

DISSERTATION

Arylsubstituierte *meso*-Hydrobenzoine als neue chirale Auxiliare und enantiomerenreine Linker für die stereoselektive Synthese an fester Phase

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von

> Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Peter Gärtner E 163 Institut für Angewandte Synthesechemie

eingereicht an der Technischen Universität Wien Chemische Fakultät

von

Dipl.-Ing. Joachim Bröker 9325188 Josefsgasse 19/4 2340 Mödling

Wien, im Mai 2004

Deutsche Kurzfassung

Es wurden verschiedene arylsubstituierte meso-Hydrobenzoine hergestellt und aufgrund der begrenzten Zugänglichkeit einiger nicht literaturbekannter Derivate auch Bedingungen für eine meso-selektive Pinakolkupplung untersucht. Die gewonnenen meso-Diole wurden mit Noe's exo-Anhydrolactol desymmetrisiert und unterschiedliche Ethersubstituenten an die freie Hydroxylgruppe angebunden. Nach Abspaltung der Schutzgruppe wurden als Modellreaktionen zur Beurteilung der chiralen Induktionsfähigkeit der erhaltenen Auxiliare α-Alkylierungen an Propionsäureestern, Reduktionen und Additionen von Zn-Organylen an Benzoylameisensäureestern sowie Diels-Alder-Reaktionen an Acrylsäureestern durchgeführt, wobei Diastereoselektivitäten von bis zu 93 % de erreicht werden konnten. Die getesteten meso-Hydrobenzoinderivate wurden anschließend an einen Festphasenträger (Wang-Harz) gebunden und an dem immobilisierten Auxiliar die oben genannten Modellreaktionen durchgeführt, wobei etwas geringere Diastereoselektivitäten (bis zu 70 % de) als im Fall der Reaktionen in Lösung erhalten wurden. Nach Abspaltung der optisch aktiven Produkte sowie der neuerlichen Anbindung der entsprechenden Substrate konnte die Recyclierbarkeit des chiralen Linkers für weitere asymmetrische Umsetzungen ohne Verlust der chiralen Induktionsfähigkeit bewiesen werden.

Abstract

Various arylsubstituted *meso*-hydrobenzoins were synthesized and due to the limited accessibility of some of the derivatives, conditions for a *meso*-selective pinacol-coupling were investigated. After desymmetrization of the obtained compounds using Noe's *exo*-anhydrolactole, etherification and cleavage of the protective group, the achievable stereoselectivity (up to 93 % de) using these chiral auxiliaries was examined by α -benzylations of propionic acid esters, organo-Zn-additions or reductions of α -keto esters and Diels-Alder-reactions of acrylic acid esters as model-reactions in solution. The optimized auxiliary structure was attached to a solid support (Wang-resin) and tested as a chiral solid-phase-linker using the model reactions mentioned above. The stereoselectivities achieved on solid phase (up to 70 % de) were a little bit smaller than those reported for solution-phase-chemistry nevertheless by reapplication of the recovered immobilized auxiliary the recyclability of the linker could be proved.

Inhaltsverzeichnis

1.	Allg	emeiner Teil	9
	1.1.	Einleitung	9
	1.1.1.	Chirale Linker für die organische Synthese an fester Phase	9
	1.1.2.	. Hydrobenzoine als chirale Auxiliare	11
	1.2.	Problemstellung	16
			10
2.	Spez	zieller Teil	18
	2.1.	Herstellung von Hydrobenzoinderivaten	18
	2.1.1.	. Formelschema	18
	2.1.2.	. Herstellung der arylsubstituierten Benzoine	19
	2.1.3.	. Reduktion der Benzoinderivate	20
	2.1.4	. Versuche zur Herstellung von arylsubstituierten Hydrobenzoinen durch reduktive Kupplung	
	mitte	ls SmI ₂	21
	2.	1.4.1. Korrektur der bisherigen Stereoselektivitäts-Ergebnisse nach Wiederholung der Versuc	:he21
	2.	1.4.2. Korrektur der für die Umsetzung von Benzoin vorgeschlagenen Produktstruktur	23
	2.	1.4.3. Abhängigkeit der Stereoselektivität vom Substrat/Reagens-Verhältnis	25
	2.2.	Desymmetrisierung der meso-Hyrobenzoinderivate	28
	2.2.1	. Selektive Acetalisierung	28
	2.2.2.	. Säurestabilität der desymmetrisierten Linker	29
	2.2.3	. Basenstabilität der desymmetrisierten Linker	31
	2.3.	Veretherung und Aufbau der Ethylenglykol-Sublinkerstruktur	34
	2.4.	Acetalspaltung	36
	2.5.	Veresterungen	37
	2.6.	Selektivitätsversuche	38
	2.6.1	. α-Alkylierung von Propionsäureestern	38
	2.0	6.1.1. Auswertung mittels NMR	41
	2.0	6.1.2. Ergebnisse der Alkylierungsversuche nach NMR-Auswertung	42
	2.0	6.1.3. Interpretation der Ergebnisse	43
	2.6.2	. Reduktion von Benzoylameisensäureestern	46
	2.0	6.2.1. Auswertung mittels NMR	47
	2.0	6.2.2. Ergebnisse	50
	2.0	6.2.3. Interpretation der Ergebnisse	52
	2.6.3	. Addition an Benzoylameisensäureester	54
	2.6.4	. Diels-Alder-Reaktionen an Acrylsäureestern	58
	2.7.	Abspaltung der Produkte/Enantiomeranalytik	64
	2.7.1	. α-Methyl-benzolpropionsäureester	65

	2.7.2.	Mandelsäureester	67
	2.7.3.	α-Butyl-α-hydroxybenzolessigsäureester	70
	2.7.4.	Norbornencarbonsäureester	72
	2.8. F	estphasenversuche	75
	2.8.1.	Chlorierung der Wang-Harze	76
	2.8.2.	Anbindung der desymmetrisierten Linker	77
	2.8.3.	A cetalspaltung	79
	2.8.4.	Selektivitätsversuche	80
	2.8.4	I.1. Alkylierung von Propionsäureestern	80
	2.8.4	I.2. Reduktion von Benzoylameisensäureestern	83
	2.8.4	Addition von BuZnCl an Benzoylameisensäureester	87
	2.8.	I.4. Diels-Alder-Reaktion an Acrylsäureester 27i"	89
	2.9. F	lecyclierbarkeit	91
3.	Zusar	nmenfassung	94
4.	Expe	imenteller Teil	96
	4.1. A	Ilgemeine Angaben	96
	4.2. H	lerstellung der arylsubstituierten Benzoine	99
	4.2.1.	4,4'-Dimethoxybenzoin (2-Hydroxy-1,2-bis(4-methoxyphenyl)-ethanon)	99
	4.2.	1.1. Herstellung von α-[(Trimethylsilyl)oxy]-4-methoxybenzolacetonitril (3c)	99
	4.2.	1.2. Herstellung von 1,2-Bis(4-methoxyphenyl)-2-[(trimethylsilyl)oxy]-1-ethanon (4c)	100
	4.2.	1.3. Herstellung von 2-Hydroxy-1,2-bis(4-methoxyphenyl)-ethanon (2c)	101
	4.2.2.	2,2'-Bis(trifluormethyl)benzoin (2-Hydroxy-1,2-bis(2-trifluormethylphenyl)-ethanon)	102
	4.2.	2.1. α-[(Trimethylsilyl)oxy]-2-(trifluormethyl)benzolacetonitril (3d)	102
	4.2.	2.2. 1,2-Bis(2-trifluormethylphenyl)-2-[(trimethylsilyl)oxy]-1-ethanon (4d)	102
	4.2.	2.3. 2-Hydroxy-1,2-Bis(2-trifluormethylphenyl)-ethanon (2d)	103
	4.2.3.	2,2'-Dinitrobenzoin ((2-Hydroxy-1,2-bis(2-nitrophenyl)-ethanon)	104
	4.2.	3.1. α-[(Trimethylsilyl)oxy]-2-nitrobenzolacetonitril (3e)	104
	4.2.	3.2. 1,2-Bis(2-nitrophenyl)-2-[(trimethylsilyl)oxy]-1-ethanon (4e)	105
	4.2.	3.3. 2-Hydroxy-1,2-Bis(2-nitrophenyl)-ethanon (2e)	105
	4.3. I	Reduktion der Benzoinderivate	107
	4.3.1.	Herstellung von meso-1,2-Bis(4-methoxyphenyl)-1,2-ethandiol (5c)	107
	4.3.2.	meso-1,2-Bis(2-trifluormethylphenyl)-ethan-1,2-diol (5d)	108
	4.3.3.	Herstellung von meso-1,2-Bis(2-nitrophenyl)-ethan-1,2-diol (5e)	109
	4.4. V	ersuche zur stereoselektiven Pinakolkupplung unter Verwendung von	
	Samariu	mdijodid	110
	4.4.1.	Allgemeine Vorschrift für die Pinakolkupplung in THF	110

4.4.2. Allgemeine Vorschrift für die Pinakolkupplung in MeOH 111

4	.4.3.	Umsetzung von Benzoin mit Samariumdijodid in THF1	12
4.5.	D	esymmetrisierung der <i>meso</i> -Hydrobenzoinderivate11	4
4.	.5.1.	Herstellung von [2S-($2\alpha(\alpha R^*,\beta S^*)$, 3α , 4β , 7β , $7a\alpha$)]-4-Methoxy- α -(4-methoxyphenyl)- β -	
[(octahy	/dro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl)oxy]-benzolethanol (12c)1	14
4	.5.2.	Herstellung von $[2S-(2\alpha(\alpha R^*,\beta S^*),3a\alpha,4\beta,7\beta,7a\alpha)]-2-(trifluormethyl)-\alpha-2-(trifluormethylphenyl)$	i)-
β	-[(octa	hydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl)oxy]-benzolethanol (12d) l	15
4.	.5.3.	$Herstellung \ von \ [2S-(2\alpha(\alpha R^*,\beta S^*),3a\alpha,4\beta,7\beta,7a\alpha)]-2-Nitro-\alpha-(2-nitrophenyl)-\beta-[(octahydro-a)-(2-nitrophenyl)-\beta-(a)-(a)-(a)-(a)-(a)-(a)-(a)-(a)-(a)-(a)$	
7,	,8,8-tri	imethyl-4,7-methanobenzofuran-2-yl)oxy]-benzolethanol (12e) 1	17
4.6.	v	eretherung der desymmetrisierten Linker12	20
4	.6.1.	Herstellung von 2-[[2S-(2α(1S*,2R*),3aα,4β,7β,7aα)]-(1,2-Bis(4-methoxyphenyl)-2-(2-	
n	nethylp	propoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran (21c)	20
4	.6.2.	$Herstellung \ von \ [2S-(2\alpha(1S^*,2R^*),3a\alpha,4\beta,7\beta,7a\alpha)]-2-[(1,2-Bis(2-trifluormethylphenyl)-2-(2-b$	
m	iethylp	propoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran (21c)	21
4	.6.3.	Dreistufige Synthese von 2-[[2S-(2α(1S*,2R*),3aα,4β,7β,7aα)]-(1,2-Bis(2-methoxyphenyl)-2-(2	!-
n	ethox	yethoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran	23
	4.6.3	Herstellung von [[2S-(2α(1R*,2S*),3aα,4β,7β,7aα)]-1,2-Bis(2-methoxyphenyl)-2-	
	(octa	hydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl-oxy)ethoxy]essigsäure, 1,1-dimethylethyleste	r
	(22)	123	
	4.6.3	Herstellung von [[2S-($2\alpha(1R^*,2S^*)$, $3\alpha,4\beta,7\beta,7\alpha\alpha$)]-1,2-Bis(2-methoxyphenyl)-2-	
	[(oct	ahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl)-oxy]-2-ethoxy]-ethanol (12f) 12	25
	4.6.3	Herstellung von 2-[[2S-($2\alpha(1S^*,2R^*)$, $3a\alpha,4\beta,7\beta,7a\alpha$)]-(1,2-Bis(2-methoxyphenyl)-2-(2-	
	meth	oxyethoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran (21f)	26
4.7.	A	cetalspaltungen	28
4	.7.1.	Herstellung von R-(α R*, β S*)-4-Methoxy- α -(4-methoxyphenyl)- β -(2-methylpropoxy)-	
b	enzole	thanol (23c) 12	28
4	.7.2.	Herstellung von R-(α R*, β S*)-2-Trifluormethyl- α -(2-trifluormethylphenyl)- β -(2-methylpropoxy	/)-
b	enzole	thanol (23d) 12	29
4	.7.3.	Herstellung von R-(α R*, β S*)-2-Methoxy- α -(2-methoxyphenyl)- β -(2-methoxyethoxy)-	
b	enzole	thanol (23f) 12	31
4.8.	V	eresterungen	32
4	.8.1.	Herstellung des Propansäure, [R-(1R*,2S*)]-[1,2-bis(4-methoxyphenyl)-2-(2-	
n	nethylp	propoxy)ethyl]esters (25c)	32
4	.8.2.	Herstellung des Propansäure, [R-(1R*,2S*)]-[2-(2-methylpropoxy)-1,2-bis(2-	
tr	ifluor	nethylphenyl)ethyl]esters (25d)	33
4	.8.3.	Herstellung des Propansäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2-bis(2-	
n	nethox	yphenyl)ethyl]esters (25f)	35
4	.8.4.	Herstellung des a-Oxobenzolessigsäure, [R-(1R*,2S*)]-[1,2-bis(4-methoxyphenyl)-2-(2-	
n	nethyl	propoxy)ethyl]esters (26c)	36

	4.8.5.	Herstellung des α-Oxobenzolessigsäure, [R-(1R*,2S*)]-[2-(2-methylpropoxy)-1,2-bis(2-	
	trifluor	methylphenyl)ethyl]esters (26d)	137
	4.8.6.	Herstellung des α-Oxobenzolessigsäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2-bis(2-	
	methox	(yphenyl)ethyl]esters (26f)	138
	4.8.7.	Herstellung des Propensäure, [R-(1R*,2S*)]-[1,2-bis(2-methoxyphenyl)-2-(2-	
	methyl	propoxy)ethyl]esters (27a)	139
	4.8.8.	Herstellung des Propensäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2-bis(2-	
	methox	kyphenyl)ethyl]esters (27f)	141
	4.8.9.	Herstellung des Propensäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2-diphenyl)ethyl]esters	
	(27g)	142	
	4.8.10.	Herstellung des Propensäure, (2-methoxyphenyl)methylesters (27h)	142
4	.9. N	Modellreaktionen	144
	4.9.1.	α-Alkylierung der Propionsäureester ohne Zusatz von LiCl	144
	4.9.	1.1. Herstellung des α -Methylbenzolpropansäure, [R-(1R*,2S*)]-[1,2-bis(4-methoxyphenyl)-	-2-
	(2-n	nethylpropoxy)ethyl]esters (28c)	144
	4.9.	1.2. Herstellung des α-Methylbenzolpropansäure, [R-(1R*,2S*)]-[2-(2-methylpropoxy)-1,2-t	ois-
	(2-tı	rifluormethylphenyl)ethyl]esters (28d)	146
	4.9.	1.3. Herstellung des α-Methylbenzolpropansäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2-	
	bis(2-methoxyphenyl)ethyl]esters (28f)	147
	4.9.2.	α-Alkylierung der Propionsäureester unter Zusatz von LiCl	148
	4.9.	2.1. Herstellung des α-Methylbenzolpropansäure, [1R-(1R*,2S*)]-[1,2-bis(2-methoxyphenyl)-2-
	(2-n	nethylpropoxy)ethyl]esters (28a)	148
	4.9.	2.2. Herstellung des α-Methylbenzolpropansäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2-	
	bis(2-methoxyphenyl)ethyl]esters (28f)	149
	4.9.3.	Reduktion des Benzoylameisensäureesters 26a unter Zusatz von ZnCl ₂	150
	4.9.4.	Reduktion der Benzoylameisensäureester ohne Zusatz von ZnCl2	151
	4.9.	4.1. Herstellung des α-Hydroxybenzolessigsäure, [R-(1R*,2S*)]-[1,2-bis(4-methoxyphenyl)-	-2-
	(2-n	nethylpropoxy)ethyl]esters (29c)	151
	4.9.	4.2. Herstellung des α-Hydroxybenzolessigsäure, [R-(1R*,2S*)]-[2-(2-methylpropoxy)-1,2-	
	bis(2-trifluormethylphenyl)ethyl]esters (29d)	152
	4.9.	4.3. Herstellung des α-Hydroxybenzolessigsäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2-	
	bis(2-methoxyphenyl)ethyl]esters (29f)	153
	4.9.5.	Addition eines n-Butyl-Zink-Organyls an die Benzoylameisensäureester	154
	4.9.	5.1. Herstellung des α-Butyl-α-hydroxybenzolessigsäure, [R-(1R*,2S*)]-[1,2-bis(2-	
	met	hoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (30a)	154
	4.9.	.5.2. Herstellung des α-Butyl-α-hydroxybenzolessigsäure, [R-(1R*,2S*)]-[2-(2-methoxyethox	(y)-
	1,2-	-bis(2-methoxyphenyl)ethyl]esters (30f)	155
	4.9.6.	Diels Alder Reaktionen	156
	4.9.	6.1. Allgemeine Vorschrift für die Umsetzung der Acrylsäureester mit Me ₂ AlCl bzw.	
	Mg	Br ₂ Et ₂ O am Beispiel des Testsystems 27h/30h	156
	<u> </u>		

4.9.6.2.	Bicyclo[2.2.1]hept-5-en-2-carbonsäure, [R-(1R*,2S*)]-[1,2-bis(2-methoxyphenyl)-2-(2-	
methyl	propoxy)ethyl]esters (31a)1	58
4.9.6.3.	. Herstellung des Bicyclo[2.2.1]hept-5-en-2-carbonsäure, [R-(1R*,2S*)]-[2-(2-	
methox	yethoxy)-1,2-bis(2-methoxyphenyl)ethyl]esters (31f) 1	60
4.9.6.4	. Herstellung des Bicyclo[2.2.1]hept-5-en-2-carbonsäure, [R-(1R*,2S*)]-[2-(2-	
methox	yethoxy)-1,2-diphenylethyl]esters (31g) 1	61
4.10. Ver	seifungen / reduktive Abspaltung 1	62
4.10.1.	Allgemeine Vorschrift zur Verseifung der α-alkylierten Propionsäureester 28a, 28c, 28d und	
28f	162	
4.10.2.	Allgemeine Vorschrift zur basischen Verseifung der Mandelsäureester 29a, 29c, 29d und 29	f
	163	
4.10.3.	Sauer katalysierte Verseifung des Mandelsäureesters 29a 1	64
4.10.4.	Reduktive Spaltung des Mandelsäureesters 29a 1	65
4.10.5.	Allgemeine Vorschrift zur Verseifung der α-Butyl-α-hydroxybenzolessigsäureester 30a und	
30f	166	
4.10.6.	Allgemeine Vorschrift zur Verseifung der Norbornencarbonsäureester 31a, 31f und 31g 1	.67
4.10.7.	Verseifung des Norbornencarbonsäureesters 31h1	68
4.11. Der	ivatisierung der abgespaltenen Carbonsäuren für die HPLC- bzw. GC-Analytik	
169		
4 11.1.	Derivatisierung der α-Methylbenzolpropionsäure (32) mit L-Valinmethylester	69
4 11 2	Derivatisjerung von Mandelsäure (33) mit L-Valinmethylester	.70
4.11.3.	Derivatisjerung von 1-Phenyl-1.2-ethandiol (34) mit Phosgen	171
4.11.4.	Derivatisjerung der α -Butyl- α -hydroxybenzolessigsäure (36) mit L-Valinmethylester	72
4.11.5.	Veresterung von Norbornencarbonsäure 1	73
4.12. Rea	iktionen an fester Phase 1	74
4.12.1.	Chlorierung des Wang-Harzes	74
4.12.2.	Linkeranbindung	75
4.12.2.	Anbindung des desymmetrisierten Linkers 12a	75
4.12.2.1	2. Bildung des Nebenproduktes 19	76
4.12.2.	3. Umsetzung des Nebenproduktes 19 zu 4S-(4R*,5R*,7R*,8R*)- bzw 4S-	
(4R*,5	S*,7S*,8R*)-4,5,7,8-Tetra(2-methoxyphenyl)-[1,3,6]-trioxocan (20) 1	78
4.12.2.	4. Anbindung des desymmetrisierten Linkers 12f 1	80
4.12.3.	Deaktivierung freier Chlormethylgruppen 1	81
4.12.3.	1. Finkelsteinreaktion an Harz 21i	81
4.12.3.	2. Reduktion der Jodmethylgruppen in Harz 21i'	81
4.12.3.	3. Deaktivierung freier Chlormethylgruppen in Harz 21j	82
4.12.4.	Acetalspaltungen	183
4.12.4.	1. Acetalspaltung am Beispiel des Harzes 21i ² 1	83
4.12.4.	2. Acetalspaltungen der Harze 21i, 21j und 21j'' 1	84
4.12.5.	Veresterung/α-Alkylierung/Verseifung am Beispiel des Systems 23j" 1	84

	4.12.5.1.	Veresterung des Harzes 23j" mit Propionsäure	184
	4.12.5.2.	α-Alkylierung des Propionsäureesters 25j''	185
	4.12.5.3.	Verseifung des alkylierten Esters	186
	4.12.6. V	/eresterung/Reduktion/Verseifung am Beispiel des Systems 23j''	187
	4.12.6.1.	Veresterung mit Benzoylameisensäure	187
	4.12.6.2.	Reduktion mit L-Selectride	188
	4.12.6.3.	Verseifung des Mandelsäureesters	190
	4.12.7. V	/eresterung/Zn-Organyl-Addition/Verseifung am Beispiel des Systems 23j''	191
	4.12.7.1.	Veresterung mit Benzoylameisensäure	191
	4.12.7.2.	Addition des Zn-Organyls	191
	4.12.7.3.	Verseifung des a-Butyl-a-hydroxybenzolessigsäureesters	193
	4.12.8. V	/eresterung/Diels-Alder-Reaktion/Verseifung an Harz 23i''	194
	4.12.8.1.	Veresterung von Harz 23i'' mit Acrylsäurechlorid	194
	4.12.8.2.	Diels-Alder-Reaktion an 27i''	195
	4.12.8.3.	Verseifung des Norbornencarbonsäureesters 31i"	196
5.	Abkürzun	gsverzeichnis	198
6.	Literaturv	/erzeichnis	199

8

1. Allgemeiner Teil

1.1. Einleitung

1.1.1. Chirale Linker für die organische Synthese an fester Phase

Seit den Arbeiten von Merrifield [1] über die Peptidsynthese an fester Phase (Solid Phase Peptide Synthesis, SPPS) wurden weitreichende Fortschritte in der Festphasensynthese von Polypeptiden, Oligonukleotiden und Oligosacchariden erzielt [2]. Die Entwicklung von High-Troughput-Screening-Verfahren (HTS) brachte aber auch eine steigende Nachfrage nach Testsubstanzen für die pharmazeutische und agrochemische Forschung mit sich, und damit erlangte auch die kombinatorische Chemie seit 1990 eine immer größere Bedeutung [3]. Aufgrund des dadurch hervorgerufenen Interesses an automatisierbaren Syntheseverfahren erlebte auch die bereits seit 1970 entwickelte Synthese niedermolekularer Verbindungen an fester Phase (Solid Phase Organic Synthesis, SPOS) eine Renaissance [4], [5]. Dies führte allein im Bereich der polymeren Trägermaterialien zur Entwicklung makroporöser ("ArgoPoreTM") [6] und unterschiedlich vernetzter Polystyrolharze verschiedener Formate (z. B. "one-bead-Technologie", "Macrobeads", "Rasta Resins", etc.) [7], der Quervernetzung von Polystyrol mit Polytetrahydrofuran (PTHF) ("Janda-JelTM") [8], der Verwendung unterschiedlicher Polyethylenglykol(PEG)-Sublinker ("Tenta-Gel") [9], sowie der Entwicklung löslicher PEG-Harze und der damit verbundenen Möglichkeiten der kombinatorischen Chemie in flüssiger Phase (Liquid-Phase Organic Synthesis, LPOS) [10], abgesehen von dem immer größer werdenden Spektrum an kieselgel- und aluminiumoxidgebundenen Reagenzien [11], [12]. Grundlegende Weiterentwicklungen konnten aber auch auf dem Gebiet der Festphasenlinker [13] sowie der polymergebundenen Reagenzien und Katalysatoren [5d-e], [14] erreicht werden.

Da bei der Durchführung von High-Throughput-Screenings nur im Fall der Verwendung enantiomerenreiner Verbindungen eine verlässliche Identifizierung von Lead-Strukturen gewährleistet werden kann, ist auch die asymmetrische Synthese an fester Phase für die kombinatorische Chemie von grundlegender Bedeutung. Die Entwicklung und Anwendung chiraler, festphasengebundener Reagenzien und Katalysatoren wird daher schon seit Jahren eingehend untersucht [5d-e], [14], [15], immobilisierte chirale Auxiliare hingegen stellen hier zurzeit noch eine Ausnahme dar [16], [17]. Chirale Linker bieten aber neben den grundlegenden Vorteilen der Festphasensynthese hinsichtlich der Handhabung und Automatisierbarkeit, der Einsetzbarkeit großer Reagensüberschüsse und der leichten Entfernung von Nebenprodukten die Möglichkeit, unter Verwendung achiraler Reagenzien optisch aktive Zielstrukturen zugänglich zu machen und gleichzeitig das meist kostspielige chirale Material für den Einsatz in weiteren asymmetrischen Umsetzungen rückzugewinnen.

Abbildung 1

Hierbei wird das achirale Substrat an den enantiomerenreinen Linker gebunden, im Zuge der folgenden Umsetzung(en) durch das immobilisierte Auxiliar Chiralität induziert und anschließend das optisch aktive Produkt abgespalten, wobei der kovalent gebundene chirale Linker am Harz verbleibt und für eine neuerliche Anbindung und asymmetrische Umsetzung weiterer Substrate zur Verfügung steht.

Seit den ersten Arbeiten von Kawana [18], Leznoff [19] und McManus [20] auf diesem Gebiet wurden in erster Linie unterschiedliche chirale Linker auf Kohlenhydratbasis [21], Pseudoephedrin- [22] und Prolinderivate [23], Sulfinamide und Sulfoxide [24] sowie vor allem von Evans' Oxazolidinon abgeleitete Strukturen [16], [25] eingesetzt, wobei die hierbei erhaltenen Ergebnisse in einem kürzlich erschienenem Review von P. H. Toy [17], sowie der Dissertation von C. Schuster [26] zusammengestellt sind. Ergänzend sollen hier nur die seitdem veröffentlichten Beiträge von Kunz [27], Kiso [28], Gais [29] und Kakiuchi [30], sowie eine Arbeit von E. J. Enholm [31] erwähnt werden:

Auxiliar/Lit.	Testreaktion	Selektivität	Recyclierung
рио	$\frac{1}{PHO} \underbrace{\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	68-100%de	nicht mögl. (Aux. mit Prod. abgesp.)
Bn 0 N coo-(W) [28]	$\begin{array}{c} \begin{array}{c} & \\ R \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	85%de(MeI) -97%de (BnBr)	nicht untersucht
Ph-5 0 [29]	N Bull, ITHF78°C N SP Ph-S 2.) CITI(NEL,) ₃ , 25°C N SP µ B 3.) PhCHO Ph-S O µ Ph SO O Ph-S µ O O O O	<i>syn/anti</i> =2:1 <i>syn</i> : 70%de <i>anti</i> : >53%de	nicht untersucht
HO. (30)	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	72%de	1.Wh.:71%de 2.Wh.:65%de 3.Wh.:69%de
(31)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	97%de	nicht untersucht

Tabelle 1 Aktuelle Beispiele für asymmetrische Umsetzungen an chiralen Festphasenlinkern

Auch im Fall der in Tabelle 1 angeführten Umsetzungen konnten zwar sehr zufrieden stellende Diastereomerenüberschüsse erzielt werden, wie schon in den meisten bisher beschriebenen Arbeiten [26] ist aber auch hier, abgesehen von Lit. [30], die neuerliche Verwendung des immobilisierten Auxiliars entweder nicht möglich oder (noch) nicht näher untersucht worden, was wiederum eine deutliche Einschränkung der oben erwähnten Vorteile von chiralen Linkern, nämlich die Recyclierbarkeit des optisch aktiven Materials, bedeutet.

Es wäre somit von großem Interesse, neue chirale Linkerstrukturen zu finden, die einerseits mit Evans-Oxazolidinon-Derivaten vergleichbare Eigenschaften hinsichtlich der chiralen Induktion besitzen und andererseits den wiederholten Einsatz des Auxiliars für asymmetrische Umsetzungen ohne Verlust der chiralen Information des Linkers ermöglichen.

1.1.2. Hydrobenzoine als chirale Auxiliare

Die Anwendung enantiomerenreiner Hydrobenzoinderivate als chirale Auxiliare bzw. Liganden ist bereits vielfach beschrieben [32], so wurde beispielsweise (R, R)-Hydrobenzoin von Rosini *et al.* [33] zur asymmetrischen Reduktion von Benzoylameisensäure eingesetzt.

Abbildung 2 Verwendung von (R,R)-Hydrobenzoin als chirales Auxiliar (Rosini *et al.* [33])

R	RedMittel	Selekt. (S:R)	R	RedMittel	Selekt. (S:R)
н	L-Selectride	78:22	4-CF3	L-Selectride	87:13
н	L-Selectride/ZnCl ₂	50:50	4-OCH ₃	L-Selectride	70:30
н	NaBH₄	40:60	4-i-Pr	L-Selectride	83:17
н	DIBAL	73:27	3,4,5-OCH ₃	L-Selectride	80:20
н	DIBAL/ZnCl ₂	37:63	3,4,5-OCH ₃	DIBAL	30:70

Tabelle 2 Ergebnisse von Rosini et al. bei der Reduktion der Benzoylameisensäureester

Weiters wurden auch unter Verwendung des von Braun *et al.* [34] entwickelten 2-Trimethylsilyloxy-1,2,2-triphenylethanol-Auxiliars hohe Diastereomerenüberschüsse bei der α -Alkylierung von Propionsäureestern erreicht:

Abbildung 3 Einsatz eines substituierten Hydrobenzoins als chirales Auxiliar zur asymmetrischen Alkylierung von Propionsäure (Braun et al. [34])

Andererseits wurde bisher weder der Einsatz von enantiomerenreinen Hydrobenzoinen als chirale Festphasenlinker noch die Verwendung desymmetrisierter mesoHydrobenzoinderivate als chirale Auxiliare untersucht. Es ergeben sich hierbei aber einige grundlegende Vorteile:

 Die Hydrobenzoinstruktur besitzt wie die meisten bekannten Linker zur Immobilisierung von Carbonsäuren [13a] (siehe Abbildung 4) eine benzylische Hydroxylgruppe zur Anbindung des Substrats. Es ist daher auch eine vergleichbare Stabilität der Ankergruppe gegenüber sauren und basischen Reaktionsbedingungen sowie die Möglichkeit zur Abspaltung der Produkte unter für die bekannten Linker beschriebenen Bedingungen zu erwarten.

Abbildung 4 Festphasenlinker zur Immobilisierung von Carbonsäuren

 Aufgrund der Symmetrie des Linkers ist mittels der vor der Anbindung notwendigen Desymmetrisierung durch Variation des dafür verwendeten chiralen Auxiliars eine Auswahl der gewünschten Konfiguration der benzylischen Ankergruppe möglich. So kann beispielsweise unter Verwendung von Noe's Anhydrolactol, je nach Einsatz des *exo-* bzw. *endo-*Derivates, jeweils eine der beiden vorhandenen Hydroxylgruppen selektiv geschützt werden [35]:

Abbildung 5 Selektive Acetalisierungen von meso-Hydrobenzoin

Somit ist, nach Veretherung der verbleibenden Hydroxylgruppe bzw. Anbindung des desymmetrisierten Linkers an den Festphasenträger, anschließender Abspaltung der Schutzgruppe und Anbindung des Substrats an die freie, benzylische Ankergruppe eine Umsetzung zu einem Produkt der jeweils gewünschten Konfiguration möglich:

Abbildung 6

 Durch Einführen unterschiedlicher Substituenten an den Arylresten des Linkers können die sterischen, elektronischen und koordinativen Eigenschaften variiert werden. Weiters können vor der Immobilisierung des Auxiliars am Festphasenträger Sublinkerstrukturen an die freie Hydroxylgruppe des desymmetrisierten Linkers angebunden werden, wodurch eine Variation des Abstandes des Substrates von der

Trägermatrix sowie wiederum der sterischen und koordinativen Eigenschaften des Systems ermöglicht wird. Die chirale Induktionsfähigkeit des Auxiliars kann somit, falls nötig, für verschiedene Umsetzungen optimiert werden.

• Sowohl *meso*-Hydrobenzoin selbst als auch arylsubstituierte Derivate sind beispielsweise mittels Benzoinkondensation und anschließender *meso*-selektiver Reduktion in wenigen Schritten aus billigen Ausgangschemikalien herstellbar.

1.2. Problemstellung

Im Zuge der bisher zu diesem Thema durchgeführten Untersuchungen [36], [37], [38] konnte gezeigt werden, dass unter Verwendung von *meso*-Hydrobenzoin höhere Diastereoselektivitäten als mit dem bisher beschriebenen (R,R)-Hydrobenzoin-Auxiliar bei der Reduktion von Benzoylameisensäureestern in Lösung [33] möglich sind. Weiters konnten sowohl durch Einführen eines Methoxyrestes an den beiden Arylsubstituenten des Auxiliars, als auch durch Anbindung koordinationsfähiger Etherreste weitere Steigerungen der im Fall der erwähnten Reduktionen sowie der α -Alkylierung von Propionsäureestern erreichbaren Selektivitäten erzielt werden [26].

Lit.	Modellreaktion	Selektivität
[33]	ofio-ofio	56 % de
[36]	ofio-ofio	69 % de
[26]		77 % de
[36]		78 % de
[36]		92 % de
[34]	Hr - Hr	82 % de
[37]		41 % de
[26]		55 % de
[36]		62 % de

Tabelle3BisherfürHydrobenzoinauxiliarebeschriebeneErgebnissebeiderReduktionvonBenzoylameisensäureesternund der α -Alkylierung von Propionsäureestern

Im Rahmen der vorliegenden Arbeit sollten daher durch Variation der Substitutionsposition des Methoxyrestes, durch Einführen von Arylsubstituenten unterschiedlicher elektronischer Eigenschaften, sowie durch zusätzliche Anbindung eines koordinationsfähigen Etherrestes weitere Möglichkeiten zur Verbesserung der chiralen Induktionsfähigkeit des Auxiliars untersucht werden.

Aufgrund der besseren Monitoringmöglichkeiten sollten die Auxiliare hierzu mittels der bisher angewendeten Modellreaktionen in Lösung optimiert und zusätzlich dazu auch die in anderen Umsetzungen erreichbaren Selektivitäten bestimmt werden.

Im Zuge der bisherigen Untersuchungen waren die in den Modellreaktionen erreichten Diastereoselektivitäten mittels der NMR-Spektren der Produkte ermittelt und durch Vergleich mit den polarimetrisch bestimmten Enantiomerenüberschüssen der abgespaltenen Carbonsäuren verifiziert worden, wobei die hierbei zum Teil aufgetretenen Unterschiede sowohl auf die Ungenauigkeit der polarimetrischen Bestimmung, als auch auf eine teilweise während der Abspaltung auftretende Razemisierung der Produkte zurückgeführt wurden. Da bei Durchführung der Umsetzungen an fester Phase aber erst nach Verseifung der Produkte eine Beurteilung der erreichten Selektivitäten möglich ist, sollten sowohl die Abspaltungsbedingungen optimiert, als auch chromatographische Methoden als verlässlichere Alternative zur bisherigen Enantiomeranalytik gefunden werden.

In weiterer Folge sollten die desymmetrisierten Linker schließlich an einen geeigneten Festphasenträger angebunden und die chirale Induktionsfähigkeit mittels der auch in Lösung durchgeführten Modellreaktionen bestimmt werden. Schlussendlich sollten auch die Möglichkeiten zur Recyclierung des Linkersystems untersucht und die Reproduzierbarkeit der erreichten Selektivitäten auch bei mehrmaliger Rückgewinnung des immobilisierten Auxiliars an fester Phase bestimmt werden.

2. Spezieller Teil

2.1. Herstellung von Hydrobenzoinderivaten

2.1.1. Formelschema

Abbildung 7

2.1.2. Herstellung der arylsubstituierten Benzoine

Die Herstellung der Benzoinderivate erfolgte im Fall der o-methoxy- und o-methylsubstituierten Produkte 2a und 2b wie im Zuge der bisherigen Untersuchungen [36] mittels Benzoinkondensation der entsprechenden Aldehyde. In Übereinstimmung mit der Literatur [39] ergab sich hierbei für 2a bei Verlängerung der Reaktionszeit auf mehr als 5 h eine Verringerung der Ausbeute.

 $R = 2-OCH_3$ (a), 2-CH₃ (b), 4-OCH₃ (c)

Abbildung 8 Herstellung der Benzoinderivate mittels Benzoinkondensation

Im Fall des p-Methoxyderivats 2c führte diese Methode aber nur zu sehr geringem Umsatz und im Fall der o-trifluor- und o-nitro-substituierten Produkte 2d und 2e ergaben sich in erster Linie die via Cannizaro-Reaktion gebildeten substituierten Benzylalkohole und Benzoesäuren. Da sich bei der Herstellung der Naphthylderivate [38] eine Variante über das entsprechende Aryl(trimethylsiloxy)acetonitril [40] als geeignet erwiesen hatte, wurde diese Methode auch für die mittels Benzoinkondensation nicht zugänglichen, arylsubstituierten Derivate versucht.

 $R = 4-OCH_3$ (c), 2-CF₃ (d), 2-NO₂ (e)

Abbildung 9 Alternative Herstellung der Benzoinderivate nach Lit. [40]

4,4'-Dimethoxybenzoin wurde hierbei in deutlich höherer Ausbeute als auf konventionellem Weg erhalten, und obwohl für die Anwendung dieser Variante auf 4-Nitrobenzaldehyd ausschließlich teerartige Zersetzungsprodukte beschrieben wurden [40], ergaben sowohl 2-Nitro-, als auch 2-(Trifluormethyl)benzaldehyd (1d bzw. 1e), wenn auch zum Teil in nur geringer Ausbeute, die gewünschten Produkte.

R	2-OCH ₃ (2a)	2-CH ₃ (2b)	4-OCH ₃ (2c)	2-CF ₃ (2d)	2-NO ₂ (2e)
via Benzoin- kondensation	50 % d. Th.	14 % d. Th.	25 % d. Th.	0 %	0 %
nach Lit. [40]			52 % d. Th.	79 % d. Th.	13 % d. Th.

Tabelle 4 Vergleich der Ausbeuten bei der Herstellung der Benzoinderivate

2.1.3. Reduktion der Benzoinderivate

 $\begin{array}{l} \mathsf{R} = 2 \text{-OCH}_3 \, (\textbf{a}), \, 2 \text{-CH}_3 \, (\textbf{b}), \, 4 \text{-OCH}_3 \, (\textbf{c}), \, 2 \text{-CF}_3 \, (\textbf{d}), \, 2 \text{-NO}_2 \, (\textbf{e}) \\ \hline i: \, \mathsf{NaBH}_4, \, \mathsf{EtOH} \, (\mathsf{für} \, \, \textbf{2a-e}); \, ii: \mathsf{NaBH}_4, \, \mathsf{CeCl}_3 \text{-} 7 \mathsf{H}_2\mathsf{O}, \, \mathsf{EtOH} \, (\mathsf{für} \, \, \textbf{2c-d}); \\ \hline iii: \, \mathsf{BH}_3 \, (\mathsf{CH}_3)_2 \mathsf{S}, \, \mathsf{THF} \, (\mathsf{für} \, \, \textbf{2c}, \, \textbf{2e}) \end{array}$

Abbildung 10

Die Reduktion der Benzoinderivate erfolgte im Rahmen der bisherigen Untersuchungen unter Verwendung von NaBH₄ in Ethanol (für die Herstellung der Derivate **5a** und **5b** siehe Lit.[36]). Diese Methode ergab jedoch im Fall der 4-OMe-, 2-CF₃- und 2-NO₂-substituierten Derivate **2c-2e** nur relativ geringe *meso/raz*-Selektivitäten. Da laut Lit. [38] durch Zusatz von 0.1 Äquivalenten CeCl₃ eine deutliche Verbesserung der Selektivität erreicht werden konnte¹, wurden für die Derivate **2c** und **2d** Versuche unter Verwendung dieses Additivs durchgeführt, wobei in diesen Fällen aber eine Verschlechterung der Selektivitäten auftrat. Für **2e** wurden aufgrund der geringen Ausbeute bei der Herstellung des Benzoinderivats weitere Versuche unter Verwendung von sterisch anspruchsvolleren Reduktionsmitteln (BH₃'(CH₃)₂S, 9-BBN sowie L-Selectride jeweils in THF) durchgeführt. Aufgrund sehr geringer Ausbeuten bei der Verwendung von 9-BBN und L-Selectride wurde BH₃'(CH₃)₂S für die Umsetzung gewählt, wobei das *meso/raz*-Verhältnis nahezu verdoppelt werden konnte.

¹ Bei der Reduktion von Naphthoin zu Hydronaphthoin wurde unter Verwendung von 1.0 eq. NaBH_4 ein *meso/raz*-Verhältnis von 3.6:1 erhalten, mit 1.0 eq. NaBH_4 /eq. 0.1 CeCl_3 aber eine Steigerung der Selektivität auf 14.3:1 beobachtet.

R =	2-OCH ₃ (5a)	2-CH ₃ (5b)	4-OCH3 (5c)	2-CF ₃ (5d)	2-NO ₂ (5e)
NaBH₄	7.8:1	7.9:1	4.0:1	5.9:1	4.3:1
NaBH4, 0.1 eq. CeCl3	-		3.3:1	4.6:1	-
BH ₃ ·(CH ₃) ₂ S					8.0:1

Tabelle 5 Vergleich der meso/raz-Selektivitäten bei der Reduktion der Benzoinderivate

2.1.4. Versuche zur Herstellung von arylsubstituierten Hydrobenzoinen durch reduktive Kupplung mittels SmI₂

Da die im Zuge der bisherigen Arbeit [36] im Bereich der durch Samariumdijodid induzierten stereoselektiven Pinakolkupplungen erhaltenen Ergebnisse zum Teil nicht vollständig mit den in der Literatur [41], [42] angegebenen Daten übereinstimmten, wurden auch weitere Versuche auf diesem Gebiet durchgeführt:

Vor allem in Bezug auf die erhaltenen Stereoselektivitäten waren sowohl zwischen unterschiedlichen Literaturstellen, als auch zwischen den publizierten und den im Rahmen der durchgeführten Versuche erhaltenen Daten deutliche Unterschiede festzustellen [43], [44], [45], [46], [47]. Da die während der vorangegangenen Untersuchungen erhaltenen Werte nur aus den chromatographisch gereinigten Gemischen von *meso-* und *raz-*Produkt bestimmt worden waren und nicht ausgeschlossen werden konnte, dass durch die Chromatographie eine Anreicherung eines der beiden Diastereomere aufgetreten war und somit die Ergebnisse verfälscht worden waren, mussten diese Versuche wiederholt werden.

Weiters konnten die Elementaranalysenwerte der bei der Umsetzung von Benzoin mit Samariumdijodid erhaltenen Produkte nur durch Annahme einer nach der NMR-Analytik eingetretenen Zersetzung erklärt werden. Es wurde daher auch dieser Versuch wiederholt und die Produktzusammensetzung näher untersucht.

2.1.4.1. Korrektur der bisherigen Stereoselektivitäts-Ergebnisse nach Wiederholung der Versuche

Die Versuche wurden in Anlehnung an die bisherigen Vorschriften [36] durchgeführt (siehe 4.4.1 und 4.4.2), die Reaktionen wurden allerdings grundsätzlich nach 12 h abgebrochen. Die Bestimmung der Stereoselektivitäten sowie die Quantifizierung der zum Teil als Nebenprodukt auftretenden Benzylalkohole **6a**, **6c** und **6e-g** erfolgte mittels Integration der benzylischen Signale aus den ¹H-Spektren der Rohprodukte. Die Zuordnung der Signale

erfolgte durch Vergleich mit Literaturdaten [45], [48], [116] (für die *meso-* und *raz-*Diole), Vergleichsspektren der Reinsubstanzen (für die Benzylalkohole) und aufgrund der geringen Verschiebungsunterschiede durch anschließende Zugabe der Reinsubstanzen als interne Standards.

 $R = 2-OCH_3$ (a), $4-OCH_3$ (c), $2-NO_2$ (e), $4-NO_2$ (f), H (g)

Abbildung 11 Pinakolkupplungen unter Verwendung von Samariumdijodid

-	R	LM	Ausbeute 5/5` (% d. Th.)	Ausbeute 6 (% d. Th.)	Stereoselekt. (5`:5)
1	H (1g)	THF	52	18	63:37
2	H (1g)	MeOH	65	34	68:32
3	2-OMe (1a)	THF	35	29	60:40
4	2-OMe (1a)	МеОН	54	14	62:38
5	4-OMe (1c)	THF	49	27	58:42
6	4-OMe (1c)	МеОН	70	10	° 52:48

Tabelle 6 Produktverhältnisse im Fall der Pinakolkupplungen der Aldehyde 1a / 1c / 1g

Es zeigte sich, dass tatsächlich im Zuge der Chromatographie der Rohprodukte eine leichte Verfälschung der Produktverhältnisse aufgetreten war, wodurch auch zum Teil die zu beobachtenden Tendenzen verändert wurden: Die Hydrobenzoin-Ausbeuten lagen bei Durchführung der Versuche in MeOH über den in THF erreichbaren, für die erhaltenen Stereoselektivitäten war aber kein eindeutiger Trend zwischen den Versuchen in MeOH und THF feststellbar. Andererseits wurden die höchsten Stereoselektivitäten zwar wie bisher im Fall des unsubstituierten Aldehyds 1g beobachtet, die mit dem o-methoxy-substituierten Edukt 1a erreichbaren Werte liegen aber über den bei Verwendung von p-Anisaldehyd (1c) erhaltenen. Somit ist der beschriebene Interpretationsansatz (siehe Abbildung 12) auf Basis von Lit. [44] zwar weiterhin ein möglicher Grund für die verringerte Selektivität im Fall des Aldehyds 1a verglichen mit dem unsubstituierten Derivat 1g, eine Erklärung für die geringe

Selektivität bei der Reaktion von p-Anisaldehyd (1c) ist aber durch dieses Modell nicht möglich.

Abbildung 12 Mögliche Übergangszustände für die Pinakolkupplung von 1g (reagiert bevorzugt nach Modell A) und 1a (reagiert aufgrund der möglichen Koordination teilweise nach Modell B)

2.1.4.2. Korrektur der für die Umsetzung von Benzoin vorgeschlagenen Produktstruktur

Da laut Literatur [49] unter Verwendung von SmI₂-LiNH₂ in THF/MeOH eine Umsetzung von Benzoin zu Hydrobenzoin möglich ist, sollte untersucht werden, ob bei Anwendung der für die Pinakolkupplung verwendeten Reaktionsbedingungen auch eine stereoselektive Reduktion von Benzoin erreicht werden kann. Im Zuge der vorangegangenen Arbeit konnten jedoch neben einer Substanz, deren aus den NMR-Daten abgeleitete Struktur nicht mit den erhaltenen Elementaranalysendaten in Übereinstimmung gebracht werden konnte, keine anderen Produkte isoliert und charakterisiert werden.

Der Versuch wurde daher wiederholt und nach der chromatographischen Trennung des Produktgemisches konnten, neben einer geringen Menge nicht umgesetzten Edukts, folgende Strukturen identifiziert werden:

Abbildung 13

Es wurde wie erwartet zum Teil ein Gemisch von *meso-* und *raz-Hydrobenzoin* (5g/5g') gebildet (13 % d. Th.), eine Bestimmung der Stereoselektivität war jedoch aufgrund der geringen Substanzmenge und der auch nach der Chromatographie enthaltenen Verunreinigungen nicht möglich. Weiters wurden in ähnlichen Ausbeuten Desoxybenzoin (7) sowie Benzil (8) (jeweils 9 % d. Th.) isoliert. Bei der bisher als geminales Jodhydrin

interpretierten Substanz handelte es sich tatsächlich um Diol 9 (9 % d. Th.), welches durch die Pinakolkupplung des ebenfalls im Produktgemisch enthaltenen Desoxybenzoins (7) gebildet worden war. Es ist bereits bekannt, dass diese Reaktion im Zuge der elektrolytischen Reduktion von Desoxybenzoin in Gegenwart von Fe^{2+} oder Cr^{3+} neben der Bildung des entsprechenden Alkohols eintritt [50], wobei die hier erhaltenen NMR-Daten mit jenen des bereits beschriebenen *dl*-Diols übereinstimmen [51]. Zusätzlich dazu konnte auch die durch Pinakolkupplung von Benzoin (2g) gebildete Verbindung 10 (10 % d. Th.) isoliert und charakterisiert werden. Obwohl die Bildung von 10 im Zuge der kathodischen Pinakolkupplung von Benzoin bereits beschrieben wurde [52], konnten keine Angaben über die Konfiguration des gebildeten Produktes gefunden werden. Basierend auf den aus dem NMR erhaltenen Informationen und der zu erwartenden Stereoselektivität können aber einige Aussagen über die wahrscheinlichste Konfiguration getroffen werden. Die verringerte Anzahl von Signalen (siehe 4.4.3) lässt auf eine C_2 - oder C_3 -symmetrische Verbindung schließen, somit wären als Relativkonfigurationen R^*, R^*, S^*, S^* oder R^*, S^*, R^*, S^* für den Fall der C_{S^*} Symmetrie beziehungsweise R^*, R^*, R^*, R^* oder R^*, S^*, S^*, R^* im Fall der C_2 -Symmetrie möglich. Der in Abbildung 14 dargestellte Übergangszustand zeigt, dass aufgrund der möglichen Chelatisierung durch die der Carbonylgruppe benachbarten Hydroxylfunktionalität und des anschließenden Angriffs eines weiteren Ketyl-Radikals oder der Carbonylgruppe von der sterisch weniger abgeschirmten Seite die Relativkonfiguration von C-1 und C-2 mit R*,S* erwartet werden kann.

Abbildung 14 Wahrscheinlicher Mechanismus der Pinakolkupplung von Benzoin (2g)

Auf Basis der *dl*-Selektivität der Pinakol-Kupplung von Benzaldehyd unter den gleichen Reaktionsbedingungen (siehe Tabelle 6, Eintrag 1), sowie der Konfiguration des im selben Reaktionsgemisch gebildeten Diols 9, ist auch für die Bildung von 10 eine *dl*-Konfiguration von C-2 und C-3 zu erwarten, was in diesem Fall S^* , S^* entspricht. Somit erscheint von den 4 oben genannten Möglichkeiten die Relativkonfiguration R^* , S^* , S^* , R^* als die wahrscheinlichste.

2.1.4.3. Abhängigkeit der Stereoselektivität vom Substrat/Reagens-Verhältnis

Um die Abhängigkeit der erreichbaren Stereoselektivitäten von der verwendeten Reagensmenge zu untersuchen, wurden weitere Experimente durchgeführt, wobei hier, neben dem wie bisher *in situ* generierten SmI₂ auch eine kommerziell erhältliche SmI₂-Lösung verwendet wurde. Da sich schon im Rahmen der ersten Versuche (siehe Lit. [36]) gezeigt hatte, dass selbst geringe Durchführungsunterschiede bei der *in-situ*-Herstellung des Samariumdijodids bereits massive Änderungen der im Reaktionsgemisch vorhandenen Reagensmenge verursachen können, sollten durch Verwendung einer Lösung konstanter Molarität reproduzierbare Versuchsbedingungen gewährleistet werden.

	eq. SmI ₂	Ausbeute 5g+5g`	Stereoselekt. (5g`:5g)	Ausbeute 6g	Ausbeute 2g
1	1.5ª	52 %	63:37	18 %	_b
2	2.0ª	46 %°	43:57	-	_b
3	3.0ª	39 %	37:63	-	_b
4	1.1 ^d	55 %	43:57	14 %	30 %
5	2.0 ^d	95 %	31:69	-	-
6	3.0 ^d	93 %	32:68	-	-
7	0.5 ^d	14 %	71:29	25 %	31 %
8	0.8 ^d +1.2 eq Sm(0)	82 %	56:44	18 %	•
9°	0.1^{d} +3 eq Sm(0)	61 % ^c	54:46	10 %	-

Abbildung 15 Pinakolkupplung von Benzaldehyd (1g)

Tabelle 7 Produktverhältnisse bei der Pinakolkupplung von Benzaldehyd (1g) unter Verwendung unterschiedlicher Reagens/Substrat-Verhältnisse

^a Herstellung von SmI₂ in situ aus Sm(0) und 1.5 eq. 1,2-Dijodethan

^b nicht bestimmt

- ^c ca. 20 % des Aldehyds 1g wurden rückgewonnen
- ^d Verwendung einer kommerziell erhältlichen, 0.1 M Lösung von Sml₂ in THF
- ^e Durchführung bei -78°C

Hierbei zeigte sich, dass im Fall eines großen Überschusses an Reagens ausschließlich ein Gemisch aus *meso*- und *raz*- Hydrobenzoin erhalten wird, ähnliche Mengen von Substrat und Reagens aber zu den Abbildung 15 entsprechenden Gemischen aus *meso*- und *raz*-Hydrobenzoin (**5g** bzw. **5g**'), Benzylalkohol (**6g**) und Benzoin (**2g**) führen. Weiters konnte eine starke Abhängigkeit der Stereoselektivität von der Menge des eingesetzten Samariumdijodids beobachtet werden: bei Verwendung eines Überschusses an Reagens tritt eine moderate *meso*-Selektivität auf (siehe Tabelle 7, Eintrag 5 und 6), werden Substrat und Reagens in etwa äquimolar eingesetzt, ist ein deutlicher Rückgang sowohl der Hydrobenzoinausbeute als auch der Stereoselektivität zu beobachten, und im Fall eines Substratüberschusses wird zum größeren Teil das *raz*-Produkt erhalten (siehe Tabelle 7, Eintrag 4 bzw. 7).

Ähnliche Ergebnisse wurden auch aus den Versuchen unter Verwendung von *in situ* hergestelltem Samariumdijodid erhalten (Tabelle 7, Eintrag 1-3). Die Verschiebung der Werte in Richtung *raz*-Selektivität (vgl. Abbildung 16) könnte durch eine geringere Menge des tatsächlich im Reaktionsgemisch gebildeten Samariumdijodis verursacht werden. Es wäre andererseits auch möglich, dass nur ein Teil des eingesetzten Samariums bis zum Zeitpunkt der Zugabe des Aldehyds zu Samariumdijodid umgesetzt wird, erst während dem Verlauf der Reaktion und der damit verbundenen Gleichgewichtsverschiebung weiteres Samariumjodid gebildet wird, und somit während der gesamten Reaktionszeit eine geringere Konzentration des Reagens vorhanden ist.

____: Sml₂-Lösung; --+--: Sml₂ in situ hergestellt

Abbildung 16 Einfluss des Reagens/Substrat-Verhältnisses auf die Stereoselektivität der Pinakolkupplung

Auf Basis dieser Annahme wurden, um Reaktionsbedingungen für eine *raz*-selektive Pinakol-Kupplung mit akzeptablen Hydrobenzoinausbeuten zu finden, zwei weitere Versuche unter Einsatz von weniger als einem Äquivalent Samariumdijodid-Lösung, jedoch einem Überschuss an Samarium(0) durchgeführt (siehe Tabelle 7, Eintrag 8 und 9). Die Verwendung von 0.8 Äquivalenten SmI₂ und 1.2 Äquivalenten Sm(0) ergab deutlich höhere Ausbeuten an Hydrobenzoin, andererseits aber einen starken Rückgang der Selektivität. Der Versuch, die Selektivität durch eine noch geringere Menge der Samariumdijodid-Lösung und die Durchführung der Reaktion bei -78°C zu erhöhen, blieb erfolglos.

Da laut Literatur [53] die Pinakol-Kupplung von Benzaldehyd auch in Gegenwart von Samarium(0) in THF/HCl durchgeführt werden kann, wäre auch eine Umsetzung durch das unter den hier angewandten Bedingungen im Reaktionsgemisch vorliegende metallische Samarium möglich, und somit auch ein dadurch verursachter Einfluss auf die beobachteten Stereoselektivitäten nicht auszuschließen. Berücksichtigt man andererseits die geringen Ausbeuten an Hydrobenzoin und Benzylalkohol, die für die Umsetzung mit Sm(0) ohne Zusatz von aktivierenden Reagenzien wie I₂ oder HCl beschrieben wurden, dürfte dieser Einfluss vernachlässigbar sein. Auch eine Umsetzung des im Reaktionsgemisch zurückgebliebenen Aldehyds durch das bei der Hydrolyse der Reaktion vorhandene Sm(0)/THF/HCl-Gemisch scheint, da die beschriebenen Reaktionszeiten im Bereich von mindestens 24 h liegen, sehr unwahrscheinlich.

Die beobachtete Änderung der Stereoselektivitäten kann durch zwei, bereits in der Literatur beschriebene, konkurrierende Reaktionsmechanismen erklärt werden [44], [46] (siehe Abbildung 17): Wird ein großer Reagensüberschuss vorgelegt und das Substrat langsam zugegeben, so wird der Aldehyd quantitativ in das Ketyl-Radikal überführt, und als vorherrschender Mechanismus kann die Kombination zweier Ketyl-Radikale angenommen werden. In diesem Fall ist aufgrund der sterischen Verhältnisse der Übergangszustand **B** zu erwarten, welcher zum *anti*-Produkt, also dem *meso*-Diol führt. Wird aber weniger als 1 Äquivalent des Reagens zum vorgelegten Substrat zugegeben, reagiert das gebildete Ketyl-Radikal sofort mit dem im Reaktionsgemisch vorliegenden Aldehyd-Überschuss ab. In diesem Fall sollte der Übergangszustand **A** aufgrund der möglichen Koordination des Carbonyl-Sauerstoffs des Aldehyds mit dem Sm(III) des Ketyl-Radikals begünstigt sein, wobei bevorzugt das *raz*-Produkt entsteht.

Abbildung 17 Mögliche Mechanismen der Pinakolkupplung von Benzaldehyd

2.2. Desymmetrisierung der meso-Hyrobenzoinderivate

2.2.1. Selektive Acetalisierung

 $R = 2-OCH_3$ (a), 2-CH₃ (b), 4-OCH₃ (c), 2-CF₃ (d), 2NO₂ (e)

Abbildung 18

Die Desymmetrisierung der *meso*-Hydrobenzoinderivate erfolgte analog Literatur [35] durch Umsetzung mit 0.5 Äquivalenten *exo*-Anhydrolactol 11 und katalytischen Mengen p-Toluolsulfonsäure in CH_2Cl_2 (für die Herstellung der Derivate 12a und 12b siehe Lit.[36]). Aufgrund der schlechten CH_2Cl_2 -Löslichkeit sowie der vor allem im Fall von 5e geringen verfügbaren Substanzmengen der Diole, wurden zur Ausbeutenoptimierung zum Teil auch Versuche in Toluol bzw. Diethylether durchgeführt. Diese führten jedoch, wegen schlechterer Diastereomerenverhältnisse der Produkte (12/12') und der daraus resultierenden Probleme bei der chromatographischen Reinigung des gewünschten Diastereomers zu geringeren Ausbeuten.

Substrat	LM	12ª	Mischfraktionen (12+12') ^a	13ª	5 rückgew. ^b
50	Toluol	60 %	_°	_°	_ ^c
30	CH ₂ Cl ₂	83 %	-°	_c	_c
	Toluol	41 %	43 %	11%	30 %
5e	Et ₂ O	29 %	2 %	17 %	72 %
	CH ₂ Cl ₂	61 %	26 %	7 %	52 %

Tabelle 8 Abhängigkeit der Produktverteilung bei Acetalisierung der Hydrobenzoine 5c und 5e vom verwendeten Lösungsmittel

^a [% d. Th.] bezogen auf eingesetztes Anhydrolactol

^b [% d. Th.] bezogen auf eingesetztes Hydrobenzoin

^c nicht bestimmt

Die bei der Chromatographie der Rohgemische rückgewonnenen Edukt- und Nebenproduktfraktionen konnten durch neuerliche Äquilibrierung, wiederum unter Zusatz von p-Toluolsulfonsäure, weiter umgesetzt werden. Das bei der Reinigung durch Gewinnen der Produktfraktionen entfernte Auxiliar wurde neuerlich zugesetzt, um wiederum eine entsprechende Gleichgewichtslage einzustellen. So konnten beispielsweise im Zuge von 2 Äquilibrierungen aus 10.5 g *meso*-2,2'-Dimethoxyhydrobenzoin (5a) insgesamt 11.4 g Acetal 12a (66 % d. Th., bezogen auf die eingesetzte Hydrobenzoinmenge) gewonnen werden.

2.2.2. Säurestabilität der desymmetrisierten Linker

Probleme bei der chromatographischen Trennung der Acetalisierungsprodukte aufgrund der durch das Kieselgel katalysierten Wanderung des Auxiliars waren bereits aus den bisherigen Untersuchungen bekannt, konnten aber durch Zugabe von einigen Tropfen Triethylamin zu den Produktfraktionen vor dem Eindampfen minimiert werden. Vor allem im Fall der p-methoxysubstituierten Derivate 5c bzw. 12c und in geringerem Ausmaß auch im Fall der o-methoxysubstituierten Derivate 5a bzw. 12a wurden aber trotz allem nach der Chromatographie die Nebenprodukte 14a bzw. 14c und 15c isoliert.

Ar = 2-OMePh (a), 4-OMePh (c)

Abbildung 19 Sauer katalysierte Umlagerung der methoxysubstituierten Hydrobenzoine 5a und 5c

Die sauer katalysierte Bildung von α -(4-Methoxyphenyl)-4-methoxybenzolacetaldehyd (14c) und 4,4'-Dimethoxybenzophenon (15c) bei Erhitzen von *meso*-4,4'-Dimethoxyhydrobenzoin (5c) in Dioxan/H₂O ist bereits bekannt [54]. Es tritt hierbei eine durch die erhöhte Elektronendichte der methoxysubstituierten Aromaten begünstigte Dehydroxylierung mit anschließender Pinakol-Umlagerung zum entsprechenden Aldehyd 14 ein, welcher daraufhin durch Luftoxidation in das arylsubstituierte Benzophenon 15 überführt werden kann:

Abbildung 20 Mechanismus der sauer katalysierten Umlagerungen nach Lit. [54]

Das durch Rehydroxylierung des im ersten Schritt gebildeten Carbeniumions entstehende Razemisierungsprodukt, sowie die durch Deprotonierung des Kations eintretende Bildung von Desoxybenzoin wurden von Karlsson und Lundquist [54] ebenfalls beschrieben, hier aber nicht beobachtet. Die Tatsache, dass die Umlagerung nur im Fall der Acetale 12a und 12c beobachtet wurde, die Hydrobenzoine **5a** und **5c** aber sowohl unter sauren Bedingungen in Ethanol (saure Hydrolyse im Zuge der Reduktion der Benzoine, siehe 4.3.1 sowie Lit. [36]) stabil waren, als auch beim Eindampfen der Eduktfraktionen der Acetalisierung keine Umlagerungen ergaben, lässt darauf schließen, dass unter nur schwach sauren Bedingungen nicht unbedingt eine freie Hydroxylgruppe protoniert wird sondern vielmehr das Lactol als Abgangsgruppe fungieren kann.

Die Bildung der Nebenprodukte konnte durch Verwendung von mit Triethylamin imprägniertem Kieselgel sowie durch verstärkte Zugabe von Triethylamin zu den Laufmittelgemischen (ca. 0.5 %) vermieden werden. Die unter 4.5.1 beschriebene Chromatographie unter N₂-Druck wurde aufgrund der falschen Vermutung, dass es sich bei Nebenprodukt **15c** um durch Oxidation des Hydrobenzoins **5c** gebildetes Benzil handelt, durchgeführt. Da durch Zugabe von Triethylamin aber die Bildung des Aldehyds **14c** unterbunden werden kann, ist auch unter Anlegen von Pressluft keine Nebenreaktion zum entsprechenden Benzophenonderivat zu erwarten.

2.2.3. Basenstabilität der desymmetrisierten Linker

Im Zuge der Anbindung des acetalisierten Linkers **12a** an chloriertes Wangharz in DMF wurde, bei Verwendung eines Überschusses an NaH (analog 4.12.2.1, jedoch unter Verwendung von 5.2 eq. des Linkers **12a** und 14 eq. NaH), die Bildung eines Nebenproduktes beobachtet. Es handelt sich hierbei aber nicht, wie zuerst vermutet, um ein durch Razemisierung eines der beiden benzylischen Chiralitätszentren des Linkers entstandenes Diastereomer, sondern vielmehr, wie aus den CH-Korrelations-Spektren eindeutig ersichtlich ist, um die durch Angriff des Alkoholats an das Lösungsmittel gebildete, acetalische Struktur **19**. Bei der anschließenden sauer katalysierten Abspaltung der Auxiliar-Acetale tritt mittels ebenfalls sauer katalysierter Veretherung der freien Hydroxylgruppen ein Ringschluss zu einem substituierten [1,3,6]-Trioxocan **20** ein.

Abbildung 21 CH-Korrelationsspektren des Acetals 19 (links) sowie des Trioxocans 20 (rechts)

Über den auftretenden Mechanismus können durch die erhaltenen NMR-Daten sowie den auftretenden Drehwert des 4,5,7,8-Tetra(2-methoxyphenyl)-[1,3,6]-trioxocans **20** folgende Informationen gewonnen werden:

Die reduzierte Anzahl der Signale des ¹H- und ¹³C-Spektrums einerseits und andererseits die Tatsache, dass die Verbindung einen Drehwert aufweist, lassen für 20 nur C_2 -symmetrische Strukturen der Relativkonfiguration 4R*,5R*,7R*,8R* bzw. 4R*,5S*,7S*,8R* zu. Unter der Voraussetzung, dass der Angriff des Alkoholats 16 an das Lösungsmittel unter Bildung des Ameisensäureesters 17 keine Veränderung der Konfiguration verursacht, entspricht das den Absolutkonfigurationen 45,55,75,85 bzw. 45,5R,7R,85. Somit muss auch das zweite, nicht acetalisierte Zentrum bei der Reaktion zum Nebenprodukt 19 unter Erhaltung der Konfiguration reagieren. Bei der anschließenden, sauer katalysierten Acetalspaltung bzw. Veretherung könnten aufgrund der dabei auftretenden Gleichgewichte beide Zentren unter Bildung eines Carbeniumions razemisieren. Aufgrund der Tatsache, dass aber im Rahmen der Acetalspaltungen (siehe Kapitel 2.4 bzw. 4.7) in keinem Fall eine Razemisierung des chiralen Zentrums beobachtet wurde, bei der anschließenden Veretherung auf Basis der bereits vorhandenen chiralen Zentren die selektive Bildung des thermodynamisch stabileren Produktes zu erwarten ist sowie aufgrund der vorhandenen Symmetrie der Struktur, kann auch hier für beide Zentren von einer Retention der Konfiguration ausgegangen werden. Somit scheint für das Trioxozan die 4S, 5R, 7R, 8S-Konfiguration am wahrscheinlichsten.

Abbildung 22 Möglicher Mechanismus für die Bildung der Nebenprodukte 19 und 20

Bisher wurden derartige "reduktive Insertionen" von DMF unter Einfluss von NaH und dem bei der Deprotonierung entstehenden Wasserstoff allerdings nur für Benzoesäurederivate beschrieben [55], wobei in diesem Fall als Mechanismus ein Angriff des deprotonierten "Halbacetals" an das Säurehalogenid vorgeschlagen wird:

Abbildung 23 Umsetzung von Benzoesäurederivaten mit NaH/DMF nach Lit. [55]

2.3. Veretherung und Aufbau der Ethylenglykol-Sublinkerstruktur

i: NaH/TosO-i-Bu/DMF; ((CH₃)₃Si)₂NNa/TosO-i-Bu/DMF;

Ag₂O/TosO-i-Bu/DMF; Ag₂CO₃/TosO-i-Bu/CH₂Cl₂; Ag₂O/i-BuBr

ii: NaH/TosO-i-Bu/DMF; iii: NaH/BrCH2COOC(CH3);

iv: LiAIH4/Et2O; v: NaH/CH3I/DMF

Abbildung 24

Die Herstellung der i-Butylether 21c und 21d wurde wie in den vorangegangenen Arbeiten im Fall der o-methoxy- und o-methylsubstituierten Derivate 21a und 21b (für die Herstellung von 21a und 21b siehe Lit. [36]) durch Deprotonierung mit NaH und anschließende Umsetzung mit i-Butyltosylat durchgeführt.

Diese Methode führte aber im Fall des o-nitrosubstituierten Acetals 12e nicht zum gewünschten Produkt, sondern ausschließlich zur Zersetzung des Eduktes. Anscheinend wurden bei Verwendung eines Überschusses an NaH neben der Hydroxylgruppe auch die benzylischen CH-Gruppen des Hydrobenzointeils deprotoniert, was zu einer großen Zahl von Nebenprodukten führte, die aber aufgrund der geringen Substanzmengen und der ähnlichen R_f-Werte nicht sauber isoliert und identifiziert werden konnten. Die durch die Deprotonierung der benzylischen Zentren bedingten Nebenreaktionen scheinen aber durchaus plausibel, da für das bei der Abspaltung eines benzylischen Protons entstehende Carbanion eine aufgrund der Nitrosubstituenten des Arylteils verbesserte Mesomeriestabilisierung zu erwarten ist. So sind entsprechende Veretherungen von 2-Nitrobenzylalkoholderivaten unter Verwendung von KH und NaH nur für Substrate beschrieben, die neben dem Nitrosubstituenten auch Elektronendonorsubstituenten (z.B. OCH₃) am Aromaten aufweisen, wodurch die Abspaltung der benzylischen Protonen wiederum erschwert wird [56].

Es wurden daher einige Versuche zur Veretherung des nitrosubstituierte Acetals unter Anwendung alternativer Reaktionsbedingungen durchgeführt. Bei Verwendung von nur 1 Äquivalent NaH und der Umkehrung der Zugabereihenfolge (das Edukt wurde gemeinsam mit dem Tosylat vorgelegt und die Base portionsweise zugegeben) entstanden, wie auch im vorangegangenen Versuch, eine Reihe von nicht identifizierbaren Zersetzungsprodukten.

Da NaH somit grundsätzlich nicht für die Umsetzung des nitrosubstituierten Derivates geeignet zu sein scheint, wurden in den darauf folgenden Versuchen auf Basis der vorhandenen Literatur unterschiedliche Basen eingesetzt. Bei Verwendung von 0.5 Äquivalenten Natriumbistrimethylsilylamid in DMF konnten aber neben 40 % des eingesetzten Acetals keine identifizierbaren Produkte isoliert werden. Der Einsatz von 2 Äquivalenten Silberoxid [57] bei 70 °C in DMF brachte nach 12 h ebenfalls keinen Erfolg, und 42 % des Eduktes wurden rückgewonnen. Im Fall der Verwendung von 1.3 Äquivalenten Silbercarbonat [58] in CH₂Cl₂ konnten nach 48 h ebenfalls nur 70 % des Eduktes rückgewonnen werden. Versuche zur Herstellung des Benzylethers unter Verwendung von Benzylbromid in DMF sowie der Einsatz von i-Butylbromid als Lösungsmittel anstelle von i-Butyltosylat/DMF, jeweils unter Verwendung von Silberoxid als Base, blieben ebenfalls erfolglos. Es wurde in diesen Fällen neben dem eingesetzten Acetal **12e** das anscheinend durch Wanderung des Auxiliars entstandene Diacetal **13e** sowie Hydrobenzoin **5e** isoliert.

Da nach Durchführung dieser Experimente sowohl die gesamte Substanzmenge des hergestellten Acetals 12e verbraucht war, als auch in der Literatur keine weiteren, Erfolg

versprechenden Methoden zur gewünschten Umsetzung zu finden waren, wurden daraufhin die Versuche mit dem nitrosubstituierten Derivat eingestellt.

Andererseits wurden, da sich im Zuge der gleichzeitig durchgeführten Untersuchungen über die Auswirkung von Veränderungen des Etherteiles gezeigt hatte, dass zusätzliche Koordinationsstellen eine Verbesserung der in den Modellreaktionen erreichbaren Selektivitäten bewirken [26] auch im Fall der arylsubstituierten Systeme eine Variation des Etherteils untersucht. Als Substrat wurde, da sich dieses in den bisherigen Untersuchungen als das für alle Modellreaktionen geeignetste erwiesen hatte, das o-methoxysubstituierte Acetal **12a** gewählt. Durch Veretherung mit Bromessigsäure-t-butylester, Reduktion des Esters **22** zum entsprechenden Alkohol **12f** mit Lithiumaluminiumhydrid und anschließende Veretherung mit Methyljodid wurde der 2-Methoxyethylether **21f** anstelle des bisher untersuchten i-Butylethers hergestellt, um festzustellen, ob durch Kombination der Koordinationsmöglichkeiten der Methoxyreste der Arylteile und der Ethylenglykolstruktur des Ethers weitere Verbesserungen der Eigenschaften des Auxiliars erreichbar sind.

2.4. Acetalspaltung

Abbildung 25

Die Abspaltung des Lactol-Auxiliars zur Herstellung der Alkohole 23c, 23d und 23f wurde wie in den bisherigen Arbeiten im Fall der o-methoxy- und o-methylsubstituierten Derivate 23a und 23b [36] durch sauer katalysierte Acetalspaltung in methanolischer Lösung unter Bildung des Methylacetals 24 durchgeführt.
2.5. Veresterungen

 $\begin{aligned} \mathsf{R} &= 2\text{-}\mathsf{OCH}_3 \text{ (a/f), } 4\text{-}\mathsf{OCH}_3 \text{ (c), } 2\text{-}\mathsf{CF}_3 \text{ (d), } \mathsf{H} \text{ (g)} \\ \mathsf{R}' &= \mathsf{CH}(\mathsf{CH}_3)_2 \text{ (a/c/d), } \mathsf{CH}_2\mathsf{OCH}_3, \text{ (f/g)} \end{aligned}$

i: Propionsäure, DIC, DMAP, CH₂Cl₂;

ii: Benzoylameisensäure, DIC, DMAP, CH₂Cl₂; *iii*: Acrylsäurechlorid, NEt₃, CH₂Cl₂

Abbildung 26

Die Anbindung der Säuresubstrate an die Auxiliare zur Herstellung der Ester 25c, 25d und 25f sowie 26c, 26d und 26f wurde wie in den vorangegangenen Arbeiten im Fall der omethoxy- und o-methylsubstituierten Auxiliare 23a und 23b [36] durch Reaktion mit der entsprechenden Carbonsäure unter Zusatz von DIC sowie katalytischer Mengen DMAP in CH_2Cl_2 durchgeführt. Da eine entsprechende Umsetzung zum Acrylsäureester 27a auf Basis von Literatur [59] jedoch nicht möglich war, wurden die Derivate 27a, 27f und 27g sowie der als Testsystem für Vorversuche benötigte 2-Methoxybenzylester 27h analog Literatur [60] durch Reaktion der entsprechenden Alkohole mit Acrylsäurechlorid und Triethylamin in CH_2Cl_2 bzw. Et₂O hergestellt (für die Herstellung des Auxiliars 23g siehe Lit. [26]).

2.6. Selektivitätsversuche

Abbildung 27 Formelschema der Modellreaktionen

2.6.1. a-Alkylierung von Propionsäureestern

Die stereoselektive α -Alkylierung von Carbonsäureestern und -amiden ist eine sowohl für eine Vielzahl von chiralen Auxiliaren in Lösung [34], [61], als auch für eine Reihe von enantiomerenreinen Linkern an fester Phase erprobte Reaktionsklasse [22], [25d-e]. So wurden neben dem von Braun *et al.* [34] untersuchten, hydrobenzoin-ähnlichen Auxiliarsystem, bereits unterschiedliche chirale Linker auf Basis von Evans' Oxazolidinon oder Pseudoephedrin für asymmetrische α -Alkylierungen von Propionsäurederivaten eingesetzt.

Tabelle 9 Literaturbeschriebene α-Alkylierungen an Propionsäurederivaten

Sowohl auf Basis dieser auch für Versuche an fester Phase durchaus vielversprechenden Ergebnisse, als auch aus Gründen der Vergleichbarkeit mit den in den vorangegangenen Arbeiten untersuchten Hydrobenzoinstrukturen [36], [37], wurden auch im Rahmen dieser Arbeit α-Alkylierungen an Propionsäureestern durchgeführt.

Abbildung 28

Da die Verwendung von 4-Nitrobenzylbromid als Alkylierungsmittel keinerlei Verbesserungen in den erreichbaren Selektivitäten ergeben hatte [36], die Abspaltung der nitrosubstituierten Säuren aber nicht ohne partielle Razemisierung des gebildeten chiralen Zentrums erreicht werden konnte, wurden an den im Zuge dieser Arbeit hergestellten Auxiliaren nur die bei Umsetzung der Propionsäureester zu den entsprechenden α -Methylbenzolpropionsäureestern erreichbaren Selektivitäten untersucht.

Literatur konnten andererseits durch Zusatz von Laut LiCl sowohl erhöhte Reaktionsgeschwindigkeiten als auch verbesserte Diastereoselektivitäten bei der a-Alkylierung von Estern und Amiden erreicht werden [62], [26]. Es wurden daher mit den Substraten 28a und 28f auch Versuche unter Additivzusatz durchgeführt. Einerseits werden die beschriebenen Umsatz- und Selektivitätssteigerungen auf den "Salzeffekt", also die durch Zugabe des Salzes erhöhte Polarität des Mediums und die dadurch begünstigte Koordination des Li-Kations mit im Substrat vorhandenen Koordinationsstellen zurückgeführt. Andererseits wären auch durch Veränderungen des Aggregationsgrades der Base (siehe Abbildung 29) beziehungsweise des Enolats (siehe Abbildung 30) bedingte Unterschiede im Reaktionsmechanismus vorstellbar:

Abbildung 29 Literaturbeschriebene LDA-LiCI-Aggregate [62]

Abbildung 30 Vorgeschlagener Mechanismus für die Reaktion von Enolaten mit Alkyl- bzw. Arylhalogeniden unter Zusatz von LiCl [63]

2.6.1.1. Auswertung mittels NMR

Die Diastereomerenverhältnisse der Alkylierungsprodukte wurden durch Integration der ¹Hund ¹³C-Spektren der Rohprodukte bestimmt, diese anschließend ohne Trennung der Diastereomere chromatographisch gereinigt, und die aus den Spektren der gereinigten Diastereomerengemische erhaltenen Verhältnisse mit den aus den Spektren der Rohprodukte erhaltenen Ergebnissen verglichen. Es konnte somit einerseits sichergestellt werden, dass im Zuge der Chromatographie keine Anreicherung eines Diastereomers aufgetreten war, und andererseits eine Überlagerung von Signalen in den Spektren der Rohprodukte ausgeschlossen werden. Aus den ¹H-Spektren konnten für die Produkte **28a**, **28c** und **28f** das Signal des benzylischen Protons des Hydrobenzointeils bei ca. 4-5 ppm herangezogen werden (siehe Abbildung 31 am Beispiel von **28f**), im Fall des trifluormethylsubstituierten Derivates **28d** waren das benzylische Signal bei ca. 6.5 ppm sowie das Signal der α -Methylgruppe bei ca. 0.9 ppm für die Bestimmung geeignet.

Abbildung 31 Auflösung der zur Selektivitätsbestimmung herangezogenen Signale von 28f im ¹H- (links) bzw. ¹³C-Spektrum (rechts)

Aus den ¹³C-Spektren konnten, je nach Auflösung der betreffenden Peaks, die Signale der Carbonylgruppe, die benzylischen Signale des Hydrobenzointeils, sowie die Signale des neu generierten chiralen Zentrums und der beiden benachbarten Methyl- bzw. Benzylkohlenstoffe herangezogen werden (siehe Abbildung 31 für das Signal der dem Chiralitätszentrum benachbarten Methylgruppe des Alkylierungsproduktes **28f**). Im Fall der methoxysubstituierten Derivate **28a**, **28c** und **28f** waren auch die aromatischen Signale bei ca. 157 ppm für eine getrennte Integration ausreichend aufgelöst.

	Substrat	³ J _(benzyl.) (Substrat)	Additiv	Selekt. (R:S)	de
1 [37]		6.7 Hz	-	1:2.1	36 %
2 [26]			-	1:3.3	55 %
3 [26]		6.7 HZ	6 eq. LiCl	1:6.7	73 %
4 [36]		2747	-	1:3.9	59 %
5	0 25a	5.7 HZ	6 eq. LiCl	1:4.7	65 %
6 [36]		6.7 Hz	-	1:2.6	44 %
7		6.3 Hz	-	1:2.6	44 %
8	F_3C H O F_3C F_3C F_3C O $25d$	7.4 Hz	-	1:1.8	29 %
9		2.7.1	-	1:4.4	63 %
10		3.7 Hz	6 eq. LiCl	1:5.9	71 %

2.6.1.2. Ergebnisse der Alkylierungsversuche nach NMR-Auswertung

Tabelle 10

Im Zuge der Untersuchungen zeigte sich, dass durch weitere Abwandlungen des Arylrestes keine Verbesserung der chiralen Induktionsfähigkeit des Auxiliars erreicht werden konnte. So führte sowohl die Veränderung der Substitutionsposition (**25c**, siehe Tabelle 10, Eintrag 7), als auch die Veränderung der Elektronendichte des Aromaten durch Einführen des

٠

Trifluormethylrestes (25d, Eintrag 8) zu einer deutlichen Verringerung der erreichbaren Selektivität.

Andererseits konnten die im Rahmen der Untersuchungen von C. Schuster erreichten Verbesserungen des unsubstituierten Auxiliarsystems an dem bisher vielversprechendsten Derivat **25a** reproduziert werden: Die Anbindung eines Ethylenglykolrestes an Stelle des i-Butylrestes führte ähnlich wie im Vergleich von Eintrag 1 und 2 auch im Fall des methoxysubstituierten Derivates (Eintrag 4 bzw. 9) zu einer Verbesserung der chiralen Induktion. Weiters konnte durch Verwendung von LiCl als Additiv die bei der α -Alkylierung erreichbare Selektivität in Analogie zu Eintrag 2 und 3 auch im Fall der Derivate **25a** bzw. **25f** gesteigert werden.

2.6.1.3. Interpretation der Ergebnisse

Da sich im Rahmen der bisherigen Untersuchungen [36] gezeigt hatte, dass die bevorzugte Konformation der Hydrobenzoinstruktur großen Einfluss auf die chirale Induktionsfähigkeit der Auxiliare haben kann, wurden die bisher nur im Fall der Benzoylameisensäureester untersuchten Kopplungskonstanten der benzylischen Protonen des Hydrobenzoins nun auch zur Interpretation der Ergebnisse der Alkylierungen herangezogen. Grundlage für diesen Ansatz waren die Beobachtungen von Rosini *et al.* [33] bei Untersuchungen über die Reduktion von α -Ketoestern unter Verwendung von (R,R)-Hydrobenzoinderivaten als chirale Auxiliare. Es hatte sich hierbei gezeigt, dass nur bei einer entsprechenden Konformation des Auxiliars eine ausreichende Abschirmung der zu reduzierenden Carbonylgruppe durch den vorhandenen Benzylether gewährleistet ist und somit nur bei antiperiplanarer Anordnung der benzylischen Protonen des (R,R)-Hydrobenzoins eine chirale Induktion auftritt.

Abbildung 32 Modell zur Erklärung des Zusammenhangs der Kopplungskonstanten der benzylischen Protonen mit der erreichbaren Selektivität bei der Reduktion von Benzoylameisensäureestern [33]

Wendet man diesen Interpretationsansatz auf das hier verwendete *meso*-Hydrobenzoinsystem an, so ist leicht erkennbar, dass nur im Fall der synclinalen Anordnung der benzylischen Protonen (siehe Abbildung 33, A und B) eine Abschirmung des Enolats eintreten kann:

Abbildung 33

Vergleicht man die in Tabelle 10, Eintrag 4-10 angegebenen Kopplungskonstanten der Substrate mit den in den Alkylierungen erhaltenen Selektivitäten, zeigt sich, dass nur im Fall einer Kopplungskonstante im Bereich von 3-4 Hz ein Diastereomerenüberschuss von mehr als 50 % de erreichbar ist. Da für die Selektivität der Reaktion aber die mögliche Abschirmung und somit die Konformation des Enolats maßgeblich sind, wurde im Anschluss, durch Deprotonierung des Substrates **25a** in D8-THF, auch die Kopplungskonstante des Enolats untersucht. Hierbei trat aber im zu erwartenden Verschiebungsbereich bei ca. 5 ppm eine ganze Reihe von Signalen auf, die vermutlich auf unterschiedliche Li-Enolat-Diisopropylamin-Aggregate sowie das durch Spuren von Wasser hervorgerufene Verseifungsprodukt **23a** zurückzuführen sind. Um eine bessere Zuordnung der Signale zu ermöglichen, wurden in weiterer Folge auch Experimente unter Verwendung unterschiedlicher DIPA-Konzentrationen sowie Versuche zur Deprotonierung des Alkohols **23a** durchgeführt.

Alkohol 23a + 2 eq. LDA

Ester 25a + 2 eq. LDA

Ester 25a + 2 eq. LDA + 0.5 eq. DIPA-Überschuss

Ester 25a + 2 eq. LDA nach Hydrolyse mit D₂O

Eine eindeutige Zuordnung war zwar auch nach der Auswertung von CH-Korrelationsspektren aufgrund der mangelhaften Auflösung der Signale nicht möglich, da die Kopplungskonstanten aller Dubletts im relevanten Bereich aber zwischen 2.7 Hz und 3.5 Hz lagen, kann von einer ähnlichen Konformation von Substrat und Enolat ausgegangen werden.

Die im Fall des p-methoxysubstituierten Derivates 25c erhöhte Kopplungskonstante könnte durch die bei synclinal angeordneten Arylresten auftretende Einschränkung der Drehbarkeit des Methoxyrestes hervorgerufen werden. Im Gegensatz dazu ist bei einer synclinalen Stellung der Arylreste in 25a eine gegenüberliegende Anordnung der Methoxysubstituenten möglich, wodurch keine Einschränkung der Drehbarkeit zu erwarten ist. Die verglichen mit dem Substrat 25a sehr hohen Kopplungskonstanten der unsubstituierten Derivate sowie der Ester 25b und 25d können aber durch sterische Abstoßung der Arylreste nicht erklärt werden.

Überraschend scheint vorerst auch die trotz einer Kopplungskonstanten von 6.7 Hz im Fall des in Tabelle 10, Eintrag 2/3 angegebenen Produktes erreichbare Selektivität von bis zu 74 % de. Betrachtet man allerdings den für dieses Derivat vorgeschlagenen Mechanismus [26], so wird deutlich, dass selbst bei einer wenig vorteilhaft scheinenden Konformation des Substrates nach Bildung des Enolats aufgrund der möglichen Koordination des Methoxyethoxyrestes eine ausreichende Abschirmung einer Seite des Enolats gewährleistet sein kann.

Abbildung 35

2.6.2. Reduktion von Benzoylameisensäureestern

Die asymmetrische Reduktion von Benzoylameisensäureestern ist eine bereits mit einer Vielzahl von chiralen Auxiliaren erprobte Umsetzung die im Allgemeinen gute Ausbeuten und in vielen Fällen Produkte mit ausgezeichneten Diastereomerenüberschüssen liefert. Einige Beispiele hierzu sind in Tabelle 11 angegeben:

Auxiliar		Reduktionsmittel	Additiv	LM	R:S	Lit.
Г Сн		LiAl(OCEt ₂ (<i>i</i> -Pr)) LiAl(OC(<i>i</i> -Pr) ₂ Bu)	1	THF	92 : 8 93 : 7	[64]
F	ДС Он	DIBAL Li(s-Bu)(i-Bu)2AIH KBu3BH	/ ZnCl ₂ /	THF	87:13 80:12 92:8 97:3	[65] [66]
Ŕ	ОМе	DIBAL	/	THF	>99 : 1	[67]
		NaBH₄ LiBH₄	/ /	MeOH THF	>1 : 99 2 : 98	[68]
(CO) ² C	л — Он	NaBH₄ L-Selectride	/ /	THF Et₂O	89 : 11 95 : 5	[69]
OR OH	R = H R = Me	L-Selectride L-Selectride L-Selectride K-Selectride	/ / HMPA /	THF THF THF THF	3:97 69:31 1:99 82:18	[70]
₩.	Ч	L-Selectride L-Selectride LiAl(OCEt ₃) ₃ H	/	THF Et ₂ O/Tol THF	16 : 84 3 : 97 2 : 98	[71]
H	о N-5	L-Selectride L-Selectride L-Selectride	/ ZnCl ₂ LiBr	THF	85 : 15 99 : 1 88 : 12	[72]
	R = MOM R = TBDMS	K-Selectride K-Selectride K-Selectride L-Selectride	18-Crown-6 / 18-Crown-6 HMPA	THF THF THF THF	90 : 10 4 : 96 96 : 4 91 : 9	[73]
X Q OH	H $X = 4-CF_3$ 4-OMe 4-i-Pr 4-Ph 2,3,4,5,6-F 3,4,5,0Me	L-Selectride L-Selectride DIBAL DIBAL L-Selectride DIBAL L-Selectride L-Selectride L-Selectride L-Selectride L-Selectride	/ ZnCl ₂ / ZnCl ₂ LiCl / / / / / / / /	THF THF THF THF THF THF THF THF THF THF	22:78 50:50 27:73 63:37 45:55 13:87 43:57 30:70 17:83 20:80 25:75 20:80	[33]

Tabelle 11

Da im Rahmen der auf Basis von Lit. [33] durchgeführten, bisherigen Untersuchungen [26], [36] sehr gute Ergebnisse für die Reduktion von Ketoestern unter chiraler Induktion durch *meso*-Hydrobenzoinauxiliare erreicht werden konnten, wurde auch für die im Zuge dieser Arbeit hergestellten Derivate die Umsetzung der entsprechenden Benzoylameisensäureester zu Mandelsäureestern unter Verwendung von L-Selectride als Reduktionsmittel als Modellreaktion gewählt. Da die Reduktion der Brenztraubensäureester für alle bisher untersuchten Auxiliare zu geringeren Diastereomerenüberschüssen geführt hatte, wurde für alle weiteren Derivate nur die Reduktion der Benzoylameisensäureester durchgeführt.

Abbildung 36

2.6.2.1. Auswertung mittels NMR

Die Diastereomerenverhältnisse der Reduktionsprodukte wurden wie auch im Fall der Alkylierungen durch Integration der ¹H- und ¹³C-Spektren der Rohprodukte bestimmt, diese anschließend ohne Trennung der Diastereomere chromatographisch gereinigt und und die aus den Spektren der gereinigten Diastereomerengemische erhaltenen Verhältnisse mit den aus den Spektren der Rohprodukte erhaltenen Ergebnissen verglichen.

Im Fall des trifluormethylsubstituierten Produktes **29d** konnten hierzu aus dem ¹H-Spektrum eines der benzylischen Signale des Hydrobenzoins sowie das Singulett des Protons am neu generierten chiralen Zentrum herangezogen werden (siehe Abbildung 37, links). Aus dem ¹³C-NMR waren das Carbonyl-Signal, die benzylischen Signale des Hydrobenzoins sowie das CH₂-Signal des i-Butylethers zur Integration geeignet (siehe Abbildung 37, rechts).

Abbildung 37 Auflösung der zur Selektivitätsbestimmung herangezogenen Signale von 29d im ¹H- (links) bzw. ¹³C-Spektrum (rechts)

Abbildung 38 Benzylisches Signal im ¹H-NMR des Mandelsäureesters 29a

Für das o-methoxysubstituierte Derivat konnte wie schon in der vorangegangenen Arbeit [36] nur das Dublett des benzylischen Protons bei ca. 5 ppm zur Selektivitätsbestimmung verwendet werden (siehe Abbildung 38), da aufgrund des hohen Diastereomerenüberschusses keine weiteren Signale des 2. Produktes identifiziert werden konnten. Im Fall der Mandelsäureester 29c und 29f traten aufgrund von Stabilitätsproblemen ebenfalls Schwierigkeiten bei der Bestimmung der Diastereomerenüberschüsse mittels NMR auf. Da sowohl im Zuge der Chromatographie, als auch bei längeren Messzeiten (bei der Erstellung der ¹³C-Spektren) im NMR-Rohr die bereits bekannte Umlagerung zum entsprechenden Aldehyd 14a bzw. 14c auftrat (siehe 2.2.2), konnten die Selektivitäten nur auf Basis der bereits im Fall von 29a verwendeten benzylischen Signale in den ¹H-Spektren der Rohprodukte abgeschätzt werden. Da die Produkte aber nicht in gereinigter Form isoliert werden konnten, sondern nach Wiederholung der Versuche direkt als Rohprodukt in die Verseifung eingesetzt wurden, war eine Aussage über mögliche Überlagerungen der relevanten Signale und damit über die Verlässlichkeit der Ergebnisse erst nach HPLC-Analytik der abgespaltenen Säuren möglich.

Ein Grund für die geringe Säurestabilität der Produkte **29c** und **29f** im Vergleich zu den entsprechenden Substraten **26c** und **26f** könnte ein durch die Hydroxyfunktionalität des Mandelsäureesters ausgeübter Nachbargruppeneffekt sein, welcher die Bildung eines Carbeniumions und damit die Umlagerung zum isolierten Aldehyd erleichtert. Die Tatsache, dass die Umlagerung im Fall des Mandelsäureesters **29a** nicht beobachtet wurde, könnte auf eine unterschiedliche Konformation der Produkte und den dadurch verringerten Einfluß des Nachbargruppeneffektes im Fall von **29a** zurückzuführen sein.

Abbildung 39 Möglicher Mechanismus der Umlagerung der Mandelsäureester 29c und 29f

2.6.2.2. Ergebnisse

	Substrat	³ J _(benzyl.)	Sel. (R:S)	de (NMR)
1 [36]		5.8 Hz	1:8.1	78 %
2 [26]	Q_~-		1:7.0	77 %
3 ª [26]		6.7 Hz	1:27.6	91 %
4 [36]	\mathbf{x}		1:29.2	93 %
5ª		3.5 Hz	1:6.4	73 %
6 [36]		6.1 Hz	1:5.9	71 %
7	26c	6.8 Hz	1:24.0 / 1:6.7 ^b	92 % / 74 % ^b
8	$F_{s}c \qquad \qquad$	6.6 Hz	1:2.2	39 %
9		3.9 Hz	1:10.1	82 %

Tabelle 12

^a 2 eq. ZnCl₂ als Additiv

 ^b Die Bestimmung aus dem ¹H-NMR des Rohproduktes ergab (vermutlich aufgrund von Signalüberlagerungen)
 92 % de, mittels HPLC wurde in weiterer Folge für die abgespaltene Mandelsäure ein Enantiomerenüberschuss von 74 % erhalten Im Zuge der Untersuchungen über die Auswirkung unterschiedlicher Arylsubstituenten zeigte sich, dass durch keine der in dieser Arbeit getesteten Variationen eine weitere Verbesserung im Vergleich zum bisher vielversprechensten Derivat **26a** erreicht werden konnte.

Die Änderung der Substitutionsposition (o-OMe \rightarrow p-OMe) (siehe Tabelle 12, Eintrag 4 bzw. 7) führte neben einer leichten Verschlechterung der Selektivität vor allem zu einer Destabilisierung des Produktes. Die Selektivität konnte daher erst nach Verseifung des Mandelsäureesters und anschließender Derivatisierung der Säure mittels HPLC bestimmt werden. Die Verringerung der Elektronendichte der Arylreste ergab sogar eine drastische Verschlechterung der chiralen Induktionsfähigkeit (Eintrag 8), wobei die hier erhaltenen 39 % de deutlich außerhalb des für diese Modellreaktion üblichen Bereiches von ca. 70 % - 80 % de lagen.

Da die Verwendung von ZnCl₂ bei der Reduktion von Ketoestern sowohl laut einer Literaturstelle (siehe Tabelle 11, [72]) zu Verbesserungen der erreichbaren Selektivitäten führen kann, als auch im Zuge der Untersuchungen von C. Schuster Selektivitätssteigerungen bei Zugabe von ZnCl₂ zu beobachten waren (Vgl. Tabelle 12, Eintrag 2 bzw. 3), wurden mit dem bisher selektivsten Derivat **26a** auch Reduktionsversuche unter Additivzusatz durchgeführt. Die Verbesserung der chiralen Induktion sollte hierbei durch die Komplexierung und die daraus resultierende, fixierte *syn*-Anordnung der beiden benachbarten Carbonylgruppen hervorgerufen werden. Im Fall des o-methoxysubstituierten Derivates **26a** wurde aber in Übereinstimmung mit Lit. [33] (siehe Tabelle 11) eine Verringerung der erreichbaren Selektivität beobachtet.

Auch die Anbindung einer Ethylenglykolstruktur an Stelle des i-Butylethers, die im Fall der Alkylierung des Propionsäureesters eine Verbesserung der chiralen Induktion bewirkt hatte (siehe 2.6.1.2), führte im Fall des Reduktionsversuchs zu einer leichten Verringerung der erreichbaren Selektivität (Tabelle 12, Eintrag 9). Weiters trat im Fall des dabei erhaltenen Mandelsäureesters **29f** ähnlich wie bei dem p-methoxysubstituierten Derivat **29c** sowohl bei dem Versuch das Produkt chromatographisch zu reinigen als auch während der ¹³C-NMR-Messung die sauer katalysierte Umlagerung zu Aldehyd **14a** auf. Der in Tabelle 12 angegebene de-Wert wurde daher nur aus dem ¹H-Spektrum des Rohproduktes bestimmt, wobei in diesem Fall die anschließende HPLC-Analytik das erhaltene Ergebnis bestätigte.

2.6.2.3. Interpretation der Ergebnisse

Eine Interpretation der erhaltenen Werte in Anlehnung an die bisherigen Untersuchungen [36] und die Ergebnisse der Alkylierungsversuche und somit auf Basis des von Rosini *et al.* vorgeschlagenen Ansatzes mittels Vergleich der Kopplungskonstanten der benzylischen Protonen ist im Fall der im Zuge dieser Arbeit durchgeführten Reduktionen nicht mehr ohne weiteres möglich. So wurden zwar für das in Tabelle 12, Eintrag 2 bzw. 3 angegebene Derivat sehr ähnliche Kopplungskonstanten erhalten wie für **26d**, die erreichbaren Selektivitäten übertreffen mit 77 % bzw. 91 % (siehe Tabelle 12, Eintrag 2 bzw. 3) das im Fall von **29d** gefundene Ergebnis aber bei weitem. Somit sind anscheinend nicht, wie zuerst vermutet, in erster Linie die durch die Konformation des Hydrobenzointeils vorgegebenen, sterischen Abschirmungseffekte des i-Butylethers für die erhaltenen Selektivitäten verantwortlich, sondern vielmehr auch die durch die Auswahl und Position der Arylsubstituenten, durch Veränderung des Etherteils und durch Zugabe von Additiven variablen, koordinativen Effekte.

Betrachtet man nun nochmals die für das Edukt **26a** möglichen Konformationen (siehe Abbildung 40, die Methoxyreste wurden aus Gründen der Übersichtlichkeit entfernt), so ist leicht ersichtlich, dass auch im Fall der antiperiplanaren Anordnung der Protonen (C) durch den im Bereich der zu reduzierenden Carbonylgruppe positionierten Arylrest eine Abschirmung der *si*-Seite gewährleistet ist:

Abbildung 40 Mögliche Konformationen des Substrates 26a (die o-Methoxyreste wurden aus Gründen der Übersichtlichkeit entfernt)

Hierbei muss angemerkt werden, dass für das angegebene Modell die von Rosini *et al.* [33] auf Basis der vorhandenen Literatur [74] postulierte *syn*-Anordnung des Ester-Carbonyls und des benachbarten Hydrobenzoin-Protons sowie die *anti*-Anordnung der beiden Carbonylgruppen angenommen wird. Unter dieser Voraussetzung wird deutlich, dass unabhängig von der Konformation des Hydrobenzointeils die *si*-Seite der Keto-Gruppe

entweder durch den Arylrest oder durch den i-Butylether ausreichend abgeschirmt ist und somit eine Korrelation der Kopplungskonstanten der benzylischen Protonen mit der erreichbaren Diastereoselektivität nicht unbedingt zu erwarten ist.

Andererseits kann die im Fall des o-methoxysubstituierten Derivates erhaltene Selektivität auch durch koordinative Effekte leicht begründet werden:

Abbildung 41 Mögliche Koordination des Li-Kations mit einem der beiden o-Methoxyreste der Arylteile in 26a

Für das Substrat **26a** ist eine Koordination des im Reaktionsgemisch vorhandenen Li-Kations mit den Sauerstoffen der α -Ketofunktionalität und des Etherrestes sowie mit einem der beiden Methoxyreste vorstellbar (siehe Abbildung 41, Modell A bzw. B). In beiden Fällen ist hierbei die Konformation der Hydrobenzoinstruktur fixiert und somit eine ausgezeichnete Abschirmung der *si*-Seite der zu reduzierenden Carbonylfunktionalität durch den i-Butylether gegeben.

Die Verringerung der erhaltenen Diastereoselektivität bei Zugabe von $ZnCl_2$ (siehe Tabelle 12, Eintrag 5) scheint auf Basis dieses Modells ebenfalls plausibel, da die Komplexierung der beiden Carbonylgruppen mit dem Zn-Kation und deren dadurch bedingte *syn*-Anordnung (s.o.) bei Angriff des Hydrids von der *si*-Seite zum *R*-Mandelsäureester führt.

Im Fall der o-methyl- und p-methoxy-substituierten Derivate **26b** und **26c** (siehe Tabelle 12, Eintrag 6 und 7) ist eine Koordination nach dem oben beschriebenen Modell unmöglich, und die erhaltenen Selektivitäten liegen mit 71 % bzw. 74 % de erwartungsgemäß im Bereich des unsubstituierten Substrates.

In Substrat 26f wird anscheinend durch die zusätzliche Koordinationsstelle am Etherteil die bei 26a auftretende Komplexierung verhindert, wobei durch die hier vorstellbare Koordination des Methoxyethoxyrestes mit dem Li-Kation zwar weiterhin die Konformation des Hydrobenzointeils weitgehend fixiert ist, die Abschirmung der *si*-Seite aber nur noch in geringerem Maße gewährleistet ist:

Abbildung 42 Mögliche Chelatisierung des Li-Kations in Substrat 26f

Eine Begründung für die im Fall des trifluormethylsubstituierten Derivates 26d erhaltene, deutlich reduzierte Selektivität (siehe Tabelle 12, Eintrag 8) scheint auf Basis der bisherigen Ergebnisse schwierig, da die sterischen und koordinativen Verhältnisse im Fall von 26b sehr ähnlich sein sollten, hier aber eine deutlich stärkere chirale Induktion zu beobachten ist. Möglicherweise wird durch die im Vergleich zu 26b verringerte Elektronendichte des trifluormethylsubstituierten Aromaten eine $\pi\pi$ -Wechselwirkung des Arylrestes mit den beiden Carbonylgruppen erschwert. Eine Abschirmung der *si*-Seite der zu reduzierenden Carbonylgruppe durch den Arylrest nach dem in Abbildung 40 / C beschriebenen Modell ist daher nicht möglich und eine deutliche Herabsetzung der Diastereoselektivität somit vorstellbar.

2.6.3. Addition an Benzoylameisensäureester

Die asymmetrische Addition von Metallorganylen an α -Ketoester mittels Induktion durch chirale Auxiliare stellt eine praktikable Methode zur Herstellung substituierter α -Hydroxysäuren dar. So wurden beispielsweise auch in den letzten Jahren mittels unterschiedlicher Auxiliare aus Benzoylameisensäure verschiedene, substituierte Mandelsäuren hergestellt (siehe Tabelle 13).

	Aux	R-M-X bzw. R ₂ M	
Lit.	Auxiliar	Metallorganyl	de
[75]	HO HO	$Me_2Zn, Cp_2ZrHCl, \equiv R'$	90 %
[76]	СТ С	MeMgI	83 %
[77]		ZnCl ₂ +RMgX R = Et, i-Pt, n-Bu, i-Bu, t-Bu, All, c-Hex, Bn	0-94 %
[78]	H-Tos OH	c-HexMgBr + ZnCl ₂	0-96 %
[79]	$\begin{array}{c} Ph & Ph & Ph & Ph \\ HO & OH & HO & OH \\ HO & OH & HO \\ \end{array} \qquad \qquad$	bzw. Br OMe , SmI2	35-57 %
[80]	ONO2	$ZnCl_2 + RMgCl$ R = i-Pr, i-Bu, n-Hex, n-Bu, Et	82-86 %
[81]	herefore Ar = 4-t-Bu-Ph, 4- Ph-Ph	ZnCl ₂ + RMgCl R = i-Pr, i-Bu, n-Hex, n-Bu, Et	83-97 %
[82]	HO"	MeMgI	92 %

Tabelle 13 aktuelle Beispiele für die Addition von Metallorganylen an Benzoylameisensäureester

Aufgrund der guten Ergebnisse, die bei der Umsetzung von Benzoylameisensäure zu substituierten Mandelsäurederivaten unter Verwendung der unsubstituierten *meso*-Hydrobenzoinauxiliare [26] auf Basis der Versuche von Boireau *et al.* [83] erzielt werden konnten, wurden auch mit den o-methoxysubstituierten Derivaten **26a** und **26f** entsprechende Experimente durchgeführt. Das Zinkorganyl wurde hierzu *in situ* aus 8.8 eq. n-Butylgrignard und 8 eq. ZnCl₂ hergestellt und anschließend mit 1 eq. des Benzoylameisensäureesters bei -78°C in Ether umgesetzt.

Abbildung 43

Die Auswertung erfolgte für beide Produkte, wie schon im Fall der Reduktionen, mittels Integration der benzylischen Signale im ¹H-Spektrum des Rohproduktes bei ca. 5 ppm. Die

Ergebnisse wurden wiederum mit den aus den Spektren der chromatographisch gereinigten Diastereomerengemische erhaltenen Integralen verglichen, wobei in beiden Fällen keine Veränderung der Verhältnisse zu beobachten war.

Abbildung 44

Im Zuge der Versuche zeigte sich jedoch, dass im Fall von koordinationsfähigen Arylsubstituenten und dem sterisch anspruchsvollen i-Butylether (Substrat 26a) die unter Verwendung des unsubstituierten Hydrobenzoinsystems mit Koordinationsstellen im Etherteil erhaltenen Diastereomerenüberschüsse nicht erreicht werden konnten (siehe Tabelle 14, Eintrag 1 bzw. 2). Bei Kombination der koordinationsfähigen Arylreste mit dem Methoxyethoxyrest an Stelle des i-Butylethers (Substrat 26f) trat eine weitere Verringerung der erreichbaren Selektivität auf (Eintrag 3). Spezieller Teil

	Substrat	<i>R:S</i> (NMR)	de
1 [26]		1:32.3	94 %
2		1:18.7	90 %
3		1:14.3	87 %

Tabelle 14 Ergebnisse der Additionen von n-BuZnCl an die Benzoylameisensäureester 26a und 26f

Für die in allen Fällen erhaltene, substituierte S-Mandelsäure ist grundsätzlich ein Angriff des Alkylrestes von der *re*-Seite vorauszusetzen. Somit ist ein Mechanismus auf Basis der in Lit. [83] und [75] angenommenen Koordination nicht möglich, da im Fall der *syn*-Anordnung sowohl der beiden Carbonylgruppen als auch des α -Protons und des Ester-Carbonyls aufgrund der sterischen Verhältnisse ein *si*-Angriff eintreten sollte (siehe Abbildung 45, C).

Abbildung 45

Einerseits wäre aber ein Modell in Anlehnung an die im Fall der Reduktion vorstellbare Komplexierung möglich (siehe Abbildung 45, A) wobei hier die *syn*-Orientierung des Ester-Carbonyls und des Protons am benachbarten chiralen Zentrum gewährleistet wäre. Andererseits wäre auch ein auf Basis von Lit. [26] formulierter Mechanismus denkbar (siehe Abbildung 45, B), wobei hier zwar die Carbonyl-Zn-Koordination berücksichtigt ist, die Ester-Carbonylgruppe aber nicht in *syn*-Position zu dem benachbarten benzylischen Proton angeordnet werden kann.

2.6.4. Diels-Alder-Reaktionen an Acrylsäureestern

Da Diels-Alder-Reaktionen eine der wichtigsten Methoden zur Herstellung von 6-gliedrigen Ringsystemen unter Bildung von bis zu 4 neuen chiralen Zentren darstellen, und mittlerweile auch eine Vielzahl asymmetrischer Diels-Alder-Reaktionen an fester Phase beschrieben wurde [84], sollte auch die Anwendungsmöglichkeit von *meso*-Hydrobenzoinstrukturen als chirale Auxiliare bzw. chirale Linker für asymmetrische Diels-Alder Reaktionen untersucht werden.

Als Modellreaktion wurde hierzu die Lewis-Säure-katalysierte Umsetzung der entsprechenden Acrylsäureester mit Cyclopentadien ausgewählt, da hier einerseits die Bildung von 4 unterscheidbaren Diastereomeren gewährleistet ist, die Bestimmung der Diastereomerenverhältnisse ist aber aufgrund des relativ einfachen Produktsystems aus dem NMR möglich. Eine Auswahl aktueller Beiträge zur asymmetrischen Umsetzung von Acrylsäureestern -amiden enantiomerenreinen und zu entsprechenden Bornencarbonsäurederivaten ist in Tabelle 15 zusammengestellt.

Lit.	Substrat	Lewis-Säure	Bed.	Ausb.	endo:exo	de (endo)	de (exo)
[85]		2 eq. BCl₃	CH ₂ Cl ₂ , -78°C	84 %	>99:1	>98 %	-
[96]		1 eq. SnCl₄	CH ₂ Cl ₂ , -80°C,	87 %	21:79	40 %	96 %
[00]		0.5 eq. SnCl₄	12 h	84 %	79:21	36 %	18 %
[87]		0.25 eq. BBr ₃	CH ₂ Cl ₂ , -78°C	60 %	98:2	74 %	-
				79 %	>95:5	80 %	-
[88]		2 eq. EtAlCl ₂	CH ₂ Cl ₂ , -78°C, 15 min.	84 %	>95:5	82 %	-
[89]		1.5 eq. Et ₂ AlCl	CH ₂ Cl ₂ , -78°C, 2 h	79 %	92:8	93 %	-
[60]		0.68 eq. TiCl₄	CH ₂ Cl ₂ , -55°C, 4 h	96 %	>99:1	97 %	-
[90]		0.15 eq. BCl ₃	Toluol, -78°C, 0.5 h	99 %	98.5:1.5	97 %	-
[91]	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1.5 eq. Me ₂ AlCl	CH ₂ Cl ₂ , 0°C, 3.5 h	95 %	8.1:1	64 %	-

Tabelle 15.1 Aktuelle Beis	piele für asymmetrische	Umsetzungen von Acrylsä	aurederivaten mit Cyclopentadien
----------------------------	-------------------------	-------------------------	----------------------------------

Spezieller Teil

Lit.	Substrat	Lewis-Säure	Bed.	Ausb.	endo:exo	de (endo)	de (exo)
[92]		TiCl₄	Et ₂ O, -78°C, 2h	80 %	>40:1	>99 %	-
[93]	2	10.6 eq. BF ₃ ·Et ₂ O	CH ₂ Cl ₂ , -80°C, 10 h	86 %	>99:1	88 %	-
[94]		1.4 eq. Et ₂ AlCl	CH ₂ Cl ₂ , -100°C, 15 min.	70 %	>99:1	72 %	-
[95]		l.1 eq. MgBr₂Et₂O	PhCH ₃ , 32°C, 2h	98 %	96:4	84 %	-
[96]	A A A A A A A A A A A A A A A A A A A	0.5 eq. SnCl₄	-78°C, 5h	87 %	98:2	88 %	-
[97]		1.4 eq. TiCl₄	PhCH ₃ /CH ₂ Cl ₂ , -10°C, 2h	78 %	9:1	98 %	-
[98]		l eq. EtAlCl ₂	CH ₂ Cl ₂ , -54°C, 52 h	100 %	98:2	70 %	-
[99]		1.6 eq. Et ₂ AICI	CH ₂ Cl ₂ , -20°C, 20 min.	100 %	100:0	>99 %	-
[100]		1 eq. NaHCO3	H ₂ O, RT, 24 h	>90 %	95:5	55 %	-

Tabelle 15.2 Aktuelle Beispiele für asymmetrische Umsetzungen von Acrylsäurederivaten mit Cyclopentadien

Um geeignete Reaktionsbedingungen zu finden, wurde die Umsetzung vorerst an Acrylsäure-2-methoxybenzylester als Testsystem unter Verwendung verschiedener Lewis-Säuren in CH₂Cl₂ durchgeführt. Die Reaktionstemperatur wurde schrittweise gesteigert und die Änderungen der Umsätze in regelmäßigen Abständen mittels NMR verfolgt (die Ergebnisse der Vorversuche sind in Tabelle 16 zusammengestellt).

Abbildung 46 Testsystem für die Optimierung der Reaktionsbedingungen der Diels-Alder-Reaktion

² Es wurden Acrylate verschiedener Cholsäurederivate verwendet

	-50°C (2 h)	-20°C (2 h)	0°C (12 h)	RT (3 h)
MgBr ₂ Et ₂ O	33 %	75 %	100 %	100 %
Me ₂ AlCl	100 %	100 %	100 %	100 %
Ti(O-i-Pr)3Cl	-	-	34 %	73 %
ZnBr ₂	-	-	100 %	100 %

 Tabelle 16 Ergebnisse der Umsetzungen des Testsystems (Umsatz in Abhängigkeit von Reaktionsbedingungen und verwendeter Lewis-Säure)

Auf Basis der beobachteten Umsätze wurden alle weiteren Versuche unter Verwendung von 1.2 eq. MgBr₂·Et₂O bei -30°C³ [101] oder 1.2 eq. Me₂AlCl bei -50°C bzw. -80°C [102] wiederum mit 10 eq. Cyclopentadien in CH₂Cl₂ durchgeführt.

Abbildung 47

Die Auswertung der Diastereoselektivitäten erfolgte mittels Integration der ¹H- und ¹³C-Spektren der Rohprodukte und anschließendem Vergleich der Ergebnisse mit den aus den Spektren der chromatographierten Substanzen erhaltenen Verhältnissen. Aus den ¹H-Spektren konnten zur Bestimmung der Selektivitäten die Signale der benzylischen Protonen bei ca. 6.4 ppm sowie der olefinischen Signale bei ca. 6.0 und 5.7 ppm herangezogen werden. Anhand der olefinischen Signale war auch eine grobe Abschätzung des *endo/exo-*

³ Bei Durchführung der Reaktion bei -50°C wurden nur 20 % Umsatz erreicht.

Verhältnisses möglich, die endgültige Bestimmung der *endo/exo*-Selektivitäten erfolgte aber mittels GC-Analytik.

Abbildung 48 Auflösung der zur Selektivitätsbestimmung herangezogenen Signale in den ¹H- bzw. ¹³C-Spektren des Norbornencarbonsäureesters 31a

In den ¹³C-Spektren waren die Carbonylsignale bei ca. 173 ppm, die Ph-C-2-Signale der methoxysubstituierten Produkte **31a** und **31f** bei ca. 157 ppm, die olefinischen Signale bei 137 bzw. 132 ppm, die benzylischen Kohlenstoffe des Hydrobenzointeils, sowie zum Teil auch einige aliphatische Signale der Norbornenstruktur zur getrennten Integration ausreichend aufgelöst, es konnten jedoch keine ¹³C-Signale des *exo*-Produktes identifiziert werden.

	Substrat	Lewis-Sre.	Т	endo:exo	R:S (endo)	de (endo)
1	\sim	Me ₂ AICI	-50°C	ca. 10:1	1:2.3	39 %
2		Me ₂ AICI	-80°C	ca. 8:1	1:2.8	47 %
3	⁸ 27a	MgBr ₂ ·Et ₂ O	-30°C	ca. 5:1	1:1.9	31 %
4		Me₂AlCl	-80°C	ca. 8:1	1:2.0	33 %
6	Ŷ.	Me ₂ AICI	-50°C	ca. 10:1	1.1:1	5 % ^a
7	^µ +∘~° ^µ +°, ° ^µ 27g	MgBr ₂ ·Et ₂ O	-30°C	ca. 6:1	1:1.8	29 %

Tabelle 17 Ergebnisse der Diels-Alder-Reaktionen nach NMR-Auswertung

^a in diesem Fall wurde ein Überschuss des (R)-Produktes erhalten

Auf Basis der von Oppolzer [103] erarbeiteten Theorie über die Geometrie von Acrylaten chiraler sekundärer Alkohole, vor allem unter Wirkung von Lewis-Säuren, scheint die hier eintretende S-Selektivität etwas überraschend. Setzt man die von Oppolzer vorgeschlagene synperiplanare Anordnung des Wasserstoffs am chiralen Zentrum und der Carbonylgruppe, die Koordination der Lewis-Säure am Carbonyl-O *anti* zum Ester-Sauerstoff und die durch die hierbei auftretende räumliche Abstoßung bedingte *s-anti* Orientierung des Acrylats auch im hier vorliegenden Fall voraus, so sollte aufgrund der Abschirmung der *re*-Seite bevorzugt das *R*-Produkt erhalten werden.

Abbildung 49 R-selektive Reaktion auf Basis der von Oppolzer vorgeschlagenen Geometrie des Acrylats

Berücksichtigt man aber andererseits die mögliche Koordination der Lewis-Säure mit dem Methoxysubstituenten des Arylteils sowie dem Sauerstoff des i-Butylethers in Substrat 27a, so ist auch eine geänderte Orientierung der Carbonylgruppe vorstellbar, was wiederum einen *re*-seitigen Angriff des Diens bedeuten würde.

Abbildung 50 S-selektive Reaktion auf Basis der durch mögliche Koordinationseffekte geänderten Acrylatgeometrie

Wie aus Abbildung 50 ersichtlich ist, wird durch die Komplexierung der Lewis-Säure auch eine Fixierung der Konformation des Hydrobenzoins gewährleistet, wodurch eine Abschirmung der *si*-Seite des Acrylats durch den i-Butylether gegeben ist. Grundsätzlich wäre für 27a auch eine Koordination des Methoxyrestes unter Erhalt der syn-Orientierung des Wasserstoffs am chiralen Zentrum und des Carbonyl-Sauerstoffs vorstellbar. In diesem Fall wäre aber entweder keine zusätzliche Komplexierung durch den Sauerstoff des i-Butylethers (siehe Abbildung 51, A) oder kein $\pi\pi$ -Stacking der beiden Arylreste (siehe Abbildung 51, B) möglich, was wiederum für die in Abbildung 50 dargestellte Variante spricht.

Abbildung 51 Koordinationsmöglichkeiten unter Einhaltung der von Oppolzer vorgeschlagenen Geometrie

Eine Komplexierung der Lewis-Säure ist auch für Substrat 27g vorstellbar, wobei in diesem Fall die Koordination nur mit den Sauerstoffen des Methoxyethoxyrestes möglich ist. Bei Einhaltung der von Oppolzer vorgeschlagenen Orientierung des Carbonyl-Sauerstoffs (siehe Abbildung 52, A) ist aber wiederum kein $\pi\pi$ -Stacking der Arylreste möglich. Geht man andererseits, wie auch in dem für 27a vorgeschlagenen Fall, von einer umgekehrten Anordnung des Acrylats aus (siehe Abbildung 52, B), so ist weder durch den Arylrest noch durch den an der Komplexierung teilnehmenden Ether eine ausreichende Abschirmung der *si*-Seite der Doppelbindung zu erwarten, wodurch die im Fall von 27g deutlich verringerte Selektivität unter Bildung eines leichten Überschusses des (1*R*)-endo-Produktes erklärt werden kann (siehe Tabelle 17, Eintrag 6).

Abbildung 52 Chelatisierung der Lewis-Säure in Substrat 27g

Im Fall von 27f (siehe Tabelle 17, Eintrag 4) tritt anscheinend eine Konkurrenz der unterschiedlichen Komplexierungsmöglichkeiten auf, was eine Verringerung der Selektivität im Vergleich zu 27a zur Folge hat.

Auch die Steigerung der erreichbaren Selektivität aufgrund der geringeren Reaktionstemperatur (Vgl. Tabelle 17, Eintrag 1 bzw. 2) scheint durchaus plausibel. Für die Tatsache, dass im Fall von 27a bei Verwendung von MgBr₂·Et₂O eine Verringerung der Selektivität zu beobachten war (siehe Tabelle 17, Eintrag 2 bzw. 3), andererseits aber mit 27g unter Einsatz von Me₂AlCl fast keine chirale Induktion erreicht werden konnte, MgBr₂·Et₂O hier aber zum üblichen Diastereomerenüberschuss des (1*S*)-*endo*-Produktes führte (siehe Tabelle 17, Eintrag 6 bzw. 7), konnte aber keine Erklärung gefunden werden.

Grundsätzlich scheinen die hier untersuchten *meso*-Hydrobenzoinstrukturen im Fall von Diels-Alder-Reaktionen nicht die chirale Induktionsfähigkeit der in Tabelle 15 angegebenen Auxiliare zu besitzen.

2.7. Abspaltung der Produkte/Enantiomeranalytik

Im Zuge der bisherigen Arbeiten [36] hatte sich gezeigt, dass einerseits geeignete Abspaltungsbedingungen speziell im Fall von empfindlichen, zu Razemisierung neigenden Produkten eine grundlegende Vorraussetzung für die zuverlässige Bestimmung der Diastereoselektivitäten aus den erhaltenen Endprodukten darstellen, und andererseits die bisher zur Bestimmung herangezogenen Drehwerte selbst bei geringen Verunreinigungen der Produkte zu fehlerhaften Ergebnissen führen können. Da im Fall der Versuche an fester Phase eine Beurteilung der chiralen Induktionsfähigkeit der Linker aber erst nach Abspaltung der Endprodukte möglich ist, wurden sowohl die Verseifungsbedingungen optimiert, als auch die Möglichkeit der reduktiven Abspaltung der entsprechenden Alkohole untersucht.

Weiters konnten mittels Derivatisierung der Produkte Diastereomerengemische hergestellt werden, die eine Bestimmung der Selektivität der Reaktionen sowohl mittels NMR als auch achiraler chromatographischer Methoden ermöglichten und somit eine deutlich bessere Beurteilung der Verlässlichkeit der Ergebnisse zuließen.

2.7.1. a-Methyl-benzolpropionsäureester

Abbildung 53 Verseifung a-Methylbenzolpropionsäureester / Derivatisierung der erhaltenen Säuren

Die Verseifungen der alkylierten Ester erfolgten unter Verwendung von 10 eq. LiOH in THF/MeOH/H₂O 3:2:1 bei RT innerhalb von 12 h. Die entsprechenden Säuren wurden mit 82 % - 97 % Ausbeute gewonnen und die Absolutkonfiguration durch Bestimmung der $[\alpha]_D^{20}$ -Werte und anschließenden Vergleich mit Literaturdaten [104] ermittelt. Es ergab sich hierbei für alle Säuren (*S*)-Konfiguration. Da sich durch Vergleich der aus den NMR-Spektren erhaltenen Werte mit den aus den Drehwerten berechneten Enantiomerenüberschüssen gezeigt hatte, dass selbst durch geringe Verunreinigungen der Säuren deutliche Abweichungen der Ergebnisse der polarimetrischen Messungen verursacht werden können, und weiters die im Fall der vorangegangenen Untersuchungen aus den Drehwerten berechneten lagen, wurden die im Rahmen dieser Arbeit erhaltenen Ergebnisse mittels HPLC verifiziert.

Hierzu wurden die Säuren analog Lit. [105] unter Verwendung von L-Valinmethylester derivatisiert und die dabei erhaltenen Diastereomere mittels achiraler reversed-phase-HPLC getrennt (Supelcosil[®] LC-18, H₂O/MeOH 45:55, 0.2 ml/min., UV-Detektion bei 214nm/254nm, t_{R1} =29.5 min., t_{R2} =37.2 min. (siehe Abbildung 54) bzw. H₂O/MeOH 50:50, t_{R1} =31.3 min., t_{R2} =40.3 min.; die Trennung der Diastereomere war auch mittels einer alternativen C18-Säule möglich: Nucleosil[®] 120 5 C18, H₂O/MeOH 50:50, 0.2 ml/min., UV-Detektion bei 214nm/254nm, t_{R1} =22.9 min., t_{R2} =27.3 min.).

Abbildung 54 HPLC der mit L-Valinmethylester derivatisierten α -Methylbenzolpropionsäure 37

Es ergaben sich hierbei zufriedenstellende Übereinstimmungen mit den mittels NMR-Integration erhaltenen Ergebnissen, wobei eine leichte Verringerung der de-Werte bei Bestimmung mittels HPLC auf eine geringfügige Razemisierung im Zuge der Verseifung zurückzuführen sein kann.

	Produkt	Additiv	de (NMR)	de (HPLC)
1		6 eq. LiCl	65 %	67 %
2	28c	-	44 %	37 %
3	F ₅ c H F ₅ c F ₅ c H C F ₅ c H C C C C C C C C C C C C C C C C C C	-	29 %	24 %
4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	63 %	60 %
5	28f	6 eq. LiCl	71 %	70 %

Tabelle18Vergleichder mittelsNMR-bzw.HPLC-AuswertungerhaltenenErgebnissederAlkylierungsversuche

2.7.2. Mandelsäureester

Abbildung 55 Spaltung der Mandelsäureester / Derivatisierung der erhaltenen Säuren bzw. Diole

Da sich bei den vorangegangenen Untersuchungen gezeigt hatte, dass im Fall der Mandelsäureester bei zu langen Hydrolysezeiten oder großen Basenüberschüssen durch Razemisierung des chiralen Zentrums Verringerungen der aus den Mandelsäuren bestimmten ee-Werten auftreten können, wurden im Zuge der vorliegenden Arbeit nur 3 eq. LiOH eingesetzt, wobei innerhalb von 1.5 h bei RT in allen Fällen die vollständige Abspaltung der Mandelsäure (77 % - 92 % d. Th.) erreicht werden konnte. Die Razemisierung der Produkte sollte unter diesen Bedingungen auf Basis der Literatur ausgeschlossen werden können [26], [70], [71], [72], [73], [106], die aus den HPLC-Analysen bestimmten Werte lagen jedoch im Allgemeinen etwas unter den aus den NMR-Spektren erhaltenen (siehe Tabelle 19). Im Fall der Ester **29c** und **29f** konnten die Diastereomerenüberschüsse aufgrund der mangelnden Stabilität der Produkte nur aus den ¹H-Spektren der Rohprodukte abgeschätzt werden. Die starken Abweichungen der mittels NMR und HPLC erhaltenen Ergebnisse (siehe Tabelle 19, Eintrag 3 bzw. 5) sind somit vermutlich auf Überlagerung der relevanten NMR-Signale durch Verunreinigungen im Rohprodukt zurückzuführen.

Da für viele Reaktionen an fester Phase die Abspaltung von basenempfindlichen Produkten unter sauren Bedingungen beschrieben ist, wurden auch für den Mandelsäureester 29a Versuche zur sauren Hydrolyse durchgeführt. Da hierbei jedoch, wahrscheinlich aufgrund des sauer katalysierten Ringschlusses zum entsprechenden Dioxandion, geringere Ausbeuten erhalten wurden, und die mittels HPLC bestimmten Diastereomerenüberschüsse unter den nach basischer Hydrolyse erhaltenen Werten lagen (siehe Tabelle 19, Eintag 1), wurden die Mandelsäureester in weiterer Folge ausschließlich basisch verseift.

Nach Bestimmung der Absolutkonfiguration auf Basis der Drehwerte [107] (in allen Fällen wurde das (*S*)-Enantiomer als Hauptprodukt erhalten), wurden die erhaltenen Mandelsäuren wiederum analog Lit. [105] mit L-Valinmethylester derivatisiert und mittels achiraler HPLC getrennt (Nucleosil 120 5 C18, H₂O/MeOH 55:45, 0.2 ml/min., UV-Detektion bei 214nm/254nm, t_{R1} =16.1 min., t_{R2} =21.9 min. (siehe Abbildung 56); die Trennung der Diastereomere war auch mittels einer alternativen C18-Säule analog den für die alkylierten Säuren verwendeten Bedingungen möglich: Supelcosil LC-18, H₂O/MeOH 50:50, 0.2 ml/min., UV-Detektion bei 214nm/254nm, t_{R1} =11.5 min., t_{R2} =15.8 min.). Eine Identifizierung der Peaks bei t_R =2.8 bzw. 7.6 min. war auch mittels HPLC-MS nicht möglich, die relevanten Signale konnten aber durch Zumischen eines razemischen Produktgemisches eindeutig zugeordnet werden.

Abbildung 56 HPLC der mit L-Valinmethylester derivatisierten Mandelsäure 38

Um die Zugänglichkeit der entsprechenden Diole als Endprodukte zu überprüfen, wurden auch Versuche zur reduktiven Esterspaltung durchgeführt. Unter Verwendung von 2.8 eq. LiAlH₄ in Et₂O konnte das gewünschte Produkt mit 39 % Ausbeute isoliert werden, wobei der Substanzverlust vermutlich auf Extraktionsprobleme zurückzuführen ist. Das Diol 34 wurde unter Verwendung von Phosgen und Pyridin in Toluol mit 66 % Ausbeute zum cyclischen Carbonat 39 umgesetzt [108]. In diesem Fall musste allerdings eine chirale HPLC-Methode

zur Trennung der erhaltenen Enantiomere eingesetzt werden (Chiralcel OD, n-Hexan/i-PrOH 95:5, 1.3 ml/min., UV-Detektion bei 217nm/257nm, t_{R1} =37.6 min., t_{R2} =45.3 min.).

Abbildung 57 HPLC des cyclischen Carbonats 39

Die mittels HPLC-Analytik der Derivate 38 bzw. 39 erhaltenen Ergebnisse der Reduktionsversuche sind in Tabelle 19 zusammengestellt:

	Produkt	de (NMR)	de (HPLC)		
			LiOH	TFA	LiAlH₄
1		9 5 /0	89 %	88 %	78 %
2ª	29a	73 %	71 %		
3	ب ب ب ب 29c	92 % ^b		74 %	
- 4		39 %	39 %		
5	29f	82 % ^b		78 %	

Tabelle 19 Vergleich der mittels NMR- bzw. HPLC-Auswertung erhaltenen Ergebnisse der Reduktionsversuche

^a 2 eq. ZnCl₂ als Additiv

^b Abschätzung der Selektivität nur aus dem ¹H-NMR des Rohproduktes

Es wurden auch Versuche unternommen, den Ester im Zuge der Reduktion der α -Carbonylgruppe zu spalten, und die Umsetzung und Abspaltung des Produktes somit als einstufige Reaktion zu führen. Aufgrund der hierbei notwendigen, relativ aufwendigen, chromatographischen Trennung und der Polarität des Produktes, konnte aber neben dem rückgewonnenen Auxiliar weder bei Verwendung von 4 eq. L-Selectride unter RF, noch bei Zugabe von 3 eq. LiAlH₄ nach der L-Selectride-Reduktion der Ketogruppe auch das abgespaltene Diol isoliert werden.

2.7.3. a-Butyl-a-hydroxybenzolessigsäureester

Abbildung 58 Verseifung der a-Butyl-a-hydroxybenzolessigsäureester / Derivatisierung der erhaltenen Säuren

Die Verseifung der Ester **30a** und **30f** wurde unter Verwendung von 5 eq. LiOH in THF/MeOH/H₂O unter RF innerhalb von 12 h mit 99 % bzw. 90 % Ausbeute durchgeführt. Nach Bestimmung der Absolutkonfiguration auf Basis der Drehwerte [83] (in beiden Fällen wurde hauptsächlich das (*S*)-Produkt erhalten), wurden die erhaltenen Säuren **35** wiederum mit L-Valinmethylester derivatisiert. Eine Bestimmung der Diastereomerenüberschüsse mittels HPLC war jedoch im Fall des Derivats **40** nicht möglich, da die schlechte Löslichkeit in H₂O/MeOH und die in den Derivatisierungsprodukten vorhandenen Verunreinigungen eine eindeutige Zuordnung des Signals des 2. Diastereomers unmöglich machten.

Abbildung 59 HPLC der mit L-Valinmethylester derivatisierten a-Butyl-a-hydroxybenzolessigsäure 40

Aus den NMR-Spektren der Derivate konnte allerdings durch Integration des OCH₃-Signals bei ca. 3.5 ppm im ¹H-Spektrum sowie der ¹³C-Signale bei ca. 174, 172, 142, 128, 125 und 79 ppm das Diastereomerenverhältnis bestimmt und somit die aus den NMR-Spektren der Ester **30a** und **30f** erhaltenen Werte verifiziert werden (siehe Tabelle 20).

Abbildung 60 Auflösung der zur Selektivitätsbestimmung herangezogenen Signale in den ¹H- bzw. ¹³C-Spektren der derivatisierten α -Butyl- α -hydroxybenzolessigsäure 40

Auch für die Ester 30a und 30f lagen die mittels NMR der Derivate bestimmten Diastereomerenverhältnisse etwas unter den aus den Spektren der Ester ermittelten Werten. Im Fall der α -Butyl- α -hydroxybenzolessigsäure ist aber im Gegensatz zu den Säuren 32 und 33 eine Razemisierung durch Deprotonierung des chiralen Zentrums unter basischen Bedingungen nicht möglich. Da auch eine bevorzugte Derivatisierung eines Enantiomers aufgrund der quantitativen Reaktion nicht möglich scheint, und eine Überlagerung von Signalen und somit die Verfälschung der NMR-Auswertung aufgrund der Anzahl der zur Bestimmung herangezogenen Signale weder für die Ester **30** noch die Derivate **40** von Bedeutung sein sollte, sind die beobachteten Abweichungen vermutlich nur auf geringfügige Fehler im Zuge der Integration zurückzuführen.

Ester	de (NMR 30a/f)	de (NMR 40)
	90 %	86 %
	87 %	85 %

Tabelle 20 Vergleich der mittels NMR- bzw. HPLC-Auswertung erhaltenen Ergebnisse der n-BuZnCl-Additionen

2.7.4. Norbornencarbonsäureester

Abbildung 61 Verseifung der Norbornencarbonsäureester 31 / Derivatisierung der erhaltenen Säuren

Obwohl im Fall des Testsystems **31h** die Verseifung unter den für die Mandelsäureester verwendeten Bedingungen innerhalb von 16 h möglich war, führte diese Methode für die auxiliargebundenen Norbornencarbonsäuren zu keiner Umsetzung. Die Abspaltung wurde
daher in 1M LiOH in DME/H₂O unter RF durchgeführt [109], wobei im Fall der Derivate **31f** und **31g** nach 24 h vollständiger Umsatz erreicht war. Für den i-Butylether **31a** musste die Reaktionszeit aber auf 36 h verlängert werden.

Die Absolutkonfiguration des Hauptproduktes konnte bei ausreichenden Enantiomerenüberschüssen mittels Drehwertmessung [111] ermittelt werden, wobei die Bestimmung in allen Fällen (1*S*)-Konfiguration ergab. Bei dem im Fall der Umsetzung von **31g** mit Me₂AlCl erhaltenen Produkt schien aufgrund der geringen Selektivität eine Drehwertmessung nicht sinnvoll, es deutete hier aber schon die NMR-Auswertung des Esters auf eine Umkehrung der Diastereoselektivität hin.

Auf Basis von Lit. [110] sollte mittels Integration der olefinischen Signale der Norbornencarbonsäuren 36 eine Bestimmung der *endo/exo*-Selektivität der Reaktionen möglich sein. Die hierbei gewonnenen Ergebnisse deckten sich zwar mit den aus den Rohspektren der Ester 31 abgeschätzten Verhältnissen, es wurden aber große Abweichungen

zu den anschließend mittels GC der Methylester bestimmten Werten beobachtet. Die Unterschiede sind vermutlich auf die geringe Intensität des exo-Signals und die auftretende dadurch Verfälschung des Integrals aufgrund von geringfügigen Verunreinigungen der Säuren zurückzuführen.

Abbildung 62 Abschätzung der *endo/exo*-Selektivität auf Basis von Lit. [110] durch Integration der olefinischen Signale der Norbornencarbonsäuren 36

Eine verlässliche Bestimmung sowohl der *endo/exo*-Selektivitäten als auch der Enantiomerenüberschüsse war nach Umsetzung der Säuren zum entsprechenden Methylester [111] mittels chiraler GC möglich (Säule: BGB 175 (30mx0.25mm ID, $0.25\mu m$ film); T-Programm: 80° C (2min.), $\rightarrow 160^{\circ}$ C (5° C/min.), 160° C (1min.), $\rightarrow 220^{\circ}$ C (10° C/min.), 220° C (8min.); 2ml/min. He; 230° C FID; 220° C Inlet), wobei im Fall der Enantioselektivitäten weitgehend zufrieden stellende Übereinstimmungen mit den mittels NMR-Integration ermittelten Werten beobachtet wurden (siehe Tabelle 21). Durch Zuordnung der Peaks des

	Substrat	Lewis-Sre.	endo:exo (NMR)	endo:exo (GC)	de (<i>endo</i>) (NMR)	de (<i>endo</i>) (GC)
1		Me ₂ AICI/-50°C	ca. 10:1	20.9:1	39 %	40 %
2		Me ₂ AlCl/-80°C	ca. 8:1	15.4:1	47 %	42 %
3	27a	MgBr ₂ ·Et ₂ O	ca. 5:1	9.2:1	31 %	34 %
4		Me2AICI/-80°C	ca. 8:1	18.1:1	33 %	26 %
6	\bigcirc	Me ₂ AICI/-50°C	ca. 10:1	18.0:1	5 % ^a	6 % ^a
7		MgBr2 [·] Et2O	ca. 6:1	11.4:1	29 %	25 %

(1S, 4R, 5R)- und (1R, 4R, 5R)-Produktes konnte für das nach Umsetzung von **31g** mit Me₂AlCl erhaltene Produkt die vermutete (1R)-Konfiguration verifiziert werden.

Tabelle 21 Vergleich der mittels NMR bzw. GC ermittelten Selektiviäten der Diels-Alder-Reaktionen

^a in diesem Fall wurde ein leichter Überschuss des (1R, 4R, 5R)-Produktes erhalten

2.8. Festphasenversuche

In weiterer Folge wurden die mittels der Modellreaktionen in Lösung als am geeignetsten identifizierten Auxiliare an ein Festphasenharz gebunden und deren Einsetzbarkeit als chirale Linker durch die entsprechenden Umsetzungen an fester Phase untersucht.

75

Abbildung 63 Formelschema

2.8.1. Chlorierung der Wang-Harze

Als Festphasenträger dienten in allen Fällen kommerziell erhältliche Wang-Harze unterschiedlicher Beladungen, welche, um in weiterer Folge die Anbindung des Linkers zu ermöglichen, in die chlormethylierten Harze überführt werden mussten. Hierzu wurden analog Lit. [112] 4 eq. DIEA sowie 3 eq. Methansulfonsäurechlorid in DMF verwendet und eine Reaktionszeit von 72 h eingehalten, die Zugabe der Reagenzien erfolgte aber in Anlehnung an Raju und Kogan [113] unter Kühlung. Es konnte im Zuge der Anbindungsversuche gezeigt werden, dass bei Reagenszugabe bei RT und Durchführung der Reaktion unter Schütteln statt wie zuvor unter Rühren eine Verminderung der erreichbaren Anbindungsrate zu beobachten ist. Da die vollständige Chlorierung der Hydroxyl-Endgruppen des Harzes maßgeblich für die anschließende Anbindung des chiralen Linkers und somit auch für die erreichbare Selektivität ist, wurden die Chlorierungsansätze entsprechend Lit. [112] jeweils einmal wiederholt.

Der Reaktionsumsatz konnte zwar aufgrund der geringen Massenänderung nur begrenzt gravimetrisch ausgewertet werden, eine Beurteilung war aber mittels IR auf Basis der im hydroxymethylierten Harz vorhandenen OH-Streckschwingung bei 3567 cm⁻¹ sowie der durch die C-Cl-Streckschwingung hervorgerufenen Schulter bei ca. 660 cm⁻¹ an der bereits im hydroxymethylierten Harz vorhandenen Bande bei 699 cm⁻¹ möglich.

Abbildung 64 Vergleich der IR-Spektren des hydroxymethylierten - bzw. chlormethylierten Wang-Harzes

2.8.2. Anbindung der desymmetrisierten Linker

Zur Anbindung der desymmetrisierten Linker **12a** bzw. **12f** wurden diese, wie auch im Zuge der Veretherungen in Lösung, mit NaH in DMF deprotoniert und anschließend unter Zugabe von katalytischen Mengen Nal mit dem chlorierten Wang-Harz umgesetzt.

Abbildung 65 Vergleich der IR-Spektren des Wang-Harzes vor bzw. nach Anbindung des desymmetrisierten Linkers

Der Umsatz der Reaktion konnte zwar wegen der schlechten Erkennbarkeit der durch die C-Cl-Streckschwingung bedingten Schulter im IR-Spektrum kaum spektroskopisch beurteilt werden, aufgrund der großen Massenzunahme bei der Anbindung des desymmetrisierten Linkers war jedoch eine gravimetrische Quantifizierung möglich. Es ergab sich hier allerdings das Problem, dass in keinem der Versuche eine der spezifizierten Beladung des Harzes entsprechende Anbindungsrate zu erreichen war.

Bei eingehenderen Untersuchungen stellte sich in weiterer Folge heraus, dass neben der Chlorierungsmethode (siehe Tabelle 22, Eintrag 4) vor allem die Beladungskapazität des verwendeten Harzes großen Einfluss auf die erreichbaren Anbindungsraten hat (vgl. Tabelle 22, Eintrag 1, 2 und 5). So konnte auch bei nochmaliger Chlorierung eines zum Teil beladenen Harzes und einem weiteren Anbindungsschritt, selbst bei Verwendung von größeren Überschüssen an Base und Linker, nur eine unwesentliche Verbesserung der Gesamtanbindungsrate erreicht werden (33 % \rightarrow 37 %) (siehe Tabelle 22, Eintrag 3). Somit scheinen im Fall von Kapazitäten von mehr als 0.68 mmol/g die aufgrund der Größe der desymmetrisierten Linker und der Dichte der Ankerstellen an der Harzoberfläche auftretenden sterischen Abstoßungen eine vollständige Anbindung zu unterbinden.

Es wurde im Zuge der Optimierung der Anbindung auch die Verwendung eines Überschusses an NaH im Vergleich zur Menge des eingesetzten Linkers untersucht (siehe Tabelle 22, Eintrag 4). Die hierbei beobachtete Dimerisierung des Linkers unter Reduktion und Insertion des Lösungsmittels und der anschließende Ringschluss zum entsprechenden Trioxocan **20** wurden bereits unter 2.2.3 diskutiert.

	Harz: Firma / Beladung	Linker / Äquiv.	Äquiv. NaH	Anbindung
1	Adv. ChemTech / 1.0 mmol/g	12a / 5.0	5.0	36 % - 48 %
2	Aldrich / 1.2 mmol/g	12a / 8.6	6.0	51 %
3ª	Aldrich / 1.2 mmol/g	12a / 11.6	8.0	37 %
4 ^b	novabiochem / 0.63 mmol/g	12a / 5.2	14.4	52 %
5	novabiochem / 0.68 mmol/g	12a / 6.3	6.0	64 % - 83 %
6	novabiochem / 0.68 mmol/g	12f / 5.3	5.0	75 %

Tabelle 22 Abhängigkeit der Anbindungsrate von der Kapazität des Harzes sowie der Chlorierungsmethode

^a 2x angebunden

^b Chlorierung bei RT

Auch nach Optimierung des Anbindungsschrittes konnten jedoch, abhängig vom verwendeten Linker, nur Umsätze zwischen 64 % und 83 % erreicht werden. Bei Vorversuchen hatte sich aber gezeigt, dass nicht nur die aufgrund von unvollständiger Chlorierung des Harzes vorhandenen Hydroxylgruppen, sondern auch die nach unzureichender Anbindung des Linkers zurückbleibenden Chlormethylgruppen des Harzes unter Verwendung von DIC und DMAP mit Carbonsäuren verestert werden können. So ergab die Umsetzung von chloriertem Wang-Harz (Aldrich, 1.2 mmol/g) mit 10 eq. Benzoylameisensäure, 10 eq. DIC und 1 eq. DMAP laut gravimetrischer Bestimmung eine 51%-ige Anbindung. Eine Umsetzung des direkt an die Endgruppen des Harzes angebundenen Substrats ergibt aber ein razemisches Produktgemisch, was eine deutliche Herabsetzung der erreichbaren Stereoselektivität, sowohl im Fall von unvollständiger Chlorierung, als auch bei zu geringen Anbindungsraten des desymmetrisierten Linkers bedeutet. Da ein ähnliches Problem bereits von McArthur *et al.* [19b] beschrieben wurde, und dieses durch Umsetzung der nicht beladenen Chlormethylgruppen mit Nal in Aceton zum Jodid und in weiterer Folge durch Reduktion mit Bu₃SnH in THF zur Methyl-Endgruppe vermieden werden konnte, wurden auch die hier untersuchten, unvollständig mit dem Linker beladenen Harze nach dieser Methode behandelt. Beide Schritte führten weder zu signifikanten Unterschieden in den IR-Spektren, noch zu relevanten Massenveränderungen, die Umsetzungen wurden daher im Allgemeinen jeweils zweimal durchgeführt um die Vollständigkeit der Reaktionen zu gewährleisten. Die so behandelten Harze werden in weiterer Folge mit "gekennzeichnet. Im Zuge der weiteren Umsetzungen konnten durch die Methode von McArthur *et al.* auch im Fall relativ geringer Anbindungsraten des Linkers für die Versuche an fester Phase übliche Selektivitäten erreicht werden. Als alternative Methode zur Deaktivierung der freien Chlormethylgruppen wurde auch die Methoxylierung unter Verwendung von Natriummethanolat in DMF untersucht, hierbei konnte jedoch keine Verbesserung der beobachteten Selektivitäten erreicht werden.

2.8.3. Acetalspaltung

Die Abspaltung der chiralen Schutzgruppe konnte aufgrund des Quellverhaltens des Harzes nicht wie im Fall der Versuchsreihen in Lösung in MeOH bzw. MeOH/CH₂Cl₂ 1:1 durchgeführt werden. Bei Verwendung von CH₂Cl₂/MeOH 5:1 konnte aber eine ausreichende Quellung des Harzes gewährleistet werden, und unter Zusatz von 1.1 eq. TPHB wurde binnen 48 h die Abspaltung des Acetals erreicht. Mittels des NMR-Spektrums des gebildeten Methylacetals, verunreinigt durch das hierbei ebenfalls isolierte PPh₃, konnte eine weitere Abschätzung der Anbindungsrate getroffen werden. Weiters war eine qualitative Beurteilung der Umsetzung wiederum auf Basis des IR-Spektrums möglich, da durch die Entschützung der Hydroxylgruppe eine neue Bande bei ca. 3570 cm⁻¹ zu erkennen war.

Abbildung 66 Vergleich der IR-Spektren des Wang-Harzes vor bzw. nach Abspaltung des Noe-Lactols

2.8.4. Selektivitätsversuche

In Analogie zu den Versuchen in Lösung wurden auch an fester Phase die Substrate angebunden, die Modellreaktionen durchgeführt, anschließend die Produkte abgespalten und die erreichten Enantiomerenüberschüsse bestimmt. Die Umsetzungen wurden unter weitgehend gleichen Bedingungen wie die entsprechenden Reaktionen an den chiralen Auxiliaren in Lösung durchgeführt, wobei für die Veresterungen etwas größere Reagensüberschüsse verwendet wurden, die Reaktionszeiten im allgemeinen verlängert wurden, und die Abspaltungsbedingungen im Fall der Festphasenharze teilweise leicht modifiziert werden mussten.

2.8.4.1. Alkylierung von Propionsäureestern

Das Substrat wurde unter Verwendung von 10 eq. Säure, 1.0 eq. DMAP und 10 eq. DIC innerhalb von 48 h in CH₂Cl₂ angebunden, wobei im Fall jener Harze, deren nicht mit Linker beladene Chlormethylgruppen reduktiv deaktiviert worden waren ($23i'' \rightarrow 25i''$ bzw. $23j'' \rightarrow 25j''$), Ausbeuten von 67 % - 96 % erreicht wurden. Bei Umsetzung der übrigen Harze (z.B. 23i siehe Tabelle 23, Eintrag 7) wurden Ausbeuten von über 100 % bezogen auf die vorhandenen Endgruppen des Linkers bzw. 56 % bezogen auf die spezifizierte Beladung des Harzes erreicht. Das Substrat wurde in diesen Fällen somit teilweise direkt an das Harz gebunden, wodurch mangels chiraler Induktion durch den asymmetrischen Linker eine Herabsetzung der erreichbaren Selektivität eintrat. Eine Beurteilung des Umsatzes der Veresterungen war neben der gravimetrischen Bestimmung der Ausbeute auch auf Basis der im IR-Spektrum auftretenden Carbonylbande möglich (siehe Abbildung 67).

Die α -Alkylierungen der gewonnenen Ester wurden, wie schon bei den entsprechenden Umsetzungen in Lösung, bei -70°C bis -80°C in THF durchgeführt, wobei im Fall der Reaktionen an fester Phase 5.0 eq LDA und 10 eq. Benzylbromid eingesetzt wurden. Die Ergebnisse dieser Versuche sind in Tabelle 23 zusammengestellt. Im IR-Spektrum waren außer einer geringfügigen Verschiebung der Carbonylbande keine signifikanten Veränderungen erkennbar (siehe Abbildung 67).

Die anschließende Verseifung der alkylierten Ester wurde den Versuchen in Lösung entsprechend unter Verwendung von 10 eq. LiOH bei RT durchgeführt, wobei die Reaktionszeit von 12 h auf 96 h erhöht werden musste, um zufriedenstellende Ausbeuten zu gewährleisten. Die Vollständigkeit der Abspaltung konnte im Anschluss auf Basis der Carbonyl- und OH-Banden im IR-Spektrum beurteilt werden (siehe Abbildung 67).

Abbildung 67 Veränderungen in den IR-Spektren des Wang-Harzes im Zuge der Veresterung, der α-Alkylierung sowie der anschließenden Abspaltung der alkylierten Säure

Die Ermittlung der erreichten Stereoselektivitäten erfolgte wie schon für die auf **HPLC** Modellreaktionen in Lösung Basis der mittels bestimmten Diastereomerenüberschüsse der mit L-Valinmethylester derivatisierten, abgespaltenen Säuren, wobei die erhaltenen Werte durch die Integration der OCH₃-Signale der Derivate im ¹H-NMR bei ca. 3.6 ppm verifiziert werden konnten (siehe Abbildung 68).

Abbildung 68 Auflösung der OCH₃-Signale im ¹H-Spektrum der derivatisierten Säure 37

	Substrat	Anb.	Deakt.	Add.	de(HPLC)	de(NMR)	de Ø
1 [26]				-			55 %
2 [26]				6 eq. LiCl			73 %
3 [26]	Q_{2}	80 %	CH_2CI $\rightarrow CH_3$	-			41 %
4 [26]		80 %	CH₂Cl →CH₃	6 eq. LiCl			58 %
5	`.Q_/			-			59 %
6				6 eq. LiCl			65 %
7		51 %	-	-	38 %	-	38 %
8				-	48 %	50 %	49 %
9	25i/25i"	83 %	\rightarrow CH ₃ CH	6 eq. LiCl	51 %	58 %	55 %
10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-			63 %
11				6 eq. LiCl			71 %
12		79.04		•	49 %	-	49 %
13		10 70	-	6 eq. LiCl	51 %	50 %	51 %
14	-° t " 25j/25j"	75 %	$CH_2CI \rightarrow CH_3$	6 eq. LiCl	64 %	65 %	65 %

Tabelle 23 Ergebnisse der α-Alkylierungen an fester Phase

Im Zuge der Untersuchungen an fester Phase stellte sich heraus, dass zwar, ähnlich wie im Fall der in Lit. [26] verwendeten unsubstituierten Strukturen, die in Lösung erhaltenen Selektivitäten bei den Umsetzungen an fester Phase nicht erreicht werden konnten, die im Fall der Versuche in Lösung beobachteten Tendenzen aber auch an fester Phase auftraten. So konnten die erreichbaren Selektivitäten durch Zugabe von 6 eq. LiCl auch an fester Phase gesteigert werden (vgl. Tabelle 23, Eintrag 8/9 bzw. 13/14), und es ergaben sich für den über einen Ethylenglykol-Sublinker angebundenen 2,2'-Dimethoxyhydrobenzoin-Linker höhere Selektivitäten, als für den direkt an das Wang-Harz gebundenen (vgl. Tabelle 23, Eintrag 9 bzw. 14).

Für die beobachtete Verringerung der Diastereomerenüberschüsse im Fall der Festphasenreaktionen sind zwei Erklärungen möglich: Einerseits ist die Übertragung des an ein Li-Enolat koordinierten Alkylierungsreagens zu einem in räumlicher Nähe befindlichen zweiten Enolat nach dem von Seebach [63] vorgeschlagenen Mechanismus (siehe 2.6.). Abbildung 30) aufgrund der durch die geringe Beladung des Harzes vorgegebenen Verdünnung nur schwer vorstellbar. Somit wäre für die Alkylierungen an fester Phase ein geänderter Reaktionsmechanismus zu erwarten, wodurch auch die Veränderung der Selektivitäten plausibel scheint. Andererseits wäre auch aufgrund der geänderten sterischen Verhältnisse bei Anbindung des Linkers an die feste Phase eine veränderte Konformation der Hydrobenzoinstruktur vorstellbar. Nach den Ergebnissen der Modellreaktionen in Lösung hat aber die Konformation des Linkers großen Einfluss auf die erreichbaren Selektivitäten, und somit wären die verringerten Diastereomerenüberschüsse auch durch eine aufgrund der an fester Phase vorliegenden Konformation eingeschränkte Abschirmung einer Seite des Enolats erklärbar.

2.8.4.2. Reduktion von Benzoylameisensäureestern

Die Anbindung des Substrats erfolgte auch im Fall der Benzoylameisensäure unter Verwendung von 10 eq. der Carbonsäure, 1.0 eq. DMAP und 10 eq. DIC binnen 48 h bei RT in CH₂Cl₂, wobei auch hier für die Harze, deren nicht mit Linker beladene Chlormethylgruppen reduktiv deaktiviert worden waren (23i''/23j''), Ausbeuten zwischen 75 % und 99 % erhalten wurden. Für die übrigen Harze (23i/23j) wurden auch im Fall der Benzoylameisensäure Ausbeuten von über 100 % bezogen auf die angebundenen Linkergruppen erhalten, was wiederum eine zum Teil direkte Anbindung des Substrats an das Harz und somit eine Herabsetzung der erreichbaren Selektivität bedeutet (siehe Tabelle 24, Eintrag 5).

Die Reduktionen erfolgten auch an fester Phase unter Verwendung von 1.1 eq. L-Selectride bei -80°C in THF, wobei nach 1 h weitere 0.1 eq. des Reduktionsmittels zur Vervollständigung der Reaktion zugegeben wurden.

Zur Abspaltung der Produkte wurden entsprechend den Versuchen in Lösung zur Vermeidung einer möglichen Razemisierung der Mandelsäure nur 3 eq. LiOH verwendet, wobei nach ca. 2 h Reaktionszeit in allen Fällen eine vollständige Verseifung erreicht werden konnte. Im Fall der Reduktionen konnte nicht nur der Umsatz der Substrat-Anbindung sowie der Abspaltung des Produkts, sondern auch die Reduktion selbst auf Basis der IR-Spektren beurteilt werden, da bei der Umsetzung zum Mandelsäureester sowohl eine der beiden Carbonylbanden verschwindet, als auch eine neue Hydroxylgruppe gebildet wird.

Abbildung 69 Veränderungen in den IR-Spektren des Wang-Harzes im Zuge der Veresterung, der Reduktion sowie der anschließenden Abspaltung der Mandelsäure

Es wurde auch der Versuch unternommen, das Diastereomerenverhältnis auf Basis der Wellenzahl der Carbonylbande des Esters abzuschätzen, und hierfür reine *R*- und *S*- sowie razemische Mandelsäure an das Harz **23i** angebunden.

Abbildung 70 Verschiebung der Carbonylbanden in den IR-Spektren der Wang-Harze nach Anbindung von R-, S- bzw. raz-Mandelsäure im Vergleich zum Reduktionsprodukt 29i Die erhaltenen IR-Spektren wiesen zwar deutliche Unterschiede in den Wellenzahlen der Carbonylbanden auf, da aber sowohl die Bande des razemischen als auch des bei der Reduktion erhaltenen Mandelsäureesters nicht zwischen den Banden der diastereomerenreinen Derivate lagen (siehe Abbildung 70), konnten keine Aussagen über die erhaltenen Diastereomerenverhältnisse getroffen werden. Eine Erklärung für die beobachteten Verschiebungen der Carbonylbanden könnte eine zusätzliche Veresterung der überschüssigen Mandelsäure mit der Hydroxylgruppe des bereits angebundenen Produktes sein, wodurch auch die in den IR-Spektren der hergestellten Vergleichsubstanzen erkennbaren, verschiedenen Hydroxylgruppen erklärt werden könnten (siehe Abbildung 71).

Abbildung 71 Anbindung von Mandelsäure an den harzgebundenen Linker

Da aber aufgrund der Auflösung der mittels KBr-Pressling erstellten Spektren keine genauen Informationen über die erhaltenen Selektivitäten erwartet werden konnten, und wegen der Korngröße des Harzes eine ATR-IR-Messung keine zufrieden stellenden Ergebnisse erbrachte, wurden keine weiteren Untersuchungen zu diesem Thema angestellt.

Die erreichten Diastereoselektivitäten wurden daher, wie auch im Fall der Alkylierungen und Reduktionen in Lösung, mittels HPLC der abgespaltenen und anschließend derivatisierten Mandelsäuren bestimmt. Die hierbei erhaltenen Ergebnisse sind in Tabelle 24 zusammengestellt.

Es musste leider festgestellt werden, dass wie schon im Fall der α -Alkylierungen, bei Durchführung der Modellreaktion an den festphasengebundenen Substraten, die in Lösung erhaltenen Selektivitäten nicht ganz erreicht werden konnten. Die im Zuge der Versuche in Lösung beobachteten Tendenzen deckten sich aber auch im Fall der Reduktionen der Benzoylameisensäureester mit den an fester Phase gewonnenen Ergebnissen.

	Substrat	Anbindung	Deakt.	de
1ª [26]				91 %
2 ª [26]	$\hat{\mathbf{Q}}_{\mathbf{z}}$	80 %	-	80 %
3 ª [26]		80 %	CH₂Cl→CH₃	86 %
4				93 %
5 [36]				78 %
6 [36]				69 %
7		51 % ^b	-	33 %
8		64 %	CH ₂ Cl→CH ₃	48 % - 57 %
9	26i/26i"	81 %°	-	53 % - 70 %
10				82 %
11	\sim	76 %	-	31 %
12		75 %	CH₂Cl→CH₃	55 %

Tabelle 24 Ergebnisse der Reduktionen an fester Phase

° spezifizierte Beladung des Harzes: 0.68 mmol/g

So wurden sowohl bei Gewährleistung zufrieden stellender Anbindungsraten des Linkers, als auch im Fall der reduktiven Deaktivierung der nicht beladenen Chlormethylgruppen des Harzes geringere Selektivitäten als im Fall des Substrates 26a beobachtet (vgl. Tabelle 24, Eintrag 4/8/9). Aufgrund der Tatsache, dass aber auch im Zuge der vorangegangenen

^a eq. ZnCl₂ als Additiv ^b spezifizierte Beladung des Harzes: 1.2 mmol/g

Untersuchungen [36] unter Verwendung des i-Butylethers (siehe Tabelle 24, Eintrag 5) höhere Selektivitäten erhalten wurden, als im Fall des dem Wang-Sublinker ähnlichen Benzylethers, (siehe Tabelle 24, Eintrag 6) scheinen die für **26i** bzw. **26i**'' erhaltenen, leicht verringeren Selektivitäten durchaus plausibel. Zusätzlich dazu ist auch hier eine aufgrund der sterischen Verhältnisse in Umgebung des Harzes veränderte Geometrie des Hydrobenzoinlinkers vorstellbar, die eine Verschlechterung der unter 2.6.2.3 beschriebenen Koordinationsmöglichkeiten zur Folge haben könnte (siehe auch Abbildung 41). Auch bei Anbindung des methoxysubstituierten Hydrobenzoinlinkers über eine dem Auxiliar **26f** ähnliche Sublinkerstruktur wurden aber an fester Phase geringere Selektivitäten erhalten als im Fall des Substrates **26f** (siehe Tabelle 24, Eintrag 10/11/12).

2.8.4.3. Addition von BuZnCl an Benzoylameisensäureester

Nach Anbindung des Substrats analog 2.8.4.2 wurden die erhaltenen Benzoylameisensäureester, den Versuchen in Lösung entsprechend, unter Verwendung einer *in situ* aus 8.0 eq. ZnCl₂ und 8.8 eq. n-BuMgCl hergestellten n-BuZnCl-Lösung bei -78°C umgesetzt. Im Fall der Reaktionen an fester Phase musste aber, aufgrund des Quellverhaltens des Harzes, an Stelle von Et₂O als Lösungsmittel THF verwendet werden, wobei im Zuge der Untersuchungen von C. Schuster gezeigt werden konnte, dass durch den Austausch des Lösungsmittels keine Veränderungen der erreichbaren Selektivitäten zu erwarten waren.

Die Verseifungen erfolgten im Fall der substituierten Hydroxyester, da hier keine Razemisierung des Produktes zu erwarten ist, unter Verwendung von 10 eq. LiOH durch 24stündiges Erhitzen auf RF und ergaben jeweils quantitative Ausbeute, was einer Gesamtausbeute von 67 % bzw. 85 % d. Th. entspricht. Die Umsetzungen konnten, wie schon im Fall der Reduktionen zu den entsprechenden Mandelsäureestern, auf Basis der IR-Spektren beurteilt werden.

87

Abbildung 72 Veränderungen in den IR-Spektren des Wang-Harzes im Zuge der Veresterung, der n-BuZnCl-Addition sowie der anschließenden Abspaltung des Produktes

	Substrat	Anbindung	Deakt.	LM	de
1 [26]				THF	>98 %
2 [26]		80 %	CH₂CI→CH₃	THF	90 %
3				Et ₂ O	86 %
4	26i"	64 %	CH₂Cl→CH₃	THF	62 %
5				Et ₂ O	85 %
6	ک ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	75 %	CH₂CI→CH₃	THF	57 %

Tabelle 25 Ergebnisse der n-BuZnCl-Additionen an fester Phase

Da, wie bereits unter 2.7.3 beschrieben, eine Auswertung der Diastereomerenüberschüsse der Derivate **40** mittels HPLC nicht möglich war, wurden die erhaltenen Selektivitäten auch für die Reaktionen an fester Phase anhand der ¹H- und ¹³C-Spektren der abgespaltenen und anschließend mit L-Valinmethylester derivatisierten Hydroxysäuren bestimmt.

Entsprechend den bisherigen erhaltenen Ergebnissen, wurden auch im Fall der Zn-Organyl-Addition bei den Umsetzungen an fester Phase geringere Selektivitäten erhalten, als mit den vergleichbaren Systemen in Lösung, wobei als Erklärung auch hier in erster Linie Unterschiede in der Konformation des Linkers und somit Probleme bei der Koordination nach den unter 2.6.3 beschriebenen Modellen vorstellbar sind.

2.8.4.4. Diels-Alder-Reaktion an Acrylsäureester 27i''

Trotz der Vielzahl an verschiedenen chiralen Auxiliaren, die alleine in den letzten Jahren zur asymmetrischen Umsetzung von Acrylaten eingesetzt wurden, ist die Anwendung von enantiomerenreinen Linkern zur Durchführung asymmetrischer Diels-Alder-Reaktionen an fester Phase noch nicht eingehend untersucht. Als einziges vergleichbares Beispiel ist hier die von Winkler und McCoull beschriebene Umsetzung von harzgebundenen Oxazolidinon-Crotonaten mit Cyclopentadien unter Verwendung von Et₂AlCl zu nennen, wobei in diesem Fall eine *endo/exo* Selektivität von 21:1 sowie ein Enantiomerenüberschuss von 86 % ee beobachtet wurde, was durchaus den für dieses System in Lösung erhaltenen Werten entspricht (*endo/exo*>20:1, 88 % ee) [25g].

Abbildung 73 von Winkler und McCoull beschriebene Umsetzung an fester Phase

Obwohl laut Winkler und McCoull ein Merrifield-Harz als Träger verwendet werden musste, da das ebenfalls untersuchte Wang-Harz-Derivat unter den für die Diels-Alder-Reaktion eingesetzten Bedingungen nicht stabil war, konnte die im Rahmen der vorliegenden Arbeit verwendete Modellreaktion ohne weiteres an der Linkerstruktur 23i'' durchgeführt werden. Die Substratanbindung erfolgte auch für das Acrylat 27i" entsprechend den Versuchen in Lösung, allerdings unter Verwendung von größeren Reagensüberschüssen (10 eq. Acrylsäurechlorid, 10 eq. Triethylamin) und einer Reaktionszeit von 72 h in CH₂Cl₂ wobei eine Ausbeute von 86 % d. Th. erreicht werden konnte. Für die Diels-Alder-Reaktion selbst wurden wiederum jene Bedingungen verwendet, die im Zuge der Versuche in Lösung die besten Ergebnisse erbracht hatten (1.05 eq. Me₂AlCl, -80°C, 10 eq. Cyclopentadien), wobei auch in diesem Fall die Reaktionszeit von 2 h auf 5 h verlängert wurde.

Die zur Abspaltung der auxiliargebundenen Norbornencarbonsäureester verwendeten Bedingungen (LiOH, DME/H₂O) waren weitgehend auch für die Umsetzung an fester Phase geeignet, das Lösungsmittel musste allerdings, um eine entsprechende Quellung des Harzes zu gewährleisten, durch Zusatz von THF leicht modifiziert werden.

Abbildung 74 Veränderungen in den IR-Spektren des Wang-Harzes im Zuge der Veresterung, der Diels-Alder-Reaktion sowie der anschließenden Abspaltung des Produktes

Die Vollständigkeit der Substratanbindung und Produktabspaltung konnte auch hier problemlos mittels der IR-Spektren überprüft werden. Bei der Diels-Alder-Reaktion selbst ergaben sich aber Probleme, da die Umsetzung einerseits nicht durch das Auftreten neuer oder das Verschwinden vorhandener Banden IR-spektroskopisch charakterisiert werden konnte, andererseits aber die gravimetrische Beurteilung des Umsatzes, anscheinend aufgrund von am Harz zurückbleibenden Resten des polymerisierten Diens, verfälscht wurde. Da laut IR-Spektrum die vollständige Verseifung des Esters erreicht worden war, lässt die geringe Menge der isolierten Norbornencarbonsäure (15 mg, 22 % d. Th.) somit in erster Linie auf eine unvollständige Umsetzung im Zuge der Diels-Alder-Reaktion schließen. Für weitere Versuche scheinen daher Reaktionszeiten von ca. 12 h empfehlenswert.

Die Bestimmung der *endo/exo*-Selektivität und des Enantiomerenüberschusses erfolgte entsprechend den Vorversuchen in Lösung mittels GC-Analytik der abgespaltenen und anschließend zum Methylester umgesetzten Norbornencarbonsäure.

	Substrat	Anmerkungen	endo/exo	de (<i>endo)</i>
1		-	15.4:1	42 %
2		73 % Anbindung CH₂Cl→CH₃	13.5:1	35 %

Tabelle 26 Ergebnis der Diels-Alder-Reaktion an fester Phase

Durch den Versuch an fester Phase konnte gezeigt werden, dass zwar für die Diels-Alder-Reaktion des an den Festphasenlinker gebundenen Substrats deutlich längere Reaktionszeiten erforderlich sind als bei der entsprechenden Umsetzung unter Verwendung des chiralen Auxiliars in Lösung, die *endo/exo-* und Enantioselektivität aber auch an fester Phase weitgehend erhalten bleibt.

2.9. Recyclierbarkeit

Da die mögliche Recyclierung der harzgebundenen Hydrobenzoine einen der maßgeblichen Vorteile der in dieser Arbeit untersuchten Linkerstrukturen darstellt, wurden auch Untersuchungen über die Auswirkung des wiederholten Einsatzes der an die feste Phase gebundenen Linker auf die erreichbaren Diastereoselektivitäten durchgeführt.

Hierzu wurde, nachdem die Vollständigkeit der Abspaltung des Produktes mittels des IR-Spektrums überprüft worden war, der rückgewonnene, harzgebundene Linker 23i, 23i'' bzw. 23j wiederum in die nächste Veresterung eingesetzt und die weiteren Umsetzungen dem ersten Reaktionszyklus entsprechend durchgeführt. Die Bestimmung der erreichten Selektivitäten erfolgte auch hier mittels HPLC der mit L-Valinmethylester derivatisierten, abgespaltenen Säuren.

Abbildung 75 Recyclierung des Harzes 23j zur neuerlichen α-Alkylierung von Propionsäure

Auxiliar	23i	23i''
Anbindungsrate	81 % d. Th.	64 % d. Th.
1. Zyklus	53 % ee	48 % ee
2. Zyklus	70 % ee	57 % ee
3. Zyklus	61 % ee	
4. Zyklus	59 % ee	

Abbildung 76 Recyclierung der Harze 23i / 23i" zur neuerlichen Reduktion von Benzoylameisensäure

Es konnte hierbei gezeigt werden, dass der verwendete meso-2,2'-Dimethoxyhydrobenzoinlinker sowohl mit als auch ohne Ethylenglykolsublinker (23j bzw. 23i, siehe Abbildung 75 / Abbildung 76) und unabhängig von der reduktiven Deaktivierung der nicht mit Linker beladenen Chlormethylgruppen (23i bzw. 23i", siehe Abbildung 76) für den wiederholten Einsatz geeignet ist. Weder im Fall der α-Alkylierung der Propionsäureester (siehe Abbildung 75) noch bei der Reduktion der Benzoylameisensäureester (siehe Abbildung 76) wurden im Zuge der Recyclierungen Einbußen in den Enantiomerenüberschüssen der abgespaltenen Produkte beobachtet. Im Fall der Reduktionen trat im 2. Reaktionszyklus sogar eine deutliche Verbesserung der erreichten Selektivität auf, wobei hierfür keine eindeutige Erklärung gefunden werden konnte.

Die Ausbeuten der isolierten Produkte wurden auch bei mehrmaliger Recyclierung nicht beeinträchtigt und lagen bei 65 % - 90 % d. Th. bezogen auf die im jeweiligen Veresterungsschritt angebundene Säure.

3. Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden unterschiedliche arylsubstituierte *meso*-Hydrobenzoine hergestellt. Neben dem bereits literaturbekannten p-Methoxyderivat konnten hierbei auch das bisher nicht beschriebene *meso*-2,2'-Dinitrohydrobenzoin sowie *meso*-2,2'-Bis(trifluormethyl)hydrobenzoin zugänglich gemacht werden. Im Zuge der Untersuchungen über neue Herstellungsmöglichkeiten von *meso*-Hydrobenzoinen wurde auch die Abhängigkeit der Stereoselektivität der SmI₂-induzierten Pinakolkupplung von Benzaldehyd vom verwendeten Reagens/Substrat-Verhältnis beschrieben.

Nach Desymmetrisierung der *meso*-Hydrobenzoine wurden durch Anbindung eines i-Butylbzw. Methoxyethylethers und Abspaltung der Schutzgruppe chirale Auxiliarsysteme mit unterschiedlichen sterischen, elektronischen und koordinativen Eigenschaften hergestellt. An den so gewonnenen Auxiliaren konnten daraufhin asymmetrische α -Alkylierungen von Propionsäure (bis zu 71 % de), Reduktionen von Benzoylameisensäure zu Mandelsäure (bis zu 93 % de), Additionen von Zinkorganylen an Benzoylameisensäure (bis zu 90 % de), sowie Diels-Alder-Reaktionen an Acrylsäure (bis zu 40 % de) durchgeführt werden. Nach Abspaltung und Derivatisierung der Produkte konnten die erhaltenen Stereoselektivitäten im Anschluss mittels chromatographischer Methoden verifiziert werden.

In weiterer Folge wurde der desymmetrisierte *meso*-2,2'-Dimethoxyhydrobenzoin-Linker zum Teil auch über eine Ethylenglykol-Sublinkereinheit an einen Festphasenträger (Wang-Harz) gebunden und nach Abspaltung der Schutzgruppe und Anbindung der Substrate wurden die entsprechenden Modellreaktionen durchgeführt. Durch Optimierung der Anbindungsrate des Linkers, Auswahl geeigneter Trägerharze und Deaktivierung nicht mit Linker beladener Ankergruppen konnten die hierbei erreichbaren Selektivitäten gesteigert werden. Trotzdem zeigte sich, dass, vermutlich aufgrund einer geänderten Geometrie des an das Harz gebundenen Linkers, an fester Phase im Allgemeinen etwas geringere Selektivitäten als im Fall der entsprechenden Systeme in Lösung erreichbar sind. Nach Abspaltung der Produkte konnte aber, mittels Durchführung weiterer Reaktionszyklen (Substratanbindung, asymmetrische Umsetzung, Produktabspaltung), die Recyclierbarkeit des Linkers ohne Verlust der chiralen Induktionsfähigkeit bewiesen werden.

Auxiliar	Reaktion	Anmerkungen	de (NMR)	de (HPLC/GC)
		LDA/LiCl/BnBr	65 %	67 %
		L-Selectride	93 %	89 %
°", , , , , , , , , , , , , , , , , , ,		L-Selectride/ZnCl ₂	73 %	71 %
		n-BuZnCl	90 %	86 %
238	Lor - Corder Lor	Me_2AICI endo/exo = 15.4:1	47 %	42 %
		83 % Anb./red. Deakt. LDA/LiCl/BnBr		55 %
	Qilor - Qilor	81 % Anb./keine Deakt. L-Selectride		53 % 1. Recycl.: 70 % 2. Recycl.: 61 % 3. Recycl.: 59 %
		64 % Anb./red. Deakt. L-Selectride		48 % 1. Recycl.: 57 %
23i / 23i"		64 % Anb./red Deakt. n-BuZnCl		62 %
		73 % Anb./red. Deakt. Me_2AICI endo/exo = 13.5:1		35 %
	Î - ~ Î or	LDA/LiCl/BnBr	71 %	70 %
		LDA/BnBr	63 %	60 %
		L-Selectride	82 %	78 %
		n-BuZnCl	87 %	85 %
		Me ₂ AlCl endo/exo = 18.1:1	33 %	26 %
	- Q	75 % Anb./red. Deakt.		65 %
<u> </u>		78 % Anb./keine Deakt. LDA/LiCl/BnBr	-	49 % 1. Recvcl.: 50 %
		75 % Anb./red. Deakt. L-Selectride		55 %
23j / 23j"		75 % Anb./red. Deakt. n-BuZnCl		57 %
		LDA/BnBr	44 %	37 %
	Qior - Qior	L-Selectride	92 %	74 %
F,C , ,		LDA/BnBr	29 %	24 %
г он F3C 23d	Qilor - Qilor	L-Selectride	39 %	39 %

4. Experimenteller Teil

4.1. Allgemeine Angaben

Reagenzien und Lösungsmittel wurden in der für die organische Synthese handelsüblichen Qualität eingesetzt. Petrolether, Ethylacetat, Dichlormethan, Tetrahydrofuran und Diethylether wurden vor ihrer Verwendung destilliert.

Wasserfreie Lösungsmittel: Diethylether, Tetrahydrofuran, DME und Toluol wurden durch Destillieren über Natrium / Benzophenon, CH_2Cl_2 durch Destillieren über P_2O_5 , Methanol durch Destillieren über Magnesium und NEt₃ durch Destillieren über CaH₂ wasserfrei gemacht. Petrolether und *N*,*N*-Dimethylformamid wurden über Molekularsieb getrocknet.

Vorbehandlung der Lösungsmittel, Reagenzien und Edukte für die SmI₂-induzierten Pinakolkupplungen:

- **THF:** Absolutes THF wurde unter Argon im Ultraschallbad 1 h lang entgast, über Natriumdispersion/Benzophenon destilliert und unter Argon über Molekularsieb nicht länger als 24 h gelagert.
- **MeOH:** Absolutes Methanol wurde unter Argon im Ultraschallbad 1 h lang entgast, über Magnesiumspänen destilliert und unter Argon über Molekularsieb nicht länger als 24 h gelagert.
- Samarium: 40 mesh, 99.9 % wurde nach dem Öffnen unter Ar gelagert und unter N₂-Strom eingewogen.
- Samariumdijodid 0.1 M in THF wurde nach dem Öffnen nicht länger als 48 h unter Ar gelagert
- 1,2-Dijodethan 99 % (Aldrich) wurde in Ether gelöst, die Lösung 2 x mit ges. Natriumthiosulfatlösung extrahiert, mit ges. NaCl-Lösung gewaschen, getrocknet, filtriert, einrotiert und bis 100 mbar abgesaugt. Die so erhaltenen weißen Nadeln wurden im Exsikkator über P₂O₅ getrocknet.
- Edukte: Die für die Reaktionen verwendeten Aldehyde wurden durch Vakuumdestillation gereinigt und nach der Destillation unter Argon-Atmosphäre aufbewahrt.

n-Butyllithium ~ 1.6 M und 2.5 M in Hexan wurde von der Firma Fluka bezogen. Die genaue Konzentration wurde wie folgt bestimmt [114]:

Ein Körnchen 1,10-Phenanthrolin wurde in 2 ml wasserfreiem Diethylether gelöst und diese Lösung mit 0.70 ml *n*-BuLi-Lösung versetzt. Die braune Lösung wurde mit 2.2 M *sek.*-BuOH in wasserfreiem Toluol bis zur Entfärbung auf gelb titriert.

Verbrauch: 0.49 ml. Daraus folgte ein Gehalt an n-BuLi von 1.54 M.

Für die Versuche wurde in Kauf genommen, dass Lösungsmittelgemische eingesetzt wurden (THF/Hexan).

Grignard-Reagenzien wurden, falls nötig, analog obiger Arbeitsvorschrift in wasserfreiem THF bis zum Farbumschlag von rosa nach gelb titriert [114].

NaH-Dispersion (60 %) wurde, wenn nicht anders angegeben, unter N_2 -Atmosphäre in einer Glassinternutsche mit wasserfreiem PE gewaschen.

Diisopropylamin zur LDA-Herstellung wurde über CaH₂ destilliert und unter N₂-Atmosphäre über Molsieb aufbewahrt.

Dünnschichtchromatographie: Es wurden Kieselgel-beschichtete DC-Alufolien (60 F_{254} / Merck) verwendet, die Detektion erfolgte im UV-Licht oder durch Besprühen mit Molybdatophosphorsäure (5 % in Ethanol) und anschließendes Erhitzen.

Schmelzpunkte wurden am Heiztischmikroskop nach Kofler bestimmt und sind nicht korrigiert.

Polarimetrie: Drehwerte wurden mit einem Perkin-Elmer 241 Polarimeter bestimmt. Die Schichtdicke der Küvette war bei allen Messungen 10 cm.

Kernresonanzspektroskopie: ¹H-Spektren wurden bei 200 MHz, ¹³C-Spektren bei 50 MHz mit einem Bruker AC 200 aufgenommen, 2D-NMR-Spektren auf einem Bruker Advance 400 bei 400 MHz (für ¹H) bzw. 100 MHz (für ¹³C). Die Messungen erfolgten bei 300 K. Die chemischen Verschiebungen sind als δ-Werte in ppm angegeben, die Referenzierung erfolgte bei ¹H-Spektren entweder auf das jeweilige Lösungsmittel oder auf TMS, bei den ¹³C-Spektren setzte man CDCl₃ auf 77.0 ppm und DMSO auf 39.5 ppm. Die Art der Signalaufspaltung wurde wie folgt abgekürzt: Singulett (s bzw. bs für breites Singulett), Dublett (d), Triplett (t), Quartett (q) und Multiplett (m). Zur Aufnahme von säurelabilen Verbindungen in CDCl₃ wurde dieses zuvor über basisches Aluminiumoxid filtriert.

Infrarotspektroskopie: IR-Spektren der Harze wurden aus KBr-Preßlingen auf einem BioRad *FTS 135* FT-IR-Spektrometer aufgenommen. Zur Herstellung der Preßlinge wurden ca. 160 mg KBr mit 10 mg Harz in einer Achatreibschale fein zerrieben und anschließend in einer hydraulischen Presse (~10 t) 5 min. verpreßt.

HPLC, GC: HPLC's wurden auf einem SHIMADZU LC-10AD aufgenommen. Die Detektion erfolgte mittels UV-VIS Photometer (SHIMADZU SPD-10AV). GC's wurden auf einem HP 6890 Series Chromatograph mit He als Carrier aufgenommen. Die Detektion erfolgte mittels FID.

Elementaranalysen wurden am Institut für Physikalische Chemie der Universität Wien, Mikroanalytisches Laboratorium, Währinger Str. 42, 1090 Wien durchgeführt.

4.2. Herstellung der arylsubstituierten Benzoine

4.2.1. 4,4'-Dimethoxybenzoin (2-Hydroxy-1,2-bis(4-methoxyphenyl)-ethanon)

4.2.1.1. Herstellung von a-[(Trimethylsilyl)oxy]-4-methoxybenzolacetonitril (3c)

Ansatz:

9.00 g (66.1 mmol)	4-Methoxybenzaldehyd (1c)
7.20 g (72.5 mmol, 1.1 eq)	Trimethylsilylcyanid
0.20 g (0.59 mmol, kat.)	Zinkjodid

Reaktionsdurchführung:

Der frisch destillierte Aldehyd 1c wurde unter N₂-Atmosphäre mit 7.20 g TMS-CN versetzt und nach Zugabe von 0.20 g Zinkjodid (1 h bei ca. 250°C am Hochvakuum vorgetrocknet) auf 100°C erhitzt. Da nach einer Reaktionszeit von 1 h eine DC-Kontrolle vollständige Umsetzung zeigte, wurde auf RT abgekühlt, das Reaktionsgemisch in Petrolether aufgenommen und die unlöslichen Salze abfiltriert. Die Lösung wurde unter N₂-Atmosphäre am Rotavapor eingedampft. Das Rohprodukt wurde ohne weitere Reinigung in die nächste Stufe eingesetzt.

Ergebnis:

14.15 g 3c als braunes Öl (91 % d. Th.)

DC: $R_f = 0.84$ (PE/E 3:1)

¹H-NMR (CDCl₃): 7.40/6.93 (2d, 4H, J=8.0 Hz, Ph-H), 5.45 (s, 1H, OC<u>H</u>CN), 3.73 (s, 3H, OCH₃), 0.20 (s, 9 H, (CH₃)₃SiO)

(4c)

4.2.1.2. Herstellung von 1,2-Bis(4-methoxyphenyl)-2-[(trimethylsilyl)oxy]-1-ethanon

Ansatz:

 14.15 g (60.1 mmol)
 α-[(Trimethylsilyl)oxy]-4-methoxyphenylacetonitril (3c)

 6.08 g (60.1 mmol, 1.0 eq.)
 DIPA

 27.3 ml (60.1 mmol, 1.0 eq.)
 n-BuLi in n-Hexan (2.2 M)

 8.18 g (60.1 mmol, 1.0 eq.)
 p-Methoxybenzaldehyd (1c)

 185 ml
 DME wasserfrei

Reaktionsdurchführung:

Zur LDA-Herstellung wurden unter N₂-Atmosphäre 6.08 g DIPA in 75 ml absolutem DME vorgelegt, unter Rühren auf -30° C abgekühlt, 27.3 ml einer Lösung von BuLi in n-Hexan (2.2 M) zugetropft und 30 min. bei -10° C gerührt. Nach Abkühlen auf -60° C wurde (3c), gelöst in 80 ml DME, langsam zugegeben, das Reaktionsgemisch weitere 30 min. gerührt und 8.18 g p-Methoxybenzaldehyd (1c) gelöst in 30 ml DME bei -65° C zugetropft. Nach einer weiteren Stunde Rühren wurde auf RT erwärmt und mit 100 ml ges. NaHCO₃-Lösung hydrolysiert. Die wässrige Phase wurde mit Ether extrahiert, die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor unter N₂-Atmosphäre eingedampft. Das Rohprodukt wurde ohne weitere Reinigung in die nächste Stufe eingesetzt.

Ergebnis:

18.22 g 4c (verunreinigt) als braunes Öl (92 % d. Th.)

DC: $R_f = 0.43$ (PE/E 1:2)

¹H-NMR (CDCl₃): 5.76 (s, 1H, OCHCO), 0.11 (s, 9H, (CH₃)₃SiO)

Aufgrund der Verunreinigung durch das bereits entschützte Produkt (2c) war eine Zuordnung der weiteren Peaks nicht möglich.

4.2.1.3. Herstellung von 2-Hydroxy-1,2-bis(4-methoxyphenyl)-ethanon (2c)

Ansatz:

 18.22 g (55.4 mmol)
 1,2-Bis(4-methoxyphenyl)-2-[(trimethylsilyl)oxy]-1-ethanon (4c)

 3 ml
 2N HCl

 150 ml
 THF

Reaktionsdurchführung:

4c wurde in 150 ml THF unter N₂-Atmosphäre vorgelegt, mit 3 ml HCl versetzt und 12 h bei RT gerührt. Nach Überprüfung des Umsatzes mittels DC wurde die Lösung unter N₂-Atmosphäre einrotiert, der ölige Rückstand aus 95%-igem Ethanol umkristallisiert und am Hochvakuum getrocknet.

Ergebnis:

9.27 g 2c als gelbliche Kristalle (61 % d. Th.)

DC: $R_f = 0.13$ (PE/E 1:3)

¹H-NMR (CDCl₃): entspricht Literatur [115]

4.2.2. 2,2'-Bis(trifluormethyl)benzoin (2-Hydroxy-1,2-bis(2trifluormethylphenyl)-ethanon)

4.2.2.1. a-[(Trimethylsilyl)oxy]-2-(trifluormethyl)benzolacetonitril (3d)

Es wurden 11.7 g (67.3 mmol) 2- Trifluormethylbenzaldehyd (1d) in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.2.1.1.

Ergebnis:

17.04 g dunkelgelbes Öl (93 % d. Th.)

DC: $R_f = 0.73$ (PE/E 6:1)

¹H-NMR (CDCl₃): 7.97 (d, 1H, J=7.7 Hz, Ph-H), 7.79-7.48 (m, 3H, Ph-H), 5.80 (s, 1H, OCHCN), 0.23 (s, 9 H, (CH₃)₃SiO)

4.2.2.2. 1,2-Bis(2-trifluormethylphenyl)-2-[(trimethylsilyl)oxy]-1-ethanon (4d)

Es wurden 17.04 g (62.3 mmol) α -[(Trimethylsilyl)oxy]-2-(trifluormethyl)benzolacetonitril (3d) in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.2.1.2.

Ergebnis:

24.24 g 4d als gelbes Öl (93 % d. Th.)

DC: $R_f = 0.23$ (PE/E 2:1)

¹H-NMR (CDCl₃): δ = 7.76-7.40 (m, 8H, Ph-H), 6.01 (s, 1H, OCHPh), 0.06 (s, 9H, Si(CH₃)₃)

4.2.2.3. 2-Hydroxy-1,2-Bis(2-trifluormethylphenyl)-ethanon (2d)

Es wurden 24.24 g (57.7 mmol) 1,2-Bis(2-trifluormethylphenyl)-2-[(trimethylsilyl)oxy]ethanon (4d) in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.2.1.3. Zur Reinigung wurde in diesem Fall mit 50 ml PE/E 5:1 digeriert und anschließend aus Ethanol umkristallisiert.

Ergebnis:

18.62 g 2d als hellgelbe Kristalle (93 % d. Th.)

DC: $R_f = 0.31$ (PE/E 3:1)

F_p: 117-125°C

¹**H-NMR (CDCl₃):** δ = 7.72-7.35 (m, 7H, Ph-H), 6.93 (d, J=7.6 Hz, 1H, Ph-H), 6.11 (s, 1H, OCHPh), 4.35 (bs, 1H, OH)

¹³C-NMR (CDCl₃): $\delta = 201.67$ (s, C=O), 135.24/134.98 (2dq, J(C,F)=1.4 Hz bzw. 2.0 Hz, Ph-C-1), 132.34/131.18/129.26/127.86 (4dq, J(C,F)=1.0 Hz, 1.0 Hz, 0.8 Hz bzw. 0.8 Hz, Ph-C-4 bzw. Ph-C-6), 130.88/128.88 (2d, Ph-C-5), 128.77/127.91 (2q, J(C,F)=30.6 Hz bzw. 32.4)

Hz, Ph-C-2), 126.94/126.08 (2dq, J(C,F)=5.0 Hz bzw. 5.7 Hz, Ph-C-3), 123.66/123.17 (2q, J(C,F)=274.2 Hz bzw. 273.6 Hz, Ph-CF₃), 74.30 (dq, J(C,F)=1.8 Hz, Ph-CH-OH)

C₁₆H₁₀F₆O₂ (348.25 g/mol)

	С	Н	F
Berechnet:	55.18	2.89	32.73
Gefunden:	55.29	3.09	32.72

4.2.3. 2,2'-Dinitrobenzoin ((2-Hydroxy-1,2-bis(2-nitrophenyl)-ethanon)

4.2.3.1. a-[(Trimethylsilyl)oxy]-2-nitrobenzolacetonitril (3e)

Es wurden 17.1 g (113 mmol) 2-Nitrobenzaldehyd (1e) in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.2.1.1.

Ergebnis:

28.36 g rot-braunes Öl (100 % d. Th.)

DC: $R_f = 0.11$ (PE/E 3:1)

¹H-NMR (CDCl₃): $\delta = 8.15-7.59$ (m, 4H, Ph), 6.25 (s, 1H, OCHCN), 0.29 (s, 9H, (CH₃)₃SiO)

4.2.3.2. 1,2-Bis(2-nitrophenyl)-2-[(trimethylsilyl)oxy]-1-ethanon (4e)

Es wurden 28.36 g (113 mmol) α -[(Trimethylsilyl)oxy]-2-nitrobenzolacetonitril (3e) in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.2.1.2, in diesem Fall wurden aber 1.24 eq. LDA zur Deprotonierung verwendet.

Ergebnis:

14.0 g rot-braunes Öl (33 % d. Th)

DC: $R_f = 0.63$ (PE/E 1:2)

¹H-NMR (CDCl₃): $\delta = 8.26-7.30$ (m, 8H, Ph), 6.40 (s, 1H, OCHPh), 0.29 (s; 9H, Si(CH₃)₃)

¹³C-NMR (CDCl₃): $\delta = 200.72$ (s, CO), 148.40/146.70 (2s, Ph-C-NO₂), 135.05/133.66 (2s, Ph-C-1), 134.29/133.15/130.59/128.99/128.42/124.73/123.19 (7d, Ph-C), 75.64 (d, H<u>C</u>OSi(CH₃)₃), -0.85 (q, Si(CH₃)₃)

4.2.3.3. 2-Hydroxy-1,2-Bis(2-nitrophenyl)-ethanon (2e)

Es wurden 14.0 g (37.3 mmol) 1,2-Bis(2-nitrophenyl)-2-(trimethylsilyl)oxy-ethan-1-on (4e) in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.2.1.3.

Experimenteller Teil

Eine Interpretation des Reaktionsverlaufs mittels DC war in diesem Fall wegen starker Verunreinigungen nicht möglich. Die Reaktion wurde daher abgebrochen und das Reaktionsgemisch chromatographisch aufgetrennt (13.77 g Rohprodukt, VFC, 300 g Kieselgel, PE/E 20:1 \rightarrow EE/MeOH 5:1). Hierbei konnten allerdings neben 8.2 g nicht identifizierbaren, teerigen Substanzen nur 2.39 g (6.3 mmol, 17 % d. Th.) nicht umgesetztes Edukt isoliert werden. Dieses wurde neuerlich zur Abspaltung der TMS-Gruppe angesetzt (18 mL THF, 0.35 mL 2N HCl, 12 h, RT) und anschließend wiederum chromatographisch gereinigt.

Ergebnis:

1.7 g rote Kristalle (89 % d. Th. bezogen auf die wiederholte Hydrolyse bzw. 15 % d. Th. bezogen auf die eingesetzte Menge verunreinigtes Edukt)

DC: $R_f = 0.64$ (PE/E 1:5)

F_p: 142-144°C

¹**H-NMR (CDCl₃):** δ = 8.20-7.00 (m, 8H, Ph), 6.39 (s, 1H, C<u>H</u>OH), 4.19 (s, 1H, OH)

¹³C-NMR (CDCl₃): $\delta = 200.61$ (s, CO), 147.91/146.25 (2s, Ph-C-NO₂), 135.10/132.83 (2s, Ph-C-1), 134.09/134.03/131.16/130.21/129.64/128.45/125.05/124.23 (8d, Ph-C), 75.41 (d, CHOH)

C₁₄H₁₀N₂O₆x0.3C₂H₄x0.1C₆H₁₅N (320.78 g/mol)

	С	Н	N
Berechnet:	56.91	3.99	9.17
Gefunden:	57.15	3.78	9.27

4.3. Reduktion der Benzoinderivate

4.3.1. Herstellung von meso-1,2-Bis(4-methoxyphenyl)-1,2-ethandiol (5c)

Ansatz:

3.81 g (13.99 mmol)	2-Hydroxy-1,2-bis(4-methoxyphenyl)-ethanon (2c)
531 mg (13.99 mmol, 1.0 eq.)	Natriumborhydrid
250 ml	Ethanol wasserfrei

Reaktionsdurchführung:

3.81 g Benzoin 2c wurden in 250 ml heißem Ethanol suspendiert. Die Lösung wurde im Eisbad auf 0°C abgekühlt, nach Zugabe von 531 mg NaBH₄ 48 h gerührt und mittels DC auf Vollständigkeit der Reaktion geprüft. Das Reaktionsgemisch wurde mit 50 ml 1N HCl angesäuert und noch eine halbe Stunde gerührt. Die Lösung wurde mit ges. NaHCO₃-Lösung auf pH 8 gestellt, am Rotavapor eingeengt und mehrmals mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die dabei gewonnenen 4.46 g Rohprodukt wurden aus Toluol umkristallisiert.

Ergebnis:

3.00 g 5c als gelbliche Kristalle (78 % d. Th.)

DC: $R_f = 0.10$ (PE/E 1:5)

¹H-NMR: entspricht Literatur [116]

4.3.2. meso-1,2-Bis(2-trifluormethylphenyl)-ethan-1,2-diol (5d)

Es wurden 17.50 g (50.3 mmol) 2-Hydroxy-1,2-bis(2-trifluormethylphenyl)-ethanon (2d) in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.3.1. In diesem Fall wurden zur Steigerung der *meso/raz*-Selektivität 1.86 g (5.0 mmol) CeCl₃·7H₂O zugegeben, was sich in Zuge späterer Versuche als nicht zielführend erwies. Die Reinigung des Rohproduktes (15.7 g) erfolgte mittels zweimaliger VFC (1.: 300 g Kieselgel, PE/E $3:1\rightarrow E_{rein}$, 2.: 150 g Kieselgel, PE/E $6:1\rightarrow E_{rein}$).

Ergebnis:

5.37 g 5d (ca. 4 % verunreinigt durch raz-Produkt) als hellgelbe Nadeln (31 % d. Th.)

DC: $R_f = 0.23$ (PE/E 1:1)

F_p: 63-75°C

¹**H-NMR (CDCl₃):** δ = 7.64-7.34 (m, 8H, Ph-H), 5.44 (s, 2H, OCHPh), 2.39 (s, 2H, OH)

¹³C-NMR (CDCl₃): $\delta = 138.22$ (s, Ph-C-1), 131.60/128.85/127.97 (3d, Ph-C-4/ Ph-C-5/Ph-C-6), 128.32 (q, J(C,F)=30.0 Hz, Ph-C-2), 125.19 (dq, J(C,F)=6.0 Hz, Ph-C-3), 123.93 (q, J(C,F)=274.2 Hz, Ph-CF₃), 71.97 (s, PhCHOH)

C₁₆H₁₂F₆O₂ (350.26 g/mol)

	С	Н
Berechnet:	54.87	3.45
Gefunden:	54.72	3.22
weiters konnten isoliert werden:

8.87 g 5d / 5d`-Gemisch als hellgelbe Nadeln (50 % d. Th.) somit insgesamt 14.24 g Produkt (81 % d. Th.)

4.3.3. Herstellung von meso-1,2-Bis(2-nitrophenyl)-ethan-1,2-diol (5e)

<u>Ansatz:</u>

1.08 g (3.58 mmol)2-Hydroxy-1,2-bis(2-nitrophenyl)-ethanon (2e)1.67 ml (3.34 mmol, 0.93 eq.)Boran-Dimethylsulfid (2M in THF)50 mlTHF wasserfrei

Reaktionsdurchführung:

1.08 g 5e wurden in 50 ml wasserfreiem THF unter N₂-Atmosphäre vorgelegt, bei -75 °C 1.67 ml Boran-Dimethylsulfid-Lösung zugetropft und das Reaktionsgemisch anschließend 48 h bei RT gerührt. Nach Kontrolle des Umsatzes mittels DC wurde mit 50 ml 2N HCl hydrolysiert und mit Ether extrahiert. Die organische Phase wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotavapor zur Trockene eingedampft. Die hierbei erhaltenen 1.26 g Rohprodukt wurden aus Toluol umkristallisiert.

Ergebnis:

824 mg 5e als hellbeige Kristalle (76 % d. Th.)

DC: $R_f = 0.59$ (PE/E 1:2)

F_p: 218-222°C

¹**H-NMR (d₆-DMSO):** δ = 7.83-7.45 (m, 8H, Ph), 5.87 (s, 2H, OH), 5.19 (s, 2H, C<u>H</u>OH)

¹³C-NMR (CDCl₃): δ = 149.62 (s, Ph-C-NO₂), 137.67 (s, Ph-C-1), 132.83/128.60/128.28/123.51 (4d, Ph-C), 71.14 (d, PhCHOH)

$C_{14}H_{12}N$	$_{2}O_{6}$	(304)	.08	g/mo)ľ
-----------------	-------------	-------	-----	------	----

	С	Н	N
berechnet:	55.27	3.98	9.21
gefunden:	55.29	3.85	8.91

4.4. Versuche zur stereoselektiven Pinakolkupplung unter Verwendung von Samariumdijodid

4.4.1. Allgemeine Vorschrift für die Pinakolkupplung in THF

Ansatz:

100 mg (0.67 mmol, 2.0 eq.)	Samarium
141 mg (0.50 mmol, 1.5 eq.)	1,2-Dijodethan
(0.33 mmol, 1.0 eq.)	Aldehyd
4 ml	THF wasserfrei

Reaktionsdurchführung:

100 mg Samarium wurden unter Ar mit wasserfreiem THF überschichtet. Dijodethan wurde, ebenfalls unter Ar, in 0.5 ml wasserfreiem THF gelöst und 0.1 ml dieser Lösung wurden unter Rühren bei RT in die Samariumsuspension zugetropft. Nach wenigen Minuten bildete sich eine bläuliche Färbung, woraufhin auch der Rest der Dijodethanlösung zugegeben wurde. Es wurde 30 min. gerührt, eine unter Ar hergestellte Lösung des Aldehyds in 0.5 ml THF zugegeben und das Reaktionsgemisch 12 h bei RT gerührt. Das Gemisch wurde mit 0.1 N HCl versetzt, 3 x mit Ether extrahiert, die vereinigten organischen Phasen mit 10 % Na₂S₂O₃-Lösung und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Das Rohprodukt wurde mittels VFC gereinigt (1.7 g Kieselgel, PE/E 20:1 \rightarrow E_{rein}).

Anmerkung:

Für die Untersuchung des Einflusses des Substrat/Reagens-Verhältnisses wurde der Ansatz leicht variiert: Samariumdijodid wurde aus 1.34 mmol Samarium und 1.0 mmol 1,2-Dijodethan hergestellt und anschließend 0.5 mmol bzw. 0.33 mmol Benzaldehyd eingesetzt.

4.4.2. Allgemeine Vorschrift für die Pinakolkupplung in MeOH

Ansatz:

100 mg (0.67 mmol, 1.7 eq.)	Samarium
99 mg (0.39 mmol, 1.0 eq.)	Jod
(0.39 mmol, 1.0 eq.)	Aldehyd
4 ml	MeOH wasserfrei

Reaktionsdurchführung:

100 mg Samarium und 0.39 mmol des Aldehyds wurden unter Ar mit wasserfreiem MeOH überschichtet. Eine Lösung von 99 mg Jodkristallen in 0.5 ml wasserfreiem MeOH wurde zugegeben, wobei eine stark exotherme Reaktion unter Gasentwicklung eintrat. Die anfangs braune Suspension verfärbte sich binnen kurzer Zeit orange und wurde 12 h weitergerührt, anschließend mit 0.1 N HCl versetzt und MeOH am Rotavapor entfernt. Der Rückstand wurde 3x mit Ether extrahiert, die vereinigten organischen Phasen mit 10%-iger Na₂S₂O₃- und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Das Rohprodukt wurde mittels VFC gereinigt (1.4 g Kieselgel, PE/E 20:1 \rightarrow E_{rein}).

4.4.3. Umsetzung von Benzoin mit Samariumdijodid in THF

Ansatz:

 100 mg (0.67 mmol, 2.0 eq.) Samarium

 141 mg (0.50 mmol, 1.5 eq.) Dijodethan

 71 mg (0.33 mmol, 1.0 eq.) Benzoin (2g)

 4 ml

 THF wasserfrei

Reaktionsdurchführung:

100 mg Samarium wurden unter Ar mit wasserfreiem THF überschichtet. Dijodethan wurde, ebenfalls unter Ar, in 0.5 ml wasserfreiem THF gelöst und 0.1 ml dieser Lösung unter Rühren, bei RT in die Samariumsuspension zugetropft. Nach wenigen Minuten bildete sich eine bläuliche Färbung, woraufhin auch der Rest der Dijodethanlösung zugegeben wurde. Es wurde 30 min. gerührt, eine unter Ar hergestellte Lösung von 71 mg Benzoin in 0.5 ml THF zugegeben und das Reaktionsgemisch 12 h bei RT gerührt. Das Gemisch wurde mit 0.1 N HCl versetzt, 3 x mit Ether extrahiert und die vereinigten organischen Phasen mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die erhaltenen 82 mg Rohprodukt wurden mittels VFC gereinigt (4 g Kieselgel, PE/E 20:1 \rightarrow E_{rein}).

Ergebnis:

- 13 mg (18 % d. Th.) des Substrats (2g)
- 8 mg (13 % d. Th.) Hydrobenzoin als Gemisch aus meso- und raz-Produkt (5g/5g`)
- 5 mg (9 % d. Th.) Desoxybenzoin (7)
- 5 mg (9 % d. Th.) Benzil (8)

• 10 mg (9 % d. Th.) des raz-Diols 9 als weißer Feststoff

F_p: 218-222°C

NMR entspricht Literatur [51]

• 12 mg (10 % d. Th.) 1,2,3,4-Tetraphenyl-1,2,3,4-butantetrol (10) als hellgelbe Kristalle

DC: $R_f = 0.55$ (PE/E 2:1)

F_p: 145-151°C

¹**H-NMR (CDCl₃):** δ = 7.32-7.01 (m, 20H, Ph-H), 5.88 (s, 2H, C<u>H</u>OH), 4.59/2.26 (2bs, 4H, OH)

¹³C-NMR (CDCl₃): $\delta = 140.53/140.31$ (2s, Ph-C-1), 128.83/127.59/127.37/127.02 (4d, Ph-C), 82.60 (d, Ph-CHOH), 77.09 (s, Ph-COH)

Η

C₂₈H₂₆O₄ (426.52 g/mol) C

berechnet:	78.85	6.14
gefunden:	78.58	6.29

4.5. Desymmetrisierung der meso-Hydrobenzoinderivate

4.5.1. Herstellung von [2S-(2α(αR*,βS*),3aα,4β,7β,7aα)]-4-Methoxy-α-(4methoxyphenyl)-β-[(octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2yl)oxy]-benzolethanol (12c)

Ansatz:

1.00 g (3.65 mmol)	meso-1,2-Bis(4-methoxyphenyl)-1,2-ethandiol (5c)
0.34 g (0.9 mmol, 0.25 eq.)	exo-Anhydrolactol (11)
0.08 g (kat.)	p-Toluolsulfonsäure
350 ml	CH ₂ Cl ₂ , wasserfrei, entgast

Reaktionsdurchführung:

1.0 g 5c wurden in entgastem CH₂Cl₂ unter Ar-Atmosphäre suspendiert. Dann wurden 80 mg p-TosOH und 0.34 g 11 zugegeben und 1 h bei RT gerührt. Nach Kontrolle des Umsatzes mittels DC wurden ca. 5 g Na₂SO₄ und nach einer weiteren halben Stunde ca. 5 g NaHCO₃ zugegeben. Der Feststoff wurde über eine Glassinternutsche abgesaugt, und das Reaktionsgemisch unter N₂ am Rotavapor zur Trockene eingedampft. Das erhaltene Rohprodukt wurde mittels Säulenchromatographie gereinigt (50g Kieselgel imprägniert mit NEt₃, PE/E 10:1 \rightarrow E/MeOH 2:1, die Laufmittelgemische wurden mittels Ultraschallbad entgast und mit ca. 0.2 % NEt₃ versetzt, es wurde statt Pressluft N₂-Druck angelegt).

Ergebnis:

677mg 12c als gelbes Öl (83 % d. Th.)

DC: $R_f = 0.38$ (PE/E 1:1)

 $[\alpha]_{D}^{20}$: -73.0° (CH₂Cl₂, c = 0.95)

¹H-NMR (CDCl₃): $\delta = 7.20/7.19/6.84/6.83$ (4d, J=8.7 Hz, 8H, Ph), 4.91 (d, J=4.3 Hz, 1H, OCHO), 4.65 (s, 2H, OCHPh), 3.79 (s, 6H, OCH₃), 2.99 (d, J=7.1 Hz, 1H, 7a'-H), 2.29 (s, 1H, OH), 2.13-0.67 (m, 17H, Aliphaten-H, davon 0.74/0.84/0.88 (3s, 9H, CH₃))

¹³C-NMR (CDCl₃): $\delta = 159.33/159.00$ (2s, Ph-<u>C</u>-OCH₃), 133.53/130.50 (2s, Ph-C-1), 129.30/128.44/113.55/113.06 (4d, Ph-C), 101.80 (d, O<u>C</u>HO), 90.55 (d, C-7a), 80.11/76.78 (2d, O<u>C</u>HPh), 55.18 (q, O<u>C</u>H₃), 48.24 (d, C-4), 47.23 (s, C-7), 46.89 (s, C-8), 45.89 (d, C-3a), 38.43 (t, C-3), 32.25 (t, C-6), 28.90 (t, C-5), 22.81/20.43/11.52 (3q, 3 MBE-CH₃)

C₂₈H₃₆O₅x0.3H₂0 (458.60 g/mol)

	C	Н
Berechnet:	73.43	8.05
Gefunden:	73.38	8.03

4.5.2. Herstellung von [2S-(2α(αR*,βS*),3aα,4β,7β,7aα)]-2-(trifluormethyl)-α-2-(trifluormethylphenyl)-β-[(octahydro-7,8,8-trimethyl-4,7methanobenzofuran-2-yl)oxy]-benzolethanol (12d)

Ansatz:

 3.30 g (9.4 mmol)
 meso-1,2-Bis-(2-trifluormethylphenyl)-ethan-1,2-diol (5d)

 0.93 g (2.5 mmol, 0.27 eq.)
 exo-Anhydrolactol (11)

 0.22 g (1.2 mmol, 0.13 eq.)
 p-Toluolsulfonsäure

 105 ml
 CH₂Cl₂

Reaktionsdurchführung:

3.3 g des Diols 5d und 0.93 g exo-Anhydrolactol (11) wurden in der angegebenen Menge Lösungsmittel gelöst, 0.22 g p-TosOH zugeben und 1 h bei RT gerührt. Da ein DC vollständigen Umsatz zeigte, wurde eine Spatel Na₂SO₄ und nach einer weiteren Stunde Reaktionszeit 3 Spatelspitzen NaHCO₃ und 1 ml Triethylamin zugegeben, das Gemisch filtriert und am Rotavapor zur Trockene eingedampft. Die erhaltenen 4.68 g Rohprodukt wurden mittels VFC gereinigt (150 g Kieselgel, PE/E 30:1 \rightarrow E/MeOH 30:1, sämtlichen Laufmittelgemischen wurden ca. 0.2 % NEt₃ zugesetzt).

Ergebnis:

1.50 g 12d als farbloses Öl (57 % d. Th.)

DC: $R_f = 0.62$ (PE/E 6:1)

 $[\alpha]_D^{20}$: -85.6° (CH₂Cl₂, c = 1.95)

¹**H-NMR (CDCl₃):** δ = 7.65-7.46 (m, 6H, Ph-H), 7.42-7.32 (m, 2H, Ph-H), 5.37-5.28 (m, 2H, OCHPh), 4.84 (d, J=4.2 Hz, 1H, OCHO), 3.03 (d, J=7.1 Hz, 1H, 7a'-H), 2.65 (s, 1H, OH), 2.10-0.65 (m, 17H, Aliphaten-H, davon 0.87/0.82/0.73 (3s, 9H, CH₃))

¹³C-NMR (CDCl₃): $\delta = 139.94/137.80$ (2q, J(C,F)=1.4 Hz, Ph-C-1), 131.54/131.46/129.66/128.84 (2dq/2d, J(C,F)=1.1 Hz, Ph-C-4 bzw. Ph-C-6), 129.58/128.54 (2q, J(C,F)=30.0 Hz, Ph-C-2), 127.78/127.50 (2d, Ph-C-5), 125.10/124.90 (2dq, J(C,F)=5.7 Hz bzw. 5.9 Hz, Ph-C-3), 124.06/123.89 (2q, J(C,F)=274.4 Hz, Ph-CF₃), 102.13 (d, OCHO), 90.61 (d, C-7a), 72.03/71.99 (2d, OCHPh), 48.17 (d, C-4), 47.19 (s, C-7), 46.60 (s, C-8), 45.52 (d, C-3a), 38.35 (t, C-3), 32.04 (t, C-6), 28.69 (t, C-5), 22.67/20.24/11.07 (3q, 3 MBE-CH₃)

C₂₈H₃₀F₆O₃ (528.54 g/mol)

	С	Н
Berechnet:	63.63	5.72
Gefunden:	63.34	5.43

4.5.3. Herstellung von [2S-(2α(αR*,βS*),3aα,4β,7β,7aα)]-2-Nitro-α-(2nitrophenyl)-β-[(octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl)oxy]benzolethanol (12e)

Ansatz:

490 mg (1.61 mmol) 154 mg (0.41 mmol, 0.25 eq.) 40 mg (0.21 mmol, 0.1 eq.) 250 ml

meso-1,2-Bis(2-nitrophenyl)-ethan-1,2-diol (5e)
exo-Anhydrolactol (11)
p-Toluolsulfonsäure
Dichlormethan

Reaktionsdurchführung:

490 mg 5e wurden unter N₂-Atmosphäre in 250 ml CH₂Cl₂ vorgelegt, 154 mg *exo*-Anhydrolactol (11) und 40 mg p-Toluolsulfonsäure zugegeben und 2 h bei RT gerührt. Nach Kontrolle des Umsatzes mittels DC wurden ca. 2 g Na₂SO₄ und nach weiteren 30 min. ca. 2 g NaHCO₃ zugegeben, das Gemisch nach 10 min. filtriert und das Filtrat am Rotavapor zur Trockene eingedampft. Die dabei erhaltenen 651 mg Rohprodukt wurden mittels Säulenchromatographie gereinigt (20 g Kieselgel imprägniert mit NEt₃, PE/E 30:1 \rightarrow E_{rein}, sämtlichen Laufmittelgemischen wurden ca. 0.2 % NEt₃ zugesetzt).

Ergebnis:

241 mg 12e als hellgelbe Kristalle (67 % d. Th.)

DC: $R_f = 0.30$ (PE/E 2:1)

 $[\alpha]_{D}^{20}$: -16.4° (CH₂Cl₂, c = 0.50)

F_p: 140-144°C

¹H-NMR (CDCl₃): δ = 7.88-7.38 (m, 8H, Ph), 5.70 (dd, J₁=7.8 Hz, J₂=5.8 Hz, 1H, PhCHOH), 5.47 (d, J=7.8 Hz, 1H, OCHPh), 4.76 (d, J=4.5 Hz, 1H, OCHO), 3.09 (d, J=5.8 Hz, 1H, OH), 2.61 (d, J=7.1 Hz, 1H, 7a'-H), 2.16-0.53 (m, 17H, MBE-Aliph.-H, davon 0.79/0.76/0.70 (3s, 9H, CH₃))

¹³C-NMR (CDCl₃): $\delta = 150.75/149.71$ (2s, Ph-C-NO₂), 137.68/134.71 (2s, Ph-C-1), 132.79/132.69/128.89/128.67/128.35/127.83/123.98/123.48 (8d, Ph-C), 101.73 (d, OCHO), 90.74 (d, C-7a), 73.86/71.17 (2d, OCHPh), 48.17 (d, C-4), 47.19 (s, C-7), 46.69 (s, C-8), 45.46 (d, C-3a), 38.23 (t, C-3), 32.20 (t, C-6), 28.77 (t, C-5), 22.71/20.37/11.28 (3q, 3 MBE-CH₃)

C₂₆H₃₀N₂O₇ x 0.15C₆H₁₄ (495.46 g/mol)

	С	Н	N
berechnet:	65.21	6.53	5.65
gefunden:	65.48	6.20	5.59

weiters konnten isoliert werden:

- 261 mg des eingesetzten Diols 5e (53 % d. Th. bezogen auf Edukt)
- 38 mg des Diacetals 13e als hellbraunes Öl (8 % d. Th. bezogen auf Anhydrolactol)

DC: $R_f = 0.85$ (PE/E 2:1)

 $[\alpha]_D^{20}$: -124.6° (CH₂Cl₂, c = 1.30)

¹H-NMR (CDCl₃): δ = 7.93-7.31 (m, 8H, Ph), 5.53/ 5.29 (2d, J=9.1 Hz, 2H, OCHPh), 4.81/ 4.58 (2d, J=4.2 bzw. 4.3 Hz, 2H, OCHO), 3.17 (d, J=7.5 Hz, 1H, 7a'-H), 2.39-0.35 (m, 35H, Aliphaten-H, davon 0.74/0.73/0.72/0.67/0.66/0.62 (6s, 18H, CH₃))

¹³C-NMR (CDCl₃): $\delta = 150.81/149.47$ (2s, Ph-C-NO₂), 137.30/134.91 (2s, Ph-C-1), 132.79/132.41/129.14/128.48/128.28/127.50/123.91/123.48 (8d, Ph-C), 106.57/101.48 (2d,

OCHO), 91.51/90.44 (2d, C-7a), 76.59/72.83 (2d, OCHPh), 48.32/48.10 (2d, C-4), 47.22/47.07/46.72/46.69 (4s, C-7/C-8), 45.51/45.40 (2d, C-3a), 38.23/38.21 (2t, C-3), 32.25/32.21 (2t, C-6), 28.77/28.70 (2t, C-5), 22.75/22.73/20.43/20.35/11.30/11.12 (6q, 6 MBE-CH₃)

C38H48N2O8 (660.81 g/mol)

	С	Н	Ν
Berechnet:	69.07	7.32	4.24
Gefunden:	69.24	7.39	4.36

 101 mg Mischfraktionen bestehend aus den Acetalen 12e und 12e' als braunes Öl (28 % d. Th.)

Aus den Mischfraktionen konnten in weiterer Folge geringe Mengen des Acetals 12e' als braunes Öl zu Analysenzwecken isoliert werden:

DC: $R_f = 0.27$ (PE/E 2:1)

 $[\alpha]_D^{20}$: -177.8° (CH₂Cl₂, c = 0.90)

¹H-NMR (CDCl₃): δ = 7.86-7.36 (m, 8H, Ph), 5.79/ 5.25 (2d, J=7.5 Hz, 2H, OCHPh), 4.74 (d, J=4.2 Hz, 1H, OCHO), 2.83 (d, J=7.3 Hz, 1H, 7a'-H), 2.15-0.51 (m, 17H, Aliphaten-H, davon 0.72/0.66/0.60(3s, 9H, CH₃))

¹³C-NMR (CDCl₃): $\delta = 149.27/149.11$ (2s, Ph-<u>C</u>-NO₂), 136.33/136.06 (2s, Ph-C-1), 132.87132.80/129.62/128.29/128.18/128.01/123.96/123.66 (8d, Ph-C), 106.59 (d, OCHO), 91.52 (d, C-7a), 76.60/71.50 (2d, OCHPh), 48.31 (d, C-4), 47.14 (s, C-7), 46.65 (s, C-8), 45.51 (d, C-3a), 38.27 (t, C-3), 32.16 (t, C-6), 28.60 (t, C-5), 22.71/20.26/11.00 (3q, 3 MBE-CH₃)

C₂₆H₃₀N₂O₇ (482.54 g/mol)

	С	Н	N
Berechnet:	64.72	6.27	5.81
Gefunden:	65.00	6.52	6.00

4.6. Veretherung der desymmetrisierten Linker

4.6.1. Herstellung von 2-[[2S-(2α(1S*,2R*),3αα,4β,7β,7αα)]-(1,2-Bis(4methoxyphenyl)-2-(2-methylpropoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7methanobenzofuran (21c)

<u>Ansatz:</u>

200 mg (0.44 mmol)	$[2S-(2\alpha(\alpha R^*,\beta S^*),3a\alpha,4\beta,7\beta,7a\alpha)]-2-Methoxy-\alpha-(4-\alpha)]-2-Methoxy-\alpha-$
	methoxyphenyl)-β-[(octahydro-7,8,8-trimethyl-4,7-
	methanobenzofuran-2-yl)oxy]-benzolethanol (12c)
0.03 g (1.25 mmol, 2.8 eq.)	NaH
32 mg (1.32 mmol, 3.0 eq.)	i-Butyltosylat
2.5 ml	DMF wasserfrei

Reaktionsdurchführung:

Unter N₂-Atmosphäre wurden 32 mg frisch gewaschenes NaH mit 1 ml wasserfreiem DMF überschichtet und unter Rühren bei RT eine Lösung von 0.2 g **12c** in 1.5 ml DMF langsam zugetropft. Das Reaktionsgemisch wurde 1 h bei RT gerührt, anschließend 0.15 ml i-Butyltosylat zugetropft und weitere 15 h gerührt. Nach Kontrolle des Umsatzes mittels DC wurde die Reaktionslösung mit H₂O (~ 15 ml) gequencht, mehrmals mit Ether extrahiert, die vereinigten Etherphasen zur Entfernung des DMF 3 x mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die hierbei erhaltenen 0.34 g Rohprodukt wurden mittels VFC gereinigt (15 g Kieselgel imprägniert mit NEt₃, PE/E 20:1 \rightarrow E_{rein}, sämtlichen Laufmittelgemischen wurden ca. 0.2 % NEt₃ zugesetzt).

Ergebnis:

0.127 g 12c als farbloses Öl (57 % d. Th.)

DC: $R_f = 0.78$ (PE/E 2:1)

 $[\alpha]_D^{20}$: -66.9° (CH₂Cl₂, c = 4.70)

¹**H-NMR (CDCl₃):** $\delta = 7.30/7.28/6.87/6.85$ (4d, J=8.7 Hz, 8H, Ph), 4.82 (d, J=4.2 Hz, 1H, OCHO), 4.52/4.06 (2d, J=8.2 Hz, 2H, OCHPh), 3.81 (s, 6H, Ph-OCH₃), 3.03/2.75 (2dd, J₁=9.0 Hz, J₂=6.5Hz, 2H, O-C<u>H₂</u>CH(CH₃)₂), 2.45 (d, J=6.5 Hz, 1H, 7a'-H), 1.96-0.51 (m, 24H, MBE-Aliphaten-H / OCH₂C<u>H</u>(CH₃)₂, davon 0.81/0.80/0.69 (3s, 9H, MBE-CH₃), 0.67/0.64 (2d, J=3.5 Hz bzw. J=3.4 Hz, 6H, OCH₂CH(C<u>H₃</u>)₂))

¹³C-NMR (CDCl₃): $\delta = 158.95/158.86$ (2s, Ph-<u>C</u>-OCH₃), 133.51/132.72 (2s, Ph-C-1), 129.33/129.15/113.00/112.92 (4d, Ph-C), 100.67 (d, OCHO), 89.79 (d, C-7a), 84.81/78.27(2d, OCHPh), 75.79 (t, O<u>C</u>H₂CH(CH₃)₂), 55.21/55.13(2q, Ph-OCH₃), 48.09 (d, C-4), 46.91 (s, C-7), 46.87 (s, C-8), 45.91 (d, C-3a), 38.29 (t, C-3), 32.19 (t, C-6), 28.95 (t, C-5), 28.40 (d, O-CH₂<u>C</u>H(CH₃)₂), 22.81/20.49/11.51 (3q, 3 MBE-CH₃), 19.18 (q, O-CH₂CH(<u>C</u>H₃)₂)

C₃₂H₄₄O₅x0.6C₂H₄ (519.51 g/mol)

	С	Н
Berechnet:	75.88	8.90
Gefunden:	75.81	8.22

4.6.2. Herstellung von [2S-(2α(1S*,2R*),3aa,4β,7β,7aa)]-2-[(1,2-Bis(2-trifluormethylphenyl)-2-(2-methylpropoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran (21c)

<u>Ansatz:</u>

1.00 g (1.89 mmol)	[2S-(2a(aR*,βS*),3aa,4β,7β,7aa)]-2-methoxy-a-2-	
	trifluormethylphenyl-β-[(octahydro-7,8,8-trimethyl-4,7-	
	methanobenzofuran-2-yl)oxy]-benzolethanol (12d)	
114 mg (4.73 mmol, 2.5 eq.)	NaH	
1.29 g (5.67 mmol, 3 eq.)	i-Butyltosylat	
7 ml	DMF wasserfrei	

Reaktionsdurchführung analog 4.6.1

Die erhaltenen 1.95 g Rohprodukt wurden mittel VFC gereinigt (80 g Kieselgel imprägniert mit NEt₃, PE/E 100:1 \rightarrow E_{rein}, sämtlichen Laufmittelgemischen wurden ca. 0.2 % NEt₃ zugesetzt).

Ergebnis:

1.10 g 12d als farbloses Öl (99 % d. Th.)

DC: $R_f = 0.85$ (PE/E 10:1)

 $[\alpha]_D^{20}$: -53.8° (CH₂Cl₂, c = 1.80)

¹H-NMR (CDCl₃): δ = 7.83-7.72 (m, 2H, Ph-H), 7.64-7.52 (m, 4H, Ph-H), 7.44-7.33 (m, 2H, Ph-H), 5.21/4.74 (2d, J=8.0 Hz, 2H, OCHPh), 4.70 (d, J=4.2 Hz, 1H, OCHO), 2.89/2.73 (2dd, J₁=8.8 Hz, J₂=6.3 Hz bzw. J₁=8.7 Hz, J₂=6.1 Hz, 2H, O-C<u>H₂</u>CH(CH₃)₂), 2.29 (s, J=7.1 Hz, 1H, 7a'-H)), 1.84-0.53 (m, 24H, MBE-Aliphaten-H, OCH₂C<u>H</u>(CH₃)₂, davon 0.65/0.62 (2d, J=6.8 Hz bzw. 6.7 Hz, 6H, OCH₂CH(C<u>H₃)₂), 0.77/0.68 (2s, 9H, MBE-CH₃))</u>

¹³C-NMR (CDCl₃): $\delta = 140.87/140.26$ (2q, J(C,F)=1.9 Hz bzw. 1.4 Hz, Ph-C-1), 131.69/131.47 (2q, J(C,F)=1.0 Hz, Ph-C-4), 129.18/127.53 (2q, J(C,F)=30.7 Hz bzw. 31.5 Hz, Ph-C-2), 129.14/128.58 (2d, Ph-C-6), 127.27/127.22 (2d, Ph-C-5), 124.91/124.59 (2dq, J(C,F)=3.9 Hz bzw. 5.9 Hz Ph-C-3), 124.12 (q, J(C,F)=273.3 Hz, Ph-CF₃), 100.87 (d, O<u>C</u>HO), 89.69 (d, C-7a), 80.27/74.24 (2d, OCHPh), 47.98 (d, C-4), 46.81 (s, C-7), 46.50 (s, C-8), 45.44 (d, C-3a), 38.16 (t, C-3), 31.98 (t, C-6), 28.69 (t, C-5), 28.07 (d, O-CH₂<u>C</u>H(CH₃)₂) 22.66/20.26/11.07 (3q, 3 MBE-CH₃), 18.71/18.63 (2q, O-CH₂CH(<u>C</u>H₃)₂)

C ₃₂ H ₃₈ F ₆ O ₃ (58	84.65 g/mol)	
	С	Н
Berechnet:	65.74	6.55
Gefunden:	65.56	6.61

- 4.6.3. Dreistufige Synthese von 2-[[2S-(2α(1S*,2R*),3aα,4β,7β,7aα)]-(1,2-Bis(2-methoxyphenyl)-2-(2-methoxyethoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran
- 4.6.3.1. Herstellung von [[2S-(2α(1R*,2S*),3aa,4β,7β,7aa)]-1,2-Bis(2methoxyphenyl)-2-(octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yloxy)ethoxy]essigsäure, 1,1-dimethylethylester (22)

Ansatz:

3.00 g (6.6 mmol)	$[2S-(2\alpha (\alpha R^*,\beta S^*),3a\alpha,4\beta,7\beta,7a\alpha)]-2-Methoxy-\alpha-2-$
	methoxyphenyl-β-[(octahydro-7,8,8-trimethyl-4,7-
	methanobenzofuran-2-yl)oxy]-benzolethanol (12a)
0.36 g (21.2 mmol, 3.2 eq.)	NaH
2.85 g (21.2 mmol, 3.2 eq.)	Bromessigsäure-t-butylester
10.18 g (56.8 mmol, 8.6 eq.)	НМРТ
60 ml	THF wasserfrei

Reaktionsdurchführung:

0.20 g (1.2 eq.) frisch gewaschenes NaH wurden unter N₂-Atmosphäre vorgelegt und mit 5 ml wasserfreiem THF überschichtet. 3.00 g des Acetals **12a** wurden in ca. 25 ml THF gelöst und über eine Spritze zugetropft. Anschließend wurde 1 h bei RT zur Deprotonierung gerührt, je 1.2 eq. Bromessigsäure-t-butylester und HMPT, gelöst in 30 ml THF, zugetropft und 12 h auf

RF erhitzt. Nach Kontrolle des Umsatzes mittels DC wurden weitere 2 eq. NaH und Bromessigsäure-t-butylester, sowie 8.4 eq. HMPT zugegeben und wiederum 12 h auf RF erhitzt. Das Reaktionsgemisch wurde mit 25 ml Wasser gequencht, 4 x mit Ether extrahiert, die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Das erhaltene Rohprodukt (5.70 g gelbes Öl) wurde chromatographisch gereinigt (170g Kieselgel, PE/E 100:1 \rightarrow E_{rein}, sämtlichen Laufmittelgemischen wurden ca. 0.2 % NEt₃ zugesetzt).

Ergebnis:

3.20 g 22 als farbloses Öl (85 % d. Th.)

DC: R_f=0.53 (PE/E 3:1)

 $[\alpha]_D^{20}$: -66.5° (CH₂Cl₂, c = 1.03)

¹H-NMR (CDCl₃): δ = 7.34-6.64 (m, 8H, Ph), 5.50/5.17 (2d, J=3.9 Hz, 2H, OCHPh), 4.92 (d, J=4.5 Hz, 1H, OCHO), 4.03 (s, 3H, OCH₂CO), 3.82 (d, J=7.5 Hz, 1H, 7a'-H), 3.61/3.45 (2s, 6H, OCH₃), 2.33-0.75 (m, 26H, Aliphaten-H, davon 1.40/0.98/0.90/0.77 (4s, 18H, CH₃)

¹³C-NMR (CDCl₃): $\delta = 170.2$ (s, O-CO), 157.97/157.58 (2s, Ph-C-2), 129.52/128.93/128.32/128.27/120.33/120.24/110.03 (7d, Ph-C), 127.74/127.47 (2s, Ph-C-1), 102.4 (d, OCHO), 90.99 (d, C-7a), 81.22 (s, <u>C</u>(CH₃)₃, 77.25/71.22 (2d, OCHPh), 67.91 (t, O-CH₂-CO), 55.67/55.57 (2q, OCH₃), 48.76 (d, C-4), 47.76 (s, C-7), 47.45 (s, C-8), 46.42 (d, C-3a), 38.89 (t, C-3), 32.85 (t, C-6), 29.41 (t, C-5), 28.43 (q, C(<u>C</u>H₃)₃), 23.34/21.03/12.17 (3q, C-9, C-10, C-11)

 $C_{34}H_{46}O_7 \times 0.6H_2O(577.55 \text{ g/mol})$

	С	Н
Berechnet:	70.71	8.24
Gefunden:	70.81	8.35

 4.6.3.2. Herstellung von [[2S-(2α(1R*,2S*),3aα,4β,7β,7aα)]-1,2-Bis(2methoxyphenyl)-2-[(octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl)oxy]-2-ethoxy]-ethanol (12f)

<u>Ansatz:</u>

2.58 g (4.55 mmol)	[[2S-(2α(1R*,2S*),3aα,4β,7β,7aα)]-1,2-Bis(2-
	methoxyphenyl)-2-(octahydro-7,8,8-trimethyl-4,7-
	methanobenzofuran-2-yl-oxy)-ethoxy]-essigsäure-(1,1-
	dimethylethyl)-ester (22)
0.52 g (13.7 mmol, 3.0 eq.)	LiAlH₄
170 ml	Et ₂ O wasserfrei

Reaktionsdurchführung:

0.52 g LiAlH₄ wurden unter N₂-Atmosphäre in 100 ml wasserfreiem Ether vorgelegt und unter Eiskühlung mit 2.58 g 22, gelöst in 70 ml Ether, versetzt. Das Reaktionsgemisch wurde 2 h bei RT gerührt und nach Kontrolle des Umsatzes mittels DC durch Zugabe von 5 ml H₂O sowie 1 ml NaOH (40%-ig) gequencht. Die entstandene Suspension wurde 1 h bei RT gerührt, mit ges. NaCl-Lösung versetzt, die organische Phase wurde abgetrennt und die wässrige Phase mehrmals mit Ether extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und zur Trockene eingedampft. Die erhaltenen 1.94 g Rohprodukt wurden anschließend mittels VFC gereinigt (63 g Kieselgel, PE/E 10:1 \rightarrow E/MeOH 1:1, sämtlichen Laufmittelgemischen wurden ca. 0.2 % NEt₃ zugesetzt).

Ergebnis:

1.65 g 12f als farbloser Schaum (73 % d. Th.)

DC: $R_f = 0.45$ (PE/E 3:1)

 $[\alpha]_D^{20}$: -61.9° (CH₂Cl₂, c = 1.40)

¹H-NMR (CDCl₃): δ = 7.32-6.65 (m, 8H, Ph), 5.52 (d, J=4.1 Hz, 1H, OCHO), 5.09/4.95 (2d, J=4.4 Hz, 2H, OCHPh), 3.87-3.24 (m, 12H, davon 3.70/3.41 (2s, 6H, OCH₃), OCH₂CH₂OH, 7a'-H), 2.35-0.78 (m, 17H, MBE-Aliphaten-H)

¹³C-NMR (CDCl₃): $\delta = 157.55/157.27$ (2s, Ph-C-2), 128.89/128.09/127.98/127.95/119.97/ 119.90/109.74/109.68 (8d, Ph-C), 127.98/126.82 (2s, Ph-C-1), 102.18 (d, OCHO), 90.85 (d, C-7a), 78.36/71.67 (2d, OCHPh), 70.97/61.91 (2t, OCH₂CH₂OH), 55.39/55.04 (2q, Ph-OCH₃), 48.33 (d, C-4), 47.44 (s, C-7), 46.99 (s, C-8), 45.91 (d, C-3a), 38.56 (t, C-3), 32.53 (t, C-6), 28.92 (t, C-5), 22.91/20.57/11.72 (3q, 3 MBE-CH₃)

C₃₀H₄₀O₆ (496.65 g/mol)

	С	Н
Berechnet:	72.55	8.12
Gefunden:	72.33	8.36

 4.6.3.3. Herstellung von 2-[[2S-(2α(1S*,2R*),3aα,4β,7β,7aα)]-(1,2-Bis(2methoxyphenyl)-2-(2-methoxyethoxy)-ethoxy]-octahydro-7,8,8-trimethyl-4,7methanobenzofuran (21f)

<u>Ansatz:</u>

0.69 g (1.39 mmol)	[[2S-(2α(1R*,2S*),3aα,4β,7β,7aα)]-1,2-Bis(2-		
	methoxyphenyl)-2-[(octahydro-7,8,8-trimethyl-4,7-		
	methanobenzofuran-2-yl)-oxy]-2-ethoxy]-ethanol (12f)		
0.10 g (4.17 mmol, 3.0 eq.)	NaH		
1.02 g (7.20 mmol, 5.2 eq.)	Mel		
10 ml	DMF wasserfrei		

Reaktionsdurchführung:

Unter N₂-Atmosphäre wurden 100 mg frisch gewaschenes NaH mit wasserfreiem DMF überschichtet und unter Rühren bei RT eine Lösung von 0.69 g **12f** in 5 ml DMF langsam zugetropft. Das Reaktionsgemisch wurde 1 h bei RT gerührt, anschließend 1.02 g Methyljodid zugetropft und weitere 2 h gerührt. Nach Kontrolle des Umsatzes mittels DC wurde die Reaktionslösung mit H₂O (~ 15 ml) gequencht, mehrmals mit Ether extrahiert, die vereinigten Etherphasen zur Entfernung des DMF 3 x mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die hierbei erhaltenen 0.65 g Rohprodukt wurden mittels VFC gereinigt (16 g Kieselgel, PE/E 30:1 \rightarrow E/MeOH 5:1, sämtlichen Laufmittelgemischen wurden ca. 0.2 % NEt₃ zugesetzt).

Ergebnis:

0.53 g 21f als farbloses Öl (74 % d. Th.)

DC: $R_f = 0.47$ (PE/E 2:1)

 $[\alpha]_D^{20}$: -85.4° (CH₂Cl₂, c = 1.05)

¹H-NMR (CDCl₃): $\delta = 7.34-6.68$ (m, 8H, Ph), 5.46 (d, J=4.3 Hz, 1H, OCHO), 5.06/4.90 (2d, J=4.5 Hz, 2H, OCHPh), 3.72-3.46 (m, 11H, davon 3.62/3.51 (2s, 6H, OCH₃) OCH₂CH₂O, 7a'-H), 3.32 (s, 3H, OCH₃), 2.29-0.77 (m, 17H, MBE-Aliphaten-H)

¹³C-NMR (CDCl₃): $\delta = 157.77/157.47$ (2s, Ph-C-2), 128.95/128.51/128.06/127.95/127.75/119.91/119.78/109.75 (Ph-C), 101.77 (d, OCHO), 90.40 (d, C-7a), 77.28/71.37 (2d, OCHPh), 72.18/68.88 (2t, OCH₂CH₂OCH₃), 58.99 (q, OCH₂CH₂OCH₃) 55.30/55.27 (2q, Ph-OCH₃), 48.32 (d, C-4), 47.29 (s, C-7), 46.99 (s, C-8), 46.09 (d, C-3a), 38.49 (t, C-3), 32.52 (t, C-6), 29.04 (t, C-5), 22.92/20.61/11.72 (3q, 3 MBE-CH₃)

C₃₁H₄₂O₆x0.1H₂O (512.48 g/mol)

	C	Н
Berechnet:	72.66	8.30
Gefunden:	72.63	8.20

4.7. Acetalspaltungen

 4.7.1. Herstellung von R-(αR*,βS*)-4-Methoxy-α-(4-methoxyphenyl)-β-(2methylpropoxy)-benzolethanol (23c)

<u>Ansatz:</u>

 1.15 g (2.26 mmol)
 Acetal 21c

 220 mg (1.15 mmol, 0.5 eq.) p-Toluolsulfonsäure

 30 ml
 MeOH

Reaktionsdurchführung:

Das Edukt wurde in der angegebenen Menge MeOH gelöst, mit p-TosOH versetzt und bei RT 12 h gerührt. Nach Kontrolle des Umsatzes mittels DC wurden 4 ml ges. NaHCO₃-Lösung zugegeben, MeOH wurde am Rotavapor weitgehend abrotiert und der Rückstand zwischen Ether und Wasser verteilt. Die wässrige Phase wurde mit Ether extrahiert, die gesammelten etherischen Phasen mit NaCl-Lösung gewaschen, mit Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die dabei erhaltenen 1.40 g Rohprodukt wurden mittels VFC gereinigt (50g Kieselgel, PE/E 20:1 \rightarrow E_{rein}).

Ergebnis:

595 mg **23c** als gelbes Öl (80 % d. Th.)

DC: $R_f = 0.19$ (PE/E 3:1)

 $[\alpha]_{D}^{20}$: +25.4° (CH₂Cl₂, c = 0.90)

¹**H-NMR (CDCl₃):** $\delta = 7.13-6.77$ (m, 8H, Ph-H), 4.75/4.29 (2d, J=5.5 Hz, 2H, OCHPh), 3.79/3.78 (2s, 6H, OCH₃), 3.10/2.96 (2dd, J₁=8.9 Hz, J₂=6.5 Hz, 2H, O-C<u>H</u>₂-CH(CH₃)₂), 1.89-1.69 (m, 1H, O-CH₂-C<u>H</u>(CH₃)₂), 0.81/0.80 (2d, J=6.7 Hz, 6H, O-CH₂-CH(C<u>H</u>₃)₂)

¹³C-NMR (CDCl₃): $\delta = 159.23/158.87$ (2s, Ph-<u>C</u>-4), 132.81/130.20 (2s, Ph-C-1), 129.02/128.26/113.28/113.08 (4d, Ph-C), 85.62/76.76 (2d, OCHPh), 75.83 (t, O-<u>C</u>H₂-CH(CH₃)₂), 55.17 (q, Ph-OCH₃), 28.52 (d, O-CH₂-<u>C</u>H(CH₃)₂), 19.34/19.27 (2q, O-CH₂-CH(<u>C</u>H₃)₂)

C₂₀H₂₆O₄ (330.43 g/mol)

	С	Н
Berechnet:	72.70	7.93
Gefunden:	72.99	8.22

 4.7.2. Herstellung von R-(αR*,βS*)-2-Trifluormethyl-α-(2trifluormethylphenyl)-β-(2-methylpropoxy)-benzolethanol (23d)

Es wurden 1.07 g (1.84 mmol) des Acetals **21d** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.7.1. In diesem Fall wurden allerdings zur chromatographischen Reinigung anfangs weniger polare Laufmittelgemische verwendet (PE/E 50:1 \rightarrow E).

Ergebnis:

679 mg 23d als farbloses Öl (91 % d. Th.)

DC: $R_f = 0.19$ (PE/E 5:1)

 $[a]_{D}^{20}$: +34.3° (CH₂Cl₂, c = 0.40)

¹**H-NMR (CDCl₃):** δ = 7.60-7.30 (m, 8H, Ph-H), 5.37 (d, J=5.1 Hz, 1H, PhC<u>H</u>OH), 5.00 (d, J=5.3 Hz, 1H, PhCHO), 3.09-2.95 (m, 2H, O-C<u>H</u>₂-CH(CH₃)₂), 2.61 (bs, 1H, OH), 1.86-1.66 (m, J=6.6 Hz, 1H, O-CH₂-C<u>H</u>(CH₃)₂), 0.78/0.77 (2d, J=6.7 Hz, 6H, O-CH₂-CH(C<u>H₃)₂))</u>

¹³C-NMR (CDCl₃): $\delta = 139.14/137.55$ (q, J(C,F)=1.18 Hz, Ph-C-1), 131.65/131.46 (2dq, J(C,F)=0.8 Hz, Ph-C-4), 129.04 (q, J(C,F)=29.5 Hz, Ph-C-2) 128.00/127.73 (2d, Ph-C-5, Ph-C-6), 125.20/125.16 (2dq, J(C,F)=5.9 Hz, Ph-C-3), 124.17/124.12 (2q, J(C,F)=274.2/274.1 Hz, CF₃), 79.65/72.11 (2dq, J=1.7 Hz / 2.3 Hz, OCHPh), 75.88 (t, O-<u>C</u>H₂CH(CH₃)₂); 28.40 (d, O-CH₂<u>C</u>H(CH₃)₂), 19.19/19.04 (q, O-CH₂CH(<u>C</u>H₃)₂)

C₂₀H₂₀F₆O₂ (406.37 g/mol)

	С	Н
Berechnet:	59.11	4.96
Gefunden:	59.00	5.22

4.7.3. Herstellung von R-(αR*,βS*)-2-Methoxy-α-(2-methoxyphenyl)-β-(2-methoxyethoxy)-benzolethanol (23f)

Es wurden 0.48 g (0.93 mmol) des Acetals **21f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.7.1. In diesem Fall wurden allerdings zur chromatographischen Reinigung polarere Laufmittelgemische verwendet (PE/E $30:1 \rightarrow$ E/MeOH 5:1).

Ergebnis:

0.26 g 23f als gelbes Öl (85 % d. Th.)

DC: $R_f = 0.26$ (PE/E 1:1)

 $[\alpha]_D^{20}$: +17.3° (CH₂Cl₂, c = 1.00)

¹H-NMR (CDCl₃): $\delta = 7.25-6.66$ (m, 8H, Ph), 5.39/5.20 (2d, J=3.9 Hz, 2H, OCHPh), 3.72-3.46 (m, 11H, davon 3.62/3.47 (2s, 6H, OCH₃), OC<u>H₂CH₂O</u>, PhCHO<u>H</u>), 3.36 (s, 3H, OCH₂CH₂OC<u>H₃</u>).

¹³C-NMR (CDCl₃): $\delta = 157.41/156.70$ (2s, Ph-C-2), 128.62/126.30 (2s, Ph-C-1), 128.17/127.97/127.86/127.77/120.02/119.90/109.59/109.55 (8d, Ph-C), 77.81/70.85 (2d, OCHPh), 71.91/68.56 (2t, OCH₂CH₂OCH₃), 58.91 (q, OCH₂CH₂OCH₃) 55.16/55.01 (2q, Ph-OCH₃)

C₁₉H₂₄O₅x0.1H₂O (334.20 g/mol)

	С	Н
Berechnet:	68.29	7.30
Gefunden:	68.23	7.40

4.8. Veresterungen

4.8.1. Herstellung des Propansäure, [R-(1R*,2S*)]-[1,2-bis(4-methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (25c)

Ansatz:

240 mg (0.73 mmol) Alkohol 23c
108 mg (1.46 mmol, 2.0 eq.) Propionsäure
184 mg (1.46 mmol, 2.0 eq.) DIC
45 mg (0.37 mmol, 0.5 eq.) DMAP
5 ml CH₂Cl₂ wasserfrei

Reaktionsdurchführung:

240 mg **23c** wurden unter N₂-Atmosphäre in wasserfreiem CH₂Cl₂ gelöst, Propionsäure und DMAP zugegeben und DIC langsam zugetropft. Das Reaktionsgemisch wurde 5 h bei RT gerührt und nach Kontrolle des Umsatzes mittels DC mit CH₂Cl₂ verdünnt, mit 5%-iger KHSO₄-Lösung, ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die dabei erhaltenen 361 mg Rohprodukt wurden mittels VFC von Eduktresten gereinigt (10g Kieselgel, PE/E $20:1 \rightarrow E_{rein}$).

Ergebnis:

265 mg 25c als farbloses Öl (94 % d. Th.)

DC: $R_f = 0.40$ (PE/E 3:1)

 $[\alpha]_D^{20}$: +14.4° (CH₂Cl₂, c = 0.65)

¹**H-NMR (CDCl₃):** $\delta = 7.26-6.79$ (m, 8H, Ph-H), 5.79/4.40 (2d, J=6.0 Hz, 2H, OCHPh), 3.80/3.79 (2s, 6H, Ph-OCH₃), 3.08/2.91 (2dd, J₁=8.9 Hz, J₂=6.5 Hz, 2H, O-C<u>H</u>₂CH(CH₃)₂), 2.20 (q, J=7.5 Hz, 2H, OCO-C<u>H</u>₂CH₃), 1.82-1.63 (m, 1H, O-CH₂C<u>H</u>(CH₃)₂), 1.00 (t, J=7.5 Hz, 3H, OCO-CH₂C<u>H₃</u>), 0.76/0.75 (2d, J=6.7 Hz, 6H, O-CH₂CH(C<u>H₃)₂</u>)

¹³C-NMR (CDCl₃): $\delta = 173.03$ (s, O-CO), 159.16 (2s, Ph-<u>C</u>-4), 130.81/130.05 (2s, Ph-C-1), 129.14/128.93/113.24/113.13 (4d, Ph-C), 83.57/77.42 (2d, OCHPh), 75.97 (t, O-<u>C</u>H₂-CH(CH₃)₂), 55.18 (q, Ph-O<u>C</u>H₃), 28.48 (d, O-CH₂-<u>C</u>H(CH₃)₂), 27.75 (t, CO-<u>C</u>H₂-CH₃), 19.22 (q, O-CH₂-CH(<u>C</u>H₃)₂), 8.98 (q, CO-CH₂-<u>C</u>H₃)

C₂₃H₃₀O₅ (386.49 g/mol)

	С	Н
Berechnet:	71.48	7.82
Gefunden:	71.23	7.86

4.8.2. Herstellung des Propansäure, [R-(1R*,2S*)]-[2-(2-methylpropoxy)-1,2bis(2-trifluormethylphenyl)ethyl]esters (25d)

Es wurden 300 mg (0.74 mmol) des Alkohols **23d** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.8.1.

Ergebnis:

335 mg 25d als farblose Kristalle (98 % d. Th.)

DC: $R_f = 0.66$ (PE/E 3:1)

 $[\alpha]_D^{20}$: +13.9° (CH₂Cl₂, c = 1.10)

F_p: 54-55°C

¹**H-NMR (CDCl₃):** $\delta = 7.73-7.35$ (m, 8H, Ph-H), 6.44/4.97 (2d, J=7.4 Hz, 2H, OCHPh), 2.94/2.85 (2dd, J₁=8.8 Hz, J₂=6.3 Hz, 2H, O-C<u>H</u>₂CH(CH₃)₂), 2.13 (q, J=7.6 Hz, 2H, OCO-C<u>H</u>₂CH₃), 1.71-1.51 (m, 1H, O-CH₂C<u>H</u>(CH₃)₂), 0.91 (t, J=7.6 Hz, 3H, OCO-CH₂C<u>H</u>₃), 0.65/0.64 (2d, J=6.8 Hz, 6H, O-CH₂CH(C<u>H</u>₃)₂)

¹³C-NMR (CDCl₃): $\delta = 172.20$ (s, O-CO), 138.22/137.36 (2q, J(C,F)=1.4 Hz, Ph-C-1), 132.05/131.61 (dq, J(C,F)=0.9 Hz, Ph-C-4), 129.49/128.64/128.11/128.08 (4d, Ph-C-5, Ph-C-6), 129.45/129.18 (2q, J(C,F)=30.5 Hz, Ph-C-2), 125.67/125.00 (2dq, J(C,F)=5.8 Hz, Ph-C-3), 124.25/124.06 (2q, J(C,F)=274.2/274.5 Hz, CF₃), 79.01/72.76 (2dq, J=0.9 Hz / 2.2 Hz, OCHPh), 75.88 (t, O-<u>C</u>H₂CH(CH₃)₂), 28.24 (d, O-CH₂-<u>C</u>H(CH₃)₂), 27.33 (t, CO-<u>C</u>H₂-CH₃), 18.93/18.85 (2q, O-CH₂-CH(<u>C</u>H₃)₂), 8.71 (q, CO-CH₂-<u>C</u>H₃)

C₂₃H₂₄F₆O₃ (462.44 g/mol)

	С	Н	F
Berechnet:	59.74	5.23	24.65
Gefunden:	59.87	5.05	24.83

4.8.3. Herstellung des Propansäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2bis(2-methoxyphenyl)ethyl]esters (25f)

Es wurden 200 mg (0.60 mmol) des Alkohols **23f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.8.1.

Ergebnis:

229 mg 25f als farbloses Öl (98 % d. Th.)

DC: $R_f = 0.42$ (PE/E 1:2)

 $[a]_{D}^{20}$: +17.8° (CH₂Cl₂, c = 1.00)

¹**H-NMR (CDCl₃):** δ = 7.26-6.60 (m, 9H, davon 6.61 (d, J=3.7 Hz, 1H, OCHPh), Ph-H), 5.22 (d, J=3.7 Hz, 2H, OCHPh), 3.64-3.33 (m, 13H, OCH₃ (3.60/3.47/3.35, 3s), OCH₂CH₂O), 2.36 (q, J=7.5 Hz, 2H, OCO-CH₂CH₃), 1.12 (t, J=7.6 Hz, 3H, OCO-CH₂CH₃)

¹³C-NMR (CDCl₃): δ = 173.06 (s, O-CO), 157.15/156.62 (2s, Ph-C-2), 128.43/128.22/128.18/127.65/119.75/119.64/109.63/109.40 (8d, Ph-C), 125.96/125.86 (2s, Ph-C-1), 75.83/71.75 (2d, OCHPh), 70.34/68.90 (2t, OCH₂), 58.91/55.23/54.93 (3q, OCH₃), 27.77 (t, CO-<u>C</u>H₂-CH₃), 9.00 (q, CO-CH₂-<u>C</u>H₃)

C22H28O6x0.1H2O (390.26 g/mol)

	C	Н
Berechnet:	67.71	7.28
Gefunden:	67.71	7.23

4.8.4. Herstellung des α-Oxobenzolessigsäure, [R-(1R*,2S*)]-[1,2-bis(4methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (26c)

<u>Ansatz:</u>

300 mg (0.9 mmol)	Alkohol 23c
270 mg (1.8 mmol, 2.0 eq.)	Benzoylameisensäure
227 mg (1.8 mmol, 2.0 eq.)	DIC
55 mg (0.45 mmol, 0.5 eq.)	DMAP
6 ml	CH ₂ Cl ₂ wasserfrei

Reaktionsdurchführung analog 4.8.1

Ergebnis:

288 mg **26c** als farbloser Feststoff (69 % d. Th., es konnten 70 mg Edukt rückgewonnen werden; korrigierte Ausbeute 89 % d. Th.)

DC: $R_f = 0.31$ (PE/E 3:1)

 $[\alpha]_{D}^{20}$: +17.1° (CH₂Cl₂, c = 0.55)

F_p: 102-106°C

¹H-NMR (CDCl₃): δ = 7.63-6.79 (m, 13H, Ph-H), 6.13/4.48 (2d, J=6.8 Hz, 2H, OCHPh), 3.81/3.79 (2s, 6H, OCH₃), 3.08/2.94 (2dd, J₁=8.8 Hz, J₂=6.5 Hz, 2H, O-C<u>H₂CH(CH₃)₂)</u>, 1.85-1.64 (m, 1H, O-CH₂C<u>H(CH₃)₂)</u>, 0.75/0.74 (2d, J=6.7 Hz, 6H, O-CH₂CH(C<u>H₃)₂)</u> ¹³C-NMR (CDCl₃): $\delta = 186.34$ (s, CO), 162.99 (s, O-CO), 159.60/159.48 (2s, Ph-C-4), 134.66/128.72/128.69 (3s, Ph-C-1), 132.25/130.11/129.94/129.24/113.57/113.41 (6d, Ph-C), 83.31/79.18 (2d, OCHPh), 76.01 (t, O-<u>C</u>H₂-CH(CH₃)₂), 55.25/55.17 (2q, OCH₃), 28.48 (d, O-CH₂-<u>C</u>H(CH₃)₂), 19.20 (q, O-CH₂-CH(<u>C</u>H₃)₂)

C₂₈H₃₀O₆ (462.55 g/mol) C H Berechnet: 72.71 6.54 Gefunden: 73.01 6.73

4.8.5. Herstellung des α-Oxobenzolessigsäure, [R-(1R*,2S*)]-[2-(2methylpropoxy)-1,2-bis(2-trifluormethylphenyl)ethyl]esters (26d)

Es wurden 300 mg (0.74 mmol) des Alkohols **23d** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.8.4 bzw. 4.8.1.

Ergebnis:

362 mg 26d als hellgelbes Öl (91 % d. Th.)

DC: $R_f = 0.49$ (PE/E 5:1)

 $[\alpha]_{D}^{20}$: +10.8° (CH₂Cl₂, c = 1.15)

¹**H-NMR (CDCl₃):** δ = 7.81-7.35 (m, 13H, Ph-H), 6.81/5.10 (2d, J=6.5 Hz, 2H, OCHPh), 2.98 (d, J =6.4 Hz, 2H, O-C<u>H</u>₂CH(CH₃)₂), 1.79-1.59 (m, 1H, O-CH₂C<u>H</u>(CH₃)₂), 0.70 (d, J=6.7 Hz, 6H, O-CH₂CH(C<u>H</u>₃)₂) ¹³C-NMR (CDCl₃): $\delta = 185.42$ (s, CO), 161.71 (s, O-CO), 136.85/135.06 (2q, J(C,F)=1.4 Hz bzw. 1.5 Hz, Ph-C-1), 134.64 (s, Ph-C-1), 131.97/129.66/129.63/128.88/128.61/ 128.53/128.25 (7d, Ph-C), 131.69 (dq, J(C,F)=0.8 Hz, Ph-C-4), 129.54/128.95 (2q, J(C,F)=30.3 Hz bzw. 30.6 Hz, Ph-C-2), 125.56/125.12 (2dq, J(C,F)=5.7 Hz, Ph-C-3), 123.87/123.79 (2q, J(C,F)=274.3 Hz, CF₃), 78.31/73.99 (2dq, J=1.3 Hz bzw. 2.0 Hz, OCHPh), 75.94 (t, O-<u>C</u>H₂CH(CH₃)₂), 28.16 (d, O-CH₂-<u>C</u>H(CH₃)₂), 18.85/18.74 (2q, O-CH₂-CH(<u>C</u>H₃)₂)

C₂₈H₂₄F₆O₄ (538.49 g/mol)

	С	Н
Berechnet:	62.45	4.49
Gefunden:	62.22	4.56

4.8.6. Herstellung des a-Oxobenzolessigsäure, [R-(1R*,2S*)]-[2-(2methoxyethoxy)-1,2-bis(2-methoxyphenyl)ethyl]esters (26f)

Es wurden 430 mg (1.29 mmol) des Alkohols **23d** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.8.4 bzw. 4.8.1.

Ergebnis:

593 mg **26f** als hellgelbes Öl (99 % d. Th.)

DC: $R_f = 0.41$ (PE/E 1:2)

 $[\alpha]_{D}^{20}$: +34.9° (CH₂Cl₂, c = 0.80)

¹H-NMR (CDCl₃): δ = 7.91-7.87 (m, 2H, Ph-H), 7.61-6.95 (m, 7H, Ph-H), 6.84/5.29 (2d, J=4.1 Hz, 2H, OCHPh), 6.77-6.57 (m, 4H, Ph-H), 3.65-3.42 (m, 7H, davon 3.61 (s, 3H, OCH₃), OCH₂CH₂O), 3.36/3.26 (2s, 6H, OCH₃)

¹³C-NMR (CDCl₃): $\delta = 186.61$ (s, CO), 163.09 (s, O-CO), 157.20/156.66 (2s, Ph-C-2), 134.55 (s, Ph-C-1), 132.42/130.01/128.77/128.65/128.46/128.39/127.84/119.98/119.83/ 109.67/109.51 (11d, Ph-C), 125.07/124.34 (2s, Ph-C-1), 75.40/72.58 (2d, OCHPh), 71.71/68.82 (2t, OCH₂CH₂O), 58.84/55.32/55.86 (3q, OCH₃)

C₂₇H₂₈O₇ (464.52 g/mol)

	С	Н
Berechnet:	69.81	6.08
Gefunden:	69.54	6.09

4.8.7. Herstellung des Propensäure, [R-(1R*,2S*)]-[1,2-bis(2-methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (27a)

Ansatz:

250 mg (0.76 mmol)Alkohol 23a137 mg (1.52 mmol, 2.0 eq.)Acrylsäurechlorid154 mg (1.52 mmol, 2.0 eq.)Triethylamin10 mlCH2Cl2 wasserfrei

Reaktionsdurchführung:

250 mg **23a** wurden unter N₂-Atmosphäre in wasserfreiem CH₂Cl₂ gelöst, mit NEt₃ versetzt und das Säurechlorid langsam zugetropft. Das Reaktionsgemisch wurde 12 h bei RT gerührt und nach Kontrolle des Umsatzes mittels DC mit CH_2Cl_2 verdünnt, mit 5%-iger KHSO₄-Lösung, ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die dabei erhaltenen 338 mg Rohprodukt wurden mittels VFC gereinigt (10g Kieselgel, PE/E 6:1 \rightarrow E_{rein}).

Ergebnis:

254 mg 27a als farblose Kristalle (87 % d. Th.)

DC: $R_f = 0.62$ (PE/E 1:1)

 $[\alpha]_{D}^{20}$: +58.3° (CH₂Cl₂, c = 1.17)

F_p: 53-55°C

¹**H-NMR (CDCl₃):** $\delta = 7.16-7.01$ (m, 4H, Ph-H), 6.78-6.59 (m, 4H, Ph-H), 6.55/5.10 (2d, J=3.5 Hz, 2H, OCHPh), 6.34 (dd, 1H, J₁=17.2 Hz, J₂=1.8 Hz, CH=C<u>H</u>₂), 6.08 (dd, 1H, J₁=17.2 Hz, J₂=10.2 Hz, C<u>H</u>=CH₂), 5.73 (dd, 1H, J₁=10.2 Hz, J₂=1.8 Hz, CH=C<u>H</u>₂), 3.46/3.45 (2s, 6H, OCH₃), 3.12 (d, J=6.3 Hz, 2H, O-C<u>H</u>₂CH(CH₃)₂), 1.89-1.69 (m, 1H, O-CH₂C<u>H</u>(CH₃)₂), 0.81 (d, J=6.7 Hz, 6H, O-CH₂CH(C<u>H</u>₃)₂)

¹³C-NMR (CDCl₃): $\delta = 165.01$ (s, O-CO), 157.31/156.72 (2s, Ph-C-2), 130.25 (t, CH=<u>C</u>H₂), 129.04/128.33/128.32/128.15/128.08/119.79/119.69/109.69/109.49 (9d, Ph-C, <u>C</u>H=CH₂), 126.48/125.77 (2s, Ph-C-1), 76.26 (t, O-<u>C</u>H₂-CH(CH₃)₂), 75.81/70.93 (2d, OCHPh), 55.27/55.07 (2q, OCH₃), 28.69 (d, O-CH₂-<u>C</u>H(CH₃)₂), 19.37/19.33 (2q, O-CH₂-CH(<u>C</u>H₃)₂)

C23H28O5x0.2H2O (388.08 g/mol)

	С	Н
Berechnet:	71.19	7.38
Gefunden:	71.26	7.47

4.8.8. Herstellung des Propensäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2bis(2-methoxyphenyl)ethyl]esters (27f)

Es wurden 118 mg (0.355 mmol) des Alkohols **23f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.8.7.

Ergebnis:

102 mg 27f als glasartiger Feststoff (74 % d. Th.)

DC: $R_f = 0.37$ (PE/E 2:1)

 $[\alpha]_{D}^{20}$: +40.7° (CH₂Cl₂, c = 0.95)

¹**H-NMR (CDCl₃):** $\delta = 7.18-6.57$ (m, 9H, Ph-H, OCHPh), 6.35 (dd, 1H, J₁=17.3 Hz, J₂=1.8 Hz, CH=C<u>H₂</u>), 6.09 (dd, 1H, J₁=17.3 Hz, J₂=10.3 Hz, C<u>H</u>=CH₂), 5.74 (dd, 1H, J₁=10.3 Hz, J₂=1.8 Hz, CH=C<u>H₂</u>), 5.19 (d, J=3.5 Hz, 1H, OCHPh), 3.58-3.42 (m, 7H, davon 3.54 (s, 3H, OCH₃), OCH₂CH₂O), 3.39/3.28 (2s, 6H, OCH₃)

¹³C-NMR (CDCl₃): $\delta = 164.96$ (s, O-CO), 157.21/156.68 (2s, Ph-C-2), 130.35 (t, CH=<u>C</u>H₂), 128.97/128.52/128.37/128.30/127.72/119.83/119.75/109.71/109.50 (9d, Ph-C, <u>C</u>H=CH₂), 125.94/125.67 (2s, Ph-C-1), 75.95/69.05 (2t, OCH₂CH₂O), 75.95/70.88 (2d, OCHPh), 59.04/55.34/55.00 (3q, OCH₃)

C ₂₂ H ₂₆ O ₆ (386.	45 g/mol)	
	С	Н
Berechnet:	68.38	6.78
Gefunden:	68.16	6.83

4.8.9. Herstellung des Propensäure, [R-(1R*,2S*)]-[2-(2-methoxyethoxy)-1,2diphenyl)ethyl]esters (27g)

Es wurden 300 mg (1.10 mmol) des Alkohols **23g** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.8.7.

Ergebnis:

234 mg 27f als glasartiger Feststoff (65 % d. Th.)

DC: $R_f = 0.38$ (PE/E 2:1)

¹H-NMR (CDCl₃): entspricht Literatur [117]

4.8.10. Herstellung des Propensäure, (2-methoxyphenyl)methylesters (27h)

Ansatz:

3.00 g (21.7 mmol)	2-Methoxybenzylalkohol (6a)
1.97 g (21.7 mmol, 1.0 eq.)	Acrylsäurechlorid
2.20 g (21.7 mmol, 1.0 eq.)	Triethylamin
30 ml	Et ₂ O wasserfrei

Reaktionsdurchführung:

3.00 g 6a und 2.20 g Triethylamin wurden unter N₂-Atmosphäre in 30 ml wasserfreiem Et₂O vorgelegt und bei 0°C langsam 1.97 g Acrylsäurechlorid zugetropft. Das Reaktionsgemisch wurde 12 h bei RT gerührt und nach Kontrolle des Umsatzes mittels DC mit Wasser gequencht, die organische Phase abgetrennt und die wässrige Phase mehrmals mit Ether extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die dabei erhaltenen 3.10 g Rohprodukt wurden mittels VFC gereinigt (60g Kieselgel, PE/E 7:1 \rightarrow E_{rein}).

Ergebnis:

2.17 g 27h als farbloses Öl (52 % d. Th.)

DC: $R_f = 0.64$ (PE/E 2:1)

¹H-NMR (CDCl₃): $\delta = 7.39-7.29$ (m, 2H, Ph-H), 7.01-6.89 (m, 2H, Ph-H), 6.48 (dd, 1H, J₁=17.2 Hz, J₂=1.8 Hz, CH=C<u>H₂</u>), 6.20 (dd, 1H, J₁=17.3 Hz, J₂=10.3 Hz, C<u>H</u>=CH₂), 5.84 (dd, 1H, J₁=10.3 Hz, J₂=1.7 Hz, CH=C<u>H₂</u>), 5.29 (s, 1H, OCH₂Ph), 3.85 (s, 3H, OCH₃)

¹³C-NMR (CDCl₃): $\delta = 166.12$ (s, O-CO), 157.52 (s, Ph-C-2), 130.72 (t, CH=<u>C</u>H₂), 129.60/129.56/128.52/120.42/110.47 (5d, Ph-C, <u>C</u>H=CH₂), 124.21 (s, Ph-C-1), 61.75 (t, OCH₂Ph), 55.39 (q, OCH₃)

C₁₁H₁₂O₃ (192.22 g/mol)

	С	Н
Berechnet:	68.74	6.29
Gefunden:	69.00	6.45

4.9. Modellreaktionen

- 4.9.1. a-Alkylierung der Propionsäureester ohne Zusatz von LiCl
- 4.9.1.1. Herstellung des α-Methylbenzolpropansäure, [R-(1R*,2S*)]-[1,2-bis(4methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (28c)

Ansatz:

100 mg (0.26 mmol)	Propionsäureester 25c
52.4 mg (0.52 mmol, 2.0 eq)	DIPA
0.205 ml (0.510 mmol, 1.97 eq.)	2.5 M BuLi-Lösung in Hexan
354 mg (2.07 mmol, 8.0 eq.)	Benzylbromid
3 ml	THF wasserfrei

Reaktionsdurchführung:

52.4 mg DIPA wurden unter N₂-Atmosphäre in 0.5 ml wasserfreiem THF vorgelegt, auf -30°C abgekühlt, langsam 0.205 ml BuLi zugetropft, das Gemisch binnen 1 h auf -5° C erwärmt und 30 min. bei dieser Temperatur gerührt. Anschließend wurde auf -70° C abgekühlt und der zuvor mit Benzol eingedampfte und am Hochvakuum getrocknete Ester **25c**, gelöst in 2.5 ml wasserfreiem THF, langsam zugetropft. Das Gemisch wurde 1.5 h bei -70°C gerührt, dann frisch destilliertes Benzylbromid zugetropft und eine weitere Stunde bei -70°C gerührt. Es wurde binnen 1 h auf RT erwärmt und noch 1 h weitergerührt. Das Gemisch wurde mit Wasser hydrolysiert, die Phasen getrennt und die wässrige Phase mehrmals mit Ether extrahiert. Die vereinigten etherischen Phasen wurden mit 5%-iger KHSO₄-Lösung und ges. NaHCO₃-Lösung gewaschen, mit Na₂SO₄ getrocknet, filtriert und
am Rotavapor zur Trockene eingedampft. Die so erhaltenen 300 mg Rohprodukt wurden mittels Säulenchromatographie gereinigt (5g Kieselgel; PE/E 50:1 \rightarrow E_{rein}).

Ergebnis:

98 mg 28c als farbloses Öl (79 % d. Th.)

DC: $R_f = 0.42$ (PE/E 3:1)

¹H-NMR (CDCl₃): δ = 7.24-6.78 (m, 13H, Ph-H), 5.81(d, J=6.5 Hz, 1H, OCHPh), 4.41/4.39 (2d/Diast., J=6.5 Hz, 1H, OCHPh), 3.80 (s, 6H, Ph-OCH₃), 3.14-2.84 (m, 3H, O-CH₂CH(CH₃)₂, CO-CH(CH₃)-CH₂-Ph), 2.71-2.45 (m, 2H, CH₂-Ph), 1.85-1.65 (m, 1H, O-CH₂CH(CH₃)₂), 1.00/0.97 (2d/Diast., J=6.8 Hz, 3H, CO-CH(CH₃)-CH₂-Ph), 0.79/0.78 (2d, J=6.7 Hz, 6H, O-CH₂CH(CH₃)₂)

¹³C-NMR (CDCl₃): $\delta = 174.59/174.53$ (2s/Diast., CO), 159.22/159.19/159.11/159.06 (4s/Diast., Ph-C-4), 139.27/130.78/130.00/129.88 (4s, Ph-C-1, davon 130.00/129.88 Diast.), 129.11/128.97/128.87/128.22/126.12/113.27/113.08 (7d, Ph-C), 83.61/77.39 (2d, OCHPh), 75.87 (t, O-<u>C</u>H₂-CH(CH₃)₂), 55.14 (q, Ph-OCH₃), 41.44/41.30 (2d/Diast., CO-<u>C</u>H(CH₃)-CH₂-Ph), 39.28/39.20 (2t/Diast., CH₂-Ph), 28.46 (d, O-CH₂-<u>C</u>H(CH₃)₂), 19.22 (q, O-CH₂-CH(<u>C</u>H₃)₂), 16.38/16.20 (2q/Diast., CO-CH(<u>C</u>H₃)-CH₂-Ph)

C₃₀H₃₆O₅ (476.62 g/mol)

	С	Н
Berechnet:	75.60	7.61
Gefunden:	75.30	7.56

4.9.1.2. Herstellung des a-Methylbenzolpropansäure, [R-(1R*,2S*)]-[2-(2methylpropoxy)-1,2-bis-(2-trifluormethylphenyl)ethyl]esters (28d)

Es wurden 100 mg (0.216 mmol) des Propionsäureesters **25d** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.1.1.

Ergebnis:

57 mg 28d als farbloses Öl (48 % d. Th.)

DC: R_f = 0.80 (PE/E 1:1)

¹**H-NMR (CDCl₃):** $\delta = 7.76-6.92$ (m, 13H, Ph-H), 6.42/6.14 (2d/Diast., J=7.3 Hz bzw. 7.5 Hz, 1H, PhCHOCO), 4.98 (d, J=7.6 Hz, 1H, PhCHO), 3.00-2.35 (m, 5H, O-CH₂CH(CH₃)₂, CO-CH(CH₃)-CH₂Ph, CO-CH(CH₃)-CH₂Ph), 1.74-1.52 (m, J=6.6 Hz, 1H, OCH₂CH(CH₃)₂), 0.90/0.86 (2d/Diast., J=6.9 Hz bzw. 6.8 Hz, 3H, CO-CH(CH₃)-CH₂Ph), 0.65/0.64 (2d/Diast., J=6.8 Hz bzw. 6.7 Hz, 6H, OCH₂CH(CH₃)₂)

¹³C-NMR (CDCl₃): $\delta = 173.87/173.78$ (2s/Diast., CO), 139.01/138.93 (2s/Diast., Ph-C-1), 138.35/138.24/137.32/137.30 (4q/Diast., J(C,F)=1.3/0.9/1.4/1.4 Hz, Ph-C-1), 132.10/131.65 (2d, Ph-C-4), 129.39/129.31/128.79/128.73/128.54/128.38/128.27/128.19/128.11/128.08/ 127.96 (11d/Diast., Ph-C, Ph-C-5, Ph-C-6), 129.51/129.44 (2q, J(C,F)=29.9/30.2 Hz, Ph-C-2), 125.61/125.04/125.01 (3dq/Diast., J(C,F)=5.6/5.7/5.9Hz, Ph-C-3), 124.28/124.09 (2q, J(C,F)=274.4/274.3 Hz, <u>C</u>F₃), 79.10/72.90/72.85 (3d/Diast., OCHPh), 75.87 (t, O-<u>C</u>H₂CH(CH₃)₂), 41.26/41.04 (2d/Diast., CO-<u>C</u>H(CH₃)-CH₂-Ph), 39.35/38.89 (2t/Diast., CH₂-Ph), 28.24 (d, O-CH₂-<u>C</u>H(CH₃)₂), 18.91/18.84 (2q, O-CH₂-CH(<u>C</u>H₃)₂), 16.07/15.98 (2q/Diast., CO-CH(<u>C</u>H₃)-CH₂-Ph)

C ₃₀ H ₃₀ F ₆ O ₃ (552.56 g/mol)		
	С	Н
Berechnet:	65.21	5.47
Gefunden:	65.04	5.58

4.9.1.3. Herstellung des α-Methylbenzolpropansäure, [R-(1R*,2S*)]-[2-(2methoxyethoxy)-1,2-bis(2-methoxyphenyl)ethyl]esters (28f)

Es wurden 100 mg (0.257 mmol) des Propionsäureesters **25f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.1.1.

Ergebnis:

109 mg 28f als farbloses Öl (89 % d. Th.)

DC: $R_f = 0.39$ (PE/E 1:1)

¹H-NMR (CDCl₃): δ = 7.43-6.67 (m, 13H, Ph-H), 6.57(d, J=3.9 Hz, 1H, PhCHOCO), 5.23/5.18 (2d/Diast., J=3.9 Hz bzw. 3.8 Hz, 1H, PhCHO), 3.67-2.54 (m, 16H, davon 3.64/3.47/3.34 (3s, OCH₃), CO-C<u>H</u>(CH₃)-CH₂Ph, OC<u>H₂CH₂O</u>, CO-CH(CH₃)-C<u>H₂Ph</u>), 1.13/1.10 (2d/Diast., J=6.7 Hz bzw. 6.8 Hz, 3H, CO-CH(C<u>H₃</u>)-CH₂Ph)

¹³C-NMR (CDCl₃): $\delta = 174.68$ (s, O-CO), 157.29/157.24/156.75 (3s, Ph-C-2/Diast.), 139.59/139.50/126.06/125.96 (4s, Ph-C-1/Diast.), 129.05/128.98/128.55/128.52/128.31/128.27/127.70/127.61/126.12/119.87/119.78/119.74/109.72/109.50 (14d, Ph-C/Diast.), 75.95/75.87/70.73/70.64 (4d, OCHPh/Diast.), 71.84/71.82/68.91 (3t, OCH₂CH₂O/Diast.), 59.00/55.36/54.99 (3q, OCH₃), 41.62/41.43 (2d, CO-<u>C</u>H(CH₃)-CH₂Ph/Diast.), 39.48/39.38 (2t, CO-CH(CH₃)-<u>C</u>H₂Ph/Diast.), 16.46/16.38 (2q, CO-CH(<u>C</u>H₃)-CH₂Ph/Diast.)

C ₂₉ H ₃₄ O ₆ (478.	59 g/mol)	
	С	Н
Berechnet:	72.78	7.16
Gefunden:	72.59	7.16

4.9.2. a-Alkylierung der Propionsäureester unter Zusatz von LiCl

4.9.2.1. Herstellung des α-Methylbenzolpropansäure, [1R-(1R*,2S*)]-[1,2-bis(2methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (28a)

Ansatz:

105 mg (0.27 mmol)	Propionsäureester 25a
55 mg (0.54 mmol, 2.0 eq)	DIPA
0.217 ml (0.510 mmol, 1.95 eq.)	2.44 M BuLi-Lösung in Hexan
69 mg (1.63 mmol, 6.0 eq.)	Lithiumchlorid
373 mg (2.16 mmol, 8.0 eq.)	Benzylbromid
10 ml	THF wasserfrei

Reaktionsdurchführung:

55 mg DIPA wurden unter N₂-Atmosphäre in 0.5 ml wasserfreiem THF vorgelegt, auf -50° C abgekühlt, langsam 0.217 ml BuLi zugetropft, das Gemisch binnen 1 h auf 0°C erwärmt, 30 min. bei dieser Temperatur gerührt und daraufhin auf -70°C abgekühlt. Der Ester **25a** wurde durch Eindampfen mit Benzol und anschließendes Absaugen am Hochvakuum getrocknet, gemeinsam mit 69 mg LiCl in ca. 8 ml THF gelöst und langsam bei -70°C zugetropft. Das Gemisch wurde 1.5 h bei -70°C gerührt, dann frisch destilliertes Benzylbromid zugetropft und eine weitere Stunde bei -70°C gerührt. Es wurde binnen 2 h auf RT erwärmt und noch 12 h weitergerührt. Das Gemisch wurde mit Wasser hydrolysiert, die

Phasen getrennt und die wässrige Phase mehrmals mit Ether extrahiert. Die vereinigten etherischen Phasen wurden mit 5%-iger KHSO₄-Lösung, ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen, mit Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die so erhaltenen 173 mg Rohprodukt wurden mittels Säulenchromatographie gereinigt (6g Kieselgel; PE/E 10:1 \rightarrow E_{rein}).

Ergebnis:

75 mg 28a als farbloses Öl (58 % d. Th.)

DC: $R_f = 0.42$ (PE/E 3:1)

¹H-NMR (CDCl₃): entspricht Literatur [36]

4.9.2.2. Herstellung des α-Methylbenzolpropansäure, [R-(1R*,2S*)]-[2-(2methoxyethoxy)-1,2-bis(2-methoxyphenyl)ethyl]esters (28f)

Es wurden 105 mg (0.27 mmol) des Propionsäureesters **25f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.2.1.

Ergebnis:

109 mg 28f als farbloses Öl (84 % d. Th.)

DC: $R_f = 0.39$ (PE/E 1:1)

¹H-NMR (CDCl₃): entspricht 4.9.1.3

4.9.3. Reduktion des Benzoylameisensäureesters 26a unter Zusatz von ZnCl₂

Ansatz:

100 mg (0.215 mmol)	Benzoylameisensäureester 26a
0.28 ml (0.280 mmol, 1.3 eq.)	L-Selectride-Lösung (1.0 M in THF)
0.43 ml (0.43 mmol, 2.0 eq.)	ZnCl ₂ -Lösung (1.0 M in Diethylether)
5 ml	THF wasserfrei

Reaktionsdurchführung:

100 mg des Esters wurden unter N2-Atmosphäre in 5 ml wasserfreiem THF gelöst und bei RT mit 0.43 ml ZnCl₂-Lösung versetzt. Nach Abkühlen auf -78°C wurden 0.24 ml L-Selectride-Lösung zugetropft und 1 h bei konstanter Temperatur gerührt. Nach Kontrolle des Reaktionsumsatzes mittels DC wurden weitere 0.04 ml L-Selectride-Lösung zugegeben und eine weitere Stunde bei -78°C gerührt. Die Reaktionslösung wurde auf -30 °C erwärmt, mit einer Mischung aus 3 ml 2N NaOH und 3 ml 30%-iger H₂O₂-Lösung hydrolysiert, mit Ether verdünnt und die Phasen wurden getrennt. Die wässrige Phase wurde mit Ether extrahiert und die vereinigten organischen Phasen mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die somit gewonnenen 130 mg Rohprodukt wurden mittels VFC gereinigt (3.6 g Kieselgel, PE/E 20:1 \rightarrow E_{rein}).

Ergebnis:

79 mg 29a als gelbliches Öl (79 % d. Th.)

¹H-NMR (CDCl₃): entspricht Literatur [36]

4.9.4. Reduktion der Benzoylameisensäureester ohne Zusatz von ZnCl₂

4.9.4.1. Herstellung des α-Hydroxybenzolessigsäure, [R-(1R*,2S*)]-[1,2-bis(4methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (29c)

Ansatz:

53 mg (0.115 mmol)	Benzoylameisensäureester 26c
0.14 ml (0.126 mmol, 1.1 eq.)	L-Selectride-Lösung (0.91 M in THF)
4 ml	THF wasserfrei

Reaktionsdurchführung:

53 mg des Esters **26c** wurden unter N₂-Atmosphäre in 4 ml THF gelöst, auf –78°C gekühlt und tropfenweise mit 0.25 ml L-Selectride-Lösung versetzt. Das Reaktionsgemisch wurde 1 h bei -78°C gerührt und langsam auf 0°C erwärmt. Nach Kontrolle des Umsatzes mittels DC wurde das Reaktionsgemisch mit 5%-iger KHSO₄-Lösung hydrolysiert, mit Ether verdünnt und die Phasen getrennt. Die wässrige Phase wurde mit Ether extrahiert und die vereinigten organischen Phasen mit ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die somit gewonnenen 71 mg Rohprodukt wurden ohne weitere Reinigung in die Verseifung eingesetzt.

Ergebnis:

71 mg Rohprodukt 29c als gelbliches Öl.

DC: $R_f = 0.28$ (PE/E 3:1)

¹**H-NMR (CDCl₃):** δ = 7.31-6.57 (m, 13H, Ph-H), 5.69 (d, J=6.2 Hz, 1H, OCHPh), 5.04 (s, 1H, C<u>H</u>-OH), 4.26 (d, J=5.9 Hz, 1H, OCHPh), 3.79/3.71 (2s, 6H, OCH₃), 3.00/2.83 (2dd, J₁=8.9 Hz, J₂=6.4 Hz, 2H, O-C<u>H</u>₂CH(CH₃)₂), 1.83-1.59 (m, 1H, OCH₂C<u>H</u>(CH₃)₂), 0.69/0.68 (2d, J=6.7Hz, 6H, OCH₂CH(C<u>H</u>₃)₂)

4.9.4.2. Herstellung des α-Hydroxybenzolessigsäure, [R-(1R*,2S*)]-[2-(2methylpropoxy)-1,2-bis(2-trifluormethylphenyl)ethyl]esters (29d)

Es wurden 100 mg (0.186 mmol) des Benzoylameisensäureesters **26d** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.4.1. In diesem Fall wurden die erhaltenen 148 mg Rohprodukt allerdings mittels VFC gereinigt (4.5 g Kieselgel, PE/E 20:1 \rightarrow E_{rein}).

<u>Ergebnis:</u>

94 mg **29d** als farbloser, glasartiger Feststoff (94 % d. Th.) DC: $R_f = 0.23$ (PE/E 3:1)

¹**H-NMR (CDCl₃):** δ = 7.67-6.60 (m, 13H, Ph-H), 6.54/6.36 (2d/Diast., J=6.4 Hz bzw. 6.8 Hz, 1H, OCHPh), 5.02/4.98 (2s/Diast., 1H, C<u>H</u>-OH), 4.91/4.84 (2d/Diast., J=6.5 Hz bzw. 6.9 Hz, 1H, OCHPh), 3.25 (bs, 1H, OH), 2.96-2.76 (m, 2H, O-C<u>H</u>₂CH(CH₃)₂), 1.67-1.37 (m, 1H, OCH₂C<u>H</u>(CH₃)₂), 0.63/0.61 (3d/Diast., J=6.6 Hz bzw. J=6.7 Hz, 6H, OCH₂CH(C<u>H</u>₃)₂)

¹³C-NMR (CDCl₃): $\delta = 171.90/171.53$ (2s/Diast., O-CO), 137.59/137.45 (2s/Diast., Ph-C-1), 137.33/136.62/135.76/135.40 (4q/Diast., J(C,F)=1.4/1.3/1.3/1.3 Hz, Ph-C-1), 131.96/131.54/131.17/129.24/128.99/128.62/128.46/128.37/128.45/128.02/127.88/127.51/ 126.69/126.60 (14d/Diast., Ph-C), 129.21/128.99 (2q, J(C,F)=30.3 Hz, Ph-C-2), 125.61/125.42/125.08/124.94 (4dq/Diast., J(C,F)=5.7/5.6/5.7/6.1 Hz, Ph-C-3), 123.85/123.75 (2q, J(C,F)=274.4 Hz, CF₃), 78.20 (dq, J(C,F)=0.9 Hz, CHOH), 75.78/75.66 (2t/Diast., O-<u>CH₂CH(CH₃)₂), 74.98/74.13 (2dq/Diast., J(C,F)=2.3 Hz bzw. 1.9 Hz, OCHPh), 73.06/72.64</u> (2d/Diast., OCHPh), 28.05 (d, O-CH₂-<u>C</u>H(CH₃)₂), 18.79/18.70 (2q, O-CH₂-CH(<u>C</u>H₃)₂)

C₃₁H₂₄F₆O₄x1.1H₂O (594.34 g/mol)

	С	Н
Berechnet:	62.65	4.44
Gefunden:	62.61	4.76

4.9.4.3. Herstellung des α-Hydroxybenzolessigsäure, [R-(1R*,2S*)]-[2-(2methoxyethoxy)-1,2-bis(2-methoxyphenyl)ethyl]esters (29f)

Es wurden 107 mg (0.230 mmol) des Benzoylameisensäureesters **26f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.4.1. Die erhaltenen 167 mg des Mandelsäureesters **29f** wurden ohne weitere Reinigung in die Verseifung eingesetzt.

Ergebnis:

167 mg Rohprodukt 29f als gelbliches Öl.

DC: $R_f = 0.51$ (PE/E 1:1)

¹H-NMR (CDCl₃): δ = 7.38-5.94 (m, 13H, davon 6.46 (d, J=3.4 Hz, 1H, OCHPh), Ph-H), 5.20/5.07 (2s/Diast., 1H, C<u>H</u>-OH), 5.13/5.00 (2d/Diast., J=3.4 Hz bzw. 3.8 Hz, 1H, OCHPh), 3.55-3.22 (m, 13H, davon 3.52/3.30/3.28 (3s, 9H, OCH₃), OCH₂CH₂O)

4.9.5. Addition eines n-Butyl-Zink-Organyls an die Benzoylameisensäureester

4.9.5.1. Herstellung des α-Butyl-α-hydroxybenzolessigsäure, [R-(1R*,2S*)]-[1,2-bis(2methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (30a)

Ansatz:

100 mg (0.216 mmol)Benzoylameisensäureester 26a1.92 ml (1.90 mmol, 8.8 eq.) n-Butylmagnesiumchlorid-Lösung⁴ (0.99 M in THF)236 mg (1.73 mmol, 8.0 eq.) ZnCl25 mlEt₂O wasserfrei

Reaktionsdurchführung:

Zur Herstellung des Zinkorganyls wurden 236 mg getrocknetes ZnCl₂ unter N₂-Atmosphäre mit 2 ml Et₂O überschichtet, bei 0°C mit 1.92 ml einer frisch titrierten Lösung von n-Butylmagnesiumchlorid in THF versetzt und anschließend 2 h bei konstanter Temperatur gerührt. 100 mg des Benzoylameisensäureesters **26a** wurden unter N₂-Atmosphäre in 3 ml wasserfreiem Et₂O vorgelegt, auf -78°C gekühlt, langsam mit der Lösung des Zinkorganyls versetzt und anschließend 3 h bei -78°C gerührt. Das Reaktionsgemisch wurde bei -78°C durch Zugabe einer ges. NH₄Cl-Lösung gequencht, auf RT erwärmt, die Phasen getrennt, die wässrige Phase mehrmals mit Et₂O extrahiert und die vereinigten organischen Phasen wurden mit ges. NH₄Cl-Lösung sowie ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die hierbei gewonnenen 124 mg Rohprodukt wurden chromatographisch gereinigt (4 g Kieselgel, PE/E 4:1 \rightarrow Erein).

⁴ Eine 2.3 M Lösung von n-Butylmagnesiumchlorid in THF wurde durch Umsetzung von 17.00 g (0.184 mol) frisch destilliertem n-Butylchlorid mit 9.90 g (0.407 mol) getrockneten Magnesiumspänen in 70 ml wasserfreiem THF unter Rückfluss hergestellt.

Ergebnis:

99 mg 30a als gelbliches Öl (88 % d. Th.)

DC: $R_f = 0.41$ (PE/E 2:1)

¹H-NMR (CDCl₃): $\delta = 7.57-6.32$ (m, 14H, Ph-H, OCHPh), 5.16/5.06 (2d/Diast., J=4.1 Hz bzw. 3.7 Hz, 1H, OCHPh), 3.88 (s, 1H, OH), 3.61/3.46 (2s, 6H, Ph-OCH₃), 3.25-3.05 (m, 2H, O-C<u>H₂</u>CH(CH₃)₂), 2.36-0.81 (m, 16H, davon 0.87 (d, J=6.7Hz, 6H, O-CH₂CH(C<u>H₃)₂), O-CH₂CH(CH₃)₂, C<u>H₂CH₂CH₂CH₂CH₃)</u></u>

¹³C-NMR (CDCl₃): $\delta = 174.42$ (s, CO), 157.32/156.66 (2s, Ph-C-2), 141.75/126.08/125.20 (3s, Ph-C-1), 128.45/128.43/128.26/127.89/127.34/127.14/125.94/119.98/119.65/109.65/ 109.60 (11d, PH-C), 78.14 (s, C-OH), 76.23 (t, CH₂O), 75.51/73.99 (2d, OCHPh), 55.34/54.92 (2q, OCH₃), 39.16 (t, <u>CH₂CH₂CH₂CH₂CH₃), 28.73 (d, O-CH₂-<u>C</u>H(CH₃)₂), 25.65/22.95 (2t, CH₂<u>C</u>H₂<u>C</u>H₂CH₃), 19.35/19.32 (2q, O-CH₂-CH(<u>C</u>H₃)₂), 14.00 (q, CH₂CH₂CH₂CH₂CH₃)</u>

C₃₂H₄₀O₆ (520.67 g/mol)

	C	Н
Berechnet:	73.82	7.74
Gefunden:	73.58	7.80

4.9.5.2. Herstellung des α-Butyl-α-hydroxybenzolessigsäure, [R-(1R*,2S*)]-[2-(2methoxyethoxy)-1,2-bis(2-methoxyphenyl)ethyl]esters (30f)

Es wurden 98 mg (0.211 mmol) des Benzoylameisensäureesters **26f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.5.1.

Ergebnis:

93 mg 30a als farbloses Öl (84 % d. Th.)

DC: $R_f = 0.15$ (PE/E 3:1)

¹H-NMR (CDCl₃): δ = 7.56-6.21 (m, 14H, Ph-H, OCHPh), 5.14/5.06 (2d/Diast., J=4.1 Hz bzw. 3.9 Hz, 1H, OCHPh), 3.84 (bs, 1H, OH), 3.60/3.23 (m, 13H, davon 3.55/3.33/3.24 (3s, 9H, Ph-OCH₃), OCH₂CH₂O), 2.26-1.86 (m, 2H, CH₂CH₂CH₂CH₃), 1.42-0.81 (m, 7H, CH₂CH₂CH₂CH₃)

¹³C-NMR (CDCl₃): $\delta = 174.26$ (s, CO), 157.23/156.64 (2s, Ph-C-2), 141.79/125.58/125.09 (3s, Ph-C-1), 128.60/128.48/128.32/127.88/127.32/127.04/125.90/120.01/119.71/109.68/ 109.61 (11d, PH-C), 78.22 (s, C-OH), 75.68/73.73 (2d, OCHPh), 71.78/68.88 (2t, OCH₂CH₂O), 58.95/55.38/54.88 (3q, OCH₃), 39.17 (t, <u>CH₂CH₂CH₂CH₃), 25.63/22.93 (2t, CH₂<u>C</u>H₂CH₂CH₃), 14.02 (q, CH₂CH₂CH₂CH₃) (25.63/22.93 (2t, CH₂<u>C</u>H₂CH₂CH₃), 14.02 (q, CH₂CH₂CH₂CH₃)</u>

	С	Н
Berechnet:	71.24	7.33
Gefunden:	71.03	7.57

4.9.6. Diels Alder Reaktionen

4.9.6.1. Allgemeine Vorschrift für die Umsetzung der Acrylsäureester mit Me₂AlCl bzw. MgBr₂:Et₂O am Beispiel des Testsystems 27h/30h

Ansatz:

200 mg (1.04 mmol)	Acrylsäureester 27h
1.09 ml (1.09 mmol, 1.05 eq.)	Me ₂ AlCl-Lösung (1M in Hexan)
bzw.	
282 mg (1.09 mmol, 1.05 eq)	MgBr ₂ ·Et ₂ O
687 mg (10.4 mmol, 10 eq.)	Cyclopentadien
17 ml	CH ₂ Cl ₂ wasserfrei

Reaktionsdurchführung:

bei Verwendung von Me₂AlCl:

Der Acrylsäureester wurde unter N₂-Atmosphäre in 17 ml CH_2Cl_2 gelöst und bei -80°C mit 1.09 ml einer 1M Lösung von Me₂AlCl in Hexan versetzt. Nach 1 min. wurden ebenfalls bei -80°C 687 mg frisch monomerisiertes Cyclopentadien zugetropft, das Reaktionsgemisch wurde anschließend 2 h bei konstanter Temperatur gerührt, binnen 30 min. auf -50°C erwärmt, durch Zugabe von 3 ml H₂O hydrolysiert und auf RT erwärmt.

bei Verwendung von MgBr₂Et₂O:

282 mg MgBr₂:Et₂O wurden unter N₂-Atmosphäre mit 10 ml CH₂Cl₂ überschichtet und bei -80°C mit einer Lösung des Acrylsäureesters in 7 ml CH₂Cl₂ versetzt. Nach 1 min. wurden ebenfalls bei -80°C 687 mg frisch monomerisiertes Cyclopentadien zugetropft, das Reaktionsgemisch wurde anschließend binnen 2 h auf -30°C erwärmt, 18 bei konstanter Temperatur gerührt, durch Zugabe von 3 ml H₂O hydrolysiert und auf RT erwärmt.

Aufarbeitung:

Die Phasen wurden getrennt, die wässrige Phase wurde mehrmals mit CH₂Cl₂ extrahiert und die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Die bei Verwendung von MgBr₂·Et₂O erhaltenen 786 mg Rohprodukt wurden chromatographisch gereinigt (43 g Kieselgel, PE/E 10:1 \rightarrow E_{rein}).

Ergebnis:

229 mg des Bicyclo[2.2.1]hept-5-en-2-carbonsäure, (2-methoxyphenyl)methylesters (**31h**) als farbloses Öl (85 % d. Th.)

DC: $R_f = 0.47$ (PE/E 3:1)

¹**H-NMR (CDCl₃):** δ = 7.26-7.18 (m, 2H, Ph-H), 6.91-6.79 (m, 2H, Ph-H), 6.11/5.83 (2dd, J₁=5.6 Hz, J₂=3.0 Hz bzw. J₁=5.7 Hz, J₂=2.9 Hz, 2H, CH=CH), 5.08/5.00 (2d, 12.9 Hz, 2H, PhCH₂O), 3.76 (s, 3H, Ph-OCH₃), 3.15/2.83 (2bs, 2H, C<u>H</u>-CH=CH-C<u>H</u>), 1.89-1.77 (m, 1H, CH₂), 1.44-1.17 (m, 3H, CH₂)

¹³C-NMR (CDCl₃): $\delta = 174.61$ (s, CO), 157.42 (s, Ph-C-2), 137.64/132.40/129.40 (3d, Ph-C), 120.35 (s, Ph-C-1), 120.35/110.37 (2d, CH=CH), 61.51 (t, PhCH₂O), 55.35 (q, OCH₃), 49.57/29.23 (2t, CH₂), 45.81/43.36/42.57 (3d, <u>C</u>HCOO, <u>C</u>H-CH=CH-<u>C</u>H)

C₁₆H₁₈O₃x0.4H₂O (265.53 g/mol)

	C	Н
Berechnet:	72.38	7.14
Gefunden:	72.62	7.08

4.9.6.2. Bicyclo[2.2.1]hept-5-en-2-carbonsäure, [R-(1R*,2S*)]-[1,2-bis(2methoxyphenyl)-2-(2-methylpropoxy)ethyl]esters (31a)

Es wurden 74 mg (0.192 mmol) (für Me₂AlCl) bzw. 49 mg (127 mmol) (für MgBr₂·Et₂O) des Acrylsäureesters **27a** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.6.1.

Im Fall der Umsetzung mit MgBr₂:Et₂O wurden 53 mg (93 % d. Th.) Rohprodukt erhalten, welche ohne weitere Reinigung verseift wurden.

Die bei Verwendung von Me₂AlCl erhaltenen 93 mg Rohprodukt wurden chromatographisch gereinigt (5 g Kieselgel, PE/E 10:1 \rightarrow E_{rein}).

Ergebnis:

62 mg 31a als farbloses Öl (72 % d. Th.)

DC: $R_f = 0.39$ (PE/E 2:1)

¹H-NMR (CDCl₃): δ = 7.36-6.57 (m, 8H, Ph-H), 6.40/6.37 (2d/Diast., J=3.7 Hz bzw. 4.5 Hz, 1H, OCHPh), 6.05/5.99 (2dd/Diast., J₁=5.5 Hz, J₂=2.9 Hz bzw. J₁=5.6 Hz, J₂=3.0 Hz, 1H, CH=CH), 5.72/5.66 (2dd/Diast., J₁=5.8 Hz, J₂=2.6 Hz bzw. J₁=5.7 Hz, J₂=2.7 Hz, 1H, CH=CH), 5.05/5.03 (2d/Diast., J=3.5 Hz, 1H, OCHPh), 3.53/3.44 (2s/Diast., 6H, OCH₃), 3.16/2.79 (2bs, 2H, C<u>H</u>-CH=CH-C<u>H</u>), 3.10/3.07 (2d/Diast., J=6.5 Hz bzw. 6.7 Hz, 2H, OC<u>H₂CH(CH₃)₂), 2.98/2.84 (m, 1H, CHCOO), 1.87-0.77 (m, 11H, davon 0.82/0.79 (2d, J=5.9 Hz, 6H, OCH₂CH(C<u>H₃)₂), OCH₂C<u>H(CH₃)₂), OCH₂C<u>H(CH₃)</u>2, OCH₂C<u>H(CH₃)</u>2, OCH₂C<u>H(CH₃), O</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>

¹³C-NMR (CDCl₃): $\delta = 173.45/173.41$ (s, CO), 157.49/157.34/156.88/156.73 (4s/Diast., Ph-C-2), 137.39/132.58/132.48 (3d/Diast., CH=CH), 128.48/128.38/128.17/128.09/128.07/ 127.83/119.91/119.78/119.68/119.51/109.84/109.69/109.59/109.45 (14d/Diast., Ph-C), 126.90/126.69/126.64/126.14 (4s, Ph-C-1), 76.20 (t, OCH₂), 75.79/75.71/70.91/70.57 (4d/Dias., OCHPh), 55.40/55.23/55.08 (3q/Diast., OCH₃), 49.55/49.50/29.02/28.77 (4t/Diast., CH₂), 45.82/45.69/43.53/42.57/42.50 (5d/Diast., aliph. CH), 28.71 (d, CH(CH₃)₂), 19.37 (q, CH(CH₃)₂)

C₂₈H₃₄O₅x0.3H₂O (455.98 g/mol)

	С	Н
Berechnet:	73.76	7.65
Gefunden:	73.81	7.63

4.9.6.3. Herstellung des Bicyclo[2.2.1]hept-5-en-2-carbonsäure, [R-(1R*,2S*)]-[2-(2methoxyethoxy)-1,2-bis(2-methoxyphenyl)ethyl]esters (31f)

Es wurden 82 mg (0.212 mmol) des Acrylsäureesters **27f** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.6.1.

Ergebnis:

62 mg **31a** als farbloses Öl (65 % d. Th., korr. Ausbeute aufgrund von 19 % rückgewonnenem Edukt: 80 % d. Th.)

DC: $R_f = 0.28$ (PE/E 2:1)

¹**H-NMR (CDCl₃):** $\delta = 7.32-6.11$ (m, 9H, Ph-H, OCHPh), 6.07/5.97 (m, 1H, CH=CH), 5.79/5.62 (m, 1H, CH=CH), 5.13/5.11 (2d/Diast., J=5.1 Hz bzw. 3.9 Hz, 1H, OCHPh), 3.60-3.24 (m, 13 H, davon 3.60/3.52/3.38/3.37/3.28/3.24 (6s/Diast., 9H, OCH₃), OCH₂CH₂O), 3.16/2.80 (2bs, 2H, C<u>H</u>-CH=CH-C<u>H</u>), 3.00/2.85 (m, 1H, CHCOO), 1.89-1.14 (m, 4H, 2xCH₂)

¹³C-NMR (CDCl₃): $\delta = 173.42/173.38$ (s, CO), 157.39/157.24/156.85/156.71 (4s/Diast., Ph-C-2), 137.42/137.31/132.67/132.40 (4d/Diast., CH=CH), 128.67/128.59/128.52/128.33/128.24/127.77/127.56/119.96/119.83/119.75/119.59/109.85/109.72/109.59/109.48 (15d/Diast., Ph-C), 126.50/126.15/126.31/126.06 (4s/Diast., Ph-C-1), 75.94/75.77/70.70/70.46 (4d/Dias., OCHPh), 71.87/69.00/68.80 (3t/Diast, OCH₂CH₂O), 59.03/58.95/55.48/55.31/55.01 (5q/Diast., OCH₃), 49.56/49.48/29.00/28.75 (4t/Diast., CH₂), 45.86/45.74/43.48/42.56/42.49 (5d/Diast., aliph. CH)

C ₂₇ H ₃₂ O ₆ x0.3H	l ₂ O (457.95 g/mol)
	С	Н
Berechnet:	70.81	7.18
Gefunden:	70.89	7.23

4.9.6.4. Herstellung des Bicyclo[2.2.1]hept-5-en-2-carbonsäure, [R-(1R*,2S*)]-[2-(2methoxyethoxy)-1,2-diphenylethyl]esters (31g)

Es wurden 76 mg (0.234 mmol) (für Me₂AlCl) bzw. 77 mg (0.236 mmol) (für MgBr₂:Et₂O) des Acrylsäureesters **27g** in die Reaktion eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung siehe 4.9.6.1.

Im Fall der Umsetzung mit MgBr₂:Et₂O wurden 70 mg (76 % d. Th.) Rohprodukt erhalten, welche ohne weitere Reinigung verseift wurden.

Die bei Verwendung von Me₂AlCl erhaltenen 92 mg Rohprodukt wurden chromatographisch gereinigt (6 g Kieselgel, PE/E 10:1 \rightarrow E_{rein}).

Ergebnis:

83 mg 31g als farbloses Öl (90 % d. Th.)

DC: $R_f = 0.49$ (PE/E 2:1)

¹H-NMR (CDCl₃): δ = 7.25-7.19 (m, 10H, Ph-H), 5.97-5.88 (m, 1H, CH=CH), 5.79/5.62 (m, 1H, CH=CH), 5.78/5.75 (2d/Diast., J=6.9 Hz bzw. 7.6 Hz, 1H, OCHPh), 5.48/5.13 (2dd/Diast., J₁=5.7 Hz, J₂=2.7 Hz bzw. J₁=5.5 Hz, J₂=2.7 Hz, 1H, CH=CH), 4.49 (d, J=7.0 Hz, 1H, OCHPh), 3.44-3.22 (m, 4H, OCH₂CH₂O), 3.14/3.10 (2s/Diast., 3H, OCH₃), 3.06/2.87 (2bs, 2H, C<u>H</u>-CH=CH-C<u>H</u>), 2.78-1.07 (m, 5H, aliph.-H)

¹³C-NMR (CDCl₃): δ = 173.16/173.09 (s, CO), 138.61/138.38/138.22/137.94 (4s/Diast., Ph-C-1), 137.45/137.38/132.18/132.01 (4d/Diast., CH=CH), 127.98/127.91/127.84/127.82/ 127.77/127.72/127.68 (7d/Diast., Ph-C), 84.56/84.52/77.32/77.30 (4d/Dias., OCHPh), 71.85/71.81/68.79/68.65 (4t/Diast, OCH₂CH₂O), 58.86/58.80 (2q/Diast., OCH₃), 49.57/49.43/28.97/28.64 (4t/Diast., CH₂), 45.95/45.61/43.33/43.14/42.67 (5d/Diast., aliph. CH)

C₂₅H₂₈O₄ (392.50 g/mol)

	С	Н
Berechnet:	76.50	7.19
Gefunden:	76.29	7.26

4.10. Verseifungen / reduktive Abspaltung

4.10.1. Allgemeine Vorschrift zur Verseifung der α-alkylierten Propionsäureester 28a, 28c, 28d und 28f

Ansatz:

1 eq.	α -Methyl-benzolpropionsäureester 28a/28c/28d/28f
10 eq.	LiOH
3 ml	THF/MeOH/H ₂ O 3:2:1

Reaktionsdurchführung:

1 eq. (ca. 80 mg) des Esters wurde in 2.5 ml THF/MeOH 3:2 gelöst, mit einer Suspension von 10 eq. LiOH in 0.5 ml H₂O versetzt und 12 h bei RT gerührt. THF und MeOH wurden am Rotavapor entfernt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und mehrmals mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

ca. 20 mg (82 % - 97 % d. Th.) α-Methyl-benzolpropionsäure (32) als hellgelbes Öl

¹H-NMR (CDCl₃): entspricht Literatur [118]

4.10.2. Allgemeine Vorschrift zur basischen Verseifung der Mandelsäureester 29a, 29c, 29d und 29f

Ansatz:

 1 eq.
 Mandelsäureester 29a/29c/29d/29f

 3 eq.
 LiOH

 15 ml
 THF/MeOH/H₂O 10:4:1

Reaktionsdurchführung:

1 eq. (ca. 80 mg) des Esters wurde in 14 ml THF/MeOH 5:2 gelöst, mit einer Suspension von 3 eq. LiOH in 1 ml H₂O versetzt und 1.5 h bei RT gerührt. THF und MeOH wurden am Rotavapor entfernt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und mehrmals mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

ca. 20 mg (77 % - 92 % d. Th.) Mandelsäure (33) als farbloser Feststoff

¹**H-NMR (Aceton-d₆):** δ = 7.40-7.16 (m, 5H, Ph-H), 5.08 (s, 1H, C<u>H</u>OH), 4.71 (s, 1H, OH)

4.10.3. Sauer katalysierte Verseifung des Mandelsäureesters 29a

<u>Ansatz:</u>

50 mg (0.108 mmol)	Mandelsäureester 29a
0.15 ml (1.9 mmol, 18 eq.)	Trifluoressigsäure
0.85 ml	CH_2Cl_2

Reaktionsdurchführung:

50 mg des Esters **29a** wurden in 1 ml 15%-iger TFA (in CH_2Cl_2) gelöst und 30 min. bei RT gerührt. Das Reaktionsgemisch wurde zur Trockene eingedampft, der Rückstand (20 mg) in CH_2Cl_2 aufgenommen, mit ges. NaHCO₃-Lösung extrahiert, der wässrige Extrakt mit konz. HCl auf pH 2 gestellt und mehrmals mit EtOAc extrahiert. Die vereinigten EtOAc-Phasen wurden mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

9 mg Mandelsäure (33) als farbloser Feststoff (55 % d. Th.)

¹H-NMR (Aceton-d₆): siehe 4.10.2

4.10.4. Reduktive Spaltung des Mandelsäureesters 29a

Ansatz:

78 mg (0.168 mmol)	Mandelsäureester 29a
18 mg (0.47 mmol, 2.8 eq.)	LiAlH ₄
5 ml	Et ₂ O wasserfrei

Reaktionsdurchführung:

18 mg LiAlH₄ wurden unter N₂-Atmosphäre in 2 ml wasserfreiem Et₂O suspendiert und 78 mg des Esters, gelöst in 3 ml Ether wurden zugetropft. Das Reaktionsgemisch wurde 12 h bei RT gerührt und nach Kontrolle des Umsatzes mittels DC mit Eiswasser hydrolysiert. Die wässrige Phase wurde mehrmals mit EtOAc extrahiert und die vereinigten organischen Phasen mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Die erhaltenen 77 mg Rohprodukt wurden chromatographisch gereinigt (5g Kieselgel, PE/E 10:1 \rightarrow E/MeOH 5:1).

Ergebnis:

9 mg 1-Phenyl-1,2-ethandiol (34) als farbloses Öl (39 % d. Th.)

¹H-NMR (CDCl₃): entspricht Literatur [119]

4.10.5. Allgemeine Vorschrift zur Verseifung der α-Butyl-αhydroxybenzolessigsäureester 30a und 30f

Ansatz:

1 eq.	Hydroxyester 30a/30f
5 eq.	LiOH
10 ml	THF/MeOH/H ₂ O 10:4:1

Reaktionsdurchführung:

1 eq. (ca. 70 mg) des Esters wurde in 10 ml THF/MeOH/H₂O 10:4:1 vorgelegt, 5 eq. LiOH zugegeben und das Gemisch 12 h auf RF erhitzt. THF und MeOH wurden am Rotavapor entfernt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und mehrmals mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

28 mg bzw. 25 mg α -Butyl- α -hydroxybenzolessigsäure (35) als farbloser Feststoff (99 bzw. 90 % d. Th.)

¹**H-NMR (Aceton-d₆):** δ = 7.71-7.67 (m, 2H, Ph-H), 7.40-7.23 (m, 4H, Ph-H), 2.31-1.94 (m, 2H, CH₂-CH₂-CH₂-CH₂-CH₃), 1.47-1.24 (m, 4H, CH₂-CH₂-CH₃), 0.88 (t, J=7.1Hz, 3H, CH₂-CH₂-CH₂-CH₃)

4.10.6. Allgemeine Vorschrift zur Verseifung der Norbornencarbonsäureester 31a, 31f und 31g

Ansatz:

39-66 mg (0.09-0.17 mmol) 5 ml Norbornencarbonsäureester **31a**, **31f** bzw. **31g** LiOH (1.5 M in DME/H₂O 1:1)

Reaktionsdurchführung:

39-66 mg des Esters wurden in 5 ml 1.5 M LiOH suspendiert und unter starkem Rühren 24 h (für die Derivate **31f** und **31g**) bzw. 36 h (für **31a**) auf RF erhitzt. DME wurde am Rotavapor entfernt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und mehrmals mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

9-22 mg Norbornencarbonsäure (36) als farbloses Öl (75 % - 97 % d. Th.)

¹H-NMR (CDCl₃): entspricht Literatur [110]

4.10.7. Verseifung des Norbornencarbonsäureesters 31h

Ansatz:

152 mg (0.63 mmol)	Norbornencarbonsäure-2-methoxybenzylester (31h)
42 mg (1.88 mmol, 3.0 eq.)	LiOH
10 ml	THF/MeOH/H ₂ O 10:4:1

Reaktionsdurchführung:

152 mg des Esters wurden in 10 ml THF/MeOH/H₂O 10:4:1 vorgelegt, 42 mg LiOH zugegeben und das Gemisch 16 h bei RT gerührt. THF und MeOH wurden am Rotavapor entfernt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und mehrmals mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

<u>Ergebnis:</u>

69 mg Norbornencarbonsäure (36) als farbloses Öl (79 % d. Th.)

¹H-NMR (CDCl₃): entspricht Literatur [110]

4.11. Derivatisierung der abgespaltenen Carbonsäuren für die HPLC- bzw. GC-Analytik

4.11.1. Derivatisierung der a-Methylbenzolpropionsäure (32) mit

L-Valinmethylester

Herstellung von L-Valinmethylester:

Durch eine Suspension von 700 mg L-Valinmethylester-Hydrochlroid in 35 ml wasserfreiem Ether wurde 30 min. lang bei -30°C trockener $NH_{3(g)}$ und anschließend 5 min. lang N_2 geleitet. Die Suspension wurde auf RT gebracht, das entstandene NH_4Cl abfiltriert und das Filtrat unter N_2 -Atmosphäre vorsichtig am Rotavapor eingedampft, wobei 500 mg (91 % d. Th.) L-Valinmethylester erhalten wurden.

Ansatz:

22 mg (0.134 mmol) α -Methylbenzolpropionsäure (32) 21 mg (0.161 mmol, 1.2 eq.) L-Valinmethylester 20 mg (0.148 mmol, 1.1 eq.) HOBt 20 mg (0.161 mmol, 1.2 eq.) DIC 3 ml CH₂Cl₂ wasserfrei

Reaktionsdurchführung:

22 mg der Carbonsäure wurden gemeinsam mit 20 mg 1-Hydroxybenzotriazol unter N₂-Atmosphäre in 1.5 ml CH₂Cl₂ gelöst, bei RT mit einer Lösung von L-Valinmethylester in CH₂Cl₂ versetzt, auf -30°C abgekühlt und eine Lösung von DIC in CH₂Cl₂ langsam zugetropft. Das Reaktionsgemisch wurde 30 min. bei -30°C gerührt, anschließend langsam auf RT gebracht und 12 h bei RT weitergerührt. Die entstandene Suspension wurde filtriert, mit CH₂Cl₂ verdünnt, je zweimal mit ges. NaHCO₃-Lösung, 5%-iger KHSO₄-Lösung und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Das erhaltene Rohprodukt wurde zur Entfernung von Diisopropylharnstoff in ca. 1 ml Aceton aufgenommen, auf -10°C abgekühlt, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

34 mg 3-Methyl-2-(2-methyl-3-phenyl-propionylamino)-buttersäuremethylester (37) als farbloses Öl (92 % d. Th.)

¹**H-NMR (CDCl₃):** $\delta = 7.28-7.02$ (m, 5H, Ph-H), 5.81/5.77 (2d/Diast., J=9.4 Hz, 1H, NH), 4.44/4.40 (2dd/Diast., J₁=6.6 Hz, J₂=5.0 Hz, 1H, C<u>H</u>-NH), 3.63/3.60 (2s/Diast., 3H, OCH₃), 2.97-2.39 (m, 3H, Ph-C<u>H</u>₂-C<u>H</u>), 2.10-1.82 (m, 1H, C<u>H</u>(CH₃)₂), 1.12/1.05 (2d/Diast., J=6.7 Hz bzw. 6.5 Hz, 3H, CH-C<u>H₃</u>), 0.81/0.78/0.62/0.60 (4d/Diast., J=6.5 Hz bzw. 6.9 Hz, 6H, CH(C<u>H₃)₂)</u>

¹³C-NMR (CDCl₃): $\delta = 175.48/175.22/172.51/172.24$ (4s/Diast., CON, COO), 139.62/139.48 (2s/Diast., Ph-C-1), 128.87/128.33/128.28/126.22/126.16 (5d/Diast., Ph-C), 56.74/56.69 (2d/Diast., NHCHCO), 51.95/51.93 (2q/Diast., OCH₃), 43.78/43.28 (2d/Diast., CHCON), 40.45/39.91 (2t/Diast., PhCH₂), 31.29/31.04 (2d/Diast., CH(CH₃)₂), 18.74/18.51/17.74/17.65/17.71/17.56 (6q/Diast., 3xCH₃)

HPLC-Analytik: Supelcosil LC-18, H₂O/MeOH 45:55, 0.2 ml/min., UV-Detektion bei 214nm/254nm, t_{R1} =29.5 min., t_{R2} =37.2 min.

4.11.2. Derivatisierung von Mandelsäure (33) mit L-Valinmethylester

Ansatz:

8 mg (0.053 mmol)	Mandelsäure (33)
8 mg (0.061 mmol, 1.1 eq.)	L-Valinmethylester
8 mg (0.059 mmol, 1.1 eq.)	HOBt
8 mg (0.063 mmol, 1.2 eq.)	DIC
3 ml	CH ₂ Cl ₂ wasserfrei

Reaktionsdurchführung siehe 4.11.1

Ergebnis:

14 mg 3-Methyl-2-(2-hydroxy-2-phenylacetylamino)-buttersäuremethylester (37) als farbloses Öl (99 % d. Th.)

¹H-NMR (CDCl₃): entspricht Literatur [105]

HPLC-Analytik: Nucleosil 120 5 C18, H₂O/MeOH 55:45, 0.2 ml/min., UV-Detektion bei 214nm/254nm, t_{R1} =16.1 min., t_{R2} =21.9 min.

4.11.3. Derivatisierung von 1-Phenyl-1,2-ethandiol (34) mit Phosgen

Ansatz:

 9 mg (0.065 mmol)
 1-Phenyl-1,2-ethandiol (34)

 0.13 ml (0.26 mmol, 4.0 eq.)
 Phosgen (1.92 M Lösung in Toluol)

 29 mg (0.38 mmol, 5.8 eq.)
 Pyridin

 0.5 ml
 Toluol wasserfrei

Reaktionsdurchführung:

9 mg des Diols und 29 mg Pyridin wurden unter N₂-Atmosphäre bei 0°C tropfenweise mit einer 1.92 M Phosgen-Lösung versetzt und anschließend 30 min. bei 0°C gerührt. Das Reaktionsgemisch wurde mit 0.75 ml 0.5 M HCl gequencht, 3x mit Et₂O extrahiert, die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Das Rohprodukt wurde ohne weitere Reinigung für die HPLC-Analytik verwendet.

Ergebnis:

7 mg 4-Phenyl-1,3-dioxolan-2-on (39) als farbloses Öl (66 % d. Th.)

¹H-NMR (CDCl₃): entspricht Literatur [120]

HPLC-Analytik: Chiralcel OD, n-Hexan/i-PrOH 95:5, 1.3 ml/min., UV-Detektion bei 217nm/257nm, t_{R1} =36.7 min., t_{R2} =44.6 min.

4.11.4. Derivatisierung der α-Butyl-α-hydroxybenzolessigsäure (36) mit L-Valinmethylester

Ansatz:

25 mg (0.120 mmol)α-Butyl-α-hydroxybenzolessigsäure (35)30 mg (0.228 mmol, 1.9 eq.)L-Valinmethylester30 mg (0.222 mmol, 1.9 eq.)HOBt30 mg (0.238 mmol, 2.0 eq.)DIC3 mlCH2Cl2 wasserfrei

Reaktionsdurchführung siehe 4.11.1

Ergebnis:

38 mg 2-(2-Hydroxy-2-phenyl-hexanoylylamino)-3-methylbuttersäuremethylester (40) als weißer Feststoff (99 % d. Th.)

¹H-NMR (CDCl₃)/¹³C-NMR (CDCl₃): entspricht Literatur [26]

4.11.5. Veresterung von Norbornencarbonsäure

Ansatz:

18 mg (0.130 mmol)	Norbornencarbonsäure (36)
4 mg (0.02 mmol, 0.15 eq.)	p-Toluolsulfonsäure
2 ml	MeOH

Reaktionsdurchführung:

18 mg der Säure **36** und 4 mg p-TosOH wurden in 2 ml MeOH gelöst und 12 h auf RF erhitzt. Anschließend wurde das Reaktionsgemisch eingeengt, mit CH₂Cl₂ aufgenommen, mit ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor (aufgrund des niedrigen Siedepunktes) bei 100 mbar weitgehend eingedampft. Das noch mit MeOH-Resten verunreinigte Rohprodukt wurde ohne weitere Reinigung für die GC-Analytik verwendet.

Ergebnis:

30 mg Methylester (41) als farblose Flüssigkeit (152 % d. Th. aufgrund der noch vorhandenen MeOH-Reste)

¹H-NMR (CDCl₃): entspricht Literatur [121]

GC-Analytik: Säule: BGB 175 (30mx0.25mm ID, $0.25\mu m$ film); T-Programm: $80^{\circ}C$ (2min.), $\rightarrow 160^{\circ}C$ ($5^{\circ}C/min.$), $160^{\circ}C$ (1min.), $\rightarrow 220^{\circ}C$ ($10^{\circ}C/min.$), $220^{\circ}C$ (8min.); 2ml/min. He; $230^{\circ}C$ FID; $220^{\circ}C$ Inlet

4.12. Reaktionen an fester Phase

4.12.1. Chlorierung des Wang-Harzes

Ansatz:

5.015 g (3.41 mmol)	Wang-Harz (novabiochem, 200-400 mesh, 0.68 mmol/g)
5.94 ml (34.1 mmol, 10 eq.)	DIEA
2.64 ml (34.1 mmol, 10 eq.)	Methansulfonsäurechlorid
80 ml	DMF wasserfrei

Reaktionsdurchführung:

Vor der Reaktion wurde das Harz zur Entfernung von Verunreinigungen aus der Polymerisation nacheinander mit DMF, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet. Ein IR-Spektrum des Eduktharzes ergab folgende Banden: 3576 cm⁻¹ (OH-Streckschwingung), 3081-2850 cm⁻¹ (aromat./aliphat. CH-Streckschwingung), sowie weitere Banden bei 1602, 1584, 1511, 1492, 1450, 1374, 1300, 1214, 1171, 1001, 905, 827, 756, 697 und 536 cm⁻¹.

Das so gereinigte und getrocknete Harz wurde unter N₂-Atmosphäre in DMF suspendiert, auf -10°C gekühlt und mit DIEA sowie anschließend tropfenweise mit Methansulfonsäurechlorid versetzt, wobei die Temperatur unter -10°C gehalten wurde. Die Suspension wurde langsam auf RT erwärmt, 3 Tage vorsichtig gerührt und das Harz anschließend abfiltriert, gründlich mit DMF, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS getrocknet.

Da eine Beurteilung des Umsatzes der Chlorierung sowohl gravimetrisch als auch mittels IR nur begrenzt möglich war, wurde der Ansatz mit dem aus der ersten Chlorierung erhaltenen Harz analog wiederholt.

Ergebnis:

5.0247 g farbloses Harz 43

IR: 3567 cm⁻¹ OH-Streckschwingung nicht mehr erkennbar
 ca. 660 cm⁻¹ Bildung einer Schulter an der Bande des Wang-Harzes bei 697 cm⁻¹
 aufgrund der C-Cl-Streckschwingung

4.12.2. Linkeranbindung

4.12.2.1. Anbindung des desymmetrisierten Linkers 12a

Ansatz:

1.099 g (0.695 mmol)	chloriertes Wang-Harz 43
1.985 g (4.39 mmol, 6.3 eq.)	desymmetrisierter Linker 12a
0.167 g (4.17 mmol, 6.0 eq.)	NaH (60%-ige Dispersion in Mineralöl)
katalyt.	Nal
30 ml	DMF wasserfrei

Reaktionsdurchführung:

Frisch gewaschenes NaH wurde unter N₂-Atmosphäre mit 5 ml DMF überschichtet und 1.985 g **12a**, gelöst in 25 ml DMF, zugetropft. Das Reaktionsgemisch wurde 15 min. bei RT geschüttelt, anschließend das Harz sowie katalytische Mengen geglühtes NaI rasch zugegeben und weitere 18 h bei RT geschüttelt. Die Reaktion wurde durch Zugabe von 20 ml H₂O und 10 ml THF gequencht. Das wurde Harz abfiltriert, gründlich mit H₂O, MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

1.339 g farbloses Harz 21i (Δm : + 241 mg = 83 % d. Th.)

IR: ca. 660 cm⁻¹ die C-Cl-Schulter an der Bande des Wang-Harzes bei 697 cm⁻¹ ist nicht mehr vorhanden

Rückgewinnung des Linkers:

Das Filtrat wurde zur Entfernung von MeOH und CH_2Cl_2 eingeengt, der Rückstand in ges. NaCl-Lösung aufgenommen und mehrmals mit Et₂O extrahiert. Die vereinigten organischen Phasen wurden zur Entfernung von DMF 3 x mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Nach der chromatographischen Reinigung (50 g Kieselgel, PE/E 10:1 \rightarrow E_{rein}) des Rohproduktes konnten 1.55 g (91 % d. Th.) des nicht umgesetzten Linkers **12a** rückgewonnen werden. Die Bildung des Nebenproduktes **19** wurde unter diesen Bedingungen nicht beobachtet.

4.12.2.2. Bildung des Nebenproduktes 19

Ansatz:

2.000 g (1.26 mmol) 2.95 g (6.52 mmol, 5.2 eq.) 0.438 g (18.25 mmol, 14.4 eq.) katalyt. 60 ml

chloriertes Wang-Harz 43⁵ desymmetrisierter Linker 12a NaH (60%-ige Dispersion in Mineralöl) Nal DMF wasserfrei

⁵ In diesem Fall erfolgte die Herstellung des chlorierten Wang-Harzes **43** ausgehend von novabiochem-Wang-Harz mit einer Beladung von 0.63 mmol/g analog 4.12.1.

Reaktionsdurchführung:

0.172 g frisch gewaschenes NaH wurden unter N₂-Atmosphäre mit 10 ml DMF überschichtet und 2.95 g **12a**, gelöst in 50 ml DMF, zugetropft. Es wurden weitere 0.266 g NaH portionsweise zugegeben und das Reaktionsgemisch wurde 72 h bei RT geschüttelt, anschließend das Harz sowie katalytische Mengen geglühtes NaI rasch zugegeben und weitere 18 h bei RT geschüttelt. Die Reaktion wurde durch Zugabe von 20 ml H₂O und 10 ml THF gequencht. Das wurde Harz abfiltriert, gründlich mit H₂O, MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

2.267 g farbloses Harz **21i** (Δm : + 267 mg = 51 % d. Th.)

IR: ca. 660 cm⁻¹ die C-Cl-Schulter an der Bande des Wang-Harzes bei 697 cm⁻¹ ist nicht mehr vorhanden

Rückgewinnung des Linkers:

Das Filtrat wurde zur Entfernung von MeOH und CH_2Cl_2 eingeengt, der Rückstand in ges. NaCl-Lösung aufgenommen und mehrmals mit Et₂O extrahiert. Die vereinigten organischen Phasen wurden zur Entfernung von DMF 3 x mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Nach der chromatographischen Reinigung (50 g Kieselgel, PE/E 10:1 \rightarrow E_{rein}) des Rohproduktes wurden 1.01 g (42 % d. Th.) des nicht umgesetzten Linkers **12a** sowie 0.66 g (27 % d. Th.) 2,2'-[Methylenbis(oxy)]-bis-[2-((2S-(2\alpha(1S*,2R*),3a\alpha,4\beta,7\beta,7a\alpha))-(1,2-Bis(2methoxyphenyl)-ethoxy)-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran] **19** erhalten.

DC: R_f=0.21 (PE/E 3:1)

 $[\alpha]_{D}^{20}$: -95.5° (CH₂Cl₂, c = 1.04)

¹H-NMR (CDCl₃): $\delta = 7.19-7.02$ (m, 8H, Ph-H), 6.87-6.57 (m, 8H, Ph-H), 5.55/5.35 (2d, J=4.1 Hz bzw. 3.9 Hz, 4H, OCHPh), 4.94 (d, J=4.5 Hz, 2H, OCHO), 4.74 (s, 2H, OCH₂O), 3.72 (d, J=7.2 Hz, 2H, 7a'-H), 3.53/3.44 (2s, 12H, OCH₃), 2.32-0.80 (m, 34H, Aliphaten-H, davon 0.99/0.93/0.80 (3s, 18H, MBE-CH₃)

¹³C-NMR (CDCl₃): δ = 157.89/157.30 (2s, Ph-C-2), 129.18/129.79/127.60/127.30/119.65/119.39/109.76/109.23 (8d, Ph-C), 127.93/127.73 (2s, Ph-C-1), 101.45 (d, OCHO), 92.43 (t, OCH₂O), 90.41 (d, C-7a), 73.43/71.18 (2d, OCHPh), 55.21/54.99 (2q, OCH₃), 48.37 (d, C-4), 47.30 (s, C-7), 47.03 (s, C-8), 46.05 (d, C-3a), 38.56 (t, C-3), 32.46 (t, C-6), 29.02 (t, C-5), 22.95/20.66/11.79 (3q, C-9, C-10, C-11)

C₅₇H₇₂O₁₀x1.2H₂O(938.82 g/mol)

	С	Н
Berechnet:	72.92	7.99
Gefunden:	72.98	7.86

4.12.2.3. Umsetzung des Nebenproduktes 19 zu 4S-(4R*,5R*,7R*,8R*)- bzw 4S-(4R*,5S*,7S*,8R*)-4,5,7,8-Tetra(2-methoxyphenyl)-[1,3,6]-trioxocan (20)

Ansatz:

 171 mg (0.19 mmol)
 19

 20 mg (0.10 mmol, 0.55 eq.)
 p-Toluolsulfonsäure

 5 ml
 MeOH

 5 ml
 CH₂Cl₂

Reaktionsdurchführung:

Das Edukt wurde in 10 ml MeOH/CH₂Cl₂ 1:1 gelöst, mit p-TosOH versetzt und bei RT 2 h gerührt. Nach Kontrolle des Umsatzes mittels DC wurden 4 ml ges. NaHCO₃-Lösung zugegeben, MeOH wurde am Rotavapor weitgehend abrotiert und der Rückstand zwischen

 CH_2Cl_2 und Wasser verteilt. Die wässrige Phase wurde 5x mit CH_2Cl_2 extrahiert, und die gesammelten organischen Phasen wurden mit NaCl-Lösung gewaschen, mit Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Das dabei erhaltene Rohprodukt wurde durch Umkristallisation aus CH_2Cl_2 gereinigt.

Ergebnis:

88 mg 20 als farbloser Feststoff (85 % d. Th.)

DC: $R_f = 0.09$ (PE/E 3:1)

 $[\alpha]_D^{20}$: +58.1° (Aceton, c = 1.10)

F_p: 143-145°C

¹H-NMR (CDCl₃): δ = 7.11-6.94 (m, 8H, Ph-H), 6.77-6.58 (m, 8H, Ph-H), 5.64/5.54 (2d, J=3.5 Hz, 4H, OCHPh), 4.55 (s, 2H, OCH₂O), 3.56/3.40 (2s, 12H, OCH₃)

¹³C-NMR (CDCl₃): $\delta = 157.84/157.17$ (2s, Ph-C-2), 128.80/128.71/128.29/128.22/ 120.30/109.96/109.91 (7d, Ph-C), 126.15 (s, Ph-C-1), 92.09 (t, OCH₂O), 75.18/71.40 (2d, OCHPh), 55.56/55.41 (2q, OCH₃)

C₃₃H₃₄O₇x0.6H₂Ox1.1C₃H₆O (617.32 g/mol)

	С	Н
Berechnet:	70.63	6.83
Gefunden:	70.62	6.84

4.12.2.4. Anbindung des desymmetrisierten Linkers 12f

<u>Ansatz:</u>

1.045 g (0.700 mmol)	chloriertes Wang-Harz 43
1.793 g (3.61 mmol, 5.3 eq.)	desymmetrisierter Linker 12f
0.140 g (4.17 mmol, 5.0 eq.)	NaH (60%-ige Dispersion in Mineralöl)
katalyt.	Nal
30 ml	DMF wasserfrei

Reaktionsdurchführung analog 4.12.2.1

Ergebnis:

1.287 g farbloses Harz **21**j (Δm : + 242 mg = 75 % d. Th.)

IR: ca. 660 cm⁻¹ die C-Cl-Schulter an der Bande des Wang-Harzes bei 697 cm⁻¹ ist nicht mehr vorhanden

Rückgewinnung des Linkers:

analog 4.12.2.1

Es wurden 1.40 g (92 % d. Th.) des nicht umgesetzten Linkers 12f rückgewonnen.
4.12.3. Deaktivierung freier Chlormethylgruppen

4.12.3.1. Finkelsteinreaktion an Harz 21i

Ansatz:

1.206 g (0.627 mmol)	Harz 21i
0.752 g (5.02 mmol, 8 eq.)	NaI
10 ml	Aceton wasserfrei

Reaktionsdurchführung:

1.206 g des Harzes **21i** und 0.752 g geglühtes NaI wurden unter N₂-Atmosphäre in 10 ml Aceton suspendiert, auf RF erhitzt und 48 h vorsichtig gerührt. Das Harz wurde abfiltriert, gründlich mit Aceton, MeOH, CH_2Cl_2 , MeOH, CH_2Cl_2 , MeOH, CH_2Cl_2 und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

1.209 g farbloses Harz 21i' (Δm : + 3 mg = 31 % d. Th.)

IR: es konnten keine signifikanten Veränderungen des IR-Spektrums festgestellt werden. Da eine verlässliche Beurteilung des Umsatzes weder gravimetrisch noch mittels IR möglich war, wurde der Ansatz mit dem erhaltenen Harz analog wiederholt. Es wurden hierbei 1.182 g Harz 21i' erhalten.

4.12.3.2. Reduktion der Jodmethylgruppen in Harz 21i'

Ansatz:

 1.146 g (0.596 mmol)
 Harz 21i'

 0.39 ml (1.49 mmol, 2.5 eq.)
 Bu₃SnH

 10 ml
 THF wasserfrei

Reaktionsdurchführung:

1.146 g des Harzes **21i'** wurden unter N₂-Atmosphäre in 10 ml THF suspendiert, mit 0.39 ml Bu₃SnH versetzt und unter langsamem Rühren 48 h auf RF erhitzt. Das Harz wurde abfiltriert, gründlich mit MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

1.143 g farbloses Harz 21i'' (Δm : - 3 mg = 24 % d. Th.)

IR: es konnten keine signifikanten Veränderungen des IR-Spektrums festgestellt werden.

Da eine verlässliche Beurteilung des Umsatzes auch in diesem Fall weder gravimetrisch noch mittels IR möglich war, wurde der Ansatz mit dem erhaltenen Harz analog wiederholt. Es wurden hierbei 1.096 g Harz **21i''** erhalten.

4.12.3.3. Deaktivierung freier Chlormethylgruppen in Harz 21j

Die Umsetzung zum Jodid sowie die anschließende Reduktion wurden analog 4.12.3.1 bzw. 4.12.3.2 durchgeführt. Aus den eingesetzten 1.239 g **21j** wurden hierbei 1.216 g **21j'** bzw. 1.151 g **21j''** erhalten.

4.12.4. Acetalspaltungen

4.12.4.1. Acetalspaltung am Beispiel des Harzes 21i"

Ansatz:

1.065 g (0.554 mmol)	Harz 21i''
209 mg (0.61 mmol, 1.1 eq.)	ТРНВ
10 ml	CH ₂ Cl ₂ wasserfrei
2 ml	MeOH wasserfrei

Reaktionsdurchführung:

1.065 g des Harzes **21i''** und 209 mg TPHB wurden unter N₂-Atmosphäre in 10 ml CH_2Cl_2 suspendiert, mit 2 ml MeOH versetzt und 48 h bei RT geschüttelt. Das Harz wurde abfiltriert, gründlich mit MeOH, CH_2Cl_2 , MeOH, CH_2Cl_2 , MeOH, CH_2Cl_2 und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

0.975 g farbloses Harz 21i'' (∆m: - 90 mg = 94 % d. Th.)

IR: 3566 cm⁻¹ OH-Streckschwingung

es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

Quantifizierung des erhaltenen Methylacetals 24:

Das Filtrat wurde zur Entfernung von MeOH und CH₂Cl₂ am Rotavapor eingeengt, der Rückstand in ges. NaCl-Lösung aufgenommen und mehrmals mit Et₂O extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen, getrocknet, filtriert und am Rotavapor zur Trockene eingedampft. Mittels NMR des isolierten Rohproduktes wurde eine Ausbeute von ca. 100 mg (0.48 mmol) Methylacetal **24** errechnet.

4.12.4.2. Acetalspaltungen der Harze 21i, 21j und 21j"

Ansatzverhältnisse und Reaktionsdurchführung analog 4.12.4.1. Auch in diesen Fällen konnte die Umsetzung durch Auftreten der OH-Steckschwingung bei ca. 3570 cm⁻¹ beobachtet und gravimetrisch quantifiziert werden.

4.12.5. Veresterung/a-Alkylierung/Verseifung am Beispiel des Systems 23j"

4.12.5.1. Veresterung des Harzes 23j" mit Propionsäure

<u>Ansatz:</u>

0.908 g (0.52 mmol)	Harz 23j"
385 mg (5.2 mmol, 10 eq.)	Propionsäure
655 mg (5.2 mmol, 10 eq.)	DIC
64 mg (0.52 mmol, 1.0 eq.)	DMAP
15 ml	CH ₂ Cl ₂ wasserfrei

Reaktionsdurchführung:

0.908 g des Harzes 23j'', 385 mg Propionsäure und 64 mg DMAP wurden unter N₂-Atmosphäre in 15 ml CH₂Cl₂ suspendiert, tropfenweise mit 655 mg DIC versetzt und 48 h bei RT geschüttelt. Das Harz wurde abfiltriert, gründlich mit MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

0.929g farbloses Harz 25j'' (Δm : + 21 mg = 96 % d. Th.)

IR:3570 cm⁻¹die OH-Streckschwingung ist nicht mehr vorhanden1737 cm⁻¹C=O-Streckschwingung

es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden

4.12.5.2. α-Alkylierung des Propionsäureesters 25j"

Die Reaktion wurde in diesem Fall unter Einsatz von 6 eq. LiCl durchgeführt. Analoge Ansatzverhältnisse und Reaktionsdurchführung wurden aber auch für die Reaktionen ohne LiCl-Zusatz verwendet.

Ansatz:

0.855 g (0.38 mmol⁶) 0.81 ml (1.90 mmol, 5.0 eq.) 202 mg (2.00 mmol, 5.25 eq.) 97 mg (2.3 mmol, 6.0 eq.) 650 mg (3.8 mmol, 10 eq.) 20 ml Harz **25j''** BuLi (2.35 M in THF) DIPA LiCl Benzylbromid THF wasserfrei

Reaktionsdurchführung:

0.855 g des Harzes **25j**" und 6 eq. geglühtes LiCl wurden über Nacht am Hochvakuum getrocknet, unter N₂-Atmosphäre in 15 ml THF suspendiert, 45 min. vorgequollen und anschließend auf -85°C gekühlt. Eine zuvor aus 0.81 ml BuLi und 202 mg DIPA in 5 ml THF bei -30°C hergestellte LDA-Lösung wurde auf -60°C vorgekühlt und tropfenweise

⁶ laut gravimetrisch bestimmter Ausbeute der Veresterung

gekühlt und mit 650 mg Benzylbromid versetzt. Nach einer weiteren Stunde Reaktionszeit bei -78°C wurde das Gemisch langsam auf RT erwärmt, noch 30 min. gerührt und mit ges. NH₄Cl-Lösung gequencht. Das Harz wurde abfiltriert, gründlich mit MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

0.888 g farbloses Harz 28j"

IR: 1736 cm⁻¹ C=O-Streckschwingung

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

4.12.5.3. Verseifung des alkylierten Esters

Ansatz:

0.839 g (0.38 mmol). a 91 mg (3.8 mmol, 10 eq.) L 11 ml T

α-Methyl-benzolpropionsäureester **28j**" LiOH THF/MeOH/H₂O 10:4:1

Reaktionsdurchführung:

0.839 g des Harzes **28j**" wurden in 10 ml THF/MeOH 5:2 suspendiert, 91 mg LiOH gelöst in 0.5 ml H₂O zugegeben und das Reaktionsgemisch wurde insgesamt 96 h bei RT geschüttelt, wobei in regelmäßigen Abständen Proben gezogen und der Umsatz mittels IR der filtrierten Harze überprüft wurde. Das Harz wurde abfiltriert, gründlich mit MeOH, ges. NaHCO₃-Lösung, MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet. Das Filtrat wurde zur Abtrennung

von THF und MeOH am Rotavapor eingeengt und der Rückstand mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und mehrmals mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

• 0.751 g farbloses Harz **23j**" (eine gravimetrische Ausbeutenbestimmung war in diesem Fall aufgrund der entnommenen IR-Proben nicht möglich)

IR: 3560 cm⁻¹ OH-Streckschwingung

1736 cm⁻¹ die C=O-Streckschwingung ist nicht mehr erkennbar

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

• 27 mg (49 % d. Th.) α-Methyl-benzolpropionsäure (32) als hellgelbes Öl.

¹H-NMR (CDCl₃): entspricht Literatur [119]

Die Derivatisierung und HPLC-Analytik der Säure 32 erfolgte analog 4.11.1.

4.12.6. Veresterung/Reduktion/Verseifung am Beispiel des Systems 23j"

4.12.6.1. Veresterung mit Benzoylameisensäure

Ansatz:

0.714 g (0.41 mmol)	Harz 23j"
616 mg (4.1 mmol, 10 eq.)	Benzoylameisensäure
517 mg (4.1 mmol, 10 eq.)	DIC
50 mg (0.41 mmol, 1.0 eq.)	DMAP
15 ml	CH ₂ Cl ₂ wasserfrei

Reaktionsdurchführung:

0.714 g des Harzes **23j**", 616 mg Benzoylameisensäure und 50 mg DMAP wurden unter N₂-Atmosphäre in 15 ml CH₂Cl₂ suspendiert, tropfenweise mit 517 mg DIC versetzt und 48 h bei RT geschüttelt. Das Harz wurde abfiltriert, gründlich mit MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

0.755 g helloranges Harz 26j" (∆m: + 41 mg = 76 % d. Th.)

IR:	3570 cm ⁻¹	die OH-Streckschwingung ist nicht mehr vorhanden
	1742 cm ⁻¹	C=O-Streckschwingung (COOR)
	1690 cm ⁻¹	C=O-Streckschwingung (COPh)

es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden

4.12.6.2. Reduktion mit L-Selectride

Ansatz:

 0.697 g (0.31 mmol⁷)
 Harz 26j"

 0.81 ml (1.90 mmol, 1.2 eq.)
 L-Selectride (1M in THF)

 10 ml
 THF wasserfrei

Reaktionsdurchführung:

0.697 g des Harzes **26j**" wurden über Nacht am Hochvakuum getrocknet, unter N₂-Atmosphäre in 10 ml THF suspendiert, 45 min. vorgequollen und anschließend auf -100°C gekühlt. 1.1 eq. L-Selectride wurden tropfenweise zugegeben, die Suspension 2 h bei -80°C gerührt, anschließend nochmals 0.1 eq. L-Selectride zugegeben und weitere 2 h bei -80°C gerührt. Das Reaktionsgemisch wurde langsam auf 0°C erwärmt, bei dieser Temperatur das Harz abfiltriert, mit einer gesättigten Lösung von TPHB in CH₂Cl₂ versetzt und nach 5 min. wiederum abfiltriert. Das Harz wurde gründlich mit MeOH, ges. TPHB-Lösung, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

0.703 g farbloses Harz 28j"

3524 cm ⁻¹	OH-Streckschwingung
1737 cm ⁻¹	C=O-Streckschwingung (COOR)
1690 cm ⁻¹	die C=O-Streckschwingung der Carbonylgruppe ist nicht mehr
	vorhanden
	3524 cm ⁻¹ 1737 cm ⁻¹ 1690 cm ⁻¹

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

¹⁸⁹

⁷ laut gravimetrisch bestimmter Ausbeute der Veresterung

4.12.6.3. Verseifung des Mandelsäureesters

Ansatz:

0.679 g (0.35 mmol).	Mandelsäureester 29j"
25 mg (1.05 mmol, 3.0 eq.)	LiOH
11 ml	THF/MeOH/H2O 10:4:1

Reaktionsdurchführung:

0.839 g des Harzes **28j**" wurden in 10 ml THF/MeOH 5:2 suspendiert, 25 mg LiOH gelöst in 0.5 ml H₂O zugegeben und das Reaktionsgemisch 2 h bei RT geschüttelt. Das Harz wurde abfiltriert, gründlich mit MeOH, ges. NaHCO₃-Lösung, MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet. Das Filtrat wurde zur Abtrennung von THF und MeOH am Rotavapor eingeengt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und 5 x mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

• 0.649 g farbloses Harz 23j"

IR: 3567 cm⁻¹ OH-Streckschwingung

1737 cm⁻¹ die C=O-Streckschwingung ist nicht mehr erkennbar

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

• 29 mg (71 % d. Th.) Mandelsäure (33) als farbloser Feststoff.

¹H-NMR (Aceton-d₆): siehe 4.10.2

Die Derivatisierung und HPLC-Analytik der Mandelsäure (33) erfolgte analog 4.11.2.

4.12.7. Veresterung/Zn-Organyl-Addition/Verseifung am Beispiel des Systems 23j''

4.12.7.1. Veresterung mit Benzoylameisensäure

Es wurden 0.596 g **23j**" in die Veresterung eingesetzt. Ansatzverhältnisse und Reaktionsdurchführung analog 4.12.6.1.

Ergebnis:

0.625 g helloranges Harz **26j''** (Δm : + 29 mg = 65 % d. Th.)

IR:3570 cm⁻¹die OH-Streckschwingung ist nicht mehr vorhanden1742 cm⁻¹C=O-Streckschwingung (COOR)1690 cm⁻¹C=O-Streckschwingung (COPh)

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

4.12.7.2. Addition des Zn-Organyls

Ansatz:

 0.594 g (0.22 mmol⁸)
 Harz 26j"

 240 mg (1.76 mmol, 8.0 eq.)
 ZnCl₂

 1.0 ml (1.94 mmol, 8.8 eq.)
 n-Butylmagnesiumchloridlösung⁹ (1.94 M in THF)

 12 ml
 THF wasserfrei

Reaktionsdurchführung:

240 mg geglühtes ZnCl₂ wurden unter N₂-Atmosphäre in 2 ml THF suspendiert, auf 0°C gekühlt, mit 1.0 ml einer frisch titrierten, 1.94 M n-BuMgCl-Lösung versetzt und 2 h bei 0°C gerührt. Währenddessen wurden 0.594 g des über Nacht am Hochvakuum getrockneten Harzes **26j**" unter N₂-Atmosphäre in 10 ml THF suspendiert, 45 min. vorgequollen und anschließend auf -78°C gekühlt. Die Zn-Organyl-Lösung wurde tropfenweise zugegeben, 1 h bei konstanter Temperatur gerührt, anschließend binnen 1 h auf -30°C erwärmt und weitere 2 h bei konstanter Temperatur gerührt. Das Gemisch wurde auf -10°C erwärmt, bei dieser Temperatur mit ges. NH₄Cl-Lösung gequencht, das Harz abfiltriert, gründlich mit MeOH, ges. NH₄Cl-Lösung, MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

0.629 g farbloses Harz 28j"

IR:	3505 cm ⁻¹	OH-Streckschwingung
	1728 cm ⁻¹	C=O-Streckschwingung (COOR)
	1690 cm ⁻¹	die C=O-Streckschwingung der Carbonylgruppe ist nicht mehr
		vorhanden

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

⁸ laut gravimetrisch bestimmter Ausbeute der Veresterung

⁹ für die Herstellung der n-BuMgCl-Lösung siehe 4.9.5.1

4.12.7.3. Verseifung des a-Butyl-a-hydroxybenzolessigsäureesters

<u>Ansatz:</u>

0.611 g (0.31 mmol).	a-Butyl-a-hydroxybenzolessigsäureesters 30j"
75 mg (3.1 mmol, 10 eq.)	LiOH
11 ml	THF/MeOH/H ₂ O 10:4:1

Reaktionsdurchführung:

0.611 g des Harzes **30j**" wurden in 10 ml THF/MeOH 5:2 suspendiert, 75 mg LiOH gelöst in 0.7 ml H₂O zugegeben und das Reaktionsgemisch unter vorsichtigem Rühren 24 h auf RF erhitzt. Das Harz wurde abfiltriert, gründlich mit MeOH, ges. NaHCO₃-Lösung, MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet. Das Filtrat wurde zur Abtrennung von THF und MeOH am Rotavapor eingeengt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und 5 x mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

• 0.561 g farbloses Harz 23j"

IR: 3567 cm⁻¹ OH-Streckschwingung

1737 cm⁻¹ die C=O-Streckschwingung ist nicht mehr erkennbar

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

• 39 mg (85 % d. Th.) α-Butyl-α-hydroxybenzolessigsäure (35) als farbloser Feststoff.

¹H-NMR (Aceton-d₆): siehe 4.10.5

Die Derivatisierung und Analytik der α -Butyl- α -hydroxybenzolessigsäure (35) erfolgte analog 4.11.4.

4.12.8. Veresterung/Diels-Alder-Reaktion/Verseifung an Harz 23i"

4.12.8.1. Veresterung von Harz 23i'' mit Acrylsäurechlorid

Ansatz:

0.967 g (0.56 mmol)	Harz 23i''
507 mg (5.6 mmol, 10 eq.)	Acrylsäurechlorid
0.78 ml (5.6 mmol, 10 eq.)	Triethylamin
15 ml	CH ₂ Cl ₂ wasserfrei

Reaktionsdurchführung:

0.967 g des Harzes **23i''** wurden unter N₂-Atmosphäre in 15 ml CH₂Cl₂ suspendiert, 0.78 ml Triethylamin zugegeben, das Gemisch tropfenweise mit 507 mg Acrylsäurechlorid versetzt und 72 h bei RT geschüttelt.

Das Harz wurde abfiltriert, gründlich mit MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

0.993 g farbloses Harz 27i'' (Δm : + 26 mg = 86 % d. Th.)

IR:	3567 cm ⁻¹	die OH-Streckschwingung ist nicht mehr vorhanden
	1726 cm^{-1}	C=O-Streckschwingung

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

4.12.8.2. Diels-Alder-Reaktion an 27i"

Ansatz:

0.964 g (0.49 mmol ¹⁰)	Harz 27i''
0.51 ml (0.51 mmol, 1.05 eq.)	Me ₂ AlCl (1M in Hexan)
0.40 ml (4.9 mmol, 10 eq.)	Cyclopentadien
35 ml	CH ₂ Cl ₂ wasserfrei

Reaktionsdurchführung:

0.964 g des Harzes 27i" wurden über Nacht am Hochvakuum getrocknet, unter N₂-Atmosphäre in 35 ml CH₂Cl₂ suspendiert, 45 min. vorgequollen und anschließend auf -100°C gekühlt. 0.51 ml Me₂AlCl-Lösung wurden zugetropft, nach 1 min. 0.4 ml frisch monomerisiertes Cyclopentadien zugegeben und die Suspension 5 h bei -80°C gerührt. Das Reaktionsgemisch wurde langsam auf -50°C erwärmt, noch 1 h bei konstanter Temperatur gerührt und das Harz anschließend abfiltriert, gründlich mit MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet.

Ergebnis:

1.000 g farbloses Harz 31i"

¹⁰ laut gravimetrisch bestimmter Ausbeute der Veresterung

IR:	3324 cm ⁻¹	sehr breite Bande zwischen 3100 und 3700 cm	•

1727 cm⁻¹ C=O-Streckschwingung

Es konnten keine weiteren signifikanten Veränderungen des IR-Spektrums festgestellt werden.

4.12.8.3. Verseifung des Norbornencarbonsäureesters 31i"

Ansatz:

0.946 g (0.51 mmol).	Ester 31i"
500 mg (20.8 mmol, 40 eq.)	LiOH
10 ml	DME/H ₂ O 1:1
10 ml	THF

Reaktionsdurchführung:

0.946 g des Harzes **31i**" wurden in 10 ml THF suspendiert, 10 ml einer 2 M Lösung von LiOH in DME/H₂O 1:1 zugegeben und das Reaktionsgemisch 36 h auf RF erhitzt. Das Harz wurde abfiltriert, gründlich mit MeOH, H₂O, MeOH, H₂O, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂, MeOH, CH₂Cl₂ und MeOH gewaschen und über Nacht im VTS bei 40°C getrocknet. Das Filtrat wurde zur Abtrennung von THF, DME und MeOH am Rotavapor eingeengt und der Rückstand wurde mit ges. NaHCO₃-Lösung verdünnt, mehrmals mit Et₂O gewaschen, anschließend mit konz. HCl auf pH 2 gebracht und 5x mit EtOAc extrahiert. Der Extrakt wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und am Rotavapor zur Trockene eingedampft.

Ergebnis:

• 0.927 g farbloses Harz 23i"

	IR:	3567 cm^{-1}	OH-Stree	kschwingung				
		1727 cm ⁻¹	die C=O-Streckschwingung ist nicht mehr erkennbar					
	Es l	konnten keine	weiteren	signifikanten	Veränderungen	des	IR-Spektrums	festgestellt
werden.								
•	• 15 mg (22 % d. Th.) Norbornencarbonsäure (36) als farbloses Öl.							

¹H-NMR (CDCl₃): entspricht Literatur [110]

Die Derivatisierung und GC-Analytik der Norbornencarbonsäure (36) erfolgte analog 4.11.5.

5. Abkürzungsverzeichnis

Ac	Acetyl	IR	Infrarotspektroskopie		
ATR	Attenuated Total Reflectance	konz.	konzentriert		
9-BBN	9-Borabicyclo[3.3.1]nonan	LDA	Lithiumdiisopropylamid		
Bn	Benzyl	М	molar		
Bu	Butyl	\bigcirc	Merrifield-Harz		
BuLi	n-Butyllithium	MBE	Noe-Lactol		
DC	Dünnschichtchromatographie	Me	Methyl		
de	Diastereomerenüberschuss	min.	Minuten		
DIC	N,N'-Diisopropylcarbodiimid	N	normal		
DIEA	Diisopropyl-N-ethylamin	NMR	Magnetresonanzspektroskopie		
DIPA	Diisopropylamin	PE	Petrolether		
DMAP	4-(N,N-Dimethylamino)pyridin	Ph	Phenyl		
DME	1,2-Dimethoxyethan	Pr	Propyl		
DMF	Dimethylformamid	PS	Polystyrol		
DMSO	Dimethylsulfoxid	p-TosOH	p-Toluolsulfonsäure-Hydrat		
Е	Diethylether	RF	Rückfluss		
ee	Enantiomerenüberschuss	RT	Raumtemperatur		
eq.	Äquivalent(e)	SP	Festphase (allgemein)		
Et	Ethyl	TFA	Trifluoressigsäure		
F _p	Schmelzpunkt	THF	Tetrahydrofuran		
FT	Fourier Transformation	TMS-CN	Trimethylsilylcyanid		
GC	Gaschromatographie	ТРНВ	Triphenylphosphin-Hydrobromid		
ges.	gesättigt	ValOMe	L-Valinmethylester		
h	Stunden	VFC	Vakuumflashchromatographie		
HMPT	Hexamethylphosphorsäuretriamid	VTS	Vakuumtrockenschrank		
HOBt	1-Hydroxybenotriazol	W	Wang-Harz		
HPLC	High Performance Liquid	% d. Th.	% der Theorie		
	Chromatography				

6. Literaturverzeichnis

- (a) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149-2154; (b) Merrifield, R. B. J.
 Am. Chem. Soc. 1964, 86, 304-305
- (a) Merrifield, R. B. Angew. Chem., Int. Ed. Engl. 1985, 24, 799-810; (b) Pavia, M. R.; Sawyer, T. K.; Moos, W. H. Bioorg. Med. Chem. Lett. 1993, 3, 387-396; (c) Jung, G.; Beck-Sickinger, A. G. Angew. Chem., Int. Ed. Engl. 1992, 31, 367-383; (d) Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 2223-2311; (e) Montserra, F. X.; Grandas, A.; Eritja, R.; Pendroso, E. Tetrahedron 1994, 50, 2617-2622; (f) Douglas, S. P.; Whitfield, D. M.; Kerpinsky, J. J.; J. Am. Chem. Soc. 1991, 113, 5095-5097; (g) Schuster, M.; Wang, P.; Paulson, J. C.; Wong, C.-H. J. Am. Chem. Soc. 1994, 116, 1135-1137
- [3] Reviews: (a) Balkenhohl, F.; v.d.Bussche-Hünnefeld, C.; Lansky, A.; Zechel, C.
 Angew. Chem. 1996, 108, 2436-2488; (b) Boyle, N. A.; Janda, K. D. Curr. Opin.
 Chem. Biol. 2002, 6, 339-346
- [4] (a) Gordon, E. M.; Barett, R. W.; Dower, W. J.; Fodor, P. A.; Gallop, M. A. J. Med. Chem. 1994, 37, 1385-1401; (b) Liskamp, R. M. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 633-636; (c) Carell, T.; Wintner, E. A.; Bashir-Hashemi; A.; Rebek, J. Jr. Angew. Chem., Int. Ed. Engl. 1994, 33, 2059-2061; (d) Terret, N. K.; Gardner, M.; Gordon, D. W.; Kobylecki, R. J.; Steel, J. Tetrahedron 1995, 51, 8135-8173; (e) Ugi, I. in Isonitril Chemistry, Ugi, I., Academic Press, New York, 1971
- [5] Reviews: (a) Früchtel, J. S.; Jung, G. Angew. Chem. 1996, 108, 19-46; (b) Lorsbach,
 B. A.; Kurth, M. J. Chem. Rev. 1999, 99, 1549-1581; (c) Sammelson, R. E.; Kurth, M.
 J. Chem. Rev. 2001, 101, 137-202, (d) Shuttleworth S. J.; S. J.; Allin, S. M.; Sharma,
 P. K. Synthesis 1997, 11, 1217-1239; (e) Shuttleworth, S. J.; Allin, S. M.; Wilson, R.
 D.; Nasturica, D. Synthesis 2000, 8, 1035-1074
- [6] (a) Albright, R. L. Reactive Polymers 1986, 4, 155-174; (b) Ketcha, D. M.; Wilson, L. J.; Portlock, D. E. Tetrahedron Lett. 2000, 41, 6253-6257; (c) Rice, K.; Nuss, J. M. Bioorg. Med. Chem. Lett. 2001, 11, 753-755; (d) Burger, M. T.; Bartlett, P. A. J. Am. Chem. Soc. 1997, 119, 12697-12698
- (a) Buchmeiser, M. R. Macromol. Rapid. Commun. 2001, 22, 1082-1094; (b) Tripp, J. A.; Stein, J. A.; Svec, F.; Frechet, J. M. J. Org. Lett. 2000, 2, 195-198; (c) Tripp, J. A.; Svec, F.; Frechet, J. M. J. J. Comb. Chem. 2001, 3, 216-223; (d) Tripp, J. A.; Svec, F.;

Frechet, J. M. J. J. Comb. Chem. 2001, 3, 604-611; (e) Vaino, A. R.; Janda, K. D. Proc. Natl. Acad. Sci. USA 2000, 97, 7692-7696; (f) Hird, N.; Hughes, I.; Hunter, D.; Morrison, M. G. J. T.; Sherrington, D. C.; Stevenson, L. Tetrahedron 1999, 55, 9575-9584; (g) Atrash, B.; Bradley, M.; Kobylecki, R.; Cowell, D.; Reader, J. Angew. Chem., Int. Ed. Engl. 2001, 40, 938-941; Rapp, W. E. Macro Beads as Microreactors: New Solid-phase Synthesis Methodology, Wilson, S. R.; Czarnik, A. W., Wiley, New York, 1997; (h) Sternson, S. M.; Louca, J. B.; Wong, J. C.; Schreiber, S. L. J. Am. Chem. Soc. 2001, 123, 1740-1747; (i) Tallarico, J. A.; Depew, K. M.; Pelish, H. E.; Westwood, N. J.; Lindsley, C. W.; Shair, M. D.; Schreiber, S. L.; Foley, M. A. J. Comb. Chem. 2001, 3, 312-318; (j) Lindsley, C. W.; Hodges, J. C.; Filzen, G. F.; Watson, B. M.; Geyer, A. G. J. Comb. Chem. 2000, 2, 550-559 (k) McAlpine, S. R.; Lindsley, C. W.; Hodges, J. C.; Leonard, D. M.; Filzen, G. F. J. Comb. Chem. 2001, 3, 1-5

- [8] (a) Toy, P. H.; Janda, K. D. Tetrahedron Lett. 1999, 40, 6329-6332; (b) Garibay, P.;
 Toy, P. H.; Hoeg-Jensen, T.; Janda, K. D. Synlett 1999, 1438-1440; (c) Reger, T. S.;
 Janda, K. D. J. Am. Chem. Soc. 2000, 122, 6929-6934; (d) Toy, P. H.; Reger, T. S.;
 Garibay, P.; Garno, J. C.; Malikayil, J. A.; Liu, G. Y.; Janda, K. D. J. Comb. Chem.
 2001, 3, 117-124
- Bayer, E.; Rapp, W. in Chemistry of Peptides and Proteins, Vol. 3, Voelter, W.;
 Bayer, E.; Yu, A.; Ovchinnikov, M. V.; Ivanov, V. T., Walter de Gruyter, Berlin, 1986
- [10] (a) An, H. Y.; Cook, P. D. Chem. Rev. 2000, 100, 3311-3340; (b) Gravert, D. J.; Janda, K. D. Chem. Rev. 1997, 97, 489-509; (c) Baldino, C. M. J. Comb. Chem. 2000, 2, 89-103; (d) Reed, N. N.; Janda, K. D. Org. Lett. 2000, 2, 1311-1313; (e) Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R. Macromolecules 1999, 32, 4240-4246; (f) Sunder, A.; Heinemann, J.; Frey, H. Chem. Eur. J. 2000, 6, 2499-2506; (g) Sunder, A.; Mulhaupt, R.; Haag, R.; Frey, H. Macromolecules 2000, 33, 253-254; (h) Luo, Z. Y.; Zhang, Q. S.; Oderaotoshi, Y.; Curran, D. P. Science 2001, 291, 1766-1769; (i) Tietze, L. F.; Evers, H.; Topken, E. Angew. Chem., Int. Ed. Engl. 2001, 40, 903-905
- [11] (a) Foulon, F.; Fixari, B.; Picq, D.; LePerchec, P. React. Funct. Polym. 1999, 39, 63-70; (b) Bendale, P. M.; Khadilkar, B. M. Tetrahedron Lett. 1998; 39, 5867-5868; (c) Cai, M. Z.; Song, C. S.; Huang, X. Synth. Commun. 1997, 27, 3087-3093; (d) Clark, J. H.; Price, P. M.; Martin, K.; Macquarrie, D. J.; Bastock, T. W. J. Chem. Res., Synop. 1997, 11, 430-431; (e) Khadilkar, B.; Borkar, S. Synth. Commun. 1998, 28, 207-212

- [12] (a) Suzuki, Y.; Kodomari, M. Chem. Lett. 1998, 11, 1091-1092; (b) Harris, C. E.; Chrisman, W.; Bickford, S. A.; Lee, L. Y.; Torreblanca, A. E.; Singaram, B. Tetrahedron Lett. 1997, 38, 981-984; (b) Varma, R. S.; Saini, R. K. Tetrahedron Lett.
 1997, 38, 4337-4338; (c) Clark, J. J.; Macquarrie, D. J. Chem. Soc. Rev. 1996, 25, 303-310; (d) Cundy, C. S. Zeolites 1996, 16, 231-232; (e) Clark, J. H. in Catalysis of Organic Reactions by Supported Inorganic Reagents, USA, VCH, New York, 1994
- [13] Reviews: (a) James, I. W. Tetrahedron 1999, 55, 4855-4946; (b) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Tetrahedron 1998, 54, 15385-15443; (c) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Tetrahedron 1997, 53, 5643-5678; (d) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Tetrahedron 1996, 52, 4527-4554; (e) Patek, M.; Lebl, M. Biopolymers 1999, 47, 353-363; (f) Comely, A. C.; Gibson, S. E. Angew. Chem., Int. Ed. Engl. 2001, 40, 1012-1032; (g) Phoon, C. W.; Sim, M. M. Curr. Org. Chem. 2002, 6, 937-964; (h) Backes, B. J.; Ellman, J. A. Curr. Opin. Chem. Biol. 1997, 1, 86–93; (i) Eggenweiler, H.-M. Drug Discov. Today 1998, 3, 552-660; (j) Guillier, F.; Orain, D.; Bradley, M. Chem. Rev. 2000, 100, 2091-2157; (k) Brase, S. Chim. Oggi 2000, 18, 14-19; (l) Wills, A. J.; Balasubramanian, S. Curr. Opin. Chem. Biol. 2003, 7, 346–352
- [14] Clapham, B.; Reger, T. S.; Janda, K. D. *Tetrahedron* 2001, 57, 4637-4662; (b) Fan,
 Q.-H.; Li, Y.-M.; Chan, A. S. C. *Chem. Rev.* 2002, 102, 3385-3465; (c) Benaglia, M.;
 Puglisi, A.; Cozzi, F. *Chem. Rev.* 2003, 103, 3401–3429
- [15] für einige aktuelle Beiträge zu diesem Thema siehe (a) Johansson, A.; Abrahamsson, P.; Davidsson, Ö. *Tetrahedron Asymm.* 2003, 1261-1266; (b) Timofte, R. S.; Woodward, S. *Tetrahedron Lett.* 2004, 45, 1, 39-42; (c) Palacios, F.; Aparicio, D.; Ochoa de Retana, A. M.; deSantos, J. M.; Gil, J. I.; Alonso, J. M. *J. Org. Chem.* 2002, 67, 21, 7283-7288; (d) Uehlin, L.; Wirth, T. *Org. Lett.* 2001, 3, 18, 2931-2933; (e) Uehlin, L.; Wirth, T. *Chimia* 2001, 55, 65-67; (f) Davies, H. M. L.; Walji, A. M.; Nagashima, T. *J. Am. Chem. Soc.* 2004, 126, 4271-4280; (g) Baxendale, I. R.; Davidson, T. D.; Ley, S. V.; Perni, R. H. *Heterocycles* 2003, 60, 2707-2715; (h) Altava, B.; Burguete, M. I.; Garcia-Verdugo, E.; Luis, S. V.; Pozo, O.; Salvator, R. V. *Eur. J. Org. Chem.* 1999, 2263-2267; (i) Zhengpu, Z.; Yongmer, W.; Zhen, W.; Hodge, P. *React. Polym.* 1999, 41, 37-43; (j) Dong, C.; Zhang, J. L.; Zheng, W. H.; Zhang, L. F.; Yu, Z. L.; Choi, M. C. K.; Chan, A. S. C. *Tetrahedron Asymm.* 2000, 11, 2449-2454; (k) Yang, X. W.; Sheng, J.H.; Da, C. S.; Wang, H. S.; Su, W.; Wang, R.;

Chan, A. S. C. J. Org. Chem. 2000, 65, 295-296; (I) Mandoli, A.; Pini, D.; Agostini, A.; Salvadori, P. Tetrahedron Asymm. 2000, 11, 4039-4042; (m) Chinchilla, R.; Mazon, P.; Najera, C. Tetrahedron Asymm. 2000, 11, 3277-3281; (n) Altava, B.; Burguete, M. I.; Collado, M.; Garcia-Verdugo, E.; Luis, S. V.; Salvador, R. V.; Vincent, M. J. Tetrahedron Lett. 2001, 42, 1673–1675; (o) Hallman, K.; Moberg, C. Tetrahedron Asymm. 2001, 12, 1475-1478; Thierry, B.; Plaquevent, J.-C.; Cahard, D. Tetrahedron Asymm. 2001, 12, 983–986

- [16] Akkari, R.; Calmes, M.; DiMalta, D.; Escale, F.; Martinez, J. Tetrahedron Asymm.2003, 14, 1223-1228
- [17] Review: Chung, C. W. Y.; Toy, P. H. Tetrahedron Asymm. 2004, 15, 387-399
- [18] (a) Kawana, M.; Emoto, S. Tetrahedron Lett. 1972, 48, 4855-4858. (b) Kawana, M.;
 Emoto, S. Bull. Chem. Soc. Jpn. 1974, 47, 160-165
- [19] (a) Worster, P. M.; McArthur, C. R.; Leznoff, C. C. Angew. Chem. 1979, 91, 255. (b)
 McArthur, C. R.; Worster, P. M.; Jiang, J.-L.; Leznoff, C. C. Can. J. Chem. 1982, 60, 1836-1841
- [20] Colwell, A. R.; Duckwall, L. R.; Brooks, R.; McManus, S. P. J. Org. Chem. 1981, 46, 3097-3102
- [21] (a) Oertel, K.; Zech, G.; Kunz, H. Angew. Chem., Int. Ed. Engl. 2000, 39, 1431-1433;
 (b) Furman, B.; Thürmer, R.; Kaluza, Z.; Lysek, R.; Voelter, W.; Chmielewski, M. Angew. Chem. 1999, 111, 1193-1195
- [22] (a) Hutchison, P. C.; Heightman, T. D.; Procter. D. J. Org. Lett. 2002, 4, 4583-4585;
 (b) Kerrigan, N. J.; Hutchison, P. C.; Heightman, T. D.; Procter. D. J. Chem. Comm. 2003, 1402-1403
- [23] (a) Moon, H.; Schore, N. E.; Kurth, M. J. J. Org. Chem. 1992, 57, 6088-6089; (b) Moon, H.; Schore, N. E.; Kurth, M. J. Tetrahedron Lett. 1994, 35, 8915-8918; (c) Price, M. D.; Kurth, M. J.; Schore, N. E. J. Org. Chem. 2002, 67, 7769-7773; (d) Huang, J.; Li, Y.; Ren, J.; Zhou, Y.; Hou, J. React. Funct. Pol. 2001, 49, 173-178; (e) Enders, D.; Kirchhoff, J. H.; Köbberling, J.; Pfeiffer, T. H. Org. Lett. 2001, 3, 1241-1244
- [24] (a) Hachtel, J.; Gais, H.-J. Eur. J. Org. Chem. 2000, 1457-1465; (b) Backes, B. J.;
 Dragoli, D. R.; Ellman, J. A. J. Org. Chem. 1999, 64, 5472-5478; (c) Dragoli, D. R.;
 Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 10127-10128; (d)

Nakamura, S.; Uchiyama, Y.; Ishikawa, S.; Fukinbara, R.; Watanabe, Y.; Toru, T. *Tetrahedron Lett.* **2002**, 43, 2381-2383

- [25] (a) Akkari, R.; Calmès, M.; Mai, N.; Rolland, M.; Martinez, J. J. Org. Chem. 2001, 66, 5859-5865; (b) Gordon, K.; Bolger, M.; Khan, N.; Balasubramanian, S. *Tetrahedron Lett.* 2000, 41, 8621-8625; (c) Allin, S. M.; Shuttleworth, S. J. *Tetrahedron Lett.* 1996, 37, 8023-8026; (d) Burgess, K.; Lim, D. Chem. Commun. 1997, 785-786; (e) Purandare, A. V.; Natarajan, S. *Tetrahedron Lett.* 1997, 38, 8777-8780; (f) Phoon, C. W.; Abell, C. *Tetrahedron Lett.* 1998, 39, 2655-2658; (g) Winkler, J. D.; McCoull, W. *Tetrahedron Lett.* 1998, 39, 4935-4936; (h) Faita, G.; Paio, A.; Quadrelli, P.; Rancati, F.; Seneci, P. *Tetrahedron Lett.* 2000, 41, 1265-1269; (i) Faita, G.; Paio, A.; Quadrelli, P.; Rancati, F.; Seneci, P. *Tetrahedron 2001*, 57, 8313-8322; (j) Desimoni, G.; Faita, G.; Galbiati, A.; Pasini, D.; Quadrelli, P.; Rancati, F. *Tetrahedron 2002*, 13, 333-337
- [26] Schuster, C. Dissertation 2004, Institut für Angewandte Synthesechemie, TU-Wien
- [27] Zech, G.; Kunz, H. Angew. Chem., Int. Ed. Engl. 2003, 42, 7, 787-790
- [28] Kotake, T.; Rajesh, S.; Hayashi, Y.; Mukai, Y.; Ueda, M.; Kimura, T.; Kiso, Y. Tetrahedron Lett. 2004, 45, 3651-3654
- [29] Gais, H.-J.; Babu, G. S.; Günter, M.; Das, P. Eur. J. Org. Chem. 2004, 1464-1473
- [30] Shintani, T.; Kusabiraki, K.; Hattori, A.; Furutani, A.; Tsutsumi, K.; Morimoto, T.;Kakiuchi, K. *Tetrahedron Lett.* 2004, 45, 1849-1851
- [31] Enholm, E. J.; Gallagher, M. E.; Jiang, S.; Batson, W. A. Org. Lett. 2000, 2, 3355-3357
- [32] für einige aktuelle Beispiele siehe: (a) Braun, M.; Mai, B.; Ridder, D. Eur. J. Org. Chem. 2001, 3155-3160; (b) Fuzukawa, S.; Miura, M.; Matsuzawa, H. Tetrahedron Lett. 2001, 42, 4167-4169; (c) Xu, M.-H.; Wang, W.; Xia, L.-J.; Lin, G.-Q. J. Org. Chem. 2001, 66, 3953-3962; (d) Cossu, S.; DeLucchi, O.; Peluso, P.; Volpicelli, R. Tetrahedron Lett. 2000, 41, 7263-7266; (e) Fujioka, H.; Kotoku, N.; Nagatomi, Y.; Kita, Y. Tetrahedron Lett. 2000, 41, 1829-1832; (f) Cossu, S.; DeLucchi, O.; Peluso, P.; Volpicelli, R. Tetrahedron Lett. 1999, 40, 8705-8709; (g) Hsieh, Y.-T.; Lee, G.-H-: Wang, Y.; Luh, T.-Y. J. Org. Chem. 1998, 63, 1484-1490; (h) Alexakis, A.; Vastra, J. Burton, J.; Mangeney, P. Tetrahedron Asymm. 1997, 8, 3193-3196; (i) Hayes, R.; Li, K.-D.; Leeming, P.; Wallace, T. W. Tetrahedron Lett. 1997, 38, 4309-4310; (j) Fujioka, H.; Matsunaga, N.; Kitagawa, H.; Nagatomi, Y.; Kondo, M.; Kita, Y.

Tetrahedron Asymm. 1995, 6, 2117-2120; (k) Pini, D.; Iuliano, A.; Salvadori, P. Tetrahedron Asymm. 1992, 3, 693-694

- [33] (a) Superchi, S.; Contursi, M.; Rosini, C. *Tetrahedron* 1998, 54, 11247-11254; (b)
 Scafato, P.; Leo, L.; Superchi, S.; Rosini, C. *Tetrahedron* 2002, 58, 153-159
- [34] (a) Devant, R.; Mahler, U.; Braun, M. Chem. Ber. 1988, 121, 397-406. (b) Sacha, H.;
 Waldmüller, D.; Braun, M. Chem. Ber. 1994, 127, 1959-1968
- [35] (a) Noe, C. R.; Knollmüller, M.; Steinbauer, G.; Völlenkle, H. Chem. Ber. 1985, 118, 1733-1745; (b) Noe, C. R.; Knollmüller, M.; Steinbauer, G.; Völlenkle, H. Chem. Ber. 1985, 118, 4453-4458
- [36] Bröker, J. Diplomarbeit 2000, Institut für Angewandte Synthesechemie, TU-Wien
- [37] Schuster, C. G. *Diplomarbeit* 2000, Institut für Angewandte Synthesechemie, TU-Wien
- [38] Gammer, K. Diplomarbeit 2000, Institut für Angewandte Synthesechemie, TU-Wien
- [39] Sumrell, G.; Stevens, J. I.; Goheen, G. E. J. Org. Chem. 1957, 22, 39-41
- [40] (a) Merz, A.; Gromann, L.; Karl, A.; Burgemeister, T.; Kastner, F. Liebigs Ann. Org. Bioorg. Chem. 1996, 10, 1635-1640; (b) Deuchert, K.; Hertenstein, U.; Hünig, S.; Wehner, G. Chem. Ber. 1979, 112, 2045-2061; (c) Hünig, S.; Wehner, G. Chem. Ber. 1979, 112, 2062-2067.
- [41] Kagan, H. B.; Namy, J. L.; *Topics in Organometallic Chemistry*, Springer, 1999, 2, 155-198
- [42] Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B. J. Organomet. Chem. 1983, 250, 227-236
- [43] Namy, J. L.; Souppe, J.; Kagan, H. B. Tetrahedron 1983, 24, 765-766
- [44] Annunziata, R.; Tenaglia, M.; Cinquini, M.; Raimondi, L. Eur. J. Org. Chem. 1999, 3369-3374
- [45] Wallace T. W.; Wardell I.; Li K. D.; Leeming P.; Redhouse A. D.; Challand S. R. J. Chem. Soc., Perkin Trans. 1 1995, 2293-2308
- [46] Pedersen L. H.; Christensen T. B.; Enemærke R. J.; Daasbjerg K.; Skrydstrup T. Eur. J. Org. Chem. 1999, 565-572
- [47] Christensen T. B.; Riber D.; Daasbjerg K.; Skrydstrup T. Chem. Comm. 1999, 2051-2052
- [48] Clerici A.; Porta O. J. Org. Chem. 1985, 50, 76-81
- [49] Kamochi Y.; Kudo T. Tetrahedron Lett. 1991, 32, 3511-3514

- [50] Fournier F.; Fournier M. Can. J. Chem. 1986, 64, 881-890
- [51] Clerici A.; Porta O. J. Org. Chem. 1985, 50, 76-81
- [52] Juday R. E.; Waters W. L. Tetrahedron Lett. 1975, 16, 4321-4322
- [53] Talukdar S.; Fang J. M. J. Org. Chem. 2001, 66, 1, 330-333
- [54] Karlsson, O.; Lundquist, K. Acta Chem. Scand. 1992, 46, 283-289
- [55] Hart, H.; Rajakumar, P. Tetrahedron 1995, 51, 1313-1336
- [56] (a) Pirrung, M. C.; Park, K. Bioorg. Med. Chem. Lett. 2000, 10, 2115-2118; (b)
 Warmuth, R.; Grell, E.; Lehn, J.-M.; Bats, J. W.; Quinkert, G. Helv. Chim. Acta 1991, 74, 671-681; (c) Ellis-Davies, G. C. R.; Kaplan, J. H. J. Org. Chem. 1988, 53, 1966-1969
- [57] Pirrung, M. C.; Lee, Y. R.; Park, K.; Springer, J. B. J. Org. Chem. 1999, 64, 5042-5047
- [58] Nicolaou, K. C.; Hummel, C. W.; Nakada, M.; Shibayama, K.; Pitsinos, E. N.; Saimoto, H.; Mizuno, Y.; Baldenius, K. U.; Smith, A. L. J. Am. Chem. Soc. 1993, 115, 7625-7635
- [59] Yao, S. E.; Kim, H. R.; Yi, K. Y. Tetrahedron Lett. 1990, 31, 5913-5916
- [60] Camps, P.; Font-Bardia, M.; Gimenez, S.; Perez, F.; Solans, X.; Soldevilla, N. Tetrahedron Asymm. 1999, 10, 3123-3138
- (a) Larcheveque, M.; Ignatova, E.; Cuvigny, T. Tetrahedron Lett. 1978, 41, 3961-[61] 3964. (b) Larcheveque, M.; Ignatova, E.; Cuvigny, T. J. Organomet. Chem. 1979, 177, 5-15; (c) Evans, D. A.; Takacs, J. M. Tetrahedron Lett. 1980, 21, 4233-4236. (d) Sonnet, P. E.; Heath, R. R. J. Org. Chem. 1980, 45, 3137-3139. (e) Schmierer, R.; Grotemeier, G.; Helmchen, G.; Selim, A. Angew. Chem. 1981, 93, 209-210. (f) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737-1739. (g) Kawanami, Y.; Ito, Y.; Kitagawa, T.; Taniguchi, Y.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1984, 25, 857-860. (h) Oppolzer, W.; Moretti, R.; Thomi, S. Tetrahedron Lett. 1989, 30, 5603-5606. (i) Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am. Chem. Soc. 1994, 116, 9361-9362. (j) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496-6511. (k) Kishida, M.; Eguchi, T.; Kakinuma, K. Tetrahedron Lett. 1996, 37, 2061-2062. (I) Mulzer, J.; Hiersemann, M.; Buschmann, J.; Luger, P. Liebigs Ann. 1996, 649-654. (m) Tanner, D.; Birgersson, C.; Gogoll, A. Tetrahedron 1994, 50, 9797-9824. (n) Evans, M. D.; Kaye, P. T. Synth. Commun. 2001, 31, 805-815. (o)

Davies, S. G.; Dixon, D. J.; Doisneau, J.-M.; Prodger, J. C.; Sanganee, H. J. Tetrahedron Asymm. 2002, 13, 647-658

- [62] Rück-Braun, K. in Organic Synthesis Highlights III, Mulzer, J.; Waldmann, H., Wiley-VCH, Weinheim, 1998, 13-22
- [63] Seebach, D. Angew. Chem. 1988, 100, 1685-1715
- [64] Boireau, G.; Deberly, A. Tetrahedron Asymm. 1991, 2, 771-774
- [65] Whitesell, J. K.; Deyo, D.; Bhattacharya, A. J. Chem. Soc., Chem. Commun. 1983, 802
- [66] Solladié-Cavallo, A.; Bencheqroun, M. Tetrahedron Asymm. 1991, 2, 1165-1171
- [67] Hamon, D. P. G.; Holman, J. W.; Massy-Westropp, R. A. *Tetrahedron* 1993, 49, 9593-9604
- [68] Bandyopadhyaya, A. K.; Sangeetha, N. M.; Radha, A.; Maitra, U. Tetrahedron Asymm. 2000, 11, 3463-3466
- [69] Solladié-Cavallo, A.; Suffert, J. Tetrahedron Lett. 1985, 26, 429-430
- [70] Chu, Y.-Y.; Yu, C.-S.; Chen, C.-J.; Yang, K.-S.; Lain, J.-C.; Lin, C.-H.; Chen, K. J. Org. Chem. 1999, 64, 6993-6998
- [71] Xiang, Y. B.; Snow, K.; Belley, M. J. Org. Chem. 1993, 58, 993-994
- [72] Ghosh, A. K.; Chen, Y. Tetrahedron Lett. 1995, 36, 6811-6814
- [73] Akiyama, T.; Nishimoto, H.; Ozaki, S. Tetrahedron Lett. 1991, 32, 1335-1338
- [74] (a) Whitesell, J. K. Acc. Chem. Res. 1985, 18, 280-284; (b) Prelog, V. Helv. Chim.
 Acta 1953, 36, 308; (c) Prelog, V. Bull. Soc. Chim. Fr. 1956, 987
- [75] Wipf, P.; Stephenson, C. R. J. Org. Lett. 2003, 5, 2449-2452
- [76] Koshiishi, E., Hattori, Hattori, T.; Ichihara, N.; Miayano, S. J. Chem. Soc., Perkin Trans. 1 2002, 377-383
- [77] Loupy, A.; Monteux, D. A. Tetrahedron 2002, 58, 1541-1549
- Senanayake, C. H.; Fang, K.; Grover, P.; Bakale, R. P.; Vandenbossche, C. P.; Wals,
 S. A. Tetrahedron Lett. 1999, 40, 5, 819-822
- [79] Fukuzawa, S.-I.; Miura, M.; Matsuzawa, H. Tetrahedron Lett. 2001, 42, 4167-4169
- [80] Basavaiah, D.; Pandiaraju, S.; Bakthadoss, M.; Muthukumaran, K. Tetraherdon Asymm. 1996, 7, 997-1000
- [81] Basavaiah, D.; Krishna P. R. Tetrahedron 1995, 51, 12169-12178
- [82] Comins, D. L.; Guerra-Weltzien, L.; Salvador, J. M. Synlett 1994, 11, 972-974
- [83] Boireau G.; Deberly, A.; Abenhaim, D. Tetrahedron 1989, 45, 5837-5844
- [84] Yli-Kauhaluoma, J. Tetrahedron 2001, 57, 7053-7071

- [85] (a) Lait, S. M.; Parvez, M.; Keay, B. A. *Tetrahedron Asymm.* 2003, 14, 749-56; (b)
 Burke, M. J.; Murray, M. A.; Parvez, M.; Keay, B. A. *Tetrahedron Asymm.* 2000, 11, 2733-2739
- [86] Kawamura, M.; Kudo, K. Chirality 2002, 14, 727-730
- [87] Mamedov, E. G. Russ. J. Org. Chem. 2001, 37, 217-222
- [88] Nagatsuka, T.; Yamaguchi, S.; Totani, K.; Takao, K.; Tadano, K. Synlett 2001, 4, 481 484
- [89] Enholm, E. J.; Jiang, S.; J. Org. Chem. 2000, 65, 4756-4758
- [90] Sarakinos, G.; Corey, E. J. Org. Lett. 1999, 1, 1741-1744
- [91] Ito, H.; Saito, A.; Taguchi, T. Tetrahedron Asymm. 1998, 9, 1989-1994
- [92] Akiyama, T.; Horiguchi, N.; Ida, T.; Ozaki, S. Chem. Lett. 1995, 11, 975-976
- [93] Mathivanan, P.; Maitra, U. J. Org. Chem. 1995, 60, 364-369
- [94] Cipiciani, A.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Ruzziconi, R. J. Org. Chem.
 2002, 67, 2665-2670
- [95] Kashima, C.; Fukusaka, K.; Takahashi, K.; Yokoyama, Y. J. Org. Chem. 1999, 64, 1108-1114
- [96] Chan, W. H.; Lee, A. W. M.; Jiang, L. S.; Mak, T. C. W. *Tetrahedron Asymm.* 1997, 8, 2501-2504
- [97] Le, T. X. H.; Bussolari, J. C.; Murray, W. V. Tetrahedron Lett. 1997, 38, 3849-3852
- [98] Avenoza, A.; Cativiela, C.; Paris, M.; Peregrina, J. M. Tetrahedron 1996, 52, 4839-4848
- [99] Banks, M. R.; Blake, A. J.; Cadogan, J. I. G.; Doyle, A. A.; Gosney, I.; Hodgson, P. K. C.; Thorburn, P. *Tetrahedron* 1996, 52, 4079-4094
- [100] Lakner F. J.; Negrete, G. R. Synlett 2002, 4, 643-645
- [101] Westwell, A. D.; Williams, J. M. J. Tetrahedron 1997, 53, 13063-13078
- [102] Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238-1256
- [103] Oppolzer W. Angew. Chem. 1984, 96, 840-854
- [104] Oppolzer, W.; Lienard, P. Helv. Chim. Acta 1992, 75, 2572-2582.
- [105] Cavelier, F.; Gomez, S.; Jacquier, R.; Llinares, M.; Mercadier, J. L.; Petrus, C.; Verducci, J. Tetrahedron Asymm. 1993, 4, 12, 2495-2500
- [106] Bigi, F.; Bocelli, G.; Maggi, R.; Sartori, G. J. Org. Chem. 1999, 64, 5004-5009
- [107] Kiegiel, J.; Papis, A.; Jurczak, J. Tetrahedron Asymm. 1999, 10, 535-542

- [108] Geoffroy, P.; Carre, M. C.; Caubere, P.; Ianelli, S.; Nardelli, M.; J. Heterocyclic Chem. 1989, 26, 65-69
- [109] Corey, E. J.; Cheng, X.-M.; Cimprich, K. A. Tetrahedron Lett. 1991, 32, 6839-6842
- [110] Arehart, S. V.; Pugh, C. J. Am. Chem. Soc. 1997, 119, 3027-3037
- [111] Eda, M.; Takemoto, T.; Ono, S.; Okada, T.; Kosaka, K.; Gohda, M.; Matzno, S.;
 Nakamura, N.; Fukaya, C. J. Med. Chem. 1994, 37, 1983-1990
- [112] Nugiel, D. A.; Wacker, D. A.; Nemeth, G. A. Tetrahedron Lett. 1997, 38, 5789-5790
- [113] Raju, B.; Kogan, T. P. Tetrahedron Lett. 1997, 38, 4965-4968
- [114] Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165-168
- [115] Koikov, L. N.; Han, M.; Wellman, D. M.; Kelly, J. A.; Smoliakova, I. P. Synth. Commun. 2000, 30, 18, 3451-3464.
- [116] Wang, L.; Zhang, Y. Synth. Commun. 1998, 28, 21, 3991-3997
- [117] Bica, K. Diplomarbeit 2004, Institut für Angewandte Synthesechemie, TU-Wien
- [118] Tyrrell, E.; Tsang, M. W. H.; Skinner, G. A.; Fawcett, J. Tetrahedron, 1996, 52, 29, 9841-9852
- [119] Doebler, C.; Mehltretter, G. M.; Sundemeier, U.; Beller, M. J. Am. Chem. Soc. 2000, 122, 42, 10289-10297
- [120] Huang, J.-W.; Shi, M. J. Org. Chem. 2003, 68, 17, 6705-6709
- [121] Stammen, B.; Berlage, U.; Kindermann, R.; Kaiser, M.; Günther, B.; Sheldrick, W. S.;
 Welzel, P.; Roth, W. R. J. Org. Chem. 1992, 57, 6566-6575