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Preface

New and unconventional features concerning the behaviour of materials are of es-
sential importance in the development of engineering sciences. An example of this
are Bethe-ZeFdovich-Thompson (BZT) fluids which have experienced a rapidly
growing attention and interest in the last thirty years. As shown by Bethe [3] and
Zel'dovich [34] using the van der Waals gas model, there are fluids which have
a region in the general neighbourhood of the thermodynamic critical point where
the so called fundamental derivative, describing the curvature of an isentrop in the
jw-diagram, becomes negative provided that the specific heats are large enough.
In contrast, the fundamental derivative for perfect gases is always larger than one.
If the curvature of the isentrop takes on negative values the thermodynamic as
well as the flow behaviour changes completely. In the seventies Thompson and
co-workers [32], [33], [23] started to investigate hydrocarbons and flour carbons
which have a complex molecule structure and large values of the specific heats.
It was found that this group of gases possess a region where the fundamental
derivative becomes negative. More recently, the properties of flour carbons were
investigated by Cramer [8]. As shown by Cramer and Best [10], Cramer and
Fry [12] and Kluwick [19], the isentropic compression/expansion of a BZT fluid
may cause the local Mach number to increase/decrease which is the opposite to
the behaviour of regular fluids. Viscous effects of BZT fluids at high Reynolds
number were studied by Zieher [35] on the basis of classical hierarchal boundary
layer theory (e.g. Batchelor [2]). Other studies dealing with viscous dense gas
flows were made by Cramer and Whitlock [14], Cramer and Park [13] and most
recently Kluwick et al [21] using a triple deck approach to a viscous inviscous
interaction for a transonic flow at high Reynolds number in slender channels. In
general, the boundary layer solution of a regular fluid exposed to an adverse pres-
sure gradient terminates with a Goldstein singularity [15] and cannot be continued
through the point of vanishing skin friction. If the strength of the Goldstein sin-
gularity becomes arbitrary small, however, as some control parameter approaches
a critical value, the boundary layer experiences a marginal separation i.e. a small
region with reversed flow which re-attaches. This phenomena was studied first for
incompressible flows past an airfoil by Ruban [27], [28], Stewartson et al [30].
It was found that there exists a limiting solution of the boundary layer equations
which can be extended through a point of vanishing wall shear. This solution
is embedded in one parameter family of solutions which describes the transition
from completely smooth wall shear distributions to wall shear distributions which
terminate in a separation singularity depending on a certain control parameter
mentioned above. In [27], [28], [30] the control parameter was the angle of attack
and the marginal separation was triggered by the pressure gradient distribution on
the airfoil. The accuracy of this asymptotic approach was studied by Braun et
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al [5] by comparing it to the results of Navier-Stokes computations with DLR's
TAU-code. The quantitative agreement concerning the location and size of the
separation bubble was shown to be excellent.
This work is divided in three Chapters. In the first one the problem is stated and
the governing equations are derived. The aim of this study is to examine bound-
ary layer dense gas effects and Chapter 2 is, therefore, dedicated to a numerical
analysis of the boundary layer equations for supersonic and subsonic flows with
adverse as well as favourable pressure gradient. Depending on the distribution
of the fundamental derivative, the Mach number may decrease/increase in an ac-
celerating/decelerating supersonic flow and be negative/positive for the boundary
layer evolution. For the latter case, if the freestream conditions are suitable cho-
sen, the boundary layer will experience a marginal separation. This phenomena is
examined by means of asymptotic theory in Chapter 3. In contrast, however, to the
studies done by Ruban, Stewartson et al the free stream density is chosen as con-
trol parameter and the marginal separation is not caused by a specific form of the
pressure distribution but rather by the non monotonous Mach number distribution.
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Abstract
Dense gases with complex molecular structure may behave in an unexpectedly
manner, in some cases on the contrary to regular fluids. In the present study, su-
personic as well as subsonic boundary layer flows of dense gases are numerically
solved. It is shown that a supersonic accelerating/decelerating dense gas may be
negative/positive for the boundary layer evolution. In the latter case, special at-
tention is given the phenomena where the wall shear stress almost vanishes in a
single point but then recovers and increases. Incompressible high Reynolds num-
ber flows past a slender airfoil have the distinguishing property that there exists
a critical value of the angle of attack where the wall shear stress on the suction
side vanishes in a single point but immediately recovers. This phenomenon is now
commonly referred to as marginal separation. In this work it is shown that a lam-
inar boundary layer on a flat plate subjected to a linearly retarded external flow
may experience a similar behaviour if the molecular complexity of the medium is
sufficiently large. The role of the critical angle of attack is played by the critical
value of the free stream density p^ on a given isentrop. As in the case of a slender
airfoil it is possible to construct an asymptotic theory which allows to calculate
small separation bubbles which form if p^ is smaller than p ^ .
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1 Boundary layer flows

1.1 Problem formulation

We consider the laminar and stationary flow of a viscous and compressible fluid
in the thermodynamic single-phase region past a thin aligned flat plate of length
L, Fig 1. In particular, we want to examine supersonic flows with linear retarded
external velocity (Howarth-problem [18]) for Bethe-Zel'dovich-Thompson fluids
close to the critical point. However, supersonic accelerated as well as retarded
and accelerated subsonic flows will be treated also. BZT-fluids are heavy gases
with complex molecular structures and are characterised by large values of the
isochoric heat capacity, cv [8]. By limiting the work to Newtonian fluids without

y
UP

external flow

Z-ü

X

Figure 1: Flow past a flat plate. Here, the external flow velocity decreases linearly
with the distance from the tip of the plate.

body forces , the flow is described by the continuity equation and Navier-Stokes
equation supplemented with the energy equation

V-(pü) = 0,

__ DT /O/TI i

(1.1)

(1-3)



Here, <5y, V, D/Dt represent the Kronecker delta tensor, the vector operator and
the material derivative

D . d
Dt dîi

where a1 are the unit vectors. Further, ü, üj, Xj, p, T, p, /i, Â, ß, k and cp denote
the velocity vector, velocity components, Cartesian coordinates, the density, tem-
perature, pressure, shear viscosity, bulk viscosity, coefficient of thermal expan-
sion, thermal conductivity and specific heat at constant pressure, respectively. In
the energy equation (1.3) the specific enthalpy has been expressed as function of
pressure and temperature

^, ß _ l
p P dT

(1.4)

p

and the last term in (1.3), $, is the dissipation function

(1.5)

(1.1), (1.2), (1.3) are non-dimensionalized using the properties of the oncoming
flow and the length L of the plate as reference values

~ — rri ~ -r ~

x y l p p jj,
V V T^ ' Poo' P o Ä ' /ioo'

/ \ ^ ~ , p ^ ~r j Cp -— "̂  i K :=z ~ ? U == ~ , V ^^ ~ . ^l.OJ
oo Poo "--poo /Coo °° °°

Here (x, y), (u, v) denote Cartesian coordinates parallel and normal to the plate
surface and the corresponding velocity components. Quantities without the su-
perscript~are non-dimensional. The subscripts oo and e characterise values of the
oncoming flow and at the edge of the boundary layer, respectively. We then obtain

(H + !;(H=0, (1.7)

du du dp 1 d (. J u dv

i d ( du dv\

Redy \ dy dxj



dv dv dp 1 d (. ,. dv

dx dy dy Redy V dy dx ,
J_d_ (du dv^ U }

+ Redx

where

^ ^ ( )
H'oo /CQO Cpoo-' oo

denote the Reynolds number, Prandtl number and Eckert number, respectively. In
the following we shall assume that the Reynolds number is large so that viscous
effects are confined to a thin boundary layer near the solid wall where the no-slip
condition has to be satisfied. By scaling y and v in the usual manner

Y = yjR~e, V = v^/Te (1.12)

the non-dimensional boundary layer equations are then obtained in the limit
Re —» oo.

£ w = °- (U3)

+ PV% = £ + ( ) (1.14)
dx dY dx dY \ dY )

di = 0 (1.15)
dy



The boundary layer equations (1.13), (1.14), (1.15), (1.16) are subjected to the
boundary conditions

Y -> oo : u - > u c , T -> Te>

se(pe,Te) = const, (1-17)

c ' o Î j

On the plate, y = 0, we have the no-slip condition and the plate is taken to be
adiabatic. On the outer edge of the boundary layer, Y —>• oo, the velocity ue and
the temperature Te have to coincide with the values in the external irrotational,
isentropical flow. Here, s denotes the specific entropy nondimensionalized with
the freestream value of the isochoric heat capacity cvoo. Furthermore, the pres-
sure pe and velocity there satisfy the Bernoulli equation and as in the classical
Howarth problem [18] also studied by Hartree [17], ue is taken to vary linearly
with distance x measured from the tip of the plate and the constant £ represents
the velocity gradient which is normalised to ±1 by choosing L appropriately. For
£ = — 1 and £ = 1, the flow outside the boundary layer is decelerated and accel-
erated, respectively.
To close the problem the boundary layer equations and the boundary conditions
have to be supplemented with thermal and caloric equations of state and relation-
ships describing the variation of the thermal conductivity and the shear viscosity
with temperature and density. As equation of state, the one suggested by Martin
and Hou [25] was chosen

Rf a2 + b2f + c2e
+ +

(v-b)4 (v-b)5

Here, R is the universal gas constant, v the specific volume and Tc denotes the
value of temperature at the thermodynamic critical point. Similar to the well
known Van der Waals equation of state, the constant b, entering in the denomi-
nator, depends on the molecular size and is a measure of the excluded volume.
The remaining constants at, bi and Q are depending upon the molecular weight,
the values of pressure, temperature, and specific volume at the thermodynamic
critical point and upon the normal boiling temperature. Among the thermal equa-
tions of state, capable of capturing dense gas effects, Martin and Hou has a strong



single-phase region

Figure 2: pw-diagram for FC-71 (Ci8F39N). The pressure p and specific volume v
have been non-dimensionalized with their critical values pc and vc. All quantities
are calculated with Martin and Hou's equation of state.

analytical basis and, therefore, requires a minimum of input data. Furthermore, it
was found in [33] and [8] that Martin and Hou's equation of state is conservative
with respect to predictions of negative nonlinearity, F < 0. F is referred to as the
fundamental derivative and is associated with the curvature of isentropes in the
pv -diagram

_ v3 d2p

Ta2 dv2 (1.19)

An example of the behaviour of F is displayed in Fig. 2 for the dense gas FC-71
which in opposite to ideal gases experiences a region of F < 1 in the general
neighbourhood of the thermodynamic critical point.
We complete the description of the thermodynamical properties with the isobaric
heat capacity. Standard thermodynamical relationships yield

df „'
(1.20)

where Cy denotes the isochoric heat capacity

dT2
(1.21)



Here, ^ ^ ( T ) = cv{T, oo) represents the ideal gas isochoric heat capacity which
is calculated using the group contribution method [26]

(1.22)

where c ^ is the ideal-gas isochoric heat capacity evaluated at the critical point
and n is a material constant.
Finally, the shear viscosity p, and the thermal conductivity k are calculated using
the methods presented by Chung, Lee and Starling in [7] and by Chung, Ajlan, Lee
and Starling in [6]. The required input parameters are the molecular weight M,
values of the specific volume and the temperature at the critical point, the accentric
factor oj, the non-dimensional dipolmoment fj,r and the correction factor K. NOW,
the objective of the present study is to examine boundary layer effects in dense
gases. For this purpose two dense gases were chosen: PP11 (C14F24) and FC-71
(Ci8F39N). By examining two different dense gases it will be possible to recognise
which properties are of crucial importance to the flow behaviour. Both PPl 1 and
FC-71 belong to the group of substances termed BZT-fluids, in recognition to
Bethe [3], Zel'dovich [34] and Thompson [32]. Further, as comparison to the
behaviour of regular fluids the same calculations were also done for Nitrogen, N2.
The parameters needed to calculate the shear viscosity, the thermal conductivity,
the pressure (1.18) and the isochoric heat capacity (1.21) are listed in Appendix
A and the resulting predictions for shear viscosity and thermal conductivity are
displayed in Appendix B.



2 Numerical solution of the boundary layer

2.1 Transformation of the boundary layer equations

For numerical purposes it is convenient to write the boundary layer equations
(1.13),(1.14), (1.16) in dimensional form

dû ~ dû dp d ( dü\
pu— + pV—^ = —f + -^ ß—^ (2.2)
H dx y dY dx dY V dYJ
„ f.df ~df\ ~~dp d fTdf\ „fdü\2

pcp u— + V—=- = ßTu^z + -^ k-^ ) + ft ^ (2.3)
H p \ dx dYJ dx dY \ dY) \ÔY)

and to apply the Levy-Lees transformation [24]

X

/ üe(x')dx',

0

~r y

K

where the constant K denotes

K -

We then obtain

(2.4)

r}(x, y) = ûe(x) J — / p(x, y')dy', (2.5)



The non dimensional velocity components / , g and the non-dimensional temper-
ature 9 are defined as

' = h (2-9)
KpcoßocUe y ox y 2£y

0 = £ . (2.11)

In the momentum equation (2.7) the parameters m, n and £ represent the velocity
gradient, the density ratio and the Chapman-Rubesin parameter, respectively

m — _£ Î n — — P — (0 191
lit — ^ Jé. i il — ~ , t — _ _ . {£•*•*')

Further, the quantities d ,b and the local Eckert number a occurring in the energy
equation are given by

~ f\ oi nil 11

h-^JL d- —^^ + ß ^ ^ — a-^- C2 131
Pr' Te dÇ y pcp d e ' cpTe

The boundary conditions (1.17) associated to the equations (2.6), (2.7), (2.8) are

7y = 0 : f = g = O, | ^ = 0. (2.14)
or]

ri-too : f-H, 0-H, ûe(Ç) = ü ^ l - 2ÇÇ. (2.15)

The boundary layer equations (2.6), (2.7), (2.8) were implemented using the well
known modified box scheme (MBS). The calculations were initiated at e = 0
where the continuity equation (2.6) and the equation of motion (2.7) can be solved
independently of the energy equation (2.8) and we obtain a Blasius-type problem.
Having the solution for / (0, rj), g(0, rj) and 9(0, rj) we march forward in the flow
direction until the the end of the plate is reached or until the calculations fail to
converge due to the formation of a separation singularity. The cases we want to
examine are linearly retarded and linearly accelerating supersonic and subsonic
flows for the regular fluid Nitrogen and the two BZT fluids PP11 and FC-71.

2.2 Linearly retarded supersonic boundary layer flow

Three different sets of free stream conditions denoted by Cl, C2 and C3 where
chosen to explore the flow behaviour of N2, FC71 and PP11 in the general neigh-
bourhood of the thermodynamic critical point. The free stream temperature f^,
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the velocity gradient £ and the free stream Mach number M^ were kept constant
at 1.001Tc, 1.0 and 2.0 in all three cases while the values v^ of the specific vol-
ume imposed in the conditions Cl, C2 and C3 were v^ = 100wc, Uoo = 5.009uc

and ôo = 0.9i>c, respectively. This is visualised in the pv-diagrams Fig. 3, Fig. 4
and Fig. 5 where the thermodynamic state of the oncoming flow and at the point
of separation is marked. Further, it should be noted that the speeds of sound for

Cl: A«, [m/s]
Ci ra« ,
C2: ü«, [m/s]
C2: a«,
C3: ùoo [m/s]
C3:aoo

N2

4.5 • 102

1.5
4.0 • 102

0.72
3.1 • 102

2.9 • 10-3

PPll
1.8 • 102

0.040
1.4-102

0.023
45

1.8-10"4

FC-71
1.5 • 102

0.027
1.1 -102

0.015
40

2.1 • 10~ 4

Table 1: Free stream velocity v,^ and Eckert number a^.

the BZT fluids FC71 and PPll are significantly smaller than the speed of sound
in N2, [11]. This in turn results in much smaller free stream velocities for a given
value of MOQ. Since the relative importance of the dissipation term in the energy
equation (2.8) is determined by the value of the local Eckert number a which is
proportional to ù2

e we, therefore, expect considerably larger temperature variations
across the boundary layer for N2 than for FC71 and PP11 as will be confirmed nu-
merically. Table 1 shows values of the free stream velocity ü ^ and the free stream
local Eckert number, i.e. the Eckert number, which characterises the order of mag-
nitude of a throughout the whole flow field Fig. 6, Fig. 7, Fig. 8.
The non-dimensional transverse coordinate appearing in the just mentioned fig-
ures and later on is derived from the relation (2.5)

(2.16)

where the integral has to be evaluated numerically and

' 2 ^ = ^/2, as
x

which is obtained from the expression (2.4).

(2.17)
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Starting out with the case Cl, Figure 9 describes the velocity distributions
across the boundary layer at the leading edge of the plate x = 0. There is no
difference to be seen between FC-71, PP11 and the Blasius similarity solution
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whereas Nitrogen has a smaller velocity gradient across the boundary layer. Fig.
10, Fig. 11 and Fig. 12 display the temperature variation across the boundary
layer. The temperature is almost constant for the BZT fluids in comparison to N2

and because of the fact that pressure gradient is zero across the boundary layer
we also obtain small changes in density for FC-71 and PP11 (Fig. 14, Fig. 15,
Fig. 16) while the changes in density at the edge of the boundary layer is of the
order 1, Fig. 13. The change of entropy (Fig. 17, Fig. 18, Fig. 19) follows the
same pattern -small changes for FC-71, small but little larger ones for PP11 and
substantially larger ones for Nitrogen. The friction coefficient c/ defined as

_ 2ßw
f P Ù 2

(2.18)

is plotted in Figure 20. The larger influence of dissipation in Nitrogen, due to
the larger value of the Eckert number (Table 1), causes N2 to reach the point of
separation faster than the two dense gases. This effect is also to be seen in Figure
21 where the displacement thickness

Jo
(2.19)

has been plotted for PP11, FC-71 and N2 together with the Blasius solution.

ü/üc
Blasius solution,

FC-71, PP11

0.6

Figure 9: Velocity distributions at the leading edge of the plate x = 0: Blasius
similarity solution, FC-71, PP11, N2, case Cl.
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Figure 10: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: FC-71, case Cl.
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Figure 11 : Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: PP11, case Cl.
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Figure 13: Density variation at the edge of the boundary layer: case Cl.
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Figure 14: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: FC-71, case Cl.

0.98

Figure 15: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: PP11, case Cl.
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Figure 16: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: N2, case Cl.
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Figure 17: Change in entropy across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs\ FC-71, case Cl.
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Figure 18: Change in entropy across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: PP11, case Cl.
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Figure 19: Change in entropy across the boundary layer at the leading edge of the
plate a; = 0 and at the point of separation xs: N2, case Cl.
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Figure 20: Distributions of the friction coefficient: case Cl.
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Figure 21: Distributions of the displacement thickness: case Cl.

We now turn to next case, C2. The value of free stream velocity u^ is about
four times larger for N2 than for FC-71 and PP11, Table 1. The free stream value
of the Eckert number a«, is of the order one and 10~2 for Nitrogen and the BZT
fluids, respectively. This means that the dissipation is significantly smaller for the
dense gases than for N2. Consequently, the distributions of velocity at the leading
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edge (Fig. 22) for FC-71 and PPl 1 again closely resemble to the Blasius similarity
solution wheras the velocity gradient for Nitrogen is smaller. The temperature
variations across the boundary layer are of the order Eckert number for N2 and
the BZT-fluids, Fig. 23, Fig. 24, Fig. 25. The changes in density at the boundary
layer edge are for all three substances of the order one, Fig. 26, and so are the
variations across the boundary layer for N2, Fig. 29, whereas the changes are
small for both FC-71, Fig. 27 and PPl 1, Fig. 28. The entropy depending on
temperature and density behaves in a similar manner where FC-71 experiences
the smallest variations, Fig. 30, PP11 small but somewhat larger, Fig. 31, and
N2 exhibits changes of the order one, Fig. 32. For N2 and PP11, the adverse
pressure gradient associated with the retarded external flow causes the formation
of a Goldstein singularity where the calculations terminate, Fig. 33. For the
BZT-fluid FC-71, however, the friction factor decreases initially but this tendency
comes to a halt and the wall shear stress starts to increase despite the fact that the
pressure gradient is still positive.
Evaluation of the continuity equation (1.1) outside the boundary layer

predicts that the normal velocity component v in a decelerating supersonic flow
decreases with increasing distance to the wall and this effect becomes more pro-
nounced as the Mach number increases. Owing to the fact that the density changes
across the boundary layer are small for PPl 1 and FC71 this is true also for most
of the supersonic outer part of the boundary layer. For sufficiently large values
of Me(x) one, therefore, expects that the displacement body Si(x) (Fig. 34)
may shrink rather than expand and this is confirmed by the numerical calcula-
tions which show that Me(x) initially increases with x (Fig. 36). The associated
momentum influx into the boundary layer is then able to overcome the onset of
separation and causes the wall shear stress to rise sharply, Figure 33. Eventually,
however, the Mach number starts to drop, which in turn quenches this effect. This
unusual behaviour, an increasing Mach number in a decelerating supersonic flow,
which is the mechanism for the type of marginal separation appearing here, can
occur only if the condition

1 - r - M~2 > 0, (2.21)

is satisfied, [9]. This obviously requires F < 1 which is possible for BZT-fluids
where F can assume even negative values as can be seen in the pressure-specific
volume diagram, Fig. 3. In contrast F is a strictly positive quantity larger than
one for the regular fluid Nitrogen and the formation of a Goldstein singularity is
inevitable. The distribution of the fundamental derivative for case C2 is shown in
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_Blasius solution,

FC-71,PP11

Figure 22: Velocity distributions at the leading edge of the plate x = 0: Blasius
similarity solution, FC-71, PP11, N2, case C2.

Fig. 35. The new type of marginal separation occurring here which is triggered
by a non-classical mechanism i.e. the non-monotonous Mach number variation
during isentropic compression of a dense gas, is possible for a wide range of dif-
ferent oncoming thermodynamic states for the dense gas FC-71 as displayed in
Fig. 37. Above the saturation curve in the general neighbourhood of the critical
point, there is a shaded surface. A free stream state within this area exposed to a
linearly retarded external velocity (£ = —1) yields a local minimum of wall shear
stress. As the so-called curve of marginal separation is approached this effect
becomes more pronounced and the wall shear eventually vanishes in one single
point i.e. the flow exhibits a marginal separation singularity having the property
that the solution can be continued further downstream. If the free stream temper-
ature is increased further, a Goldstein separation singularity develops upstream of
the point of zero skin friction, Fig. 38. For freestream values of specific volume
smaller than 2.0uc it was not possible to find a distinctly defined curve of marginal
separation due to numerical difficulties.
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Figure 23: Temperature variation across the boundary layer at the leading edge
of the plate x = 0, at the point of recovery xr and at the point of separation xs:
FC-71, case C2.
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Figure 24: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: PP11, case C2.
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Figure 25: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: N2, case C2.
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Figure 26: Density variation at the edge of the boundary layer: case C2.
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Figure 27: Density variation across the boundary layer at the leading edge of the
plate x = 0, at the point of recovery xr, and at the point of separation xs: FC-71,
case C2.
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Figure 28: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: PP11, case C2.
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Figure 29: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: N2, case C2.

4 h

-

-

-

-

1

\ x

1

= xs
/

/

1

1

X

1

1

= xr

/

II

1

X =

^ \

1

-

-

-

0

0.0032

Figure 30: Change in entropy across the boundary layer at the leading edge of the
plate x = 0, at the point of recovery xr, and at the point of separation xs: FC-71,
case C2.
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Figure 31 : Change in entropy across the boundary layer at the leading edge of the
plate x — 0 and at the point of separation xs: PP11, case C2.
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Figure 32: Change in entropy across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: N2, case C2.
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Figure 33: Distributions of the friction coefficient: case C2.
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Figure 34: Distributions of the displacement thickness: case C2.
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Figure 35: Distributions of the fundamental derivative at the boundary layer edge:
case C2.
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Figure 36: Mach number distribution at the boundary layer edge: case C2.
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Figure 37: pti-diagram for FC-71. Upstream states within the shaded area lead to
wall shear stress distributions with a pronounced minimum while states outside
this domain exhibit a Goldstein separation singularity in linearly retarded flows
with Moo = 2.0, C = - 1 .

o.i -

Figure 38: Friction coefficient for FC-71 at T«,
2.0, i.e. above the curve of marginal separation.

= 1.001Tc, Voo = 5.5wc,

As far as the third case C3 is concerned the behaviour of the flour carbons
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FC-71 and PP11 is similar to that observed for initial states Cl, i.e. the veloc-
ity profiles at the leading edge closely resemble the Blasius similarity solution,
Fig. 39. Also, as before in case Cl we obtain small changes in density (Fig.44,
Fig.45) and temperature across the boundary layer, Fig.40, Fig.41. For the regu-
lar fluid Nitrogen the temperature variations (Fig.42) are comparable with those
found in cases Cl and C2 while we have larger variations in density than before,
Fig.46. Furthermore, at the tip of the plate both the temperature and density dis-
tributions exhibit an unsmooth transition from the viscous to the inviscous part
of the boundary layer. This is caused by a singularity of the isobaric heat capac-
ity cp in the thermodynamic critical point which is past close by due to the large
variation in density, Fig. 47. At the boundary layer edge the changes in density
are of the order one for all three substances, Fig. 43. The distributions of entropy
across the boundary layer are large for N2, Fig. 50, and small for the BZT-fluids,
Fig. 48, Fig. 49. The friction factor (Fig. 51) is also affected by the small value
of density on the wall for Nitrogen and is about half as large as the value of the
Blasius similarity solution. Further, the displacement thickness for FC-71, PP11
and N2 grows faster than the Blasius similarity solution, Fig. 52.

ü/üc

0.6

0.2

Blasius solution,

FC-71, PP11

6 ü

Figure 39: Velocity distributions at the leading edge of the plate x = 0: Blasius
similarity solution, FC-71, PP11, N2, case C3.
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Figure 40: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: FC-71, case C3.

8
'S

3

A

-

-

:

-

x = 0

X = Xs

\ _

\ '

-

1.004 1.007 T/To

Figure 41: Temperature variation across the boundary layer at the leading edge of
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Figure 43: Density variation at the edge of the boundary layer: case C3.
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Figure 45: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: PP11, case C3.
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Figure 46: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: N2, case C3.
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Figure 47: Variations of the isobaric heat capacity across the boundary layer at
the leading edge of the plate x = 0: N2, case C3.
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Figure 49: Change in entropy across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: PP11, case C3.
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Figure 51: Distributions of the friction coefficient: case C3.
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Figure 52: Distributions of the displacement thickness: case C3.

2.3 Linearly accelerating supersonic boundary layer flow

In this section we are considering linearly accelerating supersonic flows where the
external velocity is given by

We compare the behaviour of PP11, FC-71 and N2 at the free stream Mach num-
ber MQO = 2.0, specific volume v^ = 1.05t;c, temperature T^ = 1.001Tc until

ûoo [m/s]
N2

320
0.015

PP11
52

0.0012

FC-71
46

0.0013

Table 2: Free stream velocity and Eckert number: Moo = 2.0, ÛQ
TU = 1.001Tc

= 1.05üc,

the point x = 0.1 is reached after which no nonclassical behaviour was observed.
The relative importance of the dissipation determined by the local Eckert number
a in the energy equation (2.8) is smaller for the dense gases than for Nitrogen
and the speed of sound is for FC-71 and PP11 smaller which causes a higher free
stream velocity for N2, Table 2. At the tip of the plate the velocity distributions of
the dense gases are similar to the Blasius similarity solution whereas Nitrogen has
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a smaller velocity gradient, Fig. 53. As also seen in the previous section where
linearly retarded supersonic boundary layer flows were studied, the changes in
temperature are small for the BZT-fluids, Fig. 54, Fig. 55 and so are the density
variations across the boundary layer whereas the changes in density on the bound-
ary layer are of the order one, Fig. 57, Fig. 58. Nitrogen shows larger variations
across the boundary layer in temperature Fig. 56, in density Fig. 59, as well as in
entropy Fig. 62, for which FC-71 and PP11 experience small changes, Fig. 60,
Fig. 61. As expected, the accelerating external flow causes the friction coefficient
Cf for Nitrogen to increase with x, Fig. 63. For PP11, cj increases slowly and
FC-71 experiences even a decrease initially, despite the favourable pressure gra-
dient imposed by the positive velocity gradient at the boundary layer edge. The
Mach number variation on the boundary layer Me, Fig. 64, also behaves in an
unexpectedly manner for the BZT-fluids -after an increase at the beginning Me

eventually starts to decrease whereas the Mach number for the regular fluid Ni-
trogen increases continuous with x. This effect, a decreasing friction factor and

•ûoo [m/s]

« C O

N2

309
0.14

PP11
80

0.0057

FC-71
81

0.0062

Table 3: Free stream velocity and Eckert number:
Too = 1.03Tc

= 1.3, t ^ = 0.71{ic,

non-monotonous Mach number variation, becomes more pronounced if the free
stream values are choosen identical to the values at the point of separation in case
C2 for FC-71, i.e. M«, = 1.3, ü«, = 0.71üc, T^ = 1.03Tc. The wall shear stress
variations of the dense gas FC-71 displayed in Fig. 65 decrease significantly until
x = 0.15 is reached where the calculations were stopped. The other BZT-fluid
PPl 1 exhibits a similar but less distinguished behaviour while the skin friction for
Nitrogen increases continuously. The displacement thickness distributions (Fig.
66) for the dense gases resemble those for the Blasius similarity solution whereas
N2 experiences a faster increase due to the larger influence of dissipation, Table 3.
This unusual behaviour is triggered, as discussed in the previous section, by the
Mach number variation (2.20), Fig. 67 which only can take place if the value of
the fundamental derivate becomes smaller than one (2.21), Fig. 68. So, the isen-
tropic expansion of dense gases must apparently not be followed by a continuous
increase in skin friction but can, if the free stream thermodynamic state is chosen
suitable, experience a decrease in wall shear stress caused by the non-monotonous
Mach number distribution at the boundary layer edge.
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Blasius solution
-FC-71, PP11

Figure 53: Velocity distributions at the leading edge of the plate x = 0: Blasius
similarity solution FC-71, PP11, N2, Mœ = 2.0, ü,» = 1.05üc, T«, = 1.001Tc.

0.999 1.001

Figure 54: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at x = 0.1: FC-71, M^ = 2.0, €«, = 1.05üc, f^ = 1.00lfc.
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Figure 55: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at x = 0.1: PP11, Mœ = 2.0, ü«, = 1.05üc, T«, = 1.001Tc.

4

-

i i

\

x =

i i

i

= 0.1

1

1

x

\

i

i i

= 0

s.

0.8 1.2 T/Ta

Figure 56: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at x = 0.1: N2, M^ = 2.0, v^ = 1.05ûc, T«, = 1.00lfc.
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Figure 57: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at x = 0.1: FC-71, M^ = 2.0, v^ = 1.05{ic, f^ = 1.00lfc.
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Figure 58: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at x = 0.1: PP11, MM = 2.0, öTO = 1.05üc, r«, = 1.00lTc.
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Figure 59: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at x = 0.1: N2, M«*, = 2.0, v^ = 1.0bvc, T«, = 1.001Tc.

(s - Soo) /CVC

Figure 60: Entropy variation across the boundary layer at the leading edge of the
plate x = 0 and at x = 0.1: FC-71, M^ = 2.0, iJ«, = 1.05ûc, f^ = 1.001Tc.
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Figure 61: Entropy variation across the boundary layer at the leading edge of the
plate x = 0 and at x = 0.1: PP11, MTO = 2.0, ö«, = 1.05vc, T«, = 1.00lfc.

0.175 0.35 (s - s«,) /Cv

Figure 62: Entropy variation across the boundary layer at x = 0 and at the leading
edge of the plate x = 0.1: N2, M^ = 2.0, v^ = 1.05€c, T«, = 1.001Tc.
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Figure 63: Distributions of the friction coefficient: M«, = 2.0, t>oo = 1.05ÜC,

Too = 1.001Tc.
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Figure 64: Mach number distribution at the boundary layer edge: M^ = 2.0,
Uoo = 1.05wc,Too = l.(
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Figure 65: Distributions of the friction coefficient: M^ — 1.3, ûoo = 0.71vc,
Too = 1.03Tc.
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Figure 66: Distributions of the displacement thickness: M^ = 1.3,
I1«, = 1.03Tc.

= 0.71ûc,
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Figure 67: Mach number distribution at the boundary layer edge: Mo

000 = 0.71^, Too = 1.03Tc.
= 1.3,

Figure 68: Distributions of the fundamental derivative at the boundary layer edge:
Moo = 1.3, öoo = 0.710c, Too = 1.03Tc.
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2.4 Linearly retarded subsonic boundary layer flow

In the calculations of linearly retarded subsonic boundary layer flow the free
stream Mach number M^ was chosen to be 0.2, the temperature T^ = 1.001Tc

as before, the velocity gradient £ = — 1 and the specific volume v^ was varied.
It was found, however, that the behaviour of the flow did not change substantially
with the thermodynamic state. Therefore, only the results for the case v^ = 5.0üc,
are shown here. The velocity profiles at the leading edge for Nitrogen and the BZT
fluids are almost identical to the Blasius similarity solution, Figure 69. The tem-
perature (Fig. 70, Fig. 71, Fig. 72), density (Fig. 73 Fig. 74, Fig. 75, Fig. 76)
and entropy (Fig. 77, Fig. 78, Fig. 79) variations across the boundary are small
for all three substances in comparison to those occurring in the supersonic flows.
As far as the friction coefficient (Fig. 80), displacement thickness (Fig. 81) and
Mach number (Fig. 82) distributions are concerned there is hardly a difference to
be seen between FC-71, PP11, N2 and, as expected, all solutions of the boundary
layer equations terminate in a Goldstein singularity.

ü/üc

0.6 FC-71, PP11,N2
Blasius solution

Figure 69: Velocity distributions at the leading edge of the plate x = 0: Blasius
similarity solution, FC-71, PP11, N2, M^ = 0.2, v^ = b.0vc, f«, = 1.001Tc.
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Figure 70: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: FC-71, M^ = 0.2, v^ = 5.0{;c,
Too = 1.00lfc.
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Figure 71: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: PP11, M^ = 0.2, {JQQ = 5.0ûc,
Too = 1.001Tc.
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Figure 72: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the point of separation xs: N2, M^ = 0.2, tioo = 5.0vc,
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Figure 73: Density variation at the edge of the boundary layer: M^ = 0.2, v0

5.0öc, foo = 1.001Tc.
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Figure 74: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: FC-71, M^ = 0.2, üoo = 5.0vc,
Too = 1.00lfc.
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Figure 75: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: PP11, M^ = 0.2, v^ = b.0vc,
T^ = 1.00lfc.
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Figure 76: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: N2, M^ = 0.2, v^ = b.0vc,
Too = 1.001Tc.
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Figure 77: Entropy variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: FC-71, M^ = 0.2, ÙQO = 5.0vc,
Too = 1.00lfc.
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Figure 78: Entropy variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: PP11, M«, = 0.2, v^ = 5.0vc,
Too = i.ooirc .

Figure 79: Entropy variation across the boundary layer at the leading edge of the
plate x = 0 and at the point of separation xs: N2, M^ = 0.2, öoo = 5.0öc,
Too = 1.001Tc.
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Figure 80: Distributions of the friction coefficient:
Too = l.OOlfc.
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Figure 81: Distributions of the displacement thickness: M^ = 0.2, ÛQO = 5.0vc,
Too = 1.00lfc.
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Figure 82: Mach number distribution at the boundary layer edge:
£oo = 5.0öc, Too = 1.00lfc.

= 0.2,

2.5 Linearly accelerating subsonic boundary layer flow

We now turn to linearly accelerating subsonic boundary layer flows where the
external velocity is described by the relationship

As in the previous section we choose the free stream Mach number, the temper-
ature of the oncoming flow to be 0.2, l.OOlTc, respectively and vary the specific
volume Woo. Similar to linearly retarded subsonic boundary layer flows, it was
found that the flow did not depend strongly on the thermodynamic state of the on-
coming flow. Therefore, we show here results for the case v = b.0vc only which
are representative for all flows calculated. The velocity profiles at the leading edge
for the three substances are similar to the Blasius similarity solution, Fig. 83. The
temperature (Fig. 84, Fig. 85, Fig. 86), density (Fig. 87 Fig. 88, Fig. 89, Fig. 90)
and entropy (Fig. 91, Fig. 92, Fig. 93) variations across the boundary are small
for all three substances in comparison to the investigated cases of supersonic flows
and somewhat larger than for the linearly retarded subsonic flow. The latter is due
to the fact that the linearly accelerating external flow causes the wall shear stress
(Fig. 94) to increase and, therefore, separation of the boundary layer is avoided
and the calculations are instead terminated at the end of the plate. The distribu-
tions of the the friction coefficient (Fig. 94), displacement thickness (Fig. 95) and
Mach number (Fig. 96) for N2, FC-71 and PP11 are found to differ only slightly.
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Figure 83: Velocity distributions at the leading edge of the plate x = 0: Blasius
similarity solution, FC-71, PP11, N2, M^ = 0.2, v^ = 5.0öc, T«, = 1.00lfc.

0.9995

Figure 84: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the end of the plate x = 1: FC-71, M«, = 0.2, -Doo = 5.0vc,
Too = 1.00lfc.
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Figure 85: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the end of the plate x — 1: PP11, M^ = 0.2, v^ = b.0vc,
Too = 1.001Tc.

3 -

-

-

1

X =

V
1

1

1

1 1

X = 0

i

-

\ ;

-

0.98 0.99 T/T«

Figure 86: Temperature variation across the boundary layer at the leading edge of
the plate x = 0 and at the end of the plate x = 1: N2, M^ = 0.2, t».» = 5.0öc,
Too = 1.001Tc.
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Figure 87: Density variation at the edge of the boundary layer: M^ = 0.2, v^ =
5.00c, Too = 1.001Tc.

0.9992

Figure 88: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the end of the plate x = 1: FC-71, M^ = 0.2, v^ — 5.0wc,
Too = 1.00lfc.
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Figure 89: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the end of the plate x = 1: PP11, M^ = 0.2, v^ = 5.0f)c,
T^ = l.OOlTc.
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Figure 90: Density variation across the boundary layer at the leading edge of the
plate x = 0 and at the end of the plate x = 1: N2, M«, = 0.2, v^ = 5.0ûc,
Too = 1.001Tc.
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Figure 91: Entropy variation across the boundary layer at the leading edge of the
plate x = 0 and at the end of the plate x = 1: FC-71, Moo = 0.2, v^ = 5.0üc,
Too = 1.001Tc.
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Figure 92: Entropy variation across the boundary layer at the leading edge of the
plate x — 0 and at the end of the plate x = 1: PP11, M^ = 0.2, {JQO = 5.0vc,
I1«, = 1.00ltc.
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Figure 93: Entropy variation across the boundary layer at the leading edge of the
plate x = 0 and at the end of the plate x = 1: N2, M^ = 0.2, öoo = 5.0vc,
Too = 1.00lfc.
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Figure 94: Distributions of the friction coefficient:
Too = l.OOlfc.
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Figure 95: Distributions of the displacement thickness: M^ = 0.2,
Too = 1.00lfc.
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Figure 96: Mach number distribution at the boundary layer edge: M^ = 0.2,
Voo = 5MC, Too = 1.00lfc.
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3 Asymptotic theory of marginal separation in dense
gases

Here we are considering the linearly retarded supersonic two-dimensional flow of
viscous and compressible fluid on a flat plate. The numerical calculations of the
boundary layer for the BZT fluid FC-71 in section 2.2 indicate that if the thermo-
dynamic state of the free stream flow is correctly chosen, we obtain a marginal
separation singularity (Figure 97). In the studies of marginal separation of an in-

Figure 97: Marginal separation for the BZT-fluid FC-71 at p^ = 0.1996 T^ =
1.001 and M^ = 2.0. The region where the friction coefficient recovers is the
region of interest in this section.

compressible flow past an airfoil [27], [28], [30] it was found that there exists a
limiting solution of the boundary layer equations which can be extended through
a point of vanishing wall shear. This solution is embedded in one parameter fam-
ily of solutions which describes the transition from completely smooth wall shear
distributions to wall shear distributions which terminate in a separation singularity
depending on a certain control parameter k. In the previous mentioned investiga-
tions, k was the angle of attack and it was found that there exists a critical value
of attack fc0. If

= k-k0 (3.1)

is smaller than zero we obtain the smooth solution whereas Ak > 0 yields the sin-
gularity. In the limit Ak —> 0+ the strength of the singularity becomes arbitrarily
small and if the interaction between the boundary layer and the external flow is

62



taken into account one obtains a smooth solution with a short region of negative
wall shear stress. In this study, the place of angel of attack is taken by the free

0.16

Figure 98: Numerical calculation of the boundary layer. Friction coefficient dis-
tribution for FC-71 at TTOr = 1.001 and Af«, = 2.0.

stream density Poor non-dimensionalized with the thermodynamic critical density.
Figure 98 displays three numerical calculations of the boundary layer for FC-71 at
different free stream densities. The dashed line represents the case where Ak — 0
for which the marginal separation singularity arises and the wall shear stress van-
ishes in a single point. Denoting the value of / w for this case p ^ , the numerical
results indicate that if p^ < p ^ r a Goldstein singularity forms [22] while the
wall shear stress remains positive throughout if p^ > p^. This suggests that in
the present case the appropriate meaning of Ak is

A I _ Poor ~ Poor

Poor Poor

In the following study of the marginal separation using asymptotic methods, it is
convenient to use the notation

Ak = ekx,

where e « l and ki = 0(1).
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3.1 Thermodynamical considerations

We continue to consider the thermodynamical properties of BZT-fluids. Similar
to the case of ideal gases [20]

(3.2)

In contrast to ideal gases, however, where the Eckert number

Ec=(^-l\Ml = 0{Ml),

since the ratio of the specific heats is of the order one, we now have [20]

(3-3)

which is found by using e.g. the Van der Waals gas model, the definitions for spe-
cific enthalpy and speed of sound. BZT-fluids are characterised by large isochoric
heat capacities non-dimensionalized with the universal gas constant R, typically
of the order 102 according to [8] and [9], Table 4. Consequently, the Eckert num-

Fluid
Ci2F27N, FC-43, pf-tributylamine
C15F33N, FC-70, pf-tripentylamine
Ci8F39N, FC-71, pf-trihexylamine
C13F22, PP10, pf-perhydrofluorene
C14F24, PP11, pf-perhydrophenanthrene
Ci6F26, PP24, pf-fluoranthene

93.0
118.7
145.0
78.4
97.3

112.0

*• min \-Lc)

-0.03
-0.17
-0.29
-0.08
-0.15
-0.36

Table 4: cc
voo for representative negative F fluids. Tmin (Tc) denotes the minimum

value of F on the critical isotherm [8].

ber will be small for even moderately large supersonic Mach numbers and we can
write the energy equation (1.16) in the form

/ dT dT\ 1 d (1dT\ _.._ .
pcp[u—+v—) = — — ( k— ) + 0{Ec). (3.4)

Together with the boundary conditions (1.17) we can, therefore, infer that

dT dT dp
(3.5)

i.e. the changes in temperature in the whole flow field are of the order Ec and
so are the changes of density across the boundary layer. A numerical calculation
with Ec = 0 is displayed in Figure 99.
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Figure 99: Numerical solution of the boundary layer equations for FC-71, Ec = 0,
Too, = 1.001, poor = 0.17 and M^ = 2.0.

3.2 Properties of a classical boundary layer near the point of
vanishing wall shear stress

Introduction of the stream function

= pu, (3.6)

satisfies the continuity equation (1.13) and leads to the equation of motion in the
x-direction (1.14) in the form

P2
p ( _

Pdx\dY PdYdxdY rdx\dY

3dp

dx dY2 ^dY dx dY

(3.7)

3YdY dY2)

We now investigate the region where the wall shear stress has a local minimum
(Figure 97) in more detail using asymptotic methods for Ec = 0 and in the limit
A/c —>• 0+. The solution of the boundary layer equations is sought in the form

x , Y ) + ---, (3.8)
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(3.9)

T = To,
P = Po(x) -
P = Po(x) + Akp^x)

Inserting the expansions (3.8), (3.9) into the equation of motion (3.7) and collect-
ing orders of Ak we obtain in first order

Po-
9*0 92*0

dY dxdY dx V dY

and in second order

- Po
dPo

dx

PÎ-
dY V"dxdY

2

'0
dx dY PI dx dY2

dxdY dY

dp0

PÎ dx

dx \dY )

93*o
- Po

92*0 9*o92*o
+P+PodxdY r u dx dY2

!Pi „ 2 ^ 3 * o . . , » G

(3.11)

= 0

xs

*- x

Figure 100: Asymptotic structure of the boundary layer close to the point of zero
wall shear.

Following the work of Ruban [27] and Stewartson et al [30] the boundary
layer region near the point of recovery is divided into a viscous wall region 1
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and a predominantly inviscid outer region 2 as sketched in Figure 100. We first
consider the viscous region la lying ahead of point of minimum wall shear and
make a change of variables

s = x-xs, v = Y(-s)-^\ (3.12)

where xs is the point of minimum wall shear. In the limit s —» 0~ the quantities
Po> Pi» Po> Pi> Po» ß\ in the equations (3.9) are expanded in the form of Taylor
series

-^ = Poo + spoi + • • • + Ak(pw + spn + •••) + ••• , (3-13)

T = T o ,

P = P o o + ( - s ) p o i + • • • + A / c ( / 9 1 0 + ( - s ) p n + • • • ) + ••• , ( 3 - 1 4 )

A* = A*oo + (-S)A*OH 1-Afc(/iio + (-s)/in H )H ,

while \to = ^ao is expanded as

( 3 . 1 5 )

It should be noted that -in the limiting case Ec = 0 considered here- the rela-
tions between the various coefficients in the expansions for the thermodynamical
quantities (3.13), (3.14) are known from the equation of state and the equation of
motion (Bernoulli equation) evaluated in the inviscid flow at the boundary layer
edge. Further, the first term in the asymptotic expansion (3.15) is found by apply-
ing the no-slip condition (1.17) on the boundary layer equation in the a;-direction
(1.14). It follows that at any point on the surface

(3.16)
ix dx dY3

 Y=o

Applying the Goldstein similarity variables (3.12), the expansions for the thermo-
dynamic quantities (3.13), (3.14) and integration then yields

3 , Poo Poo 3
a = -7> JaOO = "7 V •

4 6/ioo

Substituting (3.13), (3.14), (3.15), into the equation of motion (3.10) and collect-
ing terms of equal orders of s and taking into account the no-slip condition on the
plate

/aoi(O) = W O ) = W O ) = 0,

ffaOl(O) = ffaO2(O) = 4fa03(0) = Q ^ ^
dr\ drj dr\
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we obtain ordinary differential equations for / a ( n , /ao2 and /a03. At order sß 3/4

we obtain the differential equation

a^oiW + ôPoo fi \ 2 ^ ) _ poopoo ( } =
dr1 2/% V4 / dV /44 , dr1 2/% V4

Only one of the three linearly independent solutions found satisfies the boundary
conditions (3.17)

/ooi = y?7 ,

Here, a0 is an arbitrary constant. Further, in order to determine the eigenvalue ß
it is necessary to consider the fourth term of the expansion (3.15) which satisfies
the equation

PooPoo 3d
2fa03(rj) pOQpoo ( 1\ 2dfao3(r])

dif 8^o ' <hf ' A 4 V V ' drj

/ 4 V~" 4J •""»"' 4
The solution can be represented as a confluent hypergeometric function

, ^0 2 , 2

22pooPoo 2

where C\, bo are arbitrary constants and

P ri -2i7î / i Of l ^ POOPOO 4 \
C-j] lF 1 - 2ß, -, ̂ r^~V

Jo V 4 32/4)0 /

-2 /3 + 1 ) - - - ( 1 - 2 ) 8 + f c - 1 )

grows exponentially with rj which will make matching with region 2a impossible
unless we choose

777-

/ ? = - , m = l , 2 , 3 - - -

for which the confluent hypergeometric function (3.18) reduces to a polynomial
of degree m. In an asymptotic expansion such as (3.15) each term has to be of
smaller order than the previous one and since the eigenvalue a is determined to
3/4 already, (3.15) will only make sense if ß > 3/4, i.e.

/? = - , m = 2,3,4---
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Choosing m = 2 yields the Goldstein singularity [15], [31]. So, the smallest
possible eigenvalue is

m = 3 (3.19)

which yields

ß-\.

After determining the constant C\ from the no slip condition, we get

b a2

/aO3 = TT7?2 ~ 7T7?5 ^

We now turn to the third term of the expansion for tya0 (3.15) which is related to
the linear terms in the expansions for the pressure (3.13), density and viscosity
(3.14). The only possible choice of the eigenvalue S for which the solutions /aoi,
/a03 are left unchanged is 7/4. So, at order s1 we obtain the differential equation

POOPOO 3 d/a02(rç) , POOPOO 2
dfa02(v) 7P00P00 , , v

o 2 V T~2 ' 2 ^ 1 2 VJaO2{V)

PooPooPoi 4 , PooPoo /Poi , Ppj. ,

i Â  \ P P4/ioo Âoo \Poo POO MOO/

which is satisfied by

f , 2 , POOPOO /P01 , POI M0l\ 3 , 2PooPop_ foP0l POI , M0l\ 7

6A* VPOO POO MOO/ 7!//jj0 \ Poo Poo Moo/

where d0 is an arbitrary constant.
Summarising, the results obtained so far for region la are:

, POO POO 3
JaOO = -Z V >

DMOO

t a0 2

/aoi = y?7 ,

2 , POOPOO fPOl , POI ^ o A 3t J 2 . ruufuu i fu i . i-ui r u i i 3 ô onx
JaO2 = «0̂ 7 + -^ I 1 I V (3.ZU)

DMoo VPoo POO MOO/

/An P01 . Moi \ 7
1- — )V .

7!/xg0 V Poo Poo Moo/
N ^2

/aO3 = yry - - i
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Next we examine region 2a where Y = 0(1). Rewriting the solution of region la
(3.20) in the variables of region 2a, suggests the expansion

0". (3.21)

Substitution into (3.10) yields that /2aoo(^0 remains arbitrary, i.e. cannot be ob-
tained from local analysis and

df2a00(Y)
dY

Y

1 POO POO

\

df2aoo(Y)
Pen

Poo

\

dY (3.22)

where Co is an arbitrary constant. The behaviour of the function f2aoo for Y —>• 0
and Co are determined by matching with the results (3.20) holding in region la.
We obtain

+
oo

P0l POI .
1']-ßoo V Poo Poo

Poo Poo Qp y 9

8!M 2
'00

/2a01 — (Po1
 + ?°1 _ 5̂1

(3.23)
( +

6/ioo \Poo POO

Further we seek an extension of the solution beyond the point of zero wall shear
stress. Starting in the region lb we try the asymptotic expansion, [31]

(3.24)
£ = Ys-1'4 = 0(1), s -» 0+.

Imposing the no-slip condition on the surface of the plate

/wo(O) = /MI (0 ) = /ÖO2(O) = /M3(0) = 0,

fffcoo(O) _ d/wi(0) _ dfb02(0) _ dfm(O)
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we obtain

fbOO —
6/ioo

f _ °0 c2
/601 — "Z-Ç i

t J*c2 POOPOO / POI , POI MOI \ ^3
/602 = a0Ç ~ "7 1 K

6/ioo \Poo Poo
(3.25)

2PooPoo
7!A*oo

P01 POI

Poo Poo
a 0 a 0 POOPOO ^9

Ç
/ 6 0 3 = ^ 2 ^

J603 2 ç -r 5 ,

using arguments similar to those applied in the derivation of the solution for region
la.
Finally, in region 2b where Y — 0(1) the solution is sought in the form

#260 =

which from (3.10) yields

+ + • • • , S - + 0 + ,

/2&01 —
4/2600 (Y)

dY

d3f2boo(Y)
Moo - P00P00

fdf2bQ0(Y)\2
Poi

Poo
dY

After matching with with the results (3.24) obtained in region lb we get

, , POOPOOV3 , 2P00P00 (oP01 POI / i 0 l \ V 7
/2600 — /2a00 — ~7. Y + ~, 3— I l ' I Y

6 / i o o 7 ! / n g 0 V P o o P o o A * /

r a 0 v - 2 POOPOO / P O I . POI
/2Ö01 = - ^ ^ I 1

2 6/ioo VPoo Poo Moo/

(3.26)

(3.27)

(3.28)

It now remains to match the solutions in region la (3.15) and in region lb (3.24).
Writing (3.24) in the variables of region la yields the relationship

«o = ao- (3.29)
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which depends crucially on the choice of the eigenvalue (3.19). If we had chosen
the first eigenvalue, m — 2, we would had obtained a j 2 = — a2, instead and as a
consequence a real solution downstream of the point of zero friction is impossible
to find unless a0 = 0. The relation (3.29) gives us two possibilities to choose a^.
The first one, aj = ao, yields a discontinuity in the angle of inclination of the
streamlines at the point s = 0 and thus represents the marginal separation singu-
larity. The second possibility, aj$ = —ao, provides a smooth behaviour through
the point of zero wall shear. The stream function is represented by

VIV -
*2aO — — j2a00\Y ) + S — /

0
\

dY* -^-PMP™ Poi d y

df2wo(Y)\2 Poo

dY ) J

dY PooPoo

which is valid in the vicinity of s = 0. In the limit Y —» 0 we obtain

POl Poi /*01 \
1

6/xoo 7!/% V Poo Poo Poo/
a o W o o y 9 F _ o

8!/4, L 2
PooPoo
6poo \

From (3.30) the skin friction is calculated, i.e.

Poi Poi Poi \ ^ 3 Qo y5

Poo POO POO/ 5! J

T = = -aos + O (s2) .
Y=0

We will now examine the case where Ak slightly differs from 0. Starting in region
la, the solution for (3.11) is sought in the form

i(»7) H (3-31)

Substituting (3.31) into (3.11) and collecting orders of s yields

7 = - 1 / 2 ,

/«io = jV2, (3-32)

/all = -^if-
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This was obtained in the same manner as the first order solution ^ a 0 in region
la and the eigenvalue 7 = —1/2 is the first possible eigenvalue which eliminates
the exponential growth of the confluent hypergeometrical function satisfying the
differential equation for / a i 0 . On the other side of s = 0, i.e. region lb, the
solution is found in exactly the same way to be

lTr „ — 1/2 1 t i I „1/4 1 A 2 1 /O OOX

In region 2a where Y = 0(1) the solution is represented by the asymptotic ex-
pansion

which is found by writing the results of region la (3.31) in the variables of region
2a. Substituting (3.34) into the equation of motion of the second order (3.11)
yields

- H-, linn rlfnnn(V\ , , ,„ ,

+ 0 (-s)~ i /4 . (3.35)2a* ( )
PooPoo

Similarly, the solution in region 2b is given by

+ O (a-V4) . (3.36)
PooPoo

According to the definition of asymptotic expansions, each term has to be of
smaller order than the previous one. This is not satisfied in (3.34) where the
first term increases without bound as s —>• 0~. Therefore, we must examine the
immediate neighbourhood of the point s = 0 separately on the basis of the full
Navier-Stokes equations.

3.3 Local Interaction process

The first task to complete in the analysis close to the point s = 0 is to find the
magnitude of the region where the pressure induced due to the displacement ef-
fect pi becomes large enough to influence the flow in the first order. The theory
of small perturbations for two-dimensional supersonic flows yields the Ackeret
formula [1]

Further, the angle of inclination 6 , describing the slope of the streamlines is de-
fined as

- = tan0 ~ 0 . (3.38)
u
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Substituting the solution of region la (3.20) into (3.38) one obtains the estimate

Applying Taylor series expansions around s = 0 for the denominator in the ex-
pression (3.39) yields

0 = -Re'1'2 (^^sign(s) + O ((-s)3'4)) . (3.40)
VPooPoo /

We then plug the expressions (3.38), (3.40) into the Ackeret formula (3.37) and
differentiate once in the rc-direction, i.e.

f = O (S^) . (3.4!)
ax \ x — xs )

The relation (3.41) grows unbounded as x —>• xs which indicates the need of an
interaction region. Further, in order to affect the wall shear stress the induced pres-
sure gradient has to be of the same order of magnitude as the fourth eigenfunction
of the solution in the viscous region la (3.15), i.e.

POOPOO /

The two quantities will be of comparable size if

\x-xs\ = 0{Re~1/5). (3.42)

With the objective to construct uniform valid asymptotic solution, Afc is choosen
to

Ak = O(\x-xs\
2)=O(Re-2/b). (3.43)

Then, the first eigenfunction of \tai (3.32) becomes comparable in order of mag-
nitude to the second eigenfunction of ̂ ao (3.20) and the asymptotic breakdown in
(3.34) is avoided.
We go back to the full Navier-Stokes equations (1.8), (1.9) where the streamfunc-
tion is defined as

dtp dip
— = -pv, •£- = pu,
dx ay

and adopt a new scaling in the s-direction according to (3.42)

s* = Rel/5(x-xs). (3.44)
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Further, a term is added to the expansion for pressure of the order Re~3/10 which
accounts for the local interaction between the boundary layer and the external
flow, i.e. accounts for the pressure response of the external flow caused by the
rapidly changing boundary layer displacement thickness.

(3.45)

Inserting (3.42) into (3.12) we immediately obtain the thickness of the lower

2a

la

y

upper layer

middle layer

lower layer

j

1—1

1

O "*ï

I

i-H

1

2b

lb

X

Figure 101: The triple deck structure in the interaction region.

layer in the interaction region (Figure 101). The lateral extent of the upper layer is
found from potential theory which requires that the scaling in x-, and y-direction
must be of the same order.
The analysis of the interaction region is commenced in the middle layer where the
Navier-Stokes equations are investigated on the basis of the limit process

st = Re1/5(x-xs) =0(1), Y = 0(1), Re ->• oo, Ec = 0. (3.46)

Writing the results of region 2a (3.23) in the variables of the middle layer (3.46)
and considering (3.43) suggests that the streamfunction ip = ip2 can be expanded
as

, Y) = Re-1/2iP2o(Y) + Re-7'wiki{s*, Y) + (3.47)

75



Together with the thermodynamical expansions (3.14), (3.45) inserted in the first
Navier-Stokes equation (1.8) we obtain expressions of different orders of Re. Col-
lecting these yields a system of equations which are satisfied for

df2aOo(Y)

dY pooPoo

df2aoo(Y)
; dY

Y

S
d3f2a00(Y) \

Moo — Poo Poo

df2a00(Y)\'

Poi

Poo

dY I

(3.48)

dY

where A\ (s*) is an arbitrary function. By matching (3.48) with the results holding
in region 2a we obtain its behaviour far upstream

Ai(s*) = ao(-s*) + a1k1(-s*)~1 H , as s* ->• - co .

Inserting (3.47), (3.14), (3.45) into the second Navier-Stokes equation (1.9) we
get

d_(dp.
dY-^ ^ = 0.

ds*
(3.49)

Next, we turn to the lower layer where the Navier-Stokes equations are analysed
in the limit

s, = Re1/5(x-xs) = 0(1), y3 = Ren/20y = O(l), Re -> oo, Ec = (B.50)

Writing the results of region la (3.20), (3.32) in the variables of the lower layer
(3.50) and considering (3.43) suggests that the streamfunction tp = ip3 can be
expanded as

(s*,y3) + • • • • (3.51)

Together with the thermodynamical expansions (3.9), (3.45) in the first Navier-
Stokes equation (1.8), one obtains for the first three terms

, ( x POOPOO 3
•030 (2/3J = "7 Vi,

o/xoo

*, 2/3) = 2

(3.52)

(3.53)

_ PooPoo / P01 Poi_ _ LMn_

6A*OO \POO POO

. 2p 0 0 p 0 0

Poo Poo A«oo/

7

3> (3.54)
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where Ai(s*) is the arbitrary function entering (3.48). In order to determine it, it
is necessary to examine the problem for

d3ip33(s*,y3) _ Poo Poo 2^33(3*11/3) P00P00 dip33(s*,y3)

dy\ 2/zg0
 Vz dy3ds* ß2

QQ
 Vz ds3

_ Poo dp* I 2 , cL4i(s*)
Ias* I as

The boundary conditions require

oy3

= 0 .

Note that the boundary-value problem (3.55) is not closed, because of the term
dp*/ds*. Before giving (3.55) more attention, we substitute the asymptotic ex-
pansions (3.51), (3.9), (3.45) into the second Navier-Stokes equation (1.9) and
obtain

(
dY\ds*

To close the problem (3.55) we have to determine the pressure gradient dp*/ds*
from the solution of the problem for the upper layer of potential flow. The solution
in the middle layer (3.47), (3.48) yields the slope of the streamlines in region 2:

s*\ (3.56)(*) ]
P00P00 dst

The relation (3.56) depends only on s* and is, therefore, valid also at the bottom
of region 1. Introducing the stretched streamline slope 6*(s*) = Rel/2Q(s*) it
can also be written in the form

n t \ Moo dAi{s*)
Q*{s*) = . (3.57)

Poo Poo ds*

In the upper layer the longitudinal and transverse variables of order unity will be

s* = Re1/5{x - xs), yx = Rel'*y, (3.58)

and appropriate expansions of the field quantities are
u = U00 + H Re~ll2iiQi + • • • ,
v = Re~1/2v0i -\ ,

p = poo + • • • + Re~1/2poi + • • • , (3.59)
T = T o o + • • • + R e ~ 1 / 2 T 0 i + ••• ,
P = Poo + H Re~1/2p01 H ,
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where tipp, POO,TQO,POO and dots • • • denote the non-interactive part of the flow
field.
Plugging (3.59) into the governing equations leads to equations for the distur-
bances induced by the local interaction process which are linearised with respect
to the non-interactive flow quantities evaluated at x = xs,yi = 0. Matching of
the solutions to those holding inside the main deck region then yields the result -
anticipated before - thatp*(s*) and G*(s*) satisfy the Ackeret relationship

(3.60)

Combination of (3.60) and (3.57) finally yields the interaction equation:

dp* _ uOOßOO d2A1(s:t)

* . — • ' • ( 3 6 1 )

where Moo denotes the value of the Mach number at the point x = xs. The relation
(3.61) between the induced pressure and displacement effect closes the interaction
problem (3.55). It is convenient to recast (3.55) into a form containing a single
control parameter A. To this end we write

aoP0OPoO 9 . ao 5 . ^2(s*) 2/o/ \
" , 2 3̂ + ^s*2/3 + -^r-^ylGis*,2/3)

00 (3 62)HOQK*) _ xaoaj/ioo _ CLIPIQ 2\

V 2 P P P00P00 2p0pp00 *)

and introduce the affine transformations

9/10 11/10 41/20 1/10

G < x ' Y )

0 1

1/10 9/20
fit I II'

"oo Poo

_ "00 Poo <y

S - 1)V5
2/5 3/5 3/5 3/10
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One then obtains

d3G(X, Y) Y2 d2G(X, Y) ~dG(X,Y) _ d2A{X)

dY3 2 dYdX d ï ~ dX2 '
G(X,O) = O, (3.64)

dG(X,O) _ 1 x,
where the control parameter

M$ - I)2/5
1/5 4/5 6/5 3/5

ao woo Poo A*

characterises the deviation of the free stream density from its critical value. The
general form of the problem (3.64) is treated in detail by Stewartson [29] (see also
Hackmüller [16]). As shown there using Fourier transformation, an exponential
growing solution as Y —» 00 can be avoided only if

23 /2r(5/4) '

subjected to the asymptotic boundary conditions

(3.66)
r(3/4)

(3.67)

Equation (3.66) for Â(X) is commonly called the fundamental equation of marginal-
separation theory. In contrast to the studies done by Ruban [28], Stewartson et al
[30] where the induced pressure gradient depends on the Hilbert integral and,
therefore, the right hand side of the fundamental equation is to be integrated from
X to 00, the integration limits in (3.66) ranges from —00 to X.
Figure 102 displays four numerical solutions of the fundamental equation for dif-
ferent values of A for which classical boundary layer theory fails due to the occur-
rence of a Goldstein singularity. The physical intepretation of A(X) is found by
differentiating (3.51) twice,

r = dy2
Pof

3/5 3/10
POO /̂ OO ^ c v \ L . . . (3 gg)
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Figure 102: Numerical solution of A(X) for various values of the controlling
parameter A oc

i.e. a measure of the wall shear stress. Therefore, the boundary layer remains
attached for the smallest value of A while a short region of reversed flow indicates
the occurrence of marginal separation for the three other values of A. Further, the
solutions presented in Figure 102 are the mirror images of the solutions to those
obtained in the studies from Ruban [28], Stewartson et al [30] with the exception
that here, Ak is proportional to the free stream density deviation from its critical
value whereas in [28], [30] A A; is proportional to the change in angle of attack.
Figure 103 displays the difference between marginal separation theory and clas-
sical, i.e. hierarchical, boundary layer theory. The variations of the wall shear
stress for the latter are found by setting the induced pressure gradient appearing
in (3.55) to zero. Applying the affine transformations (3.63) then reduce the solv-
ability condition to

Â(X) = - 2A.

The interaction between the boundary layer and the inviscid outer flow in the the-
ory of marginal separation causes a slower progress in the development of the
wall shear stress. For the case where A = 0 and classical boundary layer the-
ory experiences a marginal separation singularity, the interaction causes the wall
shear stress to remain positive and continuous throughout the interaction region.
An increase in A causes the occurrence of a Goldstein singularity in the Prandtl
boundary layer equations whereas the theory of marginal separation allows the
formation of a small region with recirculating flow.
It should be noted that the smallest value of Â, in Figure 102, is not given for
the largest number of A which calls for a more convenient way to illustrate the
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Figure 103: Comparison between marginal separation theory and classical bound-
ary layer theory (dashed).

behaviour of A. This is done in Figure 104, which often is referred to as the fun-
damental curve, where Â(0) is plotted as a function of A. As can be seen is the flow
behaviour non-unique. Starting in the point Q and moving along the fundamental
curve in the direction of the arrows the skin friction decreases with increasing A.
The flow is attached until Xs ~ 1.14 is reached where separation occurs. Between
As and Ac both our solutions indicate the existence of a local zone of reversed flow.
For values of A larger than Ac « 1.33 the fundamental equation does not have a
(real) solution. For A > Ac it is appropriate to leave the limitation of steady flows
and seek the solution to the unsteady problem. This transition from one class of
flows to another is followed by a phenomena called short-bubble bursting [4].
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Figure 104: The fundamental curve showing non-uniqueness of flow.
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4 Conclusions

Mechanical engineering is a broad field of science. In this PhD thesis the op-
portunity was given to combine thermodynamics, fluid mechanics and modern
analytical and numerical mathematical methods to study the unusual behaviour of
Bethe-Zel'dovich-Thompson fluids known as dense gases with complex molecu-
lar structures. Earlier work showed that BZT-fluids may behave opposite to the
intuition gained from the theory of perfect gases. Specifically, this work was dedi-
cated to flows past a flat plate where the ratio of convective terms to viscous terms
tends to infinity (Re —> oo), i.e. the viscous effects are confined to a thin boundary
layer near the solid wall. Numerical calculations of the boundary layer showed
that flows with subsonic free stream conditions did not exhibit any pronounced
real gas effects, whereas the supersonic case for an accelerated/decelerated dense
gas may cause the Mach number to decrease/increase and provoke the displace-
ment body to expand/shrink despite the favourable/adverse pressure gradient. This
unexpected behaviour arises from the distribution of the fundamental derivative
which is associated with the curvature of the isentropes. In contrast to ideal gases,
BZT-fluids may experience values of the fundamental derivate smaller than unity
which in turn may lead to the non-monotonous behaviour of the Mach number
mentioned above. This significantly affects the boundary layer evolution gov-
erned as the continuity equation evaluated at the boundary layer edge predicts that
the normal velocity component in an accelerating/decelerating supersonic flow in-
creases/decreases with growing distance to the wall and that this effect becomes
more pronounced as the Mach number increases. An other observation resulting
from the numerical calculations concerns the density and temperature variations
across the boundary layer and along the plate. It was found that the changes in the
transverse direction were very small. The same behaviour was observed for the
temperature variations in the longitudinal direction whereas the changes in density
were of the order unity along the plate. Inspection of the energy equation indeed
indicates that the changes in temperature in the whole flow field are of the order
Eckert number which for the kind of fluids considered here typically are of order
10~2 and so are the changes of density across the boundary layer.
If the free stream conditions of a BZT-fluid are chosen properly, the boundary
layer equations exposed to a supersonic flow with adverse pressure gradient may
experience a marginal separation singularity, i.e. the wall shear stress vanishes
in one single point and immediate recovers. Using asymptotic methods near the
point of zero wall shear stress and taking advantage of the specific thermodynamic
properties of BZT-fluids regarding density and temperature it was possible to con-
struct an one parameter family of solutions. These describe the transition from
completely smooth wall shear distributions to wall shear distributions which ter-
minate in a separation singularity depending on a certain control parameter which

83



is a measure of the density deviation from the critical value associated with the
marginal separation singularity (say, Ak = pcrit — p). If Ak is smaller than zero
we obtain the smooth solution whereas flows with Ak > 0 terminate in a singu-
larity. In the limit Ak —» 0+ the strength of the singularity becomes arbitrarily
small and if the interaction between the boundary layer and the external flow is
taken into account one obtains smooth solutions which, depending on the value
of Ak, may exhibit a short region of negative wall shear stress. Despite the fact
that the marginal separation investigated here is not caused by a specific form
of the pressure distribution as in earlier work but rather is triggered by a novel
mechanism, i.e. the non-monotonous Mach number distribution associated with a
strictly adverse pressure gradient, the interaction equation governing the marginal
separation is of classical form. Its numerical solutions yield the wall shear stress
distributions which are the mirror images of the classical subsonic case due to
other integration limits caused by the supersonic conditions considered here.
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Appendix A

Thermodynamical properties

molecular weight, M [kg/mol]
critical temperature, Tc [K]
critical pressure, pc [MPa]
critical spec, volume, vc [m3/kg]
boiling temperature, T},, [K]
n
accentric factor, u
dipolmoment, fir

idealgas isochoric heat capacity evalu-
ated at the critical point c ^ , [J/kg K]

N2

28.01 • lu"3

126.2
3.390

3.206 • lu"3

77.4
0.0

0.039
0.0

768.41

FC-71
0.971
646.2

0.9423
1.615-10-3

526.2
0.4273

0.97
0.0

1241.6

PP11
0.624
650.2
1.460

1.594 • lu"3

488.2
0.5776

0.78
0.0

1296.1

Table 5: Input parameters for shear viscosity, thermal conductivity and pressure.



Appendix B

Predictions for shear viscosity and thermal conductivity

1.5 lnT r

Figure 105: Predictions of the shear viscosity for FC-71 using the method from
Chung et al. All quantities are non-dimensionalized with their values at the ther-
modynamic critical point.
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1.5 lnT r

Figure 106: Predictions of the shear viscosity for PPll using the method from
Chung et al. All quantities are non-dimensionalized with their values at the ther-
modynamic critical point.
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Figure 107: Predictions of the shear viscosity for N2 using the method from Chung
et al. All quantities are non-dimensionalized with their values at the thermody-
namic critical point.

90



\nkr

2

1

0

-1

\

- \

V = 0.005

40>--

-

-

I i i

1.5 lnT r

Figure 108: Predictions of the thermal conductivity for FC-71 using the method
from Chung et al. All quantities are non-dimensionalized with their values at the
thermodynamic critical point.
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Figure 109: Predictions of the thermal conductivity for PPll using the method
from Chung et al. All quantities are non-dimensionalized with their values at the
thermodynamic critical point.
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Figure 110: Predictions of the thermal conductivity for N2 using the method from
Chung et al. All quantities are non-dimensionalized with their values at the ther-
modynamic critical point.
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