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Kurzfassung

Die vorliegende Arbeit befasst sich mit der numerischen Ermittlung von Strémungskenngréfen
und der Lage des Wasserspiegels in turbulenten FlieBgewassern. Zum Einsatz gelangt dabei die
technisch bewéhrte und durch Integralformulierung massenerhaltende Finite-Volumen Methode
im dreidimensionalen Berechnungsraum. Im Gegensatz zu herkommlichen Verfahren werden
hierbei jedoch Berechnungszellen verwendet, die durch eine beliebige Anzahl an Begrenzungs-
flichen charakterisiert sind, wodurch das problematische Auftreten von nicht lotrecht auf die

Seitenflichen der Zellen gerichteten Massenfliissen reduziert werden kann.

Nach einer Zusammenstellung der Fahigkeiten und Charakteristika heute in Verwendung stehen-
der 3D-Rechenmodelle fiir den FlieBgewisserbereich werden zunédchst Algorithmen vorgestellt,
mit denen Rechengitter aus vielflichen Zellen erzeugt werden konnen. Hierauf folgt die mathe-
matische Herleitung der auf diesen Rechenzellen diskretisierten Bestimmungsgleichungen stré-
mender Fluide sowie der grundlegenden Erhaltungsgleichungen turbulenter Vorgénge samt der
fiir eine Anwendung notwendigen Randbedingungen. Diese Gleichungen werden ebenso wie die
Algorithmen zur Netzgenerierung und Postprocessingfunktionalitit in ein Computermodell mit
dem Namen RSim-3D implementiert. Das resultierende numerische Modell wird im Anschluss
daran anhand der Messergebnisse von vier verschiedenen Laborexperimenten validiert und letzt-
lich beispielhaft auf einen Abschnitt der Gsterreichischen Donau angewendet. Die Diskussion
denkbarer Zukunftsperspektiven bildet den Abschluss der Arbeit.



Abstract

This thesis deals with the numerical computation of flow properties and the position of the free
water surface in turbulent water bodies. For this purpose the well-known and mass-conserving
Finite Volume method is applied in three spatial dimensions. In contrast to usual techniques,
computation cells are being used which are characterised by an arbitrary number of faces. Due
to this, the presence of flows not perpendicular to element faces, which are usually the reason for

a reduction in accuracy, can be reduced by a reasonable amount.

In a first step, the capabilities and characteristics of 3D models in use in hydraulic research to-
day are evaluated and subject to comparison. Afterwards, algorithms for generating computation
grids based on polyhedral cells are presented. Subsequently the governing equations for fluid
flow and turbulent properties are discretised on these computation cells, and the required bound-
ary conditions are discussed. The resulting equations and grid generation algorithms, as well
as some post processing functionality, are implemented into a computer model called RSim-3D.
This model is then validated against measurements of four different laboratory experiments be-
fore it is applied to a reach of the river Danube in Austria. The discussion of potential future

prospects finally concludes the work.
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1 Introduction

1.1 Thematic Introduction

In recent years a noticeable trend towards the use of numerical modelling can be observed in all
engineering disciplines. This development is not surprising as computer models often feature
lower cost than comparable physical experiments, are superior in speed and provide complete
information of all relevant quantities throughout the domain of interest at once. The wide field
of water-related sciences is no exception to this trend: hydrology has a long-standing tradition
in rainfall-runoff modelling, groundwater hydraulics uses solute transport computer models for a
long time already, and river hydraulics relies heavily on the use of computational fluid dynamics.

The present work will focus on the latter of these important topics.

Especially for the investigation of flow conditions and sediment transport in rivers, computational
fluid dynamics proves to be a valuable tool. Compared with physical experiments, it allows for
a rapid variation in boundary conditions, including surface roughness and discharge, but also
the effect of man-made structures can be quantified very quickly using tools for numerical flow
analysis. Hence, they are used in the planning stage of proposed structures or modifications
in the river or its surrounding areas, in real-time flood forecasting applications, and they also
assist experts in forfning their opinion on the reasons of incidents that took place in the past.
Depending on the spatial modelling detail, the applications are classified into one-, two-, and
three-dimensional models. While the use of 1D-models is widespread among engineers, mostly
due to their easy application and the little in-depth knowledge required to apply them, 2D-models
are not hyet used that frequently. Often they are applied by the engineer to simulate spatially con-
fined flow processes that exceed the application limits of one-dimensional models, for instance
the flooding of previously dry terrain where two-dimensional effects prevail. Finally, 3D-models
are rarely applied in practice; their use seems to be mostly limited to academia. This is not
surprising as the use of higher dimensional models usually requires in-depth knowledge about
both the underlying physical processes and the corresponding numerics. Furthermore, a much
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higher level of detail of the modelled region must be available for a successful application, but
very often this data is not at the engineer’s disposal, rendering the gain of 3D-models practically
useless.

However, if the required data is available, three-dimensional river analysis codes can become
extremely valuable tools for investigating phenomena exhibiting 3D flow characteristics. This
includes flow through river bends where a secondary motion is induced (Nguyen (2000) [51],
Feurich (2002) [21]), river junctions (Bradbrook et al. (2000) [12]), the presence of submerged
groynes (OQuillon & Dartus (1997) [60], Miller et al. (2003) [48]), scour around obstacles in the
flow domain (Premstaller (2002) [64]), and also the whole region in the vicinity of weirs and
other man-made structures. In all these cases statements about specific flow features, like flow
direction and magnitude, the position of the water surface, pressure and turbulent kinetic energy
can be made, all of which are crucial for an engineer’s assessment of the situation. The future
value of computational fluid dynamics tools clearly is found in predicting sediment transport on
a larger scale — especially since the treatment of sediments will be one of the major challenges of
the hydraulic engineer in the 21st century — but also water quality investigations and habitat mod-
elling are applications for the time to come, as soon as the required software will have reached
a reasonable level of applicability. It should, however, be noted that the correct prediction of the
flow field is of paramount importance for the evaluation of any properties that are transported
along with the flow. Therefore research efforts that are directed towards improvement of tools

for modelling the flow field are still required and will be the primary subject of this work.

Regardless of the dimension of the model or the discretisation technique employed, the flow
domain is always decomposed using a computation grid consisting of a large number of smaller
entities denoted cells. The common approach is to use triangular or quadrilateral cells in two
spatial dimensions, resulting in wedges, pyramids and hexahedra in 3D. Due to the meshing
mechanisms employed for this task, the grid forces the location of the respective cell centroids
and the user has little control about the actual points where the flow properties are about to be
stored. Besides that, the model operator must take reasonable care to align the computation grid
with the streamlines in the flow domain to avoid seeing the result affected by a process called
numerical diffusion, which will be subject to a detailed discussion later in this work. However,
such an alignment is not always straightforward or even possible if a dominating flow direction
cannot be identified.

This thesis proposes a paradigm shift in grid generation that comes at hand for circumventing
some of the mentioned problems associated with widely used meshing techniques. It derives and

prepares the required algorithms for creating computation grids based on point distributions given



1. INTRODUCTION 1.2. Objectives and Outline

by the model user, enabling the operator to be in full control over the storage locations of the flow
properties he is interested in. The grid generator subsequently fulfils the task of creating a mesh
using the given point set, applying rules of neighbourship as fundamental base for its workflow.
This results in cells featuring an arbitrary number of edges in 2D and associated faces in 3D.
These cells are based on logic generation rules and allow for the exchange of mass between a
larger number of cells if an appropriate point distribution was chosen, thus reducing the negative
effects of flows not perpendicular to cell faces. This can be advantageous in situations where
no prevailing flow direction can be identified, as in recirculating flows or in the case of flows in
floodplains when fnultiple streams interact with each other (7ritthart & Milbradt (2003) [81]),
but also in any other flow situation exhibiting a strong secondary motion, as will be shown later.

1.2 Objectives and Outline

The prime objective of this work is to prove the feasibility of the polyhedral cell methodology
in practical situations where turbulent channel or river flow is encountered. To get to this point,
several other objectives must be met first. A first step is the design of algorithms for generating
a polyhedral mesh and its subsequent software implementation. This is followed by the deriva-
tion of the generic discretised equations of flow and turbulence and their implementation in a
numerical code, which is to be properly validated against a number of measurements in different
flow situations. In the following thesis chapters all required mathematical derivations, as well
as the results of validation and application runs are discussed, while the implementation is done
in a software model called RSim-3D. This name is short for River Simulation in 3D and it con-
sists of a pre- and postprocessor written in the Java programming language, hence allowing for a
platform-independent usage, and a solver module, coded in GNU compliant C because of speed
considerations. Due to all of these objectives, the work employs knowledge in the scientific fields

of mathematics, geometry, informatics and hydraulic research alike.

The work is arranged into five core chapters, each representing a distinct step in model develop-
ment. First of all, chapter 2 reviews a number of commercial and non-commercial 3D models
for computational fluid dynamics, listing their numerical capabilities along with usual fields of
application and past project references relevant for hydraulic engineering and research. At the
end of this chapter, the RSim-3D model is positioned within the framework of these models to

allow for a comparison.

In chapter 3, the design and application of polyhedral computation grids is discussed. Algo-
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rithms for point distribution and grid generation are the core of this chapter, but it also discusses
issues like grid refinement in practical situations and equations for obtaining cell volumes and
surface areas in a geometrically complex grid configuration. For such a general grid requires
a very general treatment of the governing equations of flow and turbulence, chapter 4 derives
the discretised equations in an appropriate way. Furthermore this chapter outlines the boundary
conditions of all flow properties required to obtain a solution, before theoretical and practical
considerations about numerical issues like stability and convergence conclude that section.

The verification and validation of the model is subject to discussion in chapter 5. Validation
is done by applying the model to four different flow cases: a wind-channel duct curved by 90
degrees is computed first, followed by a rectangular laboratory flume with an 180 degree bend,
and subsequently a channel exhibiting a 270° bend. In the latter two cases, the used grid type is
varied to assess its influence on the results obtained. Finally, an S-shaped trapezoidal channel is

investigated to make a first step towards the modelling of realistic real-world flow situations.

The validation work of chapter 5 is followed by an exemplary application of the model to a
reach of the river Danube in chapter 6. Finally, a summary and the discussion of possible future
perspectives conclude the work.



2 Review of 3D CFD Programs for
Hydraulic Engineering

2.1 Introduction

Getting an overview on the capabilities and implementation details of comparable academic and
commercial software packages is an important first step towards the development of a new model.
Therefore, fourteen different 3D CFD codes that can be applied to general problems in hydraulic
engineering have been analyzed to determine their capabilities in this field. As there is constant
evolution in the CFD business and new software is developed frequently, it cannot be guaranteed

that this list is complete.

The information on the reviewed software packages was gathered from published literature and
extensive inquiries on the Internet. Sometimes it was difficult to find precise specifications of the
implemented methods and algorithms because this information was not disclosed to the public.
Such a non-disclosure policy is found in commercial codes quite frequently. However, the issue
that raised the most difficulty was to retrieve comparable price quotes for the different codes, as
the pricing policy varies greatly among the companies who author the software packages. For
some, an annual license fee applies, others offer perpetual licenses as well, and most of the time
discounts apply for academic institutions. In order to solve this problem, Olsen (1999)[55] pro-
poses a referencing system relating the software license cost to the price of computer hardware.
If the software price is in the same category as a high-end UNIX workstation, it is being refer-
enced as “relatively expensive” according to this scheme, whereas the price category of a regular
desktop PC yields a ”relativély inexpensive” software price. This referencing system is adopted
in this work, using the terms Freeware, High-End and Low-End as classifiers.

Disregarding software packages that were developed for very specific applications, these pro-
grams were found to be applicable to tasks within the field of river hydraulics (listed in alphabetic

order):
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. CFX-5 by AEA Technology, UK

Comet by ICCM, Germany

Delft3D by WL | Delft Hydraulics, The Netherlands
FEATFLOW by the University of Dortmund, Germany
FIDAP by Fluent Inc., USA

Flo++ by Softflo Corp., South Africa

FLOW-3D by Flow Science Inc., USA

FLUENT by Fluent Inc., USA

NaSt3DGP by the University of Bonn, Germany

. PHOENICS by CHAM Ltd., UK

. SSIIM by the Norwegian University of Science and Technology, Norway
. STAR-CD by CD adapco group, UK/USA

. SWIFT by AVL List GmbH, Austria

TELEMAC-3D by Electricité de France and HR Wallingford, France/UK

While most of the software packages implement different options only applicable to certain flow

situations, there is a reasonable number of implementation characteristics common to all pro-

grams that can be used as criteria for comparison. The ones used in this review are:

Operating System the software was written for,

Method used for spatial discretisation of the partial differential equations (Finite Differ-

ences, Finite Elements or Finite Volumes),

Grid types (structured and unstructured) as well as grid shapes (tetrahedra or hexahedra),
Numerical scheme used for discretisation of convective terms,

Numerical methods used for time discretisation,

Methods to deal with the challenging task of coupling pressure and velocity,
Implemented turbulence models, and

Implementation of a free water surface.
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2.2 Software Packages

2.2.1 CFX-5

| Name of software | CFX-5 |

Author/company AEA Technology, UK

Web page http://www.software.aeat.com/CEix

Mechanical, biomedical and process engineering; several successful
applications to the field of hydraulic engineering are also known
Cost High-End

Operating System UNIX, Linux, Windows

Spatial discretisation | Finite Volumes

Unstructured grid consisting of tetrahedral, hexahedral, prism and
pyramid elements (triangles and quadrilaterals in plan view)

Either a first order upwind scheme or a so-called “numerical advection
corrected scheme” is being used for spatial discretisation along with
a specially developed technique for pressure-velocity coupling. For
time discretisation, a first order backward Euler scheme is employed.
Zero-equation model, two kinds of k-¢ models (two-equation), k-w
model, Reynolds stress model

A fluid mixture model allows for computation of any kind of free
surface conditions ‘
Numerous real-world CFD application references in all branches are
listed on the software’s website. Among the ones relevant for hy-
draulic engineering are a scour study for a deep-water terminal jetty -
in India (by HR Wallingford, UK), the investigation of flow patterns
within the vicinity of intakes (Hydroplan, UK), a natural river reha-
bilitation design study (University of Nottingham, UK), and also an
analysis of turbidity currents in a lake (ETH Lausanne, Switzerland,
referenced in Olsen (1999) [55])

References AEA (2002) [1]

: The software is equipped with a wealth of different physical models
to suit just about any kind of CFD problem in real-world applications.
The successful application to a reasonable number of projects in the
Remarks field of hydraulic engineering proves that the software is capable of
solving this kind of problems, as well. However, the fact that the
software price is in the high-end region makes it difficult for small or
mid-sized businesses to utilize it.

Field of application

Grid types

Numerical methods

Turbulence model

Free surface

Project references

Table 2.1: Software characteristics of CFX-5
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2.2.2 Comet

| Name of software

| Comet

Institute of Computational Continuum Mechanics GmbH (member of

Author/company the CD adapco group), Hamburg, Germany

Web page http: //www.iccm.dq

Field of application | Mechanical, chemical, environmental and hydraulic engineering
Cost No recent price quote available

Operating System

UNIX, Linux, Windows

Spatial discretisation

Finite Volumes

Grid types

Unstructured mesh of hexahedra, tetrahedra and prisms

Numerical methods

Spatial discretisation is performed using one of the Upwind, Cen-
tral, MINMOD or HRIC schemes with the SIMPLE solution method
for pressure linkage. In terms of time discretization, fully implicit
schemes of first (Euler) or second order are employed in the model.

Turbulence model

Zero-equation model, several types of k- models (two-equation), all
types of k-w models, Reynolds stress model

Free surface

Interface-tracking method

Project references

Several references mostly from the industries of mechanical and
process engineering are listed on the software’s website. The prod-
uct is also being used at the Potsdam Model Basin (Schiffbau-
Versuchsanstalt Potsdam GmbH) and at the Federal Waterways En-
gineering and Research Institute (BAW) in Hamburg.

Except for the manuals that come with the software, no publication

References related to the internals of the software could be found by the author.
Comet is short for ”Continuum Mechanics Engineering Tool”, a gen-
Remarks eral CFD code with most applications in the field of mechanical engi-

neering. Physics are well represented in the software through numer-
ous different models.

Table 2.2: Software characteristics of Comet
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2.2.3 Delft3D

| Name of software

[ Delft3D

Author/company

WL | Delft Hydraulics, Delft, The Netherlands

Web page

http://www.wldelft.nl/d3d

Field of application

Hydraulic engineering, in particular wave hydrodynamics, sediment
transport and water quality investigations

Cost

High-End. A free evaluation version with limited capabilities is avail-
able.

Operating System

Linux, Windows

Spatial discretisation

Finite Differences

Grid types

Orthogonal curvilinear grid

Numerical methods

Alternate Direction Implicit (ADI) method for discretisation of the
governing equations including transient terms

Turbulence model

Any choice of k-¢, k-L, algebraic or constant (zero-equation) models

Free surface

Hydrostatic pressure assumption, water surface appears as an un-
known in the governing equations and is solved along with all other
unknowns

Project references

Recent projects are studies of coastal hydrodynamics related to land
reclamation for the new airport in Hongkong, the morphological de-
velopment of the Dutch coast, and studies of Lake Malawi and Lake
Victoria in Africa.

References

Besides the manuals that are supplied with the software, a short dis-
cussion of the software’s internals is given in the M.Sc. thesis of Lui-
Jendijk (2001) [44] :

Remarks

The software was particularly developed for hydraulic engineering
and seems to be well suited for coastal hydrodynamics where it comes
with a lot of experience. The hydrostatic pressure assumption, how-
ever, is not generally justified and can cause problems for example
in river flow computations. Furthermore, a Finite Difference formu-
lation is in general comparably fast but not always stable enough for
any kind of problem in hydraulic engineering.

Table 2.3: Software characteristics of Delft3D
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2.2.4 FEATFLOW

| Name of software

[ FEATFLOW

Department of Applied Mathematics and Numerics, Univ. Dortmund,

Author/company head of group: Prof. Turek

Web page http://www.featflow.dd

Field of application Unste.ady flows of any kind that can be described by the Navier-Stokes
equations

Cost Freeware

Operating System

UNIX, Linux, Windows (Fortran 77 compiler is requlred because the
software is distributed as source code only)

Spatial discretisation

Finite Elements

Grid types

Unstructured grid of tetrahedra and hexahedra (triangles and non-
conforming quadrilaterals — predominantly the latter ones — in plan
view)

Numerical methods

FEM for spatial discretisation, implicit scheme for time discretisation
(choice between Backward Euler, Crank-Nicolson, Fractional Step 6-
Method)

Turbulence model

None (implementation planned for future releases)

Free surface

Not implemented

Project references

Numerous academic applications, documented in the Virtual Album
of Fluid Motion, available on the CD that is shipped with Turek (1999)
[82] and on the Web page of the FEATFLOW group; project refer-
ences in the field of mechanical and chemical engineering

References Turek (1999) [82]
FEAT is an abbreviation for ”Finite Element Analy51s Tools”. The
software appears to be predominantly suited for scientific purposes
Remarks in research and teaching; good knowledge of numerics and the basic

equations for CFD-computations is assumed for the application of the
program.

10

Table 2.4: Software characteristics of FEATFLOW
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2.2.5 FIDAP

| Name of software | FIDAP |
Author/company Fluent Inc., Lebanon, New Hampshire, USA
Web page http://www.fluent. con
Field of application Mechanical, chemical, civil, biomedical engineering — all types of in-

dustrial CFD applications

Cost High-End

Operating System UNIX, Linux, Windows/NT

Spatial discretisation | Finite Elements

Unstructured mesh of tetrahedra, hexahedra, pyramids and wedges
(triangles and quadrilaterals in plan view)

Finite Element Method for spatial discretisation, both explicit (Back-
Numerical methods | ward Euler as a first order scheme, trapezoid rule for second order
accuracy) and implicit time discretization techniques are available
Choice between mixing-length model (zero-equation model), four dif-
Turbulence model ferent k-¢ models and the k-w model by Wilcox (two-equation mod-
els)

Volume of Fluid (VOF) approach available for large deformations and
Free surface Arbitrary Lagrangian-Eulerian (ALE) method for continuous surface
deformations

More than 50 working examples in all fields of application included
Project references with the software release, countless scientific papers on projects ac-
A complished with FIDAP (many in the field of biomedical engineering)
References Fluent (1998) [24]

Very well tested software from a company with many years of experi-
ence in CFD. Includes numerous options to customize one’s research
parameters and choose between both different physical and numerical
approaches for problem solutions. Extensive software documentation
and tutorials. However, the high price tag makes the software unaf-
fordable for small businesses.

Grid types

Remarks

Table 2.5: Software characteristics of FIDAP
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2.2.6 Flo++

| Name of software

| Flo++

Author/company Softflo Corp., Potchefstroom, South Africa

Web page http://www.softflo.con

Field of application | Mechanical, chemical, biomedical and environmental engineering
Cost Low-End. A free evaluation version with limited capabilities is avail-

able.

Operating System

Windows 95/98/NT

Spatial discretisation

Finite Volumes

Grid types

Unstructured mesh of hexahedral or prism cells

Numerical methods

Finite Volume method using the upwind scheme and employing SIM-
PLE and PISO algorithms for pressure-velocity coupling in spatial
discretisation. A fully implicit technique is being used for time dis-
cretisation.

Turbulence model

k- model for high Reynolds numbers

Free surface

Implemented (technique not specified)

Project references

Several examples for applications of the program are presented on the
software’s website, however most of them are taken from the field of
mechanical engineering.

References

Except for the manuals that come with the software, no publication
related to the internals of the software could be found by the author.

Remarks

The software is not that expensive as comparable general purpose
CFD codes. Since it is relatively new on the market — compared to
other software — it is hard to find references related to experience with
the model. The built-in physics, however, look quite promising as
far as a successful application to the field of hydraulic engineering is
concerned.

12

Table 2.6: Software characteristics of Flo++
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2.2.7 FLOW-3D

| Name of software

[FLOW-3D

Author/company Flow Science Inc., Santa Fe, New Mexico, USA

Web page http://www.tlow3d.con

Field of application | Free-surface problems in hydraulic and mechanical engineering
Cost High-End

Operating System

UNIX, Linux, Windows

Spatial discretisation

Finite Differences

Grid types

Structured grid of rectangular shaped elements

Numerical methods

In both space and time, explicit methods are employed by default and
implicit methods are available as option (unfortunately, no further de-
tail about the used methods is available)

Turbulence model

Choice between Prandtl mixing length (zero-equation), a one-
equation and two types of k- two-equation models

Free surface

Volume of Fluid (VOF) method

Project references

Numerous references to hydraulic engineering projects are available
as web links on the software’s website (e.g. Scribers Creek and Gold-
enrod Road Bridge by INCA engineers or a snow drifting analysis by
the University of Narvik) '

References

Several hundred publications of studies performed with FLOW-3D are
listed on the software’s web site, however, there was no publication
found by the author that deals with the software itself

Remarks

| When using the software, first a rectangular shaped grid is generated,

then the solid boundaries are embedded within that grid. By using
this approach, displacements in both the free surface and the (river)
bed can be modeled easily. Therefore, the software is well suited for
many hydraulic engineering problems (like weir flow, spillways or
scour problems in hydraulic engineering).

Table 2.7: Software characteristics of FLOW-3D
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2.2.8 FLUENT

| Name of software

[ FLUENT

Author/company Fluent Inc., Lebanon, New Hampshire, USA
Web page http://www.Eluent.con

Field of application | Mostly chemical and mechanical engineering
Cost High-End

Operating System

UNIX, Linux, Windows

Spatial discretisation

Finite Volumes

Grid types

Unstructured grid consisting of any combination of tetrahedra, hexa-
hedra, pyramids and wedges (triangles and quadrilaterals in plan
view)

Numerical methods

Control-Volume spatial discretisation with central-differencing of the
diffusion terms and several upwind-schemes (first order, second order,
power-law, QUICK) are at the user’s disposal. Time discretisation
is performed by first and second order explicit and implicit methods
upon the users choice.

Turbulence model

Choice between Spalart-Almaras model (one-equation), three differ-
ent k- models and two kinds of k-w models (two-equation)

Free surface

Volume of Fluid (VOF) approach implemented

Project references

Around 200 different application examples are well documented on
the software’s website. Of specific interest are the study of flow over
a weir and an analysis of currents in drinking water reservoirs.

References

Fluent (2003) [25]

Remarks

Even though the software employs the physical Finite Volume ap-
proach, its application history seems to be fairly limited to chemical
and mechanical engineering. The fact that the software is bundled
with other software from Fluent Inc. makes it a good choice for those
cases where FIDAP doesn’t yield a result in appropriate time. The
model and numerical approaches in the program are well tested and
there is a reasonable amount of documentation. However, the price
tag is too high to be of use for small businesses.

14

Table 2.8: Software characteristics of FLUENT
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2.2.9 NaSt3DGP

| Name of software | NaSt3DGP |

Department of scientific computing and numerical simulation, Univ.

Author/company Bonn, head of group: Prof. Griebel

Web page lhttp 1/ /www.wissrech.lam.uni-bonn.de/researchj
projects/koster/NaSt3DGP

Field of application | Any type of general scientific 3D CFD problems

Cost Freeware

Operating System

UNIX, Linux, Windows (C++ compiler is required because the soft-
ware is distributed as source code only)

Spatial discretisation

Finite Differences

Grid types

Rectangular, non-uniform, staggered mesh

Numerical methods

Higher order upwind scheme, central difference scheme and first order
upwind schemes available for spatial discretisation; explicit Adams-
Bashford scheme (predictor-corrector method) for time discretisation.

Turbulence model

None (implementation planned for future releases)

Free surface

Not implemented in the standard distribution (level-set approach
planned for future releases)

Project references

Three academic applications are documented: driven cavity flow
problem, measurement equipment in pharmaceutical applications,
odor modeling

References Griebel et al. (1995) [31]
NaSt3D is apparently an abbreviation for “Navier-Stokes 3D”. The
software seems to be best suited for solving academic problems in
Remarks mechanical and chemical engineering but due to the used techniques

it will probably deliver results very fast for just about any type of 3D
CFD problem.

Table 2.9: Software characteristics of NaSt3DGP
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2.2.10 PHOENICS

| Name of software

[ PHOENICS

Author/company Concentration Heat & Momentum Ltd, London, UK

Web page http://www.cham.co.uK

Field of application | Mechanical, chemical, civil, environmental and hydraulic engineering

Cost Low-End. Additionally to an ordinary licensing scheme, an old ver-
sion is available as inexpensive shareware.

Operating System UNIX, Linux, Windows

Spatial discretisation

Finite Volumes

Grid types

Structured hexahedral grid

Numerical methods

Spatial discretisation on the Finite Volume grid by linear (QUICK)
or non-linear schemes (SMART, OSPRE), employing the SIMPLE
solution algorithm

Turbulence model

Several zero-equation models (Prandtl mixing length among the better
known), numerous different k-¢ models, k-w model, several other less
popular methods

Free surface

Scalar-equation method (position of the free surface deduced from
the solution of the conservation equation) and height-of-liquid method
available

Project references

Numerous project references and validation cases are referenced on
the software’s website. Of specific interest are a study of flows in
differently shaped drinking water reservoirs, an analysis of currents in
a harbor, and the computation of oil spills into the sea.

References

Spalding (1986) [76]

Remarks

The name of the software is derived from Parabolic Hyperbolic Or
Elliptic Numerical Integration Code Series” which refers to the types
of the underlying equations in general purpose CFD computations.
It is on the market since 1981, therefore it can be considered to be
very well tested and reliable. Many physical models, especially in
turbulence modeling, are included in the software package. However,
the structured grid approach is not as flexible as the grid types used by
other software authors.

Table 2.10: Software characteristics of PHOENICS
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2.2.11 SSIIM

| Name of software | SSIIM |

Norwegian University of Science and Technology, Department of Hy-

Author/company draulic and Environmental Engineering, Assoc. Prof. N.R.B. Olsen
Web page Rttp://www.bygg.ntnu.no/~nilsol/ssiimwin

Field of application | Hydraulic, river and sedimentation engineering

Cost Freeware

Operating System 0S/2, Windows

Spatial discretisation | Finite Volumes

Structured hexahedral grid (version 1.1), unstructured grid of hexahe-
dra and wedges (version 2.0)

For spatial discretisation, both second-order upwind and power-law
schemes can be chosen, pressure-correction is performed by the SIM-
Numerical methods | PLE or the SIMPLEC method. Even though not specified in the soft-
ware manual, Olsen et al. (1999) [59] indicates that time discretisation
1s performed by making use of an implicit technique.

Turbulence model k-e (two-equation) model

Free surface Transient Free Surface (TFS) algorithm

In the software manual and on the website, a decent number of refer-
ences to projects with SSIIM are given, among them are the analysis
of secondary currents in a curved channel, a fish farm tank, a study
of reservoir trap efficiency, a flood wave hitting a building, a scour in
Project references a flume, and several water quality computations for Norwegian lakes.
Reservoir flushing studies were done by Olsen (2000b) [56] and Tritt-
hart (2000) [79]. Recent work with the software is focused on sub-
merged vegetation (Fischer-Antze et al., 2001 [23]) , sediment trans-
port and the evolution of meandering channels (Olsen, 2002 [58]).
References Olsen (1999) [55], Olsen (2000a) [57]

SSIIM stands for ”sediment simulation in intakes with multiblock op-
tion” and refers to the software’s original purpose. Successive im-
provements have made the software to become a CFD tool for many
aspects of hydraulic and sedimentation engineering. Being not too dif-
ficult to use and equipped with concepts that are easy to understand, it
Remarks is also well suited for beginners and students in the field of hydraulic
CFD applications. However, as also stated in the manual, there are
aspects of the software that are not very well tested and lack stability,
sometimes also strange behavior of the graphical pre- and postproces-
sor may be experienced. But considering that the program is available
as freeware, these little problems are more than excusable.

Grid types

Table 2.11: Software characteristics of SSIIM
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2.2.12 STAR-CD

| Name of software | STAR-CD |

CD adapco Group (consisting of Computational Dynamics Ltd, Lon-

Author/company don, UK and adapco, New York, USA)

Web page http://www.cd-adapco. con

Field of application | Mechanical, biomedical, chemical and hydraulic engineering
Cost High-End

Operating System UNIX, Linux, Windows

Spatial discretisation | Finite Volumes

Fully unstructured grid of tetrahedra and hexahedra (triangles and
quadrilaterals in plan view)

Control-Volume spatial discretisation approach with the SIMPLE
method, using an automated technique that either employs central dif-
Numerical methods | ferencing or first order upwind differencing, depending on the level
of numerical dissipation. For time discretisation, a fully implicit first
order differencing scheme is employed.

Smagorinsky model (zero-equation) and five different kinds of k-¢
models (two-equation) are available

Free surface Volume of Fluid (VOF) method

About ten project references for every single of eight different indus-
try categories are made available via the software’s website, adding
up to almost one hundred references. Among the more interesting
ones are the design of artificial reefs (Berlin University of Technol-
ogy), design studies for weir shapes (University of Hannover), vortex
modelling around pillars in rivers, the development of a fish guidance
system at Bonneville dam (US Army Corps of Engineers) and a study
of reservoir flows (Arup Corp.).

Except for the manuals that come with the software, no publication
related to the internals of the software could be found by the author.
The software is a general purpose CFD code that can also be applied
to hydraulic engineering problems. The unstructured grid approach
Remarks in combination with with free surface and turbulence modelling make
it a flexible tool that appears to be quite popular in many industries,
especially in mechanical engineering.

Grid types

Turbulence model

Project references

References

Table 2.12: Software characteristics of STAR-CD
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2.2.13 SWIFT

| Name of software | SWIFT 4 |
Author/company AVL List GmbH, Graz, Austria
Web page http://www.avl.con
Field of application | Mechanical, civil and hydraulic engineering
Cost No recent price quote available

Operating System UNIX, Linux, Windows

Spatial discretisation | Finite Volumes

Grid types Fully unstructured grid of arbitrary cell types

Control-Volume spatial discretisation approach with a variant of the
SIMPLE method. For spatial discretisation, the available options are
the first order upwind scheme, central differencing and two third or-
der schemes (MINMOD and AVL-SMART). Regarding time discreti-
sation, fully implicit first and second order differencing schemes are

Numerical methods

offered.
The k-e model (two-equation), the non-linear Reynolds stress model
Turbulence model and also a hybrid turbulence model developed by the software authors
are available.
Free surface Volume of Fluid (VOF) method

About ten project references in different industrial fields can be found
on the software’s website. In this context, the more relevant ones
include avalanche simulations (Federal Office and Research Centre
for Forests, Austria) and flooding simulations (VRVis, Austria).
References Gouda et al. (2002) [30]

The software is a general purpose CFD code that can also be applied to
hydraulic engineering problems. The arbitrary grid approach together
with free surface and turbulence modeling make it a very promising
tool for the application in complicated flow situations. Unfortunately,
the number of project references is still not very high, but this aspect
may change over time.

Project references

Remarks

Table 2.13: Software characteristics of SWIFT
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2. REVIEW OF 3D CFD PROGRAMS

2.2.14 TELEMAC-3D

| Name of software

[ TELEMAC-3D

Electricité de France (Laboratoire National d’Hydraulique), Clamart,

Author/comparny France, and HR Wallingford, Oxfordshire, UK
Web page http://www.wallingfordsoftware.com/products]
telemac.asp
. . Hydraulic engineering (hydrodynamics, sediment transport and water
Field of application quality in the natural environment: river, estuaries, coastal waters)
Cost High-End

Operating System

UNIX, Windows NT

Spatial discretisation

Finite Elements

Grid types

Unstructured triangular grid (tetrahedra and prisms in 3D)

Numerical methods

Fractional step decomposition (advection step, diffusion step and free
surface-continuity-pressure step)

Turbulence model

Prandtl mixing length (zero-equation) and k-¢ model (two-equation)
available

Free surface

Computation based on the hydrostatic pressure assumption, one sepa-
rate step in the overall numerical method

Project references

HR Wallingford lists seven different real-life projects that have been
done using TELEMAC on its website (mostly marine/coastal applica-
tions) plus around a dozen companies and organisations that use the
TELEMAC software package.

References

Hervouet et al. (1994) [35], Anderson (2000) [5]

Remarks

The software was specifically designed for hydraulic engineering and
proved its usefulness in this field for many years in numerous appli-
cations. Due to this approach, it does not contain so many features
which general purpose CFD codes must possess, a fact that makes it
even more useful for the hydraulic engineer. Furthermore, it appears
to produce very good results in river and coastal engineering, even
though some of its assumptions (i.e. the hydrostatic pressure assump-
tion in 3D) are not always the best fit for true physics in nature.

Table 2.14: Software characteristics of TELEMAC-3D
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2.3 Summary

Table 2.15 provides an overview of the capabilities of all fourteen reviewed software packages,
with the newly developed RSim-3D model added to allow a comparison.

More than half of all models operate with the Finite Volume approach, both Finite Element and
Finite Difference techniques each make up for a quarter of the total number. Around two-thirds
work on unstructured grids, with more than 90 percent using at least hexahedral shaped elements

and more than half additionally allowing tetrahedra for spatial decomposition.

The usage of numerical methods and algorithms for both space and time discretisation is highly
inhomogeneous and doesn’t allow to draw conclusions about preferred techniques. It should be
mentioned that two out of the fourteen models operate using a hydrostatic pressure assumption
which makes them actually only quasi-3D applications that do not allow for computation of

several phenomena.

Two mostly academic products do not account for turbulence at all, a fact that restricts their
application to laminar flows. The other codes implement at least one two-equation turbulence
model, with the k-¢ model being by far the favourite technique. More than half of all products
additionally allow usage of zero-equation models, and still almost 50 percent come equipped

with other techniques that are mostly based on higher dimensional stress formulations.

More than 80 percent of all models come with the ability to model free surface flows, again
mainly the academic codes do not have this feature built in. Techniques for free-surface imple-
mentation vary greatly, with the VOF (Volume of Fluid) being the favourite.
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CFX-5

Comet

Delft3D

FEATFLOW
FIDAP

Flo++

FLOW-3D
FLUENT

NaSt3DGP

PHOENICS
RSim-3D
SSIIM

STAR-CD
SWIFT

TELEMAC-3D

Software author

Academic / Commercial

O

AIC

O

O

O

O

9]

>

9]

>

>

(@]

(@]

O

Operating System

UNIX
Linux
Windows
08S/2

Spatial discretisation

FOM/FEM/FVM

Grid types

Structured / Unstructured

Grid shapes

Tetrahedra
Hexahedra

x

Numerical methods - space

Central Differences
Upwind first order
Upwind second order
QUICK scheme
Other

X X X X X

Numerical methods - time

Explicit first order

Implicit first order

Implicit second order

Other (or no implementation)

Pressure-velocity coupling

SIMPLE
Other

Hydrostatic pressure assump.

Turbulence models

zero-equation
k-e

K-w

Other

X X X X

X X X X

X X X X

Free surface

Implemented

X

X

X

X

X

X

X

X

Table 2.15: Comparison of model characteristics
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3 Polyhedral Computation Grids

3.1 Background and Fundamentals

3.1.1 Conventional Computation Grids

In typical three-dimensional hydrodynamic simulations, grids based on tetrahedra or hexahedra
are employed (see chapter 2). Very often these computation grids are assembled by meshing
the domain in 2D and subdividing the resulting cell piles into several smaller entities. Since
this approach is also followed in the present work, this chapter will first discuss the process of

two-dimensional domain meshing before moving on to three-dimensional grids.

The conventional way of meshing multidimensional domains in 2D is to use triangles (fig. 3.1)
and quadrilaterals (fig. 3.2). As a rule of thumb it can be stated that quadrilaterals are frequently
used in Finite Volume codes, while triangles are the shape of choice in software packages based
on the Finite Element formulation — even though there are some exceptions to this. There is no
common standard as to how quadrilateral cells are formed, except for the fact that the longitudinal
sides are aligned with the expected main flow direction to avoid solutions being spoiled by false
diffusion, which is further discussed in section 5.3. Hence, grids based on quadrilateral cells
typically look like the one depicted in figure 3.2 which constitutes a stretch of the river Danube

east of Vienna.

Triangular cells, on the other hand, are usually generated by a procedure denoted Delaunay
triangulation (Wilhelm (2000) [91]). Implementation and algorithmic details of this method
are discussed in Shewchuk (1996) [73]. Figure 3.1 shows a detail of a computation grid that
was created using this triangulation method; the grid was employed to analyse the August 2002
flood events in Lower Austria (Tritthart & Milbradt (2003) [81]). The principle of the Delaunay
triangulation is that exactly one triangular element results when a circle is drawn through three

points out of a set of base points while no other point lies within the same perimeter. Therefore
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Figure 3.1: Example of a grid using triangular cells
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_ 500.0m

Level 2

Figure 3.2: Example of a grid using quadrilateral cells
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3. POLYHEDRAL COMPUTATION GRIDS 3.1. Background and Fundamentals

always the nearest neighbours of a point make up a triangle. Further details of this method will
not be discussed here since they are out of the scope of the present work.

As opposed to grids based on triangles or quadrilaterals, the application of grids with cells char-
acterised by more than four edges is rarely found, even though some commercially available
numerical codes (e.g. Fluent (2003) [25]) are capable of dealing with cells of such shape. Stand-
ingford & Forth (2003) [77] have described the use of polygonal bounded cells in two spatial
dimensions in an aerospace application, using the CFD code FLITE3D. Creswell & Croaker
(2003) [14] presented a study using polygonal bounded Finite Volumes in three spatial dimen-
sions (i.e. polyhedral cells) to deal with different length scales within a computational domain,
computing internal air flow in a large warehouse with small windows which are represented by
several faces of a larger control volume, thus avoiding the use of an impractically high number
of elements to solve the problem. However, in the field of river hydrodynamics, no use has been
made of this technique so far (Zritthart (2004) [80]).

3.1.2 Voronoi Decomposition

As long as the unknowns of a numerical simulation are stored in cell centroids, the user normally
has little control over the exact location of these variables. A remedy is to store the unknowns
in the vertices of a computational grid, but there are some problems involved with this approach
as soon as the cells become more complex in overall shape, as will be discussed in chapter 4.
Another approach is to define the location of the cell centroids in a first step and construct the
grid around them afterwards. This results in cells of complex shape, being polygonally bounded
in 2D and polyhedral in 3D. It is, however, a paradigm shift compared to the common way of grid
generation, giving the user full control over the location of the conservation quantities within the

computational domain.

It improves the overall behaviour of the numerical solution process if a cell’s boundary line lies
exactly in the middle of a line connecting two neighbouring cell centroids. This results from the
fact that the face values of the conservation quantities can be obtained without the necessity of
weighted interpolation, as it is shown in chapter 4. The numerical behaviour is obviously further
improved when the boundary line is exactly perpendicular to the connection line between cell
centroids since it avoids the need to transform both convective and diffusive fluxes. In contrast,
if there is a severe non-orthogonality between the connection line and cell boundary lines, non-
orthogonal terms must be introduced into the discretised equations, which is further discussed in
Davidson (1996) [16] and also in the subsequent chapter of the present work. Hence, a spatial
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3.1. Background and Fundamentals 3. POLYHEDRAL COMPUTATION GRIDS

discretisation or meshing algorithm should take care to avoid non-orthogonal cells (i.e. thin
stretched triangles) but produce cells conforming to the orthogonality constraint instead.

This constraint is automatically preserved if quadrilateral cells with approximately parallel edges
(i.e. cells of rectangular shape) are being used. However, alignment with the main flow direction
is mandatory for such a grid setup. It is therefore not a feasible approach in all those cases
where a main flow direction is not easy to determine a priori. A remedy to this problem is to
introduce a grid based on a Voronoi decomposition of the computational domain. This graphical
method was first published by G. Voronoi [88] in 1908 and is today frequently used in other
sciences: hydrology uses the method to obtain the Thiessen polygons surrounding rain gauges;
in geography the method is applied to find the region of influence of municipalities.

Graph theory defines the Voronoi decomposition as the dual graph to the Delaunay triangula-
tion (Frank (2002) [28]). In other words, there exists a unique relation that allows to construct
each graph as soon as the other one is known. Hence, it is sufficient to store only the elements
composing one of these graphs while the other one can be computed on the fly with very little
computational effort. This makes it possible to use the grid based on the Voronoi decomposition
to perform the numerical computations while the dual grid is used for interpolation of terrain and
water surface elevations — an approach that was used in the present work.

A technical definition of the Voronoi decomposition is given by Milbradt (2001) [47]. Accord-
ing to this definition, the Voronoi decomposition is the segmentation of the entire domain based
on neighbourship of a given set of base points p. Neighbourship is defined by a distance func-
tion relating two points; usually the Euclidean norm is employed for this purpose. The nearest
neighbour of a given point z is then the reference point p where the distance function becomes a
minimum within the full set of points. Several different points z will therefore possess a common
nearest neighbour p; the set of points given by this criterion is denoted region. For every region a
boundary and subsequently neighbouring regions can be defined. In the present work, the regions
are the two-dimensional representations of control volumes in the Finite Volume method while
their boundaries are the cell edges. The term region will therefore be used throughout this work
to refer to the 2D projection of cells on the x-y plane. Figure 3.3 illustrates this on the basis of
four points that have been arranged in such a way that hexagonal Voronoi regions emerge (one
of which has been marked in blue); the figure was plotted under the assumption of a boundary
constraint following its contour. Superimposed on the Voronoi regions are the Delaunay triangles
(one was coloured in red). It can be seen that the base points always represent the centre of the
regions while being the vertices of the Delaunay triangles at the same time. Edges of Voronoi

regions and Delaunay triangles are always perpendicular to each other.
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Delaunay triangle

Voronoi region

Base point

Figure 3.3: Voronoi regions and Delaunay triangles

After the fundamentals of the Voronoi decomposition have been discussed, it is now possible to
assess this method with regard to the criteria a computational grid should match for optimum

performance:

e Orthogonality: The edges of computational cells are always perpendicular to the con-
nection line between two cell centroids; hence, non-orthogonal terms in the discretised

equations can be dropped.

e Unweighted interpolation functions: The edges of computational cells are always located
right in the middle of the connection line of the cell centroids. Therefore the use of
weighted interpolation functions becomes unnecessary.

e Absence of numerical diffusion: If the computation points are distributed in a deliberate
way, cells possessing a larger number of edges result (see chapter 3.2). Since these cells
allow for fluxes in more than two main directions, numerical diffusion is reduced by a fair

amount.

Literature discusses many different approaches to construct Voronoi decompositions or Voronoi

diagrams in general. The most common ones are:

e Plane intersect method: This is the straightforward way to constructing a Voronoi diagram.
For each point in the total set the bisection line with every other point is computed. This
results in a number of half-planes which must be merged. The process must be repeated
for each and every point site in the plane (Viermetz (2001) [85]). This method is very
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inefficient since it is easy to figure out that it operates on the order of O (n?), where n
denotes the number of points. _

e Plane sweep method: This algorithm is an enhanced version of the previous method for
it introduces the concept of incremental generation to minimise redundancy. The set of
points is sorted along the positive x-axis in a first step; afterwards always the next point
site in the list is inserted into the diagram. This approach minimises the number of required
cutting operations and yields an average complexity of O (n logn), but of course the worst

case complexity remains at O (n?).

e Divide and conquer dlgorithm: This method is well known and widely used. It enhances
the plane sweep method by not only inserting point after point into the existing diagram,
but rather several point sites already merged into a Voronoi diagram (Viermetz (2001) [85]).
The algorithm consists of two steps: in the dividing step, the sites in the plane are divided
into two halves along a successively evolving bisection line; this procedure is subject to
recursion for every subset until only two or less elements are left. As a matter of fact, the
result of this step is a binary tree containing very simple Voronoi diagrams in its leaves.
These diagrams are then merged in the conquering step to yield the entire Voronoi diagram.
The algorithm has a complexity of O (nlogn).

e Fortune’s algorithm: This algorithm was proposed by Fortune [26] in 1986 and is the
most efficient of all algorithms as it guarantees a worst-case performance of the order
O (nlogn), i.e. in general situations it will operate faster than that. It is the algorithm
of choice for the present work, hence it will be explained in more detail in the following
section.

3.1.3 Fortune’s Algorithm

The algorithm’s underlying idea is to interpret the task of constructing Voronoi diagrams as the
two-dimensional projection of a three-dimensional procedure. First, a cone with an apex angle
of 45 degrees is constructed on each point site in the x-y plane (fig. 3.4). Afterwards, a plane
7 slanted at 45 degrees is moved along the y-axis of the coordinate system. The intersection
line of this plane with each individual cone yields a parabola curve, if projected onto the x-y
plane. However, the intersection of two parabola curves is identical to a point of the Voronoi
line, defining the boundary between two regions. While the plane 7 is now dragged through the

domain, complete Voronoi lines result that can be stored in an appropriate data structure.
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Figure 3.4: Three-dimensional interpretation of Fortune’s algorithm (Cuk (1999) [15])

The base line of the slanted plane is denoted sweep line, whereas the intersection curve of the
cones with the plane 7 is referred to as parabolic front or beach line (Wilhelm (2000) [91]). While
the sweep line moves along the x-y plane, the beach line is subject to constant modification.
However, there are two sorts of distinctive events that can arise during this procedure: point

events and circle events.

Point Event

A point event is encountered when the sweep line has hit a new point p in the plane. Resulting
from this, a new parabolic arc appears on the beach line. This is illustrated in figure 3.5: in (a),
the sweep line has not yet encountered the new point; in (b), the sweep line is exactly at the site
of the new point and the parabolic segment is inserted, even though it degenerates to a straight
line at this moment; in (c), the sweep line has passed the point and the beach line is in regular
shape again, containing the new parabolic arc. For the joint point of two arcs in the beach line

defines a Voronoi line, the point event inserts a new vertex into the Voronoi diagram.
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(a) (b)
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Figure 3.5: Changes in the beach line upon encountering a point event (Wilhelm (2000) [91])

Circle Event

A circle event takes place when a parabolic arc shrinks to a point and disappears from the beach
line. The condition for the occurrence of this event is that three parabolic arcs — defined by
three base points p;, p;, px — intersect each other in a single point g, as illustrated in figure 3.6.
This happens when ¢ has the same distance to the sweep line as to the three base points. In that
case, all base points lie on an empty circle with centre point ¢ and the sweep line is tangent to
that circle, hence the name of this event. As a consequence, point ¢ is a vertex in the Voronoi

diagram where two Voronoi lines intersect.
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Figure 3.6: Changes in the beach line upon encountering a circle event (Wilhelm (2000) [91])
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Implementation

By testing for point and circle events while the sweep line moves through the entire domain, it -
is possible to construct the complete Voronoi diagram in a very efficient way. Actually, Fortune
(1986) [26] proves that this algorithm is optimal, i.e. the task of computing the Voronoi diagram
cannot be done with a better performance. The actual implementation, however, is a challenging
task since all elements involved in the generation of the Voronoi diagram using Fortune’s method

must be stored in appropriate memory structures that need to be dynamically allocated.
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Figure 3.7: Binary tree to represent the beach line

Implementation details are discussed in Cuk (1999) [15], Fortune (1992) [27], Miinch (1998)
[49] and Wilhelm (2000) [91]. There is consensus that three data structures are required: one for
storing the Voronoi diagram and two others for the sweepline process, i.e. point/circle events and
the parabolic front. The data structure for the Voronoi diagram, modified to suit the needs arising
in the present work, is discussed in chapter 3.3. As far as the parabolic front is concerned,
a binary tree is best suited for storing its contents. Such a structure is a very natural way to
represent data in an object-oriented programming approach, furthermore it allows for fast updates
of its contents (i.e. when new elements are inserted or old ones removed). The binary tree
structure applied to the parabolic front is illustrated in figure 3.7. Finally, upcoming events are

stored 1n an event queue where the different events are stored by the point sites they refer to.
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It should be noted that a usual Voronoi diagram contains half-edges, denoting lines that have a
start point but no end point. The unmodified algorithm of Fortune naturally returns such ele-
ments as parts of the solution. However, the computational domain in hydrodynamic problems
is bounded by definition. Hence, Fortune’s algorithm has to be modified to compute the intersec-
tion points of half-edges with the domain boundary and include these, as well as the segments
of the bounding polygon, into the solution. The resulting domain decomposition is therefore no

longer an actual Voronoi diagram but represents a constraint Voronoi decomposition.

3.2 Modular System

3.2.1 Background

Up to now, we only dealt with the generation of a Voronoi grid and treated the set of base points
as already known. As this is not the case in reality, a mechanism of point generation must be
found. For this purpose, the aim is the development of an automated distribution algorithm.

However, there are a number of constraints that must be accounted for:
e The grid resulting from the Voronoi decomposition with regard to the distributed set of
points must be as regular as possible, without large differences in size among single cells,

e The grid must honour the boundary line of the computational domain, following its course

and allowing for a finer discretisation in this region,
e The grid must honour structure lines (for instance levee crests) to avoid wrong terrain

interpolation (i.e. “breaches”) in regions where structures must be preserved.

It is possible to construct a grid that conforms to all these constraints when a system of three
modules is employed for the distribution of base points:

e a base module, where points are distributed in a general pattern, forcing specific cell
shapes,

e a boundary module, where the base points follow the course of the boundary line, hence
avoiding the occurrence of irregular cells at the border of the domain and allowing for a

finer discretisation there,
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e a structure line module, where the base points follow the course of a structure line in such
a way that the structure line itself is represented by cell edges (or cell faces in a three-

dimensional situation).

The properties of these modules will be discussed in the next sections.

3.2.2 Base Module

This module is responsible for the distribution of base points in regions far away from a domain
boundary or structure line. As illustrated in figure 3.8, points are distributed starting at the origin
of the coordinate system that was rotated by an angle ©. It is possible to force specific cell
shapes by certain point distribution patterns. The RSim-3D model employs only quadrilateral
and hexagonal patterns, but in general it is possible to construct cells with a larger number of
faces, as well. The quadrilateral pattern is given by two spatial distances, Az and Ay (fig. 3.8,
left), from which an equidistant distribution is obtained. However, in the hexagonal pattern (fig.
3.8, right), the distance Ay is no longer subject to arbitrary choice, but it is derived from the

equation

Ay = Az - ? 3.1
which defines an equilateral hexagon. The hexagonal cell shape is finally obtained after applying

an offset of Az/2 to the lateral distance in every second row of points.

Figure 3.8: Quadrilateral and hexagonal base modules
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3.2.3 Boundary Module

The boundary module is used to allow for generating a grid that follows the boundary of the
computational domain in its course. This is of high importance in practical situations since it
avoids irregularly shaped grid cells near the boundary by ensuring that all cells have the same
distance to the border and that cell edges intersect the boundary at an angle of 90 degrees — at
least in a quadrilateral configuration. Furthermore, the boundary module makes it possible to
apply a finer spatial discretisation in that region, which will almost always be desired. Finally, it
is also possible to create a body-fitted grid in the whole computational domain by making use of
this module only. The generation process is simple: the boundary polygon is offset by a distance
Ay - (z — %) where i denotes the row number, and points are distributed along that line. This
ensures that the base points of the first row are always located at half the grid spacing distance.
Care is taken to compute the correct end points of line segments in ”corners” of the flow domain,
i.e. where the angle between line segments is not 180 degrees. To illustrate this, figure 3.9 shows
an exemplary grid in a circular domain, constructed from a hexagonal base pattern and four rows

of hexagonal boundary elements.

Figure 3.9: Grid composed of hexagonal base elements and four rows of boundary elements
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However, care must be taken in the choice of grid spacings and distribution patterns to avoid
the creation of distorted elements. Figure 3.10 shows an exemplary grid in a box, based on four
rows of the boundary module in a quadrilateral configuration while the centre of the box is filled
with regions created by the base module. This grid would not be used for actual hydrodynamic
simulations since there is a small number of cells at the transition zone from one module to
the other that exhibit computation points which are not close to the cell centre, hence impairing

convergence.

Figure 3.10: Grid in a box, composed of quadrilateral boundéry and base elements

3.2.4 Structure Line Module

Structure lines are applied when the meshing algorithm must preserve specific edges, including
them as part of the grid. For instance, this is desired when man-made structures (e.g. levees) are
to be represented in a numerical simulation. If these structures are not well preserved, the solu-
tion of the simulation may turn out numerically correct, but technically wrong (i.e. ’breaches” in

dams, resulting from wrong interpolation, leading to flooding of terrain which would otherwise
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not have been flooded). Fortunately, structure lines can be preserved in the same way as bound-
aries by the boundary module: at the border, the bounding polygon is offset into the domain by
a certain distance, and the points are distributed along that line (section 3.2.3). However, a struc-
ture line polygon must be offset to both sides at the same distance when distributing points. As
Voronoi edges are always located half-way between two base points, the structure lines will be
automatically preserved following this approach. This allows for an interpretation of the struc-
ture line module simply as a boundary module being applied twice, at either side of the dividing
polygon line.

3.3 Data Structure

After the base points have been distributed in the computational domain and the two-dimensional
grid lines have been created, the resulting data must be stored in an appropriate data structure.

This structure must be designed to follow two major criteria:

e flexibility: the data structure must be capable of dealing with regions of all shapes, regard-
less of the number of edges,

e no redundancy: the entire structure must allow for quick access to all data, but at the same

time minimise redundancies to allow for fast and correct updates of elements if needed.

Data to be stored can be categorised in four different groups (fig. 3.11):

regions: these are the actual two-dimensional proj ections of the 3D grid onto the x-y plane.

base points: these 3D points define the computational centre of the regions; the third

component stores the terrain surface.

grid lines: these lines represent the border between regions.

vertices: these are points that define start and end coordinates of grid lines.
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~Grid line

Region

Base point

Figure 3.11: Elements of a two-dimensional grid

Figure 3.12 illustrates how the data elements can be arranged into a data structure containing the
complete two-dimensional projection of the computation grid. It also lists the data types, using

these abbreviations:

e boolean: a binary data type that holds an argument of either 0 or 1

e int: an integer value

e float: a floating-point number in unspecified precision

e Point3D: an object-oriented data type, consisting of three float elements z, y and z

e Vector [ type: an array containing an unspecified number of #ype elements, i.e. its size may
change at any time if needed

There are a number of issues concerning this data structure that should be noted:

e The 3D coordinates of the base points contain the exact location of a point at the terrain
surface (e.g. river bed); refer to section 3.4 for details about obtaining the vertical elevation.

e The vast majority of vertices does not contain a third 3D coordinate argument, i.e. it is
zero or unused. However, interpolation at the boundary and along structure lines is only
possible if the vertices in these locations are assigned terrain elevations. Hence, the overall
data type must be a point in 3D space, even though the third argument is only used for a
small number of vertices.
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e Both boundary and structure lines are identified by a separate boolean value. This is
necessary since due to the preprocessing of data, two polygon lines with different meaning
may lie on top of each other. However, for the actual treatment of these elements this

distinction does not make a difference.

o In a usual implementation, the index-numbers of all types are not encoded in an extra field;
in order to save memory, the elements are addressed only by their position in memory.
This is legitimate since the storage sizes are known and the offset of any given element can

be computed easily on the fly.

regions
Index-No. int
A - Base point int
Grid lines Vector | int4------- ,
' Water surface float
' Roughness float '
4 4
base points grid lines
Index-No. int Index-No. int
3D coordinates Point3D oo - Start vertex int
------- - End vertex int
! Boundary line boolean
. Structure line boolean
4
vertices
Index-No. int
2D/3D coordinates  Point3D

Figure 3.12: Data structure of a two-dimensional grid
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3.4 Terrain Elevation

3.4.1 Background

Usually, the geodetic height of the 2D computation points is not known a priori, but either depth
measurements along cross section lines of a river bed or a digital terrain model of regularly
spaced data are available. Since these spatial data points rarely coincide with the actual base
points of the computation grid, a technique of spatial interpolation is required. Both the Bivari-
ate Interpolation Method of Akima (1978a, 1978b) [2, 3] and a Kriging approach were evaluated
for that purpose and are subject to discussion in the following two subsections of this work. Fol-
lowing this approach, surface elevations can be derived for all computational points and those
grid line vertices that are part of the boundary polygon or a structural polygon within the com-
putational domain (Zritthart (2004) [80]). ’

Section A-A:

Surfaces (dual graph)

Figure 3.13: Voronoi grid and Delaunay triangles with a section view

Figure 3.13 once again depicts the plan view of a domain represented by four hexagonal cells;
here it is presented along with a cross section. Let’s assume that the cells’ base points have
been set a vertical elevation following one of the approaches just mentioned. Now the problem
arises to make the surface (actually both the terrain and water surfaces) spatially consistent be-
tween neighbouring cells. A possible solution would be to introduce complex surface functions
of higher order for every single cell. However, this approach is not feasible in practice since

the discretised governing equations of fluid motion (chapter 4) rely on the existence of planar
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surfaces that can be defined by face centroids and surface area vectors. Furthermore, the com-
putation of cell volumes and surface areas would become significantly complex tasks. Therefore
only a triangulation can be the adequate way to deal with this problem. As already mentioned,
the Voronoi decomposition is the dual graph of the Delaunay triangulation. Hence, with the
Voronoi grid given, a consistent triangulation is already available without the need for additional
time-consuming triangulation procedures. Upon applying the duality property base points turn
into vertices in the Delaunay triangulation and edges are always perpendicular to each other. The
boundary constraint is honoured in the Delaunay graph as well. For the Delaunay triangles are
defined by the base points of the grid, every surface elevation within the grid can be derived by
means of simple triangle interpolation. Furthermore, as soon as the variables that were solved
for in the discretised equations are available, they can be interpolated and plotted using the same
mechanism of triangle interpolation.

3.4.2 Bivariate Interpolation Method

According to Akima (1978b) [3] the bivariate interpolation method is a smooth surface fitting
technique developed for z values given at points irregularly distributed in the x — y plane. It
uses a fifth-degree polynomial in z and y as interpolating function defined in each triangular
cell which has projections of three surface data points as its vertices. Triangulation is performed
on the surface data points according to a max-min angle criterion described in further detail in
Akima (1978b) [3]. The interpolation function for any given point (z,y) within each triangle
then reads

5 5—j i
2(z,y) =D ) g’y (3.2)
7=0 k=0

which results in the need to determine 21 coefficients g;;. These coefficients are found by the
assumption that the values of the function, as well as its partial derivatives of first and second
order, are given at all vertices of the triangle. In combination with the presumption that the partial
derivative of the function differentiated in the direction perpendicular to each edge of the triangle
is a third-degree polynomial, 21 conditions are obtained to determine all coefficients. Due to the
polynomial functions used, smoothness of the interpolated surface both within each triangle and
at its edges results from this process as proven in Akima (1978b) [3].

The bivariate interpolation method works very well as long as the distribution of terrain points
follows a pattern that does not deviate too much from a regular distribution. Especially when

a terrain grid (i.e. a digital terrain model, DTM) is used as basis, the interpolation method
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yields reasonable interior values. However, as soon as measured river cross sections are used as
terrain data basis, the interpolated terrain elevations exhibit strong and irregular extreme values
(see appendix A for an illustrative example). This can be explained easily: the triangulation
procedure is performed on the terrain data points, as these are the only locations where actual
information is readily available without the need for interpolation. As a matter of fact, cross
sections of natural rivers come with a high resolution within each section but comparably large
distance between the profiles: for instance, measurements at the river Danube contain between
250 and 1000 data points per cross section, which is typically around 250m in distance, resulting
in a resolution of one point per 0.25m to 1.0 m; on the other hand, cross sections are fathomed
in a typical distance of 50m to 100m. This yields a ratio of longitudinal to transversal resolution
between 1:50 and 1:400. Hence, a triangulation of this data will inevitably result in triangles of
the same ratio, no matter how good the triangulation algorithm. It is easy to see that a polynomial
constructed on top of such a triangle will exhibit undesired maxima and minima in the interior
only to satisfy the first and second derivatives of the surface function at its edges. Therefore we
can conclude that this method can be of use when more or less regularly gridded terrain data is

available, but not in situations where cross sections of rivers are the only measurements available.

3.4.3 Kriging

This method was first published by D.G. Krige (1951) [38]. It is frequently used in geostatistics
to determine unknown values using known values and a semivariogram. There exist several
different types of kriging methods, but only the procedure denoted point kriging was evaluated
for the present work. This approach relies on the assumption that an estimate of an unknown
value Yz, at a point p can be found by using a weighted average of the surrounding known

values Y;,
Ye, = Z WY, (3.3)

where W, are the respective weights. The estimated value is said to be unbiased when the weights
sum to unity. Hence, the weights applied to solving a certain problem must obey the relation:

> W=1 3.4)
Optimal weights must not only satisfy the condition of producing an unbiased solution; they

are also required to have a minimum estimation variance, i.e. the scatter of the estimates Y ,

about the actual value Y, must be minimised. This criterion can be enforced by introducing a
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set of simultaneous equations, complemented by a variable called the Lagrange multiplier A.
To illustrate this procedure, we make the assumption that four known values Y; (at point ”’1”)
through Y} (at point ”’4”) are used to estimate an unknown value Yg , at point p. Combining this

with equation 3.4, we can write the following equation set,

Wiy (dir) + Woy (diz) + Way (dis) + Way (dua) + A = v (dyp)
Wiy (da1) + Way (da2) + Wiy (das) + Way (das) + A = v (dap)
Wiy (da1) + Way (dsz) + Way (dss) + Way (dsg) + X = v (dsp) (3.5)
Wiy (dar) + Woy (daz) + Way (das) + Way (das) + A = v (dsp)
Wi+ Wo+Ws+ Wy = 1

where v (d;;) is the semivariance between data points ¢ and j. In the present work, this semivari-
ance was set equal to the distance between the points, which is also the most common approach.

Equation set 3.5 can now be rearranged in matrix form,

¥(d11) v(di2) v(dis) 7v(dwa) 1 W ¥ (dhp)
Y (dn) v(da2) v(das) 7v(das) 1 W, ¥ (dap)
v (ds1) 7v(ds2) ~v(dsz) v(dsa) 1 |@| Wi | = | v(dsp) (3.6)
¥ (da1) v(da2) v(dss) v(da) 1 W, ¥ (dap)
i 1 1 1 1 0 1 1 A | i 1 |

which makes it possible to solve for the weights using common techniques for solving a set of
linear equations. Since the equation d;; = d;; holds true for distances, the left-hand matrix is
symmetrical. The main diagonal is filled with zeroes because d;; is obviously nil. After the

weights have been determined, the unknown value Y5, can be estimated by:
Ye, = WiYh + WoY, + W3Ys + W,Y, (3.7)
The Lagrange multiplier A is not needed to obtain an estimate of the unknown value Y ,, but

its presence ensures that the minimum possible estimation error is obtained. The estimation

variance s? can now be calculated by

s? = Wiy (dip) + Wiy (dap) + Whry (dsp) + Way (dip) + A (3.8)
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which is a great advantage since it allows for a quantification of the error made in the estimation
of YE,p .

The method itself does not come with restrictions as to how many points can be used to esti-
mate an unknown terrain elevation at another location; however, in a real-world situation there
are constraints like memory requirements in storing the matrix of equation 3.6, or computation
time to solve the linear equation system. Due to these practical considerations, the following
methodology was adopted in the present work (see appendix A for an example):

e A circle with radius R = v/a? + b2/2 is constructed on the location of every point with
unknown terrain elevation, where a and b are the dimensions of the available terrain infor-

mation in the directions of z and y within the computational domain.

e The circle is partitioned into four quadrants of equal size, and the terrain data available in

each quadrant is sorted according to its distance to the circle’s centre point.

e A maximum of eight terrain data points (those with the smallest distance to the point of
interest) is selected within each quadrant, summing up to a maximum of 32 terrain data
points available for a single kriging operation.

Undoubtedly the kriging method is computationally expensive. However, there are no problems
involved in using measured river cross sections as input data as the method is usually not subject
to exhibiting irregular maxima or minima of the estimated values. Hence, the kriging approach
was selected as method of choice for interpolating terrain elevations at the locations of computa-

tion points and grid line vertices that are part of the boundary polygon or a structural polygon.

3.5 Grid Refinement

After the computation grid was created by applying Fortune’s method to a set of points distrib-
uted following the procedures outlined in section 3.2, the next step is to refine the grid. Mesh
refinement in the vicinity of obstacles within the flow domain or at domain boundaries is gen-
erally possible by making use of boundary and structure line modules, which have already been
discussed. Additionally, there will usually be a desire for further refinement in regions with a
steeper surface slope. In order to meet this desire, a criterion of maximum absolute height error

is adopted in the present work: by means of kriging, it is possible to derive surface elevations
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R line

Figure 3.14: Grid refinement procedure for ordinary cells (left), boundary cells (centre) and cells

adjacent to structure lines (right)

for arbitrary points within the computational domain; these elevations can be compared to the

ones obtained by interpolation on the triangular Delaunay grid (fig. 3.3), inserting new points if

a certain error bound is exceeded. This procedure is illustrated in figure 3.14 for three different

situations:
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o Left: Two ordinary cells adjacent to each other are subject to refinement if the surface

elevation of the midpoint P in the line connecting cell centroids A and B meets the criterion
|hp — hp| > € (3.9)

where hp is obtained by linear averaging of the surface elevations in points A and B, h 4

anth, he +h
_ na B

2
and h} is derived from surrounding terrain data points by means of kriging. € is an error

hp (3.10)

bound given by the user. If the refinement criterion is met, a new basepoint P with elevation

h% is inserted into the complete set of basepoints and the grid is generated again.

Centre: A cell at the domain boundary is subject to refinement if the midpoint D of the
line connecting the cell centroid B with the boundary line in perpendicular direction meets
the criterion:

|hp — hp| > € 3.11)

In this case, the geodetic height of the start and end vertices of the boundary line (points
Q and R in figure 3.14) is known. Furthermore, we know from figure 3.3 that segments
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of boundary lines always make up triangles with the centroid of the adjacent cell. Hence,
the elevation of point P can be obtained by distance-weighted interpolation on the line
connecting points Q and R. Using this information, the height of point D, hp, can finally

be derived,
2

and a comparison with elevation h},, obtained by kriging, becomes possible. If refinement

hp (3.12)

1s necessary, point D is inserted and the grid must be regenerated.

e Right: Special care must be taken to test for refinement in cells adjacent to a structure line
as this line must be preserved even after grid refinement has taken place. Therefore the
approach outlined for domain boundaries is adopted here: the surface elevation of points
Q and R is known, which makes it possible to derive the height of point P. Knowing this
elevation, both heights of points C and D, h¢ and hp, obtained from equation 3.12, must
be compared with the respective values h{, and h},, derived from kriging:

lhc—h2~| > €
hp— b5 > (3.13)

If only one of the criteria set forth in equation 3.13 is met, both points C and D must be
inserted into the set of basepoints and the grid will be generated again. This is necessary
to preserve the structure line at its current location.

It should be noted that the grid refinement approach presented here is actually not very difficult
to carry out; still, the procedure may take a while on grids with a large number of base points
because the vertical coordinates of every connection line between two cell centroids must be
derived from the digital terrain model, and if new points are inserted the grid and its data structure
must be recreated.

An example of a computation grid refined using the approach described above is given in figure
3.15. It shows a detail of a grid which was created for a reach of the river Danube east of Vienna,
Austria. Based on a hexagonal cell pattern with a horizontal centre point distance of 40m and two
cell rows with half that spacing along the boundary, the grid was refined seven times, leading to an
absolute height error of less than 20cm in every computational cell within the domain (Tritthart
(2004) [80]). Contour lines allow for an interpretation of the surface gradient at the left side
of fig. 3.15, while the right side shows the dual Delaunay grid used for interpolation. Terrain

elevations were available in river cross sections (blue lines) and also along the river banks.
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Figure 3.15: Plan view of the grid for a reach of the river Danube east of Vienna with contour
and section lines (left) and the dual triangular grid (right)

3.6 Estimation of Water Surface Elevations

Before the actual three-dimensional grid can be created from the two-dimensional grid discussed
so far, an estimation of the water surface elevation must be performed for every single grid region.
The 3D grid will then be generated only in those regions where the water surface elevation lies
above the terrain surface. However, as the water surface changes during the solution of the
flow equations, it is possible that previously wet regions suddenly become dry and formerly dry
regions turn wet; hence, the 3D grid may significantly change during the computations, but it is
nonetheless important to provide a good estimate of the water surface elevation to the model so
that a reasonable initial grid may be created.

In order to come up with an estimate for the initial water surface elevation, the grid generator
needs to know the flow boundaries, i.e. those grid lines where water enters or exits the compu-
tational domain. As these are user-provided, we can treat them as known. The next challenge is
then to find the flow path — the polygon lines that connect inflow and outflow boundaries —known

as thalweg in rivers. In theory it is possible to obtain flow paths by means of gradient analysis:
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starting at a grid region adjacent to an inflow boundary, a polygon line is constructed that always
follows the steepest slope. While this proceidure works well on hillslopes, it performs signifi-
cantly worse in actual rivers, especially when applied to rivers with large cross sections. There
is a number of reasons for this; among the most important are the very flat slopes encountered in
such rivers, leading to irregular flow paths, and the presence of dunes and bars which may cause
an automated algorithm to crash. Therefore — even when it may add a little inconvenience to the
model application in practical situations — it is best to leave the task of defining flow paths to the
user by providing the model with appropriate polygon lines.

A complex flow situation, but not uncommon in reality, is the presence of several such polygon
lines, each defining a separate river or channel that disembogues into another river, resulting in a
network of rivers. To perform an estimation of the water surface elevation in such a constellation,
all available flow paths must be sorted first. It is best to do so by assigning the river comprehend-
ing the downstream boundary condition an ordinal number of 1, channels discharging into such a
stream receive a classification of 2, and so forth (see fig. 3.16). This ordering system benefits an
automatic computer-aided calculation of water surface positions, since the elevations of streams
with lower ordinal numbers are computed first and can subsequently be used as boundary condi-

tions for those with higher ordinal numbers.

Order 2

Order 1

Figure 3.16: Schematic view of a river network with several confluences

As soon as the boundary conditions of all streams within the computational domain are known,
the detailed determination of the water surface elevations can be done. In the present work, four

different methods are available for performing this task:
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o Constant water surface elevation: Being the simplest of all methods, a constant water

surface elevation in the entire domain is useful for some validation cases (e.g. laboratory
flumes) that do not exhibit any bed slope, hence the surface slope is very small as well.
It can also be used for real-world situations when the region of interest is small-sized and

only local phenomena are being investigated.

Linear interpolation: In this method, both upstream and downstream water levels are pre-
scribed by the user; the model performs linear interpolation along all flow path polygon
lines available. Usually, this technique gives a very good initial water surface estimate and

will suffice for most flow situations.

Constant flow depth: This method is quite complex, as it requires the slicing of the three-
dimensional domain into a number of cross-sections perpendicular to the given flow path.
For each section, the minimum terrain elevation is determined, and after adding the flow
depth given by the user, the water surface elevation results. Actually this method works
very well for channels with a simple cross-section shape or rivers with very little variability
in bed forms. When unfiltered terrain data is used, the technique may yield a water surface
exhibiting the same irregularities as the bed, possibly leading to problems in the numerical

simulation thereafter.

1D backwater computation: Undoubtedly, this method returns the most realistic initial
guess for the water surface elevation within the flow domain, but it is only worth the com-
putational effort if the terrain data has been very carefully checked for errors; otherwise
unrealistic results may be obtained, impairing convergence in the numerical simulation.
The first step of this method is the same as in the case of constant flow depth: the 3D do-
main is sliced into a number of cross-sections perpendicular to the flow path. Considering
two consecutive cross-sections, j and j + 1, we can use the extended Bernoulli equation to
write (Gutknecht (2004) [32])

v Vi
Wi+ + 41 - % = Wy + aj - % + hr (314)

where w; denotes the water surface elevation above sea level (or a reference surface), v;
is the average velocity in a cross-section and the coefficient «; is equal to unity. h, is the

friction loss due to the influence of roughness,

h, =J, Az (3.15)
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where J. denotes the energy gradient and Az is the horizontal distance between cross-
sections j and j + 1. The energy gradient J. can be quantified by making use of the
Gauckler-Manning-Strickler equation to yield

1

Je = p
k"g'tR)?,m

(3.16)

2
m

Y

where kg, is the Strickler coefficient, and v,,, and R}, ,, are mean average velocity and mean
hydraulic radius of the two consecutive cross-sections. Since the discharge is known, both
of the latter values can be expressed as functions of the geometric properties A,, and U,,,
denoting the mean cross-section area and perimeter, respectively. These properties can be
obtained by linear averaging from the values at both cross-sections. As the values for A;.;
and U, are dependent on the unknown water surface elevation w;, the computation
must be done iteratively. Finally, after a (usually) small number of iterations, w;; 18
obtained from equation 3.14, and the procedure is repeated for the next cross-sections

until the inflow section is reached.

It is important to mention that the methods of linear interpolation, constant flow depth and 1D
backwater computation are only capable of computing water surface elevations along previously
defined polygon paths. The model, however, needs water surface elevations for the whole do-
main, in every single grid region. Hence, the results of these computations are extended into 3D
by repeatedly specifying the one-dimensional surface elevations in all grid regions of an area de-
limited by each two consecutive cross-sections in a user-supplied distance (a typical value would
be 10m for a river). This completes the initial guess of water surface elevations and allows for

generating the three-dimensional grid.

3.7 3D Grid Geometry

The three-dimensional grid is obtained by partitioning the cell piles, defined by grid regions to-
gether with terrain and water surface elevations, into a number of finite cell volumes. Every
region is subdivided into the same number of cells, hence the grid is vertically structured. Figure
3.17 illustrates this: the vertically structured grid is composed of extruded grid regions in combi-
nation with a triangulated surface on top and bottom of the domain, which adds some geometric
complexity. Actually, every grid line bordering a grid region within the domain (i.e. not at the

domain boundary) is intersected by at least one edge of the dual Delaunay triangulation making
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up for the terrain interpolation (see fig. 3.3). Therefore the 3D equivalent of the grid lines in 2D
— denoted faces — actually become polygonal bounded surfaces as the grid becomes polyhedral.

Figure 3.17: Three-dimensional grid composed of extruded grid regions and a triangulated sur-
face

It is obvious that the calculation of cell volumes and face areas, both of which are needed for the
numerical solution of the discretised flow equations, becomes a complex and computationally
intensive task for the grid presented in this work. Fortunately, it is not necessary to recompute
these properties too often; instead, it is sufficient to calculate them only after updates of the water
surface have taken place. However, even then the two-dimensional intersection points between
the polygonal grid regions and the triangular surface representation stay the same. Therefore it
is adequate to compute these intersection points only once, after the grid generation has been
completed, and modify the vertical elevations (bottom and top) after every surface update, which
can be done reasonably fast. A new data type, denoted face vertex, is introduced: it stores four
floating point numbers, two of which represent the z and y coordinates of the intersection points
between grid regions and Delaunay triangles, the other two store the elevations z; and 2, of
bottom and top. Start and end points of grid lines in 2D of course transform into face vertices
in 3D, as well. Figure 3.18 shows an exemplary face composed of four face vertices, further
illustrating this.
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fv1 fva

Figure 3.18: Cell face composed of four face vertices and three areas; C denotes the face centroid

Face areas

Face areas are computed by summing up all partial areas defining one face. By definition, the
area spanned by two face vertices is always a trapezoid. Hence, we can write for the area of an

entire vertical face given by n face vertices fuv,

4y = 35 20 1 ) 5 )~ 1 () (3.17)

i=2
where z denotes the distance of one face vertex to his neighbour in the z — y plane, 2, (fv) is the
face vertex’ top elevation and 2; (fv) its bottom elevation.

Top and bottom areas of a cell always consist of a number of triangles, each of which is defined
by two face vertices and a base point with a top and a bottom elevation assigned. As triangles
can be interpreted as degenerate trapezoids, the same equations for face areas or centroids can be
applied; therefore top and bottom areas of cells will not be subject to further discussion in this
chapter.

Face centroids

The exact location of each face centroid must be known in order to compute the volume of the
cell enclosed by a number of faces. We start with the equations for the coordinates C, and C, of

a compound section in two-dimensional space,

Zi Aixc,i
C = A
1 A c,t
C, E-Z—Z— (3.18)

where A; stands for the partial area i (in the present work spanned by two neighbouring face
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vertices), and z.; and z.; are the centroid coordinates of every partial area. The denominator of
both relations in eq. 3.18 is, of course, equal to the face area as given by equation 3.17. After
introducing three geometric relations a, b and c¢ in accordance with the definitions made for eq.
3.17,

a = z(fvis1) — 2 (fuicr)
b = 2 (f’Ui) — 21 (fvi) (3.19)
cC = & (fvi-1) -2 (fvi)

we can use the formulae available for the centroid coordinates of trapezoids,

' Ti—1 (2(1 + b)
. = — 7
e 3(a+0b)
, 2ac + a® + cb + ab+ b?
.= 3.20
2, Tt (3.20)

to compute the centroid coordinates x'c,i and z;,i in a local coordinate system with origin in the
bottom point of face vertex fuv;. Figure 3.19 illustrates this procedure. Subsequently these local
coordinates must be shifted to a fixed point — in the present work the bottom point of the last face
vertex fuv, was used — so that they can be used in eq. 3.18 to yield the coordinates of the face
centroids. These coordinates are finally transformed into z/y/z coordinate triples in the global
coordinate system to be of use for the computation of cell volumes.

z4(fvy)

Figure 3.19: Coordinate system and nomenclature for the calculation of centroid coordinates
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Face normals

Face normal vectors are required for the calculation of cell volumes and are also used excessively
throughout the solution process of the discretised flow equations (chapter 4). The normals of
vertical faces are obtained by rotating the two-dimensional grid lines by 90 degrees and inserting
a zero for the third coordinate. Normal vectors of triangle faces at the top and the bottom of cells
can be calculated by computing the cross product of two vectors that span the triangle surface.
All vectors are finally normalised to become unit vectors.

By definition, face normal vectors always point out of the cell they belong to. However, vectors
are stored as properties of faces, not cells. Since a face uniquely separates two cells, the vector
will always point outwards for one of the cells and inwards for the other. This means that any
algorithm must be able to determine into which direction the vector is actually pointing, to invert
it if needed. In the present work this problem was solved by storing the numbers of the cells
adjacent to each face along with the data for that face, defining that the surface vector always
points outwards for the first cell in this table. It is then possible for an algorithm to compare the
cell number it is working on with the ones in this table, and thus determine whether inversion of

the vector is necessary. The underlying cell numbering scheme is exemplified in appendix A.

Cell volumes

Calculating cell volumes of polyhedra by partitioning them into several small geometric elements
is a fairly complex and time-consuming task. However, it is possible to compute cell volumes
also in a different way, making use of Gauss’s Divergence Theorem (eq. 4.6, chapter 4) to
replace volume integrals by surface integrals. In other words, the cell volume can be computed
by summing over all its bounding faces. Ferziger (2002) [20] gives the exact equation for this;

adapted to the notation used in the present work, we can write

V =

(Aift;) - € (3.21)

1
34

K3

where V' denotes the volume of a cell bounded by n faces with the respective face areas A;, the

three-dimensional face normal vectors 7; and the 3D coordinates of the face centroids, ¢;.

Partially dry cells

Cells are declared dry when the cell centroid lies below the terrain surface. However, it is easily
possible that this condition is not met, but still some face vertices lie below the surface. In this

case a partially dry cell is encountered. Such a cell geometry causes problems in the calculation
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of cell face areas, centroids and volumes, especially since the conservative formulation of eq.
3.21 does no longer yield the expected result for such a situation. It would be possible to deal
with partially dry cells by treating them as a set of smaller geometric entities, but this adds a
fair amount of complexity to the solution process. Therefore a workaround was chosen for the
work discussed here: if certain face vertices exhibit terrain elevations that lie above the water
surface, the terrain elevation is set equal to the water level. Indeed, this procedure introduces a
small geometric error into the whole solution process, but especially when measured terrain data
is used, this additional error is small compared to the errors inherent in the terrain data itself.

Data structure

The three-dimensional grid data is stored in an appropriate data structure, just as the one dis-
cussed in section 3.3 for the two-dimensional data. The structure used in the present work is
illustrated in fig. 3.20. The two main data types of the 3D grid are cells and faces; additionally
face vertices are required to save computation time in computing certain geometric properties of
the main types.

The nomenclature defined in section 3.3 is extended by these data type definitions:

o Vect3D: an object-oriented data type, consisting of three float elements z, y and z; this is
the same definition as for Point3D, only the name is different to make clear that a vector

and not a point is stored there.

e type[size]: an array of size elements of the data type type (i.e. a fixed-size array, not one

varying in size, as in Vector).

It should be noted that the cells data structure does not only store geometric data but also data

required for the actual flow simulation. This includes

o the discretised diagonal coefficient ap of all six governing equations,

o the right-hand side of the six discretised governing equations, usually filled in by source

and sink terms,
o the conservation quantities (u, v, w, p, k, €)
o the gradient of the conservation quantities in all three cartesian coordinate directions,

e and the isotropic eddy viscosity,

all of which are subject to discussion in the following chapter.
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3.7. 3D Grid Geometry

cells
Index-No. int
Corresp. region int
Bounding faces  Vector | int4------- .
Cell type int .
Centroid elevation float :
Volume float :
Eddy viscosity float .
Discretised coeff. ap  float[6] .
Eqn. right-hand side  float[6] :
Conserv. quantities  float[6]
Gradients Vect3D[6] '
A 4
faces
Index-No. int
Area float
Face normal Vect3D
Centroid Point3D
------------------- Neighbouring cells int[2]

face vertices

Index-No. int
Corresp. grid line int
Vertex + base elev. Point3D
Top elevation float

Figure 3.20: Grid data structure for 3D flow simulations
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4 Governing Equations and
Discretisation

4.1 Momentum Equations

4.1.1 Equations

The motion of moving fluids in three spatial dimensions is governed by the Navier-Stokes equa-
tions, a set of three nonlinear partial differential equations (PDEs). Using a complete notation

for the incompressible case, they can be written as follows:

@+u@+v@+w@ = —l@+ua2u+uazu+ua2u+f
ot 8z Oy 0z pOxr  Oz? Oy? 022 7
@—i—u@-i—v@—i—w@ = —1@+ua2v+yazv+uazv+f 4.1)
ot dr Oy 0z + pdy O Oy? 9z2 Y '
-aﬂ-i-ua—w-i—v@—kw@ = —1@+Va2w+u62w+l/62w+f
ot Oz Ay 0z p0z  Ox? Oy? 8z2 " °F

In equation 4.1 u, v and w denote the velocities in the three spatial dimensions z, y and z. The
density of the fluid p and the kinematic viscosity v are the two fluid properties that are being
used in this equation set. Pressure is denoted by p, and the terms f, f, and f, are external forces
acting on the fluid, with gravity or the Coriolis force being the most prominent examples. The

temporal dimension ¢ enters the equation through an additional transient term.

In addition to the Navier-Stokes equations, a moving fluid must satisfy the continuity equation,

which in three spatial dimensions is given by:

ou  Ov Ow

T T et 4.2
8m+3y+8z 0 (42)
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4. GOVERNING EQUATIONS AND DISCRETISATION 4.1. Momentum Equations

These equations all have a similar structure and can therefore be written in a single form of a

generic transport equation using tensor notation (Ferziger (2002) [20]):

0(pd) | B(pusd) _ 0 (109 o (43)
ot 0z; oz; 3:1:J ~~

—— L (Iv)
(n (In (111

This generic conservation equation is presented for general (i.e. compressible and incompress-
ible) fluids and uses the symbol ¢ for the quantity that is going to be transported through the
computational domain. With ¢ = u, v, w (or ¢ = u; = u,, up, uz) the Navier-Stokes equations
for the three coordinate directions z; = z,y, 2 = 71, T2, Z3 can be obtained when the diffusion
coefficient I' is set equal' to v - p. Source terms are denoted by S. In the absence of such source

terms, the continuity equation is obtained by using ¢ = 1 in equation 4.3.

The generic transport equation therefore consists of four main terms:

a transient term (I),

a convective term (II),

a diffusive term (III),

and a source term (IV).

These terms must be treated differently in an implementation since they describe different phys-
ical phenomena and — from a mathematical point of view — are members of different types of

underlying PDEs.

For the discretisation of this generic conservation equation using the Finite Volume Method on
grids with arbitrary cell shapes, it is an advantage to present equation 4.3 in a coordinate-free

vector form using the divergence and gradient operators:

0 (pg)

T + div (p¢ti) = div (I'gradg) + S, 4.4)

This notation takes into account the vectorial nature of velocity, denoted by 4 = (u,v,w) =

(u1, uz, us).

57




4.1. Momentum Equations 4. GOVERNING EQUATIONS AND DISCRETISATION

Starting point of the discretisation is the integral form of the generic conservation equation in
vector form (eq. 4.4) which has been integrated over a control volume :

3, _ . _
/Q g;¢)d(2+/ndlv (ppi) dQ:/lev (Tgradg) dQ+/QS¢dQ (4.5)

Using Gauss’s Divergence Theorem

/Q divad = /A 7. GdA (4.6)

where @ is a generic vector, we can substitute the volume integral by an integral over the volume’s
surrounding surface A, with 77 denoting the surface normal vector of A. As this work will not
deal with unsteady flows, we can drop the transient term, and after introducing the constraint of

incompressibility, we finally obtain:
/ 7 ($2)dA = / i (—graqu) dA + - / 54dQ 4.7)
A A P pJa

It should be noted that the pressure term of equation 4.1 is contained in the source term in this
notation, which is the usual procedure in the derivation of the discretised momentum equations.

It will be dealt with later in this chapter.

4.1.2 Diffusive Term

The diffusive term of equation 4.7,

/ i (Egradcp) dA (4.8)
4 \p

contains a diffusion coefficient I' which was already found to be equal to v - p in equation 4.3.
Since the kinematic viscosity v can be considered constant in the flow regimes dealt with in the
present work, this can be discretised as

v Z n; - gradg - A; 4.9)

=1

for a finite control volume confined by n faces with the respective areas A; and face normal
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vectors n;. After breaking up the gradient operator, the diffusive term can be written as

i d¢ 0¢ 9¢
v ; Ai |:n,;,x (-a—x) ; + Ny (a—y>f + N; 2 (—a—z>f] (410)

using the subscript f to denote that the partial differential is to be evaluated at the face instead
of the cell centre. n; 4, n;, and n; , are the components of 7; in the three Cartesian coordinate
directions. Davidson & Stolcis (1995) [18] use Green’s Formula to express the bracket term in
equation 4.10 in a notation that contains the values of ¢ at two discrete locations:

d¢ B¢ g\ 1 ., .
e(52), o (5), 27 (52), = 4 0n o enom e

Ay is used for the area of the face common to the two neighbouring cells N and P with the
respective cell centre values ¢ and ¢p. V; denotes a control volume from one cell centre to the
other, passing through the neighbouring face (see fig. 4.1, where V; is bordered by the dashed

line).

centroid of P

centroid of N control volume Vi

Figure 4.1: Cells and control volume for face gradient computation

The final term of equation 4.11 — denoted NOD — describes the phenomenon of non-orthogonal
diffusion. According to Davidson (1996) [16] this term equals zero in an orthogonal cell setup.

Per definition of the Voronoi diagram, however, the connection line between two cell centres
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is always orthogonal on the dividing face. This allows us to neglect this term for all faces
vertically sepafating two adjacent cells. As for the top and bottom cell faces, a slight non-
orthogonality may result due to different gradients in surface and bottom of the flow domain.
This non-orthogonality, however, is hardly severe, and will therefore be neglected as well. From
figure 4.1 we can construct the relationship

Ay 1

= — 4.12
Vf 5NP ( )

using dy p = dpy to identify the spatial distance between cell centre points NV and P. This allows

us to write the complete diffusive term as follows:

v znj 4, 8m = 90p (4.13)
i=1

on.p

Here, P denotes the cell centre point of the cell the discretised equations are written for and
N; are the respective neighbouring cell centre points (see fig. 4.2) with the spatial distance

6N,~P = 5PN,- to P.

Figure 4.2: Definition of control volumes and cell centroids
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4.1.3 Convective Term

The convective term of equation 4.7,
/ 7 - (¢3) dA (4.14)
A

can be discretised as

n R

S (40), - A (4.15)

i=1
for a finite control volume confined by n faces with the respective areas A; and face normal
vectors n;. The operator (.) s denotes the face values of its argument, in this case the product of
¢y and uy.

Central Differencing Scheme

Since all conservation quantities are stored in the cell centres in the style of a colocated arrange-
ment (Ferziger (2002) [20]), obtaining interpolated face values is a challenging task. A straight-
forward way would be to use linear interpolation, resulting in the central differencing scheme:

¢r = fidw + (1 — f1)¢p (4.16)

In this equation, f; is a weighting factor based on the spatial distance between nodes N and P
and the separating face f, respectively. Unfortunately, this technique has severe restrictions on
the boundedness of the solution, based on the cell Peclet number, which can only be satisfied
if the velocity is small, hence in diffusion-dominated low Reynolds number flows, or if the grid
spacing is small (Versteeg & Malalasekera (2001) [84]). Therefore discretisation schemes with

more favourable properties need to be employed.

Upwind Differencing Scheme

The basic idea of the upwind differencing scheme is that the value of a conservation quantity at
a given cell centre point contains all the information needed at the cell face. Therefore, after
identifying the flow direction, the cell face value is simply set equal to the cell centre value of
the upstream cell. For a cell setup as in fig. 4.3 with a western cell W, a center-cell P and an

eastern cell E, one can write for a flow in the positive coordinate direction:

¢w = ¢W and ¢e = ¢E‘ (417)
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While the boundedness property is not violated by this scheme, it must be noted that it produces
erroneous results when the flow is not aligned with the grid lines (Versteeg & Malalasekera
(2001) [84]), resulting in a smeared distribution of the transported quantities. For its appearance
is similar to diffusion effects, it is usually referred to as false diffusion. This undesired effect

reduces the usability of the scheme in many cases and therefore it is not being used in this work.

Figure 4.3: Cell setup and nodal values for the upwind differencing scheme (Versteeg &
Malalasekera (2001) [84])

QUICK Scheme

In the QUICK (Quadratic Interpolation for Convective Kinematics) scheme of Leonard (1979)
[41], the face values are interpolated from the nodal values using a quadratic interpolation func-
tion which results in a scheme of higher order, but without the problems involved with the central
differencing scheme. This scheme involves using a larger number of neighbouring cells. Unfor-
tunately, the scheme can not be generalised for arbitrary cell shapes as employed in the present
work since it uses not only the upstream cell in the discretised equation but also the cell which is
upstream to the upstream cell. When using arbitrary cell shapes, such a cell cannot be defined, a
fact which is also stated by Fluent (2003) [25]. For this reason, the scheme could not be used in
the present work.

Second Order Upwind Scheme

In a general formulation for arbitrary cell shapes, according to Fluent (2003) [25] the second

order upwind scheme is given by
$pr=¢+Vo-AF (4.18)

with ¢; denoting the face value of the transported property ¢. V¢ is the gradient of ¢ in the
upstream cell, and A3 is a vector from the upstream cell centroid to the face centroid. By em-

ploying this scheme it is ensured that the boundedness property is not violated but at the same
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time reasonable accuracy of the result is preserved. However, this scheme requires two challeng-

ing tasks:

e computing the gradient of ¢,

e and selecting the appropriate upstream cells for arbitrary cell shapes.

Gradient Computation

The appropriate way to evaluate gradients of transported properties in cells of arbitrary shape is
given in Barth & Jespersen (1989) [10]. By making use of the divergence theorem (eq. 4.6), we

can write:

Vo= a- > i A (4.19)
i=1

The value for ¢; is obtained by distance-weighted interpolation between two neighbouring cell
centres, making use of equation 4.16; V denotes the cell volume. &4 is a limiting function
which ensures that no new maxima or minima are introduced upon evaluation of the gradient. It
is defined by

®,4 = min ®y,, (4.20)

with ® 4, given by
mmO—ﬁj?% ifd; — s >0
4, = Imn(1-¢jfﬁ>, ifdi — da <0 (4.21)

1 if §; — pa =0
and ¢4 equal to the value in the centroid of the cell where the gradient is to be evaluated. ¢7%® is
the maximum of the property ¢ among the cell and all its neighbour cells, and ¢’7*™ its minimum.
Selection of Upstream Cell

Determining the upstream cell for use in the second order upwind scheme is not a straightforward
task, especially in arbitrary geometries. According to Patankar (1980) [61] the expression used
to evaluate cell face values must be spatially consistent. Following this requirement, we can write

equation 4.22 for two cells with centre points P and N:

;= fi(dn + VINASNg) + (1 — f1) (pp + VdpASpy) (4.22)
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ASyy and ASp; are the vectors from the cell centroids of NV and P to the face centroid of
f. Using the inverse distance weighting approach by f; as given in equation 4.16 this method
allows a spatially consistent evaluation of ¢;. In order to determine whether cell NV has actually
any convective influence on cell P, i.e. is an upstream cell or not, the entire convective term as

derived in equation 4.15 can be evaluated as follows:

imax (A - d,0) - (op — dn,) (4.23)
i=1

The face velocity vector @y is evaluated by applying formula 4.22 to its components u, v and
w. Using the scalar product between this face velocity vector and the face normal vector, which
is pointing outwards of the cell by definition, yields the projection of the velocity onto the face
normal. The multiplication with the face area returns the convective mass flux through the cell
face. Since the influence of the neighbouring cell is positive when the mass flux points into
the current cell, the direction of the mass flux must be inverted, which is done by applying the
minus sign in equation 4.23. The maximum function ensures that any convective influence of the

neighbouring cell is disregarded as soon as the mass flux points out of the current cell.

4.1.4 Pressure Term

For the sake of convenience the pressure term of equation 4.1 was included into the source term
in the derivation and discretisation of a generic transport equation. We shall now explicitly deal

with this term starting with its integrated form

1 Op
; /Q 55,99 (4.24)

which is to be included in the momentum equations for ; = u, 2 = v and z3 = w. Once again

using the divergence theorem, we obtain

1
; /A pn,,dA (4.25)

where n,; denotes the component of the face normal vector of the surrounding surface A which
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points into the direction of z;. This can be discretised as

1 n
Sy = ;Z M0 Ai - psi (4.26)
i=1

with p; meaning the pressure on each face. S, the result of the discretisation, is a non-linearised
source term (see section 4.1.5). The face pressure value can be obtained by weighted interpola-

tion

ps = fipn + (1= fi)pp (4.27)

where f; is based on the ratio of the normal distances from both cell centroids to the dividing
face.

4.1.5 Source Terms

Other source terms enter the momentum equations via the last term of equation 4.7:

1
 J Set0 (4.28)

Discretisation of this integral for a cell with volume V' yields:

%S¢V (4.29)

Usually, Sy is linearised, i.e. split into a term Sy, dependent of ¢ and a term Sy, independent of

¢. For cell P we can therefore write the complete source term as

S, — S,ép (4.30)

using the relations
|4 |4
Su = ;Sqﬁl and Sp = ——;quz (431)
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4.1.6 Complete Discretised Equation

After all terms of the momentum equation have been discretised they can be assembled to yield

the complete discretised set of three momentum equations for j = 1, 2, 3:

n

Z I/Aiw + max (—Ai'ffi - ﬁfi,O) . (uj,N,- - ’U,j,p)

i=1 5N.-P
1
—;nzj,i ~Ai - (fion, + (1 = fi)pp)| + Su — Spujp =0 (4.32)

In a next step all terms containing the transported properties for cell P are arranged on the left
hand side of the equation and all neighbour properties and nonlinear source terms on the right

hand side in order to receive an equation of the type

apujp = Z an; Uj N; + b (433)

i=1

which is the typical form of a discretised equation when using the Finite Volume method. In the

problem discussed here, the coefficients ap and ay, become

ap=3_ L;j + max (—A;m; - Ufi,O)] + S, and
i=1 N; P

an, = v A, + max (—A;n; - Uy, 0) (4.34)
6N1‘P

The source term b finally becomes

n

b=3%_ [_%”xj,i A (fipw, + (1 - fl)pP):| + Su (4.35)

i=1

4.1.7 Basic rules of the Finite Volume Method

Patankar (1980) [61] states the four basic rules which must not be violated in the discretisation
of the governing equations:

1. Consistency at control-volume faces: fluxes across faces of adjacent cells must be repre-

sented by the same expression in the discretisation equations,
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2. Positive coefficients: all coefficients ap and ay, must always be positive,

3. Negative-slope linearisation of the source term: in order to avoid a violation of rule 2, S,
must always be positive,

4. Sum of the neighbour coefficients: the coefficient ap must always equal the sum of the

neighbour coefficients in the absence of S,,.

In section 4.1.3 a consistent formula (eq. 4.22) was developed to evaluate transported properties
at cell faces. By applying this formula to all occurrences of uy,, the first rule is observed. Rule
2 is satisfied in the presented discretisation since the values of v, A; and dn,p are physical and
geometrical properties which cannot become negative, and the maximum-function approach for
the convective terms ensures that this term is always positive as well. Since no linearised source
term occurs in the momentum equations, the third rule is not violated. Finally, from equation
4.34 it is clearly visible that ap equals the sum of all neighbour coefficients, thus satisfying the
fourth rule.

4.2 Pressure Correction Equation

The pressure appears in all three momentum equations where it usually represents the main mo-
mentum source term. It is therefore highly impdrtant to obtain a valid pressure field. This is,
however, a very challenging task since there is no governing equation for pressure. A common
approach in incompressible flows is to use the continuity equation to couple pressure and ve-
locity, introducing a constraint on the solution such that if the correct pressure field is applied
in the momentum equations, the resulting velocity field satisfies continuity (Versteeg & Malale-
sekera (2001) [84]). This is achieved using an iterative procedure called SIMPLE algorithm —
which is an acronym for Semi-Implicit Method for Pressure-Linked Equations — first presented
in Patankar & Spalding (1972) [62]. The idea behind it is to use a guessed pressure field to
solve the momentum equations, and to use the resulting velocity field in a so-called pressure
correction equation, which is derived from the continuity equation, in order to obtain a pressure
correction field. This field again is used to correct velocity and pressure distributions before the
next iteration cycle is entered. Figure 4.4 illustrates this procedure; a detailed flow-chart of its

implementation in RSim-3D is provided in appendix A.

One of the major challenges in establishing a valid pressure field is illustrated in figure 4.5. Ina
regularly spaced grid arrangement a decoupling of the pressure term (eq. 4.26) between neigh-
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Figure 4.5: Checker-board pressure field (Steinriick (2002) [78])
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bouring cells may result, leading to a so-called checker-board pressure field (Patankar (1980)
[61], Steinriick (2002) [78]). While such a pressure distribution perfectly satisfies the momen-
tum equations it impairs overall convergence and yields oscillatory solutions. In the polyhedral
grid arrangement adopted in this work, there is no reason to expect oscillations in the horizontal
projection of the pressure field since the cell shapes do not permit such solutions to occur. In
the vertical direction, however, the grid is structured and therefore at a high risk of producing
checker-board solutions. A usual remedy to this problem is to store pressure and velocities in
different locations within the grid, which results in a staggered grid arrangement (see fig. 4.6).
In the polyhedral grid setup this would result in large additional complexities as far as storage
requirements and memory structures are concerned, which renders the approach not feasible.
Instead, an approach presented by Rhie & Chow (1983) [66] is used where oscillations are pre-
vented by introducing a third derivative term in pressure into the expression for the mass flux over
cell faces. This term is only added when the continuity defect in the pressure correction equation

has to be resolved and is not applied to the convection terms in the momentum equations.

Figure 4.6: Complex staggered variable placement (location of velocities: red vectors; location
‘of pressure: blue circles)

Following Davidson (1996) [16] the derivation starts with the evaluation of the pressure gradient
vector at the centroids of two adjacent cells P and N; and projecting it on the normal vector of

{-?2} n; and {_a_p_} 7, (4.36)
8a:j P 6$j N;
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The normal vector projection of the pressure gradient at the cell face can be written as

{ op } m, = P PP (4.37)

oz; [, bpw,

with dpy, denoting the spatial distance between the cell centroids. Defining the third derivative
term as difference between two first derivative terms, the first evaluated at the cell centroids (eq.
4.36), the second at the cell face (eq. 4.37), we obtain

PN, — Pp Op Op .
e (sfzz) sa-mizz) ) 439

using the interpolation technique presented in equation 4.27 with f; implemented as distance-
weighted coefficient.

The mass flux at the cell faces can now be written as (Davidson (1996) [16])

PN; — PP Op op B
o (ﬁ {b?j}m +(1-f) {3_%}19) nz] (4.39)

once again using the operator (.) 7 to denote that its argument is to be evaluated at the face. With

pVA)
ap f

my, = pAilyT; — (

ap as the discretised diagonal coefficient in the momentum equations (eq. 4.34), we can write

(pVA>f=VfAi[ i 1_f1] (4.40)

ap ap,N; ap,p

with V; denoting the face control volume defined in figure 4.1. The deﬁsity p is dropped from
the right hand side of the equation since the discretised diagonal coefficients apy, and app
were already divided by the density during the derivation of the moméntum equations. The face

control volume V; can now be approximated as
Vi = Aidpn, (4.41)
which allows us to rewrite equation 4.39 as follows:

1 1- 5 9 .
-a |l 0 [(m,. ~ pr) = bew, (fl (s} +a-s {%}P) n]
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The face velocity iy, can be evaluated by applying equation 4.22 to its components. Finally, both
pressure gradients at cell centroids are obtained through equation 4.19.

In a next step, we express the continuity equation for a discretised cell with n faces by using the

mass flux: .
D oy, =0 (4.43)
i=1

However, during an iterative procedure, this equation will not be satisfied if the mass flux was
derived using the pressure and velocity fields from a previous iteration step. Therefore the mass

fluxes ry, are split into an old value rn}, and a correction m’fi:

Ty, =m}, + 1y, (4.44)

In a converged solution, the pressure correction must be zero. Hence, using the equation for the
mass flux over cell faces (eq. 4.42) without the stabilising third derivative term, we obtain the

following relation

' 1 - ’ 12
my, = pAsy,i; = A?( ho 1z 1) (P, — Pp) (4.45)

apn; app

’ . . .
where py. and pp are the respective pressure correction values for cell centroids N; and P.

Inserting this expression into equation 4.44, the continuity equation (eq. 4.43) yields:

n

ap,n; i=1

After arranging all terms containing the pressure correction for P on the left hand side and those
for the neighbours N; on the right hand side we obtain an equation similar to eq. 4.33 in the

usual way of a Finite Volume discretisation:

appp = Y anpy, +b (4.47)

i=1

The coefficients ap, ay, and b subsequently take the following values:

ap = Xn:Af <L+1_—fl)

ap,n; app
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o, = A?( 5 +1‘f1) (4.48)
ap nN; app
=, = . fi 1—f1]
b= m" = Al 7t — A2 + Y — D)
; & ; {p % LLP,N; app [(pN' pp)

—6PNi (flvai + (1 - fl) VPP) 7771]}

p* and U} are pressure and velocity fields from a previous iteration step. Vp was used as a
short-hand notation for the pressure gradient evaluated at cell centroids.

Assessment of the discretised pressure correction equation in regard to the four basic rules of the
Finite Volume Method (section 4.1.7) gives:

1. Consistent functions were used to obtain velocities at cell faces and weighted diagonal

coefficients of the momentum equation.

2. The coefficients ap and ay, are dependent on the face areas and the diagonal coefficients

of the momentum equation only, which both take positive values at any time.
3. There is no linearised source term that could become negative.

4. ap is equal to the sum of all ay, for a given cell.

Hence the discretised pressure correction equation obeys all basic rules of the Finite Volume
Method.

It is important to point out that the result of the solution of the pressure correction equation is
a pressure correction field for the whole computational domain. Thus the pressure field itself
is never obtained explicitly but only after applying the pressure correction everywhere in a final

correction step which also includes updating the velocity field:
p = p+p
u . -_ u* —_— V Qp_l
T papp OT;

(4.49)

V denotes the cell volume while ap p is the discretised diagonal coefficient in the momentum
equation which must be multiplied with the density p since the momentum equations were de-

rived without density terms. The gradient of the pressure correction in all three coordinate direc-
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tions can be obtained by making use of the divergence theorem (eq. 4.6) once more,

op LA
P o py - Ay 4.50
al'j %4 i=1 pfi i ( )

where the face values of the pressure correction plf.- can easily be obtained using linear interpo-
lation.

4.3 Turbulence Modelling

4.3.1 Turbulence Models

The first step towards modelling of turbulent flows is the splitting of velocity components and

pressure into a mean and a fluctuating component:

- !
u; = ’U,j+’uj

p = p+p (4.51)

Introducing this concept into the Navier-Stokes equations the Reynolds equations for turbulent

flow can be written. In analogy to equation 4.1, they are written in a complete notation:

@'i‘ﬁ@'i-ﬁ@—i-’u_)@ = —l@+V82ﬂ+Va2a+I/82a—8m—‘aw—aw+f

ot oz Oy 0z pOx 0x? Oy? 022 Oz Jy 0z ’

@+ﬂ@+_@+w@ = —l@+uazﬁ+ya2ﬁ+l/82f}—-aw—am—am'f‘f

ot 0z Oy Oz pdy 0z  Oy* 022 Oz Oy 0z v
oo, 0w, 0w oo _ 105, Ou ., Pu, v Ol _ovw _ow
ot Oz Oy 0z pOz = Oz Oy? 022 ox Ay 0z *
(4.52)

Each momentum equation contains three additional terms which involve products of fluctuating
velocities. These additional terms act as turbulent stresses (Reynolds stresses) on the mean ve-
locity components (Versteeg & Malalasekera (2001) [84]). In tensor notation we can write the
Reynolds equations in short: -

ou; 10p Ouu, °u;
T u]__ p_ 1J+I/au

dz;  pdz; O ox?

J

+S (4.53)
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In general it is not possible to derive governing equations for the Reynolds stresses. Several
turbulence models are available to deal with this closure problem, the most common methods are

described in the following sections.

Boussinesq established a relationship between the Reynolds stresses and the mean rates of de-

formation, resulting in

77 671:1' 6”_7 2
—uu; = — =ké;; 4.54
uzu] v (82:] + 81‘,) 3 ( )
where k is the turbulent kinetic energy
1 e — —
— ' 7 12
k_2(u2+u2+w ) (4.55)

and §;; the Kronecker delta, which takes the value 6;; = 1if i = jand §;; = 0if i # j.
The symbol v, is used to denote the turbulent or eddy viscosity for which an assumption must be
made. Based on the complexity of this assumption, a distinction in zero-equation-, one-equation-
two-equation-, and turbulent stress models is made (Rodi (1984) [68]).

Zero-Equation Models

This model type is characterised by the absence of any kind of transport equation for turbulence
quantities. The eddy viscosity is either assumed constant or related to the mean velocity distrib-
ution. According to Rodi (1984) [68] a constant eddy-viscosity assumption has little significance
for the calculation of hydrodynamic properties since in flow situations where the turbulence terms
are unimportant the model has no influence anyway, and in all other flow situations the model is

mostly too coarse to describe this behaviour correctly.

A specific way to relate the eddy viscosity to the mean velocity gradient significant in simple
two-dimensional flows was first proposed by Prandtl,

0t

5 (4.56)

Vt:£fn

which yields much more realistic results. The parameter Z,, is the so-called mixing length which
can be computed by simple algebraic formulae based on the flow type encountered. A disad-
vantage of this model is its incapability of describing flows with separation and recirculation
(Versteeg & Malalasekera (2001) [84]), therefore it is not the best choice for the present work.
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One-Equation Models

In this model type the eddy viscosity is related to a velocity scale for which a transport equation
can be written. Known as the Kolmogorov-Prandtl expression, it yields

v, = c,VkL (4.57)

with v/k as the velocity scale related to the turbulent kinetic energy defined in equation 4.55,
L a characteristic length of the flow domain and c; an empirical constant. Following Versteeg
& Malalasekera (2001) [84], the model equation for the turbulent kinetic energy k written in

coordinate-free vector form in analogy to equation 4.4 can be written as:

ok = —F

=5 +div (k) = div (ﬂgradk) W, By e (4.58)
S N Ik _ —_— V)

(I an (rrn (V)

In this equation, oy is an empirical constant. E;; is the mean rate of deformation of a finite fluid

volume, given by:
01; + 0t

Ei' = 6.’13]' 8.’1,‘1'

(4.59)

The symbol £ denotes the viscous dissipation, i.e. the transfer of kinetic energy into internal
energy of the fluid, and stands for: L
Ou; Ou;

8a:j 8xj

E=v (4.60)

The transport equation for the turbulent kinetic energy therefore consists of five main terms:

e atransient term, describing the rate of change of k over time (I)
¢ aterm describing the convective transport (1I),
e aterm giving the diffusive transport (III),

e a term accounting for production of kinetic energy by shear (IV) which is often also de-
noted P,

¢ and finally a term describing the dissipation of kinetic energy (V).
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Following Rodi (1984) [68], in a one-equation model the dissipation is usually modelled by the
expression

£=cp— (4.61)

where cp is another empirical constant.

Rodi (1984) [68] assesses the class of one-equation models as superior to the models based on
the mixing-length hypothesis since they account for convective and diffusive transport of the
turbulent velocity scale. However, one of the main difficulties is the specification of the length
scale L in flows that are more complex than shear layers as there is little empirical information
available on the length scale distribution. That’s the reason why two-equation models, where the
length scale is determined from another transport equation, are a better choice for the present
work than one-equation models.

Two-Equation Models

The most popular two-equation model today is the £k — € model by Launder & Spalding (1974)
[40]. Following the idea that dissipation itself is a process influencing the length scale, a transport

equation for € can be derived
— + div (eu) = div (——Vt grads) -C s—ul’u,' B — Coe— (4 62)
ot O¢ ! k v “ k ’

where the eddy viscosity v, is modelled as
Y = C’u? (4.63)

and Cy,, Oy, o, and C, are empirical constants like o in the transport equation for k. The
values recommended by Launder & Spalding (1974) [40] are:

C, = 0.09

o, = 1.00

o = 1.30 (4.64)
Cie = 144
Cop = 192
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The meaning of the terms in the £- equation is the same as those in the k-equation with the last

two terms accounting for production and destruction of €.

One of the advantages of the £k — € model is the validity of the model constants for a large
number of flow situations. However, complete universality of the constants cannot and should
not be expected (Rodi (1984) [68]). Problems where the standard £ — € model performs poorly
have been well documented in literature. These include rotating flows and flows with highly
curved boundary layers, fully developed flows in non-circular ducts (Versteeg & Malalasekera
(2001) [84]) or the prediction of the spreading rate of axisymmetric jets (Rodi (1972) [67]).
Modifications of the model constants have been proposed to overcome some of these problems.
The RNG k — ¢ model (Yakhot & Orszag (1986) [93]) and the k — £ model for low Reynolds
numbers (Patel et al. (1985) [63]) are among the better known ones.

Another two-equation model is the £ — w model by Wilcox (1994) [90]. This model uses an in-
verse time scale denoted w — defined as dissipation per turbulent kinetic energy — and employs a
transport equation for this quantity which is quite similar to the e-equation except for a different
set of empirical constants. Wilcox (1994) [90] states that the model has a high numerical stabil-
ity and shows better rates of convergence than comparable models. However, its applicability
decreases with increasing Reynolds numbers with the model performing best at low to medium
Reynolds numbers. Furthermore, the model is quite sensitive as far as the choice of boundary
conditions is concerned. To overcome this problem a modified £ — w model has been proposed
by Menter (1994) [46].

Because the k — € model has been used extensively in the past and is therefore very well docu-
mented for its applicability to flows with high Reynolds numbers, it is chosen for this work.

Reynolds Stress Models

Reynolds or turbulent stress models, also called second-moment closure models, account for
individual transport of the six Reynolds stresses W This overcomes the limitations introduced
by the concept of an isotropic eddy viscosity and allows for an application of the model to flow
situations which do not yield satisfactory results when computed using two-equation models.
The single most relevant flow phenomenon in river flow applications affected by this limitation

is the prediction of turbulence-driven secondary motions (Rodi (1984) [68]).

On the other hand, the application of Reynolds stress models is highly complicated and compu-
tationally expensive. Six additional transport equations need to be solved and all of them require

the interpolation of gradients at cell faces which is a fairly complex task in the case of arbitrary
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cell shapes as employed in the present work. However, a requirement for the successful applica-
tion of Reynolds stress models is the availability of measurements for all transported properties
at inlet and outlet of the computational domain, including correlations between velocity fluc-
tuations. If this necessary input data can be provided, this type of turbulence models has the
capabilities to account for an improved representation of the physical processes of turbulence.
An implementation of a Reynolds stress model into RSim-3D is therefore an important prospect

for future improvements of this simulation model.

4.3.2 Discretisation

Transport equation for kinetic energy &

After dropping the transient term from the transport equation for turbulent kinetic energy k (eq.

4.58) it can be presented in an integrated form suitable for a Finite Volume discretisation:
/ div (k&) d2 = / div (ﬂigradk) 0 — / iy - Fyyd( — / £dQ (4.65)
Q Q Ok Q Q

The convective and diffusive terms can be discretised in the same way as in the momentum
equations. Following the procedure outlined in equations 4.7 through 4.13, we obtain for the
diffusive term

/ div (i gradk) dn (4.66)
Q O
the following discretised form
12 kv, — k
=S A (4.67)
Ok =1 On:P

where v, s, is the eddy viscosity at the cell face f;, obtained by linear interpolation from the

values at neighbouring cell centroids.

In analogy to equations 4.14 through 4.23, the convective term
/ div (ki) d0 (4.68)
Q

can be discretised to become
n

>~ max (—Ai; - @;,0) - (kp — k) (4.69)

=1
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with % denoting the face velocity vector defined in the derivation of the momentum equations.

In order to discretise the production term we can employ the Boussinesq approximation (eq.
4.54) in conjunction with equation 4.59 to obtain

ou\> [(ov\*  (ow\’| (0w 0v\*

() (%) *(‘a?)]*(%*%) @

+ Q@_{__@_’LD 2_|_ @_i_@ 2—216 _8_’&_}_@4_@
0z Oz \0z Oy 3°F\ozr "oy ' 8z

which was presented in a full notation for the sake of clarity. All six different partial differentials

Q

are evaluated using equation 4.19. Fortunately, these differentials are also needed in the second
order upwind procedure and therefore no additional effort is needed to obtain them. While it may
be tempting to implement the part containing the turbulent Kinetic energy as a linearised source
term, it is not wise to do so since it cannot be guaranteed that this term will always be positive,
thus violating the third basic rule of the Finite Volume method. Therefore the complete right

hand side of equation 4.70 must be implemented as a nonlinear source term S,.

Finally, the dissipation term is discretised as:

- / edQ = —epV @.71)
Q

While it was not possible to linearise the production term, it is possible to do so with the dissi-
pation term which will have a stabilising effect on the solution. Neither a negative dissipation
nor a negative cell volume are physically possible, and so we can “’linearise” the dissipation term
without violation of the basic rules of the Finite Volume Method to yield

_ / ed = -2 g, (4.72)
Q kn

where k}, is the turbulent kinetic energy value after the previous iteration, resulting in the linear

source term
S 3 pV
r? k*
P

(4.73)

Putting the terms together and re-arranging them in the same way as in the previous sections for
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the momentum and pressure correction equations, we obtain

apk‘p = Za’NikN,- +b (474)

i=1

with the following values for ap, ay, and b:

ap = Z{ [fth,Ni+(1_f1)Vt,P]+maX (—Ami -uf,O)}-i- P*
o1 Lokdn,p k%

ay;, = [fiven, + (1 = f1) v p] + max <_Aini “Uy, 0) (4.75)
o'k:(SNiP

- ox Jy 0z dy Oz 0z Oz
+ @+@ 2_zk* @.{.@_f__a_w__ '
0z 0Oy 37P\oz  dy 0Oz

It is important to note that upon solution of the discretised k-equation slightly negative values
for k may be obtained. This is a phenomenon of numerics which must be avoided since it dis-
equilibrates the whole solution algorithm. Therefore it must be ensured that & is always positive

by enforcing k£ > 0 during the iteration cycle.

A consideration of the discretised k-equation regarding the basic rules of the Finite Volume
. method yields that none of these rules are violated since consistent formulations were used at cell
faces, all coefficients are always positive, the linearised source term is positive and the diagonal
coefficient equals the sum of the neighbour coefficients.

Transport equation for dissipation ¢

The transport equation for dissipation € (eq. 4.62) presented without the transient term and in
integrated form reads:

. = . Vg € =5 52 .
/Q div () d2 = /Q div (—grada) 0 - /Q Cre s, - EigdQ - /Q Gl (476)

O¢

The diffusive and convective terms are very similar to their counterparts in the k-equation. There-

fore we can directly write them in discretised form:

. W 1 & EN, —EP
-t 0 = = Uy f 4.77
/Q div (05 grade) d > > A, (4.77)

€ j=1 5NiP
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[2 div(e) d = Y max (—Aui; - G;,0) - (ep — ) (4.78)
i=1

Using the definition of P, from equation 4.70 the production term can be discretised as:

7
J

- / Creldd, - EdQ = VO 22 P, (4.79)
Q k kp

Again, it is not possible to linearise the production term without violating the third basic rule of
the Finite Volume method. But it is possible to improve stability in another way; by using the
definition of the eddy viscosity (eq. 4.63), we can write

k
VCLiE P, = VC1.C P2 (4.80)
kp U

which removes any direct reference to ep from the source term since v; is computed before the
equations of turbulence are evaluated. Finally, the destruction term of ¢ is modelled as:

g2 g2
—/ Coid = -VGCy 2P 4.81)
Q k kp

Using the same procedure as with the production term, it can be written

2
—Vck;‘;ﬂ - _VCRCEe, . (4.82)
P 4

and this term can be expressed as a linearised source term:

S, = VC2EC,LIZ—P (4.83)
t

Finally, the terms are put together in the usual way to obtain

GpEp = ZaNisN,. +b (4.84)

i=1

with the following values for ap, ay, and b:

- A; S k
ap = Z { [fiven; + (1 — fi) v p] + max (_Aini Uy, 0)} + VC’geC,LTP

i=1 O¢ 6N,-P t
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Ai - =
an, = [fivin, + (1 = f1) vi,p] + max (_Aini ‘g, 0) (4.85)
GE(sNiP
k
b = VCLC,P—Z
U

The statement about enforcing the positiveness of k applies in the same way to € as well and
the considerations regarding the basic rules of the Finite Volume method also hold true for the
discretised e-equation.

Modification of momentum equations

Very little change is required to solve the Reynolds equations (eq. 4.52) with the technique
already derived for the Navier-Stokes equations (eq. 4.1). The equations have the same form if

the molecular viscosity p is replaced by the effective viscosity

et = [+ it (4.86)

as pointed out by Ferziger (2002) [20]. For the discretised momentum equations in the present
work contain the kinematic viscosity v, it is therefore sufficient to replace it by veg = v + 1.
This is the only modification needed in order to solve the Reynolds equations.

4.4 Boundary Conditions
4.4.1 Inlet

Momentum equations

At the inlet of the computational domain, the normal velocities are prescribed. Given the dis-

charge @, usually it is sufficient to compute the normal velocities u,, by

Up = mQ I (4.87)

i=1

where m is the number of faces at the inlet. This prescribes a uniform velocity distribution which
does not occur in reality; a fact that does not matter if the inlet boundary is placed sufficiently far

upstream from the area of interest since the flow will develop a natural distribution very quickly.
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If this method appears too inaccurate, it is alternatively possible to prescribe a logarithmic veloc-
ity profile at the inlet. For points outside of the viscous wall layer, Schlichting & Gersten (1997)
[71] give the following law of the wall

IO NE IR (i) (4.88)

vk \W

where u(y) is the velocity dependent on the wall distance y, u* the shear velocity defined as

u = | (4.89)

with 7, denoting the wall shear stress. & is the Von Karman constant which takes the value
k = 0.41. For the fully rough flow domain, the parameter y; can be computed by

yr = ks exp (—8.0x) ' (4.90)

where k; is Nikuradse’s equivalent sand roughness of the wall. Using this relationship, equation
4.88 can be reformulated to read:

w(y) = %*m (26]'5’8?’) 4.91)

The velocity distribution given in this formula can subsequently be integrated over the depth of
the flow domain h in order to obtain the discharge Q:

Q= [ ) Sy “92)

The result of this integral is used to compute the shear velocity u*

ut = K,Q !
A2.2802 + In (Eh-)

(4.93)

which finally allows us to use expression 4.91 to prescribe the velocity at the inlet dependent
on the vertical layer. It should be noted that the denominator of this equation must not become
negative for this approach to work. This sets a natural limit for the ratio between the depth of the

flow domain and the equivalent sand roughness of the wall.
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While the equivalent sand roughness k; is used throughout many boundary conditions, often this
parameter is not available in engineering calculations, but the Strickler coefficient kg, is given

instead. These two parameters are related by the empirical relationship:

6
k, = (Z%) (4.94)
| kst

According to USACE (1994) [83], this formula holds true for riprapped channels where &k, =
Dgy, while for natural sediment where k, = Ds,, the relationship

6
k, = (%) (4.95)
ks

is appropriate. However, these equations are applicable only to medium-range values for the
Strickler parameter, i.e. not to smooth and very rough surfaces. Naudascher (1987) [50] assesses
their applicability for typical Reynolds numbers in river flow situations to be in the range 20 <
4R/ks < 1000 where R denotes the hydraulic radius.

Turbulent kinetic energy

If the inlet boundary is placed sufficiently far away from the region of interest, the prescribed
values for k£ have no significant influence on the turbulence field further downstream as long as
the k — ¢ model is employed. This conclusion can be drawn when comparing the suggestions
given by different authors as far as this quantity is concerned. Ferziger (2002) [20] suggests to
use a small value for k and gives k = 10~%%? as example, while Versteeg & Malalasekera (2001)
[84] propose to estimate k£ from the turbulence intensity 7, which is typically between 1% and
6%: k =2 (@T;,)*. Davidson & Nielsen (1995) [17] document the use of k = 10242 and Olsen
(1999) [55] finally relates the turbulent kinetic energy to the wall shear stress 7 at the inlet and

obtains
-

kg =
py/Cu

(4.96)

for the inlet bed with a linear decrease towards the free surface. This approach is adopted here.

Dissipation

The dissipation £ must return the correct scale, thus it is useful to choose its inlet value in ac-

cordance with equation 4.61 which can be reformulated (Versteeg & Malalasekera (2001) [84])
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as
(4.97)

where L is a characteristic length of the flow domain that can be approximated by L ~ h where
h is the water depth. This procedure is also confirmed in a paper by Davidson & Nielsen (1995)
0.16k!-5

[17] where an inlet value of € = =°*— is being used; the only difference is the choice of 0.1L

as mixing length in the denominator owing to the different type of flow problem modelled.

4.4.2 Outlet

Ferziger (2002) [20] notes that we usually know little about the flow at the outlet and for this
reason, these boundaries should be as far downstream of the region of interest as possible. In
the present work a zero gradient boundary condition in the streamwise direction is applied to all
quantities:

Ou; Op Ok O¢

22 498

On On On On (4.98)
Of course, for this assumption to hold true, the outlet boundary must be placed perpendicular to
the flow direction. Additionally it must be noted that the pressure correction equation does only
yield relative pressures, therefore it is necessary and common practice to fix the pressure at one

outlet node and let the pressure field evolve from there.

As stated in Versteeg & Malalasekera (2001) [84] mass conservation over the whole computa-
tional domain is not guaranteed during the iterative solution process. Therefore it can be advan-
tageous to sum up the mass flux M, going out of the domain after an iteration cycle and then

use the relation
Min

out

*
n

T (4.99)

to correct the normal velocities u,, at the outlet for the next iteration cycle. This procedure has

also been adopted in the present work.

4.4.3 Solid Walls

Momentum equations

Directly at the wall all velocities are zero (no-slip condition) and no convective fluxes take place

through the wall. The momentum equations, however, receive sink terms based on the shear
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stress at the wall. In order to derive these terms, first the velocity in tangential direction to the
wall u, needs to be computed. This is done by calculating the tangent vector £ in a first step by
using the relations derived by Ferziger (2002) [20]

@, = i-(@-A)7"
P = (4.100)
|up!

where ¥ is the three-dimensional velocity vector at the nearest wall node and 7 the normal vector
of the cell face at the wall, pointing outwards as usual. The tangential velocity is then obtained

by projecting the velocity vector on #:
u =U-t (4.101)

In a next step it must be evaluated whether the cell centroid nearest to the wall lies within the
viscous sublayer or the turbulent outer region. This evaluation is performed by first computing

g+ = Bvr [T (4.102)
v \p

where Ayp is the normal distance from the cell centroid to the wall. Assuming the near wall
node is in the turbulent outer region — which is almost always the case — the wall shear stress 7,
can be estimated as given by Versteeg & Malalasekera (2001) [84],

T = pCikE 2L (4.103)

where kp denotes the turbulent kinetic energy at the near-wall node and ut is derived from
equation 4.88. The limit of the viscous sublayer is given by y* < 11.63. If y* is found to be less
than this value, the assumption that the cell centroid was in the turbulent region does not hold,

and the wall shear stress must be computed by:

Uy
Ayp

Tw = Ik (4.104)

After the wall shear stress has been obtained, the sink term for the momentum equations j =
1,2, 3 reads
. T, w

Su.,j = —7Af . tj (4105)
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where ¢; is the row of vector £ that points into the direction of j and A; denotes the surface area

the cell shares with the wall.

Attention must also be paid to the implementation of the pressure term. The pressure p; at the
wall cannot be obtained in the usual way since there is no second cell the linear interpolation
could be performed with. Wesseling (2001) [89] suggests to extrapolate the needed values from
the cell centroid values of the near-wall cell and the cell next to it in the computational domain.
The problem with such an approach, however, is that such a second cell is undefined in arbitrary
unstructured grid setups — which was also the reason why the QUICK scheme could not be used
(section 4.1.3). Some other authors state that their flow problems gave satisfactory results upon
using the zero-gradient boundary condition for pressure. Especially in curved channels where
the pressure gradients become significant, such an approach is not a feasible solution. Therefore
it is proposed to use the pressure gradient Vpp obtained via the procedure outlined in equation

4.19 and already used in the pressure correction equation and set

ps=pp+Vpp-§ (4.106)

where 5'is the vector from the cell centroid to the wall face centroid. However, it should be noted
that during the evaluation of the pressure gradient itself assumptions about the value at the face
need to be made. Due to these assumptions the pressure gradient within the cell can never be
steeper than obtained from all surrounding cells which eventually leads to the same result as in
Wesseling’s (2001) [89] gradient evaluation.

Turbulent kinetic energy

For the turbulent kinetic energy right at the wall it is appropriate to set k = 0 (Ferziger (2002)
[20]). At the same time, the equations for near-wall cells must receive an explicit source term

|4

— — oCik: +)— 4.107
Se = (rutn - pC kb A (4.107)

according to Versteeg & Malalasekera (2001) [84]. This source term can be linearised, and after
introducing k% to denote the value of kinetic energy after the previous iteration and dividing the

term by density, we can write:

(4.108)
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Dissipation

Setting a zero dissipation value at the wall is inappropriate. But since a value at the wall would
be needed in order to apply the transport equation for ¢ there, the usual procedure is to avoid
solving the e-equations in near-wall regions by setting the nodal value of the cell adjacent to a
wall to the value given by Versteeg & Malalasekera (2001) [84]:

3 3
41.2
_ Cik}

= 4.1
A (4.109)

Ep

4.4.4 Free Surface

The free surface is implemented as a symmetry boundary which means that no fluxes occur
across this boundary. The normal velocity (usually the u3 = w component) is therefore zero
right at the boundary. All other properties take boundary values equal to those encountered in
the cell centroid right beneath the free surface. Ferziger (2002) [20] notes that a free surface
boundary condition of £ =~ 0 and € ~ 0 would be appropriate, but on the other hand turbulent
structures can be observed exactly at the free surface of a water body. However, as a matter
of fact no scalar fluxes take place concerning these quantities. Therefore the condition of zero

fluxes of k£ and € was used in this work.

The pressure at the free surface is evaluated by using the same gradient approach as described in
the previous section. This implies, however, that the pressure is not zero at the surface (except for
the single outlet surface cell where it is fixed). The resulting extra pressure head can be directly
used to locate and subsequently update the position of the free surface. This approach has been

implemented in the present work.

4.5 Solution of Equations

4.5.1 Solver

After the discretised equations have been assembled they need to be solved in an efficient way
without consuming too much time or computer memory. Very efficient algorithms are available
if the coefficients of the discretised equations can be arranged in diagonally dominant matrix
form (Schmid (2001) [72]) as it is possible when structured grids are employed. For unstructured
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grids with a fixed number of neighbours for each cell it may be possible to use solvers developed
in context of the Finite Element method (Zienkiewicz (1971) [95]). However, if even the number
of neighbouring cells is unknown a priori and varies from cell to cell, none of these techniques

is applicable.

The solution methods applicable to problems involving grids with cells that may have an arbi-
trary number of neighbours include the Gauss-Seidel method (Press (1987) [65]), the Conjugate
Gradient Squared method (Barrett et al. (1994) [9]) or its modification, the Biconjugate Gradient
Stabilized method. The latter two exhibit a very good convergence behaviour at the cost of large
memory requirements during a cycle of the rather complex solution algorithms. For the work
presented here, the Gauss-Seidel method was preferred. It is a slow solution algorithm but there
are very few memory requirements for the solver itself and implementation is uncomplicated.
Furthermore the algorithm is easy to understand and the reasons for instabilities can be located

quickly, which is an advantage during model development and validation.

The Gauss-Seidel method solves the linear system of equations Az = b where A is a matrix of
coefficients, b a vector containing boundary conditions and z the unknown solution vector. In
the present work A is composed of the coefficients ap and ay,, and b takes the values of the
nonlinear source terms in the discretised equations. The algorithm solves the n..;; equations one

at a time in sequence and can be written as

(k)

k-1
®) b — YT (b=1)
) =

— D j>i 04T
Qi

(4.110)

where ¢ and j are the cell numbers, thus a;; the coefficients a, and a;; the diagonal coefficient ap
for each cell, and k is the inner iteration counter of the algorithm. It is easy to see that results of
the solution of previous equations are used as soon as they are available. The solution requires an
initial guess z(® which is provided by using results obtained in the previous outer iteration step.
The only exception is the pressure correction equation, where it is useful to start from p' = 0 so

that the solution for p does not acquire a large absolute value (Patankar (1980) [61]).

The Gauss-Seidel procedure is usually repeated until convergence is obtained. However, con-
vergence is difficult to assess within the solver itself for it is applied to equations with entirely
different scales and physical meanings. Furthermore it is not useful to solve the equations until
convergence is achieved since the result is only used as an intermediate result in the overall solu-
tion (Ferziger (2002) [20]). For this reason, the Gauss-Seidel procedure is repeated a predefined
number of times only, without extra assessment of convergence after every iteration. Usually,

evaluating each equation 10 times is sufficient for the most common flow situations.
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-4.5.2 Relaxation Scheme

Due to the strong nonlinearity in the governing equations the solution process may rapidly di-
verge if the solution vector obtained from the solver is used as starting point for the next overall
iteration cycle. Especially the pressure correction equation is susceptible to divergence (Versteeg
& Malalasekera (2001) [84]). It is therefore necessary to employ an under-relaxation scheme,

such as
" = agd + (1 — ag) ™ (4.111)

where the new value ¢"" is obtained from the solution ¢°!¢ after the previous iteration and
the solution ¢ given by the solver in the current iteration step by using the relaxation factor oy
which is typically in the range between 0 and 1. The choice of optimum relaxation factors is
problem dependent and can be found by test computations or experience. There are, however,
typical ranges for the selection of the relaxation factors for the six governing equations of three-

dimensional CFD problems:

The velocity relaxation factor «,, is usually in the range 0.5 — 0.8 (4psley (2003) [6]). Olsen
(2000a) [57] employs a default value of 0.8 but notes that the factor can be set as low as 0.1 for

flow situations that are difficult to converge.

For the pressure relaxation factor a,, Apsley (2003) [6] gives the typical range 0.1 — 0.3. This is
fully consistent with Olsen (1999, 2000a) [55, 57] where a default value of 0.2 is used. The latter
work also gives a lower bound of 0.03 for complex flow situations. These observations can be
confirmed by the author as well: some flow problems required a pressure relaxation factor less

than 0.1 during the first iteration cycles in order to achieve convergence.

Finally, the relaxation factors for the turbulent kinetic energy and the dissipation (o and o)
default to 0.5 in Olsen (2000a) [S7] but are said to sometimes require values as low as 0.05 in
order to result in a converged solution. RSim-3D uses default values for the relaxation factors

according to table 4.1.

RSim-3D uses lower factors for the turbulence properties because the governing equations for
these quantities are not the ones that dominate the overall convergence behaviour (see figure 4.8)
as the number of iterations required to solve a flow problem is vastly dominated by the pressure
correction equation. So, in order to damp the sometimes observed instabilities in the turbulence
equations lower default relaxation factors have been chosen. However, for the vast majority of

flow situations choosing o = @, = 0.5 or larger would be sufficient.

Also the update of the free surface position introduces instabilities into the solution process since
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| Quantity | Symbol | Default value |
Velocities Qy 0.8
Pressure op 0.2
Turb. kinetic energy ok 0.3
Dissipation Qe 0.3
Free surface position s 0.5

Table 4.1; Default relaxation factors

cell volumes and vertical position of the cell centroids are changed after every update. Depending
on the complexity of the flow problem these instabilities may also lead to rapid divergence.
Therefore it is advisable to relax the free surface position as well. A value of 0.5 for this value
has worked for most flow situations examined. Finally it should be noted that updates of the free
surface are not overly useful if the scaled residuals (see section 4.5.3) of all other properties are

still large. Therefore these updates are only performed if all residuals are below 0.05.

4.5.3 Residuals

In order to define convergence of a solution an assessment of the solution errors is required. For
every property ¢ in each cell the imbalance within the discretised equation can be computed as
the difference between right hand side and left hand side. Summing this imbalance over all cells

we obtain the unscaled residual R?:

n

ncell§
RS =313 anon, +b—apop (4.112)
j=1 li=1

In Fluent (2003) [25] it is noted that even though R? is a measure of the solution error, it is diffi-
cult to judge convergence since no scaling is employed that allows for a generalised assessment
in different types of flow problems. A good scaling factor is the left hand side of the discretised

equation. Therefore a scaled residual R? can be introduced

Rg

RO = %
it lapdel

(4.113)

that is suitable for judging convergence on any type of flow problem. This formula is used in the

present work to determine the residuals of the k and ¢ equations. For the momentum equations
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the denominator term ap@p is replaced by ap |@p| where |ip| is the magnitude of the velocity at
cell P (Fluent (2003) [25]).

The unscaled residual for the continuity equation is defined as the absolute value of the source
term of the pressure correction equation (eq. 4.48) summed over all cells. This definition is equal

to stating that the unscaled continuity residual is the sum of mass creation in all cells:

n
2y,

i=1

TNcells

R, =73

j=1

(4.114)

In order to scale the continuity residuals they are divided by the maximum unscaled residual

within the first five iterations (R, 5) resulting in:

R = RC" (4.115)
1,5

In the present work, convergence of the solution is obtained when the scaled continuity residual

is less than 10~ and all other residuals are less than 1075,

4.6 Remarks on Numerical Stability and Convergence

Usually, the numerical stability in the iterative procedure increases when lower relaxation factors
are being used, even when there is no guarantee that this assumption holds true for every flow
situation encountered. On the other hand, lower relaxation factors often result in a significant
increase of iterations needed for the solution to converge. Ferziger (2002) [20] analysed the
number of iterations needed to reduce the residual levels by three orders of magnitude on four
different grid setups for the problem of a lid-driven cavity as a function of the velocity relaxation -
factor av,. The result is plotted in figure 4.7. From this diagram it is obvious that the optimum
relaxation factor o, for this type of flow problem is around 0.9; higher factors introduce insta-
bilities and oscillations that slow down the overall convergence process while lower factors have

a negative influence on the convergence speed as well.

Other sources of instabilities during the solution process can be the improper placement of inlet
and outlet boundaries (i.e. not sufficiently far away from the region of interest or not perpendicu-
lar to the flow direction), a bad choice of wall boundary conditions or the presence of irregularly

shaped cells within the computational domain. These issues can therefore seriously slow down
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Figure 4.7: Number of iterations for the lid-driven cavity problem (Ferziger (2002) [20])

convergence or even cause the solution algorithm to diverge. A natural source of instabilities
is the update of the vertical water surface position during the solution process since it leads to
the recalculation of cell volumes and the location of the respective cell centroids. But as long
as the relaxation factors are not too large, these instabilities are damped very quickly and the
residuals reach their original level again soon. This fact is shown in figure 4.8 where the scaled
residuals for the simple case of turbulent flow in a straight channel are plotted. The left diagram
was created without updates of the water surface; in the right diagram the surface was free to
move. The case without moving water surface reached a converged state (continuity residuals
have dropped by four orders of magnitude, all other residuals five orders of magnitude) after 730
iterations while the moving water surface problem took 990 iterations, which is a 35% increase
in computation time. The instabilities introduced by the surface updates are clearly visible in the
convergence norms. It should also be noted that the decrease of the continuity error norm for the
fixed surface problem is almost linear in a logarithmic scale.

The time which is needed to obtain a solution for a specific flow problem was discussed to
be related to issues of stability and relaxation factors so far. However, these are not the only
causes that affect the convergence speed. The technique employed in the solver introduces a
relation between the size of the problem (i.e. the number of cells) and convergence speed: the
Gauss-Seidel scheme is very efficient in removing local (high-frequency) errors but global (low-
frequency) errors are reduced at a rate inversely related to the grid size (Fluent (2003) [25]).

Hence it is impossible to solve very large problems within an acceptable time span using the

93



4.6. Remarks on Numerics _ 4. GOVERNING EQUATIONS AND DISCRETISATION

Residuals for Fixed Surface variant Residuals for Free Surface variant
le+01 T T T T T — T 1e+01 T T T T T T T
; : : : H Velocity u —— Vellocrty u —
i : : : : Velocity v. ——— Velocity v ———
1e+00 fr---- pree proeee preene pe Velocity w ——— | Velocity w —— 7]
: : : : Continuity —— : Continuity ——
» 101 N L OO e Lo Turb.energy ——— _| i Turb.energy ——— ]
2 ; ; : Dissipation ———— 2 Dissipation ———
3 A : : ; ; i : i 3 i :
% 1e-02 Ft--ooooe e EE N ISP LR Fosnneenand e b g
D H h H : H [+
o A : H : : : : x
B 1€-03 iyt b fonenees e T e doeneneanes feoe e B
z . T~ | 3
1€-04 NGt Feeeeees BN FORRRRER Foeneeneed ORI -
1e-05 |- ; \\\ .......... ............ ...... ............ _
[ e B :
1e-06 1 LT—H | ! H
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800 900 1000
Iterations Iterations

Figure 4.8: Convergence history for turbulent channel flow

Gauss-Seidel solver. But since the solution methods based on the Conjugate Gradient scheme
(section 4.5.1) are both complicated to implement and suffer from serious robustness problems,
only the so-called Multigrid schemes would be capable of delivering robustness and efficiency
in removing global errors. The basic concept is to treat these low-frequency errors by a series of
successively coarser grids whereas high-frequency errors are reduced by finer meshes. For the
present work, however, this is not a feasible solution since the two-dimensional domain gridding
process using polyhedral cells is a time-consuming process. Therefore, if a reduction of the
vertical solution accuracy can be accepted, it is advisable to decrease the vertical resolution of
the flow domain upon an increase of the horizontal resolution to allow for a converged solution

to be obtained within an acceptable amount of time using the Gauss-Seidel solver.

Finally, the time until convergence is also affected by hardware characteristics of the computer
system used. While CPU architecture and clock rate are straightforward parameters, the relation
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Figure 4.9: Performance for three different computer systems (Adrmfield (2003) [8])
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between internal cache size of the CPU (level 2 cache) and number of floating point operations
per second depéndent on the problem size is not so easy to assess. Armfield (2003) [8] demon-
strates this relation which is given in figure 4.9. It can be seen that the performance — given
as million floating point operations per second (MFLOPS) — rapidly decreases once the prob-
lem size exceeds the size of the CPU’s level 2 cache and direct RAM access operations become

necessary.
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5 Verification and Validation Cases

5.1 Verification

The purpose of the verification study is to assess the discretisation error, defined as the difference
between the exact solution of the governing equations and the exact solution of the discrete ap-
proximation (Ferziger (2002) [20]). This error is due to the use of approximations for the various
terms in the equations and the boundary conditions (ibid.). The quality of these approximations
is described by the order of the numerical scheme. It is assessed by comparing the solutions

obtained on different grids that are distinguished by their grid spacing.

In theory, the numerical scheme employed in this work should be of second order, hence the
name Second Order Upwind scheme. Analysis to derive the actual order of the scheme is done
bya study on three different grids that can be characterised by a unique grid spacing, with the grid
point distance being halved from each grid level to the next one. For this study to be successful,
it is important that the grid can be actually characterised by a unique length scale because the
equation used to assess the order of the scheme (eq. 5.1) was derived using this precondition.
Therefore the order assessment uses a hexahedral grid where grid spacing can be defined. Using
such a grid with constant grid point distance h at the finest level, the order p of the implemented

scheme is obtained by evaluating

1 . an— don
= In
In2 ¢ — d1a

D +o0(1) (5.1
(Steinriick (2002) [78]), where ¢ is the quantity that the underlying governing equation was
being derived for. Equation 5.1 is to be evaluated for a grid node that is located sufficiently far
away from any boundary, hence allowing for an assessment with as little influence by boundary

conditions as possible.

In the present study, a simple rectangular duct is being modelled: 50m in length, Sm in width, Im
in height, without bottom slope. All surrounding walls are assigned an equivalent sand roughness
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ks of 0.00034 m which corresponds to a Strickler coefficient of ks; = 100. A constant discharge
of 5 m®/s leads to a pressure gradient between inlet and outlet since the surface is not allowed to

move.

Three different computation grids are employed:

e acoarse grid using 250 regions in 2D (size: 1.0 x 1.0m) and 11 vertical layers, resulting in
2750 cells,

e a medium sized grid using 1,000 regions in 2D (size: 0.5 x 0.5 m) and 11 vertical layers,
resulting in 11,000 cells,

e afine grid using 4,000 regions in 2D (size: 0.25 x 0.25 m) and 11 vertical layers, resulting
in 44,000 cells.

The grid spacing in the vertical direction was kept constant for all three variants, with the top and
the lowest cell each accounting for 5% of the computational domain and all other cells for 10%.
It can be expected that this fact did not have a significant influence on the result because the flow

conditions are essentially one-dimensional.

Figure 5.1: Grid levels for verification case: 250 regions (top), 1,000 regions (center), 4,000
regions (bottom), reference location marked in red

To minimise the influence of boundary conditions, a point close to the centre of the domain was
selected as reference location: 25.5m from the inlet, 2.5m from the side walls, 0.5m from the

bottom. Figure 5.1 depicts the three different grid levels and the reference location.
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Since flow along a straight channel is a one-dimensional problem, the quantity to be evaluated
at the reference location is u,, the velocity in the direction of the global coordinate axis z. Its
values are given in table 5.1 in high precision for an accurate assessment of the discretisation

error and subsequently the order of the numerical scheme.

| Case | N regions | Velocity u; [m/s] |
4h 250 1.15930315
2h 1000 | 1.154079538
1h 4000 1.152698668

Table 5.1: Velocity u; at the reference location for different grid levels

Evaluating equation 5.1 using the values from table 5.1 yields the order of the implemented

numerical scheme. It takes the value
p=192 (5.2)

which is very close to 2.0, the perfect result for a scheme of second order. The slight difference
can be explained by the influence of boundary conditions, the missing refinement in the vertical

direction and effects with similar impact that cannot be quantified exactly.

| Case | N Cells | Iterations | Time [h] |
4h 2750 8100 0:35
2h 11000 5900 2:05
1h 44000 5100 7:20

Table 5.2: Number of iterations and computation time for the verification case

In addition, the convergence behaviour of the verification case on the different grid levels is of
special interest from an engineer’s point of view. Table 5.2 gives the number of iterations needed
for the solution to converge on the different grids along with the computation time on a reference
computer system. The reference system is a Pentium IV-class machine with 2.8 GHz clock rate
and 1 GB RAM installed in a dual-channel setup.

Most notably the number of iterations decreases when the problem size increases. This can
be easily explained by the better spatial resolution of the computational domain which causes
fewer errors in the solution, hence fewer iterations are required for convergence. Furthermore
the actual time spent on the solution of the problem scales sub-linearly with the problem size,
i.e. computations on coarse grids converge relatively slower than on refined grids: during every
iteration, additional computations must be performed (e.g. evaluation of gradients or the eddy
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viscosity for all cells), hence an increase in the number of iterations has an additional adverse

effect on the time the model takes to reach a converged state.

Finally, the convergence history for the verification case on the three different grid levels is
depicted in figure 5.2. From this figure it is clear that the decrease in the continuity residual is
linear in a logarithmic scale. Furthermore, it is possible to see that the equations of the turbulence
model take more time to converge than the momentum equations; according to the author’s

experience this can consistently be seen in a large number of flow problems.
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Figure 5.2: Convergence history for verification case
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5.2 Developing Flow in a Curved Rectangular Duct

In this section, the numerical model will be validated against measurements in a curved rec-
tangular duct. The experiment is described and selected results are published in Kim & Patel
(1994) [37]. The full data sets of the results are available on the Classic Data Base of the Eu-
ropean Research Community on Flow, Turbulence and Combustion (FERCOFTAC (1995) [19]).
The measurements of Kim and Patel’s experiment were already used to assess the validity of

computational codes in the past (e.g. Nguyen (2000) [51]).
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Figure 5.3: Layout of Kim & Patel’s experiment

The experimental setup is depicted in figure 5.3. The physical model consists of a rectangular
duct H=20.3cm wide and 6 H=1.22m high. It features an upstream section of 7.5H=1.52m in
length, followed by a 90° bend with a mean radius of curvature being 3.5H=71.1cm, and a
" long downstream section of 25.5H=5.18m. The duct is run as a wind-tunnel, using air with a

100



5. VERIFICATION AND VALIDATION CASES 5.2. Developing Flow in a Curved Duct

kinematic viscosity of v = 1.45 - 107°m?/s and a density of approximately p = 1.25kg/m?.
The freestream velocity near the middle of the upstream section was found to be Uy = 16m/s,
resulting in a duct-based Reynolds number of Uy H/v = 224, 000.

As a measurement of wall roughness, a friction coefficient Cy = 0.0038 is provided. In a first
step, this friction coefficient must be converted to the concept of equivalent sand roughness to be
of use in the present work. Starting at the definition of the friction coefficient,

C; = 0.5T—:U2 (5.3)
where 7,, denotes the wall shear stress and U is the velocity outside of the boundary layer, we
can evaluate 7,, = 0.61N/m?. Introducing the shear velocity u* as defined by equation 4.89,
we obtain u* = 0.7m/s. Now evaluating equation 4.91 for the wall-distance where the free-
stream velocity is to be expected (i.e. the duct half width H/2), a fictitious sand roughness of
ks =2-10"%1is obtained that can be used in the present study. Of course, one must be fully aware
that the concept of an equivalent sand roughness is actually not applicable to air flows, which
may lead to errors in the results due to a wrong assessment of the wall’s influence on the mean

flow.

Measurements are provided at cross-sections U2, 15°, 45°, 75° and D1. In this chapter an analysis
of cross-section 45° is presented; results for all other cross-sections can be found in appendix B.
Except for the contour plots presented, all evaluated quantities are non-dimensionalised by the

freestream velocity Up and the duct width H.

In Kim & Patel (1994) [37] it is recommended to use velocity and turbulence measurements at
the upstream cross-section as inlet conditions for numerical studies and do the computations for
a reduced model only. However, since the numerical model should actually be able to return
these values if the full experimental domain is represented in the computational model and all
boundary conditions are applied correctly, it was decided to do the computations on the full
domain. With this assumption, a freestream velocity of 16.4m/s was obtained at the reference
location — which is not far from the freestream velocity given in Kim & Patel (1994) [37] — and

so the non-dimensionalisation of the computational results was performed using this value.

The measurements and also previous studies indicate that strong gradients in many flow proper-
ties are to be expected along the bend. Since it is of utmost importance to capture these gradients
correctly, the computational grid must be refined in the vicinity of the side walls. On the other

hand, a fine discretisation in the flow direction is not needed. This leads to the spatial discretisa-
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tion using a grid based on quadrilateral regions since cells having a larger number of sides would
become seriously distorted under these circumstances. A detail of the computational grid along
the bend is depicted in figure 5.4. It can be seen that an area occupying 20% of the flow domain
both near the inner and outer walls is discretised by five regions while the centre area is allocated
the same amount of regions. A small number of cells near the entrance and the exit of the bend
are slightly distorted due to the grid generation algorithm, but the number is too small to expect
a negative influence on the results. In the vertical direction, the channel is symmetric and so a
symmetry boundary was introduced at 3 H, allowing us to represent only half of the experimental
domain in the numerical model. This domain is divided into eleven cells (see figure 5.4, inset)
with the top and bottom cells each occupying 5% of the height -and all other cells using 10%.
This results in a total of 37,906 cells. The solution converged after 8,100 iterations in 10 hours

on the reference system (see section 5.1).

~

Figure 5.4: Detail of computation grid for Kim & Patel’s experiment
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Figure 5.5: Computed depth-averaged flow velocity for Kim & Patel’s experiment

Figure 5.5 depicts the computed depth-averaged flow velocity along the bend. This and subse-
quent images were produced using the algorithm described in Bourke (1987) [11]. It can be seen
that minima occur close to the outer wall along the bend and at the inner wall in the downstream
section of the duct. These minima take values of approximately 60% of the maxima observed in
the corresponding cross-section. An assessment of these results can be done when the computed

results are compared with the measurements by Kim and Patel.
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Figure 5.6: Longitudinal velocity profiles for cross section 45° of Kim & Patel’s experiment

This is shown in figure 5.6 for the longitudinal velocity profiles. One can see a good agree-
ment between computation and measurements in the region close to the center line and still a
reasonable agreement in the outer regions. The vortex in the vicinity of the bottom wall, lead-
ing to distorted shapes of the velocity distributions in that area, is not captured by the model.
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Sotiropoulos & Patel (1995) [75] credit this effect to the weak secondary motion predicted by

the k — ¢ turbulence closure, so that no longitudinal vortex forms.
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Figure 5.7: Transversal velocity profiles for cross section 45° of Kim & Patel’s experiment

105



5.2. Developing Flow in a Curved Duct 5. VERIFICATION AND VALIDATION CASES

Another important flow property in curved channels or ducts is the secondary movement that can
be seen in the transversal velocities as depicted in figure 5.7. The measurements exhibit strong
minima close to the bottom wall that take values of up to —0.15U, while maxima of about 0.05U,
occur at z/ H = 0.5. At the outer wall the flow pattern becomes quite complex as several vortices
are evolving. It can be seen that the model captures the overall distribution of secondary velocity
correctly, but fails to predict the exact vortex pattern close to the outer wall. This effect can be
‘credited to deficiencies in the k — ¢ turbulence closure (Sotiropoulos & Patel (1995) [75]), the
second order upwind scheme employed in the present work, and the vertical resolution of the

model.

While the minima of the velocity profile are correctly represented — at least in the inner regions
of the duct — the maxima are underestimated to some extent. This has also been found and
documented by Sotiropoulos & Patel (1992) [74] who conclude that the k—e model underpredicts
the strength of the secondary motion.
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Figure 5.8: Distribution of non-dimensionalised turbulent kinetic energy for cross section 45° of
Kim & Patel’s experiment
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Figure 5.8 finally depicts the distribution of the non-dimensionalised turbulent kinetic energy in
the 45° cross-section in four distinct vertical layers. The measurements exhibit maxima at the
side walls and minimal values in the inner flow region. The computational results also follow this
pattern but vastly overpredict the turbulent kinetic energy almost everywhere in the flow domain —
a feature of the k —e model that has also been found by other authors in the past. Furthermore, the
distribution along the outer wall is not very well represented in the model. It should be mentioned
though that the model correctly captures three distinct local maxima at the layer z/H = 0.3125
so it can be concluded that the model is at least able to represent certain characteristics of the
turbulent flow pattern. However, the overall agreement between model results and measurements
is not too good; a fact which does not matter for the engineer as long as he is mostly interested
in flow patterns and water surface elevations but that should be considered when the distribution

of turbulent kinetic energy is of interest.
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5.3 Flow in a Sharply Curved Channel

After the model itself has been validated to comply with different measurements in section 5.2,
in this section the influence of different grid types on the results is investigated. For this purpose
a validation experiment was chosen that has been used extensively in the past in the course of the
development of numerical models (e.g. Leschziner & Rodi (1979) [42], Ammer (1993) [4], Lien
etal. (1999) [43], Nguyen (2000) [S1], Wu et al. (2000) [92], Ghamry & Steffler (2002) [29]):
Rozovskii (1961) [69] investigated the flow characteristics of a sharp 180° bend with a ratio of
width to mean radius of curvature of 1.0. A curve with a width-to-mean radius ratio of 0.4 and
more is considered to be sharp, as pointed out by Lien et al. (1999) [43], hence resulting in a
highly three-dimensional flow situation.

3.0m

—P r» x ¥ L=5.0mi
: b !
y i

y Section 1
6.0m

Figure 5.9: Layout of Rozovskii’s experiment

The experimental setup is depicted in figure 5.9. An approach channel of 6m in length is followed
by a 180° bend with a mean radius of 0.8m and an exit channel of 3m. The channel is horizontal
and has a rectangular cross section with a width of 0.8m. The discharge in the channel is constant
at 0.0123 m®/s and the water depth at the inlet was documented to be 0.063m by Rozovskii (1961)
[69], resulting in an average velocity of UM = 0.265m/s. As a measure of wall roughness the
experimenter gives a Chezy coefficient of C' = 60m 2 /s. The Chezy and Strickler coefficients

are related by the equation

C
ke = — 5.4)

R

T e

where R, denotes the hydraulic radius. Using this formula, the Strickler coefficient is found to
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take a value of kg; = 98m3 /s which in turn corresponds to a roughness height of k; = 0.0004m.
The downstream water depth required for the numerical model was introduced as a calibration
parameter, with the final result after a number of runs yielding 0.053m. This value perfectly
agrees with Ghamry’s (2002) [29] result.
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Figure 5.10: Computation grids for Rozovskii’s experiment

In terms of spatial discretisation two different grids were employed to investigate the influence
of the cell shape on the results: |

e A first grid (see fig. 5.10, top) based on regions of hexagonal shape with a longitudinal
grid point distance of 0.1m and a transversal grid point distance of 0.0866m. The grid is
vertically structured, with the top and bottom cells each occupying 5% of the flow depth
while all other cells occupy 10%. This setup results in 12,089 computation cells.

e A second grid (see fig. 5.10, bottom) based on regions of quadrilateral shape with longitu-
dinal and transversal grid distances being equal to 0.1m. The vertical structure is the same

as in the first setup, resulting in 10,648 computation cells.
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While the numerical experiment based on quadrilateral regions converged after approximately
41,000 iterations in 15 hours on the reference system (see section 5.1), the computations us-
ing hexagonal grid regions took significantly longer and converged after approximately 68,000
iterations in 37 hours. The results are depicted in figures 5.11 through 5.21.

Water surface {m]
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! 0059
% 0.080
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Figure 5.11: Computed water surface elevations for Rozovskii’s experiment (top: hexagonal grid
regions; bottom: quadrilateral grid regions)

Figure 5.11 shows the computed water surface elevations for both grid types (top: hexagonal
regions, bottom: quadrilateral regions). When the results are compared with figure 5.12, one
can see a reasonably well qualitative agreement between computations and measurements, even
though a quantitative comparison is not so straightforward since the experimental results are
presented in a reference system which apparently is not based on the channel bed. The results
between the two different grids are approximately equal, with the hexagonal grid having a ten-
dency towards smoothing out extremal values along the outer bank and exhibiting higher extrema
along the inner bank.

A more precise assessment of the results can be done if the water surface elevation along the
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Figure 5.12: Measured water surface elevations by Rozovskii (1961) [69]
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Figure 5.13: Sidewall flow depth for Rozovskii’s experiment

channel walls is plotted for the bend as depicted in figure 5.13. The impression gained from the
interpretation of the contour plots in fig. 5.11 is confirmed: the model using hexagonal regions
shows a better agreement along the outer bank while it performs not so good along the inner
bank. However, both grid types yield a relatively good agreement with the measurements. The
differences between computations and measurements near start and end of the bend have been
noticed by other authors, as well (e.g. Lien et al. (1999) [43]); they can be éxplained as results

of the model calibration by making use of the inlet flow depth. Referring to these discrepancies,
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Ammer (1993) [4] even suggests that the value given for the upstream water depth by Rozovskii
(1961) [69] should be questioned in general. '
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Figure 5.14: Computed depth-averaged flow velocity for Rozovskii’s experiment (top: hexago-
nal grid regions; bottom: quadrilateral grid regions)

Figure 5.14 shows the depth-averaged flow velocities for the two grid setups. The grid based on
quadrilateral regions exhibits stronger maxima and minima both along the bend and in the exit
channel while these are mostly smoothed out in the hexagonal setup. Furthermore the decrease
of flow velocity towards the side walls is stronger’ when quadrilateral regions are employed.
In order to find out whether this smoothing of extremal values in the hexagonal grid is an effect
known as false diffusion — predominantly to be seen when grid lines are not aligned with the main
flow direction, resulting from one-dimensional interpolating in multi-dimensional domains — or
whether it is actually a desired effect that increases the accuracy of the solution, the longitudinal
velocity profiles in different cross sections are studied (figs. 5.15 and 5.16).

These figures depict the longitudinal velocity profiles for different points in a number of cross
sections along the bend. The channel half-width (i.e. 0.4m) is denoted b, and so every point in
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the cross-section can be assigned a value of y/b, with negative values ranging from the left bank
to the centre line.
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Figure 5.15: Selected longitudinal velocity profiles for cross sections 3 and 6 of Rozovskii’s
experiment

It can be seen that the agreement between measurements and computations is quite reasonable
for both grids in the vicinity of the centre line, while the results notably deviate from the mea-
surements in the region close to the banks. This effect can be credited to the lack of grid re-
finement in the bank regions which does not allow for the pressure gradients to be precisely
captured, thus influencing the distribution of mass fluxes and velocities. It should also be noted
that the curvature of the calculated velocity profile exhibits a different general tendency than
the measurements. Considering the analogy to observations made in section 5.2 with regard to
the longitudinal velocity profiles, it is very likely that this can be credited to the kK — € model
underestimating the strength of the secondary motion which in turn leads to deficiencies in the

prediction of longitudinal velocities.

In general it was found that, except for the outer bank at cross-section 3 where the hexagonal grid
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performs better, the quadrilateral grid returns results closer to the measurements. This allows the
conclusion that actually a certain level of false or numerical diffusion is present when the hexag-
onal grid is being used, even though it is apparently not severe since the differences between the

results on the two grids are generally not large.
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Figure 5.16: Selected longitudinal velocity profiles for cross sections 8 and 12 of Rozovskii’s
experiment

This impression is confirmed when the averaged velocity ratio U/U M is plotted for the cross-
sections along the bend (fig. 5.17). While the results obtained on both grid setups exhibit an
excellent agreement with the measured values, the quadrilateral grid still performs slightly better.
In the vicinity of the banks the deviation from the measurements is larger than close to the centre
of the channel.

Figures 5.18 through 5.20 depict the model results for the transversal velocities in all major
cross-sections, using the two different grid shape approaches. Figure 5.21 finally compares the
computed velocity profiles with the measurements published by Rozovskii.
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Figure 5.17: Averaged velocity ratio U/U M for Rozovskii’s experiment

It is clearly visible that the flow exhibits a strong secondary motion throughout the bend. While

the model predicts maxima of about 0.05m/s, measurements give values of up to 0.15m/s. Indeed

the model correctly captures the direction of the motion, but underpredicts its strength — a fact
that can be seen in other numerical codes as well (e.g. Ghamry & Steffler (2002) [29]). A closer
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Velocity u2 [m/s)

Cross-section 3 (0°)

— U=000ms

Figure 5.18: Contour plot of computed transversal velocity u, for cross-sections 3 and 4 of Ro-
zovskii’s experiment (top: hexagonal regions; bottom: quadrilateral regions) — fig-
ure scaled by the factor 2 in the vertical direction

look on the location where these extremal values occur reveals that they are found at the bed
and close to the water surface. However, due to the model assumptions (i.e. zero velocity at
the bottom, irrespective of flow direction) and also due to the vertical resolution of the model, it
is virtually impossible to capture these maxima. Furthermore, it should be questioned whether
extremal values right at the bed — as documented by Rozovskii (1961) [69] — are even physically
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Valocity u2 (m/s]

Cross-section 6 (100°)

Figure 5.19: Contour plot of computed transversal velocity u, for cross-sections 6 and 8 of Ro-
zovskii’s experiment (top: hexagonal regions; bottom: quadrilateral regions) — fig-
ure scaled by the factor 2 in the vertical direction

possible. In contrast, section 5.4 discusses a flow situation where the maxima of the secondary
motion were not measured at the bed but rather a significant distance above it — a behaviour

which is correctly predicted by the model if a reasonable vertical resolution is employed.

The comparison between the results obtained on the two different grid shapes, as it is done in
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Velocity u2 [m/s]

Cross-section 10 (180°)

Figure 5.20: Contour plot of computed transversal velocity u, for cross-sections 10 and 12 of
‘Rozovskii’s experiment (top: hexagonal regions; bottom: quadrilateral regions) —
figure scaled by the factor 2 in the vertical direction

figure 5.21, gives a very interesting result: throughout all locations evaluated, the transversal
velocities obtained on the grid based on hexagonal regions are closer to the measurements than
the solution on the quadrilateral grid regions. From this perception we can conclude that the
hexagonal grid type actually yields a closer representation of mass fluxes in the transversal di-
rection, which in turn leads to a better prediction of the secondary flow phenomena observed in
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Rozovskii’s experiment.
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Figure 5.21: Selected transversal velocity profiles for Rozovskii’s experiment
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5.4 Flow in a 270° Bend with Moderate Curvature

In this section, a second numerical experiment will be conducted using two different grid shapes
in order to assess the influence of the grid on the results obtained. The underlying physical
experiment was done by Peter Steffler in 1984 and parts of the results were published in Ghamry
& Steffler (2002) [29]. As can be seen in figure 5.22, the experimental channel has the shape of a
270° bend. Compared to Rozovskii’s experiment, the curvature cannot be considered sharp since
the width-to-mean radius ratio is around 0.3, hence it can be classified as moderate. Nonetheless

the flow situation exhibits strong three-dimensional characteristics as will be shown later.
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Figure 5.22: Layout of Steffler’s experiment

The laboratory flume consists of an approach channel of 6.13m in length, followed by the 270°
bend with a mean radius of 3.66m and an exit channel of 2.53m. The channel is 1.07m wide and
features a bed slope of 0.00083. The total discharge is 0.0235 m3/s; together with a specified wa-
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ter depth of 0.061m at the outlet, an average flow velocity of UM = 0.36m/s can be determined.
Ghamry & Steffler (2002) [29] document an equivalent sand roughness value of k, = 0.0013m
which is equivalent to a Strickler coefficient of kg, = 80m3 /s.

Once again, two different computation grids are being used to compare the results obtained on
them:

o The first grid (fig. 5.23, top) is based on regions of hexagonal shape with a longitudinal grid
point distance of 0.1m and a transversal distance of 0.089m. In accordance with previous
computations, the grid is vertically structured: the top and bottom cells each occupy 5% of
the flow depth while all other cells occupy 10%. This setup results in 34,639 computation

cells.

e The second grid (fig. 5.23, bottom) uses quadrilateral grid regions with a longitudinal point
distance of 0.1m and a transversal distance of 0.089m. The vertical structure is the same

as in the first setup, resulting in a total of 34,584 computation cells.

The computation times until convergence of the results were significantly higher for Steffler’s
experiment compared with any other experiment investigated. On the reference system (see sec-
tion 5.1), a solution for the grid based on hexagonal regions was obtained after 114,000 iterations
in over 160 hours. The flow problem using quadrilateral grid regions reached equilibrium after
147,000 iterations in almost 200 hours — more than eight days. These extraordinary computation
times, compared with Rozovskii’s run, can be explained by the large number of computation
cells which causes the solver to return results very slowly, which was discussed at the end of
chapter 4. Furthermore both approach and exit channels point into negative directions of the
global coordinate system. While this fact does not influence the result obtained, it slows down
convergence because the numbering of cells is done according to the global coordinate system,
and the solver module evaluates the equations according to the cell numbers. Hence, the reduc-
tion of errors in the solution is performed even more slowly if the numbering is exactly opposite

to the flow direction.

The assessment of the solutions obtained on the different grids starts with the evaluation of the
water depth as depicted in figure 5.24. No measurements of water levels are available, but the
computations can be compared with each other. It can be seen that the overall shape of the water
surface elevations is very similar, but the hexagonal grid setup results in a difference of about

Imm at the inlet. However, this difference, compared to the flow depth, is only around 1.5%,
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Figure 5.23: Computation grids for Steffler’s experiment
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Water depth {m]

Figure 5.24: Computed water depths for Steffler’s experiment (top: hexagonal grid regions; bot-
tom: quadrilateral grid regions)
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Flow velocity [m/s]

Figure 5.25: Computed depth-averaged flow velocity for Steffler’s experiment (top: hexagonal
grid regions; bottom: quadrilateral grid regions)
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therefore the results can be judged as equal. The zigzag shape of some contour lines results from

the graphical postprocessor’s algorithms and is not a feature of the flow solver.
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Figure 5.26: Selected longitudinal velocity profiles for cross-sections 0° and 90° of Steffler’s
experiment

Not quite as equal as the computed water surface elevations are the depth-averaged velocity
distributions, as depicted in figure 5.25. Somehow the same impression arises as documented
in previous section: extremal values are smoothed out in the hexagonal setup, as opposed to the
grid based on quadrilateral regions. The latter grid exhibits very low flow velocities at the outer
bank of the beginning of the bend. Later throughout the bend and in the exit channel, these
low velocities are found along the inner bank. Compared to the maxima of flow velocity, they
are roughly half their magnitude. An interesting result of the computation is the fact that both
solutions are in agreement concerning the location of the maximum velocities; these are to be
found along the exit channel. However, it must be noted that the length of the exit channel is
actually too small to claim that no boundary condition errors would be able to propagate upstream
and influence the results. But considering the way grid generation is performed (chapter 3), it is
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not possible to assign a longer exit channel to the present model.

A more detailed assessment of the accuracy of the flow field can be done when interpreting
figures 5.26 and 5.27. We can see that the minima along the outer bank at the beginning of the
channel, as given by the grid using quadrilateral regions, are actually too low. Even though the
hexagonal grid setup underestimates these velocities as well, this solution is much closer to the
actual measurements. When we move towards the centre line of the channel, the results obtained
on the quadrilateral grid become better, with an almost accurate prediction right at the center line

of the 0° cross-section.
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Figure 5.27: Selected longitudinal velocity profiles for cross-sections 90° , 180° and 270° of
Steffler’s experiment

At the cross-sections of 90° and 180°, the outer bank velocities are underestimated as well by
both setups, with the hexagonal grid again returning better results. The main flow velocities at
the inner bank are accurately predicted by the hexagonal grid; and this grid type also yields the
best results in the 270° cross-section (fig. 5.27), even at the centre line. From this assessment

we can conclude that — as far as the longitudinal velocity profiles are concerned — the hexagonal
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grid type performs better than the quadrilateral one. This conclusion is fairly remarkable since it
means that the smoothing of extremal values cannot be considered to be an effect purely raised
by numerical diffusion, but that it is rather of a physical nature which is better captured by the
hexagonally shaped grid.

Velocity u2 {mvs]

Cross-section 0°

Figure 5.28: Contour plot of computed transversal velocity u, for cross-sections 0° and 90° of
Steffler’s experiment (top: hexagonal regions; bottom: quadrilateral regions) — fig-
ure scaled by the factor 2 in the vertical direction

Figures 5.28 and 5.29 depict the computed transversal velocities in a number of cross-sections.
Again we can see that the solution obtained on the grid using quadrilateral regions exhibits
stronger extremal values. A clear secondary motion is visible throughout the bend, with maxima
of around 0.07m/s in measurements and 0.05m/s in the computation results.
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Figure 5.29: Contour plot of computed transversal velocity u, for cross-sections 180° and 270°
of Steffler’s experiment (top: hexagonal regions; bottom: quadrilateral regions) —
figure scaled by the factor 2 in the vertical direction

Figure 5.30 allows for a comparison with Steffler’s measurements. On a first glimpse, the im-
pression is the same as in Rozovskii’s experiment, with the computed transversal velocities not
yielding a very good agreement with the measurements and the strength of the secondary motion
being vastly underestimated. However, a closer look at the measured velocities reveals that the
maxima are not to be found right at the bed but rather a certain distance above it — a fact that also
represents the real situation better than the measurements done by Rozovskii (section 5.3). And
exactly these velocities at the bed seem to be represented well in the present model. Since the
wall boundary condition — which is applied at the bed and the banks — is a very strong bound-

ary condition that highly influences the computational results, and since the vertical resolution
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Figure 5.30: Selected transversal velocity profiles for Steffler’s experiment

of the model is not so dense as to capture the extremal values visible in the diagrams, one can
conclude that actually a better representation of the secondary velocities is not possible in the
present setup. If a better vertical resolution would be employed, it can be expected that the sec-
ondary flow motion would be represented more exactly, but on the other hand the computation
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times would become prohibitively high in order to achieve this goal.

As far as the comparison of secondary velocities between hexagonal and quadrilateral grid re-
gions is concerned, there is not much difference in the results except for two locations close to
the centre line of the channel where the quadrilateral setup yields slightly better results. On the
other hand, the computation time was lower for the hexagonal grid setup and this configuration
also yielded longitudinal velocities in better agreement with the measurements. Therefore, in
terms of an overall assessment, we can conclude that the hexagonal grid setup would actually be

the better choice for an engineering application in a problem similar to Steffler’s experiment.
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5.5 Flow in an S-Shaped Trapezoidal Channel

So far only channels with rectangular cross-section have been used for validation of the numerical
code. The final validation experiment now leads us to a channel with trapezoidal profile, thus
making a step towards natural flow situations. The physical experiment was set up at the Water
Resources Institute of the University of Innsbruck, consisting of an approach channel 3.0m in
length followed by two consecutive bends with a mean radius of 4.0m and apex angle of 60
degrees each, and finally an exit channel being 2.8m long. The banks are sloped by a ratio of
2:3. This configuration corresponds to characteristic values for alpine sinuously trained rivers
(Vigl (1990) [86]). Initially a bed slope of S=0.01 was chosen to simulate alpine conditions,
exhibiting Froude numbers larger than unity, but later the physical model was adapted to a slope
of S=0.005 (Feurich & Schoberl (2003) [22]). The model’s cross-sectional geometry consists of
a fixed bed 0.40m in width and two banks, each 0.80m wide; into this geometry the actual bed
layer is introduced by filling it with sediment to a certain height, either ﬁxing it afterwards or
allowing for sediment transport (erosion and deposition). Feurich (2002) [21] discusses a series

of experiments with varying discharge, bed layer depth and fixed or mobile sediment at the bed.

left bank
90

40
1% bend right bank

Figure 5.31: Layout of the computational equivalent of the S-shaped trapezoidal channel
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The present work focuses on only one of these variations: the bed layer of this experiment is
20cm thick, resulting in the geometry illustrated in figure 5.31 with a 100cm wide fixed bed.
Discharge is 0.09m3/s, and roughness conditions are documented to be k,=0.0047m at the bed
and k,=0.0074m along the banks. The physical experiment is subdivided into 120 cross-sections

along which measurements were performed.

In terms of spatial discretisation, a grid composed of hexahedral cells is employed in the present
work. This approach was chosen for two major reasons: first, the experiment allows for iden-
tification of a clear main direction of the main flow; second, a high-resolution discretisation in
transversal direction is very important to capture the geometry at the side walls correctly. If
a polyhedral grid based on hexagonal regions had been employed, either a prohibitively large
number of cells would have resulted, or it would have been necessary to reduce the transversal
resolution. Since neither option was acceptable, it was found that a brick-type grid composed of

hexahedral cells was best suited for studying this physical experiment in a numerical model.

The computation grid starts at cross-section 120 and ends at cross-section 10, with the longitu-
dinal cell dimension being equal to the cross-section distance, resulting in a length of approxi-
mately 110mm. Feurich (2002) [21] conducted a sensitivity study using the SSIIM model (Olsen
(2000) [57]) and found that computed water surface and flow velocities obtained on a grid with
extended entrance and exit channels did not differ from the corresponding results using a grid
representing the area between cross-sections 10 and 120, respectively. In other words, no sig-
nificant influence of the upstream and downstream boundary conditions was found that would

require extensions of approach and exit channels in the present configuration.

For the transversal cell dimension, a distance of 35mm was chosen. Hence, the ratio of longitu-
dinal and transversal grid dimension is about 3:1, which is in the recommended range found in

literature. The average flow depth in the flume was found to be approximately 100mm which,

Figure 5.32: Computation grid for the S-shaped trapezoidal channel
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due to the bank slope of 2:3, results in a wetted bank width of 150mm each.

Chapter 3.7 discussed the conditions under which a cell pile can become wet: basically, its base
point must exhibit a higher elevation than the terrain surface. Given the transversal cell dimension
of 35mm and the bank slope of 2:3, the centre point of an outside region would only turn wet
if the water level rises for more than 12mm. For all other cells, a rise in water levels results in
a change of vertical elevation only. It was found that the condition of a rise in water levels of
more than 12mm was met only in a very small number of grid regions. However, these regions
would subsequently exhibit water depths of only a few millimeters, and after vertical subdivision
the bottom grid point would be located less than a millimeter above the terrain surface. In
combination with a roughness height of k,= 7.4mm, this leads to severe instabilities in those
cells since the equations that make up the boundary conditions for the flow module (chapter 4)
contain the ratio between roughness height and surface distance. This is the reason why most
commercial models come with a restriction as far as the minimum cell height is concerned.
Since such a restriction was not implemented in the present model, it must be enforced by proper
geometrical choices, which finally justifies the cutting of geometry at the wetting line of the
mean flow, leading to the actual geometry as illustrated in figure 5.31 with the corresponding
computation grid depicted in figure 5.32. The consequence of such a reduced geometry is a slight
increase in water depth, since continuity must be enforced by the model; however, the impact
was found to be actually very little, which is also in line with Feurich’s (2002) [21] findings who
employed a similar procedure for representing the geometry. Nguyen (2000) [51] also reports
the need for a small “vertical wall” at the banks of a numerical model to avoid instabilities in a
trapezoidal channel.

During test computations required to find the optimum numerical parameters (e.g. relaxation fac-
tors) it was found that the trapezoidal channel experiment actually exhibits numerical instabilities
that can be credited to the cells with a low distance from the channel bed to the cell centroid.
These instabilities could be reduced by making use of comparatively low relaxation factors (ve-
locities were relaxed by 0.5, pressure/continuity by 0.03 and turbulence by 0.25). However, still
the numerical algorithm exhibited severe instabilities upon the first update of the water surface,
leading to divergence irrespective of the surface relaxation factor used. Even though the exact
reason for this behaviour could not be found, it could be traced to the influence of roughness
along the banks on the £ — ¢ model equations, resulting in large absolute values for turbulent
kinetic energy and dissipation in regions of low water depth. To avoid this phenomenon causing
instabilities in the solution procedure, other flow simulation models (e.g. Fluent) limit the ratio

of eddy viscosity and kinematic viscosity. Another approach is to lower the roughness height in
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regions of low water depth by introducing a mean roughness value for the entire flow domain in-
stead of the two different roughness heights in bed and banks. Feurich (2002) [21] discusses the
theoretical background for obtaining such a mean roughness for trapezoidal channels and comes
up with k,=5,4mm as a result for the present case, noting that he found hardly any difference in
the results obtained using this approach. By applying this value to the entire flow domain,- it was

possible to solve the flow equations until convergence.

The 4,218 grid regions depicted in figure 5.32 were vertically structured into six cells, each
occupying exactly one sixth of the flow depth, resulting in 25,308 cells. This setup was preferred
over the one used so far in order to keep the total number of cells relatively low and avoid cell
centroids being located too close to the solid walls bounding the flow domain. Nonetheless
about 58,000 iterations and approximately 65 hours of computation time were needed to obtain

equilibrium, this being mostly the result of the low relaxation factors employed.

Figure 5.33 depicts the computed water surface along with the measured values and the results
of the SSIIM model as found by Feurich (2002) [21]. The most notable finding is the perfect
agreement between the simulation results of the two numerical models; they are virtually indis-
tinguishable from each other. However, simulation and measurements are not in perfect agree-
ment. In the second (downstream) bend, the results fit the measurements very well, with the rise
of the water level along the right bank and the fall of the water surface along the left bank being
correctly predicted. In the first bend both numerical models slightly underpredict the maximum
of the water level along the left bank. But a closer look on the measurements reveals that right
downstream of the inlet a depression in the water surface can be found which of course gives rise
to a more distinctly visible peak along the left bank thereafter. The reason for this depression in
the measured surface is unclear; it could be the result of a slight bump in the laboratory flume,
an imperfection in bed roughness, or the overall situation at the inlet. This local minimum in the
water surface is also the reason for the lack of agreement between measurements and simulation
in the approach channel itself, however, since this region is heavily influenced by the boundary
conditions — both in the laboratory and the numerical experiments — it will not be used for a com-
parison after all. Hence, in summary it can be said that the computed water surface is actually in

good agreement with the measurements.

Unfortunately, measurements of flow velocities for this case were performed with an instrumen-
tation that was later found to produce unreliable results by the experimenter. However, reliable
measurements are available for the same flow situation on a mobile bed; these were found to be
in good agreement with the corresponding SSIIM model results (Feurich (2002) [21]). Therefore
we can expect the SSIIM model results for the fixed bed situation to be reliable as well and use
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that data as basis for validation.

Water surface [m)]
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Figure 5.33: Water surface elevations for the S-shaped trapezoidal channel

Figure 5.34 allows for a comparison between the depth-averaged flow velocity obtained through
the SSIIM and RSim-3D models, respectively. It should be noted that the available SSIIM model
data only covered the flow area between the base points of the embankment, illustrated by the
inner two green lines, and therefore the plotted data along the banks had to be obtained by means
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of extrapolation. This is the reason why the effect of surface roughness in those regions of the
embankment that exhibit low water depths cannot be seen in correspondingly low flow velocities
in the illustration. Hence, a comparison is only useful in the region between the two base lines
of the embankment. It is visible that the maximum of the flow velocity in the second bend
is predicted correctly, both in location and magnitude (see also fig. 5.35). Also the velocity
distribution downstream from this location is in very good agreement. Besides small differences
in the approach channel, once again resulting from the influence of the boundary condition at the
inlet, a good agreement can also be found in the first bend, with maximum and minimum flow

velocities being correctly predicted.

Flow velocity (m/s]

050
Eugm SSIIM model

Figure 5.34: Depth-averaged flow velocity for the S-shaped trapezoidal channel

Finally, figure 5.36 depicts a series of cross-sections throughout the channel:

o start of the first bend (cross-section #105),
o middle of the first bend (cross-secfion #85),

e point of inflection (cross-section #64),
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¢ middle of the second bend (cross-section #44), and

e end of the second bend (cross-section #23).

It can be seen that a strong secondary motion develops in both bends with maxima of around
0.15 m/s pointing towards the outer bank near the surface and into the opposite direction close to
the bed. There are also two geometric features that can be noted: First, the intersection between
bed and embankment is not a sharp line but appears to be smoothed out to some extent. The
reason for this is to be found in the way the polyhedral grid was generated using the Kriging
methodology from terrain elevation data provided. However, the resulting error is obviously not
large. Second, the geometry near the surface is well preserved along the inner banks while the
outer banks appear to be lacking a small part of the flow domain. This phenomenon was already
discussed in the introductory paragraphs of this chapter; after an entire computation region has
turned wet, it still takes a reasonable amount of rise in water levels for the algorithm to declare the
neighbouring computation region wetted. This rise can only take place in the vertical direction
during that phase, and that’s what can be seen in figure 5.36. Of course, due to the continuity
equation, the water level will turn out to be slightly higher if the geometry is not exactly pre-

served, but on the other hand this error is small, hence almost negligible.

Flow velocity [m/s]

Figure 5.35: Flow detail in the second bend
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Figure 5.36: Selected cross-sections of the S-shaped trapezoidal channel — figure scaled by the
factor 2 in the vertical direction
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6 River Application

6.1 Introduction

In August 2002, a catastrophic flood event following several days of heavy rainfalls struck large
parts of Central and Eastern Europe. Many rivers in this region reached flood peak levels that
exceeded the highest maxima historically known, causing severe losses which sum up to approx-
imately 3.1 billion Euro in Austria (ZENAR (2003) [94]). A significant portion of the damage can
be attributed to the river Danube, where a 100 year’s flood was encountered, and its tributaries,
in some of which the return period of the flood event reached several thousand years (e.g. river
Kamp, Gutknecht et al. (2002) [33]). '

Figure 6.1: Location of the Danube river bend at Grein in Austria
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Figure 6.2: Detailed map of the river bend at Grein (based on Austrian Map by BEV)

Among the inundated villages along the river Danube was the municipality of Grein, located in
the administrative division of Upper Austria (fig. 6.1). Figure 6.2 depicts a detailed map of the
region in question. It can be seen that the municipality is located along the outer bank of a 90
degree river bend near river station 2079.0; the flow direction is from South-West to North-East
in this region. However, even though the flood protection of the village was dimensioned to
withstand a 100 year’s flood, it was overtopped and, as a consequence, parts of the municipality
were flooded. During the flood event a difference in water surface elevations between left and
right bank was measured which amounted to 80cm. That is the reason why the river bend at Grein

was included in a list of problematic places along the river Danube in the FloodRisk project of
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2003/2004 (Habersack (ed.) (2004) [34]). In its assessment of the situation, the project team
recommended the use of a 3D flow simulation model to reproduce the water surface slope in this
region since the usually applied 1D models are not adequate for this purpose — that’s also the
reason why the maximum water level at the outer bank corresponding to a flood return period of

100 years was inaccurately predicted in the past.

In this chapter of the present work, the flow situation in the river bend at Grein is analysed
with three different simulation models (RSim-3D, SSIIM and Fluent). The project domain was
established between river stations 2082.0 (upstream) and 2078.0 (downstream), resulting in a
river reach four kilometers in length. The area of specific interest is — as previously mentioned
— located near station 2079.0, hence the approach section of the river is approximately three
kilometers long. This selection was made to ensure that proper flow conditions, independent
of flow boundary conditions, are to be found near the municipality of Grein. In this context it
should be mentioned that it would have been desirable to move the outflow boundary further
downstream as well, but unfortunately the river bed becomes bifurcated several hundred meters
after the selected outflow (see fig. 6.2), causing this region to be unsuitable for a flow boundary.

Figure 6.3 depicts the terrain elevation data which was available for setting up the numerical

model: terrain elevations are known at all data points coloured in blue. Within the river bed, the

elevations are frequently measured in cross-sections, one per 100m river length. For the current

study, data gathered in the year 1999 was used; the measurement points in each cross-section
were available in a density of one point per meter cross-section length. In addition to the bed

elevations, terrain elevation data was provided by the Austrian Federal Waterways Authority.

This data had been derived from aerial views of the region to extend the river cross-sections

across embankments and floodplains. The resulting digital terrain model is visualised in figure

6.3 by yellow contour lines every 5 meters.

Meshing the whole area of available terrain elevation data would have resulted in a large number
of cells and nodes, requiring unnecessarily high computational effort irrespective of the numer-
ical model used. Therefore it was decided to perform a 1D backwater computation using the
RSim-3D model to approximate the bank line for the 100 year’s flood and subsequently use this
line as domain boundary (red line in fig. 6.3). Figure 6.4 allows for a comparison with the actual
bank line (coloured in yellow) encountered during the passage of the flood in August 2002: the
aerial view shows that the overall shape of the flooded terrain is well predicted; two small basins
at km 2078.9 and km 2078.5 are correctly represented, and so is also the bank line both in the
village of Grein and at the opposite shore. Only the large basin at the left bank near km 2079.4

is underestimated in its size. This error is to be attributed to the unavailable terrain data in that
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Figure 6.3: Terrain elevation data and boundary of the numerical model
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region, since terrain elevations are known only in extension lines of river cross-sections and the
region in question lies between two of them. Hence, the Kriging approach could not reproduce
the exact terrain in this area. However, after evaluating the aerial view and the flow patterns dis-
cussed later in this chapter, it becomes clear that water depths and flow velocities in said region

are very low so that the area does not contribute to the overall conveyance, therefore the results

of the flow simulations are not affected.

Figure 6.4: Aerial view of Grein in August 2002 (based on BEV (2002) [13])

The maximum water surface elevations corresponding to specific discharges are published by
the Austrian Federal Waterways Authority for every stream-kilometer along the river Danube
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in Austria. Known as KWD (”Kennzeichnende Wasserstinde der Donau ”, characteristic water
levels of the River Danube), they can be used as flow boundary conditions for numerical models.
After the flood event of August 2002, the KWD values for the 100 year’s flood were revised to
reflect the maximum water levels observed. Therefore these values are not only useful as bound-
ary conditions, but they are also good indicators for the assessment of the output of numerical
models. Table 6.1 gives the KWD above sea level for mean discharge (MQ), highest navigable
discharge (HSQ) and discharge with a return period of 100 years (HQ100) in the project region.

| Stream-km || MQ [m®/s] | MW [m] || HSQ [m®/s] | HSW [m] ]| HQ100 [m®/s] | HW100 [m] |

2082.0 1830 226.74 4770 228.79 11 050 235.03
2081.0 1830 226.67 4770 228.56 11 050 234.77
2080.0 1830 226.61 4770 228.32 11 050 234.51
2079.0 1830 226.58 4770 228.23 11 050 234.38
2078.0 1830 226.52 4770 227.95 11 050 233.65

Table 6.1: Characteristic water levels of the River Danube (KWD) near Grein

In section 6.2, first the characteristics of establishing a numerical model within each simulation
software are discussed. To allow for a comparison of both computation times and results, ap-
proximately the same number of cells was used in the same geometric framework for all models,
leading to a comparative analysis of operational characteristics at the end of section 6.2. Section
6.3 provides the results of the numerical simulations for all models and discusses the differences.
The results discussed include water surface elevations, mean flow velocities and secondary flow

patterns in selected cross-sections. Finally, section 6.4 gives a short summary of this chapter.

6.2 Numerical simulation

6.2.1 RSim-3D

An unstructured grid based on hexagonal regions with a base distance of 20m was used to fill the
area given by the bank line as obtained from a 1D backwater computation (see previous section
for details). Along the boundary line, two rows with hexagonal regions characterised by a point
distance of 10m were used to obtain a finer discretisation. Terrain elevations for the computation
points were gathered by applying the Kriging approach discussed in chapter 3.4. In the vertical
direction, the grid was subdivided into six equidistant layers, resulting in approximately 31,000

cells. To ensure numerical stability, an algorithm was added to the model that deactivates regions
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with a water depth — measured above the computation points — of less than 20cm, which results

in a maximum cell depth of approximately 3cm.

At the inflow cross-section at stream-km 2082.0, a constant discharge of 11,050 m?®/s was pre-
scribed; the model automatically adjusts the corresponding inflow velocities according to the cur-
rent flow area based on the water level, hence the inflow velocities did not have to be prescribed
directly. The downstream boundary condition consists of a constant water depth of 233.65m
above sea level according to table 6.1 for km 2078.0. As opposed to comparable models, RSim-
3D enforces the outflow water depth at all regions next to the outflow boundary. This may result

in differences in water surface elevations compared to other models, as will be discussed later.

While the water surface is treated as a symmetry boundary in RSim-3D and the corresponding
elevations are found by evaluating the pressure equation, the wall boundary condition had to be
calibrated in order to find the appropriate roughness coefficient. Disregarding the first kilometer
within the flow domain — a region which was only modelled to obtain realistic flow conditions
— the roughness coefficient was varied to obtain a good accordance with the KWD value at river
station 2081.0. For the RSim-3D model, a Strickler coefficient of 35.0 most closely met this
criterion. However, calibration of the roughness height for the flooded regions of the municipality
of Grein was not possible because this parameter did not exhibit a notable influence on the water
surface elevations in other parts of the flow domain. In the absence of measurements of water
surface elevations and flow velocities in the inundated terrain to be used in a local calibration

procedure, a value for the roughness height had to be selected from literature.

In Vionnet et al. (2004) [87] the selection of floodplain roughness coefficients for Besos River
in Spain is performed by comparing data from physical model experiments and calibration re-
sults of a two-dimensional numerical model. As result a Manning coefficient of around 0.05 is
obtained which corresponds to a Strickler coefficient of 20.0. Nicholas & Mitchell (2003) [53]
apply a numerical model to a floodplain region of River Culm in the UK. Their calibration proce-
dure results in a Manning coefficient of 0.06 (Strickler coefficient of 16.7) giving the best fit with
measured data. In Mason et al. (2003) [45] a node-based friction parameterisation of floodplains
is proposed which, based on data obtained by airborne scanning laser altimetry, classifies veg-
etation as short (<1.2m), intermediate or tall (>5m). Short vegetation comprehends most crops
and grasses while hedges and shrubs represent intermediate vegetation; trees and buildings are
classified as tall vegetation. According to Mason et al. (2003) [45], a floodplain containing a
mix of grasses, crops, hedges and trees typical for the UK is characterised by a Manning coeffi-
cient of 0.06 (Strickler coefficient of 16.7). Gutknecht (2004) [32] gives a range of 10.0 to 25.0
for Strickler coefficients in typical floodplains, and Arcement & Schneider (2003) [7] show that
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dense alluvial forests can take Strickler coefficients ranging as low as from 5.0 to 10.0.

From the aerial view in figure 6.4 it can be seen that large trees occupy parts of the inundated
region within the municipality of Grein while houses had been built in other parts and even other
parts appear completely without any vegetation or man-made structure. However, figure 6.2
shows that a woodless campsite and a road are located at the left bank of the river, smoothen-
ing the floodplains significantly. Therefore the actual Strickler coefficient can be expected to be
slightly higher than the values given in the literature. Based on these considerations a rough-
ness height of 1000mm was selected which corresponds to a Strickler coefficient of around 26

according to equation 4.94.

In terms of numerical characteristics, the second-order upstream method is employed for the dis-
cretisation of convective terms and the SIMPLE algorithm is used for pressure-velocity coupling.
The standard k-e model with default constants provides turbulence closure. These characteristics

are the same for all three simulation models to allow for a comparison of the results obtained.

6.2.2 SSIIM

The second numerical simulation was performed with the SSIIM model (see chapter 2.2.11).
This model comes in two versions which are capable of dealing with both structured and un-
structured grids. Due to issues of numerical stability in the context of a flow problem with a free
water surface, the structured grid version was preferred over the unstructured one for the present
study. The structured grid was formed by subdividing the area between two river cross-sections
— which are 100m apart — into five cell rows, and by dividing each cross-section into 25 cell
columns. After subdividing each cell pile into six cells, a total of 30,000 cells results, which is
a comparable number to the one which was used in RSim-3D. However, it should be mentioned
that the usage of a structured grid results in an enormous speed-up of the numerical model, at the
cost of the inability of using the model in complex geometries. Therefore, the bounding polygon
of figure 6.3 had to be smoothed in the flood basins near Grein to allow for an application of the
model to this problem.

Terrain elevations for all cell regions were obtained by applying a built-in longitudinal cross-
section interpolation method to the data points depicted in figure 6.3. This method, which can
be applied to structured grids only, interpolates along the vector from one cell row to the next,

which usually results in a reasonably smooth terrain.

Again, a constant discharge of 11,050 m3/s was prescribed at the inflow cross-section. At the
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centre cell of the downstream boundary a constant water depth of 233.65m above sea level was
enforced; the model allows the surface to move at all other cells near the outflow. The free water
surface was modelled as a symmetry boundary, and the bed roughness was once again subject to
calibration. After several calibration runs, a Strickler roughness parameter of 35.0 was found to
give the optimum water surface position at river station 2081.0. For the floodplain roughness a

value of 1000mm was used as discussed above.

6.2.3 FLUENT

The third software package used to simulate the flow conditions in the river Danube near the
municipality of Grein was Fluent (see chapter 2.2.8). While RSim-3D and SSIIM were run on
a regular PC with a clock rate of 2.8 GHz and 1GB of RAM, Fluent was installed on an Alpha
workstation cluster at the computing centre of Vienna University of Technology. The comparison
of computation times, as it is done in the next subsection of this work, can therefore only be seen

as a guideline, as far as the Fluent model is concerned.

Grid generation for Fluent is done with a software called Gambit. However, it must be pointed
out that this software is mainly of use for applications in mechanical engineering where the
computational domain is bounded by pipes and other structures that follow clear geometrical
rules. Creating the grid for a natural channel with a complicated bed geometry and a free water
surface turned out to be an extremely time-consuming task. Fluent can operate both on structured
and unstructured grids, but will generally produce results much faster when supplied a structured
grid. Therefore it was decided to set up a structured grid similar to the one used by SSIIM.
The bed geometry was imported from SSIIM, side walls were constructed manually in regions
where the initial water level was located at a higher elevation than bed data points existed, and
finally the resulting volume was decomposed into 30,000 cells following the pattern discussed in

previous subsection.

While both SSIIM and RSim-3D use the pressure equation to relate pressure to changes in the
water surface elevation for every grid region, Fluent does not provide such an algorithm. Instead,
it uses the VOF (volume of fluid) method to predict the position of a surface that separates two
phases (air and water in the case of a river). Unfortunately, this method requires the existence
of separate inlets for both phases which must be filled entirely by either phase. For the position
of the phase boundary is constantly on the move, the only way to simulate a water inlet that is
entirely surrounded by water is by making water enter the computational domain through the
river bed long before the actual area of interest (Krouzecky (2002) [39]). This procedure was
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found to require long approach channels before natural flow conditions are obtained, further-
more it needs computation times of approximately three weeks for a typical river stretch, as the
one in the present work, to result in a converged solution (Krouzecky (2002) [39]). Due to these
severe limitations in the handling of the VOF method it was decided to employ a different tech-
nique: an initial grid was constructed using both bed geometry and surface shape obtained from
a converged run of the SSIIM model. Then, Fluent was run using this grid, and after obtaining a
converged solution, the pressure at the water surface was evaluated and translated into changes
in the elevation level of the corresponding grid regions. This modified surface was again run
through the Gambit grid generator before the whole process was repeated. It turned out that after
three iterations of this kind the pressure difference was below 100 Pa in every single surface cell,

corresponding to an accuracy of the resulting surface of lem.

The handling of the free surface was not the only problem encountered during the simulation runs
using the Fluent model: regions with low water depth exhibited instabilities as far as turbulent
kinetic energy and dissipation were concerned, leading to model divergence. Problems of this
kind have also been reported by Hodskinson (1996) [36] and Nicholas & Sambrook Smith (1999)
[54]. Nicholas (2001) [52] notes that these difficulties result from the existence of an upper limit
on the roughness height k, for a given near-bed cell thickness: for the Fluent model, k, should
not exceed the distance to the centroid of the near-bed grid cell. The implication of this is that
the thickness of the near-bed cell limits the maximum shear velocity at the bed, so that near-bed

velocities may be overpredicted in field situations involving high relative roughness (ibid.).

Similar problems were encountered in the RSim-3D model but could be resolved by deactivating
regions with low water depths. Since such an option did not exist in the Fluent model, it was
finally decided to reduce the model geometry by excluding the floodplains and using only the
data points within the river bed. This procedure ensures that low water depths cannot occur,
hence avoiding instabilities of the kind observed. However, additional errors are introduced into
the simulation and so the Fluent results are not directly comparable to those obtained from other

simulation models.

The boundary conditions employed for Fluent were as follows: an inlet boundary of type mass
flow inlet was used, prescribing 1.105 - 107kg/s as mass flow. This type of inlet ensures that the
inlet velocity is automatically adjusted for every new grid fed into the model. The usual zero-
gradient outflow condition was used at the outlet, and symmetry conditions were prescribed at
the water surface. The wall roughness was calibrated in the usual way, with a roughness height of
0.20m yielding the correct water surface position at river station 2078.0 — since Fluent does not

enforce a given downstream water surface elevation, the model must be calibrated by prescribing
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the water surface at the inlet and using the outlet as monitoring location. Using equation 4.94,
the roughness height of 0.20m translates into a Strickler coefficient-of 34.5, which is perfectly in
line with the parameters obtained by the other two models.

6.2.4 Comparison

The first parameter of relevance in the context of an engineering application is the result of the
model calibration: the bed roughness. The values obtained for this parameter are summarised in
table 6.2.

| | RSim-3D | SSIIM | FLUENT |

Bed roughness (1D calibration) [Kg¢] 30.0 31.0 -
Bed roughness (3D calibration) [Kgt] 35.0 35.0 345
Floodplain roughness [m] 1.0 1.0 -

Table 6.2: Roughness values as result of model calibration

From this table it can be seen that there are no significant differences in the bed roughness ob-
tained by a 3D model calibration. This is due to the fact that the Strickler coefficient is translated
into a roughness height by both RSim-3D and SSIIM - Fluent directly operates on a roughness
height — and that the roughness enters the momentum equations by similar equations in all three
models. Both RSim-3D and SSIIM also offer the possibility to obtain an initial guess for the
water surface elevation by running a 1D backwater computation. Again, there is no big differ-
ence between the roughness parameters obtained on the two models, but it becomes clear that
a significant difference exists between 1D and 3D model calibrations; the Strickler coefficient
obtained by 1D calibration is lower than in 3D. The main reason for this difference lies in the
methodology that is used to take bed roughness into account in different model dimensions: in
one-dimensional computations the roughness coefficient also covers cross-sectional effects, i.e.
the influence of secondary motion, while it is purely a measure of actual surface roughness in

three-dimensional calculations.

The time until a solution to a specific flow problem can be obtained and the effort, both in
human and computational resources, which must be spent on the problem, is another issue of
high relevance to the engineer. Therefore the time spent on distinct tasks while working on the

project was measured and is summarised in table 6.3:

o Grid generation: the time needed to produce a computational grid from geospatial data,
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and the time required for subsequent operations on the same grid (i.e. manual changes to

reflect surface changes),

Model handling: the time required to write input files or set the appropriate numerical
parameters in a graphical user interface, and the time for user interaction during model

calibration (many of these tasks are of the nature of trial-and-error),

Computation time: the actual time the software runs to return a converged solution; it
should be pointed out that due to the fact that the Fluent model was run on a different
computer hardware architecture, it is not possible to draw conclusions about the solver

efficiency from this value for that software.

| | RSim-3D | SSIIM | FLUENT |
Grid generation [h] 3.0 4.0 70.0
Model handling [h] 5.0 2.0 25.0
Computation time [h] 61.0 1.0 0.75

Table 6.3: Time spent on distinct modelling tasks

Three major conclusions can be drawn from the figures in table 6.3:

1. While grid generation can be done rather quickly in both RSim-3D and SSIIM, this is a
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time-consuming task in Fluent. As already mentioned, this is mostly due to the fact that no
options for converting measured data points (bed and surface) into a three-dimensional grid
exist in Fluent, so that many operations must be done manually, requiring a fair amount of
user interaction. Additionally, some small bugs in the 3D grid generation routines of Gam-
bit (Fluent’s graphical grid generator) led to inconsistencies in the solver module later. The
respective errors in the grid had to be found and corrected manually before a converged
flow solution could be obtained. Of course, the advantage of RSim-3D and SSIIM in terms
of grid generation is not only that these programs were actually written to work on mea-
sured real-world terrain data, but also the fact that the author has much more experience
with these models than with the Fluent software. Nonetheless it can be said that the cre-
ation of a suitable grid featuring a river stretch is a time-consuming and complex task in

Fluent.

. The handling of the model itself does not require much interaction in SSIIM, a little more

in RSim-3D and is most time-consuming in Fluent. As mentioned, the author has worked
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with SSIIM at numerous occasions in the past (e.g. Tritthart (2000) t79], Scheuerlein et
al. (2004) [70]) and so the experience with the software facilitates a short interaction time
during the runs of the model. As author of the RSim-3D model, the same thing holds
true; however, it must be said that RSim-3D is still ”work in progress”, hence it requires
more interaction time to get some parameters right to avoid instabilities. As far as Fluent
is concerned, the comparably long interaction time is a result of the way in which the free
water surface was treated, but also — to a lesser amount — the lack of detailed experience in

using this model.

3. Once a suitable grid is supplied to the model, both Fluent and SSIIM deliver results rather
quickly while RSim-3D needs long periods of time until a state of convergence is reached.

The reasons for this are manifold:

o Solvers operating on structured grids deliver results significantly faster than those us-
ing unstructured grids. Structured grids do not require a table storing the position of
every cell in the continuum and the connecting faces between the cells; all of these
values are known implicitly by supplying the index of each cell. Furthermore, cells in
hexahedral shape usually do not exhibit geometric distortion, facilitating a fast solver
progress. Experience with unstructured grids using the Fluent solver (e.g. Krouzecky
(2002) [39]) shows that computation times become extremely long using unstruc-
tured grids. However, the advantage in representing complex geometries exactly by
using unstructured grids, is a decisive reason to favor this grid type despite its higher
computational cost.

e RSim-3D’s solver is not using the fastest algorithm available. For smaller flow prob-
lems, it is reasonably fast, but for larger numbers of cells it becomes inefficient (see
chapter 4.6). This may be a starting point for a possible improvement of the model in
the future.

e Relaxation factors significantly influence the time until convergence is reached. Due
to instabilities in regions with low flow depths, RSim-3D had to use lower relaxation
factors than SSIIM or Fluent. While the latter model even required the removal of
all regions with low flow depth (i.e. floodplains) before reasonable relaxation factors
could be used, SSIIM did not exhibit stability problems at all and operated using the

standard relaxation factors.

e The models employ different convergence criteria. SSIIM uses unscaled residuals
while RSim-3D and Fluent employ scaled residuals (chapter 4.5.3). Depending on the
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flow situation encountered, the latter can be a much stronger criterion. Furthermore,
by default, the SSIIM model declares a solution converged as soon as the maximum of
all residuals is below 10~3, while RSim-3D uses 10~4. Recalling figure 4.8 in chapter
4.6, a drop in residuals is linear on a logarithmic scale, i.e. it takes approximately the
same number of iteration cycles to reduce the residuals from 10° to 107!, as from
1073 to 1074,

6.3 Results

6.3.1 Water surface

The resulting water surface elevation for the discharge with a return period of 100 years is de-
picted in figures 6.5, 6.7 and 6.8 for the RSim-3D, SSIIM and Fluent models, respectively. Figure
6.6 visualises the water depth within the project domain. It should be noted that the first stream
kilometer from km 2082.0 to 2081.0 was only modelled to obtain natural flow conditions in the
reach thereafter; hence, depending on the model used, the water surface elevation in this first
kilometer exhibits reasonable differences. However, after approximately 1.5 kilometers all mod-
els show pretty much the same water surface pattern with a significant rise at the outer bank
near the municipality of Grein and a drop in water surface elevations at the opposite bank. The
water surfaced obtained from the SSIIM model appears smoother than the one computed with
RSim-3D, which can be attributed to the different terrain interpolation techniques employed in
these models. This is also the obvious reason for the slightly higher extrema in figure 6.5.

Some spots near the left bank in figure 6.5 appear red (high altitude) or blue (low altitude). This
is because RSim-3D displays inactive grid regions along with the active ones, and so the red
spots are just dry areas with an altitude higher than the maximum water surface elevation, while
the blue spots are areas that have been automatically deactivated due to very low water depth.

When comparing the water surface obtained from Fluent (fig. 6.8) with the other figures, it can
be seen that the general water surface pattern shows no significant differences, even though the
floodplain regions were excluded from the computational domain. Only the absolute elevation
above sea level is slightly lower, but this stems from the model having been calibrated from an
upstream location, as opposed to a downstream location in RSim-3D and SSIIM.

Figure 6.9 shows the resulting water surface elevations at the left and right banks for all three
simulation models along with the characteristic water levels (KWD). Since the KWD values are
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Figure 6.5: Water surface in the Danube bend near Grein (RSim-3D model)
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Figure 6.6: Water depth in the Danube bend near Grein (RSim-3D model)
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Figure 6.7: Water surface in the Danube bend near Grein (SSIIM model)
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Figure 6.8: Water surface in the Danube bend near Grein (Fluent model)
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Figure 6.9: Water surface elevations along left and right banks
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based on the highest water levels observed in August 2002, the computed water surfaces should
always match these values at one bank while being lower or equal along the other bank. These
characteristic values are now analysed one at a time:

e /m 2081.0: RSim-3D gets the KWD right at the left bank, the water surface at the right
bank is overpredicted by approximately 10cm. In the SSIIM model the KWD value lies
right between the left and the right bank, with the latter being about Scm too high. Fluent
is the only model to exactly predict the KWD, but this is to no surprise since this location

was used as monitoring location during model calibration.

e km 2080.0: In both Fluent and SSIIM, the water surface elevation at this river station is
underestimated by 15cm (SSIIM) to 20cm (Fluent). RSim-3D performs very well at this
location, getting the KWD approximately right.

e km 2079.0: This river station is located right near the municipality of Grein at the apex of
the bend. RSim-3D overpredicts the water surface elevation by several centimetres while
SSIIM and Fluent give the correct value. However, as far as the Fluent model is concerned,
this result must be assessed very critically: considering the simplifications required to
obtain a converged solution, the numerically correct value could be mere coincidence.
RSim-3D’s overprediction of the actual situation can be attributed to the different terrain
interpolation technique employed in that software package.

e km 2078.0: Used as monitoring location in RSim-3D and SSIIM, it is no surprise that these
two models perform slightly better than Fluent. However, while the downstream water
surface elevation is enforced over the whole cross-section width in RSim-3D, SSIIM uses
only one reference cell for this purpose. Since this reference cell is usually placed right at
the centre line of the river, the water surface is free to move at both banks. It can be seen
that SSIIM predicts a significant drop in water levels along the left bank. Since the same
bed elevations were used for SSIIM and Fluent — and the latter model does not exhibit this
water surface minimum — a wrongly interpolated channel bed can be excluded from the

list of possible reasons to cause this effect.

It remains to analyse the maximum difference in water levels between left and right bank near
the village of Grein. The introductory section of this chapter already discussed the fact that
during the flood event of August 2002 a difference of 80cm was observed. Table 6.4 summarises
the simulation results for the cross-section at km 2078.9, where the largest differences were
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computed by all models. It can be seen that none of the models yields a difference of 80cm, but
both RSim-3D and Fluent exhibit differences close to 70cm — a reasonably good agreement with

the observations.

I " RSim-3D [ SSIIM [ Fiuent |
| Difference left-right bank || 68cm | 62cm | 69cm |

Table 6.4: Differences in water surface elevations at river station 2078.9

6.3.2 Depth-averaged flow velocities

Figures 6.10 through 6.12 depict the depth-averaged flow velocities for the three simulation mod-
els. Again, the overall flow pattern is very similar for all models. The most significant difference
between RSim-3D and SSIIM on one hand and Fluent on the other is that the velocity pattern
in the flow domain appears much smoother in the output of Fluent. This is due to the excluded
floodplains and the terrain data points that were not used in the bed interpolation algorithm.
Comparing the output of RSim-3D and SSIIM it can be seen that the shape of the velocity dis-
tribution near the banks is slightly smoother in the latter model. This can be attributed to the

different terrain interpolation methods.

Still, all three models agree on a maximum velocity magnitude between 3.6 and 4.0 m/s, with
maxima to be found at the straight river reach near km 2080.0 and near the downstream model
boundary at km 2078.0. The mean flow velocity slows down to some extent while passing by
the municipality of Grein where the inundated terrain enlarges the river cross-section; this effect

cannot be seen in the Fluent model output since the floodplains were not modelled.

An area of specific interest is the inundation area between the cross-sections of km 2079.6 and km
2079.3. It is depicted in detail in figure 6.13 (output of RSim-3D). It can be seen that an area of
recirculating flow with a velocity magnitude of 0.5 to 1.0 m/s evolves which is rotating counter-
clockwise being excited by the main flow. The same recirculating flow pattern is predicted by
the SSIIM model, as well.
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Figure 6.10: Depth-averaged flow velocity in the Danube bend near Grein (RSim-3D model)
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Figure 6.11: Depth-averaged flow velocity in the Danube bend near Grein (SSIIM model)
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Figure 6.12: Depth-averaged flow velocity in the Danube bend near Grein (Fluent model)
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Figure 6.13: Flow detail in the inundation area near km 2079.5

6.3.3 Secondary flow

The results of the three models exhibit little to no differences between the secondary flow pat-
terns. Therefore only the output of RSim-3D is depicted in this section. Figures 6.14 and 6.15
show cross-sections for every 200m between river stations 2079.8 and 2078.2, additionally the
cross-section at km 2078.9 is depicted where the maximum difference in water surface eleva-
tions between left and right bank was encountered. All figures are scaled by the factor 2.0 in the
vertical direction. In order to preserve the same velocity vector scale for all cross-sections it was

necessary to apply different geometric scales.

At cross-sections 2079.8 and 2079.6 the secondary movement points towards the right bank with
a velocity magnitude of up to 0.6 m/s, a consequence of the beginning bend. Then, at river sta-
tions 2079.4 and 2079.2 the secondary movement changes its direction and points towards the
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Figure 6.14: Secondary flow in cross-sections 2079.8 through 2079.0
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Cross-section km 2078.9

Figure 6.15: Secondary flow in cross-sections 2078.9 through 2078.2
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left bank with velocity magnitudes of up to 0.8 m/s. This is caused by the flow from the river bed
into the direction of the inundated terrain within the village of Grein. The first really distinct sec-
ondary flow pattern evolves at cross-section 2079.0, pointing towards the left (outer) bank near
the water surface and into the opposite direction close to the bed. This pattern continues through-
out cross-sections 2078.9 and 2078.8 with velocity magnitudes of up to 0.8 m/s. Cross-sections
2078.6 and 2078.4 still exhibit a distinct secondary flow pattern, and the velocity magnitude falls
below 0.4 m/s. At km 2078.2 this pattern has disappeared, and the movement points towards the

right bank in the entire cross-section.

6.4 Summary

A study of the flow conditions during the flood event of August 2002 in the Danube river bend
near the municipality of Grein in Upper Austria was performed using three different simulation
models: RSim-3D, SSIIM and Fluent. For the RSim-3D model an unstructured polyhedral com-
putation grid based on hexagonal grid regions was used while the other two models employed
structured grids consisting of hexahedra. It became apparent that the models using structured
grids exhibit significant advantages in terms of computation time required to obtain a converged
solution; however, this advantage is bought by geometry simplifications, imposing restrictions
on the shape of the polygon bounding the project domain. On the other hand, it was found that
a lot of manual work is required to build a grid for the Fluent model — a generic flow simulation

code —, a task which is easier to perform in the typical river simulation models.

As far as results of the flow simulation are concerned, the shape of the computed water surface,
the depth-averaged flow velocities and secondary flow patterns were evaluated. No significant
differences were encountered in the computed water surfaces, even though the maxima computed
by the RSim-3D model were slightly higher than those obtained through the other software pack-
ages, resulting in a closer match with the observations of August 2002 in certain places. However,
this can either be attributed to the polygonal cell shapes, the different bed elevation interpolation
technique employed in that model or a combination of both. All simulation results show the
characteristic pattern of a rise in water surface elevations along the outer bank and a drop along
the inner bank, even though the computed maximum difference of almost 70cm falls slightly
short of the 80cm observed during the flood event.

In terms of the depth-averaged flow velocities, all three models agree on a maximum velocity
magnitude between 3.6 and 4.0 m/s. The output of the Fluent mode! appears somewhat smoother
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which is to be attributed to the reduced simulation domain employed for building the grid since
areas of low water depth in the inundated regions led to instabilities during the simulation runs,
requiring these regions to be removed from the computational domain. Both the RSim-3D and
SSIIM models show a large recirculation area near the left bank at the beginning of the river
bend with velocity magnitudes of up to 1.0 m/s. Finally taking a closer look at the secondary
flow patterns, it was found that a distinct secondary movement can be found throughout the bend,
pointing towards the outer bank near the water surface and into the direction of the inner bank
close to the bed. The secondary movement reaches velocity magnitudes of up to 0.8 m/s.

In a final assessment of the performance of the RSim-3D model compared to the other flow
simulation models used in this study it can be summarised that the computational cost is higher,
but most of this can be attributed to the unstructured grid approach. The results are approximately
equal to that of other models, delivering both a realistic water surface and flow pattern throughout

the entire project domain.
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7 Conclusions and Future Work

7.1 Conclusions

In this thesis, a 3D river flow simulation model based on the Finite Volume Method and using un-
structured computation grids consisting of polyhedral cells was derived and implemented along
with a software tool for pre- and post-processing tasks. The simulation model uses the Sec-
ond Order Upwind scheme for the discretisation of convective terms in the Reynolds-Averaged
Navier-Stokes equations, the SIMPLE method to couple the unknown pressure and velocity fields
in the governing equations, and the standard k£ — € model for turbulence closure. The position of

the free water surface is determined by evaluating the computed pressure at the water surface.

The simulation model was validated against laboratory data using four selected channel flow
cases before it was compared to other numerical codes by applying it to a reach of the river
Danube near the municipality of Grein in Austria, analysing the flow conditions during the flood

event of August 2002 when a discharge with a return period of 100 years was encountered.

Purpose of the validation study was also to assess the difference between using polyhedral and
the hexahedral cell shapes normally employed. It was found that in some cases the simulation
results were closer to the observed values using polyhedral cells while other cases showed no
significant differences to using hexahedral cells. When the polyhedral cells were arranged in the
flow domain such that the resulting grid was rather coarse and the prevailing flow direction was
not perpendicular to any of the cells’ faces, some numerical diffusion was observed, even though
not severe. This means that the problem of the flow solution depending on the exact arrange-
ment of cells is not entirely solved, but polyhedral cells are capable of reducing its severity. A

reasonable level of grid refinement can provide a remedy to the problem.

In the practical application of the model to a real flow situation it was found that the model
based on polyhedral cells yields results of equal or higher quality — using the deviation from
observed values as yardstick — than comparable models. However, since the usage of different

terrain interpolation methods has a significant influence on the results obtained, the exact reason
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for the model’s advantage in some distinct places within the project domain cannot be clarified

cdmpletely.

It was found that the implemented model, using a polyhedral grid approach, requires relatively
higher computation times to obtain a converged solution than compafable models. A signifi-
cant portion of this time is attributed to the unstructured grid which needs significantly more
computational effort than its structured counterparts, but the general formulation of the discre-
tised governing equations and the Gauss-Seidel solver algorithm also have their share in being

computationally demanding.

On the other hand, many flow problems in complex bounded domains need to be simplified
before they can be computed by making use of a solver based on a structured grid. The polyhedral
grid approach, however, does not come with such restrictions. Furthermore the polyhedral cell
shapes do not become distorted easily, not even when bounding polygons of very complicated

shape are being used, which is another significant advantage of this modelling technique.

7.2 Future Work

The numerical model is perfectly operational using the formulae and algorithms presented in this
thesis. However, of practical relevance is definitely the efficiency of the solver algorithm as it
directly translates into the computational effort required to solve a particular problem. It is clear
that this could be a starting point for potential future improvements of the model. The efficiency
of different algorithms in the context of a typical river flow situation could easily be assessed to
find and subsequently implement the one that has been found to be optimal.

Furthermore, the simulation model is not capable of dealing with unsteady flow conditions at
this moment. Its use is therefore restricted to steady flows or weakly unsteady conditions which
can be treated by a variation of boundary conditions alone. Transient flow problems require
the discretisation and implementation of additional terms in the governing equations. It is not
particularly difficult to discretise these terms and add them to the numerical model; implementa-
tion, however, requires extensive additional testing to prove that mass is actually conserved over

several time steps.

The problem of sediment transport in rivers, lakes and reservoirs will probably be the most
important challenge for the hydraulic and water resources engineer in the 21st century. Since
physical experiments in this field are usually expensive in terms of time and money, and also

complicated if the variation of sediment grain diameters is required in a study, it is predictable
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that the focus of such experiments will shift towards numerical modelling soon. Due to the
modular design of the RSim-3D model developed in this work, it is not difficult to add further
transport equations and their respective boundary conditions to the source code. No special
considerations will be needed for the implementation of a mobile bed geometry since the same

approaches can be used that allow the water surface to move freely in the vertical direction.

Another challenge for the hydraulic and water resources engineer is the analysis of water quality
and the transport of pollutants in inland waters. While the water quality of many rivers in Europe
has improved notably during the past decades, there is still need for improvement in a significant
number of waterbodies. Furthermore the real challenge may not even lie in the restoration of
polluted rivers but in keeping the high water quality standard of all others, predicting the spread
of pollutants once a disaster has taken place. This issue can be addressed in a numerical model

by implementing the appropriate transport equations which are actually well-known.

Finally, it should be pointed out that RSim-3D’s visualisation options are limited to plan views
and cross-sections. Even though transects can be defined between two arbitrary points, allow-
- ing the user to analyse every place within the flow domain, this may turn out to be insufficient
when the results of a flow simulation are going to be presented to the general public. Visualisa-
tion tools in three spatial dimensions, like particle tracking or streamline contours, are available
which are capable of bridging the gap between the engineer and the general public. It would be
very interesting, though also very challenging, to couple the simulation model with one of these

visualisation techniques in the future.
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Appendix A Flow charts and examples

lllustration of region and cell numbering schemes
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Figure A.1: Region and cell numbering schemes
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Appendix A

Stages of the numbering process (fig. A.1)

a. General situation: Pattern of distributed base points within a bounding polygon.

b. Sorting of points: Fortune’s algorithm requires the base points to be sorted/numbered in

A2

ascending order along the positive y-axis; points with equal distance along the y-axis are

sorted along the positive x-axis.

Numbering of 2D regions: Two-dimensional grid regions receive the same identification

number as the base point they belong to.

Numbering of 3D cells: Applying a structured vertical subdivision of each grid region into

n cells, the cell number is derived from the region number by
c=n-rT+1

where c is the cell number, r the region number and i the vertical cell index in the range 0
to n-1. In order to store boundary conditions at the bed and the water surface, one extra cell
is added on each side of the cell pile, therefore the internal value of n is equal to (nyger + 2)

where ner 1S the user-supplied number of cells in each cell pile.
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lllustrative example of the Kriging process

.

Figure A.2: Illustrative example of the Kriging process
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Appendix A

Stages of the Kriging process (fig. A.2)

General situation: Distributed data points with known terrain elevation (black circles)

surround a point with unknown terrain elevation (red box).

Determine spatial dimensions: The dimensions Az and Ay of the terrain data set are

computed.

. Apply search circle: A circle with diameter d = v/Az? + Ay? is constructed on top of the

point with unknown terrain elevation. Terrain data points lying outside of this circle are

excluded from the data set.

. Sector subdivision: The data set is subdivided into four sectors (quadrants).

. Sector search: Between one and eight data points of every quadrant are used for the semi-

variogram. If there are more than eight points available (as in the north-eastern quadrant),
only the points with the shortest distance to the point with unknown terrain elevation stay
in the data set; all other points (green ellipse) are excluded.

Computation of semivariogram: The semivariances — distances from every point to every
other point — are computed for the remaining points in the data set (coloured in blue) before

the linear equation set is solved as outlined in chapter 3.4.3.

In the computational implementation of the Kriging process these stages are executed in parallel

as illustrated in figure A.3.
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Flow chart of the Kriging algorithm

Compute dimensions Ax and Ay of the terrain data set
and compute diameter of the search circle:
d = JAx? + Ay?

!

Initialise two-dimensional array points{4][8] for four quadrants and max. eight points each,
initialise control variable i=0 (i identifies the terrain data point currently worked on)

Increment i by 1 . m

points? Yes
No

Compute signed distances dx and dy between the point P of which the elevation is to be
determined and terrain data point /

]

From signs of dx and dy determine number of quadrant of terrain data point /,
compute spatial distance r between point with unknown elevation P and terrain data point /

distance r < radius d/2 ?

mber of points in thi
uadrant < 87

No

Add the terrain data point to the points array for the respective quadrant,

sort the points array in ascending order of the distance r

istance r < distance

No th points eleme

Replace the 8th-element of the points array for the respective quadrant

with the current terrain data point / and sort the array according to r

|

L Compute minimum distance of r over all quadrants (rin) l

Use this
Yes €levation

Construct the semivariogram of the entire points array and solve the
resulting set of linear equations to obtain the terrain elevation for P

Figure A.3: Flow chart of the Kriging algorithm
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Kriging vs. Bivariate Interpolation on cross-section data

b

Figure A.4: Kriging (a.) and Bivariate Interpolation (b.) applied to a reach of the River Danube
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Flow chart of the solver algorithm

Initialisation phase
Velocity field (u=v=w=0.0), pressure field (p=0.0), turbulence field (k=e=10-8)
Set boundary conditions, compute inflow mass flux M;,
Compute gradients of all conservation quantities
Initialise weighted residuals (R=1.0) and iteration counter (/fer=1)

»

L

A 4

Compute outflow mass flux Mo
Correct velocities at the outlet by multiplication with M;,/Mg,t

v

Compute eddy viscosities for all cells (chapter 4.3, equation 4.63)

¥

Compute coefficients of the three momentum (RANS) equations for all cells
(chapter 4.1.6, equations 4.34 and 4.35)

!

Solve the three momentum (RANS) equations using the Gauss-Seidel solver
(chapter 4.5)

v

Compute scaled residuals of the momentum (RANS) equations
(chapter 4.5.3, equation 4.113) ’

Y

Compute coefficients of the pressure-correction equation
(chapter 4.2, equation 4.48)

Solve the pressure-correction equation using the Gauss-Seidel solver
(chapter 4.5)

!

Correct pressure and velocity fields (chapter 4.2, equation 4.49)

v

Compute the mass-defect Mg in the entire computation domain
(chapter 4.5.3, equations 4.114 and 4.115)

Scale mass defect
using residual scale

Set Mger as new residual scale
Scaled resid. of contin.eq.=1.0

Compute velocity and pressure gradients for all cells J

®

Figure A.5: Flow chart of the solver algorithm (part 1)
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A8

®

r 3

@

Compute coefficients of the k-¢ equations
(chapter 4.3.2, equations 4.75 and 4.85)

!

|

Solve the k- equations using the Gauss-Seidel solver (chapter 4.5)

{

|

Enforce positiveness constraint on kand

{

|£ompute scaled residuals of the k-¢ equations (chapter 4.5.3, equation 4.113)|

}

f

Print scaled residuals for all equations

{

|

Calculate maximum of all residuals MaxRes

Update surface positions according to pressure head at the surface (ch.4.4.4)

Compute new cell volumes and surface areas

&

y

(scaled residuals < resid.
for convergence) OR

(scaled residuals < resid.
for divergence) OR
(Iter = Maxlter)?

No

Save solution to disk
Print information on screen

Figure A.6: Flow chart of the solver algorithm (part 2)




Appendix B Velocity profiles

Cross-section U2 (y/H = 0.0625)
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Figure B.1: Longitudinal velocity profiles for cross section U2 of Kim & Patel’s experiment
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Cross-section 15° (y/H = 0.0625)
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Figure B.2: Longitudinal velocity profiles for cross section 15° of Kim & Patel’s experiment

B.2



Appendix B

Cross-section 75° (y/H = 0.0625) Cross-section 75° (y/H = 0.1375)
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Figure B.3: Longitudinal velocity profiles for cross section 75° of Kim & Patel’s experiment
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Cross-section D1 (y/H = 0.0625) Cross-section D1 (y/H = 0.1375)
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Figure B.4: Longitudinal velocity profiles for cross section D1 of Kim & Patel’s experiment
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Figure B.5: Transversal velocity profiles for cross section U2 of Kim & Patel’s experiment
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Cross-section 15° (y/H = 0.0625) Cross-section 15° (y/H = 0.1375)
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Figure B.6: Transversal velocity profiles for cross section 15° of Kim & Patel’s experiment
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Figure B.7: Transversal velocity profiles for cross section 75° of Kim & Patel’s experiment
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Figure B.8: Transversal velocity profiles for cross section D1 of Kim & Patel’s experiment
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