
Technische Universität Wien

DIPLOMARBEIT

Switching On.

How Processes Initialize for

Consistent Broadcast

carried out at the Department of Automation
on the Vienna University of Technology

under guidance of
ao. Univ. Prof. Dr. Ulrich Schmid

by

Josef Widder
Matr.Nr.: 9625114

Meidlgasse 41/4/4
1110 Wien

October 16, 2002

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

1

Abstract

Well known system models of distributed systems assume that all

processes are already running when the algorithm starts. This includes

the assumption that there are enough non-faulty processes in the

system to run an algorithm correctly even in the presence of failures.

This diploma thesis deals with the problem of initializing a network

where the processes are down at the beginning and therefore don’t

receive messages until they have booted. When a process is up it has

to decide when it is save to start the desired service, based only on

the information it gets from messages. That includes that the process

has no timing information. The analysis of the algorithm is done using

a partially synchronous system model where exist lower and upper

bounds on the message transmission delay which are not known by the

processes. We consider the problem of round synchronization. The

solution is a modification of the well known non authenticated broadcast

primitive by Srikanth and Toueg.

Zusammenfassung

Bekannte Systemmodelle von Verteilten System gehen von der Annahme
aus, dass alle Prozesse bereits laufen wenn der Algorithmus startet. Das
inkludiert die Annahme, dass genügend fehlerfreie Prozesse im System
sind, um den Algorithmus korrekt zu exekutieren falls fehlerhafte
Prozesse vorhanden sind.
Diese Diplomarbeit behandelt das Problem der Netzwerkinitial-
isierung bei dem Prozesse zu Beginn nicht laufen und sie deshalb
keine Nachrichten erhalten bis sie gestartet sind. Basierend auf den
empfangenen Nachrichten muss ein gestarteter Prozess entscheiden,
wann es sicher ist einen bestimmten Dienst zu starten. Dabei hat er
keinerlei Information über Zeitverhalten. Die Analyse des Algorithmus
basiert auf einem partiell synchronen Systemmodell wo untere und
obere Grenzen der Dauer von Nachrichtenübertragungen existieren, die
allerdings den Prozessen nicht bekannt sind. Der untersuchte Dienst
ist das gemeinsame Durchführen von Rundenwechseln aller korrekten
Prozesse im System. Die Lösung ist eine Adaption der bekannten non
authenticated broadcast primitive von Srikanth und Toueg.

2

3

Contents

1 Introduction 6

1.1 Related Work . 7
1.2 Roadmap . 7

2 System Model 8

2.1 The Partially Synchronous System Model 8
2.2 Model of the Initialization Phase 9

3 Round Synchronization by Consistent Broadcasting 10

4 Round Synchronization by Modified Consistent Broadcasting 13

4.1 MCB using Perception Vectors . 17

5 Initialization for Consistent Broadcasting 22

5.1 A 4f solution . 22
5.2 Initialization with N ≥ 3f + 1 processes 24

5.2.1 The Active Broadcast Primitive 25
5.2.2 The Passive Broadcast Primitive 26
5.2.3 Analysis . 28

6 Conclusions 31

4

5

1 Introduction

A still not sufficiently explored problem in distributed computing is initialization:
Nodes in a distributed system boot at unpredictable times and have to decide
locally when it is save to start a given service even in presence of faults. Nodes
that start late and don’t receive messages sent earlier should not be counted as
faulty, however.

In synchronous systems, initialization could be done based upon a priori knowl-
edge of maximum booting delays and is hence straight forward. The synchrony
assumption is a quite strong one, however, and it is well-known that important
classes of applications (like Internet-services) cannot reasonably be modeled as
synchronous systems. Partially synchronous systems are an interesting alternative
here.

This thesis shows a solution for the problem of initialization of a partially
synchronous network. The network service considered is round synchronization
which ensures that for any two nodes pi and pj with local round numbers Ri(t)
and Rj(t), respectively, the following synchrony condition is satisfied at all times
t :

Definition 1.1. Synchrony Condition: | Ri(t) − Rj(t) |≤ Dmax, where Dmax

denotes the maximum round skew1.

Note that round synchronization is also known as distributed clocks in the
literature [4], which is a weak form of clock synchronization. Our type of round
synchrony is weaker than the usual synchrony of the times when two correct pro-
cesses switch to a given round k. More specifically the synchrony condition can be
satisfied without a progress guarantee, whereas it is impossible to bound the max-
imum difference of round switching times without it. Still the synchrony condition
from Definition 1.1 is sufficient in certain applications, as the perfect muteness
detector from [6].

The basic algorithm employed in this thesis is Consistent Broadcasting (CB)
introduced by Srikanth and Toueg in [9]. The basic problem of initialization for
Consistent Broadcasting is how to decide locally when enough correct processes are
booted. To conclude that the required 2f + 1 correct processes are up, a process
must have received 3f + 1 messages from different nodes. When the number of
processes in the system is exactly 3f +1, however, we cannot guarantee that every
correct process starts the service since it need not receive messages sent by faulty
processes.

1analogous to the clock skew in the field of clock synchronization as found in [3]

6

Since we do not want to increase the required number of processes just because
of initialization, we allow round synchronization to degrade during initialization.
This thesis shows that a certain modified consistent broadcast (MCB) primitive
can guarantee some Dmax for any number of booted processes, which decreases to
some DCB (determined by the properties of Consistent Broadcast) if at least 2f +1
correct processes are up. Our modified primitive is capable of both, initializing
the system and performing round synchronization afterwards.

1.1 Related Work

The basic algorithm for round synchronization is the non-authenticated broadcast
primitive from [9]. Algorithms for initialization and integration for CB can be
found there also, but they assume enough running processes. This solution is in fact
based upon ideas developed in the clock synchronization context in synchronous
systems in [7]. The MCB primitive developed in this thesis employs an idea from [4,
2], which had been used for providing a distributed clock in partially synchronous
systems. Related work on partially synchronous distributed systems can be found
in [4, 8]. Initialization from the very beginning is also somehow related to the
crash recovery model in [1].

1.2 Roadmap

The remainder of this thesis is organized as follows: Section 2 contains the descrip-
tion of the partially synchronous system model and some notational conventions.
In Section 3 the non authenticated broadcast primitive by Srikanth and Toueg [9]
is considered in the partially synchronous model, still without initialization. In
Section 4 the modified broadcast primitive is introduced which guarantees a max-
imum round skew for an arbitrary N . Section 5 eventually contains description
and analysis of the algorithms that initialize the system. The thesis closes with
the concluding Section 6.

7

2 System Model

2.1 The Partially Synchronous System Model

This thesis considers a system of N distributed processes p1, ..., pN that commu-
nicate through a reliable, error-free and fully connected point-to-point message
system. We assume that a non-faulty receiver of a message knows the sender. The
communication channels between processes need not to provide FIFO transmis-
sion.
Amongst the N processes there is a maximum of f faulty ones. Since we exam-
ine the starting of a network, processes that have not booted yet are not counted
as faulty, except of course if they never boot. No assumption is made on the
behaviour of faulty nodes, i.e. they are said to be Byzantine faulty [5].

The examined network is partially synchronous [4]. More specifically, we as-
sume that there exist bounds on the duration of actions (computational and trans-
mission delays) in the system, which are not known in advance. Therefore pro-
cesses have no timing information and can only make decisions based on received
messages.

Definition 2.1. Transmission Delay. δ is the end-to-end computational + trans-
mission delay of a message sent between two correct processes. δ can be different
for each message sent.

Definition 2.2. Bounds on the Transmission Delay. 0 < τ− ≤ δ ≤ τ+ < ∞. The
bounds τ− and τ+ are not known in advance. Since τ+ < ∞ every message sent
from a correct process to another is eventually received.

Definition 2.3. Transmission Delay Uncertainty. ε = τ + − τ−. If a correct
process sends a message at time t, it cannot be received by a correct process before
t + τ− and not after t + τ+.

Definition 2.4. Transmission Delay Ratio. P = τ+

τ−
. This ratio will be a central

part of the analysis of the algorithms discussed in this thesis.

Since the processes have no knowledge of τ+, τ− and even P, those values
cannot be used by the algorithm but are only used in the analysis. This effectively
leads to asynchronous algorithms that run in synchronous systems. The timing
performance of our algorithms hence depends on the underlying network proper-
ties: If τ+ and τ− are small, the timing behaviour will be good. A violation of
the system assumption does no harm to the correctness of the algorithm, only its
quality (in our case the round skew Dmax) is getting worse than expected. The

8

error is not in the analysis but rather in the assumptions. If, however, the sys-
tem returns to the assumed behaviour, the algorithm also provides the calculated
Dmax.

What is more, even our bound on the round skew Dmax neither includes τ+

nor τ− but rather P. In terms of assumption coverage, this is an advantageous
property: At heavy network load, when messages have to be queued at the network
interfaces, both τ+ and τ− increase. Therefore it is possible that an assumption on
P holds despite the fact that an assumption on τ + does not. Our algorithm would
hence still provide the expected performance in this case, whereas a synchronous
would fail.

2.2 Model of the Initialization Phase

At the beginning all correct processes are down, i.e. they do not send or receive
messages. Every message that arrives at a process while it is down is lost. A
process decides independently when it wishes to participate in the system (or is
just turned on). Since faulty processes can perform Byzantine behaviour, we can
assume that faulty processes are always up or at least booted before the first
correct one. Since we consider a distributed system at the very beginning, we
cannot assume any kind of authentication service.

During initialization correct processes go through the following modes:

1. down: A process is down when it is not started yet or has not completed
booting.

2. up: A process is up if it has completed booting. To get a clean distinction
of up and down we assume that a process flushes the input queues of its
network interface as first action after booting is completed. Hence it gets
messages only if they arrived when it was up.

3. passive: A running process initially performs some initialization algorithm
that does not provide the required service to the application. During this
phase it is said to be passive.

4. active: A process that has done its initialization in passive mode and started
to provide the required service to the application is called active.

Definition 2.5. Number of running processes. Nup. We will use Nup for the
number of processes that are up at a given instant in time. This includes up to f

faulty ones.

9

3 Round Synchronization by Consistent

Broadcasting

In this Section the non-authenticated consistent broadcast primitive from [9] is
considered under the partially synchronous system model of Section 2. We still
assume, however, that all processes (N ≥ 3f + 1) are up right from the beginning
and that the processes are initially synchronized.

Originally the broadcast primitive shown in Figure 1 was designed for a clock
synchronization algorithm although it can also be used as building block for other
applications [4, 6].

for each correct process

if received (init, k) from at least f + 1 distinct processes
→ send (echo, k) to all;

fi

if received (echo, k) from at least f + 1 distinct processes
→ send (echo, k) to all;

fi

if received (echo, k) from at least 2f + 1 distinct processes
→ accept (round k);

send (init, k+1) to all; /* start next round */
fi

Figure 1: Primitive for Consistent Broadcast of [9]

In our context, the algorithm reaches agreement regarding the processes local
round numbers: A process switches to round k + 1 if its instance of the consistent
broadcast primitive reaches accept(round k). The algorithm guarantees that if
enough correct processes (f +1) decide that they want to switch to the next round,
then every correct process switches to the next round within a time interval that
is only determined by the end-to-end transmission delay of messages.

In the clock synchronization context of [9] the time between consecutive round
switches is determined by a re-synchronization interval, which is controlled by a
local clock device: After a process has switched rounds it waits for a sufficiently

10

large time and then starts the next round by sending an (init, k) message. This
guarantees that all processes have already switched when the next round starts.
In our context the processes do not wait2 after they switched rounds but start the
next round immediately. Therefore processes that get messages fast could go ahead
several rounds. We will see that the maximum round skew of any two processes
is determined only by the Uncertainty Ratio P. This property seems typical for
partially synchronous systems.

The consistent broadcast primitive from Figure 1 guarantees the following
properties of round synchronization. They must hold in our system model as
well:

Definition 3.1. Properties of Round Synchronization.

• P1. Correctness. If at least f +1 correct processes switch to round k by time
t, then every correct process switches to round k + 1 by time t + τrt, where
τrt = 2τ+.

• P2. Unforgeability. If no correct process switches to round k by time t, then
no correct process switches to round k + 1 by t + 2τ− or earlier.

• P3. Relay. If a correct process switches round k at time t, then every correct
process does so by time t + τ∆, where τ∆ = ε + τ+.

Theorem 3.2. The primitive from Figure 1 guarantees the properties P1, P2 and
P3 from Definition 3.1 if N ≥ 3f + 1.

Proof. Correctness. Since at least f + 1 correct processes broadcast (init, k) by
time t, all correct processes receive at least f +1 (init, k) messages by time t+ τ +.
When they do so, they send (echo, k) to all. By time t+2τ + every correct process
receives at least 2f + 1 (echo, k) messages, and then switches to round k + 1.

Unforgeability. The proof is by contradiction. Assume that there is a process
pa that switches to round k + 1 before instant t + 2τ−. pa switches because it has
seen 2f + 1 (echo, k) messages, i.e. at least f + 1 such messages sent by correct
processes. These messages must have been sent before t + τ−. Correct processes
only send (echo, k) when they have seen f +1 (init, k) or (echo, k) messages. That
is at least one correct process that must have sent either of those messages before
t. This contradicts the assumption in the unforgeability property, however.

2The omission of the re-synchronization interval is only introduced since it simplifies
the analysis. It could be re-introduced quite easily, however, since τ+ and τ− include both
the computational and the transmission delay. The re-synchronization interval can hence
be incorporated as part of the computational delay.

11

Relay. Since a correct process p switches to round k + 1 at time t, it has
received at least 2f + 1 (echo, k) messages, i.e. at least f + 1 (echo, k) messages
from correct processes. Every other correct process must receive these (echo, k)
messages by time t+ ε, and therefore broadcast (echo, k). By time t+ ε+ τ + every
correct process receives at least 2f + 1 (echo, k) messages and thus switches to
round k + 1.

The following simple Lemma 3.3 follows immediately from the property P2.
It is hence true for any implementation of round synchronization that respect
unforgeability and will be used frequently in our proofs.

Lemma 3.3. Let pf be the first correct process that switches to some round k at
time t. Then no correct process can switch to a larger round k ′ before t+2τ−(k′−k).

Proof. By induction on l = k′ − k. For l = 1 Lemma 3.3 is identical to unforge-
ability and therefore true. Assume that no correct process could have switched to
round k+ l before t+2τ−l for some l. Thus no processes may enter round k+ l+1
before t + 2τ−l + 2τ− = t + 2τ−(l + 1) following unforgeability. Thus Lemma 3.3
is true for l + 1.

We will now show how the results of Theorem 3.2 and Lemma 3.3 translate into
a result on the maximum round skew according to Definition 1.1 in our partially
synchronous model. Note carefully, however, that this result does not apply to the
initialization phase since all processes must already be up.

Theorem 3.4. For the primitive in Figure 1 there exists a constant DCB such that
| Ri(t) − Rj(t) |≤ DCB for all processes pi and pj with their local round numbers
Ri(t) and Rj(t) at every time t. DCB = bP + 1

2
c.

Proof. The relay property P3 states that the maximum difference in the time of two
correct processes to switch to a round is ε+τ+. Let pf be the first and pl be the last
correct process to switch to a given round k. Let pf do so at instant t. According
to Lemma 3.3, the maximum number of rounds any correct process could switch
to, before the last correct process switches to k is b ε+τ+

2τ−
c = b2τ+−τ−

2τ−
c = bP − 1

2
c.

Since at time t there is already a difference of 1 in the rounds of pf and pl, the
maximum round skew is bP + 1

2
c.

Remark Note that for the primitive from Figure 1 all round numbers k have to
be observed concurrently.

12

4 Round Synchronization by Modified Con-

sistent Broadcasting

This sections primitive (Figure 2) is the core of the initialization algorithm of
Section 5.2 since it can be used during the initialization phase i.e. when Nup <

3f + 1. In the analysis below, we will assume a system of N ≥ 3f + 1 processes,
with Nup < 3f +1 up and running initially. All Nup processes, except the at most
f faulty ones among those, are initially synchronized. Note that considering a
fixed Nup allows us to show how our primitive works with such a small number of
participating processes.

for each correct process
VAR k : integer := 0;

if received (init, k) from at least f + 1 distinct processes
→ send (echo, k) to all;

fi

if received (echo, k) from at least f + 1 distinct processes
→ send (echo, k) to all;

fi

if received (echo, k) from at least 2f + 1 distinct processes
→ accept (round k);

k := k + 1;
send (init, k) to all; /* start next round */

fi

if received (echo, l) from at least f + 1 distinct processes where l > k + 1
→ accept (round l-2);

for i := k to l − 2
→ send (echo, i) to all;

k := l − 1; /* jump to new round */
send (echo, k) to all;

fi

Figure 2: The MCB Primitive

13

We will see that the modified consistent broadcast (MCB) primitive of Figure
2 guarantees that two correct active processes are never too far apart from each
other in terms of round numbers. We cannot guarantee the same properties of
round synchronization as we could if we had Nup ≥ 3f +1, however. In particular
MCB cannot guarantee progress.

The MCB primitive of Figure 2 differs from the CB primitive of Figure 1 in
two respects:

1. The 4th if 3. Without the 4th if it could be that, when Nup < 3f + 1, two
processes’ round numbers could be apart arbitrarily. The faulty processes
could help f + 1 processes to switch rounds arbitrarily often, while they let
other processes behind, which would not receive the needed 2f + 1 (echo)
messages because there are not enough correct processes in the system yet.
The fourth if allows such processes to catch up. When a process uses the
fourth if to switch rounds the loop guarantees that (echo) messages are sent
for all rounds smaller than the round the process has switched to.

2. The built-in round number. The MCB primitive has to distinguish between
(echo) messages from its current round and messages from rounds ahead.
Therefore the primitive must be aware of the current local round number.

Since we have less processes in the system than the original consistent broadcast
primitive needs, we can only guarantee weaker properties of round synchronization
when Nup < 3f + 1:

Definition 4.1. Properties of Weak Round Synchronization.

• P1W. Weak Correctness. If at least f +1 correct processes switch to round k

by time t, then every correct process switches to round k−1 by time t+2τ +.

• P2. Unforgeability. If no correct process switches to round k by time t, then
no correct process switches to round k + 1 by t + 2τ− or earlier.

• P3W. Weak Relay. If a correct process switches to round k at time t, then
every correct process switches to round k − 2 by time t + ε.

The following Theorem 4.2 shows that MCB satisfies P1W, P2 and P3W. Note
that it is also valid for Nup < 2f + 1, although it is trivial to see from Figure 2
that no correct process can make any progress in this case.

3Note that a similar construct is used in a clock synchronization algorithm for partially
synchronous systems in [4]. In [2] it is used in a phase protocol which is part of a consensus
algorithm.

14

Theorem 4.2. The broadcast primitive from Figure 2 achieves the properties
P1W, P2 and P3W for N ≥ 3f + 1 with any Nup.

Proof. Weak Correctness. Processes can switch rounds by the third and the fourth
if. If round k is the maximum round in the system all f +1 correct processes must
have switched using the third if, and therefore have sent (init, k) by time t. These
f + 1 correct processes receive those messages by time t + τ + and therefore send
(echo, k) to all. All correct processes must receive those f + 1 (echo, k) messages
by time t + 2τ+ and therefore switch to round k − 1 by the fourth if, if they have
not already done so.
If round k is not the maximum round, processes could switch to round k using the
third or the fourth if. A correct process enters round k using the fourth if if it has
seen at least f + 1 (echo, k + 1) messages. Thus at least one correct process p is
in round k +1. That is at least one correct process has switched to round k +1 by
the third if. Therefore (echo, k’) for all k ′ ≤ k was sent by at least f + 1 correct
processes before t and must be received by every correct process by time t + τ +.
Among those messages are at least f + 1 (echo, k) messages which are received by
all correct processes, so all correct processes will enter round k− 1 by time t+ τ +.

Unforgeability. Switching rounds can be done at a process by two rules. The
proof for both is by contradiction.
Assume that there is a process pa that switches to round k+1 before instant t+2τ−

using the third if. pa switches because it has seen 2f +1 (echo, k) messages. That
are at least f +1 (echo, k) messages sent by correct processes among those. These
messages must have been sent before t + τ−. Correct processes only send (echo,
k) when they have seen f + 1 (init, k) or (echo, l) messages for a l ≥ k, however.
That is, at least one correct process must have sent a message for round l with
l ≥ k before t. By assumption no round k messages is sent before t. Since all
round l messages for l > k are sent after round k messages at a process no such
message has been sent by t which provides the required contradiction.
Assume that there is a process ps that switches to round k+1 before instant t+2τ−

using the fourth if. ps accepts because it has seen f +1 (echo, l) messages for some
l > k + 1. That is, at least one (echo, l) message must have been sent by a correct
process pc before t+ τ−. pc has sent it, because it has seen at least f +1 messages
for round x with x ≥ l. These messages must have been sent before t. Since x > k,
messages for round x are sent by a process only after round k messages. But by
P2’s assumption no round k message was sent before t, which again provides the
contradiction.

Weak Relay. Assume k is the maximum round in the system. A process must
switch to round k using the third if because it has received at least 2f + 1 (echo,
k − 1) messages. Among those are at least f + 1 (echo, k − 1) messages sent by

15

correct processes. Those messages must be received by all correct processes by
time t + ε and therefore they switch to round k − 2 (using the fourth if).
If k is not the maximum round in the system, at least one correct process has
already switched to a round k′ > k at t′ with t′ ≤ t using the third if. We have
shown in the previous paragraph that all correct processes must switch to round
k′ − 2 by time t′ + ε so all correct processes must also switch to round k − 2 by
t + ε.

Now we will see how P3W (weak relay) and Lemma 3.3 can be used to give
a maximum round skew for the MCB primitive so that the synchrony condition
from Definition 1.1 is satisfied even with Nup < 3f + 1.

Theorem 4.3. For the primitive in Figure 2 there exists a constant DMCB such
that | Ri(t)−Rj(t) |≤ DMCB for all processes pi and pj at every time t. DMCB =
b1

2
P + 3

2
c.

Proof. Let pf be the first process to switch the maximum round in the system
at instant t and let Rf (t) = k + 2. Weak relay guarantees that every correct
process will enter round k by time t′ = t + ε. Following Lemma 3.3 the maximum
round a correct process could have switched to by time t′ is round k + DMCB iff
ε ≥ 2τ−(DMCB − 2), thus DMCB ≤ ε

2τ−
+ 2 = 1

2
P + 3

2
.

Remark Theorem 4.3 shows that the Synchrony Condition from Definition 1.1 is
satisfied even if there are less than 3f + 1 processes running. One might conclude
that clock synchronization or similar problems can be solved using this primitive
with N ≤ 3f . This is not true of course: After all, in such a system there is no
progress guarantee. Progress depends on the behaviour of the faulty processes,
since the 3rd if needs 2f +1 messages of distinct processes. Byzantine nodes could
make the system switch several rounds and then stay in a certain configuration for
an arbitrary long time.
The 4th if only guarantees that every process reaches round x − 2 if one process
reaches round x. Therefore it is not possible to bound the maximum difference
(∆σmax

) of the times when two processes switch to a given round when not enough
correct processes are booted. If at least 2f + 1 correct processes are booted and
synchronized, ∆σmax

can of course be bounded. But a process cannot always de-
termine locally that 2f +1 correct processes are synchronized, and so this property
cannot be used in an application.

Remark Theorem 4.3 statisfies the synchrony condition from Definition 1.1
bounded by DMCB for any number of running processes Nup. For Nup ≥ 3f +1 the
result for the classic CB primitive from Section 3 applies also to MCB and we get

16

two bounds for the synchrony condition: DMCB = b1
2
P + 3

2
c and DCB = bP + 1

2
c.

Note that we have a MCB’ primitive with DMCB′ = b1
2
P + 1

2
c which is not shown

here, since we have no initialization solution for it yet.

Lemma 4.4 is required in Section 5.2.3 to show the quality of an event. That
event is based on messages that were sent by N − f distinct processes. With the
knowledge that f +1 processes are in front we can be sure that at least one of the
N − f messages was sent by a process from the maximum rounds.

Lemma 4.4. For the primitive in Figure 2 there are always at least f + 1 correct
processes within the 2 largest rounds.

Proof. Let pf be the first correct process that enters the maximum round at instant
t. Rf (t) is the maximum round in the system at t. It has entered this round,
because it has seen at least 2f + 1 (echo, round Rf (t) − 1) messages, i.e. at least
f + 1 sent by correct processes. Correct processes never send (echo) messages for
round numbers larger than their local ones. Therefore at least f + 1 processes
must be in round Rf (t) or Rf (t) − 1 at time t.

For the initialization solution of Section 5.2 it has to be guaranteed that at
least f +1 (init, k) messages are sent for every round k. For this purpose we need
the following Lemma 4.5.

Lemma 4.5. For the MCB primitive of Figure 2 it is guaranteed that for every
round k > 0 and smaller than the maximum round in the system (init, k) messages
were sent by at least f + 1 correct processes.

Proof. Processes can switch rounds by the third and the fourth if. If a process
switches to the maximum round k in the system it must use the third if and
therefore must send (init, k). Then it executes the MCB primitive an waits for
2f + 1 (echo, k) messages. Processes only send (echo) messages for rounds less or
equal their local round, thus at least f +1 correct processes must switch to round
k before the first process switches to round k + 1. These f + 1 correct processes
must have switched to k by the third if and therefore f +1 correct processes must
have sent (init, k).

4.1 MCB using Perception Vectors

Although MCB can deal with arbitrary Nup, it works only if all processes are up
and initially synchronized right from the start. If processes can join the system
when it already made some progress, however, the algorithm cannot guarantee
DMCB : A late joiner will start its initialization algorithm by asking the other

17

processes about their round numbers. Since we can only guarantee that their
round numbers are within DMCB the answers an initializing process gets can be
from different rounds. We must hence find a fault-tolerant algorithm that uses
this information to guarantee that synchronization is reached within a given time
bound. In this Section we will see a primitive (shown in Figure 3) that guarantees
the properties P1W, P2 and P3W and is capable of dealing with diverse round
numbers.

for each correct process
GLOBAL VAR k : integer;

if received (init, x) from ps

→ vInits := max(x, vInits);
vEchos := max(x − 1, vEchos);
decide();

fi

if received (echo, x) from ps

→ vEchos := max(x, vEchos);
vInits := max(x, vInits);
decide();

fi

Figure 3: MCB with Perception Vectors

This section’s algorithm uses an array, or perception vector, vEcho that stores,
for every process, the maximum round number it has sent via an (echo) message.
If the last message received from another process was an (init, x) message, x−1 is
written into that vector. This information is sufficient, since if a process sends an
(init, x) message it has accepted round x − 1 and therefore must have sent (echo,
x − 1). The array vInit stores the similar information for (init) messages.

After each message it receives, the primitive in Figure 3 decides what to do
based on the information it has received from the other processes. The decide()
function shown in Figure 4 sends the necessary messages. Note that the reception
of (echo, k) also implies the reception of all (echo, x) messages for every x ≤ k.

In the following formal definitions of perception vectors and the functions that
need them as input parameter we use sets instead of arrays because this simplifies
the presentation.

18

Definition 4.6. Perception Vector: vMessageq = {(p, r) | r is the maximum
round process p has sent a message for to process q}, and Mi,q = {(p, r) | (p, r) ∈
vMessageq ∧ r = i}.

Two special cases of a perception vector used in our algorithm are defined in
Definitions 4.7 and 4.8.

Definition 4.7. vEchoq = {(p, r) | r is the maximum round process p has sent an
(echo) for to process q}, and Ei,q = {(p, r) | (p, r) ∈ vEchoq ∧ r = i}.

Definition 4.8. vInitq = {(p, r) | r is the maximum round process p has sent an
(init) for to process q}, and Ii,q = {(p, r) | (p, r) ∈ vInitq ∧ r = i}.

The Function maxRound() of Definition 4.9 is used to find the maximum round
we can be sure a correct process has sent a message for. It is used in conjunction
with vInit for deciding what (echo) to send (corresponding to the first if in Figure
2). Applying maxRound() to vEcho is used to implement the second and fourth
if. From now on we will omit the index q since the functions are used locally by
processes that have no knowledge on the perception vectors of other processes .

Definition 4.9. maxRound(vMessage):

maxRound(vMessage) =



















the largest i that
∑

i≤j | Mj |≥ f + 1 if ∃i

INV ALID ROUND if ¬∃i

The Function newRound(vMessage) of Definition 4.10 will be used with vEcho
to find out when a process can start a new round based on the third if. We
only consider three adjacent rounds instead of all rounds to guarantee that (init)
messages are not sent for arbitrary small round numbers (this is needed during
initialization when (init) messages have additional semantics). On the other hand
weak relay (P3W) guarantees that every correct process switches to round k − 2
if a correct process has switched to round k. For liveness the use of these three
adjacent rounds in the function is sufficient.

Definition 4.10. newRound(vMessage):

newRound(vMessage) =



















the largest i that
| Mi | + | Mi+1 | + | Mi+2 |≥ 2f + 1 if ∃i

INV ALID ROUND if ¬∃i

19

procedure decide()
begin

/* this block corresponds to the modified 4th if */
r := maxRound(vEcho) − 1;
if r 6= INV ALID ROUND and r ≥ k

→ send (echo, r) to all;
if r > k

→ accept (round r − 1);
k := r;

fi

fi

/* this block corresponds to the 1st if */
r := maxRound(vInit);
if r ≥ k

→ send (echo, k) to all;
fi

/* this block corresponds to the 2nd if */
r := maxRound(vEcho);
if r ≥ k

→ send (echo, k) to all;
fi

/* this block corresponds to the 3rd if */
r := newRound(vEcho);
if r 6= INV ALID ROUND and r ≥ k

→ accept (round r);
k := r + 1;
send (init, k) to all;

fi

end;

Figure 4: The decide() function

20

The algorithm of Figure 3 only writes the information it gets from an incoming
message into its perception vectors vEcho and vInit and lets the decide() function
of Figure 4 do the sending of messages and the accepting of rounds.

21

5 Initialization for Consistent Broadcasting

The initialization scenario in [9] is very simple: All processes are assumed to be
running and listening to the network right from the beginning. In this case the
start of round 0 is quite simple: The processes decide independently when they
want to start round 0 and then send an (init, 0) message. Accepting this message
is done by the consistent broadcast primitive, which guarantees that after the
f + 1th correct process has sent (init, round 0) every correct process decides to
switch to round 1.

This scenario, however, is not appropriate for a network start, since we cannot
assume that every correct process is started when the first correct process sends
its (init, 0) message. In fact, when the first started process sends its (init, 0)
message, no other process could be listening. In common system models this
would be described as N − 1 omission faulty processes.

If the processes have a priori knowledge about the maximum difference of
starting times of any two processes, a simple solution to this problem would be to
use timeouts to assure that all processes are booted. A disadvantage of this solution
is that if the timing assumption is violated the algorithm fails. Therefore our goal
is a timer free initialization algorithm that allows us to start a CB primitive after
booting.

The above described initialization algorithm from [9] works because the knowl-
edge that all processes are up is implicit at every process. Section 5.1 will introduce
an initialization algorithm that starts round synchronization without any assump-
tion on the other processes but learns during initialization when enough processes
are up to start the classic CB primitive.

We are, however, equipped with the MCB primitive which satisfies the syn-
chrony condition from Definition 1.1 for any number of processes. We only have to
introduce a solution that guarantees the synchrony condition also during initial-
ization, when Nup is not constant, as in the analysis of Section 4, but increasing.
A solution can be found in Section 5.2.

5.1 A 4f solution

The above mentioned trivial initialization algorithm from [9] works only if there are
at least 2f +1 correct running processes. With only one adaptation this algorithm
can be used to devise a solution that works in our system model provided that
N ≥ 4f + 1. A process does not decide independently when to send an (init, 0)
message, but sends it when it has received messages from 3f +1 different processes.
This means that at least 2f + 1 correct processes are started and listening. The

22

algorithm can be seen in Figure 5. It starts with sending a (ping) message. Every
received (ping) is answered with a (pong). To make sure that a pair of processes
don’t miss each other, a process must send its (ping) after it has started listening
to the network.

send (ping) to all;

if received (ping) from processor ps then
→ send (pong) to ps; /* tell ps that I am not started yet */

fi

if received (ping) or (pong) from at least N − f distinct processes
→ send (init, round 0) to all;

execute Consistent Broadcast Primitive;
fi

Figure 5: Initialization Algorithm for N ≥ 4f + 1

A liveness property of this algorithm would be that round 0 has to be started
eventually. Since the processes wait for N − f ≥ 3f + 1 messages, the only way to
guarantee that they eventually receive them is that there are 3f + 1 correct pro-
cesses in the system, which means the number of processes in the network must
be N ≥ 4f +1, if there are f faulty processes. Since consistent broadcasting needs
only N ≥ 3f + 1 this means that our solution adds a penalty of f additional pro-
cesses for handling initialization properly. Still it is an instance of an initialization
algorithm that does not use timeouts or repeated sending of messages (heartbeats).

Remark Note that in the initialization algorithm of Figure 5 for starting the CB
primitive a process waits for N − f (ping) or (pong) messages. N − f is preferable
to 3f + 1 because for large N it is possible that cliques are built, if processes wait
for 3f + 1.
Assume that the Consecutive Consistent Broadcast is already running and there
are 3f + 1 late starters, all sending a (ping) at time t. They could receive (ping)
from the others at t + τ−, while the (echo, x) from advanced processes can be
received as late as t + 2τ+. The clique of late starters now has a time interval of
2τ+−τ− to switch rounds. Since it takes at least 2τ− for a round switch, the clique
could come to a round number of 2τ+−τ−

2τ−
= P − 1

2
before it gets synchronized.

Such a behaviour cannot satisfy the synchrony condition from Definition 1.1.

23

Correct late starters that do not receive N − f (ping) or (pong) messages can
initialize themselves by the inactive integration described in [9]. A late starter
starts with listening to the network to learn about system state. Then it waits for
one round and joins the system. This is guaranteed to work since we guarantee
progress by providing N ≥ 4f + 1.

We will not work out a complete round synchronization solution based upon
combining this simple initialization algorithm with original CB, however, since
one can do better: In the following Section 5.2, we will introduce an initialization
algorithm that needs only N ≥ 3f + 1 and works in conjunction with MCB.

5.2 Initialization with N ≥ 3f + 1 processes

By now we are equipped with the MCB primitive that guarantees the synchrony
condition from Definition 1.1 for any Nup and with a timer-free initialization algo-
rithm. We can now bring it all together to introduce our solution for initialization.
A process starts initialization with the sending of an (echo, 0) message, let pi be
that process. The receiving processes will recognize that it was the first message
pi has sent them, and will answer with some (echo, k), telling pi about their local
round number. This protocol can be seen as adaptation of the ping-pong protocol
of the previous Section 5.1. So it is guaranteed that any two correct processes
never miss each other.

If the (echo, k) messages from the answering processes are from round 0 no
round switching has taken place so far, and initialization is very simple: The
2f + 1st correct running process will bring liveness into the system and round
synchronization is initialized. If, however, faulty processes have forced several
round switches, the answers pi receives can be from different rounds. Our MCB
algorithm based upon perception vectors can handle such messages. A process uses
it to get a better view of the system with every message it receives. After pi has
received f + 1 messages it can calculate a round number for the first time. These
messages, however, can include messages sent by faulty processes and therefore
the difference of pi’s round number to the others cannot be guaranteed to satisfy
the synchrony condition. Therefore we introduce the passive and active mode.

A running process starts in passive mode. It delivers no service to the applica-
tion until it is ready to do so. In our case in passive mode no rounds are accepted
(telling the application the current round number). The process, however, sends
all messages required for MCB. Such processes cannot violate the synchrony condi-
tion since they have no local round numbers yet. But eventually they must accept
a round number. A process in passive mode can do so, when it is sure that its
calculated round number (which it did not tell the application) is good enough.

24

Our solution will switch to active mode, when it has received f + 1 (init)
messages for a round. Recall the MCB using perception vectors. We accept
rounds, and therefore generate (init) messages, based on messages from adjacent
rounds. We will show that at least one of those adjacent rounds will be near the
maximum round in the system, and therefore we will be able to guarantee the
quality of (init) messages and therefore calculate a maximum round skew Dmax

that satisfies the synchrony condition during initialization. Note that Lemma 4.5
guarantees that at least f + 1 (init, k) messages are sent for every round k.

5.2.1 The Active Broadcast Primitive

The active primitive presented in this Section as seen in Figure 6 is based on MCB
with perception vectors from Section 4.1.

for each correct process
GLOBAL VAR k : integer;

if received (init, round x) from ps

→ vEchos := max(x − 1, vEchos);
vInits := max(x, vInits);
decide();

fi

if received (echo, round x) from ps

→ vEchos := max(x, vEchos);
vInits := max(x, vInits);
decide();

fi

/* *** for initialization of new processes: *** */
if received a message from a new process ps

→ send last (echo) message sent to ps; /* (echo, k or k − 1) */
fi

Figure 6: Active Primitive

To satisfy the requirements of initialization we have to make some adaptations
to MCB: We need a rule to answer messages from processes that have sent messages
the first time (ping-pong principle). We also have to avoid the clique problem

25

explained in Section 5.1. So we change 2f +1 to N −f in the function newRound()
(which is equivalent to the third if).

Definition 5.1.

newRound(vMessage) =



















the largest i that
| Mi | + | Mi+1 | + | Mi+2 |≥ N − f if ∃i

INV ALID ROUND if ¬∃i

Remark That newRound(vMessage) checks for N − f messages is also required
in Lemma 5.4 to guarantee the quality of (init) messages.

5.2.2 The Passive Broadcast Primitive

When a process boots, it immediately starts passive mode and executes the passive
primitive from Figure 7. First a process sends an (echo, 0) to all. Other processes
that are already up will recognize it as the first message of that process and
answer with (echo) messages. The information of the messages the initializing
process receives is written into its perception vectors. Still (init) messages have to
be stored separately too, to find out when f +1 (init) messages of one round have
been received. When this happens the process changes to active mode.

The perception vectors are processed in the function passive decide() which is
identical to the function decide() from the active primitive except that it does not
tell the application the round number (by accepting). As long as Nup < N − f no
round switch will happen since there are not enough processes to send messages.
If N − f ≤ Nup < N we have a system state where progress is possible but not
guaranteed since it depends on the behaviour of faulty processes. The synchrony
condition, however, is guaranteed for any Nup if we are able to show that the round
numbers an initializing process reports to its application is not too far apart from
the round number of any active process. Will we do this in the next Section 5.2.3.

It is guaranteed that the N − f th correct running process brings the progress
guarantee into the system, since it sends the same message as active processes. The
first round numbers (which are not accepted) of passive processes can be arbitrarily
small. Weak relay also applies to passive processes (only the time bound need not
hold since the (echo) messages could be retransmitted). So a passive process will
reach rounds in front. If the system was not making progress when the N − f th

correct process has become running the processes will be able to send the required
(echo) messages to get progress into the system in bounded time. This also will
be shown in Section 5.2.3.

26

for each correct process
GLOBAL VAR k : integer := 0;

send (echo, 0) to all;

if received (init, round x) from ps

→ vInits := max(x, vInits);
vEchos := max(x − 1, vEchos);
passive decide();
if received (init, x) from at least f + 1 distinct processes
→ unblock accept (round k);

start active primitive;
fi

fi

if received (echo, round x) from ps

→ vEchos := max(x, vEchos);
vInits := max(x, vInits);
passive decide();

fi

/* *** for initialization of new processes: *** */
if received a message from a new process ps

→ send last (echo) message sent to ps; /* (echo, k or k − 1) */
fi

Figure 7: Passive Primitive

27

5.2.3 Analysis

Definition 5.2. Maximum local round: We define Rmax(t) as the maximum local
round any correct running process is in at instant t.

The following Lemmas 5.3 and 5.4 will be used in Lemma 5.5 that gives bounds
of the first accepted round number at a running process in respect to Rmax(t), when
t is the instant the process accepts.

Lemma 5.3. SaveRound(vEcho) always has a result smaller or equal Rmax when
called in the context of the passive decide() function at a passive process.

Proof. The result is based on f + 1 messages from other processes. At least one
of those must be correct and has sent an (echo, Rmax(t)) message at instant t.
The largest result of SaveRound(vMessage) occurs, if the passive process receives
f faulty messages that contain round numbers greater the Rmax(t). Assume the
calculation is done at instant t′. Then the result would be Rmax(t) which must be
smaller or equal than any Rmax(t′), t′ ≥ t since Rmax(t) is monotonically increasing.

In the following Lemma 5.4 we show the quality of (init) messages. The result
will be a central part of the analysis of our Dmax, the bound of the synchrony
condition.

Lemma 5.4. A process that sends an (init, round k) at instant t does so for
k ≥ Rmax(t) − 1

2
P − 3

Proof. Lemma 4.4 states that there must be always f + 1 processes within the
rounds Rmax(t) and Rmax(t) − 1 at any instant t.
If a process ps sends an (init) message, it does so because it has seen N − f (echo)
messages from one of 3 adjacent rounds. At least 1 of these N − f messages must
be from a process within the two maximum rounds; the worst (echo) such a process
can send is (echo, Rmax(t)−1). It does so at instant t. If the system has not made
progress since t and faulty and initializing processes had sent (echo) messages for
the rounds Rmax(t) − 2 and Rmax(t) − 3. Hence k ≥ Rmax(t) − 3.
If the system made progress, a message from the front could take as long as τ + to
be transfered and change the perception of ps and Rmax(t+τ+) could be τ+

2τ−
= 1

2
P

larger than Rmax(t) (see Lemma 3.3: Shortest round switching time)
If ps sends its (init, k) shortly before instant t+ τ + then k ≥ Rmax(t+ τ+)− 1

2
P −

3.

Remark Note that the worst (init, x) message correct processes can send are the
same for active and passive processes.

28

Since we now have bounded the quality of (init) messages (which are used to
change from passive to acitve mode) we can now go on with finding a Dmax that
satsifies the synchrony condition from Definition 1.1. First we give bounds for the
first accepted round number in relation to Rmax(t).

Lemma 5.5. If a process accepts a round number for the first time, its local round
number lies between bRmax − 3

2
P − 4c and Rmax.

Proof. Passive processes only accept once: When they have received f + 1 (init,
round x) messages. When such a message is sent at intant t at a correct process
Rmax(t) ≤ x + 1

2
P + 3 following Lemma 5.4. This message could take as long as

τ+ to be transfered to a passive process pi. pi could be up since shortly before
t+ τ+. Therefore processes in front could have made progress of τ+

2τ−
= 1

2
P rounds

(following Lemma 3.3) and all the messages are not received by pi because it was
down. Therefore Rmax(t + τ+) ≤ x + P + 3.
Processes in front came to a round number of Rmax(t+τ+) without pi has received
messages sent by them. If they keep making progress pi becomes aware of this by
time t + 2τ+. The systems maximum round number again could increase by 1

2
P.

At this instant pi’s perception gets much better caused by the fourth if. We must
assume now that pi receives f (init, x) messages shortly before t + 2τ + which
causes pi to accept round k = x − 1. Rmax(t + 2τ+) ≤ x + 3

2
P + 3. And therefore

pi’s local accepted round number is k ≥ Rmax(t + 2τ+) − 3
2
P − 4

From Lemma 5.3 follows that the local round number is always smaller or equal
Rmax.

The following Theorem 5.6 guarantees that the synchrony condition from Def-
inition 1.1 is satisfied for the whole system life-cycle, including initialization be-
ginning with 0 correct running processes. The maximum round skew Dmax is
introduced by the initialization. When enough correct processes are up we can
guarantee the round skews from CB and MCB.

Theorem 5.6. For the described system there exists a constant Dmax such that
| Ri(t)−Rj(t) |≤ Dmax for all active processes pi and pj at every time t. Dmax =
d3

2
P + 4e.

Proof. At instant t + 2τ+ from the previous Proof pi receives the messages from
the processes in front and its local round number increases immedeately from
Rmax − Dmax to Rmax − DMCB (caused by the fourth if), where DMCB < Dmax.
DMCB is the maximum round skew of the MCB primitive of Theorem 4.3. From
now on pi executes MCB as active process. Therefore P1W, P2 and P3W also are
guaranteed for pi and pi’s round number stays within the calculated bounds from
time t + 2τ+ on.

29

We now give a bound for the maximum time needed to get progress into the
system after the N−f th correct processes has become running. The worst case sce-
nario here is different from that of the worst difference in round numbers. Whereas
for the biggest difference in round numbers, the initialization must happen very
quickly, so that the initializing process has very few time to gain information on
the system state, we now must consider that the processes are not making progress
in the worst possible position and it needs the messages by the initializing process
to make them switch rounds, so that the necessary (init) messages are sent. We
start with a definition of the needed time interval.

Definition 5.7. Initialization Time. ∆init is the time needed to reach synchrony
after N − f correct processes are running.

Since at least one process is in Rmax(t) when t is the instant the N − f th

correct process becomes running, at least one (init, Rmax(t)) could be missed
by the initializing process. The first round for that it is guaranteed that our
initializing process receives at least f + 1 (init) messages for is round Rmax(t) +
1. The following Theorem 5.8 gives the latest possible instant when those (init,
Rmax(t) + 1) messages are received at the initializing processes.

Theorem 5.8. If the N − f th correct process has booted at time t, Consecutive
Consistent Broadcast is running synchronously on all correct processes by time
t + ∆init with progress guarantee, where ∆init = 8τ+.

Proof. Let pi be the N − f th correct passive process that sends its first (echo, 0)
message at time t. If there is progress in the system pi will be initialized very
quickly because it receives the necessary (init) messages τ + after they were sent.
If the processes in front are not making progress the local round number k of pi

at time t + 2τ+ is k ≥ Rmax(t) − 2 (and is reached using the fourth if). pi sends
(echo, Rmax(t) − 2), so that by time t + 3τ+ every running correct process must
have received N − f (echo, Rmax(t) − 2) messages.
Every correct process now switches to round Rmax(t) − 1 and sends an (init,
Rmax(t)−1) message. It could be that pi does not receive f +1 (init, Rmax(t)−1)
messages, because there were to much processes already in round Rmax(t)− 1. So
pi not necessarily switches to the active primitive.
By time t+5τ+ all correct processes switch to round Rmax(t) and by time t+7τ+

to round Rmax(t) + 1. Therefore pi and all other correct processes receive at least
f + 1 (init, Rmax + 1) messages by time t + 8τ+ or earlier. At this instant at
least N − f correct processes run the active primitive and therefore consecutive
consistent broadcast is running properly in the system.

30

6 Conclusions

In this thesis we have seen a solution for an initialization of a network where
the processes provide round synchronization satisfying the Synchrony Condition:
| Ri(t) − Rj(t) |≤ Dmax during the whole system life-cycle. The algorithm bases
on the non-authenticated broadcast primitive by Srikanth and Toueg [9].

First we have seen that the non-authenticated broadcast primitive has a fixed
maximum round skew DCB when executed on a partially synchronous system with
N ≥ 3f + 1. We have shown that DCB = bP + 1

2
c.

Then we have seen that a small adaptation of the primitive (MCB) guarantees a
maximum round skew for any Nup. The MCB primitive has a DMCB = b1

2
P + 3

2
c.

For Nup < 3f + 1, however, MCB cannot guarantee progress. This modified
primitive is the core of the solution for initialization.

Finally we have collected our results to introduce a solution for network ini-
tialization. We also have analysed its properties: Only during initialization we
have a Dmax that is larger than DCB and DMCB. When enough correct processes
are booted, the performance of our algorithm increases automatically to DCB for
a small P or to DMCB if P is larger.

Future work on our topic could be the transformation of MCB to a Hybrid
Failure Model [6] that has advantageous properties compared to the process failure
model. A transformation to a model similar to the Crash-Recovery Model from
[1] could explore the properties of our algorithm when Nup decreases again after
the system was in a stable state.

31

References

[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and
consensus in the crash-recovery model. In International Symposium on Dis-
tributed Computing, pages 231–245, 1998.

[2] Hagit Attiya, Danny Dolev, and Joseph Gil. Asynchronous byzantine consen-
sus. Proceedings of the 3rd ACM Symposium of Distributed Computing, pages
119–133, August 1984.

[3] Hagit Attiya and Jennifer Welch. DISTRIBUTED Computing. Fundamentals,
Simulations and Advanced Topics. McGraw-Hill, 1998.

[4] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the pres-
ence of partial synchrony. Journal of the ACM, 35:288–323, April 1988.

[5] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4:382–
401, July 1982.

[6] Gérard Le Lann and Ulrich Schmid. How to implement muteness detectors
in partially synchronous systems with byzantine processors and link faults.
Technical Report 183/1-XXX, Dept. of Automation, TU Vienna (DRAFT),
February 2002.

[7] Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm for clock
synchronization. Proceedings of the 3rd Annual ACM Symposium on Principles
of Distributed Computing, pages 75–88, 1984.

[8] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[9] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the
ACM, 34:626–645, July 1987.

32

