cluster 1, leading to overcompensation of the cluster
times in both clusters (see Section 5.2.5).

We levelled the oscillation of the cluster times of Cluster 1 and Cluster
3 by dividing the external clock state correction terms in both clusters by
2 before application. The result is shown in Figure 5.14. System precision
improves from 24 microticks to 17 microticks, which is almost the precision
achieved with the hierarchical configuration (see Figure 5.6).

Figure 5.14: Test 4 system precision - external correction terms bounded

104

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

5.2.6 Blackout survivability

The topic of this section is the investigation of the blackout survivability (see
Section 5.1.4) of a calibrated and a non-calibrated cluster.

For this purpose, we connect Cluster 3 to a simulated GPS receiver. The
GPS receiver is simulated by a free running node with a very low drift rate
(10~12 sec/sec). Node 3 in Cluster 3 is the time master node. Figure 5.15
shows the system configuration.

Figure 5.15: Blackout survivability - system configuration

Figure 5.16 shows the course of the system drift rate for non-calibrated
Cluster 3 externally synchronized to the simulated GPS receiver. It can be
seen that Cluster 3 follows the drift rate of the reference time signal until
our GPS receiver dies due to a crash failure (see Section 3.3.1). The black-
out phase is delimited by the two dotted vertical bars in Figure 5.16. The
blackout phase starts in slot 200 (leftmost dotted vertical bar) for a dura-
tion of 120 slots (20 TDMA rounds). With the start of the blackout phase,
Cluster 3 loses external synchronization and is only internally synchronized.
Figure 5.16 shows that Cluster 3 drifts apart from reference time with a rate
of about 8 x 10~5 sec/sec, which equals the cluster drift rate of Cluster 3
observed in the model verification tests (see Table 5.2). The deviation of the
internally synchronized cluster time of Cluster 3 at the end of the blackout
phase is about 50 microticks as shown in Figure 5.16. With the end of the
blackout phase, our simulated GPS receiver resumes operation from which
point in time Cluster 3 becomes externally synchronized again. The drift
rate of Cluster 3 gets into agreement with the external time signal within a
duration of 70 slots.

Figure 5.17 shows the course of the system drift rate for calibrated Cluster
3 externally synchronized to the simulated GPS receiver. At system start,
Cluster 3 undergoes a calibration phase of 15 TDMA rounds during which the
time master node determines its drift rate against the reference time signal
(rising edge in Figure 5.17). At the end of the calibration phase, the time
master node starts to approach the reference time signal with a rate of ^

105

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

O.OO1 O.OO2 O.OO3 O.OO-4 O.OO5 O.OO6 O.OO7 O.OO, O.OO9 O.O1

Figure 5.16: Blackout survivability - non-calibrated cluster

microtick per macrotick (falling edge in Figure 5.17) until it is in agreement
with reference time. The time master node applies the drift rate estimated
during the calibration phase to its local clock. From now on, the time master
node follows the rate of the reference time signal by adjusting the rate of its
local clock with a rate of ^ microtick per macrotick. The time keeping
nodes follow the rate of the time master node on the base of implicit timing
information from the rate master node as described in Section 4.4.2. The
blackout scenario is the same as in the last test with non-calibrated Cluster
3. The time master node detects the loss of the reference time signal with the
start of the blackout phase and applies the rate determined during calibration
phase to its local clock. Figure 5.17 shows that during the blackout the cluster
drift rate of Cluster 3 does not remarkably deviate from reference time. This
is due to the fact that Cluster 3 has been calibrated against the reference
time signal before the blackout.

As argued in Section 5.1.4, calibration leads to a much smaller deviation
from reference time at the end of the blackout phase. As a consequence, the
resynchronization to the reference time signal after the blackout is no big
deal compared to the scenario for non-calibrated Cluster 3 in Figure 5.16.

106

5 Multi-cluster clock synchronization 5.2 Experimental evaluation

O O.OO1 O.OO2 O.OO3 0.004 O.OO5 O.OOB O.OO7 O.OOâ O.OO9 O.O1

Figure 5.17: Blackout survivability - calibrated cluster

107

5.2 Experimental evaluation 5 Multi-cluster clock synchronization

108

Chapter 6

Conclusion

This section summarizes the contents of this thesis and provides an outlook
of the future work.

Contributions

This thesis made two major contributions.

First, SIDERA, a simulation model for time-triggered distributed systems
was brought to life. SIDERA is based on the Time-Triggered Architecture
and the Time-Triggered Protocol and allows the simulation of systems con-
sisting of one or more clusters. The model was verified by means of verifica-
tion tests against a VHDL implementation of a TTP controller in course of
which it was shown that SIDERA follows the behavior of the VHDL reference
model in all test cases.

Second, we used SIDERA for the investigation of mechanisms and means
that improve the quality of synchronization in time-triggered distributed sys-
tems.

Achievements

Dynamic internal cluster calibration

We provided detailed analysis of dynamic cluster calibration mechanisms.
In the course of our investigations, we identified the combination of a rate
master node that determines the drift rate of its cluster and time keeping
nodes that dynamically calibrate their local clocks on the base of implicit

109

6 Conclusion

timing information from the rate master node as the method of choice. Using
this method it is possible to get a cluster precision in the order of 3 microticks,
even if the local clocks are driven by low quality quartzes with drift rates in
the order of 10~4 sec/sec.

Dynamic external cluster calibration

We have extended the approach of dynamic internal cluster calibration by
integration of the tasks of a rate master and a time master into one node.
This node dynamically adapts its rate according to an external reference time
signal and dictates the clock rate of all time keeping nodes within its cluster.

Integration of internal and external clock synchronization

For timing information from the rate master node is obtained by the time
keeping nodes by implicit means, no explicit mechanisms for external clock
synchronization are needed. The time keeping nodes follow the rate of their
rate master node, which in turn might follow the rate of an external reference
time signal. There is no need for the distribution of an external clock state
correction term which saves bandwidth and simplifies the synchronization
mechanism.

Improved quality of synchronization

In the course of our investigations we have shown that a clock synchronization
algorithm combining a central rate correction approach with a distributed
state correction approach is ideally suited to improve the quality of syn-
chronization in both single- and multi-cluster systems. In the multi-cluster
configurations under analysis in course of simulation experiments, system
precision improved by about 300 percent using a combined clock state and
clock rate correction approach compared to an approach based on clock state
correction only.

Improved blackout survivability

We have shown that calibrated clusters have a remarkably better blackout
survivability than non-calibrated clusters. Clusters once calibrated against
an external reference time signal drift apart from reference time with a much
smaller rate during phases where the reference time signal is not available

110

6 Conclusion

than non-calibrated clusters. This facilitates resynchronization of such clus-
ters at the end of the external synchronization gap.

Outlook

SIDERA

Due to performance and portability considerations, we plan to realize SIDERA
as an object model according to the ANSI C/C++ standards. At the mo-
ment, SIDERA is a MATLAB/Simulink model using S-Functions written in
C and the Real-Time Workshop RTW. The availability of an object model
improves modularity and extendability of SIDERA. Furthermore, it facili-
tates the portation of SIDERA to different operation system platforms.

Quality of synchronization

Although we have observed remarkable performance improvements with re-
gard to system precision, we think that further improvements are feasible.
One important aspect concerns the rate calibration mechanism in the time
master node. At the moment, this mechanism is based on simple rate control
using a constant positive or negative rate correction term (according to the
sign of the deviation of the time master node from the reference time signal).
We think that we can attain a much better agreement between the time
master node and the reference time signal by deploying advanced control
engineering strategies.

Hardware experiments

Another important point is the verification of the results gained from the sim-
ulation experiments using hardware configurations. We have already verified
dynamic internal cluster calibration by means of hardware experiments with
a single cluster. However, the verification of the dynamic external cluster
calibration mechanism is an important part of our future work.

I l l

Bibliography

[AdeO3] A. Ademaj. Assessment of Error Detection Mechanisms of the
Time-Triggered Architecture Using Fault Injection. PhD Thesis,
Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2003.

[ALROl] A. Avizienis, J. Laprie, and B. Randell. Fundamental Concepts
of Dependability. Research Report N01145, LAAS-CNRS, April
2001.

[AP98] E. Anceaume and I. Puaut. Performance Evaluation of Clock
Synchronization Algorithms. Technical Report 3526, Institut de
Recherche en Informatique et Systèmes Aléatoires, www.irisa.fr,
October 1998.

[Ari91] Aristotle. Physica-Laterza, 1991.

[Aug] St. Augustine. Confessions, book XI, chapter XXX.

[Bau99] G. Bauer. Implementation and Evaluation of a Fault-Tolerant
Clock Synchronization Algorithm for TTP/C. Master Thesis,
Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 1999.

[BHHN00] Boaz Barak, Shai Halevi, Amir Herzberg, and Dalit Naor. Clock
synchronization with faults and recoveries (extended abstract). In
Symposium on Principles of Distributed Computing, pages 133-
142, 2000.

[BKP95] Günther Bauer, Hermann Kopetz, and Peter Puschner. As-
sumption Coverage under Different Failure Modes in the Time-
Triggered Architecture. Research Report 14/1995, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 1995.

112

BIBLIOGRAPHY BIBLIOGRAPHY

[BKS03] Günther Bauer, Hermann Kopetz, and Wilfried Steiner. The Cen-
tral Guardian Approach to Enforce Fault Isolation in the Time-
Triggered Architecture. In Proceedings of the Sixth International
Symposium on Autonomous Decentralized Systems (ISADS 03),
pages 37-44, Apr 2003.

[BPOOa] G. Bauer and M. Paulitsch. An Investigation of Membership
and Clique Avoidance in TTP/C. 19th IEEE Symposium on
Reliable Distributed Systems, 16th - 18th October 2000, Nürnberg,
Germany, Oct. 2000.

[BPOOb] G. Bauer and M. Paulitsch. External Clock Synchronization in
the TTA. Research Report 3/2000, Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2000.

[CAS94] Flaviu Cristian, Houtan Aghili, and Ray Strong. Clock Synchro-
nization in the Presence of Omission and Performance Failures,
and Processor Joins. In Zhonghua Yang and T. Anthony Mars-
land, editors, Global States and Time in Distributed Systems,
IEEE Computer Society Press. 1994.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broad-
cast: From simple message diffusion to Byzantine agreement. In
Proceedings of the Fifteenth International Symposium on Fault-
Tolerant Computing, pages 200-206, Ann Arbor, MI, June 1985.

[CF85] F. Cristian and C. Fetzer. Fault-tolerant External Clock Synchro-
nization. In Proceedings of the 15th International Conference on
Distributed Computing Systems, pages 70-77. IEEE, 1985.

[CF94] Flaviu Cristian and Christof Fetzer. Probabilistic Internal Clock
Synchronization. In Symposium on Reliable Distributed Systems,
pages 22-31, 1994.

[Cri91] Flaviu Cristian. Understanding fault-tolerant distributed sys-
tems. Communications of the ACM, 34(2):56-78, 1991.

[dAB94] M. M. de Azevedo and D. M. Blough. Software-Based Fault-
Tolerant Clock Synchronization for Distributed UNIX Environ-
ments. Technical Report ECE 94-03-01, Department of Electri-
cal and Computer Engineering, University of California, Irvine,
March 1994.

113

BIBLIOGRAPHY BIBLIOGRAPHY

[Dan97] P.H. Dana. Global Posinitioning System (GPS) time dissemi-
nation for real-time applications. Real-Time Systems, 12:9-40,
January 1997.

[DHS84] Danny Dolev, Joe Halpern, and H. Raymond Strong. On the Pos-
sibility and Impossibility of Achieving Clock Synchronization. In
Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 133-143, 1984.

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(ll):643-644, 1974.

[DW95] S. Dolev and J. L. Welch. Self-stabilizing clock synchronization
in the presence of byzantine faults. In Proceedings of the Second
Workshop on S elf-Stabilizing Systems, 1995.

[Ein55] A. Einstein. The Meaning of Relativity. Princeton Univ. Press,
Princeton, 1955.

[FC95] Christof Fetzer and Flaviu Cristian. An Optimal Internal Clock
Synchronization Algorithm. In Compass '95: 10th Annual Con-
ference on Computer Assurance, pages 187-196, Gaithersburg,
Maryland, 1995. National Institute of Standards and Technology.

[FC97] Christof Fetzer and Flaviu Cristian. Integrating External and
Internal Clock Synchronization. Real-Time Systems, 12(2):123-
171, 1997.

[Gal99] Thomas M. Galla. Cluster Simulation in Time-Triggered Real-
Time Systems. PhD Thesis, Technische Universität Wien, Insti-
tut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna,
Austria, 1999.

[GP99] T. Galla and R. Pallierer. Cluster simulation-support for dis-
tributed development of hard real-time systems using TDMA-
based communication. In Proceedings of the 11 th Euromicro
Conference on Real-Time Systems, pages 150 - 157, 1999.

[HD93] Kenneth Hoyme and Kevin Driscoll. SAFEbus. IEEE Aerospace
and Electronics Systems Magazine, 8(3):34-39, March 1993.

[HS95] Matti A. Hiltunen and Richard D. Schlichting. Properties of
Membership Services. In Second International Symposium on Au-
tonomous Decentralized Systems (ISADS'95), Phoenix, Arizona,
USA, April 1995.

114

BIBLIOGRAPHY BIBLIOGRAPHY

[HSSD84] J.Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant
Clock Synchronization. In Proceedings of the 3rd ACM Sympo-
sium on Principles of Distributed Computing, pages 89-102, 1984.

[Jon98] Erland Jonsson. An Integrated Framework for Security and De-
pendability. In Proceedings of the 1998 workshop on New security
paradigms, pages 22-29, Charlottesville, Virginia, United States,
1998.

[KAH04] Hermann Kopetz, Astrit Ademaj, and Alexander Hanzlik. Inte-
gration of Internal and External Clock Synchronization by Com-
bination of the Clock-State and Clock-Rate Correction in Fault-
Tolerant Distributed Systems. Research Report, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr. 1-
3/182-1, 1040 Vienna, Austria, 2004.

[KB03] Hermann Kopetz and Günther Bauer. The Time-Triggered Ar-
chitecture. Proceedings of the IEEE, 91(1):112 - 126, January
2003.

[KBP01] Hermann Kopetz, Gnther Bauer, and Stefan Poledna. Tolerat-
ing Arbitrary Node Failures in the Time-Triggered Architecture.
SAE 2001 World Congress, March 2001, Detroit, MI, USA, Mar.
2001.

[KKMS95] H. Kopetz, A. Krüger, D. Millinger, and A. Schedl. A Synchro-
nization Strategy for a Time-Triggered Multicluster Real-Time
System. In 14th Symposium on Reliable Distributed Systems, Bad
Neuenahr, Germany, September 1995.

[KO87] H. Kopetz and W. Ochsenreiter. Clock Synchronization in Dis-
tributed Real-Time Systems. IEEE Transactions on Computers,
C-36(8), August 1987.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability. IEE
Computing and Control Engineering Journal, 13, August 2002.

[Kop92] Hermann Kopetz. Sparse Time versus Dense Time in Distributed
Real-Time Systems. In Proceedings of the 19th IEEE Systems
Symposium (RTSS98), December 1998, pages 460-467, Saitama,
Japan, October 1992.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 1997.

115

BIBLIOGRAPHY BIBLIOGRAPHY

[Kop98] Hermann Kopetz. The Time-Triggered Model of Computation.
Proceedings of the 19th IEEE Systems Symposium (RTSS98), De-
cember 1998, Dec. 1998.

[Lap92] J. C. Laprie. Dependability: Basic Concepts and Terminology.
Springer-Verlag, Vienna, 1992.

[Lap95] J.-C. Laprie. Dependability - its attributes, impairments, and
means. In B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood,
editors, Predictably Dependable Computing Systems, pages 3-24,
Heidelberg, Germany, 1995. Springer-Verlag.

[Leb98] M. Lebedev. GLONASS as instrument for precise UTC transfer.
In Proceedings of the 12 th European Frequency and Time Forum,
Warsaw, Poland, March 1998.

[Lic97] R. Lichtenecker. Terrestrial time signal dissemination. Real-Time
Systems, 12:41-61, January 1997.

[LL84] J. Lundelius and N. Lynch. A new Fault-tolerant Algorithm for
Clock Synchronization. In Proceedings of the 3rd annual ACM
symposium on Principles of Distributed Computing, pages 75-88.
ACM, 1984.

[LM94] M. C. Little and D. L. McCue. Construction and Use of a Simu-
lation Package in C++ . C User's Journal, 12(3), 1994.

[LMS85] L. Lamport and P. M. Melliar-Smith. Synchronizing Clocks in
the Presence of Faults. Journal of the ACM, 32(l):52-78, 1985.

[Lön99] Henrik Lönn. Initial Synchronization of TDMA Communication
in Distributed Real-Time Systems. In 19th IEEE International
Conference on Distributed Computing Systems, Austin, Texas,
USA, May 1999.

[LSP82] Lamport, Shostak, and Pease. The Byzantine Generals Problem.
In Advances in Ultra-Dependable Distributed Systems, N. Suri,
C. J. Walter, and M. M. Hugue (Eds.), IEEE Computer Society
Press. 1982.

[Mil94] David L. Mills. Internet Time Synchronization: The Network
Time Protocol. In Zhonghua Yang and T. Anthony Marsland
(Eds.), Global States and Time in Distributed Systems, IEEE
Computer Society Press. 1994.

116

BIBLIOGRAPHY BIBLIOGRAPHY

[MinO4] Paul S. Miner. SPIDER Formal Models - Where are we now?
In Internal Formal Methods Workshop, NASA Langley Research
Center, Hampton, VA, Feb 2004.

[MS85] Stephen R. Mahaney and Fred B. Schneider. Inexact Agreement:
Accuracy, Precision and Graceful Degradation. In 4th ACM Sym-
posium on Principles of Distributed Computing, pages 237-249,
Minaki, Canada, Aug 1985.

[MS92] S. Mishra and R. Schlichting. Abstractions for Constructing De-
pendable Distributed Systems. Technical Report TR 92 -12,1992.

[New87] I. Newton. Mathematical Principles of Natural Philosophy. In
volume 34 of Great Books, Chicago, Illinois, 1687. Encyclopaedia
Britannica, Inc., 1687.

[PalOO] R. Pallierer. Validation of Distributed Algorithms in Time-
Triggered Systems by Simulation. PhD Thesis, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr. 1-
3/182-1, 1040 Vienna, Austria, 2000.

[Pau02] M. Paulitsch. Fault-Tolerant Clock Synchronization for Embed-
ded Distributed Multi-Cluster Systems. PhD Thesis, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2002.

[PetO2] Philipp Peti. The Concepts behind Time, State, Component, and
Interface: A Literature Survey. Research Report, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2002.

[PfeOO] Holger Pfeifer. Formal Verification of the TTP Group Member-
ship Algorithm. In FORTE/PSTV 2000, Pisa, Italy, October
2000.

[PG98] Roman Pallierer and Thomas Galla. TTPSIM: A Versatile Simu-
lation Environment for TTP/C. Research Report 26, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 1998.

[Pol94] S. Poledna. Replica Determinism in Fault-Tolerant Real-Time
Systems. PhD Thesis, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Aus-
tria, 1994.

117

BIBLIOGRAPHY BIBLIOGRAPHY

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in
the Presence of Faults. Journal of the ACM, 27(2):228-234, 1980.

[RSB90] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-tolerant
Clock Synchronization in Distributed Systems. IEEE Computer,
23(10):33-42, October 1990.

[Rus36] B. Russell. Proc. Camb. Philos. Soc, 32:216-228, 1936.

[SC90] Frank Schmuck and Flaviu Cristian. Continuous Clock Amorti-
zation need not affect the Precision of a Clock Synchronization
Algorithm. In Proceedings of the ninth annual ACM symposium
on Principles of distributed computing, pages 504-511, Quebec
City, Quebec, Canada, 1990.

[Sch86] Fred B. Schneider. A Paradigm for Reliable Clock Synchroniza-
tion. Technical report, Department of Computer Science, Cornell
University, Ithaca, New York 14853, April 1986.

[Sch88] W. Schwabl. Der Einfluss zufälliger und systematischer Fehler auf
die Uhrensynchronisation in verteilten Echtzeitsystemen. PhD
Thesis, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 1988.

[Sch94a] A. Schedl. Introduction to the ClockSync Project. Research
Report 19, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 1994.

[Sch94b] A. Schedl. Program Documentation of the ClockSync Project.
Research Report 20, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Aus-
tria, 1994.

[Sch94c] F. A. Schreiber. Is Time a Real Time? An Overview of Time
Ontology in Informatics. In W. A. Halang and A. D. Stoyenko,
editors, Real Time Computing, pages 283-307. Springer, Berlin,
Heidelberg, 1994.

[Sch95] A. V. Schedl. The Simulation of Multicluster Clock Synchro-
nization Strategies. Research Report 22, Technische Universität
Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1,
1040 Vienna, Austria, 1995.

118

BIBLIOGRAPHY BIBLIOGRAPHY

[Sch96] A. V. Schedl. Design and Simulation of Clock Synchronization in
Distributed Systems. PhD Thesis, Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 1996.

[SPOl] Wilfried Steiner and Michael Paulitsch. The Transition from
Asynchronous to Synchronous System Operation: An Approach
for Distributed Fault-Tolerant Systems (Including Simulation).
Research Report 26/2001, Technische Universität Wien, Insti-
tut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna,
Austria, 2001.

[SPHH04] Wilfried Steiner, Michael Paulitsch, Brendan Hall, and Alexander
Hanzlik. Structuring of Time-Triggered Architecture (TTA) Sys-
tems and Initial Synchronization. Research Report, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2004.

[SRSP04] Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer.
Model checking a fault-tolerant startup algorithm: From design
exploration to exhaustive fault simulation. The International
Conference on Dependable Systems and Networks (DSN 2004),
Jun. 2004.

[SS83] R. Schlichting and F. Schneider. Fail-stop processors: An ap-
proach to designing fault tolerant computing systems. ACM
Transactions on Computer Systems, l(3):222-238, 1983.

[ST87] T.K. Srikanth and S. Toueg. Optimal clock synchronization.
Journal of the ACM, 34(3):626-645, 1987.

[SW99] Klaus Schossmaier and Bettina Weiss. An Algorithm for Fault-
Tolerant Clock State and Rate Synchronization. In Symposium
on Reliable Distributed Systems, pages 36-47, 1999.

[SWGS99] Ulrich Schmid, Bettina Weiss, Günther Gridling, and Klaus
Schossmaier. A Unified Approach for Simulation and Exper-
imental Evaluation of Fault-Tolerant Distributed Systems. In
Proceedings of the IASTED International Conference on Applied
Modelling and Simulation, 1999.

[Tem99] C. Temple. Enforcing Error Containment in Distributed Time-
Triggered Systems: The Bus Guardian Approach. PhD Thesis,

119

BIBLIOGRAPHY BIBLIOGRAPHY

Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 1999.

[TTT99] TTTech. Specification of the TTP/C Protocol. Specification,
TTTech Computertechnik AG, Schönbrunner Strasse 7, 1040 Vi-
enna, Austria, 1999.

[WGSS99] Bettina Weiss, Günther Gridling, Ulrich Schmid, and Klaus
Schossmaier. The SimUTC Fault-Tolerant Distributed Systems
Simulation Toolkit. Technical report, Department of Automa-
tion, TU Vienna, April 1999.

[Whi90] G. J. Whitrow. The Natural Philosophy of Time. Oxford Uni-
veristy Press, second edition, 1990.

[Wiel4] N. Wiener. A contribution to the theory of relative position.
Camb. Philos. Soc, 17:441-449, 1914.

120

Appendix A

Configuration File Structure

This section shows the structure of the configuration file modeljparam.dat.
For correct interpretation of the configuration file it is necessary that all
entries are in the order shown. The column exists in tables A.2 and A.3 de-
scribes under which conditions an entry must be defined. Mandatory means
that the entry has to exist on all conditions. Optional means that the en-
try is not mandatory. Any other entry in this column denotes the condition
on which the entry becomes mandatory. These rules only ensure syntactical
correctness of the configuration file. The default value for all entries is 0.

File section
System specific parameters
Cluster specific parameters

quantity
1

num.-cluster s

Table A.I: File structure

entry
sim^time
numjclusters
ext-corr
sampte-
sample~
sample-
sample-
sample-
Tiumjclii

jrate-max
ra.tejm.tdog
rateSctdog
ratejzctJog
rate-MTJog
rate „user -log
ster jmap -entries

•master
slave

exists | quantity
M
M
numjclusters > 1
O
O
o
o
o
o
num-dusterjmap-entries > 0

1
1

1
1

num -cluster .mop ̂ entries

Table A.2: System specific parameters

121

A Configuration File Structure

entry
num-nodes
slot Jen-re f
slotJensim
delta.0
sy mm-capturing
mt jactiontime
recover-from—freeze
sel f -calibration
use-master-dock
master ucloch jnode
recalibration-threshold
central -guardian
guardian-node
div-ext-corrjterm
time-flooding
no -cluster s tar tup
no sync-nodes
signal-speed
propjdelayjzorr
spreaducorr-int
spread jcorr _cxt
numslots
Logical Sender Name
CS
SYF
LCP
OSC
gateway
time -master -node
coldstart-flag
max jcoldstar t-fram.es
sysjdrift
freeze-at-slot
freezeuduration
freeze-num
freeze-repeat-rate
f aulty jmsg -in -round
faulty -msg -num.
f aulty jmsg-repeat-rate
change-drif tjatslot
change-drift-factor
change-drif t-num
change-drif t-repeat-rate
distance-to-medium

exists
M
M
M
O

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
M
M
o
o
M
M
O
o
o
o
delta-0 = 0

freezejatslot # 0
freezejatslot ^ 0
freeze-at-slot ^ 0

faulty-msg-in-round =£ 0
faulty-m s g-in-round ^ 0

change-drif t-atslot ^ 0
changejdrift^it-slot ^ 0
change-driftjatslot ^ 0
O

quantity
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
num-slots

num-nodes

Table A.3: Cluster specific parameters

122

Appendix B

Simulation Log File structure

File section
Header
Data

offset (bytes)
0
sizeof (Header)

Table B.I: File structure

field
bytejorder

samplesize

numsamples
reserved
datajnameJen
datajname

offset (bytes)
0

4

8
12
16
20

content
0 = LITTLE ENDIAN
1000 = BIG ENDIAN
number of rows per sample =
(num-clusters x 8) + 1
number of samples in file
0
number of characters in datajname
data name

Table B.2: Header structure

123

B Simulation Log File structure

field
Sample 0
Sample 1

Sample numsamples — 1

offset (bytes)
0
samplesize x 8

(samplesize x 8) x (numsamples — 1)

Table B.3: Data structure

numjdusters

1

2

n

field
sim time

data [0 0]
data [0 1]

data [0 7]
data [0 0]
data [0 1]

data [0 7]

data [n-1 0]
data [n-1 1]

data [n-1 7]

offset (bytes)
0

8
16

64
72
80

128

64 x (n - 1) + 8
64 x (n - 1) + 16

64 x (n - 1) + 64

content
simulation time at
sample generation
data cluster 0 node 0
data cluster 0 node 1

data cluster 0 node 7
data cluster 0 node 0
data cluster 0 node 1

data cluster 0 node 7

data cluster n-1 node 0
data cluster n-1 node 1

data cluster n-1 node 7

Table B.4: Sample structure

124

Appendix C

Reference tests

0.5 1 1.5
Simulation time (seconds)

2.5

x1(T

Figure C.I: Reference Test 2 - Cluster precision

125

C Reference tests

1 1.5
Simulation time (seconds)

2.5
x1O~'

Figure C.2: Reference Test 3 - Cluster precision

0.5 1 1.5

Simulation time (seconds)

2.5

Figure C.3: Reference Test 5 - Cluster precision

126

Curriculum Vitae

Alexander Hanzlik

March 26, 1970

September 1976 -
July 1980

September 1980 -
May 1988

November 1988 -
June 1989

October 1989 -
June 1995

October 1995 -
November 1998

December

March

November

1998-
date

2001-
date

2003-
date

Born in Vienna, Austria

Elementary School in
Vienna, Austria

Secondary School with bias on Latin and Greek
Bundesgymnasium 3, Kundmanngasse 22, Vienna, Austria
Graduation with distinction

Military Service, Landwehrstammregiment 22, Austria
Officer cadet, quit due to injury

Studies of Computer Science at the
Technische Universität Wien, Vienna, Austria
Graduation in Computer Science

Frequentis Nachrichtentechnik Ges.m.b.H.
Software engineering for the ARTEMIS project
(voice communication system for air traffic control)
for the Service de Navigation Aérienne (STNA)

SIEMENS AG Austria
Software engineering in the field of embedded systems
for telecommunication applications

Doctoral Studies in Technical Sciences
Technische Universität Wien, Vienna, Austria

Research Assistant
Institut für Technische Informatik,
Technische Universität Wien, Vienna, Austria

127

