
DISSERTATION

Long-term Workload Monitoring:

Workload Management
On Distributed OS/2 Server Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften unter der Leitung von

o.Univ.Prof. Dr. Mehdi Jazayeri
Institut für verteilte Systeme
Technische Universität Wien

o.Univ.Prof. Dr. Günter Haring
Inistitut für Informatik und Wirtschaftsinformatik

Universität Wien

eingereicht an der Technischen Universität Wien,
Technisch-Naturwissenschaftliche Fakultät

von

Dipl.-Ing. Günther Strasser
In der Hagenau 13/1, 1130 Wien

Matr.Nr. 8225024
geboren am 29. Mai 1964 in Wien

Wien, im März 2000

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 2 25. Mar. 2000

Workload Monitoring Basis

25. Mar. 2000 Page 3 Dipl.-Ing. Günther Strasser

Kurzfassung

Im Laufe der letzten zehn Jahre hat der Begriff "Systems Management" im Bereich
verteilter Client/Server Systeme zunehmend Bedeutung erlangt. In dem Maße, in dem
billige PC Hardware und die dazu verfügbare kommerzielle Software Einzug in die
Datenverarbeitung der Unternehmen genommen hat, sahen die IT Manager die
Notwendigkeit, diese Technolgie und die damit verbundenen Probleme und Kosten
unter Kontrolle zu bringen. Da nun leistungsfähige PC-Serverhardware einen nicht
unwesentlichen Teil der Last in der EDV trägt, ist es notwendig, die wesentlichen
Systems Managementdisziplinen, wie z.B. Kapazitäts- und Lastmanagement, analog den
Methoden am Großrechner zu implementieren.

Während es aber am Großrechner mehr als vierzig Jahre Erfahrung mit diesen
Disziplinen gibt, fehlt es im Bereich verteilter PC Server z.B. im Bereich der
Lastanalyse und Kapazitätsmanagement sowohl an der Theroie als auch verfügbaren
Werkzeugen. Für die transaktions- bzw. batchorientierte Software, wie sie meist auf
Großrechnern läuft und die im Zusammenspiel des Betriebssystems, der Middleware-
Komponenten und der Anwendungssoftware besteht, gibt es eine umfangreiche
theoretische Grundlage, die zum Teil ihre Wurzeln in der Abbildung von
Kommunikationskanälen hat, und eine Menge an erpropten Hilfsmitteln, die es
ermöglichen, die Last an bestimmten Punkten zu messen und an andere Ressourcen zu
verteilen. Alles, was es im PC-Bereich in diese Richtung gibt, stammt direkt vom
Großrechner ab. In der Praxis hat sich jedoch gezeigt, daß die Anwendung dieser
Methoden und Werkzeuge keine brauchbaren Ergebnisse liefert. Eine der Hauptgründe
dafür liegt darin, daß die Betriebssysteme am PC - wir betrachten hier vor allem OS/2 -
mit der Grundidee eines interaktiven und "ungeordneten" arbeitens mit einem Benutzer
vollkommen anderen Gesetzen gehorchen als die sehr strikten Großrechner. Dazu
kommt, daß verteilte Systeme inzwischen extrem kompliziert sind und aus so vielen
Komponenten bestehen, daß es kaum möglich ist, hier "manuelle" Methoden der
Messung, Modellierung und Berechnung einzusetzen.

Diese Dissertation zeigt den Wert und die Notwendigkeit der Langzeit-Lastüberwachung
auf und beschreibt die wesentlichen Probleme, die damit verbunden ist. Es wird
aufgezeigt, wie diese Probleme gelöst werden können und welchen Nutzen man aus den
gewonnen Informationen ziehen kann. Das Hauptaugenmerk liegt auf dem Werkzeug
SRVMONPM, das diese Erkenntnisse im Rahmen einer Reihe von Programmen
implementiert. Die Ergebnisse zweier Fallstudien werden grafisch aufbereitet
dargestellt. Auf Grund der Erkenntnisse aus den beiden Studien und anderen
Erfahrungen, die im Rahmen der Arbeiten mit dem Werkzeug gewonnen wurden,
kommen wir zu dem Schluß, daß ein solches Werkzeug die Kontrollierbarkeit und
Steuerbarkeit eines komplexen, verteilten Systems verbessert, daß es aber eine Reihe
von Problemen gibt, die nicht einfach durch ein Werkzeug gelöst werden können.

Der wesentliche Beitrag dieser Dissertation besteht im Entwurf und der Umsetzung einer
Methodik zur Erfassung und Analyse umfangreicher Systemparameter aus verteilten
Systemen über einen langen Zeitraum hinweg, die es ermöglicht, solche Systeme, die
aus sehr vielen heterogenen Teilen bestehen, in ihrer Gesamtheit zu erfassen und zu
durchleuchten. Neben statistischen Standardauswertungen wurde ein spezieller
Algorithmus entwickelt, der es ermöglicht, ohne Kenntnisse oder Annahmen über das
beobachtete System Korrelationen zwischen beliebigen Systemparametern zu finden.
Dies ist deshalb wichtig, weil es auf Grund fehlenden Wissens bzw. Information
praktisch unmöglich ist, für ein reales System die notwenidgen Voraussetzungen
klassischer Methoden zu erfüllen. Die daraus resultierende Methode arbeitet frei von
Annahmen und ist auch für die Einbindung jedlicher weiterer Systeminformationen
offen.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 4 25. Mar. 2000

Workload Monitoring Basis

25. Mar. 2000 Page 5 Dipl.-Ing. Günther Strasser

Table of Contents

Abstract... 9

Preface... 10

1. Introduction.. 11
1.1. Assumptions and Research Target... 12
1.2. Definitions ... 14
1.3. Background ... 17
1.4. Related Work... 19
1.5. Organization of this Thesis.. 28

2. Summary of results .. 30
2.1. Why long-term monitoring .. 30
2.2. General Observations .. 33
2.3. Case Study Summary... 35

3. Architectural Overview of SRVMONPM.. 41
3.1. Requirements and Primary Design Objectives .. 41
3.2. Building Blocks ... 46

4. Retrieving Information - The Agent... 49
4.1. Prerequisites .. 49
4.2. Polling vs. Trapping .. 50
4.3. Agent Concept ... 52
4.4. Agent ... 53
4.5. Monitor Module Structure ... 63
4.6. Data Transport... 64

5. Communication Infrastructure... 65
5.1. Introduction ... 65
5.2. Scenarios ... 66
5.3. Layers of Communication.. 70
5.4. High Level Infrastructure Components.. 71
5.5. Transmission Protocol ... 83
5.6. Low Level Infrastructure Components .. 89

6. The Workload Manager .. 93
6.1. Object Discovery... 93
6.2. Internal Data Management .. 94
6.3. Multithreading and Background-processing.. 106
6.4. Alerts and Threshold Values ... 107
6.5. Dealing with Monitor Modules.. 109
6.6. External Data Management ... 110

7. Working with the Log Database ... 115
7.1. Data Structure and Access ... 115
7.2. Statistical Processing ... 117
7.3. Automatic Detection of Associations .. 123

8. Case Studies .. 137
8.1. Case I... 137
8.2. Case II ... 177
8.3. Results of Automated Association Detection .. 219

9. Conclusion .. 251
9.1. Monitoring Demands... 255

References... 257

Appendices.. 263

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 6 25. Mar. 2000

Table of Figures

Figure 1. Layers Of Provided Resources 15
Figure 2. Performance Analysis Techniques 17
Figure 3. Four ways of using CIM 20
Figure 4. CIM meta schema structure 21
Figure 5. ARM notification flow 22
Figure 6. Architectural overview 46
Figure 7. Monitor layer overview 47
Figure 8. Elements of the agent concept 52
Figure 9. Agent state diagram 59
Figure 10. Control mechanism of the agent 60
Figure 11. Relation between monitor object and machine definition 63
Figure 12. Basic installation within a single domain 67
Figure 13. Advanced installation with agents on each server 68
Figure 14. Full installation with remote LANs 69
Figure 15. Layers of communication 70
Figure 16. Agent communication state diagram 72
Figure 17. State diagram of the service thread of a collection server 75
Figure 18. Replication model 76
Figure 19. Storage structure for the collection server 77
Figure 20. Network message assembly 80
Figure 21. Message class hierarchy 84
Figure 22. Overview of agent to server protocol 85
Figure 23. Overview of server to server protocol 86
Figure 24. Overview of server to manager protocol 88
Figure 25. Interface to dynamic communication layer 90
Figure 26. Shell object and monitor object 94
Figure 27. DataStore class hierarchy 95
Figure 28. Memory Layout of a DataStore 99
Figure 29. Structure of Monitor Backup File 102
Figure 30. Raw Data, Lenses, Views, Sum Retriever 105
Figure 31. Relation between machine and role 106
Figure 32. Data definition of monitor modules at the manager 110
Figure 33. Structure of a log record 115
Figure 34. Main menu of the analysis tool 117
Figure 35. Mapping of daily workload records into a virtual week 118
Figure 36. The week report 119
Figure 37. The year details report 120
Figure 38. Association between an attribute and the number of users 121
Figure 39. Availability report 121
Figure 40. Selection of two resource attributes from the database 123
Figure 41. Preprocessed raw data 125
Figure 42. (non-linear) association 126
Figure 43. no association 126
Figure 44. Contingency table 130
Figure 45. Association table 131
Figure 46. Graphical presentation of an association table 131
Figure 47. List of Detected Associations 133
Figure 48. Association scatter graph 134
Figure 49. Model build from projections 135
Figure 50. Message class hierarchy 297
Figure 51. A single monitor view 301
Figure 52. Relation between data area and view 302
Figure 53. The view definition list 303
Figure 54. A monitor view definition 304
Figure 55. A monitor view window 305
Figure 56. Monitor selection window (application main window) 306
Figure 57. Multiple views, sum views and global views 307

Workload Monitoring Basis

25. Mar. 2000 Page 7 Dipl.-Ing. Günther Strasser

Figure 58. Main window with selected popup menu 308
Figure 59. Alert selection list 309
Figure 60. Alert definition page 1 310
Figure 61. Alert definition page 2 311
Figure 62. Alert definition page 3 312

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 8 25. Mar. 2000

Workload Monitoring Basis

25. Mar. 2000 Page 9 Dipl.-Ing. Günther Strasser

Abstract

Over the last ten years the term "systems management" has become increasingly popular
in the area of client/server computing and distributed systems. As low-cost hardware and
commercial software for the PC were populated all over the enterprise, IT managers saw
the need to obtain control of the technology as well as the costs associated with it.
Meanwhile powerful PC server machines have come to bear a good deal of the workload
of the IT infrastructure. As with mainframe-based systems, therefore, capacity and
workload management have become fundamental disciplines within systems
management of client/server environments.

While there are forty years of experience for mainframes, capacity management for
distributed PC servers lacks both theory and software. Transactional and batch oriented
mainframe software - which means the combination of operating system, middleware
and application software - are equipped with a profound theory in modeling the
processes and rich set of existing and proven tools for measuring and distributing a
workload and for planning for the near future. Everything that exists in the client/server
area is a direct extension of a similar method or tool from the traditional way of
computing. Analysts find it hard to apply these on PC servers, however, mainly because
PC operating systems origin from highly interactive personal (meaning individual)
computing, which follows different rules. In addition, today's systems become so
complex and consist of so many components that it is practically impossible to apply
methods of traditional computing paradigms.

This dissertation discusses the value and necessity of long-term monitoring and shows
the many problems associated with that task. It explains how the problems can be solved
and how one can benefit from the recorded information. The main focus is on
SRVMONPM as the tool set that implements the method. The results of two case studies
in real commercial environments are presented. Based on the case studies and the
experiences from a number of people who applied the tool set in their work we conclude
that SRVMONPM improves the controllability of distributed systems, but that there are
still a number of problems that cannot be solved by a sole method or tool.

The contribution of this dissertation is the introduction of a general method
(implemented as a number of software tools) that enables an analyst to monitor and
collect information about the dynamic nature of distributed PC-based server systems
from an unlimited number of heterogeneous components, which are distributed over a
(potentially large) number of server machines, over a long period of time. The
information is compiled and recorded. In addition to common statistical methods, a
special mechanism is supplied to detect correlation between any attributes that were
recorded for the components. The method is based on the assumption that there is no
knowledge about the details of interdependencies and relations between any of the
systems involved. It can therefore be applied in different circumstances, and it is open
for the inclusion of new information.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 10 25. Mar. 2000

Preface

About The Author:

Günther Strasser was born in 1964 in Vienna, Austria. He attended the Technical
University of Vienna (TU Wien) from 1982 to 1987 where he studied Computer Science
(Informatik). His areas of special interest were computer languages, compiler and
computer graphics.

After graduation with the degree of "Diplom-Ingenieur", he worked for two small
software development companies in Vienna and Lower Austria. There he was concerned
with the development of special-purpose CAD-systems on UNIX-Workstations (from
Sun Microsystems). From 1988 to 1989 he completed his military service in the
Austrian Armed Forces and then joined IBM in the area of GUI development under
OS/2.

After two years in the development the focus of the department shifted to the
management of large PC- and workstation based networks. His new tasks were
consulting in the area of distributed systems management and the design of
infrastructure and systems management solutions. In the course of that work he came
across a number of problems concerned with estimating, assessing and constructing
server topologies in complex client/server environments.

The lack of adequate tools and the absence of any documented material about server
usage and load triggered his interest in this topic. It led to the implementation of a load
monitor and analysis application and studies of load data in typical business workgroup
environments.

Since 1996 he was more involved with project management in large infrastructure and
software development projects.

Trademarks

OS/2 is a trademark of IBM
Windows is a trademark of Microsoft.

Workload Monitoring Basis

25. Mar. 2000 Page 11 Dipl.-Ing. Günther Strasser

1. Introduction

The ever growing complexity of today's computer systems makes it more and more
difficult to size a new system and to predict the behavior due to a changing workload or
the result of tuning activities. While the classical workload was rather well defined and
measurable - consisting of batch-jobs, transactions and interactive applications, running
on the same system - now a wide range of software programs exists on PC server
systems that are not easy to control and manage. Often it is unclear what the workload
on such systems is and how it can be measured. There are no interactive applications,
but the server communicates with a number of clients. There are no batch jobs as there is
no batch control facility, but there may be programs that are scheduled due to an event
(for example a timer). Often, there are no transactions1, but there are service requests
that have to be handled by the server software. The difference is that a transaction has a
name and is associated with a program/module/code and required resources. The system
(operating system and transaction monitor) and, consequently, performance monitoring
tools and workload managers have control over the transactions. Transactions are very
"visible". On the other hand, the communication between a server software and its
clients is private, often unpublished and handled as an internal detail of the software. A
network monitor (or protocol analyzer) can detect how many messages and how much
information flow over the network, but from this information it is not possible to derive
the beginning or the end of a service request, the number of requests, etc. Due to the
multi-threaded (multi-tasking) nature of server software, there is no "end of a request"
that would be comparable to a mainframe transaction. Incoming messages are forwarded
and a client may receive an acknowledgment long before the processing of the request is
completed.

This paper presents the work being done

1. to explore what actual information is available on-line from PC based server
applications. OS/2 was chosen as the operating platform. Information includes all
data about workload, performance, status, etc. that can be queried from an
application.

1. to implement a robust and efficient monitoring system that supports unattended
7x24 operation, long-term recording of data, and smooth integration of hetero-
geneous data from different sources. It is open for the inclusion of new data
sources.

1. to analyze and present the recorded information in such a way that an infrastructure
designer can actually work with the data.

1. to perform a number of case studies in commercial environments in order to
generate some material that documents actual workloads and the dynamic change
of important parameters in the monitored system. This information would be useful
for all persons involved in client/server infrastructure design.

1. to detect automatically relations or dependencies between the many parameters.
The theory, to build a network of related parameters and to form a machine-build
tabular model from that, is validated. It was found impossible to build a complete
network that could be used for simulation or analysis tasks.

Please note: a table of "terms used in this paper" forms part of the appendices at the end
of this thesis. Please refer to it for definitions of terms appearing for the first time.

1 Transaction monitors exist for OS/2 and Windows NT. Usually, the transaction monitor is part of a three tier
architecture with a major transaction system located at a mainframe.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 12 25. Mar. 2000

1.1. Assumptions and Research Target

As described later in this paper, part of the problem in designing a new infrastructure or
adapting an existing one is the total lack of reliable information about the current system
and the way the system is used by the user community at the time an architect is
confronted with a real-life situation. This does not mean that there is not some
information at hand - but usually, even "simple" metrics like number of server machines
or number of users are wrong: the documents are out-dated and have not been updated
during the past years, other departments have changed the system and have not notify
the IT-department2; there is no central user administration and the user and access
databases that are part of server software systems do not reflect the real number of users,
and so on.

Assumptions

Because this is a very common situation, the following assumptions became fundamental
for this thesis:

1. There must be a way to collect and record reliable information about the system
over a long period of time - at best the whole life-time of the system.

1. A distributed system is a complex construction consisting of many subsystems and
components. There are a lot of dependencies between them. Some of them are well
defined, documented and, therefore, known. Many of them are not. If such data is
available it must be possible to find “hidden” dependencies.

1. It is unhelpful when one subsystem's collection and presentation of workload data is
incompatible to other subsystems. It must be possible to build a system that collects
and consolidates information from many subsystems. This consolidated information
can provide better insight into the whole system and its components.

1. Snapshots or short-term data (the last n minutes) cannot be exploited in a reasonable
way. Long-term measurements and suitable analysis tools are necessary and it must
be possible to do this on toady's PCs without the need of expensive mainframe-
resources.

1. With this data and the knowledge about the dependencies it will be possible to build
a (data-driven) model engine that can make use of the data and help in evaluating
system behavior under changed conditions.

Research Questions & Targets

The most important question concerns the actual workload patterns on real commercial
(office) client/server systems. What are the services that are really used, how many
people and workstations participate, when and in which intensity are services requested?
What information is available or could be retrieved (in contrast to what is offered by
existing tools)? Everything else in the process of creating an IT architecture is based on
that knowledge.

Secondly, assuming it would be possible to gather and record detailed workload and
usage information about a system, the question arises how one can benefit most from the
data. One of the things that an architect needs in his job is a means to predict the effects
of changes to the environment (e.g. introduction of a new application, more users, more
devices) or to the system itself (e.g. more memory, faster servers, etc.).

2 Another "challenge" of the client/server world, as it is easy and - when involving hardware - cheap to
modify existing or add new systems.

Workload Monitoring Basis

25. Mar. 2000 Page 13 Dipl.-Ing. Günther Strasser

The classic approach to predicting the behavior of a system is the construction of an
analytical model that can be used to check the consequences of changes to parameters
or components in the model. Such a model consists of a number of equations that can be
solved. There is a lot of literature about analytical models, e.g. [5] and [7].

The problem with analytical models is that it is extremely difficult to build one. The
analyst needs a thorough knowledge of the details and internals of the target system. It is
hard to prove its quality and - the model is always wrong. Menascé states in [7] that the
best model of a system is the system itself.

For each new technological development and each new software system new modeling
techniques have to be found. It takes much longer for someone to find a suitable model
than it takes to build the technology. Therefore, in general it is not possible to build
models for current client/server systems (though solutions for specific problems exist).
While the area of classic terminal and batch oriented, single or eventually multiple CPU
mainframe processing is very well understood, today's networks with a huge number of
more or less independent processing units that communicate to one another and access
service machines with different usage patterns, are a magnitude more complex and a
field of ongoing research work.

Analytical models have other drawbacks. Usually they are so computationally intensive
that it is not possible to solve them on a computer system at reasonable costs. To
circumvent that problem, approximation algorithms exist that provide less precise but
often sufficient results (usually min/max boundaries). When modeling a system the
analyst needs to know a lot of intricate details about this system. Considering the
examples in books and papers the attentive reader will notice what explicit and implicit
assumptions are made about hardware and software. Models are based on measurements
of some low level, hardware and operating system related metrics. Often, it is assumed
that one has detailed insight into the system under consideration (like the developer of
the software may have). In practice one does not have the required knowledge about the
hardware or about the server software, firstly, because some of it may be an intellectual
property of the producer and cannot be published and secondly, because the developers
never take the time to describe the internals of a product.

The second approach to the problem is the use of simulators. Again the analyst needs a
lot of knowledge about the internals of the system. With the use of tools or programming
a model of the system is built and the simulator may answer questions about
performance and behavior. The same problems exists: technology progresses faster than
simulators and one does not have the details needed to build a valid model.

Both approaches tend to create models that match what the analyst would like to have.
Because it is not possible to formally prove the "correctness" of the model, in each case
the model must be calibrated. If not carefully done this can easily jeopardize the whole
procedure.

This paper is about obtaining more knowledge about a system under consideration. Our
approach consists of creating a sound basis of measured data and deriving dependencies
and relations from that database. In order to do this we extend the term resource. While
most literature deals only with hardware resources (CPU, memory, I/O channels, disk
subsystems), we have to consider the resources that are provided by the server software
(application software). Every server software provides resources that are defined by the
software (e.g. the number of possible connections, the number of open file handles, the
number of threads in a system, the number of database index entries in memory, the
number of network buffers, etc.). This can be visible to the client (external resource) or
it can be a "private" detail of the software (internal resource). Very often, an
administrator has to size these resources (when limits are defined in configuration files),
but has no idea what values to use. At the University of Carleton a number of projects
are under way that address the problem of software resources that are essential to the
behavior of a system [31].

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 14 25. Mar. 2000

To overcome these problems this paper presents the idea of using the given system itself
(instead of a model). By monitoring and recording all available parameters over a long
period it should be possible to "understand the behavior" of the system. Eventually it
may be possible to detect relations between resources to build a tabular model that can
be used for prediction and simulation. A tabular model would be a collection tables.
Each tables sets a number of parameters into a relation and makes it possible to look up
a value when the other parameters are given. Chapter 7 explains the idea in more detail.
However, we have not succeeded in creating a complete set of such tables.

With this idea as a basis, a lot of other questions come to mind:

! Which relations exist between the uses of different resource on the same or different
servers by applications running on network clients?

! Is it possible to collect and process load information of an enterprise-wide
client/server network with a completely OS/2 based solution?

! What kind of data can be retrieved?

! What value does this data have for a LAN administrator?

! What value does this data have for an infrastructure planer?

! What value does this data have for an client/server application designer?

! Is it possible to derive any feasible assertion about the future developments of a
system by looking at the history of load data?

! Is it possible to implement automatic system control based on feedback to the current
workload data?

This dissertation discusses possible ways to find answers to the questions above based
on the information that is built by long-term monitoring.

1.2. Definitions

The following terms are used throughout the document and it is important to understand
how they are used in this context. Several definitions are derived from [7].

Throughput

is the rate at which requests are serviced. A more mathematical definition is: The
average throughput is the quotient of the number of requests finished and the length of
the observed time interval [4].

∆d(t)
D(t) = -----------

∆t

(Theoretical) Capacity

is defined as the maximum rate at which a computing system, component or resource
can perform work. Thus, capacity is the upper limit of throughput.

Effective Capacity

is the largest throughput at which response time remains acceptable. This implies that
the amount of acceptable response time is specified. In fact, responsiveness limits the
amount of effective work processed by a system [10].

Intensity

Intensity is defined as the number of transactions (service requests) generated by each
concurrent client [32], [33]. This definition refers to the need to distinguish active users
of a system versus concurrent users. While it may be easy to measure the number of

Workload Monitoring Basis

25. Mar. 2000 Page 15 Dipl.-Ing. Günther Strasser

active users, concurrence and intensity are much more important for an analyst.
However they have to be derived from other data.

Resource

is a component of the computer system that is necessary to satisfy a service request.

We have to distinguish external resources, which are visible to other applications or
users and are provided as a service to others, and internal resources, which are required
by the server software itself to perform certain tasks, but which are not visible or
accessible to other processes on the host computer.

In reality one of the problems of systems administration is that every server application
provides services which require certain resources. These resources may be provided by
other components (e.g. the operating system or the network adapter, etc.) or they may be
introduced by the application itself (e.g. number of available communication handles,
memory buffers, etc.). Often it is necessary to configure the number and/or sizes of
allocated and provided application resources and these numbers are fixed for the
lifetime of the application.

A client who uses services of a server application consumes more or less directly
resources of every software layer over a period of time (see Figure 1). These resources
are not "consumed" or destroyed due to their usage. Therefore we can assume that a
resource becomes available again after a service request has been completed or a client
has given up a service.

Workload

of a computer system designates all the processing requests submitted to a system by the
user community during any given period of time [8]. Broken down to a server
application, its workload is any kind of consumption or temporary use of its resources
due to service requests that have been submitted to it.

CPU Memory DASD

Bus Adapters

Disk Cache

���
���
���
���
Middleware Service

Virtual
Memory

Threads &
Processes

OS Resources
(e.g. Semaphores, ...)

Device Driver

Server Application I Server Application ... Server Application N

��
��
��
��

Middleware Service

��
��
��
��

Middleware Service

���
���
���
���
Middleware Service

hardware layer

operating system layer

middleware
l

application software layer

Figure 1. Layers Of Provided Resources

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 16 25. Mar. 2000

Monitor

is a tool used for measuring the level of activity of a computer system [8]. A software
monitor consists of routines inserted into the software of a computer system with the aim
of recording status and events of the system [7], [14].

Although it is necessary to have a piece of software that stores information about metrics
and provides an interface to access the information, our approach to building a monitor
assumes that it is not possible to insert code into a software system and that the monitor
has therefore to use existing sources of information. Thus the monitor is not part of the
software that is to be measured. It was an essential part of this work to find sources for a
monitor in the area of (commercial) OS/2 systems and applications.

Workload Monitoring Basis

25. Mar. 2000 Page 17 Dipl.-Ing. Günther Strasser

1.3. Background

This work was triggered by the fact that it is extremely difficult to plan and implement
the infrastructure of today’s client/server solutions. Someone involved in client/server
infrastructure design will come to the conclusion that some of the tools necessary for the
proper analysis and design of such an infrastructure are missing.

Quote from an article from Software Magazine [Korzeniowski] (quoted from [1]):

“Client/server capacity planning [is] mostly a black art today. Capacity planners who
have applied the discipline [of capacity planning] to host-centric systems find it
extremely challenging to apply [it] to networked systems because the same types of tools
are not yet available. ... Often, a manager guesses what computer, node and link capacity
to install and then waits for the result.”

One of the main problems is the lack of precise information about the environment and
the behavior of users and applications. Existing tools commonly focus on the lower
network layers or on a certain application but there is no way to get an overview of the
whole picture and drill down for more details where it seems to be important.

Performance Analysis

Figure 2 gives an overview of the major techniques that deal with performance analysis
in general [4].

The term "tabular model" has been added to the picture. Chapter 7 explains the idea of
the tabular model and the way it is intended to create it.

Workload Analysis

Workload analysis is a technique to assign the set of all possible service requests to a
limited number of groups. Workload characteristics are defined for each group. The
attributes of the group represents its members in later steps. Workload analysis is a part
and corner stone of performance modeling. Model calculation is reduced to a number of
workload classes.

performance analysis

measurment techniques modeling

simulation analytical modeling hybrid simulation

deterministic
 analysis

stochastic
 analysis

operational
 analysis

tabular model

Figure 2. Performance Analysis Techniques

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 18 25. Mar. 2000

Systems Management

Today, people involved with systems management are faced with large numbers of
desktop systems spread over the country, all connected via some kind of communication
device forming a network of heterogeneous and relatively uncontrolled nodes.

In contrast to a centrally managed and well defined host system where a given set of
transactions of known size formed the biggest part of the workload, end-users are free to
use shared resources on the network, execute programs, access distant services,
exchange data, etc. and it is hard to determine what is going on in all the systems3. Thus,
we are faced with a shift from well defined classes of workload (consisting of known
batch jobs and transactions) to individual, uncontrolled and hardly predictable service
requests which originate from applications that execute on end-user workstations.

An extra layer of complexity comes with the use of many different products within an
environment. While single products may sometimes offer some support in monitoring
resource consumption and workload of their own services, they are neither integrated
into some sort of common solution nor do they provide clues on how they use system
resources and interact with other components. Besides that, most applications do not
even offer this kind of support.

While the environment becomes more complex and difficult to handle, there is great
pressure to reduce the overall costs of the IT systems. It is also expected that the
operation will become cheaper due to the decline in hardware and software prices. Often
this means less personnel, tight timelines and stringent budgets. One cannot expect to
have much time to deal with a certain tool and its functionality. It must be simple to
operate and its value for the work of the IT people must be obvious. Somehow it seems
that a profound workload analysis has become an academic discipline while in the field
there are no people who can handle the task.

In absence of any useful information about how the system behaves it is very difficult to
track down problems and to plan future changes or extensions.

The only exception to this situation is the network layer itself. There are several
products available which provide the ability to monitor network traffic and react on
certain conditions. Many products are focused on special hardware, especially in
conjunctions with network infrastructure hardware like routers or gateways. Such
devices are capable of collecting workload and performance data and handing them over
to an application which controls their operation.

Long-term Monitoring

As far as we know there have been no long-term (spanning a period of a year or more)
studies of workload in a real-life commercial environment, either in a classic mainframe
environment or in a distributed client server environment. Therefore it does not come as
a surprise that there is not much data available that could be used as the basis of one of
the techniques mentioned above.

3 With distributed objects on the horizon the situation will become worse.

Workload Monitoring Basis

25. Mar. 2000 Page 19 Dipl.-Ing. Günther Strasser

1.4. Related Work

This chapter presents a number of different approaches to workload monitoring both
with an academic background and from the IT industry. Related topics like accounting
and application instrumentation are briefly covered because they may offer valueable
input for collecting, analyzing and understanding workloads. Because there has not been
much focus on OS/2 and because the problem of monitoring load and a distributed
network of nuzmerous heterogeneous computer systems we do not limit our references
to OS/2 specific work but we try to give a general overview. At the web site of the
Computer Measurement Group [9] discussions and standard proposals concerning
measurement and monitoring can be found.

Hardware Monitors

A hardware monitor is a measurement tool that detects events within a computer system
by sensing predefined signals [7]. It focus on hardware issues and is not able to provide
data about server software. Hardware monitors are not discussed any further. The rest of
this paper deals with software monitors.

(single machine) Software Monitors

Software monitors record any information that is available to programs and operating
systems. That makes software monitors a powerful tool for analyzing computer systems.
The IBM Resource Management Facility (RMF) and the Unisys Software
Instrumentation (SIP) are examples of software monitors that provide performance
information. Note that usually such tools are (integrated) parts of the operating system
and therefore are focused on metrics relevant to the operating system.

Software monitors may operate either in event trace mode or in sampling mode. If the
event rate becomes very high, the overhead of event tracing may become unbearable
[16]. Ref. [7] states that when compared to event trace mode, sampling provides a less
detailed observation of a computer system. Although the monitor that was implemented
as part of this work operates in sampling mode, no data are missed. Many events are
captured and counted by the software that provides the workload data. Therefore a
sampling monitor has access to that kind of information too.

Monitoring Infrastructure

Recently, the Distributed Management Taskforce (DMTF) released its Common
Information Model (CIM) [26]. CIM is a general, object-oriented, extensible description
of computer systems and their resources and it contains guidelines on how to extend and
implement it. This addresses the problem of systems management tool providers with
heterogeneous systems. The idea is to establish a commonly accepted, standard systems
management interface between the providers of hardware, system software and
application software. Systems management tools should then be able to use the interface
to obtain available data and use provided functionality and implement management
functions on top of that without the detailed knowledge about products required today.

Quoted from the DMTF web site about CIM: "CIM is a conceptual model that is not
bound to a particular implementation. This allows it to be used to exchange management
information in a variety of ways; four of these ways are illustrated in

Figure 3. It is possible to use these ways in combination within a management
application.

As a repository, the constructs defined in the model are stored in a database. These
constructs are not instances of the object, relationship, and so on; but rather are
definitions for someone to use in establishing objects and relationships. The meta model

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 20 25. Mar. 2000

used by CIM is stored in a repository that becomes a representation of the meta model.
This is accomplished by mapping the meta-model constructs into the physical schema of
the targeted repository, then populating the repository with the classes and properties
expressed in the Core model, Common model and Extension schemas.

For an application DBMS, the CIM is mapped into the physical schema of a targeted
DBMS (for example, relational). The information stored in the database consists of
actual instances of the constructs. Applications can exchange information when they
have access to a common DBMS and the mapping occurs in a predictable way.

Figure 3. Four ways of using CIM

For application objects, the CIM is used to create a set of application objects in a
particular language. Applications can exchange information when they can bind to the
application objects.

For exchange parameters, the CIM expressed in some agreed-to syntax is a neutral form
used to exchange management information by way of a standard set of object APIs. The
exchange can be accomplished via a direct set of API calls, or it can be accomplished by
exchange-oriented APIs which can create the appropriate object in the local
implementation technology."

Figure 4 shows the structure of the meta schema of the CIM. It describes the major
elements that can make up a model of a system.

Figure 4. CIM meta schema structure

The Windows Measurement Instrumentation (WMI) is Microsoft's implementation of
CIM. It contains a subset of the full model and extends this subset with Windows NT
specific classes and properties. The Tivoli Distributed Manager for NT [34] from Tivoli
is the first product to make use of WMI to monitor performance data. While WMI is an

Workload Monitoring Basis

25. Mar. 2000 Page 21 Dipl.-Ing. Günther Strasser

add-on for the current version of Windows NT, it will be fully integrated in the next
version, Windows 2000. In this version Windows management tools use WMI to
perform their functions.

While the idea is to separate management functionality and system details, WMI shows
that CIM heavily depends on platform specific implementations and that different
providers are not likely willing to open their proprietary systems. Different
implementations may work in very different ways and may not be compatible to one
another.

Regarding measurment and monitoring CIM opens a way for server applications to
define their resources, services and dependencies. They should contain provider code
that is able to create and feed instances of CIM objects. At this time there is no OS/2
implementation for CIM underway therefore the role of CIM for an OS/2 based system
is more theoretically. The WMI implementation is limited to the operating system and
we will see in the future whether server software suppliers and tool producers adapt to
the CIM model of systems management.

Instrumented Distributed Applications

The following two references address the problem of lack of control about distributed
applications. While common measurement tools focus on a single server and monitor
hardware related or operating system specific attributes the overall performance of an
application that is distributed over a number of machines remains in the dark. They
describe systems where access to the source code is assumed. The application code gets
instrumented, that is code is inserted to perform required functions for the monitoring
system. Note, that our own work is based on the assumption that the application code is
not available and cannot be altered in favour of the monitor.

Application Response Monitoring (ARM)

A special problem in the management of distributed applications is addressed by the
ARM [36] architecture and related products. ARM is meant to fill the gap in the
classical monitoring of distinct machines. It will give the system administrator and the
application developer a picture of the application's performance from the user's view.

First, the term transaction is reintroduced to distributed client/server applications. The
developer must define distinct transaction types. During the execution of the program
transactions are performed by a user. The response time of each transaction is measured.
The correlation application monitors the event flow and calculates response times and
statistics for each transaction type. In order to do so the application code must be altered
to insert calls to the ARM API. All parts of the application have to signal when they start
with their part of a transaction and when they are done with it. Figure 5 contains an
example of an application that consists of a client part and two server parts that are
placed on different server machines.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 22 25. Mar. 2000

Figure 5. ARM notification flow

When the client starts a new transaction it notifies this to an ARM agent and receives an
unique transaction id. It is the responsibility of the application to hand on this id to other
parts of the application. The correlation application in the figure is part of a monitoring
tool that receives the notification from the distributed system. It will receive many
events and has to correlate those notifications that belong to the same transaction. When
server B receives the request for the transaction it notifies its ARM agent providing the
transaction id. This is done for every request to another part of the application. When
server B has finished processing of the transaction which included all calls to other
servers it notifies the ARM agent about the end of its part of the transaction. Finally the
client notifies the ARM agent that the whole transaction has been completed.

The correlation application collects this information and may be able to generate
statistics about the response time related to an application, user, server, LAN segment,
etc. Every transaction and every request to another part of the application results in
some notifications to the ARM system. This generates a considerable amount of network
traffic. Therefore the ARM paper suggests to limit the use of ARM to a few machines in
the network and to problem situations.

If applications are instrumented for ARM it would offer some insight into some
significant metrics like

! overall average response time per transaction class,
! average response time per transaction class per application part (server),
! network related delays,
! number of transactions per user, per client and per server (application related

workload per server),
! request distribution within each transaction class.

An interesting detail of the ARM implementation is that the part of the ARM agent, that
is used to receive notifications from an application, executes in the address space of the
application (i.e. is part of the application) and has to do some IPC (inter process
communication) to forward the information to the ARM agent at the local machine. This
IPC is rather expensive and adds to the response time of the application.

ARM focuses on application response time. Considering general workload monitoring
ARM could provide valueable data that has to be correlated with other workload and
performance data from other sources.

Making distributed applications manageable through instrumentation [37]

This approach goes beyond mere retrieving information about resources or applications
but tries to address the management of distributed applications. That means that a
remote (central) systems management tool may apply functions on the application.

Workload Monitoring Basis

25. Mar. 2000 Page 23 Dipl.-Ing. Günther Strasser

Again it is assumed that the source code of the application is available and can be
altered to fit to the needs of the system.

The authors introduce the terms manager, for the central component, management
agent, for code that collects information, and managed object, which represents actual
systems or resources. This is very similar to the terms used in this work. Their
instrumentation architecture contains sensors, which encapsulate management
information and are responsible for collecting, maintaining and processing information,
actuators, which encapsulate management functions which exert control over a managed
process (application), and probes, which is code, that is inserted into the application to
faciliate the applications interactions with sensors and actuators.

A systems management application may interact with the agent, not knowing the
technology that is behind it, for example, the management system may be based on
SNMP. The problem is the insertion of probes into an application. The authors propose
the following probe points:

! Entry points to processes (and threads, if we extend the concept to OS/2)
! Exit points (when processes or threads end)
! Inter-process communication (whenever one process communicates with another

process)
! Operating system or middle-ware service invocation
! Exception and signal handlers
! Custom points (other points the developer thinks may be useful for managing the

application)

Because it would be very difficult or impossible to insert these probes manually the
authors propose a four level implementation that includes instrumented system libraries
and compilers (where the compiler already inserts required probes, IDL instrumentation,
function or class wrapper instrumentation and hand coded instrumentation (for custom
probe points). As this project focuses on possibilities on how to support (semi-
automatic) instrumentation of distributed application there is still no experience with an
operational system with an application instrumented at the proposed detail.

Accounting Systems

These are tools primarily intended as means of apportioning charges to users of a system
[15], [16]. They are usually an integral part of most multi-user operating systems, e.g.
IBM/SMF (System Management Facility), VMS ACCOUNTING, UNIX/sar (System
Activity Reporter) [17], SNI ACCOUNTING/RAV (Rechenzentrum-Abrechnungs-
Verfahren). These examples are all mainframe-based tools. There has to be a central
user definition and a central accounting system and the operating system associates each
use of a system resource to a user account and notifies the accounting system. Tasks the
are shared by many users (like a DBMS) are either not traced or are billed to a separate
account.

For distributed PC-based servers there is a demand for accounting systems too.
Although SRVMONPM provides some of the needed functionality, it is not an
accounting system. The main obstacle to this respect is that many software servers on
OS/2 (and Windows NT) implement their own user administration and security
system(s), and neither the operating system nor a software monitor knows, who is
responsible for each request or resource consumption. Moreover, there is no direct
accounting for resource usage per request.

Program Analyzers

Program analyzers are useful tools for understanding the performance behavior and
bottlenecks of a software product particularly in software development. Today every
software development package includes such a tool. The compiler or translator/
interpreter inserts monitoring hooks into the machine or intermediate code. A program

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 24 25. Mar. 2000

analyzer can use this hook to monitor and analyze the system. Examples are the IBM
Performance Analyzer, which is part of the Visual Age programming environment, or
the UNIX perfmon4 tool [18]. On the mainframe, such tools exist for DB2, IMS and
CICS.

Remote Monitoring based on Remote Command Execution

Projects that deal with performance or workload balancing (for example, the HiCon
project [3]) have to retrieve information about the load on a system or a software
component. If a central component has to monitor a number of different machines it has
to access this information remotely. There is nothing like a standard way to accomplish
this. Projects that are UNIX based very often rely on the UNIX feature of remote
consoles and remote command execution. Doing so UNIX commands like "ps" or
"vmstat" run on the remote machine and retrieve information about the remote host.
Their textual output is captured and sent back to the requesting machine. There the text
output is processed.

Mainly academic projects and purely UNIX oriented management applications make use
of that. This approach has a number of drawbacks:

! The monitor is limited to commands that come with UNIX. They are operating
system related and it is not possible to retrieve information other than what is offered
in a console.

! It is very expensive in terms of system and network resources. The requester has to
establish a connection and a remote console each time a bit of information is
retrieved. A considerable number of network messages is exchanged during that
process.

! It requires the existance of user authentication information at each host machine.
Besides the effort to establish and maintain that information it may open up a
security hole because access permissions are created that are not associated to a user.

! It is not possible to synchronize data retrieval over a number of machines.

! Remote consoles do not exist on most OS/2 machines (utilities exist that would do it)
and most relevant information is not accesible via text commands. OS/2 and all other
PC operating systems are much more GUI oriented and do not lend themselves to
this way of information retrieval.

Commercial Systems Management Products

When the work on SRVMONPM started in 1994 there was no remarkable systems
monitoring tool available for OS/2 or any other Intel-based operating system. The
situation did not really improve since then, due mainly to the decline of OS/2 in favor of
UNIX-based server OS (e.g. LINUX) and Windows NT. Nevertheless today all solution
provider of systems management packages count monitoring as a core functionality of
their packages for distributes PC environments.

The term monitoring (or monitor) is used with different meanings, or at least, has very
different implementations. There are several approaches which differ in their target
environments and problem focuses.

Firstly, there are tools which aim at a single machine or at very small environments,
which consist of one or two servers and some dozens clients. Tools of this category
focus on hardware-related resources. By accessing the hardware or by using hidden

4 The author developed an OS/2 version of this tool that was published as part of the IBM EWS program.

Workload Monitoring Basis

25. Mar. 2000 Page 25 Dipl.-Ing. Günther Strasser

(unpublished) operating system hooks they provide the user with detailed information
about the current state of the machine or a device.

The most simplest tools display a single snapshot of an item, e.g. in a GUI control that
mimics a meter. More sophisticated tools provide current and recent data over a certain
time interval and display them in a graphical window.

Such tools are easy to use and can give valuable information when looking for a certain
problem or bottleneck during testing or problem evaluation. Via a log file or entries in a
log database the information can be accessed through other programs, e.g. a timetable
can be loaded into a spreadsheet.

The disadvantages are that one is unable to get information about high level services
(e.g. a shared file system or a transaction service), that there is no long term logging and
that the evaluation has to take place directly at the machine which is being monitored.
The information is directly related to the activities on the machine and therefore no
relation to other services or machine can be established. None of these tools can be used
remotely from a central site.

Several work-arounds for some problems exist: e.g. add-on tools collect log information
and store them in a "central" database within the LAN. Another add-on tool can collect
LAN-based databases and join them onto a central host database. Simple analysis can be
performed on this data but with their focus on hardware performance it is not possible to
get a clue about what has been going on in the system.

Examples: System Performance Monitor (SPM/2)
TME 10 Netfinity (see www.tivoli.com)

Secondly, several network managers have been extended toward system monitoring.
This group of applications are UNIX based. Their capabilities are based on either
SNMP or the remote command execution of the UNIX operating systems. In both cases
the manager sends a request to the target system, the target system processes the request
- either the SNMP agent (see [27]) builds a MIB or the target UNIX executes a
command - and receives a textual answer (results on stdout). The answer is interpreted
as a numeric value and the values are collected and displayed.

This approach is rather simple and basic to a (graphical) network management
application, which is already able to monitor network load. Unfortunately it did not
work well (for a PC based client/server environment):

1. Both solutions suffer from the fact that the network traffic increases tremendously
with the number of monitored resources. Note that the number of server PCs is
usually much larger than the number of (expensive) network hardware boxes and
that each server may offer many resources that may be of interest.

One work-around is to use a very long update interval which in turn decreases the
quality and meaning of the resulting data. In addition, due to their user interface and
difficult setup procedures, the tools do not lend themselves to monitoring a large
amount of resources.

Consequently, monitoring is restricted to use with certain resources (≈ systems), and
this only when necessary (e.g. in case of problems).

1. If SNMP is used to access load or performance data, the solution is IP based. It will
not reach machines which do not have an IP stack - and that is likely in the world of
Intel-based servers5. A possible work-around is to install an IP stack and an SNMP

5 E.g. many Token-Ring LANs use NETBIOS or IPX stacks.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 26 25. Mar. 2000

agent at all server machines. The question is whether or not a company is willing to
buy into it because of monitoring.

1. If remote command execution is used the solution is limited to the UNIX world.
Moreover it opens a possible security hole because the monitor may execute any
command. One has to plan and restrict possible commands very carefully. For OS/2
based servers a theoretical work-around is to write a proxy agent which does the
same work on the OS/2 machine and reports the result back to a UNIX workstation.
If the IBM LAN server NOS is in use, this function is available with the correct
setup. In contrast to the UNIX operating under OS/2, there are no corresponding
operating system commands which return performance information.

Examples: HP OpenView, see http://www.openview.hp.com/

Thirdly, if it is not possible to get the information onto a central management machine
one may move the management and processing to the resource. As most systems
management packages contain software distribution functionality it can be used to install
extra software at any machine. The agent bears the extra task of accessing
performance/load information and checking it against a number of rules (which
implement a policy). If a rule (most often a threshold value) is violated the agent sends a
trap to the central management site. Otherwise it is silent and does not put extra load on
the network.

Many error transport and notification services exist on all systems that work in any
conventional environment. The administrator usually has no idea what is occurring on
his systems. Only when something deviates from the defined standard does he get a
notification. While it may be sufficient to control a large system this way it is impossible
to record integrated, timely and precise information about the workload.

Example: Tivoli TME 10, Tivoli (see www.tivoli.com)

Commercial Performance Monitors

Here are some examples of widely used performance monitors for the mainframe
environment. No similar tools do exist in the same quality for distributed server
systems6. Usually such tools offer the graphical and/or textual) presentation of several
hardware and OS-related performance metrics, the export of these data into a file or
database, and the definition of rules or policies that trigger exception handler or
automation routines based on the incoming data. The tools and their functionality are
very OS-specific:

! OmegaMon (Candle [23], see also www.candle.com). OmegaMon is a real-time
oriented monitor for MVS and VM. Extensions for IMS, DB2, VTAM and CICS are
available. The tool can be used to display on-line overview information about the
system down to very detailed data at transaction-level. Some level of automation is
supported.

! The Windows NT Performance Monitor is a tool that comes with the Windows
NT operating system. It is able to display a number of attributes of the local
operating system in a graphic window. The user can use monitoring for the attributes
he/she is interested in [29].

! Platinum ServerVision is able to monitor UNIX and Windows NT based server
systems. The main focus of the tool is systems management and it offers analysis of
operating system performance and threshold alarming (aside from other functions).

6 For example, [10] mentions only some protocol analyzing and network monitor tools in that area.

Workload Monitoring Basis

25. Mar. 2000 Page 27 Dipl.-Ing. Günther Strasser

! RMon/AIX is an example of an AIX (UNIX) monitor that is able to cooperate with
central systems management applications (see ref. [28]).

! SM2 (or ARGUS, which was the predecessor of SM2) is for the BS2000 operating
system [4], [24], [25]. This is also an OS-specific monitor. It provides OS-related
performance metrics.

! MGX does not fit well into the list of monitors, because, by and large, it is not a
monitor. It relies on other tools - mainly SMF - to produce log records. Thus MGX
can be used to read the records and to produce input for the SAS statistics software.
Based on SAS, MGX can do a lot of reporting and analyzing of the data. For systems
that do not directly support SMF, tools are provided that generate the required SMF-
output ([30], www.mxg.com/prodinfo.htm).

Workload Data Analysis

According to ref. [4], analysis of measured data is usually a manual process done by an
analyst. Due to the complexity of the computer systems and the volume of data, today
there are attempts made to automate the process. The first of these approaches are
software monitors that try to analyze the data on-line as well as pin-pointing and
reporting certain unusual events. More advanced systems try to use expert systems. The
first version of such a system is being used for detecting bottlenecks [19].

Furthermore, Zorn in [4] goes into the problem of measuring and analyzing distribute
objects. He identifies as the major problem areas:

! heterogeneous objects: in distributed systems like a LAN it is very likely that one
has to deal with different objects (for example, different server applications like a
database, web server, groupware server, file and print server, names server, etc.).
Another problem is the semantically difference in the meanings of resource attributes
at different locations/objects (for example logical disks and file systems).

! central or decentral recording and preprocessing of information: Considering that
the communication overhead to send all information to a central monitor system, it is
suggested to preprocess the information at the location of the distributed resources.
This imposes the threat that required data are not available at a central site. An agent
that monitors a resource attribute, writes a log and only sends a message on a certain
event is an example for decentralized recording and preprocessing.

! central or decentral control over the monitoring process: In the case of problems,
the central site remains uninformed about the status of monitoring, thus the value of
the whole measurement is in doubt. Those approaches that expect to receive
information only in case of problems at the agent's host will remain in an unclear
situation if the communication infrastructure is broken which may not be detected by
a listening central monitor. In that case it may mistakenly assume that there are no
problems at all.

! creation of a common time basis: Usually time stamps are added to sample values to
enable the representation of the development of the value. If the monitoring is
performed in different computer systems, it would be necessary for the system clocks
to provide (nearly) the same time stamps. The problem becomes even greater, if new,
aggregated values are computed at the central site.

For some of the problems, e.g. the problem of aligning system clocks, solutions do exist
[20], [21]. Zorn concludes that the joint analysis and interpretation of interconnected
relations and problems are more or less undiscovered as yet and that new methods and
tools will have to be developed , e.g. [22].

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 28 25. Mar. 2000

1.5. Organization of this Thesis

This dissertation consists of the following parts:

Chapter 1 introduces the reader to the topic of workload monitoring. It presents some
background information about the topic and gives a brief overview of related
information and references.

Chapter 2 contains a short summary of the results from the work with a number of case
studies and related work with the monitoring software. The most important observations
are outlined. We try to explain our observations and provide assumptions about the
cause of measured results.

Chapter 3 presents requirements and architecture of the monitoring software. It
introduces the major components that make up the monitor. The reader should be able to
understand the problems that are addressed and how the components of the tool act in
concert. The following chapters cover the technical details on each component.

Chapter 4 discusses in detail the monitor agent that retrieves local or remote workload
information. The agent is responsible for controlling required monitoring code, resource
detection and forwarding data. Stability, robustness and secured data consistency are the
most important focus areas.

Chapter 5 explains the communication infrastructure that was built to allow an efficient,
fast and reliable transport of synchronized sample data. Minimizing the network traffic,
dealing with different network protocols in parallel, securing data transmission in
unsecure networks and enabling robust operation by supporting redundant cooperation
of many units are explained in detail.

Chapter 6 shows how the central component collects and processes the available
information. This component is resonsible for all on-line processing of workload data
which includes data retrieval and (time-) consolidation, storage management, alert
definition and monitoring, alert triggering and automatic initiation of actions in case of
defined events.

Chapter 7 deals with the way the information is stored and analyzed. The chapter covers
the workload database that is the result of long term monitoring. Problems concerning
the volume of information, robustness and automatic database maintainance and error
handling are explained in more detail.

Chapter 8, which makes up half of this dissertation, contains the condensed results from
two case studies. Because the amount of collected information is large insignificant data
has been omitted and the graphical representation of each parameter is folded into a
"virtual" week. In addition, interesting results from the assoziation (correlation)
detection are given at the end of this chapter.

Chapter 9 concludes the dissertation and discusses the findings and some of the
remaining problems in that area.

Workload Monitoring Basis

25. Mar. 2000 Page 29 Dipl.-Ing. Günther Strasser

2. Summary of results

2.1. Why long-term monitoring

This dissertation focuses on the problem of long-term monitoring, that is at least six to
twelve months or more, in distributed PC server systems. The major goal was to find a
way to provide a sound basis for IT planning and architecture work. Two of the most
well known areas of long term monitoring are the observation of the stars and weather
observation. Early in the history of modern man it became clear that it was necessary to
record important information. This triggers the necessity of implementing a way to
record the data in a permanent way. Many scientists think that this may have been the
incentive in the invention of alphabets, scripts and mathematics. Both observation areas
record information over which the observer has no influence. Both are also illustrations
of many problems associated with long-term monitoring, for example information was
not stored durable enough that later generations could still read or understand it. A
wrong understanding of the nature of the data led to the recording of invalid data and the
omission of important data. These two examples can be compared to the monitoring and
recording of parameters in a computer system over a period of several months or years.

PC server systems add a number of additional problems: a much higher frequency of
samples (information changes within seconds), a big number of server applications,
which provide very different data (if any), big differences in the volume and scale, a
rapid evolution with ever changing products, interfaces and data types, an unstable
infrastructure with a lot of changes, and many more.

If we use the observation paradigm from above again, we can understand it to imply
stars appearing and disappearing every night, with the observer never knowing where to
look for them. It would be unclear whether to measure daily rainfall in millimeter,
centimeter, or meter. How would the instrumentation of a meteorologist look like, would
not be scale and parameters (temperature, rainfall, humidity, etc.) be the same every
day?

Another central issue of this study forms the question: what metrics are available on-line
from current server applications? While it may be possible to determine the amount of
yearly rainfall from rock sediments, it is more efficient to collect the water when it
comes down to the surface. The result of this research is that there is a lot of
information, but not always, material needed to work in the area of configuring and
planning for performance and capacity. The appendix E contains the complete list of
attributes that were found to be measurable on-line at the software systems under
consideration.

As a result a product-independent monitoring system was developed that demonstrates
that it is possibe to implement a native OS/2-based system on standard PCs without the
need for expensive UNIX or mainframe hosts. The main problems that had to be solved
were:

! The construction of a general purpose monitoring system open for various data
sources and able to include different types of data formats. Sources, from which data
has to be integrated, are the operating system (OS/2), the network operating system,
device drivers, protocol stacks and server applications like a database, an e-mail
server, groupware applications and so on. No assumptions about the nature of data
and dependencies on certain software products must be introduced into the system
(for example, the tool must work if there is no TCP/IP available on the host
machine). Chapter 3 gives an overview about the requirements and the architecture
of the tool and chapter 4 describes the implementation concepts in detail.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 30 25. Mar. 2000

! The discovery process has the task of finding the resources that can be monitored. It
must be avoided that an analyst has to define and select resources for monitoring. As
resources in a distributed system, like shared devices, network connections or even
server machines, may come and go dynamically, a flexible and automated detection
mechanism is necessary. Chapter 4 and chapter 6 discuss the problem at the level of
a single server and also at the level of the whole system.

! Because it is not possible to rely on the existence of a certain resource, it is necessary
to track whether data is available for a certain sample period. Many tools simply
replace a missing value by zero. That gives a wrong impression and hides potential
problems. In addition later analyses of the data is distorted. The concept of not a
number is introduced to distinguish between a valid and a missing sample value.

! The time synchronization of samples is a well known problem in the area of
monitoring. In order to compare data series from different machines it has to be
known when samples are taken and whether two samples from different servers have
been generated during the same sample interval. As clock synchronization over
different server systems is not guaranteed, timestamps from different systems cannot
be compared or used as a reference. The length of time data travels from its source to
the central processing site (and data store) has to be taken into account too.

! The existence of different message formats may occur in a distributed system.
Software updates may take some time in a large installation. During that time
different versions of a software may operate on different machines. A tool that relies
on the communication of many components over a network must be able to operate
during software updates.

! The heterogeneous environment (network protocols, server applications, different
versions of the OS, of the applications and of the tool itself) makes it difficult to
build stable software able to run unattended and with no need for setup and operator
intervention. Besides the OS/2 kernel itself there is no guarantee for any other
component on a specific system. A monitor tool must be flexible enough to adapt to
the environment where it is supposed to execute. This should be automated to avoid
the need for manual configuration.

! General resource constraints (CPU, physical memory, disk space) need special
focus. PC hardware and software is still limited compared with UNIX workstations
or mainframes. Some attention has to be given to the problem of processing huge
amounts of information on such systems.

! The inadequate stability of a number of software components are a major hurdle
for long-term monitoring. The ability for uninterrupted execution of a process for
years is not a given attribute of any software. A robust agent engine is needed that is
able to run without interruptions for years and is able to recover from system or
subcomponent faults.

! The efficient storage of long-term workload data is a problem concerning
available diskspace7 and the later processing of huge amounts of information. Simply
because of the time it takes to collect so much data, the resulting database is an
expensive asset that has to be protected against loss or destruction. This includes the
problem of migration when the structure of the database has to be changed between
versions of the monitor software. Chapter 7 describes the processing of the
information.

! Data errors due to instrument faults result in meaningless data. It became clear
that the "instruments" getting read by the monitor can fail over time, especially when

7 Using the NT system performance monitor with logging turned on a single sample value for one system can
be 35 kB in size. Assuming a sample interval of one minute, one year of monitoring for 100 servers would
need more than 1800 GB of storage and that only is the figure for the operating system.

Workload Monitoring Basis

25. Mar. 2000 Page 31 Dipl.-Ing. Günther Strasser

the host system gets in a crisis. During that time they can deliver completely invalid
information. Counters can over- or underflow and be mapped to strange numerical
values. In contrast to short-term monitors in a lab, which are observed by an
operator, such events may pass undiscovered and generate invalid data records in the
database.

! The correlation of a number of parameters may point to unknown relations or
potential problems. One central usage of the resulting workload database is the
detection of correlation and potential dependencies between parameters and
resources. The big number of resources and resource attributes and the length of the
monitoring period demand high performance algorithms for processing.

A number of case studies that took up to three years showed the robustness and
functionality of the tool set and provided a lot of valuable data about commercial
client/server office systems. The analysis of this data confirmed the cyclical nature of a
part of the information. In the foreground the daily and weekly cycles became visible
and beyond that, seasonal changes could be seen. However many of the measured
attributes of the systems are not cyclical and do not depend on the ups and downs of the
user population. To a greater extent than initially expected many attributes are relatively
constant or "random".

In contrast to our expectations, the correlation detection did not yield many correlations
between attributes on the same host and only a few obvious correlations between
attributes on different hosts. Many approaches to sizing and planning assume such
relations between certain attributes. The fact that such relations cannot be seen in the
data confirm the opinions of many professionals that classical methods from the
mainframe cannot be applied easily to distributed systems.

The main reasons for this may be that

! there is no information about internals of a software (for example, the usage of
internal resources like buffer pools, handles, sort space, etc.),

! software behavior changes due to optimizations (for examples, a cache) or poor
quality in course of time; restarting the application or the machine may reset the
system again;

! complex (multidimensional) relations, where several attributes influence another
attribute, cannot be detected from the workload database

! the workload submitted to the servers and the consumption of resources due to
the load are much more stochastic than expected,

! there may be time delays in reactions between related attributes; a special case is
a resource that, when allocated, will never be released again,

! usage pattern of many services are rather irregular as the processing takes place
at independent workstations able to store or cache a lot of data, and the way such
an end-user system behaves depends on a number of unpredictable factors
(ranging from the time that a user decides to use a function to the possibility of
programming macros or new functions in many commercial office packages), and
last but not least,

! the sources of the monitor may be unprecise or even wrong.

Looking at analytical models it became clear that many of the classic metrics used to
solve a model are not available or have a different meaning under OS/2. Examples of
common metrics that cannot be measured in many cases are:

! the utilization of a resource, especially CPU (see below)
! the number of active users on a certain host or a certain server application
! the resources consumed by a job
! the number of visits of a job at a certain resource
! the system duration of a job
! usually the number of jobs (or service requests), if there is the notion of „job“,

and then, consequently, all job-related metrics

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 32 25. Mar. 2000

CPU utilization is one of the most visible „measurable“ attributes, when dealing with
performance, and a good example of common misunderstandings. There are different
possible interpretations and ways of measuring it. One very low-level OS-related
interpretation is that the utilization of the CPU is the quotient of the number of used time
slices and the number of available time slices. If ten out of 100 time-slices are scheduled
to a waiting process, we have a 10% utilization; if 100 time-slices are used, we get
100% utilization (and we assume that this resource is fully saturated). From the
viewpoint of the CPU (and the OS) this measurement is correct. A number of
conclusions can be derived from that.

In practice, due to „background“ demon processes and a sophisticated priority
scheduling schema within OS/2, the CPU may be assigned to a waiting low-priority
process if there is nothing else to do. Nevertheless, the CPU is available at any time, if
something more important has to be done. Counting used versus not-used time slices
does not give any clues about the workload that is handled by the CPU. Because OS/2
does not report CPU utilization a measurement algorithm has been developed in order to
report useful measurement data that filters unrelated background tasks.

Two long-term case studies were evaluated. Many charts, depicting average and extreme
values of a "virtual" week, calculated from a year worth of data were given for all
important attributes concerning network services, network traffic, file system
access/usage and the operating system. The results of the correlation detection are given
here, too. They show, which relations between different attributes can be seen (and
proved) by the recorded data.

2.2. General Observations

A major part of this work was the application of the described techniques to a number of
real environments. Due to the amount of data that was accumulated over time it is not
possible to show all data with details in this paper. Therefore important and interesting
results have been extracted from the data collection and are presented on the following
pages.

Aging of Load Data

When we began with first evaluations of the data we found that the information about
the servers in the evaluation environment quickly became "out-dated". This means the
value and derivable message of the information decreased due to constantly changing
conditions in the environment. For example, some of the server machines were upgraded
or exchanged over time while their names remained the same. From the point of view of
software nothing changed, but of course CPU, network adapters or memory usage
cannot be compared with the old machine. Another example is the addition of exchange
of DASD devices with higher capacity.

A conclusion of this is that a meaningful analysis of many parameters need some sort of
additional information about the environment. It may also be possible to track changes
of the configuration and to enrich analysis with the static information - although this was
not implemented in this work.

Volatility of Information

The whole system, and consequently the analysis part, are built around the idea of
continuous monitoring. When working with the data the considered time frame is one
year. Constantly, old data disappear and new data is added to the picture. Consequently
the results of calculations based on these data changes every day.

Because the usage of the servers changes over time, pictures and analysis results in this
paper are snapshots taken at a certain time.

Workload Monitoring Basis

25. Mar. 2000 Page 33 Dipl.-Ing. Günther Strasser

Data Representation

As shown in chapter 8 the observed load in the monitored show cases is cyclic. As the
user community consists of office workers (in Austria), there are five work days from
about 7:00 to 20:00 and two days with hardly any load on the weekend.

Because of this and in order to fit a year's worth of collected data onto a page, the
information used in this paper is converted into the format for an condensed "average
week" consisting of 24*7 values. Each represents the average of the sample values of the
same time slot over all of the weeks of the last year with minimums and maximums
added to the graph.

Sample Errors

During the analysis of the data another problem became apparent: invalid sample values
retrieved during the on-line monitoring phase inflict significant damage to the log
information and the results of the analysis. Although the access classes detect and filter
out-of-bound values, some of the remaining net data still contain invalid log information
(like values greater than 100 for percentage values expected to be between zero and
100). In such cases it was necessary to either improve data quality manually (by
removing invalid data from the samples) or compare compressed information with on-
going on-line data in order to correct or verify conclusions drawn from these data.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 34 25. Mar. 2000

2.3. Case Study Summary

This section contains an overview of all conclusions common to the various case studies.
Chapter 8 presents a detailed overview of the gathered data for each case. Each item
represents a summary of our observations. Below each of them we provide a hypothesis
on the cause of the measurements.

Where all cases yield similar results

1. The number of active users grows continuously between 7:00 and 12:00. There is no
sudden "burst" at any time. After 12:00 the number of users declines again with
nearly no point in time at which all users are logged on to the system.

Our hypothesis: In contrast to common assumptions people do not arrive until 9:00
o'clock and start their computer related work even later. After noon, many
disconnect from the servers suggesting that work can be done locally or people
leave their office like part-time works do. This is an indication for a changing work
behavior due to the introduction of new work and employment models (like "flex-
time" and "home offices").

1. 20% - 25% of all users remain "active" during non-working hours. They do not turn
off their machines. About 50% of these users do not even turn off their machines
during weekends.

Our hypothesis: A significant amount of people will never turn off their PCs
because it takes a long time to start the machine, to connect to the network again
and to load applications and data. It follows that the number of "active" users is no
indication for any workload.

1. "Long weekends" (due to holidays) influence significantly the average number of
users on Thursdays and Fridays.

Our hypothesis: In Austria there are a number of long weekends with Thursday and
Friday being holidays. This can be seen in the data because there is significantly less
activity.

1. The peak time in the number of connections that users establish to servers is about
10:00 am - two hours before the peak in the number of users.

Our hypothesis: The number of connections is a much better indication of user
activity. A connection has to be established when needed and it is disconnected or
deactivated when there is no activity for a certain amount of time (like one hour).
After logon connections to application and data servers are established and
necessary information is downloaded to the workstation. The fact that the peak in
connections occurs much earlier than the peak in active users suggests that users that
connect late during the day do not need server resources and that most users do not
need the server later on.

An interesting observation is that a LAN can only be used in that way because users
do not arrive at about the same time and then start with their work (see observation
1).

1. Most connections are not needed or used. Depending on the connection policy of
the domain, they are disconnected after some time or they remain until the user logs
off from the system.

Our hypothesis: To simplify the use of servers most users have a number of
resources associated to their LAN profile. When the log on to the network domain

Workload Monitoring Basis

25. Mar. 2000 Page 35 Dipl.-Ing. Günther Strasser

the system establishes connections to these resources automatically. Usually at least
a home directory and a number of shared network printers are registered in the
profile. This observation implies that many users would not need these connections
but do not care about them.

1. Only few users work with files on the server. Some load applications from servers
but most install and use software from their local PC disk. On average one or two
files are opened per user.

Our hypothesis: This observation reflects a shift in the way workstations and servers
are operated. Not long ago industry strength PC hardware was rather expensive. PCs
were not equipped with large storage devices. In addition it was errorprone and time
consuming to install many software packages on big number of enduser machines.
Therefore application software was installed at an application server and it users
started the programs from the server.

Then hardware prices have dropped significantly and after some time more and
more PCs have become very well equipped. Many common software packages need
some local installation in any case, like many Windows based applications and
therefore there is not much manpower to save with a server installation. And as the
size of software packages grow into the range of megabytes, loading everything
over a network becomes much too slow compared to a fast disk. Dissatisfied by
poor performance and ongoing difficulties with server-based installations people
started to install all software locally. The introduction of laptop computers covering
a good deal of the user community has brought the final demise of the application
server.

The introduction of groupware applications further reduces the importance of mere
file sharing services. Business data are not stored on a file server because of its lack
of management functionality. File servers are still in use but only for tasks like
downloading common files. Therefore their use has declined significantly during the
time this paper was written.

1. The amount of information that is sent to servers peaks very early, even before the
peak of connections. Not much data is sent compared to the capacity of the
equipment. The amount varies with different cases (50 kB/h and 70-80kB/h).

Our hypothesis: This observation is another indication that the servers are used to
load application and data once in the morning after user start their work.

1. Many important load parameters correlate directly with the number of active users.

Our hypothesis: Although one conclusion is that the use of server connections
decreases many users use the servers for their work and contribute to the overall
load. Most of the workload on the server seems to be directly related to user
activity. There is not much batch processing or time-delayed work.

1. The number of directory entries changes significantly during the (average) week.
Per users about 15 entries are created or removed per week.

Our hypothesis: Directory entries are a sign for the organization of data on a disk.
The numbers indicate that many directories and files are only of a temporary nature

1. The graphs for the "number of directories" and "allocated diskspace" are practically
identical. On average each directory contains one megabyte of data.

Our hypothesis: This indicates that disk cleanup occurs directory-wise. A related
observation is that most users do not care about old data, be it files on a server disk
or old mail on their e-mail server. Usage of servers disks soon reach the capacity of

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 36 25. Mar. 2000

the device. Only the intervention of an administrator can free up some disk space.
An administrator cannot handle data on a file level. He has to move or remove
whole structures.

A related observation is that the average number of files and directories seem to
have some relation. To some respect the number of files depends on the number of
directories. When a directory is removed all its files will also be removed. Our
assumption was that static directory structures are created and that the life cycle of
datafiles is managed within that structure. The measurements suggest that
directories are not static containers for more dynamic contents but are created and
removed as data come and go.

The consequence is that applications should not build and work with (lists of) static
references to directory entries because such references will grow very fast and point
to entries that already disappeared. The access control component of the network
access layer suffered from that problem. It maintains a list of directories with
associated security and access permission information. In order to give access to
new directories the administrator has to submit a function that adds new directories
with new security information to the existing list. This list grows fast and after some
time the performance drops due to access control.

1. Most files are accessed on Mondays.

Our hypothesis: From the data about aging of server files we conclude that users do
most of their server related work on Mondays and do not touch such files again
during the week. We assume that files are downloaded to workstations at the
beginning of the week. When work is done during the week the file is copied back
to the server.

Consequently, short-term measurements performed to retrieve information about an
environment should include data for a typical Monday.

1. Judging from disk activities, Monday morning is the time of most user activities.
The rest of the week this parameter does not depend as directly on the number of
active users.

Our hypothesis: The same assumptions as for observation 11 apply for this
observation. It is interesting that disk activity does not seem to have something to do
with user activity. Caches at the server and the workstations and the increasing use
of local disks at enduser workstations contribute to this observation.

1. Some tests with high volumes of disk operations (generated by a number of copy
operations from and to clients) show that the cache can maintain high efficiency for
several minutes. If the load remains high the efficiency drops and an increasing
number of requests have to be routed to the disk subsystem. This slows down the
speed of file I/O over the network.

Our hypothesis: The cache at the server as a certain capacity. Compared to data
copy in memory (from the network controller to the cache memory) the network
transport is very slow. For some time the cache is able to hide disk write access
which is even slower. The server receives data as fast as the network allows for.
While it receives data it is able to write part of it to the disk. After some time the
cache capacity is complete used. Now, when the server receives more data the
sending workstation has to wait until the cache is able to write away some older data
and to make room for the new information.

During normal operation this situation is hardly observed because the cache is large
enough to keep common PC files and the difference between network speed and
disk write speed is relatively narrow.

Workload Monitoring Basis

25. Mar. 2000 Page 37 Dipl.-Ing. Günther Strasser

1. The ratio between write requests and disk writes is about 10:1 on average.

Our hypothesis: This observation indicates that the cache is able to cover most write
requests and that it is hardly the case that an operation has to wait until a disk write
is actually performed.

1. There seems to be as much background traffic on the network as user related traffic.
Our hypothesis: Even if there are not many active users and if it can be assumed that
nobody is really working on any workstations much network traffic can be observed.
It seems that the communication between the components connected to the network
generates a significant amount of traffic. During office hours user related traffic is
added on top of that.

This has to be taken into account when capacity planning is done based on estimated
user traffic.

1. There is an obvious correlation between the number of connections and the number
of Ti (timer) expirations (when the system has to confirm if the connection is still up
and in use).

Our hypothesis: The token ring adapter implements a number of timers. One
important timer is the "Ti" timer. This timer is used to check whether an open
connection still exists. When this timer expires (triggers) the adapter tries to
communicates with the partner on the other side of the connection. The partner may
either confirm that the connection is still open. Or it may signal that the partner
application has closed the connection or has ended completely. Or the partner may
not answer at all (if, for instance, the machine is shut down). In the later cases the
connection is considered "inactive" and is closed. If there is a process (thread)
active on this connection it will receive a return code signaling the termination of
the connection.

The more connections exist the more timer expirations will occur. As long as a
connection exists it will generate some network traffic even if there is no user
activity on this connection. Understanding this relation it becomes clear that the
number of connections is relevant for planning activities and that unneeded
connections should be avoided.

1. The amount of disk storage that has to be dedicated to the spool area of the printer
queues is very small compared with the capacity of common storage devices.

Our hypothesis: In spite the impression that print jobs from typical Windows
applications are large, most print jobs are in fact very small in size. We assume that
the reason for this is the low speed of workstation printers and LAN printers
(compared to the high speed printers of the mainframe). Because it takes that much
time to print a larger document or book users avoid to print such documents.

We observed a similar development when such high speed devices for the
mainframe where replaced with new network printers. These printers are shared
between Windows and OS/2 based office applications and the mainframe. Because
they are much slower than the older printers and often need user intervention (feed
paper, handle paper problems, etc.) less people spool big print jobs to these printers.
Besides that, the traffic at these printers cannot be monitored because they accept
input from very different sources. In contrast to the old architecture there is not a
single server machine which controls the flow of print data to a printer of that type.

1. The amount of time blocked print jobs spend in spooler queues is amazing: up to
thirty eight days.

Our hypothesis: This simply means that the responsible people do not care about

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 38 25. Mar. 2000

their printer queues. This is related with an organizational change. The point of
control is constantly moved up to more central units: from the workgroup level to
the department level to a multi department level to a company wide level to an
international level. In the beginning someone within the workgroup had control over
the servers and could repair a problem (for instance restart a printer queue)
immediately. At an international level with a scope of control of tenthousand
devices it takes days until someone reacts on a specific printer problem.

Where nothing special could be found

In spite of the author's expectations, about a number of parameters and assumed
dependencies, no general rule or correlation could be found:

1. Most of the graphs that show user related workloads like open files, connections,
sessions, data traffic, etc., do not display the double peak line that is usually used for
estimating user behavior. The double peak is based on the assumption that users do
most of their work before and after lunch break.

Our hypothesis: As already pointed out before we assume that server based
information is need most after users start their work in the morning. After
workstations loaded applications and data the network traffic and the server load
drops.

1. The amount of data transferred between clients and server machines does not
correlate to the number of active users.

This is a special case to the general observation above.

1. The amount of allocated diskspace that is actually used during everyday work does
not correlate with the number of active users.

Our hypothesis: As mentioned before a very interesting observation is that most data
are accessed during the first two work days of the week. Then the information is not
used for the rest of the week. Taking into account that on average nearly no data has
its last usage date four to ten days back we come to the conclusion that information
is used for some time, usually accessed at the beginning of the week. If work is done
most of the data are not used any more. We conclude that information that is not
accessed for more than ten days can be migrated to an archive or backup device.
Instead of more and more disk space a host-like data migration facility, that moves
unused data to a cheaper medium, would be much more cost effective.

Looking at the measurements we estimate that only about 5% to 15% of the disk
capacity is actually in used while the rest will not be accessed any more. This has to
be considered with some caution because of observation 4 (see below).

1. Regular backup activities which touch a lot of files on server disks obscures the
measurements of actual disk access. Complete (in contrast to incremental) backup
procedures that act on a file level access many files and modify the access
information of the file system. Therefore the measurements about the amount of
server disk space currently in use may not reflect actual user behavior.

Our hypothesis: Because of the assumption that a backup procedure does not change
anything in the file system we expected to retrieve more information about user
behavior concerning the use of server based files and data.

Besides the effects of backup procedures another activity further obscures any
observation about data usage: regular changes in the server environment which
includes adding and removing disks and servers. Directories and their files are
moved to new disks. Such activities change the capacity of the total system and the

Workload Monitoring Basis

25. Mar. 2000 Page 39 Dipl.-Ing. Günther Strasser

access information of the data is modified.

Space that can be accessed by users is used up quickly. Therefore no real growth in
diskspace allocation has been measured. Accessible disks always operate at the
capacity limit. The available disk space that has been measured is space reserved for
system use or other tasks.

There were no significant trends detected. For case study I a general decrease in the
usage of the servers was found. One reason for this is the migration of a number of users
to other domains (servers). Another reason is the on-going movement to the use of
laptop computers which operate in a more server-independent way than normal desktop-
PCs.

Conclusion of the Case Studies

During the time this paper was written the role of server machines in the observed areas
slowly changed. In the beginning the sharing of (expensive) resources, mainly disks and
printers, has been the main task for servers. Centralizing resources at a server has given
the administration more control on resources and maintenance has been easier. There
have been attempts to avoid errorprone software distribution by making use of server
installation. The significant increase in hardware capacity, the low ability of centralized
administration units towards good responsiveness concerning new requirements and
resolving problems, and the move to laptop computers has redefined the role of servers.
There is an enormous need to share data between many users but that demands for
sophisticated applications that are able to organize and manage data, to manage versions
and access to information and that simplify presentation and retrieval of information.

Internet technology and groupware software fill this demands. Lotus Notes is one
example for such applications. It combines an easy and flexible construction tool for
data and workflow management applications with the build-in ability of internet access
with all the necessary security functionality. HTML and Java enabled browser can
access such servers via TCP/IP. Other network protocols are increasingly replaced by
TCP/IP and some PC servers found a new task as DHCP server (dynamic IP address
management) or name server or proxy server. Server machines of this type provide their
CPU power and network resources.

Supplying a growing number of users with much more complex functions requires more
experienced and skilled administration and more powerful hardware as well. In the
observed environment that means further centralization and the move from PC servers to
top-of-the-line UNIX machines or (MVS-based) mainframe computers.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 40 25. Mar. 2000

SRVMONPM - Server Monitor for the OS/2
Presentation Manager

The Implementation Of A Workload Monitoring Infrastructure and
Data Processing Application

3. Architectural Overview of SRVMONPM

This chapter gives an overview of the requirements and resulting architecture of the
workload monitor and introduces the major components that make up the complete
solution.

3.1. Requirements and Primary Design Objectives

Expand the span of control from one machine to a network of connected machines

"The network is the system." This statement originates from someone at Sun
Microsystems and today we are approaching this vision at great pace. IBM has adopted
the term "network centric computing", which means that there is nearly no stand-alone
or closed-environment processing. Most applications require the communication
between and interaction of a number of computer systems to fulfill a certain task. While
applications, infrastructure and development tools (like CORBA, DCE, the world wide
web, etc.) make the network more and more transparent, systems management still
focuses on the individual hardware box. Soon the placement of resources will be
transparent to the developer, the application and the user. The provider of a certain
server may "move" in the network. But who is going to maintain this knowledge? Who
will be in charge to decide which service is to be used?

Current implementations partly fail, due to the fact that much of the responsibility has
been moved to the administration and the people who set up middleware components.
In order to understand and plan the necessary components for the network of the (near)
future, it will be important to understand relations among servers and to become able to
reroute service requests to the place where free capacity8 is still available. A service is
needed that offers reliable information about time & place of available resources.

In view of the above, an integrated view and integrated, consolidated data should be
presented to the user of the tools that work with the data. Instead of focusing on certain
details, the interconnected system as a whole should be monitored and analyzed.

Synchronize and map data from different sources and machines into a uniform time grid

Normally, if one looks for workload data, one finds that applications provide a more or
less well defined snapshot of their current status, e.g. the number of transactions since
the system was started. This kind of information is not very useful if one does not
consider time and duration in which such observations are made. Very often the
snapshot itself is not of great interest while changes of state can deliver important
information about a system.

8 A general assumption is that (for the near future) the capacity of computer resources is limited, partly due to
the cost of upgrading many PC servers, partly due to physical capacity limits, and performance management
is worth the effort.

Workload Monitoring Basis

25. Mar. 2000 Page 41 Dipl.-Ing. Günther Strasser

Observations of state changes relative to a certain period of time are a key factor which
must be taken into account. A major design goal in this work was to find a way to form
the connection between system changes and the related time frame visible and
understandable to the administrator or planner. Great effort was invested to develop
some kind of processing and representation that reflected this connection.

Product independence and open interface

In this context a product is a set of software components from a particular provider that,
together, provide some service on a server. It must be possible to connect a product to
the monitor and to collect load and performance data about it. Usually a business can
choose from a number of products to deliver required function. Product independence
quickly became a very important design goal because it is not possible to rely on the
availability of a specific product.. Being independent still does not add much value if
one is not able to provide the data to the application. Therefore an open interface is
necessary that can be used by anybody to enable monitoring for new sources of data.
Any product should be connectable. If one focuses on certain applications while
ignoring others the picture is never complete and important input for an infrastructure
design may be missed.

Completeness of collected data

One major objective is the ability to create a workload database that can be used for
answering questions about the observed environment later on. Up to a year of
information (or even more if the owner allows for it) should be kept in this database.
Because it may not be clear which data will be needed in the future all known resources
with all their attributes must be retrieved and stored in the database. Even if the user
currently is not interested in certain values and has disabled their display. Data
collection, recording and display must be kept apart.

Appropriate graphical representation

Many applications provide information about their workload in one way or another.
Often it is not easy to find this information and make use of it. It may not even be visible
to the administrator. It is necessary to buy additional tools to extract them. Most of the
time such workload data are non-intuitive, textual and product specific. Instead, this
workload monitoring and the analysis application should build an engine that is able to
handle all kinds of workload (and performance) information. The information has to be
collected and presented to the user in a way that makes it easy to understand and to work
with. A flexible and customizable graphical representation of data combined with
numbers - where necessary - seems to be the best and most suitable way to translate the
volume of raw data into clear information.

Different graphic tools are needed for processing and displaying current information and
for processing and analyzing data from the database. Monitoring actual data should
include some kind of alerting to enable a user to trigger some action or to get pointed to
a specific situation. Because of the expected number of resources and attributes it would
not be possible to look at all of them. The big number of managed servers is one of the
big differences to managing a host. Looking at the data of a single machine can be done,
checking hundreds of servers cannot be a manual task.

Ease of use

From the beginning it was intended that the code produced during this study should go
beyond mere academic research work. An important target was that the tool be a real
value-add for people involved in infrastructure design and management. User
friendliness and ease of use had to be considered wherever possible. Seamless
integration into the OS/2 desktop, state-of-the-art OS/2 PM application behavior,

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 42 25. Mar. 2000

attractive window and graphics design, and complete and comprehensive on-line
information on windows and functions to achieve user acceptance.

Efficiency - avoid degradation of target machine's performance

Most parts of the application are designed using an object-oriented approach. The
implementation is done using C++9. The monitoring infrastructure must be very careful
with its resource consumption and must be very efficient. Software components that will
execute at a productive server are not allowed to influence or degrade the performance
of the services. The "footprint" of the monitor must be kept at a minimum. Even the
front end is intended to run as one of many applications on the desktop of an
administrator workstation. Therefore all parts must perform well and must be sparingly
with all workstation resources (especially RAM/working set, network and CPU).

Some thoughts were devoted to this requirement, and as we will later see, several design
decisions made in favor of efficiency.

Adaptability

Today’s networks consist of heterogeneous components. Hardware and software from
different sources are connected and communicate via open or proprietary protocols.
Therefore all parts that make up the application must be able to adapt to the
environment where they are executing. The part running at the client should execute on
any computer operated by OS/2 and deliver as much data as possible. This is however
not an easy task. In the project not all obstacles could in reality be overcome and even
now there are still several problem areas waiting for a satisfactory solution.

New server software is appearing in steadily decreasing product cycles. It seems to be
very important that the set of tools can be expanded for new software with a small
effort and without the need of design and code changes.

Portability is not one of the primary goals. While the code of all components of the
monitor are written in C++ and can easily be transported to other platforms, the code
that retrieves information about the system has to be very product and platform specific.
Therefore this code is not portable. To be able to connect other platforms, new agents
will have to be written from scratch. All GUI parts are written for OS/2's presentation
manager and it would be difficult to port that code to other platforms.

Robustness - automatic resolution of system/application problems

The monitoring application is not meant for experiments in a lab in a well-defined
environment taking place over a period of time, but for employment in a near 7x24 hour
mode10 in all possible situations of a real client/server network. For deployment in
productive environments the tool must be able to operate without user intervention for
months or years11. Problems or malfunction of the monitor or required external
components must be detected and resolved. If necessary the on-line monitor must notify
an enduser.

Support of different management strategies

The way systems management is done may vary from enterprise to enterprise. Many
tend towards a centralized management. Some have to support distributed management,
e.g. where an organization is built by a number of very different groups in widespread
locations.

9 IBM C-Set++ on OS/2 Warp.
10 24 hours, seven days a week; in other words, uninterrupted operation.
11 This proved more a challenge than originally anticipated in the project and was time and effort consuming.
It was not as simple as "no program errors" - which is itself not without complications.

Workload Monitoring Basis

25. Mar. 2000 Page 43 Dipl.-Ing. Günther Strasser

Any systems management application must be able to support different styles of
management. A user must not be forced to change his organization in favor of a certain
tool.

From that follows that any number of management consoles should be able to access the
information. The tool must route workload data to one or more places. Users may define
the data they are interested in and what should be monitored but different users must be
able to work independently.

Flexible configuration

While we often use the term client/server environment, in fact there are large differences
between different enterprises and between different locations of the same enterprise.
Differences in hardware and software release levels, in the way the network is built, and
in the way systems management is organized allows a great deal of flexibility for a tool
which should fit into most scenarios.

In order to offer flexibility for the deployment of workload monitoring the application
has to be split into several pieces. Each has its specialized task and can be put into the
most suitable place in the environment. It is able to detect in which environment it
operates and automatically activates the code to work correctly. Each component should
act as independent from other components as possible.

Another important concept, which has already been mentioned, is the implementation of
continuos operation within all components. Neither user errors nor network failure may
disturb the monitoring tool. Each component must recover from errors without operator
intervention. Components should handle errors silently. An administrator may use alerts
in the managing station to be notified about potential problems. Monitoring has to
continue when some components have to be replaced during software maintenance
activities.

Scalability

The implementation of any kind of function in a large network is a challenge for systems
management personal. People must be cautious, and do not particularly enjoy implanting
agents on a server. Therefore a stepwise growth path from a simple "one PC monitors a
group of servers" evaluation to a full enterprise wide load management has to be
supported. Local and remote data query are supported. Filtering and manual
specification allow the retrieving of data subsets to further reduce additional network
overhead.

A state-of-the-art tool must allow for a quick move into its functionality without long
preparations and setup activities. Once the user has understood the potential and
functionality of the tool he may be willing to invest more effort to capacitate other
functions. This approach has already paid off. Within IBM a growing community of
interested users and consultants have discovered the tool and are cooperating with the
author.

Open design

An important design objective in the project is to build a kernel which implements the
necessary infrastructure for monitoring and is open for new components. Components
may provide new data and/or functions which extend the scope of the tool. In order to
reach this goal several new techniques were developed which made use of the
possibilities of OS/2 in combination with the power of an object oriented programming
language (C++). Examples of openness for new components are the agent code, alerts,
and views.

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 44 25. Mar. 2000

A well defined object oriented interface can be used by third parties to integrate new
information into the workload application.

Simple agent code

In order to provide any (remote) functionality on a controlled machine some kind of
agent is necessary which forms the platform for management functions. In contrast to
existing commercial products the agent must be slim and simple. It is not acceptable for
an agent to consume noticeable system resources12. The main task of the agent is to
transform data into a protocol which is used to transport information across the network.

The agent is divided into to parts: monitor modules that implement the knowledge on
how to detect resources of and retrieve data from a specific product and an engine that
provides the infrastructure for the modules. That are services like memory management
and network transport. A monitor module also provides some information to control
presentation and analyses. The code in the module is structured in monitoring classes.
They are not allowed to stress the target system. Due to given base classes and a well
defined interface it will be simple for a third party to write a new module for the agent.

Simple design, few functions and easy implementation should lead to very robust and
stable software. This is a prerequisite for running agent software on servers which may
be critical to a business or enterprise.

Transparent network

Today, OS/2 supports a broad range of network hardware adapters and protocols. Unlike
the SNMP approach, the operability of the load monitor does not have to depend on the
network stack which is used on the target computer. To keep the design simple the
underlying network must be transparent to higher components - especially those which
may be provided by a third party. At the time of development no middleware was
available which would hide the network completely. Therefore an intermediate software
layer is created which handles network access while implementing a sound and useful
interface to other components. This layer is included with the tool. Most parts of it do
not have to care about used network protocols.

Avoid central control mechanism

The manager has to deal with a great number of workstations in the network. The
manager never actively contacts a monitored workstation to ask for information. That is
to avoid the network traffic associated with such requests. It is always the agent who
sends information (but not directly to the manager). The tool provides the infrastructure
to transmit and store the information. A sessionless protocol is implemented to be able
to handle great numbers of supported resources and agents on low-cost hardware.

Minimize Network Overhead

Usually today’s client/server environments consist of many workgroups spread over the
entire enterprise. Each workgroup uses one or more servers. Some of them are locally
assigned to a group, while others are used by many groups or are even unique at a
location or network. The number of server machines is high and still rising (although the
server hardware has more power than ever before).

Management of all the servers is often done centrally, especially for more complex tasks
like workload monitoring and management, balancing and capacity planning. The reason
for this is such jobs require skilled people and a business cannot afford to have some of
them in each department. All these tasks are beyond the scope of a local LAN-

12 One key inhibitor for the general use of "SystemView for OS/2" was its hunger for resources on the target
machine.

Workload Monitoring Basis

25. Mar. 2000 Page 45 Dipl.-Ing. Günther Strasser

administrator. The enterprise may gain some benefits by making idle capacity available
to others without the need to invest in new hardware.

The monitoring application must, thus, be able to collect and handle all the data from the
servers without generating noticeable overhead on the network or machines being
monitored. Besides its ability for central management workload, monitoring must also
be supported for the workgroup. In fact both will be used at the same time. The
workgroup administrator is only interested in the data of his environment.

In order to fulfill the requirements, a staged approach for the transportation of the data
has been introduced. The biggest part of network traffic is done where enough capacity
is available: in the LAN. All data are gathered on a server local to that LAN and are
available to interested parties. Inter-LAN traffic is kept to a minimum and by sending
consolidated data blocks additional network overhead is omitted as much as possible. To
keep the monitoring related load on the network low the number of messages exchanged
between the different components of the tool must be as low as possible.

3.2. Building Blocks

Figure 6 and Figure 2 give an overview of the relations between the components
involved. The monitoring infrastructure and the monitoring manager consist of the
following parts which, in turn, make use of other infrastructure components and APIs
provided by the operating system and the network:

1. The monitoring manager

This component is located at one (central) or several (decentral) management sites.
Because it can exist more than once the concept supports both centralized and
decentralized monitoring philosophies. It receives workload data and handles all
further processing of this data - including graphical presentation and recording on a
device for later analysis;

2. The agent

This component runs on all computers where workload and other resources
parameters should be monitored. This includes any PC (with OS/2 as its operating

agent

agent

agent
collection

server

agent

agent

agent
collection

server

collection
server

monitoring
manager

loaddata
analysis

Figure 6. Architectural overview

Workload Monitoring Basis

Dipl.-Ing. Günther Strasser Page 46 25. Mar. 2000

system), but the main focus lies in any kind of server (LAN, DB, application, etc.)
and not in monitoring end-user workstations.

3. The collection server

It is used to receive load data from a number of agents. Neither agents nor servers
are assigned only to one another, and an agent may switch from one server to
another. The component stores the information. The collection server offers data to
managers who request the information. In addition the data may be forwarded by a
collection server to another server. The server component is network-independent: it
detects available protocol stacks and supports all of them at the same time. Agents
may use different network interfaces to connect with the server. As a side effect this
component can be used as a gateway between different protocols.

4. The load data analysis tool

This component is used to work with the database of logged information. It provides
graphical representation of the data, conversion of data for other applications, and
mathematical analyses and reporting.

The following illustration shows the layers of a system involved in the monitoring
process:

The agent is an empty shell that offers some basic infrastructure services like data
transfer and protocol with a server. It has no knowledge about resources. This
knowledge and the ability to retrieve workload data is supplied by monitor modules that
are loaded by the agent and operate within the scope of it. Monitor modules interact with
the resources on the computer system. At regular time intervals agents access load
information about the different software layers on a target machine. Then they use the

central
managing station

local
infrastructure & network

remote
infrastructure & network

Monitor Manager

Collection Server Collection Server

Agent Agent Agent

Collection Server

Agent Agent Agent

Application Layer

Network OS Layer

Operating System Layer

Hardware

mon. module mon. module mon. module

Figure 7. Monitor layer overview

Workload Monitoring Basis

25. Mar. 2000 Page 47 Dipl.-Ing. Günther Strasser

monitor modules to retrieve the data and transmit it to a server component. Whether the
information is used by a manager, and where he could be located are irrelevant points
for them. Thus, agents work rather independently from other parts of the application. All
processing by the agent is triggered by a local timer (and not from outside).

The server part, which is responsible for temporary storage and transport of the data, can
be cascaded throughout the net. It can receive data from agents or other servers and
provide the data for the manager component and for another server.

The next three chapters describe each of the components of Figure 7 in detail.

Workload Management
Using Workload Data

25. Mar. 2000 Page 49 Dipl.-Ing. Günther Strasser

4. Retrieving Information - The Agent

The basic means to retrieve workload
information about a system is the agent. It may
be a local agent, which resides on the same
machine as the monitored resource, or a proxy
agent, which resides on a different machine.

The agent itself is a piece of code that has no
knowledge about the monitored system. It is
just the platform for monitor objects, which
observe the resources, and it provides the
generic data management and communication
protocol to the collection server.

In its full-function setup the monitoring application
requires that an instance of the agent is running on each machine where resources
like memory, disks, connections, etc. will be monitored. No individual
configuration is necessary. Therefore this requirement is very easy to fulfill and
adds no burden on the systems management personnel. Nevertheless, the
installation of a piece of software is some effort and there are people who are very
cautious before touching their running server machines. To become aquatinted to
the tool fast and without the risk to jeopardize server operation a simpler setup is
provided, too. In this case the tool can be executed from a single machine in the
network where it detects those resources automatically, which can be monitored
remotely. That is only a subset of the resources and data that can be retrieved when
using the full installation. But for people, who are interested in LAN server data of
their (local) domains in the first place, the simple setup may be sufficient. The
different setups are explained later in full detail.

One of the great problems with the agent is that it will be used in very different
environments and must adapt itself to them. If possible no operator intervention
should be needed to adjust the agent. In reality the solution to that requirement
showed to be a very delicate and difficult ambition. Both the generic agent code
and - especially - the monitor objects are sensitive about their environment. For
example, unexpected releases of subsystems can lead to some kind of malfunction.
To solve this problem we developed several techniques to make the same agent
code adaptable to different systems13. The agent is implemented by the program
SRVMCLNT.EXE (SRVMONPM Client).

4.1. Prerequisites

Several prerequisites are necessary to enable monitoring on a certain system:

1. SRVMONPM always measures the workload of some form of application
software. It never directly accesses any piece of hardware. In order to retrieve
information the piece of software must provide an interface. A monitor object
can be developed for this interface which encapsulates it and transforms the
information into a form is understood by the tool. Possible interfaces are:
a public API the most preferred and most efficient interface
stdout/stderr the capture and interpretation (processing) of text

based information
indirect/side effects the observation of side effects on other resources which
may

provide information about system load

13 Different in the sense of configuration, but not operating system.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 50 25. Mar. 2000

log files not used in the current implementation
SNMP not used in the current implementation

2. The chosen interface must be robust enough to be called in short time intervals
(default occurs once per minute) while the application is in use (for example a
database while it processes transactions).

A sampling interval of one minute seems to be a sensible choice. Most of the
sources for workload data are counters. Therefore no information is lost no
matter how long the interval would be. Thus, the question remains how
accurate the information in the on-line display has to be. Considering alerts,
when a critical situation has to last for five sample intervals before an alert is
triggered, one minute is a good compromise between putting load on the
monitored system and accuracy of alerts and displayed data.

3. A call to the interface should not have a noticeable influence on the normal
operation of the application or the entire system. Therefore it must not consume
noticeable CPU-time or memory and should not reset or modify data areas of
the application.

4. The interface must support the automatic identification of the resources
provided or controlled by the application. It is not possible to adjust each agent
to an individual system manually. The existence of resources may be dynamic;
that means the resources may appear and disappear over time. Asking for
information about resources no longer in existence must not lead to any
malfunction of the target application or the agent. In this case it must provide a
proper error code and continue to work normally.

5. A monitored system must be connected to a network. Currently, named pipes,
TCP/IP and native NETBIOS traffic are supported for data exchange. A
machine which does not support either can not be included in the monitoring
domain. "Off-line monitoring" is not supported by the agent.

4.2. Polling vs. Trapping

Given that an agent is able to retrieve and send information the question arises
whether the monitoring manager (or a collection server) should actively ask for new
information (poll) or whether the agents on each monitored machine should send
new information timer-driven without request (trap). For example, monitoring with
SNMP is based on polling: the manager in the network sends a request to each
agent and asks for certain information. The agent retrieves the requested
information and sends it back to the manager.

Quoted from [85]: The agent is responsible for reporting on and maintaining the
data pertaining to a device, when the manager requests it to. Agents can run on
several different types of managed nodes (for example, routers, hubs, servers, and
workstations).

Polling for information has several merits:

1. Network traffic and agent activity on the target machine occurs only when there
is an active manager. The manager controls all processing taking place on all
the systems.

2. The agent may be built rather simply. In conjunction with monitoring, it waits
for a request14, then answers it. The agent may be stateless: as it does not

14 An SNMP agent has to implement other functions, for example sending traps in case of problems or
errors. The actual design of an agent is more complex than stated above.

Workload Management
Using Workload Data

25. Mar. 2000 Page 51 Dipl.-Ing. Günther Strasser

implement much function, it does not have to keep a record at any information;
this task is performed by the manager, who controls the agent by remote
function.

3. If a standard like SNMP can be established that provides a certain set of
(simple) functions on the agent side, new systems management applications can
be written independently that provide new functions based on existing agent
services. These go beyond the original intentions.

On the other hand, there are a number of major drawbacks with polling:

1. Even in small and medium environments the number of resources and
measurable attributes is very high (several thousand). If a manager has to
establish (or keep) a network connection for each resource every time and
communicate with the agent to retrieve a piece of information, the necessary
network traffic is enormous. The tool-imposed overhead may degrade the
performance and availability of the system.

It may be possible to reduce this overhead if the manager has only one agent
instance per host or one per server software (on each host) to contact.

2. Polling is a good idea if the point of time at which the manager needs new
information can not be determined, for example if the demand for new data
depends on user intervention (when the user opens an MIB window on the
management console).
If the information is requested in defined intervals and the timer event is the
only reason to request load data, the timer at the host can be used and the
network overhead omitted.

3. The manager is responsible for the detection of new resources. However, this
involves some network broadcasts which are rather expensive.

4. As the detection of resources is based on services of a certain network protocol,
it would be very difficult to support several protocols at the same time. Besides
the further increased network load, if broadcasts were sent via all supported
protocols, it would the question at which request a certain agent should react on
would need examining. The agent would receive several requests and possibly
answer one before receiving another request via another network stack.

5. Looking for resources no longer available on the network generates waste
traffic (as it will not yield valid data) and usually locks the caller until some
time-out interval has passed. The monitoring of remote LAN resources,
mentioned before, is plagued by that problem. Even if done in parallel, a
number of disappeared resources or the failure of a subarea in the network can
send the manager to a hold.

6. Whenever several managers are active in the network they multiply the network
overhead because each of them generate the traffic mentioned before. This
same problem would exist if each agent sent its data to every manager.

Of course, all problems could be solved based on polling, but the intended
monitoring tool would not be at an advantage by using that scheme. This leads to
the following finding:

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 52 25. Mar. 2000

Finding:
Very soon it became clear that polling was not suitable for this kind of monitoring.
An application which has to contact hundreds of agents each minute would flood
the network with request packets and corresponding answers.

This was also reflected in commercial network and system managers. Monitoring
functionality was moved to the agent which generated traps or logged information
to a repository.

Because of this finding a more effective way of communication has to be
developed. Chapter 5. "Communication Infrastructure" describes this infrastructure
in detail.

The SRVMONPM agent is triggered by timer events. The time intervals can be
adjusted and therefore the overhead of the monitor is controllable. The collection
server makes sure that all agents reporting to it run at the same sampling interval in
order to get comparable measurements.

4.3. Agent Concept

The agent is a very simple program which executes on a workstation and is able to
create and handle monitor objects. It does not require user or operator
intervention. Therefore it does not have a user interface. It is a very efficient and
slim program, consuming as few resources as possible. To be able to create monitor
objects it relies on monitor modules which are loaded dynamically at runtime. The
agent does not have its own intelligence and does not implement any kind of
knowledge about monitoring. Figure 8 depicts the relation between the basic

Agent

list of modules
(module presentation
objects)

list of monitor factory
objects

list of monitor objects

monitor module

module presentation object

factory object MEMORY

factory object
DIRECTORY

factory object PARTITION

monitor object
C:

monitor object
E:

monitor object
D:

monitored resource
C:

monitored resource
D:

monitored resource
E:

Figure 8. Elements of the agent concept

Workload Management
Using Workload Data

25. Mar. 2000 Page 53 Dipl.-Ing. Günther Strasser

elements of an agent.

The knowledge about monitored resources lies in the monitor module. For each
target application (which provides resources to other applications), a monitor
module must be provided for the agent (and, as we will see later, for the manager).
From the agent's viewpoint the monitor module provides a module presentation
object that is used by the agent.

The module presentation object is the means of communication between agent and
monitor module. The agent calls methods of this object to get the information and
objects it needs for operation. Most importantly, it provides a list of monitor
factory objects.

Each monitor factory object implements knowledge about a certain aspect of an
application or resource. The main task of the class is to provide a description about
the expected data and to implement a method which creates monitor objects. This
method has to find resources (resource discovery) and create objects (object
factory).

A monitor object implements the knowledge on how to retrieve workload data
about a certain resource (e.g. the filesystem of a disk). If asked for new information
it retrieves the actual data and returns them to the caller. It may store status
information about the monitored resource but it does not maintain data from the
past (it is not possible to ask "what happened one hour ago?").

The code associated with the classes mentioned above is loaded and executes
within the context of the agent process. This means that it operates within the
address space and process resources of the agent process. Therefore no additional
process overhead is put on the host system.

This concept differs from conventional agent software which either has all
functionality built into the agent code without the possibility to enhance its function
from outside, or "subagents", (independent processes), which may register
themselves at the agent. The (main) agent then delegates requests to a subagent.

4.4. Agent

The agent is basically an empty shell which does not implement much functionality.
Using OO-techniques helps to keep the agent very simple and small. Consequently,
the code is very robust (no errors recorded during an observation period of about
six months) and can be ported to other platforms very easily.

The following paragraphs describe the main tasks of the agent, what the agent does
on a machine and how the memory management for the monitor objects is done.

4.4.1. Main Tasks

Before we look at the tasks of the agent we have to understand some general
observations about the agent. As seen below, the agent does not have much
functionality by itself. It only makes sense together with dynamically loaded code
which contains the knowledge about monitored resources. This code is organized in
object-oriented classes. As we will see later, each class implements certain methods
for initialization, detection and data retrieval. The knowledge about the target
resource lies in the methods that access the information about resources. Data
retrieval may be done locally if resources exist on the same computer, or by remote
if resources are defined (and reachable) on distant machines. Both can be done
under the control of monitor modules which are loaded by an agent.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 54 25. Mar. 2000

4.4.1.1. Controlling the Scope of Monitoring

Before monitoring can begin, the tool has to find hosts that support monitoring and
resources at these hosts. If the agent has been installed at the host and instructed to
look for local resources, then it is clear (to the agent) where to search. For resources
that should be monitored remotely, the task of detection is more complicated. For
this case we further assume that no agent is installed at that remote host and we
have to rely on other means of finding such a server machine.

Each instance of a monitor object has to know on which host machine its target
resource is located. In general this information is needed to organize the data within
the monitoring tool. Some monitor objects can use it to access remote resources
over the network. When a monitor object is created, an object, representing the
address of the target host, is handed to the constructor of the object. Given the fact
that an individual instance of a monitor object must know which machine it has to
deal with, the question arises of who can tell which servers are available and should
be monitored.

In order to enable remote monitoring, the destination server application must
support the remote access of its workload data. If that is the case it helps, if the
server application has a function able to provide a list of available hosts. In addition
to such a list an operator may want to include or exclude certain hosts. If this is also
implemented one possible solution is to let each monitor factory object decide
which servers from the list of available hosts can provide data for its monitor
objects. This has several drawbacks.

Each factory class has to implement a way to detect a suitable server. Factory
classes for the same application may use the same code but because classes are very
independent from one another, each class has to keep track of its servers. A server
machine for one application may not be a host for another application (e.g. a LAN
Server may not be a DB2/2 server). Looking for a server can be very expensive in
terms of run time. If this step is done for each class independently the agent may
become extremely slow under certain conditions.

If each class handles its own set of known hosts it becomes difficult for the operator
to control the set of possible target hosts (in reality the operator may reduce the
number of servers or may add machines which cannot be detected automatically).

In order to avoid these problems and to offer more flexibility to the operator, the
agent implements a mechanism to control the scope of monitoring - both in
functionality (= classes) and number of servers.

The agent can be used in only one of two modes: local or remote monitoring. In
local mode the agent monitors resources that are located at the same machine where
it is executing. In remote mode the agent maintains a list of known hosts. If
automatic host detection is made possible, the module presentation object of each
monitor module is asked to return a list of hosts. These hosts are shared by all
classes. The necessary processing is done in regular intervals to be able to detect
new hosts over time. Factory classes are freed from this task and receive the names
of possible target hosts during resource discovery from the agent.

The operator controls the mode of operation by supplying a command line option:
if the arguments "/s" - for automatic server lookup - and/or "/sf <file>"15, where

15 Both options can be used within one invocation.

Workload Management
Using Workload Data

25. Mar. 2000 Page 55 Dipl.-Ing. Günther Strasser

<file>16 contains a list of servers to be monitored, and are given in the command
line, the agent works in remote mode. Otherwise it runs in local mode.

The monitor modules are thus distinguished in two groups: those modules which
contain monitor factory objects for local data retrieval (type is client; used in local
mode) and those containing monitor factory objects able to access data on a distant
machine (type is server; used in remote mode). The developer of a class has to
decide which group a new module falls into. If a class can be used for both local
and remote monitoring, it should be put in a module for remote monitoring.

Because there is one list of servers, each class has to check whether the referenced
machine supports the functionality it needs. That happens more or less
automatically when a class tries to detect resources on a server and receives error
codes.

4.4.1.2. Initial Load of Monitor Modules

First of all the agent has to load all the code which actually implements data
retrieval. This code comes as independent DLLs17 which are loaded and bound at
run time. Without these modules the agent does not have any noticeable
functionality.

The agent uses a description file to find DLLs and the entry points into each DLL.
The entry point is a function which returns a pointer to an object of the root class
MODULE_PRESENTATION. This file contains all known modules. A developer
would need to register a new DLL in this file. If the agent does not find the file it
uses a default table which is part of the agent code. This table contains all modules
which form part of the product as it is delivered by the author.

Depending on the monitor mode the agent selects those modules which are needed
for further monitoring. For each module the agent performs the following steps. If
one step fails, the module is removed and ignored in later processing:

1. load the DLL and the entry point;

this may fail if the target application of the module is not installed (available)
on the system.

2. query the module presentation object which represents the module (class
MODULE_PRESENTATION) and set the OS/2 module handle for that object
(the module (DLL); the handle is recognized by the loader of the module and is
given to the module presentation object, because it will need it to access
resources of the DLL.

3. use the object to initialize the module; this may include some steps to prepare
the target application for monitoring (e.g. necessary for DB2/2 V 2.x); the
object answers whether the destination server application is ready for
monitoring.

4. retrieve a copyright statement from the object and display it on the console.

5. add the module to the list of supported monitor modules.

16 Using a names file offers the possibility of reducing or enlarging the set of monitored servers.
Automatic server lookup works per domain; up to five domains can be accessed from one LAN server
client.
17 Dynamic Link Library

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 56 25. Mar. 2000

4.4.1.3. Initial Load of Classes

After monitor modules have been loaded the agent asks each module for the classes
it provides. This step is done once during startup. The number of classes may be
dynamic (a module may simulate different classes which are based on the same root
class) but it is not possible to add or remove classes later on.

The module presentation object is used as the "object factory" for monitor factory
objects. Depending on the actual implementation such classes can be constructed at
runtime or during the initial module load. The latter case occurs whenever instances
of monitor factory objects are defined as static variables inside the module.

4.4.1.4. Setup of the Communication Infrastructure

The agent has to make sure that there is a collection server to which it can report
definitions and data. The agent uses services of the communication infrastructure,
described below, and is shielded from the complexity of the network. It only has to
choose which communication object (and thus, which underlying communication
method) should be used.

The default communication method is via standard (OS/2) named pipes. The
operator may select another method by specifying a command line argument (e.g.
"/netbios")18.

The agent has to know which server is the partner for further communication. Either
the operator specifies the name of the server via a commandline parameter ("/m
<server name>") or the agent asks the communication object for a suitable partner.
The second method is preferable because it makes the installation of the application
simpler and the operation is more robust. If the destination server is very busy or
breaks down, the agent may find another server automatically without operator
intervention.

At regular intervals the agent checks whether the server is still available and able to
receive information. When this check fails the agent tries to find another server. If a
certain server name is defined by the operator, the agent has to wait until the server
becomes available again.

No monitoring can occur at the agent's machine as long as no link to a server is
established.

4.4.1.5. Resource Discovery and Monitor Object Creation

Finding all the resources to be monitored or managed from a central management
site is one of the biggest challenges in systems management. Because of the great
number of such resources it is not feasible to define and register them manually.
This would be too error prone and would not form a solid base for further
management operations. Therefore automatic discovery is a necessity in this area,
albeit a very demanding task for the developer of systems management
applications.

Each monitor factory object has to implement the knowledge on how to find
resources and how to access information about them. Basically, we implemented
three strategies for the classes to do this:

18 Because the code which implements the communication object is loaded dynamically, it would be
possible to add even more flexibility for the operator and allow for the specification of the module name
which should be used for communication (e.g. "/commobj=SRVMCMNB.DLL"). This has not been
done yet because an operator would not be able to write his own communication module in C++.

Workload Management
Using Workload Data

25. Mar. 2000 Page 57 Dipl.-Ing. Günther Strasser

1. The target application supplies the information about available resources.
Possible interfaces are an API or a configuration file which can be interpreted
by the code. E.g. the IBM LAN server provides most information via an API.
Therefore it is quite to detect available resources. The only problem is that the
agent needs sufficient access authority (usually system administrator) to get
hold of the data.

2. The class uses some kind of trial-and-error method to test the target
application. This approach is feasible if the number of possible resources is
small and if the operation of the application is not disturbed by queries
concerning non-existent resources. E.g. this method is used to detect local disk
partitions because it is simpler than the native interface and works for different
versions of the operating system. The API does not.

3. The operator has to manually configure the class. As stated before, this should
be avoided wherever possible but there are exceptions to the rule. In all
circumstances a class has to provide a sensible default. Manual configuration is
then an added benefit for more flexibility. However, the operator may choose
not to bother with this extra burden.
One example is the class Directory Tree. Its default is the monitoring of all file
systems on all local disks. This may put undesired load on the target system.
Therefore the operator can specify which parts of which file system he wants to
monitor and the resource consumption of this class can thus be limited and
controlled by the operator.

Under the control of the agent the classes use one of these strategies to detect
available resources. The monitor factory objects create a monitor object for each
discovered resource and return it to the agent. The agent has to handle memory
management and processing of all monitor objects.

4.4.1.6. Data Retrieval and Preprocessing

At regular intervals the agent iterates through the set of recognized monitor objects
and requests new data from them. The result is stored in a memory structure
associated to the machine (server) of the monitored resource (see 4.4.3 "Memory
Management"). By using the class DATAITEM the agent can assure errors and
data overflows being handled correctly.

4.4.2. Agent Processing

The agent implements two important processes:

1. the data retriever and transport mechanism, which is its main task.
2. a control and restart mechanism added for robustness and unattended

operation.

4.4.2.1. Data Retriever And Transport

The basic idea of the agent's engine is simple: in a loop the agent waits for a timed
semaphore. When this has been triggered the agent updates its data buffers and
sends it to its collection server. Figure 4 depicts the engine state diagram:

The process consists of two nested loops. The outer loop is responsible for the
detection of a valid collection server, which can be used to send information to.
Until a new server is found, or a known server contacted, the program "sleeps" for a
minute then tries again, alternately. The agent is able to discover available servers
in the network. For this function it relies on a low level service of the

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 58 25. Mar. 2000

communication infrastructure of the tool which is described in chapter 5.6.1
"Automatic Server Lookup".

When an available server has been found, the program enters the inner loop. After
the first invocation and later, every 30 minutes, the agent updates all existing
monitor objects and creates new objects for resources that have until now not been
known. Note that monitor objects are never destroyed. They remain idle until their
resource is active again.

After monitor objects have been created or validated, the program blocks on a timer
semaphore. This semaphore is triggered once a minute. This happens independently
from the number of processes blocking on this semaphore. Theoretically the
semaphore has already been triggered when the program reaches this point and it
then continues operation immediately. When the semaphore is triggered, all
monitor objects are asked to update their data about resources. This information is
collected and sent to the collection server. To do that, a connection to the server is
established, a data message is sent, an acknowledgment received and the connection
closed again. Following this a termination signal is checked. This signal can be set
from outside to tell the agent to end its processing. If it is not set, the inner loop
starts its processing from the beginning.

The program remains inside the inner loop until one of three things occurs:

1. During the attempt to establish a connection to a collection server, a
communication error occurs. The program leaves the inner loop and the outer
loop tries to find a collection server again.

2. An external program sets the termination signal. The inner loop detects this,
sets a "incidental termination flag" and the process is terminated. It may take
up to a minute between the time the signal is set by a program and the time the
inner loop detects it.

Workload Management
Using Workload Data

25. Mar. 2000 Page 59 Dipl.-Ing. Günther Strasser

1. The operating system aborts the process due to some other reason, e.g. a call to
an API of the destination server caused an access violation.

In order to reduce network load the agent checks whether object definitions or data
values have changed during an update. If not, only header information is sent to the
collection server. In reality this does not prevent data blocks being sent each time,
because some data item will certainly change. The agent uses local timestamps19 to
guarantee that no outdated information is sent across the network (see chapter 5.
"Communication Infrastructure").

Imbedded in the two loops is a check for an external signal which is used to
terminate the agent via a program (SRVMSTOP). This program sets the termination
signal (a shared named event semaphore) and waits for the agent to terminate. The
command is useful for all automated tasks which cannot allow or afford the agent to
be active, for example, a database backup procedure may require that all activities
on the databases halted and no logon exists during the backup. In this case the
backup procedure has to stop the agent before backup starts and restarts the agent
after backup has finished.

19 The use of global timestamps was completely omitted.

outer loop

server found: inner loop

check object validity

update/create monitor
objects

update data

send monitor objects
definition

send load data

block on time semaphore

on communication
error leave

lookup server

no server found:
wait timeout period

external termination
signal

termination
signal set

Legend:

process entry point

state and associated action or
sub process

process exit point

event (with condition)

[6]

Figure 9. Agent state diagram

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 60 25. Mar. 2000

4.4.2.2. Control and Restart

Usually the agent executes at remote server machines without the attendance or
observation of an operator. It is critical to the success of the monitoring application
that the agent runs permanently and delivers accurate data. During the case studies
it became apparent that a "normal" program was not able to run continuously. Due
to low level network errors and problems in other components of the computer, the
agent came to a halt already after only days or weeks of operation. In such a case,
the process had to be killed and restarted. To circumvent the problem and to
guarantee continuos operation, the agent contains a control mechanism which is
able to check that the agent is still operational. It can terminate and restart the
engine in case of error.

At first we thought the core of the agent was so simple that it could not fail. Reality
proved us wrong. As mentioned above, the agent went dead on some machines after
an irregular time interval of several days. The agent did not trap nor did it produce
any other detectable error but simply felt asleep and did not do anything. An
operator had to terminate it via <CTRL-C> (which always worked - thus it did not
get stuck due to a problem with the operating system).

Nobody knows yet why this happens but we learned that other applications which
run in a 7x24 mode under OS/2 suffer from similar problems. At the first glance the
cure to the symptom seems to be very simple: the main thread uses a variable to
notify its current state. A second thread sleeps for 1.5 times the update interval20

and when it wakes up it checks that the state of the main thread is changing over
time and that data updates are being sent to a server. If not, the second thread uses

20 By default the update interval is 60 seconds, but this value can be superseded by the operator. The
new value is given to the collection server. All agents that report to that server use the same update
interval.

check arguments

check termination
signal

start subprocess
(option "/cont")

check arguments

start monitor thread

monitor engine
(see before)

check thread state

terminate process

check termination
signal

check termination
signal

signal not
set

thread is
operational

subprocessshell process

control thread monitor engine

Legend:

process entry point

state and associated action or
sub process

process exit point

event (with condition)

[6]

Figure 10. Control mechanism of the agent

Workload Management
Using Workload Data

25. Mar. 2000 Page 61 Dipl.-Ing. Günther Strasser

the OS/2 API DosKillProcess to terminate the process. In order to recognize and
react on that a shell process is needed, which starts the agent. The control thread
terminates its own process in case of error. The shell process captures the
termination of the child process and starts another agent process. Figure 10 shows
the flow of control between the different entities.

Two separate processes are actively running to cover unexpected program hangs:
The process that is started by an operator or by a startup script of the operating
system, is the shell process. It initiates and checks/resets the termination signal.
Note that this signal may already exist and may be set due to a prior program
invocation. A subprocess is then started, which implements the monitoring. The
shell process uses an OS function to block, until the subprocess terminates.

The subprocess consists of two threads (see appendix). The main thread (the thread
that is started by the OS when a process is created) is the control thread. First it
initiates a control data structure (position indicator, loop flag, blocking counter, all
of which are used to check whether the monitor engine is still operational), and then
starts a second thread for the monitoring. The second thread - the monitor engine -
was described before (see Figure 9). As the monitor engine progresses through the
steps it has to do, it sets a position indicator that signals the current position within
the engine to the control thread. In addition, after each iteration a loop flag is set.

The control thread weakens after 1.5 times of the update interval (usually 90
seconds) and checks, whether the position indicator has changed or if the loop flag
has been set. If that is the case it can be assumed that the monitor engine is still
running. The loop flag is reset and the blocking counter set to zero then the
termination signal is checked (see before). The control thread blocks again.

If the control thread detects that neither the position indicator nor the loop flag have
changed then it is assumed that the monitor engine is blocked by some operation. A
warning message is displayed at the operator console and the blocking counter is
incremented. If the blocking counter is greater then 3 then the process is terminated
(as explained before). If the blocking counter is less or equal 3 then the control
thread blocks again. Some operations, e.g. analyses of the file system of the server,
can take more time then 90 seconds. Therefore the blocking counter is used to
allow for a certain excess of the update interval, while still being able to detect (and
report) a potential problem quickly.

Both the shell process and the subprocess are implemented by the same program:
the agent itself. An additional commandline argument "/cont" is used (for the
subprocess) to distinguish parent and child process invocation. The argument may
be used by an operator if he does not want automatic restart. When the child
process terminates the parent process also has to check the external termination
signal, too. If it is not set the control process assumes that the child process
terminated due to an error and it restarts it.

4.4.2.3. Calling a Detached Process or Function

For several classes of information there is no API that can be used to access
information. In these cases the character based output of other programs is used and
interpreted. To get the information the other program has to be called and its stdout
handle must be mapped to a pipe. The agent can read the pipe and work with the
output.

There are several problems with this approach, however. The most significant is
that reading the pipe blocks forever if no more data are in the pipe and the calling
process is about to terminate. There seems to be no way to prevent this. In order to

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 62 25. Mar. 2000

circumvent the problem another process - the transmitter - is put into the middle of
the operation:

1. The transmitter is started as a "normal" child of the agent. Therefore the agent
has full control of it.

2. The transmitter calls the target program, maps handles to pipes, captures the
output from the program and translates it into a useful format. These data are put
into a shared memory area. The transmitter releases its CPU slice in order to give
the target program a chance to produce some data and reads the pipe in blocks of
1024 bytes after each pause. If less than 1024 bytes are returned it assumes that no
more output will follow and stops reading the pipe. This has two consequences:

a. the transmitter will block if the target program returns a multiple of 1024 bytes,
which can occur.

b. if the target works too slowly the interpretation of its output stops early; such a
slow data source is not usable by the monitoring system.

If this occurs the transmitter posts an "event semaphore" that signals the success (or
at least termination) of the operation to the agent. An "event semaphore" is an OS/2
construct the allows a number of threads (processes) to wait for the arrival of an
event. Another thread "posts" the event semaphore. That starts all waiting threads.
A waiting thread can specify the maximum time it is willing to wait. If the time
expires and nobody posted the semaphore the thread is started but receives a return
code indicating that the time expired.

3. The agent blocks on the event semaphore with a certain time-out value (9/10th of
the data update interval). This waiting may result in one of two possibilities: the
semaphore is posted (see paragraph above), the operation has been successful and
the data can be copied from the shared memory area. The other possibility is the
semaphore API returns a time-out error, the transmitter is blocked (because no or
invalid output has been produced by the target program). In this case the agent kills
the transmitter.

4.4.3. Memory Management

One important goal for the design of the agent code is to keep resource
consumption at a minimum. Therefore the memory structure is kept very simple and
small. The agent's memory management routines have to handle two important data
structures: the monitor objects, which are provided by the monitor factory objects,
and a memory area where load data are stored until they are transmitted to a server.

Along with the definitions of the known hosts (the "machine definition"), a
structure of type INFOBLOCK_DESC is created. This is the same structure used
by the collection server for storing the load data. INFOBLOCK_DESC is able to
store a number of load data items together with descriptions of the objects that
provide this data.

Workload Management
Using Workload Data

25. Mar. 2000 Page 63 Dipl.-Ing. Günther Strasser

The monitor objects are generated by the discovery code of the monitor factory
objects and are handed to the agent. Because a monitor object has no knowledge of
INFOBLOCK_DESC and does not know where to store its data, the agent provides
an object to establish a connection between RETRIEVER and INFO-
BLOCK_DESC: the class OBJ_STORAGE_REL contains a pointer to a retriever,
a pointer to a machine definition and the index into an array of data items to which
the retriever may write its data.

Whenever the agent receives a new monitor object it creates a storage relation
object and registers the retriever at the infoblock. The agent maintains a collection
of machine definitions and a collection of storage relations. All other structures
depend on one of the two.

At regular intervals the agent checks the availability of monitor objects and
machines. If they are no longer available for a certain amount of time the structures
are removed from memory.

4.5. Monitor Module Structure

A monitor module can provide following objects for the agent:

Class Mode Card. Comments

entry point (C function) mandatory 1 returns an object of class
MODULE_PRESENTATION

MODULE_ PRESENTATION mandatory 1 core interface between agent and monitor
object; provides methods to return:
- a copyright statement
- a number of role21 definitions
- a number of monitor factory objects
- code to initialize monitoring

Role Definition optional n the module must contain icons for each role
which are used for display in the user interface

Monitor factory object
(CLASS_DEF)

optional n a monitor module should return at least one
monitor factory object

Retriever Class optional n for each monitor factory object a retriever class

21 Refer to chapter 6.2.5 "Machines and Roles" for more information about "roles".

Machine Definition

INFOBLOCK_DESC

RETRIEVER

OBJ_STORAGE_RELATION

dataitem 0

dataitem n

machine

index

retriever

Figure 11. Relation between monitor object and machine definition

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 64 25. Mar. 2000

Class Mode Card. Comments

must be provided

4.6. Data Transport

Critical to the successful operation of the agent is the efficient transmission of the
retrieved data to the manager. On the one hand, it should be reliable; on the other
hand, it should not put much extra load on the systems and the network.

After the agent has been started it tries to connect with a collection server which is
either specified by the administrator or discovered automatically in the network. If
a (new) server has been contacted after startup, in the case a connection to the
known destination server being lost or object definitions changed, the agent
registers itself and all (new/changed) object definitions at the server. This
information is not transmitted over the network again as long as the logical
connection between agent and server is not interrupted. When a data lookup has
been successful and has delivered new data, the INFOBLOCK_DESC memory
blocks are sent to the server. This structure contains only raw data, without extra
communication overhead22.

For more details about the protocol and the data sent across the network, see the
next chapter.

22 The information is not compressed. If necessary that task must be done by the network software or
hardware.

Workload Management
Using Workload Data

25. Mar. 2000 Page 65 Dipl.-Ing. Günther Strasser

5. Communication Infrastructure

An efficient communication infrastructure is one key
for successful load monitoring in a distributed
system. Therefore it is very important to understand
the components which make up this infrastructure
and how they can be used to satisfy the requirements
of the IT shop. The implementation of these
components offer great flexibility to adapt the
infrastructure to the needs of the underlying network.

5.1. Introduction

5.1.1. The Problem

A great number of monitored machines has to communicate with receiving
managers. That can create significant network traffic and in addition, slow WAN
links and loaded networking devices may lie between them. Things become worse
if there are several managers at the same or different locations.

How does an agent know where to send its data? How can a manager handle
hundreds of requests per minute? Can it be an OS/2 machine or are UNIX and
MVS the only suitable platforms? What transport protocol should be used or must
be provided for agents and managers?

5.1.2. Common Implementations

We know of just two implementations in commercial products. The common factor
between them is their reliance on a direct connection23 between agent and manager
in order to exchange data. Therefore they suffer greatly under the problems
mentioned above and cannot be used for reliable monitoring in large networks of
OS/2 servers.

The first implementation works like an SNMP manager: the manager initiates a data
update by sending a message to the target agent. In return the agent answers and
sends some data. This has to be repeated for each known agent. Broadcasts may be
used to simplify the task for the manager but that delegates the work to routers and
other devices and brings new problems to the network . Nevertheless, the principle
remains the same.

Both the manager's host and the network must be very powerful to handle the task
or the number of monitored agents will be reduced radically - the one or two
machines which are in the focus of the administrator.

If more than one manager console is active the whole process is also performed.
Thus they multiply the load on the network and the agents, as they have to respond
to several similar requests which arrive independently from one another.

23 That implies that both sides have to (install and) use the same network protocol.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 66 25. Mar. 2000

In the second implementation variant it is the agent which becomes active and
establishes a link to the manager or sends messages. E.g. NetFinity or the LAN
Management Utilities, both products of IBM, use this scheme. The manager must
be prepared for many requests, many of them arriving at the same time. Today
products are limited to about 50 agents which may report their data to a manager in
a LAN.

If several managers have to be supported the agent must be able to keep a list of
destination servers and send a message to each of them. Besides the network load
no known agent can do that. For obvious reasons agents may not use broadcasts to
distribute their data. Therefore either each agent is set up accordingly (a difficult
and expensive process), or an extra agent-to-manager protocol must be provided to
register a manager at all the agents.

Because the number of agents per manager is small many managers must be used to
monitor all available agents. Each manager owns a number of assigned agents.
Careful planning and setup is necessary for the agents and manager. A consistent
(over) view of the attached systems is lost.

5.1.3. The New Approach

In order to support monitoring of accurate data (with small sample intervals) for a
great number of machines, the need for a direct session between agent and manager
has been eliminated. Instead, each agent puts its data into a temporary storage area
within the LAN. Many agents are able to store their data here. Independent of the
activities of the agents, the information can be propagated to other temporary
storage units. The information is consolidated and packed into a small number of
network messages. Reducing the number of session setups and messages is much
more efficient than the use of many sessions and small messages. The most
appropriate communication method can be chosen to get over the network link
between the storage units.

Any number of managers may access the data at temporary storage units. The
agents do not have to deal with the number and location of managers. A manager
does not even know where the information comes from or how many storage units
were involved in the transporting of the data. Each piece of data is sent only once
on a certain link. There is no need to send it again.

The communication infrastructure consists of a server program (SRVMSRVR) and
code modules, which are bound to and used by every part of the tool for
communication. In this chapter we will look at the solution in detail.

5.2. Scenarios

As an introduction, and in order to simplify the following technical description we
will look at the three possible standard installation scenarios first before discussing
the infrastructure components in detail. The three scenarios build an ascending path
which is be followed by most people starting to work with the monitoring tool.

5.2.1. Basic Installation

The basic installation (see Figure 7) is the most simple way to set up the tool. It
works best for a single domain in a single physical LAN. The only necessary
installation is putting the monitoring tool, with all its components, on a single
workstation in the network. An administrator logon must be done on this
workstation because due to security reasons, the "IBM LAN Server" monitor code
requires administrative privilege.

Workload Management
Using Workload Data

25. Mar. 2000 Page 67 Dipl.-Ing. Günther Strasser

At this workstation three components are active:

! an agent, which accesses the data of LAN servers by remote in the domain,
! a collection server, which is always the bridge between agent and manager,

and
! the monitoring manager24, which collects and processes the data.

As all three components are executing on the same machine, no network is
necessary for communication between them. Nevertheless this is transparent to the
components and is handled by the network layer of the workload monitoring
infrastructure.

One big advantage of remote workload data access is that the agent acts like any
other "customer" of a LAN server. If the LAN server has a problem and is unable to
respond to a request in time the agent will recognize this and consequently the
manager will be able to trigger an alert. Therefore LAN Server information is
retrieved remotely in all scenarios that are described in this chapter.

24 Note that a manager always implies the existence of a collection server on the same machine. The
manager is not allowed to communicate directly with any agent.

Manager
+ Collection Server
+ Agent

Figure 12. Basic installation within a single domain

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 68 25. Mar. 2000

5.2.2. Full Local Installation

The afore described scenario is able to provide all the data which can be accessed
remotely. In the current implementation all information about the IBM LAN Server
product can be acquired this way. If the operator wishes to access all the available
information the installation must be extended, and requires some additional effort.
Note that the mechanism of the first scenario is still used: an agent at the manager
accesses LAN server machines remotely. In order to do this it needs administrative
privileges for the domains of the monitored machines.

Firstly the operator has to select one server which plays the role of a collection
server. On this machine the collection server component (SRVMSRVR) has to be
installed and activated. A possible alternative for this scenario is the use of the
collection server on the manager.

On all servers (including the collection server) the agent has to be installed and
activated. The operator may or may not make available the name of the collection
server to the agent. The recommended method is not to supply the name. The agent
looks for a collection server automatically (see chapter 4.4.2.1 "Data Retriever And
Transport" for the processing of the agent and chapter 5.6.1 "Automatic Server
Lookup" for the required low level service). This has two major advantages:

1. If the collection server machine is changed later no changes on monitored
machines are necessary. This simplifies the operation of the tool.

2. In large domains the operator can activate more than one collection server on
different machines. Monitoring is therefore made more robust, even in cases of
server failures, and the load on the collection server itself is balanced
automatically.

The only disadvantage is that, depending on the network access method, broadcast
messages are propagated on the network to find a collection server and put extra
load on the network. Broadcasts are used very economically to keep negative
impacts at a minimum. Not all network access methods support automatic lookup;
broadcasts must be made possible on the agent and the network domain. This may
not be appropriate in every environment.

The collection server must be one of the machines known to the manager. In this
setup all available data about the local domain are collected and displayed at the
manager. In addition to LAN servers any network connected machine can send data
to the collection server if it supports one of the provided network access methods.

S

Manager
+ Collection Server
+ Agent

Figure 13. Advanced installation with agents on each server

Workload Management
Using Workload Data

25. Mar. 2000 Page 69 Dipl.-Ing. Günther Strasser

Therefore other machine types like database servers or communication hardware
can also be monitored.

5.2.3. Fully Distributed Installation

Both previously described installations are feasible for monitoring of machines in
the same physical network where the manager is connected. Even within one
physical network the number of LAN servers which can be monitored remotely
from one machine in the network is limited:

! If the network is organized in several domains it may not be possible nor
desirable to grant administrative privilege to one central machine (or person).

! Accessing the data remotely moves much more data over the network then are
actually used. The agent processes and filters the information and hands on only
a fraction of the data volume. Accessing servers over (slower or loaded) bridges
can add noticeable network load.

! For the same reason it is not possible to do this over slower WAN connections.

! WAN links may not support direct LAN server access. The usage of WAN
protocols must be available to the operator.

For these reasons the collection server can be used to hand on the data to another
collection server.

Figure 14 shows how a remote domain collects its data and sends it via a collection
server to a central collection server. It makes no difference whether the remote

domain is within the same physical LAN or connected via a WAN link.

At the central site there is no difference in the setup as described above. The
difference in the remote LAN is that at the monitoring client workstation there is no
manager and collection server active. Instead, an agent collects LAN server data
and sends them to the collection server. Therefore this machine needs a different
installation and preparation from the central monitoring manager PC.

Note that is possible to run a manager in the remote LAN too. The local
administrator sees the data around his LAN. The collection server on the manager

Figure 14. Full installation with remote LANs

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 70 25. Mar. 2000

must be set up in such a way that it functions as a collection server that sends its
data to the central site.

5.3. Layers of Communication

To understand the way in which the tool uses a network to transport load data from
a widely distributed system to a central management site we must distinguish
several layers which make up the communication infrastructure.

As shown in Figure 15 there are five layers of code with different levels of
abstraction used for communication:

Layer 1 is provided by the operating system or the system software, and is not part
of the tool. Within this chapter the view on this component is simplified and we
speak of one layer only. In reality - within the system software - there are several
layers down to the network hardware. However in this context the structure of the
piece of software is not of interest.

It is important that the (network) operating system provides some sort of service,
which depends on the installed hardware and the network device drivers and
protocols which support that hardware. The programming interface are C
function(s) which are exported by a DLL. In some cases this interface is still a 16-
bit interface, which makes its use a little more difficult.

Layer 2 implements specific functions based on the services provided by layer one.
Basic functions for sending and receiving data are written in C using API functions
of the network services. These functions are specific for the supported network
layer and each network service library has a unique interface and special purpose
data structures. One other task of this layer is to hide problems with data buffers
and addressing with a 16-bit interface.

For each supported type of layer one there is a corresponding library in layer two.

Layer 3 implements a common interface based on the functions provided by layer
two. This layer is very thin. Normally it does not implement any functionality but
holds control information and transforms common requests into the structure
required by layer two. The functionality of the transmission processing is kept in
layer two.

Network Services
(e.g. NETBIOS DLL)

C++ Communication Object
(e.g. SRVMCMNB.DLL)

Common Transmission Services
(C++)

Agent/Server/Manager
Code (C++)

Network Service Interface
Library (plain C)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

network protocol
specific code

network protocol
independent code

Figure 15. Layers of communication

Workload Management
Using Workload Data

25. Mar. 2000 Page 71 Dipl.-Ing. Günther Strasser

The common interface resembles the functionality of a pipe in message mode25 -
known from IPC methods. Supported methods are:

1. open connection (preparation for transmission)

2. bind (wait for connection at the server side)

3. connect (wait for connection at client side)

4. read data

5. write data

6. disconnect (abort connection at server side)

7. close connection (abort connection at client side or end any transmission on
server side)

8. lookup server (search for available servers at client side)

There is a corresponding C++ module in the third layer for each supported type of
the first and second layers.

Layer 4 uses the common interface to implement the client/server protocol
described below. The protocol controls load data's movement over the network and
ensures that data are valid and up-to-date.

This layer exists only once. The types of supported layers below are (nearly)
invisible to this layer. The only exception is that it controls registration and
initialization of C++ Communication Objects.

Layer 5 contains the applications which use the other layers to communicate with
one another. They only provide specific data which apply to the functions of layer
4. Network and protocols are transparent to the applications.

5.4. High Level Infrastructure Components

After reading the overview above we can now look at the technical details of the
infrastructure components to understand how one can install and use the tool and
what additional possibilities (of configuration) exist for special problems and
situations.

First we will examine the tasks of the three major parts from the viewpoint of
communication and data transmission.

5.4.1. Agent

25 In general (named) pipes can be used in several modes (e.g. binary, stream, etc.). Because it fits best
to the OO-paradigm of messages, here pipes are used in message mode only. Therefore data are sent
and received in continuous blocks as messages. The pipe keeps track of messages sizes and blocking
during the transmission of messages.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 72 25. Mar. 2000

The agent, implemented by the process SRVMCLNT, has two major tasks: the
control of data collection and handling the network link to a manager. In the
following paragraphs we will look at the second task. In order to successfully move
the data to a managing server the agent has to carry out following functions (note
that each function is fully based on the service provided by layer 5 or eventually by
layer 4):

1. Look up a server if no destination server has been supplied. If no server can be
found the agent is suspended for about a minute. As long as there is no
possibility to hand on data it does not make any sense to collect them. In case
of error the agent will continue to look for a server and establish a connection.

2. If a destination server can be identified and data are ready for transmission, a
link can be established with the destination server. If this fails the agent
resumes with step 1.

3. If this is the first established connection to this server or in the case the
definition of objects have changed since the last registration, the machine(s)
and the monitored resources are registered at the server. The server
acknowledges the registration. If one registration fails the agent resumes with
step 1.

4. If the registration has been successful or the connection is not the first one
(registration has already taken place) data are sent.

Figure 16 shows the states in which the agent can be and the method of transition
between states. The following table explains the states and the possible transitions
between the different states:

curr.
state

meaning new
state

transition

1 no destination server known;
look up takes place

2 searching for a destination server
successful

[3] data
ready

server found

[1] look up
target server

[4]
registration

[5] objects
registered

[6] send
data

[2] (re)create
objects

registration
acknowledged

[7] data
ready

registration
failed

object life time
exceeded

connection
failed

Legend:

process entry point

state and associated action or
sub process

process exit point

event (with condition)

[6]

Figure 16. Agent communication state diagram

Workload Management
Using Workload Data

25. Mar. 2000 Page 73 Dipl.-Ing. Günther Strasser

curr.
state

meaning new
state

transition

2 a destination server is known,
it is necessary to discover
available resources for
monitoring and create
corresponding monitor
objects

3 monitor objects created

3 an update of monitor objects
taken place;
data ready for transmission

4 a connection to the destination server
established

1 failed to establish a connection

4 there was no connection to
the destination server, since
new objects were created;
the connection to the server
was lost for some reason;
objects must be registered

5 machine(s) and objects able to be
registered

1 destination server failed to register
objects

5 objects registered at the
known destination server

6 N/A

6 data able to be sent to the
server

7 data able to be sent

1 an error occurred during transmission

2 object definition outdated

7 no error occurred before; data
ready again

5 update interval elapsed

5.4.2. Collection and Intermediate Managing Server

The collection server, implemented by the process SRVMSRVR, is the backbone
and most important component of the communication infrastructure. It is the bridge
between agents and managers in the system. The collection server collects data
from agents and possibly other servers and it answers requests from managers. The
intermediate managing server is identical to the collection server but in addition
to the tasks of a collection server it retransmits information to another server. If
necessary a collection server may refuse to answer requests of an active manager
within its network26.

The different terms - intermediate and collection server - have been introduced to
simplify the description of possible configuration scenarios (see chapter 5.2.
"Scenarios).

Definition: Monitor Domain

is the set of all agents that report their data to the same physical collection server.

A collection server does the following tasks (that are described in detail in the
following chapters):

26 Example: the collection server handles data from several remote domains and replicates them on a
central site. The local operator wants to monitor his domains only. The collection server can be active
on one of his servers but does not interact with the local monitor management software.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 74 25. Mar. 2000

1. registration of monitored machines and resources

2. delivery and temporary storage of load data

3. control of update intervals at connected agents

4. check of time stamps and data validity

5. consolidation of different data blocks for the same machine

6. replies to managers' requests (SRVMONPM)

7. retransmission of data to another server (intermediate managing server)

The functions provided by the process are based on layer 5 of the communication
services. The process implements the server part of a true client/server application:
a dynamic number of threads are active and parallel and each thread services a
communication object. The communication object works like a pipe. It listens for
connections, receives messages, processes data packed in the message, responds
with the result, then closes the connection in order to become available and ready
for new requests.

5.4.2.1. States of a Service Thread

All service threads are identical, execute simultaneously and are totally independent
of one another. Therefore we can look at the functionality of a single thread. There
are no side effects on other threads. The basic state diagram (Figure 12) of a service
thread is very simple:

1. wait for a connection (listen)

2. connect

3. receive a message in a general „all purpose“ area

4. decipher the message header (message type/number and version) and convert
the message into the correct message object (a C++ structure)

5. process the message and send a result

6. disconnect

7. continue with step 1

The service threads implement three nested levels as shown in Figure 12. The outer
level manages the communication and the thread itself. If the thread can be
initialized it changes to the second level, the "main service loop" state. In this state
the thread is able to handle requests. It waits for incoming connection requests and
handles them. If there are too many unused threads it leaves this state again. When
an incoming connection request arrives it sets up the connection and changes to the
"inner service loop" state. In this state it is able to handle requests that are send via
the connection. When the requesting partner closes the connection it leaves this
state and goes back to the "main service loop" level.

Workload Management
Using Workload Data

25. Mar. 2000 Page 75 Dipl.-Ing. Günther Strasser

The following table details the states of Figure 12:

state description

[1] the service thread is ready for a new connection; an agent may request one; if a
connection is established the thread enters a loop inside which a number of
messages from the agent are handled

[2] the network report an error when the service thread tries to ready itself for
connections; the thread waits a moment and attempts to connect again; a retry
counter is increased for every failed connect; if it is not possible to resume
operation the thread gives up and closes down; otherwise the retry counter is
reset to zero

[3] the number of threads is dynamic; when a thread leaves the message processing
loop a check is made to see if it will be needed; if there are too many idle
threads, it is closed down

[4] for reasons mentioned above, the thread is about to close down; it shuts down
network activities, frees its resources and ends

[5] a message received in binary format is "transformed" into a message structure
and processed by the thread (see below)

5.4.2.2. Tasks of the Collection Server

The following paragraphs describe the main tasks of a collection or intermediate
managing server process.

main service loop

inner service loop

prepare server
communication

[1] connect

receive message

[5] process message

[3] manage thread

[4] close thread

[2] check retries

error

retry count
exceeded

client
disconnected

Legend:

process entry point

state and associated action or
sub process

process exit point

event (with condition)

[6]

Figure 17. State diagram of the service thread of a collection server

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 76 25. Mar. 2000

Registration of monitored machines and resources

The collection server should know which machines (agents) it is responsible for27.
The internal management of storage and definitions depends on this information
(see below). In addition the manager has to know about the resources available on
the machine. Therefore each agent has to register itself (the machine where the
agent "lives"), the destination server (where the resources sit) and the monitor
objects (the resources) at the server before load data can be transmitted.

The process maintains a set of registered machines. A machine is identified by its
name (a 16 byte character string). For each machine up to four28 source agents
structures are stored. A source agent structure represents the process which sends
data to the server and is identified by the machine name of the source agent plus a
one character extension which defines the type of monitoring (remote or local data
access). It contains the object (resource) definitions and a memory block for all
load data items provided by the agent.

If the monitoring application is set up completely and correctly two source agent
structures will be associated with the machine: one for the agent which runs locally
at the target machine and does local monitoring. In the case that the target machine

27 The same machine can register its definitions on more than one collection server. This is not very
sensible but the program is robust enough to handle such a case.
28 Normally one or at the most two source agents can be present. In cases of wrong manual
configurations or due to future extensions more agents may report information on the same machine.

target server
name: TESTSRV1
agent: TESTSRV1_C

collection server
name: TESTSRV2

remote agent
name: TESTCLT1
agent: TESTCLT1_S

source: TESTSRV1_C
target: TESTSRV1

source: TESTCLT1_S
target: TESTSRV1

source: TESTSRV2_S
target: TESTSRV1

collection server
name: TESTSRV3

datablock with loadinformation
about monitored resources

Legend:

Figure 18. Replication model

Workload Management
Using Workload Data

25. Mar. 2000 Page 77 Dipl.-Ing. Günther Strasser

is a LAN server, a second agent, which runs on a different machine, does remote
monitoring29.

Figure 18. shows a simple example of a server that is monitored by both a local and
a remote agent. A local agent at server TESTSRV1 monitors information about
operating system resources and a remote agent at the machine TESTCLT1 monitors
network related information about TESTSRV1. Both agents send data about the
target server TESTSRV1 to the collection server TESTSRV2; the collection server
stores two data blocks about TESTSRV1. Before it forwards the information about
TESTSRV1 to another machine, in this example TESTSRV2, it consolidates the
information and forwards only one block of information. From TESTSRV2's point
of view it behaves as it were an agent that sends data and TESTSRV2 does not
know anymore that there exist two sources of information for TESTSRV1.

Figure 19 shows the data structures that are used to store workload data at the
server. The server maintains an array of registered machines (the registration area).
Each entry in the area points to a machine definition that contains some general
data about the monitored machine and a list of references to (source) agent data
structure. There is one such structure for each agent that reports data about the
machine. The source agent area contains a reference to the start of a list of resource
definitions and the index into the machine related load data storage area. Load data
arriving at the server on behalf of the agent will be copied into the data area starting
at this index. A resource definition consists of the name, class, version of the
resource and an offset into the load data storage area, where the manager can find
the data for this object. See chapter 5.4.2.3 "Memory Management" for details on

these data structures.

29 Theoretically a third agent could also do remote monitoring. It would be associated with the machine
and it would provide the same information and data as the second agent. This error does no harm to the
monitoring system but it is a waste of resources and does not gain any additional value.

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

registration
area

(global)

machine
definition���������������������

���������������������
���������������������

name
class

version
offset

���������������������
���������������������

���������������������
��������������������� ���������������������

��������������������� ����������������������
����������������������

load data
area

(one per machine)

name
class

version
offset

name
class

version
offset

source agent
area

time stamp

list of object definitions

Legend:
pointer variable
pointer
index or offset

���������������������
���������������������

Figure 19. Storage structure for the collection server

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 78 25. Mar. 2000

If the collection server receives a registration for a machine that is already
registered, the old definition is replaced by the new information. There is no special
notification about this fact.

An error occurs only in those cases where the server runs out of memory or space
for machine registration. This space is limited by a number allocated during
compile time. It cannot be changed during later operation. In the current
implementation this number is set to 1024, meaning up to 1024 machine definitions
can be handled by one collection server.

A machine definition and all dependent information is removed if, for some time,
no update for its data has taken place (see below). It is not possible to „unregister“
a machine or an object. Before an agent registers new object definitions for a
destination server, the existing definitions are removed. Therefore unused resource
object definitions are removed on behalf of the agent. For more details see chapter
0. "Service Thread Management".

Delivery and temporary storage of load data

After an agent has registered itself and the resources it monitors, it sends only the
load data. When new data arrive the server looks up the machine definition and the
source agent structure. If these structures are available at the server the message
body is copied onto the data area associated with the agent structure. Otherwise an
error is returned to the agent which indicates that registration is necessary.

This kind of error can occur if the collection server has been restarted while the
agent has been stopped. Thus, it has not noticed that the server is not available and
tries to send its data.

When new data are copied to the data area a time stamp is set at the machine
definition to indicate that new valid data have been received and that there is still an
agent in the system which sends data about the machine. If the timestamp becomes
outdated the information in the load data area will be considered invalid and not
worth delivering to another server or manager.

Control of update intervals

The collection server is the central means to defining the update intervals within
one monitoring domain. The operator specifies the update interval for the domain
on the command line when the server is started. The default update interval is 60
seconds. This interval is a good compromise between the need to minimize
monitoring related load on the host computer and the network and the need to
present current information to the user. Because most information is derived from
system and application counters no information is lost. From the needs of long-term
monitoring and data gathering longer intervals would also be suitable.

Whenever an agent registers itself at the server the server sends the defined update
interval to the agent. The agent adapts its update speed to this interval. Therefore
all agents reporting to a certain collection server update the load information at the
same speed as the server replicates the data.

Check of time stamps and data validity

The collection server process has a passive role. All connections to the server are
initiated from another process (agent or manager). It is irrelevant to the server
which agents exist and whether or not they send data.

In order to guarantee data consistency time stamps are used to check that data are
valid. The basic algorithm works as follows: whenever the server receives data

Workload Management
Using Workload Data

25. Mar. 2000 Page 79 Dipl.-Ing. Günther Strasser

(registration or load data) a time stamp in the machine definition area is updated (it
is set to the current system time of the machine where the server is running). If the
server is asked for this data or (in the case of an intermediate managing server) data
are to be retransmitted to another server the time stamp is checked against the
actual system time. The difference between the system time and the time stamp
stored in the machine definition may be 10% greater than the retransmission
interval defined for the server (default is 60 seconds). If the difference is greater
than that, data are assumed to be outdated and invalid. They are not forwarded to
the requesting process.

Note: The manager does not see these timestamps. If it receives data it presumes
that the information is current and valid. However it uses another time stamp to
check whether the definition of each monitor object is unchanged or whether it has
been recreated (see "Answers to requests by managers" and "Local Object
Definition"). Do not confuse the two time stamps.

The usage of time stamps has proved to be very robust and efficient. It makes the
communication infrastructure relatively invulnerable to failure of agents or
collection servers. The manager does not receive old or invalid data. Due to the
possibility that several agents report data about the same machine a theoretical
problem has been introduced which has not been solved in the implementation
described above.

As mentioned above, whenever the server receives information about a machine the
time stamp in the machine definition area is updated. If two agents report data
about the machine this happens two times during one retransmission interval. This
is more or less correct and does not influence the functionality. If one agent fails to
send data the time stamp still gets updated because of the second agent, and
because the time stamp is updated, all data are assumed to be valid. Therefore the
data of the failing agent are reported to the manager although they have not been
updated for some time.

To solve this problem the time stamp has been moved into the source agent area
and is updated for each reporting agent separately. For those checks which are
performed for the machine (e.g. when the manager asks for data, or before
removing the machine definition), the most recent time stamp is used. When data
are prepared for transmission (see below) each individual time stamp is checked. If
it is outdated the available data are replaced by the value undefined (0xFFFF). Thus
the manager can not under any circumstances receive invalid data.

Consolidation of different data blocks

In order to keep the protocol simple it makes no difference whether an agent sends
its data to a server or whether another server retransmits the information. As
already mentioned, the server does not have to distinguish between the two cases.
Only the fact that a process on machine A sends load data for machine B is
important. Machine A and B may or may not be identical.

There are two messages in the client/server protocol which are used to handle the
load data: one is used to send data from an agent (or collection server) to the server
and the other to send the data from the server to the manager (on behalf of the
manager). Both messages consist of a header and a data block which is attached to
the message.

As depicted in Figure 15, the server maintains a separate data structure for each
data source (the process which sends data). If the server receives data it only has to
copy the data block, which is appended to the message, to the data area of the
source agent structure.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 80 25. Mar. 2000

When the manager asks for data or when the server has to retransmit the
information the latter has to assemble a data block from the data areas of associated
source agent structures. The assembled memory block can then be attached to the
message. For other processes (server and manager), the server looks like one
(simple) data source (like an agent). This keeps both the protocol and the client
code rather simple but robust.

Each object definition contains an offset into the memory block which is sent after
the registration has succeeded. If the server assembles a larger data block it has to
modify these offsets accordingly. In the figure above this is indicated by the double
dashed arrows (), which point from the object offset into the new message
buffer (identical to the data block of the source agent structure at the receiver of the
message).

Answers to requests by managers

The manager accesses all information via a number of servers. Agents do not send
their data directly to a manager. The manager makes a connection with all known
servers and asks for data. The server answers with machine identification and an
attached data block (assembled in the way described above). If the manager does
not know the machine or if creation time stamps do not match, the manager asks
for machine and object definitions.

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

registration
area

machine
definition

��������������������
��������������������
��������������������

name
class

version
offset

���������������������
���������������������

��������������������
�������������������� ���������������������

��������������������� ����������������������
����������������������

load data
area

name
class

version
offset

name
class

version
offset

source agent
area I

time stamp

list of object definitions

name
class

version
offset

���������������������
���������������������

���������������������
��������������������� ���������������������

��������������������� ������������������
������������������

load data
area

name
class

version
offset

name
class

version
offset

source agent
area II

time stamp

list of object definitions

message header
message buffer

Legend:
pointer variable
pointer
index or offset

�������������������
�������������������

two agents report
data for the same
machine

Figure 20. Network message assembly

Workload Management
Using Workload Data

25. Mar. 2000 Page 81 Dipl.-Ing. Günther Strasser

The creation time stamp is set at the agent where the monitor objects are created.
This time stamp is passed on by any server (collection or intermediate managing
server) without any change. When the manager receives the resource definitions it
stores the time stamp. Whenever it receives data from a server for the monitor
object, the object's creation time stamp is sent along with the message, and the
manager compares it with the time stamp of the local shell object. Thus the
manager notices if data for a newer definition has been received. If this is the case
the manager has to request the new resource definitions.

Although the creation time stamp is the time at the agent, for other processes on the
same or different machine it is used as a key or id rather than a time stamp. The
value is not compared with other system times and no time calculations are
performed alongside it. Therefore it is safe to send this value over the network.
Unsynchronized clocks on different machines have no effect on the function and
meaning of the creation time stamp.

Retransmission of load information

If the application is used in a large network monitoring domains should be built.
Within one domain an intermediate managing server collects the information from
all agents in that domain, consolidates it and retransmits it from time to time to
another server. There are several advantages to this method of data transport:

1. The intermediate managing server may use a different network protocol from
the agents. While the agents use the most efficient communication for the local
area network, retransmission may be done over a WAN link, which may
require a different protocol. This protocol may not even be available to the
agents.

2. A considerable amount of time and network traffic is devoted to establishing a
connection. An intermediate managing server establishes one connection and
transmits all machine data at once (in a series of messages; each message is
already attached to an assembled data block). This prevents the need for
numerous connections because agents can connect to a local server.

3. The update (retransmission) interval can differ for intermediate managing
servers in different locations. It can be adjusted to meet network needs or
special requirements of the location.

Service thread management

The collection server uses the power of OS/2 to implement high service availability
while reducing resource consumption to a minimum. In order to be a thread must be
ready to connect to the client at any time. If there is no available thread the client
receives an error from the network software.

The collection server monitors the activities of its threads. It measures how many of
them have been used at the same time during one update interval and how many
have remained idle. If during one interval all threads are busy at the same time, a
new thread will be started for the communication method.

One the other hand, if the maximum number of concurrently used threads, increased
by two, is less than the number of available threads for about ten minutes, one
thread closes down. Therefore two threads are ready in addition to the normal
workload. They can handle peak loads if new agents or servers become on-line and
begin data transmission.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 82 25. Mar. 2000

5.4.2.3. Memory Management

"Registration of monitored machines and resources" gives an overview on the data
structures allocated dynamically when a new machine or object definition is
registered.

In detail the server maintains the following memory areas (see Figure 19):

1. A global, static array of pointers to machine definitions. This is the only
memory area allocated in any case. The size of this array limits the number of
machines that can be maintained by the server. In the current implementation
up to 1024 machines could be referenced.

Note that all other memory areas are allocated dynamically.

2. Each machine definition is allocated when a machine is registered. It contains
an array of pointers to source agent structures. Up to four pointers are
available. Currently only two pointers can be used during normal operation.

3. Each source agent structure has a pointer to a data block, where load data are
stored, and a pointer to a block of object definitions. The sizes of these blocks
depend on the actual available data. The blocks are resized if new information
arrives.

4. A data block is an (dynamic) array of objects of the class DATAITEM.

5. A block of object definitions is a (dynamic) array of objects of class
OBJECT_DESC.

6. An object of the class DATAITEM consists of an unsigned short which is
encapsulated by several methods to ensure data consistency.

7. An object of class OBJECT_DESC consists of the name, the class, the version
of a monitor object as it was created at the agent and the offset into the data
block where the load data for the object can be found.

typedef struct OBJECT_DESC {
 char Class[CLASS_NAME_SIZE];
 char Name[OBJ_NAME_SIZE];
 int Version;
 int Index;
} *POBJECT_DESC;

Removing a machine

If the server has not received any data for a machine within a 24 hour period the
machine definition and all associated memory areas are removed from the process.

5.4.3. The Workload Manager

The workload manager is the receiver side of the communication infrastructure
where all information is collected and processed. The manager uses the services of
layer four (the communication objects) to access collection (or intermediate
managing) servers and to retrieve the data which are stored there.

One major difference in the way agents and servers carry out their communication
is that a manager works with several (different) partners (servers). Agents and
servers connect to one other machine to send data on their behalf. The manager

Workload Management
Using Workload Data

25. Mar. 2000 Page 83 Dipl.-Ing. Günther Strasser

looks for available servers in the local network and contacts all of them during one
update interval. Depending on the network, either the number of collection servers
or the update interval has to be carefully chosen in such a way that the update
processing will take less time than the update interval.

For each server the manager performs the following steps:

1. Ask for the next machine. During this "download" machines are referenced by
a running counter (the machine request index) which starts from zero. The
manager asks for machine n and the server sends the n-th machine definition of
its internal array of machine references.

The machine request index is not an attribute of the machine definition (neither
on the collection server nor on the manager). The relation between the index
and a machine is only valid during one operation. The index cannot be used to
access the machine at a later time. Therefore the manager does not rely on this
index during other operations.
If no further machine definitions are available the server returns an "empty"
reply and the processing for this server ends.

2. Look up the machine definition for the received data.

3. If the machine definition is not found, create one. At this point the manager has
a reference to a machine definition.

4. Look for the source definition area (same scheme used for servers and
managers). If it does not exist create one and set the creation time stamp to
zero. At this point the manager has a reference to a source definition area.

5. Match the object creation time stamp in the source definition to the one passed
along with the data message. If the time stamps match, continue with step 7.

6. If the time stamps do not match download the object definitions and create or
update the internal data structures.

7. Copy the attached data block into a memory area associated with the source
definition.

8. Update time stamps and increase the machine request index.

9. Continue with step 1.

The creation of a machine definition triggers a number of other tasks in the
manager. These are described in chapter 6.2. "Internal Data Management".

5.5. Transmission Protocol

The following paragraphs describe in detail the definition and semantics of all
messages and how they are used by the communication infrastructure components.

5.5.1. Message Structure

Firstly, we will look at the definition of the messages that are sent across the
network. The messages are organized in a class hierarchy. The receiver of a
message identifies the message by the message id. The first two bytes of the
message header contain this id. The id consist of a number and a version. This is
necessary to support different (newer) versions of infrastructure components during
upgrading. Following messages are available:

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 84 25. Mar. 2000

#define MSG_TYPE_OBJ_DEF 0x1001
#define MSG_TYPE_DATA 0x0002
#define MSG_TYPE_ERROR 0x0003
#define MSG_TYPE_CLIENTDATA 0x0004
#define MSG_TYPE_REGISTER_OBJ 0x0005
#define MSG_TYPE_REGISTER_MACHINE 0x1006
#define MSG_TYPE_ACKNOWLEDGE 0x0007
#define MSG_TYPE_QUERYINFO 0x0008
#define MSG_TYPE_QUERYMANAGER 0x0009
#define MSG_TYPE_QUERYREMARK 0x100A
#define MSG_TYPE_QUERYUPDATEINT 0x000B

Not every type has a corresponding message class. Some types are used with the
same structure.

Refer to chapter "Message Structure of the Transport Layer" in the appendices for
more information about the messages.

BASE_MESSAGE

MESSAGE_ACKNOWLEDGE MESSAGE

MESSAGE_QUERY_REMARK TIME_MESSAGE

MESSAGE_DATA MESSAGE_FULLDATAMESSAGE_OBJ_DEF

MESSAGE_REGISTER_OBJ

MESSAGE_REGISTER_MACHINE

Figure 21. Message class hierarchy

Workload Management
Using Workload Data

25. Mar. 2000 Page 85 Dipl.-Ing. Günther Strasser

5.5.2. Agent To Server

Figure 22 gives an overview of the messages exchanged during startup and normal
operation of a client. After the agent has registered the machine (or the machines)
and the objects monitored by the agent, only data are sent to the server.

Explanation:

The agent has a list of potential
servers. This list is either supplied by
a NOS service, or the automatic
lookup facility that is implemented by
the tool, or it is supplied by the
operator (in this case it contains only
one entry, because the operator can
only specify one server address).

After the first invocation or in the
case of the last attempt to transmit
information failing, the agent has to
find an available server: it opens a
connection to that server. If this fails
(on the level of the network), then the
server host is not available or the
collection server is not active (or too
busy). When a connection is able to
be established, the agent asks whether
the server is able to receive data. If
this is acknowledged the agent marks
the server as active collection server,
then it registers all host machines at
that server for which it will send
information. For each host the
monitor objects are registered that are
associated with that host. The
connection is then closed.

Every time the agent has to send
information it opens a connection to
the server and then sends one data
block for each registered host. This is

much faster and more efficient than sending one message per monitor object, as it is
done in some systems management tools. After all data blocks have been sent the
agent closes the connection.

The server has to acknowledge each message. This is the signal for the agent that
the connection is up and that the server can still accept its data. After the
connection has been closed by the agent the server listens and waits again for a new
connection.

msg. # Description

1 MSG_TYPE_QUERYMANAGER
(BASE_MESSAGE)

2 MSG_TYPE_ACKNOWLEDGE
(MESSAGE_ACKNOWLEDGE)

3 implicit

Agent Server

query server
(ask availibility)

answer request

store
servername

listen

call
(open connection)

connect

register
machine

register objects

send data

acknowledge

acknowledge

acknowledge

close
connection

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Figure 22. Overview of agent to server protocol

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 86 25. Mar. 2000

msg. # Description

4 implicit

5 handled by the network layer

6 handled by the network layer

7 MSG_TYPE_REGISTER_MACHINE
(MESSAGE_REGISTER_MACHINE)

8 MSG_TYPE_ACKNOWLEDGE
(MESSAGE_ACKNOWLEDGE)

9 MSG_TYPE_REGISTER_OBJ
(MESSAGE_REGISTER_OBJ)

10 MSG_TYPE_ACKNOWLEDGE
(MESSAGE_ACKNOWLEDGE)

11 MSG_TYPE_DATA
(MESSAGE_FULLDATA)

12 MSG_TYPE_ACKNOWLEDGE
(MESSAGE_ACKNOWLEDGE)

Whenever the agent fails to re-establish a connection to the server the whole
sequence of messages is used again to find a new server and use it for data
transmission.

If the operator supplies a fixed server name, server lookup does not take place and
the agent will try to establish a connection to the given server again.

The method of the server lookup is not part of the protocol between agent and
server. This is implemented by the communication object and is „unknown“ to the

agent. After the agent has received a list of
available servers it uses messages to ask the server
whether it can receive data from an agent or not.

5.5.3. Collection server to Server

The server-to-server protocol has two tasks:

1. hand on machine registrations if a new
registration has been received or an existing
definition changed

2. hand on load data at regular intervals (the
update interval)

Explanation:

Triggered by a timer, the collection server tests to
see if some of the data that are maintained by the
software have changed. If so a connection to the
destination server is established.

If machine definitions or monitor objects have
changed or new instances have been added since
the last time the two servers communicated, the
new or updated data definitions are sent (hosts and
monitor objects are registered at the destination
server).

Collection
Server

(sending

Collection
Server

(receiving)

listen

call
(open connection)

connect

register
machine

register objects

send data

acknowledge

acknowledge

close
connection

machine registered
or updated

acknowledge

disconnect

new data?

more
machines?

Timer

yes

yes

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

machine or
objects changed

yes

[9]

Figure 23. Overview of server to server protocol

Workload Management
Using Workload Data

25. Mar. 2000 Page 87 Dipl.-Ing. Günther Strasser

Each host is examined for the availability of new data. If this is positive one data
block, with all the information about the host, is transmitted to the destination
server.

The destination server has to acknowledge each message.

After all data blocks have been sent, the connection is closed. The destination
server starts to listen for a new connection. The collection server blocks until the
next timer signal is triggered.

msg. # Description

1 handled by the network layer

2 handled by the network layer

3 MSG_TYPE_REGISTER_MACHINE
(MESSAGE_REGISTER_MACHINE)

4 MSG_TYPE_ACKNOWLEDGE
(MESSAGE_ACKNOWLEDGE)

5 MSG_TYPE_REGISTER_OBJ
(MESSAGE_REGISTER_OBJ)

6 MSG_TYPE_ACKNOWLEDGE
(MESSAGE_ACKNOWLEDGE)

7 MSG_TYPE_DATA
(MESSAGE_FULLDATA)

8 MSG_TYPE_ACKNOWLEDGE
(MESSAGE_ACKNOWLEDGE)

9 handled by the network layer

Both tasks are time triggered. A separate thread, not used for servicing incoming
requests, blocks on a timer semaphore and performs both tasks in sequential order.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 88 25. Mar. 2000

5.5.4. Collection Server to Manager

The manager makes a connection with all known collection servers in the local
LAN and requests machine load data. The figure below illustrates the protocol
between manager and one server. This process is repeated for each server.

For each known collection
server the manager checks
the availability of the server.
If the server is not available
on the network, each attempt
to connect to that server
takes a lot of time due to
time-outs in the network
layer. Therefore the manager
maintains a flag in order to
remember which server is
active. Every thirty minutes
the manager tries to connect
to an inactive server to see
whether it has meanwhile
become available. If the
server is marked "available"
the manager opens a
connection and asks whether
the server is allowed30 to
provide data. If the latter is
not allowed to send data it is
removed from the list of
available servers and not
further contacted during the
lifetime of the manager
process.

Triggered by a timer, the
manager can open a
connection to an available
server and start to request
load data about the host

machines registered at that server. The server maintains an index variable for each
connection that points to the next machine definition record to be sent to the
manager. Each time the manager requests the next data block the server sends the
data and increments the index. If no further machine is left the server sends an
"empty" block. This signals to the manager all data blocks have now been received.
In this case the manager closes the connection to that server and continues with
contacting the next server.

On receiving a data block the manager examines its knowledge of the host and
objects and the possibility of new or updated data being registered at the server. If
this is positive the manager requests the machine definition and the monitor objects
associated with that host.

After the manager has closed the connection the server disconnects and starts to
listen for a new connection. The protocol and messages are the same as described
before and are omitted at this point.

30 The server software can be configured to not respond to a manager. This feature can be used to setup
collection servers.

Manager Server

check availibility

answer request

listen
call

(open connection)

connect

request
machine load

send machine
load

machine
unknown

request
machine info

store machine
data

close
connection

disconnect

send machine
info

register
machine

no more machines
available

machine already
known

Figure 24. Overview of server to manager protocol

Workload Management
Using Workload Data

25. Mar. 2000 Page 89 Dipl.-Ing. Günther Strasser

5.5.5. Hiding The Implementation

As mentioned above, the communication infrastructure should be transparent to the
layers on top. During the work on the communication layer we learned something
which became very important during later steps:

Finding:
The best and in terms of development effort most efficient way to hide the
implementation and the existence of different release levels of distinct components
on the same or different computers is through the network protocol itself.

Our original approach was to define an OO (C++) monitor class which had a
generic interface for communication but no implementation. Each derived monitor
class was responsible for accessing its data over the network. This evolved to the
point that the monitor object is freed from the responsibility of communication. It
retrieves data and hands them over to an agent. All monitor objects run in the
context of an agent. The manager does not monitor anything directly. The
collection server component is introduced to add more flexibility to the
communication infrastructure. No direct connection between agent and manager is
needed.

The protocol is "standardized". New components may choose other
implementations as long as they adhere to the protocol. This makes changes to a
component or to one of the class interfaces simple.

5.6. Low Level Infrastructure Components

To keep the task of communicating between agent and server simple the agent is
shielded from this problem by a communication class which implements a named
pipe. It consists of a server part and an agent part. Server and agent may establish
connections and may exchange data packets of any size. This communication class
is independent from the protocol described before; it could transport any kind of
data between a server and a client process on the same or different machines in the
network.

The principle interface of named pipes are used to define the interface for the
communication classes. The techniques of named pipes is easy and straight forward
but it became apparent that several implementation options has to be provided to fit
the many different environments an agent may be used in. Following the idea of the
named pipe, the communication between the components is always based on a
direct connection (session) between two components. However, there is no session
between agent and manager. A number of different sessions between different
components are used to deliver the information to the manager. From a higher
viewpoint this kind of communication may be compared to a simple message
queuing system, but it is not intended to be one.

The following tasks must be implemented on the agent side to support efficient
operation of the agent:

1. find possible server machines which run SRVMSRVR (the collection server)

2. establish a connection

3. send and receive data packets

4. close the connection

On the server side additional support must be given:

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 90 25. Mar. 2000

1. initiate communication

2. provide several concurrent threads for communication with different agents at
the same time

3. clean up after a connection has been closed.

Three implementations are supported as part of this program: native named pipe,
TCP/IP and NETBIOS. A developer may add new implementations that support
other protocol stacks. The server must be able to support both communication
channels at the same time. The agent must choose which one should be used and the
selection provided by the operator via the command line.

The agent has, nevertheless, to be independent from the network layer it is working
on. It must be functional when at least one communication method is supported by
the underlying system. This follows that it must be functional if one method is not
supported by the system. That means that no static bindings to protocol specific
libraries are allowed for the kernel code of the communication layer.

E.g.: In the current situation a case may occur where NETBIOS is not available on
a monitored computer. Named pipes are part of the operating system and are always
available (but they must be implemented by the NOS installed on the system).

The communication objects are loaded dynamically at the request of the agent. If
the code is available and can be initialized a communication object is created on
behalf of the calling code. The initialization of the underlying code modules and the
creation of the correct communication object are done by a small generic
communication layer which has the knowledge about the available implementations
(see figure below).

After a communication object has been created by this layer the agent works
directly with the object. It invokes virtual methods of the communication object that
implement the service. Most services of a communication object are rather simple.
The implementation of the following tasks show that there are some tricky
problems to solve.

general
Agentcode

generic interface

communication object
named pipe

communication object
NETBIOS

communication object
(other)

request
communication

communication object
TCP/IP

return
instance

OS/2

NETBEUI

TCPEUI

Legend:
static bind
dynamic bind
logical interaction

Figure 25. Interface to dynamic communication layer

Workload Management
Using Workload Data

25. Mar. 2000 Page 91 Dipl.-Ing. Günther Strasser

5.6.1. Automatic Server Lookup

The most comprehensive service a communication object provides is the automatic
server lookup method. It finds available servers in the (local) network. This
method is important for an easy and unattended deployment of the agent. In
addition, determining the destination server at runtime makes the communication
more flexible and reliable. In the case of a server failing all agents who report to
that server try to find another one and continue to send data if there is an active
intermediate/collection server on the network.

The LAN Server product provides an API which returns the names of known LAN
servers in the domains currently visible. This function needs a valid logon.

The NETBIOS implementation makes use of a broadcast datagram. An agent may
send such a datagram with a certain id to all stations on the net that are listening to
datagrams. After that the agents waits for connections, while specifying a certain
time-out value. All monitor servers run a separate thread which listens to the
network and receives such datagrams. If the datagram id matches the expected
message id, the server establishes a connection with the calling agent. Following an
established connection the agent reads the name of the partner from NETBIOS and
closes down the connection, thus becoming ready for other connections.

If the agent receives a time-out signal, no other server has been listening on the net
and the communication object returns the list of responding servers to the general
agent code.

In certain situations - after the connection has been started or after it has been lost -
the agent uses the service to find available servers and to (re)establish a connection
with them. The initial purpose for this was to free an administrator from specifying
target collection server names for every agent, which would have been terrible in a
large network. An interesting side effect of that was that it led to an automatic
workload balancing for the collection server processes. This is because if a server
process is so busy that it cannot respond to further agents, each agent unable to
request the service of that server tries to find another server (or comes back after a
while).

In this case an agent has to (re)transmit all information about the resources it
controls. In turn this may lead to a situation where several collection servers hold
the information. Only one of them, however, is supplied with new data about these
resources. As we saw above, the use of timestamps ensures the correct propagation
of information.

5.6.2. Parallel Sessions On The Server

In order to be responsive to and to provide service for many agents on the network,
a server must provide parallel sessions to process requests for service. OS/2
simplifies this task because of its multi-threading capabilities. Usually other system
components on an OS/2 system support that, too, for example, all used network
components (like named pipes or the NETBIOS interface) allow several concurrent
threads to work with the network.

Nevertheless, the code of the communication objects and the layers above must be
able to support multi-threading and parallel sessions. For the communication layer
it is important to know whether it will be used on a server. It has to allocate and
initialize network resources accordingly. Buffers, which are used in data
transmission, destination and partner names and all variables in the code must be
spread over various threads.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 92 25. Mar. 2000

The processing in one thread must not have any influence over the processing of
another thread. Each message is context free - it does not depend on an
environment which has been set up by a message sent earlier. We have seen that
there is a certain sequence of messages exchanged between different components,
but the server will not be confused if intermittent messages come in due to other
agents or servers.

Workload Management
Using Workload Data

25. Mar. 2000 Page 93 Dipl.-Ing. Günther Strasser

6. The Workload Manager

The workload manager is the visible component in the application. It is
situated at a central place and collects data which are available on the
local machine and on (collection) servers in the LAN domain of the
manager.

While agents collect data and hand them on without much processing
and the server components stores data and handles the transport over the
network, most of the data processing is done by the manager. The
manager fully depends on collection servers to deliver data. It has no
direct contact with any agent in the system.

6.1. Object Discovery

In order to be able to receive data the manager has to know which servers are
available. There are three venues to examine:

1. the local machine;

The manager starts a collection server process at its own machine (together
with an agent which remotely collects data about LAN servers in the local
domain; this functionality is used for historical reasons. It enables a novice user
to start up the application and obtain a useful result. This simplicity was very
important for the spreading of the application in the IBM community.).

If the machine is configured to support NETBIOS or TCP/IP, or if the machine
is a LAN server, this local collection server may also be the target for remote
agents.

2. servers in the local domain;

The manager uses a service from the NOS access layer (SRVMIMPL.DLL) to
obtain a list of available servers. It keeps a list of known servers and tries to
connect with a collection server process on each machine. Servers are checked
for their availability before each communication attempt. This is necessary
because of the long time out when that a server is down31.

If there is no collection server active on the LAN server the manager receives
an immediate response and does not lose too much time.

3. servers from a definition file;

The administrator may supply a list of collection servers which should be
accessed by the manager. The manager reads the list and adds the machines to
its list of servers mentioned above. The same rules apply for these machines.

Based on the protocol described in chapter 5, the manager accesses each server in
turn. It asks for available data. If it detects information about a new server or sees
that object definitions have changed (using time stamps) it downloads and updates
its internal object definitions (see below).

31 Depending on the configuration of the network software, a request for machine that does not exist
can delay the calling process for several seconds before it returns an error code. When a server goes
down, the monitor submits many requests (one for each resource provided by that server). All the delays
can total minutes of waiting, and this breaks the whole monitoring system.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 94 25. Mar. 2000

Thus, the "discovery" consists of knowing the accessible collection servers and
requesting data from them.

6.2. Internal Data Management

The manager has to keep track of many different data structures and information.
This chapter describes the most important areas and discusses the problems which
had to be solved in the project work as well as solution concepts. For better
understanding, some of the improvements, added over time, are mentioned along
with these descriptions.

The chapter about monitors is of special importance to our work because the
effective implementation of this class was one of the key aspects in the area of
feasibility of an OS/2 based solution, which is one of the main questions of this
work.

6.2.1. Local Object Definition

All processing of the manager is based on information retrieved by monitor objects.
As mentioned above, a former version of the tool created and handled such objects
within the scope of the manager itself. It became apparent that this approach was
not practical and that the monitor objects could be better managed by an agent.
Nevertheless the concept left an imprint on the later versions because the basic idea
of the concept is still valid: it is the definition of an abstract object which provides
data and shields the manager from the method of obtaining data.

With the introduction of remote objects, which exist in the scope of another process
(maybe on a different machine), a subclass of the abstract monitor was created
which was a shell for the real object and simulated the behavior of its associated
monitor object. In some way it is an allomorphic object because it behaves like a
monitor object but it is not. However both objects share the same abstract parent
class.

To achieve better performance and simplify the task of network communication the
transport of data and object definitions is handled by a general component which
can be viewed as a part of the communication infrastructure. The shell objects do
not directly handle the communication with their associated monitor object. Load

Name
Index

Size
Version

Name
Index
Size

monitor object

shell object

Agent Manager
Network transport via

communication infrastructure

data buffer

logical copy of the behavior over
the network

(allomorphism)

data reference

data copy

Figure 26. Shell object and monitor object

Workload Management
Using Workload Data

25. Mar. 2000 Page 95 Dipl.-Ing. Günther Strasser

data are moved in large junks over the network and not for each individual object.
In this way network overhead is minimized.

Figure 26 shows the (simplified) concept: The agent creates and handles monitor
objects and data buffers. Objects have attributes and an index into the buffer where
they put their data. The information is moved over the network (as discussed in
chapter 5. "Communication Infrastructure").

At the manager a shell object is created from the information of the agent and it
simulates the original monitor object. The communication infrastructure provides a
copy of the data area from the agent. It accesses a buffer at the manager and for the
next higher level of the manager there is no difference between a real monitor
object and the shell object.

Ensure Object Validity

In order to ensure that the shell object "replicates" a valid object, the agent stores a
timestamp in each machine definition. It is the time of the object creation (or last
modification). All objects on a machine are created or updated at the same time.
The timestamp is also transmitted with each data block The shell object compares
the creation timestamp with the timestamp in the data buffer. If they match, the
object definition is still valid. Otherwise it notifies the manager that the shell object
for the referenced machine should be updated.

6.2.2. The DataStore

Each monitor object returns one set of data items at each update interval. The shell
object behaves in the same way. In order to cover a period of time the data samples
must be stored in a memory area. This area is called datastore. The data area and
its associated references and methods is called a monitor because this objects
controls monitoring activities and memory management for the workload data. In
the first version of the manager datastore and monitor object was the same. It
turned out to be better to distinguish logically between retrieval and storage,
because they were (re)used in different contexts.

Each datastore has an associated monitor object. This object is responsible for
feeding the datastore. The association is established when the monitor object is
created. There are two possible monitor objects:

1. A shell object, as described above. Such objects are created whenever the
manager detects and loads new data from a collection server.

2. A sum object, which is described in the next chapter. It is used to build sums of
the current contents of a number of other monitors.

6.2.2.1. Properties of the DataStore

As shown in Figure 22 a datastore consists of a
hierarchy of classes which are used to manage
memory buffers in the size needed by the application.

class DataStore

This class forms the root of all storage related
classes. It covers most of the required functionality
and implements the virtual memory management
algorithms. This includes backup and restore
functions for the on-line data.

DataStore

MONITOR_BASE

MONITOR

Figure 27. DataStore class hierarchy

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 96 25. Mar. 2000

typedef class DataStore {
 PDATAITEM pData;
 short Start;
 short SaveIndex

 static DATAITEM Placeholder;
protected:
 ULONG flFlags;
 short ValNum;
 short TypeNum;

 void shift ();
public:
 DATAITEM CurrMax;
 DATAITEM CurrMin;

 DataStore (int t, int v);
 ~DataStore (void);
 inline DATAITEM &pValues (int Type, int ValIndex) const
 { return (pData ? *(pData + ((ValIndex + Start) % ValNum) * TypeNum +
Type) :
 Placeholder) ; }
 inline DATAITEM &getCurrent (int Type) const
 { return pValues (Type, 0); }
 int getTypeNum (void) { return TypeNum; }
 int getValNum (void) { return ValNum; }
 void Reset (void);
 int isValid (void) const { return pData != NULL; }
 int testExtrema (void)
 { return ((flFlags & DATA_EXTREMA) != 0); }
 void save (int fh);
 void load (int fh, int atValNum);
 int enforceLimit (DATAITEM NewLowerLimit,
 DATAITEM NewUpperLimit);
 void enable (void);
 void disable (void);
 inline int isEnabled (void) const
 { return (pData != NULL); }
 inline ULONG getFlags (void) const { return flFlags; }
 inline void setFlags (ULONG flags, ULONG mask)
 { flFlags = (flFlags & ~mask) | (flags & mask); }
} *PDataStore;

The class DataStore handles a dynamically allocated, dynamically sized, two-
dimensional array of DATAITEMs.

Property or
Method

Description

pData pointer to the array; the pointer may be NULL if the storage is
disabled

Start index into the array that marks the current value; if an outside
object requests the array item with index zero, the object returns
the item referenced by Start; if the array has to be shifted, only this
index is decreased

SaveIndex index of the last item that has been saved to disk; all items between
this item and Start are not saved to disk and will be written when
the next backup occurs

PlaceHolder this static DATAITEM is used for operations involving the object
when no array is allocated (pData is NULL); it is always set to
VALUE_UNDEFINED

ValNum first array dimension: number of "rows" in the array

TypeNum second array dimension: number of types (= columns) in the array

Workload Management
Using Workload Data

25. Mar. 2000 Page 97 Dipl.-Ing. Günther Strasser

Property or
Method

Description

CurrMax highest value in the array

CurrMin lowest value in the array

shift () logical shift of the array; in fact, only Start is decreased and the
items which are referenced by Start are reset to "undefined"

pValues () returns a reference to the item that is defined by two indices (or to
PlaceHolder, if the object is disabled)

getCurrent () returns a reference to the item with the logical index zero and the
physical index Start

save () saves the data to disk; after the initial backup only deltas are
written to the backup file

load () loads the data from disk

enable () allocates and initializes the necessary memory for the array

disable () frees the memory and sets pData to NULL

class MONITOR_BASE

This class adds the functionality of writing log records to the workload database.

typedef class MONITOR_BASE: public DataStore {
protected:
 int openFile (int FileType) const;
public:
 char Name[20];
 STRING Key;
 time_t LastUpdate,
 PrevUpdate;

 MONITOR_BASE (char *n, int t, int v,
 MONITOR_SET &MonSet);
 virtual ~MONITOR_BASE (void);
 void Update (void);
 void ShiftData (void) { shift (); }
 virtual void InitData (void) = 0;
 virtual void NewValue (DATAITEM aVal[VALUE_ARRAY]) = 0;
 ULONG UpdateDelta (void);
 void LoadData (void);
 void SaveData (void);
 virtual void WriteLogRecord (void) { }
 virtual char const * getServerName (void) const
 { return NULL; }
 virtual char const * getClassName (void) const
 { return NULL; }
 virtual PCLASS_DEF getClass (void) const
 { return NULL; }
} *PMONITOR_BASE;

In addition to DataStore MONITOR_BASE introduces a Name and a Key.
Therefore the class can be identified and is used in collections for fast lookup. The
methods build a management layer on top of the services of DataStore.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 98 25. Mar. 2000

class MONITOR

This class adds the link to a monitor object. When new data is requested the class
can use the service of the retriever to obtain the information and put it into storage.
Note that a retriever is either a shell object or a sum object, because a monitor
always exists in the context of the manager.

typedef class MONITOR: public MONITOR_BASE {
 PRETRIEVER pObjRetriever;
public:
 MONITOR (char *n, int t, PRETRIEVER pObj, MONITOR_SET &MonSet);
 void InitData (void)
 { LoadData (); pObjRetriever -> InitData (); }
 void NewValue (DATAITEM aVal[VALUE_ARRAY])
 { pObjRetriever -> NewValue (aVal); }
 char *getName (void)
 { return pObjRetriever -> Name; }
 virtual PCLASS_DEF getClass (void) const
 { return pObjRetriever -> getClass(); }
 virtual char const * getClassName (void) const
 { return pObjRetriever -> getClass() -> Name; }
 virtual char const * getServerName (void) const
 { return pObjRetriever -> pServer -> Name; }
 virtual void WriteLogRecord (void);
} *PMONITOR;

6.2.2.2. Virtual Memory Consumption

The amount of virtual memory required by the monitor is dynamic and depends on
the number of data items provided by the monitor object and the number of
samples. This number can become quiet large and therefore some sophisticated
memory management techniques had to be developed. The following paragraphs
give a basic estimate on how much memory is needed.

Most memory is required for storing workload data samples. Each sample is a 16-
bit integer value and needs two bytes. DataStore objects come in two sizes: the
small datastores, which are used for storing the raw data32 from the monitor
objects, contain 120 sample values times the number of items (attributes) associated
with the monitor object. For a monitor factory object, which provides 10 items, this
gives 1.200 items per monitor which means 2.400 bytes for one small monitor in
this example.

The large datastores, which are used for views, contain 3076 sample values. For a
monitor factory object which provides 10 items this creates 30.760 items, meaning
61.520 bytes for one large monitor.

Note that currently the number of items per class varies from one item to 122 items.
The architectural limit is 128 items per class.

The number of monitors in the system depends on the number of monitored
resources per server and on the number of defined views (see below). With the
default views (which cover all available data items), and from our experience with
our reference environment, we estimate about 70 large monitors and about 50 small
monitors per server. Given the estimated number from above we get a memory
consumption of 70 x 61.520 + 50 x 2.400 = 4.426.400 bytes which is about 4 MB
of process memory for each server. In a small environment of 20 servers the
manager has to deal with 80 MB worth of data. The sum of process memory of all
process including the operating system and its device drivers cannot be more then

32 The term refers to the sample values as they come in from the agent.

Workload Management
Using Workload Data

25. Mar. 2000 Page 99 Dipl.-Ing. Günther Strasser

OS/2's upper limit of 512 MB. Given the numbers above and assuming a 10%
overhead for other data structures we get a theoretical limit of about 105 servers
that can be monitored from one manager. A user may significantly reduce the
memory consumption by removing those views he does not need. This number will
rise if a future version of OS/2 breaks the "512 MB" limit.

6.2.2.3. Monitor Memory Layout

It was one of the great challenges of the project to handle a large amount of data on
a PC system. We assume that one of the main reasons why most systems
management applications are only available on UNIX-like systems or mainframes
is the ability of these platforms to handle large volumes of information.

Since OS/2's version 3 the virtual memory management has become sophisticated
enough to support the algorithm described below. We assume that the reader has a
basic knowledge about virtual memory. OS/2 V3 uses paged virtual memory. The
size of one page is 4 kB.

An outside look at a monitor gives a two-dimensional array; one dimension is the
item index and the second dimension is the time index. The item index is the
reference to a certain data item within the items provided by a monitor object. The
time index is a reference to the sample taken at a certain time. The index zero has
the meaning of now. Thus, the time index for one sample is increased with each
new data update.

The main requirement to make it function is for all operations (data update,
calculations, display, etc.) to access data which fit into a few pages. Everything is
omitted that touches the complete memory area. This would load the full monitor
while other monitors would be swapped. During normal operations only the most
recent samples are used. A sample consists of a number of items. Therefore the
items of one sample must be placed on the same memory page and adjacent

page n

monitor memory area

page n+1

item 1

item 2

item 3sample. tn-1

sample tn

sample. tn+1

item 1

item 2

item 3

sample t0

current start index
(begin of virtual array)

save index

Figure 28. Memory Layout of a DataStore

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 100 25. Mar. 2000

samples should be next to one another. This brings the memory layout as shown in
Figure 28.

It shows a datastore for a monitor factory object which provides three data items
within each sample ⇒ sample size = 3. One sees two important properties of a
monitor: the start index and the save index (see below).

The start index points to the most recent sample. This index is used to translate the
time index, mentioned before, into the physical address in the array by adding the
start index to the time index. If the result is an index greater than the size of the
array, it is decreased by the array size. Before a new sample is requested from the
associated datastore, the start index is decreased (by one) and new data are written
to the sample.

Counting down just the index and working with the few referenced items saves the
datastore from moving all its elements to make room at index zero. That operation
would be expensive because it would force all memory pages of the datastore into
physical memory. Doing that for all datastores during each update cycle would lead
to endless swapping activities.

In the example above more than 680 samples fit into one memory page. If the
manager requests one sample per minute it will spend more than 11 hours writing to
that single page (11 * 60 * 3 * 2 B = 3960 B < 4096 B). The rest of the datastore
can be swapped onto disk and will not be needed for a long period of time. During
normal operation only one page per datastore is held in physical memory because
no other parts of the memory area are touched.

Other operations may access more pages of the monitor, for example, if the user
displays a view on the screen and scroll showing the data of the last two days it may
be necessary to reload swapped parts of the monitor. This is handled by the
operating system and will slightly degrade performance on the system.

6.2.3. Data Validation and Synchronization

When a new sample has to be requested the start index is decremented and the area
that is now referenced by the index, is reset to the value "not a number". If a new
sample has been received it is synchronized with the local update interval and the
result is copied into the memory area. Otherwise later processing will know that a
sample is missing. That way time synchronization and consistency over all
datastores is guaranteed. The synchronization of update intervals is done for all
values that represent deltas of a running counter between two samples. The
meaning of such data depends heavily on the length of the interval. Because
intervals in different monitoring domains and the manager may differ it is very
important to synchronize them.

Let us consider the following example: the number of bytes written to a disk is
measured. In the monitoring domain the update interval is two and at the manager
the interval is one minutes. The manager will load new data every minute but the
information at the server is updated only every two minutes. Because the
information is still valid the manager will receive the same information two times.
This is no problem for absolute values but it would lead to wrong results for a
number like "bytes written to disk". Because the manager knows the update interval
in the monitoring domain it multiplies the value with the factor (localInterval /
domaininterval) which is 0.5 in our example. Thus, a value of 100 kB written to
disk during two minutes would appear as 50 kB written in one minute in two
consecutive samples.

Workload Management
Using Workload Data

25. Mar. 2000 Page 101 Dipl.-Ing. Günther Strasser

6.2.3.1. Backup and Restore

A large monitor holds data containing more than two days worth of information.
Because all information is kept in virtual memory of the manager process, the
information is lost if the process ends. Naturally, an operator does not want to lose
the data. On the other hand, the manager may be used on machines which are not
turned on 24 hours a day. In many situations only office hours are of interest.

For this reason the application is able to store monitor data in the background.
From time to time the application starts a secondary thread which saves all monitors
on disk files, and from which they can be later reloaded. The time interval can be
adjusted. The default is 20 minutes. For each monitor a file in the load database
(see below) is created, in which the contents of the monitor are stored together with
a file ID and a time stamp.

The ID is used to check the correct version of the file format, and the time stamp is
needed to reposition the data in the monitor during reloading. Remember that the
logical position of a sample in the data area represents a certain moment in time.
Therefore it is very important to place the loaded information in the right index.
When the backup information is reloaded into a newly created monitor, the
DataStore object calculates the new position of items from the timestamp in the
backup file, and the current time (in a new monitor, the physical array index zero
corresponds to the current system time).

Two aspects had to be considered: the backup thread must not touch more pages
than absolutely necessary, and the simple structure of the backup file had to be
retained.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 102 25. Mar. 2000

In order to fulfill the first aspect, the monitor had to remember which samples had
already been written onto disk and which new samples had arrived since the last
backup. For this purpose the save index was introduced. It pointed to the sample,
where backup had started the previous time. That sample was the first which was
written onto disk during the previous backup operation. All samples within the
current sample (referenced by the start index) and the one referenced by the save
index are new and must be saved for the next time.

In the backup file the new samples replace old samples in a way that the backup file
appears as one continuous stream of samples. Figure 29 shows the structure created
by the backup thread in a backup file. New load data that arrived since the last
backup run replaces outdated information in the backup file.

The backup process writes new samples like tiles into the file. When the datastore
is asked to backup its contents it calculates the number of samples since the last
backup. Only these sample values are written to disk. Using the "data offset" that
points to the beginning of the data in the backup file the datastore calculates the
position for the new data and updates the data offset value.

It is likely that the size of the backup file, which is identical to the size of the
monitor, is not a multiple of the size of a tile. Therefore the oldest tile is partially
replaced by the newest tile. If placed at the end of the file, tiles may be split into
two parts: one filling the remainder of the file and the rest is placed at the beginning
of the data area (behind the file header).

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
���������������������������������� ��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������

File header

Data Offset Data Offset

before update after update

new samples

File ID

Time Stamp

File ID

Time Stamp

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
��
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��
��������������������������������
��������������������������������
��������������������������������
��������������������������������

older sample
tiles

tile extends over the end of
the file

the oldest tile was
partially
overlapped by the
new samples

Figure 29. Structure of Monitor Backup File

Workload Management
Using Workload Data

25. Mar. 2000 Page 103 Dipl.-Ing. Günther Strasser

Loading the backup data is very simple: two read operations are necessary. The
first starts at the data offset and reads to the end of file. The second reads from the
beginning of the data area up to the data offset - theoretically. In reality a monitor
does not read the whole file, because the gap between the current time and the time
of the last update of the backup file is left empty.

Example: the administrator stops the manager for some reason and lets it save the
data. After twenty minutes he starts it again. We assume that the update interval is
one minute. Therefore the first twenty samples in the monitor are missing and are
put initially to undefined. Starting from the 21st sample (in memory) the monitor
loads the data from the backup file (starting at the data offset noted in the header)
and omits the last twenty samples from the file (there is no space to put them into).

6.2.4. Subclasses of Class Monitor

As we saw above, a monitor is a general concept to store load data over a period of
time. The monitor application uses three specializations of this class:

1. the raw data monitor is used to store the data as they are loaded from a
collection server;

2. the view is used to store data which are prepared for displaying to the user;

3. the sum monitor is a special raw data monitor and is used to build sums
(totals) or averages (for normalized information) over other data.

6.2.4.1. Raw Data Monitor

The raw data monitor contains 120 sample33 values per item. The associated
monitor object is a shell object, as described above. This kind of monitor stores the
load data as they originate from the agents. Each monitor object at any agent has a
corresponding raw data monitor at the manager.

This class builds the basis of all other data processing at the manager. In most cases
other objects access the data from the raw data monitor. Data logging is done only
by the raw data monitor. Each raw data monitor has its own log file. Every hour a
background thread is started which calls a log method for each raw data monitor.
The monitor collects information about the number of samples received during the
previous hour and appends a log record to the corresponding log file. For more
information about data logging and the log-file format see chapter 6.6 "External
Data Management".

6.2.4.2. View and Lens

A view contains 3076 sample values per data item. The associated monitor object
uses a lens to "look" at a raw data monitor. The transformed data are stored in the
view. Thus, the user has the option of preprocessing the data shown on the screen.
Each view is coupled with a raw data monitor. A view cannot contain transformed
data from several raw data monitors34.

A lens is a simple object that processes a number of samples from a monitor and
applies some mathematical function to them. Predefined lenses are:

33 In the default configuration these are the data samples for two hours of monitoring. The logging
mechanism needs the data from the last hour. The shortest possible update interval is 30 seconds. In
this case the raw data monitor can hold one hour's worth of information. This is the reason why it has a
size of 120 samples.
34 However, a raw data monitor can be accessed (and displayed) from many views.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 104 25. Mar. 2000

! raw data data remain unchanged
! average build an average over an hour
! minimum find minimum of the last hour
! maximum find maximum of the last hour
! hide do not return the data; always returns

the constant VALUE_UNDEFINED
! average per minute average (see below)
! minimum per minute find minimum of the last hour
! maximum per minute find maximum of the last hour

The left part of Figure 25 depicts how a view access data of a raw data monitor
through the use of a lens. Each value in the view passed the calculation of the lens
object.

The difference between average (etc.) and average per minute is defined by the
way the update interval at the manager is taken into account. The meaning of many
values depends on the length of the update interval, because they are deltas between
the value of a running counter at different times, for example, the number of bytes
transferred over the network. For understanding this number it is necessary the
know the time frame of the measurement. In the case of the default update interval
of one minute there is no difference between the lenses.

Usually it is simple to think in terms of units per minute (or per second). Therefore
lenses are provided which do the calculations and which take the actual update
interval at the agent into account. Example: the current data transfer rate between a
server and its clients is given as 10 kB. If one does not know the interval for which
the number has been measured, the information is worthless. One would expect to
see x KB/min. If the update interval has been set to two minutes, the number means
10 kB in two minutes (or 5 kB/min). Therefore, if one does not use the default
update interval particularly if update intervals are different in the remote LANs, the
"per minute" lenses have to be used for views. They perform the necessary
calculations.

Views are defined dynamically by the user. View definitions are used to obtain the
information about the construction of a view.

6.2.4.3. Sum Monitor

A sum monitor is a raw data monitor. It differs from the parent class in that

! the sum monitor is associated with a group of views (based on the same view
definition) and

! its monitor object is a sum monitor object. It is used to build totals over the
values of the views.

A special monitor and a special monitor object are vital because additional logic is
needed to collect and manage groups of views. In addition, the building of totals is
not simply summing up values. Depending on the meaning of the data items a
different processing may be necessary:

! in the case of deltas where the sum retriever actually calculates sums
! in the case of absolute or normalized values where the sum retriever

calculates the average of the values

Another problem is that a view contains transformed data (see "View and Lens"
earlier). Therefore the sum monitor object must use extra information to access the
raw data which are the basis for the view. They are used for all calculations.

Workload Management
Using Workload Data

25. Mar. 2000 Page 105 Dipl.-Ing. Günther Strasser

Figure 30 shows a sum retriever object and a sum view and their relation to normal
views and raw data monitor objects. Each sum monitor is associated with a
(normal) view which holds values for display. The sum retriever access the raw data
that are the source for the views and accumulates the data. Then the sum view uses
the same set of lenses to generate the same effects for the display of the

information.

6.2.5. Machines and Roles

In order to work with the great number of monitor objects (and their views) the
access to the data must be managed for the user. For this purpose two dimensions
are used to arrange monitors:

! the machine with which the monitor is associated (the machine for which it
retrieves data)

! the role associated with the class of the monitor, for example "IBM LAN
Server, "DB2/2 (Database) Server", etc.

Both entities are determined at runtime: the monitoring application does not know
which machines and roles may appear during execution. It is able to accept new
instances of the entities.

t0

tn

t0

tn

graph 0 graph 1 graph 2 graph 3

item 0 item 1 item 2 item 3 item 4

t0

tn

t0

tn

graph 0 graph 1 graph 2 graph 3

item 0 item 1 item 2 item 3 item 4

VIEW

RAW DATA
MONITOR

SUM
RETRIEVER

(SUM) VIEW

LENSES

View Definition

collection
of views

Figure 30. Raw Data, Lenses, Views, Sum Retriever

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 106 25. Mar. 2000

Machines are defined by the network and identified by the agents. When a new
monitor object arrives it is linked to its machine. If no record for the machine exists
it is created. Machines are not registered at the manager (as an agent registers a
machine at a collection server), but created as a "side effect" of monitor object
creation.

Roles can be defined by monitor modules. They are important for the presentation
of the data because views are grouped together according to roles. They are used to
organize views and sums of monitor objects (as illustrated below). Examples of
roles are "IBM LAN Server", "DB2/2 Server", "OS/2 PC", etc. Each physical
machine can take on one or more roles. Each monitor factory object is associated
with exactly one role. Later we will see how roles are used to handle monitor
objects. Figure 31 shows the dependencies between monitor objects, monitor
classes, machine and role. A monitor object is an instance of a monitor class that
monitors a resource at a particular machine. The relation between monitor object
and machine is established when the monitor object is created. The monitor class is
statically associated with a role. This relation cannot change. Via its class a monitor
object is also associated with a role (the role of its monitor class). Roles have their
own icons in the graphical representation to distinguish them. The monitor selection
window in appendix G contains an example for the use of different roles.

6.3. Multithreading and Background-processing

The monitoring front end application makes much use of OS/2's multithreading
capabilities. On one hand this is necessary to provide a responsive user interface.
On the other hand the program can make better use of computer resources by
processing data in the background (invisible to the user) while the user works with
interactive applications in the foreground.

The following table describes the threads and processes used by the manager:

Task Type Activation Description

initialization,
message queue
processor,
postprocessing

thread
(ID 1)

permanent The thread is used to initiate the
application and handle all messages for
the window system; this thread must not
be blocked for more than one tenth of a
second (see notes below);
in addition, the thread uses PM timer
functions for controlling background
functions.

Machine Role

Monitor Class

Monitor Object

is associated to

is of class

monitor data of

Figure 31. Relation between machine and role

Workload Management
Using Workload Data

25. Mar. 2000 Page 107 Dipl.-Ing. Günther Strasser

Task Type Activation Description

background queue thread permanent Regular background tasks like data
update or saving of monitor data are
done within this background thread;
thread 1 pushes requests onto a queue
handled by the thread.

data logging thread on demand
every hour

The thread is created if and whenever
log records are written into the monitor
database.

database clean up thread once Half an hour after the application has
started it carries out database clean up.
It checks the database directory for old
or unreferenced entries and removes
them together with associated files.

database migration thread once If the application detects changes in the
structure of log records or in the version
of database files it initiates the thread
which performs automatic migration of
database records (see below).

local collection
server

process once For communication with the local agent
a collection server is started;
remote agents may send their data to this
instance of the collection server.

Local Agent process once In order to stay consistent with earlier
versions of the application, an instance
of the agent is started which monitors
LAN server information about server in
the local domain remotely.

Note:

A. The thread with ID 1 is created when OS/2 starts a process. For OS/2 this thread
has several special meanings:

! within its context DLLs are loaded and initialized
! the data segments of the executable are initialized
! signals are handled by thread 1
! when the thread terminates the process is terminated even if other threads

are active
! within its context process clean-up is done

Usually this thread is used for the user interface (message handling), although this
is just a common guideline and not an OS/2 limitation.

B. All threads execute with the default priority (normal).

6.4. Alerts and Threshold Values

Soon after an early version became operational, it was obvious that the application
must be able to react to certain conditions automatically. This would then free the
operator from constantly having to check load data. Therefore alerts were
introduced.

In general, an alert is the definition of a condition that is constantly tested by the
system. If the condition comes into being an action is triggered. The systems
continues to test the condition. If the condition becomes 'false' again it is assumed
that the alert has ended and a second action is triggered.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 108 25. Mar. 2000

Note:
The introduction of two separate actions, one for the beginning of an alert and one
for the ending, allows the operator to "put a certain condition into parentheses".
This opens the door for event automation and the control of remote systems from
the central monitoring site.

6.4.1. General

The following terms can be distinguished:

The alert class is the technical implementation of an alert. It is C++ code that
handles all essential aspects of an alert.

An alert object is an instance of an alert class. The object is used to check for alert
conditions. It has a reference to a monitor object which is checked by the alert
object.

An alert definition refers to the data which are needed to create an instance of an
alert object. E.g. it contains the reference to the data item and the threshold values
that should be tested. The user can add, remove or edit alert definitions.

For each monitor object in the system a number of suitable alert objects are created.
An alert object is suitable if it is defined for the same monitor factory object as the
monitor object. If several alert definitions exist for this class several alert objects
may be generated.

From the application's viewpoint alerts are objects which are derived from the class
ALERT_DEF. New alert classes, which inherit from ALERT_DEF, can be defined
and used in the system. At present, this is not supported in the user interface.
Therefore only one alert class can be used by the enduser: ALERT_DEF_EXEC.

Appendix G presents some examples of the GUI components for specification of
alerts.

6.4.2. Conditions

The alert class ALERT_DEF_EXEC can react to two types of conditions:

1. The current value of the referenced monitor object exceeds a threshold value.

Two threshold values can be defined and the user may select whether the alert
should be triggered depending on if the actual value is greater than the upper
limit and/or lower than the lower limit. It is possible to specify just an upper
limit or lower limit or both. In addition condition testing can be limited to
certain machines and certain resources.

Many alerts can be defined for the same attribute. The user can select different
conditions in each alert. This offers great flexibility in controlling the whole
alerting mechanism.

2. The last five values of the monitor object were undefined; thus it is assumed
that the resource is no longer available or the connection to the monitor object
at the agent is lost.

Workload Management
Using Workload Data

25. Mar. 2000 Page 109 Dipl.-Ing. Günther Strasser

Two separate operations can be defined which are triggered when the condition is
recognized and respectively when the condition ends.

6.4.3. Reaction Operation

The operation is a text string and the alert class is able to perform a combination of
the following actions with the text:

1. Display the text as a message window and wait for a user response.

2. Write the text into the log-file - together with a time stamp for later analysis.

3. Execute the text as a command at operating system level. This is the most
important action. The most obvious usage here is the notification of an
administrator via a FFST35, SNMP or NetView alert, an e-mail or a pager.

Actions are processed in a separate thread (thus they will not interrupt other
processing) but they are handled sequentially. Until one action is finished, no other
action can be performed. Triggered actions must wait in a queue until they can be
processed.

6.4.4. Alert Variables

In order to support event automation and to create informative messages and event
logs, the application provides variables that can be used in the action text. Adhering
to OS/2 conventions, variable names are written within a pair of percent signs (%).
The following variables are available for action text assembly:

Name Meaning

%SERVER% the name of the server for which the action is triggered

%RESOURCE% the name of the resource for which the action is triggered; for
monitor objects of global classes, this name is identical to the
server name

%VALUE% the current value which triggered the action

%ALERTNAME% the name of the alert definition

%ALERTTYPE% the type of the alert; this is always "EXEC"

%CLASS% the name of the alert definition class(= the class of the monitor
object)

At the time the action is triggered variable names are replaced with the actual
values, then the defined actions are performed.

6.5. Dealing with Monitor Modules

In the same way that the agent dynamically loads monitor modules with the code to
retrieve workload data, the manager loads modules with class definitions. Both
kinds of modules come in the form of DLLs and are generated from the same
source code. The definitions for the manager provide information about the nature
of the data and the way they should be handled. Figure 27 presents the major
elements and their relation. Appendix D contains the definition and explanation of
important classes and class properties that are used in this context. The attribute
definition (FIELD_DEF) and monitor class definition (CLASS_DEF) are essential
to interpret the workload data received from the agents.

35 First Failure Support Technology

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 110 25. Mar. 2000

The structure of the module is similar to the monitor module because it is intended
that both types of loadable modules be generated from the same source code. The
important differences are:

! The module may provide role definitions. A role definition links a name, a key
and two icons together (these items form the "role"). One icon represents global
server attributes (like "available process memory") and the other is used to
represent individual server instances where specific resources can be provided
to the user (like information about "logical disks"). Given that server and
resources with that role are registered at the manager for each role one global
icon and zero or more server instance icons are displayed. The user can open a
menu at each icon to open a window with specific workload data.

! The module provides classes like a monitor module but the class lacks the
retriever code. Thus, it does not have to be linked to any system or server
application specific code that may not be available on the manager.

! For each class default view definitions must be provided. When the class is
loaded for the first time these definitions are added to the existing view
definitions.

At the manager these modules and objects are mainly used to control the graphical
presentation and the numerical processing of the workload information.

6.6. External Data Management

Besides the graphical representation of the incoming data, the other main task of the
manager application is the processing and storing of the data for later use. For this
purpose a (kind of a) database is created and maintained which is optimized for the

list of classes

roles

role "DB2/2"

role "LAN srv."

role OS/2 srv.

class (CLASS_DEF)

name "Connection"

role ref.

field ref.

fields (FIELD_DEF)

field 1
name: "Connections"
type: absolute
index: 0

field 2
name: "kB sent to server"
type: delta
index: 1

field 3
....

Figure 32. Data definition of monitor modules at the manager

Workload Management
Using Workload Data

25. Mar. 2000 Page 111 Dipl.-Ing. Günther Strasser

stream of time-stamped load data. This chapter describes the data that are written
onto disk and their preprocessing before being permanently stored.

The database is transparent to the user. The different parts of the application access
and maintain the same data while the user does not have to bother about the
placement and the structure of the information. For advanced users there is a way to
define/change the placement of the data: to possibly move them to a shared disk
drive in order to let several users access the data.

6.6.1. The Load Database

The database is a very simple means of storing several kinds of information about
monitor objects. Basically it consists of an index and a large number of sequential
data files (data streams). For each index entry a number of related files may exist.
In the current implementation two types of files may be generated: a (log) data
stream, which contains a sequence of log records, and monitor backup files, which
were discussed in chapter 6.2.3.1 "Backup and Restore".

This structure is selected because it is very suitable for the requirements of the tool.
In general there are two types of operations: the manager adds records to the
database. The information is sequential by their nature because all records are
ordered by their timestamp. The on-line part appends records at the end of the
logical sequence of existing records. Sequential keys, especially timestamps, can be
a problem for relational database as they target at random access to records.
Appending a record at the end of a sequential file can be done much faster and
more efficient than with a relational database. The second major access type is
sequential read of all records of one data stream during analysis. Again it is much
faster to read through all records of a sequential file than to select records in an
index, build a result set and read one records after the other from a database.

There is no need for random access to a specific record in a data stream. Therefore
the cost for a sophisticated database system can easily be omitted.

Another important consideration that is reflected in the structure of the database:
the compression of the information to be able to store long-term information for
many servers with a number of different applications on PC disks. To better
understand the requirement let us consider the attempt to log similar long-term
information with a tool like the NT Performance Monitor. We use this monitoring
tool because there is no comparable tool for OS/2 and NT is more similar to OS/2
than UNIX. With logging of all attributes enabled on a single machine one sample
is about 35 kB in size. This number may vary as it depends on the number of actual
resources like logical disks or network adapters at the monitored machine. With a
sample interval of one minute and a logging period of 365 days we get the total
logfile size for one machine of

35 kB * 60 * 24 * 365 = 18.396.000 kB or 18,4 GB

This number includes only the information about the operating system of one
machine. Just that would be too much for PCs or workstations. Assuming the
requirement to monitor 50 servers with two server applications36 each and assuming
that applications add only 40% of the amount of data compared to the operating
system we would come to a figure of about 1.655.640.000 kB or 1.655,6 GB.
Neither would somebody be willing to spend that much space for monitoring nor
would it be possible to perform analyzes. That example illustrates the need to
transform the data somehow and to create algorithms to handle long-term data.

36 This is theoretical because this tool is not able to include other workload data.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 112 25. Mar. 2000

6.6.2. Database Index

The index is a collection of records which establish a relation between monitors and
a unique identification number. The monitors are referenced by their key. The name
of their server, the resource name and the class key are stored as text in each record.

When the application has been started, the index is completely loaded into memory.
All operations are done within the in-memory collection. When an application part
requests an entry for a monitor not yet registered, a new entry is created
automatically and the collection is marked as changed. At certain points in time the
collection is written back onto disk. Index entries are requested (indirectly37) by
several parts of the application whenever it tries to access stored information for a
monitor object.

When a new operation begins, which may cause changes to the collection, the
application checks whether the disk image of the index has changed. If not, the in-
memory image can be used. Otherwise, the existing collection is released and the
index is re-read from disk. This enables several processes to work with the same
database38.

The above steps occur whenever index records are "deleted". In fact, such records
are marked as deleted. When the index collection is written onto disk these records
are omitted. Thus they disappear from the index. The database clean-up routine is
able to detect and remove unused index records (see below).

6.6.3. Log-records

Every hour the application generates log entries in the database. Each record
represents one hour of detailed load data. Due to the size and the volumes of
detailed load data it is not possible to store all the information for a longer time
period. The data has to be "compacted" in order to be able to provide material for
long-term analysis.

When the application writes log records onto disk the following format is used for
each record:

Timestamp 4-byte timestamp
of available items

Datagroup 1 sum of available items
minimum
maximum

standard deviation

....

Datagroup n sum of available items
minimum
maximum

standard deviation

For each data item (attribute) of a monitor factory object a data-group is put into
the record. Within one sequential datafile (a data stream) all records are of the
same size while the size of records vary between different streams because the
number of attributes can be different among different monitor classes. New records
are appended at the end of the data stream. A data stream grows continually. The

37 The manipulation of the index is transparent to the rest of the application.
38 Of course this is an optimistic approach works all the time. If many different processes change the
index at the same time some index entries may be lost.

Workload Management
Using Workload Data

25. Mar. 2000 Page 113 Dipl.-Ing. Günther Strasser

user has to use the database compacting function of the data analysis tool to remove
out-dated records.

If no (or too few) data samples have been collected during the last hour, no log
record is written for the corresponding monitor. Later the analyzer detects missing
records and uses that information to calculate resource and server availibility.

6.6.4. Record Description

Because of the structure of the log record, with its data groups, the size of the
record depends on the class definition (the monitor factory object defines the
number of data-items provided by the class). These definitions may change over
time (as the developer adds new or removes out-dated items). Therefore the size of
the records - as they are used in the data streams - has to be recorded and is used
when the data are accessed. An extra file contains a table holding the number of
data items for each class.

6.6.5. Automatic Migration

While the index is loaded the database access layer checks the following things and
automatically corrects/adapts all files:

6.6.5.1. Check Index File ID

The first bytes of the index file resemble a database ID. The ID is used to check
versions and structure of the current database. If the ID does not match the
expected ID, which is defined by the database code, the ID is used to lookup an
auto migration function in a table and this function is executed in a background
thread. A progress indicator is displayed while the function is active.

Whenever the structure of one of the files is changed a migration function has to be
supplied. A function has to transform the data from the last release to its current
release. Over the course of migration several functions may be used in turn.

Example:
Assume the following table of auto migration functions:
Function migrates from migrates to
FUNC A Rel 1.0 Rel 2.0
FUNC B Rel 2.0 Rel 2.2
FUNC C Rel 2.2 Rel 3.1
FUNC D Rel 3.1 Rel 4.0

Note that not every release may change the format of the data. Therefore some
releases may not be covered by the table.

If the application comes across data from Rel 2.0 it will first call FUNC B. To the
database code it is transparent what the function does. It does not know which
version id the database migrates to. After the function is completed the database
manager restarts its processing. Now it detects that the database has the format of
release 2.2. and will call function FUNC C. The data still do not have the correct
format and therefore it will call FUNC D. This function changes the data to the
latest format and the application can continue to load the index.

The big advantage of this method is that it is much easier to upgrade the database to
a new format. The migration function only has to reflect the changes of one release.
By adding it to the table the rest of the migration processing is done automatically.

Workload Management
Using Workload Data

Dipl.-Ing. Günther Strasser Page 114 25. Mar. 2000

6.6.5.2. Check Record Description

As mentioned above, the size of a log record depends on the number of data items
provided by the monitor factory object. One major requirement is an open
interface for third parties. The idea is that the provider of a server application
provides a suitable monitor module together with the server code. Because of the
long-term nature of the application the tool must be able to handle future changes in
the application. Changes in the monitored application most likely will be reflected
in the number of attributes that can be monitored. Consequently, when a monitor
module is loaded the tool checks the number of attributes and compares this with
the record definition in the database.

If the number of data items is changed by the provider of the class, the database has
to be altered to reflect this change. If the monitor application finds one or more
classes with different descriptions, all log files (data streams) are processed and the
size of each log record is adjusted to the new size. If the new number of attributes is
greater than the current number, new data groups are created with undefined values
("not a number").

It is not supported to remove attributes because that would destroy valuable
information. New code may set such attributes to "not a number" or may reuse it for
a similar attribute. To be save the case that the new size is smaller than the current
size is also handled: the last n data groups of each record are removed so that all
records fit to the new size. This rule is not fully accurate because the database does
not know which data items have been removed from the class.

As a rule of thumb a developer should not remove a data item from the class
definition because this may corrupt the meaning of all old log records. In most
cases it is better to keep the definition and just drop the code querying and filling
the data item.

6.6.6. Database Index Cleanup Routine

Over time many index entries are created, and to avoid unrestricted growing of the
index and the whole database, an automatic clean-up routine is necessary. It detects
unused index entries and out-dated data files in the database and removes them.

An unused index entry is an entry which does not have reference to existing files in
the database. An out-dated data file is not touched for a certain amount of time. The
allowed time period is 365 days for data streams (log records), and three days for
monitor backup files. After this time it is very likely that the corresponding system
resource no longer exists and therefore no new data are received by the monitor
application. For some time the available log data may be used for analysis but after
one year39 the data are useless and will be removed.

The cleanup routine is begun in the background at regular intervals and runs as a
separate process, invisible to other activities on the machine. This is totally
invisible to the user of the application. The index cleanup is only scheduled by the
manager. This function does not perform data cleanup as described in chapter 7.

39 The current study brought evidence that one year is already too long. The data become outdated very
quickly.

Workload Management
Case Studies

25. Mar. 2000 Page 115 Dipl.-Ing. Günther Strasser

Making Use Of The Workload Monitor
Information

7. Working with the Log Database

Chapter 6.6 discussed how the manager generates log records. This chapter
describes the structure of the workload database and the algorithms and programs
that were developed to get information out of the data. Special focus was on the
problem of data consistency and the volume of data that accumulated over time.

7.1. Data Structure and Access

An important task of the manager component is to maintain a load database and add
log records to it. The structure of the database is very simple:

! An index file contains the keys and references for all known resource proxies.
For each resource that was detected by an agent and for which the database still
contains information one index entry exists. The index is used to navigate
through the database and to find log and backup data for a resource's datastore
object.

! The structure of each monitoring class is described. This information is used to
upgrade the database when the structure of classes changes.

! For each resource proxy, a number of data files can exist. In the current
implementation, up to two files may exist: a sequential file with the log
information and a (structured) file40 with a backup of the on-line data.

The manager will only write a log record when at least half of the possible sample
values are valid. Valid records contain data values other than "not a number".
Because the sample values stored in a datastore object are reset in the sampling
interval independent from actual arrival of new data the monitor makes sure that
records are in a well defined state (see "Data Validation and Synchronization").

40 The information in this file is used to restore the contents of the views in cases where the manager
has to be restarted (see "Backup and Recovery").

logrecord

������������
������������
������������
������������

timestamp

����������
����������
����������
����������

number of samples

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

1
st
 attribute

sum of values

minimum

maximum

standard deviation
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

2
nd

 attribute

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

3
rd

 attribute

Figure 33. Structure of a log record

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 116 25. Mar. 2000

Resource proxies that have not receive new data for over half an hour will not
generate log records.

The structure of the logfile is also very simple (see chapter 6.6). It is a sequential
set of log records. Figure 33 describes the structure of a log record. Each record
consists of the timestamp of creation, the number of sample values that have
contributed to the log and a set of log record items (one for each resource attribute
of the associated resource proxy). The log record item contains

! the sum of all sample values; the average can be calculated when needed

! the lowest sample value (minimum)

! the largest sample value (maximum)

! the standard deviation of the sample values

A database layer handles all requests to add or read database entries. This layer
implements some additional functions:

! detection and omission of invalid/destroyed log records

Due to different problems in the course of data retrieval, transportation, log
processing and database upgrades/manipulations it is possible for a log record
to be destroyed or the data of the record become invalid. The log record is
eliminated in cases where the number of contributing samples is invalid or
where the time stamp does not fit into the sequential flow of the other records
(e.g. is older than the last record before). The "number of users" stream is used
as a reference to check the number of expected samples. In general the number
of samples cannot be higher than 120 because 30 seconds is the lowest
supported sample interval resulting in a maximum of 120 samples per hour.
Records representing more than 120 samples are invalid. In addition a record in
a data stream is compared to a record from the "number of users" stream from
the same sample interval. It must have the sample number of samples (or less if
there has been an outage at the monitored resource).
Using overall averages and thresholds, "out-of-bound" records are also
removed. This is essential in enabling the calculation of meaningful statistical
reports later on.

! omission of out-dated log records

Because of the dynamics in host configurations and limitations in the amount of
data that can be handled all records older than one year are ignored. Practice
showed that older records are seldom of interest (because important parameters
change meanwhile).

The database layer hides this processing. During read operations invalid records are
omitted but not removed from the database. A separate maintenance process can be
scheduled that takes advantage of the functionality of the database layer (omission
of invalid records) and writes back the corrected data. If a datafile is empty it is
removed from disk and the index file.

Whenever the database is opened by a process the database code first checks the
version of the database and then migrates the database automatically. For more
details on automatic database migration see chapter 6.6.5 "Automatic Migration".

The low level processing of each data stream is already done in memory. When a
data stream is opened for reading the database code reads the complete file and
creates the structure for the file in memory. It replaces missing records with special
records containing "not a number" values. This structure makes it possible to access

Workload Management
Case Studies

25. Mar. 2000 Page 117 Dipl.-Ing. Günther Strasser

the data of each hour of the year directly by a simple index calculation. During the
read from files some checks like timestamp matches are performed. Based on the
memory structure out-of-bound calculations are done. This results in a "clean"
memory structure which then represents the data stream. All following data access
operations are done in memory and are very fast. This contributes to the high
performance of all processing functions. The data cleanup function writes back
the "cleaned" file to disk. That way old or destroyed records are removed from the
file.

7.2. Statistical Processing

The workload monitoring tool offers a user-friendly way to work with the workload
database. This chapter briefly covers the elements and windows of the tool. A
navigation tool is provided to make use of the objects in the database. Standard
reports can be generated. They are presented in a graphical way with a number of
customization options. The following pages briefly describe this tool and what can
be performed by an end-user.

With the analysis tool it is possible to work with parts or the whole of the log
database. After commencement it presents an "object tree" of available information
and a number of available tools in a tool bar at the right side of the window to the
user (see Figure 34). The user applies a tool by taking an object from the tree and

dropping it on a tool icon. The user can chose to select a single resource (the leaves
in the tree) or a group of resources by selecting a node up to the root node. In this
case all resources depending on the selected nodes are processed together. The
graphics window tool will only accept groups up to monitor class level because up
to that level all objects share the same class attributes, while it would not make
sense to merge resources from different classes into a condensed view.

Figure 34. Main menu of the analysis tool

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 118 25. Mar. 2000

The first level of nodes in the tree are the workload classes. Data exist for these in
the database. The second level consists of the names of the host machines. The last
level includes the names of the devices or resources from which some information
has been monitored and recorded.

The user can perform database maintenance activities. It is possible to remove data
for a certain resource proxy by dragging a node to the shredder icon (which is
provided by OS/2). The scissors icon can be used to remove all out-dated or invalid
records from the database (data cleanup function).

Another helpful function of the analysis tool is the export function. "Raw" log
records, or the result of the statistical calculations may be exported to an ASCII file
in a character delimited format (CSV), that can be read by a spreadsheet program in

order to do further work.

The most important function is the calculation and display of statistical reports.
This is done by dragging one node of the object tree to the icon labeled "graphics
window".

The essential data is read from the log database and the report window appears for
the requested object (or group of objects). Four report pages are available within
the window. The first report is the "week report" (see Figure 4).

All views have in common that the granularity of the picture is one hour. This is the
granularity of the information in the workload database. On element in the picture
(cell) represents a number of samples that have been measured during that hour.

The week report reveals a compressed view of the data. Each hour of the week is
represented by one column. Within one data stream all records from the database
are mapped to the corresponding hour (as symbolized in Figure 35). Mapping
means that an average (for sample sums respectively the normalized sample value
in case of absolute or normalized resource attributes) is calculated.

If a group of resources (members of the same branch in the object tree) are
processed together - depending on the type of data - the tool builds a sum (delta

6.4.97, 00h-01h

6.4.97, 01h-02h

6.4.97, 02h-03h

13.4.97, 00h-01h

13.4.97, 01h-02h

13.4.97, 02h-03h

00h-01h

01h-02h

02h-03h

Figure 35. Mapping of daily workload records into a virtual week

Workload Management
Case Studies

25. Mar. 2000 Page 119 Dipl.-Ing. Günther Strasser

values like "kB sent to server") or an average (absolute values like "currently
logged on user" or normalized values like "% CPU used") over the log records
from different resources. For normalized information there is little point in building
a sum. In this case the average is calculated.

The report shows the average value, the average minimum and the average
maximum within each hour. If information is available, it also shows the lowest
potential minimum (minimum of all minima) and the highest potential maximum
(maximum of all maxima). If a linear trend is significant in a certain hour it is
displayed as a line with a legend text. Normally the user can see whether there is an
upward or downward trend, or whether the resource attribute has little changed over
the last months. Figure 4 depicts an example of a graphics window and its elements.

A legend window shows the meaning of the different lines and areas found there. In
the sample pictures the legend is placed at the left top of the reports. The user can
move the legend window with the mouse, if it is hiding an interesting area of the
report. A control window can be used to work with the functions of the report

window.

The control window is used to select from the display options for the window. It
displays the name of the server, the resource and the class for the one or more
objects that are shown. The "Server" or "Resource" textbox contain the term
"Total" when a group of resources has been processed and the graph displays the
results of that operation. Under the entry "Dataitem" the user may select which
attribute he wants to see. The window presents the list of available attributes of the

Figure 36. The week report

legend window

control window

extremes

average line

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 120 25. Mar. 2000

selected class. The control window "Scale" can be used to select the screen space
that is used for each hour in the graphic. The last control element is the list of
available views. Each view represents a different statistical evaluation of the
information. They are explained later in this chapter. The user may switch to one of
the views by selecting the corresponding symbol from the icon bar at the bottom of
the control window. With the horizontal scrollbar below the graphics area the user
is able to move the visible viewport to any area of the report. The vertical viewport
(representing the visible value range) of the display can be adjusted, too, in order to
magnify a certain part of the picture.

This "week report" is a condensed summary that has proved to give the most useful
view. It presents a powerful means of understanding the load put on a system
quickly. Without the techniques for long-term monitoring described in this paper it
would be very hard and expensive to generate reports like this.

The second report is the "year details report" (see Figure 37). It shows all log
records of the last year as they are stored in the database. For delta (accumulated)
data, only the sum of the sample values is displayed (for example, the number of
new print jobs during that hour). For absolute values the average, minimum and
maximum are shown (for example, the number of active users on the system) if a

group of resources (for example, all servers of a domain) are processed together.

The most obvious question an analyst asks is whether there is an association
between the number of users and a resource attribute under consideration.

Figure 37. The year details report

Workload Management
Case Studies

25. Mar. 2000 Page 121 Dipl.-Ing. Günther Strasser

Therefore the third report shows the relation between the number of users logged
onto the system and the attribute of the resource (see Figure 6).

The picture contains a scatter graph. The horizontal axes represents the number of
users that were logged on to the system at the time the log record was created. The
vertical axes represents the value range of the attribute under consideration. Now
the tool draws a marker symbol (♦) for each record in the log file. The x position of
the marker is calculated from the number of users at the time the sample for the

resource has been taken. The y position is taken from the resource attribute.

A scatter graph is a common mean to display the relation between two data series
that are connected by a common attribute, a matching timestamp in this case. The
tool for detecting associations between resource attributes described in chapter 7.3
makes also heavy use of scatter graphs.

Figure 38. Association between an attribute and the number of users

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 122 25. Mar. 2000

The last report shows the availability of the resource as can be calculated from the
existing and missing samples in the log records. This window uses the number of
samples in the "user log file" as a reference and compares that to the number of
samples that is stored in log record of the resource under consideration. If the
resource was available at a 100% there should be the same number of samples that
contributed to the log record. For each log record in the file this comparison is
performed for just one hour (one log record), a period of one day (24 log records)
and a period of one week (24 * 7 = 168 log records). The result is expressed as a
percentage of availability and is drawn in the window area (see Figure 39).

For this report it is assumed that monitoring has been enabled without interruption.
If there are samples missing in the database this can have several reasons

! the resource has not existed (for example the host machine has been turned
off)

! the resource has been intentionally out of service (for example, an
administrator stopped sharing of a device)

! the resource has been malfunctioning (for example, memory shortage lead to
an unrecoverable loss of connections)

! the network somewhere on the way between agent and manager has been
interrupted; in this case it is very likely that no other (network related)
services worked

In general the agent has the same "customer view" as any other user of a service. If
the agent cannot access a service nobody else can. Therefore the information in the
database gives a very good picture of the availability of a resource or a server
machine.

Figure 39. Availability report

Workload Management
Case Studies

25. Mar. 2000 Page 123 Dipl.-Ing. Günther Strasser

7.3. Automatic Detection of Associations

An interesting followon work on monitoring and analyzing load data, which was
perhaps the most difficult and challenging, was the automatic detection and
presentation of possible associations between available resource attributes. A
correlation describes the strength of an association between variables. An
association between variables means that the value of one variable can be predicted,
to some extend, by the value of the other. At the beginning of the project work it
was one of our fundamental assumptions that such dependencies exist and that it
should be possible to detect them after the monitoring tool has collected enough
data and put them into a database. This chapter describes the algorithm that was
developed for that purpose.

7.3.1. Problem Description

One important idea behind the work has been to find dependencies between
different resource attributes to be able to give clues to the nature of the system.
From that some information should be derived that could be used as input for a
model in a specific type of server environment.
Dependencies would be expressed as "good"
associations between a number of workload data
series as they are stored in the database. An
association describes the projection of one or more
(independent) source variables onto a (dependent)
result variable for all possible value sets able to be
taken. The correlation is calculated with the
assumption that both variables are stochastic. Let us
consider the following ideal example:

Let x be the source variable; the value set is {1, 2, 3}.

Let y be the result variable. Let us assume that there
is a direct dependency of y in the form of y = x2 + 3.
x and y are resource attributes for which information
is stored in the database. After a full monitoring
period we obtain a table with up to 8.760 records like in Figure 40. Sample values
from different resource attributes that are connected to the same time (index) form a
record. Note, that the database contains time stamps which are mapped to an index
when data are loaded into memory.

The question is whether an association between the two variables exist. A common
method to test for an assosiation is the use of linear correlation and regression. We
were looking for a procedure that could detect non-linear assosiations as well and
that would be fast enough to do the calculations on a standard PC. When designing
a suitable procedure we had the following goals in mind:

! design an algorithm that can detect any reasonable association, independent of
assumptions about a model function (for example, linear association)

! the algorithm should be controllable by use of parameters and rules; it should be
adjustable from the outside, possibly via the GUI

! it should be able to process the complete database associated with a case study
within reasonable time

! it should be efficient and fast enough to execute on the monitor front end (an
OS/2 based PC)

time
(index)

x y

0 1 4
1 2 7
2 3 12
3 1 4
4 2 7
5 3 12
6 1 4
...

8759 2 7

Figure 40. Selection of two
resource attributes from the
database

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 124 25. Mar. 2000

! it should be possible to generalize the algorithms to extend their application to
more than two variables

Without any preassumptions about the data the program should take any
combination of attributes and test them for an association. Three factors influence
the overall complexity of that task:

! the large number of attributes as the number of tests increase with a power
of the number of attributes

! the number of model functions that could be the base (hypothesis) of each
test

! the large number of data samples that has to be processed for each attribute

In order to reach these goals and to address the three compexity factors we
developed an algorithm that is based on statistical approaches that go beyond the
common linear regression calculation. Usually to find an association an analyst
selects a "model" to test the association. Most often a linear model in the form "y =
a * x + b" is used (linear regression) but other models can be used as well [6]. Then
the parameter in the model (like a and b in the linear model) are calculated in a way
that the sum of the squares of the distance between actual data points and the model
function is minimized. Than in the case of linear regression the correlation
coefficient r can be calculated. This coefficient is a number between plus one and
minus one. If the absolute value of r is one this means an exact match between data
points and model function and zero means no association. For non-linear data
samples a transformation function can be applied to the data that will allow the use
of linear regression on the transformed data. The correlation coefficient is invariant
against any transformation of the data.

The problem here is that we have a great number of data series to compare and we
do not know which model function to use. Existing techniques for automated
detection use a list of predefined model functions and apply each of them to the
problem. The one with the best correlation coefficient (or equivalent measure) is
taken as the most valid model. Such approaches not only test for an association but
identify the model function as well. But this is extremely expensive in terms of
processing power and elapsed time. It would not be possible to apply this in our
situation.

To address the problems mentioned before the program

! eliminates useless attributes by a number of criteria as soon as possible to
reduce the number of attributes for the later processing (the number N of all
available attributes is reduced to n the number of attributes with meaningful
information, e.g. non constant values)

! eliminates useless attribute pairs as soon as possible (a pair may contain too few
valid data pairs)

! further compresses the data to reduce and simplify the number of math
operations

! does not rely on any model function

! is devided into several steps that can act in parallel in a pipeline mode

Another example for association and association testing without a model function
like the "Rank association coefficient" see [35].

Workload Management
Case Studies

25. Mar. 2000 Page 125 Dipl.-Ing. Günther Strasser

Accumulated Information

Sometimes the accumulation (sum) of several resource attributes is an important
information in itself. For example, each server has an attribute "number of users
currently logged on". This attribute will be always zero except if the server is
configured as a domain controller or backup domain controller. The number of
users who are logged on to the domain and who may use services from any server
in their domain, is the sum of the attribute values from all servers. In most cases the
accumulation of resource attributes is of interest for the human analyst in order to
obtain an overview (for example, the sum of packets on the network or the total of
accesses on a server disks).

Therefore for each class of resource attributes accumulated information over all
servers is generated by the algorithm and the summary items are processed like
“normal” resource attributes.

7.3.2. Data Preprocessing

What we get as a result of the logging facility of the workload front-end is a set of
resource attributes. Each resource attribute contains load (or status) information
about a certain resource attribute on a certain server for each hour of the last year
(or less if the resource or the monitor has not been available for some time). Each
record pi in the resource attribute is associated with a timestamp ti. i is the (time)
index which references an hour of the last year. Each timestamp ti can be mapped to
an index i. If the timestamp is outside the range (older than one year) the sample
value is ignored. Thus we know when the data have been sampled. We may define
the data series of one resource attribute as

X := { pi / 0 ! i < 8760 } and ti is the timestamp associated with pi

Note that a resource attribute could be empty. For better understanding of the
problem we illustrate the number of times an association calculation has to be
performed. In the following paragraphs the selection of a number of resource
attributes from the database is called a tuple. In our work we use a tuple size of
two. That means that for each tuple two resource attributes are selected. The
algorithms could be generalized to any tuple size.

First all available attributes have to
be preprocessed to generate a useful
basis for the algorithm. All
attributes are loaded from database
(which includes some error handling
and out-of-bound omission). All
records are adjusted in a way that
their time stamps matches and that
values from the same time interval
are compared to oneanother.
Virtually a table like in Figure 41 is
created. Each cell in this table
contains the data sample of the
corresponding attribute at the time that is represented by the line index in the table.

Now we build pairs for all i (pi, qi / ti) with pi " X and qi " Y (that have a matching
timestamp ti; this does not mean that the timestamps are identical, but they have to
map to the same time index i and that means that they refer to the same hour of the
last year). The number of pairs in (X, Y) cannot be greater than the minimum
number of records in each resource attribute, and may be smaller if some pi or qi are
missing for certain time indices.

time a1 a2 a3 ... an-1 an

0
1
2
3
...
8756
8757
8758
8759

Figure 41. Preprocessed raw data

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 126 25. Mar. 2000

This means that all permutations of two resource attributes are created. Each pair
builds a tuple. Each tuple is feed to the association algorithm. The biggest challenge
then is the sheer number of tuples. Within each tuple both resource attributes are
used as the dependent variable (y) and it must be tested whether the other resource
attribute is associated with it. For our algorithm the order of x and y is important.
We obtain for the number of tuples:

 (n)
Num Tuples = () * 2

(2)

or

 n! * 2
Num Tuples = --------- =

(n-2)! 2!

 n!
Num Tuples = --------- =

(n-2)!

Num Tuples = n * (n-1)

with n is the number of existing resource attributes (after the filtering). Note that
each monitor class contains many (up to 256 attributes) and that n is not the number
of resources but the number of resources times the number of attributes of their
monitor classes.

Example: If a case study contains 1.000 resource attributes the algorithm has to
check 999.000 tuples. To better illustrate that number imagine that the association
processing of each tuple takes only 15 seconds (including reading the data from the
database and writing back results), then the whole process would take more than
173 days.

Scatter graph

A scatter graph is a common means to display data series of two variables. It can
make it easy for the observer to assess a potential association between the variables.
Figure 42 and Figure 11 show examples of scatter graphs.

Scatter graphs are used later to show associations that have been found in the
databases of the case studies. The user interface of the detection tool extends this
notion of a scatter graph. One problem with scatter graphs is that the number of
identical data pairs is not visible. To circumvent this problem the color of the

0

5

10

15

20

25

30

0 1 2 3 4 5
X

Y

Figure 42. (non-linear) association

0

2

4

6

8

10

0 1 2 3 4 5
X

Y

Figure 43. no association

Workload Management
Case Studies

25. Mar. 2000 Page 127 Dipl.-Ing. Günther Strasser

marker expresses the number of (x, y) pairs that exist for each coordinate (see
Figure 16).

7.3.3. Summary of the Algorithm

The detection algorithm consists of five stages. Each stage is implemented as a
separate thread and acts in parallel to other stages. It receives the results of the
previous stage, filters useful data and generates input for the next stage. The stages
are called

1. Initialization - Database Extraction
1. Attribute preparation
1. Tuple Building
1. Tuple Processing
1. Association Probability Assessment

The following paragraphs briefly describe the tasks of each stage.

Initialization - Database Extraction

The first stage traverses all entries in the load database. Each entry represents the
data a monitoring class retrieved for a resource. An entry contains the data of one
or many resource attributes. The following steps are performed for each entry:

1. The thread filters resource records relevant to the actual detection process (the
user may constrain the detection to certain hosts, for example, all machines of
the domain FAW9500D)

1. Then the thread loads the data for the entry. Underneath the database layer
removes invalid or out-dated information. Time stamps are mapped into a time
index which is used to store data into an array in memory. Time stamp or time
index are not stored in memory.

1. It allocates and initializes the data structures for storing the information.
Resource attributes are processed independent from one another.

1. Finally it creates and totals up the accumulated information. These data appear
like data loaded from the database. Later stages do not distinguish between data
from the database and accumulated data.

Note that the load database consists of resource records and load data records
which contain all resource attributes that are part of a class (see the description of
data structures in chapter 6). The database may contain information about many
domains and servers. The analyst can focus the detection on a certain part of the
information by specifying a server name filter. This filter can contain wild card
characters (‘*’, and ‘?’).

The load data are converted into the format used for further processing. For each
item an array of 8.760 elements of type unsigned long (one for each hour of the last
year) is allocated and that structure is initialized with the data from the database, or
the value “no data” if there is no sample available at the time. After this process the
program knows how many “hits” (= samples) have been found during the last year.
Note that this data structure is later discarded and replaced by a more efficient and
smaller memory structure.

As part of the elimination of useless attributes, a filter rule is applied (elimination
step I): if there are less hits than a certain percentage of the maximum possible
number of entries (8.760), the information for that resource is not processed any

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 128 25. Mar. 2000

further. With this filter very new, too old, or unreliable resource data are eliminated
from the detection process very early.

Otherwise the resource is added to the summary information of the server (if
several class resource entries for the server are possible), and to the overall
summary for the class of the resource.

After this the resulting data structure is handed onto the next stage.

Attribute Preparation

In this stage a compressed version of the information is produced because this
structure will be needed until the end of the detection process and even longer - for
on-line presentation. The sample values are linearly transformed from their original
value range of zero to (216-1) * n (with n is the number of samples accumulated
during one hour; the default value of n is 60, the maxium value possible is 120) to a
value range of zero to 254. Sometimes such a transformation of the raw data is
refered to as classification.

A new array of 8.760 elements of type byte (or unsigned char) is allocated. The
program looks for the minimum and maximum values within all records of the
resource attribute. The next rule is applied: the difference between minimum and
maximum must be greater than a certain parameter (the difference must be at least
greater than zero). This rule (elimination step II) eliminates resource attributes that
never change (for example, the number of print jobs on a server that is not a print
server). Such attributes do not contain information and would only confuse the
results of the algorithm: any value from source resource attribute X would
"perfectly" map to Y.

Now, for each defined element with index i of the resource attribute the projection

tsize = (vmax - vmin) / 255 + 1
vnew[i] = (vold[i] - vmin) / tsize

is applied. vmin is the lowest value of the resource attribute and vmax is the greatest
value. Note that this algorithm similar to the calculation of the correlation
coefficient is invariant against transformations applied on the input data.

All vnew are in the range 0 ! vnew ! 254 (because integer arithmetic is used). The
value 255 is used for undefined elements (not a number).

The value range associated with a value between 0 and 254 is called a tile, because
one may imagine the original value range covered with a number of "tiles". tsize is
the size of the tile (relative to the original value range). It must not be zero and is
therefore increased by one. If the difference between minimum and maximum is
less than 255 the tile size is still one. An original value range of a resource attribute
can be covered by n tiles with 1 < n < 255.

The value range (rmin, rmax) of a certain tile ti is defined by
rmin = vmin + i * tsize and
rmax = vmin + (i + 1) * tsize - 1

The use of the notion of tiles eliminates small variations in the original values.

The next rules are applied (elimination step III): The resource attribute must cover
at least a certain number of tiles, otherwise it will be eliminated. If the rules
eliminate a resource attribute because it does not cover enough tiles, this may be
due to an out-of-bound value distorting the transformation, for example, assume
that the normal bandwidth of a resource attribute is between 0 and 500, but for an
unknown reason, there is one record with 500.000. Now, the size of one tile is

Workload Management
Case Studies

25. Mar. 2000 Page 129 Dipl.-Ing. Günther Strasser

1.969. All values within the normal bandwidth are transformed into tile 0, the only
extreme value into tile 254. Therefore only two tiles are in use (0 and 254).

In order to handle this case, the program tries to eliminate extreme values in a more
sophisticated way than the database layer does. Both from the lower and from the
upper margin tiles with less hits than CONSTRAINT_IGNORE_TILE (a parameter
specified as 2) are removed. In other words: at least three hits must exist for a tile to
stop the further restriction of the valid value range. New minimum and maximum
figures (vmin and vmax) for the original values of the resource attributes are
calculated. If there are tiles that can be removed, the attribute preparation starts
right from the beginning. Values that lie outside the new boundaries are ignored.
Theoretically, this process can be repeated several times until all out-of-bound
values are removed (or until the number of available records left is too small to
continue).

In the example the algorithm would detect that only tile zero would contain more
than two hits. The new minimum would be 0, the new (initial) maximum would be
1.969. In the next iteration, the value 500.000 would be ignored. 500 would be
detected as the maximum of the remaining records. The new tile size would be 2
and the resource attribute could be used for further processing.

The result of this stage is that for each resource attribute that passes a number of
filters the raw data have transformed in a compressed structure. Time stamps have
been mapped into a time index and sample values have been mapped from a four
byte integer into a one byte integer to be able to keep all resource attributes in
memory.

Tuple Building

Until now suitable attributes have been prepared and the elimination steps have
reduced the amount of attributes for processing. This stage selects all combinations
of two attributes. When a new attribute arrives, the program builds a new tuple for
each element in the set of processed attributes. A number of tuples (x, y) are created
and pushed to the next stage. After all attributes have been processed, the new
attribute is added to the set of processed attributes. One can imagine that this stages
selects all possible combinations of two columns from the table in Figure 41 and
hands each pair over to the next stage.

The attributes x and y are examined to see if one of them is an accumulated item
and the other is an element of that accumulation. It would not make sense to check
for association, because if x is a contributor to y the association is implicit.

Tuple Processing

In order to test for a potential dependency between two attributes a suitable
statistical algorithm would be the use of contingency tables and the calculation of
the !2 value [38]. We will give a short overview of this method and some reasons
why we did not use this method but implemented a simplified approach instead.

Contingency Table Method

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 130 25. Mar. 2000

A contingency table is a r x s table (r columns and s rows). r and s are the number
of classes for each of the two attributes. The transformation describe before can be
seen as a classification into 255 classes. Each cell of the table contains the number
of data pairs where the value of x fits into the class within r and the value of y fits
into the class within s (see Figure 44).

In our case hij is the number of data pairs where the value of x is (i-1) and the value
of y is (j-1). r and s would be 255 except for attributes with a reduced value range.
After the number of occurencies are found for each cell the column sums and row
sums are calculated:

r
hi. = " hij

j=1 and,

s
h.j = " hij

i=1

After the contingency table is created for each cell an expectation value is
calculated. This is the number of expected data samples under the assumption that
both attributes are independent. The expected value êij is

êij = hi. h.j / n

n is the total number of data pairs (up to 8760). In order to get a non-zero
expectation value both column sums and row sums must not contains any zeros.
The square sum of the differences between actual occurencies and expected values
is a !2-distribution. We accumulate

 r s
X = " " (hij - êij)

2 / êij

i=1 j=1

We compare the result with the quantile of the !2-distribution given the significance
level and (r-1)(s-1) degrees of freedom. A program may calculate or lookup the
quantile in a table. If the X is significantly greater than the quantile then the initial
hypothesis of independence between the two variables is wrong. On top of that the
C-value (Pearsons contingency coefficient) can be calculated as

C = ! (X / (X+n))

C = 0 means total independence and C = 1 means total dependence between the two
variables.

The main reason we did not use this method was because it is relatively
computational intensive. All calculations have to be done as floating point
calculations, including the transformation of the integer numbers to floating point

x1 x2 x3 ... xr "
y1 h11 h21 hr1 h.1

y2 h12 h22 hr2 h.2

y3 h13 h23 hr3 h.3

...
ys h1s h2s hrs h.s

" h1. h2. h3. ... hr.

Figure 44. Contingency table

Workload Management
Case Studies

25. Mar. 2000 Page 131 Dipl.-Ing. Günther Strasser

representation, and a huge number of operations is required for each step. Another
problem is that the expected value for each cell must not be zero and that means
that there must not be empty classes. However given the raw data from the database
that cannot be guaranteed. In reality it is very common that for a certain value no
(x,y) pair exists.

In order to achieve optimum performance we want to keep pure integer arithmetics,
keep the number of required operations low and the algorithm should work with
empty classes. And, as mentioned before, using rules and parameters an analyst
should be better able to influence and control the detection process.

Association Table Method

This approach tries to further reduce the number of values that must be processed.
The downside is that it works "directionally", which means that the alogrithm has to
check x"y and y"x. That is not necessary with the chi-square test. An
examination of all 8.760 possible records within the attributes is performed to see
whether a valid data value does in fact exist in both items. For each tile in x the
number of hits to the respective tile, average and variation of y is calculated for all
valid data pairs x and y. This is done in
both directions (x " y and y " x)

The next rule filters pairs with low
significance: if the number of existing
record pairs (xi ,yi / ti) for all i:
0 ! i ! 8.760 is less than a certain
parameter, the tuple is not processed any
further.

The algorithm generates an association
table (Figure 45 shows a very simple example) and then checks, whether there is an
association between x and y or between y and x. We examine the first case; the
second case is calculated in the same way.

In order to ascertain the likelihood of there being an association from x to y, we
have to assume that for a certain value of xn in x all possible values yk are more or
less the same. For each tile in x, the program calculates the average and the
variation of all yk associated with that tile.

The following picture gives a graphical representation of the association table that
is now available for x. The same table exists for y # x.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9

X-Tiles

Y
-T

ile
s

Figure 46. Graphical presentation of an association table

x average
of y

number
of

records

std. dev.
of y

1 4 2593 0
2 7 3964 0
3 12 2979 0

Figure 45. Association table

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 132 25. Mar. 2000

The association table is handed onto the next stage.

Association Probability Assessment

The task of the last stage is to assess whether the relative position of the average of
all tiles and the variation within each tile makes it likely that an association between
x and y in the form x # y or y # x (or both) exists.

To make this assessment, a system of “penalty points” is used. Starting with zero
points, each tile is examined with a number of rules applied to it and each rule may
add penalty points depending on the conditions below. The parameter CLASSIFY-
_MAX_POINTS defines the number of penalty points that each tile may contribute
on average, with the tuple still being considered as a "good" association. The rules
and the penalty system are calibrated with a number of artificial test data sets that
are generated with several functions (for example trigonometric functions), in
conjunction with random variations that supersede the function values.

Finally, each tuple has two sums of penalty points: one for x # y and one for y # x.
If the number of penalty points is greater than an adjustable limit the tuple is
discarded. In this case there is no association between the two attributes. Otherwise,
the tuple is added to the set of result objects, which can be viewed and analyzed by
an end-user (see “User interface” below).

Penalty points are added due to the following rules.

! If there are no hits to the tile, no points are added because there is no
information in it.

(The following conditions assume that there are hits to the tile under
consideration. This tile has index i and will be noted as xi.)

! Points are added if index i is greater than zero and if the previous tile xi-1 does
not contain a hit,. This is to ensure steadiness.

! Relative to the standard deviation more points are added. The higher the
variation, the more penalty points are given for that tile, with an upper limit.

! If xi-2 < xi-1 and xi-1 > xi or xi-2 > xi-1 and xi-1 < xi, points are added. This rule
supports monotonic relations.

! The average of the actual tile is compared with the last five tiles (if these exist
and contain more than one hit). Points are added if the average value of the last
five tiles is equal to the actual value. This is to eliminate “constant” attributes
(and which escaped the eliminiation steps).

! If the difference between the average value of the last five tiles and the actual
tile is greater than a certain parameter value, points are added. This is again to
enforce steadiness of the potential projection function.

! Points are added if their are too few records in a certain tile. This rule eliminates
pairs with too low significance in the distribution of their values.

Summary

The algorithm avoids any assumption about the potential association between x and
y. It does not contain complex mathematical functions and is very fast and efficient.
It is suitable for processing a great number of resource attributes on a standard PC.
It can also detect complex projection functions (e.g. trigonometric functions),
which are overlaid by natural, coincidental variations. The algorithm and all the

Workload Management
Case Studies

25. Mar. 2000 Page 133 Dipl.-Ing. Günther Strasser

control parameters in particular, were tuned by test runs that included complex
functions plus random number variations.

7.3.4. Result Index

It has already been mentioned that the load database "lives" and changes constantly.
Every hour new records are added to the database and other records become out-
dated. Therefore analysis results can change every day. The association analysis
writes its results into a separate file - the result index. This file contains all result
tuples that have been found in an invocation of the analysis tool. A counter is part
of each result entry. With this it is possible to see how often an association has been
found. A user can use the counter together with the penalty score to decide whether
to use the record.

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 134 25. Mar. 2000

7.3.5. User Interface

List of Detected Results

The window in Figure 15 contains all tuples likely representing an association. The
result tuples are sorted by the likeliness of a good association. The user may choose
another sort criteria.

Figure 47. List of Detected Associations

Workload Management
Case Studies

25. Mar. 2000 Page 135 Dipl.-Ing. Günther Strasser

Scatter graph of an association

When the user "opens" a result record, a graphic window like the one in Figure 16
is displayed. It shows the number of hits for each pair x, y. The user can
additionally turn on figures for the average and standard deviation of all values.

Figure 48. Association scatter graph

The picture above shows the good association between the number of sessions to a
server and the number of existing connections. Besides the fact that there really is a
dependency between the two attributes an analyst can draw further conclusions
from this example:

1. Most of the time there are between zero and three sessions with zero to three
connections.

1. There is a maximum of 38 sessions and 86 connections on that server

1. The number of connections rises faster than the number of sessions; it seems to
be a non-linear relation between the two attributes.

Information like this could be very useful and valuable for a simulation model of a
system under consideration.

7.3.6. Data Export

To enable association results to be included in a document (like this one), the data
for a certain result can be exported to a file. The user can do this from the
"Association Scatter Graph Window". The resulting file, that contains the data, has
the form of xi;yi (the first line contains the names of item x and y):

Workload Management
Case Studies

Dipl.-Ing. Günther Strasser Page 136 25. Mar. 2000

Total.TCPIP.Total.# of unicast packets sent;Total.TCPIP.Total.# of packets
sent
48;10
48;12
48;16
49;9
52;9
53;19
55;9
57;12
55;13
60;12
59;14
61;14
62;17
69;11
...

A spreadsheet application like Microsoft Excel can import the data and display a
graph which can be exported to a word processor.

7.3.7. Constructing a Tabular Model

The idea to construct a tabular model is based on the assumption that with a
database of detected associations a network of related resource attributes would
emerge. Each entry would represent the projection from one item to another in the
form of a table. Figure 49 depicts a very simple model. If there is a relationship it
could be expressed as an equation in the form

y = f(x) + r(t)

with f(x) is the technical relation (due to the implementation)
r(t) is the time dependent random variation that overlays the data

The term { f(x)+r(t) } would be replaced by an association table, in which it would
be possible to look up any value of y given the value for x. The random variation is
already covered in the table, as average values of y were calculated over the
observation period. Moreover it would be possible to work with the standard
deviation, if this is important for the analyst.

resource attribute
A

resource attribute
B

resource attribute
C

resource attribute
D

resource attribute
E

resource attribute
F

Figure 49. Model build from projections

Workload Management
Case Studies

25. Mar. 2000 Page 137 Dipl.-Ing. Günther Strasser

It could occur that not every value of x would form part of the table. Inter- and
extrapolation algorithms could however be used to calculate missing values in the
table. That way it would be possible to use the tables to predict the behavior of the
system when parameters change.

Figure 49 shows a network of associated resource attributes. A simulation engine
could feed parameters into the network and observe how parameters change for
different resources. Analytical processing could be applied as well. Questions in the
form "What happens when attribute x takes the value of n at time t?" could be
answered this way.

The tabular model would perfectly represent the observed system. First of all, it
would it make possible to understand the internals of the system. By using the
individual tables, statistical methods could be used to remove random variations
and find an association function, for those interested in that. Furthermore, they
could be used to analyze its behavior under different conditions, for example, if the
number of users increased.

An intention to change (parts of) the system, would have to be reflected by adapting
the tables manually or by replacing or adding relation functions or artificially
generated tables. The processing engine necessary to work with the tables would
have to be able to accept them from different sources. It would also have to be
possible to add tables to the database.

Conclusion

We believe that the approach described in this chapter could lead to an under-
standing and model that matches the complexity of today's client/server
environments. While it is not intended to replace analytical methods and
simulations, the method of automated modeling a system from measured resource
data would be a valuable addition to classical techniques.

In practice, with the currently available software products evaluated and connected
to the monitor, the idea of tabular models has not worked as intended. No complete
"network" of attributes could be found. The major reasons are

! that server applications do not provide information about their internal
resources or even their external resources.

! that only simple associations (one source to one result item) could be
considered. While these type of dependencies form the majority of cases, more
complex dependencies still remain undiscovered.

! that a measurable change in a dependent resource attribute can appear with a
significant time latency. Resources like a cache can keep up near optimum
throughput for some time and than suddenly change their behavior.

! and that detected associations can represent where "local" conditions that
cannot be generalized and would not fit into a model.

As a consequence, a very incomplete "network" remains today that cannot be used
as a model.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 138 25. Mar. 2000

Results of the analyses of the long-term
load data of real client/server environments

8. Case Studies

This chapter contains the results of the case studies which were performed over the
period of four years in several locations. We provide this massive information as a
reference because we experienced a lack of actual data from real environments. It
would be beyond the scope of this paper to find an explanation for every chart. We
think that it may be useful in certain circumstances to check the range of certain
parameters and how they change over time.

Each log database, that resulted from the deployment of the tool, contains millions
of records and each record represents 60 samples for one hour of measurements. In
order to represent this huge amount of information in this document only
compressed information can be printed. Each observed environment consists of a
number of servers. In the pictures the data from all the servers are summarized.
That means that each picture represent the sum of the data for a certain attribute for
all the servers in the observation group. The data covers a period of one year and is
collapsed into an “average week” (see chapter 7 for a description of this data
mapping).

That means that for each hour of the week the average for minimum, average and
maximum values of all records that fall into that hour have been calculated. This
values may represent absolute values (like “number of users connected to the
domain”) or cumulative values (like “kB sent to server during one hour”). The
context and naming of the data item usually makes clear what is meant. In some
cases the meaning of the values is explained explicitly.

Where possible a short comment or explanation is added to each graph. If there is
nothing to say about a picture a comment is omitted. Chapter 2 contains the
summary of the case studies which includes major observations and some
hypotheses to explain the measurements.

8.1. Case I

The first scenario is a domain of ten server machines which support up to 90 user in
an backoffice type of work group. This domain was studied from the beginning of
our work (starting 1995) and was used to test and verify assumptions and research
the basics of distributed monitoring.

Because this domain was studied over several years the server roles and usage
profile is very well known to us. That information helps to understand or interpret
the results of the monitoring process.

8.1.1. Server Characteristics

To better understand the usage of the different servers the number of connections
and open files is used. These two figures give a good idea about the number of
users who actually make use of the services of each machine.

Workload Management
Conclusion

25. Mar. 2000 Page 139 Dipl.-Ing. Günther Strasser

FAW3200S - Domaincontroller

The main task of the domain controller is to handle the user's logon process,
manage the security database and replicate it with the other servers, handle resource
alias names and propagate them to clients in the network. A server could handle up
to a thousand active logons. The actual number of up to 25 connections is not a real
problem for the machine - it is not heavily loaded.

Note that a good deal of the existing load is covered by the domain backup
controller. Logon-load is balanced between the main controller and the backup
controller. In this scenario the main task of the backup controller is to keep the
domain running in the case of a failure of the main controller. In other scenarios
load balancing may be a more serious task.

0

5

10

15

20

25

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Each active user has a connection to the domain controller. As the controller does
not provide much more the number of connections is identical to the number of
users which are handled by that machine. Normally there are no open files because
the machine is not used as a file server.

FAW3210S

This machine is used for internal reasons and does not provide services to the
normal user of the domain. Thus the number of connections is very low.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 140 25. Mar. 2000

0

1

2

3

4

5

6

7

8

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW3220S - Print Server & Backup Domain Controller

This machine is one of the most important machines in the domain. It serves two
purposes: it is used as a backup domain controller, which shares the load of logon
processes, and it is the only print server in the domain.

A print server has several tasks that may produce some load on the machine:

1. It receives and stores the print output from the clients.

1. It manages the access to the spooler queues. Queues can be either shared or
serial. The first one, typically a printer queue, can be used by several client at
the same time. All output is stored temporarily. If a spool job has finished
spooling it has to wait until the printer (port) is available and then the job
contents is sent to the printer. That is transparent to the client.
A serial queue - typically a fax or modem - can only be used by one client at
the time. If the queue is already in use the client has to wait or it will receive a
(time out) error.

1. In the case of OS/2 printer output, the server does the actual processing and
calculation during the conversion to the actual printer device output. The
clients only sends a standardized meta file.
In fact most of the print output is produced by Microsoft-Windows
applications. In this case the client has to perform the conversion/generation of
printer specific print output. Therefore the server load from such conversion
tasks is low.

Workload Management
Conclusion

25. Mar. 2000 Page 141 Dipl.-Ing. Günther Strasser

0

50

100

150

200

250

300

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 142 25. Mar. 2000

FAW3240S - CD-ROM

This server houses a shared CD-ROM drive and another removable media. Today,
it may sound strange, but at the time, this domain was monitored, CD-drives were
still expensive and usually not part of common desktop systems. As the price of
such devices dropped and the availability of CD-ROM drives in desktop and laptop
PCs increased dramatically, the usage of this server decreased.

0

2

4

6

8

10

12

14

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Usually only one user wants to use a certain CD. Therefore the average number of
connections is either zero or one.

Workload Management
Conclusion

25. Mar. 2000 Page 143 Dipl.-Ing. Günther Strasser

FAW3250S - Home Directories

The main task of this server is to maintain home directories of LAN users and
shared areas for teams. Home directories should be used for backup purposes only.
Over time - with rising capacity needs - home directories where distributed over a
number of servers. Team disks are usually controlled by an library management
software. Therefore the files on team disks cannot be accessed directly (with
several exceptions).

Looking at the picture below it can be seen that during peak hours the number of
open files is high. That indicates that people work directly with their files on the
server (number of open files).

0

50

100

150

200

250

300

350

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 144 25. Mar. 2000

FAW3260S - Database and Application Server

The server houses several DB2/2 databases and most shared applications that can
be installed or used from the server. The number of connections and open files
indicate a heavy usage (up to 90 user have up to 550 connections) of this machine.

0

100

200

300

400

500

600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Over the time it could be noticed that the usage of the server decreased. One reason
for that was the increasing number of laptops which replaced desktop machines.
Application software has to be installed on the laptop and therefore fewer people
are using shared applications from a server41.

41 That creates a lot of other problems e.g. software distribution and service which were addressed by a
shared resource before.

Workload Management
Conclusion

25. Mar. 2000 Page 145 Dipl.-Ing. Günther Strasser

FAW3270S - Application and Tools Server

Most of the (workstation) development tools of the department were installed and
maintained on the machine. The number of (workstation) developers is about 40%
of the user community. Common tools stay active after their first activation and
they consist of many files (programs and dynamic link libraries). That is the reason
why the number of open files is rather high compared to the number of connections.

0

10

20

30

40

50

60

70

80

90

100

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Interesting is that even during weekends many machines seem to be running and the
tools stay active most of the time.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 146 25. Mar. 2000

FAW3280S - Development Code & Data Server

Most of the teams use this server to store code and data of their projects. The
shared resources are controlled by a library management software are not accessed
directly on the server. Still a user needs a number of connections to different areas
of a projects and has to transfer or receive files from staging areas. The activities in
this areas are rather high (compared to the number of users).

0

50

100

150

200

250

300

350

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

25. Mar. 2000 Page 147 Dipl.-Ing. Günther Strasser

8.1.2. Active User

First we look at the number of active users. As mentioned above office hours drive
the number of users and we see a cyclic up and down of users. A number of users is
logged on all the time. We have to take into account that there is a functional userid
active on each server. The difference between the ten userids on the servers and the
number of users we see at night and on weekends is equal to the number of client
workstations which are not turned off. We can derive that during the week about 20
of 80 user do not turn of their machines while over the weekend only 10 clients stay
active.

0

10

20

30

40

50

60

70

80

90

10
0

0 Sun 1
2

Sun 0 Mon 1
2

Mon
0 Tue 1

2
Tue 0

Wed 1
2

Wed
0 Thu 1

2
Thu

0 Fri 1
2

Fri 0 Sat 1
2

Sat

User min
User average
User max

Note the several "long weekends", that start at Thursday, and that are rather
common in Austria (up to five times per year) influence the average week slightly.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 148 25. Mar. 2000

8.1.3. Active Connections

The number of active connections to resources on the servers of the domain
correlates to the number of users.

0

100

200

300

400

500

600

700

800

900

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min
Connections average
Connections max

Several things can be noticed:

! the number of connections reach their peak at about ten o'clock in the morning
(while the number of users top at about twelve o'clock)

! the next sharp decline is about two o'clock p.m.; that is because part time
worker leave about that time

! there is a rather high value of maximum connections between Tuesday and
Thursdays

! each user has about five connections

Workload Management
Conclusion

25. Mar. 2000 Page 149 Dipl.-Ing. Günther Strasser

8.1.4. Open Files

The average number of files correlates with the number of active users and we can
see that on average each user has one open file only. That means that many users do
not use available application software from a server but install it on their local hard
disk.

0

100

200

300

400

500

600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Open files min
Open files average
Open files max

The maximum line correlates to the maximum line of active connections. It is an
indication for the activity of those users which actively use server resources. Very
often, there is no file open during an hour. The reason for that are holidays when
nobody comes to works and an automatic disconnect - that is the server frees up
resources which were not used for a long time. Unfortunately that has a strong
influence on the overall average. Without the influence of holidays the number of
open files per user is higher.

The following snapshot of a day's detail view is typical for the number of open
files: many files are opened in the morning shortly after the connections were
established. They remain open as long the connection persists. That behavior is
typical for application software that is used from a server resource because many
users do not really end an application but hide the window and keep it ready for its
next usage.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 150 25. Mar. 2000

8.1.5. Data Sent to Servers

The next figures shows how much kB of data are sent to all servers per hour. We
can see that up to 10 MB per hour are sent with many peaks during the night. Note,
that it can be seen that once a week during the night an automated backup and
restore procedures generate a higher data volumes than during normal office hours.

0

2000

4000

6000

8000

10000

12000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

kB server sent min

kB server sent average
kB server sent max

For the average value we still can notice a correlation with the number of users.
Remarkable is that on average there is a traffic of about 2 MB per hour during off-
time hours. That seems to be the amount of information the server has to exchange
even without direct user activities.

In addition we notice that automated procedures easily produce higher traffic
volume than normal user operation does. We have observed the same system
behavior in other circumstances (see “other observations”).

Workload Management
Conclusion

25. Mar. 2000 Page 151 Dipl.-Ing. Günther Strasser

8.1.6. Data Received From Servers

For this information two figures taken from data samples at different times. The
first one contains two peaks which did disappear over time. This example illustrates
the high volatility of the data which are directly influenced by user activities.

0

50000

100000

150000

200000

250000

300000

350000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

kB server received min

kB server received average

kB server received max

The second picture represents the normal load on the servers. On average peak load
occurs short before noon. This observation correlates with the fact that the number
of logged on users rises until 11:30. Between 11:00 and 12:00 most users get on-
line and do some work that generates load on the server

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0
Sun 12Sun 0 Mon 12Mon

0 Tue 12Tue 0
Wed 12Wed

0 Thu 12Thu
0 Fri 12Fri 0 Sat 12Sat

kB server received min

kB server received average

kB server received max

2 per. Mov. Avg. (kB server received max)

Part of that load consists simply of loading applications and data from the servers
after the client computers are turned on. I measured peak loads near 18 MB per
hour.

In a related “experiment” it was tried to start an application on hundredths of clients
at the same time. The application was about 10 MB in size. Each client had to
download the application (which was written in Smalltalk) in order to start
execution. The result was that the network was down while the server load was low.
The reason for this was that the capacity of the LAN (4 MB Token-Ring) was the
bottleneck. The long-time measurements and experiments like this showed that the

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 152 25. Mar. 2000

power of today's servers are far beyond the capacity of the LAN infrastructure when
it comes to volumes of file data.

8.1.7. Network Control Blocks Issued By Servers

The LAN server software uses NETBIOS as transport protocol over the network.
NCBs (network control blocks) are the means to work with NETBIOS.
Applications reserve and issue NCBs to communicate over the network. Therefore
the number of NCBs issued is a measure for all network activities (while it does not
indicate the amount of data which is moved over the wire).

0

100000

200000

300000

400000

500000

600000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

NCBs issued server min

NCBs issued server average

NCBs issued server max

As we already saw at the graph for data transfer a lot of activity is going on at noon
and during the night. Only early in the morning and in the evening network
activities decrease significantly.

Workload Management
Conclusion

25. Mar. 2000 Page 153 Dipl.-Ing. Günther Strasser

8.1.8. Number Of Files

Next we have a look at the file systems of the servers. This information gives some
insights in the usage of the file sharing service. In the average over one year we see
that the number of files vary in the range from 2.500 to 4.000 files during the week.
At the middle of the week there are more files while this number goes down
towards and during the week end. One possible reason for this is the heavy use of
temporary disk space which is cleaned every night and is not reused during week
ends. Knowledgeable users are able to reserve temporary diskspace for a longer
time.

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

0
Sun

12Sun 0
Mon 12Mon

0 Tue 12 Tue 0
Wed 12Wed

0 Thu 12Thu
0 Fri 12 Fri 0 Sat 12Sat

of files (x 100)

of files (x 100)

of files (x 100)

Polynomisch (# of files (x 100)

What we can see is that the bandwidth of possible values vary (from few thousand
to 2.000.000 files). The lower margin comes from events where a server is setup or
recovered after a disk failure. That happens from time to time and restore may take
several days (due to the slow backup tape devices which were in use at that time).
The minimum values do not tell us much about the real use of the machines. The
maximum numbers do. These are the high watermarks for what the servers have to
take.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 154 25. Mar. 2000

As an example for details I add the same graph for the server with most of the home
directories:

0

100

200

300

400

500

600

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

of files (x 100) min

of files (x 100) average

of files (x 100) max

On average it hold between 10.000 and 25.000 files with a high watermark of
60.000.

8.1.9. Number Of Directories

In the graph below we can see that even the number of directories vary between
2.000 and 3.000. That means up to 1.000 directory entries are created and removed
during the week.

0

2000

4000

6000

8000

10000

12000

0 Sun 12Sun 0
Mon 12Mon

0 Tue 12Tue 0
Wed 12Wed

0 Thu 12Thu
0 Fri 12Fri 0 Sat 12Sat

of directories min

of directories average

of directories max

8.1.10. Allocated Disk Space

Two things are remarkable for this picture:

Workload Management
Conclusion

25. Mar. 2000 Page 155 Dipl.-Ing. Günther Strasser

! The amount of allocated disk space does not show much variation over the
week.

! The ups and downs in the graph below are nearly identical with the line for
the number of directories. The main reason for this may be that the servers
are not used to store much temporary information. The local PC disk is used
for that purpose. Cleanup on the server disk is done directory-wise.

0

2000

4000

6000

8000

10000

12000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated min

MB allocated average

MB allocated max

8.1.11. Access To Diskspace

This chapter shows the access pattern and the aging of information on the server
disks.

Diskspace Accessed During The Last Day

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 1 day min

MB allocated accessed within 1 day average

MB allocated accessed within 1 day max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 156 25. Mar. 2000

The OS/2 HPFS file system maintain information of "last access" versus "last
update". Therefore it is possible to distinguish pure read and read/update
transactions on the file system. During the weekend hardly any file is used (only the
operating system itself). During the week up to 300 to 500 MB (on average) are
actually used - compared to 2.000 MB that are allocated.

While I thought that it may be interesting to monitor and analyze that kind of data
in reality the usefulness of the information can be rather low: Due to regular backup
activities most of the files on the disks are "accessed" (as can be seen in the picture
above for the maximum line). Obviously a backup tool was used which is not part
of the operating system and which acts as a normal process that reads (and
eventually writes) files. Because the backup task did not work well the actual access
pattern of this domain could be extracted and is represented by the average line in
the picture above.

Comparing the number of accessed space with the total space one can understand
that everything except the system partitions is backuped.

Diskspace Accessed During The Last Three Days

Over the (extended) "weekend" (starting with Wednesday morning until Monday
morning) the amount of information grows which was used recently but now starts
to age out. Note that there are two reasons that disk space leaves that "category" -
and thus disappears from the graph: first, the information is used again; second, it
remains unused and is counted for the next category (below).

0

200

400

600

800

1000

1200

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 1-3 days min

MB allocated accessed within 1-3 days average

MB allocated accessed within 1-3 days max

Workload Management
Conclusion

25. Mar. 2000 Page 157 Dipl.-Ing. Günther Strasser

Diskspace Accessed During The Last 4 To 10 Days

A peak during Tuesday indicates those files which were used in the week before but
not over the weekend and on Monday. The sharp decrease on Tuesday noon may be
an indication for the fact that about one quarter of that information is used again
during Tuesday.

0

200

400

600

800

1000

1200

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 4-10 days min

MB allocated accessed within 4-10 days average

MB allocated accessed within 4-10 days max

Diskspace Allocated Within the Last 11 To 30 Days

The amount of information which is not used for a month is relatively constant.
This information is not longer used and ages out. About 500 MB out of 2.000 MB
remain in this category.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 11-30 days min

MB allocated accessed within 11-30 days average

MB allocated accessed within 11-30 days max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 158 25. Mar. 2000

Diskspace Accessed Within The Last 31 To 100 Days

The same can be said for information which is not used for more than one month.
About 600 MB out of 2.000 MB fall into this category.

0

500

1000

1500

2000

2500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 31-100 days min

MB allocated accessed within 31-100 days average

MB allocated accessed within 31-100 days max

Diskspace Not Accessed Within 100 Days

This graph shows the amount of "dead code" on the server systems. About 1.500
out of 2.000 MB seem to be of no further use.

0

1000

2000

3000

4000

5000

6000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed not within 100 days min

MB allocated accessed not within 100 days average

MB allocated accessed not within 100 days max

Workload Management
Conclusion

25. Mar. 2000 Page 159 Dipl.-Ing. Günther Strasser

Summary

11%

18%

18%

53%

in use

less than 30 days

less than 100 days

older than 100 days

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 160 25. Mar. 2000

8.1.12. Cache Efficiency

The HPFS386 file system makes available some information about the efficiency of
the file system and the volume of access to the file system.

Summary

Most of the information on the server disks are read-only. Therefore there is much
more read activity than write access.

Read Requests

Due to backup activities during the night we can see more read requests during the
night than during working hours. As mentioned before automated procedures create
much more load on the server (and the file system, in this case) than interactive
work of many individual users.

0

20000

40000

60000

80000

100000

120000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Read Requests (x 100) min

Read Requests (x 100) average

Read Requests (x 100) max

Note, that on average there are about 10.000 read requests per hour during office
hours and about 20.000 read requests during backup activities in the night. About
5.000 requests are send during times of no user activity.

Disk Read Access

The number of read requests which actually trigger a (physical) read operation on a
disk have a very similar pattern compared to the figure above. During the night
5.000 out of 20.000 read requests are performed on a disk. That is about a quarter
of all read requests. During the day this ratio is better as there is nearly no increase
in disk read operations compared to the "idle" state.

Many user access the same information (program files and data) and therefore the
cache can be used more efficiently. The backup operation with its sequential access
to a large amount of data seems to be a less optimal way to use this file system.

Workload Management
Conclusion

25. Mar. 2000 Page 161 Dipl.-Ing. Günther Strasser

0

5000

10000

15000

20000

25000

30000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Disk Reads (x 100) min

Disk Reads (x 100) average

Disk Reads (x 100) max

The cache reduces the actual disk reads by a factor of four.

Cache Reads

Of course, the rest of read requests are directly handled by the cache.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Reads (x 100) min

Cache Reads (x 100) average

Cache Reads (x 100) max

The required information may be in the cache due to another read request or
because of the "read-ahead" feature which can use the time, the client/server system
is busy with working on the data provided by the last read request, to read the next
block of the file from disk.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 162 25. Mar. 2000

Cache Reads Hit Rate

On average the overall efficiency of the cache was about 85%. Most of the time it is
not below 80%.

0

10

20

30

40

50

60

70

80

90

100

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Hit Rate (Reads) min

Cache Hit Rate (Reads) average

Cache Hit Rate (Reads) max

Write Requests

In contrast to the read operations there are not many write requests and there is no
activity during the night (backup does not generate write requests). Idle activities
do not generate write requests either. On average there are up to 500 write requests
per hour.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Write Requests (x 100) min

Write Requests (x 100) average

Write Requests (x 100) max

Workload Management
Conclusion

25. Mar. 2000 Page 163 Dipl.-Ing. Günther Strasser

Disk Write Access

Out of 500 requests not even 50 trigger actual disk access. The ration between
requests and disk operations with 1:10 is much better than for read requests
(partially due to the low number of requests).

0

100

200

300

400

500

600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Disk Writes (x 100) min

Disk Writes (x 100) average

Disk Writes (x 100) max

Cache Writes

Most of the requests can be handled by the cache.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Writes (x 100) min

Cache Writes (x 100) average

Cache Writes (x 100) max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 164 25. Mar. 2000

Cache Writes Hit Rate

Although most of the requests can be handled by the cache the file system reports
its efficiency with an average value of about 78% (which would be less efficient
than for read requests).

0

10

20

30

40

50

60

70

80

90

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Hit Rate (Writes) min

Cache Hit Rate (Writes) average

Cache Hit Rate (Writes) max

8.1.13. Diskspace Available On Servers

As there is not much variation in the amount of allocated disk space there is not
much activity in the amount of available disk space.

0

1000

2000

3000

4000

5000

6000

7000

8000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB available min

MB available average

MB available max

8.1.14. NETBIOS

See [2] for more information on NETBIOS specific attributes.

NETBIOS - Frames Received

No Information about frames was recorded.

Workload Management
Conclusion

25. Mar. 2000 Page 165 Dipl.-Ing. Günther Strasser

NETBIOS - Bad Iframes Received

This measurement is an indication of network problems. Bad frames may decrease
the network performance. Here the average number of bad frames is zero. Thus,
most of the time there are no problems.

0

2

4

6

8

10

12

14

16

18

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Bad IFrames Received min

Bad IFrames Received average

Bad IFrames Received max

NETBIOS - Packets Transmitted

The number of packets which are transmitted or received are an indicator for the
activities on the network. We can see that there is a lot of background activity
during non-working hours of about 30.000 packets per hour. Depending on the
number of users this number increases to about 60.000 packets.

0

50000

100000

150000

200000

250000

300000

0 Sun 12Sun 0 Mon 12Mon
0 Tue 12Tue 0

Wed 12Wed
0 Thu 12Thu

0 Fri 12Fri 0 Sat 12Sat

Packets Transmitted

Packets Transmitted average

Packets Transmitted max

Again we notice the user behavior we have seen before: a sharp rise of activities till
noon and a slowly decreasing line in the afternoon. Note that the number of
packets, that are transmitted by servers, is much lower than the number of packets
which are received by them.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 166 25. Mar. 2000

NETBIOS - Packets Received

We see a similar graph for the number of received packets.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Packets Received min

Packets Received average

Packets Received max

NETBIOS - Bad IFrames Transmitted

0

50

100

150

200

250

300

350

0
Sun 12 Sun 0

Mon 12 Mon
0

Tue 12 Tue 0
Wed 12 Wed

0
Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Bad IFrames Transmitted min

Bad IFrames Transmitted average

Bad IFrames Transmitted max

Workload Management
Conclusion

25. Mar. 2000 Page 167 Dipl.-Ing. Günther Strasser

NETBIOS - Lost Data

There are not many errors due to network or application problems.

0

20

40

60

80

100

120

140

160

0
Sun 12 Sun

0
Mon 12 Mon

0 Tue 12 Tue 0
Wed 12 Wed

0 Thu 12 Thu
0 Fri 12 Fri 0 Sat 12 Sat

Lost Data min

Lost Data average

Lost Data max

NETBIOS - T1 Expirations

The T1 timer checks whether a request for setup or resume of a connection is
serviced within time. The number of expirations correlates to the activities on the
network.

0

200

400

600

800

1000

1200

1400

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

T1 Expiration min

T1 Expiration average

T1 Expiration max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 168 25. Mar. 2000

NETBIOS - Ti Expirations

The Ti timer checks the activity on an active connection. If it expires due to lack of
activity the network software will check the connection. The number of expirations
correlate with the number of sessions (and connections) to the servers. This
contributes to the network traffic and generates some of the traffic during idle times
(non working hours).

0

2000

4000

6000

8000

10000

12000

14000

16000

0
Sun 12 Sun 0

Mon 12 Mon
0

Tue 12 Tue 0
Wed 12 Wed

0
Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Ti Expiration min

Ti Expiration average

Ti Expiration max

NETBIOS - Free NCBs

A network control block (NCB) is one of the key resources provided by a token-
ring adapter. All network related activities relay on the access to one or more
NCBs. As users connect to the servers network resources are allocated.

0

200

400

600

800

1000

1200

1400

1600

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Free NCBs min

Free NCBs average

Free NCBs max

NETBIOS - busy conditions

There were no busy conditions detected.

Workload Management
Conclusion

25. Mar. 2000 Page 169 Dipl.-Ing. Günther Strasser

NETBIOS - Pending Sessions

The number of pending sessions clearly depends on the number of open
connections.

0

20

40

60

80

100

120

140

160

180

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

pending sessions min

pending sessions average

pending sessions max

NETBIOS - Names Present

A name is another important resource. It is the name of a NETBIOS application on
the local host. An application that is going to open a session on the adapter has to
register one (or more) names.

0

10

20

30

40

50

60

0
Sun 12 Sun

0
Mon 12 Mon

0 Tue 12 Tue 0
Wed 12 Wed

0 Thu 12 Thu
0 Fri 12 Fri 0 Sat 12 Sat

Names Present min

Names Present average

Names Present max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 170 25. Mar. 2000

8.1.15. Number of Waiting Print Jobs in Spooler Queues

Under normal conditions there is not more than one job waiting in a print queue.
Due to printer problems the number may rise. Note that this is not the number of
processed print jobs (see "Printjobs Queued To Servers" on page 172 for this
figure).

0

10

20

30

40

50

60

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Jobs min

Jobs average

Jobs max

8.1.16. Total Job Size

The graph below shows how much data on average a spool server must be able to
store at any time during one hour. We see that the actual maximum is at about 9
MB that were waiting to be send to printers. On average most print jobs are very
small in size and there is nearly no data in the spool area of the server.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Total Job Sizes (kB) min

Total Job Sizes (kB) average

Total Job Sizes (kB) max

Workload Management
Conclusion

25. Mar. 2000 Page 171 Dipl.-Ing. Günther Strasser

8.1.17. Printing Time Of First (Active) Printjob

The following figure shows the time that the first print job (the one which is about
to be printed) is waiting in this position or - in other words - how long it takes to
process the job. Normally this time is very short. Longer times indicate printer
problems and the time spend in detecting and correcting the problem.

0

2000

4000

6000

8000

10000

12000

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Printing Time of First Job (min) min

Printing Time of First Job (min) average

Printing Time of First Job (min) max

As we can see it may take up to 200 hours until the job is spooled to the printer:
that cannot be a very important job.

8.1.18. Number Of Server Sessions

Note that this value is practically identical to the sessions which are reported by
NETBIOS. If servers with additional server applications (like DB2 or Lotus Notes)
would be part of the domain, these values could differ.

0

50

100

150

200

250

300

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

Sessions min

Sessions average

Sessions max

The difference in absolute values comes from the fact that this values are reported
by the LAN server agent and therefore all servers in the domain were monitored
(remotely) and account for the total numbers. In case of NETBIOS the local agent
must be active and this component was not installed on all servers of the domain.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 172 25. Mar. 2000

8.1.19. Active Time Of Server Sessions

This graph shows the average of accumulated time that the sessions to a server have
been active. This is an indication for the age of sessions and the duration sessions
are used (or kept alive).

0

500

1000

1500

2000

2500

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

active time min

active time average

active time max

Only existing sessions contribute to the number. This explains why the numbers rise
until about 8 am. At this time more and more new sessions appear. They "reset" the
average age of sessions again.

8.1.20. Idle Time Of Server Sessions

This measurements shows the average of accumulated time that active sessions
have not been used. This is an indication for the number of "forgotten" sessions to
stay alive. From the picture we see that many of them begin on Mondays and
remain for a week. A week later the machine are reset. I likely source for that
measurements are all machines that are rebooted once a week like any kind of
server.

0

200

400

600

800

1000

1200

1400

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

idle time min

idle time average

idle time max

Workload Management
Conclusion

25. Mar. 2000 Page 173 Dipl.-Ing. Günther Strasser

8.1.21. Printjobs Queued To Servers

The next graph shows the number of print jobs that are submitted to a spooler
queue during one hour. On average the daily peak load is about 20 jobs per hour.
From the server's point of view that is not much but it may be too much for the
connected printers.

0

20

40

60

80

100

120

140

160

180

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

new print jobs queued min

new print jobs queued average

new print jobs queued max

Note, that it is not possible to monitor the number of pages which have to be
processed by the printers. Maybe, that would be a better measurement for the load
on the printers than the number of jobs.

8.1.22. New Server Sessions

This resource attributes shows how many new sessions have been established
during one hour. We can see that most sessions are created between 6 am and 10
am and that the peak load is highest on Mondays and decreases over the week.
Besides a window of no activity after midnight all the day new sessions are created.
We assume that some background application creates and discards sessions.

0

50

100

150

200

250

300

350

400

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

new server sessions min

new server sessions average

new server sessions max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 174 25. Mar. 2000

8.1.23. Autodisconnected Sessions

This measurement shows the number of sessions that have been closed down by the
server due to lack of activity. This behavior must be enabled on a server otherwise
a session will remain open until the requesting application closes the session.

0

10

20

30

40

50

60

70

80

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

autodisconnected sessions min

autodisconnected sessions average

autodisconnected sessions max

The peak shortly before noon indicates that about 20% of the newly established
sessions are not needed.

8.1.24. Password Errors

This numbers indicate the number of times an application tries to access a shared
resource but supplies a wrong password. This happens when a user enters a wrong
password or if he is logged on to another domain and uses a different password
there. Every time he tries to access a resource in the observed domain a password
error occurs. The user may not even notice this. For security reasons the number of
illegal accesses should be monitored all the time. Unusually high numbers may
indicate an intended break into the domain or an increasing number of cross-
domain access with out-dated passwords.

0

50

100

150

200

250

300

0
Sun 12 Sun 0

Mon 12 Mon
0

Tue 12 Tue 0
Wed 12 Wed

0
Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

password errors min

password errors average

password errors max

Workload Management
Conclusion

25. Mar. 2000 Page 175 Dipl.-Ing. Günther Strasser

8.1.25. Access Permission Errors

In contrast to the number before this numbers indicate the number of time an
positively identified user tries to access a shared resource he is not allowed to
access. Again this may happen without the user noticing this (for example, when an
application tries to scan a directory tree).

0

100

200

300

400

500

600

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

access permission errors min

access permission errors average

access permission errors max

8.1.26. Average Responsetime

This is the average time in milliseconds the server needs to answer a request. We
have no information about how the server measures this value. During some
experiments we could not find any relation between this instrument reading and
actually measured response times.

0

10

20

30

40

50

60

70

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

average response time min

average response time average

average response time max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 176 25. Mar. 2000

8.1.27. File Open Requests

This resource attribute gives the number of times that clients ask for opening a file
on the server disk. This is an indication for usage of files on the server.

0

5000

10000

15000

20000

25000

0
Sun 12 Sun 0

Mon 12 Mon
0

Tue 12 Tue 0
Wed 12 Wed

0
Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

file open requests min

file open requests average

file open requests max

The peaks short after midnight after an work day indicate that most requests
originate from automated procedures but not from user interaction.

8.1.28. (Virtual) Memory Available

This graph represents the sum of virtual memory available to applications at the
server. Mainly it is in indication on how this number varies over the day. We can
see that there is not much variation because in the observed environment the
number of processes is rather stable and most processes allocate most of required
memory during startup.

0

100

200

300

400

500

600

700

800

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

MB memory available min

MB memory available average

MB memory available max

Workload Management
Conclusion

25. Mar. 2000 Page 177 Dipl.-Ing. Günther Strasser

8.1.29. CPU Usage

This graph shows the average CPU utilization on the server machines. We can see
that most of the time there is virtually no utilization of the CPU. The few non-zero
values are around midnight. As other graphs already indicate there seem to happen
automated some routine procedures (like backup) which slightly use the CPU.

0

10

20

30

40

50

60

70

80

90

100

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

% CPU used min

% CPU used average

% CPU used max

8.1.30. Size Of Swappfile

This graph shows the amount of process memory that is swapped to disk. OS/2
writes to disk only the information that does not fit into memory and does not
prepare a swapfile relative to the size of RAM. The summary graph mainly
indicates the variations over the day and again we can see that there is not much
variation. Memory usage is very stable.

0

20

40

60

80

100

120

0
Sun 12 Sun 0

Mon 12 Mon
0 Tue 12 Tue 0

Wed 12 Wed
0 Thu 12 Thu

0 Fri 12 Fri 0 Sat 12 Sat

MB swapper min

MB swapper average

MB swapper max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 178 25. Mar. 2000

8.2. Case II

The second scenario is a domain of 21 server machines which support up to 400
user in an back office type of work group. This domain represents a large domain
which spans several organizational units. Although from a technical point of view a
domain could support up to 1.000 user, in reality, with the hardware of that time
(setup 1994) 400 users were already the maximum.

With a few exceptions the roles and profiles of servers and users were not known to
us. Therefore this represents the more usual scenario of an administrator who
usually does not care to much about servers and domains (especially if he/she has to
maintain many of them).

8.2.1. Server Characteristics

To better understand the usage of the different servers the number of connections
and open files is used. These two figures give a good idea about the number of
users who actually make use of the services of each machine. Unlike the first case
study, I did not know details about role and tasks of the servers. Therefore, like in
the previous case study, the number of connections and open files is presented for
each server to give an indication for the utilization of the server. The read can see
that many of the servers are hardly used. We do not know what the roles of these
machines are.

FAW9500S - Domaincontroller

Note that, like in the first case study, a good deal of the existing load is covered by
the domain backup controller. Logon-load is balanced between the main controller
and the backup controller. In this scenario the main task of the backup controller is
to keep the domain running in the case of a failure of the main controller. In other
scenarios load balancing may be a more serious task.

0

20

40

60

80

100

120

140

160

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Each active user has a connection to the domain controller. As the controller does
not provide much more the number of connections is identical to the number of
users which are handled by that machine. Normally there are no open files because
the machine is not used as a file server.

Workload Management
Conclusion

25. Mar. 2000 Page 179 Dipl.-Ing. Günther Strasser

FAW9510S

0

5

10

15

20

25

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9520S

0

50

100

150

200

250

300

350

400

450

500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9521S

0

1

2

3

4

5

6

7

8

9

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 180 25. Mar. 2000

FAW9530S

0

100

200

300

400

500

600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9535S

0

50

100

150

200

250

300

350

400

450

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

25. Mar. 2000 Page 181 Dipl.-Ing. Günther Strasser

FAW9536S

0

1

2

3

4

5

6

7

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9540S

0

20

40

60

80

100

120

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9550S

0

10

20

30

40

50

60

70

80

90

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 182 25. Mar. 2000

FAW9551S

0

20

40

60

80

100

120

140

160

180

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9552S

0

20

40

60

80

100

120

140

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9553S

0

20

40

60

80

100

120

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

25. Mar. 2000 Page 183 Dipl.-Ing. Günther Strasser

FAW9554S

0

2

4

6

8

10

12

14

16

18

20

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9570S

0

50

100

150

200

250

300

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9576S

0

1

2

3

4

5

6

7

8

9

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 184 25. Mar. 2000

FAW9580S

0

50

100

150

200

250

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9585S

0

1

2

3

4

5

6

7

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

FAW9590S

0

1

2

3

4

5

6

7

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

Workload Management
Conclusion

25. Mar. 2000 Page 185 Dipl.-Ing. Günther Strasser

FAW9595S - Systems Management Server

0

10

20

30

40

50

60

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Open files min

Open files average

Open files max

8.2.2. Active User

First we look at the number of active users. As mentioned above office hours drive
the number of users and we see a cyclic up and down of users. A number of users is
logged on all the time. The number of users we see at night and on weekends is
equal to the number of client workstations which are not turned off during non-
working hours. We can derive that during the week about 75 of 400 users do not
turn of their machines while over the weekend only 45 clients stay active.

0

50

100

150

200

250

300

350

400

450

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

User min

User average

User max

Note the several "long weekends", that start at Thursday, and that are rather
common in Austria (up to five times per year) influence the average week slightly
(see the lower average peeks on Thursday and Friday).

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 186 25. Mar. 2000

8.2.3. Active Connections

The number of active connections to resources on the servers of the domain
correlates to the number of users, but the peak load occurs much early than the
maximal number of users (at about 10:00).

0

200

400

600

800

1000

1200

1400

1600

1800

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Connections min

Connections average

Connections max

Several things can be noticed:

! the number of connections reach their peak at about ten o'clock in the morning
(while the number of users top at about twelve o'clock)

! the decline in the number of connections follows immediately (in contrast to
case I); the reason for that is a different connection policy: unused connections
are disconnected after a shorter time

! that means the most of the connections are not really needed or used

! initially, each user has two or three connections, then the number drops to one
per user (which has to exist due to the active logon)

Workload Management
Conclusion

25. Mar. 2000 Page 187 Dipl.-Ing. Günther Strasser

8.2.4. Open Files

The average number of files correlates with the number of active users and we can
see that on average each user has one or two open files only. That means that many
users do not use available application software from a server but install it on their
local hard disk.

0

200

400

600

800

1000

1200

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Open files min

Open files average

Open files max

8.2.5. Data Sent to Servers

The next figures shows how much kB of data are sent to all servers per hour. We
can see that up to 80 MB per hour are sent. In contrast to case I there are no peaks
during the night.

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

kB server sent min

kB server sent average

kB server sent max

For the average value we still can notice a correlation with the number of users.
Remarkable is that on average there is a traffic of about 10 MB per hour during
off-time hours. That seems to be the amount of information the server has to
exchange even without direct user activities.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 188 25. Mar. 2000

8.2.6. Data Received From Servers

Despite the small time frame of peaks for connections and users, data transfer
activities start early in the morning and end not much before 0:00. As nearly
nobody is logged on during that time I assume that a good deal of the traffic is
generated by automated procedures that are triggered by applications.

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

kB server received min

kB server received average

kB server received max

8.2.7. Network Control Blocks Issued By Servers

The LAN server software uses NETBIOS as transport protocol over the network.
NCBs (network control blocks) are the means to work with NETBIOS.
Applications reserve and issue NCBs to communicate over the network. Therefore
the number of NCBs issued is a measure for all network activities (while it does not
indicate the amount of data which is moved over the wire).

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

500.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

NCBs issued server min

NCBs issued server average

NCBs issued server max

8.2.8. Number Of Files

Next we have a look at the file systems of the servers. Note that not all servers of
the domain were part of the detailed measurements. This information gives some
insights in the usage of the file sharing service. In the average over one year we see

Workload Management
Conclusion

25. Mar. 2000 Page 189 Dipl.-Ing. Günther Strasser

that the number of files vary in the range from 50.000 to 125.000 files during the
week.

0

500

1.000

1.500

2.000

2.500

3.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of files (x 100) min

of files (x 100) average

of files (x 100) max

(Ignore the minimum value in the graph above - it does not have any meaning.)

Over the week the average number of files rises and then drops on Monday
morning.

8.2.9. Number Of Directories

In the graph below we can see that even the number of directories vary between
2.000 and 8.000. That means up to 6.000 directory entries are created and removed
during the week.

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of directories min

of directories average

of directories max

8.2.10. Allocated Disk Space

Like in case I the previous and the next pictures are nearly identical. One has to
look twice to see the differences. Therefore the same conclusion seems to be valid:
cleanup is done directory-wise and a directory contains on average one megabyte of
data.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 190 25. Mar. 2000

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated min

MB allocated average

MB allocated max

8.2.11. Access To Diskspace

This and the following chapters show the access pattern and the aging of
information on the server disks.

Diskspace Accessed During The Last Day

From the following picture one has to have the impression that most work-files are
used only between Sunday afternoon and Wednesday morning. On these days most
of the allocated information is really accessed (used).

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 1 day min

MB allocated accessed within 1 day average

MB allocated accessed within 1 day max

Workload Management
Conclusion

25. Mar. 2000 Page 191 Dipl.-Ing. Günther Strasser

Diskspace Accessed During The Last Three Days

This case shows a similar behavior than case I: starting with Wednesday morning a
lot of the files start to ages out (thus they were not used later than Tuesday noon).
Then the files fall into the next category (see below).

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 1-3 days min

MB allocated accessed within 1-3 days average

MB allocated accessed within 1-3 days max

On Monday and Tuesday nearly no files are in this category: either there were
already used or they aged out to another category.

Diskspace Accessed During The Last 4 To 10 Days

Many of the files that were used only on Monday "move" into this category on
Friday. This is another indication for the assumption that most of the server related
work is done on Monday. During Sunday and Monday most of the files are
"touched" again (I assume that this due to "end-of-week" backup procedure.

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 4-10 days min

MB allocated accessed within 4-10 days average

MB allocated accessed within 4-10 days max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 192 25. Mar. 2000

Diskspace Allocated Within the Last 11 To 30 Days

The amount of information which is not used for a month is relatively constant.
This information is not longer used and ages out. About 80 MB out of 18.000 MB
remain in this category (that is not much).

0

50

100

150

200

250

300

350

400

450

500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 11-30 days min

MB allocated accessed within 11-30 days average

MB allocated accessed within 11-30 days max

Diskspace Accessed Within The Last 31 To 100 Days

The same can be said for information which is not used for more than one month.
About 150 MB out of 18.000 MB fall into this category.

0

50

100

150

200

250

300

350

400

450

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed within 31-100 days min

MB allocated accessed within 31-100 days average

MB allocated accessed within 31-100 days max

Workload Management
Conclusion

25. Mar. 2000 Page 193 Dipl.-Ing. Günther Strasser

Diskspace Not Accessed Within 100 Days

This graph shows the amount of "dead code" on the server systems. About 110 out
of 18.000 MB seem to be of no further use.

0

50

100

150

200

250

300

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB allocated accessed not within 100 days min

MB allocated accessed not within 100 days average

MB allocated accessed not within 100 days max

Summary

41%

6%

2%
1%

in use

less than 30 days

less than 100 days

older than 100 days

In this domain there is nearly no dead data.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 194 25. Mar. 2000

8.2.12. Cache Efficiency

The HPFS386 file system makes available some information about the efficiency of
the file system and the volume of access to the file system.

Summary

Most of the information on the server disks are read-only. Therefore there is much
more read activity than write access.

Read Requests

What one might expect regarding other measured data Monday morning is the time
of highest read activity. Beside that, regarding the cache noon is the time of most
activity (despite the fact that many connections are already dropped due to lack of
activities). Sundays maintain the same level of disk activities than a normal work
day.

0

50.000

100.000

150.000

200.000

250.000

300.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Read Requests (x 100) min

Read Requests (x 100) average

Read Requests (x 100) max

The number of active users does not have as much impact on the disk activities than
other parameters.

Disk Read Access

The cache reduces the actual disk reads by a factor of 10.

Workload Management
Conclusion

25. Mar. 2000 Page 195 Dipl.-Ing. Günther Strasser

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Disk Reads (x 100) min

Disk Reads (x 100) average

Disk Reads (x 100) max

Cache Reads

Of course, the rest of read requests are directly handled by the cache.

0

50.000

100.000

150.000

200.000

250.000

300.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Reads (x 100) min

Cache Reads (x 100) average

Cache Reads (x 100) max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 196 25. Mar. 2000

Cache Reads Hit Rate

On average the overall efficiency of the cache was about 95%. Most of the time it is
not below 80%.

70

75

80

85

90

95

100

105

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Hit Rate (Reads) min

Cache Hit Rate (Reads) average

Cache Hit Rate (Reads) max

Write Requests

Again Monday morning is the time of most activities.

0

2.000

4.000

6.000

8.000

10.000

12.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Write Requests (x 100) min

Write Requests (x 100) average

Write Requests (x 100) max

Workload Management
Conclusion

25. Mar. 2000 Page 197 Dipl.-Ing. Günther Strasser

Disk Write Access

Out of 1000 requests about 100 trigger actual disk access. The ration between
requests and disk operations is 1:10 (like in case I). Note that the peak load on
Monday morning is not reflected in the graph below.

0

500

1.000

1.500

2.000

2.500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Disk Writes (x 100) min

Disk Writes (x 100) average

Disk Writes (x 100) max

Cache Writes

Most of the requests can be handled by the cache.

0

2.000

4.000

6.000

8.000

10.000

12.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Writes (x 100) min

Cache Writes (x 100) average

Cache Writes (x 100) max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 198 25. Mar. 2000

Cache Writes Hit Rate

Although most of the requests can be handled by the cache the file system reports
its efficiency with an average value of about 60% (which would be less efficient
than for read requests).

0

20

40

60

80

100

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Cache Hit Rate (Writes) min

Cache Hit Rate (Writes) average

Cache Hit Rate (Writes) max

8.2.13. Diskspace Available On Servers

As there is not much variation in the amount of allocated disk space there is not
much activity in the amount of available disk space. That is another sign for the fact
that the server are not used to store much user data during daily work.

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB available min

MB available average

MB available max

Workload Management
Conclusion

25. Mar. 2000 Page 199 Dipl.-Ing. Günther Strasser

8.2.14. NETBIOS

Note, that only five important servers where considered for the following detailed
measurements. See chapter 8.1 for an explanation of the resource attributes.

NETBIOS - Frames Received

No Information about frames was recorded.

NETBIOS - Bad Iframes Received

0

5

10

15

20

25

30

35

40

45

50

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Bad IFrames Received min

Bad IFrames Received average

Bad IFrames Received max

NETBIOS - Packets Transmitted

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Packets Transmitted min

Packets Transmitted average

Packets Transmitted max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 200 25. Mar. 2000

NETBIOS - Packets Received

We see a similar graph for the number of received packets.

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000

4.000.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Packets Received min

Packets Received average

Packets Received max

NETBIOS - Bad IFrames Transmitted

0

50

100

150

200

250

300

350

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Bad IFrames Transmitted min

Bad IFrames Transmitted average

Bad IFrames Transmitted max

Workload Management
Conclusion

25. Mar. 2000 Page 201 Dipl.-Ing. Günther Strasser

NETBIOS - Lost Data

There are not many errors due to network or application problems.

0

50

100

150

200

250

300

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Lost Data min

Lost Data average

Lost Data max

NETBIOS - T1 Expirations

The T1 timer checks whether a request for setup or resume of a connection is
serviced within time. The number of expirations correlates to the activities on the
network.

0

500

1.000

1.500

2.000

2.500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

T1 Expiration min

T1 Expiration average

T1 Expiration max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 202 25. Mar. 2000

NETBIOS - Ti Expirations

The Ti timer checks the activity on an active connection. If it expires due to lack of
activity the network software will check the connection. The number of expirations
correlate with the number of sessions (and connections) to the servers. This
contributes to the network traffic and generates some of the traffic during idle times
(non working hours).

0

5.000

10.000

15.000

20.000

25.000

30.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Ti Expiration min

Ti Expiration average

Ti Expiration max

These numbers clearly correlate with the number of connections.

NETBIOS - Free NCBs

As users connect to the servers network resources are allocated.

0

500

1.000

1.500

2.000

2.500

3.000

3.500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Free NCBs min

Free NCBs average

Free NCBs max

NETBIOS - busy conditions

There were no busy conditions detected.

Workload Management
Conclusion

25. Mar. 2000 Page 203 Dipl.-Ing. Günther Strasser

NETBIOS - Pending Sessions

The number of pending sessions clearly depends on the number of open
connections.

0

100

200

300

400

500

600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

pending sessions min

pending sessions average

pending sessions max

NETBIOS - Names Present

NETBIOS names are registered during startup of application and most of the time
there is no dynamic allocation and deallocation of names (or other net resources).

0

10

20

30

40

50

60

70

80

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Names Present min

Names Present average

Names Present max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 204 25. Mar. 2000

8.2.15. Number of Waiting Print Jobs in Spooler Queues

Other than in case I there are always a number of print jobs waiting; but this
domain contains more than 100 print queues. The number of waiting print jobs does
not depend on the number of active users.

0

20

40

60

80

100

120

140

160

180

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Jobs min

Jobs average

Jobs max

8.2.16. Total Job Size

The graph below shows how much data on average a spool server must be able to
store at any time during one hour. We see that the actual maximum is at about 45
MB that were waiting to be send to printers. On average up to 8 MB must be stored
in the spool area.

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Total Job Sizes (kB) min

Total Job Sizes (kB) average

Total Job Sizes (kB) max

Workload Management
Conclusion

25. Mar. 2000 Page 205 Dipl.-Ing. Günther Strasser

8.2.17. Printing Time Of First (Active) Printjob

The following figure shows the time that the first print job (the one which is about
to be printed) is waiting in this position or - in other words - how long it takes to
process the job. Normally this time is very short. Longer times indicate printer
problems and the time spend in detecting and correcting the problem.

0

10.000

20.000

30.000

40.000

50.000

60.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Printing Time of First Job (min) min

Printing Time of First Job (min) average

Printing Time of First Job (min) max

As we can see it may take up to 38 (!) days until the job is spooled to the printer (or
is removed from the queue). Even the average during the week is 250 hours. In that
case the average is misleading because blocked jobs waiting in seldom used spool
queues lead to the numbers.

Our experience with end users is that, when they come over a problem with the
spooler queue, they try to use another printer and do not report the problem to the
responsible person. Another observation is, that - for an unknown reason - many
user do not care for their print output and many print-outs on PC-printers are never
picked up by their owner.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 206 25. Mar. 2000

8.2.18. Number Of Server Sessions

Note that this value is practically identical to the sessions which are reported by
NETBIOS. If servers with additional server applications (like DB2 or Lotus Notes)
would be part of the domain, these values could differ.

0

200

400

600

800

1.000

1.200

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

Sessions min

Sessions average

Sessions max

The difference in absolute values comes from the fact that this values are reported
by the LAN server agent and therefore all servers in the domain were monitored
(remotely) and account for the total numbers. In case of NETBIOS the local agent
must be active and this component was not installed on all servers of the domain.

8.2.19. Active Time Of Server Sessions

The graph reflects the age of server sessions. Machines that are not switched off at
night or over the week end lead to the high numbers.

0

500

1.000

1.500

2.000

2.500

3.000

3.500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

active time min

active time average

active time max

Workload Management
Conclusion

25. Mar. 2000 Page 207 Dipl.-Ing. Günther Strasser

8.2.20. Idle Time Of Server Sessions

0

20

40

60

80

100

120

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

idle time min

idle time average

idle time max

8.2.21. Printjobs Queued To Servers

The next graph shows the number of print jobs that are submitted to a spooler
queue during one hour. On average the daily peak load is about 60 to 70 jobs per
hour. From the server's point of view that is not much but it may be too much for
the connected printers.

0

50

100

150

200

250

300

350

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

new print jobs queued min

new print jobs queued average

new print jobs queued max

Note, that it is not possible to monitor the number of pages which have to be
processed by the printers. Maybe, that would be a better measurement for the load
on the printers than the number of jobs.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 208 25. Mar. 2000

8.2.22. New Server Sessions

0

200

400

600

800

1.000

1.200

1.400

1.600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

new server sessions min

new server sessions average

new server sessions max

8.2.23. Autodisconnected Sessions

0

50

100

150

200

250

300

350

400

450

500

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

autodisconnected sessions min

autodisconnected sessions average

autodisconnected sessions max

Workload Management
Conclusion

25. Mar. 2000 Page 209 Dipl.-Ing. Günther Strasser

8.2.24. Password Errors

It would be interesting to understand the high number of password errors during
non-working hours. A very likely reason for that may be the case if cross domain
user definitions get out of sync. In that case users can generate password errors
without any notice.

0

200

400

600

800

1.000

1.200

1.400

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

password errors min

password errors average

password errors max

Obviously it is not possible to distinguish the case when a user types an incorrect
password or when a cross domain password mismatch happens. The consequence is
that administrators tend to ignore such information.

8.2.25. Access Permission Errors

A possible reason for high numbers of access permission errors are automated
procedures which try to access a resource (e.g. to check their existence or the
access permission of the user which uses the program).

0

100

200

300

400

500

600

700

800

900

1.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

access permission errors min

access permission errors average

access permission errors max

In contrast to the number of password errors access permission errors depend on
the number of active users on the system.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 210 25. Mar. 2000

8.2.26. Average Responsetime

0

100

200

300

400

500

600

700

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

average response time min

average response time average

average response time max

8.2.27. File Open Requests

0

5.000

10.000

15.000

20.000

25.000

30.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

file open requests min

file open requests average

file open requests max

Workload Management
Conclusion

25. Mar. 2000 Page 211 Dipl.-Ing. Günther Strasser

8.2.28. (Virtual) Memory Available

0

500

1.000

1.500

2.000

2.500

3.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB memory available min

MB memory available average

MB memory available max

8.2.29. CPU Usage

0

10

20

30

40

50

60

70

80

90

100

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

% CPU used min

% CPU used average

% CPU used max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 212 25. Mar. 2000

8.2.30. Size Of Swappfile

0

50

100

150

200

250

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

MB swapper min

MB swapper average

MB swapper max

8.2.31. TCP/IP Statistics

A selection of meaningful out of more than 70 available measured resource
attributes are shown on the following pages. The TCP/IP implementation on OS/2
provides much more information than NETBIOS although it does not provide an
API for applications like the monitor.

In general the use of TCP/IP resources is more dynamic but often does not correlate
to the number of users. One important reason for that is, that TCP/IP is not used by
the LAN server application. TCP/IP activities originate from other tasks mainly
systems management activities.

of mbufs obtained from page pool

"mbuffer" are an example of internal resources. The network software needs buffers
to temporary store information. Lack of buffers may decrease the performance.
Managing to many buffers may decrease the overall performance of the machine as
well.

0

200

400

600

800

1.000

1.200

1.400

1.600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of mbufs obtained from page pool min

of mbufs obtained from page pool average

of mbufs obtained from page pool max

Workload Management
Conclusion

25. Mar. 2000 Page 213 Dipl.-Ing. Günther Strasser

of free mbufs

0

200

400

600

800

1.000

1.200

1.400

1.600

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of free mbufs min

of free mbufs average

of free mbufs max

of clusters obtained from page pool

0

100

200

300

400

500

600

700

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of clusters obtained from page pool min

of clusters obtained from page pool average

of clusters obtained from page pool max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 214 25. Mar. 2000

of free clusters

0

100

200

300

400

500

600

700

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of free clusters min

of free clusters average

of free clusters max

of datagrams received

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of datagrams received min

of datagrams received average

of datagrams received max

Workload Management
Conclusion

25. Mar. 2000 Page 215 Dipl.-Ing. Günther Strasser

of datagrams sent

0

50

100

150

200

250

300

350

400

450

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of datagrams sent min

of datagrams sent average

of datagrams sent max

of unicast packets received

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of unicast packets received min

of unicast packets received average

of unicast packets received max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 216 25. Mar. 2000

of unicast packets sent

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of unicast packets sent min

of unicast packets sent average

of unicast packets sent max

of broadcast packets received

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of broadcast packets received min

of broadcast packets received average

of broadcast packets received max

Workload Management
Conclusion

25. Mar. 2000 Page 217 Dipl.-Ing. Günther Strasser

kB received

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000

4.000.000

4.500.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

kB received min

kB received average

kB received max

We assume that the high maximum values results from a invalid instrument
readings.

kB sent

0

500

1.000

1.500

2.000

2.500

3.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

kB sent min

kB sent average

kB sent max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 218 25. Mar. 2000

of packets received

This is one of the major indications for network traffic related to observed
machines. We can see that there is significant traffic all the time and that only a
fraction of that traffic is added during office hours. We conclude that TCP/IP traffic
is generated by all machines as long as they are active independent of user activity.

0

500

1.000

1.500

2.000

2.500

3.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of packets received min

of packets received average

of packets received max

of total packets received

The TCP/IP implementation distinguishes several types of packets. This number
includes traffic of all types. Again we can see that most of the traffic is not related
to work hours.

0

20.000

40.000

60.000

80.000

100.000

120.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of total packets received min

of total packets received average

of total packets received max

Workload Management
Conclusion

25. Mar. 2000 Page 219 Dipl.-Ing. Günther Strasser

of input packets delivered successfully to user-protocols

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

0
Sun

12
Sun

0
Mon

12
Mon

0
Tue

12
Tue

0
Wed

12
Wed

0
Thu

12
Thu

0
Fri

12
Fri

0
Sat

12
Sat

of input packets delivered successfully to user-protocols
min

of input packets delivered successfully to user-protocols
average

of input packets delivered successfully to user-protocols
max

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 220 25. Mar. 2000

8.3. Results of Automated Association Detection

The following chapter contains the result of a very extensive association analyses
which was performed with the data from different case studies. The main idea was
to detect dependencies between servers or to identify similar behavior due to
certain conditions in the network.

We added mainly those relations which happened to appear in all studies. Some
data must appear as an association because they directly depend on one another (for
example,. “amount of disk space allocated” and “percent of disk space free”). Such
obvious associations are not documented in this paper.

General Observation

Over the time we found no sensible associations of data from different servers.
From that we assume that in the observed environments there are no direct
measurable interdependencies between servers. But there are exceptions to this
assumption. This exceptions point to a similar behavior or load under certain
conditions but not to dependencies.

Case II (Domain FAW95)

This chapter contains the pictures for the graphical representation of some of the
relations which can be found with the analyses tool. We use the form of scatter
graphs which have been mentioned several times in this paper. The tool is written
under OS/2 and is able to display the relations in a window. This window uses
colors to show the number of hits on a certain pair of coordinates. Because there is
no way to depict the OS/2 windows within this document - beside the creation of
bitmaps which would be far to space consuming and would overflow the
capabilities of the word processor - I used a different way to create the pictures:

For a relation of interest the pairs coordinates (x and y values within the two
dimensional grid of the data items under inspection) are written to a file. Usually
there are many hits for the same coordinates. In order to give a feeling for the
density of hits in a certain area the exact position of each value is slightly modified
by random numbers. Therefore it is possible to see dense heaps of many heaps in
certain areas of the graphs.

value area which is represented
by the marker

center of the
drawing area

maximal possible
deviation is half of

the size of value area

smallest possible
x/y position

greatest possible
x/y position

Workload Management
Conclusion

25. Mar. 2000 Page 221 Dipl.-Ing. Günther Strasser

In addition to the values, which are calculated by the analyses tool, a trendline was
added to the pictures. The trendline is calculated by the spreadsheet program and
does not always fit the data that are represented in the graph. Due to this trendline
sometimes negative coordinates are shown on the axis of the graph although no
negative values can appeare in the original data sets.

The following pictures are examples for what can be found with the analyses tool.
Analyses for the sample domain usually detects several thousand possible
associations. Many of them relate to specific servers or resources on that server.
About 50% of the results are not real relations and can be ignored. For this paper
only some of the associations were selected, which relate to the whole domain and
which are clear examples of relations between different data items.

Connections vs. Sessions

The next picture is an example of the linear association between the number of
connections to a server and the number of active sessions.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

\\FAW9570S.Session.\\FAW9570S.Sessions

\\F
A

W
95

70
S

.C
o

n
n

ec
ti

o
n

.T
o

ta
l.C

o
n

n
ec

ti
o

n
s

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 222 25. Mar. 2000

Session Idle Time

With increasing idle time of server sessions the usage of resources decrease. That
comes natural as idle time is an indication for unused computers. There are several
examples in the results. Idle time is a data item to which many certain associations
can be detected.

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Total.Session.Total.idle time

T
o

ta
l.S

ta
ti

st
ic

.T
o

ta
l.n

ew
 p

ri
n

t
jo

b
s

q
u

eu
ed

-20

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Total.Data.Total.NCBs issued application

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

Workload Management
Conclusion

25. Mar. 2000 Page 223 Dipl.-Ing. Günther Strasser

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Total.Data.Total.kB application sent

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

The following graph shows where the idle time comes from: about 100 user out of
400 do not turn off their machines. Sessions remain open and are not used for some
time.

-50

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100

Total.Session.Total.idle time

T
o

ta
l.U

se
r.

T
o

ta
l.U

se
r

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 224 25. Mar. 2000

-40

-20

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

Total.NETBIOS.Total.Ti Expiration

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Total.Connection.Total.Open files

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

Workload Management
Conclusion

25. Mar. 2000 Page 225 Dipl.-Ing. Günther Strasser

-20

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Total.Connection.Total.Connections

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

-20

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

Total.Session.Total.Sessions

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 226 25. Mar. 2000

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

Total.NETBIOS.Total.T1 Expiration

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

0

10

20

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 50000 60000

Total.Data.Total.kB server received

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

Workload Management
Conclusion

25. Mar. 2000 Page 227 Dipl.-Ing. Günther Strasser

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Total.NETBIOS.Total.Bad IFrames Transmitted

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.i

d
le

 t
im

e

Cache Reads vs. Read Requests

The - nearly - linear association between read requests and cache reads is not a
surprise, either.

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000

Total.CACHE386.Total.Read Requests (x 100)

T
o

ta
l.C

A
C

H
E

38
6.

T
o

ta
l.C

ac
h

e
R

ea
d

s
(x

 1
00

)

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 228 25. Mar. 2000

Swapper Size vs. Cache Hit Rate

An increasing size of the swap file usually means more swap activity and, thus, lead
to more hits in the write cache. Depending on other disk activity, which may
influence usage patterns of the cache, a certain bandwidth in the effectiveness of the
cache in relation to the size of the swapper can be seen.

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80

Total.CACHE386.Total.Cache Hit Rate (Writes)

T
o

ta
l.S

ys
te

m
.T

o
ta

l.M
B

 s
w

ap
p

er

Sessions vs. Connections

A - nearly - linear association exists between these two data items. The number of
connections increases more than the number of sessions. That means that
(sometimes) two connections are established within one session.

-200

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Total.Connection.Total.Connections

T
o

ta
l.S

es
si

o
n

.T
o

ta
l.S

es
si

o
n

s

Workload Management
Conclusion

25. Mar. 2000 Page 229 Dipl.-Ing. Günther Strasser

Free NCBs vs. Packets Received

Looking at the picture below it becomes clear that there is a relation between the
data items, but it is not likely a steady equation. We can see clusters of markers for
some values of the number of free NCBs.

First, we have to understand that the number of NCBs available to application is a
fixed value which is defined by some configuration files. Most applications (like
the LAN server software) allocate a fixed number of NCBs which is again defined
by their configuration. Therefore the number of free NCBs is not a dynamic value
that can change during hours of heavy usage.

My interpretation is that there are only certain values of available NCBs because on
the servers always the same application start and allocate always the same number
of NCBs. With a given number of free NCBs we have another given (but not
measured) number of used NCBs. For this number a bandwidth for the number of
received packets exist.

-500

0

500

1000

1500

2000

2500

3000

0 500000 1000000 1500000 2000000 2500000 3000000

Total.NETBIOS.Total.Packets Received

T
o

ta
l.N

E
T

B
IO

S
.T

o
ta

l.F
re

e
N

C
B

s

Due to changes in the configuration of servers and missing monitoring data for
certain servers over certain time periods (due to an unavailable machine or another
problem) we see several possible values for the number of free (and used) NCBs
with clusters of markers at their "height".

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 230 25. Mar. 2000

NETBIOS Names Present vs. Free NCBs

A similar picture we see for the relation between free (and used) NCBs vs.
(application) names allocated by some applications.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000

Total.NETBIOS.Total.Free NCBs

T
o

ta
l.N

E
T

B
IO

S
.T

o
ta

l.N
am

es
 P

re
se

n
t

NCBs Issued vs. kB Sent (by applications)

There is a linear association between the data items. The actual number of NCBs
necessary to sent one kB of data varies by some amount. From the picture below we
can see that about 6.000 to 8.000 NCBs are issued without much data associated to
them (communication overhead and very short messages42). For every 100 kB an
average of 5.000 NCBs are needed or about 50 NCBs for each kB.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600

Total.Data.Total.kB application sent

T
o

ta
l.D

at
a.

T
o

ta
l.N

C
B

s
is

su
ed

 a
p

p
lic

at
io

n

42 Accompanying measurements showed that current client/server software and middleware products
tend to use protocols which consist of very many very small messages. Usually the overhead for each
message is much greater than the effort for the data (e.g. 10:1 in one example which was analyses very
extensively).

Workload Management
Conclusion

25. Mar. 2000 Page 231 Dipl.-Ing. Günther Strasser

User vs. Print Job Queued

To our surprise we did not found much associations between the number of users
and other data items. One rare example that such relations exists is the number of
print jobs.

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300

Total.Statistic.Total.new print jobs

Total.User.Total.Use

At the first look, it is no surprise that this relation exists. But on the other hand, why
there are not many other relations between users and resource attributes? One
assumption was that most of the activities in a client/server environment directly
depends on the number of active users. Why can we find no other examples?

After several years of studying the monitoring results in different environments one
conclusion is that the number of users, at it is reported by a system is not a good
indication of the activity of the user. From other data we can see that only after
logon most users use their computer for some time and then let it run idle.

Printing documents seems to be one of the few tasks which are done regularly by
people. Consequently, with a big bandwidth, a association can be detected. On
average we can draw the conclusion that for five users one print job is generated
per hour.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 232 25. Mar. 2000

New Print Jobs vs. kB Data Sent

The analyses algorithm found the following association which is not very high. It is
no surprise that number (and size) of print jobs influence the value of data sent (and
received) from servers.

-50

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Total.Data.Total.kB application sent

T
o

ta
l.S

ta
ti

st
ic

.T
o

ta
l.n

ew
 p

ri
n

t
jo

b
s

q
u

eu
ed

NETBIOS Names Present vs. Cache Hit Rate (Writes)

This association was not expected and its interpretation is not obvious. The cache
efficiency for write operations seem to increase with the number of applications
registered at the network layer.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Total.CACHE386.Total.Cache Hit Rate (Writes)

T
o

ta
l.N

E
T

B
IO

S
.T

o
ta

l.N
am

es
 P

re
se

n
t

Workload Management
Conclusion

25. Mar. 2000 Page 233 Dipl.-Ing. Günther Strasser

Pending Sessions vs. Packets Received

It is easier to understand that the number of packets, that travel over the network,
rise with the number of established sessions. But several facts come to mind:

! Even with no active session up to 200.000 packets per hour are transmitted over
the network.

! For a small number of sessions the bandwidth of packets is very big (from
200.000 up to 1.200.000). In other words, an increase of packets up to
1.200.000 packets is not associated to an increase of sessions (and users). That
would mean that a small number of power users and some internal
communications generate the main part of measurable traffic.

! An increasing the number of sessions does increase the number of packets up to
50% (from 400.000 to 700.000 in the area of the first maximum and from
1.200.000 to 2.000.000 in the area of the second maximum).

! There are two areas with a number of occurrences with more than 100 sessions.
That underpins the assumption that beside a number of sessions which are
needed for actual work, a lot of "unnecessary" sessions are created which only
contribute to network overhead and consume static system resources. One
reason for such sessions may be that system administrator assign certain
connections to each user (e.g. printers) even if the user will never use them.

0

50

100

150

200

250

300

350

400

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

Total.NETBIOS.Total.Packets Received

T
o

ta
l.N

E
T

B
IO

S
.T

o
ta

l.p
en

d
in

g
 s

es
si

o
n

s

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 234 25. Mar. 2000

Total Users vs. Users at Server

The following picture illustrates the role of a backup domain controller. If a user
logs on to a domain he may be serviced by the domain controller or one of the
backup domain controller. It only depends which machine responds to the user's
request first. We can see that - most of the time - the majority of users is serviced
by the backup domain controller (5/8 on average).

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300

\\FAW9510S.User.\\FAW9510S.User

T
o

ta
l.U

se
r.

T
o

ta
l.U

se
r

Corresponding, the picture for the domain controller shows that it only provides
service to a small number of users.

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350

\\FAW9500S.User.\\FAW9500S.User

T
o

ta
l.U

se
r.

T
o

ta
l.U

se
r

Workload Management
Conclusion

25. Mar. 2000 Page 235 Dipl.-Ing. Günther Strasser

-50

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

\\FAW9500S.User.\\FAW9500S.User

\\F
A

W
95

10
S

.U
se

r.
\\F

A
W

95
10

S
.U

se
r

Users vs. Active Time at Server

Another example of a association between the number of users and information
gathered from selected servers. Again we can see that most users only use a server
for a very short time. Only about 100 out of 400 users use the server over a longer
period of time.

-100

-50

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160

\\FAW9520S.Session.\\FAW9520S.active time

T
o

ta
l.U

se
r.

T
o

ta
l.U

se
r

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 236 25. Mar. 2000

Association between Users at Domain Controller vs. Other Data Items

The following pictures represent some of the obvious associations that where
detected between the number of users at the domain43 controller and information
about other monitored resources.

-50

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400

\\FAW9500S.Data.\\FAW9500S.kB application sent

\\F
A

W
95

00
S

.U
se

r.
\\F

A
W

95
00

S
.U

se
r

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400 450

\\FAW9500S.Data.\\FAW9500S.kB application received

\\F
A

W
95

00
S

.U
se

r.
\\F

A
W

95
00

S
.U

se
r

43 Note, that the number of users is only reported for domain controllers or backup domain controllers.
Therefore only for this machines a direct link between serviced users and resource consumption can be
measured. For all other kind of servers it cannot be measured how many users actually use it.

Workload Management
Conclusion

25. Mar. 2000 Page 237 Dipl.-Ing. Günther Strasser

-50

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200

\\FAW9500S.Session.\\FAW9500S.active time

\\F
A

W
95

00
S

.U
se

r.
\\F

A
W

95
00

S
.U

se
r

Association between number of sessions and available NCBs on a certain
server

The number of available network control blocks increases as the number of pending
sessions goes down. From the association we can conclude that a session needs
about two NCBs. One interesting observation is that the number of NCBs does not
go beyond the limit of about 400 even if the number of sessions continues to rise.
Only about 20% of available NCBs are scheduled to pending sessions.

0

20

40

60

80

100

120

140

160

400 410 420 430 440 450 460 470 480 490 500

\\FAW9551S.NETBIOS.Total.Free NCBs

\\F
A

W
95

51
S

.N
E

T
B

IO
S

.T
o

ta
l.p

en
d

in
g

 s
es

si
o

n
s

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 238 25. Mar. 2000

TCP/IP related associations

The TCP/IP protocol stack is an example of a component that offers a lot of
information about it's internal and external resources. Therefore a lot of
dependencies and associations could be detected. Only some very significant results
were selected for this paper. However, TCP/IP is not the main communication
protocol of the hosts involved. Thus, the figures below do not reflect the full
network activities of the machines.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

\\FAW9550S.TCPIP.\\FAW9550S.# of received echo requests

\\F
A

W
95

50
S

.T
C

P
IP

.\\
F

A
W

95
50

S
.#

 o
f s

en
t e

ch
o

 r
ep

lie
s

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Total.TCPIP.Total.# of received echo requests

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
p

ac
ke

ts
 s

en
t

Workload Management
Conclusion

25. Mar. 2000 Page 239 Dipl.-Ing. Günther Strasser

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Total.TCPIP.Total.# of packets sent

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f s
en

t e
ch

o
 r

ep
lie

s

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Total.TCPIP.Total.# of packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

ce
iv

ed
 e

ch
o

 r
eq

u
es

ts

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 240 25. Mar. 2000

0

10000

20000

30000

40000

50000

60000

0 100000 200000 300000 400000 500000 600000 700000 800000

Total.TCPIP.Total.# of broadcast packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.k
B

 r
ec

ei
ve

d

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700

Total.TCPIP.Total.# of unicast packets sent

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

q
u

es
ts

 f
o

r
tr

an
sm

is
si

o
n

Workload Management
Conclusion

25. Mar. 2000 Page 241 Dipl.-Ing. Günther Strasser

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Total.TCPIP.Total.# of packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
p

ac
ke

ts
 s

en
t

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350

Total.TCPIP.Total.# of packets sent

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

q
u

es
ts

 f
o

r
tr

an
sm

is
si

o
n

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 242 25. Mar. 2000

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350

Total.TCPIP.Total.# of packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

q
u

es
ts

 f
o

r
tr

an
sm

is
si

o
n

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

\\FAW9595S.TCPIP.\\FAW9595S.# of packets sent

\\F
A

W
95

95
S

.T
C

P
IP

.\\
F

A
W

95
95

S
.#

 o
f r

eq
u

es
ts

 fo
r

tr
an

sm
is

si
o

n

Workload Management
Conclusion

25. Mar. 2000 Page 243 Dipl.-Ing. Günther Strasser

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

Total.TCPIP.Total.# of unicast packets sent

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
p

ac
ke

ts
 s

en
t

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

Total.TCPIP.Total.# of unicast packets sent

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f s
en

t e
ch

o
 r

ep
lie

s

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 244 25. Mar. 2000

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350

Total.TCPIP.Total.# of received echo requests

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

q
u

es
ts

 f
o

r
tr

an
sm

is
si

o
n

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

\\FAW9595S.TCPIP.\\FAW9595S.# of packets received

\\F
A

W
95

95
S

.T
C

P
IP

.\\
F

A
W

95
95

S
.#

 o
f p

ac
ke

ts
 s

en
t

Workload Management
Conclusion

25. Mar. 2000 Page 245 Dipl.-Ing. Günther Strasser

0

100

200

300

400

500

600

700

0 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 500.000

Total.TCPIP.Total.# of broadcast packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f u
n

ic
as

t p
ac

ke
ts

 s
en

t

0

50

100

150

200

250

300

350

0 100.000 200.000 300.000 400.000 500.000 600.000

Total.TCPIP.Total.# of broadcast packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f s
en

t e
ch

o
 r

ep
lie

s

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 246 25. Mar. 2000

0

50

100

150

200

250

300

350

400

450

0 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 500.000

Total.TCPIP.Total.# of broadcast packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

q
u

es
ts

 f
o

r
tr

an
sm

is
si

o
n

0

50

100

150

200

250

300

350

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Total.TCPIP.Total.kB received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

ce
iv

ed
 e

ch
o

 r
eq

u
es

ts

Workload Management
Conclusion

25. Mar. 2000 Page 247 Dipl.-Ing. Günther Strasser

0

50

100

150

200

250

300

350

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Total.TCPIP.Total.kB received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
p

ac
ke

ts
 r

ec
ei

ve
d

0

50

100

150

200

250

300

350

400

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Total.TCPIP.Total.kB received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
re

q
u

es
ts

 f
o

r
tr

an
sm

is
si

o
n

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 248 25. Mar. 2000

0

20.000

40.000

60.000

80.000

100.000

120.000

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Total.TCPIP.Total.kB received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f i
n

p
u

t p
ac

ke
ts

 d
el

iv
er

ed
 s

u
cc

es
sf

u
lly

 to
 u

se
r-

p
ro

to
co

ls

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000

Total.TCPIP.Total.# of datagrams received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.k
B

 r
ec

ei
ve

d

Workload Management
Conclusion

25. Mar. 2000 Page 249 Dipl.-Ing. Günther Strasser

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000

Total.TCPIP.Total.# of datagrams received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f
b

ro
ad

ca
st

 p
ac

ke
ts

 r
ec

ei
ve

d

0

20.000

40.000

60.000

80.000

100.000

120.000

0 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 500.000

Total.TCPIP.Total.# of broadcast packets received

T
o

ta
l.T

C
P

IP
.T

o
ta

l.#
 o

f i
n

p
u

t p
ac

ke
ts

 d
el

iv
er

ed
 s

u
cc

es
sf

u
lly

 to
 u

se
r-

p
ro

to
co

ls

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 250 25. Mar. 2000

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000

\\FAW9595S.TCPIP.\\FAW9595S.# of checksum bad

\\F
A

W
95

95
S

.T
C

P
IP

.\\
F

A
W

95
95

S
.#

 o
f i

n
p

u
t p

ac
ke

ts
 d

el
iv

er
ed

 s
u

cc
es

sf
u

lly
 to

 u
se

r-
p

ro
to

co
ls

0

10

20

30

40

50

60

70

80

0 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 180.000 200.000

\\FAW9595S.TCPIP.\\FAW9595S.# of broadcast packets received

\\F
A

W
95

95
S

.T
C

P
IP

.\\
F

A
W

95
95

S
.#

 o
f r

ec
ei

ve
d

 e
ch

o
 r

eq
u

es
ts

Workload Management
Conclusion

25. Mar. 2000 Page 251 Dipl.-Ing. Günther Strasser

Association between the amount of allocated disk space vs. used disk space

The following picture shows the special case that there is a direct relationship
between the diskspace that is allocated on a logical drive and the time it was
accessed. Because most of the information on the disk is always used during the last
24 hours we assume that the disk is used as temporary storage and is cleared every
day.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

\\FAW9550S.Directory Tree.D:\.MB allocated

\\F
A

W
95

50
S

.D
ir

ec
to

ry
 T

re
e.

D
:\

.M
B

 a
llo

ca
te

d
 a

cc
es

se
d

 w
it

h
in

 1
 d

ay

This is an example of a finding in a special environment related case. This
information cannot be generalized but may be vital for the administration of the site
and for planning systems management activities or future purchase of new
equipment

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 252 25. Mar. 2000

9. Conclusion

In this dissertation we have presented the problems associated with workload
monitoring in distributed PC server systems in general and with long-term
monitoring in particular. We have shown how the problems can be overcome and
we discussed a full implementation of a suitable tool set. With the help of this tool
set two thorough case studies have been done and we have presented a summary of
the results including associations that could be found from the recorded data.

This chapter summarizes what was found over the course of the work on this
dissertation and from the evaluation of the data from these studies.

Long term monitoring is vital

The project succeeded in the sense that a robust tool could be created that is able to
monitor large amount of synchronized, meaningful data samples in a highly
distributed environment. From that raw data aggregated log records are stored in a
database. These information proved to be very useful for systems management
activities. In contrast to short-term observations of a few hours long-term
monitoring can reveal the cyclical up's and down's in the load that is put on the
systems.

In addition it became possible to view and examine parameters that are a
combination of the load from different applications and - to some degree - the data
can point to relations between different software products and layers within the
application structure.

Valuable information for planing and sizing decision can be retrieved: By achieving
a better understanding about the number of existing and active users and their
behavior SRVMONPM makes it possible to show which configuration parameters
are influenced by the number of users and which are not. It can be observed and
documented which resources are used near their limits during what periods of the
week and it is possible to find slots where the system is capable of handling more
load. That is a vital input for planing and sizing activities.

Because the tool documents the changes of parameters over a long time general
trends and technical architecture issues within one computer system can be
observed and visualized for several purposes. To some degree findings from that
documentation can be applied to similar systems.

The tool proved to be stable and efficient

During the case studies - some of them took several years - the tool run without
interruptions or faults. The stability mechanisms that were introduced over time,
showed to be robust and fault-tolerant. They can be used in a real 7x24 mode. But
that was not for free. In contrary, this topic was underestimated in the beginning. It
took a lot of serious effort to find a way to implement fault tolerant agent code that
can handle all the problems that may arise in the host system.

That is not only clean coverage of all possible error return codes of functions called
by the agent. In addition that means that the code may not even expect any call to a
system function or server API ever returning any value. Control processes, timers,
semaphores and parallel threads had to be used in order to catch every fault.

Simple dependencies do not exist

Despite of the assumptions found in several publications that it is easy to retrieve
whatever information is needed or to calculate related metrics from the parameters

Workload Management
Conclusion

25. Mar. 2000 Page 253 Dipl.-Ing. Günther Strasser

that can be measured, the data from the case studies did not yield the same result. In
contrary the observed systems have been behaving very different at different times.
Measured parameters, even if they depend on other parameters, seem to be
influenced by too many separate factors.

General model functions for deriving required metrics are either not existing or they
are only true for a very limited period and a certain restricted environment. As real-
world environments are much more complex than laboratory conditions it was not
possible to proof dependencies as those usually used for building the basis for many
models or deterministic analysis. Especially the number of active users is hardly
related with measured workloads. The data confirmed the speculation of several
authors that modeling techniques cannot be applied easily to distributed systems.

No "automatic" model

The consequence of the finding above is that against our initial expectation it was
not possible to find enough associations between different resource attributes that it
would make sense to generate a model engine for processing association tables
based on the results. There are a number of reasons why this effort has not yield the
expected results:

First, the behavior and relation between different components seem to change over
time. Whenever they are examined they are different. The often cited and used
assumptions, that important parameters of a computer system are a function of other
parameters all the time could not be validated by the recorded data.

Second, only simple relations could be checked (one parameter depends on a
second parameter). While the detection algorithm theoretically would be able to
check whether a parameter is associtaed to a group of parameters that did not work
in practice.

On one hand, there is the problem that some important data about the internal status
of the software (including the operating system) cannot be monitored. On the other
hand, PC servers (that process requests from a wide range of very individual and
different PC clients) behave much more stochastic than classical main frame
computers with their batch oriented data processing.

Lack of support for (load) monitoring

As mentioned before, a major problem concerning analyzing the data is the fact that
server applications do not report necessary status information about their resources.
What is reported and what is not reported is not thought out very well. Our
impression after four years of measuring data and adapting several products to the
monitoring infrastructure is that the supply with meaningful statistical data to help
in managing the application is an after-thought, at best, and not an essential part of
the development effort.

Often it is difficult to understand, why certain information is provided and other
equally important information is not. One striking example is when an network
application reports the number of buffers that were missing or could not be
allocated during a request, but it does not tell how many buffers are in use or free
during normal operation. Therefore an administrator never knows how critical the
operational status is until a problem occurs. Being short of any other information,
and because the corresponding parameter is only defined during startup, the only
thing an administrator can do is to oversize the parameter and hope that the
application will never hit the limit. Why not report the number of buffers used
and/or the number of buffers still available for other requests?. Only that insight
would give the tool an oppertunity to detect the behavior of the system, correlate
this with other conditions and help to react in problem situations.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 254 25. Mar. 2000

In the scientific area monitoring is most often associated with debugging distributed
applications as a part of software development. The fact that software has to be
operated in a complex environment and that the organization that has to do it needs
support and tools is still no accepted. Exceptions to that are applications that were
ported from the UNIX world, e.g. the TCP/IP protocol stack or the latest version of
DB2. There you get a lot of information about the current workload and internal
status. Obviously, many years in distributed multi-user environments sharpened the
sense for the many problems in that area. This may explain why monitoring is
totally neglected in most papers and books. Most writers, especially from
universities, are very familiar with UNIX but do not know other computing
platforms. In commercial environments UNIX is not very popular and you have to
deal with other platforms and other mind sets. OS/2 differs significantly from
UNIX and we addressed several problems with the PC based server operating
system.

No relevant information about resources is provided

The simple fact that a server application provides resources to others and consumes
resources from subsystems is not reflected in the information you get from
applications. Based on the experiences above basic prerequisites for a successful
load management are formulated in section “Monitoring Demands”.

Software not ready for 7x24 monitoring

A very annoying problem was the fact that application servers, although they may
provide an interface for monitoring, are not prepared for the existence of a monitor.
On certain conditions the use of an API function will not return an error code.
Instead it brings up a pop-up window on the screen and blocks all further
processing waiting for a user to respond. This are occasions when the single-user,
"personal computing" paradim of most PC software shows up in server software.
Robust data processing on a server (and monitoring as part of that) must be able to
execute unattended that is without the assumption that a user will look at and react
on such messages. Another problem area is that a server cannot perform certain
operations as long as the monitor is active and uses the interface of the software.

OS/2 is a suitable platform

Even with low-level OS/2 machines departmental environments can be handled
easily. Current PCs can handle large enterprise environments. The resource needs
of SRVMONPM are no match compared to mainframe or UNIX-based solutions.
Thus, this work shows how a complex systems management application can be
implemented in a way that does not demand lots of expensive hardware to monitor
a large amount of "clients" and process their data.

Though OS/2 is no longer popular in the marketplace most results can be applied to
Windows NT based server systems as well. Besides the close relationship between
the two operating systems, both imply the use of a large number of (relatively)
cheap machines which are distributed over the enterprise. Both handle resource
management, networking and server application control in very much the same
way.

Over the course of this work a general decline in the importance of departmental
servers could be observed. Many functions are move back into centers where more
sophisticated server applications based on internet technology (web servers with
CGI and Java) and groupware software (like Lotus Domino) offer more control and
management for enterprise data.

Workload Management
Conclusion

25. Mar. 2000 Page 255 Dipl.-Ing. Günther Strasser

Technical Observations

The following paragraphs summarize major findings from the analysis of the data
from the case studies (see chapter 2.3 for major findings and hypoteses about the
reasons for the results of the measurements):

! A number of data items depend on office hours. They are of a cyclic nature.
That came to no surprise. However, two things come to mind: it is not true that
everybody comes between 7:00 and 9:00 in the morning and starts to work with
the PC. In reality the load of "begin of day" work is distributed over the whole
morning. The maximum is reached during 12:30 and 14:00 and then begins to
decrease again. The same behavior could be noticed in several environments,
even with relatively strict working time regulations. To that respect this load
behavior is different to the statistics that are available for some internet servers
that show two peaks: one around 10:00 and the second around 14:00.

One possible consequence is that a significant percentage of people do not start
their PC in the morning but do some other work first. A related experiment
showed that this kind of "workload balancing" is an important factor for the
operation of file servers that share application code. If all employees of a
medium or large location would start their favorite applications (which range in
the size of few to many MBs today) nearly at the same time, even fast LAN
hardware would become a bottleneck that would paralyze the operation of the
system for hours.

! Only a few resource attributes show a direct association (correlation) with the
number of users. It follows that only a few metrics depend on the number of
active users. The number of users does not seem to be a relevant parameter for
sizing server capacity. Active users are users that have logged on to the domain
and that means that at least one session to one server has been established by
each user. Because enduser work on client PCs it is not possible to measure the
number of people actually using one of the servers in a domain.

! The majority of data items do not even correlate with work hours. Thus, it is not
likely that they do depend on user activities.

! The load that is put on file and print servers by end users is rather low and has
even been decreasing over the course of the study. There are two explanations
for that: First, loading applications usually happens once a day; often there is no
further access to the server while the application is running. Second, there is a
massive trend to the use of laptop computers; therefore all the application code
is installed at the laptop and no server is needed anymore.

! The load on the domain controller and the backup domain controller is shared
equally. This can be seen from the number of users which are handled by each
of the hosts. There is no measurable resource consumption (e.g. CPU) on these
kind of servers.

! Monday is the day of highest server usage. The number of connections decrease
over the week with Friday being the working day with the lowest number of
connections. Other values, like amount of data sent over the network indicate
the same.

! Within each day the time from 10:00 to 12:00 o'clock has the most activities.
Note, that this is not the time with the maximum of active users.

! The main resource that a server provides to remote machines is its disk space.
CPU, memory and network resources usually are less significant and their use is
rather stable.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 256 25. Mar. 2000

! Automated maintenance activities put more load on a system then normal user
activities.

! Blocked printer queues often remain blocked for hours; obviously people do not
care about their printouts.

! Connections to servers are used mainly after the connection was established.
Then the connection becomes idle and, eventually, is closed by the server.

! The number of real users of a server system is (usually) much lower than the
expected or planned number. Sometimes even administrators were astonished
by the real numbers. Not everybody uses the system all the time.

! No dependencies between resources on different hosts were detected. Each host
seems to be independent from the status/activity of other hosts.

9.1. Monitoring Demands

Concerning a smooth operation of a tool like SRVMONPM, a number of open
problems still exist:

! API functions that are called against a server, assume an interactive application.
Some of them display an error window on the screen of the host machine and
wait for user input instead of returning an error code. That blocks the agent and
in some cases the process cannot be terminated because of the open error
window.

As mentioned above robust server software must be able to run unattended.
That includes the ability to handle any error situation.

! Some server software cannot perform all of its function while a monitor is active
(e.g. backup).

Server software has to be able to operate all the day. It must not be influenced
by a monitor that uses its interface.

! Interfaces to retrieve workload data are commonly end-user oriented: sometimes
there is no suitable interface for a software monitor. The information that is
provided should be consistent and give necessary insight to the status of the
software and its resources.

Request For Improvements

With several years of experiences with monitoring and the behavior of server
software and its users we still see the need for improvements in the area of server
software in order to enable profound workload monitoring and - as a later step -
workload management.

First, server software must clearly define the resources it needs from other
subsystems and what (internal or external) resources it offers to others. Status
information about both types should be maintained. A monitor must be able to
access that data via an API. Whether this API is used and the way how this is done
must not influence the server application in any aspect.

Given that prerequisites, a workload monitor, like the one described in this paper,
can do its task. Dependencies and correlations between different server applications
can be discovered and modeled.

Workload Management
Conclusion

25. Mar. 2000 Page 257 Dipl.-Ing. Günther Strasser

Second, the server applications should support some external control about
resource consumption. Again an API should exist that lets a server application
allocate or free needed resources or make available more or less of the resources its
provides.

Third, server applications should support the construction of a "server cluster" that
can be used to ship service requests to a machine out of a set of possible choices.
Of course, without the proper support by the operating system it would be
extremely difficult to accomplish that goal.

An external tool - the workload balancing control mechanism - must be in charge to
decide where to route an incoming request.

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 258 25. Mar. 2000

References

[1] Bruce Elbert, Bobby Martyna, Client/Server Computing, Artech House
Inc., 1994

[2] IBM Inc, Local Area Network Technical Reference, SC30-3383-03,
4th edition, Dec. 1990

[3] Wolfgang Becker, Dynamische adaptive Lastbalancierung für große,
heterogene konkurrierende Anwendungen, Doktorarbeit an der Universität
Stuttgart, 1995

[4] M. Haas, W. Zorn, Methodische Leistungsanalyse von Rechensystemen, R.
Oldenbourg Verlag, 1995

[5] P.G. Harrison, N.M. Patel, Performance Modelling of Communication
Networks and Computer Architectures, Addison-Wesley, 1993

[6] H. Weber, Einführung in die Wahrscheinlichkeitsrechnung und Statistik
für Ingenieure, Teubner 1983

[7] D. Menascé, V. Almeida, L. Dowdy, Capacity Planning and Performance
Modeling, Prentice Hall, 1994

[8] D. Ferrari, G. Serazzi, A. Zeigner, Measurements and Tuning of Computer
Systems, Prentice Hall, Englewood Cliffs, N.J., 1983

[9] Computer Measurement Group (CMG), at www.cmg.org

[10] C. Smith, Performance Engineering of Software Systems, Addison-
Wesley, 1990

[11] R. Jain, The Art of Computer System Performance: Analysis, Techniques
for Experimental Design, Measurement, Simulation, and Modeling, Wiley,
1991

[12] S. Lam, S. and K. Chan, Computer Capacity Planning: Theory and
Practice, Academic Press, 1987

[13] H. Letmanyi, Guide on Workload Forecasting, Special Publication 500-
123, Computer Science and Technology, National Bureau of Standards,
Washington, D.C., 1985

[14] C. Rose, A measurement procedure for queueing network models of
computer systems, ACM Computing Surveys, Vol. 10, No. 3, 1978

[15] I. Borovits, S. Neumann, Computer System Performance Evaluation,
Lexington Books, 1979

[16] J. Cady, B. Howarth, Computer System Performance Management and
Capcity Planning, Prentice Hall, Australia, 1990

[17] M. Loukides, System Performance Tuning, A Nutshell Handbook, O'Reilly
& Associates, 1991

[18] Sun Microsystems, The BSD 4.2 System, Programmer's Guide, Sun, 1986

Workload Management
Conclusion

25. Mar. 2000 Page 259 Dipl.-Ing. Günther Strasser

[19] U. Lackner, Entwicklung eines wissensbasierten Systems zur
Leistungsnalyse von DV-Systemen, PIK - Praxis der
Informationsverarbeitung, Nr. 3, 1986

[20] R. Hofman, R. Klar, N. Luttenberger, B. Mohr, G. Werner, An approach
to Monitoring and Modeling of Multiprocessor and Multicomputer
Systems, Proceedings of the IFIP TC 7/WG 7.3 International Seminar on
Performance of Distributed and Parallel Systems, Elsevier Publishing
Company, 1988

[21] M. Raynal, J.-M. Helary, Synchronization and control of distributed
systems and programs, Wiley, 1990

[22] G. Nagl, F. Maybaum, H. U. Struve, M. Haas, VERONIKA - Verteiltes
BS2000-Monitorkonzept Karlsruhe, FZI Karlsruhe, 1992

[23] Candle, OMEGAMON für MVS, Effizientes MVS-Performance
Management und OMEGACENTER, 1990

[24] SNI, SM2 V10.0A Software Monitor, User's manual, SNI, 1991

[25] SNI, SM2-PA V1.0 SM2-Programmanalysator, User's manual, SNI, 1991

[26] Distributed Management Taskforce (DMTF), Whitepapers on the
Common Information Model, www.dmtf.org

[27] IBM, IBM Systems Monitor: Anatomy of a smart Agent, Second Edition,
IBM ITSO, 1996

[28] A. Hoetzel et al., Understanding RS/6000 Performance and Sizing, IBM
ITSO Redbook, 1997

[29] S. Suhy, Performance Tuning Windows NT, Microsoft, 1998,
(www2.slac.stanford.edu/winnt/perftune.htm)

[30] H. Merrill, MXG Guide - Merril's Expanded Guide to Computer
Performance Evaluation using the SAS System, Merrill Consultants, 1997

[31] M. Woodside, C. Schramm, Complex Performance Measurements with
NICE, Carleton University, Canada, 1995

[32] W. G. Pope, Planning Domino Email Servers using Notes Transactions,
IBM Watson Research, 1998

[33] W.G. Pope, A Planning Model for Lotus Notes Applications, IBM Watson
Research, 1998

[34] T. Winkelmann, G. Strasser et. al., Distributed Systems Monitoring, IBM
ITSO, 1999/2000

[35] M. G. Kendall, Rank Correlation Methods. Fourth edition. London:
Griffin, 1970

[36] M. Johnson, The Application Response Measurement API, Version 2,
CMG, www.cmg.org/regions/cmgarmw/marcarm.html, 1997

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 260 25. Mar. 2000

[37] M. Katchabaw, S. Howard, H. Lutfiyya, A. Marshall, M. Bauer, Making
distributed applications manageable through instrumentation, The Journal
of Systems and Software 45, p81-97, Elsevier Science, 1999

[38] J. Hartung, B. Elpert, K.H. Klösener, Lehr- und Handbuch der
angewandten Statistik, 10. Auflage, Oldenburg, 1993

Further Readings

X.400 Systems Management Standards

Robert Orfali, Dan Harkey, Client/Server Survival Guide, VNR, 1994

IBM Inc, Workload Manager Presentation Guide, ZZ81-0335-00, May 1994

Shun Yan Cheung, Vaidy S. Sunderam, Performance of Barrier Synchronization
Methods in a Multi-Access Network, Emory University, Atlanta

Paul A. Fishwick, SIMPACK: Getting Started with Simulation Programming in C
and C++, University of Florida, Gainsville, 1995

IBM Inc, CICS Workload Management Using CICSPlex SM and the MVS/ESA
Workload Manager, GG24-4286-00, December 1994

B. Walke, O. Spaniol, Messung, Modellierung und Bewertung von Rechen- und
Kommunikationssystemen, Springer Verlag, (1993)

J. W. Wong, Performance Modeling of ATM-Based Networks, University of
Waterloo, Ontario, Canada

H Wabing, G. Kotsis, G. Haring, Performance Prediction of Parallel Programs,
University of Vienna

B. Meyer, C. Popien, Modellierungs- und Bewertungskonzepte für ODP-
Architekturen, RWTH Aachen

T. Heinrichs, B. Bärk, J. c. Strelen, Wartezeiten für Pollingsysteme mittels
numerischer Modelle, Rheinische Friedrich-Wilhelms-Universität Bonn

M. N. Huber, V. H. Tegtmeyer, Bandwidth Management of Virtual Paths -
Performance Versus Control Aspects, Siemens AG

R. Hofmann, Gemeinsame Zeitskala für lokale Ereignisspuren, Universität
Erlangen

V. Klinger, Ein hybrider Computerbus-Monitor, Universität Hamburg-Harburg

J. Aman, C.K. Eilert, D. Emmes, P. Yocom, D. Dillenberger, Adaptive algorithms
for managing a distributed data processing workload, Systems Journal, Vol. 36,
No.2, IBM, 1997

Hans-Ulrich Heiß, Überlast in Rechensystemen, Informatik Fachberichte, Springer
1988

L. Kleinrock, Queueing Systems, Volume II: Computer Applications, John Wiley
and Sons, NY 1975

Workload Management
Conclusion

25. Mar. 2000 Page 261 Dipl.-Ing. Günther Strasser

Shui F. Lam, K. Hung Chan, Computer Capacity Planing, Academic Press, Inc.,
1987

U. Herzog, M. Paterek, Messung, Modellierung und Bewertung von
Rechensystemen, Springer Verlag 1987

Modelling Techniques and Tools for Performance Analysis, Elsevier Science
Publishers 1986

IBM Inc., OS/390 Resource Management Facility Report Analyses, SC28-1950-02,
IBM, 1997

K.-L. Wu, P.S. Yu, A. Ballmann, SpeedTracer: A Web usage mining and analyses
tool, IBM Systems Journal, Vol.37, No. 1, 1998

T. Lo, Computer workload forecasting techniques: a tutorial, Proceedings of the
International Conference on Computer Capacity Management, 1980

R. Weicker, An overview of common benchmarks, IEEE Computer, 1980

I. Schulte, SINIX-Benchmarking - aktuelle Entwicklungen and applications, SAVE
Tagung, 1993

J. Gray, The Benchmark Handbook for Database and Transaction Processing
Systems, Morgan Kaufmann, 1991

A. M. Law, W. D. Kelton, Simulation Modelind and Techniques, 2nd ed.,
McGraw-Hill, 1990

M. H. MacDougall, Simulating Computer Systems: Techniques and Tools, MIT
Press, 1987

S. M. Ross, A Course in Simulation, Macmillan, 1990

L. Kleinrock, Queueing Systems, Volume I, John Wiley and Sons, 1975

L. Kleinrock, Queueing Systems, Volume II, John Wiley and Sons, 1976

J. D. C. Little, A proof of the queueing formula L = λW, Operations Research, Vol.
9, 1961

P. J. Denning, J. P. Buzen, The operational analysis of queueing network models,
Computing Surveys, Vol. 10, No. 3, 1978

E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik, Quantitaive System
Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall, 1984

M. Resier, S. S. Lavenberg, Mean value analysis of closed multichain queuing
networks, Journal of the ACM, Vol. 27, No. 2, 1980

K. K. Chandy, U. Herzog, L. S. Woo, Parametric analysis of queueing networks,
IBM Journal of Research and Development, Vol. 19, No. 1, 1975

R. R. Muntz, J. W. Wong, Asymptotic properties of closed queueing network
models, Proceedings of the 8th Princeton Conference on Information Sciences and
Systems, 1974

Workload Management
Conclusion

Dipl.-Ing. Günther Strasser Page 262 25. Mar. 2000

J. Zahorjan, K. C. Sevcik, D. L. Eager, B. I. Galler, Balanced job bound analysis of
queueing networks, Communications of the ACM, Vol. 25, No. 2, 1982

F. Baskett, K. Chandy, R. Muntz, F. Palacios, Open, closed, and mixed networks of
queues with different classes of customers, Journal of the ACM, Vol. 22, No. 2,
1975

J. C. Lowery, Calibration and predictive modeling of computer systems, Ph.D.
dissertation, Vanderbilt University, 1992

J. P. Buzen, A. Shum, Model calibration, Proceedings of the 1989 CMG
Conference, 1989

J. Flowers, L. W. Dowdy, A comparison of calibration techniques for queueing
network models, Proceedings of the 1989 CMG Conference, 1989

J. Maierhofer, H. Schmitt, Introduction to BORIS - a block-oriented Interactive
Simulation System, Siemens, 1982

B. Page, Diskrete Simulation, Springer Verlag, 1992

ITR: SNAPL/1 Language Reference Manual, Instituut vir Toegepaste
Rekenaarwetenskap, University of Stellenbosch, South Africa, 1982

Siemens, Modellierung und Simulation informationstechnischer Systeme, Siemens,
1985

C. H. Sauer, E. A. MacNair, J. F. Kurose, The Reasearch Queueing Package V2:
CMS user's guide, IBM Research Division, 1982

Fromm, Modellierung von Rechnersystemen, Universitäts Karlsruhe, 1990

C. Hrischuk, J. Rolia, C. M. Woodside, Automatic Generation of a Software
Performance Model Using an Object-Oriented Prototype, Carleton University,
Canada, 1995

P. Zave, An insider evaluation of paisley, IEEE Transactions on Software
Engeneering, 1991

V. Berzins, Luqi, Rapidly prototyping real time systems, IEEE Software, 1988

G. M. Karam, The MLog user's guide, Carleton University, 1992

C. M. Woodside, J. E. Neilson, D. C. Petriu, S. Majumdar, The stochastic
rendezvous network model for performance of synchronous multi-tasking
distributed software, IEEE Transactions on Software Engeneering, 1994

J. A. Rolia, Predicting the Performance of Software Systems, University of
Toronto, 1992

D. Ferrari, Computer Systems Performance Evaluation, Prentice Hall, 1978

J. W. Boyse, D. R. Warn, A straightforward Model for Computer Performance
Prediction, Computing Surveys, Vol. 7, No. 2, 1975

J. P. Buzen, Fundamental operational laws of computer system performance, Acta
Informatica 7, Vol. 2, 1976

Workload Management
Conclusion

25. Mar. 2000 Page 263 Dipl.-Ing. Günther Strasser

J. P. Buzen, P. J. Denning, Operational Teatment of Queue Distributions and Mean
Value Analysis, Computer Performance, Vol. 1, No. 1, 1980

D. Menascé, V. Almeida, Capacity Planning for Web Performance, Metrics,
Models and Methods, Prentice Hall, 1998

Appendices

Dipl.-Ing. Günther Strasser Page 264 25. Mar. 2000

Appendices

Appendix A. Terms Used In This Paper

Term Description

7x24 continous (uninterrupted) operation of a computer
system. That includes all measures taken to keep
up operation during maintainance and service
activities.

Class Definition is the data structure that describes the (common)
attributes of all monitor objects of the same class.
Beside other things it contains the field definitions,
which describe all attributes (data items) that are
provided by one monitor object about an
associated resource.

Collection Server is the component that is used to store and
forward information. Workload data are received
from monitoring agents and are sent to an
intermediate server.

Field Definition describes one attribute about a give resource. This
contains the name of the attribute, it's unit and the
type (normalized, delta or absolute)

Host is the machine where server applications and
monitor agents execute.

Infrastructure Design is the task of understanding the requirments against
the needed infrastructure of a system, insulating
the components that will make up the system,
planning the capacity and sizing the components,
choosing available products and compose
everything to a running system.

In contrast to software design there are no
common, publically known methods. Some
companies, like IBM, have developed their own
methods.

Intermediate Server is a collection server that can be accessed by the
front end application (workload manager)

Machine Definition is the data structure that is used to store and
organize all workload data for a certain host.

Module Presentation Object is the primary means of communication between
agent and monitor module. It provides a list of
monitor factory objects to the agent.

Monitoring Agent is the program that executes at a target host and
which controls the operation of resource monitor
objects.

Monitor Class represents the knowledge on how to retrieve and
process workload information about a particular
resource.

An important task of a monitor class is its object
factory. The class is responsible for creating
monitor objects for each monitored resource. Thus,

Appendices

25. Mar. 2000 Page 265 Dipl.-Ing. Günther Strasser

Term Description

it is an important part during the resource
discovery process on a monitored client.

Monitor Domain is the set of all agents that report their data to the
same physical collection (or intermediate) server

(Monitor) Factory Object is the object that implements the knowledge about
detection of resources and the creation of monitor
objects.

Monitor Module is a dynamic link library that contains all
neccessary code to detect and access resource
information and it provides some information to
control presentation and analyses; the code in the
module is structured in monitoring classes

Monitor Object abreviation for resource monitor object

Resource Monitor Object is a C++ object which has the knowledge and data
to query and process the workload information
about an existing instance of a computer resource;
e.g. partition index C on the disk array of server
A.; it monitors a resource at the local host

Resource Proxy is a resource monitoring object that monitors a
resource on a remote host

Server Application
Target Application

is a program which runs on a server and which is
monitored (that is, load and performance
information is retrieved from that application)

Workload Agent is a small program which runs on a machine, which
is to be monitored, and which is the platform for
monitor objects.

Workload Manager is the central front end of the application. It
collects and processes workload data.

Appendices

Dipl.-Ing. Günther Strasser Page 266 25. Mar. 2000

Appendix B. Abbreviations

Abbreviation Explanation or full wording

ARM Application Response Measurement

CIM Common Information Model of the DMTF

DLL dynamic link library

DMTF Distributed Management Taskforce

FFST First Failure Support Technology

GUI graphical user interface

IPC inter process communication

NCB network control block; a data structure which is used in the
NETBIOS communication stack to issue commands to control
basic network operations

NOS network operation system
e.g: the IBM LAN SERVER product

OS operating system

PM Presentation Manager
that is the window system of OS/2

RMF IBM Resource Management Facility

sar UNIX System Activity Reporter

SIP Unisys Software Instrumentation

SMF IBM System Management Facility

WMI Windows Measurement Instrumentation

Appendices

25. Mar. 2000 Page 267 Dipl.-Ing. Günther Strasser

Appendix C. Adding New Monitor Classes

At many places throughout this document it was mentioned that new monitor modules
can be added to the system and that they will be integrated seamlessly. This chapter
describes how this can be accomplished by a C++ developer.

Developer's Toolkit

In order to enable a developer to write a new module a developer's kit is part of the
monitoring package. It consist of a number of include and library files and two example
modules which demonstrate the creation of some simple classes and which may be used
as a boilerplate for new modules.

Core Classes And Their Methods

The following paragraphs demonstrate the usage of one sample class and what a
developer has to do to create a new monitor module. Code fragments from the example
file SRVMLSM1.CPP and SRVMLSM1.HPP are used in the examples below.

While the examples keep the class declarations in separate include files this is not a
prerequisite of the application. If the declarations are not used in other source files they
may as well reside in the source file of the monitor module.

Note that two DLLs will be created: one that will be used at the agent and which has to
be bound to any libraries of the application to be monitored; and one which will be used
at the manager and which must not be bound to such libraries (if that creates the need to
link to application specific DLLs that will not be available at the manager station). A
developer may choose to write to different source files for that purpose. But it is
recommended that only one source file is maintained and that precompiler directives are
used to control the generation of the necessary code. Therefore the descriptions below
will point out in which DLL the code fragment is needed.

First we will look at the declarations which are needed to build the module. Two classes
must be provided for monitoring: the retriever object, which is a subclass of the core
class RETRIEVER, and a monitor class, which is subclass of the core class
CLASS_DEF.

#ifdef AGENT

typedef class MONSMP_LOCAL_STATIC: public RETRIEVER {
 unsigned short CurrValue;
public:
 MONSMP_LOCAL_STATIC (PMACHINE pS, PCLASS_DEF pClass);
 virtual void InitData (void);
 virtual void NewValue (DATAITEM aVal[VALUE_ARRAY]);
} *PMONSMP_LOCAL_STATIC;

typedef class MONSMP_LOCAL_DYNAMIC: public RETRIEVER {
 unsigned short CurrValue;
public:
 MONSMP_LOCAL_DYNAMIC (PMACHINE pS, PCLASS_DEF pClass, char *n);
 virtual void InitData (void);
 virtual void NewValue (DATAITEM aVal[VALUE_ARRAY]);
} *PMONSMP_LOCAL_DYNAMIC;

#endif

The example defines two types of retriever objects. Because retriever objects are used
only by the agent the ifdef directive is used to control the generation of this code

Appendices

Dipl.-Ing. Günther Strasser Page 268 25. Mar. 2000

fragment. Each retriever object class must declare a constructor method and the virtual
method NewValue, which is responsible for retrieving the load data. All other methods
are optional. The use of the method InitData, which is called once before monitoring
begins, may be useful for initialization that cannot be done during the creation of the
object but must be done before the actual monitoring.

typedef class CLASS_SMP_LOCAL_STATIC: public CLASS_DEF {
public:
 CLASS_SMP_LOCAL_STATIC (void);
#ifdef AGENT
 virtual PRETRIEVER BeginEnumObjects (PMACHINE pServer);
 virtual PRETRIEVER GetNextObject (PMACHINE pServer);
#else
 virtual int getDefaultViewDefinition (int Index,

DEFAULT_VIEW_DEF
&DefViewData);
#endif
} *PCLASS_SMP_LOCAL_STATIC;

typedef class CLASS_SMP_LOCAL_DYNAMIC: public CLASS_DEF {
public:
 CLASS_SMP_LOCAL_DYNAMIC (void);
#ifdef AGENT
 virtual PRETRIEVER BeginEnumObjects (PMACHINE pServer);
 virtual PRETRIEVER GetNextObject (PMACHINE pServer);
#endif
} *PCLASS_SMP_LOCAL_DYNAMIC;

For each retriever object a monitor class must be defined as well. The class definitions
are shared between agent and manager code. Each class must define the following
methods:

! The constructor must be defined in any case (agent and manager).

! At the agent the virtual methods BeginEnumObjects and GetNextObject must be
defined; These methods return retriever objects. GetNextObject will be called as
long as it returns a pointer to an object. If no more objects can be created (there are
no more resources to be monitored) the method returns NULL.

! At the manager the virtual method getDefaultViewDefinition should be defined. It
returns defaults for the view definition (see below). If the method is not provided no
view definition will be created and the user must do that manually.

#define INCL_WIN

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <os2.h>

#include <srvmdevl.hpp>
#include "srvmlsm1.hpp"

It is very likely that a monitor module needs the include files in the example above.

Appendices

25. Mar. 2000 Page 269 Dipl.-Ing. Günther Strasser

static FIELD_DEF
 LocalStaticFlds[] = {

{ FLDDEF_ABSOLUTE, "Item A1" },
{ FLDDEF_ABSOLUTE | FLDDEF_NORMALIZED, "Item

B1" } },
 LocalDynamicFlds[] = {

{ FLDDEF_ABSOLUTE, "Item A2" },
{ FLDDEF_ABSOLUTE, "Item B2" },
{ FLDDEF_ABSOLUTE, "Item C2" },
{ FLDDEF_ABSOLUTE, "Item D2" } };

static char *DemoRole = "Demonstration";
static char *ClassRole = DemoRole;

The FIELD_DEF structure defines data items of a monitor class. The definitions
consists of a number of flags and the name of the data item. The flags are important for
the processing and display of the data and it is very important that the developer defines
them correctly. Following flags are available:

! FLDDEF_DELTA:

The value of the data item is the delta of the real data within one sample interval.
Usually running counters are represented by deltas.

! FLDDEF_ABSOLUTE:

The value of the item contains the real data as they are retrieved from/about the
resource. No deltas are calculated.

FLDDEF_DELTA and FLDDEF_ABSOLUTE are exclusive - only one of the can be
used for one item.

! FLDDEF_NORMALIZED:

The value of the item was normalized into a certain value range. For example
percentages are normalized values. The value range is defined by the retriever code
and it is not known to the monitoring application.

Normalized values are treated differently in total pages of view notebooks: the
manager does not calculate the sum of all items but an average instead.

The field definitions are used for the monitor class construction (see below). The same
is true for the definition of the role (ClassRole).

The next code fragment contains all the code to implement one monitor class.

Appendices

Dipl.-Ing. Günther Strasser Page 270 25. Mar. 2000

/**
**
** class LOCAL_STATIC
**
** example for a monitor class which provides one retriever object for a
server.
** The object is added to the "global server" views. Note the following things:
**
** + the class attribute CLASS_TYPE_GLOBAL is used; consequently the data are
** displayed in global views
**
** + only one instance of a retriever object must be created per server;
** therefore the method BeginEnumObjects creates and returns one object and
** the method GetNextObject returns NULL to signal that no more objects of
** this class will be created for the server
**
**/

CLASS_SMP_LOCAL_STATIC::CLASS_SMP_LOCAL_STATIC (void):
 CLASS_DEF ("smp_local_static", // internal class key
 "Local & Static", // name in the user interface
 CLASS_TYPE_GLOBAL, // class attributes
 2, // number of data items
 LocalStaticFlds, // description of data items
 ClassRole)
{
}

The constructor of the core class needs the following arguments:

! the class key; the key must not contain blanks (white space character)
! the name of the class, which is used in the user interface
! class flags (see below)
! the number of data items that are provided by retriever objects of that class
! an array of definitions of the data items
! the role to which the class belongs

Following class flags can be used:

! CLASS_TYPE_DYNAMIC:

The monitor class is written for a number of resources which may vary in number
and which may appear and disappear over time. Therefore the class is called
dynamic. The application expects that the method GetNextObject returns several
objects. Nevertheless it is possible that the class does not return any object if no
resource does exist at a certain moment.

The methods BeginEnumObjects and GetNetxObject will be called in regular
intervals to check whether new resources appeared in the system or existing objects
became obsolete.

An example of such a class are the LAN server (shared) net names (connections):
new net names can be created dynamically and may disappear as well. The number
of net names cannot be foreseen and is dynamic.

! CLASS_TYPE_GLOBAL:

The monitor class is the opposite of a dynamic class: it monitors certain aspects of an
application or system, which is independent of the existence of resources. Therefore
exactly one retriever object is created. Views of this object are accessed via the
menu of the "global" icon in the monitor selection.

Appendices

25. Mar. 2000 Page 271 Dipl.-Ing. Günther Strasser

The method BeginEnumObjects is called once. GetNextObject is called for
consistency reasons but it is expected that the method returns NULL.

An example of such a class is the DB2 Database Engine: if the database engine is
active on a machine, it provides load information independent of the existence of
databases (while monitoring database instances requires a dynamic monitor class).

#ifdef AGENT

PRETRIEVER
CLASS_SMP_LOCAL_STATIC::BeginEnumObjects (PMACHINE pServer)
{
 return (new MONSMP_LOCAL_STATIC (pServer, this));
}

PRETRIEVER
CLASS_SMP_LOCAL_STATIC::GetNextObject (PMACHINE pServer)
{
 return (NULL);
}

#else

BeginEnumObjects creates and returns a retriever object. GetNextObject returns NULL
because it is a global class.

#else

#define WMID_DEMO 1540

int
CLASS_SMP_LOCAL_STATIC::getDefaultViewDefinition (

int Index,
DEFAULT_VIEW_DEF &DefViewData)

{
 switch (Index) {
 case 0:
 strcpy (DefViewData.ViewName, "Demo");
 strcpy (DefViewData.MenuEntry, "Demo");
 strcpy (DefViewData.Key, "A");
 DefViewData.MenuID = WMID_DEMO;
 DefViewData.GraphNum = 2;
 DefViewData.GraphDef[0].DataIndex = 0;
 DefViewData.GraphDef[0].LensType = VIEW_LENS_NORMAL;
 DefViewData.GraphDef[1].DataIndex = 1;
 DefViewData.GraphDef[1].LensType = VIEW_LENS_NORMAL;
 return TRUE;
 default:
 break;
 } /* endswitch */
 return FALSE;
}

#endif

The method getDefaultViewDefinition is used at the manager when it detects a class
for which no view definition does exist and no entry in the view creation table can be
found. The view creation table contains an entry for each class for which the default
views were created. If the user removes the views later the manager will not recreate the
views again.

Appendices

Dipl.-Ing. Günther Strasser Page 272 25. Mar. 2000

The method is called several times while incrementing the parameter Index until it
returns FALSE. During each invocation the method has to fill the view definition
structure. The structure consists of:

! the name of the view
! the menu entry by which the view is accessible to the user
! menu id (it must be unique within one PM menu)
! a unique44 "key"
! the number of graph lines; maximal 6 lines can be used in a view
! up to six line definitions which consist of:

! the index of the data item which is represented by the line
! the lens which is used to display the item (use either

VIEW_LENS_NORMAL or VIEW_LENS_AVERAGE; other settings
should be done by the user via the view definition window)

/**
**
** MONSMP_LOCAL_STATIC
**
** is a retriver object. It has to implement the way how data about the network
** or server will be retrieved
**
**/

MONSMP_LOCAL_STATIC::MONSMP_LOCAL_STATIC (PMACHINE pS, PCLASS_DEF pClass):
 RETRIEVER (pS, pClass, pS -> Name)
{
} /* MONSMP_LOCAL_STATIC */

void
MONSMP_LOCAL_STATIC::InitData (void)
{
 CurrValue = 0;
} /* InitData */

void
MONSMP_LOCAL_STATIC::NewValue (DATAITEM aVal[VALUE_ARRAY])
{
 aVal[0] = (CurrValue + rand () % 100) % 3000;
 aVal[1] = (CurrValue + rand () % 100) % 3000;
 CurrValue = (CurrValue + rand () % 50) % 3000;
 ErrorCode = 0;
} /* NewValue */

The implementation of the retriever object is extremely simple in this example. In reality
the logic to retrieve the required information will be placed in the method NewValue.

44 The key has to be unique within the same monitor class. Views of different monitor classes can reuse the
same keys.

Appendices

25. Mar. 2000 Page 273 Dipl.-Ing. Günther Strasser

/**
**
** class LOCAL_DYNAMIC
**
** example for a monitor class which provides a number of retriever object for a
** server.
** The object is added to the "server" views. Note the following things:
**
** + the class attribute CLASS_TYPE_GLOBAL is NOT used; consequently the data are
** displayed in global views
**
** + the class attribute CLASS_TYPE_DYNAMIC is used; that means that the resources
** on the network, which are monitored by this class, may appear or disappear
** dynamically. Therefore from time to time the class will be asked to check
** for new objects. Retriever objects of resources which do not longer exist are
** not removed from the monitor engine. They have to return VALUE_UNDEFINED to
** signal that no connection to resource does exist.
**
** + several instances of a retriever object will be created per server;
** therefore the method BeginEnumObjects initialises the enumeration of objects
** and uses the method GetNextObject to return the first retriever object.
** The method GetNextObject creates more objects. Finally it returns NULL to
** signal that no more objects of this class will be created for the server
** Note:
** Servername and class name and object name are used as keys for each object.
** If the same object is created again during a refresh the monitor engine
** checks for any existing key. If it finds a matching key the new object is
** destructed immediatelly. Therefore you do not have to bother with the
** existance of "old" retriever objects while you are creating new objects
**
**/

CLASS_SMP_LOCAL_DYNAMIC::CLASS_SMP_LOCAL_DYNAMIC (void):
 CLASS_DEF ("smp_local_dynamic", // internal class key
 "Local & Dynamic", // name in the user interface
 CLASS_TYPE_DYNAMIC, // class attributes
 4, // number of data items
 LocalDynamicFlds, // description of data items
 ClassRole)
{
}

PRETRIEVER
CLASS_SMP_LOCAL_DYNAMIC::BeginEnumObjects (PMACHINE pServer)
{
 // query number of entries
 Entries = 3;
 NextIndex = 0;
 return (GetNextObject (pServer));
}

static void
QueryNextObject (int Index, char *NameBuffer)
{
 sprintf (NameBuffer, "Obj %d", Index);
}

PRETRIEVER
CLASS_SMP_LOCAL_DYNAMIC::GetNextObject (PMACHINE pServer)
{
 char Buffer[20];
 PRETRIEVER pRet;

 while (NextIndex < Entries) {
 // query data of next retriever object

Appendices

Dipl.-Ing. Günther Strasser Page 274 25. Mar. 2000

 QueryNextObject (NextIndex, Buffer);
 NextIndex++;
 pRet = new MONSMP_LOCAL_DYNAMIC (pServer, this, Buffer);
 if (pRet)
 return (pRet);
 }
 return (NULL);
}

MONSMP_LOCAL_DYNAMIC::MONSMP_LOCAL_DYNAMIC (
PMACHINE pS,
PCLASS_DEF pClass,
char *n):

 RETRIEVER (pS, pClass, n)
{
} /* MONSMP_LOCAL_DYNAMIC */

void
MONSMP_LOCAL_DYNAMIC::InitData (void)
{
} /* InitData */

void
MONSMP_LOCAL_DYNAMIC::NewValue (DATAITEM aVal[VALUE_ARRAY])
{
 int i;

 for (i = 0; i < 4; i++) {
 aVal[i] = (CurrValue + rand () % 100) % 3000;
 } /* endfor */
 CurrValue = (CurrValue + rand () % 50) % 3000;
 ErrorCode = 0;
} /* NewValue */

The implementation of a dynamic class is more complex - even in this very simple
example. Note the following differences to the first example above:

1. BeginEnumObjects typically initializes the search for existing resources and then
calls GetNextObject, which implements the resource lookup and monitor creation.

2. GetNextObject will rely on some C code to communicate with the target application
and get information about available resources. In the example the function
QueryNextObject simulates such a C code.

3. GetNextObject creates a retriever object. It must provide all relevant information to
the constructor of the object. At the minimum this is the name of the new object
because the objects needs that for its construction. It should be avoided that the new
retriever objects has to access the target application again to ask for information
about the resource. Usually GetNextObject will have that information right at hand.

4. The target application may provide a list of available resources as one piece of
information. Because GetNextObject returns one retriever object with each
invocation and it must be avoided that it asks for the same information many time,
the class must use some static memory to store information about other resources for
future use. This is simple because only one instance of the monitor class will exist in
the system.
At the same time it should be avoided to mix different classes. Each class must act
as if there are no other monitor classes. It is not allowed that a class relies on
information which has to be provided by another class.

Appendices

25. Mar. 2000 Page 275 Dipl.-Ing. Günther Strasser

5. Server (machine) name, class key and resource name are used to create a unique key
for retriever objects (and related monitors). Therefore it is very important that this
names are chosen in a way that guarantee uniqueness.

After the monitor classes and retriever objects are defined the only thing missing is the
mechanism to export them to the load monitor application:

/**
**
** class MODULE_PRESENTATION
**
** is used to provide the interface of the DLL to the monitor engine.
** One instance of this class must be created. It contains the list of monitor
** classes which are provided by the DLL.
**
**/

class SMP_MODULE_PRESENTATION: public MODULE_PRESENTATION {
public:
 virtual void getClassDefinitions (PMODULE_CLASS_DEF pModClassDef);
 virtual int getModuleCopyright (char *TextBuffer, unsigned long
BufferSize) const;
#ifndef AGENT
 virtual int getRoleDefinitions (PMACHINE_ROLE pMachineRole[]);
#endif
} SmpModulePresentation;

The module must provide an object which is a subclass of
MODULE_PRESENTATION. The virtual methods, which are shown in the example,
may be overwritten.

Appendices

Dipl.-Ing. Günther Strasser Page 276 25. Mar. 2000

static CLASS_SMP_LOCAL_STATIC ClassLocalStatic;
static CLASS_SMP_LOCAL_DYNAMIC ClassLocalDynamic;

void
SMP_MODULE_PRESENTATION::getClassDefinitions (PMODULE_CLASS_DEF
pModClassDef)
{
 pModClassDef -> pClassArray[0] = &ClassLocalStatic;
 pModClassDef -> pClassArray[1] = &ClassLocalDynamic;
 pModClassDef -> nClasses = 2;
}

int
SMP_MODULE_PRESENTATION::getModuleCopyright (char *TextBuffer, unsigned
long BufferSize) const
{
 sprintf (TextBuffer, "Sample Data Query, Version 1.0\n by G nther
Strasser\n (C) 1994, 1995\n");
 return TRUE;
} /* getModuleCopyright */

#define ICON_SERVER 2
#define ICON_STAT 3

int
SMP_MODULE_PRESENTATION::getRoleDefinitions (PMACHINE_ROLE
pMachineRole[])
{
 pMachineRole[0] = new MACHINE_ROLE (DemoRole,

(HPOINTER) WinLoadPointer
(HWND_DESKTOP, hMod, ICON_SERVER),

(HPOINTER) WinLoadPointer
(HWND_DESKTOP, hMod, ICON_STAT));
 return 1; // returns number of defined roles
}

The method getClassDefinitions fills an array of pointers to classes. The module must
make sure that the class instances still exist after the method returns. It is recommended
that the class instances are created as static objects - like in the example. It would be
possible to build them dynamically by the use of the new operator. This method must be
implemented by each module (otherwise it would not export its class definitions).

getModuleCopyright fills some text into the text buffer. When any part of the monitor
application is started the method is called for each class and the text is written to stdout.

getRoleDefinitions may be used to define new roles. A role consist of a name
(DemoRole) and two icons: one for the global information and one which is used for
each machine instance. The variable hmod is the module handle of the module and is
provided as public member of MODULE_PRESENTATION.

Appendices

25. Mar. 2000 Page 277 Dipl.-Ing. Günther Strasser

/**
**
** define module interface
**
** The function SmpQueryPresentation must be exported by the DLL.
** The name of the DLL and the name of the function have to be added to the
** file SRVMCODE.MOD in the working directory of SRVMONPM.EXE.
** After restarting the tools the new DLL will be loaded.
**
** Note:
** You may use any name for this function.
** Use C calling/naming convention for this function.
**
**/

extern "C" {
 PMODULE_PRESENTATION _Export SmpQueryPresentation (void);
}

PMODULE_PRESENTATION _Export
SmpQueryPresentation (void)
{
 return (&SmpModulePresentation);
} /* SmpQueryPresentation */

The last part is the definition of a function - with C calling convention - that does
nothing else then returning the address of the module presentation object. The name of
the module and the function must be registered in the file SRVMCODE.MOD:

local SRVMDFLT DefQueryPresentation
remote SRVMDFLT DefQueryPresentation
local SRVMLRMT RemQueryPresentation
client SRVMRRMT RemQueryPresentation
local SRVMLACS RemQueryPresentation
client SRVMRACS RemQueryPresentation
local SRVMLSRV RemQueryPresentation
client SRVMRSRV RemQueryPresentation
local SRVMLDB2 RemQueryPresentation
client SRVMRDB2 RemQueryPresentation
local SRVMLD22 RemQueryPresentation
client SRVMRD22 RemQueryPresentation

Two entries are necessary: one with the keyword local which signals to the application
that the module has to be used at the manager; the second with the keyword client if the
module is used at the agent for monitoring of the agent's machine, or remote if the code
accesses information about remote machines (the agent was started with one of the /s
arguments).

Cookbook To Build Your Own Module

When creating a new module follow the steps below:

1. Define what data you want to add to the monitoring system and think about the way
you can efficiently access them.

2. Encapsulate the data access in a thin C or C++ layer which may be used for testing
and binding to the monitor module.

3. Copy a template.

Appendices

Dipl.-Ing. Günther Strasser Page 278 25. Mar. 2000

4. Define the monitor classes by subclassing the base class and fill the required virtual
functions as described above.

5. Build a module for use at the agent (with your data access layer) and a module for
use at the manager (with resource and view definitions)

6. Add the names of your modules to the module registration file
(SRVMCODE.MOD).

7. Test the module.

8. Check the ranges of the data items and calibrate them if necessary.

Distribute the new monitor module to all agents.

Appendices

25. Mar. 2000 Page 279 Dipl.-Ing. Günther Strasser

Appendix D. Important Classes of the Monitor Agent

DATAITEM

This class represents one piece of information that is returned by a monitor object for
each item of the class. It is implemented as an unsigned short integer and some methods
enforce the meaning of overflowed and undefined mode of the sample data.

Possible values are in the range of 0 and 65533 (hex 0xFFFD). The integer value hex
0xFFFE is interpreted as overflowed (VALUE_MAXIMUM) and hex 0xFFFF has the
certain meaning undefined (VALUE_UNDEFINED) and, therefore, both do not
represent a valid number.

There is a problem when the possible value range is much larger than 65533 and scaling
is not applicable for all types of target machines. A good example is the number of files
on a server: it depends on the number disks and the size and usage of each disk. It may
be below 10.000 as well greater then 500.000. The only solution I see at the moment
would be that the monitor agent decides about a scaling factor for each item and
provides it together with the monitor object definition. The difficult part is the math at
the manager: it would need to consider the different scaling values for each item of each
object and all calculations and logging would have to be adjusted in some way. In the
current implementation that is not done. Before a new class becomes operational I use it
on several production server and "calibrate" it. That means that I add the scaling factor
hardcoded in the retriever class.

typedef class DATAITEM {
 unsigned short Value;

public:
 DATAITEM (void) { }
 DATAITEM (unsigned long x)
 { Value = (x == VALUE_UNDEFINED ?
 VALUE_UNDEFINED :
 (x > VALUE_MAXIMUM ? VALUE_MAXIMUM : x)); }

 operator unsigned short (void)
 { return Value; }
 DATAITEM & operator = (unsigned long x)
 { Value = (x == VALUE_UNDEFINED ?
 VALUE_UNDEFINED :
 (x > VALUE_MAXIMUM ? VALUE_MAXIMUM : x));
 return *this; }
 DATAITEM & operator += (unsigned long x)
 { *this = Value + x; return *this; }
 DATAITEM & operator -= (unsigned long x)
 { *this = Value - x; return *this; }
} *PDATAITEM;

RETRIEVER

This class is the parent for all kind of objects which retrieve data from a system or
application. A controller (usually part of the monitor agent) calls the method NewValue
and the method fills the array of DATAITEMs - aVal. Each monitor object builds a
unique key which is used for storage, lookup and availability checks.

A forward reference to CLASS_DEF is necessary because each retriever has a pointer to
the class which defines the layout of the item that it returns.

Appendices

Dipl.-Ing. Günther Strasser Page 280 25. Mar. 2000

typedef class CLASS_DEF *PCLASS_DEF;

typedef class RETRIEVER {
protected:
 STRING Key;
 PCLASS_DEF pClass;
public:
 PMACHINE pServer;
 char Name[OBJ_NAME_SIZE];
 int ErrorCode;

 RETRIEVER (PMACHINE pS, PCLASS_DEF pCl, char *n);
 virtual void InitData (void) = 0;
 virtual void NewValue (DATAITEM aVal[VALUE_ARRAY]) = 0;
 virtual void UpdateInfo (RETRIEVER *pObj) { }
 PCLASS_DEF getClass (void) { return pClass; }
 STRING const& getKey (void) { return Key; }

 friend STRING const& key (RETRIEVER * const&);
} *PRETRIEVER;

FIELD_DEF

This structure defines one data item. It consists of the name of the item, which is used in
GUI, and flags, which control the processing of the item data:

! FLDDEF_DELTA:

the item is the difference between the current and the most recent value of the
information, which can be retrieved from a system; this is used for counters which
are constantly increased (e.g. number of bytes received since the system started)

! FLDDEF_ABSOLUTE:

the inverse of DELTA; the value is stored as it is returned from the system (e.g.
current number of free buffers)

! FLDDEF_NORMALIZED:

the value was forced into a certain range; this is important for the calculation of
sums: normalized values cannot be added to a sum (e.g. disk usage in percent - in
this cases instead of sums the average value is calculated during analyses); this flag
can be combined with ABSOLUTE

#define FLDDEF_ABSOLUTE 0x0001
#define FLDDEF_DELTA 0x0000
#define FLDDEF_NORMALIZED 0x0002

typedef struct FIELD_DEF {
 ULONG flFlags; // FLDDEF_* flags
 char *Name; // name of the field
} *PFIELD_DEF;

DEFAULT_GRAPH_DEF

This structure is used to define default views for a class. That enables the manager
component to automatically create view and menu definitions for a new class or on a
new machine. A single view can contain up to six graphs (= lines).

Appendices

25. Mar. 2000 Page 281 Dipl.-Ing. Günther Strasser

typedef struct DEFAULT_GRAPH_DEF {
 int DataIndex;
 int LensType;
} *PDEFAULT_GRAPH_DEF;

typedef struct DEFAULT_VIEW_DEF {
 char ViewName[256];
 char MenuEntry[256];
 ULONG MenuID;
 char Key[4];
 int GraphNum; // range is 1 to 6
 DEFAULT_GRAPH_DEF GraphDef[6];
} *PDEFAULT_VIEW_DEF;

CLASS_DEF

This class is the parent for all classes which build the interface between a general
purpose engine (the monitor agent for monitor objects,. the manager for views and
monitors) and the special purpose code to access a certain system or application.

Two class flags are important for a developer:

! CLASS_TYPE_GLOBAL:

The class will return exactly one monitor object because it returns global
information; there do not exists several resources for which this information could be
retrieved.

! CLASS_TYPE_DYNAMIC:

The resource(s) which is(are) monitored by monitor objects, returned by the class,
may appear or disappear over time. Therefore the monitor agent must ask the class in
regular intervals whether existing objects expired and new objects were discovered.
If this flag is not set the monitor agent will ask for monitor objects once.

Appendices

Dipl.-Ing. Günther Strasser Page 282 25. Mar. 2000

#define CLASS_TYPE_GLOBAL 0x0001
#define CLASS_TYPE_INIT 0x0002
#define CLASS_TYPE_DYNAMIC 0x0004
#define CLASS_TYPE_REMOTE 0x0008 // not used anymore

#define CLASS_FLAG_CREATEINST 0x1000
#define CLASS_FLAG_VIEWS_DEF 0x2000

typedef class CLASS_DEF {
 union {
 char * RoleName;
 PMACHINE_ROLE pRole;
 } Role;
protected:
 int Entries;
 int NextIndex;

public:
 char *Key;
 char *Name;
 FLAGS flStatus;
 int nFields;
 PFIELD_DEF pFieldArray;

 CLASS_DEF (char *k, char *n, FLAGS fl, int nF, PFIELD_DEF pFA, char
*ServerRole);
 int matchRole (char *Role);
 FIELD_DEF &getFieldDef (int Index) { return
pFieldArray[Index]; }
 virtual PRETRIEVER BeginEnumObjects (PMACHINE pServer) { return
NULL; }
 virtual PRETRIEVER GetNextObject (PMACHINE pServer) { return
NULL; }
 virtual void EndEnumObjects (PMACHINE pServer) { }
 int getFieldIndex (char *Name) const;
 virtual int getClassVersion (void) const { return 0;
}
 virtual PMACHINE_ROLE getRole (void) const { return Role.pRole; }
 virtual char * getRoleName (void) const { return Role.pRole ->
Name; }
 virtual int getDefaultViewDefinition (int Index,
DEFAULT_VIEW_DEF &DefViewData) { return FALSE; }

 void ResolveRoleName (void);
} *PCLASS_DEF;

MODULE_PRESENTATION

The class MODULE_PRESENTATION is the true OO interface between the monitor
agent and the monitor module (in contrast to the technical interface of the C function,
which is exported by the DLL, because this is the only way OS/2 allows a process to
dynamically access code in a module). Each monitor module has to provide
implementations of the virtual methods of the class.

Appendices

25. Mar. 2000 Page 283 Dipl.-Ing. Günther Strasser

typedef class MODULE_PRESENTATION {
protected:
 HMODULE hMod;
public:
 void setModuleHandle (HMODULE _hMod)
 { hMod = _hMod; }

 virtual void getClassDefinitions
 (PMODULE_CLASS_DEF pModClassDef) = 0;
 virtual int getModuleCopyright
 (char *TextBuffer,
 unsigned long BufferSize) const
 { return FALSE; }
 virtual int getRoleDefinitions
 (PMACHINE_ROLE pMachineRole[])
 { return 0; }
 virtual int initMonitoring (void) { return TRUE; }
 virtual int getServerNames (ServerDef Names[])
 { return 0; }
} *PMODULE_PRESENTATION;

Method Meaning

setModuleHandle reserved;
The method is used to set the module handle of the OS/2 DLL.
The handle is not known by the module but by the code that
loads the DLL (the monitor agent). After the monitor agent gets
the instance of the class it sets the module handle which is
available for all further processing.

getClassDefinitons When this method is called it is supposed to return references to
instances of the monitor factory objects that it provides. The
monitor agent passes the pointer to an object of type
MODULE_CLASS_DEF to the method. It inserts object pointers
and the number of provided classes into that object.

getModuleCopyrig
ht

The method is called by agent and it provides a textbuffer to the
method. It may put a copyright string into the buffer and this
string is displayed on the console.
It is recommended that version/release and publication year
(date) are mentioned.

getRoleDefinitions The method may return new role definitions which consists of a
name and icons for the user interface. Classes of this and other
modules may reference these roles by their name.

initMonitoring The method is called by the monitor agent and it should be used
to initialize monitoring if necessary. It returns TRUE on
successful initialization or FALSE otherwise. In the later case the
module is ignored and no class from it will be used.

getServerNames The method is called by the monitor agent and it is used to
register target servers of the monitor module. This method is only
used when the monitor agent is in "remote monitoring" mode.
Prerequisite is that the monitoring code is able to detect remote
servers automatically.

Appendices

Dipl.-Ing. Günther Strasser Page 284 25. Mar. 2000

Appendix E. Currently Supported Resources

The following tables contain a detailed summary of all extracted data items and the
classes within they are organized. If the meaning of a data item is obvious from its name
the column „Meaning“ does not contain an explanation.

Part III describes how the data can be used in the tasks of an system architect or an
operator and what can be derived from a real networks.

IBM LAN Server

The following values are derived from the IBM LAN Server network operation system
starting with version 3.0. Most of the information is available via published APIs. If
another access method is used it is mentioned in the data description.

Class Class Description

Data Item Meaning

Connection measures for each shared resource information about established
connections.
Each connection is represented by its share name; this is the name
which is used to access a resource at the server.
An exception to this rule are (private) connections to home
directories45. Due to the possible great number of active users
connections to home directories are summarized under one monitor
object which is called Home Dir. and which is the representation of
all active users with a home directory.

Connections number of connection for the
referenced resource

Open Files number of open files (on behalf of the
connection) at the time a data sample
is retrieved

Printer queue provides information about shared printer queues which spool print
jobs to network printers.

Jobs total number of print jobs which are
currently waiting in the queue (which
includes the print job which is
currently spooled to the printer)

Total size of print jobs
(kB)

size of all waiting print jobs in kB

Print time of first job the time the server needs to spool the
first print job to the printer (this value
is not provided by the server but is
calculated by the module

User information about currently logged on user

User number of logged on users

Statistics several statistic information which is collected by the LAN server
itself.

new print jobs queued the number of print jobs which were
entered into a printer queue of the
server since the last update

45 A home directory is a shared file resource which (under normal circumstances) can only be accessed by a
certain user who is the owner of the home directory. Home directories are assigned during logon
automatically and cannot be accessed like a normal shared resource.

Appendices

25. Mar. 2000 Page 285 Dipl.-Ing. Günther Strasser

Class Class Description

Data Item Meaning

new server sessions number of sessions which were
established since the last update

autodisconnected sessions number of sessions which were
disconnected by the server (because
they were not used for some amount of
time) since the last update

sessions errored out number of sessions which disappeared
due to an error

password errors number of wrong passwords used in
explicit or implicit logons

access permission errors number of invalid access attempts to
resources which are protected by LAN
server security

average response time average response time to service
requests in milliseconds

file open requests number of requests to open a file for
all file resources since the last update

Data information about the volume of data handled by the server;
all data items are deltas (they are calculated as difference between
the current value and the value of the most recent data update).

kB server sent number of kB sent to the server46

kB server received number of kB received by a client
from the server46

kB redirector sent number of kB sent to the redirector
service46

kB redirector received number of kB received from the
redirector service46

kB application sent number of kB sent to an application on
the server

kB application received number of kB received from an
application on the server

buffers required number of buffers required by the
server but which were not available at
that time47; these indicates a
configuration problem and degrades
performance.

big buffers required same as above but for a class of larger
buffers ("big buffers")

NCBs issued server number of network control blocks
(NCB) which were issued by the
server service

46 In the beginning it was unclear what the value of this item meant. From the descriptions it seemed to mean
"sent by the server". By observations in comparison to known actions (e.g. file copy) it became obvious that
the contrary is true. That is why the name of these data items are a bit confusing. For the sake of continuity of
an already distributed program the names were not changed.
47 The IBM LAN server software does not provide the number of buffers in use.

Appendices

Dipl.-Ing. Günther Strasser Page 286 25. Mar. 2000

Class Class Description

Data Item Meaning

NCBs failed server number of network control blocks
(NCB) which were issued by the
server service but which returned an
error code

NCBs issued redirector number of network control blocks
(NCB) which were issued by the
redirector service

NCBs failed redirector number of network control blocks
(NCB) which were issued by the
redirector service but which returned
an error code

NCBs issued application number of network control blocks
(NCB) which were issued by any
application, which uses the services of
the LAN server

NCBs failed application number of network control blocks
(NCB) which were issued by any
application, which uses the services of
the LAN server, but which returned an
error

Sessions information about server sessions

Sessions number of established sessions

active time sum of the time all sessions are active
in minutes; a session is active from the
moment it is established; its active
time is increased as long the session
does exist

idle time sum of the time all sessions are idle in
minutes; a session is idle if no requests
(or data traffic) are performed via the
session; the idle time starts when the
last action has finished and is
increased until the action is performed.
Increasing idle time points to a number
of idle sessions. As any sessions - used
or unused - consumes system
resources it is desirable to remove
unused (idle) sessions.

HPFS386

If the network file system HPFS386 (high performance file system 80386
optimization48) is used on the server, the monitor agent is able to query information
about the effectiveness of the file system cache by use of the program CACHE386. This
program does not provide an API but the monitor agent uses the information written to
stdout.

Class Class Description

48 80386 optimization means that it is the 32-bit version of the standard OS/2 file system HPFS, which is 16-
bit code (for the 80286).

Appendices

25. Mar. 2000 Page 287 Dipl.-Ing. Günther Strasser

Data Item Meaning

CACHE386 information about the cache of the HPFS386 file system; with the
exception of hit rates all values are deltas between the current and the
most recent data update.

Read Requests
(x 100)

number of read requests (the real value is divided by
100 in order to fit the result into the two byte data
range)

Disk Reads
(x 100)

number of read requests which actually cause a disk
read operation

Cache Reads
(x 100)

number of read requests which could be satisfied by
the cache

Cache Hit Rate
(Reads)

cache efficiency for read requests in percent

Write Requests
(x 100)

number of write requests

Disk Writes
(x 100)

number of write requests which actually cause a disk
write operation

Cache Writes
(x 100)

number of write requests which could be satisfied by
the cache

Cache Hit Rate
(Writes)

cache efficiency for write requests in percent

Hot Fixes number of automatic disk error corrections and
recovery actions

Appendices

Dipl.-Ing. Günther Strasser Page 288 25. Mar. 2000

DB2/2 Version 1

In contrast to the later versions of DB2 the IBM DB2/2 Version 1.x family of DBMS
did not support load measuring. Nevertheless, with the help of a set of configuration
APIs it is possible to retrieve some information. But due to the following problems the
support for DB2/2 V1.x will be dropped in the near future and it is not recommended to
use this module:

1. There is not much relevant information available via these APIs

2. On the test system the monitor agent produces a memory access violation if a certain
database application is active. The error occurs within a DB2 code DLL and it
seems to be a problem of the old DB2 code.

3. On a production system unpredictable system halts occurred if the module is in use.
I did not found a direct connection and the halts may have a different reason but if
the module is not used less production interruptions were detected.

4. Code developed with the current developer's toolkit is incompatible with the older
DB2 version; exactly the three APIs which are used in the module, are even
documented to be incompatible:

a. Code developed with the older V1 libraries trap under a V2; a version check was
added and the module is deactivated under V2.

b. Code developed with the newer V2. libraries cannot be loaded on a V1 system -
some DLLs and function entries are missing.

That makes development and code maintenance very cumbersome and errorprone.

Appendices

25. Mar. 2000 Page 289 Dipl.-Ing. Günther Strasser

At least for historic reasons I document what could be done under DB2/2 Version 1.
Note that - though they are members of the same product families - the two versions of
DB2/2 are totally different code and that two totally different agent modules had to be
written to access load information.

Class Class Description

Data Item Meaning

DB2 Database information about DB2/2 V 1.x

connected user total number of users which have an active
connection to any database on the system

number of
transactions

number of database transactions since the last
update

number of requests number of SQL requests since the last update

number of current
requests

number of currently active SQL requests

connection time
(min)

total number of minutes for which active
connections do exist

transaction time
(min)

total number of minutes for which current
transactions are pending49

49 This number turned out to be not very meaningful. The systems counts the time starting from the last
COMMIT statement. Therefore, if an application commits a transaction and then pauses while keeping the
connection open DB2 accounts this time for the next transaction.

Appendices

Dipl.-Ing. Günther Strasser Page 290 25. Mar. 2000

DB2/2 Version 2

As mentioned above starting with version 2.0 DB2/2 offers an API which provides a
great wealth of information about performance and load in a DB2 system. Below you
find the list of data items which are used in the load monitor. Most item names make
clear what they mean. If you are interested in more detail refer to the technical reference
material.

Later you will read about the usefulness of this information and about connections and
relations between these items and other information retrieved from an OS/2 system with
DB2/2.

Class Class Description

Data Item Meaning

DB2 2.x Engine information about the DBMS (the database engine)

Sort Heap Allocated For detail information see the DB2/2
technical reference material.

Post Threshold Sorts -""-

of Piped Sort Requests -""-

of Sort Reqs Accepted
by SLS

-""-

Remote Connects -""-

Remote Connects To
Target Exec

-""-

Current Local
Connections

-""-

Local Connects To
Target Exec

-""-

Local DBs with
Connects

-""-

of Registered Agents -""-

of Agents Waiting on
Token

-""-

of Unassigned Agents -""-

KB Committed Private
Memory

-""-

DB2 2.x Database information's about a particular database

of locks held -""-

of lock waits -""-

wait time on locks -""-

total lock list memory in
use (KB)

-""-

of deadlocks -""-

of lock escales -""-

of X-lock escales -""-

of lock time-outs -""-

of applications waiting
on locks

-""-

Appendices

25. Mar. 2000 Page 291 Dipl.-Ing. Günther Strasser

Class Class Description

Data Item Meaning

sort heap allocated (KB) -""-

of sorts -""-

time spent in sorts -""-

of sort overflows -""-

of active sorts -""-

of pool data logical
reads

-""-

of pool data reads -""-

of pool data writes -""-

of pool logical index
reads

-""-

of pool index reads -""-

of pool index writes -""-

buffer pool read time -""-

buffer pool write time -""-

of files closed -""-

of asynchronous pool
data reads

-""-

of asynchronous pool
data read requests

-""-

of asynchronous pool
data writes

-""-

of asynchronous pool
index writes

-""-

async read time -""-

async write time -""-

LSN Gap cleaner
triggers

-""-

dirty page steal cleaner
triggers

-""-

dirty list threshold
cleaner triggers

-""-

direct reads -""-

directs writes -""-

direct read requests -""-

direct write requests -""-

direct read time -""-

direct write time -""-

of commit SQL
statements

-""-

of rollback SQL
statements

-""-

of dynamic SQL -""-

Appendices

Dipl.-Ing. Günther Strasser Page 292 25. Mar. 2000

Class Class Description

Data Item Meaning

statements

of static SQL
statements

-""-

of failed SQL
statements

-""-

of SQL select
statements

-""-

of DDL statements -""-

of update/insert/delete
statements

-""-

of auto rebinds -""-

of internal row deletes -""-

of internal row
updates

-""-

of internal row inserts -""-

of internal commits -""-

of internal rollbacks -""-

of rollbacks due to
deadlocks

-""-

of row deletions -""-

of row inserts -""-

of row updates -""-

of row selections -""-

of binds/recompiles -""-

of new connections -""-

of connected
applications

-""-

of applications
executing in DB2

-""-

of secondary logs
allocated

-""-

of log reads -""-

of log writes -""-

package cache lookups -""-

package cache inserts -""-

catalog cache lookups -""-

catalog cache inserts -""-

catalog cache overflows -""-

catalog cache heap full -""-

Appendices

25. Mar. 2000 Page 293 Dipl.-Ing. Günther Strasser

Local Area Network

This module contains a class for accessing NETBIOS information and another for direct
query of adapter data. However, the second class turned out to fail to deliver useful
(dynamic) information. Therefore it was dropped and is not mentioned in this context.

For more information about the NETBIOS stack and the meaning of the items see [2].

Class Class Description

Data Item Meaning

NETBIOS Information about the NETBIOS stack on each logical network
adapter50. If not stated otherwise all items below are deltas between
data updates.

Frames Received number of NETBIOS frames received

Frames Sent number of NETBIOS frames sent by the
station

Bad IFrames
Received

Aborted
Transmissions

Packets Transmitted number of packets which were generated by
the local computer; the item is an indicator
for network activities on the machine

Packets Received number of packets received by the machine;
that does not mean that all the packets were
addressed to it and processed on the local
machine; the item is an indicator for network
traffic in general within the physical LAN
segment

Bad IFrames
Transmitted

Lost Data

T1 Expiration number of times the T1 timer expired51

Ti Expiration number of times the Ti timer expired52

Free NCBs absolute number of network control blocks

Busy Condition

pending sessions absolute number of pending sessions

Names Present absolute number of known (= registered by a
local application) NETBIOS names on the
adapter

50 For each physical network adapter one or more logical adapter can be defined.
51 The T1 timer is set when a LPDU frame is sent and measures the time until an answer to that frame is
received. If the timer expires another frame is sent in order to retry to establish the required connection.
52 The Ti timer (inactivity timer) is set after an activity on an established connection. If the timer expires
before any other activity the network software checks whether the connection is still up.

Appendices

Dipl.-Ing. Günther Strasser Page 294 25. Mar. 2000

OS/2

The following classes are based on standard OS/2 APIs and provide some information
about the base system itself. The class directory tree compiles information about the last
time an data file was accessed. My assumption is that - if collected over several months -
I can gain valuable observations about the aging of information on a server and about
the amount of "dead" information which may be archived and removed from the disks.

Class Class Description

Data Item Meaning

Logical Disk Information about logical disks (partitions of local fixed disks)

MB available available disk space in Mbytes

% full percentage of total disk space which is used

Directory Tree Information about the directory tree of a logical disk; contrary to
logical disks this class can be configured by the operator: if (s)he
provides the file SRVMDRTR.DEF the class reads from that file
what will be monitored. It is a text file and it must contain a number
of lines that consist of target path, update interval and monitor name
(for display and logging).

By default the entire directory tree of each local disk partition is
considered and data are taken once an hour53.

of files (x 10) total number of files in whole directory tree
(divided by ten)

of directories total number of directories

MB allocated total disk space allocated by files and
directories in Mbytes

KB wasted delta between allocated and used disk space
as reported by the file system in Kbytes; this
number depends on disk segmentation and
file sizes

of files accessed
within 1 day

total number of files which were accessed
during the current day;
calculations are based on dates reported by
the file system; not every file system can
handle access dates (the DOS file system
FAT, which is supported by OS/2, does not
distinguish between access and creation date -
but nobody uses FAT on a file server);

of files accessed
within 1-3 days

of files accessed
within 4-10 days

of files accessed
within 11-30 days

of files accessed
within 31-100 days

of files accessed
not within 100 days

total number of files which were not accessed
during the last 100 days

53 The update interval for the class is independent from the sampling interval of the monitor agent.

Appendices

25. Mar. 2000 Page 295 Dipl.-Ing. Günther Strasser

Class Class Description

Data Item Meaning

MB allocated
accessed within 1
day

total amount of disk space in Mbytes which is
allocated in files which were accessed during
the current day

MB allocated
accessed within 1-3
days

MB allocated
accessed within 4-10
days

MB allocated
accessed within 11-
30 days

MB allocated
accessed within 31-
100 days

MB allocated
accessed not within
100 days

System General information about the OS/2 system

MB memory
available

total amount of virtual memory available to
all processes of the system;
this value depends on available disk space on
the partition where the swapper resides

% CPU used percentage of the processor time interval -
defined by the system variable
MAX_WAIT54 - which is not available to an
"idle class" (background) thread/process; the
rest of the processor time is spent for other
activities on the machine;
the default for MAX_WAIT is 3000 ms

MB swapper size of the swapper file in Mbytes

54 The MAX_WAIT value defines the amount of time a thread in the normal priority class can be ready for
execution and suspended, until it receives a starvation boost. That means that its priority is raised and it
becomes more likely that it can be scheduled.

Appendices

Dipl.-Ing. Günther Strasser Page 296 25. Mar. 2000

SRVMSRVR

The monitor application provides the ability of monitoring its own workload. This is an
example of how a "normal" business application" can be enabled for monitoring.

Class Class Description

Data Item Meaning

SRVMSRVR Information about the collection server component of the monitoring
tool

Available Threads number of service threads which are currently
active to handle requests to the server
(threads are dynamically started and ended
depending on the server usage

Used Threads number of threads which were active during
the last sample interval

Managed Machines number of machine (= agent) definitions
which are known to the server

Managed Objects number of monitor object definitions, which
are known and handled by the server

Messages received number of messages received and processed
during the last sample interval

Messages sent number of messages sent to a partner during
the last sample interval

Connections
established

number of connections which where
established by agents (or other servers) during
the last sample interval

number of kB
received

number of kB of data received by the server
during the last sample interval

number of kB sent number of kB of data sent by the server
during the last sample interval

The technique used by the server is the use of a DLL with a global, shared data segment.
The only difference to a normal DLL is that you have to provide two different keywords
in the module definition file for linkage. The effect is that all processes that link to this
DLL share the data segment of the DLL. In other words, there will be only one instance
of all the global variables of the source module and they are shared and accessible for all
processes. That way it is very simple to provide load information by an application:

Create a DLL with, at least, two entry points: one to set or increment load data counters
and one to query or reset them. The use of running counter variables is very simple and
appropriate in most cases. The counter have to be global within the source module of the
DLL. A new monitor module55 can link to the DLL and use the query function to access
the load data of the business application.

TCP/IP

The monitoring agent uses the output of the TCP/IP utility program netstat and converts
the information into the format for SRVMONPM. As netstat reports more than 200
items I do not present them as a table like the other classes.

55 It would be possible to merge the interface DLL and monitor module into one physical DLL but that is not
recommended. Monitor modules which have to confirm to certain standards should not be mixed up with
parts of other applications.

Appendices

25. Mar. 2000 Page 297 Dipl.-Ing. Günther Strasser

A new problem was introduced with netstat which needed a different design for data
access by the monitor agent:

1. netstat pauses while and after displaying information at the console and expects
console input. It does not use stdin but obviously uses console i/o functions to handle
this. To be able to use the program in the background it must be started as an
independent and detached process.

2. netstat may or may not provide output. Therefore waiting for output may never yield
any result. As netstat has to be an independent and detached process the calling process
has no control over it and cannot tell whether netstat is still active or not. There is no
direct mean to detect whether some output was generated or not.

This lead to a new, more robust design of the monitor agent.

Appendices

Dipl.-Ing. Günther Strasser Page 298 25. Mar. 2000

Appendix F. Message Structure of the Transport Layer

First, we will look at the definition of the messages which are sent across the network.
All definitions contained in this chapter are defined in the source file
SRVMPROT.HPP. The messages are organized in a class hierarchy. The receiver of a
message identifies the message by the message id. The first two bytes of the message
header contain this id. The id consist of a number and a version. This is necessary to
support different (newer) versions of infrastructure components during upgrades.
Following messages are available:

#define MSG_TYPE_OBJ_DEF 0x1001
#define MSG_TYPE_DATA 0x0002
#define MSG_TYPE_ERROR 0x0003
#define MSG_TYPE_CLIENTDATA 0x0004
#define MSG_TYPE_REGISTER_OBJ 0x0005
#define MSG_TYPE_REGISTER_MACHINE 0x1006
#define MSG_TYPE_ACKNOWLEDGE 0x0007
#define MSG_TYPE_QUERYINFO 0x0008
#define MSG_TYPE_QUERYMANAGER 0x0009
#define MSG_TYPE_QUERYREMARK 0x100A
#define MSG_TYPE_QUERYUPDATEINT 0x000B

Not every type has a corresponding message class. Some types are used with the same
structure.

BASE_MESSAGE

The root class in the hierarchy of messages is the class BASE_MESSAGE:

typedef struct BASE_MESSAGE
{
 unsigned short Type;

 BASE_MESSAGE (unsigned long _Type): Type (_Type) { }
} *PBASE_MESSAGE;

BASE_MESSAGE

MESSAGE_ACKNOWLEDGE MESSAGE

MESSAGE_QUERY_REMARK TIME_MESSAGE

MESSAGE_DATA MESSAGE_FULLDATAMESSAGE_OBJ_DEF

MESSAGE_REGISTER_OBJ

MESSAGE_REGISTER_MACHINE

Figure 50. Message class hierarchy

Appendices

25. Mar. 2000 Page 299 Dipl.-Ing. Günther Strasser

The message contains the message type only. Each message can be accessed as
BASE_MESSAGE and the receiver of the message has to cast the reference to the
message according to the message id.

MESSAGE_ACKNOWLEDGE

Directly derived from BASE_MESSAGE is the class MESSAGE_ACKNOWLEDGE.
It is used for all acknowledgments (responses to messages). This class contains two
unsigned shorts; one for an result code for the requested operation and one for an extra
argument in addition to the code.

typedef struct MESSAGE_ACKNOWLEDGE: public BASE_MESSAGE
{
 unsigned short ResultCode;
 unsigned short Argument;

 MESSAGE_ACKNOWLEDGE (unsigned short _ResultCode):
 BASE_MESSAGE (MSG_TYPE_ACKNOWLEDGE),
 ResultCode (_ResultCode) { }
} *PMESSAGE_ACKNOWLEDGE;

MESSAGE

The second child of BASE_MESSAGE is the class MESSAGE. This class is the base
for most other message classes. It contains either the name of a machine definition or the
machine request. Messages that are based on this class, reference a machine definition.

typedef struct MESSAGE: public BASE_MESSAGE
{
 union {
 char Machine[MACHINE_NAME_SIZE];
 int IBD_Index;
 } MachineRef;

 MESSAGE (unsigned long _Type):
 BASE_MESSAGE (_Type) { }
} *PMESSAGE;

MESSAGE_QUERY_REMARK

Based on MESSAGE, the class MESSAGE_QUERY_REMARK is used to get detail
information about a machine. At the moment this information consists of a remark and
the name of the default domain.

typedef struct MESSAGE_QUERY_REMARK: public MESSAGE
{
 char Domain[MACHINE_NAME_SIZE];
 char Remark[REMARK_SIZE];

 MESSAGE_QUERY_REMARK (void):
 MESSAGE (MSG_TYPE_QUERYREMARK) {}
} *PMESSAGE_QUERY_REMARK;

MESSAGE_REGISTER_OBJ

The class MESSAGE_REGISTER_OBJ is used for the registration of monitor object
definitions at a server and for sending the information from a server to a manager. The
message contains the name of the sending station, the class key, name and version of the

Appendices

Dipl.-Ing. Günther Strasser Page 300 25. Mar. 2000

object and the offset into the block of data items, where the load data of the object can
be found (= OBJECT_DEF).

typedef struct MESSAGE_REGISTER_OBJ: public MESSAGE
{
 char Sender[MACHINE_NAME_SIZE];
 char Class[CLASS_NAME_SIZE];
 char Name[OBJ_NAME_SIZE];
 int Version;
 int Index;

 MESSAGE_REGISTER_OBJ (void):
 MESSAGE (MSG_TYPE_REGISTER_OBJ) { }
} *PMESSAGE_REGISTER_OBJ;

TIME_MESSAGE

The class TIME_MESSAGE is based on MESSAGE and is used for all messages
where a time stamp is moved over the network.

typedef struct TIME_MESSAGE: public MESSAGE
{
 unsigned long TimeStamp;

 TIME_MESSAGE (unsigned long _Type, unsigned long _TimeStamp):
 MESSAGE (_Type), TimeStamp (_TimeStamp) { }
} *PTIME_MESSAGE;

MESSAGE_OBJ_DEF

The class MESSAGE_OBJ_DEF is based on TIME_MESSAGE and is used to ask for
the next monitor object definition (referenced by a running counter - the object index).
The time stamp is the time of the last update of the object definition and it is used to
check at the manager whether the object definition has changed.

typedef struct MESSAGE_OBJ_DEF: public TIME_MESSAGE
{
 unsigned short ObjIndex;

 MESSAGE_OBJ_DEF (void):
 TIME_MESSAGE (MSG_TYPE_OBJ_DEF, 0) { }
} *PMESSAGE_OBJ_DEF;

MESSAGE_DATA

The class MESSAGE_DATA is used to send load data

! from an agent or intermediate managing server to another server or
! from the server to a manager.

The time stamp is used to check whether the data are valid. The message contains the
name of the sending station, the number of data items in the message, the update
interval, on which delta information is based, and the actual data. The class definition
contains one data item but during runtime the necessary amount of data is allocated and
attached to the message.

Appendices

25. Mar. 2000 Page 301 Dipl.-Ing. Günther Strasser

typedef struct MESSAGE_DATA: public TIME_MESSAGE
{
 char Sender[MACHINE_NAME_SIZE];
 unsigned short DataNum;
 unsigned short UpdateInterval;
 DATAITEM Data[1];

 MESSAGE_DATA (void): TIME_MESSAGE (MSG_TYPE_DATA, 0) { }
} *PMESSAGE_DATA;

MESSAGE_FULLDATA

MESSAGE_FULLDATA is the same as MESSAGE_DATA but the class definition
contains the maximal possible number of data items in the message (32.000). This
definition is used during preparation of a message of type MESSAGE_DATA. Because
of the size of this message it must be allocated dynamically and is not placed on the
stack of the thread as it is done with the other (much smaller) messages. There is no
extra type for this message; instead MSG_TYPE_DATA is used as the message
identifier.

typedef struct MESSAGE_FULLDATA: public TIME_MESSAGE
{
 char Sender[MACHINE_NAME_SIZE];
 unsigned short DataNum;
 unsigned short UpdateInterval;
 DATAITEM Data[MAX_MESSAGE_BUFFER_SIZE];

 MESSAGE_FULLDATA (void): TIME_MESSAGE (MSG_TYPE_DATA, 0) { }
} *PMESSAGE_FULLDATA;

MESSAGE_REGISTER_MACHINE

The class MESSAGE_REGISTER_MACHINE is used by the monitor agent or by the
server to register a machine definition at a server. The message contains

! the name of the sending station,
! the default domain of the machine,
! the machine remark,
! the number of data items which will be send for that machine,
! the number of objects which will be registered for the machine,
! the update interval.

typedef struct MESSAGE_REGISTER_MACHINE: public TIME_MESSAGE
{
 char Sender[MACHINE_NAME_SIZE];
 char Domain[MACHINE_NAME_SIZE];
 char Remark[REMARK_SIZE];
 short DataIndex;
 short SupportedObjects;
 unsigned short UpdateInterval;

 MESSAGE_REGISTER_MACHINE (void):
 TIME_MESSAGE (MSG_TYPE_REGISTER_MACHINE, 0) { }
} *PMESSAGE_REGISTER_MACHINE;

Appendices

Dipl.-Ing. Günther Strasser Page 302 25. Mar. 2000

Appendix G. GUI Components of the Workload Manager

The following paragraphs describe the parts of the application the user interacts with.
These windows make up the visible part of the application.

Single View

In the context of the graphical user interface the view of a monitor is a window which
displays the contents of a view (as described in "Internal Data Management"). It
consists of the following subparts:

! in the center lies the graphing area where the load data are plotted and a grid
according to the legend is drawn

! below the graphing area a scrollbar shows, which section of the available (span
of time of) load data is displayed (see below); it can be used to change the
location of the visible area

! at left the vertical legend displays the scale of the values in the graph
! at the top the horizontal legend is drawn where the time and date is displayed

when the data where captured
! at the bottom a short description for each plotted line is displayed;

the description contains the name of the lens which is used to display the data
! at right an indicating instrument shows the most current values both graphically

and in textual form - independent from the current scrolling

Normally, the vertical scale is adjusted by the application automatically. Whenever a
new value exceeds the current upper or lower margin the value is rounded up (or down)
to the next multiple of ten and is used as the new upper (or lower) boundary. The graph

Figure 51. A single monitor view

Appendices

25. Mar. 2000 Page 303 Dipl.-Ing. Günther Strasser

is adjusted accordingly. In addition the user can set the lower and the upper boundaries
of each view. The user may disable automatic boundary adjustment to keep his selection
in place.

The window displays only a section of all available data, because the computer screen is
not large enough to draw all data. While the scrollbar represents the set of all available
data the bubble of the scrollbar represents the actual visible part56.

If the single view is framed by its own window (like in the figure above) the titlebar of
that window contains a combination from the name of the underlying view definition
and the machine for which the view is drawn.

A view definition defines which data items are displayed within a view and how the data
are represented (see below).

View Definition

The application manages a number of view definitions. They define which deducted
monitors (= views) are created, what is part of a view and how the menu structure is
build up. Each monitor module should provide default view definitions for the monitor
factory objects that it exports to the application. The user may add, remove or alter the
definitions.

56 In contrast to applications in the Windows environment this is the recommended behavior or OS/2
applications.

t-48h t0

visible area

current value

scrollbar

Figure 52. Relation between data area and view

Appendices

Dipl.-Ing. Günther Strasser Page 304 25. Mar. 2000

If the user wants to work with view definitions, first, he is presented with the list of
available view definitions. He may choose one and select one of the provided push
buttons. Note that, if one definition is removed, it is still in use by the application.
Therefore it is not removed from the list immediately. Instead it is marked as "to be
deleted". It will be removed from the configuration file. While it is in the list the user
may undo his deletion and unmark the entry.

Any changes to the view definition list or any individual definition become effective
with the next invocation of the application. Until then the old definitions stay active. A
message box notices the user that he must restart the application to make use of his
changes.

The view definition contains the following information:

! the name of the definition as it is used in the window title of the view
! the number of graphs (lines) which are drawn in the view
! the associated monitor factory object; this data item is chosen when the definition

is initially created; it cannot be changed at a later time
! the menu entry under which views can be activated and displayed on the screen;

by using slash ("/") or backslash ("\") characters a structure of cascading menus
can be defined.

! up to six graph definitions; for each graph definition the user defines
" the class item to be displayed
" the lens which should be used to display the data
" the color of the graph; the user may choose one of the listed colors or the

entry default which lets the system select a color.

Figure 53. The view definition list

Appendices

25. Mar. 2000 Page 305 Dipl.-Ing. Günther Strasser

All definitions for graphs which are not used in the view are "disabled". The items in the
graph definition are pull-down lists. Therefore the user can easily see and select
available choices.

Figure 54. A monitor view definition

Appendices

Dipl.-Ing. Günther Strasser Page 306 25. Mar. 2000

View Window

A view window represents a collection of monitors. The window of a view consists of a
notebook control. Each page contains a single view of an individual monitor. The first
page, which is labeled "Total", contains the sum (or an average) of the values of all
notebook pages.

The average is calculated for absolute or normalized values like e.g. "response time in
ms". It would not make sense to build the sum over all response times. All other
(normal) values are added up. The class definition defines whether an item is absolute or
not.

The totals page gives a very good overview over the activities on the monitored
systems. The operator quickly gets an idea of what is going on in the group of monitored
resources.

Figure 55. A monitor view window

Appendices

25. Mar. 2000 Page 307 Dipl.-Ing. Günther Strasser

Monitor Selection

As described above all views are ordered by machines and roles. This becomes visible
in the monitor selection window. This window is the main window of the application
which is displayed first after the application is started. It is a container window (often
called a folder) which contains a number of icons.

Each icon represents a number of views which are accessible via the menu that is
associated with the icon. Each role defines two icons: one for global views and the other
for multiple views - these are views on resources which may exist in several instances on
a single machine. Global views are represented by one instance of the global icon (e.g.
the "globe" for global LAN server information). Because any number of (including no)
instances of multiple views may exists for each machine, zero or more instances of the
second icon may be visible - for each detected machine one instance is displayed (e.g.
the "server icon" in Figure 56).

Figure 56. Monitor selection window (application main window)

Appendices

Dipl.-Ing. Günther Strasser Page 308 25. Mar. 2000

Each machine that owns monitors for different roles, may be represented by several
icons (e.g. machine \\FAW5510S is a database server and a LAN server and an OS/2
client. Therefore it appears three times (with different icons) in the window above.)

In addition to global views the global icon contains references to the total pages of the
multiple views. That offers the operator several levels of detail about resources:

1. the sum over the whole system

2. the sum over the resources on machine level

1. details about each resource

global view collection

global view

global view

multiple view collection

global view (total
of multiple views)

sum
(total of global

sum views)

sum
(totals monitor
of global view)

multiple view

multiple view

sum
(totals monitor)

multiple view

multiple view collection

multiple view

multiple view

sum
(totals monitor)

multiple viewglobal view

global view (total
of multiple views)

Figure 57. Multiple views, sum views and global views

Appendices

25. Mar. 2000 Page 309 Dipl.-Ing. Günther Strasser

Menus

Menus are the means to access views. Each role icon has its own menu which is
generated depending on the active view definitions. As mentioned above the user may
change the contents and structure of each menu. By clicking the right57 mouse button
over an icon the menu appears and the user may select a view window. A menu-item
may be disabled by the monitoring application if no views do exist for a given
definition.

The dynamic and open definition of menus and ways of accessing the data is very
important for the seamless integration of new monitor modules into a single consistent
user interface.

57 This is true for OS/2's default settings. Left handed people may change the settings which would make the
left button the one which brings up the menus.

Figure 58. Main window with selected popup menu

Appendices

Dipl.-Ing. Günther Strasser Page 310 25. Mar. 2000

Alert Definition

Similar to view definitions the user can work with alert definitions (see chapter 6.4.
"Alerts and Threshold Values" for more information on alerts). The first window,
when working with alert definitions, is the "Item Selection" Window. It contains the list
of available alert definitions. From here the user can select alert definitions for editing.

Alert definitions are edited within a notebook which contains a number of alert specific
pages. Starting from the standard pages of ALERT_DEF each subclass can add its own
pages to the notebook. That way new alert classes can easily be integrated into the user
interface.

Figure 59. Alert selection list

Appendices

25. Mar. 2000 Page 311 Dipl.-Ing. Günther Strasser

Settings for ALERT_DEF

The base class of all alerts provides two pages:

The first page is used to define:

1. the name of the alert definition

2. the monitor factory object for which the alert definition will be used

3. within the class the data item which is to be checked

4. the lens that is used to preprocess the data before they are checked (this is done in
analogy to the view windows)

5. whether the definition should be already used or not

6. the time of day during which the alert definition is to be used

These settings will be necessary for any kind of current or future alert classes.

Figure 60. Alert definition page 1

Appendices

Dipl.-Ing. Günther Strasser Page 312 25. Mar. 2000

The second page is used to define:

1. The server for which the definition will be used; normally alert objects for all
servers will be generated. The user may provide a part of a server name. All server
will match which start with the given character. The wildcard characters '*' and '?'
may be used for matching certain server names.

2. The resource for which the definition will be used; normally alert objects for all
resources will be generated. The user may provide a part of a resource name. All
resources will match that start with the given character. The wildcard characters '*'
and '?' may be used for matching certain server names.

3. The condition on which the alert object will react.

4. In the case of threshold value checking, the definition of upper and lower limits. For
each limit the user must provide a second value which marks the end of the alert
condition. This is necessary to reflect the fact of possible hysteresis.

If no other value is provided the same limit is used for begin and end of an alert
condition.

This page is part of the general settings of the root alert class. In the case that new alert
classes are introduced which implement new conditions the layout of the page and the
underlying class implementation will be changed slightly.

The general class ALERT_DEF implements the conditions of an alert (trigger
condition) but no action which should be taken in the case of the alert. This is delegated
to specializations of the class (or subclasses of ALERT_DEF).

Figure 61. Alert definition page 2

Appendices

25. Mar. 2000 Page 313 Dipl.-Ing. Günther Strasser

Additional Settings For ALERT_DEF_EXEC

One (and at the moment the only) specialization of the class ALERT_DEF is
ALERT_DEF_EXEC. Its primary target is the definition and execution of user definable
commands which will be fired when an alert condition is triggered.

More general, the user can define some text which may be

! executed as a command,
! displayed in a message box,
! written into a log-file.

A combination of all three options is possible. As mentioned above, separate commands
are provided for the beginning of an alert and for the end of the alert condition.

Figure 62. Alert definition page 3

	Introduction
	Assumptions and Research Target

	Architectural Overview of SRVMONPM
	Requirements and Primary Design Objectives
	Main Tasks
	Controlling the Scope of Monitoring

	Working with the Log Database
	Data Structure and Access
	Problem Description

	Case Studies
	Case I
	Server Characteristics

	Conclusion
	Monitoring Demands

