Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitdt Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/)

DISSERTATION

Integration Of Genetic Algorithms For Knowledge-based
Multi-Objective Scheduling Problems in the DéjaVu Class

Library

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften unter der Leitung von

a.Prof.Dr.Jiirgen Dorn

Institut fiir Informationsysteme

eingereicht an der Technischen Universitat Wien

Technisch-Naturwissenschaftliche und Infomatik Fakultat

von
Dipl.-Ing. Maamar Saib
Matrikelnummer: 952 75 12
Linzer Strasse 429/4012, A-1140 Wien

Wien, am Oktober 2002

Abstract

Real-world scheduling problems are confronted with conflicting constraints and objective
functions. Scheduling problems are known as NP-Hard problems, i.e. there is no algorithm
that solves them in polynomial time. In the artificial intelligence community many ap-
proaches are used to solve these problems. In the last three decades modern approaches
from artificial intelligence were used. These approaches are known as meta-heuristic search
methods, such as simulated annealing, tabu search, evolutionary algorithms, random search,
and neural networks. In this thesis we use evolutionary algorithms to try to solve multi-
objective production scheduling problems in high-grade steel making. We focus on the use
of genetic algorithms, which are inspired from the Darwinian theory of the evolution in
nature and are some of the most used algorithms in the evolutionary computation commu-
nity. Genetic algorithms are integrated in a framework called DéjaVu class library, which
is specially designed for the production scheduling problems in high-grade steel making.
DéjaVu class library is based on object oriented paradigm, where other improvement meth-
ods like tabu search are implemented. In this thesis genetic algorithms try to improve the
multi-objective scheduling problem and compare the result with tabu search method. As
application a steel demo from the steel industry is used, which was inspired by real-world
steel making scheduling problems.

The Unified Modeling Language (UML), a modeling language for software design, is used
to design the integration of genetic algorithms in the DéjaVu Class library. Numerous rep-
resentations of a schedule in a chromosome and the corresponding operators are discussed.
Several genetic algorithms parameters like population size, crossover operators, mutation
operators, crossover and mutation probability are changed to see the influence of these op-

erators on the performance of genetic algorithms.

ii

1ii

In this thesis we extended the DéjaVu Class library to integrate genetic algorithms and to
do experiments to see how effective genetic algorithms are in solving production schedul-
ing problems in high-grade steel making. In the experiments we used two kinds of genetic
algorithms, the simple genetic algorithm and the steady state genetic algorithm. We com-
pared the results with the tabu search method and we proved that if we use the appropriate
parameters for genetic algorithms we get better results then when using the tabu search

method.

Keywords

Genetic Algorithms, Evolutionary Algorithms, Real World Scheduling Problems, Multi-
Objective Scheduling, Constraint Satisfaction Problems, Tabu Search, Crossover Operators
for scheduling, Mutation Operators for Scheduling, Object Oriented Analysis and Design,
Unified Modeling language(UML).

v

Kurzfassung der Dissertation

Praktische Anwendungen des Schedulingproblems sind oft mit widerspriichlichen Bedin-
gungen und Zielfunktionen konfrontiert. Fragestellungen werden auch als NP-schweren
Probleme bezeichnet, dh. es gibt keinen Algorithmus der dieses Problem in polynomialer
Zeit 16st. Im Bereich der kiinstlichen Intelligenz gibt es viele Ansétze dieses Problem zu
l6sen. In den letzten drei Jahrzehnten wurden viele Ansatze der kiinstlichen Intelligenz
verwendet. Diese Ansitze werden unter dem Begriff metaheuristischen suche zusammenge-
fasst, dazu gehoéren Simulated annealing, tabu search, evolutionire Algorithmen, Zufallsuche
und Neurale Netze. In dieser Dissertation verwenden wir evolutionare Algorithmen um
multikriterielle scheduling Probleme im Stahlerzeugungsprozess zu lésen. Wir verwenden
genetische Algorithmen, die aus der Darwinschen Evolutionstheorie entstanden sind und
weit verbreitet im Bereich der evolutioniren Algorithmen sind. Die genetische Algorith-
men werden in einer Klassenbibliothek mit dem Namen ” DéjaVu class library” integriert,
welche fiir Schedulingprobleme in der Stahlerzeugung konzipiert wurde. Die ” Déja Vu class
library” ist objekt-orientiert ausgerichtet und beinhaltet Methoden wie tabu-search. In
dieser Dissertation versuchen genetische Algorithmen multikriterielle scheduling Probleme
zu losen und die Ergebnisse mit tabu-search zu vergleichen. Als Anwendung wird eine
"steel-demo” der Stahlindustrie verwendet, die den realen Bedingungen der Stahlerzeu-
gung entspricht. Zur Integration der genetischen Algorithmen in die ” Déja Vu class library”
wird die ”Unified Modeling Language” (UML) verwendet. Mehrere Représentationen eines
”schedules” in einem Chromosome und dessen Operatoren werden diskutiert. Einige Pa-
rameter der genetischen Algorithmen wie zum Beispiel Grosse der Population, ” crossover”-,

Mutations- Operatoren, Crossover- und Mutationswahrscheinlichkeit wurden modifiziert,

vi

um den Einfluss dieser Operatoren auf die Qualitit der genetischen Operatoren zu unter-
suchen. In dieser Arbeit wurde die ” Déja Vu class library” erweitert, um genetische Algo-
rithmen zu integrieren und zu untersuchen, wie effektiv genetische Algorithmen verwendet
werden k¢”nnen, um ”scheduling Probleme” im Stahlerzeugungsprozess zu losen. In den
Experimenten verwendeten wir zwei Arten von genetischen Algorithmen: ”simple genetic
algorithm” und ”steady state genetic algorithm”. Wir verglichen die Ergebnisse mit der
”tabu search ” Methode und bewiesen, dass unter Zuhilfenahme der passenden Parameter

fir die genetischen Algorithmen bessere Resultate, als mit ”tabu search” zu erreichen sind.

Acknowledgments

I thank all persons, who aided my research specially a.Prof.Dr.Jiirgen Dorn my adviser,
Prof. Georg Gottlob, Dr.Dipl.Ing. Marion Girsh, a.Prof.Dr. Dipl. Ing. Wolfgang Slany. I
thank my family who supported me and my friends like in Vienna Ahmed Belbachir Nabil,
Ait-Tahar Rachid, and my friends in Algeria.

vii

Table of Contents

Abstract

Keywords

Kurzfassung der Dissertation
Acknowledgments

Table of Contents

1 Introduction
1.1 Scheduling Problems e
1.2 Overview of the Modern Search Methods from Artificial Intelligence
1.2.1 Simulated Annealing
1.2.2 Tabu Search
1.2.3 Evolutionary Algorithms
1.3 Conclusion e
1.4 Structure of the Thesis oL

2 Production Scheduling
2.1 Introduction. L
2.2 Scheduling of High-Grade Steel Process
2.2.1 Presentation of the problem
2.2.2 Evaluation of Schedule o0 00000
2.3 Presentation of the Steel Demo Application
2.4 Conclusion L e

3 Genetic Algorithms: An Overview
3.1 Introduction. e e
3.2 Genetic Algorithms Lo
3.3 Theoretical Aspect of Genetic Algorithm
3.4 Representation e

viii

ii

iv

vii

viii

Q0 00 O T i i = =

©o ©

Ne)

ix

3.5 Selection Methods 22
3.6 Scaling Methods 23
3.7 Crossover Operators v v v i i i e e e e e e e 24
3.8 Mutation 25
3.9 Different Kind Of Genetic Algorithms 25
3.10 Application of Genetic Algorithms 26
A Review of Representations and Operators for Scheduling Problems 27
4.1 Introduction. Lo 27
4.2 Indirect Representations of Schedule 28
4.2.1 Binary representation L. 28
4.2.2 Non Binary Representations 32
4.2.3 Maftrix representation Lo oo Lo oL 38
4.2.4 Permutation representation L 0L 42
4.2.5 Order/process plan representation 42
4.2.6 Order /process plan /resources representation 43
4.2.7 Time-dependent preference lists representation 43
4.2.8 Preference list-based representation 43
4.2.9 Priority rule-based representation 44
4.2.10 Disjunctive graph-based representation 44
4.2.11 Machine based representation oL 44
4.2.12 Operation-based representation 44
4.2.13 Job-based representation L oL 45
4.2.14 Completion time based representation 45
4.2.15 Random key representation 45
4.2.16 Pigeon-Hole Coding 45
4.2.17 New Genetic Representation 46
4.3 Direct representation of schedule 47
4.3.1 Knowledge augmented genetic algorithm for scheduling 48
Design and Integration of Genetic Algorithms in the existing DéjaVu
Class Library 49
5.1 Introduction. 49
5.2 Overview Of Unified Modeling Language 50
52.1 Class Diagrams e 56
5.2.2 Sequence Diagrams o 56
523 UseCaseDiagrams 56
5.3 Integration Of Genetic Algorithms in DéjaVu Framework 56
5.3.1 The existing DéjaVu framework, 56

5.3.2 Integration of Genetic Algorithms in the DéjaVu framework 60

6 Experiments and Results

6.1 Introduction
6.2 Application:

Steel Demo Scheduler

6.2.1 The influence of Genetic Operators
6.2.2 Comparison of genetic algorithms with tabu search method

6.3 Conclusion

7 Epilogue

7.1 General Conclusion i e e e e e e e

7.2 Open Topics
Bibliography
CurriculumVitae

Appendix

83
83
84
84
91
100

102
102
102

104

127

130

List of Tables

2.1 Steel Demo Scheduling Constraints 18
4.1 Jobs Matrixo 28
4.2 Machines Matrixo e 28
43 (21354] . o o i e e 38
6.1 Parameters for the Steady State Genetic Algorithm 85
6.2 Steady State Genetic Algorithm applied to the problem BM9 87
6.3 Parameters for the Simple Genetic Algorithm 91
6.4 Parameters for the Steady State Genetic Algorithm 91

xi

List of Figures

1.1

2.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

Simulated Annealing Algorithm L.
Aggregates in the Steel Making Shop

Class. o e e e e
Interface. oL
Use Case. o i e
Messages.o e e e e e
State machines.o
Packages. L
Notes. o e e e e
Dependency. L
Association. L
Generalization. Lo
Realization. L Lo
Structur of a Schedule
Degree of Satisfaction o oL
The Class Hierarchy of the GALib
Component Diagram: Genetic Algorithm
Simple Genetic Algorithm oo .
Genetic Algorithm Class and its Interfaces
Sequence Diagram of the method Initialize in genenetic algorithm class . . .
Sequence Diagram of the method Best Neighbor in genenetic algorithm class

Sequence Diagram of the Evaluate genomes method

xii

12

51
51
51
52
52
53
53
54
54
55
55
58
59
61
62
63
64
66
67

5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.1
7.2

xiii

Sequence Diagram of the Improve method 69
Coding Genome to a List of orders 71
Decoding schedule to genomeo Lo oL 72
Genome Class and its Interfaces 74
Sequence Diagram of the Decode Genome method 75
Class Diagram: Operators oo, 7
Sequence Diagram: Operators 78
Class Diagram: Steady State Genetic Algorithm 80
Class Diagram: Optimization 81
Sequence Diagram of the CreateScheduleDirector method 82

(a) Maximal Preservative Crossover with Swap Mutation. (b) Order Base
Crossover with Scramble Mutation 88

(c¢) Order Crossover with Insertion Mutation. (d) Partial Matched Crossover

with Swap Mutation oL 89
(e) Position Based Crossover with Insertion Mutation. (f) Uniform Order
Base Crossover with Insertion Mutation 90
(a) Comparison of SimpleGA, SStateGA, and Tabu Search:BM6 95
(b) Comparison of SimpleGA, SStateGA, and Tabu Search:BM9 95
(c) Comparison of SimpleGA, SStateGA, and Tabu Search:BM10 (d) Com-
parison of SimpleGA, SStateGA, and Tabu Searc:BM8 96
(e) Comparison of SimpleGA, SStateGA, and Tabu Search:BM1 (f) Compar-
ison of SimpleGA, SStateGA, and Tabu Search:BM3 97

(g) Comparison of SimpleGA, SStateGA using PositionBased Crossover and Scram-
ble Mutation , and Tabu Search:BM2 (h) Comparison of SimpleGA, SStateGA us-
ing:MaximalPreservativ Crossover and SwapMuation, and Tabu Search:BM2 . . . 98
(i) Comparison of SimpleGA, SStateGA using PositionBased Crossover and Scram-
ble Mutation , and Tabu Search:BM4 (j) Comparison of SimpleGA, SStateGA us-

ing:MaximalPreservativ Crossover and SwapMuation, and Tabu Search:BM5 . . . 99

Graphical User Interface: Simple genetic algorithm 131
Graphical User Interface: Steady state genetic algorithm 132

7.3
7.4
7.5
7.6
7.7
7.8

Graphical User Interface:
Graphical User Interface:

Graphical User Interface:

Xiv

Graphical User Interface:genetic algorithm operators 133
Simple genetic algorithm parameters 133
Steady state genetic algorithm parameters 134
Stoping Criteria 134
Improvement with Steady State GA 135

Graphical User Interface:

Graphical User Interface:

Improvement with Simple GA 135

Chapter 1

Introduction

In this chapter an overview of the problem which is being studied will be presented as well
as the methods which are used to try to solve it. The problem is a multi-criteria scheduling
problem, which is an NP-Hard problem [164]. For the past three decades this problem was
solved with two kind of methods. Methods from operational research field, where the search
for a solution is deterministic, and methods from artificial intelligence field, where these
methods are non-deterministic. The deterministic methods from operational research field
try to find an exact solution for the scheduling problems, and the non-deterministic methods
try to find an approximate solution. This thesis tries to solve the scheduling problem with a
class of methods from artificial intelligence field called evolutionary computation methods.
These methods are meta-heuristic search methods [170] which begin with several initial
solutions and try to improve these solutions with an evolutionary computation system.
In this chapter an overview is given of both the general and the particular scheduling
problems. Then an overview of the evolutionary algorithms and the difference between

them is provided.

1.1 Scheduling Problems

Scheduling problems are well known as combinatorial problems which are defined as
follows:
Assume we have a set of machines M;(i = 1,..,m) and a set of jobs J;(j = 1,...,n). The

schedule is an allocation of the operations of each job J; on the machines M; respecting

some constraints like those of temporal precedence, constraints on resources and any others
while optimizing a set of objective functions like makespan, or other objective functions.
Several scheduling problems exist, which are described in [30] and [5]. Some of them are

presented as follows:

1. Job shop schedule: The operations of jobs are scheduled in different orders on machines
respecting some constraints like:
-Each machine can process only one job at a time.
-The sequence of operations for each job is predefined

-Two operations of the same job cannot be processed at the same time

2. Flow Shop Schedule: It is a special case of the job shop. In this case all the operations
of a job are scheduled in the same order on the machines. The schedule is considered

as a permutation of all jobs to be scheduled.

3. Open shop schedule: This is the same as the flow shop with the exception that there
are no precedence relations between the operations of a job. The operations of a job
can be processed in any order, as long as no two operations are processed on different

machines simultaneously.
4. Mixed job schedule: This is a combination of a job shop and open shop schedule.

5. Machine Scheduling Problem: In this case n jobs j1,... j, are scheduled on a single
machine [100]. Several objective functions can be optimized, like minimizing the
squared deviations from the mean completion time or flow time. The constraints

could be if we have two jobs 7 and j, ¢+ must be processed before j on a machine.

Several approaches were applied to solve scheduling problems, here is an overview of these

approaches:

1. Mathematic methods from the operations research community: Optimization tech-
niques such as linear programming and dynamic programming, were not successful
when they were applied to scheduling problems with a large number of machines and

jobs or for real world scheduling problems as in the manufacturing industry.

. Heuristic methods from combinatorial optimization theory: In this approach the
heuristics produced good solutions but not guaranteed optimal solutions [114]. One
of the most used methods in this approach is branch and bound heuristic, which is
not used in real world scheduling problems because of a large number of constraints

and optimization functions.

. Heuristics search methods from the artificial intelligence community: In the artificial
intelligence community, scheduling problems are considered as constraints satisfac-
tion problems. These are solved using some heuristic search methods, like simu-
lated annealing, tabu search, evolutionary algorithms. Section 1.2 will present greater

overview of these search methods.

. Fuzzy sets and fuzzy logic:
In Slany’s [181] dissertation, he used fuzzy sets and fuzzy logic to represent constraints,

which are imprecisely defined.

. Methods that mimic natural process:
In this case many methods inspired by nature were used such as simulated annealing,

evolutionary algorithms, neural network, and case-based reasoning.

. Expert Systems Approach:

In Dorn [65] expert systems were presented to solve real world scheduling problems
in the steel making industry. One of the expert systems is the REPLAN system; it is
explained by Dorn [65] as follows:

"The REPLAN system supports the Human experts in construction a schedule for
high-grade steel making at Boler in Kapfenberg, Austria. The plant consists of four
production lines each starting with an electric arc furnace. The molten steel is poured
into ladles, refined in special aggregates, and finally cast either by cranes into ingots
on a horizontal continuous caster into slabs. The greatest problem is the variety of
metallurgical grades... Besides chemical constraints, spatial and temporal constraints
have to be regarded ”

The approach to solve the steel scheduling problem is described in Dorn [65] as follows:
”The scheduling system first analyses all orders for one week and determines what are

the problems or bottlenecks in this week. Then each order gets a value that describes

the difficulty to schedule this order in the actual week. The important orders and
those that were classified very difficult will be scheduled first.... For some orders this
can result in constraint violations. Finally, the achieved schedule is analyzed for week
points and is iteratively repaired...”

A fuzzy sets were used to represent the importance and difficulty of jobs and the
degree of constraint satisfaction [59] in order to compare different schedule created by
the system. Evaluation functions were defined by combining the fuzzy values of single
constraints.

Scheduling in the steel making industry is presented as a knowledge based system,
where the knowledge of the schedule are like job, order, resource,.., are modeled with

an object oriented design paradigm.

This thesis tries to solve scheduling problems with evolutionary algorithms, specifically with
genetic algorithms. There are two reasons why genetic algorithms are used. The first reason
is that deterministic methods do not guaranty an optimal solution or ”good” solution in
polynomial time whereas the genetic algorithms can find ”good” solutions in a reasonable
time. The second reason is that we want to see how well genetic algorithms compare to
other search algorithms from artificial intelligence. We will compare genetic algorithms
to the tabu search method and also compare genetic algorithms to each other. Through
experiments we will see how parameters of genetic algorithms influence their performance.
In the next section an overview of the evolutionary algorithms is presented, which have

became extremely useful in solving many kinds of problems.

1.2 Overview of the Modern Search Methods from Artificial
Intelligence

1.2.1 Simulated Annealing

Simulated Annealing [170] is one of the modern search methods which was inspired by
nature. It was first used in statistical physics to simulate the cooling of material in a heat
bath. If solid material is heated past its melting point and then cooled back into a solid
state, the structural properties of the cooled solid depend on the rate of the cooling. The
probability of an increase in energy of magnitude (o F) is as follows:

prob(cE) = eacp(—%) Where t is the temperature, k is a physical constant known as

Boltzmann’s constant. The algorithm of simulated annealing is given in figure 1.1:

1. Select an initial solution sg

2. Select an initial temperature ty < 0

3. Select a temperature reduction function o
4. Repeat

(a) Repeat
i. Randomly select s € N(so)
ii. o= f(s) = f(s0)
. if 0 <0
1. then sog = s
v. else
vi. generate random z uniformly in the range (0, 1);
vii. if © < exp(—F) then so = s;
Until iteration_acount = nrep
(b) Sett= alt);

Until stoppingcondition = true.

5. sg is the approximation to the optimal solution.

Figure 1.1: Simulated Annealing Algorithm

1.2.2 Tabu Search

Tabu search [170] is a search method based on the use of flexible memory. The memory
structure of tabu search operate by reference to four principal dimensions, consisting of

recency, frequency, quality, and influence. The algorithm of tabu search is presented below:

e Step 1: INITIALIZATION
Begin with the same initialization used by neighbourhood search and with the history

record H empty.

e Step 2: CHOICE AND TERMINATION
Determin Candidate_N(z™°%) as a subset of N(H,z™v). Select z"** from
Candidate_N (™) to minimize c(H,x) over this set. (¢! is called a highest eval-

uation element of Candidate_N (z™°"). Terminate by a chosen iteration cut-off rule.

o Step 8: UPDATE
Perform the update for the neighborhood search method and additionally update the
history record H.

Tabu search method is considered as neighborhood search method.

1.2.3 Evolutionary Algorithms

Evolutionary algorithms are one of the machine learning methods. They use the principle
of adaptation in nature. In Béack, [7] evolutionary algorithms are examples of unsupervised
learning techniques; i.e. inductive learning by observation and discovery. Bick [7] gives
two reasons why evolutionary algorithms are classified as machine learning methods, these

reasons are described as follows:

1. ”No teacher presents examples, counterexamples or even knowledge to the learning

system. Instead, the algorithm generates examples on its own.”

2. ”The creation of new examples (search points) by the algorithm is an inductive guess
on the basis of existing knowledge. If the guess proves its worth, it is kept in the

knowledge base (the population), otherwise it is discarded by means of selection”

”Evolutionary algorithms are related to artificial intelligence as an example of artificial intel-
ligence programs” [7]. evolutionary algorithms or evolutionary Programs that are described
by Michalewicz [148] are general search algorithms based on the idea of the evolution in
nature.

We distinguish between several kinds of evolutionary algorithms as follows:

1. Genetic Algorithms: They simulate Darwinian evolutionary process, they were first
developed by Holland in the seventies [108] and became famous by Goldberg in his
book [93] and subsequently studied by [53], [120] and others. In this thesis genetic

algorithms will be used as search methods to solve the scheduling problems; more

details will be seen in chapter 3

2. Evolutionary Programming: It was created by Lawrence Fogel in 1963 [84], this

method searches through a space of small finite state machines.

3. Evolutionary Strategies: They were created in 1973 by Ingo Rechenberg [169] and

[179]. They work on a smaller populations.

4. Genetic Programming: It was created by John Koza [120] in 1992 and was inspired by
genetic algorithms. The genetic programming paradigm was created to respond to the
question posed by Koza [120] "How can computers learn to solve problems without
being explicitly programmed? In other words, how can computers be made to do
what is needed to be done, without being told exactly how to do it”. The structure

used by Koza [120]was computer programs.
The different steps of the evolutionary algorithms are presented in the next subsections.

Initialization

Initial solutions are generated randomly or using some heuristics. Sometimes the perfor-
mance of evolutionary algorithms depends on the initial solution. The initial solution can

also be created with local search methods like hill-climbing.

Fitness assignment

Each phenotype corresponding to a genotype in evolutionary algorithms is evaluated with an
evaluation function and according to this evaluation function a fitness function is assigned

to each genotype.

Selection

The fitter solutions are selected from the population in each generation with a selection

method. The selected solutions are candidate to reproduce a new generation.

Reproduction

In this stage of the evolutionary algorithms the selected parents produce children with
recombination and mutation operators to create a new generation. The new generation is
made up of children, who inherit characteristics from their parents. They differ from their

parents but they have preserved some of their characteristics. [93]

Termination

The termination of the evolutionary algorithms depends on some criteria. These are usually

solution quality, number of generation, or convergence of the evolutionary algorithms.

1.3 Conclusion

There is no deterministic method to solve scheduling problems in polynomial time. Evolu-
tionary algorithms and especially genetic algorithms are stochastic search methods, which
allow us to solve scheduling problems more expeditiously as well as improving the solution
to create the best schedule. Often research trying to solve scheduling problems with genetic
algorithms or other evolutionary algorithms does not use real-world scheduling problems.
This thesis will use real world problems as framework to create solutions for scheduling

problems in the artificial intelligence field.

1.4 Structure of the Thesis

Section 2 will present scheduling problems and especially the steel demo scheduling problem.
Section 3 will present genetic algorithms in general.

Section 4 will present a review of representations and operators for scheduling problems.
Section 5 will explain the design and integration of genetic algorithms in the existing Déja Vu
class library.

In section 6 experiments are presented which compare the results of genetic algorithms and
the tabu search method as well as comparing the results between several kinds of genetic
algorithms and look at how genetic operators influence the performance of the solution.

Finally, section 7 will provide a general conclusion and the open topics.

Chapter 2

Production Scheduling

2.1 Introduction

In this chapter a production scheduling problem in steel making process is described, which
is a real world scheduling problem. This scheduling problem is inspired from the steel

making plant at Boler Uddeholm in Kapfenberg (Austria) [72]

2.2 Scheduling of High-Grade Steel Process

Many publications were made by Dorn et al. to solve the scheduling of High-Grade Steel
Process. [59] [69] [65] [61] [73] [60] [62] [72] [70] [68] [67] [66] [74] [64] [63]. In the following

a representation of the problem is done.

10

2.2.1 Presentation of the problem

As described in [72] a general presentation of the problem being solved is presented as
follows: Boler Uddeholm is one of the most important European producers of high-grade
steel. High-grade steel is crude steel refined with alloying metals like manganese, tungsten,
chromium, or others. These alloying metals have desired effects like compression strength,
impact strength, and many more. A production planning system compounds orders to jobs
and chooses required process plans. Furthermore, the system determines weeks when these
jobs shall be processed by regarding the capacity of the steel making shop. It works out for
each week two sets of jobs to be processed on both production lines. Usually the first shift in
the steel making plants starts Sunday evening and the last shift ends Saturday. Sometimes
fixed sequences for two or three jobs are given to facilitate the scheduling in the subsequent
plant. The task of the scheduler is to find a possible sequence for all jobs with violating as
few compatibility constraints between jobs as possible and to allocate resources over time
without violating temporal and capacity constraints. The result of this scheduling process
may be that some orders are rejected and shifted to the next week. To reduce the number of
rejected orders, general rules that explain what combinations of orders may be produced in
one week are already regarded by the production planning system. The steel making plant
produces slabs or ingots of a certain quality for different subsequent plants like the forge,
the rolling mill, or the foundry. The destination is important for the scheduling process,
because the working hours of these plants must be considered. Sometimes products are
stored for several days in intermediate stock yards, because the next plant cannot process
the jobs in the same sequence as the steel making plant. The different sequencing criteria
of jobs cause considerable costs for the company. Moreover, since the steel cools down it
must be warmed up again in the next plant. To reduce costs and to improve the quality,

some orders have due dates.

The steel Making Process

Pig iron produced in blast furnaces contains usually more than 4% carbon and is therefore

brittle. To get a deformable products, steel is produced by reducing carbon in pig iron

11

down to 0.2%. For many high-tech products the quality of steel must be even higher and
reductions of different chemical elements that are still in the steel must be achieved. If the
steel would be delivered immediately from the blast furnace this reduction process could be
made in LD-converts. Since in Kapfenberg no blast furnace exists the crude steel and scrap
iron are Matelda in electrical are furnaces. To reduce costs scrap iron with high percentages
in desired alloying elements is used.

The steel making shop in Kapfenberg consists of three main production lines that share some
aggregates. For every steel quality there is a process plant that describes which operations
must be performed on which aggregates to produce the quality. These operations and
sequences must be only replanned when a failure occurs.

The steel making process starts with the charge of crude steel and scrape iron in one of the
three electric arc furnaces (EAF). The filling of one furnace is called a heat and it already
contains the main alloying elements. The furnaces have different capacities from 17¢ to 55¢.
the duration of melting one heat depends on the size and the ingredients but also external
causes. Since the furnaces consume much electric energy, they are sometimes switched off
due to voltage peaks. Up to five hours can be required for melting, but usually two to two
and half hour are enough. A fixed set-up and a maintenance interval of twenty minutes are
included in this interval. The liquid steel is poured into ladles that are transported by a
crane to a ladle furnace (LF). If the preceding heat has a long processing time in the ladle
furnace, the current heat must wait. This slack time may not exceed two hours. The next
step is a heat treatment in the ladle furnace where where the fine alloying takes place and
whose duration is usually about the same as melting. Later a special treatment may be
performed in the vacuum oxygen decarburation (VOD) unit or on the vacuum decarburation
(VD) unit. The VD-unit can be converted into a VOD-unit. This conversion takes about
three to four hours.

The latest step in the steel making shop is the processing of the steel in a horizontal
continuous caster (HCC) to form slabs or the casting of it into molds to form ingots. The
teeming rate for the HCC is about 50¢/h. If the casting format must be altered, a set-up
time must be considered, too. For casting ingots, space in one of the four teeming bays
(TB), where ingots can solidify in the moulds, is required. Normally the solidification time

for ingots in hours is half as much as the weight of the ingots in tons. Thus an 52¢ ingot

12

Figure 2.1: Aggregates in the Steel Making Shop

needs one day and for an ingot of 1¢ half an hour is sufficiant.

The Bohler-Electro-Slag-Topping (BEST)- technology is a special casting technology for big
ingots. The ingots are treated additionally in the BEST-unit and for them only one place in
the teeming bays (TB 1) exists. The ESU-unit is used for some extra-clean steel qualities.
All aggregates and the routings for heats are shown in figure 7.2. Since the third production

line EAF5 and ESU-unit is used only seldom it is not regarded further in scheduling.

13

Constraints in Scheduling

e Compatibility Constraints: As described in [72], the main problem in scheduling is
that residuals of one heat in the electric arc furnace may pollute the next heat. The
engineers use as a rule of thumb that 3 % of a chemical element in a heat remain in
the wall of the electric arc furnace and 3 % of the difference of the elements in two
consecutive heats will be assimilated by the second heat. Of course, the 3 % are always
on the safe side and in some cases the expert relaxes this factor. Although the rule
is effective for 42 chemical elements, usually only eight main elements are considered.
These elements are nickel (Ni), Chromium (Cr), manganese (Mn), molybdenum (Mo),
tungsten (W), cobalt (Co), Vanadium (V), and iron (Fe). The amount of the other
36 elements is usually very small and restrictions are no scheduling problem. Since

not all elements react uniformly, exceptions exist that must be handled separately.

e Temporal Constraints: In principle, the cast steel can be stored in intermediate stocks
before it is further treated in one of the subsequent plants. However, then the steel
must be reheated which causes considerable costs. For some qualities it is also better
if does not cool down. Consequently appointments are made between steel shop
and subsequent plants that must be hold within a tolerance of more or less 2 hours.
The average number of jobs with such due dates is about 10 %. Of course, these
constraints are not really hard since they may be relaxed through negotiations with
the subsequent plant. However, it is desirable to hold these due dates to reduce
the time needed for negotiations. Furthermore, also these subsequent plants have to

regard also compatibility constraints that are different to those of the steel shop.

e Capacity and Related Constraints: About 70 % of the jobs are into ingots and the
remaining 30 % are processed on the continuos caster. For both casting technologies
some capacity constraints have to be regarded:

The continuous caster can be supplied with steel from both production lines.

14

2.2.2 Evaluation of Schedule

In [70] it is described how to evaluate a schedule. A schedule is evaluated in term of the
degree of satisfaction of the applicable constraints. Schedules with high satisfaction scores
are good schedules. A schedule for which the degree if satisfaction if any constraint is
below the critical threshold for that constraint, is not feasible. The evaluation of a schedule

S is as follows:

1 n m

f(S) = o Z Ji € S Nimportance(J;) + Z C; € S A satis faction(Cj) * weight(type(C;))
i=1 j=1

(2.2.1)

Where importance(J;) is a fuzzy value explaining the importance of a job J;. n is the number
of existing jobs. The degree satisfaction of a constraint is given by the function satisfaction
C;. Since not all constraints have the same importance for the schedule evaluation, the
satisfaction is weighted by a type-specific factor. The function f(S) is used as a fitness

function for the genetic algorithms.

2.3 Presentation of the Steel Demo Application

In [71] the Steeldemo was made as application. The steel demo application can be used to
construct schedules for a hypothetical steel making plant. The first and most important
resource in the plant is an electric arc furnace where the steel is smelt together with scrap
iron and alloying elements. We assume a constant duration of 120 minutes for this process.
The content of a furnace, the so called heat has up to 50 tons weight. One of the most im-
portant constraints on the schedule construction process is the compatibility of steel grades
sequenced on this furnace. Chemical elements such as nickel, chromium and others will
remain partly in the furnace. The next heat may take over some of these elements. If it is
prescribed for the subsequent heat to have only very few parts of this element, the steel may
be spoiled by the infiltration from the prior heat. Thus the first objective of the scheduler
is to find a good sequence on the furnace. If human experts consider these compatibil-
ity constraints, they first formulate a very strong constraint to relax if they do not find a
possible sequence. These constraints may be relaxed because there are still possibilities to

manipulate the chemical reactions during the actual process. After this first operation the

15

liquid steel is poured into a ladle. With this ladle the steel is transported to different steel
aggregates in the secondary metallurgy. The individual resources such as ladle furnaces, a
vacuum decarburation unit and others have not to be considered here because they do not
pose constraints on the schedule construction process. The duration of the whole secondary
metallurgy process depends on the kind of steel quality (i.e. the steel grade) to be produced
and is about two to three times longer than the smelting process. In the simplified model
of this demo we assume that the time is two times the furnace time plus for each alloying
element 20 minutes. An alloying element is a chemical element such as nickel that is added
in a considerable amount to give the steel certain characteristics. To enable continuous
operation on the furnace, six ladles are available. Since the compatibility problem holds
also for the ladles, the scheduler will typically create ”classified” ladles where each ladle
is specialized for a certain alloying element. Furthermore, the energy consumption on the
ladles should be minimized. Since a ladle must be hot if the steel is poured into, one has
to use as few ladles as possible and the duration between ladle usages should be minimized
without violating other important constraints. Finally, the steel is cast either with a con-
tinuous caster unit into slabs or with a casting crane into ingots of certain size. Although
the casting on the continuous caster is most economical, only a restricted number of heats
may be produced here due to technological constraints that are not under the scheduler’s
control. If the heat is cast into ingots, these ingots must be prepared and set up by a work
force in the teeming bay. After solidification, the ingots must be stripped off by the workers.
The durations of the solidification as well as set up and strip off are dependent on the size
of the ingots. If the heat is cast into many small ingots the work load is greater than for
one or few bigger ingots. Thus it is a further objective to distribute heats to be cast into
many small ingots over the whole scheduling period. The special characteristic of steel and
the requirement of a prescribed temperature demands that the smelting process, the ladle
process and casting process must be immediately after each other. Only very short breaks
are allowed. The plant operates in a three-shift mode from Monday 6 am until Saturday 2
pm thus allowing between 50 and 60 heats to be produced each week. Which heats shall be
produced are specified in a list of orders.

Such orders may contain additional constraints: There may be a due date demanding the

heat to be finished at a certain point of time which has to be hold within a tolerance of

16

two hours. Such orders must be delivered in time. A too late as well as a too early finish
is not desired because the cast steel should be still warm for subsequent processing. The
preferred start time is a softer time constraint used here to specify for difficult steel grades
when they are to be started. These temporal constraints are also relaxable if otherwise no
good sequence in regard of the compatibility constraint can be found. Moreover, there may
be constraints that describe that two orders shall be produced together. These so called
double cast orders are applied if so much steel of a certain grade is ordered that can not
be produced in one heat but is also not enough for two legal heats. Therefore the furnace
is first filled totally and after smelting, only one part of the smelt heat is poured into the
ladle. Then the furnace is refilled to produce the second heat. The steel demo schedulers
allows to produce randomly list of orders with the described characteristics. In a prefer-
ence dialog the number of orders and variability of these orders may be constrained. For
example, the number of orders is determined by a random number. However, this range
of the random numbers can be constrained. The default setting is to generate between 50
to 60 orders. These values can be changed to some reasonable values. Further it can be
restricted how many orders with due dates and preferred start times shall be generated for
each list. The number of double cast orders and orders to be produced on the caster are
also determined randomly. The diversity of steel grades generated is also under control. So
first there is a possibility to constrain how many different steel grades can be produced. If
the grade-order ratio (some value between 0 and 1) is small only few different steel grades
are generated and the compatibility problem will be not so difficult. If the ratio is set to
one, each order will have a different steel grade. However, this will not necessarily result in
a difficult problem, because the grades could be similar. The diversity of the steel grades
is determined by their chemical content. In the demo scheduler seven chemical elements
(nickel, chromium, maganes, vanadium, carbon, nitrogen and iron) are considered. For
each element lower and upper limits may be specified to control the diversity of products
to be scheduled. The algorithm will first decide how many alloying elements a new steel
grade shall contain. The possible alloying elements are nickel, chromium, manganese, and
vanadium. At least three are selected randomly. To be an alloying element the content
must be higher than 2 elements (especially carbon and nitrogen) lower limits are applied.

Finally, for each order it is determined whether slabs on the continuous caster or ingots in

17

the teeming bay are produced. Furthermore, the size and the amount of these products is
determined. This decision is independent of the steel grade.

-EAF (Electrical Arc Furnace): In the EAF resource the steel is smelt down, this resource
is a non-sharable resource where any two operations(allocations on the resource) may not
overlap temporally.

-Ladles(Ladle 1 ..Ladle 6): This is a resource group containing six ladles (non-sharable
resources) that are used to transport the liquid steel in the secondary metallurgy until the
steel is cast into ingots in the teeming bay or slabs on the continuous caster.

-Continuous Caster(CC): This resource is a non-sharable resource, It should work without
interruptions (in sequences) to produce most economically. If the caster stops a longer setup
is required. Compatibility constraints are very hard so that usually only equal steel grades
may be cast in sequence.

-Teeming Bay(TB): The TB is a sharable resource where the number of blocks in the teem-
ing bay is represented by a curve. If the steel is cast into ingots space for the solidification
process is needed in the teeming bay. The TB stores how many ingots solidify at a given
point of time in the bay. This resource is sharable because more than one job may use this
resource at a time.

-Worker: This resource shows the effort of the workers for building up and strip off the
blocks in the teeming bay.

A minimum of fifty jobs and maximum of sixty jobs should be scheduled on these resources,
the schedule of these jobs should satisfied some constraints. The main criteria that con-
straints the sequence of jobs is compatibility constraints between jobs. There are hard
constraints and soft constraints; for example Due dates are considered as soft constraints.
To evaluate a given schedule the satisfaction of all constraints and objectives are described.
Different kind of constraint violation get different weights. In the steel making application
we have the following constraints with their weight and threshold: From these constraints
there exist soft and hard constraints. Soft constraints can be violated but hard constraints
must not be violated, this means to have a feasible schedule hard constraints must be

satisfied.

18

Evaluation Criteria Weight | Threshold
Chemical compatibility 0.2 0.3
Idle time 0.05 0.0
Tardiness 0.3 0.1
Preferred start time 0.1 0.0
Minimal resources 0.1 0.0
Balanced load 0.05 0.0
makespan 0.2 0.0

Table 2.1: Steel Demo Scheduling Constraints

2.4 Conclusion

In this chapter a general description of steel making plant scheduling was presented and
an application, Steeldemo scheduler, which create benchmarks to make experiments on it.
The scheduling problem in the High-Grade steel making is a NP-hard problem [164] which
could be not solved by traditional methods from operational research. The approach used
in this thesis is evolutionary algorithms that are robust methods to find ”good” solution in

a polynomial time.

Chapter 3

Genetic Algorithms: An Overview

3.1 Introduction

This chapter provides an overview of the genetic algorithms and explores their theoretical
aspect. First, genetic algorithms and their applications will be described, then theoretical
description of genetic algorithms is provided as well as how a solution in a genetic algorithms
should be represented. Different selection methods, which provide the ability to select the
genomes from the population are given and different scaling methods are explained in details.
The most important process in genetic algorithms are their operators, namely crossover and

mutation operators which are explained in detail in this chapter.

3.2 Genetic Algorithms

Genetic algorithms are one of the most important and the most used techniques in the
evolutionary algorithms paradigm. Developed by John Holland [108], genetic algorithms
are inspired from the evolutionary process, which exists in nature.

The basic idea of genetic algorithms is that they mimic the evolution to solve optimization
problems which have not yet been solved through deterministic methods. These optimiza-
tion problems are known NP-Hard problems [164], such as traveling salesman problem,
scheduling problems, Coloring problem,..etc.

Genetic algorithms have several characteristics which are as follows:

19

20

1. Representation of solutions
2. Recombination

3. Selection

4. Reproduction

5. Fitness function.

The characteristics above are described below.

Classical genetic algorithms as described by Holland [108] use bit string representation; each
string has a fixed length.

The next sections present a theoretical approach of genetic algorithms followed by a discus-

sion of the characteristics of genetic algorithms.

3.3 Theoretical Aspect of Genetic Algorithm

The theoretical aspect of genetic algorithms helps us to understand the mechanisms of
genetic algorithms and to answer the questions of why they work and how they work. The
widely used theoretical explanation of genetic algorithms was developed by Holland [108]
and Goldberg [93]. Some explanation of the theoretical aspect is as follows:

There exist some strings which have similar substrings, this similarity is described by
schemata (set of schema). Schemata are defined to be strings of length [over the alphabet
0,1, %

Example:

The schema H =1 % 01x* represents a set of the following bit strings

10010

10011

11010

11011

Schemata have two measures Holland [108]:

order o(H) of a schema: number of fixed positions of H.

21

H =0x* %1%

o(H) =2

defining length A(H) of a schema H, which is a distance between the first and last specific
string position.

H =0 % %1%

A(H)=4-1=3

The influence of selection, crossover, and mutation operators on schemata is described by

the following schema theorem:

m(H,t +1) > m(H,t).f(H)/[1 — Pe.(H)/(— 1)] (3.3.1)

The equation 3.3.1 means that short, low-order, above average schemata, so called building

blocks, receive exponentially increasing trials in the following generations [93].

3.4 Representation

Representation is the basis of genetic algorithms, because genetic algorithms work on
chromosomes.

Simple genetic algorithms, as described by Holland [108], use bit string representation, i.e.
each chromosome represents a set of 0,1 and each chromosome has a length 1.

Example:

Chromosome: 10100010

In the last three decades several new genetic algorithms have been developed, which have

different representations. An overview of these representations is as follows:

1. Order-based representation:
Bean [15], where each element of the chromosome is an integer. This kind of repre-
sentation was used for sequencing problems like Traveling Salesman Problem (TSP)
or scheduling problems.
Example:
Chromosome: 12345678

22

2. Tree structures:
This kind of representation was created by Koza [120], where each node of a tree
represents a program. From this structure new paradigm of genetic algorithms was

created called genetic programming paradigm.

3. Real representation:Alden [2].
Where each element of a chromosome represents a real number.
Chromosome:

CH = (x1,..,%;, .., Tn), where z; is real number.

4. Matrix Representation [87] Where each element represents a binary (0, 1)

0001
1 1

01 01
1111

3.5 Selection Methods

1. Roulette-Wheel Selection: Goldberg [93]
This method is also known as proportional selection method Holland [108]. This

method of selection works as follows:

e Calculate the fitness value f; for each chromosome i in the population (i=1 ,..,
pop-size).

e Find the total fitness of the population
F =S

e Calculate the probability of a selection p; for each chromosome i in the population
(i=1 ,.., pop_size):
pi = %

e Calculate a cumulative probability g; for each chromosome i (i=1 ,.., pop_size)
4 = 2221 pj

This method requires positive fitness values and a maximization task, so that scaling

functions are often used to transform the fitness values accordingly.

23

2. Stochastic Selection:Goldberg [93]
- Calculate selection probabilities
- Successive pairs of individuals are drawn using roulette-wheel selection

- The string with higher fitness function is selected to produce the next generation.

3. Tournament Selection: Goldberg [93]
Take a random uniform sample of a certain size ¢ > 1 from the population, selecting
the best of these q individuals to survive for the next generation, and repeat the
process until the new population is filled. This method is computationally efficient

and is easy to implement, which is why it is popular.

4. Ranking Selection: Goldberg [93]
In this method the population is sorted according to objective function value. Chro-

mosomes are then assigned an offspring count that is solely a function of their rank.

3.6 Scaling Methods

If the fitness function is given for each chromosome in a population, there are some ex-
traordinary chromosomes, i.e. chromosomes with a high fitness function, which dominate
the selection process during the run of the genetic algorithm and the genetic algorithm will
converge to a local optimum. To avoid having such situations Goldberg [93] uses the so
called scaling function methods, which try to accentuate differences between individuals in

the population and to avoid local optimun.

1. Linear Scaling Goldberg [93] g = a.f + b. Where a, b are constant. The role of the
coefficients a and b is that they enforce quality of the raw and scaled average fitness
values and cause maximum scaled fitness to be a specified multiple of the average
fitness. In the linear scaling method the fitness function must be positive otherwise

this method does not work well.

2. Logarithmic Scaling ¢ = a — log(f). This function assume a guaranteed positive

objective function as well as a < log(f)

3. Exponential Scaling g = (a.f + b)°. Where a and b are chosen as in the case of the

linear scaling methods.

24

4. Sigma Truncation g = f — (f —c.c) Where c is a small integer and ¢ is the population’s

standard deviation; In this case the possible negative functions g are set to zero.

3.7 Crossover Operators

Crossover operators play a central role in genetic algorithms. They are used to explore the
search space. Crossover operators operates generally in two individuals of the population
to create new offspring. These offspring are different from their parents but do inherit
some characteristics. The most important role of crossover operators is the disruption.
The first crossover operator created by Holland [108] is the one-point crossover operator,
which operates on two individuals (bit string). One position is chosen randomly on each
individual, then substring are exchanged.

Example :

Parent 1

If we choose the position 5 the offspring will be as follows:
Child 1
10|01 j1f1]1|01{0

Child 2
00110101101

Several crossover operators were created after the one-point crossover. The new

crossover operators depend on the kind of representation used.

25

3.8 Mutation

Mutation operators were introduced by Holland [108]. They try to change single bits in the
new offspring by inverting them.

Example :

0—1

1—0

The mutation operator is used with mutation probability F,,, which should be very small.

3.9 Different Kind Of Genetic Algorithms

Since the last three decades several new genetic algorithms have been developed. In this

section the most important genetic algorithms are presented as follows:

1. Simple Genetic Algorithm: As described by Goldberg [93], is composed of three main
operators:
-Reproduction:
In this process individuals are copied according to their fitness function. Individuals
with high fitness function have more chance of participating in the production of the
next generation whereas individuals with low fitness have less chance. -Crossover:
This operator takes two parents from the current population and create two children
which are different from their parents but contain some characteristics of their parents.
-Mutation:
This operator tries a random alteration of children. The goal of this operator is to

avoid the quick convergence of the genetic algorithm.

2. Steady State Genetic Algorithm: Syswerda [187] In this algorithm there is one pa-
rameter which is the number of new chromosomes to create. In general one or two

children are created and inserted in the population.

3. Incremental Crowding Genetic Algorithm: De Jong K. A. [55] and Mahfoud [141].

It follows the simple genetic algorithm except that only a fraction of the population

26

reproduces and dies with each generation.

4. Parallel Genetic Algorithms:
In this algorithm multiple processors are used in parallel. Each individual selects by

itself. It looks for partner in its neighborhood only [156].

5. Distributed Genetic Algorithms:

multiple populations are separately evolved with a few interactions between them.

6. Messy Genetic Algorithms: [94]
It uses a number of ”exotic” techniques such as variable-length chromosomes and a

two-stage evolution process.

7. Multi-objective Genetic Algorithms: [213]
If there are many objective functions, the simple genetic algorithm does not work,

this is why new genetic called multi-objective genetic algorithm are created.

8. Hybrid Genetic Algorithms:
This represent genetic algorithms combining with other search algorithms like simu-

lated annealing, tabu search, hill climbing, ..etc to perform their quality.

9. Compact Genetic Algorithm: [101] Where the population is represented as a proba-
bility distribution over the set of solutions and is equivalent to the simple GA with

uniform crossover.

3.10 Application of Genetic Algorithms

Genetic algorithms are widely applied in areas such as pattern recognition, robotics, artificial
life, expert systems, electronic, electrical application, cellular automate, biology, medicine,

scheduling and planning problems, as well as others.

Chapter 4

A Review of Representations and
Operators for Scheduling Problems

In this chapter an overview of the different kinds of solution representations made for
scheduling problems are provided. Firstly, indirect representations of a schedule in a chro-
mosome are given, then different direct representations of schedules in chromosomes are

explained.

4.1 Introduction

Representation is one of the most important characteristics of genetic algorithms, it is
in fact the key issue for genetic algorithms. The improvement of a solution by genetic
algorithms depends first of all on which kind of representation is used to code the solution,
it is very hard to know which representation will give us the best results. In Scheduling
problems many representations were proposed by researchers in the last three decades [87],
[159], [52], [186], [32], [9], [10], [203], [122], [21], [190], [44], [127],[46],[75], [58], [109], [22],
[143]. In this chapter a review of the most used representations in scheduling problems and
the corresponding operators are provided. Two kinds of representations are used in most

scheduling problems.

e Direct representation, in which the whole schedule is coded in a chromosome, in this
representation special and specific operators(crossover and mutation operators) are

used.

e Indirect representation, in which just a set of jobs or a set of orders for each job is

27

28

coded in a chromosome. In this representation we need a decoder, which is also called

a schedule builder, to decode a solution (chromosome) into a feasible schedule.
4.2 Indirect Representations of Schedule

In this kind of representation just some elements of schedule such as jobs, machines, process-
ing time, or the plan are represented in a chromosome. To get a schedule from chromosome

a schedule builder or decoder is needed.

4.2.1 Binary representation

Nakano [159] was the first person who used binary representation in scheduling problems.
In this case the schedule is represented as a binary chromosome, where each chromosome
contains 0 or 1. Nakano [159] defined a function called ’prior’ which is described as follows:

If we consider two jobs j1 and j2 to be scheduled on the same machine then:

o 1 if the operation j; is executed before the operation jo on the same machine
prior(j1,52) =
0 otherwise

Example: for 3 jobs and 3 machines we have the following tables: 4.1, 4.2.

ml |2 il |3
m2 | j3 |jl|j2
m3 | j2 | jl |3

Table 4.1: Jobs Matrix

Machine sequence:

j1 | m1 | m2 | m3
j2 | ml1 | m3 | m2
j3 | m3 | ml | m3

Table 4.2: Machines Matrix

29

We define a function prior (j1,j2) on (m1,m2,m3) :
e prior (j1,j2) =0 on m1
e prior(j1,j2)=1 on m?2
e prior (j1,j2)=0 on m3
The value of the function prior (j1,j3) on (ml m2 m3) is :
e prior (j1,j3)=1 on ml
e prior (j1,j3) = 0 on m2
e prior (j1,j3)= 1 on m3
The value of the function prior (j2,j3)on (ml,m2,m3) is :
e prior(j2,j3)= 1 on ml
e prior(j2,j3)= 1 on m3
e prior(j2,j3)= 0 on m2

Through the value of the function prior we determine a 3 x 3 matrix:

010
1 01
110

prior(j2,j3)= 0 on m2:

Through the value of the function prior we determine a 3 x 3 matrix:

0
1
1

—_ O =

0
1
0
prior(j2,j3)= 0 on m2:

Through the value of the function prior we determine a 3 x 3 matrix:

30

0
1
1

—_ O =

0
1
0

In this representation a conventional genetic algorithm is used with conventional op-
erators (crossover and mutation) described in [93]. When a conventional crossover operator
is used, the chromosomes produced are illegal (they give no feasible schedule). Nakano
[159] used an evaluation function to find a legal chromosome g’, as similar to the initial
chromosome g as possible, then g’ is evaluated to determine the fitness of g. In survival of
chromosome a treatment is introduced called forcing, it replaces the chromosome g with g’

when g is selected as a survivor.

Conventional Operators In [93] the following operators are described as follows:

e One point Crossover
Example:
Parent 1:
110 0 1j1 0 1
Parent 2:
01 0 0 1|]0 1 1
Child 1:
110 0 1j]0 1 1
Child 2:
0 1.0 0 1|1 0 1

This operator works on conventional binary representation. It uses one random cut

point on each chromosome, then the chromosomal material is swapped and two dif-

ferent children are created

e Two Point Crossover
This operator works like the one point crossover [93] , except that two cut points rather
than one are selected at random, and chromosomal material is swapped between the

two cut point.

31

Example :
Parent 1:
1 170 0 1]1 0 1
Parent 2:
0 1]0 0 1|10 1 1
Child 1:
110 01 0 0 1
Child 2:
010 0 1 1 11

Knowledge-Based Nonuniform Crossover: This Crossover Operator [143] also works
on binary representation. The difference between this operator and the conventional
crossover operators is that in conventional crossover operator masks, each bit is 1 or 0 with
equal probability. In Knowledge-Based Nonuniform Crossover, the crossover mask is a
string of real members € [0,1]. Real member represent a probability of selection of a gene
in a chromosome, which depends on the position of the bit in the string and on problem

dependent knowledge.

Example:

P1:

11 0 01 1 0 1

P2:

010 0 1 0 1 1

Mask:

05 03 07 01 06 02 09 08

The children are obtained using the following relation:
Prob(P1(i) = P2(3)) = p;
p; is the probability of the bit i.

32

4.2.2 Non Binary Representations

In this representation each gene in the chromosome contains natural numbers. FEach
number corresponds to the job to be scheduled or the processing time of a job on one
machine.

Example:

If we consider a set of 9 jobs to be scheduled we represent these jobs in a chromosome as
follows:

1 2 3 45 6 7 8 9

Non binary representation is a more natural to have a representative schedule than
a binary representation. The schedule is considered to be sequencing problem, therefore
the same representation and operators used in the Traveling Salesman Problem (TSP) are

used in scheduling problem. We consider the following representation and operators:

Orders representation [186] The genes of each chromosome are represented as orders to
be scheduled. In this case the scheduling problem is considered to be a sequencing problem
and we can approach it in the same way we would with the Travel Salesman Problem. In
the TSP the operators do not use any information concerning the distance between cities,
this means that it is possible to use these operators for other sequencing problems, like the

scheduling problem (the order in the scheduling is very important).

e Partial Matched Crossover [93]
This operator is used for the ordering representation, a sub-list is mapped onto a sub-
list of the other parent and the remaining information is exchanged. This operator
works by using the following four steps:
Step 1 : Choose an interval to be swapped .
Step 2 : Create a map from the selected interval.
Step 3 : Exchange the two intervals.
Step 4 : Use the map to alter the new solutions so that they are once again legal (no

conflict)

33

example :
Parent1:
1 2 3/4 5 6 7|8 9
Parent2:

4 5 2|1 8 7 69 3
Firstly the segments between the cut (I: the symbol of the cut) are swapped:
01=(I18761)
02=(145671)

We have a set of mapping : 1 <> 4,8 <> 5,7 <> 6,6 <> 7 The cities for which there is

no conflict are filled in:

01=(23118761.9)

02=(.214567193)

(The point means until now there is no gene) The rest not filling genes are replaced
by the mapping list : (for example : in the first gene of O1, it should be 1 but there
is a conflict, it is replaced by 4 using the mapping 1 7 4). We have the result in the
offspring as follow:

01=(423187659)

02=(182456793).

Order Crossover [52]

A sub-list from one parent is chosen then a relative order of tasks is preserved from
another parent. This operator works using two steps :

Step 1 :Choose an interval to be copied into offspring

Step 2 :Starting from the last interval of one parent , the tasks from the other parent
are copied in the same order , omitting symbols already present.

Example :

P1=(12314567189)

P2=(45211876193)

O1=(145671)

02=(118761)

After the removal of the tasks 4 ,5,6,7, which already exist in the first offspring, we

34

will have:
01=(218455693)
If we do the same thing for the second offspring, we will have :

02=(345187692).

Order based crossover [186]

It randomly selects several positions in a chromosome, then the order of tasks in the
selected positions in one parent is imposed upon the corresponding tasks in the other
parent.

Example:

P1=(123456789)

P2=(412876935)

The positions 3 rd, 4 th , 6 th and 9 th are randomly selected, the ordering of tasks
in these positions from P2 will be imposed on parent P1. The tasks are present at
position 2 , 5, 6 , 8.In the offspring the elements from p2 (2-8-6-5) on the positions
are recorded to match the order of the same elements from P2 (order: 2-8-6-5) the
offspring is a copy of P1 on all positions except positions 2,5,6,8:
01=(1.34..7.9)

All other elements are filled in the order given in parent P2.
01=(123486759)

By using the same steps the second offspring is:

02=(312874695).

Position based crossover [186]
Is much the same as the order based crossover, the only difference being is that
the position based crossover selects several tasks at random instead of selecting one

subsequence of tasks to be copied.

Edge recombination operator [203]
In this case the scheduling problem is represented as a sequencing problem. It is con-

sidered to be an ordering problem similar to that of the Traveling Salesman Problem.

35

The edge recombination operator does not work on cities but it explores the infor-
mation on the edges in a tour. The offspring is built from the edges present in both
parents (each parent represent a tour). This operator uses an edge map, its stores all
the connections from the two parents that lead into and out of a city. After an edge
map is made from the two parents, an initial city from one of the two parents tours
is chosen (this is the first city in the parents tours). If the two initial cities from
the both parents have the same number of edges on the edge map, one initial city is
chosen randomly, or else the initial city which has the smallest number of edges on
the edge map is chosen. In step 2: all occurrences of the chosen city are moved from
the left -hand side of the edge map. Step 3: If the chosen city has entries in its edge
list, go to step 4, or else go to step 5. Step 4: Determine which of the cities in the
edge list of the current city has the fewest entries in its own edge-list. The city with
the fewest entries is consider as a chosen city, go to step 2. Step 5: If there are no
remaining unvisited cities then stop, or else randomly choose an unvisited city and
then go to step 2.

Example:

P1=(123456)

P2=(243156)

first we make the edge map:

1: 2635

2:13614

3:241

4: 352

5:461

6: 152

The initial cities of the parents are: 1 and, 2, and we have to choose one of them.
City 1, and 2 have the same number of edges, so we can choose one city randomly.
City 2 is chosen:

1: 635

*2:1364

3:41

36

4: 35

5:461

6: 15

The edge list indicates there are four cities to be candidate for the next chosen city
(1,3,6,4). City number 2 is eliminated, and city 3 is chosen randomly. City 3 has
edges to cities 4 and 1 . Next city 4 is chosen (It has the fewest edges). City 4 has an
edge to 5, and then city 5 is chosen. This city has edges to 1 and 6, we chose city 1
at random because it has the same number of edges as city 6. City 1 give way to city
6, and the offspring is as follows:

0=(234516).

This offspring is composed entirely of edges taken from the two parents (P1 and P2).

Precedence preservative crossover which was applied to scheduling problems by [22].
The offspring chromosome is initially empty. Then a vector of length 'n’ is randomly
filled with elements of the set 1,2. This vector defines the order in which genes are
drawn from parent 1 and parent 2 respectively .After a gene is drawn from one parent
and deleted in the other one , it is appended to the offspring chromosome.

Example:

P1:
322231113

P2:
113221233

gene of parent:

112222111

PPX:
321121233

37

e Maximal Preservative Crossover
This operator was introduced by [155]. A substring is randomly selected from the
first parent whose length is greater than or equal to 10 and smaller or equal than
the size divided by 2. (This choice is done to preserve more information from the
parents). Then all the chosen elements from the first parent are removed from the
second parent. After that, the substring chosen from the first parent is copied onto
the first part of the offspring. Finally, the rest of the offspring is filled up with
elements in the same order as they exist in the second parent.
Example
Parent 1
1)2|3]4]5]6]7]8]
Parent 2
24l6]8]7]s5]3]1]

The substring (3 4 5) is chosen from the first parent.
The offspring will be:
3lals]2]6]8]7]1]

e Uniform Order-Based Crossover This operator is described in [43] as follows:
This operator used the uniform crossover mask to select jobs from parents.
If the mask is 1 then the job from parent 1 is selected to be in the offspring and

the remaining jobs are filled in the offspring in the same order they appear in Parent 2.

Example:
Parent 1
1)2|3]4]5]6]7]8]

Parent 2
24687531‘

38

Mask:

4.2.3 Matrix representation

In this representation [87], the scheduling problem is considered to be a sequence problem
(the same as a TSP). If we have a sequence of jobs, this sequence is represented by boolean
(0,1) matrices that represent predecessor and successor relationships.

Example: If we have the sequence [2 1 3 5 4], then the job 1 precedes job 3, job 3 precedes
job 5, and job 5 precedes job 4, etc. This sequence can be represented by the following

matrix as follows:

—_ O = =

O O = ==Lt

OO O = P W

OO OO O

U W N =
SO O = Ol

Table 4.3: 21354]

The matrix element m;; = 1 if and only if job i occurs before job j in the sequence.
The sum in the column determines the number of predecessors of a job, and the sum in the
row determines the number of successors of a job . The matrix representation has three

properties:

1. The number of 1 is exactly: n(n —1)/2

39

2. mij=0 for all 1 <=7 <=n (no cycle exists)

3. if mij =1 and mjk = 1 then mik =1

(the transitive nature of the order must be respected).

Operators for Matrix Representation

e Union Operator [87] The union operator works in 4 steps. If we have a binary matrix
representing the parent sequences, first partition the set of symbols (jobs) into two
disjointed sets. Second, construct the matrix which contains the bits from the first
parent that defines the relationships within the first subset of jobs and construct the
matrix which contains the bits from the second parent that defines the relationships
within the second subset of jobs. Third, perform the logical OR (union) of these
two matrices resulting in a matrix that contains unique attributes from both parents
but with some attributes still undefined. Fourth, convert the obtained matrix into a
sequence of jobs, which corresponds to the created children.

Example:

If we have the two sequences:

Parent 1: 21354]

Parent 2: [51234]

and if we choose the disjointed subsets: [2 1] and [35 4].

Then the two parents can be represented by the binary matrix as follows:

Parent 1: 21354]

R e e S
O O = = ot

3
1
1
0
0
0

Tt W N =
S O O = O
oS O O O O|N

Parent 2:[5123 4]

40

S O O O O ot

R e e S

3
1
1
0
0
1

ot W N =
_ o O o o=
_ o O O =N

The Matrix resulting from the union of the two matrices above is as follows:

Children:

S N
ST e
T T T
—_ o o M 5w
— o kM M a
S O = M M| o

X

e Intersection Operator [87] The idea behind the intersection operator is that the
characteristics that are common to two good solutions should be passed onto the
children. Given two matrices from the parents, a logical AND (intersection) of the
two parents is used to create new children.

Example:

If we have the two sequences:

Parent 1: 21354]

Parent 2: [51234]

The two parents can be represented by the binary matrix as follows:

Parent 1:[213 5 4]

41

1(2(3(4|5
1101011]1|1
21170111
310100111
410(010(0|0
51070701110

Parent 2:[51234]

11231415
1{0]j1(1|1]0
2(0(0]1(170
3/]0]10]0)1]0
410(010(0|0
51111110

The Matrix resulting from the intersection of the two matrices above is as fol-

lows:
Children:
112345
1110|0110
210(0|1]1]0
3/]0(0|0]1]0
410(0(0|0]0
5/0(0|0]|1]0

The children corresponding to the matrix can formulate the sequence:

Children: [12354]

Compared to other operators like Partial Matched Crossover or Edge Recombination oper-

ator, the genetic algorithm with Union or Intersection operators computes slowly [87].

42

4.2.4 Permutation representation

n jobs (tasks) are executed on a set of m machines [22]. We have to assign all jobs to
machines and sequence the assigned jobs for each machine such that an overall cost-function
is minimized. pl,.,pnl, pnl+1,.,pn2,...pnm-1 +1,...pn

machine 1 machine 2 machine m

This representation is the permutation of the job numbers 1,2,..,n, which is m-partitioned

by the numbers nk.

Crossover Operators In this representation two kinds of crossover operators are
used, namely the General Order Crossover (GOX) and the General Partial Matched
Crossover(GMPX) [22].
Example:

Parent1:
3122|2311 (1]3
Parent2:
1(113(2(2(1]2]3]|3

GOX offspring:
11322123113

GPMX offspring:
1132213 |1]2]1|3

4.2.5 Order/process plan representation

In [9] and [10], each gene of a chromosome contains an allele representing an order/process
plan.
Example:

oderl/planA | order3/planB | .. | order2/planA | order5/planC

43

4.2.6 Order /process plan /resources representation

In [9] and [10], each gene of a chromosome is represented as follows:

Op0 Opl | Op0 Opl Op2
Job: 1 Job: 0
M2 M1 MO M1 MO

The order of the jobs is important, this means that the priority of job 1 is bigger than
the one of job 0.
The operators used in this case are :crossover operators, plan crossover, mutation oper-

ators.

4.2.7 Time-dependent preference lists representation

To encode the scheduling problem, there is for each machine (resource) a list of preferences
which are linked to times [52]. For example : Resource 1: (40 03 ol 02 ’wait’ ’idle’),the first
element of a list mean the time at which the orders work. The machine (resource) should
execute the order 03 before ol. If this is not possible, then it should execute the orders
ol and 02. If no order is available to execute the machine should wait. Three operators
are used in this case: run-idle: It inserts the ’idle’ as the second member of the preference
list and resets the first member (time) of the preference list to 60 minutes . scramble: it
scrambled the members of preference list . crossover: The operator exchanges preference

lists for selected resources.

4.2.8 Preference list-based representation

This representation was originally created by [52]. If we have m machines, n jobs, each
chromosome contains m sub chromosomes, and each sub chromosome contains n operations,
each operation has to be processed on the relevant machine. The sub chromosomes are, in
reality, a list of preference, this means each machine has its own preference list. Example:
with 3 machines(m1,m2,m3) and three jobs(j1, j2, j3), we consider a chromosome:
ch=1[(231)(132)(213)] The gene (2 3 1) is the preference list for the machine
ml ,the gene (1 3 2) is the preference of the machine m2, and the gene (2 1 3) for the

machine m3. This means the first operations which are preferred are j2 on machine ml, j1

44

on machine m2 and j3 on machine m3.

4.2.9 Priority rule-based representation

A chromosome is represented as a sequence of dispatching rules for job assignment [75]. If
we have n jobs which are executed on m machines, the chromosome is encoded as a string
of n x m entry (P, Ps,, Pym).Each entry Pi represents one rule.

Example : The chromosome ch is represented as follows:

ch=[122144213], each gene is considered as rule. 1:means select an operation
with the shortest processing time.
2:means select an operation with the longest processing time .
3:means select an operation for the job with the most total processing time remaining . 4:

means select an operation for the job with the least total processing time remaining.

4.2.10 Disjunctive graph-based representation

the job shop is considered as a disjunctive graph G = (N, A, E) defined as follows: N con-
tains nodes representing all operations, A contains arcs connecting consecutive operations
of the same job, E contains disjunctive arcs connecting operations to be executed by the
same machine . The chromosome is represented as a binary string, which corresponds to
an order list of disjunctive arcs in E. X;; = {1, settle the orientation of the disjunction arc
from node j to node i 0, settle the orientation of the disjunction arc from node I to node j }
This representation gives an infeasible schedule because of the possibility of having a cyclic

graph.
4.2.11 Machine based representation
Each gene of a chromosome is represented as a machine, ch = (ml, m2 ,..,mm)

4.2.12 Operation-based representation

[44], Each gene is represented as an operation Ojiy,, which means the i-th operation of job
j is executed on machine m. The chromosome is represented as follow: CH = [0211 O111

0122 0133 0223 O 232 0312 0321 0333 | m x j genes are in the chromosome.

45

4.2.13 Job-based representation

Each gene of a chromosome is represented as a job [44], [22]. In the sequence of jobs existing
in the chromosome, all operations of the first job are scheduled first and then the second
one is scheduled and so on. The occurrence of the operations in job j is very important (the
first operation in job has the best available processing time for machine m). New Crossover

was introduced, this operator is called precedence preservative crossover [22].

4.2.14 Completion time based representation

Each gene of a chromosome represents a completion time of operation , for example :

ch = [cl11, ¢122, ¢133, ¢211,c223,c232,c312,c321,c333]
where Cjir means the completion time for the operation i of job j on machine r. This
representation gives an illegal schedule , this why a special crossover and operation is used

for this representation.

4.2.15 Random key representation

Each gene of a chromosome is encoded as a random number [16]. For m machines and n
jobs, each gene contains two parts: an integer between 1 and m and a fraction generated
randomly between [0,1]. The integer part represent the machine assignment for the job.
Example:

ch=(1.341.091.882.662.912.013.233.213.44).

4.2.16 Pigeon-Hole Coding

The idea of this representation [122] is to convert the permutation in a sequencing problem
into another form in order to facilitate the application of crossover operators. For example,
consider a permutation p=[1 2 3 4]. The four elements are considered to be a flock of four
numbered pigeons lining up to move into a new home one after another with the four pigeon
holes arranged in order and labeled as [1,2,3,4]. If the pigeons are free to make their own
choices by selecting one hole from the empty holes available at that time, then the order of
these pigeons in the pigeon holes could be used to represent a particular permutation. For

example, the first pigeon chooses the second hole out of the four empty pigeon holes (i.e.

46

hole 2), the second pigeon selects the second hole out of the remaining three holes (i.e. hole
3), the third pigeon picks the first hole of the remaining two (i.e. hole 1), and the final
pigeon takes the last one (i.e. hole 4) . The relative order of the holes being occupied by
the pigeons (i.e. [2,2,1]) can be used to represent a permutation of [2-3-1-4] . The mapping
between the permutation and the representation is one to one correspondence, And the
permutation of [2-3-1-4] can be coded by a chromosome of three integers [2,2,1]. We can
generally formulate this kind of encoding : To encode a solution of a sequencing problem
[p1,p2,..,pn] where pi,i = [1,n]andpi = pjifi = j, the pigeon-hole coding schema requires
a chromosome of n-1 integer genes [pl,p2,..,pn — 1], where pl = [1,n — i + 1]. The value of

the k th gene is given by the following rule:

P1 =T (421)
Py =k — Y ¢r(m) (4.2.2)
W here
1 ifm <mfork>1
or(m) =

0 otherwise

This kind of coding schema has the following properties: n-1 integer genes are required
for a sequencing problem of n elements. permitted values of the i-th gene are [1, n-i+1].
.offspring produced from mutation are valid, provided the value of the varied gene is within

permitted values .

4.2.17 New Genetic Representation

A new representation was used in [190], where each chromosome represent one resource
and one individual corresponds to a set of chromosomes. Each chromosome is decodes to
the sequence of jobs to be scheduled on one resource. The number of chromosomes in one

individual equals to the number of resources in a schedule.

Common Cluster Crossover In this crossover operator [190] the crossover points are

not chosen randomly, but this operator identifies the clusters(genes linked together) of

47

sub-sequences and exchanges the common clusters between two parents.
Example:
Parent 1:
Chromosome: | 1 |7 |54 [2]2|1]|0]1]0

Sequence: | 2 |9 |8 |3 |7 [4]6|5[10]1 |11
Parent 2:

Chromosome: [1 |0 |5[2|1]0]1|0]2]|1

Sequence: | 2 |1 |8 |6 4|5 |3|7|11 9|10
Offspring:

Chromosome: | 1 | 752101010

Sequence: |2 | 9|8 |6 |4 |5 [3|7|10]1 |11

4.3 Direct representation of schedule

The Data Structure is used as schedule itself [32]. No decoding or schedule builder is
needed. Bruns [32] was the first researcher who employs Genetic Algorithms with direct
representation to solve production scheduling problems. This case was used for one

operation orders with associated machine and a start time.

Order x | order y

ml ml

start x | start y

This representation is available just for one -machine problems. It is not possible to

generalize it to n-operation orders or multi-machines.

48

4.3.1 Knowledge augmented genetic algorithm for scheduling

This direct representation was developed for more complicated scheduling problems

(m-machines, n-operation orders ..). The schema of this representation is as follow:

op 7 Bl
m9

[10,15]

op7 B2
m3

[16,17]

op 4 Al | op4d A2
m6 ml

[2,9] | [11,19]

Advanced Crossover As described in [32] this operator tries to select the non delayed

orders from one parent which are inherited from offspring and the missing orders are selected

from the second parent (first, non delayed orders are selected according to their increasing

start time, then the delayed ones are selected).

Advanced Mutation [32] One order is selected randomly, then the process plan of the

corresponding order is changed. After that an operation is selected randomly and an alter-

native machine for the operation is chosen. Finally an operation is selected randomly and

the corresponding time is changed to the earliest possible time.

Chapter 5

Design and Integration of Genetic
Algorithms in the existing DéjaVu
Class Library

In this chapter the integration of genetic algorithms in the Déja Vu class framework, which is
an application framework [80] and [63] , is described. The Unified Modeling Language(UML)
is used to help us in software analysis and design. First, an overview of the Unified Mod-
eling Language (UML) is given then a description of designing the integration of genetic

algorithms in Déja Vu Class framework is given using class diagrams and sequence diagrams.

5.1 Introduction

The purpose of the Conception and the integration of genetic algorithms in the existing
DéjaVu scheduling framework [63] is to find near optimal solution or the best solution
for the scheduling problem. To design an efficient genetic algorithm for the scheduling
problem we should first design the representation of the solution from an initial schedule, this

means finding which representation gives us the best solution for the scheduling problem.

49

50

These representations are called chromosomes or genomes in genetic algorithm terminology.
Second, genetic operators are chosen to create new offspring during the evolution of the
genetic algorithm. In this thesis, several genetic algorithms are tested and compared to each
other to see which operator gives us a better solution. The problem is how we integrate
genetic algorithms in the existing DéjaVu system? To answer this question, we should
analyze and design how genetic algorithms communicate with other components of the
system. To do that, we work with the Unified Modeling Language (UML), which helps us
to illustrate the analysis and design of a system. The UML [166], [129], [25] is a language
used to specify, visualize, and document the artifacts of an object-oriented system under
development. It is an attempt to standardize the artifacts of analysis and design: semantics
models, syntactic notation, and diagrams.

We used as a design tool the Rational Rose [166]. DéjaVu scheduling is a semi-finished
application framework [80], which was designed by Dorn et al. [67], [66], [63].

5.2 Overview Of Unified Modeling Language

The Unified Modeling Language (UML) [166], [129] is a modern approach that helps soft-
ware designer to analysis and design complex software. UML as described in [25] is a
graphical language for visualizing, specifying, constructing, and documenting the artifacts
of a software-intensive system. UML is not a programming language but it is a modeling
language. From UML we can generate a code in different programming languages like C++
or Java this is called forward engineering [25] . We can also generate an UML model from
a programming language, this is called Reverse engineering [25].

The conceptual model of the UML is composed of 3 major elements:

e The Basic Building blocks of UML
UML is composed of 3 kinds of building blocks:

1. Things: There are four kind of things in the UML

— Structural things
These represent the static parts of UML, these things represent elements
that are either conceptual or physical. In UML we have seven basic things:

class, interface, collaboration, use case, active class, component, node.

51

Class

+Attributes
+Qper ati ons()

Figure 5.1: Class.

Nane of the Interface

_O

Figure 5.2: Interface.

A class, figure 5.1 is a description of a set of objects, which share the same

attributes, operations, relationships, and semantics:

An interface, figure 5.2 is a collection of operations, which specify a service

of a class.

A use case, (figure 5.3) is a description of a set of sequences of actions that
a system performs that yields an observable result of value to a particular

actor. An actor can be a user or another system.

— Behavioral things

Figure 5.3: Use Case.

52

message

-

Figure 5.4: Messages.

State

Figure 5.5: State machines.

These are the dynamic parts of UML. These things represent behavior over
time and space. There are two kinds of behavioral things.
First, an interaction, (figure 5.4), which represents a set of messages

exchanged among a set of objects.

Second, a state machine, (figure 5.5), which specifies a sequence of states

that an object goes through during its lifetime in response to events.

Grouping things
A package, (figure 5.6) is general-purpose mechanism for organizing
elements into groups. Structural things, behavioral things, and other

grouping things can be placed in a package.

Annotation things
Notes, (figure 5.7) are the explanatory parts of UML models. Notes are
comments that are applied to describe or illuminate the elements of the

model.

53

Package

Figure 5.6: Packages.

Not e

Figure 5.7: Notes.

2. Relationships
Dependency, (figure 5.8) is a using relationship that states that a change in
specification of one thing(like a class Event) may affect another thing that uses

it(like class Window).

Association, (figure 5.9) is a structural relationship that exists in class diagram
and specifies that objects of one thing are connected to objects of another. An

association that is usually made between two classes.

Generalization, (figure 5.10) is used in a class diagram and it corresponds
to the relationship between a general thing (called the superclass) and a more

specific kind of that thing (called subclass or child).

54

r—

Figure 5.8: Dependency.

enpl oyer 'enpl oyes
0..1 *

Figure 5.9: Association.

55

Figure 5.10: Generalization.

Figure 5.11: Realization.

Realization, figure 5.11 is a semantic relationship between classifiers, where

one classifier specifies a contract that another classifier guaranties to carry out.

3. Diagrams
e The rules, which tell us how the building blocks are connected.

e Some common mechanisms that apply throughout the UML.

56

Several Diagrams used in UML are:

Class Diagrams, Object diagrams, Use case diagrams, Sequence diagrams, Statechart dia-
grams, Activity diagrams, Component diagrams, and Deployment diagrams. We will only
be explaining the type of diagrams which are used in our analysis and design. If the reader

is interested in details concerning the rest of the diagrams see [25].

5.2.1 Class Diagrams

Class diagrams represent the static design view of a system. They shows a set of classes
(see figure 7.5), interfaces, and collaborations and their relationships. Class diagrams are

the most used in modeling object oriented systems.

5.2.2 Sequence Diagrams

Sequence Diagrams represent the dynamic design view of a system. They show an interac-
tion, consisting of a set of objects and their relationships, including the messages that may
be dispatched among them. Sequence diagrams are intersection diagrams, which emphasize

the time-ordering of messages.

5.2.3 Use Case Diagrams

A use case diagram shows a set of use case and actors (a special kind of class) and their
relationships. Use case diagrams show the static use case view of a system. They are
important in organizing and modeling the behaviors of a system and the interaction of a

system with its environment.

5.3 Integration Of Genetic Algorithms in DéjaVu Framework

In this section we will make an analysis and design of the integration of genetic algorithms

in the existing DéjaVu framework [67], [66], [63] using Unified Modeling Language (UML).

5.3.1 The existing DéjaVu framework

The DéjaVu framework contains theoretical classes like schedule class, order class, job

class, operation class, resource class, and allocation class, all of which are abstract classes

57

and represent the theoretical part of the framework. The design of the existing DéjaVu

framework was directed by the following criteria [63]:

e The scheduler’s evaluation of a schedule is based on the evaluation of individual con-

straints and their weighted aggregation.

e The user has full control over the scheduling process with the ability to experiment

with different settings
e The scheduler applies iterative improvement methods to optimize solutions.
e The framework should be extensible and refinable.

The DéjaVu framework is a reusable framework based on the principle of object-oriented

design with the support of some well-known design patterns [89], such as:

e The abstract factory

A domain dependent schedule object is created without specifying its concrete class.

e The factory method

A domain-dependent order is created in the domain-independent order director class.

e Chain of responsibility
This gives the most specific or selected user interface element the chance to react on
a user action and to pass it onto its supervisor if the element does not know how to

react.

e Command
A user action is encapsulated as an object that has a common interface for undoing

or redoing the action.

o Iterator
Provides a way to access elements of an aggregate object such as a list of constraints

sequentially without knowing its implementation.

e Observer
When an object, such as a schedule changes, all dependents can be notified without

having to call all the dependents by using the scheduling object.

58

CDS5chedule
COResourcelist COAllocatian

Ohecowee o W H H H H H H Je
|

CORezourceConstraintlist

—— [0 LT TTT]

COConstraintlist

miEEEEEE

COJobConstraintlist

C0Joblizt . | | | |

Figure 5.12: Structur of a Schedule

To support a reuse in the Déja Vu framework the following principles are used:

1. Scheduling Core. The principle object in the scheduling core is a schedule see
figure5.12, which consists of the following concepts:
e 3 list of resources with schedule allocations,
e 3 list of jobs with their operations,
e a list of constraints.
2. Schedule Evaluation
In DéjaVu framework the evaluation of a schedule is defined by the evaluation of indi-

vidual constraints. The constraints are stored in a constraint list. There are four base

constraints in existence; allocation constraint, job constraint, resource constraint, and

59

acceptable deviation
safisfaction
optimal deviaton

10
time
0.0 ;

elease date due date

Figure 5.13: Degree of Satisfaction

schedule constraint. Each of these constraints is considered to be abstract class in the
DéjaVu framework. If a new constraint is created it will be considered to be a concrete
class and it is derived from one of the four abstract classes. To evaluate a schedule,
each concrete constraint has a satisfaction degree, which is a value between 0 and 1.
This satisfaction degree [70] tells us how this constraint influences the evaluation of a
schedule. There exist several concrete constraints like tardiness constraint, makespan
constraint, and compatibility constraint with two specializations chemical constraint
and format constraint. The compatibility constraint tell us how optimal the schedule
is if we make the operations in a certain order.In the compatibility constraint it is

important to find sequences that incorporate infiltration with small percentage.

. Graphical User Interface

In DéjaVu framework the Graphical User Interface (GUI) plays an important role.
The goal of the GUI is to give the user control over the schedule activities, this means
when the system gives us a schedule with poor results, the user has the possibility of
changing the schedule to a better one.In the following, the most important Graphical

User Interfaces which exist in the DéjaVu framework are described:

e The supervision hierarchy,

e Scheduling Tasks,

e Graphical Schedule Visualization,

. Algorithms, which try to find better schedule

In DéjaVu framework there are algorithms which optimize the schedule, these algo-

rithms are designed as classes. Until now the only algorithms in existence were: the

60

tabu search algorithm, the simulated annealing algorithm, and the iterative deepening.
The new algorithms are genetic algorithms, which are the scope of this thesis. These

algorithms are easily combined by deriving them.

5.3.2 Integration of Genetic Algorithms in the DéjaVu framework

To show how the integration of genetic algorithms in the Déja Vu framework are designed, a
UML (Unified Modeling Language) representation [166], [129] is used to explain our design.
Two kind of diagrams are presented, the class diagrams which represent the statical view
of our design and the sequence diagrams which represent the dynamic view of our design.
To allow the software reuse principle, an existing class library GAlib library of genetic algo-
rithms components, developed by Wall [145], [146] is used which contains the basic classes,
that are needed to build genetic algorithms (see figure 5.14). The GAlib library was used
because of the simplicity of reusing its classes by deriving new ones.

Each kind of genetic algorithm represents a class which is a sub class of the class CDSched-
uledirector from the Déja Vu framework and the class Genetic algorithm from GAlib library
[145], [145]. In this thesis two kinds of genetic algorithms classes are integrated, the simple
genetic algorithm class [93] and the steady state genetic algorithm class [187]. We can inte-
grate other classes representing new genetic algorithms using the principle of generalization.
In figure 5.15 a component diagram is presented showing how genetic algorithms component

is connected to other components from DéjaVu framework and from GAIib library.

61

GAPopulation
I
1
/ N\

GAScalingScheme

GAGeneticAlgorithm GAArray | [GAGenome GASelectionScheme
| 1
ﬁ ‘ﬁj‘ — ——
/TK
GADetCrowdGA /
‘ GASimpleGA H GA1DArrayGenome ‘
[I |
[1
GASteadyStateGA GAIncrementalGA ‘GASigmaTruncationScaling! | GASharing } 1 GANoScaling 1
l;l [|
GALinearScaling | | GAPowerLawScaling
GARouletteWheelSelector | | GARankSelector GAUniformSelector
[|
I

GADSSelector

GATournamentSelector
 ————

Figure 5.14: The Class Hierarchy of the GALib

Class Diagram of Genetic Algorithm

In figure 5.16 a class diagram shows how the genetic algorithms are integrated in the Déja Vu

framework. Two principle classes are integrated, the so called SimpleGA class, (see figure

5.17) and the Genome class, (see figure 5.24).

62

<<framework>>
GUI Framework
(from Logical View)

SimpleGeneticAlgorithmC
omponent -
ScheduleComponent

(from optimization)

\
N
~
= Order

| N
A_‘ -

TaskComponent

GALibComponent
(from Logical View)

Figure 5.15: Component Diagram: Genetic Algorithm

63

N \ GASeIectionSchemet eOrderDirector
Scheduler | N (e ETTED | GAPopulation
(from supervision) chedule i@ctor > (from GALIbXComponen)
\
AN
ScheduleDirector GASImpleGA 1 Q 1
(ffom optimizaton) (from GALibComponent) “
|
c SteelScheduler N |\
(frJ‘m supervision) (from schedulingFramework) | |
f \\ OrderCross GA1DArrayGenome
| | \\ | det... (from operators) (from GALibComponent)
‘ /
N\
read;/ osenmethod=its%)ptimizationmethod / 0.1 itsQrossm‘l(er
\ \ | theGeneticAlgorithm
SteelDemoScheduler) \ ’ v
CDOrder (from schedulingFramework) / \ .. ‘
(from Order) / .
, <<single>> constructgenome Bk ‘
/ GeneticAlgorithm |_ 1 8 J |
ZF / 0.1 M Genome ||
/ 7 1 0.n
SteelOrder / ~ / } 0.4\
(from schedulingFramew...) - / - /[
mizationsett reate theSchedule \
Optimizationsettings / evaluateschedule e _
(from preferencesetting) / /,/ / its! rosso\/\er
/ i /
/ / itsMutator \
/ / ’ 0 - / PaiAMatchCross
b theOrdgfList (rom aperators)
ProgressReporter GeneticSetting Schedule /
" ° (from ScheduleComponent)
(from supervision) (from preferencesetting) ‘1 /
/
0.1
\ / |
\ / /| SwapMutation
- / (from operators)
JO%ALN
(from schedulingFramework) //
/
SteelDemoOrder b1
(from schedulingFramework) |1 OrderList

(from schedulingFramework)

File: \SAMBA\saib\mvdbaildiss\desianaanew\ceneticAla 84\aeneticAla 84.mdl 14:25:16 Mittwoch. 27. Marz 2002 Class Diaaram: SimoleGeneticAlaorithmComnonent / GeneticAlaorithm Pade 1

Figure 5.16: Simple Genetic Algorithm

<<single>>
GeneticAlgorithm

ToPc : float
ToPm : float
TFenconv : float
PoNumOfGenomes : long
TeNumSelGenomes : long
PoGeneticAlgType : enum
TeGenomeType : enum
TFeMutationMehod : enum
PoNum-Of-Offspring : long
TeoCrossOverMethod : enum

Simprove()

Sinitialize()

SGreatestConstraintViolation()

®hestNeighbor()

$stop()()

SEvaluateGenomes()

SNewSchedule(const CDScheduler *, bool)()

®EvaluateGenomes()()

Figure 5.17: Genetic Algorithm Class and its Interfaces

64

65

The SimpleGA class, (figure 5.17) contains the follwing methods:

o Initialize():
This method permits us to initialize the genetic algorithms, (see figure 5.18). There
are two possibilities, first we can randomly create an initial population, and second
we can randomly create a mixture of individuals with one individual from an intial

schedule, who was created by heuristic methods from the Déja Vu framework.

e Bestneighbor():
This method is the scope of genetic algorithms, (see figure 5.19). It permits us to

create one generation of the genetic algorithm.

e Improve():
This method is a repeat of the BestNeighbor() method until the stopping criteria are
satisfied, (see fig. 5.21).

e Stop():
This method is responsible for stopping the genetic algorithm.

e FEvaluateGenomes():
This method evaluates each new created genome, (see figure 5.20). The evaluation is
done in two parts. First, the genome is decoded to a schedule which is evaluated by
an evaluation function, existing in the Déja Vu framework, and second, the evaluation

function is assigned to the corresponding genome.

e NewSchedule(const CDScheduler *, bool)

This method allows us to create a new schedule

66

agenalgorithm itsgenome steelDemoscheduler tsorderdirector itsjoblist cdschedule its3on orderlist scheduledie population

agenalgorithm itsgenome | [steelD | [itsjoblist
eduler |
1: CodedToGenome (Pg) .G L ‘

| v

cdschedule scheduledir

itsJob H orderlist ‘

‘ population

3: * Nthitem(o)

L \

‘ 4 createpclnulauon(genom% popsize)
|
[
|
I

5: creategenomes *

6: clone (clopeMethod() *)

7 cjpy(genome)
i AN
X loop begin 2
Add N genpmes in thy (for 0'=2; o<=popsize)
population

~

\
|
\
|
I
|
I
\
|
\ \
8} CreateGenom: ‘ ‘
~
Lj 9: cdpy (Gentﬁe)\t ‘
™~ loop end 2 I
S
| T
AN

\
\
|
\
| |
\ o epaze | Sl
\ \

\
|
\
\
\
\ \
| |
| |
n

10: Append(genome)

11: Nthitem(o)

12: decode(genpme)

\
\
13 [qene:Nthltem (index().ID *)

\

\ \
\ \
: \
14: GelOrder(TI_“)
\

|

I

\

\
\
|
4
T T
i i \
| |
[[
\
\
3
T
\

15: Append(Order)
|

begin 5 (for o AN
<Enumorders)

T
[17: AppendOrder()
=

6: Firstitem()

| |
T T

if
evaispion \ \ \
| | 18: Dleteltem(1) |
T t t

|
|

if

\
then { co DT ~N
schedulel i bestschedule} ‘ \1 J
9.

evaluate schedJ\e

‘ ~20: assigr{ evalu@ion to be#(eva\ua{ion

\ i{l\-CnrySchedu\q

22: assign eval. to fitness(genome)
> ‘ 23: evalLalion() ‘

T | | |

\
\
\
\
g
}
\
\
|
\
\
\
\
\
\
\
\

|
|

\
\
\
\
|
I
|
I
\
|
\
\
\
\
|
\
\
\
\
\
\
|
0
\
\
\
0
\
\
\
f
\
\
\
\
\
\

- Ny L

End loop3

Figure 5.18: Sequence Diagram of the method Initialize in genenetic algorithm class

67

‘ 1 createnev#popula
T

: | | | | | |

‘ 2: selector()
‘ ‘ ‘ 3: select() ‘ ‘ ‘ LH ‘
| [4: select()
L T | | | |
e 0
| | | 6:select) | | |
i i i i i 7: select()
sqcpnd parent i
selgcted ﬁf _— — — — — —
‘ ‘ ‘ ‘ ‘ ‘ T L select()
if cyossoverMethod=fwopointcrosbs
o cromsmrtndpogms | —] | | |
e — f T
P=m—]
| 10: Do() |

| |
I I I I
. \11: twopointcrossyer(pi, p2, ¢1, c2)

pyp—— ! \

14: DoQ

13: m tation)

e

‘ 15: S%apmu(anon(cl‘ r*mu() ‘ ‘ ‘

| | 16:DoQ | | ‘ ‘

append first [| | | |
offspring u 17: swapmutation(c2, pmut)

append Secor\ET ™~ - T ‘ ‘ ‘ ‘ ‘ ‘
offspring Ep——

T1u: p‘end(cz) ‘ ‘ ‘ ‘ ‘ ‘

D
d [y | | | | | |

‘ 20 NlJltem(D)

s conte | i | | | | | |

22: Firstitem()

N
(0]

SR | D | | | | |
==——

|24: Deletettem@) |
T T

B) | | | | | | | |
Evaluation
0 25: evaluate schedule
I |
—
26: assigh evaluation to bestevaluation

1 | | |

) 27: CopySchedule)

L
28: jssign eval. to ﬁmass ‘ ‘ ‘ ‘ ‘ ‘ ‘

‘ | | 29: evaluation(| | ‘ ‘ ‘ ‘

0: Elitism() ‘ ‘
P=m—]

O

- —d

"

31: deleteoldpopulation

| | | | | | 7 |
| | | | | | | |

Figure 5.19: Sequence Diagram of the method Best Neighbor in genenetic algorithm class

itst Order: itsSchedule itsScheduler itsgenome

itsUnscheduled
Orders

itsScheduler

‘ itsSchedule ‘

‘geneticAlgorithm‘ ‘ itsgenome ‘

1: decodegenome(itsunscheduledqrders)

!

2: * Deleteltem(o)

g

3: DeletEScheduIe

5: itsScheduler

|
T
|
|
| | 4: getScheduler
|
I

i

|
6: NewScheduIe(itsqeheduler, false) |

p—

7 breateSchedule(this,isRésourceS.)
f f
| | 8:itsSchedule
|
9: * AppendOrders(anOrder, false) |
= | |
| |
| |
|
|
|
|

1L0: *Append(Nthitem(o))

‘ 11: createg‘chedule(this)
T

12: itsSchedule

p—

|
14: EyaluateSchedule

U 15: eValuation

I
13:/genome.theSchedule=itsSchedule

|

|

|

I

|

16: genome.theE\;LmJationzevaluation

I
|
3
)
I
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
l
}

Figure 5.20: Sequence Diagram of the Evaluate genomes method

69

agenalgorithm steelDemoScheduler scheduledir itsgenome progressreporter
agenalgorithm steelDemoSch | | scheduledir itsgenome cdschedule population progressreporter

eduler

1: visualscheduling(()[True])

\ \ \

\ \ \

\ \ \

/u \ \ \

\ \ \ \

— 2: create CDPr?gressReponer

an initial schedule mus ‘ ‘ ‘ ‘

exist o \ \ \ \ \ 1]

B Ecreateﬁchedule() ‘ ‘ ‘ ‘

\ \ \ \ \

41 initialize() ‘ ‘ ‘ W‘J ‘ ‘

<— |] | | |

‘ ‘ 5: First individual ‘ ‘ | |

b | | 1 |

\ 7. CopylSchedule \ \ \

I I I \ \

8: theEvaluation=Evalyation | | |

\ \ /u \ \

9: t‘weSohduIezitsSchc‘fduIe ‘ } } }

one generation is begin Loop | W‘J } } }

created While‘ not stop | | | |

S \ \ \ \ \ \

10: bestNeighbor () | \ \ \ \ \

‘ \ \ | \ \ \

‘ ‘ 11 quort() ‘ ‘ ‘

the stoping ‘ ‘ ‘ ‘ ‘ /U
criterias a...

||end Loop \ \ \ \

~ 112 stop() \ | | | |

‘ \ \ \ \ \

\ \ \ \ \

\ \ \ \ \

\ \ \ \ \

\ \ \ \ \

\ \ \ \ \

Figure 5.21: Sequence Diagram of the Improve method

70

Genome Class

A class Genome is a parametrized class, (see figure 5.24), which is a subclass of the class
GA1DArrayGenome which is part of the GALib Library. It Genome contains the
follwing methods:

e CodedToGeneome()
In this case a schedule is coded to a genome. In steeldemo application the schedule
is constructed with a set of orders, each order is coded to an integer which represents
a gene of the genome. The genome in this application is a one dimentional array in
which each element corresponds to an order. There are some cases where two orders
must be scheduled after each other, in this case the two orders represent one gene in

a the corresponding genome, (see figure 5.22).

e Decodegenome()
To decode a genome to schedule, each genome is decoded to an order list, then this
order list is scheduled with the AppendOrder(Order) method from the super class
CDScheduleDirector that exists already in the DéjaVu class framework, in this
case the old schedule is deleted and a new one is created. After that the schedule
corresponding to a genome is evaluated.The evaluation function is assigned to the
fitness of the genome, (see figure 5.23). To show how the method Decodegenome()

works a sequence diagram is presented, (see figure 5.25).

e GetGenomeSize()

In this method a genome is given a size.

o AssignEvalToGenome()
After determining the evalution of a schedule, the function is assigned to the corre-

sponding genome as a fitness function.

o CreateGenome()

A new genome is created from a list of orders.

o WhichCrossover(CrossoverType)

In this methode one crossover operator is chosen for application to genetic algorithm.

N

1] 2] 3] 4] 5] 6] 7] s[T 9] 10]
Schedule
1] 2] 4] S] 6] 8] o[yi10]

Coding Schedule to Genome
Genome

Gene

Figure 5.22: Coding Genome to a List of orders

71

1] 2] 4] 5] 6] 8] o] 10]

Genome \
Gene Decoding Genome to Schedule

NN

1] 2] 3[4 5] 6] 7] 8] 4 9] 10]

List Of Orders

Order

=N

1] 2] 3] 4] 5] 6] 7] 8] o 10]

Schedule

Figure 5.23: Decoding schedule to genome

72

73

WhichMutator(Mutation Type)

A mutation operator is chosen for the genetic algorithm.

clone()

A new genome is created from another genome.

copy()
After cloning a genome, the genome is then copied.

mutate()

this method applies a mutation operator to a genome.

AlternatingPosCrossover(const GAGenome ,const GAGenome ,GAGenome,
GAGenome)

This method represents a crossover operator. (See figure 5.26)

EdgeRecombCrossovere(const GAGenome ,const GAGenome , GAGenome,
GAGenome)

This method represents a crossover operator. (See figure 5.26)

HeuristicCrossver(const GAGenome, const GAGenome, GAGenome, GAGenome)

This method represents a crossover operator. (See figure 5.26)

OrderBasedCrossver(const GAGenome, const GAGenome, GAGenome, GAGenome)

This method represents a crossover operator. (See figure 5.26)

PositionBasesCrossover(const GAGenome, const GAGenome ,GAGenome,
GAGenome)

This method represents a crossover operator. (See figure 5.26)

MazimalPreservative Crossover(const GAGenome, const GAGenome, GAGenome,
GAGenome)

This method represents a crossover operator. (See figure 5.26)

UniformaOrderCrossover(const GAGenome, const GAGenome ,GAGenome,

GAGenome)

Genome

Regene : *int

Fegenomesize : long
Pefitness : float

Reevaluated : bool
PeitsOrderList : CDOrderList
PeitsSchedule : CDSchedule
fPegeneticAlgorithm : GeneticAlgorithm
PeitsMutator : Mutator
YeitsCrossover : Crossover
fedecoded : bool

Fenmut : integer
PeitsJobList : JobList
&theEvaluation : float

$GetGenomeSize()
$CodedToGenome()
$Decodegenome()
#%AssignEvalToGenome()
$CreateGenome()

Sclone()

Scopy()

Smutate()

% WichCrossover(CrossoverType);()
$\WichMutator(MutationType);()

’AltematingPosCrossover(const GAGenomeg&, const GAGenome&, GAGenome*, GAGenome*);()
* EdgeRecombCrossover(const GAGenome&, const GAGenomeé&, GAGenome*, GAGenome*);()
‘HeuristicCrossover(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);()
$0rderBasedCrossover(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);()

PositionBasedCrossover(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);()
SMaximalPreservativeCrossover(const GAGenome&, const GAGenome&, GAGenome*, GAGenon...
 UniformOrderBasedCrossover(const GAGenomeg&, const GAGenome&, GAGenome*, GAGenon...

$spoperator(SpecOperator f)()

Figure 5.24: Genome Class and its Interfaces

74

75

itsgenom scheduler orderdirector theorderlist
itsgenom scheduler orderdirector theorderlist
\ \ \
| Begin Loop | |
| For(i=0; i<genomelﬁngth;i++) |
|
\

1: GetOrderDirector() |

1]

\
|
2: itsOrderDirector | |
\
|
L

u\ 3: NthOrder(gene(i)) u
| g
\

4: Order[fé‘)und]

\
5: ﬁppend(Order)

\
\
\
|
\
|
\
|
|
\
\
l
\ gl
\
|
|
\
|

‘ End Loop | L]
| | |
| |
\ \

Figure 5.25: Sequence Diagram of the Decode Genome method

76

Operators

The operators are considered as tasks, this means that the classes consisting operators are
derived from Task class which exists in the DéjaVu framework. Figures 5.26 and 5.27

succesivelly represent a class diagram and a sequence diagram of the operators.

CDTask
(from TaskComponent)

7

FlipMutatior

PartialMatchCross

SwapMutation

OrderCross

HeuristicCross

DisplacementMutation

*Do()

AlternatingPosCross

*Do()()

Figure 5.26: Class Diagram: Operators

UniformOrderB
asedCross
TwoPointCro f
UniformCross OnePointCross
*Do()
MaximalPreservative
OrderBasedCrogs || EvenOddCrgss CycleCross Cross
*Do() *Do()
EdgeRecombCross PositionBasedCross
#Do()
ExchangeMutation
*Do()()

78

itsgenalgorithm itsgenome swapmutation er uniformXover pmXover orderXover

itsgenalgorithm ‘ itsgenome ‘

I
| 1: mutate (float) |

2: mutatgr(mutationMetho
<

swapmutation twopointXover uniformXover

‘ flipmutator ‘

‘ pmXover ‘ ‘ orderXover

[l \
\ \
J |
\
|
\

\
if
(mutationnlwetho“.

4: swapputation (GAGename, float)

3: Do()

5: é‘)o()
\

6: ﬂiprr}utator()

|

\

\

|

\

if

} ‘ (mulationmetho...
‘ .

\

|

| . | |

7: crossov#r(crossoverMethqd) | if
(crossovermetho...
‘ 8: ‘Do()

é: twopointcrossoveH)

|

‘ if (crossovermethod=
uniformcrossover)

\

|

11: Uniformcrossover() |

if (crossovermethodT

|
N

|

\

|
T

\

!
T

\
7

|

\

l
|
T 12\ Do() PMX)
| |
1 13: merossover(‘ 1 J
I I I
| | |
‘ ‘ if (crossovermethod= ‘
Ordercrossover)
| 14: Do() | |
; 15: order(:frossover() ; ; J
\ \ \ \
T | | | | |
\ \ \ \ \

Figure 5.27: Sequence Diagram: Operators

79

Other Diagrams

The follwing, a class diagram, represents the design of steady state genetic algorithm in the
DéjaVu framework, (see figure 5.28). In figure 5.29 a class diagram of the optimization is

represented. Finally, in figure 5.30 a sequence diagram is shown.

ScheduleDirector GADetCrowdGA
(from optimization) (from GALibComponent)

FlipMutation
(from operators)

1

onepointcr | OnePointCross
CDSStateGeneticAlgorithm | = (from operators)
1

twopointcr

SwapMutation | —

(from operators)

TwoPointCross
(from operators)

1 | UniformCross
(from operators)

evehoddcr

rtialmatchcr

1

1
CycleCross
(from operators)

OrderCross
(from operators)

EvenOddCross
(from operators)

PartialMatchCross
(from operators)

Figure 5.28: Class Diagram: Steady State Genetic Algorithm

CDObject
(from basic)

$Attach(CDObject)()
$Detach(CDObject...
SNotify(reason, infc...

-

Handler
(from supervision) itsSupervisor

SNotify(reason, info)()
$DoCommand(COMMAND...

DirectorOwner
(from supervision)

$DoCommand(COMMANL...

A

CDDirector

(from supervision)

Application
ScheduleDirector | _ SUpervises (from supervision)
$DoCommand(COMMANIL...

create /
e

e
e

Schedule

(from ScheduleComponent)

$evaluateschedule()
$CopySchedule()
$Createschedule()

Figure 5.29: Class Diagram: Optimization

agenalgorithm steelDemoScheduler scheduledir itsgenome itsorderdirector

steelDemoSch itsorderdirector
eduler

\
| 1: creates¢heduledirector |
\
|

agenalgorithm

‘ scheduledir H itsgenome ‘

<— |

createscheduledirectdr

o

The Object GeneticAlgorith
is created |

< ‘ 3: GetOrderDirector() |
N o | < 4f NumOrders()
N |
‘\ N 5: creategenome(NumOrders)
| AN

6: creaté CDGeﬁeticAIgorithm genome)

7: cr‘eate

[
\
\
\
\
\
\
\
\
8: improveschedule
‘ 9: imﬂrove() <—
L |

\ \
\ \
\ \
\ \
\ \
l l
\ \
\ 1

L
\ \
\ \
\ \
\ \
\ \
| |
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

-

Figure 5.30: Sequence Diagram of the CreateScheduleDirector method

Chapter 6

Experiments and Results

6.1 Introduction

In this chapter, experimentations with genetic algorithms and tabu search are presented.
The experiments are done on a 450 PC using the Windows 98 system. This chapter will
show how the genetic algorithms parameters, such as crossover and mutation operators
influence the performance of the solution. Two kind of experiments will be presented, the
first one is about the operators of genetic algorithms and the second one is done to compare
the improvement of the solution between genetic algorithms and the tabu search method.
Some genetic algorithms are applied to the benchmarks of the steel demo application in
chapter 2, and are compared with the tabu search method. Tables and graphs are presented

to illustrate these experiments.

83

84

6.2 Application: Steel Demo Scheduler

Most of the experiments are done with steady state genetic algorithm and simple genetic
algorithm as described by Goldberg [93]. In the first phase of the experiments, a combina-
tion of some crossover and mutation operators are made to see how the genetic operators
influence the performance of genetic algorithms to improve the solution. In the second
phase, steady state genetic algorithm and simple genetic algorithm are compared to the
tabu search method. This phase uses the steel demo application existing in the Déjavu
Class library, this application is explained in details in chapters 2 and 5.

Ten different benchmarks from the steel demo application are used to compare the tabu
search method with other genetic algorithms. For each experiment with genetic algorithms

there are ten runs through executed. The next two sections present in detail the two phases.

6.2.1 The influence of Genetic Operators

In the first phase some crossover and mutation operators are combined to see how they in-
fluence the performance of the genetic algorithm. The genetic algorithm used in this phase
is a steady state genetic algorithm.

The crossover operators used are: mazimal preservative crossover, order based crossover,
order crossover, partial matched crossover, position based crossover,and uniform order based
crossover. Kach crossover operator mentioned above is combined with the following muta-
tion operators: displacement mutation, scramble mutation, insertion mutation, swap muta-
tion, and inversion mutation. In order to see the influence of the combination of crossover
and mutation operators, the same parameters for all the experiments with steady state ge-
netic algorithm are used. The steady state genetic algorithm parameters are presented in

table 6.1.

85

| Genetic Algorithm Parameters | Values
Initial Population Random
Population Size 50
Elapsed Time(s) 300
Selector Roulette Wheel Selector
Number Of Selection 10
Crossover Probability 0.99
Mutation Probability 0.01
Scheduling Problem BM9

Table 6.1: Parameters for the Steady State Genetic Algorithm

After ten runs for each combination of crossover and mutation operators have been
completed, the results are presented in table 6.2. This table shows the best, average, and
the worst results using the steady state genetic algorithm applied with a combination of
the genetic algorithm operators. The best results are obtained with the combination of the

following crossover and mutation operators.

¢ Maximal preservative crossover with swap mutation, insertion mutation, and scramble

mutation.

e Partial matched crossover with swap mutation, insertion mutation, and scramble mu-

tation.

e Uniformed based crossover with insertion mutation, swap mutation, and scramble

mutation.

e Position based crossover with insertion mutation, scramble mutation, and swap mu-

tation.
e Order crossover with insertion mutation, scramble mutation, swap mutation.

e Order based crossover with scramble mutation, insertion mutation, swap mutation.

The average results shows, the improvement of the solution is reached with the following

combination of crossover and mutation operators:

e Partial matched crossover with swap mutation, insertion mutation, scramble muta-

tion.

86

Maximal preservative crossover with scramble mutation, insertion mutation, swap

mutation.
Order crossover with scramble mutation, insertion mutation, swap mutation.
Order based crossover with insertion mutation, swap mutation, scramble mutation.

Uniform order based crossover with insertion mutation, swap mutation, scramble mu-

tation.

Position based crossover with insertion mutation, scramble mutation, swap mutation.

87

Operators Swap Mu- | Scramble Insertion Inversion Displacement]
tation Mutation Mutation Mutation Mutation
PMX(Number of Runs) 10 10 10 10 10
worst results 0,8137 0,8004 0,8074 0,7761 0,7878
average results 0,8270 0,8103 0,8198 0,7880 0,7965
best results 0,8454 0,8192 0,8320 0,8004 0,8036
OrderBasedX(Number of Runs) 10 10 10 10 10
worst results 0,7902 0,7830 0,7847 0,7699 0,7704
average results 0,8047 0,8015 0,8160 0,7771 0,7785
best results 0,8176 0,8264 0,8229 0,7909 0,7972
OrderX(Number of Runs) 10 10 10 10 10
worst results 0,7988 0,7957 0,7862 0,7840 0,7917
average results 0,8052 0,8108 0,8096 0,7923 0,7995
best results 0,8201 0,8262 0,8309 0,8043 0,8082
MaximalPreservativeX(Number of Runs) | 10 10 10 10 10
worst results 0,8028 0,8059 0,8075 0,7878 0,7965
average results 0,8159 0,8232 0,8216 0,7970 0,8066
best results 0,8469 0,8329 0,8356 0,8020 0,8149
UniformOrderBasedX(Number of Runs) 10 10 10 10 10
worst results 0,7925 0,7838 0,7949 0,7633 0,7714
average results 0,8047 0,7980 0,8148 0,7745 0,7780
best results 0,8327 0,8099 0,8367 0,7807 0,7840
PositionBasedX (NumberOfRuns) 10 10 10 10 10
worst results 0,7864 0,7901 0,7838 0,7602 0,7728
average results 0.7989 0,8044 0,8057 0,7729 0,7786
best results 0,8145 0,8309 0,8359 0,7807 0,7926

Table 6.2: Steady State Genetic Algorithm applied to the problem BM9

The figures 6.1, 6.2, and 6.3 illustrate the best results obtained from the table 6.2 using

ten runs of steady state genetic algorithm combining some crossover operators with some

mutation operators.

In figure 6.1 the steady state genetic algorithm is applied to the schedule of the order BM9

using Mazimal Preservative Crossover with Swap Mutation and Order Base Crossover with

Scramble mutation.

In figure 6.2 the steady state genetic algorithm is applied to the schedule of the order BM9

using Order Crossover with Insertion mutation and Partial Matched Crossover with Swap

Mutation.

In figure 6.3 the steady state genetic algorithm is applied to the schedule of the order BM9

using Position based crossover with Insertion mutation and Uniform order base crossover

with Insertion mutation.

88

Tun Runs Of SStateGA
0,8600
2>
= 0,8200 -
>
o
20,7800 -
o
o
()] 77
S 0,7400 5
(0)]
0,7000 rrrrr1rr1rrrr1r1rr1rr1r1r1rr 1710117 17 T 1T 1T TT T T T T T T TTTTTTTTTTT 1
o o o (@) o o o o o o
Lo o Lo (@) O (@) Lo o Lo
— — N N o™ ™ <t <
Time(s)
(a)
Tun Runs Of SStateGA
0,8600
Py
I
-}
@
Q
-
©
()]
c
(@]
N
0,7000 [TTTTTTTTTTTT TTITTTTTIT T I TTTTI T T I T T I T T T ITT I T T T IT T
(b) (@) (@)) (@)) (@)) (@)) (@) (@) (@)) (@))
- <t (@)) <t (@)) < (@))] < (@)) <
= - <4 N N oo ™ <
= Time(s)

(b)

Figure 6.1: (a) Maximal Preservative Crossover with Swap Mutation.
Crossover with Scramble Mutation

(b) Order Base

89

Tun Runs Of SStateGA
0,8600
>
7360,82007 e
& ﬁ%
20,7800 | = —
3
< 0,7400
(&)
N
0,7000 rFrrrrrr1r1r1r1rrrrTrTTr T
o o o o o o o o o
Lo o L0 (@) O (@) Kg] o
- «H_ N N O o <
Time(s)
(c)
Tun Runs Of SStateGA
0,8600
Py
< 0,8200 -
-}
o
20,7800 |
© Eﬁj‘u
%0,7400#—#
(0))]
0,7000 FTT T TTTTTTTT T TT T T T T T T T T T T T T TT T TT T TT T T T TT T T T T TT T
0O 50 100 150 200 250 300 350 400 450
Time(s)

(d)

Figure 6.2: (c) Order Crossover with Insertion Mutation. (d) Partial Matched Crossover

with Swap Mutation

(f)

90

0,8600

o

o

Schedule Quality

0,7000

Tun Runs Of SStateGA

~ (0]

00] N

o ()

o o
\ \

0,7400 ﬁ

0 50 100 150 200 250 300 350 400 45C
Time(s)

0,8600

o

o

)
© R
S O
S O

0,7400

Schedule Quality

0,7000

Tun Runs Of SStateGA

ﬁ H_,_lJ_f_;_f_I
TTT T T T T T I T T T T T T T T T T T I T T T T T T T T T T T T I I T I TT T T T]
o o o o o o o o o o
Lo o Lo o L0 o LO o Lo

- << N N OO OO < <

Time(s)

Figure 6.3: (e) Position Based Crossover with Insertion Mutation. (f) Uniform Order Base
Crossover with Insertion Mutation

91

6.2.2 Comparison of genetic algorithms with tabu search method

The second phase of these experiments compares two genetic algorithms with the tabu
search method. The genetic algorithms used are steady state genetic algorithm and simple
genetic algorithm [93]. For each benchmark BM3, i =1 to 10 the parameters of the simple
genetic algorithm are presented in table 6.3 and the parameters of the steady state genetic

algorithm are presented in table 6.4.

| Genetic Algorithm Parameters | Values
Initial Population) Not Random
Population Size 50
Elapsed Time(s) 300
Selector Roulette Wheel Selector
Crossover Probability 0.99
Mutation Probability 0.01

Table 6.3: Parameters for the Simple Genetic Algorithm

| Genetic Algorithm Parameters | Values
Initial Population) Not Random
Population Size 50
Elapsed Time(s) 300
Selector Roulette Wheel Selector
Number Of Selection 10
Crossover Probability 0.99
Mutation Probability 0.01

Table 6.4: Parameters for the Steady State Genetic Algorithm

92

In figure 6.5 (a): The genetic operators for Simple Genetic Algorithm:
e (Crossover Operator: Position Based Crossover
e Mutation Operator: Scramble Mutation
The genetic operators for Steady State Genetic Algorithm:
e (Crossover Operator: Position Based Crossover
e Mutation Operator: Scramble Mutation
In figure 6.5 (b) The Genetic operators for simple Genetic Algorithm:
e (rossover Operator: Maximal Preservative Crossover
o Mutation Operator: Swap Mutation
The genetic operators for Steady State Genetic Algorithm:
e Crossover Operator: Maximal Preservative Crossover

e Mutation Operator: Swap Mutation

In figure 6.6 (c) The genetic operators for Simple Genetic Algorithm:
e (rossover Operator: Maximal Preservative Crossover
e Mutation Operator: Swap Mutation

The genetic operators for Steady State Genetic Algorithm:
e (Crossover Operator: Maximal Preservative Crossover
o Mutation Operator: Swap Mutation

In figure 6.6 (d), The genetic operators for Simple Genetic Algorithm:
e (rossover Operator: Maximal Preservative Crossover

e Mutation Operator: Insertion Mutation

The genetic operators for Steady State Genetic Algorithm:
e (rossover Operator: Maximal Preservative Crossover

e Mutation Operator: Insertion Mutation

In figure 6.7 (e), The genetic operators for Simple Genetic Algorithm:
e (rossover Operator: Maximal Preservative Crossover
e Mutation Operator: Swap Mutation
The genetic operators for Steady State Genetic Algorithm:
e (Crossover Operator: Maximal Preservative Crossover
e Mutation Operator: Swap Mutation
In figure 6.7 (f), The genetic operators for Simple Genetic Algorithm:
e (rossover Operator: Order Based Crossover
e Mutation Operator: Insertion Mutation
The genetic operators for Steady State Genetic Algorithm:
e Crossover Operator: Maximal Preservative Crossover

o Mutation Operator: Swap Mutation

In figure 6.8 (g), The genetic operators for Simple Genetic Algorithm:
e (Crossover Operator: Position Based Crossover
e Mutation Operator: Scramble Mutation

The genetic operators for Steady State Genetic Algorithm:
e (rossover Operator: Maximal Preservative Crossover

e Mutation Operator: Swap Mutation

93

In figure 6.8 (h), The genetic operators for Simple Genetic Algorithm:
e (Crossover Operator: Position Based Crossover
e Mutation Operator: Scramble Mutation

The genetic operators for Steady State Genetic Algorithm:
e (Crossover Operator: Position Based Crossover

e Mutation Operator: Scramble Mutation

In figure 6.9 (i), The genetic operators for Simple Genetic Algorithm:
e (rossover Operator: Partial Matched Crossover
o Mutation Operator: Swap Mutation
The genetic operators for Steady State Genetic Algorithm:
e Crossover Operator: Partial Matched Crossover
o Mutation Operator: Swap Mutation
In figure 6.9 (j), The genetic operators for Simple Genetic Algorithm:
e (rossover Operator: Order Crossover
o Mutation Operator: Swap Mutation
The genetic operators for Steady State Genetic Algorithm:
e Crossover Operator: Order Crossover

o Mutation Operator: Swap Mutation

94

95

Comparison between SStateGA,
SimpleGA and TS
>
= 0,8200 -
(U 72?315
&> e
o 0,7800 - s
= ABestC
8 SimpleG
< 0,7400 7‘ 721%?';06
[&] _M A BestC
n
0,7000 rrrrrrrr T T T T T T T T T T T T T T T T T
o o o o o o o
.o o Lo o Lo o
Time(s) — N N ™
(a)
Comparison between SStateGA,
SimpleGA and TS
Py
= 0,8800 -
3 —— SState
O &/Aorstc
@ ;””J— e
= 0,8400 7 ’—_’l —— SStateG
o S |
O Q{urstc
N s
0,8000 rrr 11 11111 1 1 1T T T T 1T T T T T T T T T T T T T
o o o o o o o
] Lo o L0 o Ln o
Time(s) -~ N N ™

(b)

Figure 6.4: (a) Comparison of SimpleGA, SStateGA, and Tabu Search:BM6

Figure 6.5: (b) Comparison of SimpleGA, SStateGA, and Tabu Search:BM9

96

Comparison between SimpleGA,
SStateGA and TS
2>
= 0,8300 -
©
8 féilale
o — s
20,7900 - H e
(D] SimpleG
: CVorle
O —— SimpleG
(V)] ABestC
0,7500 rFrrr T rrrrrrr 1T T T T T T T T T T T T T T T T T
(@) (@) o (@) o o o
Lo o Lo o Ln (@)
.o (q\] AN ™
Time(s)
(c)
Comparison between SimpleGA,
SStateGA and TS
£ 0,8700 -
@
&
o 0,8300 | ' ' g
S i
8 Search
< 0,7900 - e
O !
) e
0,7500 rr T 1T 11111 11T T T T T T T T T T T T 7??5‘;2
2 2 8 8 8 8 8
Time('g) — — ~ 3\ ™

()

Figure 6.6: (c) Comparison of SimpleGA, SStateGA, and Tabu Search:BM10 (d) Compar-

ison of SimpleGA, SStateGA, and Tabu Search:BM8

97

Comparison between SimpleGA,
SStateGA and TS
2>
= 0,8700 -
-]
(@4
q_) 0,8300 7 —— SState
5 &/Aurstc
-O gzgrch
g 0,7900 - —— o
o A BestC
w Spec
0,7500 Frrrrrrrrrrr 011 11U 1rrr1r1r 11T T T T T T T T T T 7§imp‘ee
o o o o o o ol "
Ye) o 9] o 9] =)
Time(s) < — N N ™
(e)
Comparison between SStateGA,
SimpeGA and TS
Z 0.8300 -
®
> —— Sstate
O ﬁlerstC
9 ;:g:lch
5 0,7900 - e I
(D)
e H SimpleG
(&) ABestC
(D —— SimpleG
0,7500 T rr1rrrr rrrrrrrv 117 1 T T 1T T T T 1771 Worste
o o o o o o o
e o L0 o Kp] o
Time(s) — N N ™
(f)

Figure 6.7: (e) Comparison of SimpleGA, SStateGA, and Tabu Search:BM1 (f) Comparison

of SimpleGA, SStateGA, and Tabu Search:BM3

98

Comparison between SStateGA,
SimplegA and TS

o

——SState
GA
WorstC

Tabu
Search

Schedule Quality
o
o (0]
w ~
(@] o
o o
| |

0,7900 - B
0,7500 T T T T 1T 1T aj::f
o o o o o o O | Rebsc
. o o Lo o LN o
Time(s) — — N 3\ ™
(8)
Comparison between SStateGA,
SimpleGA and TS
>
= 0,8700 -
@®
&
o 0,8300 -
E /—//__/J—/_/—l_ —(s;ixaxe
i e
< 0,7900 -
%) T Abesc
0,7500 rFrrr1rr1rrrr 1T rr T T T T T T T T T T T T T T 177 a:ronrps‘tecG
o Q S 2 S 2 S T RBesc
Time(s) — — ~ [\ ™

(h)

Figure 6.8: (g) Comparison of SimpleGA, SStateGA using PositionBased Crossover and
Scramble Mutation , and Tabu Search:BM2 (h) Comparison of SimpleGA, SStateGA us-
ing:MaximalPreservativ Crossover and SwapMuation, and Tabu Search:BM2

99

Comparison between SStateGA,
SimpleGA and TS

>
%0’8300 i ——SState
: \?\l/;rstc
O ’/'_H_/JJ——F_—’—_—“— Tabu
q) Search
= ! —SStateG
_30’7900 ‘ﬂ—b ,——A ABestC
(0] Simplec
c WorstC
O ——SimpleG
v A BestC
0,7500 rFrrr1rrr1rr U rorr T T T T T T T T T T T T T T T T
o o o o o o o
. Lo o L0 o Lo o
Time(s) — — N 3\ ™
(i)
Comparison between SStateGA,
SimpleGA and TS
2
‘_35 0,8700 -
@
9 0’8300 | [,.;—[:-.’“—/—J —SState
3 I
< 0,7900 - — st
O estC
(D iimpleG
0) 7500 s e s e s s Bt s B s s 7?@;%5
o o o o o o o
. Lo o Lo o Lo o
Time(s) — — N 3\ ™

()
Figure 6.9: (i) Comparison of SimpleGA, SStateGA using PositionBased Crossover and Scramble
Mutation , and Tabu Search:BM4 (j) Comparison of SimpleGA, SStateGA using:MaximalPreservativ
Crossover and SwapMuation, and Tabu Search:BM5

100

In figure 6.5 (a) tabu search method gives the best result. In figure 6.5 (b) Steady
State Genetic Algorithm gives the best results, these results are better than the results
with the tabu search because we used good crossover operator and mutation operator,
namely maximal preservative crossover and swap mutation. In figure 6.6 (c) Simple genetic
algorithm and steady state genetic algorithm gives better results than tabu search method,
and in figure 6.6 (d) tabu search is better than simple genetic algorithm and steady state
genetic algorithm. In both figures the crossover operator used was maximal preservative
crossover but they used different mutation operators, namely the swap mutation in figure
6.6 (c) and insertion mutation in figure 6.6 (d). These explain that genetic algorithms with
swap mutation improve the solution better than using the insertion mutation. In figures 6.7
(e) and 6.7 (f) the tabu search is better than simple genetic algorithm but the steady state
genetic algorithm gives better results than the tabu search method. In figure 6.8 (g) the
tabu search method gives a better result than the simple genetic algorithm but steady state
genetic algorithm using maximal preservative crossover and swap mutation, is better than
the tabu search. In figure 6.8 (h) tabu search is better than simple genetic algorithm and
steady state genetic algorithm. This means that position based crossover and scramble are
not powerful enough for the genetic algorithms. In figure 6.8 (i) partial matched crossover
and swap mutation are used. In this case steady state genetic algorithm and simple genetic
algorithm give better results than the tabu search method. In figure 6.8 (j) where order
crossover and swap mutation are used, the tabu search method improve the solution better
than the improvement with steady state genetic algorithm and simple genetic algorithm.
In these two cases the partial matched crossover and swap mutation perform well in the

genetic algorithms

6.3 Conclusion

These Experiments show that genetic operators play an important role in improving solution
in genetic algorithms. The experiments also show that genetic algorithms sometimes give
better solutions than the tabu search method using the appropriate crossover and mutation
operators. We can say that the use of maximal preservative crossover combined with swap

mutation and partial matched crossover combined with swap mutation in genetic algorithms

101

gives better results than the tabu search method. The one inconvenience of genetic algo-
rithms is that they are slower to reach good results than the tabu search method because

each genome in the population has to be decoded to a schedule.

Chapter 7

Epilogue

In this chapter a general conclusion is provided as well as presenting open topics of work to
be done in the future. We illustrate the advantages and disadvantages of the use of genetic

algorithms.

7.1 General Conclusion

Genetic algorithms used in this thesis have shown how they can give better solution than
the tabu search method, if we use the appropriate genetic operators like crossover and
mutation operators. If the initial population in the genetic algorithms is not randomly
created, but is created from an initial schedule then the genetic algorithms converge to
make a good solution. In this thesis we did not experiment with other kinds of chromosome
representations but we worked on one presentation, which is an array of numbers, because
this representation is closer to the natural representation of a schedule. In this thesis the
objective function is designed as a single function and this is why we did not used multi-
objective genetic algorithms, which are used in many applications [157], [79], [213], [19],
[153], [216], [29],36], [12], [125], [56], [214], [4], [116], [142], [86], [188], [112], [13].

7.2 Open Topics

e How can genetic algorithms work faster?
In this thesis we used simple genetic algorithm and steady state genetic algorithms

to improve the solution. The results were good but the algorithms did not work very

102

103

fast. In the future we can use parallel genetic algorithms [39],[113] where genetic

algorithms work on many sub populations at the same time.

Design of theoretical classes of algorithms using the strategy design pattern
In DéjaVu Class framework there is no theoretical classes for algorithms. In the future
we will design theoretical classes which will represent improved algorithms using the

strategy design pattern [89].

The design of a new multi-objective function where we can use multi-objective genetic

algorithms.

How we use methods from machine learning to solve the steel making scheduling prob-
lem? The system should learn how to solve the scheduling problem using evolutionary

algorithms such as genetic algorithms to give us ”good” solution.

Bibliography

[1]

Jesus S. Aguilar-Ruiz, Isabel Ramos, José C. Riquelme, and Miguel Toro. An evo-
lutionary approach to estimating software development projects. Information and
Software Technology, 43:875-882, December 2001.

H. Wright Alden. Genetic algorithms for real parameter optimization. First workshop

on the fundations of Genetic Algorithms and Classifier Systems, 1990.

Shahid Ali, Sadig M. Sait, and Muhammed S.T. Benten. Gsa: Scheduling and al-
location using genetic algorithm. Proceedings of the Conference on FEuropean Design

Automation. Los Alamitod, CA:IEEE Computer Society Press., pages 84-89, 1994.

Rodrigues Almeida Mayron, Silvio Hamacher, Marco Pacheco, Marco Aurélio, and
Marley B.R. Vellasco. The energy minimization method: A multiobjective fitness
evaluation technique and its application to the production scheduling in a petroleum

refinery. Fvolutionary Computation, 2001.

Mikhail J. Atallah. Algorithms and Theory of Computation Handbook. Library of
Congress Cataloging in Publication Data, 1998.

Vincent Bachelet and El-Ghazali Talbi. A parallel co-evolutionary metaheuristic.

IPDPS 2000 Workshops, LNCS 1800, pages 628-635, 2000.

T. Back. Fvolutionary Algorithms in Theory and Practice. Oxford University Press,
1996.

Thomas Back and Hans-Paul Hamel, Ulrich an Schwefel. Evolutionary computation:
Comments on the history and current state. IEEE Transactions On Ewvolutionary

Computation, 1(1):3-17, April 1997.

104

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

105

S. Bagchi, S. Uckum, Y. Miyabe, and K. Kawamura. Exploring problem-specific
recombination operators for job shop scheduling. International Conference Of Genetic
Algorithms. ICGA, 1991.

S. Bagchi, S. Uckum, Y. Miyabe, and K. Kawamura. Exploring problem-specific
recombination operators for job shop scheduling. IEEE Ezpert., 8(5):15-24, October
1993.

Tapan P. Bagchi. Pareto-optimal solutions for multi-objective production scheduling
problems. First International Conference on evolutionary multi-criterion optimiza-

tion, EMO 2001, 1993:458-471, 2001.

Jerzy Balicki and Zygmunt Kitowski. Multicriteria evolutionary algorithm with tabu
search for task assignment. First International Conference on Evolutionary Multi-

Criteria Optimization. Proceedings, 1993:373-384, March 2001.

Matthieu Basseur, Franck Seynhaeve, and Talbi El-ghazali. Design of multi-objective
evolutionary algorithms: Application of the flow-shop scheduling problem. Conference

Proccedings on Evolutionary Computation. CEC02, 2002.

Philippe Baudet, Catherie Azzaro-Pantel, Luc Pibouleau, and Serge Domenech.
Un couplage entre un algorithm génétique en un modele de simulation pour
I’ordonnancement a court terme d’un atelier discontinu de chimie fini. RAIRO Oper-

ation Research, 33:299-338, 1999.

J.C. Bean. Genetics and random keys for sequences and optimization. Technical re-
port, Department of Industrial and operations Engineering, The university of Michi-

gan, Ann Arbor, 1993.

J.C. Bean. Genetics and random keys for sequencing and optimization. ORSA Journal

on Computing, 6(2):154-160, 1994.

Adam Priigel Bennett. Modeling crossover-included linkage in genetic algorithms.
IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, 5(4):376-387, AU-
GUST 2001.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

106

Peter et al. Bentley. FEwvolutionary Design by Computers. Morgan Kaufmann, May
1999.

P.J. Bentley and J.P Wakefield. Finding Acceptable Solutions in the pareto-optimal
range using multi-objective genetic algorithms. Conference on soft Computing in

engineering Design and manufacturing (WSC2), pages 23-27, June 1997.

Meyer Bertrand. Reusable Software. Prentice-Hall object-oriented. Englewood Cliffs
NJ., 1994.

Christian Bierwirth and Dirk C. Mattfeld. Production scheduling and rescheduling
with genetic algorithms. Evolutionary Computation, 7(1):1-17, 1999.

Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation rep-
resentations for shceduling problems. Proceedings of Parallel Problem Solving from
Nature IV, pages 310-318, 1996.

Robert V. Binder. Testing Object-Oriented Systems. Models, Patterns, and Tools.
Addison Wesley, 2000.

Isabelle Blot-Thibaut. Un systéme de Programmation Par Contraintes sur les do-
maines finies entiers. PhD thesis, Faculté des Sciences et Techniques. Université de

Bourgogne, June 1998.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language.
User Guide. Addison Wesley Longman, addison wesley longman, inc. edition, October

1998.

Wilfried Brauer and Gerhard Weif}. Multi-machine scheduling- a multi-agent learning
approach. International Conference on Multi-Agent Systems, pages 42—48, 1998.

H.J. Bremermann. The evolution of intelligence. the vervous system as model of its
environment. Technical report, Department of Mathematics, university of Wash.,

Saetle, 1958.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

107

David Brittain. Optimization of the Telecommunication Access Network. PhD thesis,
University of Bristol, Faculty of Engineering, Department on Engineering Mathemat-

ics, January 1999.

C. Brizuela, N. Sannomiya, and Y. Zhao. Multi-objective flow-shop: Preliminary
results. First International Conference on evolutionary multi-criterion optimization,

EMO 2001, 1993:443-457, 2001.
Peter Brucker. Scheduling algorithms. Springer Verlag, 1995.

R. Bruns. Incorporation of a knowledge-based scheduling system into genetic algo-

rithm. Proceedings of the ”GI-Jharestagung”, Karlsruhe, 1992.

R. Bruns. Direct chromosome representation and advanced genetic operators for
production scheduling. Proceedings of the fifth International Conference on Genetic
Algorithms San Mateo, CA., 1993.

E.K. Burke and A.J. Smith. A multi-stage approach for the thermal generator main-

tenance scheduling problem. Congress on Evolutionary Computation, 2, 1999.

E.K. Burke and A.J. Smith. Hybrid evolutionary techniques for the maintennance

scheduling problem. Transaction on Power Systems, 15(1):122-128, February 2000.

Heng Cao, Haifeng Xi, Yupin Luo, Suxing Yang, and Yi Peng. Ga with hierarchical
evaluation: A framework for solving complex machine scheduling problems in manu-
facturing. GALESIA97. Second International Conference on Genetic Algorithms In
Engineering Systems: Innovation And Applications, (446), September 1997.

W.Matthew Carlyle, Bosum Kim, John W. Fowler, and Esma S. Gel. Comparison of
multiple objective gnetic algorithms for parallel machine scheduling problems. First

International Conference on evolutionary multi-criterion optimization, EMO 2001,

1993:472-485, 2001.

Hugh M. Cartwright and A. Tuson. Genetic algorithms and flow shop scheduling: to-
wards the development of real-time process control system. Lecture notes in Computer

science 865, pages 277-290, 1994.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

108

Kevin R. Caskey. A manufacturing problem solving environment combining evalua-

tion, search, and generalisation methods. computers in Industry, 44:175-187, 2001.

Y. Lee Chae and J. Soek. Kim parallel genetic algorithms for the earliness-tardiness
job shop scheduling problem with penalty weights. Computers ind. Eng., 30(4):231-
243, 1995.

N. Chaiyaratana and A.M.S. Zalzala. Recent developments in evolutionary and ge-
netic algorithms: Theory and application. GALESIA97. Second International Con-
ference on Genetic Algorithms In Engineering Systems: Innovation And Applications,

(446):270-277, September 1997.

Uday K. Chakraborty, D. Laha, and Mandira Chakraborty. A heuristic genetic algo-
rithm for flowshop scheduling. . Proceedings of the 23 rd International Conference on

Information Technology Interfaces, June 2001.

W.T. Chan and H. Hu. Precast production scheduling with genetic algorithms. Pro-
ceedings of the 2000 Congress on FEvolutionary Computation, 2:1087-1094, 2000.

Stephen Chen and Stephen F. Smith. Improving genetic algorithms by search space
reductions (with applications to flow shop scheduling). GECCO-99:Proceedings of the

Genetic and Fvolutionary Computation Conference, 1999.

R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop scheduling
problems using genetic algorithms-i. presentation. Computers ind. Eng., 30(4):983—
997, 1996.

S.C. Chu and H.L. Fang. Genetic algorithms vs. tabu search in timetable scheduling.
Third International Conference on Kowledge-Based Intelligent Information Engineer-

ing Systems, 1999.

Gary A. Cleveland and Stephen F. Smith. Using genetic algorithms to schedule flow

shop releases. International Conference on Genetic Algorithms, 1989.

Emma Collingwood. Investigation of a multiple chromosome evolutionary algorithms
for bus driver and other problems. Master’s thesis, University of Edinburgh, Depart-
ment of Artificial Intelligence, 1995.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

109

Arthur L. Corcoran and Roger L. Wainwright. Libga: A user-friendly workbench
for order-based genetic algorithm research. ACM/SIGAPP Symposium on Applied
Computing, pages 111-117, 1993.

Carlos Cotta, Enrique Alba, and Jose M Troya. Utilizing dynastically optimal forma
recombination in hybrid genetic algorithms. Parallel Problem Solving from Nature-
PPSN V. 5th International conference Amsterdam The Netherlands, pages 305-314,
September 1998.

K.P. Dahal, G.M. Burt, J.R. McDonald, and A. Moyes. A case study of scheduling
storage tanks using a hybrid genetic algorithm. IEEE TRANSACTION ON EVOLU-
TIONARY COMPUTATION, 5(3):283-296, June 2001.

L. Davis. Applying adaptive algorithms to epistatic domains. Proceedings of the
International Joint Conference on Artificial Intelligence, pages 162—-164, 1985.

L. Davis. Job shop scheduling with genetic algorith. Proceedings of the First Int.
Conference on Genetic Algorithms(Edited by J.Grefenstette), pages 136-140, 1985.

L. Davis. Handbook of genetic algorithms. New York: Van Nostrand Reinhold, 1991.

Robert A. Day. How to Write and Publish a Scientific Paper. Cambridge University
Press, Trumpington Street, Cambridge CB2 1RP, third edition edition, 1991.

K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.

Dissertation abstracts international, 36(10), 5140(b), University of Michigan, 1975.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test
problems for evolutionary multi-objective optimization. Technical Report 112, Institut
fur Technische Informatik und Kommunikationsnetze, ETH Ziirich, Gloriastrasse 35.,
ETH-Zentrum, CH-8002,, july 2001.

Jorg Denzinger and Tim Offermann. On cooperation between evolutionary algorithms

and other search paradigms. Congress on Evolutionary Computation., 3, 1999.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

110

Christos Dimopoulos and Ali M. S. Zalzala. Recent develeopments in evolutionary
computation for manufacturing optimization: Problems, solutions and comaparisons.

Transactions on Evolutionary Computation, 4(2):93-113, July 2000.

Jurgen Dorn. Task-oriented desing for scheduling applications. Technical report,
Christian Doppler Laboratory for Expert Systems. CD-TR 93/50, Vienna University
of Technology, 1993.

Jirgen Dorn. Case-based reactive scheduling. Technical report, Christian Doppler
Laboratory for Expert Systems. CD-TR 94/75, vienna University of Technology, Aus-
tria, 1994.

Jurgen Dorn. Expert systems in the steel making industry. Proceedings of the 2nd

World Congress on Ezpert Systems Lisbon, Portugal, January 1994.

Jurgen Dorn. Iterative improvements methods for knowledge-based scheduling. Arti-

ficial Intelligence Communications. AICOM, 8(1):20-34, 1995.

Jurgen Dorn. The déjavu scheduling class library. in Fayad, Schmidt, and Johnson

(eds.) Implementation Application Frameworks, Wiley, pages 521-540, 1999.

Jurgen Dorn. Towards reusable intelligent scheduling software. Proceedings of XPS-99:
Knowledge-based systems, F.Puppe (ed), Springer Lecture Notes in Artificial Intelli-
gence, 1570:101-102, 1999.

Jirgen Dorn and M. Girsch. Genetic operators based on constraint repair. Proceedings
of the ECAI’94. Workshop on Genetic Algorithms and other Evolutionary Algorithms,
Amsterdam and is considered for publication in LNCS, 1994.

Jurgen Dorn, M. Girsch, and N. Vidakis. DEjAvu - a reusable framework for the
construction of intelligent interactive schedulers. Advances in Production Management

Systems-Perspectives and Future Challenges-, Okino et al.(eds) Chapman and Hall,
pages 467-478, 1998.

Jurgen Dorn, Mario Girsch, and Vidakis Nikos. DEjA vu. a reusable framework for the

construction of intelligent interactive schedulers. In Proceedings of the International

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

111

Conference on Advances in Production Management Systems (APMS 96), pages 637—
644, November 1996.

Jurgen Dorn, Mario Girsh, Gunther Skele, and Wolfgang Slany. Comparison of it-
erative improvement techniques for scheduling optimization. Furopean Journal of

Operational Research, 94(2):349-361, October 1996.

Jirgen Dorn and R. M. Kerr. Co-operating scheduling systems communicating
through fuzzy sets. Preprints of the 2 nd IFAC/IFIP/IFORS- Workshop on Intelligent
Manufacturing Systems (IMS 94), pages 367-373, June 1994.

Jurgen Dorn, Roger Kerr, and Gabi Thalhammer. Reactive scheduling: Improving
the robustness of schedules and restricting the effects of shop floor disturbances by

fuzzy reasoning. Human-Computer Studies, 42:687-704, 1995.

Jurgen Dorn and A.D. Prianichnikova. The steeldemo scheduler. Proceedings of the

Siberian Conference on Operational Research (SCOR-98), Novosibirsk, 1998.

Jurgen Dorn and R. Shams. Scheduling high-grade steel making. IEEE Ezpert, pages
28-35, February 1996.

Jirgen Dorn and Wolfgang Slany. A flow shop with compatibility constraints in a
steel making plant. Zweben and Fox (eds) Intelligent Scheduling, pages 629-654, 1994.

Jurgen Dorn, Markus Stumptner, Anna Prianichnikova, and Helmut Veith. Mul-
tiprocessor scheduling using the déjavu scheduling class library. Osterreichische
Gesellschaft fir Artificial Intelligence, 18(4):16-25, 1999.

Ulrich Dorndorf and Erwin Pesch. Evolution based learning in a job shop problem.

Computers and Operations Research, 22(1):25-40, 1995.

K. Dussa-Zieger and M. Schwehm. Scheduling of parallel programs on configurable
multiprocessors by genetic algorithms. International Journal of Approzimate Reason-

ing, 19:23-38, 1998.

A.E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing

Letters, 82(1):1-6, April 2002.

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

112

H-Lan Fang, P. Ross, and D. Corne. A promising genetic algorithm approach to job
shop scheduling, rescheduling, and open-shop scheduling problems. Proceedings of the
fifth International Conference on Genetic Algorithms, pages 375-382, 1993.

M.P. Fanti, B. Maione, D. Naso, and B. Turchiano. Genetic multi-criteria approach
to flexible line scheduling. International Journal of Approximate Reasoning, 19:5-21,

1998.

Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Building Application
Frameworks. Object-Oriented foundations of Framework Design. Wiley Computer

Publishing, 1999.

Paul Field. A multary Theory for Genetic Algorithms: Unifying Binary and Nonbi-

nary Problem Representation. PhD thesis, University of London.

David B. Fogel. Revisiting bremermann’s genetic algorithms: I. simultaneous muta-
tion of all parameters. Proceeding of the 2000 Congress on Evolutionary Computation.,
2:1204-1202, 2000.

David.B. Fogel. FEwolutionary Computation, Toward a new philosophy of machine

intelligence, volume IEEE Press. 1995.
L.J. Fogel. Autonomous automata. Industrial Research, 4:14-19, 1962.

L.J. Fogel and G.H. Burgin. Competitive goal-seeking through evolutionary program-
ming. Technical report, Air Force Cambridge Research Labs, 1969.

C.M. Fonseca and P.J. Fleming. Multiobjective genetic algorithms. Genetic Algo-
rithms for Control Systems Engineering, IEE Colloquium, 1993.

B.R. Fox and M.B McMahon. Genetic operators for sequencing problems. Gregory
J.E.Rawlings(ed.). Foundations of genetic algorithms, pages 284-300, 1991.

Oliver Francois and Christian Lavergne. Design of eolutionary algorithms- a statistical
perspective. IEEE Transactions On Evolutionary Computation, 5(5):129-148, April
2001.

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

113

Erich Gamma, Richard Helm, Johnson Ralph, and john Vlissides. Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing Com-
pany, Inc., May 1994.

Fco. Garrido and Sanz-Bobi Javier. Learning rules from the experience of an expert
system using genetic algorithms. GALESIA97. Second International Conference on
Genetic Algorithms In Engineering Systems: Innovation And Applications, (446),
September 1997.

Mario Girsch. Reactive Scheduling. PhD thesis, Vienna University of Technology,
Austria., October 2001.

Mario Girsh. Optimierung von schedules mit genetischen Algorithmen und iterativer

Vertiefung. Master’s thesis, TU WIEN, AUSTRIA, 1994.

D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning.
1989.

David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges Harik. Rapid, ac-
curate optimization of difficult problems using fast messy genetic algorithm. Technical
Report 93004, Illinois Genetic Algorithm Laboratory. Department of General Engi-
neering, University of Illinois at Urbana-Champaign. 117 Transportation Building.
104 South Mathews Avenus. Urbana, IL 61801, February 1993.

Marin Golub. An implementation of binary and floating chromosome representation
in genetic algorithm. Proc. Of the 41 st Annual Conference KOREMA, Opatija, pages
93-96, 1996.

Marin Golub and Domagoj Jakobovic. Adaptove genetic algorithm. Proceedings of
the 20 th International Conference ITI 98. Pula, pages 519-524, 1998.

Belzyt Gonzalez, Michel Torres, and Jose A. Moreno. A hybrid genetic algorithm
approach for the "no-wait” flowshop scheduling problem. GALESIA95. First Inter-
national Conference on Genetic Algorithms In Engineering Systems: Innovation And

Applications, (414):59-64, September 1995.

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

114

David Greenhalgh and Stephen Marshall. Convergence criteria for genetic algorithms.

SIAM Journal on Computing, 30(1):269-282, May 2000.

G.W. Greenwood. Finding solutions to np problems: Philosophical differences be-
tween quantum and evolutionary search algorithms. FEwvolutionary Computation, 2,

2001.

Mahesh C. Gupta, Yash P. Gupta, and Anup Kumar. Genetic algorithms application

in a machine scheduling.

R. Georges Harik, G. Lobo Fernando, and E.David Goldberg. The compact genetic al-
gorithm. I[EEE TRANSACTION ON EVOLUTIONARY COMPUTATION, 3(4):187-
297, November 1999.

Emma Hart and Peter Ross. Gavel- a new tool for genetic algorithm visualization.
IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, 5(4):335-348, Au-
gust 2001.

Thomas Dunlop Haynes. Collective Adaptation : The sharing of Building Blocks. PhD
thesis, The University of Tulsa, 1998.

Robert B. Heckendorn, Soraya Rana, and Darrell Whitley. Nonlinearity, hyperplane
ranking and the simple genetic algorithm. In Foundations of Genetic Algorithms 4,

April 1997.

Robert B. Heckendorn, Soraya Rana, and Darrell Whitley. Polynomial time summary
statistics for a generalization of maxsat. Proceedings of the Genetic and Fvolutionary

Computation conference(GECCO-99), pages 281-288, 1999.

Robert B. Heckendorn, Soraya Rana, and Darrell Whitley. Test function generators as
embeded landscapes, foundations of genetic algorithms 5. Collin Reeves and Wolfgang

Banzhof ed., Morgan Kaufmann, 1999.

Shinn-Ying Ho, Li-Sun Shu, and Hung-Ming Chen. Intelligent genetic algorithm
with a new intelligent crossover using orthogonal arrays. Proceedings on Genetic and

Evolutionary Computation Conference, pages 289-296, 1999.

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

115

J. Holland. Adaptation in natural and artificial systems. Ann Arbor: University of

Michigan Press, 1975.

Kim G. Hwan and Lee C.S. George. Genetic reinforcement learning approach to the
heterogeneous machine scheduling problem. Transactions on Robotics and Automa-

tion, 14(6), December 1998.

W.H. Ip, Y. Li, K.F. Man, and K.S. Tang. Multi-product planning and scheduling
using genetic algorithm approach. Computers and Indusitrial Engineering, 38:283—

296, 2000.

Mikkel T. Jensen. Omproving robusness and flexibility of tardiness and total flow-time

job shops using robustness measures. Applied Soft Computing, pages 1-18, 2001.

S.K. Tamiz M. Jones, D. F. Mirrazavi. Multi-objective meta-heuristics: An overview
of the current state-of-the-art. Furopean Journal of Operational Research, 137:1-9,

February 2002.

T. Kalinowski. Solving the task scheduling problem using a parallel genetic algorithm

implemented with grade. Computers and Artificial Intelligence, 17:495-506, 1998.

Roger M. Kerr. Scheduling in the steel industry. Technical report, Christian Doppler
Laboratory for Expert Systems. CD-S 94/16, Vienna University of Technology, Aus-
tria, 1994.

Hyunchul Kim, Yasuhiro Hayashi, and Koichi Nara. An algorithm for thermal unit
maintenance scheduling through combined use of ga sa and ts. Transactions on Power

Systems, 12(1), February 1997.

Michael Kirley. Mea: A metapopulation evolutionary algorithm for multi-objective
optimisation problems. PROCEEDING ON EVOLUTIONARY COMPUTATION,
2:949-952, 2001.

Dimitri Knjazew. Application of the fast messy genetic algorithm to permutation
and scheduling problems. Master’s thesis, Illinois Genetic Algorithm Laboratory.
Department of General Engineering, University of Illinois at Urbana-Champaign. 117

Transportation Building. 104 South Mathews Avenus. Urbana, IL 61801, May 2000.

[11§]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

116

Dimitri Knjazew and David E. Goldberg. Omega - ordering messy ga: Solving per-
mutation problems with the fast messy genetic algorithm and random keys. Technical
report, Illinois Genetic Algorithm Laboratory. Department of General Engineering,
University of Illinois at Urbana-Champaign. 117 Transportation Building. 104 South
Mathews Avenus. Urbana, IL 61801, January 2000.

R. Knosala and T. Wal. A production scheduling problem using genetic algorithm.
Journal of Materials Processing Technology, 109:90-95, February 2001.

R.John Koza. Genetic Programming: On the Programming of Computer by means of

Natural Selection. 1992.

Ibrahim Kuscu. Promotion generalization of learned behaviours in genetic program-
ming. Parallel Problem Solving from Nature-PPSN V. 5th International conference
Amsterdam, The Netherlands, pages 491-500, September.

S.S. LAM, K.W.C. TANG, and X CAI Genetic algorithm with pigeon-hole coding
schema for sequencing problems. Applied Artificial Intelligence, 10:239-256, 1996.

W.B. Langdon. Scheduling maintenance of electrical power transmission network

using genetic programming. Genetic programming conference, 1996.

P. Larranaga, C.M.H. Kuijpers, R.H. Murga, I. Inza, and S. Dizdarevic. Genetic
algorithms for travelling salesman problems. a review of representations and operators.

Artificial Intelligence Review 13, pages 129-170, 1999.

Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. On the conver-
gence and diversity-preservation properties of multi-objective evolutionary algorithms.
Technical Report 108, Computer Engineering and Networks Laboratory, Swiss Federal
Institut Of Technology (ETH) Zurich, Switzerland, June 2001.

Albert Laura A. and David E. Goldberg. Efficient evaluation genetic algorithms under
integrated fitness functions. Technical Report 2001024, Illinois Genetic Algorithm
Laboratory. Department of General Engineering, University of Illinois at Urbana-
Champaign. 117 Transportation Building. 104 South Mathews Avenus. Urbana, 1L
61801, July 2001.

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

117

G. Lawton. Genetic algrotihms for schedule optimization. AI Ezpert, May 1992.

In Lee. Artificial intelligence search methods for multi-machine two-stage scheduling
with due date penalty, inventory, and maching costs. Computers and Operations

Research, 28:835—-852, August 2001.

Richard C. Lee and Willian M. Tepfenhart. UML and C++. A practicle Guide To
Object-Oriented Development. Printice-Hall, 1997.

Suk Lee, Sang Ho Lee, Kyung Chang Lee, Man Hyung Lee, and Fumio Harashima.
Intelligent performance management of of networks for advanced manufacturing sys-
tems. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 48(4):731-741,
AUGUST 2001.

Sang Lee Ho, Man Lee Hyung, and Fumio Harashima. Intelligent performance man-
agement of networks for advanced manufacturing systems. IEEE TRANSACTION
INDUSTRIAL ELECTRONICS, 48(4):731-741, August 2001.

Alexandre Leonhardi, Wolfgang Reissenberger, Tim Schmelmer, Karsten Weicker, and
Nicole Weicker. Development of problem-specific evolutionary algorithms. Parallel
Problem Solving from Nature PPSN V 5th International conference Amsterdam The
Netherlands, pages 389-397, September 1998.

Hitoshi lima and Nobuo Sannomiya. Module type genetic algorithm for modified
scheduling problems with worker allocation. Proceedings of the American Control

Conference Arlington, VA, pages 856-861, June 2001.

Man Lin, Lars Karlsson, and Laurence Tianruo Yang. Heuristic techniques: Schedul-
ing partially ordered tasks in a multi-processor environment with tabu search and
genetic algorithms. Seventh International Conference on Parallel and distributed Sys-
tems, pages 515-523, 2000.

Man Lin and Laurance Tianruo Yang. Hybrid genetic algorithms for scheduling par-
tially orderedctasks in a multi-processor environment. Sizth International Conference

on Real Time Computing Systems and Applications, RTCSA99., pages 382-387, 1999.

[136]
[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

118

Bernice Sacks Lipkin. Later For Linuz. Springer Verlag, New York, 1999.
Stanley B. Lippman. C++ Primer. 1989.

Yutian Liu, Li Ma, and Jianjun Zhang. Ga/sa/ts hybrid algorithms for reactive power

optimization. Power Engineering Society Summer Meeting, 1, 2000.

G. Lobo Fernando and David E. Goldberg. The parameter-less genetic algorithm
in practice. Technical Report 2001022, Illinois Genetic Algorithm Laboratory. De-
partment of General Engineering, University of Illinois at Urbana-Champaign. 117

Transportation Building. 104 South Mathews Avenus. Urbana, IL 61801, 2001.

Xudong Luo, Ho-fung Leung, and Ho-man Lee. A multi-agent framework for meeting
scheduling using fuzzy constraints. Fourth International Conference on Multi Agent

Systems, pages 409-410, 2000.

Samir W. Mahfoud. Crowding and presentation revisited. Parallel Problem Solving

From Nature, 2. R. Manner and B. Manderick (eds)., pages 27-36, 1992.

Samir W. Mahfoud. Simple analytical models of genetic algorithms for multimodal
function optimization. Technical Report 93001, Department of Computer Science,
University of Illinois at Urbana-Champaign. 1304 West Springfield Avenue Urbana,
IL 61801, February 1993.

Harpal Main, Kishan Mehrotra, Chilukuri Mohan, and Sanjay Ranka. Knowledge-
based nonuniform crossover. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on Evolutionary Computation., 1:22-27,
1994.

A H. Mantawy, Yousef L. Abdel-Magid, and Shorki Z. Selim. Integrating genetic
algorithms, tabu search, and simulated annealing for the unit commitment problem.

Transactions on Power Systems, 14(3), August 1999.

Wall Bartschi Matthew. Galib: A C++ Library of Genetic Algorithm Components.
Technical report, Department of Mechanical Engineering. Massaschusetts Institute of

Technology (MIT)., Massaschusetts Institute of Technology, August 1996.

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

119

Wall Bartschi Matthew. A genetic Algorithm for Resource-Constrained Scheduling.
PhD thesis, Department of Mechanical Engineering. Massaschusetts Institute of Tech-
nology (MIT)., Massaschusetts Institute of Technology, 1996.

Ole J. Mengshoel and David E. Goldberg. Probabilistic crowding: Deterministic
crowding with probabilistic replacement. Technical Report 99004, Illinois Genetic
Algorithm Laboratory. Department of General Engineering, University of Illinois at
Urbana-Champaign. 117 Transportation Building. 104 South Mathews Avenus. Ur-
bana, IL 61801, January 1999.

Z. Michalewicz. Genetic Algorithms + Data Structures = FEwvolution programs.

Springer, 1992.

Zbigniew Michalewicz. Genetic algorithms, numerical optimization, and constraints.
Ptoceedings of the 6 th International Conference on Genetic Algorithms, Pittsburgh,
pages 151-158, july 1995.

Zbigniew Michalewicz. The significance of the evaluation function in evolutionary
algorithms. Proceedings of the Workshop on Evolutionary Algorithms, pages 151-166,
1998.

Zbigniew Michalewicz. Your brains and my beauty: Parent matching for constrained
optimisation. Proceedings of the 5 th International Conference on Evolutionary Com-

putation. Anchorage, Alaska., pages 810-815, May 1998.

Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selection, and
the effects of noise. Technical Report 95006, Illinois Genetic Algorithm Laboratory.
Department of General Engineering, University of Illinois at Urbana-Champaign. 117

Transportation Building. 104 South Mathews Avenus. Urbana, IL 61801, July 1995.

Li Minggiang, Kou Jisong, and Dai Lin. Ga-based multi-objective optimization. Pro-
ceedings of the 3rd World Congress on Intelligent Control and Automation, pages
637-640, 2000.

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

120

Koji Morikawa, Tekeshi Furuhashi, and Yoshiki Uchikawa. Evolution of cim system
with genetic algorithm. IEEE World Congress on Comutational Intelligence, 2:746—
749, 1994.

H. Miihlenbein, M. Gorges-Schleuter, and O. Kramer. Evolutionary algorithms in
combinatorial optimization. Parallel Computing, 7:65-85, 1988.

Heinz Miuhlenbein. Ewvolutionary Algorithms: Theory and Apllications. New York
Oxford, Oxford University Press, 1996.

T. MURATA, H. ISHIBUCHI, and H. TAKANA. Genetic algorithms for flowshop
scheduling problems. Computers ind. Engng., 30(4):1061-1071, 1996.

Nysret Musliu. Intelligent Search Methods for Workforce Scheduling: New Ideas
and Practical Applications. PhD thesis, Vienna University of Technology, Austria.,
September 2001.

R. Nakano. Conventional genetic algorithm for job shop problems. Fourth Interna-

tional Conference on Genetic Algorithm, San Diago, 1991.

André Neubauer. The circular schema theorem for genetic algorithms and two-proint
crossover. Genetic Algorithms in Engineering Systems: Innovations and Applications,

2-4(446):209-214, 1997.

Michael O. Odetayo. Optimization population size for genetic algorithms: An in-
vestigation. Genetic Algorithms for Control Systems Engineering, IEE Colloquium,
1993.

Christopher K. Oei, David E. Goldberg, and Shau-Jin Chang. Tournament selection
niching, and the preservation of diversity. Technical Report 91011, Illinois Genetic
Algorithm Laboratory. Department of General Engineering, University of Illinois at
Urbana-Champaign. 117 Transportation Building. 104 South Mathews Avenus. Ur-
bana, IL 61801, 1991.

S. Oussedik, D. Delahaya, and M. Schonauer. Dynamic air traffic planning by genetic
algorithms. 1999.

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

121

C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

C.Hicks Pongcharoen, P.M. Braiden, and D.J. Stewardson. Determining optimum ge-
netic algorithm parameters for scheduling the manufacturing and assembly of complex

product. International Journal of Production Economics, March 2002.

Terry Quatrani. Visual Modeling with Rational Rose and UML. Addison Wesley
Longman, 1998.

Soraya Rana, Robert B. Heckendorn, and Darrell Whitley. A tractable walsh analysis
of sat and its implications for genetic algorithms. Proceedings of the fifteenth National

Conference on Artificial Intelligence (AAAI-98), pages 392-397, 1998.

Magnus Rattray and Jonathan L Shapiro. The dynamic of genetic algorithm for a
simple learning problem. J.Phys. A:Math. Gen, 29:7451-7473, 1996.

I. Rechenberg. Evolution strategies: Optimierung technischer systeme nach prinzipien

der biologische evolution. 1973.

Colin R. Reeves. Modern Heuristic Techniques for Combinatorial Problems. McGraw-
Hill Book Company Europe, Shoppenhangers Road. Maidenhead. Berkshire SL6 2QL,
1995.

A.P. Reynolds, V.J. Rayward-Smith, and G.P. McKeown. The application of simu-
lated annealing to an industrial scheduling problem. GALESIA97. Second Interna-

tional Conference on Genetic Algorithms In Engineering Systems: Innovation And

Applications, (446):345-350, September 1997.

A. Roach and R. NAGI. A hybrid ga-sa algorithm for just-in-time scheduling of
multi-level assemblies. Computers ind. Engng., 30(4):1047-1060, 1996.

Franz Rothlauf, David E. Goldberg, and Armin Heinzl. Bad codings and the utility of
well-designed genetic algorithm. Technical Report 2000007, Illinois Genetic Algorithm
Laboratory. Department of General Engineering, University of Illinois at Urbana-
Champaign. 117 Transportation Building. 104 South Mathews Avenus. Urbana, 1L
61801, January 2000.

[174]

[175]

[176]

[177]

[17§]

[179]

[180]

[181]

[182]

[183]

[184]

122

Alvaro Ruiz-Andino, Lourdes Araujo, Fernando Sacuteaenz, and José Ruz. A hybrid
evolutionary approach for solving constrained optimization problems over finite do-
mains. IEEE Transactions On Evolutionary Computation, 4(4):353-372, November
2000.

J. Rumbaugh. Object Oriented modelling and design. Englewood Cliffs, NJ., 1991.

Johannes Sametinger. Software Engineering With Reusable Components. Berlin[u.a.],

1997.

H. Sayoud, K. Takahashi, and B. Vaillant. Designing communication networks topolo-
gies using steady-state genetic algorithms. IEEE COMMUNICATION LETTERS,
5(3):113-115, MARCH 2001.

Florian Schmitt and Franz Rothlauf. On the importance of the second largest eigen-
value on the convergence rate of genetic algorithms. 2001021, Illinois Genetic Al-
gorithm Laboratory. Department of General Engineering, University of Illinois at
Urbana-Champaign. 117 Transportation Building. 104 South Mathews Avenus. Ur-
bana, IL 61801, June 2001.

H.P. Schwefel. Fvolution als strategie der FExperimentellen Forschung in der

Stromungstechnik. PhD thesis, Technical University of Berlin, 1965,.

K.J. Shaw and P.J. Fleming. Including real-life problem preferences in genetic al-
gorithms to improve optimisation of production schedules. Genetic Algorithms In

Engineering Systems: Innovation And Applications, (446):239-244, September 1997.

wolfgang Slany. Fuzzy Scheduling. PhD thesis, Vienna University of Technology,
Austria, Vienna, Austria, 1994.

William M. Spears. The Role of Mutation and Recombination in FEvolutionary Algo-
rithms. PhD thesis, George Mason University, Fair fax, Virginia, 1998.

Chris Stephens and Henri Waelbrpeck. Schema evolution and building blocks. Con-
ference Proccedings on Evolutionary Computation. CEC99, 7(2):109-124, 1999.

Bjarne Stroustrup. The C++ programming language. Reading, Massaschusetts, 1997.

[185]

[186]

[187]

[188)]

[189]

[190]

[191]

[192]

[193]

[194]

123

Patrick David Surry. A Prescriptive Formalism for Constructing Domain-specific

Evolutionary Algorithms. PhD thesis, University of Edinburgh, 1998.

G. Syswerda. Schedule optimization using genetic algorithms. in davis, 1.(ed.). Hand-

book of Genetic Algorithms. New York: Van Nostrand Reinhold, pages 332-349, 1991.

G. Syswerda. A study of reproduction in generational and steady-state genetic algo-
rithms. In Foundations of Genetic Algorithms. Morgan Kauffmann Publishers., pages

94-101, 1991.

K.C. Tan, Tong H. Lee, D. Khoo, and E.F. Khor. A multiobjective evolutionary
algorithm toolbox for computer-aided multiobjective optimization. Transactions On

Systems, Man, and Cybernetics-PART B: Cybernetics., 31(4):537-556, August 2001.

Guo Tao and Zbigniew Michalewicz. Inver-over operator for tsp. Proceedings of the 5

th Parallel Problem Solving from Nature, pages 803-812, September 1998.

Masaru Tezuka, Masahiro Hiji, Kazunori Miyabayashi, and Keigo Okumura. A new
cluster representation and common cluster crossover for job shop scheduling problems.
Proceedings on Real-World Applications of Evolutionary Computing, EvoWorkshops
2000:, 1803:297-306, 2000.

Chuan-Kang Ting, Sheng-Tun Li, and Chungnan Lee. Tga: A new integrated ap-
proach to evolutionary algorithms. Proceedings of the 2001 Congress on: Evoulution-

ary Computation, 2:917-924, 2001.

Jean-Philippe Vacher, Thierry Galinho, Franck Lesage, and Alain Cardon. Genetic al-
gorithms in a multi-agent system. IEEE International Joint Symposia on Intelligence

and Systems, pages 17-26, 1998.

Manuel Vacuteazquez and Darell Whitley. A comparison of genetic algorithms for the
dynamic job shop scheduling problem. Proceedings of the Genetic and Fvolutionary

Computation Conference, 2000.

Manuel Vacuteazquez and Darell Whitley. A comparison of genetic algorithms for the
static job shop scheduling problem. Parallel Problem Solving From Nature- PPSN VI,
6 th International Conference Paris, Proceedings., September 2000.

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

124

Dingwei Wang, K.L. Yung, and W.H. Ip. A heuristic genetic algorithm for sub-
contractor selection in a global manufacturinf environment. IEEE TRANSACTION
ON SYSTEMS, MAN, AND CYBERNETICS-PARTC: APPLICATION AND RE-
VIEWS, 31(2):189-198, MAY 2001.

Kefeng Wang, Thomas Lohl, Mario Stobbe, and Sebastian Engell. A genetic algorithm
for online-scheduling of multiproduct polymer batch plant. Computers and Chemical

Engineering, 24:393—-400, 2000.

Michiko Watanabe, Masashi Furukawa, Akihiro Mizoe, and Tatsuo Watanabe. Ga
applications to physical distribution scheduling problem. IEEE TRANSACTION ON
INDUSTRIAL ELECTRONICS, 4(724-730), 48.

J.P. Watson, L. Barbulescu, A.E. Howe, and L.D. Whitley. Algorithm performance
and problem structure for flow-shop scheduling. Proceedings of the Sizteenth National
Conference on Artificial Intelligence (AAAI-99), 1999.

Darrell Whitley. A free lunch proof for gray versus binary encodings. Proceedings of

the Genetic and Evolutionary Computation Conference. GECCO0-99, 1999.

Darrell Whitley. An overview of evolutionary algorithms: practical issues and common

pitfalls. Information and Software Technology, 43:817-831, December 2001.

Darrell Whitley, A. E. Howe, S. Rana, J.P. Watson, and L. Barbulescu. Compar-
ing heuristics search methods and genetic algorithms for warehouse scheduling. In

Systems, Man and Cybernetics, 1998.

Darrell Whitley, K. Mathias, and L. Pyeatt. Hyperplane ranking in simple genetic al-
gorithms. International Conference on Genetic Algorithms. L. Eshelman, ed. Morgan

Kaufmann, 1995.

Darrell Whitley, Timothy Starkweather, and D’Ann Fuquay. Scheduling problems
and traveling salesman: The genetic edge recombination operator. In Schaffer, J.(ed.)
Proceedings on the third International Conference on Genetic Algorithms. Los Altos,

CA, pages 133-140, 1989.

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

125

Darrell Whitley and N. Yoo. Modeling simple genetic algorithms for permutation
problems. Foundations of Genetic Algorithms-8 D. Whitley and M. Vose, eds. Morgan
Kaufmann, 1995.

Pierre A.I. Wijkman. Solving the tsp problem with a new model in evolutionary com-
putaion. Genetic Algorithms on Engineering Systems: Innovations and Apllications,

(446):145-150, 1997.

David H. Wolpert and Walliam G. Macready. No free lunch theorems for optimization.
IEEE Transactions On Evolutionary Computation, 1(1):67-82, April 1997.

Takeshi Yamada and Ryohei Nakano. A genetic algorithm with multi-step crossover
for hob-shop scheduling problems. GALESIA95. First International Conference on
Genetic Algorithms In Engineering Systems: Innovation And Applications, (414):146-
151, September 1995.

Habib Youssef, Sadiq M.Sait, and Hakim Adiche. Evolutionary algorithms, simulated
annealing and tabu search: a comparative study. Engineering Applications of Artificial

Intelligence, 14:167-181, April 2001.

Tina Yu and Peter Bentley. Methods to evolve legal phenotypes. Parallel Problem
Solving from Nature-PPSN V. 5th International conference Amsterdam, The Nether-
lands, pages 280291, September 1998.

F. Zhang, Y.F. Zhang, and A.Y.C. Nee. Using genetic algorithm in process planning
for job shop machining. IEEE Transactions On Evolutionary Computation, 1(4):278-
289, November 1997.

J. Zhao, B. Knight, E. Nissan, and A. Soper. Fuelgen: a genetic algorithm-based
system for fuel loading pattern design in nuclear power reactors. Expert Systems with
Applications 14, pages 461-470, 1998.

Hong Zhou, Yuncheng Feng, and Limin Han. The hybrid heuristic genetic algorithm
for job shop scheduling. Computers and Industrial Engineering, 40:191-200, July
2001.

[213]

[214]

[215]

[216]

126

Eckart Zitzler. Fvolutionary Algorithms for Multiobjective Optimization: Methods and
Application. PhD thesis, Swiss Federal Institute of Technology Zurich, Switzerland,
November 1999.

Eckart Zitzler, Deb Kalyanmoy, and Lothar Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173-195,

April 2001.

Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2:improving the strength
pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Net-
works Laboratory, Swiss Federal Institut Of Technology (ETH) Zurich, Switzerland,
May 2001.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A com-
parative case study and the strength pareto approach. Transactions on Evolutionary
Computation, 3(4):257-271, November 1999.

CurriculumVitae

Personal Data:

Name : Dipl.-Ing. Maamar SAIB
Nationality : Algeria

Adresse : Linzer Strasse 429/4012
A-1140 Vienna

AUSTRIA

Email : saib@dbai.tuwien.ac.at

Privat Email: amarsab67@hotmail.com

Highlights of Qualifications:
e Programming Experience: C++, Turbo Pascal, Clipper, DBASE
e Object Oriented Analysis and Design: Unified Modeling Language (UML)
e Rational Rose Tool for Object Oriented Analysis and Design
e Design Patterns
Languages:

e Native Languages:

Arabic, French.

e Other Languages:

Written Spoken

-German: advanced advanced

127

128

-English intermediate intermediate

Education:
e Secondary School: Lycee de Chlef, Algeria. graduated in 1986

e University: University of Science and Technology, Alger, Algeria. Major Computer
Science, graduated in 1992.

e German Course: German Course, from 1996-1997 at the University of Vienna, Austria.

Advance Level.
e Phd Student: Vienna University of Technology, from 1998 to 2002.
Employment:

e From June 1992 To February 1993 : Software Company In Algeria

Project: Development of Software with Database Dbase

e from October 1992 to February 1993: Technical University In Algeria: Assistant

Teaching Algorithms and Programming in Computer Science Institute.

e From February 1993 to 1996: Import Export Company(OAIC), Algeria:
Project: Development Of Software for Production With Clipper and Dbase

e From July 2000 to September 2000: Siemens Austria, Wien.
Project: Development of Graphical User Interface with Microsoft Visual C++ for

Network management System

e From April 2001: Vienna University of Technology, Department of Pattern Recogni-
tion. Research Assistant
Project: Geograph. Development Of New Tool with C++ for Pattern Recognition

and Image processing.
Accomplishments:

e Implementation of software for classification and Multi Criteria analysis with Turbo

Pascal

129

e Implementation of production software with Clipper and DBASE

¢ Design(With UML and Rational Rose Tool) and implementation (With Microsoft
Visual C++)of genetic algorithms in scheduling problems

e Design and implementation of software for Pattern Recognition and Image processing

With C++ under Unix.
Publications:

e Haxhimusa Y1l and Saib Maamar and Glantz Roland and Kropatsch Walter G. Equiv-
alent Contraction Kernels Using Dynamic Trees, Proceedings of the 6th. Computer

Vision Winter Workshop. Bled, Slovenia. 267-275, 2001.

e Haxhimusa Y1l and Glantz Roland and Saib Maamar and Langs Georg, and Kropatsch
Walter G., Reduction Factors of Image Pyramid on Udirected and Directed Graph,
Proceedings of the 7th. Computer Vision Winter Workshop. Austria,2002.

e Saib Maamar and Haxhimusa YIl and Glantz Roland, Dgc_tool: Building Irregular

Graph Pyramid Using Dual Graph Contraction, PRIP, Vienna University of Technol-
ogy. Tech.Rep.No.69, 2002.

Appendix

130

+ Déja Yu - SteelDemo Scheduler
e Bt Shiow Help

131

MEE

+ Optimization Algorithm for Déja Yu - SteelDemo Scheduler

Optimization Algarithm

Gengtic: Algorithm

X

(" Tabu Gearch

(" Simulzted Annieaing
{¥ Genetc Agorthm
(" erative Deepering

(" Random $earch

|7 Salact greatest viclation

(¥ SmpleGensticAgorthm

" SeadyState GeneticAguritim

" IncrementalGenetic Agorthm

[Bism

(" Determinitic Crowding GeneticAgoritm

" InverOverGensic Agorthm

FOpUIETIaN2Ize

LIOEE0Er FToDaDiITy

I

= =
£
=
=

SelectionType

(" RouetteliheeSelector
¥ Toumamert Selector

(" Unifomnelectar

e " RaricSelector
|7 Store best schedule 010

Stopping Criteria
Crossover Operafors WutationOperators

[HumberfGeneration
(" PariaetchCrassover (" Suzphitation -
(" OrderCrossnuer ™ Isertionthtion

[JEapsed Time
(" CyeleCrossover (¥ Displazementhation tas

il

(" NeimalPresenvativeCrossover { Seramblebtaton

[Quity Cangel
(" UnifomOnderBasedCrossover | InversionhAtation |:| 1L |
(¥ DnderbasedCrssover iy
(" PostionBasedCrssover

Figure 7.1: Graphical User Interface: Simple genetic algorithm

+ Déja Yu - SteelDemo Scheduler
Ble Edl Shaw Hel

132

L [8]X

+ Dptimization Algorithm for Déja ¥u - SteelDemo Scheduler

Optiization Algarithm

Genetic: Algarithm

LCIX

{ Tahi Search

(" Simulzed neing
(¥ Genetc Agorthm
(" Herative Despening

(" Randam Search

¥ Selet reatest vilaon

" Simple GeneticAgorthm
{8 Steady Stats Genetiv Agorthm

™ IncramentalGenetiAlgarthm

" Deterministio CroudingBenetic Agorthm

™ Inwerflver eneticdgorthm

FOpUIETIOnzIze
LIOES0vEr FTonanimy

ST On FrananiTy

SeadyStateParameters

{3 MumberReplzcemert
(" PercentageReplacement

SelectionType

" Rouleteliheelelectar
(¥ Toumament elestar
" LnifermSelestor

" RankSelector

|7 Store bast schedule 00100
Stopping Criteria
CrossoverOperators Wutation Operators
[Humber(fGeneraton
(" FartiahiatchCmossover (" Suzphration
300
(" OderCrossaver (" hsetiontitaton
¥ Eapsed T
(™ CyeleCrossover i+ Dispacementhitation o
300
(" MevimalPreservativeCrossover (" Sorambletitation
" Oty Cancal
(" UrifomOnderBasedCrossover | Iversionhtation |:| | il |
(¥ OnderfasedCmsover [’
" PosttionBasedCrossover

Figure 7.2: Graphical User Interface: Steady state genetic algorithm

133

Figure 7.3: Graphical User Interface:genetic algorithm operators

Figure 7.4: Graphical User Interface: Simple genetic algorithm parameters

134

Figure 7.5: Graphical User Interface: Steady state genetic algorithm parameters

Figure 7.6: Graphical User Interface: Stoping Criteria

135

cile Edit Show Scheduling Chame Operation Help

{Orders Bm3 == E3
Hame Steel Grade Due Date Preferrad ‘Wzight Priority
| 0901 GhiO Improving Schedule Bm3 with SteadyState GeneticAlgorithm
[mosoz GEot
[oz oom R | I
— [E—
| E009-04 GHMDT reparr sieps
l St]
| Schedule BmS |
}_II EIEE] = | EEEEEEEE
Ladles
[_ | S | N E N N N A e e E
| E e [E FE [N [EE
[_ N E N N N N N N N e
[[[
[
[| =
—
}_| N N S M. st nhnneh, e bbb,
E_‘ i e e T e T S e e i wam =Tz
T

Figure 7.7: Graphical User Interface: Improvement with Steady State GA

i Déja Yu - SteelDemo Scheduler @l x
File Edt Show Schedulng Charoe Operation Help

:[Drders Bm3 8 =l
MName Steel Grade Due Date Prefemed Wiieight Pricrity
Eng'g.g_y G Improving Schedule BmS with SimpleGeneticAlgorithim

EDO9-0E GO
tiapsea nme

Eosms bRz SR I I
Eov0r oWt . | I
B [I

=

C v | EEERERD]

Ladles

) ([E N E N N N O N e =
() 7 g U2 BT E]]] pE

(T N = El E N N EE G GO [
[B

[

()

‘ e e L : i o e i B H T
—r—ir—r7 i i N 1 e e e e s e i e e e e § e e 0

6 08 10 12 14 16 18 20 22 Ta 02 04 06 03 10 12 14 16 18 20 22 We 02 04 06 03 10 12 14 16 18 20 22 Th 02 04
hie |

Figure 7.8: Graphical User Interface: Improvement with Simple GA

