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Kurzfassung

In der zweiten Hälfte des vergangenen Jahrhunderts wurde der Begriff der
g-additiven Punktionen geprägt. Damit im Zusammenhang stehen einer-
seits Michel Mendes-France und Hubert Delange sowie andere Vertreter
der französischen Schule. Andererseits beschäftigte sich auch der russische
Mathematiker Aleksandr Ossipovich Gelfond (1906-1968) damit. In einer
seiner letzten Publikationen [15] hat er diese spezielle Art von Funktionen
wie folgt definiert:

Sei q eine beliebige fest gewählte ganze Zahl größer als oder gleich
zwei. Eine Funktion / : N —> M heißt (vollständig) q-additiv,
wenn für beliebige a > 1 und 0 < b < q

(1)

gilt.

Seit den Anfängen in den späten 60er Jahren des 20. Jahrhunderts wurden
viele Fortschritte erzielt, und so sind heute bereits zahlreiche Ergebnisse
rund um g-additive Funktionen bekannt.

In der vorliegenden Arbeit beschreiten wir einen neuen Weg und führen die
sogenannten Q-additiven Funktionen ein. Dabei handelt es sich um eine
Verallgemeinerung der obigen g-additiven Funktionen, die folgendermaßen
definiert ist:

Sei K ein endlicher Körper und Q 6 K[T] ein beliebiges Poly-
nom mit positivem Grad. Eine Funktion / auf K[T] heißt
(vollständig) Q-additiv, wenn für beliebige A,BE K[T] mit
grad(B) < grad(Q)

f(AQ + B) = f(A) + f(B) (2)

gilt.



II

Ziel dieser Dissertation ist es, das Verteilungsverhalten von Q-additiven
Punktionen zu untersuchen. Genauer gesagt werden wir drei Resultate (von
Kim, Bassily & Kätai bzw. Drmota) über g-additive Punktionen für den
Polynomring über einem endlichen Körper adaptieren.

In Kapitel 1 wird zunächst ein kleiner Überblick über verschiedene Ergeb-
nisse vorangegangener Untersuchungen zahlreicher Mathematiker gegeben.
Besonderes Augenmerk wird dabei auf jene drei Resultate gelegt, die wir im
Laufe der Dissertation in unserem Sinne verallgemeinern werden.
Weiters werden die wichtigsten Eigenschaften des additiven Charakters E
zusammengestellt.

In Kapitel 2 verallgemeinern wir ein Resultat von Dong-Hyun Kim [20] über
die gemeinsame Verteilung von g-additiven Funktionen in Residuenklassen.
Der Beweis unserer Verallgemeinerung (Theorem 4) stützt sich dabei teil-
weise auf Kims Methoden, es treten aber andere Schwierigkeiten auf.
In einem zweiten Unterkapitel (2.2) werden noch einige Fragen, die im Laufe
unserer Betrachtungen im Zusammenhang mit oben genannten Theorem 4
auftauchen, behandelt.

In Kapitel 3 werden zwei zentrale Grenzwerts ätze bewiesen. Zum einen
verallgemeinern wir in 3.1 ein Resultat von Bassily und Kätai [1], einen
zentralen Grenzwertsatz für die Verteilung der Folgen f(P(n)), n € N,
und f(P{p)), p € P, wobei /(n) eine g-additive Funktion und P(n) ein
Polynom mit ganzzahligen Koeffizienten ist. Mit Hilfe einer Abschätzung
von i?-Summen (siehe Lemma 24) sowie der Momentenmethode kann das
entsprechende Resultat (Theorem 5) bewiesen werden.

Im letzten Abschnitt beschäftigen wir uns schließlich mit einem Ergebnis
von Drmota. [9]. Dieser hat Bassily und Katais Ergebnisse auf die gemein-
same Verteilung von zwei Folgen /i(n) und /2(n) verallgemeinert, wobei fi(n)
gj-additive Funktionen und die Basen 51,92 relativ prim sind. Für unsere
Zwecke benötigen wir zusätzlich zu den Methoden aus 3.1 den Satz von Ma-
son. Damit gelingt es uns, ein ensprechendes Resultat für die gemeinsame
Verteilung von Qi- bzw. (^-additiven Funktionen auf dem Polynomring über
einem endlichen Körper zu beweisen, wobei Qi und Q2 relativ prim sind.



Abstract

The notion of ^-additive functions was established in the second half of the
last Century. On the one hand, scientists like Michel Mendes-France and
Hubert Delange as well as other members of the Prench school obtained
first results on this concept. On the other hand, it was mainly the Russian
mathematician Aleksandr Ossipovich Gelfond (1906-1968), who studied this
matter. In one of his last publications [15] he defined this Special kind of
function as follows:

Let q be an arbitrary fixed integer, q > 2. A function / : N —> E
is called (completely) q-additive if

(3)

for arbitrary a > 1 and 0 < b < q.

Since these beginnings in the late 60s of the 20th Century much progress
has been achieved. Thus, various results concerning q-additive functions are
known today.

In this thesis we work in the ring of polynomials over a finite field, and in-
troduce the so-called Q-additive functions. They constitute a generalization
of the above mentioned g-additive functions and are defined in the following
way.

Let K be a finite field and Q € K[T] an arbitrary polynomial
of positive degree. A function / on K[T] is called (completely)
Q-additive if

f{AQ + B) = f(A) + f(B) (4)

where A, B e K[T) and deg(J5) < deg(Q).

The aim of this thesis is to study the distribution of Q-additive functions.
More precisely, we are going to adapt three results (by Kim, Bassily & Kätai
and Drmota) about g-additive functions for the ring of polynomials over a
finite field.

III



IV

In Chapter 1 we will give a brief survey of different results of previous studies
by various mathematicians. Our main focus will be on the above mentioned
three results which we are going to generalize in the course of this thesis.
Moreover, we will introduce the additive character E, on which all of our
studies are based.

In Chapter 2 we are first going to concentrate on a work by Dong-Hyun
Kim [20] about the Joint distribution of g-additive functions in residue
classes. The proof of our generalization (Theorem 4) will partly rely on
Kim's original proof, but we have to face some difficulties that are different
from that of Kim.
In a second section (2.2) we are going to deal with several questions which
arise in the course of our study of Theorem 4.

In Chapter 3 we are going to prove two central limit theorems. On the
one hand, we will generalize Bassily &: Kätai's result in 3.1. They proved a
central limit theorem for the distribution of sequences f(P(n)), n 6 N, and
f(P(p)), p €E P, where f(n) is a g-additive function and P(n) an arbitrary
polynomial with integer coefficients. By the help of an estimate of £-sums
(see Lemma 24) as well as the method of moments the corresponding result
(Theorem 5) can be shown.

In our last section, we finally focus on Drmota's article [9]. In his work,
Drmota generalized Bassily & Kätai's theorem for the Joint distribution of
two sequences /i(n),/2(n) where fi(n) are gj-additive functions, and q\ and
q2 are coprime. For our purposes, we also need Mason's Theorem in addition
to the methods used in 3.1. Thus, we succeed in proving the desired result
for Qi- and (^-additive functions on the ring of polynomials over a finite
Meld, where Q\ and Q2 are coprime.
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Chapter 1

Introduction

The purpose of this chapter is to present basic preliminaries about Q-additive
functions, on which our research in Chapters 2 and 3 is based.
We will Start by defining g-additive functions which are concerned with inte-
gers. Of course, one cannot discuss g-additive functions without mentioning
members of the French school like Mendes-France, Delange and Coquet, as
well as the Russian mathematician A.O. Gelfond. The latter's basic ideas
and definitions of g-additive functions will be given close attention.

While the early work on g-additive functions is still essential with respect
to terminology, the findings themselves have long been extended. Therefore,
we will give a brief survey about several works on g-additive functions. Of
particular interest will be three more recent works, namely one by Kim ([20]),
which is a generalization of Gelfond, one by Bassily and Katai ([1]), who
studied the distribution of g-additive functions on polynomial sequences,
and one by Drmota ([9]), which is, in turn, a generalization of Bassily and
Kätai. We will cite these results in a slightly modified form.
After that, we will introduce the new defmition of Q-additive functions
which are concerned with polynomials and which represent our actual focus.

The main aim of this thesis will be to generalize the results of the three above
mentioned articles. Whereas they deal with g-additive functions defined on
the non-negative integers, we try to translate these findings into Q-additive
functions defined on the ring of polynomials over a finite field.

In the final section of this introduction we will deal with the properties of the
additive character E which is strongly related to the ordinary exponential
function exp : R —» K. As our proofs include the study of exponential sums,
E is a basic tool.

1
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1.1 ^-additive functions

The history of research concerning g-additive functions dates back to the
1960s. The first scientists who concerned themselves with this matter were
members of the Prench school like Michel Mendes-Prance and Hubert De-
lange as well as the Russian mathematician Aleksandr Ossipovich Gelfond.
They laid the foundation for the following definition.

Let q > 1 be a given integer. Then, every non-negative integer n has a unique
q-ary expansion

with eqj(n) G Eq := {0,1, . . . ,q — 1}. The eqj(n) are called digits of n in
base q. If there is no risk of confusion, the index q will be omitted.
{q, Eq} is called a number System. There are generalizations of such number
Systems, however they are of no concern to the thesis in hand. For further
reference see [22].
A function / : N —» R is called q-additive, if /(0) = 0 and

If / even satisfies

it is said to be completely q-additive. An example of such a function is the
sum-of-digits function sq : N —» N that denotes the sum of the digits of n in
base q:

This particular example, as well as q-additive functions in general, has been
very well studied by several authors.
Manstavicius [24], for example, extended an idea of Coquet [6]. He focused
on the mean value of g-additive functions and formulated the most general
result so far: Let

^ 6=0 9 6=0

and
[log,N] (log,JV]

• M(N) = £ Hk, B(Nf = £
fc=0 fc=0
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Then,

n<N
which implies

n<N

For the sum-of-digits function sq(n) other much more precise results are
known. For integral N, Delange [8] proved

jf E s » = Sr l og*N+7( log*N)'
n<N

where 7 is a continuous, nowhere differentiable and periodic function with
period 1. Without mentioning their results in detail, we want to quote
Kirschenhofer [21], Kennedy and Cooper [19] and Grabner, Kirschenhofer,
Prodinger and Tichy [16] who studied higher moments of sq(n) in the given
articles.

However, we want to present an interesting result by Gelfond [15]:

Assertion 1 Let q > 1, p > 1, m > 1, l,a € N and (p,q — 1) = 1. Then,
the number of integers n,n < N, satisfying

n = l (m) and sq(n) = a (p),

is given by

— + O(NX), A < 1 .
mp

Interestingly, one Special case of Assertion 1 can even be found in an earlier
work by Nathan Jacob Fine [14], which dates back to 1965. It deals with
Stanislav Marcin Ulam's question whether the number of n < N for which
Sio{n) = n = 0 (mod 13) is asymptotically N/132.
This question was afRrmatively answered by Fine's above mentioned article.
Additionally, the latter showed

lim — #{n < N \n = a (p) and sJn) = c (p)} = —
N—>oo TV Jr

for arbitrary 0 < a, c < p and for any prime p which must, however, not be
a divisor of (q — 1).

Gelfond was certainly not the first scientist to work on such questions. Nev-
ertheless, he and the members of the French school were one of the first
who contributed considerably to the notion of g-additive functions and who
studied them in detail.
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1.2 More recent findings on the distribution
of g-additive functions

As we have learned in section 1.1, Gelfond's studies led to Assertion 1 about
the sum-of-digits function sq(n). Now let us neglect the residue class which
contains n. Then, due to Assertion 1, Gelfond actually proved the estimate

-j=#{0 < n < N : sq(n) = a mod m} = — + OiN1'6) (1.1)

which is valid for any integer a and positive N, where ö = 5(q,m) is a
positive constant depending only on q and m.
In other words, he showed that the sum-of-digits function sq(n) is uniformly
distributed in residue classes modulo m for an arbitrary integer m > 2
provided that m is coprime to q — 1.

Since the beginnings of q-additive functions, they have been extensively
discussed in the literature. One reason for this can be found in the fact that
Gelfond, Mendes-France and Delange did not only create the pure concept
of 9-additive functions, but also made several conjectures concerning these
functions. So, it was only a question of time until other scientists engaged
in studying this field further in order to examine those conjectures and, if
possible, to verify them.

For example, in [15] Gelfond made the following conjecture, which actually
is a generalization of estimate (1.1).

Conjecture 1 Let mi,7712,91 and 92 be integers > 2 satisfying (91,92) = 1
and (mi,91 — 1) = (m2,92 — 1) = 1- Then,

77#{0 < n < N : sqi(n) = a\ mod mi,s,2(n) = a2 mod m2}

+ 0{N1~i) (N>1)

holds for arbitrary integers 01,02-

Only a few years later, Besineau [2] was able to take a decisive step towards
Conjecture 1 in that his result was already valid for an arbitrary number of
bases 9*. However, he did not fully succeed in attaining the error term which
had originally been asserted. Actually, Besineau showed that for any integers
Oi, 0 2 , . . . , o<i, as iV —> 00 ,

N\sq.ln) = Oi mod mi,l<i<d} (1.2)
m i m 2 • • • m&
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holds under the condition that the bases qt are pairwise coprime and

(rrii, q{ — 1) = 1 for 1 < i < d.

In 1998, Dong-Hyun Kim was able to sharpen Besineau's estimate (1.2) to an
estimate with the desired error term O(N1~S). Moreover, Kim replaced the
sum-of-digits function sq. (n) by an arbitrary completely ^-additive function
/*•

Theorem 1 (Kim [20]) Suppose that qi,..-,qd > 2 are pairwise coprime
integers, mi,...,md positive integers, and let fj be completely qj-additive
functions for 1 < j' < d. Set

H := {(/i(n) mod m j , . . . , fd(n) mod md) : n > 0}.

Then, H is a subgroup of Z m i x • • • x Zm<J and we have

— # {n < N : fi(n) mod mi = a i , . . . , fd(n) mod md = ad}

= / \ \ O(Nl-s) (au...,ad)eH,

1 0 otherwise,

where 6 = l/{120d2q3m2) with

q — max o7- and m = max m,-;

and the O-constant depends only on d and qi,..., qd.

In [20] the set H is explicitly determined. Set

Fj - fi(l),
dj = gcd{mj, (qj - l)Fj, fj(r) - rFj (2 < r < Qj - 1)},

for each 1 < j < d. A d-tuple (ai,...,ad) of integers is called admissible
with respect to the d-tuples (qi,..., qd), (m^ . . . , md) and ( / i , . . . , fd), if the
System of congruences

FjTt = ÜJ mod dj,l < j < d

has a solution.
Then, the elements of the set H are exactly these admissible d-tuples in
the above sense. Furthermore, Kim characterizes the admissible d-tuples
( a i , . . . , ad) by congruence conditions in the following lemma.



CHAPTER 1. INTRODUCTION 6

Lemma 1 A d-tuple (ay,..., ad) of integers is admissible with respect to
(<?ii • • • i Qd), (wM) • • •, f^d) and (/i, •. •, fd), if and only-if the following condi-
tions hold:

where a) = aj/(Fj,dj), F* = Fj/(Fj,dj), and d] — dj/(Fj,dj). Moreover, if
(di , . . . , ad) is admissible, then

—#{0 <n< N : Fjn = ÜJ mod d,-(l < j < d)} =

l /D + 0(1) for all N>1,
l /D ifD\N,

where D = [dj,d*2,...,d*d}.

The lemma follows directly from the definition of admissibility and the gen-
eralized version of the Chinese Remainder Theorem (see [28], Theorem 5.4.3
pp. 156-157).

Remark 1 In our next chapter we will generalize Theorem 1 and modify
some of the ideas of Kim's proof for his theorem. Fortunately, in the case
of polynomials over finite fields some aspects are easier to show than for
integers, so some parts of Kim 's original proof may be neglected. Some other
difficulties appear instead.

During the second half of the 20f/l Century other fields of research concerning
these functions were explored as well. Thus, one can also find distributional
results for q-additive functions in the literature. In this context we mention
an analogue to the Erdös-Wintner Theorem by Delange [7]. There exists a
distribution function F(x) such that, as N —> oo,

^#{n < N\f(n) <x}-+ F(x) (1.3)

if and only if the two series ^fc>o Mfe an<^ Ylk>o A,k converge.
Later on, Imre Katai [18] could generalize this result by proving that there

exists a distribution function F(x) such that, as N —> oo,

^ # { n < N\f(n) - M(N) < x} -> F(x),

if and only if the series YlkxifA.k converges.
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Once more, the most general result known concerning a central limit theorem
is due to Manstavicius [24]. Suppose that, as N —> oo,

max | / M | = o(B(N))
bqJ<N

and that D(N) —> oo, where

q - l
and ff2 = i E ^ 6 ^ ) 2 - m

fc=O * 6=0

Then, as N —> oo,

where $(x) is the ordinary normal distribution function.

Again, we content ourselves with just mentioning that similar distribution
results can be found by Dumont and Thomas [12] resp. Drmota and Gaj-
dosik [10].

Some years before Kim's work was published, Bassily and Kätai [1] stud-
ied the distribution of g-additive functions on polynomial sequences. They
proved a central limit theorem for the distribution of sequences f(P(n)),
n € N, and f(P{p)),p G P, where /(n) is a g-additive function and P(n) an
arbitrary polynomial with non-negative integer coefficients.
This central limit theorem provides the second result which we are going to
generalize at the beginning of Chapter 3.

Theorem 2 (Bassily-Kätai [1]) Let f be a completely q-additive function
and let P(x) be a polynomial of degree r with non-negative integer coefficients.
Then, as N —> oo,

and
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where

fif = — y fv) and o~j
^ r=0 "* r=0

and

Remark 2 TTie result of [1] is more general. It even provides asymptotic
normality, if f is not strictly q-additive but the variance grows sufficiently
fast.

It seems to be a natural question to ask whether there are analogue results
for the Joint distribution of several ^-additive functions fi(n), 1 < i < d
(if q\,..-,qd > 1 are pairwise coprime integers). Drmota [9] quotes A.J.
Hildebrand, who announced that one always has

i # { n < N\fi(n) < xu 1 < i < d} -» Fi(x) • • • Fd(x)

if fi satisfies (1.3) for all 1 < i < d and that there is a Joint central limit
theorem of the form

if Bqi(N) -* oo and Bqi(Ni) ~ Bq.(N) for every 7? > 0 as N -» oo.

Drmota [9] used a Variation of Bassily and Kätai's proof; he combined it with
a proper version of Baker's Theorem on linear forms of logarithms to general-
ize Theorem 2 on the Joint distribution of sequences fi{Pi(n)) (and fi{Pi{p))
respectively) where fi are (fc-additive functions and Pi(n) are polynomials of
different degrees. For polynomials of equal degree Drmota could prove a cen-
tral limit theorem only for two sequences /i(Pi(n)), f2{P2(n)) with coprime
<ji,<72, and linear polynomials P\(n),P2{n).
The result of his paper will be explained in the following theorem.

Theorem 3 (Drmota [9]) Suppose that qt > 2 and g2 > 2 are coprime
integers and that f\ and f2 are completely qx- resp. q2-additive functions.
Then, as N —* oo,

1 # In < N :N l N
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Remark 3 By adapting Vinogradov's and Hua's results on exponential sums
of polynomial sequences, Steiner [31] could extend Drmota's result to arbi-
trary polynomials P\(n),P2{ri) and sequences ofprimes. However, up to now
it has not been possible to prove a similar property for three or more bases
Qi-

Theorem 3 constitutes the third result we are going to generalize in section
3.2.

1.3 Q-ary expansions and Q-additive func-
tions

Contrary to g-additive functions, which deal with integers, Q-additive func-
tions are concerned with polynomials.

Let ¥q be a finite field of characteristic p (that is, q = |Fg| is a power of p e P)
and let ¥q[T] denote the ring of polynomials over ¥q. The set of polynomials
in Fq of degree < k will be denoted by

Pifc:={AeF,[r]:degA<A;}.

Sometimes we need a Special subset of P^.

P*k := {A G ¥q[T\ :degA<k A A ? 0}

Analogously to the integer case, we can define the following: Fix some poly-
nomial Q € Fq[T] of positive degree. A function / : F,[T] —> G (where
G is any Abelian group) is called (completely) Q-additive, if f(AQ + B) —
f(A) + f{B), where A,B e ¥q[T] and deg(ß) < deg(Q). More precisely, if a
polynomial A G ¥q[T] is represented in its Q-ary digital expansion

where DQJ{A) G Pk are the digits, that is, polynomials of degree
deg{DQd(A)) <k = degQ, then

For example, the sum-of-digits function SQ : ¥q[T] -* ¥q[T] is defined by
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Remark 4 Note that the image set of a Q-additive function is always finite
and that (in contrast to the integer case) the sum-of-digits function satisfies
sQ(A + B) = SQ{A) + SQ(B).

This is based on the property that there is no carry over for the Single digits
when adding two polynomials, i.e. let

and C := A + B, then

C = Y,DQÄC)Qi with DQJ(C) = DQJ(A) + DQd(B).

Furthermore, deg(C) = max{deg(y4),deg(ß)} if deg(^4) ^ deg(B).

In order to be able to analyze more complex results, we need the following
notation introduced by Hayes [17], which we will just adopt.
Let ¥q(T) denote the field of rational functions over the finite field ¥q:

On ¥q(T) one has the valuation v associated with the „infinite prime" of
F,(T) and defined by

*(0) - oo, (1.4)
v{A/B) = deg(B) - deg(A) (1.5)

for every non-zero rational function A/B. The valuation has the following
properties:

Lemma 2 Let a i , . . . , an € ¥q(T), then,

2. v(a,x + a2 + h an) > min{i/(ai), v{a2), • • •, ̂ (an)

3. f(cij) — oo if and only if ÜJ = 0.
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Proof.

1. Let dj = Ai/Bi for i = 1,. . . ,n. Then,

n n .

S

2. We only prove property 2 for n = 2. The general case follows by
induction.

A C_ _ AD + BC
5 + Z> ~ ~BD

i " 1 " ? ) = deg(jB)+deg(D) ~ deg(AD+BC">
> min{deg(5) + deg(£>) - deg(A) - deg(D),

deg(ß) + deg(D) - deg(5) - deg(C)}
= min{deg(ß) - deg{A), deg{D) - deg(C)}

3. Property 3 follows directly from the dennition of v.

D

The next lemma is an important extension of property 2.

L e m m a 3 Let ai,...,an G F,(T) viith pairwise different valuations (i.e.
j/(oi) ^ v{aj) for i ^ j), then,

v{ai + a2 + h an) = min{i/(ai), v(a2),..., v{an)}. (1.6)
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Proof. Again, we will concentrate onn = 2. The general case follows by
induction.

& deg(A) + deg(£>) ^ deg(B) + deg(C)
<£> deg(AD) ^ deg(ßC).

If deg(AD) ^ deg(BC), then deg(AD + BC) = max{deg(AD),deg(.BC)}.
Thus,

= min{deg(5) + deg(D) - deg(i4) - deg(D),
deg(5) + deg(L») - degtB) - deg(C)}

= min{deg(ß) - deg(A), deg(£») - deg(C)}

D

Let F,j((l/r)) denote the set of formal Laurent series in l/T. It is well knwon
that IFg((l/T)) is the completion of ¥q(T) with respect to the valuation v.
More precisely, every A G F9((l/T)) can be expanded in a unique way formal
in an infinite series of the form

3--oo

with ÜJ G ¥q. Thereby, all but a finite number of coefficients o,- with j < 0
are zero. Thus, there exists k G N with

The extension of the valuation v to Fg((l/T)) can also be determined in
terms of the representation (1.7). If A ^ 0 and A has the Laurent expansion
(1.7), then,

v{A) = the smallest j such that ÜJ =£ 0.

Therefore, we can write (1.7) as
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1.4 The character E

Throughout this thesis we will use the additive character E defined for all
formal Laurent series (1.7) by

E(A) := e
27ritr<Res^»/P. (1.8)

The residue Res(A) is given by Res(A) = oi and tr is the usual trace function
tr : F, -> Fp.

There are some simple properties, which we will resume in the following
lemma.

Lemma 4 For the additive character E : F9(T) —• R defined as in (1.8), we
have

1. For every A,B € F,((l/T)),

E(A + B) = E(A)E(B). (1.9)

2. For every A £ ¥q[T) : E{A) = 1.

3. ForAe¥q((l/T)),

v{A) > 2 =• E(A) - 1.

4- Let H be a non-zero polynomial and A, B be arbitrary polynomials. If
A and B are congruent modulo H, then,

)

Proof. The first attribute is trivial and follows immediately from the defini-
tion of the character.
Since the coefficient of l/T in the Laurent expansion of A is zero in each of
the next two.cases, E(A) — 1.
If A = B mod H, then A = B + RH for some R e F,[T]. Thus,

D

The character E has, of course, many more features, see [17].
Due to their importance for the present thesis, we are going to mention two
more properties of the character in the following lemmas. Both proofs pursue
the very same concept.
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Lemma 5 LetH^O,H,Ge ¥q[T], then:

HR)~\ 0 otherwise. ( L U )

Proof. If # divides G, G/H e F9[T] and according to Lemma 4(2):
E ( f Ä) - 1. Hence,

E
degfi<deg/f

Otherwise, G = GiH + G2 for some polynomials Gi and G2 with
degG2 < degif. Thus, by (1.10),

Moreover, there exists a polynomial RQ with deg i?o < deg H such that

E ( ^

For example, set Ro :— Tl with i = degif — deg(?2 — 1 < deg/f. Then,

deg fi<deg H

By (1.12), it follows that 5 = 0. D

Lemma 6 Suppose that v (^) > 0 and that n > v (§), then,

]T E f^A\ = 0. (1.13)
A€Pn ^ '

Proof. Set m:=v (§), thus, 0 < m < n. Set Ao = Tm~1 G Pn. Again,

Thus, the same argument as above holds. D



Chapter 2

Joint Distribution in Residue
Classes

In this chapter, we will generalize Kim's result (Theorem 1) to the Joint distri-
bution of Q-additive functions on polynomials over a finite field. Therefore,
we will inter alia use methods similar to those in Kim's article [20] but mod-
ified for the use of polynomials.
Afterwards, we will answer several questions which occur in the process of
proving our first theorem.

T h e o r e m 4 Let Qi, Q2,..., Qd and Mx, M 2 , . . . , Md be non-zero polynomi-
als in ¥q[T] with degQi = A^degMj = m* and {QuQj) — 1 for i ^ j .
Furthermore, let / , : ¥q[T] -> Wq[T] be Qradditive functions (l<i<d). Set

H := {(/i(A) mod Mu..., fd(A) mod Md) : A € ¥q[T}}.

Then, H is a subgroup of P m i x • • • x Pmd and we have

lim - W {A € Pi : fi(A) mod Mx = Ru • • •, fd{A) mod Md = Rd}
i—>oo ql

= {l/\H\ if(Ru...,Rd)eH,
[0 if{Ru...,Rd)£H.

Since the image sets of fi are finite, we can choose the degrees m; of
sufficiently large and thus obtain

Corollary 1 Let Qi,Q2,--,Qd a-nd M i , M 2 , . . . , M d be non-zero polyno-
mials in ¥q[T) with degQi = ^ ,degMi = rri{, m^ sufficiently large and

15
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{QuQi) = 1 for i + j . Moreover, let fr : ¥q[T] -» ¥q[T] be Qi-additive
functions (1 < i < d). Set

H':={(f1(A),---Jä(A)):Ae¥q[T}}.

Then H' is a subgroup of Pmi x • • • x Pmd and for every (Ri,..., Rd) G H'
we have

Um ±i#{AePr.f1(A) = Rll...,UA) = Rd}

= h/\H'\ if(Ru...,Rd)eH,

\ 0 if(Ru...,Rd)?H.

Remark 5 In particular, itfollows that ifthere is A € ¥q[T] with fi(A) = Ri
(1 < i < d) (fi{A) = Ri mod Mt resp.), then there are infinitely many
A € ¥q[T] with that property.

2.1 Proof of Theorem 4

Let Qi,Q2,--,Qd and M\,M2,... ,Md be non-zero polynomials in ¥q[T]
with degQi = ki,deg Mi — rrii and {Qi,Qj) = 1 for i ^ j . Furthermore, let
fi be completely Qt-additive functions. For every tuple R = (Ri,..., Rd) G
Pmi x • • • x Pmd set

QHiA) := E (Jj-MA?) (2.1)
and

f[ ^ ^ Y (2.2)
E denotes the additive character defined in (1.8).

With these definitions we can state the following proposition.

Proposition 1 LetQ\,Qi, • • • ,Qd and Mi, M 2 , . . . , Md andR = (Ri,... ,Rd)
as above. Then, we either have

9R{A).= 1 forallA€¥q[T]

or

We will first prove Proposition 1 (following Kim [20]). Theorem 4 is then a
simple corollary.
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2.1.1 Preliminaries

We start with a version of the Weyl-van der Corput inequality.

Lemma 7 For each A € ¥q[T] let UA be a complex number with \UA\ = 1,
then,

1 1

+

Proof. Since (P;, +) is a group, we have

1 v —
7 i l ^ UAUA+D

UA~B

\BePr

Hence, using the Cauchy-Schwarz inequality

£
BePr

r CePr

I>6Pr

D€Pr B€Pr A€P,

D€Pr

The desired result follows from \UA\ = 1.

(2.3)

D

Lemma 8 Let f be a completely Q-additive function, and t € N,
K,R e ¥q[T] with degR,degK < degQ1. Then, for all N <E ¥q[T) satis-
fying N = R mod Q* we have

K)-f(N) = K)-f(R). (2.4)
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Proof. Due to the above conditions, N = A • Ql + R for some A 6 F,[T].
Since / is completely Q-additive, and deg(R + K) < deg(Qt), we have

f{N + K)-f{N) = f(AQl + R + K) - f(AQ* + R)

= f(R + K)-f(R). (2.5)

D

2.1.2 Some Correlation Estimates

In the next step, we will first prove a correlation estimate (Lemma 9), which
will be applied to prove a pre-version of Proposition 1 (Lemma 10).
Let Q e Wq[T] of degQ = k, M e ¥q[T] of degM = m, and / be a
(completely) Q-additive function. Purthermore, set g(A) := E (jff(A)) for
RePm.
Unless otherwise specified, n and / are arbitrary integers, and D 6 ¥q[T] is
arbitrary as well. We introduce the correlation functions

and

Lemma 9 Suppose that \$k(R)\ < 1, then,

H€P, H A€P„

Proof. We start by establishing some recurrence relations for $ n and $/,n,
namely

$k+n{KQ + R) = *fc(Ä)*„(Ä-) (2.6)

for polynomials K, R with R 6 Pk- By using the relation g{AQ + B) =
g(A)g(B) and Splitting the sum which defines $k+n(KQ + R) according to
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the residue class of A modulo Q, we obtain

qk+n$k+n{KQ + R) = E E 9TÄQTl)g{AQ + I + KQ + R)
l€Pk A€Pn

E 9(A)g(I)g(A + K)g{I + R)

= qk<!>k(R)qn$n(K).

This proves (2.6). Next, observe that

E
E
-46P,

iePk AeP,

= qk$ktkql$i,n-

Thus,
$fc+i,fc+n = *fc,fc$(,n (2.7)

and consequently,
$ik+i,ik+n = (<&*,*)' *j,„. (2.8)

Since |* i in| < 1, we also get |$ifc+j,ifc+„| < 1 ^ 1 ' .
Hence, if n and / are given, we can represent them as n = ik + r, l = ik + s
with i = min([n/fc], [l/k]) and min(r, s) < k. By definition, we have

*M = i E l**Wla
9 A€Pit

with |$k(-/4)| < 1 for all A. Since |<J*fc(Ä)| < 1, we also have

and consequently,

D
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Remark 6 We want to remark that |$/t(/?)| = 1 occurs very rarely. In
particular, we have |$fc(Ä)| = 1 Vi?

<=>• VA 6 Pk : g(A)g(A + R) is constant (just depending on R)

& VÄ, VA, B € Pk : gJÄ)g(A + R) = gjB)g(B + Ä)

T/ius, i/iere exisfs Ä iyii/i |$/;(il)| < 1 if and only if there exist A,B € Pk

withg(A)g(B)^g(A + B).

Next, we will prove a pre-Version of Proposition 1.

Lemma 10 Let Qi,Q2,- • • ,Qd & FJT] he pairwise coprime polynomials,
Mu M2,...,Mde ¥q[T], and R = (Ru R2,..., Rd) € Pmi x • • • x Pmd so that
\$kj{Rj)\ < 1 for at least one j — 1 , . . . , d. Then,

h E 9R(^) = 0, (2.9)
q

where gR(A) = l\U 9RM) ™th 9RM) = E

Proof. Set Bj — Q?, where bj — tj deg Qj satisfies r < bj < 2r with r — ̂ .
For given S = (Si,S2, • • •, Sd) and BUB2, •..,Bd, we define

Ns := {A e Pi : A = Sx mod Bu...,A = Sd mod Bd}.

By the Chinese Remainder Theorem we have for / > X)j=i ̂ '

Purthermore, set <S :— P^ x • • • x Pbd. By Lemma 8 we obtain for D G P*\

S€S A€NS

A€NS i= l

n \ / o \ _ / o • n\

' -* 3 J 3 J

J = 1 Sj G ̂ 5 .

. m y _J_ • -^ - -

J = l
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According to Lemma 7, we obtain for r < l

E
_ 21-T V ^

D€P?
E gn^gnASj + +0(q2l-r)

Hölder's inequality results in

< 9

3=1 \D€Pr'

E g^iS^g^Si + D)

E ^(^)

d+1

For some j we have \<&kj(Rj)\ < 1> so that Lemma 9 is applicable and thus,
2

exp I — r

as r = l/(3d) —> oo. For all other j we trivially estimate by < 1 and obtain
2

resp.

Thus,

A€Pt

S^ n

exp -
r 1 -

d + 1 k3qq
ki

exp - 2(d-

E

exp(-r?0 (2.10)

D
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2.1.3 Proof of Proposition 1

As above, we set gR(A) = I]J=i 9RM) = E (£?=i jtJM)) • We will divide
the proof into several cases.

Case 1: There exist j and A,B e P^ with gRj(A)gRj(B) ^ 9Rt{A + B).

According to Remark 6, we have 1^(^)1 < 1. Thus, this case is
covered by Lemma 10:

E 0.

Case 2: For all j and for all A,B € Pkj we have gRj(A)gRj(B) = gRj(A+B).

Due to the additivity property, we also have gRj {A)gRj (B) = gRj (A+B)
for all A,Be ¥q[T] in this case, and consequently, g(A)g(B) = g(A+B)
for all A,B eF,[T).

Case 2.1: In addition, we have g(A) = 1 for all A € FJT].

Then,

This case is the first alternative in Proposition 1.

Case 2.2: Moreover, there exists A e F,[T] with p(A) ^ 1.

Let A = 12i>oaiTl, then we have

t > 0

Consequently, there exists i > 0 with g(Tl) 7̂  1. Since g{Tl) is a p-th
root of unity and q is a power of p, we have

if ff(T') 7̂  1. Otherwise, the sum equals q. Thus,

0 if
a = 0 V.



CHAPTER 2. JOINT DISTRIBUTION IN RESIDUE CLASSES 23

Hence, if l > i, we always have

ao=0ai=O ai_i=O

/9-1 \ fq-l \ / 9-1

= E 5(̂ °)ao • • • E )[
\ao=O / \ai=O

= 0. (2.11)

This completes the proof of Proposition 1. D

2.1.4 Completion of the Proof of Theorem 4
Before we start, we will define two (additive) groups:

G := {R=(RuR2,...,Rd) E X^iPm, : V A E ¥q[T] gR(A) = 1} (2.12)

and

Lemma 11 Let G be defined as in (2.12), then, G is a subgroup ofXf=1P

Proof. Let R = (Rlt R2,..., Rd) G G,S = (Si, S2, ...,Sd)eG, then

Thus,

( d p . \ f d S \ ( d R + S- \
^ —fi(A) 1 E I Y^ —L/i(i4) I = E I Y^ — -fi(A) I = 1,

and, R -\- S = (Äj + S\, R2 + 52, • • •, Rd "I" Sd) € G. Ll

For S = (Si, 5 2 , . . . , Sd) G Xf=1Pmi, let the function F(5) be defined as

" • * £ ! . (2.13)
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By applying Proposition 1, we directly get

-t#{A e Pi : h{A) = Sx mod Mu ..., fd(A) = Sd mod Md}

More precisely, the coefficient F(S) characterizes Ho-

Lemma 12 We have

1. F{S) = lforS€H0

2. F{S) = 0 forS <£H0.

Furthermore, \G\ • \H0\ = |Xf=1Pmi| = q^U™*.

Proof. It is clear that F(S) = 1 if S'e Ho.
N o w we s u p p o s e t h a t 5 0 Ho. T h e n , t h e r e e x i s t s R° = { R ° , R ° , . . . , R d ) € G

£ 1. S ince

R€G \ i=l

it follows that F(S) = 0.
Finally, by summing up over all 5 G Xf=1Pm., it follows that |G| • \H0\ =
|Xf=1PmJ. •

In fact, we have just shown that (as / —» oo)

-.#{A € P, : fx(A) = Si mod M h = 5d mod Md} = — - + o(l)
l n l
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if S = (Si , . . . , Sd) G Ho, and (as l -* oo)

-.#{A € Pi : h{A) = Sx mod Mu ..., /d(A) = 5d mod Md} = o(l)

if 5 = (5i , . . . , 5d) ^ i/o- The final step of the proof of Theorem 4 is to show
that

H = {(MA) mod M 1 ( . . . , fd(A) mod Md) : A e ¥q[T}} = Ho.

In fact, if S € Ho, then we trivially have S £ H.
Conversely, if S 6 H, then there exists a polynomial A G IF^T] with
fi(A) = Si mod Mi , . . . , fd{A) = 5d mod Mj. In particular, it follows that

Moreover, for all R G G we have

Consequently, 5 G HQ. This proves H — Ho and also completes the proof of
Theorem 4.

Remark 7 Unfortunately, a finite characterization as Kim gave it in his
article [20] was not possible in our case. We could find no way of defining
an admissible d-tuple so that H turns out to be just the set of all admissible
d-tuples. A reason for this fact is given in subsection 2.2.2.

2.2 Furt her investigations
The investigations we have made so far raise some interesting questions,
which we are going to study now. Actually, we will focus on several questions
in connection with the sum-of-digits function SQ. Note that we launch the
following notation: instead of SQi we will simply write s*.

At the beginning of subsection 2.2.1, we will tackle the question, when
g = gR — gRlgR2 = 1. Trying to find a solution, we will make investigations
concerning the additivity of the sum-of-digits function Si, which turns out
to be the actual focus of our first subsection.
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In subsection 2.2.2 we are going to have a closer look at the group H which
appeared in the proof of Theorem 4. First, we will choose two bases Qi and
Q2, and determine the elements of H. Then, we will give a reason why Kim's
finite characterization of H does not work in our case.

2.2.1 Additivity of the sum-of-digits function
In the proof of Theorem 4 we applied Proposition 1, which played a decisive
role in the whole proof. We can shorten this proposition to

However, no clue can be found anywhere as to which alternative - 0 or 1 -
actually applies. For the sake of brevity we will focus on d = 2 and assume
that

9 = 9R = 9R19R2 = 1- (2-14)

Generally, there are two possible cases in which (2.14) is valid. First, gRl as
well as pR2 are identically 1 for all A € ¥q[T].

gRl(A) = E (j^Sl(A)^ =1 & VA<EPkl:g

If we want to examine whether gR^A) actually is identically 1, we only have
to make a finite number of tests.

For the sum-of-digits function it is trivial that Si(A) = A for all A € P^
independent of the base Q\. It turns out that for the sum-of-digits function
g{A) is not constant equal to 1.

Lemma 13 Let rx := degi?1; r\ > 0, then

Res f
Wi

Proof. Since kx = degQi, we have Q^1 - a0T-kl + aiT-(fcl+1> + . . .

=» ^ - b o ~ + --- (boe¥q\{0})
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Thus, we obtain

D

According to Lemma 13 we have

gRl(A) ^lior all A&I,

I = {A e ¥q[T] : Sl{A) = T^-^-1}. Since T*1-1"1"1 G Pkl, it follows that
rpki-ri-i e j^ w n j c n m e a n s / ^ 0 and consequently, gRl ^ 1.

Thus, our first possibility never occurs for the sum-of-digits function, and
we can concentrate on the second scenario: gR^A) =£ 1 but g(A) = 1. So,
9R2(

A) = gR^A), i.e. gR.iA) and gR2(A) are Qi- as well as Q2-multiplicative:

gRl(AQi + B) = 5Ä1(A)5f l l(ß), gR^EQr + F) - gR2(E)gR2(F),
QRACQ* + D) = gRl(C)gRl(D), gR2(GQ2 + H) = gR2(G)gR2(H),

for deg.B,deg.F < ki and degD,degH < k2.

Lemma 14 Let fi be a Qx- and Q2-additive function, and set gR

El^f^A)). Then, gRx is Qi-and Q2-multiplicative.

Proof. Let /i be Qi- and Q2-additive. Thus,

Since (1.9), the assertion holds for gRl{A) = E

Hence, if we can show that S\ and s2 are both Qt- and Q2-&dditive, then we
get by Lemma 14 that gRl(A) and gR2(A) are Q\- resp. Q2-multiplicative, a
condition for the occurrence of our second scenario. This is exactly what we
want to achieve by an appropriate choice of Q\ and Q2.
We assume w.l.o.g. that deg£?2 > degQi and try to choose Q2 in such a
way that Si will be Q2-additive (si is always (^-additive by definition).

Before studying the general case, we will focus on a Special case where
deg Q2 = deg Qi. Therefore, we can state a base Q2 independent of a specific
base Q\ so that si is Q\- and <52-additive.
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Lemma 15 If k\ = k2> then there is just one possible choice of Q2 so that
Si can be Q2-additive: Q2 — aQi + (1 — a) for some a G ¥q \ {0,1}.

Proof. Since k\ = k2, we can write Q2 = aQi + B for some a G Fg, B € P^.
Suppose that si is (^-additive. AQ2 — aAQi + AB, thus,

Si{AQ2) = SiiaAQi) + sx{AB) = asi(A) + sx{AB)

equals Si(A) by assumption. Hence,

(a - l)si(A) + si(AB) = 0

for all A E ¥q[T\.
If deg(5) = 0, then B = 1 - a € ¥q. Otherwise choose A = c e ¥q, if
deg(B) > 0, thus, (a — 1) • c — — c • B, which contradicts our assumption. D

Remark 8 Actually, we have only proved the possibility of Q\- and Q2-
additivity for the bases Qi and Q2 as chosen in Lemma 15,
It will turn out later on, that for this Special choice of Qi and Q2 both sum-
of-digits functions truly have the desired property (see Example 2).

We will come across these two Special bases again several times afterwards.
Before we do so, we are going to focus on the general case, where there is no
restriction concerning the degrees of the bases.

We assume w.l.o.g. that degQ2 > degQi, and try to establish a criterion
(Lemma 18) for Qi and Q2 so that sx is definitely both Qi- and Q2-additive.

Lemma 16 LetQi andQ2 be arbitrarypolynomials, w.l.o.g. k2> ki. Then,
we consider the Qi-ary expansion of Q2,

(2.15)
j=o

with Aj £ PÜ,, i4„ / 0 and not all Aj — 0 for 0 < j < n. Furthermore, we
can write Q2 as

j=o
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with Bj € Pfei) Bn ^ 0 and not all Bj — 0 for 0 < j < n. Then, we have the
following correlations between Ak and BJ:

(0j- (2i8)

In particular, we have An = Bn.

Proof. We start with (2.16), and obtain

±Bj(Ql-iy = £,Bi

n n

j=0 fc=0

Thus, (2.17) is valid. Due to (2.15) we get

i=o

j=0 fe=0

j=0 fc=0

and therewith we have proved (2.18). Substituting k — n in (2.17) resp.
(2.18) we finally obtain An = Bn, as stated above. D
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The following lemma is rather easy.

Lemma 17 Using the same notation as in the previous lemma we have

BQ = 1**Q1-1\Q2-1. (2.19)

Proof. Dueto(2.16), Qi — 1 | Q2-B0. Thus, ifß0 = 1, then, Q i - 1 | Q 2 - L
Accordingly, if Q2 = 1 mod Q\ — 1, then it immediately follows that Bo =
1 mod Qi — 1. Since BQ 6 Pkl, we have Bo — 1. D

Finally, we can prove the following criterion:

Lemma 18 Let Q\ and Q2 be two arbitrary bases, deg(Q2) > deg(Qi), with
expansion (2.15). Then,

Q\ — 1 I Qi — 1 <=> si is Q2-additive. (2.20)

Proof. Let S\ be Q2-additive. Thus,

Sl(CQ2 + D) -

for all A, C € 1F9[T], ß € Pkl and D € Pk2. Choose C = 1, I> = 0. Hence, by
(2-15),

( )
\j=0 / j=0

Since ^ " = 0 ̂ j = Bo bY (2-18), we get Bo = 1, and thus, Qx - 1 | Q2 - 1.
Suppose Qi — 1 | Q2 — 1- As is normal for Q2-additivity, it suffices to show

Si(BQ2) = Sl [
\

By Lemma 17 resp. by (2.18) we have

l = Bo =

thus, si(BQ2) = Si(B). Analogously,

Sl(BQl) = Sl [BY^A^QA = sx [B^AjQi) = sx(B).
\ j=o J \ j=o /

Finally, by complete induction, we obtain that S\ is (22-additive. •
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Due to this criterion, we can give the following example of two polynomials
Qi and Q2, degQ2 > degQi, so that Si is Q\- and <22-additive.

= x2

2
Example 1 Let Q\ = x + 1 and Q2 = x2 + x + 1 be polynomials in Wq[x)
Then, we have Q\ — 1 = x \ x(x + 1) = x2 + x — Q2 — 1, and thus, by
Lemma 18 we obtain that S\ is Q2-additive.

A very simple case where S\ is Q2-additive is, of course, if S\ = s2. Due to
Lemma 18 we get the following interesting equivalence:

Lemma 19 Let Qi and Q2 be arbitrary bases, w.l.o.g. k2 > ki. Then,
s\ = s2 if and only if Qi — 1 \ Q2 — l and Q2 — 1 | Qi — 1, i.e. ki = k2 and
Qi-1 = a{Q2 - 1) for some o 6 F , \ { 0 } .

Proof. If si = s2, then, Si is Q2-additive and s2 is Qi-additive. Due to the
above criterion we get Q\ — 1 | Q2 — 1 resp. Q2 — 1 | Q\ — 1. All in all we
get Qi — 1 = a(Q2 — 1) for some constant a ^ 0, and especially ki = k2, as
stated above.
Conversely, let Qi — 1 = a(Q2 — 1) for some positive a 6 ¥q. If a = 1, we
have Qi = Q2, and the result follows immediately. Thus, w.l.o.g. Q\ —
aQ2 + (1 — a), with a > 2, and

For any arbitrary ß we have

B=J2 B&=E ^ E (i)ai^- «y^
for some polynomials Bj G P^. Hence, we get

s2(B) = Y, s> [Bi E (<) ̂  - °)J'') = E fl»(ßi)-
j=0 \ i=0 ^ ' / j=0

Since ß j G Pjt2 = P/tl, we have

S2(B) = J2 S*(B,) = E s i = E S i ^ ) = Si(ß)-

Due to the arbitrary choice of B we have S\(B) = s2(-ß) for all B G Fg[T],
and thus, sx = s2. •

Due to the importance of these two bases Qi and Q2, we want to mention
them once more.



CHAPTER 2. JOINT DISTRIBUTION IN RESIDUE CLASSES 32

Example 2 Let Q2 = aQx + (1 - a) with a e ¥q \ {0,1}, Qj e Fq[T] \ {0}.
Then, we have k\ — k2 and Qx — 1 \ Q2 — l as we^ as Q2 — 1 \ Q\ — 1.
Therefore, by Lemma 19, s\ = s2 and thus, s\ and s2 are both Q\- and Q2-
additive.
As alfeady mentioned above, this is the only Option if Q\ and Q2 are of equal
degree so that the corresponding sum-of-digits functions are both Q\- and
Q2-additive.

2.2.2 The properties of the group H

After these extensive studies on the additivity of s», we turn to another
interesting problem. In the proof of Theorem 1 two unnatural Groups G
and H appeared, on which we want to focus now.

We take the previously studied example Q2 = aQ\ + (1 — a) up again and
first have a look at G. More specifically, we ask if G is trivial or not, and if
there is (Ri,R2) ^ (0,0) so that

for A € Pfci = Pk2- Since (Qi, Q2) = 1 by assumption, there are Ri,R2 € P^
satisfying R1Q2 + R2Q1 = 1-

Äi_ R2 = 1 Cp Ci

ft ft " Q1Q2 " T^
 + r2*^1

_ A _ dx 4
Q1Q2

——— I = 0 since kx > 0

This consideration implies that G ^ {(0,0)}, which means that G is not
trivial, and hence, H ̂  P^ x Pk2-
We can become more explicit, if we consider Lemma 19. If Q\ and Q2 are
chosen in this way, we have Si(A) = s2(A) VA G Fq[T]. Therefore, we obtain

H = {(A,A)\A€Pkl}. (2.21)

Due to Lemma 12, we get \H\ = \Pkl\ = qkl and \G\ = qki.
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Let us now turn back to Remark 7 and give a reason why Kim's characteri-
zation does not work in our case.
First, we repeat the two descriptions of H which we already have, and trans-
form Kim's group to polynomials.
As mentioned above, the two following groups are identical:

H = h=(S1,S2,...,Sd)eXt1Pmi \ ^

Ho = {(f1{A)modM1,f2{A)modM2,...Jd(A)modMd):Ae¥q[T}}.

Analogy of Kim's description:

For j — 1, . . . ,d define:

Fj := Ml), (2.22)

Dj := gcd(M i l(Q i-l)F,-,/J-(Ä)-ÄF,-(ÄePJ t i)) l (2.23)

where fj,Mj,Qj and R — (Ri,... ,Rd) are defined as usual. Furthermore,
s e t A = ( A 1 , . . . , A d ) z F q [ T ) d , F = & , . . . , F d ) and D = { D l t . . . , D d ) . A
d-tuple A of polynomials is called „admissible" with respect to the d-tuples
Q, M and / , if the System of congruences

FN = A mod D

has a solution N 6 F,[T]. We write

H :— {A = (Ai,..., Ad) : deg A,- < rrij, A admissible} .

Before we study the relationship of H and H resp. Ho, we have to prove the
following Lemma according to an analogue to Kim.

Lemma 20 Let Q and M be polynomials with positive degrees k := degQ,
m := degM, and let f be a completely Q-additive function. Let F and D
be defined in the same way as the quantities Fj and Dj in (2.22) and (2.23)
with respect to Q,M and f, which means that

F '•= / ( l ) ,

D := gcd(M,(Q-l)FJ(R)-RF(RePk)).

Then, for an arbitrary N G Fg[T] we have

f(N) = NF mod D.
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Proof. Let N e Fg[T] be a polynomial with the Q-ary expansion
N — J2i>o^iQl where R\ G Pk. The complete Q-additivity of / implies

(2.24)
i=0

On the one hand, we have

53 f(Rt) = J2 RiF mod D (2.25)
t > 0

as /(Ä) = RF mod Z? for all R e P* by definition of D. On the other hand,
since (J = 1 mod Q — 1, we also obtain

N = > RiQ1 =}Ri m o d Q - 1,
»>o t>o

and therefore,
N • F ~ V ÄjF mod £>, (2.26)

t>0

since D | (Q — 1)^. Combining these congruences, we obtain

f(N) (^ 5 3 f{Ri)
 ( 1 5 ) 5 3 R.F ( 1 6 ) N • F mod D.

t>0 t>0

D

Thus, the following inclusion is trivial:

Lemma 21 W£/i the common definitions of HQ and H we have

H0CH.

Proof. Let A G Ho- Then, by definition of Ho, we obtain the existence of a
polynomial N satisfying fj(N) ~ Aj mod Mj. Since Mj \ Dj, it follows that
fj(N) ~ Aj mod Dj, and therefore, by Lemma 20, we have: FN = A mod D
=> A€ H. ü

Unfortunately, the other inclusion is not generally true. We have already
mentioned a counter-example where H % HQ. It is our well-known Example
2. We consider the sum-of-digits functions with respect to the two bases,
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Determining Fj and Dj, we obtain Fj — Dj — 1 for all j = 1 , . . . , d. There-
fore, H = Pkl xPk2.
However, this contradicts (2.21), whereby

H = {(A,A)\A&Pkl}.

So, H cannot generally be equal to or a subset of HQ resp. H, and Kim's
idea for a finite criterion to define H does not work in our case.



Chapter 3

Two Central Limit Theorems

In this chapter, we successively generalize Theorem 2 by Bassily and Kätai
(into Theorem 5) as well as Theorem 3 by Drmota (into Theorem 6) for Q-
additive functions on polynomials over a finite field.
Whereas our Theorem 5 deals with only one Q-additive function / , Theorem
6 Covers the Joint distribution of two Qj-additive functions fj for coprime
bases Qj. For both proofs we will use the same tool, namely again exponential
sums; this time, however, in combination with a method of moments. The
latter will be explained later on.

3.1 Generalization of Bassily and Kätai
We start with Bassily and Kätai's [1] central limit theorem, our Theorem 2.
For polynomials over a finite field we obtain the following theorem.

Theorem 5 Let Q e Fg[T],A; = degQ > 1 be a given polynomial,
g : Wq[T] - » R & e a Q-additive function, and set

- M2. (3-1)
^ A€Pk

 H A€Pk

Let P(T) € F,[T] with r = degP, then, if a] > 0 and as n -» oo,

and

where In denotes the set of monic irreducible polynomials of degree < n.

36
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Before proving this Theorem, we need some preliminaries again, which we
are going to introduce now.
First of all, we need a method to extract a digit DQJ(A) of an arbitrary
polynomial A G F f̂T1]. The next lemma shows how we can do this with the
help of exponential sums.

To begin with, consider the Q-ary expansion of an arbitrary polynomial
A 6 ¥g[T] for any fixed polynomial Q G F,[T]:

with DQJ G Pfc. Furthermore, let H € Pk and

! = °° Cl °2

Q J<k J ' f c + l ~*~ J V s + 2 • • " • • •

for some Q G ¥g. Therefore, we gradually get

A = DQß + DQtlQ + ••• + D Q J - I Q ^ - 1 + U Q J Q 7 ' + DQJ+1Q
j+1

Qi + + Q2 + Q

AH DQflH DQtlH Dgj-iH DQJH

Moreover, we have

l) => Res ( ^ ) = • • • = Res ( ^ ^ ) - 0

Together with the ideas of the previous chapter on Kim's Theorem, the
method is obvious:

L e m m a 22 Suppose that Q G ¥q[T] with degQ = k>l. ForD,H€Pk set

1 / DH\

~ qk V Q ) '
then,

^ (AH\_(1 ifDQtj(A) =

HePk



CHAPTER3. TWO CENTRAL LIMIT THEOREMS 38

Proof. Consider the Q-ary expansion

with DQZJ(A) e Pk. (3.4)

It follows that
AH

for H € Pfc. Consequently, for every D 6 P|t we obtain

H€Pk ^Q

- \o i
if DQtj{A) = D,

D

What we have found is a very simple method for extracting the digit DQJ(A).

Therewith, it is possible to determine the number of polynomials whose j-th
digit of P(A) is equal to a given e G Pk. P(A) is an arbitrary polynomial,
P(A) G FgP"1]. The following studies will nnally yield our first result con-
cerning this topic, Lemma 26.

±# {A e Pn\DQJ{P{A)) = e}

^ 2 X , C»*E { - T
fP(A)

H€Pk
 H A€Pn

 X ^

S:=

Remark 9 For the constants CH,D we have

1 A I
co,£ = ^ and |c
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In the next section, we will have to write CQ^H,D instead of CH,D > because there
is more than one base involved. As long as there is no risk of confusion, the
Parameter Q will be omitted.

Thus, it becomes necessary to study sums of the form 5 . So, we need the
following estimate of [3], but slightly adapted for our purposes.

Lemma 23 Let n > 0 be an arbitrary integer, then,

^Ä

Proof. For proof see [3].

ofc-2

n max (\H\-

D

Lemmas 24 and 33 are the variations we require. As an example, we are
going to prove Lemma 24, which takes up Car's ideas.

Lemma 24 Suppose that Q € F,[T], degQ = fc > 1 and that P € ¥q[T] is
a polynomial with deg P — r > 1. Then,

1

AePn

n2""2 max (3 g)

In order to prove this estimate we first need the following lemma.

Lemma 25 Let d : ¥q[T] —• N denote the number of primary divisors of a
polynomial, and set d(0) := 1. Then, for j > 0 and n > 0 we have

(3.7)

Proof. We will use the following easily shown property of the function d. Let
A, B be some arbitrary polynomials, then,

d{AB)<d(A)d(B).

If A and B are coprime, we have d(AB) = d(A) d(B). Therewith, the lemma
can be shown by complete induction.
Let j — 0, then,
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and therefore, (3.7) is true for j = 0.
Since there is a related idea to the below induction step, we will also study
j = 1:

Y, d(A) < nqn.
A€Pn

Thus, we will write the number of divisors oi Aas the number of pairs (B, C)
with BC = A.

£
( PA ceF,[T]
BC=A deg(BC)<n

ST = q
n

where P'n denotes the primary polynomials of a degree smaller than n.
Next, suppose (3.7) is valid for a fixed integer j . Let us study the case j + 1:

A€Pn ()
BC=A

A C6F,[T],
deg(BC)<n

A C6F,[T]
deg(BC)<n

C6P„_deg(S)

For the last sum we can use the induction hypothesis and get

A€Pn

= n2i~lqn Y, d(B)Vdeg(ß).

Finally, we consider

= E E
»<n deg(ß)=«-l

<



CHAPTER 3. TWO CENTRAL LIMIT THEOREMS 41

Consequently,

D

Proof of Lemma 24- Set

As in the proof of Webb's Lemma 3 (see [32]), we have

BeP„AePn

since A + Mi runs over all polynomials of degree smaller than n, while Mi
runs over all polynomials of degree smaller than n.
Let P(A) = aTAr + aT-iAr~l -\ h axA + a0, then,

Ml)-P(A) = ar(A + Mi)r + ar-i(A + M
— {arA

T + aT-.iAr~x -\ h aQ)

' 0 ,

where deg(CiA
i) < deg(Ar"1M1) and Mi | d for 0 < i < r - 2.

Therefore,

I5|2= E
MX€P

By Cauchy's inequality,

E
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Continuing in this way, we get

isf"1 < (?nr3(?2 nr-(? ( r-2>f x

M\ Mr—1 /Ic/n

Next, for an arbitrary polynomial M, set

(
^0 otherwise.

So,

^ 1 < 1

Set t = (r — 1) (n — 1) + 1 = rn — r — n, then, by using the function d for the
number of primary divisors, we get

One can easily show

( qt-{j+i)k i f ^

g4-" i fn

gÜ+i)*-n i f t<(j + l)Jfc.
Once again, we use Cauchy's inequality as well as (3.7) and finally obtain

q~n,

Thus, for \S\ we have

D
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Corollary 2 Let n1/3 < j + 1 < y - n1/3. T/ien, there exists a constant
c > 0 such that

1

A€P„

. -cn»/S

uniformly in this ränge.

Proof. The maximum error in (3.6) occurs at the boundary of the ränge.
The maximum degree is ^ — n1/3. Thus, by Lemma 24

AePn
 x V

< n 2 r ~ 2
 m a x ^ -nr

_ e2 r~ 2 logn-n1/3fc2-r logg

The minimum degree is just n1/3. Therefore, we get

1

~r-nr2~r)

E max

Since q "1/3r2 r > qnW3r2 r nr2 r
 t we finally obtain a uniform estimation

g2'-2logn-n1/3fc2-'-logg

D

A similar estimate holds for monic irreducible polynomials of degree < n.
However, we will first of all complete the proof of (3.2) and afterwards focus
on (3.3). Since the proof of both parts of the theorem is very similar, the
latter will be shortened.
Returning to Pn, we can use Corollary 2 to bring our thread concerning (3.5)
to an end and forumlate our first extension.

Lemma 26 Let n1'3 < j + 1 < =f - n1/3, then,

- # {A e Pn|£»Q,i(P(A)) = e} = -£

uniformly in this ränge.
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As a consequence for the mean value, we get the following lemma.

Lemma 27 Let g : Wq[T] -* R be Q-additive. Then,

with

* e€Ph

Proof. According to the ränge in Lemma 26, we split the whole sum into
three parts.

- E - + E •••+ E

= Si =:S2 =:S3

Obviously, 5i and S3 can be estimated by |5i| <£i n1?3 resp. |53| -C n1?3.

\ Pn\DQJ(P(A)) ^ e}

= E

D

With the help of estimate (3.6), we can also prove the following frequency
estimate.

Lemma 28 Let m be a fixed integer and n1/3 < ji + 1 < J2 + 1 < • • • <
j m + l<f - n 1 / 3 . Then,

i # {AePn: DQ>h{P{A)) = DU..., DQJm(P(A)) = Dm}
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uniformly for all Di,..., Dm e Pk and for all j 1 ( . . . , j m in the mentioned
ränge.

Proof. By Lemma 22 we have

1 # {AePn: DQ<jl(P(A)) = Dlt...t DQJm(P(A)) = Dm} =

^ >16P„

—

HU...,Hm€Pk

1

where ^ * denotes that we sum just over all (Hi,..., Hm) ^ (0, . . . , 0). In
order to complete the proof, we only hav

Let / be the largest i with Hi =£ 0, then,

Order to complete the proof, we only have to show that S — O(e c"1/3).

where H = Hi + Hi-iQil~jl~l + 1- HiQj'~jl. By our assumption, we have
n1/3 < ji < x - n1/3- Hence, by Corollary 2, the result follows. D

The idea of the proof of Theorem 5 is to compare the distribution of g(P(A))
with the distribution of sums of independent identically distributed random
variables. Let Y0,Ylt... be independent identically distributed random vari-
ables on Pk with f[Yj = D] = -V for all D € Pk. Then, Lemma 28 can be
rewritten as

i # {A e Pn : DQJl(P(A)) = D1,..., DQjJP(A)) = Dm}

= F[Yh =Du...lYjm =
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Furthermore, note that this relation is also true if j \ , . . . , j m vary in the ränge
n1//3 < ji, J2, • • •, jm < x — n1/3 and are not in the correct order. It is even
true if some of them are equal.
In fact, we will use a method of moments; that is, we will show that the mo-
ments of g(P(A)) can be compared with moments of the normal distribution.
Therefore, we will make use of the following two results of the probability
theory. The first one is well known and needs no further explanation.

Lemma 29 (Central Limit Theorem) Let (£n) be a sequence of indepen-
dent identically distributed random variables with mean fi and variance a2.
Define

£i + • • • + £n - riß
Vn '•= 7 = !

so that E(7jn) = 0 and V(r/n) = 1. Then, T/„ is asymptotically normal dis-
tributed, i.e.

lim F(r)n <t) = $(f) - - U / e-"2/2 du.
"-*<» V27T ./-oo

Moreover, if the m-th moment E(£n)m exists for all m 6 N; then,

E(7?n)
m -» - 4 = r tme~t2/2dt

V2n J-oo

for all m 6 N.

The second result is a Variation of the Frechet-Shohat Theorem (see for ex-
ample [27]), which is used for the method of moments.

Lemma 30 Let Zn be a random variable, and

~ Zn — EZn

with EZn = 0 and VZn = 1. If

E

for every m € N, then,
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This will show that the corresponding (normalized) distribution function of
g(P(A)) converges to the normal distribution function $(x).
It turns out that we will have to cut off the first and last few digits, that is,
we will work with

g(P(A)) := £ 9{DQj{P{A)))

instead of g{P(Ä)).

Lemma 31 Set

9 H€Pk

Then, the m-th (central) moment ofg(P(A)) is given by

qn

= E '

Proof. For notational convenience we only consider the second moment in
greater detail:

= E E 9(Di)g(D2)^#{A € Pn : DQdl(P(A)) = DuDQth{P{A)) = D2}

Ji Di J2

= E E »(A^C^JPK, = öi, Yh = D

ii Di h

- E /* E E»wpfo = ea]+E E
i\ n D2
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The very same procedure also works in general:

g(P{A))-[- 2n1/3)/i) =
\ k ) J

E 9{£i) • • • 9{em)

A€Pn

Jl.-Jm

1 # {A e Fn

+ O

This completes the proof of the lemma.

= em}

D

Since the sum of independent identically distributed random variables con-
verges (after normalization) to the normal distribution (see Lemma 29), it
follows from Lemma 31 that

Due to
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we obtain

g(P(A)) - ( f - 2n1'3)n = g(P(A)) + cn1'3 - (f -

q(P(A)) — — u

VW

n( P( AW nr II

-2n

+ d

+ -
Ml"

VW
[f - 2n1/3)cr2

- . 1

- » 0

Thus,

"(f-

and finally,

1 .. f .

f - 2n1/3)(72 y/f^

Following the same arguments, we will now complete the proof of Theorem
5 by proving (3.3) concerning monic irreducible polynomials. First, we want
to determine the cardinality of /„.

Lemma 32 The number Nq(n) of monic irreducible polynomials in ¥q[T] of
degree n is given by

d\n d\n

where \i is the Moebius function.

Proof. For proof see [23] resp. [26]. G

Thus,

k<n k<n

Furthermore, we need the already mentioned second Variation of Lemma 23,
which can also be found in [3].
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Lemma 33 Let | n 1 / 3 < j + 1 < f-
to Q. Then,

1

Proof. See Proposition VII.7 in [3].

and H be a polynomial coprime

V r 2~2 r"1 / 3 . (3.8)

D

Corollary 3 Let ̂ n1 /3 < j + 1 < ^ — 2jfnl/'3- Then, there exists a constant
c > 0 such

-1/3

uniformly in this ränge.

Proof. By (3.8), we get the uniform estimation

1

log logn+(7/3+22r~2) log n-r2~2rn1/3 logq

for some constant c > 0.

Lemma 34 Let f nllz < j + 1 < ^ - f n1/3, then,

±-# {A e In\DQtj(P(A)) = e} = 1 + O
\*n\ 1

uniformly in this ränge.

Proof.

m
1 ^ (P(A)

El'-^-H

D

S:=
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Due to Corollary 3 we have S <SC e~cn , thus, the required result follows. D

As a consequence for the mean value, we get a similar lemma, as for A € P„:

Lemma 35 Let g : ¥q[T] - • R be Q-additive. Then,

with

Proof. According to the ränge in Lemma 34, we split the whole sum into
three parts.

- E -+ E -+ E
=:Si =:S2 =:S3

Obviously, 5i and S3 can be estimated by |5i| < n1/3 resp. |53 | < n1/3.
Due to Lemma 34 we have

E
.-cn'/3

D

With the help of estimate (3.8) we can prove the following frequency estimate.
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Lemma 36 Let m be a fixed integer and ^pn1/3 < ji + 1 < j 2 + 1 < • • • <
j m + l<f - | n 1 / 3 . Then,

] | T # M G /n :

uniformly for all D\,..., D m G P/t and /or aü ji, • • • ,jm in the mentioned
ränge.

Proof. By Lemma 22, we have

-L#{AeIn: DQJl(P(A)) = Dlt...,DQJn(P(A)) = Dm} =

r. + l

1
qkm

n

*

+ 5,

where 53* once more denotes that we sum just over all (Hi,... ,Hm)
(0 , . . . ,0 ) .
Let l be the largest i with H{ ^ 0, then,

where H = Ht + i/i-iQ-71"-"-1 + ••• + HiQjt~jl. By our assumption, we
have f n 1 / 3 < jj + 1 < x - | n 1 / 3 . Hence, by Corollary 3, we obtain
5 = O(e-ml/a). D
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Note that YQ,YI, ... are independent identically distributed random variables
on Pk with F[Yj = D] = ^ for all D € Pk. We rewrite Lemma 36 as

|
= A , •. •, yim = Dm] + o

whereby this relation is also true if ji , - - - ,jm vary in the ränge ^n1//3 <
3i,J2,--- ,jm < ^ ~ f n 1 ' 3 and are not in the correct order. It is even true
if some of them are equal.
As already mentioned, our methods of proving Theorem 5 for A € /„ are
absolutely the same as for A € Pn. We will show that the moments of
g(P(A)) can be compared with moments of the normal distribution. So, it
will be shown that the corresponding (normalized) distribution function of
g(P(A)) converges to the normal distribution function $(x), independent of
whether A E Pn or A G /„.
Again, it turns out that we will have to cut off the first and last few digits.
However, this time we will study another ränge, that is, we will work with

g(P(A)) := J2 9(DQtj(P(A)))

instead of g(P(A)).

Lemma 37 Set

Then, the m-th (central) moment of g(P(A)) is given by
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Proof. The procedure is identical to the proof of Lemma 31, thus, we content
ourselves with the general case.

= E E 9(ei) • • • 9(em)

jj-#{AeIn\DQdl{P(A))=eu...,

= E E 9(£i)-y9(£m)nyh=Zu---,Yjm=em]+O
71ji,—Jm ei,...,e

E "m- E
J l i - J m

= E E ) ~ M) + 0

D

Since the sum of independent identically distributed random variables con-
verges (after normalization) to the normal distribution, it follows from
Lemma 37 that

5(P(A)) - ( f - £n

Due to

and n1/3/n1/2 - n~1/6 -> 0, we obtain

g(P(A)) - (f - £n1'3)//
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and finally,

This completes both the proof of Theorem 5 and this section on Bassily and
Kätai's central limit theorem.

3.2 The Joint distribution of two Q^-additive
functions

After studying the Situation for one Q, we are now interested in the distri-
bution with respect to several different basis-polynomials Qi, • • •, Qd-
We are going to prove a generalization of Theorem 3 for two bases Q\,Q2-

First, our result:

Theorem 6 Suppose thatQi € Fg[T] andQ2 € ^q[T] are coprime polynomi-
als of degrees k\ > 1 resp. k2 > 1 such that at least one of the derivatives Q[,
Q2 is non-zero. Furthermore, suppose thatgi : $?q[T] —> K andgi : Fq[T] —> R
are completely Qi- resp. Q2-additive functions.
Then, as n —» oo,

Remark 10 Theorems 4 o,nd 6 assert that Q-ary digital expansions are
(asymptotically) independent if the base polynomials are pairwise coprime.

Apart from some properties of v resp. the character E (see Lemmas 2, 3 and
6 in Chapter 1), Mason's theorem (see [25]) is an important tool for proving
Theorem 6.

Lemma 38 (Mason's Theorem) Let K be an arbitrary field and
A,B,C G K[T] relatively prime polynomials with A + B — C. If the
derivatives A',B',C are not all zero, then, the degree degC is smaller than
the number of different zeros of ABC (in a proper algebraic closure of K).
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We present an alternate proof of this theorem which was found by Noah
Snyder [29]. Therefore, we define no(F) as the number of distinct zeros of a
non-zero polynomial F G K[T].

Lemma 39 Let F be a non-zero polynomial in K[T]. Then,

deg(F)<deg(F,F') + no(F),

where (G,H) denotes the greatest common divisor (gcd) ofG,H.

Proof. Let ce\,..., am be the roots of F with multiplicities a l t . . . , am, so
that F = c(T - ai)ai • • • (T - am)Qm. Then, due to the product rule,

F' = ca1{T-a1)
ai-1(T-a2)

a*---(T-am)a<"

+c(T - a i ) a i ~ ((T - a2r •••(?- öm)am) •

Therefore, (T - a^'1 \ (F, F'). Similarly, (T - a^-1 | (F, F'). So we see
that (T - ÖI)" 1 - 1 • • • {T - am)a"*-1 | (F, F'). Therefore, since F is non-zero,
deg(F) - no(F) < deg(F, F'). The lemma follows immediately. D

Using this lemma, we can prove Mason's Theorem, Lemma 38.

Proof of Lemma 38. A + B = C. Therefore, A' + B' = C. Multiplying
the first equation by A', the second by A, and subtracting, we find that
A'B - AB' = A'C - AC. Therefore, (A,A'),{B,B'), and (C,C) all divide
A'B — AB'. Since they are relatively prime,

{A, A'){B, B'){C, C) | {A'B - AB').

We claim that the right-hand side is non-zero. If A'B — AB' — 0, then,
A | A'B. Since A and B are relatively prime, A \ A'. Therefore, A' = 0.
Similarly, B' and C would also be zero, thus contradicting the assumption.
Therefore, the right hand side is non-zero, and

deg{A, A!) + deg(ß, B') + deg(C, C) < deg(A) + deg^) - 1.

We move everything to the right-hand side and add deg(C) to both sides to
find that

deg(C) < deg(>l)-deg(A, A')+deg(ß)-deg(ß,JB')+deg(C)-deg(C,C')-l.

The application of Lemma 39 yields the required result. D

We will use Mason's Theorem in order to prove the following property.
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Lemma 40 Let Qi,Q2 £ Fg[T] be coprime polynomials with degrees
deg(Qj) = ki > 1 such that at least one of the derivatives Q[,Q'2 is non-
zero. Then, there exists a constant c so that we have

i^QT1)} - c

for all polynomials H\ € Pkx and H2 G i \ with (Hi, H2) ^ (0,0) and for all
integers mi,m2 > 1.

Proof. Set A = H^2, B = H2Q?1, and C = A + B. HA and B are
coprime by Mason's Theorem, we have deg(A) < no(ABC) — 1 and deg(5) <
no(ABC) — 1, where no(F) is defined as the number of distinct zeros of F,
as above. Hence,

max{deg(>l),deg(B)} < no(ABC) - 1
= no(H1H2Q1Q2C) - 1

< deg(i/1i/2Q1Q2) + deg(C) - 1

and consequently,

deg(C) > max{deg(A),deg(ß)} - degiHx^Q^) + 1. (3.9)

This shows that (in the present case) c = 2ki + 2k2 is an absolutely proper
choice.
If A and B are not coprime, then we can write the common divisor D in the
following two ways:

•D = DHlDQ, = DH2DQl,

where DHl Stands for the part of D dividing H\, and analogously DH2- -DQI
divides Q1?1 and DQ2 \ Q%\ Since (QUQ2) = 1, we have {DQI,DQ2) = 1,
and thus,

J
Therefore, there are only finite possibilities for D,DHI,DH2,DQ1 and DQ2.

Thus, 3 m'2 : DQ2 \ Q2
2 for all finitely possible DQ2. Analogously,

3 m[ : DQ1 I Q™1 for all possibilities. Hence, there exists m' > 0,
m' :— max{m'n m'2} so that D2 is a divisor of HiH2(QiQ2)

m'. Consequently,
we have

I n I I

\AjU)\tiIU) — (rtin2{QiQ2) jL) )LJX Q2 ,

and by the same reasoning as above we get

deg(C/D) > max{deg(A/D),deg(B/D)}-deg((HlH2(Q1Q2)
m'/D2)QlQ2)+l



CHAPTER 3. TWO CENTRAL LIMIT THEOREMS 58

or

deg(C) > max{deg(A),deg(£)} - deg({H1H2(QlQ2)
m>/D2)Q1Q2) + 1.

Since there are only finite possibilities for Hi,H2, and D, the lemma follows.
D

Convergence of Moments The idea of the proof of Theorem 6 is com-
pletely the same as the one of Theorem 5. We prove weak convergence
by considering moments. The first step is to provide a generalization of
Lemma 28.

Lemma 41 Lei m\, m2 be fixed integers. Then, there exists a constant c' > 0
so that for all 0 < ii < i2 < • • • < imi < ^ — d and 0 < ji < j2 < • • • <
jm* <Y~^we have

Pn : DQltil(A) = £>!,.. .,DQuimi{A) = Dmi,

DQ2ih(A) = E1,...1 DQ2dm2{Ä) = Em2)

Before giving the complete proof of this lemma we will concentrate on the
cases nii = 77i2 = 1 and rrii = m2 = 2. Thereafter, the main idea will have
become clear, and the rather complex notation of the general proof will no
longer disorient.

First, let m,i = m2 = 1. Thus, we have

€ Pn : DQui(A) = D,DQaJ(A) =

H2
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Now, we can apply Lemma 40 and obtain

?*1 , # 2

+ k2{j + 1), deg(tf2) + ki(i + 1)} + c
< min{fci(i + 1), k2(j + 1)} + c.

So, there exists a constant c' > 0 such that

min{/ci(i + 1), fc2(j + 1)} + c < n

for all i, jf with 0 < i < ^- — c' and 0 < j < p — c'. Hence, by Lemma 6

This completes the proof for the case m\ = m2 — 1.

Next, suppose that m\ = m2 = 2. Thus, we have

^#{^4 G P„ : %,,(>!) = DuDQui2(A) = Da.Dg^CA) = ß i , % j 2 ( i ) = £2}

X

P ^4 / #11 #12 #21 #22

l Ui i + 1 Q\2+1 g i + 1 Q? +

Of course, if i/n = #12 = #21 = #22 = 0, then we obtain the main term

1

Otherwise, we will distinguish between four cases. Note that we assume
w.l.o.g. that all polynomials Hn,H\2,H2i,H22 are non-zero. If some (but
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not all) of them are zero, the considerations are even easier.

Case 1 i2 — i\ < Ci,J2 — j \ < c2 for properly chosen constants C\,c2 > 0.

In this case, we proceed as in the case mi = m2 = 1 and obtain

+ —TT7 +f)h+i n*2+1 njl+1 n J 2 + 1

W\ W\ V2 V2

= V

nQ^ + H12) + k2(j2 + 1),

Q2'
2-jl + H22) + fcxfa + 1)} + c(Cl,c2)

0'i + 1)} + c(ci,c2)

for some suitable constants c(c!,C2) and c(ci,c2).

Case 2 i2 — ii > C\,j2 — j \ > c2 for properly chosen constants C\, c2 > 0.

First, we recall that

Furthermore,

Q

Thus, if Ci and c2 are chosen in a way that Cik\ > c + ki and c2fc2 > c + k2,
then,

"11 , -"21 \ • \ I ß 1 2 \ / ^ 2 2 \ I

i i + 1 -I j ^p j I < mm < v I <a+1 1,^1 J2+1 I (

and consequently, by Lemma 2,

-^21# 1 2 ^ 2 1 ^ 2 2 A _ ( H\i
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Case 3 i2 — i\ < C\,j2 — ji > c2 for properly chosen constants Ci, c2 > 0.

First, we consider

" I - ' . i_l ™t~ . „• i_1 "T" »". i 1

= V

{;i(z2 - H) + k2(ji + I),k1

= min{A;i(ii + 1), k2(ji + 1)} + cfa).

Furthermore,

#2

> 2̂Ü'2 - ji) + k2ji > k2{ji +c2).

Hence, if c2 is sufficiently large, then,

#11 #12 #21 #22 \ ( #11 #12 #21
/"-)U + 1 ^12 + 1
Vi Wi

:i(ii + l),fc2(ii + l)) + c(ci).

Case 4 i2 — i\ > Ci,j2 — ji < c2 for properly chosen constants Ci, c2 > 0.

This case is completely Symmetrie to case 3. Let us consider

#11 #21 #22
I v ^L 1 ^-*. *in «X- 1

= V
(H21Qi*-jl + #22)Qi1+1'

- max{k2(j2 + 1), ki(ii + 1) + k2(j2 - ji)} + c(c2)

cx^! + 1), k2{ji + 1)} + c{c2).

Furthermore,
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Hence, if cx is sufficiently large, then,

#12 #21 #22 \ ( #11 . #21 #22

:i(«i + l),fc2(ji + l)) + c(c2).

Putting these four cases together, we show that .(with suitably chosen
constants Ci,c2) there exists a constant c so that for all polynomials
{Hu, #i2 ) #21, #22) ± (0,0,0,0) we have

Thus, there exists d > 0 such that

min{/c1(i1 + 1), k2{ji + 1)} + c < n

for all ii,ji with 0 < ii < j^ — d and 0 < j \ < ̂  — d. Hence, by Lemma 6,

F(A( HU 1 Hl2 1 H21 l H™ ̂  - n

This completes the proof of the case mi = m2 = 2.

Now, the general proof of Lemma 41 follows. Let mi,m2 > 1 be arbitrary
positive integers, and consider

- Eu ..., DQ2ijm2 (A) = E
m2

"12 / / TJn V" , 7? ( Hu A

X, cQ^2t,EtE [—^A
t=l \H2t€Pk2

 V (^2

T71l T7l2

t=l

t=l
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For Hn — • • • = Himi = H2i = ••• = H2m2 = 0 we o b t a i n t h e des i red m a i n

term

<Zi 9 2

Again, we only consider the case where all polynomials H^ are non-zero, and
denne integers e\ and e2 for properly chosen constants Ci resp. c2 by

i 2 - i i < ••• < i e , - i i < ci < i e i + i - i i < ••• < i m , - i i , (3.10)

J2 — J l < • • • < j e 2 - jl < C2 < Je2+1 ~ J l < - - - < 3m2 ~ j \ - (3.11)

Therewith, we look at

e l TJ e? IT

3=1 "*1 t = l ^ 2

and determine the numerator of B G Fq(T)

num(ß) = (/fnQiei n + Hi2Q
lfl *2 + h i^ieJQ^2 ~*

By Lemma 40, we get

deg(num(£?)) > max < deg f I

l \\s=l

f
V

> max{A;i(iei - ti) + fc20ea + 1), k2(je2 - ji) + *:i(*ei + 1)} ~
Following the same principle as the example (mi — m2 = 2) above,

v(B) = deg(den(ß)) - deg(num(ß))

< fc1(te1 + l) + *2Üea + l ) + e '

- max {fci(iei - ix) + k2(je2 + 1), ki{iei + 1) + k2(je2 - ji)} . (3.12)

There are two possible cases:

Case 1
*l(»ei - *l) + fc2Üe2 + 1) > fcl(te, + X) + ^ ( j « ~ Jl)>

which is equivalent to k^ii + 1) < /c2(Ji + 1)- Due to (3.12), we get

u{B) <fc1(ti + l) + c'.
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Case 2
&l(*ei - »l) + h{je* + 1) < *l(«ei + 1) + AfeÜea ~ Ä)>

which is equivalent to fci(ii + 1) > fc2(ji + 1). Due to (3.12), we get

k2{J! + 1) + c'.

Summing up, we have

u{B) < min{fci(i! + 1), /c2(ji + 1)} + d.

Let s be an arbitrary integer greater than ex. We consider

^ h(is + 1) - deg(Hla)

> ki(is - ii) + kiii.

Since (3.10), we get

Analogously, for t > e2, e2 defined by (3.11):

Thus, if ci,c2 are chosen in a way that Cifci > c' + ki and c2/c2 > c' + fc2,
then,

\»=1 ^1 t=l ^

(3.14)

and consequently, by Lemma 2,

"»1 77 "12 Tj \ ( ei rr e2 TJ-

2t

\s=l "»1 t=l ^2 / \ s = i ^1 t=l ^2 /

< min{A;1(t1 + 1), k2{jx + 1)} + d.

Hence, there exists a constant c" > 0 so that

min{/ci(ii + l),A;2(ji + 1)} + d < n
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for all 0 < i\ < f- — c", 0 < j \ < f- — c". Hence, by Lemma 6

which completes the proof of Lemma 41.

As in the proof of Theorem 5 we can rewrite Lemma 41 as

^ # {AePn: DQltil(A) = Du • • -,DQuirni (A) = Dmi,

DQ2<jl (A) = EU..., DQ2dm2 (A) = Em2}

— ̂ [^ti = Di,..., Yirni — Dmi ,Zi — Ejx,..., Zjm2 = Em2],

where Yi and Zj are independent random variables that are uniformly dis-
tributed on Pkl resp. on Pk2.
Moreover, we need a Variation of the Central Limit Theorem, of Lemma 29
as well as a Variation of Lemma 30.

Lemma 42 Let (£n) and (£n) be sequences of independent identically dis-
tributed random variables, independent of each other, with mean values ß^
resp. /j,(; and variances cr| resp. a%. Define

Zi + + &nnz
Vn •= 7 = a n d Vn •=

yTia

so that E(TJ„) = E(t?n) = 0 and V(r?n) = V(t?„) = 1. Then,

lim F{Vn <s,tfn<t) = ${s)${t) = — / S / e - u 2 / 2 e - t / 2 / 2 du dv.
"^°° 2TT y . ^ J_oo

Moreover, if the moments E(£n)m i and E(C„)m2 exist for all mi,m2 6 N,
then, as n —> oo;

E ( C O = E(77n)
miE(tfn)

m2 ->— [°° [°° sm

2vr 7_O O 7_OO

/o r aZ/ Tni,m2 € N.

Lemma 43 Let Yn and Zn be random variables, and

~ Y„ - EK„
Y



CHAPTER 3. TWO CENTRAL LIMIT THEOREMS 66

with EV; = EZ^ = 0 and VY» = VZ^ = 1. //

for every mi,m2 € N, then,

where M\ and H-i are independent of each other.

This will show that the corresponding (normalized) Joint distribution of 51
and <72 is asymptotically Gaussian.
It turns out that we will have to cut off the last few digits, that is, we will
work with

g2(A):=

where c" is the constant we have obtained above. Then, Lemma 41 immedi-
ately translates into

Lemma 44 For all positive integers mi,m2 we have

m2

m2

for sufficiently large n.

Of course, this implies that the Joint distribution of g~x and 32 is asymptot-
ically Gaussian (after normalization). Since the differences gi(A) — 'gi(A)
and #2(̂ 4) — 52(̂ 4) are smaller than a constant, the same is true for the Joint
distribution of 31 and 52 • This completes the proof of Theorem 6.
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