
DISSERTATION

JOP: A Java Optimized Processor for
Embedded Real-Time Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

AO.UNIV.PROF. DIPL.- ING. DR.TECHN. ANDREAS STEININGER

und

AO.UNIV.PROF. DIPL.-ING. DR.TECHN. PETER PUSCHNER

Inst.-Nr.E182
Institut für Technische Informatik

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

DIPL.-ING. MARTIN SCHÖBERL

Matr.-Nr. 8625440

Straußengasse 2-10/2/55
1050 Wien

Wien, im Jänner 2005 , / % {'

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Abstract

Compared to software development for desktop systems, current software design
practice for embedded systems is still archaic. C/C++ and even assembler are used on
top of a small real-time operating system. Many of the benefits of Java, such as safe
object references, the notion of concurrency as a first-class language construct, and
its portability, have the potential to make embedded systems much safer and simpler
to program. However, Java technology is seldom used in embedded systems, due to
the lack of acceptable real-time performance.

This thesis presents a Java processor designed for time-predictable execution of
real-time tasks. JOP (Java Optimized Processor) is the implementation of the Java
virtual machine in hardware. JOP is intended for applications in embedded real-time
systems and the primary implementation technology is in a field programmable gate
array. This research demonstrates that a hardware implementation of the Java virtual
machine results in a small design for resource-constrained devices.

Architectural advancements in modern processor designs increase average perfor-
mance with features such as pipelines, caches and branch prediction. However, these
features complicate worst-case execution time (WCET) analysis and lead to very
conservative WCET estimates. This thesis tackles this problem from the architec-
tural perspective - by introducing a processor architecture in which simpler and more
accurate WCET analysis is more important than average case performance.

This thesis evaluates the issues surrounding the use of standard Java for real-time
applications. In order to overcome some of the issues with standard Java, a profile
for real-time Java is defined. Tight integration of the real-time scheduler with the
supporting processor result in an efficient platform for Java in embedded real-time
systems.

The proposed processor and the Java real-time profile have been used with success
to implement several commercial real-time applications.

Kurzfassung

Eingebettete Systeme werden zur Zeit vorwiegend in C/C++ oder auch noch in
Assembler programmiert. Viele Vorteile der Programmiersprache Java, wie z.B.
sichere Objektreferenzen, die Notation von Nebenläufigkeit in der Sprache und auch
die Portabilität der Sprache, könnten die Entwicklung dieser Systeme vereinfachen
und auch die Sicherheit dieser Systeme erhöhen. Jedoch erschwert die mangelnde
Echtzeitfähigkeit von Standard Java den Einsatz in eingebetteten Systemen.

Diese Arbeit beschreibt den Entwurf eines echtzeitfähigen Java Prozessors. JOP
(Java Optimized Processor) ist die Realisierung der Java virtual machine in Hard-
ware. JOP ist für den Einsatz in eingebetteten, echtzeitfähigen Systemen entworfen
und ist in einem 'Field Programmable Gate Array' implementiert. Diese Arbeit zeigt,
dass eine Hardwarerealisierung der Java virtual machine zu einem kleinen System
führt, das auch für Applikationen mit rigiden Ressourcebeschränkungen geeignet ist.

Moderne Prozessoren weisen Architekturmerkmale auf (wie z.B. Parallelverar-
beitung, Cachespeicher und Sprungvorhersage), die vor allem die durchschnittliche
Rechenleistung erhöhen. Diese Architekturmerkmale erschweren jedoch die 'Worst-
Case Execution Time' (WCET) Analyse und führen zu pessimistischen WCET Ab-
schätzungen. Diese Arbeit geht einen anderen Weg — Es wird eine Prozessorarchitek-
tur vorgestellt, für die eine einfache und genauere WCET Analyse wichtiger ist als
die durchschnittliche Rechenleistung.

Diese Arbeit untersucht die Probleme, die sich bei der Verwendung von Java in
Echtzeitsystemen ergeben. Standard Java wird um eine Spezifikation für Echtzeit-
systeme erweitert. Die Integration des echtzeitfähigen Schedulers mit dem Prozessor
führt zu einer effizienten Plattform für Java in eingebetteten Echtzeitsystemen.

Der vorgestellte Prozessor und die Spezifikation für echtzeitfähiges Java wurden
erfolgreich in mehreren kommerziellen Echtzeitsystemen eingesetzt.

Contents

1 Introduction 1
1.1 Justification for Development 1
1.2 Embedded Real-Time Systems 2
1.3 Research Objectives and Contributions 3
1.4 Outline of the Thesis 6

2 Java and the Java Virtual Machine 7
2.1 Java 7

2.1.1 History 9
2.1.2 The Java Programming Language 9

2.2 The Java Virtual Machine 11
2.2.1 Memory Areas 11
2.2.2 JVM Instruction Set 12
2.2.3 Methods 13
2.2.4 Implementation of the JVM 14

2.3 Summary 16

3 Related Work 17
3.1 Hardware Translation and Coprocessors 17

3.1.1 Hard-Int 19
3.1.2 DELFT-JAVA Engine 19
3.1.3 JIFFY 19
3.1.4 Jazelle 20
3.1.5 JSTAR,JA108 21
3.1.6 A Co-Designed Virtual Machine 21

3.2 Java Processors 22
3.2.1 picoJava 22
3.2.2 aJileJEMCore 25
3.2.3 Cjip 26
3.2.4 Ignite, PSC1000 26

CONTENTS

3.2.5 Moon 27
3.2.6 Lightfoot 27
3.2.7 LavaCORE 28
3.2.8 Komodo 28
3.2.9 FemtoJava 28

3.3 Additional Comments 29
3.4 Research Objectives 30

4 Restrictions of Java for Embedded Real-Time Systems 33
4.1 Java Support for Embedded Systems 33
4.2 Issues with Java in Embedded Systems 34
4.3 Java Micro Edition 37

4.3.1 Connected Limited Device Configuration (CLDC) 37
4.3.2 Connected Device Configuration (CDC) . 39
4.3.3 Additional Specifications 40
4.3.4 Discussion 40

4.4 Real-Time Extensions 41
4.4.1 Real-Time Core Extension 41
4.4.2 Discussion oftheRT Core 42
4.4.3 Real-Time Specification for Java 43
4.4.4 Discussion of the RTSJ 45
4.4.5 Subsets of the RTSJ 51
4.4.6 Extensions to the RTSJ 53

4.5 Summary 53

5 JOP Architecture 55
5.1 Benchmarking the JVM 55

5.1.1 Bytecöde Frequency 55
5.1.2 Methods Types and Length 60
5.1.3 Summary 64

5.2 Overview of JOP 64
5.3 Microcode 66

5.3.1 Translation of Bytecodes to Microcode 66
5.3.2 Compact Microcode 68
5.3.3 Instruction Set 69
5.3.4 Bytecode Example 70
5.3.5 Flexible Implementation of Bytecodes 70
5.3.6 Summary 71

5.4 The Processor Pipeline 71

CONTENTS m

5.4.1 Java Bytecode Fetch 72
5.4.2 JOP Instruction Fetch 73
5.4.3 Decode and Address Generation . 74
5.4.4 Execute 75
5.4.5 Interrupt Logic 77
5.4.6 Summary 77

5.5 An Efficient Stack Machine 78
5.5.1 Java Computing Model 78
5.5.2 Access Patterns on the Java Stack 81
5.5.3 Common Realizations of a Stack Cache 82
5.5.4 A Two-Level Stack Cache 85
5.5.5 Resource Usage Compared 91
5.5.6 Summary 93

5.6 HW/SW Codesign 93
5.7 Real-Time Predictability 98

5.7.1 Interrupts 98
5.7.2 Task Switch 99
5.7.3 Architectural Design Decisions 101
5.7.4 Summary 103

5.8 A Time-Predictable Instruction Cache 103
5.8.1 Cache Performance 104
5.8.2 Proposed Cache Solution 107
5.8.3 WCET Analysis 112
5.8.4 Caches Compared 113
5.8.5 Summary 119

6 JOP Runtime System 121
6.1 A Real-Time Profile for Embedded Java 121

6.1.1 Application Structure 122
6.1.2 Threads 122
6.1.3 Scheduling 123
6.1.4 Memory 125
6.1.5 Restriction of Java 125
6.1.6 Implementation Results 128

6.2 User-Defined Scheduler 128
6.2.1 Schedule Events 129
6.2.2 Data Structures 129
6.2.3 Services for the Scheduler 130
6.2.4 Class Scheduler 130

iv CONTENTS

6.2.5 Class Task 132
6.2.6 A Simple Example Scheduler 133
6.2.7 Interaction of Task, Scheduler and the JVM 135
6.2.8 Predictability 137
6.2.9 Related Work 140
6.2.10 Summary 140

6.3 JVM Architecture 141
6.3.1 Runtime Data Structures 141

7 Results 147
7.1 Hardware Platforms 148
7.2 Resource Usage 149
7.3 Performance 152

7.3.1 General Performance 152
7.3.2 Real-Time Performance 159

7.4 WCET 164
7.4.1 Microcode Path Analysis 165
7.4.2 Microcode Low-level Analysis 166
7.4.3 Bytecode Independency 166
7.4.4 WCET of Bytecodes 167
7.4.5 Evaluation 167

7.5 Applications 172
7.5.1 Motor Control 172
7.5.2 Further Projects 176

7.6 Summary 176

8 Conclusions 179
8.1 Conclusions 179
8.2 Summary of Contributions 180
8.3 Future Research Directions 183

A Publications 195

B Acronyms 197

C JOP Instruction Set 199

D Bytecode Execution Time 223

E Benchmark Results 233

CONTENTS

F Cyclone FPGA Board 237

1 Introduction

This thesis introduces the concept of a Java processor for embedded real-time sys-
tems, in particular the design of a small processor for resource-constrained devices
with time-predictable execution of Java programs. This Java processor is called JOP
- which stands for Java Optimized Processor - , based on the assumption that a full
native implementation of all Java bytecode instructions is not a useful approach.

1.1 Justification for Development

To justify Java's use in embedded real-time systems we quote from a document pub-
lished by the National Institute of Standards and Technology [47]:

• Java's higher level of abstraction allows for increased programmer productivity
(although recognizing that the tradeoff is runtime efficiency)

• Java is relatively easier to master than C++

• Java is relatively secure, keeping software components (including the JVM
itself) protected from one another

• Java supports dynamic loading of new classes

• Java is highly dynamic, supporting object and thread creation at runtime

• Java is designed to support component integration and reuse

• The Java technologies have been developed with careful consideration, erring
on the conservative side using concepts and techniques that have been scruti-
nized by the community

• The Java programming language and Java platforms support application porta-
bility

• The Java technologies support distributed applications

• Java provides well-defined execution semantics

1 INTRODUCTION

Based on the NIST document, the Real-Time for Java Experts Group has published
the Real Time Specification for Java (RTSJ) [8] to add real-time extensions to Java.

Despite the above, to date Java is rarely used in embedded real-time systems. High
resource requirements for the Java virtual machine and unpredictable real-time be-
havior are the main issues surrounding the use of Java for embedded systems. This
thesis addresses both issues, and the proposed Java processor makes a strong case for
the use of Java in embedded systems.

1.2 Embedded Real-Time Systems

An embedded system is a special-purpose computer system that is part of a larger
system or machine. An embedded system is designed to perform a narrow range of
functions with no, or minimal user intervention.

Since many embedded systems are produced in large quantities, the need to re-
duce costs is a major concern. Embedded systems often have significant energy con-
straints, and many are battery-powered. As a result of these constraints, embedded
systems use a slow processor and small memory size to minimize costs and energy
consumption.

Embedded systems interact with the environment and often have to produce output
within a given timeframe. Therefore, most embedded systems are real-time systems.
Here is a general definition of a real-time system (John A. Stankovic [88]):

In real-time computing the correctness of the system depends not only
on the logical result of the computation but also on the time at which the
result is produced.

However, it should be noted that 'real-time' does not mean 'really fast'. In pure
real-time systems (i.e. without non real-time tasks), there is no additional value in
producing results earlier than required.

Embedded real-time systems often have to handle concurrent tasks, such as com-
munication, calculating values for a control loop, user interface and supervision. A
natural way to handle these concurrent jobs is to model them as individual tasks.
These tasks are executed on a preemptive multi-tasking system. Each task is assigned
a priority and the multi-tasking system is responsible for scheduling individual tasks
according to their priority.

To fulfil the time constraints for a real-time system, an appropriate schedule needs
to be found. This problem was solved in the classic paper by Liu and Layland [61]
on independent periodic tasks. The optimal priority assignment for a set of tasks
is called the rate monotonie priority order, in which a task with a shorter period is

1.3 RESEARCH OBJECTIVES AND CONTRIBUTIONS

assigned a higher priority. If the Worst-Case Execution Time (WCET) of each task
is known, the schedule is feasible and all tasks will meet their deadline1, if:

where

C, = worst-case execution time of taski

Tt = period of taski

U(n) = utilization bound for n tasks.

In theory, this test is both elegant and simple. For concrete systems, two issues have
to be solved:

• There are very few systems in existence that do not require communication
between tasks. As a result, tasks cannot be seen as independent and blocking
needs to be incorporated into the schedulability analysis.

• The WCET of each task has to be known. This is not a trivial task. Simple
measurements of execution times never fully guarantee a correct value. The
tasks therefore have to be analyzed using the correct model of the target system.
It is almost impossible to provide an accurate and correct model of modern
processors and memory systems.

Several standard textbooks on real-time systems [51,10] deal with the first issue. JOP
is intended to resolve the second issue. It should be noted that there are a number of
scheduling approaches and schedulability tests. However, as a rule, these approaches
all assume that the WCET of each task is known.

1.3 Research Objectives and Contributions

This thesis presents a hardware implementation of the Java Virtual Machine (JVM),
targeting small embedded systems with real-time constraints. The processor is de-
signed from the ground up for low WCET of bytecodes, in order to give tasks low
WCET values. The following list summarizes the research objectives for the pro-
posed Java processor:

'The period of a periodic task is the time between consecutive activations of the task. The deadline of
the task is assumed to be at the end of the tasks period.

1 INTRODUCTION

Primary Objectives:

• Time-predictable Java platform for embedded real-time systems

• Small design that fits into a low-cost FPGA

• A working processor, not merely a proposed architecture

Secondary Objectives:

• Acceptable performance compared with mainstream non real-time Java sys-
tems

• A flexible architecture that allows different configurations for different appli-
cation domains

• Definition of a real-time profile for Java

Contributions:

JOP is a stack computer with its own instruction set, called microcode in this thesis.
Java bytecodes are translated into microcode instructions or sequences of microcode.
The difference between the JVM and JOP is best described as the following:

The JVM is a CISC stack architecture, whereas JOP is a RISC stack
architecture.

JOP will help to increase the acceptance of Java for embedded real-time systems.
JOP is implemented as a soft-core in a Field Programmable Gate Array (FPGA).
Using an FPGA as the processor for embedded systems is uncommon, because of the
high costs, compared with a microcontroller. However, if the core is small enough,
unused FPGA resources can be used to implement periphery in the FPGA, resulting
in a lower chip count and hence lower overall costs.

The thesis' main contributions are as follows:

• The execution time for Java bytecodes can be exactly predicted in terms of the
number of clock cycles. There is no mutual dependency between consecutive
bytecodes. Therefore, no pipeline analysis - with possible unbound timing
effects - is necessary. These properties greatly simplify low-level WCET anal-
ysis.

In order to fill the gap between processor speed and the memory access time,
caches are mandatory. In Section 5.8, a novel way to organize an instruction

1.3 RESEARCH OBJECTIVES AND CONTRIBUTIONS

cache, as method cache, is provided. This method cache is simple to analyze
with respect to worst-case behavior and still provides a substantial performance
gain when compared against a solution without an instruction cache.

The proposed processor architecture results in a predictable and high-
performance execution of real-time tasks in Java, without the resource
implications and unpredictability of a JIT-compiler.

• JOP is microprogrammed using a novel way of mapping bytecodes to mi-
crocode addresses. This mapping has zero overheads, even for complex byte-
codes.

A two-level stack cache, described in Section 5.5, which fits to the embedded
memory technologies of current FPGAs and ASICs, ensures the fast execution
of basic instructions with minimum resource requirements. Fill and spill of the
stack cache is subjected to microcode control and therefore time-predictable.

JOP is the smallest hardware implementation of the JVM available to date.
This fact enables low-cost FPGAs to be used in embedded systems. The re-
source usage of JOP can be configured to trade size against performance for
different application domains.

• The definition of standard Java does not fit hard real-time applications. There-
fore, a real-time profile for Java (with restrictions) is defined in Section 6.1
and implemented on JOP. Tight integration of the scheduler and the hardware
that generates schedule events results in low latency and low jitter of the task
dispatch.

In this profile, hardware interrupts are represented as asynchronous events with
associated threads. These events are subject to the control of the scheduler and
can be incorporated into the priority assignment and schedulability analysis in
the same way as normal application tasks.

• One contribution made as part of this thesis is the concrete implementation of
the proposed architecture. The author is aware that it is not usually considered
necessary to provide a complete implementation as part of a thesis. However,
it is the opinion of the author that a simulation-only approach would lead to
mistakes or small glitches. By providing a concrete implementation, we are
not only confronted with the full complexity of real-life processes, but also
with one or more major issues that would often be generously overlooked in
a simulation. In Section 7.5, the usage of JOP in a real-world application is
described.

1 INTRODUCTION

1.4 Outline of the Thesis

Chapter 2 provides background information on the Java programming language and
the execution environment, the Java virtual machine, for Java applications.

The related work is presented in Chapter 3. Different hardware solutions from both
academia and industry for accelerating Java in embedded systems are analyzed. This
chapter concludes with the research question.

Standard Java is not suitable for the resource-constrained world of embedded sys-
tems. Chapter 4 gives an overview of the different restrictions of Java for embedded
and real-time systems.

Chapter 5 is the main chapter of this thesis in which the architecture of JOP is
described. The motivation behind different design decisions is given.

A Java processor alone is not a complete JVM. Chapter 6 describes the runtime
environment on top of JOP, including the definition of a real-time profile for Java and
a framework for a user-defined scheduler in Java.

In Chapter 7, JOP is evaluated with respect to size, performance and WCET. This
is followed by a description of the first commercial real-world application of JOP.

Finally, in Chapter 8, the work undertaken is reviewed and the major contributions
of this thesis are presented. This chapter concludes with directions for future research
using JOP and real-time Java.

2 Java and the Java Virtual Machine

Java technology consists of the Java language definition, a definition of the standard
library, and the definition of an intermediate instruction set with an accompanying
execution environment. This combination helps to make write once, run anywhere
possible.

The following chapter gives a short overview of the Java programming language. A
more detailed description of the Java Virtual Machine (JVM) and the explanation of
the JVM instruction set, the so-called bytecodes follows. The exploration of dynamic
instruction counts of typical Java programs can be found in Section 5.1.

2.1 Java

Java is a relatively new and popular programming language. The main features that
have helped Java achieve success are listed below:

Simple and object oriented: Java is a simple programming language that appears
very similar to C. This 'look and feel' of C means that programmers that know
C, can switch to Java without difficulty. Java provides a simplified object model
with single inheritance1.

Portability: To accommodate the diversity of operating environments, the Java com-
piler generates bytecodes - an architecture neutral intermediate format. To
guarantee platform independence, Java specifies the sizes of its basic data types
and the behavior of its arithmetic operators. A Java interpreter, the Java vir-
tual machine, is available on various platforms to help make 'write once, run
anywhere' possible.

Availability: Java is not only available for different operating systems, it is available
at no cost. The runtime system and the compiler can be downloaded from
Sun's website for Windows, Linux and Solaris. Sophisticated development
environments, such as Netbeans or Eclipse, are available under the GNU Public
License.

1 Java has single inheritance of implementation — only one class can be extended. However, a class
can implement several interfaces, which means that Java has multiple interface inheritance.

2 JAVA AND THE JAVA VIRTUAL MACHINE

Java Application

Java Programming Language

Java
Native
Interface

Java Class Library

Java Virtual Machine

Classloader Verifier Execution

Operating System

Figure 2.1 : Java system overview

Library: The complete Java system includes a rich class library to increase program-
ming productivity. Besides the functionality from a C standard library, it also
contains other tools, such as collection classes and a GUI toolkit.

Built-in multithreading: Java supports multithreading at the language level: the
library provides the Thread class, the language provides the keyword
synchronized for critical sections and the runtime system provides monitor
and condition lock primitives. The system libraries have been written to be
thread-safe: the functionality provided by the libraries is available without
conflicts due to multiple concurrent threads of execution.

Safety: Java provides extensive compile-time checking, followed by a second level
of runtime checking. The memory management model is simple - objects are
created with the new operator. There are no explicit pointer data types and
no pointer arithmetic, but there is automatic garbage collection. This simple
memory management model eliminates a large number of the programming
errors found in C and C++ programs. A restricted runtime environment, the
so-called sandbox, is available when executing small Java applications in Web
browsers.

As can be seen in Figure 2.1, Java consists of three main components:

1. The Java programming language as defined in [33]

2.1 JAVA 9

2. The class library, defined as part of the Java specification. All implementations
of Java have to contain the library defined by Sun

3. The Java virtual machine (defined in [60]) that loads, verifies and executes the
binary representation (the class file) of a Java program

The Java native interface supports functions written in C or C++. This combination
is sometimes called Java technology to emphasize the fact that Java is more than just
another object-oriented language.

However, a number of issues have hindered a broad acceptance of Java. The orig-
inal presentation of Java as an Internet language led to the misconception that Java
was not a general-purpose programming language. Another obstacle was the first
implementation of the JVM as an interpreter. Execution of Java programs was very
slow compared to compiled C/C++ programs. Although advances in its runtime tech-
nology, in particular the just-in-time compiler, have closed the performance gap, it is
still a commonly held view that Java is slow.

2.1.1 History

The Java programming language originated as part of a research project to develop
software for network devices and embedded systems. In the early '90s, Java, which
was originally known as Oak [65, 67], was created as a programming tool for a con-
sumer device that we would today call a PDA. The device (known as *7) was a small
SPARC-based hardware device with a tiny embedded OS. However, the *7 was not
issued as a product and Java was officially released in 1995 as a new language for
the Internet (to be integrated into Netscape's browser). Over the years, Java tech-
nology has become a programming tool for desktop applications, web servers and
server applications. These application domains resulted in the split of the Java plat-
form into the Java standard edition (J2SE) and the enterprise edition (J2EE) in 1999.
With every new release, the library (defined as part of the language) continued to
grow. Java for embedded systems was clearly not an area Sun was interested in pur-
suing. However, with the arrival of mobile phones, Sun again became interested in
this embedded market. Sun defined different subsets of Java, which have now been
combined into the Java Micro Edition (J2ME). A detailed description of the J2ME
follows in Section 4.3.

2.1.2 The Java Programming Language

The Java programming language is a general-purpose object-oriented language. Java
is related to C and C++, but with a number of aspects omitted. Java is a strongly

10 2 JAVA AND THE JAVA VIRTUAL MACHINE

Type Description

boolean either true or false
char 16-bit Unicode character (unsigned)
byte 8-bit integer (signed)
short 16-bit integer (signed)
i nt 32-bit integer (signed)
1 on g 64-bit integer (signed)
f 1 oat 32-bit floating-point (IEEE 754-1985)
double 64-bit floating-point (IEEE 754-1985)

Table 2.1 : Java primitive data types

typed language, which means that type errors can be detected at compile time. Other
errors, such as wrong indices in an array, are checked at runtime. The problematic2

pointer in C and explicit deallocation of memory is completely avoided. The pointer
is replaced by a reference, i.e. an abstract pointer to an object. Storage for an object
is allocated from the heap during creation of the object with new. Memory is freed by
automatic storage management, typically using a garbage collector. The garbage col-
lector avoids memory leaks from a missing f ree() and the safety problems exposed
by dangling pointers.

The types in Java are divided into two categories: primitive types and reference
types. Table 2.1 lists the available primitive types. Method local variables, class fields
and object fields contain either a primitive type value or a reference to an object.

Classes and class instances, the objects, are the fundamental data and code orga-
nization structures in Java. There are no global variables or functions as there are
in C/C++. Each method belongs to a class. This 'everything belongs to a class or
an object' combined with the class naming convention, as suggested by Sun, avoids
name conflicts in even the largest applications.

New classes can extend exactly one superclass. Classes that do not explicitly ex-
tend a superclass become direct subclasses of Object, the root of the whole class
tree. This single inheritance model is extended by interfaces. Interfaces are abstract
classes that only define method signatures and provide no implementation. A con-
crete class can implement several interfaces. This model provides a simplified form
of multiple inheritance.

Java supports multitasking through threads. Each thread is a separate flow of con-
trol, executing concurrently with all other threads. A thread contains the method

2C pointers represent memory addresses as data. Pointer arithmetic and direct access to memory leads
to common and hard-to-find program errors.

2.2 THE JAVA VIRTUAL MACHINE 11

stack as thread local data - all objects are shared between threads. Access conflicts
to shared data are avoided by the proper use of synchronized methods or code
blocks.

Java programs are compiled to a machine-independent bytecode representation as
defined in [60]. Although this intermediate representation is defined for Java, other
programming languages (e.g. ADA [13]) can also be compiled into Java bytecodes.

2.2 The Java Virtual Machine

The Java virtual machine (JVM) is a definition of an abstract computing machine that
executes bytecode programs. The JVM specification [60] defines three elements:

• An instruction set and the meaning of those instructions - the bytecodes

• A binary format - the class file format. A class file contains the bytecodes, a
symbol table and other ancillary information

• An algorithm to verify that a class file contains valid programs

In the solution presented in this thesis, the class files are verified, linked and trans-
formed into an internal representation before being executed on JOP. This transfor-
mation is performed with JavaCodeCompact and is not executed on JOP. We will
therefore omit the description of the class file and the verification process.

The instruction set of the JVM is stack-based. All operations take their arguments
from the stack and put the result onto the stack. Values are transferred between the
stack and various memory areas. We will discuss these memory areas first, followed
by an explanation of the instruction set.

2.2.1 Memory Areas

The JVM contains various runtime data areas. Some of these areas are shared be-
tween threads, whereas other data areas exist separately for each thread.

Method area: The method area is shared among all threads. It contains static class
information such as field and method data, the code for the methods and the
constant pool. The constant pool is a per-class table, containing various kinds
of constants such as numeric values or method and field references. The con-
stant pool is similar to a symbol table.

Part of this area, the code for the methods, is very frequently accessed (during
instruction fetch) and therefore is a good candidate for caching.

12 2 JAVA AND THE JAVA VIRTUAL MACHINE

Heap: The heap is the data area where all objects and arrays are allocated. The heap
is shared among all threads. A garbage collector reclaims storage for objects.

JVM stack: Each thread has a private stack area that is created at the same time as
the thread. The JVM stack is a logical stack that contains following elements:

1. A frame that contains return information for a method

2. A local variable.area to hold local values inside a method

3. The operand stack, where all operations are performed

Although it is not strictly necessary to allocate all three elements to the same
type of memory we will see in Section 5.5 that the argument-passing mecha-
nism regulates the layout of the JVM stack.

Local variables and the operand stack are accessed as frequently as registers in
a standard processor. A Java processor shall provide some caching mechanism
of this data area.

The memory areas are similar to the various segments in conventional processes (e.g.
the method code is analogous to the 'text' segment). However, the operand stack
replaces the registers in a conventional processor.

2.2.2 JVM Instruction Set

The instruction set of the JVM contains 201 different instructions [60], the bytecodes
that can be grouped into the following categories:

Load and store: Load instructions push values from the local variables onto the
operand stack. Store instructions transfer values from the stack back to lo-
cal variables. 70 different instructions belong to this category. Short versions
(single byte) exist to access the first four local variables. There are unique
instructions for each basic type (int , long, f loa t , double and reference).
This differentiation is necessary for the bytecode verifier, but is not needed dur-
ing execution. For example i 1 oad, f 1 oad and al oad all transfer one 32-bit
word from a local variable to the operand stack.

Arithmetic: The arithmetic instructions operate on the values found on the stack and
push the result back onto the operand stack. There are arithmetic instructions
for in t , f l o a t and double. There is no direct support for byte, shor t or
char types. These values are handled by i nt operations and have to be con-
verted back before being stored in a local variable or an object field.

2.2 THE JAVA VIRTUAL MACHINE

Type conversion: The type conversion instructions perform numerical conversions
between all Java types: as implicit widening conversions (e.g. i n t to long,
f 1 oat or doubl e) or explicit (by casting to a type) narrowing conversions.

Object creation and manipulation: Class instances and arrays (that are also ob-
jects) are created and manipulated with different instructions. Objects and class
fields are accessed with type-less instructions.

Operand stack manipulation: All direct stack manipulation instructions are type-
less and operate on 32-bit or 64-bit entities on the stack. Examples of these
instructions are dup, to duplicate the top operand stack value, and pop, to re-
move the top operand stack value.

Control transfer: Conditional and unconditional branches cause the JVM to con-
tinue execution with an instruction other than the one immediately following.
Branch target addresses are specified relative to the current address with a
signed 16-bit offset. The JVM provides a complete set of branch conditions
for i n t values and references. Floating-point values and type long are sup-
ported through compare instructions. These compare instructions result in an
i n t value on the operand stack.

Method invocation and return: The different types of methods are supported by
four instructions: invoke a class method, invoke an instance method, invoke
a method that implements an interface and an i nvokespeci al for an instance
method that requires special handling, such as p r iva t e methods or a super-
class method.

A bytecode consists of one instruction byte followed by optional operand bytes.
The length of the operand is one or two bytes, with the following exceptions:
multianewarray contains 3 operand bytes; invokein te r face contains 4
operand bytes, where one is redundant and one is always zero; lookupswitch
and tab leswi tch (used to implement the Java switch statement) are variable-
length instructions; and goto_w and jsr_w are followed by a 4 byte branch offset,
but neither is used in practice as other factors limit the method size to 65535 bytes.

2.2.3 Methods

A Java method is equivalent to a. function or procedure in other languages. In object
oriented terminology this method is invoked instead of called. We will use method
and invoke in the remainder of this text. In Java and the JVM, there are five types of
methods:

14 2 JAVA AND THE JAVA VIRTUAL MACHINE

• Static or class methods

• Virtual methods

• Interface methods

• Class initialization

• Constructor of the parent class(superO)

For these five types there are only four different bytecodes:

i nvokestat i c: A class method (declared s t a t i c) is invoked. As the target does
not depend on an object, the method reference can be resolved at load/link
time.

i nvokevi r tua l : An object reference is resolved and the corresponding method is
invoked. The resolution is usually done with a dispatch table per class con-
taining all implemented and inherited methods. With this dispatch table, the
resolution can be performed in constant time.

i nvokeinterface: An interface allows Java to emulate multiple inheritance. A
class can implement several interfaces, and different classes (that have no in-
heritance relation) can implement the same interface. This flexibility results
in a more complex resolution process. One method of resolution is a search
through the class hierarchy that results in a variable, and possibly lengthy, exe-
cution time. A constant time resolution is possible by assigning every interface
method a unique number. Each class that implements an interface needs its
own table with unique positions for each interface method of the whole appli-
cation.

i nvokespeci ai : Invokes an instance method with special handling for superclass,
p r iva te , and instance initialization. This bytecode catches many different
cases. This results in expensive checks for common p r iva te instance meth-
ods.

2.2.4 Implementation of the JVM

There are several different ways to implement a virtual machine. The following list
presents these possibilities and analyses how appropriate they are for embedded de-
vices.

2.2 THE JAVA VIRTUAL MACHINE 15

for (;;) {
instr = bcode[pc++];
switch (instr) {

case IADD:
tos = stack[sp]+stack[sp—1] ;
—sp;
stack[sp] = tos;
break;

Listing 2.1: Typical JVM interpreter loop

Interpreter: The simplest realization of the JVM is a program that interprets the
bytecode instructions. The interpreter itself is usually written in C and is there-
fore easy to port to a new computer system. The interpreter is very compact,
making this solution a primary choice for resource-constrained systems. The
main disadvantage is the high execution overhead. From a code fragment of the
typical interpreter loop, as shown in Listing 2.1, we can examine the overhead:
The emulation of the stack in a high-level language results in three memory
accesses for a simple i add bytecode. The instruction is decoded through an
indirect jump. Indirect jumps are still a burden for standard branch prediction
logic.

Just-In-Time Compilation: Interpreting JVMs can be enhanced with just-in-time
(JIT) compilers. A JIT compiler translates Java bytecodes to native instruc-
tions during runtime. The time spent on compilation is part of the application
execution time. JIT compilers are therefore restricted in their optimization ca-
pacity. To reduce the compilation overhead, current JVMs operate in mixed
mode: Java methods are executed in interpreter mode and the call frequency
is monitored. Often-called methods, the hot spots, are then compiled to native
code.

JIT compilation has several disadvantages for embedded systems, notably that
a compiler (with the intrinsic memory overhead) is necessary on the target sys-

16 2 JAVA AND THE JAVA VIRTUAL MACHINE

tem. Due to compilation during runtime, execution times are not predictable3.

Batch Compilation: Java can be compiled, in advance, to the native instruction set
of the target. Precompiled libraries are linked with the application during run-
time. This is quite similar to C/C++ applications with shared libraries. This
solution undermines the flexibility of Java: dynamic class loading during run-
time. However, this is not a major concern for embedded systems.

Hardware Implementation: A Java processor is the implementation of the JVM in
hardware. The JVM bytecode is the native instruction set of such a processor.
This solution can result in quite a small processor, as a stack architecture can
be implemented very efficiently. A Java processor is memory-efficient as an
interpreting JVM, but avoids the execution overhead. The main disadvantage
of a Java processor is the lack of capability to execute C/C++ programs.

2.3 Summary

Java is a unique combination of the language definition, a rich class library and a run-
time environment. A Java program is compiled to bytecodes that are executed by a
Java virtual machine. Strong typing, runtime checks and avoidance of pointers make
Java a safe language. The intermediate bytecode representation simplifies porting of
Java to different computer systems. An interpreting JVM is easy to implement and
needs few system resources. However, the execution speed suffers from interpreting.
JVMs with a just-in-time compiler are state-of-the-art for desktop and server sys-
tems. These compilers require large amounts of memory and have to be ported for
each processor architecture, which means they are not the best choice for embedded
systems. A Java processor is the implementation of the JVM as a concrete machine.
A Java processor avoids the slow execution model of an interpreting JVM and the
memory requirements of a compiler, thus making it an interesting execution system
for Java in embedded systems.

3 Even if the time for the compilation is known, the WCET for a method has to include the compile
time!

3 Related Work

Two different approaches can be found to improve Java bytecode execution by hard-
ware. The first type operates as a Java coprocessor in conjunction with a general-
purpose microprocessor. This coprocessor is placed in the instruction fetch path of
the main processor and translates Java bytecodes to sequences of instructions for
the host CPU or directly executes basic Java bytecodes. The complex instructions
are emulated by the main processor. Java chips in the second category replace the
general-purpose CPU. All applications therefore have to be written in Java. While
the first type enables systems with mixed code capabilities, the additional compo-
nent significantly raises costs. Table 3.1 provides an overview of the described Java
hardware.

Blank fields in the table indicate that the information is not available or not ap-
plicable (e.g. for simulation-only projects). Minimum CPI is the number of clock
cycles for a simple instruction such as nop. One entry, the TINI system, is not a real
Java hardware, but is included in the table since it is often incorrectly1 cited as an
embedded Java processor.

3.1 Hardware Translation and Coprocessors

The simplest enhancement for Java is a translation unit, which substitutes the switch
statement of an interpreter JVM (bytecode decoding) through hardware and/or trans-
lates simple bytecodes to a sequence of RISC instructions on the fly.

A standard JVM interpreter contains a loop with a large switch statement that
decodes the bytecode (see Listing 2.1). This switch statement is compiled to an
indirect branch. The destinations of these indirect branches change frequently and
do not benefit from branch-prediction logic. This is the main overhead for simple
bytecodes on modern processors. The following approaches enhance the execution
of Java programs on a standard processor through the substitution of the memory read
and switch statement with bytecode fetch and decode through hardware.

1 TINI is a standard interpreting JVM running on an enhanced 8051 processor.
2J2ME CLDC stands for Java2 Micro Edition, Connected Limited Device Configuration, which is

described in Section 4.3.1.

18 3 RELATED WORK

Hard-Int

DELFT

JIFFY

Jazelle

JSTAR

TINI

picoJava

aJile

Cjip

Ignite

Moon

Lightfoot

LavaCORE

Komodo

FemtoJava

JSM [12]

Type

Translation

Translation

Translation

Co-
processor
Co-
processor
Software
JVM

Processor

Processor

Processor

Stack pro-
cessor

Processor

Processor

Processor

Processor

Processor

Processor

Target
technology
Simulation
only
Simulation
only
Xilinx
FPGA

ASIC 0.18/*

ASIC 0.18//
Softcore
Enhanced
8051 clone
No
realization

ASIC 0.25//

ASIC 0.35//

Xilinx
FPGA
Altéra
FPGA
Xilinx
FPGA
Xilinx
FPGA
Xilinx
FPGA

Altéra Flex
10K

Xilinx
FPGA

Size

3800 LCs,
1KB RAM

12K gates

30K gates +
7KB

128K gates
+ memory
25K gates +
ROM
70K gates +
ROM, RAM

9700 LCs

3660 LCs,
4KB RAM

3400 LCs

3800 LCs
3 OK gates

2600 LCs

2000 LCs

Speed
[MHz]

200

104

100

67

40

20

20

4

3.5

Java
standard

J2ME
CLDC2

Java 1.1
subset

Full

J2ME
CLDC2

J2ME
CLDC2

Subset: 50
bytecodes
Subset: 69
bytecodes,
16-bit ALU

Java Card

Min.
CP1

1

6

4

3

Table 3.1: Java hardware

3.1 HARDWARE TRANSLATION AND COPROCESSORS 19

3.1.1 Hard-lnt

Radhakrichnan [80] proposes an additional architecture for a standard RISC proces-
sor to speed up a JVM interpreter. The architecture, called Hard-lnt, is placed be-
tween the cache and instruction fetch of the RISC processor. Simple Java bytecodes
are translated to a sequence of RISC instructions. For native RISC code, the unit
is bypassed. This architecture implements the expensive switch statement of a typi-
cal interpreter in hardware. A simulation of a SPARC processor with four execution
units shows a speedup by the factor of 2.6 over JDK 1.2 JIT with SPECjvm98. Since
the architecture is only evaluated in a software simulation, the impact of the inserted
hardware on the clock frequency of the RISC processor is unknown. No estimation
of the additional hardware cost for the translation unit is given.

3.1.2 DELFT-JAVA Engine

In his thesis [32], Glossner describes a processor for multimedia applications in Java.
A RISC processor is extended with DSP capabilities and Java specific instructions.
This combination results in a very complex processor. Simple JVM instructions are
dynamically translated to the DELFT instruction set. However, no explanation is
given as to how this is done. A new register-addressing mode, indirect register ad-
dressing with auto increment or decrement, provides support for stack caching in the
register file. The translation of JVM bytecode to the DELFT instruction set maps
stack-based dependencies into pipeline dependencies. The author expects that these
dependencies can be resolved with standard techniques such as register renaming and
out-of-order execution. To accelerate dynamic linking a link translation buffer cache
resolved entries from the constant pool.

The processor is validated through a C++ model. An experiment with a synthetic
benchmark (vector multiplication) compared a stack machine with an ideal register
machine. The ideal register machine performs register renaming and out-of-order
execution on multiple execution units. The achieved speedup in this experiment was
2.7. The high-level simulation model is more a proof of concept and no estimation
is given for the resources needed to implement this complex processor. Since only
a restricted subset of the JVM was simulated, no Java applications could be used to
estimate the expected speedup.

3.1.3 JIFFY

An interesting approach to enhance Java execution in embedded systems is presented
in Acher's thesis [1]. He states that JIT-compilation in software is not possible on
most embedded devices because of resource constraints. JIFFY, a JIT in an FPGA,

20 3 RELATED WORK

is proposed as a solution to this problem. The compilation is done in the following
steps:

The Java bytecode is translated into an intermediate language with three regis-
ters and a stack. The reduction to three registers is due to the fact that bytecodes
are using a maximum of three stack operands, and it simplifies translation to CISC-
architectures with a low register count. In the next step, this instruction sequence,
which is still stack-based, is optimized. The main effect of this optimization is to
transform stack-based operations into register-based operations. These optimized in-
structions in the intermediate language are translated to native instructions of the
target architecture in the last step.

The quality of the generated code was tested with software versions of JIFFY for
a CISC (80586) and a RISC (Alpha 21164) architecture. The resulting code is about
1.1 to 7.5 times faster than interpreting Java bytecode on the x86 architecture. The
speedup is similar to Suns first JIT compiler (sunwjit in JDK 1.1). The compilation
time is estimated to be 50 to 70 clock cycles for one bytecode. This is 10 times faster
than the efficient CACAO JIT [53]. A first prototype implementation in an FPGA
used 3800 LCs and 8KBits RAM (80 % of a Xilinx XC2S200).

3.1.4 Jazelle

Jazelle [3] is an extension of the ARM 32-bit RISC processor, similar to the Thumb
state (a 16-bit mode for reduced memory consumption). The Jazelle coprocessor is
integrated into the same chip as the ARM processor. The hardware bytecode decoder
logic is implemented in less than 12K gates. It accelerates, according to ARM, some
95% of the executed bytecodes. 140 bytecodes are executed directly in hardware,
while the remaining 94 are emulated by sequences of ARM instructions. This solu-
tion also uses code modification with quick instructions to substitute certain object-
related instructions after link resolution. All Java bytecodes, including the emulated
sequences, are re-startable to enable a fast interrupt response time.

A new ARM instruction puts the processor into Java state. Bytecodes are fetched
and decoded in two stages, compared to a single stage in ARM state. Four registers
of the ARM core are used to cache the top stack elements. Stack spill and fill is
handled automatically by the hardware. Additional registers are reused for the Java
stack pointer, the variable pointer, the constant pool pointer and locale variable 0
(the this pointer in methods). Keeping the complete state of the Java mode in ARM
registers simplifies its integration into existing operating systems.

3.1 HARDWARE TRANSLATION AND COPROCESSORS 21

3.1.5 JSTAR, JA108

Nozomi's JA 108 [14], previously known as JSTAR, Java coprocessor sits between
the native processor and the memory subsystem. JA 108 fetches Java bytecodes from
memory and translates them into native microprocessor instructions. JA 108 acts as a
pass-through when the core processor's native instructions are being executed. The
JA 108 is targeted for use in mobile phones to increase performance of Java multime-
dia applications. The coprocessor is available as standalone package or with included
memory and can be operated up to 104MHz. The resource usage for the JSTAR is
known to be about 30K gates plus 45Kbits for the microcode.

3.1.6 A Co-Designed Virtual Machine

In his thesis [49], Kent proposes an interesting new form of Java coprocessor. He
investigates hardware/software co-design for a JVM within the context of a desktop
workstation. The execution of the JVM is partitioned between an FPGA and the
host processor. An FPGA board with local memory is connected via the PCI bus to
the host. This solution provides an add-on accelerator without changing the system.
Moreover, as the FPGA can be configured for a different task, the add-on hardware
can be used for non-Java applications.

The critical issue in this approach is the partitioning of the JVM and the memory
regions between hardware and software. Not all Java bytecodes can be executed in
hardware. All object-oriented bytecodes are performed in software. However, once
these bytecodes are replaced by their quick variants, some of them can then be ex-
ecuted in hardware. The most accessed data structures, i.e. the method's bytecode,
execution stack and local variables, are placed in the FPGA board memory. The
constant pool and the heap reside in the PC's main memory. The software part of
the JVM decides during runtime which instruction sequences can be executed by the
hardware. Due to the high cost of a context switch, this is a critical decision. Kent
explored various algorithms with different block sizes to find the optimum partition-
ing of the instructions between the host processor and the FPGA. Tests with small
benchmarks on a simulation showed performance gains by a factor of 6 to 11, when
compared with an interpreting JVM. Kent is now working on the concurrent use of
the FPGA and the host system to execute Java applications. Additional performance
increases are expected for multi-threaded applications.

In our view, there are two potential problems with this approach. Firstly, the execu-
tion context for the hardware is too small. As i nvokevi r tua l and the quick version
are implemented in the software partition, the maximum context is one method body.
As shown in Section 5.1.2, Java methods are usually small (about 30% are less than 9
bytes long), resulting in many context switches. The second issue is the raw speedup,

22 3 RELATED WORK

without communication overhead, of the FPGA solution. This speedup is stated to
be around of 10 times greater, with the same clock frequency. However, FPGA clock
rate will never reach the clock rate of a general-purpose processor. With a meaningful
design, such as a CPU, the clock rate of an FPGA is about 20 to 50 times lower. How-
ever, everyone who uses an FPGA as target technology for a processor design faces
this problem. It is better not to try to compete against mainstream PC technology.

3.2 Java Processors

Java Processors are primarily used in an embedded system. In such a system, Java
is the native programming language and all operating system related code, such as
device drivers, are implemented in Java. Java processors are simple or extended stack
architectures with an instruction set that resembles more or less the bytecodes from
the JVM.

3.2.1 picoJava

Sun's picoJava is the Java processor most often cited in research papers. It is used
as a reference for new Java processors and as the basis for research into improving
various aspects of a Java processor. Ironically, this processor was never released as a
product by Sun. After Sun decided to not produce picoJava in silicon, Sun licensed
picoJava to Fujitsu, IBM, LG Semicon and NEC. However, these companies also did
not produce a chip and Sun finally provided the full Verilog code under an open-
source license.

Sun introduced the first version of picoJava [73] in 1997. The processor was tar-
geted at the embedded systems market as a pure Java processor with restricted support
of C. picoJava-I contains four pipeline stages. A redesign followed in 1999, known as
picoJava-II. This is the version described below. picoJava-II is now freely available
with a rich set of documentation [89, 90].

Simple Java bytecodes are directly implemented in hardware, most of them execute
in one to three cycles. Other performance critical instructions, for instance invoking
a method, are implemented in microcode. picoJava traps on the remaining complex
instructions, such as creation of an object, and emulates this instruction. To access
memory, internal registers and for cache management picoJava implements 115 ex-
tended instructions with 2-byte opcodes. These instructions are necessary to write
system-level code to support the JVM.

Traps are generated on interrupts, exceptions and for instruction emulation. A trap
is rather expensive and has a minimum overhead of 16 clock cycles:

3.2 JAVA PROCESSORS 23

Memory and I/O interface

Instruction
cache RAM/tag

Microcode
ROM

Stack cache •

L J Megacells

Bus Interface Unit

Instruction
Cache Unit

Integer
Unit

Data Cache
Unit

Powerdown, Clock
and Scan Unit

Stack
Manager Unit

Floating Point
Unit and Control

Data cache
RAM/tag

Floating-
point ROM

Processor Interface

Figure 3.1: Block diagram of picoJava-II (from [89])

6 clocks t rap execution
n clocks t rap code
2 clocks set VARS r eg i s t e r
8 clocks return from t rap

This minimum value can only be achieved if the trap table entry is in the data cache
and the first instruction of the trap routine is in the instruction cache. The worst-case
interrupt latency is 926 clock cycles [90].

Figure 3.1 shows the major function units of picoJava. The integer unit decodes
and executes picoJava instructions. The instruction cache is direct-mapped, while
the data cache is two-way set-associative, both with a line size of 16 bytes. The
caches can be configured between 0 and 16 Kbytes. An instruction buffer decouples
the instruction cache from the decode unit. The FPU is organized as a microcode
engine with a 32-bit datapath supporting single- and double-precision operations.
Most single-precision operations require four cycles. Double-precision operations
require four times the number of cycles as single-precision operations. For low-cost
designs, the FPU can be removed and the core traps on floating-point instructions to
a software routine to emulate these instructions. picoJava provides a 64-entry stack
cache as a register file. The core manages this register file as a circular buffer, with a
pointer to the top of stack. The stack management unit automatically performs spill

24 3 RELATED WORK

A Java instruction

c = a + b ;

translates to the following bytecodes:

iload_l

iload_2

iadd

istore_3

Figure 3.2: A common folding pattern that is executed in a single cycle

to and fill from the data cache to avoid overflow and underflow of the stack buffer. To
provide this functionality the register file contains five memory ports. Computation
needs two read ports and one write port, the concurrent spill and fill operations the
two additional read and write ports. The processor core consists of following six
pipeline stages:

Fetch: Fetch 8 bytes from the instruction cache or 4 bytes from the bus interface to
the 16-byte-deep prefetch buffer.

Decode: Group and precode instructions (up to 7 bytes) from the prefetch buffer.
Instruction folding is performed on up to four bytecodes.

Register: Read up to two operands from the register file (stack cache).

Execute: Execute simple instructions in one cycle or microcode for multi-cycle in-
structions.

Cache: Access the data cache.

Writeback: Write the result back into the register file.

The integer unit together with the stack unit provides a mechanism, called instruction
folding, to speed up common code patterns found in stack architectures, as shown in
Figure 3.2. When all entries are contained in the stack cache, the picoJava core can
fold these four instructions to one RISC-style single cycle operation.

picoJava contains a simple mechanism to speed-up the common case for monitor
enter and exit. The two low order bits of an object reference are used to indicate the

3.2 JAVA PROCESSORS 25

lock holding or a request to a lock held by another thread. These bits are examined by
monitorenter and monitorexit . For all other operations on the reference, these
two bits are masked out by the hardware. Hardware registers cache up to two locks
held by a single thread.

To efficiently implement a generational or an incremental garbage collector pi-
coJava offers hardware support for write barriers through memory segments. The
hardware checks all stores of an object reference if this reference points to a different
segment (compared to the store address). In this case, a trap is generated and the
garbage collector can take the appropriate action. Additional two reserved bits in the
object reference can be used for a write barrier trap.

The architecture of picoJava is a stack-based CISC processor implementing 341
different instructions [73] and is the most complex Java processor available. The
processor can be implemented [23] in about 440K gates (128K for the logic and
314K for the memory components: 284x80 bits microcode ROM, 2x192x64 bits
FPU ROM and 2x16KB caches).

3.2.2 aJileJEMCore

aJile's JEMCore is a direct-execution Java processor that is available as both an IP
core and a stand alone processor [2, 37]. It is based on the 32-bit JEM2 Java chip de-
veloped by Rockwell-Collins. JEM2 is an enhanced version of JEM1, created in 1997
by the Rockwell-Collins Advanced Architecture Microprocessor group. Rockwell-
Collins originally developed JEM for avionics applications by adapting an existing
design for a stack-based embedded processor. Rockwell-Collins decided not to sell
the chip on the open market. Instead, it licensed the design exclusively to aJile Sys-
tems Inc., which was founded in 1999 by engineers from Rockwell-Collins, Centaur
Technologies, Sun Microsystems, and DDT.

The core contains 24 32-bit wide registers. Six of them are used to cache the top
elements of the stack. The datapath consists of a 32-bit ALU, a 32-bit barrel shifter
and the support for floating point operations (disassembly/assembly, overflow and
NaN detection). The control store is a 4K by 56 ROM to hold the microcode that
implements the Java bytecode. An additional RAM control store can be used for
custom instructions. This feature is used to implement the basic synchronization and
thread scheduling routines in microcode. This results in low execution overheads
with thread-to-thread yield of less than one jus (at 100MHz). An optional Multiple
JVM Manager (MJM) supports two independent, memory protected JVMs. The two
JVMs execute time-sliced on the processor. According to aJile, the processor can be
implemented in 25K gates (without the microcode ROM). The MJM needs additional
1 OK gates.

26 3 RELATED WORK

Two silicon versions of JEM exist today: the aJ-80 and the aJ-100. Both versions
comprise a JEM2 core, the MJM, 48KB zero wait state RAM and peripheral compo-
nents, such as timer and UART. 16KB of the RAM is used for the writable control
store. The remaining 32KB is used for storage of the processor stack. The aJ-100
provides a generic 8-bit, 16-bit or 32-bit external bus interface, while the aJ-80 only
provides an 8-bit interface. The aJ-100 can be clocked up to 100MHz and the aJ-80
up to 66MHz. The power consumption is about lmW per MHz.

Since aJile was a member of the Real-Time for Java Expert Group, the complete
RTSJ will be available in the near future. One nice feature of this processor is its
availability. A relatively cheap development system, the JStamp [91], was used to
compare this processor with JOP.

3.2.3 Cjip

The Cjip processor [36, 43] supports multiple instruction sets, allowing Java, C, C++
and assembler to coexist. Internally, the Cjip uses 72 bit wide microcode instructions,
to support the different instruction sets. At its core, Cjip is a 16-bit CISC architecture
with on-chip 36KB ROM and 18KB RAM for fixed and loadable microcode. Another
1KB RAM is used for eight independent register banks, string buffer and two stack
caches. Cjip is implemented in 0.35-micron technology and can be clocked up to
66MHz. The logic core consumes about 20% of the 1.4-million-transistor chip. The
Cjip has 40 program controlled I/O pins, a high-speed 8 bit I/O bus with hardware
DMA and an 8/16 bit DRAM interface.

The JVM is implemented largely in microcode (about 88% of the Java bytecodes).
Java thread scheduling and garbage collection are implemented as processes in mi-
crocode. Microcode is also used to implement virtual peripherals such as watchdog
timers, display and keyboard interfaces, sound generators and multimedia codecs.

Microcode instructions execute in two or three cycles. A JVM bytecode requires
several microcode instructions. The Cjip Java instruction set and the extensions are
described in detail in [42]. For example: a bytecode nop executes in 6 cycles while
an i add takes 12 cycles. Conditional bytecode branches are executed in 33 to 36
cycles. Object oriented instructions such getf i el d, putf i el d or i nvokevi r tua l
are not part of the instruction set.

3.2.4 Ignite, PSC1000

The PSC1000 [77] is a stack processor, based on ShBoom (originally designed by
Chuck Moore [68]), designed for high speed Forth applications. The PSC1000 was
later renamed to Ignite and promoted as a Java-processor, though it has it roots in

3.2 JAVA PROCESSORS 27

Forth. The instruction set, called ROSC (Removed Operand Set Computer), is differ-
ent from Java bytecodes. A small JVM driver converts Java bytecode into the stack
instruction set of the processor.

The processor contains two on-chip stacks, as usual in Forth processors [52], and
additional 16 global registers. The first elements of the stacks are directly accessi-
ble. The bottleneck of instruction fetching without a cache is avoided by fetching
up to four 8-bit instructions from a 32-bit memory. To simplify instruction decoding
immediate values and branch offsets are placed right aligned in such an instruction
group. The PSC1000 is available as ASIC at 80MHz and as a soft-core for Xilinx
FPGAs (9700 LCs).

3.2.5 Moon

Vulcan ASIC's Moon processor is an implementation of the JVM to run in an FPGA.
The execution model is the often-used mix of direct, microcode and trapped exe-
cution. As described in [63], a simple stack folding is implemented in order to re-
duce five memory cycles to three for instruction sequences like push-push-add. The
first version of Moon uses 3.840 LCs and 10 embedded memory blocks in an Altéra
FPGA. The Moon2 processor [64] is available as an encrypted HDL source for Altéra
FPGAs (22% of an APEX 20K400E equates to 3660 LCs) or as VHDL or Verilog
source code. The minimum silicon cost is given as 27K gates plus 3KB ROM and
1KB single port RAM. The single port RAM is used to implement 256 entries of the
stack.

3.2.6 Lightfoot

The Lightfoot 32-bit core [62] is a hybrid 8/32-bit processor based on the Harvard
architecture. Program memory is 8 bits wide and data memory is 32 bits wide. The
core contains a 3-stage pipeline with an integer ALU, a barrel shifter and a 2-bit
multiply step unit. There are two different stacks with top elements implemented as
registers and memory extension. The data stack is used to hold temporary data — it is
not used to implement the JVM stack frame. As the name implies, the return stack
holds return addresses for subroutines and it can be used as an auxiliary stack. The
TOS element is also used to access memory. The processor architecture specifies
three different instruction formats: soft bytecodes, non-returnable instructions and
single-byte instructions that can be folded with a return instruction. Soft bytecode
instructions cause the processor to branch to one of 128 locations in low program
memory, where the implementation of the soft bytecodes resides. This operation has
a single cycle overhead and the address of the following instruction is pushed onto

28 3 RELATED WORK

the return stack. The instruction set implies that it is optimized to write an efficient
interpreted JVM.

The core is available in VHDL and can be implemented in less than 3OK gates.
According to DCT, the performance is typically 8 times better than RISC interpreters
running at the same clock speed. The core is also provided as an EDIF netlist for
dedicated Xilinx devices. It needs 1710 CLBs (= 3400 LCs) and 2 Block RAMs. In
a Vertex-II (2V1000-5), it can be clocked up to 40MHz.

3.2.7 LavaCORE

LavaCORE [44] is another Java processor targeted at Xilinx FPGA architectures. It
implements a set of instructions in hardware and firmware. Floating-point operations
are not implemented. A 32x32-bit dual-ported RAM implements a register-file. For
specialized embedded applications, a tool is provided to analyze which subset of the
JVM instructions is used. The unused instructions can be omitted from the design.
The core can be implemented in 1926 CLBs (= 3800 LCs) in a Virtex-II (2V1000-5)
and runs at 20MHz.

3.2.8 Komodo

Komodo [95] is a multithreaded Java processor with a four-stage pipeline. It is in-
tended as a basis for research on real-time scheduling on a multithreaded micro-
controller [55]. Simple bytecodes are directly implemented, while more complex
bytecodes, such as i ai oad, are implemented as a microcode sequence. The unique
feature of Komodo is the instruction fetch unit with four independent program coun-
ters and status flags for four threads. A priority manager is responsible for hardware
real-time scheduling and can select a new thread after each bytecode instruction.

The first version of Komodo in an FPGA implements a very restricted subset of
the JVM (only 50 bytecodes). The design can be clocked at 20MHz. However, the
pipeline runs at 5MHz for single cycle external memory access and three-port access
of stack memory in one pipeline stage. The resource usage is 1300 CLBs (= 2600
LCs) in a Xilinix XC 4036 XL.

3.2.9 FemtoJava

FemtoJava [45] is a research project to build an application specific Java proces-
sor. The bytecode usage of the embedded application is analyzed and a customized
version of FemtoJava is generated. FemtoJava implements up to 69 bytecode in-
structions for an 8 or 16 bit datapath. These instructions take 3, 4, 7 or 14 cycles to
execute. Analysis of small applications (50 to 280 byte code) showed that between

3.3 ADDITIONAL COMMENTS 29

22 and 69 distinct bytecodes are used. The resulting resource usage of the FPGA
varies between 1000 and 2000 LCs. With the reduction of the datapath to 16 bits the
processor is not Java conformant.

3.3 Additional Comments

The two classes of hardware accelerators for Java can be further subdivided as shown
in Figure 3.3. Many of the Java processors are stack machines that have been derived
from Forth processors. Two different stacks in these so-called Java processors (Cjip,
Ignite and Lightfoot) do not fit very well for the JVM. Although stack based, Forth
is different from Java bytecode. Instruction mix in Forth shows about 25% call and
returns [52], so Forth processors are optimized for fast call and return. In Java, the
percentage of call/return is only about 6% (see Section 5.1). With subroutine exits so
common, it is no wonder that most of the Forth stack machines have a mechanism for
combining subroutine exits with other instructions and provide two stacks to avoid
the mixture of parameters and return addresses. However, a JVM stack frame is more
complex than in Forth (see Section 5.5) and there is no use for such a mechanism.
An additional return stack provides no advantage for the JVM.

In Forth only the top elements can be accessed, which results in a simple stack
design with only one access port. In the JVM parameters for a method are explicitly
pushed on the stack before invocation. These parameters are then accessed in the
method relative to a variable pointer. This mechanism needs a dual ported memory
with simultaneous read and write access. These basic differences between Forth
and the JVM lead to a sub-optimal implementation of the JVM on a Forth based
processor.

There are problems in getting information about commercial products. When new
companies started developing Java processors, a lot of information was available.
This information was usually more of a presentation of the concept, nevertheless it
gave some insights into how they approached the different design problems. How-
ever, at the point at which the projects reached production quality, this information
quietly disappeared from their websites. It was replaced with colorful marketing
prospectuses about the wonderful world of the new Java-enabled mobile phones.
Only one company, aJile Ltd., presented information about their product in a ref-
ereed conference paper.

Many research projects for a Java processor in an FPGA exists. Examples can
be found in [45], [50] and [69]. These projects have much in common - the basic
implementation of a stack machine with integer instructions is easy. However, the
realization of the complete JVM is the hard part and therefore beyond the scope of
these projects.

30 3 RELATED WORK

Java Hardware

Coprocessor Stack Processor

Translation
Hard-lnt
DEFLT
JIFFY
JSTAR

Execution
Jazelle

Forth based
Cjip
Ignite
Lightfoot

JVM based

Full
picoJava
aJile
Moon

Subset
Komodo
FemtoJava

Figure 3.3: Java hardware

Other than the aJile processor and the Komodo project, no solution addresses the
problem of real-time predictability. For this reason, as well as its availability, the
aJile processor is used for comparison with JOP.

3.4 Research Objectives

In Table 3.2, features of selected Java processors are compared. Category 'Pre-
dictability' means how well the processor is time-predictable. In category 'Size',
the chip size is estimated and category 'Performance' means average performance.
The category 'JVM conformance' lists how complete the implementation of the JVM
specification [60] is. The 'Flexibility' parameter indicates how well the processor can
be adapted to different application domains.

The assessment of the various parameters is, however, somewhat subjective as the
information is mainly derived from written documentation. In Section 7.3, the overall
performance of various Java systems, including the aJile processor, is compared with
JOP.

The last column of the table shows the features required for JOP. This is, therefore,
our research objective in a nutshell.

Due to the great variation in execution times for a trap, picoJava is given a double
minus in the 'Predictability' category. picoJava is also the largest processor in the
list. However, its performance and JVM compatibility are expected to be superior to
those of other processors.

3.4 RESEARCH OBJECTIVES 31

picoJava aJile Komodo FemtoJava JOP

Predictability
Size
Performance
JVM conformance
Flexibility

Table 3.2: Feature comparison of selected Java processors

The aJile processor is intended as a solution for real-time systems. However, no
information is available about bytecode execution times. As this processor is a com-
mercial product and has been on the market for some time, it is expected that its JVM
implementation would conform to Java standards, as defined by Sun.

Komodos multithreading is similar to hyper-threading in modern processors that
are trying to hide latencies in instruction fetching. However, this feature leads to very
pessimistic WCET values (in effect rendering the performance gain useless). The fact
that the pipeline clock is only a quarter of the system clock also wastes a considerable
amount of potential performance.

FemtoJava is given a double plus for flexibility, due to the application-dependent
generation of the processor. However, FemtoJava is only a 16-bit processor and there-
fore not JVM compliant. The resource usage is also very high, compared to the
minimal Java subset implemented and the low performance of the processor.

So far, all processors in the list perform weakly in the area of time-predictable
execution of Java bytecodes. However, a low-level analysis of execution times is of
primary importance for WCET analysis. Therefore, the main objective of this thesis
is to define and implement a processor architecture that is as predictable as possi-
ble. However, it is equally important that this does not result in a low performance
solution. Performance shall not suffer as a result of the time-predictable architecture.

The second main aim of this work is to design a small processor. Size and the re-
sulting energy consumption are a main concern in embedded systems. The proposed
Java processor needs to be small enough to be implemented in a low-cost FPGA de-
vice. With this constraint, an implementation in an ASIC will also result in a very
small core that can be part of a larger system-on-a-chip.

The embedded market is diverse and one size does not fit all. A configurable
processor in which we can trade size for performance provides the flexibility for a
variety of application domains. The aim of the architecture of JOP is to support this
flexibility.

As this thesis is more a technical than a theoretical study, the author believes that

32 3 RELATED WORK

it is important to demonstrate the implementation of the proposed architecture. With
a simulation, the ideas proposed cannot be verified to the extent necessary. Small
details that are overlooked during simulation can render an idea impractical. Only
a working version (ideally in a real-world project) of the processor can therefore
provide the confidence that the above criteria are met.

The definition of Java does not work for hard real-time applications (described in
detail in Chapter 4). In order to prove that JOP is a viable platform for real-time Java,
part of this thesis looks at a definition of a real-time profile for Java.

The following list summarizes the research objectives for the proposed Java pro-
cessor:

Primary Objectives:

• Time-predictable Java platform for embedded real-time systems

• Small design that fits into a low-cost FPGA

• A working processor, not merely a proposed architecture

Secondary Objectives:

• Acceptable performance compared with mainstream non real-time Java sys-
tems

• A flexible architecture that allows different configurations for different appli-
cation domains

• Definition of a real-time profile for Java

4 Restrictions of Java for Embedded
Real-Time Systems

Java was created as a part of the Green project specifically for an embedded device,
a handheld wireless PDA. The device was never released as a product and Java was
launched as the new language for the Internet. Over the time, Java got very popular
to build desktop applications and web services. However, embedded systems are still
programmed in C or C++. The pragmatic approach of Java to object orientation, the
huge standard library and enhancements over C lead to a productivity increase, which
now also attracts embedded system programmers. A built-in concurrency model and
an elegant language construct to express synchronization between threads also sim-
plify typical programming idioms in this area.

On the other hand, there are some issues with Java in an embedded system. Em-
bedded systems are usually too small for JIT-compilation resulting in a slow inter-
preting execution model. Moreover, a major problem for embedded systems, which
are usually also real-time systems, is the under specification of the scheduler. Even
an implementation without preemption is allowed. The intention for this loose defini-
tion of the scheduler is to be able to implement the JVM on many platforms where no
good multitasking support is available. The Real Time Specification for Java (RTSJ)
[8] addresses many of these problems.

This section summarizes the issues with standard Java on embedded systems and
describes various definitions for small devices given by Sun. It is followed by an
overview of the two real-time extensions of Java and approaches for restricting the
RTSJ for high-integrity applications. If, and how, these specifications are sufficient
for small embedded systems in general and specifically for JOP is analyzed. The
missing definition for small embedded real-time systems is provided in Section 6.1.

4.1 Java Support for Embedded Systems

When not using the cyclic executive approach, programming of embedded (real-time)
systems is all about concurrent programming with time constraints. The basic func-
tions can be summarized as:

• Threads

34 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

• Communication

• Activation

• Low level hardware access

Threads and Communication Java has a built-in model for concurrency, the class
Thread. All threads share the same heap resulting in a shared memory communi-
cation model. Mutual exclusion can be defined on methods or code blocks with the
keyword synchronized. Synchronized methods acquire a lock on the object of the
method. For synchronized code blocks, the object to be locked is explicitly stated.

Activation Every object inherits the methods wai t () , noti f y () and noti f yAl 1 ()
from Object. These methods in conjunction with synchronization on the object
support activation.

The classes j a v a . u t i l .TimerTaskand j a v a . u t i l .Timer(since JDK 1.3) can
be used to schedule tasks for future execution in a background thread.

4.2 Issues with Java in Embedded Systems

Although Java has language features that simplify concurrent programming the defi-
nition of these features is too vague for real-time systems.

Threads and Synchronization Java, as described in [33], defines a very loose be-
havior of threads and scheduling. For example, the specification allows even low
priority threads to preempt high priority threads. This protects threads from starva-
tion in general purpose applications, but is not acceptable in real-time programming.
Wakeup of a single thread with no t i fyO is not precisely defined: the choice is ar-
bitrary and occurs at the discretion of the implementation. It is not mandatory for a
JVM to deal with the priority inversion problem.

No notation of periodic activities, which are common in embedded systems pro-
gramming, is available with the standard Thread class.

Garbage Collector Garbage collection greatly simplifies programming and helps
to avoid classic programming errors (e.g. memory leaks). Although real-time garbage
collectors evolve, they are usually avoided in hard real-time systems. A more conser-
vative approach to memory allocation is necessary.

4.2 ISSUES WITH JAVA IN EMBEDDED SYSTEMS 35

WCET on Interfaces (OOP) Method overriding and Interfaces, the simplified con-
cept of multiple inheritance in Java, are the key concepts in Java to support object
oriented programming. Like function pointers in C, the dynamic selection of the ac-
tual function at runtime complicates WCET analysis. Implementation of interface
look up usually requires a search of the class hierarchy at runtime or very large dis-
patch tables.

Dynamic Class Loading Dynamic class loading requires the resolution and veri-
fication of classes. This is a function that is usually too complex (and consumes too
much memory) for embedded devices. An upper bound of execution time for this
function is almost impossible to predict (or too large). This results in the complete
avoidance of dynamic class loading in real-time systems.

Standard Library For an implementation to be Java-conformant, it must include
the full library (JDK). The JAR files for this library constitute about 15MB (in JDK
1.3, without native libraries), which is far too large for many embedded systems.
Since Java was designed to be a safe language with a safe execution environment, no
classes are defined for low-level access of hardware features. The standard library
was not defined and coded with real-time applications in mind.

Execution Model The first execution model for the JVM was an interpreter. The
interpreter is now enhanced with Just-In-Time (JIT) compilation. Interpreting Java
bytecodes is too slow and JIT compilation is not applicable in real-time systems.
The time for the compilation process had to be included in the WCET, resulting in
impracticable values.

Implementation Issues The problems mentioned in this section are not absolute
problems for real-time systems. However, they result in a slower execution model
with a higher WCET.

According to [60] the static initializers of a class C are executed immediately be-
fore one of the following occurs: (i) an instance of C is created; (ii) a static method
of C is invoked or (iii) a static field of C is used or assigned. The issue with this
definition is that it is not allowed to invoke the static initializers at JVM startup and
it is not so obvious when it gets invoked.

It follows that the bytecodes g e t s t a t i c , p u t s t a t i c , i n v o k e s t a t i c and new
can lead to class initialization and the possibility of high WCET values. In the JVM,
it is necessary to check every execution of these bytecodes if the class is already

36 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

public class Problem {

private static Abe a;
public static int cnt; / / implicitly set to 0

static {
// do some class initializaion
a = new Abc(); //even this is ok.

public ProblemO {
++cnt;

/ / anywhere in some other class, in situation,
// when no instance of Problem has been created
// the following code can lead to
// the execution of the initializer
i n t nrOfProblems = Problem.cnt;

Listing 4.1: Class initialization can occur very late

initialized. This leads to a loss of performance and is violated in some existing im-
plementations of the JVM. For example in CACAO [54] the static initializer is called
at compilation time. Listing 4.1 shows an example of this problem.

Synchronization is possible with methods and on code blocks. Each object has a
monitor associated with it and there are two different ways to gain and release own-
ership of a monitor. Bytecodes monitorenter and monitorexi t explicitly handle
synchronization. In other cases, synchronized methods are marked in the class file
with the access flags. This means that all bytecodes for method invocation and re-
turn must check this access flag. This results in an unnecessary overhead on methods
without synchronization. It would be preferable to encapsulate the bytecode of syn-
chronized methods with bytecodes moni t o r e n t e r and moni torexi t . This solution
is used in Suns picoJava-II [90]. The code is manipulated in the class loader. Two
different ways of coding synchronization, in the bytecode stream and as access flags,
are inconsistent.

4.3 JAVA MICRO EDITION 37

4.3 Java Micro Edition

The definition of Java also includes the definition of the class library (JDK). This is a
huge library1 and too large for some systems. To compensate for this Sun has defined
the Java 2 Platform, Micro Edition (J2ME) [66]. As Sun has changed the focus of
Java targets several times, the specifications reflect this through their slightly chaotic
manner. J2ME reduces the function of the JVM (e.g. no floating point support) to
make implementation easier on smaller processors. It also reduces the library (API).
J2ME defines three layers of software built upon the host operating system of the
device:

Java Virtual Machine: This layer is just the JVM as in every Java implementation.
Sun has assumed that the JVM will be implemented on top of a host operating
system. There are no additional definitions for the J2ME in this layer.

Configuration: The configuration defines the minimum set of JVM features and Java
class libraries available on a particular category of devices. In a way, a config-
uration defines the lowest common denominator of the Java platform features
and libraries that the developers can assume to be available on all devices.

Profile: The profile defines the minimum set of Application Programming Interfaces
(APIs) available on a particular family of devices. Profiles are implemented
upon a particular configuration. Applications are written for a particular profile
and are thus portable to any device that supports that profile. A device can
support multiple profiles.

There is an overlap of the layers configuration and profile: Both define/restrict Java
class libraries. Sun states: lA profile is an additional way of specifying the subset
of Java APIs, class libraries, and virtual machine features that targets a specific
family of devices.' However, in the current available definitions JVM features are
only specified in configurations.

4.3.1 Connected Limited Device Configuration (CLDC)

CLDC is a configuration for connected devices with at least 192KB of total memory
and a 16-bit or 32-bit processor. As the main target devices are cellular phones, this
configuration has become very popular (Sun: 'CLDC was designed to meet the rigor-
ous memory footprint requirements of cellular phones.'). The CLDC is composed of
the K Virtual Machine (KVM) and core class libraries. The following features have
been removed from the Java language definition:

1 In JDK 1.4 the main runtime library, rt.jar, is 25MB.

38 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

• Floating point support

• Finalization

Error handling has been altered so that the JVM halts in an implementation-specific
manner. The following features have been removed from the JVM:

• Floating point support

• Java Native Interface (JNI)

• Reflection

• Finalization

• Weak references

• User-defined class loaders

• Thread groups and daemon threads

• Asynchronous exceptions

• Data type 1 ong is optional

These restrictions are defined in the final version 1.0 of CLDC. A newer version (1.1)
again adds floating-point support. All currently available devices (as listed by Sun)
support version 1.0.

The CLDC defines a subset of the following Java class libraries: j a v a . i o ,
java . lang , java.Tang, ref and j a v a . u t i l . An additional library (javax.
microed i t ion . io) defines a simpler interface for communication than j a v a . i o
and j ava .ne t . Examples of connections are: HTTP, datagrams, sockets and
communication ports.

A small-footprint JVM, known as K Virtual Machine (KVM), is part of the CLDC
distribution. KVM is suitable for 16/32-bit microprocessors with a total memory
budget of about 128KB.

When implementing CLDC, one may choose to preload/prelink some classes. A
utility {JavaCodeCompaci) combines one or more Java class files and produces a C
file that can be compiled and linked directly with the KVM.

There is only one profile defined under CLDC: the Mobile Information Device
Profile (MIDP) defines a user interface for LC displays, a media player and a game
API.

4.3 JAVA MICRO EDITION 39

4.3.2 Connected Device Configuration (CDC)

The CDC defines a configuration for devices with network connection and assumes
a minimum of a 32-bit processor and 2MB memory. CDC defines no restrictions for
the JVM. A virtual machine, the CVM, is part of the distribution. The CVM expects
the following functionality from the underlying OS:

• Threads

• Synchronization (mutexes and condition variables)

• Dynamic linking

• malloc (POSDC memory allocation utility) or equivalent

• Input/output (I/O) functions

• Berkeley Standard Distribution (BSD) sockets

• File system support

• Function libraries must be thread-safe. A thread blocking in a library should
not block any other VM threads.

The tools JavaCodeCompact and JavaMemberDepend are part of the distribution.
JavaMemberDepend generates lists of dependencies at the class member level. The
existence of JavaCodeCompact implies that preloading of classes is allowed in CDC.
Three profiles are defined for CDC:

Foundation Profile is a set of Java APIs that support resource-constrained devices
without a standards-based GUI system. The basic class libraries from the Java
standard edition (java . io , Java. lang and j ava .ne t) are supported and a
connection framework (javax. mi croedi t i on. i o) is added.

Personal Basis Profile is a set of Java APIs that support resource-constrained de-
vices with a standards-based GUI framework based on lightweight compo-
nents. It adds some parts of the Abstract Window Toolkit (AWT) support (rel-
ative to JDK 1.1 AWT).

Personal Profile completes the AWT libraries and includes support for the applet
interface.

Although a device can support multiple profiles additional libraries for RMI and
ODBC are known as optional packages.

40 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

4.3.3 Additional Specifications

The following specifications do not fit into the layer scheme of J2ME. However, they
are defined in the same way as the above: subsets of the JVM and subsets/extensions
of Java classes (API):

Java Card is a definition for the resource-constrained world of smart cards. The
execution lifetime of the JVM is the lifetime of the card. The JVM is highly
restricted (e.g. no threads, data type i nt is optional) and defines a different
instructions set (i.e. new bytecodes to support smaller integer types).

Java Embedded Server is an API definition for services such as HTTP.

Personal Java was intended as a Java platform on Windows CE and is now marked
as end of life.

Java TV is an extension to produce interactive television content and manage digital
media. The description states that the JVM runs on top of an RTOS, but no
real-time specific extensions are defined.

Other than Sun's, the few specifications that exist for embedded Java are:

leJOS [85] is a JVM for Lego Mindstorm with stronger restrictions on the core
classes than the CLDC.

RTDA [87] although named 'Real-Time Data Access' the definition consists of two
parts:

• An I/O data access API specification applicable for real-time and non
real-time applications.

• A minimal set of real-time extensions to enable the I/O data access also
to cover hard real-time capable response handling.

4.3.4 Discussion

Many of the specifications (i.e. configurations and profiles) are developed using the
Java Community Process (JCP). JCP is not an open standard nor is it part of the open-
source concept. Although the acronym J2ME implies Java version 2 (i.e. JDK 1.2
and later) almost all technologies under J2ME are still based on JDK 1.1.

Besides Java Card, CLDC is the 'smallest' definition from Sun. It assumes an
operating system and is quite large (the JAR file for the classes is about 450KB).
There are no API definitions for low-level hardware access. CLDC is not suitable

4.4 REAL-TIME EXTENSIONS 4_

for small embedded devices. Java Card defines a different JVM instruction set and
thus compromises basic ideas of Java. A more restricted definition with following
features is needed:

• JVM restrictions, such as in CLDC 1.0

• A package for low-level hardware access

• A minimum subset of core libraries

• Additional profiles for different application domains

4.4 Real-Time Extensions

In 1999, a document defining the requirements for real-time Java was published by
NIST [47]. Based on these requirements, two groups defined specifications for real-
time Java. A comparison of these two specifications and a comparison with Ada 95's
Real-Time Annex can be found in [9]. The following section gives an overview of
these specifications and additional defined restrictions of the RTSJ.

4.4.1 Real-Time Core Extension

The Real-Time Core Extension [86] is a specification published under the J Consor-
tium. It is still in a draft version.

Two execution environments are defined: the Core environment is the special real-
time component. It can be combined with a traditional JVM, the Baseline. For com-
munication between these two domains, every Core object has two APIs, one for the
Core domain and one for the Baseline domain. Baseline components can synchronize
with Core components via semaphores.

Two forms of source code are supported to annotate attributes: stylized code with
calls of static methods of special classes and syntactic code with new keywords. Syn-
tactic code has to be processed by a special compiler or preprocessor.

Memory A new object hierarchy with CoreObject as root is introduced. To over-
ride final methods from Object the semantics of the class loader is changed. It
replaces these methods with special named methods from CoreObject. A Core task
is only allowed to allocate instances of CoreObject and its subclasses. These ob-
jects are allocated in a special allocation context or on the stack. The objects are
not garbage collected. However, an allocation context can be explicit freed by the
application.

42 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

Tasks and Asynchrony Core tasks represent the analog of j ava. 1 ang .Th reads.
All real-time tasks must extend CoreTask or one of its subclasses. No interface such
as Java. 1 ang. Runnable is defined. Tasks are scheduled preemptive priority-based
(128 levels) with FIFO order within priorities. Time slicing can be supported, but is
not required.

Although s t o p O is depreciated in Java 2 it is allowed in the CoreTask for the
asynchronous transfer of control (besides a class ATCEvent). To prevent the problem
of inconsistent objects after stopping a task an atomic synchronized region defers
abortion. A special task class is defined to implement interrupt service routines.
The code for this handler is executed atomically and must be WCET analyzable.
SporadicTask is used to implement responses to sporadic events, triggered by in-
voking the t r i g g e r O method of the task. No enforcement of a minimum time
between arrivals of events is available. No special events or task types are defined for
periodic work. The methods si eep() and s leepl lnt i l () of CoreTask can be used
to program periodic activities.

Exceptions References from the java.iang.Throwabie class hierarchy are
silently replaced by the class loader with references to Core classes. A new scoped
exception, which needs special support from the JVM, is defined.

Synchronization Javas synch roni zed is only allowed on this. To compensate for
this restriction additional synchronization objects such as semaphores and mutexes
are defined. Queues on monitors, locks and semaphores are priority and FIFO or-
dered. Priority inversion is avoided by using the priority ceiling emulation protocol.
To allow locks to be implemented without waiting queues, a Core task is not allowed
to execute a blocking operation while it holds a lock.

Helper Classes The standard representation of time is a long (64-bit) integer with
nanosecond resolution. A Time class with static methods is provided for conver-
sions. A helper class supports treating signed integers as unsigned values. Low-level
hardware ports can be accessed via IOPort.

4.4.2 Discussion of the RT Core

A new introduced object hierarchy and new language keywords lead to changes in
the class vérifier and loader semantics. The behavior of the JVM has changed, so it
would make sense to change the methods of Ob j ect to fit to the Core definition. This
would result in a single object hierarchy. The restriction on synch roni zed disables
the elegant style of expressing general synchronization problems in Java.

4.4 REAL-TIME EXTENSIONS 43

Although Nilsen lead the group, NewMonics PERC systems [71] supports a dif-
ferent API.

4.4.3 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) defines a new API with support from
the JVM [8]. The following guiding principles led to the definition:

• No restriction of the Java runtime environment

• Backward compatibility for non-real-time Java programs

• No syntactic extension to the Java language or new keywords

• Predictable execution

• Address current real-time system practice

• Allow future implementations to add advanced features

A Reference Implementation (RI) of the RTSJ forms part of the specification. The
RTSJ is backward compatible with existing non-real-time Java programs, which im-
plies that the RTSJ is intended to run on top of J2SE (and not on J2ME). The follow-
ing section presents an overview of the RTSJ.

Threads and Scheduling The behavior of the scheduler is clearer defined as in
standard Java. A priority-based, preemptive scheduler with at least 28 real-time pri-
orities is- defined as base scheduler. Additional levels (ten) for the traditional Java
threads need to be available. Threads with the same priority are queued in FIFO order.
Additional schedulers (e.g. EDF) can be dynamically loaded. The class Scheduler
and associated classes provide optional support for feasibility analysis.

Any instances of classes that implement the interface Schedulabie are
scheduled. In the RTSJ Real timeThread, NoHeapRealtimeThread, and
AsyncEventHandier are schedulable objects. NoHeapRealtimeThread has
and AsyncEventHandier can have a priority higher than the garbage collector. As
the available release-parameters indicate, threads are either periodic or bound to
asynchronous events. Threads can be grouped together to bind the execution cost
and deadline for a period.

44 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

Memory As garbage collection is problematic in real-time applications, the RTSJ
defines new memory areas:

Scoped memory is a memory area with bounded lifetime. When a scope is entered
(with a new thread or through en t e rO) , all new objects are allocated in this
memory area. Scoped memory areas can be nested and shared among threads.
On exit of the last thread from a scope, all finalizers of the allocated objects are
invoked and the memory area is freed.

Physical memory is used to control allocation in memories with different access
time.

Raw memory allows byte-level access to physical memory or memory-mapped I/O.

Immortal memory is a memory area shared between all threads without a garbage
collector. All objects created in this memory area have the same lifetime as the
application (a new definition of immortal).

Heap memory is the traditional garbage collected memory area.

Maximum memory usage and the maximum allocation rate per thread can be limited.
Strict assignment rules between the different memory areas have to be checked by
the implementation.

Synchronization The implementation of synchronized has to include an algo-
rithm to prevent priority inversion. The priority inheritance protocol is the default
and the priority ceiling emulation protocol can be used on request. Threads waiting
to enter a synchronized block are priority ordered and FIFO ordered within each
priority. Wait free queues are provided for communication between instances of
Java. lang. Thread and Real timeTh read.

Time and Timers Classes to represent relative and absolute time with nanosecond
accuracy are defined. All time parameters are split to a 1 ong for milliseconds and an
i nt for nanoseconds within those milliseconds. Each time object has an associated
Cl ock object. Multiple clocks can represent different sources of time and resolution.
This allows for the reduction of queue management overheads for tasks with different
tolerance for jitter. A new type, rationale time, can be used to describe periods with
a requested resolution over a longer period (i.e. allowing release jitter between the
points of the outer period). Timer classes can generate time-triggered events (one
shot and periodic).

4.4 REAL-TIME EXTENSIONS 45

Asynchrony Program logic representing external world events is scheduled and
dispatched by the scheduler. An AsyncEvent object represents an external event
(such as a POSIX signal or a hardware interrupt) or an internal event (through call of
f i re ()). Event handlers are associated to these events and can be bound to a regular
real-time thread or represent something similar to a thread. The relationship between
events and handlers can be many-to-many. Release of handlers can be restricted to a
minimum interarrivai time.

Java's exception handling is extended to represent asynchronous transfer
of control (ATC). RealtimeThread overloads i n t e r r u p t () to generate an
AsynchronousInterruptedException (AIE). The AIE is deferred until the
execution of a method that is willing to accept an ATC. The method indicates this by
including AIE in its throw clause. The semantics of catch is changed so that, even
when it catches an AIE, the AIE is still propagated until the happened () method
of the AIE is invoked. Timed, a subclass of AIE, simplifies the programming of
timeouts.

Support for the RTSJ Implementations of the RTSJ are still rare and under devel-
opment:

Rl is the freely available reference implementation for a Linux system [93].

jRate is an open-source implementation [19] based on ahead-of-time compilation
with the GNU compiler for Java.

FLEX is a compiler infrastructure for embedded systems developed at MIT [30].
Real-time Java is implemented with region-based memory management and a
scheduler framework.

OVM is an open-source framework for Java [74]. The emphasis is on a JVM that
is compliant with the RTSJ. RTSJ support is based on the translation of the
complete Java application (including the library) to C and then compiling it
into a native executable.

aJile will support the RTSJ with CLDC 1.0 on top of the aJ-80 and aJ-100 chips.

4.4.4 Discussion of the RTSJ

The RTSJ is a complex specification leading to a big memory footprint. The follow-
ing list shows the size of the main components of the RI on Linux:

• Classes in javax/realtime: 343KB

46 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

• All classes in library foundation.jar: 2MB

• Timesys JVM executable: 2.6MB

The RTSJ assumes an RTOS and the RI runs on a heavyweight RT-Linux system. The
RTSJ is too complex for low-end embedded systems. This complexity also hampers
programming of high-integrity applications. The runtime memory allocation of the
RTSJ classes has not been documented.

Threads and Scheduling If a real-time thread is preempted by a higher priority
thread, it is not defined if the preempted thread is placed in front or back of the
waiting queue. It is not specified whether the default scheduler performs, or has to
perform, time slicing between threads of equal priority.

Memory It would be ideal if real-time systems were able to allocate all memory
during the initialization phase and forbid dynamic memory allocation in the mission
phase. However, this restricts many of Java's library functions.

The solution to this problem in the RTSJ is ScopedMemory, a memory space with
limited lifetime. However, it can only be used as a parameter for thread creation
or with enter(Runnable r) . In a system without dynamic thread creation, using
scoped memory at creation time of the thread leads to the same behavior as using
immortal memory.

The syntax with e n t e r () leads to a cumbersome programming style: for each
code part where limited lifetime memory is needed, a new class has to be defined
and a single instance of this class allocated at initialization time. Trying to solve this
problem elegantly with anonymous classes, as in Listing 4.2 (example from [10], p.
623), leads to an error.

On every call of computationO, an object of the anonymous class (and a
LTMemory object) is allocated in immortal memory, leading to a memory leak. The
correct usage of scoped memory is shown as a code fragment in Listing 4.3. The
class UseMem only exists to execute the method run() in scoped memory. One
instance of this class is created outside of the scoped memory.

A simpler2 syntax is shown in Listing 4.4. The main drawback of this syntax is
that the programmer is responsible for its correct usage.

New objects and arrays of objects have to be initialized to their default value after
allocation [60]. This usually results in zeroing the memory at the JVM level and leads
to variable (but linear) allocation time. This is the reason for the type LTMemoryArea

2This syntax is not part of the RTSJ. Is is a suggested change and part of the real-time profile defined
in Section 6.1.

4.4 REAL-TIME EXTENSIONS 47

import javax.realtime.*;
public class ThreadCode implements Runnable

{
private void computation()
{

f i na l i n t min = 1*1024;
f i na l i n t max = 1*1024;
f i na l LTMemory myMem = new LTMemeoryCmin, max);
myMem.enter(new RunnableO
{

public void run()
{

/ / access to temporary memory

public void run()

{

computationO ;

Listing 4.2: Scoped memory usage with a memory leak

48 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

class UseMem implements Runnable {

public void run() {
// inside scoped memory
Integer[] = new Integer[100]

/ / outside of scoped memory
// in immortal? at initialization?
LTMemory mem = new LTMemory(1024, 1024);
UseMem urn = new UseMem();

/ / usage
computationO {

mem.enter(um);
}

Listing 4.3: Correct usage of scoped memory in the RTSJ

4.4 REAL-TIME EXTENSIONS 49

LTMemory myMem;

// Create the memory object once
// in the constructor
MyThreadO {

myMem = new LTMemeory(min, max);

public void run() {

myMem.enter();
{ // A new code block disables access

// to new objects in outer scope.
// Access to temporary memory:
Abc a = new Abc();

myMem.exit();

Listing 4.4: Simpler syntax for scoped memory

50 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

in the RTSJ. As suggested in [19], this initialization could be lumped together with
the creation time and exit time of the scoped memory. This results in constant time
for allocation (and usually faster zeroing of the memory).

With the RTSJ memory areas, it is difficult to move data from one area to another
[70]. This results in a completely different programming model from that of standard
Java. This can result in the programmer developing his/her own memory manage-
ment.

Time and Timers Why is the time split into milliseconds and nanoseconds?
In the RI, it is converted to ns for add/subtract. After all mapping and convert-
ing (AbsoluteTime, HighResolutionTime, Clock and RealTimeClock) the
System. currentTimeMiTMsO time, with a ms resolution, is used.

Since time triggered release of tasks can be modeled with periodic threads, the
additional concept of timers is superfluous.

Asynchrony An unbound AsyncEventHandler is not allowed to e n t e r () a
scoped memory. However, it is not clear if scoped memory is allowed as a parameter
in the construction of a handler.

An unbound AsyncEventHandler leads to the implicit start of a thread on an
event. This can (and, in the RI, does - see [19]) lead to substantial overheads. From
the application perspective, bound and unbound event handlers behave in the same
way. This is an implementation hint expressed through different classes. A consistent
way to express the importance of events would be a scheduling parameter for the
minimum allowed latency of the handler.

The syntax that is used in the throws clause of a method to state that ATC will
be accepted is misleading. Exceptions in throws clauses of a method are usually
generated in that method and not accepted.

J2SE Library It is not specified which classes are safe to be used in
RealTimeThread and NoHeapRealTimeThread. Several operating system func-
tions can cause unbound blocking and their usage should be avoided. The memory
allocation in standard JDK methods is not documented and their use in immortal
memory context can lead to memory leaks.

Missing Features There is no concept such as start mission. Changing scheduling
parameters during runtime can lead to inconsistent scheduling behavior.

There is no provision for low-level blocking such as disabling interrupts. This is
a common technique in device drivers where some hardware operations have to be

4.4 REAL-TIME EXTENSIONS 51

atomic without affecting the priority level of the requesting thread (e.g. a low priority
thread for a flash file system shall not get preempted during sector write as the chip
internal write starts after a timeout).

On Small Systems Many embedded systems are still built with 8 or 16-bit CPUs.
32-bit processors are seldom used. Java's default integer type is 32-bit, still large
enough for almost all data types needed in embedded systems. The design decision
in the RTSJ to use (often expensive) 64-bit long data is questionable.

4.4.5 Subsets of the RTSJ

The RTSJ is complex to implement and applications developed with the RTSJ are
difficult to analyze (because of some of the sophisticated features of the RTSJ). Var-
ious profiles have been suggested for high-integrity real-time applications that result
in restrictions of the RTSJ.

A Profile for High-Integrity Real-Time Java Programs

In [79], a subset of the RTSJ for the high-integrity application domain with hard real-
time constraints is proposed. It is inspired by the Ravenscar profile for Ada [24] and
focuses on exact temporal predictability.

Application structure: The application is divided in two different phases: initializa-
tion and mission. All non time-critical initialization, global object allocations,
thread creation and startup are performed in the initialization phase. All classes
need to be loaded and initialized in this phase. The mission phase starts after
returning from mai n () , which is assumed to execute with maximum priority.
The number of threads is fixed and the assigned priorities remain unchanged.

Threads: Two types of tasks are defined: Periodic time-triggered activities execute
an infinite loop with at least one call of wait For Next Period () . Sporadic
activities are modeled with a new class Sporadi cEvent. A Sporadi cEvent
is bound to a thread and an external event on creation. Unbound event handlers
are not allowed. It is not clear if the event can also be triggered by software
(invocation of f i re ()). A restriction for a minimum interarrivai time of events
is not defined. Timers are not supported as time-triggered activities are well
supported by periodic threads. Asynchronous transfers of control, overrun and
miss handles and calls to s l e e p O are not allowed.

Concurrency: Synchronized methods with priority ceiling emulation protocol pro-
vide mutual exclusion to shared resources. Threads are dispatched in FIFO

52 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

order within each priority level. Sporadic events are used instead of wa i t () ,
noti f y () and noti f yAl 1 () for signaling.

Memory: Since garbage collection is still not time-predictable, it is not supported.
This implicitly converts the traditional heap to immortal memory. Scoped
memory (LTMemory) is provided for object allocation during the mission
phase. LTMemory has to be created during the initialization phase with initial
size equal maximum size.

Implementation: For each thread and for the operations of the JVM the WCET must
be computable. Code is restricted to bound loops and bound recursions. Anno-
tations for WCET analysis are suggested. The JVM needs to check the timing
of events and thread execution. It is not stated how the JVM should react to a
timing error.

Ravenscar-Java

The Ravenscar-Java (RJ) profile [56] is a restricted subset of the RTSJ and is based
on the work mentioned above. As the name implies it resembles Ravenscar Ada [24]
concepts in Java.

To simplify the initialization phase, RJ defines I n i t i a l i z e r , a class that has
to be extended by the application class which contains main(). The use of time
scoped memory is further restricted. LTMemory areas are not allowed to be nested
nor shared between threads. Traditional Java threads are disallowed by changing the
class Java.Tang.Thread. The same is true for all schedulable objects from the
RTSJ. Two new classes are defined:

• PeriodicThread where run() gets called periodically, removing the loop
construct with wai tForNextPeriod() .

• Sporadi cEventHandl er binds a single thread with a single event. The event
can be an interrupt or a software event.

Criticisms of Subsets of the RTSJ

If a new real-time profile is defined as a subset of the RTSJ it is harder for the pro-
grammer to find out which functions are available or not. This form of compatibility
causes confusion. The use of different classes for a different specification is clearer
and less error prone.

Ravenscar-Java, as a subset of the RTSJ, claims to be compatible with the RTSJ,
in the sense that programs written according to the profile are valid RTSJ programs.

4.5 SUMMARY 53

However, mandatory usages of new classes such as Peri odicThread need an em-
ulation layer to run on an RTSJ system. In this case, it is better to define complete
new classes for a subset and provide the mapping to the RTSJ. This allows a clearer
distinction to be made between the two definitions.

It is not necessary to distinguish between heap and immortal memory. Without a
garbage collector, the heap implicitly equals to immortal memory.

Objects are allocated in immortal memory in the initialization phase. In the mis-
sion phase, no objects should be allocated in immortal memory. Scoped memory
can be entered and subsequent new objects are allocated in the scoped memory area.
Since there are no circumstances in which allocation in these two memory areas are
mixed, no newInstanceO such as those in the RTSJ or Ravenscar-Java are neces-
sary.

4.4.6 Extensions to the RTSJ

The Distributed Real-Time Specification for Java [46] extends RMI within the RTSJ.
In 2000, it was accepted in the Sun Community Process as JSR-50. This specification
is still under development. According to [94], three levels of integration between the
RTSJ and RMI are defined:

Level 0: No changes in RMI and the RTSJ are necessary. The proxy thread on the
server acts as an ordinary Java thread. Real-time threads cannot assume timely
delivery of the RMI request.

Level 1 : RMI is extended to Real-Time RMI. The server thread is a real-time thread
that inherits scheduling parameters from the calling client.

Level 2: RMI and the RTSJ are extended to form the concept of distributed real-time
threads. These threads have a unique system-wide identifier and can move
freely in the distributed system.

4.5 Summary

In this section, we described definitions for embedded devices given by Sun. Most
of these definitions are targeted for the mobile phone market and not for classical
embedded systems.

Standard Java is under-specified for real-time systems. Two competing definitions,
the 'Real-Time Core Extension' and the 'Real Time Specification for Java', address
this problem. The RTSJ has been further restricted for high-integrity applications.

54 4 RESTRICTIONS OF JAVA FOR EMBEDDED REAL-TIME SYSTEMS

A similar definition that avoids inheritance of complex RTSJ classes is provided in
Section 6.1.

5 JOP Architecture

This chapter presents the architecture for JOP and the motivation behind the various
different design decisions we faced. First, we benchmark the JVM, in order to extract
execution frequencies for the different bytecodes. These values will then guide the
processor design.

Pipelined instruction processing calls for a high memory bandwidth. Caches are
needed in order to avoid bottlenecks resulting from the main memory bandwidth. As
seen in Chapter 2, there are two memory areas that are frequently accessed by the
JVM: the stack and the method area. In this chapter, we will present time-predictable
cache solutions for both areas.

5.1 Benchmarking the JVM

The rationale behind this section is best introduced with the warning from Computer
Architecture: A Quantitative Approach [40] p. 63:

Virtually every practicing computer architect knows Amdahl's Law. De-
spite this, we almost all occasionally fall into the trap of expending
tremendous effort optimizing some aspect of a system before we mea-
sure its usage. Only when the overall speedup is unrewarding do we
recall that we should have measured the usage of that feature before we
spent so much effort enhancing it!

We measured how Java programs use the bytecode instruction set and explored the
typical and worst-case method sizes. Our measurements and other reports are pre-
sented in the following sections.

5.1.1 Bytecode Frequency

The dynamic instruction frequency is the main measurement for determining a pro-
cessor implementation. We can identify those instructions that should be fast. For
seldom-used instructions, a trade-off can be made between performance and hard-
ware resources.

56 5 JOP ARCHITECTURE

Many reports have been written about JVM bytecode frequencies (e.g. [34, 81,
73]). Most of these reports provide only a coarse categorization of the bytecodes. For
example, the bytecodes i 1 oad_n (load an i nt from a local variable) and getf i el d
(fetch a field from an object) are combined in one instruction category. However,
these instructions are very different in terms of their implementation complexity. We
have chosen a fine-grained categorization of the bytecodes to gain greater insight into
the bytecode usage. In Table 5.1 all 201 bytecode instructions are listed by category.

Three different applications were run on an instrumented JVM to measure dynamic
bytecode frequency. The results were compared with the results from the above-
mentioned reports. In Table 5.2 the dynamic instruction count for the three different
benchmarks is shown. The last column is the average of the three tests weighted by
the individual instructions count.

Kaffe [48] is an independent implementation of the JVM distributed under the
GNU Public License. Kaffe was instrumented to collect data on dynamic bytecode
usage. Three different applications were used as benchmarks to obtain the dynamic
instruction count: JLex, KCJ and javac. JLex [6] is a lexical analyzer generator,
written for Java in Java. The data was collected by running JLex with the provided
sample.lex as the input file. KJC [31] is a Java compiler in Java, freely available
under the terms of the GNU General Public License, javac is the Sun Java com-
piler. Both compilers were compiling part of the KJC sources during the benchmark.
These benchmarks are similar to the benchmarks used in other reports and the results
are therefore comparable. However, typical embedded applications can result in a
slightly different instruction set usage pattern. Embedded applications are usually
tightly connected with the environment and are therefore not available as stand-alone
programs to serve as benchmark. An embedded application that was developed on
JOP was adapted to serve as benchmark for Section 5.8 and Chapter 7.

In [25] the relationship between static and dynamic instruction frequency of 19
programs from the SPECjvm98 [17] and Java Grande benchmark suits were mea-
sured. The bytecodes categories were chosen different from the above measurements,
but detailed enough to verify our own measurements. Table 5.3 shows the average
dynamic execution frequency in percent1 of selected bytecode categories from the
SPEC and Java Grande benchmarks, compared with the results obtained by our mea-
surements. The numbers in bold are categories or sums of categories that are com-
parable. The frequency of the load & const instructions is very similar to that in our
measurements. However, field access, control instructions and method invocations
are more frequent in our measurements. The higher count on field access instructions
and method invocation can result from a more object oriented programming style in

'The values do not add up to 100% as only the most significant bytecode categories are shown

5.1 BENCHMARKING THE JVM 57

Type Bytecode

load aload, dload, fload, iload, lload
load (short) aload_0, aload_l, aload_2, aload_3,

dload_0, dload. 1, dload_2, dload_3,
fload_0, fload_l, fload_2, fload_3,
iload_0, iload_l, iload_2, iload_3,
lload_0, lload_l, lload_2, lload_3

store astore, dstore, fstore, istore, lstore
store (short) astore_0, astore.l, astore_2, astore_3,

dstore_0, dstore_l, dstore_2, dstore_3,
fstore_0, fstore. 1, fstore_2, fstore_3,
istore_0, istore_l, istore_2, istore_3,
lstore_0, lstore_l, lstore_2, lstore_3

const bipush, ldc, ldc_w, Idc2_w, sipush
const (short) aconst_null, dconst_0, dconst_l, fconst_0, fconst_l, fconst_2,

iconst_0, iconst_l, iconst_2, iconst_3, iconst_4, iconst_5,
iconst_ml, lconst.O, lconst_l

get getfield, getstatic
put putfield, putstatic
alu dadd, ddiv, dmul, dneg, drem, dsub,

fadd, fdiv, fmul, fiieg, frem, fsub,
iadd, iand, idiv, imul, ineg, ior, irem, ishl, ishr, isub, iushr, ixor,
ladd, land, Idiv, Imul, Ineg, lor, Irem, Ishl, Ishr, Isub, Iushr, Ixor

iinc iinc
stack dup, dup_xl, dup_x2, dup2, dup2_xl, dup2_x2, pop, pop2, swap
array aaload, aastore, baload, bastore, caload, castore, daload, dastore,

faload, fastore, iaload, iastore, laload, lastore, saload, sastore
branch goto, goto.w, iflacmpeq, iflacmpne, iLicmpeq,

iLicmpge, iLicmpgt, iLicmple, iLicmplt, iLicmpne,
ifeq, ifge, ifgt, ifle, iflt, ifne, ifhonnull, ifhull

compare dcmpg, dcmpl, fcmpg, fcmpl, lcmp
switch lookupswitch, tableswitch
call invokeinterface, invokespecial, invokestatic, invokevirtual
return areturn, dretum, freturn, ireturn, lreturn, return
conversion d2f, d2i, d21, f2d, f2i, Gl, i2b, i2c, i2d, i2f, i21, i2s, 12d, 12f, 12i
new anewarray, multianewarray, new, newarray
other array length, athrow, checkcast, instanceof, jsr, jsr_w,

monitorenter, monitorexit, nop, ret, wide

Table 5.1 : The 201 Java bytecodes and their assignment to different categories

58 5 JOP ARCHITECTURE

load (short)
get
branch
invoke
return
load
alu
const (short)
array
put
iinc
stack
store (short)
other
const
store
conversion
switch
new
compare

JLex

32.72
12.02
11.26
6.87
6.82
7.59
2.60
4.61
4.22
0.78
1.81
1.30
2.61
1.63
0.85
2.05
0.02
0.00
0.08
0.14

KJC

31.45
14.39
10.40
6.31
6.20
4.19
4.43
4.26
4.07
2.14
2.38
2.11
2.18
2.22
1.56
0.85
0.36
0.20
0.28
0.03

javac

27.24
17.04
10.71
4.24
4.17
7.48
4.74
4.74
3.22
3.65
1.41
2.11
1.71
1.21
2.80
1.94
0.58
0.60
0.20
0.22

Average

30.37
15.04
10.49
5.77
5.68
5.09
4.48
4.39
3.85
2.52
2.12
2.10
2.06
1.95
1.87
1.15
0.42
0.30
0.25
0.08

Table 5.2: Dynamic bytecode frequency in %

5.1 BENCHMARKING THE JVM 59

JLex, KJC and javac SPEC and Java Grande

Instruction

load (short)
load
const (short)
const

Frequency

30.37
5.09
4.39
1.87

Instruction

acnst
aload
fcnst
fload
icnst
iload

Frequency

0.07
16.23
0.33
6.33
3.21

18.06

load & const

get
put

field access

branch
compare

control

invoke

return

41.72

15.04
2.52

17.56

10.49
0.08

10.57

5.77

5.68

field

cjump
ujump

fcall

retrn

44.77

11.12

11.12

5.67
0.51

6.18

3.63

2.07

Table 5.3: Dynamic bytecode frequency compared with the measurements from [25]

60 5 JOP ARCHITECTURE

virtual special static interface

Java Grande 57.1 8.7 34.2 0.0
SPECJVM98 81.0 10.9 2.9 5.2

Table 5.4: Types of different dynamic method calls for two benchmarks (from [76])

our selected applications than in the SPEC and Java Grande benchmarks. The big
difference, not seen in our measurements, between the invoke and return frequency
in the SPEC and Java Grande benchmarks is not explained in [25].

In all measurements, the load of local variables and constants onto the stack ac-
counts for more than 40% of instructions executed. This feature shows that an effi-
cient realization of the local variable memory area, the stack and the transfer between
these memory areas is mandatory.

The next most executed bytecodes (getf i el d and g e t s t a t i c) are the instructions
that load an object or class field onto the operand stack. To account for these frequent
instructions, the class layout for the runtime system has to be optimized for quick
resolution of field addresses (i.e. minimum memory indirections).

The frequency of branches is comparable with the SPECint2000 measurements
on RISC processors [40]. With such a high branch frequency, a processor without
branch prediction logic is put under pressure in terms of pipeline length.

It is interesting to note that there are more method invoke instructions than return
instructions. Two facts are responsible for this difference: native methods are invoked
by a bytecode, but the return is inside the native methods; and an exception can result
in a method exit without return.

5.1.2 Methods Types and Length

Table 5.4 shows the number of dynamic method calls of the Java Grande and
SPECjvm98 benchmarks. It can be seen that the distribution of method types
depends on the application type. Usage of virtual methods and interfaces is common
in OO programming. Static methods result from the simple translation of procedural
programs to Java.

As a basis for the proposed cache solution in Section 5.8, we will explore static
distribution of method sizes. In the JVM, only relative branches are defined. The
conditional branches and goto have an offset of 16 bits, resulting in a practical limit
of the method length of 32KB. Although there is a goto instruction with a wide index
{goto.w) that takes a 4-byte branch offset, other factors (e.g. indices in the exception
table) limit the size of a method to 65535 bytes.

5.1 BENCHMARKING THE JVM 61

Length

1
2
4
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

Methods

1,388
1,580
1,871

16,192
12,363
12,638
11,178
7,287
4,304
1,727

592
175
75
37
11

1
0

Percentage

1.94
2.21
2.62

22.67
17.31
17.70
15.65
10.20
6.03
2.42
0.83
0.25
0.11
0.05
0.02
0.00
0.00

Cumulative
percentage

1.94
4.16
6.78

29.45
46.76
64.45
80.10
90.31
96.33
98.75
99.58
99.83
99.93
99.98

100.00
100.00
100.00

Table 5.5: Static method count of different sizes from the runtime library (JDK 1.4).

Radhakrishnan et al. [81] measured the dynamic method size of the SPEC suit.
They observed a 'tri-nodal' distribution, where most of the methods were 1, 9, or 26
bytecodes long. No explanation is given for the sizes of 9 or 26. The explanation of
the 1 bytecode long methods as wrapper methods is wrong. For a wrapper method,
the method needs to contain a minimum of two instructions (an invoke and a return).
A single instruction method can only contain a return. However, this observation is
in sharp contrast to the measurements obtained by Power and Waldron in [76].

In Table 5.5, the number of methods of different sizes in the Java runtime library
(JDK 1.4) is shown. The library consists of 71419 methods, the largest being 16706
bytes. The size is classified by powers of 2 because we are interested in the size of
cache memory for complete methods. In the table, the row of, for example, size 32
includes all methods of a size from 17 to 32 bytes. It can be seen that methods are
typically very short. In fact, 99% of the methods are less than 513 bytes in size. This
property is important for the proposed method cache in Section 5.8, where a complete
method has to fit into the instruction cache.

All larger methods are different kinds of initialization functions, in most cases

62 5 JOP ARCHITECTURE

at
•a
o
.c
'S
E
'S
V

E
3

9000

8000

7000

6000

5000

PI

w1 :-
ri

_ _n_ _ i n n
[lllllllllflllnf I n n n n n n n n n n

<- 4000

3000

"" 2000

1000

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Method Length [Byte]

Figure 5.1: Static method count for methods of size up to 32 bytes in the JDK 1.4
runtime library. The horizontal axis indicates the method size.

<cl i ni t > O2 . The large class initialization methods typically result from the ini-
tialization of arrays with constant data. This is necessary because of the lack of
initialized data segments, such as the BSS in C, in the Java class file. These ini-
tialization methods contain straight-line code and can therefore be split to smaller
methods automatically, if necessary.

In Figure 5.1, the distribution of small methods up to a size of 32 bytes is shown.
Figure 5.2 shows the method count for methods up to 300 bytes. As expected, we
see fewer methods as size increases. We observed no surprise in the distribution,
unlike the 'tri-nodal' distribution in [81]. The only method size that is very common
is 5 bytes. These methods are the typical setter and getter methods in object-oriented
programming as shown in Listing 5.1.

The method getVal () translates to three bytecodes of 1, 3 and 1 bytes in length
respectively. These methods should show up in [81] as a peak at 3 bytecodes.

The static distribution of method sizes in an application (javac, the Java compiler)
is quite similar to the distribution in the library. In the class file that contains the Java
compiler, 98% of the methods are smaller than 513 bytes, and the larger methods are
class initializers.

2The class or interface initialization method is static and the special name <clinit> is supplied by
the compiler. These initialization methods are invoked implicitly by the JVM. The definition when
these methods get invoked is problematic for the WCET analysis (see Section 4.2).

5.1 BENCHMARKING THE JVM 63

1000

900

800
•ao
'S

4)
.O

E

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Method length [Byte]

Figure 5.2: Static method count from the JDK 1.4 runtime library. The horizontal
axis indicates the method size in bytes.

private int val ;

public int getVal() {
return val ;

public int getValO;
Code:
0: aload_0
1: getfield #2; //Field val:I
4: ireturn

Listing 5.1: Bytecodes for a getter method

64 5 JOP ARCHITECTURE

5.1.3 Summary

In this section, we performed dynamic measurements on the JVM instruction set.
We saw that more than 40% of the executed instructions are local variables or con-
stants loads onto the stack. This high frequency of stack access calls for an efficient
implementation of the stack, as described in Section 5.5.

In addition, we have statically measured method sizes. Methods are typically very
short. 30% of the methods are shorter than 9 bytes and 99% account for methods of
up to 512 bytes. The maximum length is further limited by the definition of the class
file. We will use this property in the proposed method cache in Section 5.8.

Instruction-usage data is an important input for the design of a processor architec-
ture, as seen in the following sections.

5.2 Overview of JOP

This section gives an overview of JOP architecture. Figure 5.3 shows JOP's major
function units. A typical configuration of JOP contains the processor core, a mem-
ory interface and a number of 10 devices. The module extension provides the link
between the processor core, and the memory and 10 modules.

The processor core contains the four pipeline stages bytecode fetch, microcode
fetch, decode and execute. The ports to the other modules are the address and data
bus for the bytecode instructions, the two top elements of the stack (A and B), input to
the top-of-stack (Data) and a number of control signals. There is no direct connection
between the processor core and the external world.

The memory interface provides a connection between the main memory and the
processor core. It also contains the bytecode cache. The extension module controls
data read and write. The busy signal is used by the microcode instruction wai t 3 to
synchronize the processor core with the memory unit. The core reads bytecode in-
structions through dedicated buses (BC address and BC data) from the memory sub-
system. The request for a method to be placed in the cache is performed through the
extension module, but the cache hit detection and load is performed by the memory
interface independently of the processor core (and therefore concurrently).

The I/O interface contains peripheral devices, such as the system time and timer
interrupt, a serial interface and application-specific devices. Read and write to and

3The busy signal can also be used to stall the whole processor pipeline. This was the change made to
JOP by Flavius Gruian [35]. However, in this synchronization mode, the concurrency between the
memory access module and the main pipeline is lost.

5.2 OVERVIEW OF JOP 65

JOP Core

Bytecode
Fetch

Fetch

Decode

Stack

Busy

BC Addres s ..

„ BC Data

Control

/i

B

A

Interrupt

- - •

1/

Memory Interface

Bytecode
Cache

Data : Control

\ / :

Extension

Multiplier

Data : Control
1 1 •
I/O Interface

v-v

/-A
W

Figure 5.3: Block diagram of JOP

66 5 JOP ARCHITECTURE

from this module are controlled by the extension module. All external devices4 are
connected to the I/O interface.

The extension module performs three functions: (a) it contains hardware accelera-
tors (such as the multiplier unit in this example), (b) the control for the memory and
the I/O module, and (c) the multiplexer for the read data that is loaded in the top-of-
stack register. The write data from the top-of-stack (A) is connected directly to all
modules.

The division of the processor into those four modules greatly simplifies the adap-
tation of JOP for different application domains or hardware platforms. Porting JOP
to a new FPGA board usually results in changes in the memory module alone. Using
the same board for different applications only involves making changes to the I/O
module. JOP has been ported to several different FPGAs and prototyping boards and
has been used in different applications (see Chapter 7), but it never proved necessary
to change the processor core.

5.3 Microcode

The following discussion concerns two different instruction sets: bytecode and mi-
crocode. Bytecodes are the instructions that make up a compiled Java program. These
instructions are executed by a Java virtual machine. The JVM does not assume any
particular implementation technology. Microcode is the native instruction set for JOP.
Bytecodes are translated, during their execution, into JOP microcode. Both instruc-
tion sets are designed for an extended5 stack machine.

5.3.1 Translation of Bytecodes to Microcode

To date, no hardware implementation of the JVM exists that is capable of executing
all bytecodes in hardware alone. This is due to the following: some bytecodes, such
as new, which creates and initializes a new object, are too complex to implement in
hardware. These bytecodes have to be emulated by software.

To build a self contained JVM without an underlying operating system, direct ac-
cess to the memory and I/O devices is necessary. There are no bytecodes defined for
low-level access. These low-level services are usually implemented in native func-
tions, which means that another language (C) is native to the processor. However, for

4The external device can be as simple as a line driver for the serial interface that forms part of the
interface module, or a complete bus interface, such as the ISA bus used to connect e.g. an Ethernet
chip.

5An extended stack machine is one in which there are instructions available to access elements deeper
down in the stack.

5.3 MICROCODE 67

Java instruction
(e.g. 0x6c)

Java pc

Java
bytecode

iload_l
iload_2

istore_3

Jump
table

idmul
Sidiv
Sldiv
Sfdiv
fcddiv

— * • JOPpc

JOP microcode

Startaddress ofidiv
in JVM ROM

iadd:

isub:

idiv:

irem:

add

s u b

s tm
stm

ldm

stm

y

n x t

n x t

b
a

c nxt

b

Figure 5.4: Data flow from the Java program counter to JOP microcode

a Java processor, bytecode is the native language.

One way to solve this problem is to implement simple bytecodes in hardware and
to emulate the more complex and native functions in software with a different in-
struction set (sometimes called microcode). However, a processor with two different
instruction sets results in a complex design.

Another common solution, used in Sun's picoJava [89], is to execute a subset of
the bytecode native and to use a software trap to execute the remainder. This solution
entails an overhead (a minimum of 16 cycles in picoJava, see 3.2.1) for the software
trap.

In JOP, this problem is solved in a much simpler way. JOP has a single native
instruction set, the so-called microcode. During execution, every Java bytecode is
translated to either one, or a sequence of microcode instructions. This translation
merely adds one pipeline stage to the core processor and results in no execution
overheads. With this solution, we are free to define the JOP instruction set to map
smoothly to the stack architecture of the JVM, and to find an instruction coding that
can be implemented with minimal hardware.

Figure 5.4 gives an example of this data flow from the Java program counter to
JOP microcode. The fetched bytecode acts as an index for the jump table. The jump
table contains the start addresses for the JVM implementation in microcode. This
address is loaded into the JOP program counter for every bytecode executed.

Every bytecode is translated to an address in the microcode that implements the
JVM. If there exists an equivalent JOP instruction for the bytecode, it is executed in
one cycle and the next bytecode is translated. For a more complex bytecode, JOP just
continues to execute microcode in the subsequent cycles. The end of this sequence is
coded in the microcode instruction (as the nxt bit).

68 5 JOP ARCHITECTURE

5.3.2 Compact Microcode

For the JVM to be implemented efficiently, the microcode has to fit to the Java byte-
code. Since the JVM is a stack machine, the microcode is also stack-oriented. How-
ever, the JVM is not a pure stack machine. Method parameters and local variables
are defined as locals. These locals can reside in a stack frame of the method and are
accessed with an offset relative to the start of this locals area.

Additional local variables (16) are available at the microcode level. These variables
serve as scratch variables, like registers in a conventional CPU. However, arithmetic
and logic operations are performed on the stack.

Some bytecodes, such as ALU operations and the short form access to locals, are
directly implemented by an equivalent microcode instruction (with a different encod-
ing). Additional instructions are available to access internal registers, main memory
and I/O devices. A relative conditional branch (zero/non zero of TOS) performs con-
trol flow decisions at the microcode level. For optimum use of the available memory
resources, all instructions are 8 bits long. There are no variable-length instructions
and every instruction, with the exception of wai t, is executed in a single cycle. To
keep the instruction set this dense, two concepts are applied:

Two types of operands, immediate values and branch distances, normally force an
instruction set to be longer than 8 bits. The instruction set is either expanded to 16
or 32 bits, as in typical RISC processors, or allowed to be of variable length at byte
boundaries. A first implementation of the JVM with a 16-bit instruction set showed
that only a small number of different constants are necessary for immediate values
and relative branch distances.

In the current realization of JOP, the different immediate values are collected while
the microcode is being assembled and are put into the initialization file for the local
RAM. These constants are accessed indirectly in the same way as the local variables.
They are similar to initialized variables, apart from the fact that there are no opera-
tions to change their value during runtime, which would serve no purpose and would
waste instruction codes.

A similar solution is used for branch distances. The assembler generates a VHDL
file with a table for all found branch constants. This table is indexed using instruction
bits during runtime. These indirections during runtime make it possible to retain an 8-
bit instruction set, and provide 16 different immediate values and 32 different branch
constants. For a general purpose instruction set, these indirections would impose too
many restrictions. As the microcode only implements the JVM, this solution is a
viable option.

To simplify the logic for instruction decoding, the instruction coding is carefully
chosen. For example, one bit in the instruction specifies whether the instruction will

5.3 MICROCODE 69

increment or decrement the stack pointer. The offset to access the locals is directly
encoded in the instruction. This is not the case for the original encoding of the equiv-
alent bytecodes (e.g. iloadJO is Oxla and iload.l is Oxlb). Whenever a multiplexer
depends on an instruction, the selection is directly encoded in the instruction.

5.3.3 Instruction Set

JOP implements 43 different microcode instructions. These instructions are encoded
in 8 bits. With the addition of the nxt and opd bits in every instruction, the effective
instruction length is 10 bits.

Bytecode equivalent: These instructions are direct implementations of bytecodes
and result in one cycle execution time for the bytecode (except s t and 1 d):
pop, and, or, xor, add, sub, s t<n> , s t , ushr, shl , shr, nop, ld<n>, Id,
dup

Local memory access: The first 16 words in the internal stack memory are reserved
for internal variables. The next 16 words contain constants. These memory
locations are accessed using the following instructions: stm, 1 dm, 1 di

Register manipulation: The stack pointer, the variable pointer and the Java program
counter are loaded or stored with: stvp, s t jpc, s t sp , 1 dvp, 1 d jpc, 1 dsp

Bytecode operand: The operand is loaded from the bytecode RAM, converted to a
32-bit word and pushed on the stack with: 1 d_opd_8s, 1 d_opd_8u, 1 d_opd_16s,
ld_opd_16u

External memory access: The autonomous memory subsystem is accessed using
the following instructions: stmra, stmwa, stmwd, wait, ldmrd, stbcrd,
Idbcs t a r t

10 device access: The following instructions permit access to the 10 subsystem:
s t i oa, s t i od, 1 di od

Multiplier: The multiplier is accessed with: stmul, ldmul

Microcode branches: Two conditional branches in microcode are available: bz,
bnz

Bytecode branch: All 17 bytecode branch instructions are mapped to one instruc-
tion: j b r

A detailed description of the microcode instructions can be found in Appendix C.

70 5 JOP ARCHITECTURE

5.3.4 Bytecode Example

The example in Listing 5.2 shows the implementation of a single cycle bytecode and
an infrequent bytecode as a sequence of JOP instructions. In this example, the dup
bytecode is mapped to the equivalent dup microcode and executed in a single cycle,
whereas dup_xl takes five cycles to execute, and after the last instruction (ldm a
nxt), the first instruction for the next bytecode is executed.

dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables for the
// JVM code.
dup_xl: stm a / / save TOS

stm b / / and TOS-1
ldm a / / duplicate former TOS
ldm b / / restore TOS-1
ldm a nxt / / restore TOS and fetch next bytecode

Listing 5.2: Implementation of dup and dup_xl

Some bytecodes are followed by operands of between one and three bytes in length
(except 1 ookupswi tch and tabl eswi tch). Due to pipelining, the first operand byte
that follows the bytecode instruction is available when the first microcode instruction
enters the execution stage. If this is a one-byte long operand, it is ready to be ac-
cessed. The increment of the Java program counter after the read of an operand byte
is coded in the JOP instruction (an opd bit similar to the nxt bit).

In Listing 5.3, the implementation of si push is shown. The bytecode is followed
by a two-byte operand. Since the access to bytecode memory is only one byte per cy-
cle, opd and nxt are not allowed at the same time. This implies a minimum execution
time of n + 1 cycles for a bytecode with n operand bytes.

si push: nop opd // fetch next byte
nop opd // and one more
ld_opd_16s nxt // load 16 bit operand

Listing 5.3: Bytecode operand load

5.3.5 Flexible Implementation of Bytecodes

As mentioned above, some Java bytecodes are very complex. One solution already
described is to emulate them through a sequence of microcode instructions. How-
ever, some of the more complex bytecodes are very seldom used. To further reduce

5.4 THE PROCESSOR PIPELINE 71

the resource implications for JOP, in this case local memory, bytecodes can even
be implemented by using Java bytecodes. During the assembly of the JVM, all la-
bels that represent an entry point for the bytecode implementation are used to gen-
erate the translation table. For all bytecodes for which no such label is found, i.e.
there is no implementation in microcode, a not-implemented address is generated.
The instruction sequence at this address invokes a static method from a system class
(com. jopdesi gn . sys . DVM). This class contains 256 static methods, one for each
possible bytecode, ordered by the bytecode value. The bytecode is used as the index
in the method table of this system class. As described in Section 5.6, this feature also
allows for the easy configuration of resource usage versus performance.

5.3.6 Summary

In order to handle the great variation in the complexity of Java bytecodes we have
proposed a translation to a different instruction set, the so-called microcode. This
microcode is still an instruction set for a stack machine, but more RISC-like than the
CISC-like JVM bytecodes.

In the next section we will see how this translation is handled in JOP's pipeline
and how it can simplify interrupt handling.

5.4 The Processor Pipeline

JOP is a fully pipelined architecture with single cycle execution of microcode instruc-
tions and a novel approach to mapping Java bytecode to these instructions. Figure 5.5
shows the datapath for JOP.

Three stages form the JOP core, executing microcode instructions. An additional
stage in the front of the core pipeline fetches Java bytecodes - the instructions of
the JVM - and translates these bytecodes into addresses in microcode. Bytecode
branches are also decoded and executed in this stage. The second pipeline stage
fetches JOP instructions from the internal microcode memory and executes mi-
crocode branches. Besides the usual decode function, the third pipeline stage also
generates addresses for the stack RAM. As every stack machine instruction has either
pop or push characteristics, it is possible to generate fill or spill addresses for the
following instruction at this stage. The last pipeline stage performs ALU operations,
load, store and stack spill or fill. At the execution stage, operations are performed
with the two topmost elements of the stack.

The stack architecture allows for a short pipeline, which results in short branch
delays. Two branch delay slots are available after a conditional microcode branch.

72 5 JOP ARCHITECTURE

bytecode branch condition

next bytecode microcode branch condition

Bytecode

Fetch, translate
and branch

Microcode

Fetch and
branch

bytecode branch

Microcode

Decode

branch

Microcode

Execute

spill,
fill

Stack

Address
generation

Figure 5.5: Datapath of JOP

The method cache {Bytecode RAM), microcode ROM, and stack RAM are imple-
mented with single cycle access in the FPGA's internal memories.

5.4.1 Java Bytecode Fetch

In the first pipeline stage, as shown in Figure 5.6, the Java bytecodes are fetched
from the internal memory {Bytecode RAM). The bytecode is mapped through the
translation table into the address (jpaddr) for the microcode ROM.

The fetched bytecode results in an absolute jump in the microcode (the second
stage). If the bytecode is mapped one-to-one with a JOP instruction, the following
fetched bytecode again results in a jump in the microcode in the following cycle. If
the bytecode is a complex one, JOP continues to execute microcode. At the end of
this instruction sequence the next bytecode, and therefore the new jump address, is
requested (signal wet).

The bytecode RAM serves as instruction cache and is filled on method invoke
and return. Details about this time-predictable instruction cache can be found in
Section 5.8.

The bytecode is also stored in a register for later use as an operand (requested by
signal opd). Bytecode branches are also decoded and executed in this stage. Since
jpc is also used to read the operands, the program counter is saved in jpcbr during an
instruction fetch, jinstr is used to decode the branch type and jpcbr to calculate the

5.4 THE PROCESSOR PIPELINE 73

A •-

nx
jm

I, opd,
P

S*

1

jpc

jpcbr

1

opd
high

Bytecode RAM

addr clata

opd
low

Trans
tat

jinstr

lation jpaddr

Figure 5.6: Java bytecode fetch

branch target address.

5.4.2 JOP Instruction Fetch

The second pipeline stage, as shown in Figure 5.7, fetches JOP instructions from the
internal microcode memory and executes microcode branches.

The JOP microcode, which implements the JVM, is stored in the microcode ROM.
The program counter pc is incremented during normal execution. If the instruction is
labeled with nxt a new bytecode is requested from the first stage and pc is loaded with
jpaddr. jpaddr is the starting address for the implementation of that bytecode. The
label nxt is the flag that marks the end of the microcode instruction stream for one
bytecode. Another flag, opd, indicates that a bytecode operand needs to be fetched in
the first pipeline stage. Both flags are stored in a table that is indexed by the program
counter.

brdly contains the target address for a conditional branch. The same offset is shared
by a number of branch destinations. A table (branch offset) is used to store these rel-
ative offsets. This indirection means that only 5 bits need to be used in the instruction
coding for branch targets and thereby allow greater offsets. The three tables BCfetch
table, branch offset and translation table (from the bytecode fetch stage) are gener-

74 5 JOP ARCHITECTURE

nxt, opd

jpaddr

• •

r

1 nxt,
br,

. i wait

J

brdly

BC fetch
table

pc

•*— 1

C

Microcode
ROM

rd
addr

>

ir

Branch
offset

instruction

Figure 5.7: JOP instruction fetch

ated during the assembly of the JVM code. The outputs are plain VHDL files. For
an implementation in an FPGA, recompiling the design after changing the JVM im-
plementation is a straightforward operation. For an ASIC with a loadable JVM, it is
necessary to implement a different solution.

FPGAs available to date do not allow asynchronous memory access. They there-
fore force us to use the registers in the memory blocks. However, the output of these
registers is not accessible. To avoid having to create an additional pipeline stage
just for a register-register move, the read address register of the microcode ROM is
clocked on the negative edge.

An alternative solution for this problem would be to use the output of the multi-
plexer for the pc and the read address register of the memory. However, this solution
results in a longer critical path, as the multiplexer can no longer be combined with
the flip-flops that form the pc in the same LCs. This is an example of how implemen-
tation technology (the FPGA) can influence the architecture.

5.4.3 Decode and Address Generation

Besides the usual decode function, the third pipeline, as shown in Figure 5.8, also
generates addresses for the stack RAM.

As we can see in Section 5.5 Table 5.10, read and write addresses are either relative

5.4 THE PROCESSOR PIPELINE 75

instruction Decode

sp+
vp[0..3] t

vp+jopd
ir

sp ,
vp[0..3] (

vp+jopd
ir

J

wr
dly

C

dec
reg

rd
addr

wr
addr

>

sel_ex

Stack
RAM

Figure 5.8: Decode and address generation

to the stack pointer or to the variable pointer. The selection of the pre-calculated
address can be performed in the decode stage. When an address relative to the stack
pointer is used (either as read or as write address, never for both) the stack pointer is
also decremented or incremented in the decode stage.

Stack machine instructions can be categorized from a stack manipulation perspec-
tive as either pop ox push. This allows us to generate fill or spill TOS-1 addresses for
the, following instruction during the decode stage, thereby saving one extra pipeline
stage.

5.4.4 Execute

At the execution stage, as shown in Figure 5.9, operations are performed using two
discrete registers: TOS and TOS-1, labeled A and B.

Each arithmetic/logical operation is performed with registers A and B as the source,
and register A as the destination. All load operations (local variables, internal register,
external memory and periphery) result in a value being loaded into register A. There
is therefore no need for a write-back pipeline stage. Register A is also the source for
the store operations. Register B is never accessed directly. It is read as an implicit
operand or for stack spill on push instructions. It is written during the stack spill with
the content of the stack RAM or the stack fill with the content of register A.

Beside the Java stack, the stack RAM also contains microcode variables and con-
stants. This resource-sharing arrangement not only reduces the number of memory
blocks needed for the processor, but also the number of data paths to and from the

76 5 JOP ARCHITECTURE

Figure 5.9: Execution stage

5.4 THE PROCESSOR PIPELINE 77

register^.
The inverted clock on data-in and on the write address register of the stack RAM

is used, for the same reason, as on the read address register of the microcode ROM.
A stack machine with two explicit registers for the two topmost stack elements and

automatic fill/spill needs neither an extra write-back stage nor any data forwarding.
Details of this two-level stack architecture are described in Section 5.5.

5.4.5 Interrupt Logic

Interrupts are considered hard to handle in a pipelined processor, meaning implemen-
tation tends to be complex (and therefore resource consuming). In JOP, the bytecode-
microcode translation is used cleverly to avoid having to handle interrupts in the core
pipeline.

Interrupts are implemented as special bytecodes. These bytecodes are inserted by
the hardware in the Java instruction stream. When an interrupt is pending and the
next fetched byte from the bytecode RAM is an instruction (as indicated by the wet
bit in the microcode), the associated special bytecode is used instead of the instruc-
tion from the bytecode RAM. The result is that interrupts are accepted at bytecode
boundaries. The worst-case preemption delay is the execution time of the slowest
bytecode that is implemented in microcode. Bytecodes that are implemented in Java
can be interrupted.

The implementation of interrupts at the bytecode-microcode mapping stage keeps
interrupts transparent in the core pipeline and avoids complex logic. Interrupt han-
dlers can be implemented in the same way as standard bytecodes are implemented
i.e. in microcode or Java.

This special bytecode can result in a call of a JVM internal method in the context of
the interrupted thread. This mechanism implicitly stores almost the complete context
of the current active thread on the stack.

5.4.6 Summary

In this section, we have analyzed JOP's pipeline. The core of the stack machine
constitutes a three-stage pipeline. In the following section, we will see that this orga-
nization is an optimal solution for the stack access pattern of the JVM.

An additional pipeline stage in front of this core pipeline stage performs bytecode
fetch and the translation to microcode. This organization has zero overheads for more
complex bytecodes and results in the short pipeline that is necessary for any processor
without branch prediction. This additional translation stage also presents an elegant
way of incorporating interrupts virtually for free.

78 5 JOP ARCHITECTURE

5.5 An Efficient Stack Machine

The concept of a stack has a long tradition, but stack machines no longer form part of
mainstream computers. Although stacks are no longer used for expression evaluation,
they are still used for the context save on a function call. A niche language, Forth
[52], is stack-based and known as an efficient language for controller applications.
Some hardware implementations of the Forth abstract machine do exist. These Forth
processors are stack machines.

The Java programming language defines not only the language but also a binary
representation of the program and an abstract machine, the JVM, to execute this
binary. The JVM is similar to the Forth abstract machine in that it is also a stack
machine. However, the usage of the stack differs from Forth in such a way that a
Forth processor is not an ideal hardware platform to execute Java programs.

In this section, the stack usage in the JVM is analyzed. We will see that, besides
the access to the top elements of the stack, an additional access path to an arbitrary
element of the stack is necessary for an efficient implementation of the JVM. Two
architectures will be presented for this mixed access mode of the stack. Both archi-
tectures are used in Java processors. However, we will also show that the JVM does
not need a full three-port access to the stack as implemented in the two architectures.
This allows for a simple and more elegant design of the stack for a Java processor.
This proposed architecture will then be compared with the other two at the end of this
section.

5.5.1 Java Computing Model

The JVM is not a pure stack machine in the sense of, for instance, the stack model in
Forth. The JVM operates on a LIFO stack as its operand stack. The JVM supplies
instructions to load values on the operand stack, and other instructions take their
operands from the stack, operate on them and push the result back onto the stack.
For example, the i add instruction pops two values from the stack and pushes the
result back onto the stack. These instructions are the stack machine's typical zero-
address instructions. The maximum depth of this operand stack is known at compile
time. In typical Java programs, the maximum depth is very small. To illustrate the
operation notation of the JVM, Table 5.6 shows the evaluation of an expression for a
stack machine notation and the JVM bytecodes. Instruction i 1 oad_n loads an integer
value from a local variable at position n and pushes the value on TOS.

The JVM contains another memory area for method local data. This area is known
as local variables. Primitive type values, such as integer and float, and references
to objects are stored in these local variables. Arrays and objects cannot be allocated

5.5 AN EFFICIENT STACK MACHINE 79

A=B+C*D

Stack JVM

push B iload_l
push C iload_2
push D iload_3
* imul
+ iadd
pop A istore_0

Table 5.6: Standard stack notation and the corresponding JVM instructions

in a local variable, as in C/C++. They have to be placed on the heap. Different
instructions transfer data between the operand stack and the local variables. Access
to the first four elements is optimized with dedicated single byte instructions, while
up to 256 local variables are accessed with a two-byte instruction and, with the wi de
modifier, the area can contain up to 65536 values.

These local variables are very similar to registers and it appears that some of these
locals can be mapped to the registers of a general purpose CPU or implemented as
registers in a Java processor. On method invocation, local variables could be saved
in a frame on a stack, different from the operand stack, together with the return ad-
dress, in much the same way as in C on a typical processor. This would result in the
following memory hierarchy:

• On-chip hardware stack for ALU operations

• A small register file for frequently-accessed variables

• A method stack in main memory containing the return address and additional
local variables

However, the semantics of method invocation suggest a different model. The argu-
ments of a method are pushed on the operand stack. In the invoked method, these
arguments are not on the operand stack but are instead accessed as the first variables
in the local variable area. The real method local variables are placed at higher in-
dices. Listing 5.4 gives an example of the argument passing mechanism in the JVM.
These arguments could be copied to the local variable area of the invoked method. To
avoid this memory transfer, the entire variable area (the arguments and the variables
of the method) is allocated on the operand stack. However, in the invoked method,
the arguments are buried deep in the stack.

80 5 JOP ARCHITECTURE

The Java source:

int val = foo(l , 2);

public int foo(int a, int b) {
int c = 1;
return a+b+c;

}

Compiled bytecode instructions for the JVM:

The invocation sequence:
aload_0 / / Push the object reference
iconstJL / / and the parameter onto the
iconst_2 / / operand stack.
invokevirtual #2 / / Invoke method foo:(II)I.
istoreJ. / / Store the result in val.

public int foo(int,int):
iconst-1 / / The constant is stored in a method
istore_3 / / local variable (at position 3).
iload.l / / Arguments are accessed as locals
iload.2 / / and pushed onto the operand stack.
iadd / / Operation on the operand stack.
iload_3 / / Push c onto the operand stack.
iadd
ireturn / / Return value is on top of stack.

Listing 5.4: Example of parameter passing and access

5.5 AN EFFICIENT STACK MACHINE

arg_2
arg_1
arg_O

Operand stack

Context of
Caller

var_2
var_1
var_0

SP •

VP •

Old frame •<

Operand stack

Context of
Caller

var 3
var_2
var_1
var_0

Operand stack

Context of
Caller

var_2
var_1
var_0

Figure 5.10: Stack change on method invocation

This asymmetry in the argument handling prohibits passing down parameters
through multiple levels of subroutine calls, as in Forth. Therefore, an extra stack
for return addresses is of no use for the JVM. This single stack now contains the
following items in a frame per method:

• The local variable area

• Saved context of the caller

• The operand stack

A possible implementation of this layout is shown in Figure 5.10. A method with two
arguments, arg_l and arg.2 (arg.O is the this pointer), is invoked in this example.
The invoked method sees the arguments as var_l and var.2. var_3 is the only local
variable of the method. SP is a pointer to the top of stack and VP points to the start
of the variable area.

5.5.2 Access Patterns on the Java Stack

The pipelined architecture of a Java processor executes basic instructions in a sin-
gle cycle. A stack that contains the operand stack and the local variables results in
following access patterns:

Stack Operation: Read of the two top elements, operate on them and push back the
result on the top of the stack. The pipeline stages for this operation are:

82 5 JOP ARCHITECTURE

valuel <— s tack[sp] , value2 <— stack[sp-1]
re su l t <— valuel op value2, sp <— sp-1
stack[sp] <— re su l t

Variable Load: Read of a data element deeper down in the stack, relative to a vari-
able base address pointer (VP), and push this data on the top of the stack. This
operation needs two pipeline stages:
value <— stack [vp+offset], sp <— sp+1
stack[sp] <— value

Variable Store: Pop the top element of the stack and write it in the variable relative
to the variable base address:
value <— stack[sp]
stack[vp+offset] <— value, sp <— sp-1

For pipelined execution of these operations, a three-port memory or register file (two
read ports and one write port) is necessary.

5.5.3 Common Realizations of a Stack Cache

As the stack is a heavily accessed memory region, the stack - or part of it - has to be
placed in the upper level of the memory hierarchy. This part of the stack is referred
to as stack cache in this thesis. As described in [40], a typical memory hierarchy
contains the following elements, with increasing access time and size:

• CPU register

• On-chip cache memory

• Off-chip cache memory

• Main memory

• Magnetic disk for virtual memory

For a stack cache, a register file is the solution with the shortest access time. How-
ever, in order to store more than a few elements in the cache, an on-chip memory re-
alization can provide a larger cache. Both variants have been used and are described
below.

5.5 AN EFFICIENT STACK MACHINE 85

On-chip Memory as a Stack Cache

Using SRAM on the chip provides a large stack cache (e.g. 128 entries). However,
as we have seen in Section 5.5.2, a three-port memory is necessary. An additional
pipeline stage performs the cache memory read:

1. IF - instruction fetch

2. ID - instruction decode

3. RD - memory read

4. EX - execute

5. WB - write result back to memory

With this pipeline structure, two data forwarding paths are necessary. The resulting
architecture is shown in Figure 5.12 and a gate count estimate is provided in Table 5.9.
This version needs 70% more resources than the first one, but provides an eight times
larger stack cache.

Example designs that use this kind of stack cache are (i) Komodo [95], a Java
processor intended as a basis for research on multithreaded real-time scheduling, and
(ii) FemtoJava [45], a research project to build an application specific Java processor.

A three-port memory is an expensive option for an ASIC and unusual in an FPGA.
It can be emulated in an FPGA by two memories with a single read and write port.
The write data is written in both memory blocks and each memory block provides a
different read port. However, this solution also doubles the amount of memory.

Both designs (Komodo and FemtoJava) avoid the memory doubling by serializing
the two reads. This serialization results in minimum of two clock cycles execution
time for basic instructions or halves the clock frequency of the whole pipeline.

5.5.4 A Two-Level Stack Cache

In this section, we will discuss access patterns of the JVM and their implication on
the functional units of the pipeline. A faster and smaller architecture is proposed for
the stack cache of a Java processor.

JVM Stack Access Revised

If we analyze the JVM's access patterns to the stack in more detail, we can see that
a two-port read is only performed with the two top elements of the stack. All other
operations with elements deeper in the stack, local variables load and store, only need

86 5 JOP ARCHITECTURE

Read
Addr. 1

Read
Addr. 2

Write
Addr. ^

Write
Data

Stack
RAM

Port I
buffer

— • -w

Port 2
buffer

? — •

Result
J V buffer

Forward
buffer

Figure 5.12: A stack cache with on-chip RAM

Function block Basic function Gate count

Stack RAM
Port buffer
Forward MUX
ALU buffer

e.g. 128x32 Bits 6,144
2x32 D-Flip-Flops 320
32x2:1 MUX, 3:1 MUX 288
2x32 D-Flip-Flops 320

Total 7,072

Table 5.9: Estimated gate count for a stack cache with RAM

5.5 AN EFFICIENT STACK MACHINE 83

The Register File as a Stack Cache

An example of a Java processor that uses a register file is Sun's picoJava [89]. It con-
tains 64 registers, organized as a circular buffer. To compensate for this small stack
cache, an automatic spill and fill circuit needs another read/write port to the register
file. aJile's JEMCore [37] is a direct-execution Java processor core that contains 24
registers. Only six of them are used to cache the top elements of the stack. With
this small register count, local variables are not part of the cache. The Ignite [77]
(formerly known as PSC1000) is a stack processor, originally designed as a Forth
processor and now promoted as a Java processor, has an operand stack that contains
18 registers with automatic spill and fill.

A basic pipeline for a stack processor with a register file contains the following
stages:

1. IF - instruction fetch

2. ID - instruction decode

3. EX - read register file and execute

4. WB - write result back to register file

With this pipeline structure, a single data-forwarding path between WB and EX is
necessary. The ALU with the register file (with a size of 16, a common size for
RISC processors) and the bypass unit are shown in Figure 5.11. In Table 5.8 the
hardware resources of this type of stack cache are approximated, using the values
given in Table 5.7 (a MUX not found in this table is assumed to use combinations of
the basic types; e.g. two 8:1 and one 2:1 for a 16:1). An experimental evaluation of
this architecture in an FPGA is described in Section 5.5.5.

Basic function Gate count

D-Flip-Flop
2:1 MUX
4:1 MUX
8:1 MUX
SRAM Bit

5
3
5
9

1.5

Table 5.7: Simplified gate count for basic functions

84 5 JOP ARCHITECTURE

Figure 5.11: A stack cache with registers

Function block Basic function Gate count

Register File
Read MUX
Forward MUX
ALU buffer

512D-Fhp-Flops
2x32 16:1 MUX
32 2:1 MUX
32 D-Flip-Flops

2
1
,560
,344

96
160

Total 4,160

Table 5.8: Estimated gate count for a register stack cache

5.5 AN EFFICIENT STACK MACHINE 87

one read port. If we only implement the two top elements of the stack in registers,
we can use a standard on-chip RAM with one read and one write port.

We will show that all operations can be performed with this configuration. Let A
be the top-of-stack, B the element below top-of-stack. The memory that serves as the
second level cache is represented by the array sm. Two indices in this array are used:
p points to the logical third element of the stack and changes as the stack grows or
shrinks, v points to the base of the local variables area in the stack and n is the address
offset of a variable, op is a two operand stack operation with a single result (i.e. a
typical ALU operation).

Case 1 : ALU operation
A <- A op B
B <— sm[p]

p^p-1
The two operands are provided by the two top level registers. A single read
access from sm is necessary to fill B with a new value.

Case 2: Variable load (Push)
B

A<— smfv+n]

p^p + 1
One read access from sm is necessary for the variable read. The former TOS
value moves down to B and the data previously in B is written to sm.

Case 3: Variable store {Pop)
smfv+n] <— A
A^B
B <— smfpj
p<-p-l
The TOS value is written to sm. A is filled with B and B is filled in an identical
manner to Case 1, needing a single read access from sm.

We can see that all three basic operations can be performed with a stack memory with
one read and one write port. Assuming a memory is used that can handle concurrent
read and write access, there is no structural access conflict between A, B and sm. That
means that all operations can be performed concurrently in a single cycle.

As we can see in Figure 5.10 the operand stack and the local variables area are
distinct regions of the stack. A concurrent read from and write to the stack is only
performed on a variable load or store. When the read is from the local variables area

88 5 JOP ARCHITECTURE

the write goes to the operand area; a read from the operand area is concurrent with a
write to the local variables area. Therefore there is no concurrent read and write to
the same location in sm. There is no constraint on the read-during-write behavior of
the memory (old data, undefined or new data), which simplifies the memory design.
In a design where read and write-back are located in different pipeline stages, as in
the architectures described above, either the memory must provide the new data on a
read-during-write, or external forward logic is necessary.

From the three cases described, we can derive the memory addresses for the read
and write port of the memory, as shown in Table 5.10.

Read address Write address

P P+l
v+n v+n

Table 5.10: Stack memory addresses

The Datapath

The architecture of the two-level stack cache can be seen in Figure 5.13. Register
A represents the top-of-stack and register B the data below the top-of-stack. ALU
operations are performed with these two registers and the result is placed in A. During
such an ALU operation, B is filled with new data from the stack RAM. A new value
from the local variable area is loaded directly from the stack RAM into A. The data
previously in A is moved to B and the data from B is spilled to the stack RAM. A is
stored in the stack RAM on a store instruction to the local variable. The data from B
is moved to A and B is filled with a new value from the stack RAM.

With this architecture, the pipeline can be reduced to three stages:

1. IF - instruction fetch

2. ID - instruction decode

3. EX - execute, load or store

The estimated resource usage of this two-level stack cache architecture is given in
Table 5.11. It can be seen that this architecture is roughly as complex as the solution
given above (about 5% less gates). However, the reduced complexity with the two-
port RAM instead of a three-port RAM is not included in the table. The critical path
through the ALU contains only one 2:1 MUX to register A in this solution, rather
than one 3:1 MUX in one ALU path and one 2:1 MUX in the other ALU path. As no
data forwarding logic is necessary, the decoding logic is also simpler.

5.5 AN EFFICIENT STACK MACHINE 89

Read
Addr. ^

— — •

Write
Addr. .

•

Write
Data ^

Stack
RAM

Figure 5.12

Function block

Stack
TOS,
Three

Total

RAM
TOS-1 buffer
MUX

| ^
A

> •

D
D

r*

I: Two-level stack cache

Basic function Gate

e. g. 128x32 Bits 6
2x32 D-Flip-Flops
3x32 2:1 MUX

6

ALU

count

144
320
288

752

Table 5.11 : Estimated gate count for a two-level stack cache

90 5 JOP ARCHITECTURE

Data Forwarding - A Non-Issue

Data dependencies in the instruction stream result in the so-called data hazards [40]
in the pipeline. Data forwarding is a technique that moves data from a later pipeline
stage back to an earlier one to solve this problem. The term forward is correct in
the temporal domain as data is transferred to an instruction in the future. However,
it is misleading in the structural domain as the forward direction is towards the last
pipeline stage for an instruction.

As the probability of data dependency is very high in a stack-based architecture,
one would expect several data forwarding paths to be necessary. However, in the two-
level architecture proposed, with its resulting three-stage pipeline, no data hazards
will occur and no data forwarding is therefore necessary. This simplifies the decoding
stage and reduces the number of multiplexers in the execution path. We will show
that none of the three data hazard types [40] are an issue in this architecture. With
instructions / and j , where / is issued before j , the data hazard types are:

Read after write: j reads a source before i writes it. This is the most common
type of hazard and, in the architectures described above, is solved by using the ALU
buffers and the forwarding multiplexer in the ALU datapath. On a stack architecture,
write takes three forms:

• Implicit write of TOS during an ALU operation

• Write to the TOS during a load instruction

• Write to an arbitrary entry of the stack with a store instruction

A read also occurs in three different forms:

• Read two top values from the stack for an ALU operation

• Read TOS for a store instruction

• Read an arbitrary entry of the stack with the load instruction

With the two top elements of the stack as discrete registers, these values are read,
operated on and written back in the same cycle. No read that depends on TOS or
TOS-1 suffers from a data hazard. Read and write access to a local variable is also
performed in the same pipeline stage. Thus, the read after write order is not affected.
However, there is also an additional hidden read and write - the fill and spill of register
B:

5.5 AN EFFICIENT STACK MACHINE 91

• B fill: B is written during an ALU operation and on a variable store. During
an ALU operation, the operands are the values from A and the old value from
B. The new value for B is read from the stack memory and does not depend
on the new value of A. During a variable store operation, A is written to the
stack memory and does not depend on B. The new value for B is also read
from the stack memory and it is not obvious that this value does not depend
on the written value. However, the variable area and the operand stack are
distinct areas in the stack (this changes only on method invocation and return),
guaranteeing that concurrent read/write access does not produce a data hazard.

• B spill: B is read on a load operation. The new value of B is the old value of
A and does not therefore depend on the stack memory read. B is written to the
stack. For the read value from the stack memory that goes to A, the argument
concerning the distinct stack areas in the case of B fill described above still
applies.

Write after read: j writes a destination before it is read by i. This cannot take
place as all reads and writes are performed in the same pipeline stage keeping the
instruction order.

Write after write: j writes an operand before it is written by /. This hazard is not
present in this architecture as all writes are performed in the same pipeline stage.

5.5.5 Resource Usage Compared

The three architectures described above are implemented in Altera's EP1C6Q240C6
[16] FPGA. The three-port memory for the second solution is emulated with two em-
bedded memory blocks. The ALU for this comparison is kept simple with the follow-
ing functions: NOP, ADD, SUB, POP, AND, OR, XOR and load external data. The
load of external data is necessary in order to prevent the synthesizer from optimizing
away the whole design. A real implementation of an ALU for a Java processor, as de-
scribed in Section 5.4, is a little bit more complex with a barrel shifter and additional
load paths. In order to gain the maximum operating frequency for the design, the
testbed for this architecture contains registers for the external data, the RAM address
buses, and the control and select signals. Table 5.12 shows the resource usage and
maximum operation frequency of the three different architectures.

LC stands for 'Logic Cell' and is the basic element in an FPGA: a 4-bit lookup
table with a register. The LC count in the table includes the register count. The
ALU alone without any stack cache needs 194 LCs. In the first line, the testbed is

92 5 JOP ARCHITECTURE

Design

Testbed w. ALU
16 register cache
SRAM cache
Two-level cache

Total
LCs Reg.

261
968
372
373

166
657
185
184

Cache
LCs Reg.

707
111
112

491
19
18

Memory
[bit]

0
8,192
4,096

frnax
[MHz]

237
110
153
213

Size
[word]

16
128
130

Table 5.12: Resource and performance compared

combined with the ALU without any stack caching, as a reference design. With this
configuration, we can obtain the maximum possible speed of the registered ALU in
this FPGA technology, in this case an operating frequency of 237MHz or a 4.2 ns
delay. This value is an upper bound of the system frequency. Every pipelined archi-
tecture needs one or more multiplexer in the ALU path, either for data forwarding
or for operand selection, resulting in a longer delay. The fourth and fifth columns
represent the resource usage of the cache logic without the testbed and ALU. The last
column shows the effective cache size in data words.

The version with the 16 registers was synthesized with two different synthesizer
settings. In the first setting, the register file is implemented with discrete registers
while, with a different setting, the register file is automatically implemented in two
32-bits embedded RAM blocks. Two different RAM blocks are necessary to provide
two read ports and one write port. In both versions, the delay time to read the register
file (delay through the 16:1 MUX of 4.9 ns or RAM access time of 4.6 ns) is in the
same order as the delay time through the ALU, resulting in a system frequency of
half the theoretical frequency of that with the ALU alone. As the structure of the
version with the embedded RAM block is very similar with the SRAM cache, only
the version with the discrete registers is shown in Table 5.12.

The stack cache with a RAM and registers on the RAM output (the additional
pipeline stage) performs better than the first solution. However, the 3:1 MUX in the
critical path still adds 2.3 ns to the delay time. Compared with the proposed solution
(in the last line), we see that double the amount of RAM is needed for the two read
ports.

The two-level stack cache solution performs at 213MHz, i.e. almost the theoretical
system frequency (in practice, about 10% slower). Only a 2:1 MUX is added to the
critical path. The single read port memory needs half the number of memory bits of
the other two solutions.

5.6 HW/SW CODESIGN 93

5.5.6 Summary

In this section, the stack architecture of the JVM was analyzed. We have seen that
the JVM is different from the classical stack architecture. The JVM uses the stack
both as an operand stack and as the storage place for local variables. Local variables
are placed in the stack at a deeper position. To load and store these variables, an
access path to an arbitrary position in the stack is necessary. As the stack is the most
frequently accessed memory area in the JVM, caching of this memory is mandatory
for a high-performing Java processor.

A common solution, found in a number of different Java processors, is to imple-
ment this stack cache as a standard three-port register file with additional support to
address this register file in a stack like manner. The architectures presented above dif-
fer in the realization of the register file: as a discrete register or in on-chip memory.
Implementing the stack cache as discrete registers is very expensive. A three-port
memory is also an expensive option for an ASIC and unusual in an FPGA. It can be
emulated by two memories with a single read and write port. However, this solution
also doubles the amount of memory.

Detailed analysis of the access patterns to the stack showed that only the two top
elements of the stack are accessed in a single cycle. Given this fact, the proposed
architecture uses registers to cache only the two top elements of the stack. The next
level of the stack cache is provided by a simple on-chip memory. The memory auto-
matically spills and fills the second register. Implementing the two top elements of
the stack as fixed registers, instead of elements that are indexed by a stack pointer,
also greatly simplifies the overall pipeline.

The proposed stack architecture has the following advantages: (i) Simpler cache
memory results in having half the memory usage of the other solutions in an FPGA.
(ii) Minimal impact on the raw speed of the ALU. Operates at almost the theoretical
maximum system frequency of the ALU. (iii) Single read, execute and write-back
pipeline stage results in an overall 3-stage pipeline processor design, (iv) No data
forwarding is necessary, which simplifies instruction decode logic and reduces the
multiplexer count in the critical path.

5.6 HW/SW Codesign

Using a hardware description language and loading the design in an FPGA the former
strict border between hardware and software gets blurred. Is configuring an FPGA
not more like loading a program for execution?

This looser distinction makes it possible to move functions easily between hard-
ware and software resulting in a highly configurable design. If speed is an issue,

94 5 JOP ARCHITECTURE

more functions are realized in hardware. If cost is the primary concern these func-
tions are moved to software and a smaller FPGA can be used. Let us examine these
possibilities on a relatively expensive function: multiplication.

In Java bytecode imul performs a 32 bit signed multiplication with a 32 bit re-
sult. There are no exceptions on overflow. Since 32 bit single cycle multiplications
are far beyond the possibilities of current, mainstream FPGAs the first solution is a
sequential multiplier.

Sequential Booth Multiplier in VHDL Listing 5.5 shows the VHDL code of the
multiplier. Two microcode instructions are used to access this function: stmul stores
the two operands (from TOS and TOS-1) and starts the sequential multiplier. After
33 cycles, the result is loaded with 1 dmul. Listing 5.6 shows the microcode for i mul.

Multiplication in Microcode If we run out of resources in the FPGA, we can move
the function to microcode. The implementation of i mul is almost identical with the
Java code in Listing 5.7 and needs 73 microcode instructions.

Bytecode imul in Java Microcode is stored in an embedded memory block
of the FPGA. This is also a resource of the FPGA. We can move the code to
external memory by implementing imul in Java bytecode. Bytecodes not im-
plemented in microcode result in a static Java method call from a special class
(com. jopdesign.sys.JVM). This class has prototypes for each bytecode ordered
by the bytecode value. This allows us to find the right method by indexing the
method table with the value of the bytecode. Listing 5.7 shows the Java method
for imul. The additional overhead for this implementation is a call and return with
cache refills.

Implementations Compared Table 5.13 lists the resource usage and execution
time for the three implementations. Execution time is measured with both operands
negative, the worst-case execution time for the software implementations. The im-
plementation in Java is slower than the microcode implementation as the Java method
is loaded from main memory into the bytecode cache.

Only a few lines of code have to be changed to select one of the three imple-
mentations. The shown principle can also be applied to other expensive bytecodes:
e.g. id iv , i sh r , iushr and i s hi. As a result, the resource usage of JOP is highly
configurable and can be selected for each application according to the needs of the ap-
plication. Treating VHDL as a software language allows easy movement of function
blocks between hardware and software.

5.6 HW/SW CODESIGN 95

process(clk, wr_a, wr_b)

variable count : integer range 0 to width;
variable pa : signed(64) downto 0) ;
variable a_l : s td. log ic ;
a l ias p : signed(32 downto 0)

is pa(64 downto 32);

begin
i f r i si ng_edge(cl k) then

i f wr_a=' l ' then
p := (others => ' 0 ') ;
pa(width—1 downto 0) := signed(din);

e l s i f wr_b=' l ' then
b <= d in;
a . l := ' 0 ' ;
count := width;

else
i f count > 0 then

case std.ulogic-vector'(pa(0) , a.l) is
when "01" =>

p := p + signed(b);
when "10" =>

p := p — signed(b);
when others =>

null;
end case;
a.l := pa(0);
pa := shift_right(pa, 1);
count := count — 1;

end if;
end if;

end if;
dout <= std.logi c_vector(pa(31 downto 0));

end process;

Listing 5.5: Booth multiplier in VHDL

96 5 JOP ARCHITECTURE

imul :
stmul / / store both operands and start
pop / / pop second operand

1 di 5 / / 6*5+3 cycles wait
imul- loop: / / wait loop

dup
nop
bnz imul_loop
Idi —1 // decrement in branch slot
add

pop // remove counter

Idmul nxt // load result

Listing 5.6: Microcode to access the Booth multiplier

Hardware Microcode Time
[LC] [Byte] [Cycle]

VHDL
Microcode
Java

156
0
0

10
73
0 2,

35
750
300

Table 5.13: Different implementations of imul compared

5.6 HW/SW CODESIGN 97

public static int imu"l(int a, int b) {

int c, i;
boolean neg = false;
i f (a<0) {

neg = true;
a = —a;

}
i f (b<0) {

neg = !neg;
b = - b ;

}
c = 0;
for (i=0; i<32; ++i) {

c «= 1;
i f ((a & 0x80000000)1=0) c += b;
a «= 1;

}
i f (neg) c = -c;
return c;

}
Listing 5.7: Implementation of bytecode imul in Java

98 5 JOP ARCHITECTURE

5.7 Real-Time Predictability

General-purpose processors are optimized for average throughput and non real-time
operating systems are responsible for fair and efficient scheduling of resources. Real-
time systems need a processor with low and known WCET of instructions. Real-
time operating systems have properties, such as fast interrupt response, rapid context
switch, short blocking times and a scheduler that implements a simple, in most cases
strict priority driven, scheduling algorithm. This section describes design decisions
for JOP to support such real-time systems.

5.7.1 Interrupts

Interrupts are usually associated with low-level programming of device drivers. The
priorities of interrupts and their handler functions are above task priorities and yield
to an immediate context switch. In this form, interrupts cannot be integrated in a
schedule with normal tasks. The execution time of the interrupt handler has to be
integrated in the schedulability analysis as additional blocking time. A better solution
is to handle interrupts, which represent external events, as schedulable objects with
priority levels in the range of real-time tasks, as suggested in the RTS J.

The Timer Interrupt The timer or clock interrupt has a different semantic than other
interrupts. The main purpose of the timer interrupt is representation of time and re-
lease of periodic or time triggered tasks. One common implementation is a clock tick.
The interrupt occurs at a regular interval (e.g. 10 ms) and a decision has to be taken
whether a task has to be released. This approach is simple to implement, but there
are two major drawbacks: The resolution of timed events is bound by the resolution
of the clock tick and clock ticks without a task switch are a waste of execution time.

A better approach, used in JOP, is to generate timer interrupts at the release times
of the tasks. The scheduler is now responsible for reprogramming the timer after each
occurrence of a timer interrupt. The list of sleeping threads has to be searched to find
the nearest release time in the future of a higher priority thread than the one that will
be released now. This time is used for the next timer interrupt.

External Events Hardware interrupts, other than the timer interrupt, are repre-
sented as asynchronous events with an associated thread. This means that the event
is a normal schedulable object under the control of the scheduler. With a minimum
interarrivai time, enforced by hardware, these events can be incorporated into the
priority assignment and schedulability analysis in the same way as periodic tasks.

5.7 REAL-TIME PREDICTABILITY 99

Software Interrupts The common software generated interrupts, such as illegal
memory access or divide by zero, are represented by Java runtime exceptions and
need no special handler. They can be detected with a try-catch block.

Asynchronous notification from the program is supported, in the same way as
an external event, as a schedulable object with an associated thread. The event is
triggered through the call of fi r e () . The thread with the handler is placed in the
runnable state and scheduled according to priority.

Hardware Failures Serious hardware failures, such as illegal opcode or parity error
from the memory systems, lead to a shutdown of the system. However, a last try to
call a handler that changes the state of the system to a safe state and inform an upper
level system, can improve the integrity of the overall system.

5.7.2 Task Switch

An important issue in real-time systems is the time for a task switch. A task switch
consists of two actions:

• Scheduling is the selection of the task order and timing

• Dispatching is the term for the context switch between tasks

Scheduling Most real-time systems use a fixed-priority preemptive scheduler.
Tasks with the same priority are usually scheduled in a FIFO order. Two common
ways to assign priorities are rate monotonie or, in a more general form, deadline
monotonie assignment. When two tasks get the same priority, we can choose one of
them and assign a higher priority to that task and the task set is still schedulable. We
get a strictly monotonie priority order and do not have to deal with FIFO order. This
eliminates queues for each priority level and results in a single, priority ordered task
list.

Strictly fixed priority schedulers suffer from a problem called priority inversion
[84]. The problem where a low priority task blocks a high priority task on a shared
resource is solved by raising the priority of the low priority task. Two standard prior-
ity inversion avoidance protocols are common:

Priority Inheritance Protocol: A lock assigns the priority of the highest-priority
waiting task to the task holding the lock until that task releases the resource.

Priority Ceiling Emulation Protocol: A lock gets a priority assigned above the pri-
ority of the highest-priority task that will ever acquire the lock. Every task will
be immediately assigned the priority ofthat lock when acquiring it.

100 5 JOP ARCHITECTURE

The priority inheritance protocol is more complex to implement and the time when
the priority of a task is raised is not so obvious. It is not raised because the task does
anything, but because another task reaches some point in its execution path.

Using priority ceiling emulation with unique priorities, different from task prior-
ities, the priority order is still strictly monotonie. The priority ordered task list is
expanded with slots for each lock. If a task acquires a lock, it is placed in the corre-
sponding slot. With this extension to the task list, scheduling is still simple and can
be efficiently implemented.

Dispatching The time for a context switch depends on the size of the state of the
tasks. For a stack machine it is not so obvious what belongs to the state of a task.
If the stack resides in main memory, only a few registers (e.g. program counter and
stack pointer) need to be saved and restored. However, the stack is a frequently
accessed memory region of the JVM. The stack can be seen as a data cache and
should be placed near the execution unit (in this case, near means on the chip and
not in external memory). However, on-chip memory is usually too small to hold the
stack content for all tasks. This means that the stack is part of the execution context
and has to be saved and restored on a context switch.

In JOP, the stack is placed in local (on-chip) FPGA memory with single cycle
access time. With this configuration, the next question is how much of the stack
to place there. Either the complete stack of a thread or only the stack frame of the
current method can reside locally. If the complete stack of a thread is stored in local
memory, the invocation of methods and returns are fast, but the context is large. For
fast context switches, it is preferable to have only a short stack in local memory. This
results in less data being transferred to and from main memory, but more memory
transfers on method invocation and return. The local stack can be further divided into
small pieces, each holding only one stack frame of one thread. During the context
switch, only the stack pointer needs to be saved and restored. The outcome of this is
a very fast context switch, although the size of the local memory limits the maximum
number of threads.

Since JOP is a soft-core processor, these different solutions can be configured for
different application requirements. It is even possible to mix of these policies: some
stack slots can be assigned to important threads, while the remaining threads share
one slot. This stack slot only needs to be exchanged with the main memory when
switching to a less important thread.

5.7 REAL-TIME PREDICTABILITY HH

5.7.3 Architectural Design Decisions

In hard real-time systems, meeting temporal requirements is of the same importance
as functional correctness. This results in different architectural constraints than in a
design for a non real-time system. A low upper bound of the execution time is of
premium importance. Good average execution time is useless for a pure hard real-
time system.

Common architectural components, found in general purpose processors to en-
hance average performance, are usually problematic for the WCET analysis. A prag-
matic approach to this problem is to ignore these features for the analysis. With a
processor designed for real-time applications, these features have to be substituted
by predictable architecture enhancements.

Branch Prediction As the pipelines of current general-purpose processors get
longer to support higher clock rates the penalty of branches get too high. This is
compensated by branch prediction logic with branch target buffers. However, the
upper bound of the branch execution time is the same as without this feature. In JOP,
branch prediction is avoided. This results in pressure on the pipeline length. The
core processor has a pipeline length of as little as three stages resulting in a branch
execution time of three cycles in microcode. The two slots in the branch delay can
be filled with instructions or nop. With the additional bytecode fetch and translation
stage, the overall pipeline is four stages and results in a four cycle execution time for
a bytecode branch.

Caches and Instruction Prefetch To reduce the growing gap between the clock
frequency of the processor and memory access times multi-level cache architectures
are commonly used. Since even a single level cache is problematic for WCET analy-
sis, more levels in the memory architecture are almost not analyzable. The additional
levels also increase the latency of memory access on a cache miss.

In a stack machine, the stack is a frequently accessed memory area. This makes
the stack an ideal candidate to be placed near the execution unit in the memory hier-
archy. In JOP the stack is implemented as internal memory with the two top elements
as explicit registers. This single cycle memory can be seen as a data cache. However,
unlike in picoJava, this limited memory is not automatically spilled and filled. Au-
tomatically spill and fill introduces unpredictable access to the main memory. Data
exchange between internal stack and main memory is under program control and can
be done on method invocation/return or on a thread switch.

The next most accessed memory area is the code area. A simple prefetch queue,
as it is found in older processors, could increase instruction throughput after execut-

102 5 JOP ARCHITECTURE

ing a multi-cycle bytecode. For a stream of single cycle bytecodes, prefetching is
useless and the frequent occurrence of branches and method invocations, about 12-
23% (see Section 5.1) in typical Java programs, reduces the performance gain. The
prefetch queue also results in (probably unbounded) execution time dependencies
over a stream of instructions, which complicates timing analysis.

JOP has a method cache with a novel replace policy. Since typical methods in
Java programs are short and there are only relative branches in a method, a complete
method is loaded in the cache on invocation and on return. This cache fill strategy
lumps all cache misses together and is very simple to analyze. It also simplifies
the hardware of the cache since no tag memory or address translation is necessary.
The romizer tool JavaCodeCompact checks the maximum allowed method size. Sec-
tion 5.8 describes the proposed cache solution in detail. Memory areas for the heap
and class description with the constant pool are not cached in JOP.

Superscalar Processors A superscalar processor consists of several execution
units and tries to extract instruction level parallelism (ILP) with out of order exe-
cution. Again, this is a nightmare for timing analysis. The code for a stack machine
has less implicit parallelism than a register machine.

One form of enhancement, usually implemented in stack machines, is instruc-
tion folding. The instruction stream is scanned to find frequent patterns like load-
load-add-store and substitutes these four instructions with one, RISC-like, operation.
There are two issues with instruction folding in JOP: The combined instruction needs
two read and one write access to the stack in a single cycle. This would result in dou-
bling of the internal memory usage in the FPGA. It also needs, at minimum, four
bytes read access to the method cache. To overcome word boundaries, prefetching
has to be introduced after the method cache. This results in an additional pipeline
stage, time dependency of instructions with a more complex analysis and more hard-
ware resources for the multiplexers.

Programs for embedded and real-time systems are usually multi-threaded. In fu-
ture work, it will be investigated if the additional hardware resources needed for ILP
can be better used with additional processor cores utilizing this implicit thread-level
parallelism.

Garbage Collection As use of the heap is avoided in hard real-time systems, no
garbage collector is implemented. Without a garbage collector, the memory layout of
objects can be simplified. Every reference points directly to the object. No indirection
through a handle, which would simplify memory compaction in the garbage collector,
is needed. This reduces access time to object fields and methods.

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 103

Time-Predictable Instructions A good model of a processor with accurate timing
information is essential for a tight WCET analysis. The architecture of JOP and the
microcode are designed with this in mind. Execution time of bytecodes is known
cycle accurately (see Section 7.4 and Appendix D). It is possible to analyze the
WCET on the bytecode level [7] without the uncertainties of an interpreting JVM [5]
or generated native code from ahead-of-time compilers for Java.

5.7.4 Summary

In this section, we argued that, while common techniques in processor architectures
increase average throughput, they are not feasible for real-time systems. The influ-
ence of these architectural enhancements is at best hardly WCET-analyzable.

The proposed alternatives influence the processor architecture, as described in ear-
lier sections, as well as the software architecture that will be described in Section 6.1.

However, the most important architectural enhancement for pipelined machines
is caching, which is necessary even in embedded systems. We have shown in Sec-
tion 5.5 how a time-predictable data cache for a stack machine can be implemented.
In the following section, we will propose a time-predictable cache for instructions.

5.8 A Time-Predictable Instruction Cache

Worst-case execution time (WCET) analysis [78] of real-time programs is essential
for any schedulability analysis. To provide a low WCET value, a good processor
model is necessary. However, the architectural advancement in modern processor
designs is dominated by the rule: ''Make the common casefasf. This is the opposite
of 'Reduce the worst case' and complicates WCET analysis.

Cache memory for the instructions and data is a classic example of this paradigm.
Avoiding or ignoring this feature in real-time systems, due to its unpredictable behav-
ior, results in a very pessimistic WCET value. Plenty of effort has gone into research
into integrating the instruction cache in the timing analysis of tasks [4, 38, 58] and
the influence of the cache on task preemption [57, 11]. The influence of different
cache architectures on WCET analysis is described in [39].

We will tackle this problem from the architectural side - an instruction cache orga-
nization in which simpler and more accurate WCET analysis is more important than
average case performance.

In this section, we will propose a method cache with a novel replacement policy.
In Java bytecode only relative branches exist, and a method is therefore only left

104 5 JOP ARCHITECTURE

when a return instruction has been executed6. It has been observed that methods are
typically short (see Section 5.1.2) in Java applications. These properties are utilized
by a cache architecture that stores complete methods. A complete method is loaded
into the cache on both invocation and return. This cache fill strategy lumps all cache
misses together and is very simple to analyze.

5.8.1 Cache Performance

In real-time systems we prefer time-predictable architectures over those with a high
average performance. However, performance is still important. In this section, we
will give a short overview of the formulas from [40] that are used to calculate the
cache's influence on execution time. We will extend the single measurement miss rate
to a two value set, memory read and transaction rate, that is architecture independent
and better reflects the two properties (bandwidth and latency) of the main memory.
To evaluate cache performance, MEMdk memory stall cycles are added to the CPU
execution time (texe) equation:

W = (CPUcik + MEMdk) x tcik

MEMcik = Misses x MPdk

The miss penalty MPdk is the cost per miss, measured in clock cycles. When the
instruction count IC is given as the number of instructions executed, CPI the average
clock cycles per instruction and the number of misses per instruction, we obtain the
following result:

CPUdk=ICxCPI
exe

Admisses
=ICx x MPdkInstruction

blisses
tm = / C x {CPIm + — — x MPdk) x tdkInstruction

As this section is only concerned with the instruction cache, we will split the memory
stall cycles into misses caused by the instruction fetch and misses caused by data
access.

CPI = CPIexe + CPI, M + CPIDM

is the average number of clock cycles per instruction, given an ideal memory
system without any stalls. CPIJM are the additional clock cycles caused by instruc-
tion cache misses and CPIOM the data miss portion of the CPI. This split between

An uncaught exception also results in a method exit.

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 105

instruction and data portions of the CPI better reflects the split of the cache between
instruction and data cache found in actual processors. The misses per instruction are
often given as misses per 1000 instructions. However, there are several drawbacks to
using a single number:

Architecture dependent: The average number of memory accesses per instruction
differs greatly between a RISC processor and the Java Virtual Machine (JVM).
A typical RISC processor needs one memory word (4 bytes) per instruction
word, and about 40% of the instructions [40] are load or store instructions.
Using the example of a 32-bit RISC processor, this results in 5.6 bytes memory
access per instruction. The average length of a JVM bytecode instruction is 1.7
bytes and about 18% of the instructions access the memory for data load and
store.

Block size dependent: Misses per instruction depends subtly on the block size. On
a single cache miss, a whole block of the cache is filled. Therefore, the proba-
bility that a future instruction request is a hit is higher with a larger block size.
However, a larger block size results in a higher miss penalty as more memory
is transferred.

Main memory is usually composed of DRAMs. Access time to this memory is mea-
sured in terms of latency (the time taken to access the first word of a larger block)
and bandwidth (the number of bytes read or written in a single request per time unit).
These two values, along with the block size of a cache, are used to calculate the miss
penalty:

Block size
MPctk = Latency + -—

Bandwidth

To better evaluate different cache organizations and different instruction sets (RISC
versus JVM), we will introduce two performance measurements - memory bytes read
per instruction byte and memory transactions per instruction byte:

Memory bytes read
MB IB =

MTIB =

Instruction bytes
Memory transactions

Instruction bytes

These two measures are closely related to memory bandwidth and latency. With
these two values and the properties of the main memory, we can calculate the average
memory cycles per instruction byte MCIB and CPIJM, i.e. the values we are concerned

106 5 JOP ARCHITECTURE

in this section.

MCIB = (n
MB!B , + MTIB x Latency)xBandwith '

CPIJM = MCIB x Instruction length

The misses per instruction can be converted to MBIB and MTIB when the following
parameters are known: the average instruction length of the architecture, the block
size of the cache and the miss penalty in latency and bandwidth. We will examine
this further in the following example:

We use the following architecture to illustrate the conversion: a RISC architecture
with a 4 bytes instruction length, an 8KB instruction cache with 64-byte blocks and
a miss rate of 8.16 per 1000 instructions [40]. The miss penalty is 100 clock cycles.
The memory system is assumed to deliver one word (4 bytes) per cycle.

Firstly, we need to calculate the latency of the memory system.

Blocksize
Latency — MPcik —

Bandwidth
64

= 100 —— = 84 clock cycles

With Miss rate = ^™* we obtain MBIB.

Memory bytes read
MBIB =

Instruction bytes
Cache miss x Block size

Cache access x Instruction length
Block size= Miss rate x

= 0.131

Instruction length

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 107

MTIB is calculated in a similar way:

Memory transactions
MTIB =

Instruction bytes
Cache miss

Cache access x Instruction length
Miss rate

Instruction length
_ 8.16 x 1(T3

_ _

= 2.04 x 1(T3

For a quick check, we can calculate

MBIB
MCIB = h MTIB x Latency

Bandwith

+ 2 . 0 4 x l (r x 8 4
4

= 0.204

CPIJM = MCIB x Instruction length

= 0.204 x 4

= 0.816

This is the same value as that which we get from using the miss rate with the miss
penalty:

CPI/M = Miss rate x Miss penalty

= 8.16 x lO~ 3 x 100

= 0.816

However, MBIB and MTIB are architecture independent and better reflect the latency
and bandwidth of the main memory.

5.8.2 Proposed Cache Solution

In this section, we will develop a solution for a predictable cache. Typical Java pro-
grams consist of short methods. There are no branches out of the method and all
branches inside are relative. In the proposed architecture, the full code of a method is
loaded into the cache before execution. The cache is filled on invocations and returns.
This means that all cache fills are lumped together with a known execution time. The

108 5 JOP ARCHITECTURE

full loaded method and relative addressing inside a method also result in a simpler
cache. Tag memory and address translation are not necessary.

However, we will first discuss an even simpler solution - no caching at all. With-
out an instruction cache, prefetching is mandatory, especially with a variable length
instruction set. The issues surrounding prefetching are discussed in the next section.

Instruction Prefetching

A simple prefetch queue, as found in older processors, can increase instruction
throughput after a multi-cycle bytecode is executed. However, for a stream of single-
cycle bytecodes, prefetching is useless and the frequent occurrence of branches,
method invocations, and method returns (see Section 5.1) reduces the performance
gain. Using a prefetch queue also results in execution time dependencies over a
stream of instructions, which complicates timing analysis.

For a variable length instruction set, prefetching is also not a straightforward op-
tion. The prefetching unit needs to guarantee the availability of a complete instruction
for the fetch unit. As the actual length of the instruction is not known at this stage, the
prefetch unit must be a minimum of maximum length — 1 bytes ahead of the requested
instruction. This can lead to unnecessary memory transfers. The return instruction is
a typical example of this. It is 1 byte long and the additional prefetched instruction
bytes are never used.

A memory interface with a bus width greater than one byte adds an artificial bound-
ary to the instruction stream. For the purpose of this example, we are assuming a 4
byte memory interface, hi this case we need an 8 byte prefetch buffer. On a branch
to an address address mod 4 > 4 — maximum instruction length, two words need to
be loaded from main memory before the processor can continue.

A memory technology, such as synchronous DRAM, has a large latency for the
first accessed word and then a high bandwidth for the following words. Prefetching
that only loads small quantities (one or two words) from the memory is therefore
impracticable with these memory technologies.

Single Method Cache

A single method cache, although less efficient than a conventional instruction cache,
can be incorporated very easily into the WCET analysis. The time needed for the
memory transfer must be added to the invoke and return instructions.

The method cache also simplifies the hardware of the cache, as it means that no
tag memory or address translation is necessary. Other parts of the processor are also
smaller. The program counter, the associated adders and multiplexer are shorter than

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE H)9

in a standard cache solution. For example, for a 1KB cache, the size of these units is
only 10 bits, instead of 32 bits.

The main disadvantage of this single method cache is the high overhead when a
complete method is loaded into the cache and only a small fraction of the code is
executed. This issue is similar to that encountered with unused data in a cache line.
However, in extreme cases, this overhead can be very high. The second problem can
be seen in following example:

foo() {

This code sequence results in the following cache loads:

1. method foo is loaded on invocation of foo()

2. method a is loaded on invocation of a()

3. method foo is loaded on return from a()

4. method b is loaded on invocation of b()

5. method foo is loaded on return from b()

The main drawback of the single method cache is the multiple cache fill of foo()
on return from methods a() and b() . In a conventional cache design, if these three
methods fit in the cache memory at the same time and there is no placement conflict,
each method is only loaded once. This issue can be overcome by caching more than
one method. The simplest solution is a two-block cache.

Two-Block Cache

The two-block cache can hold up to two methods in the cache. This results in having
to decide which block is replaced on a cache miss. With only two blocks, Least-
Recently Used (LRU) is trivial to implement. The code sequence now results in the
cache loads and hits as shown in Table 5.14. With the two-block cache, we have to
double the cache memory or use both blocks for a single large method. The WCET
analysis is slightly more complex than with a single block. A short history of the
invocation sequence has to be used to find the cache fills and hits.

However, a cache that can only hold two methods is still very restrictive. The next
code sequence shows the conflict. Table 5.15 shows the resulting cache loads.

110 5 JOP ARCHITECTURE

Instruction

fooO
a()
return
b()
return

Block 1

foo
foo
foo
foo
foo

Block 2

—
a
a
b
b

Cache

load
load
hit
load
hit

Table 5.14: Cache load and hit example with the two-block cache

foo()

Instruction

fooO
a()
b()
return
return

Block 1

foo
foo
b
b
foo

Block 2

—
a
a
a
a

Cache

load
load
load
hit
load

Table 5.15: Cache conflict example with the two-block cache

A memory (similar to the tag memory) with one word per block is used to store a
reference to the cached method. However, this memory can be slower than the tag
memory as it is only accessed on invocation or return, rather than on every cache
access.

More Blocks

We can improve the hit rate by adding more blocks to the cache. If only one block per
method is used, the cache size increases with the number of blocks. With more than
two blocks, LRU replacement policy means that another word is needed for every
block containing a use counter that is updated on every invoke and return. During
replacement, this list is searched for the LRU block. Hit detection involves a search
through the list of the method references of the blocks. If this search is done in

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 111

aO {
for (; ;) {

Listing 5.8: Code fragment for the replacement example

microcode, it imposes a limit on the maximum number of blocks.

Variable Block Cache

Several cache blocks, all of the size as the largest method, are a waste of cache mem-
ory. Using smaller block sizes and allowing a method to span over several blocks, the
blocks become very similar to cache lines. The main difference from a conventional
cache is that the blocks for a method are all loaded at once and need to be consecutive.

Choosing the block size is now a major design decision. Smaller block sizes allow
better memory usage, but the search time for a hit also increases.

With varying block numbers per method, an LRU replacement becomes impracti-
cal. When the method found to be LRU is smaller than the loaded method, this new
method invalidates two cached methods.

For the replacement, we will use a pointer next that indicates the start of the blocks
to be replaced on a cache miss. Two practical replace policies are:

Next block: At the very first beginning, next points to the first block. When a method
of length / is loaded into the block n, next is updated to (n+l) mod block count.

Stack oriented: next is updated in the same way as before on a method load. It is
also updated on a method return - independent of a resulting hit or miss - to
point to the first block of the leaving method.

We will show the operation of these different replacement policies in an example
with three methods: a(), b() and c() of block sizes 2, 2 and 1. The cache consists of 4
blocks and is therefore too small to hold all the methods during the execution of the
code fragment shown in Listing 5.8. Tables 5.16 and 5.17 show the cache content
during program execution for both replacement policies. The content of the cache
blocks is shown after the execution of the invoke or return instruction. An uppercase
letter indicates that this block has been newly loaded. A right arrow depicts the block

112 5 JOP ARCHITECTURE

Block 1
Block 2
Block 3
Block 4

Fill

Block 1
Block 2
Block 3
Block 4

Fill

a()

A

A

— > -

-

2

a()

A

A

- > -

-

2

b()

—>a

a
B

B

4

ret i

—>a

.a
b
b

Table 5.16:

b()

^ a
a
B

B

4

re t (

a
a

->b
b

: ()

C

- » -

b

b

5

Next

= 0

a
a
C

- » -

5

r e t

c
A

A

- > -

7

block

r e t

a
a

->c
-

b()

B

-»a
a
B

9

r e t

b

—>a

a
b

c{)

b

C
- » -

b

11

replacement policy

b{)

^ a
a
B

B

7

r e t

a
a

-»b
b

c()

a
a
C

- > -

8

r e t

_>-

c
A

A

13

r e t

a
a

- • c

-

b()

B

B

—>a

a

15

b()

^ a
a
B

B

10

r e t

b

b
-»a

a

r e t

a
a

->b
b

Table 5.17: Stack oriented replacement policy

to be replaced on a cache miss (the next pointer). The last row shows the number of
blocks that are filled during the execution of the program.

In this example, the stack oriented approach needs fewer fills, as only methods b()
and c() are exchanged and method a() stays in the cache. However, if, for example,
method b() is the size of one block, all methods can be held in the cache using the
the next block policy, but b() and c() would be still exchanged using the stack policy.
Therefore, the first approach is used in the proposed cache.

5.8.3 WCET Analysis

The proposed instruction cache is designed to simplify WCET analysis. Due to the
fact that all cache misses are only included in two instructions {invoke and return), the
instruction cache can be ignored on all other instructions. The time needed to load a
complete method is calculated using the memory properties (latency and bandwidth)
and the length of the method. On an invoke, the length of the invoked method is used,
and on a return, the method length of the caller is used to calculate the load time.

With a single method cache this calculation can be further simplified. For every
invoke there is a corresponding return. That means that the time needed for the cache
load on return can be included in the time for the invoke instruction. This is simpler

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 113

because both methods, the caller and the callee, are known at the occurrence of the
invoke instruction. The information about which method was the caller need not be
stored for the return instruction to be analyzed.

With more than one method in the cache, a cache hit detection has to be performed
as part of the WCET analysis. If there are only two blocks, this is trivial, as (i) a hit
on invoke is only possible if the method is the same as the last invoked (e.g. a single
method in a loop) and (ii) a hit on return is only possible when the method is a leaf
in the call tree. In the latter case, it is always a hit.

When the cache contains more blocks (i.e. more than two methods can be cached),
a part of the call tree has to be taken into account for hit detection. The variable
block cache further complicates the analysis, as the method length also determines
the cache content. However, this analysis is still simpler than a cache modeling of a
direct-mapped instruction cache, as cache block replacement depends on the call tree
instead of instruction addresses.

In traditional caches, data access and instruction cache fill requests can compete
for the main memory bus. For example, a load or store at the end of the processor
pipeline competes with an instruction fetch that results in a cache miss. One of the
two instructions is stalled for additional cycles by the other instruction. With a data
cache, this situation can be even worse. The worst-case scenario for the memory
stall time for an instruction fetch or a data load is two miss penalties when both
cache reads are a miss. This unpredictable behavior leads to very pessimistic WCET
bounds.

A method cache, with cache fills only on invoke and return, does not interfere with
data access to the main memory. Data in the main memory is accessed with getfteld
and putfield, instructions that never overlap with invoke and return. This property
removes another uncertainty found in traditional cache designs.

5.8.4 Caches Compared

In this section, we will compare the different cache architectures in a quantitative way.
Although our primary concern is predictability, performance remains important. We
will therefore first present the results from a conventional direct-mapped instruction
cache. These measurements will then provide a baseline for the evaluation of the
proposed architecture.

Cache performance varies with different application domains. As the proposed
system is intended for real-time applications, the benchmark for these tests should
reflect this fact. However, there are no standard benchmarks available for embed-
ded real-time systems. A real-time application was therefore adapted to create this
benchmark. The application is from one node of a distributed motor control system

114 5 JOP ARCHITECTURE

Cache size

1KB
1KB
1KB
2KB
2KB
2KB
4KB
4KB
4KB

Block size

8
16
32

8
16
32
8

16
32

MBIB

0.28
0.38
0.58
0.17
0.25
0.41
0.00
0.01
0.01

MTIB

0.035
0.024
0.018
0.022
0.015
0.013
0.001
0.000
0.000

Table 5.18: Direct-mapped cache

[83] (see also Section 7.5.1). A simulation of the environment (sensors and actors)
and the communication system (commands from the master station) forms part of the
benchmark for simulating the real-world workload.

The data for all measurements was captured using a simulation of JOP and running
the application for 500,000 clock cycles. During this time, the major loop of the
application was executed several hundred times, effectively rendering any misses
during the initialization code irrelevant to the measurements.

Direct-Mapped Cache

Table 5.18 gives the memory bytes and memory transactions per instruction byte for
a standard direct-mapped cache. As we can see from the values for a cache size of
4KB, the kernel of the application is small enough to fit completely into the 4KB
cache. The cache performs better (i.e. fewer bytes are transferred) with smaller block
sizes. With smaller block sizes, the chance of unused data being read is reduced and
the larger number of blocks reduces conflict misses. However, reducing the block
size also increases memory transactions (MTIB), which directly relates to memory
latency.

Which configuration performs best depends on the relationship between memory
bandwidth and memory latency. Examples of average memory access times in cycles
per instruction byte for different memory technologies are provided in Table 5.19.
The third column shows the cache performance for a Static RAM (SRAM) that is
very common in embedded systems. A latency of 1 clock cycle and an access time of
2 clock cycles per 32-bit word are assumed. For the synchronous DRAM (SDRAM)
in the forth column, a latency of 5 cycles (3 cycle for the row address and 2 cycle

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 115

Cache size

1KB
1KB
1KB
2KB
2KB
2KB

Block size

8
16
32

8
16
32

SRAM

0.18
0.22
0.31
0.11
0.14
0.22

SDRAM

0.25
0.22
0.24
0.15
0.14
0.17

DDR

0.19
0.16
0.15
0.12
0.10
0.11

Table 5.19: Direct-mapped cache, average memory access time

CAS latency) is assumed. The memory delivers one word (4 bytes) per cycle. The
Double Data Rate (DDR) SDRAM in the last column has an enhanced latency of 4.5
cycles and transfers data on both the rising and falling edge of the clock signal.

The data in bold give the best block size for different memory technologies. As
expected, memories with a higher latency and bandwidth perform better with larger
block sizes. For small block sizes, the latency clearly dominates the access time.
Although the SRAM has half the bandwidth of the SDRAM and a quarter of the
DDR, with a block size of 8 bytes, it is faster than the DRAM memories. In most
cases a block size of 16 bytes is the fastest solution and we will therefore use this
configuration for comparison with the following cache solutions.

Fixed Block Cache

Cache performance for single method per block architectures is shown in Table 5.20.
The measurements for a simple 8 byte prefetch queue are also given, for reference.
With prefetching, we would expect to see an MB IB of about 1. The 37% overhead
results from the fact that the prefetch queue fetches 4 bytes a time and has to buffer a
minimum of 3 bytes for the instruction fetch stage. On a branch or return, the queue
is flushed and these bytes are lost.

A single block that has to be filled on every invoke and return requires considerable
overheads. More than twice the amount of data is read from the main memory than
is consumed by the processor. However, the memory transaction count is 16 times
lower than with simple prefetching, which can compensate for the large MBIB for
main memories with high latency.

The solution with two blocks for two methods performs almost twice as well as
the simple one method cache. This is due to the fact that, for all leaves in the call
tree, the caller method can be found on return. If the block count is doubled again,
the number of misses is reduced by a further 25%, but the cache size also doubles.

116 5 JOP ARCHITECTURE

Type Cache size MBIB MTIB

Prefetch
Single method
Two blocks
Four blocks

8B
1 KB
2KB
4KB

1
2
1
0

.37

.32

.21

.90

0.342
0.021
0.013
0.010

Table 5.20: Fixed block cache

Type Cache size SRAM SDRAM DDR

Prefetch
Single Method
Two blocks
Four blocks

8B
1 KB
2KB
4KB

1.02
1.18
0.62
0.46

2.05
0.69
0.37
0.27

1.71
0.39
0.21
0.16

Table 5.21 : Fixed block cache, average memory access time

For this measurement, an LRU replacement policy applies for the two and four block
caches.

The same memory parameters as in the previous section are also used in Table 5.21.
With the high latency of the DRAMs, even the simple one block cache is a faster (and
more accurately predictable) solution than a prefetch queue. As MBIB and MTBI
show the same trend as a function of the number of blocks, this is reflected in the
access time in all three memory examples.

Variable Block Cache

Table 5.22 shows the cache performance of the proposed solution, i.e. of a method
cache with several blocks per method, for different cache sizes and number of blocks.
For this measurement, a next block replacement policy applies.

In this scenario, as the MBIB is very high at a cache size of 1KB and almost
independent of the block count, the cache capacity is seen to be clearly dominant.
The most interesting cache size with this benchmark is 2KB. Here, we can see the
influence of the number of blocks on both performance parameters. Both values
benefit from more blocks. However, a higher block count requires more time or more
hardware for the hit detection. With a cache size of 4KB and enough blocks, the
kernel of the application completely fits into the variable block cache, as we have
seen with a 4KB traditional cache. From the gap between 16 and 32 blocks (within
the 4KB cache), we can say that the application consists of fewer than 32 different

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 117

Cache size

1KB
1 KB
1 KB
1 KB
2KB
2KB
2KB
2KB
4KB
4KB
4KB
4KB

Block count

8
16
32
64
8

16
32
64

8
16
32
64

MBIB

0.80
0.71
0.70
0.70
0.73
0.37
0.24
0.12
0.73
0.25
0.01
0.00

MTIB

0.009
0.008
0.008
0.008
0.008
0.004
0.003
0.001
0.008
0.003
0.000
0.000

Table 5.22: Variable block cache

methods.
It can be seen that even the smallest configuration with a cache size of 1KB and

only 8 blocks outperforms fixed block caches with 2 or 4KB in both parameters
(MBIB and MTIB). Compared with the fixed block solutions, MTIB is low in all
configurations. This is due to the better hit rate, as indicated by the lower MBIB.

In most configurations, MBIB is higher than for the direct-mapped cache. It is
very interesting to note that, in all configurations (even the small 1KB cache), MTIB
is lower than in all 1KB and 2KB configurations of the direct-mapped cache. This
is a result of the complete method transfers when a miss occurs and is clearly an
advantage for main memory systems with high latency.

As in the previous examples, Table 5.23 shows the average memory access time
per instruction byte for three different main memories.

In the DRAM configurations, the variable block cache directly benefits from the
low MTBI. When comparing the values between SDRAM and DDR, we can see that
the bandwidth affects the memory access time in a way that is approximately linear.
The high latency of these memories is completely hidden. The configuration with
16 or more blocks and dynamic RAMs outperforms the direct-mapped cache of the
same size. As expected, a memory with low latency (the SRAM in this example)
depends on the MBIB values. The variable block cache is slower than the direct-
mapped cache in the 1KB configuration because of the higher MBIB (0.7 compared
to 0.3-0.6), and performs very similarly at a cache size of 2KB.

In Table 5.24, the different cache solutions with a size of 2KB are summarized.

118 5 JOP ARCHITECTURE

Cache size Block count SRAM SDRAM DDR

1KB
1KB
1KB
1KB
2KB
2KB
2KB

8
16
32
64

8
16
32

0.41
0.36
0.36
0.36
0.37
0.19
0.12

0.24
0.22
0.21
0.21
0.22
0.11
0.08

0.14
0.12
0.12
0.12
0.13
0.06
0.04

2KB 64 0.06 0.04 0.02

Table 5.23: Variable block cache, average memory access time

Cache type MBIB MTIB

Single method
Two blocks
Variable block (16)
Variable block (32)
Direct-mapped

2.32
1.21
0.37
0.24
0.25

0.021
0.013
0.004
0.003
0.015

Table 5.24: Caches compared

The detail results of all caches can be found in Appendix E. All full method caches
with two or more blocks have a lower MTIB than a conventional cache solution. This
becomes more significant with increasing latency in main memories. The MBIB
value is only quite high for one or two methods in the cache. However, the most
surprising result is that the variable block cache with 32 blocks outperforms a direct-
mapped cache of the same size at both values.

We can see that predictability is indirectly related to performance - a trend we had
anticipated. The most predictable solution with a single method cache performs very
poorly compared to a conventional direct-mapped cache. If we accept a slightly more
complex WCET analysis (taking a small part of the call tree into account), we can
use the two-block cache that is about two times better.

With the variable block cache, it could be argued that the WCET analysis be-
comes too complex, but it is nevertheless simpler than that with the direct-mapped
cache. However, every hit in the two-block cache will also be a hit in a variable block
cache (of the same size). A tradeoff might be to analyze the program by assuming
a two-block cache but using a version of the variable block cache. The additional
performance gain can than be used by non- or soft real-time parts of an application.

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 119

5.8.5 Summary

In this section, we have extended the single cache performance measurement miss
rate to a two value set, memory read and transaction rate, in order to perform a
more detailed evaluation of different cache architectures. From the properties of
the Java language - usually small methods and relative branches - we derived the
novel idea of a method cache, i.e. a cache organization in which whole methods are
loaded into the cache on method invocation and the return from a method. This cache
organization is time-predictable, as all cache misses are lumped together in these
two instructions. Using only one block for a single method introduces considerable
overheads in comparison with a conventional cache, but is very simple to analyze.
We extended this cache to hold more methods, with one block per method and several
smaller blocks per method.

Comparing these organizations quantitatively with a benchmark derived from a
real-time application, we have seen that the variable block cache performs similarly
to (and in one configuration even better than) a direct-mapped cache, in respect of
the bytes that have to be filled on a cache miss. In all configurations and sizes of the
variable block cache, the number of memory transactions, which relates to memory
latency, is lower than in a traditional cache.

Only filling the cache on method invocation and return simplifies WCET analysis
and removes another source of uncertainty, as there is no competition for the main
memory access between instruction cache and data cache.

6 JOP Runtime System

A Java processor alone is not a complete JVM. This chapter describes the definition
of a real-time profile for Java and a framework for a user-defined scheduler in Java. It
concludes with the description of the JVM internal data structures to represent classes
and objects.

6.1 A Real-Time Profile for Embedded Java

As standard Java is under-specified for real-time systems and the RTSJ does not fit
for small embedded systems a new and simpler real-time profile is defined in this
section and implemented on JOP. The guidelines of the specification are:

• High-integrity profile

• Easy syntax, simplicity

• Easy to implement

• Low runtime overhead

• No syntactic extension of Java

• Minimum change of Java semantics

• Support for time measurement if a WCET analysis tool is not available

• Known overheads (documentation of runtime behavior and memory require-
ments of every JVM operation and all methods have to be provided)

The real-time profile under discussion is inspired by the restricted versions of the
RTSJ described in [79] and [56] (see Section 4.4.5). It is intended for high-integrity
real-time applications and as a test case to evaluate the architecture of JOP as a Java
processor for real-time systems.

The proposed definition is not compatible with the RTSJ. Since the application
domain for the RTSJ is different from high-integrity systems, it makes sense for it not
to be compatible with the RTSJ. Restrictions can be enforced by defining new classes

122 6 JOP RUNTIME SYSTEM

(e.g. setting thread priority in the constructor of a real-time thread alone, enforcing
minimum interarrivai times for sporadic events).

All hardware interrupts are represented by threads under the control of the sched-
uler. With this solution, a priority is assigned to the device drivers and the execu-
tion time can be incorporated in the schedulability analysis with normal tasks. This
solution also avoids problems with preemption latency provoked by device drivers.
One example of this problem is the caps-lock issue in Linux [59]: A device driver
performs a spinlock wait for keyboard acknowledgement and produces preemption
latency up to 9166/zs. With the proposed concept of hardware interrupts under sched-
uler control, a lower assigned priority to such a device driver avoids preemption de-
lays of more important real-time threads and events.

To verify that this specification is expressive enough for high-integrity real-time
applications, Ravenscar-Java (RJ) [56] (see Section 4.4.5), with the additional neces-
sary RTS J classes, has been implemented on top of it. However, RJ inherits some of
the complexity of the RTSJ. Therefore, the implementation of RJ has a larger memory
and runtime overhead than this simple specification.

6.1.1 Application Structure

The application is divided in two different phases: initialization and mission. All non
time-critical initialization, global object allocations, thread creation and startup are
performed in the initialization phase. All classes need to be loaded and initialized in
this phase. The mission phase starts after invocation of startMi ss i on () . The num-
ber of threads is fixed and the assigned priorities remain unchanged. The following
restrictions apply to the application:

• Initialization and mission phase

• Fixed number of threads

• Threads are created at initialization phase

• All shared objects are allocated at initialization

6.1.2 Threads

Concurrency is expressed with two types of schedulable objects:

Periodic activities are represented by threads that execute in an infinite loop invok-
ing wai tForNextPeri od() to get rescheduled in predefined time intervals.

6.1 A REAL-TIME PROFILE FOR EMBEDDED JAVA 123

Asynchronous sporadic activities are represented by event handlers. Each event
handler is in fact a thread, which is released by an hardware interrupt or a
software generated event (invocation of fi re ()) . Minimum interarrivai time
has to be specified on creation of the event handler.

The classes that implement the schedulable objects are:

RtThread represents a periodic task. As usual task work is coded in run() , which
gets invoked on mi ssi onS ta r t () . A scoped memory object can be attached
to an RtThread at creation.

HwEvent represents an interrupt with a minimum interarrivai time. If the hardware
generates more interrupts, they get lost.

SwEvent represents a software-generated event. It is triggered by f i re () and needs
to override hand1e().

Listing 6.1 shows the definition of the basic classes.
Listing 6.2 shows the principle coding of a worker thread. An example for creation

of two real-time threads and an event handler can be seen in Listing 6.3.

6.1.3 Scheduling

The scheduler is a preemptive, priority-based scheduler with unlimited priority levels
and a unique priority value for each schedulable object. No real-time threads or
events are scheduled during the initialization phase.

The design decision to use unique priority levels, instead of FIFO within priorities,
is based on following facts: Two common ways to assign priorities are rate monotonie
and, in a more general form, deadline monotonie assignment. When two tasks are
given the same priority, we can choose one of them and assign a higher priority to
that task and the task set will still be schedulable. This results in a strictly monotonie
priority order and we do not need to deal with FIFO order. This eliminates queues
for each priority level and results in a single, priority ordered task list with unlimited
priority levels.

Synchronized blocks are executed with priority ceiling emulation protocol. An
object, used for synchronization, for which the priority is not set, top priority is as-
sumed. This avoids priority inversions on objects that are not accessible from the
application (e.g. objects inside a library).

In addition, the scheduler contains methods for worst-case time measurement for
both the periodic work and handler methods. These measured execution times can be
used during development when no WCET analysis tool is available.

124 6 JOP RUNTIME SYSTEM

public class RtThread {

public RtThread(int pr ior i ty , int period)
public RtThread(int pr ior i ty , in t period, in t offset)
public RtThread(int pr ior i ty , in t period, Memory mem)
public RtThread(int pr ior i ty , in t period, in t offset,

Memory mem)

public void enterMemoryO
public void exitMemoryO

public void run()
public boolean waitForNextPeriodO

public stat ic void startMission()

public class HwEvent extends RtThread {

public HwEvent(int pr ior i ty , in t minTime, in t number)
public HwEvent(int pr ior i ty , int minTime, Memory mem,

int number)

public void handleO

public class SwEvent extends RtThread {

public SwEvent(int pr ior i ty, in t minTime)
public SwEvent(int pr ior i ty , in t minTime, Memory mem)

public f inal void f ire()
public void handieQ

Listing 6.1: Schedulable objects

6.1 A R E A L - T I M E PROFILE FOR E M B E D D E D JAVA 12_5

6.1.4 Memory

The profile does not support a garbage collector. All memory should be allocated
at the initialization phase. Without a garbage collector, the heap implicitly becomes
immortal memory (as defined by the RTSJ). For objects created during the mission
phase, a scoped memory is provided. Each scoped memory area is assigned to one
RtTh read. A scoped memory area cannot be shared between threads. No references
are allowed from the heap to scoped memory. Scoped memory is explicitly entered
and left using invocations from the application logic. Memory areas are cleared both
on creation and when leaving the scope (invocation of exi tMemory ()), leading to a
memory area with constant allocation time, as opposed to memory with linear allo-
cation time (as the memory type LTMemory in the RTSJ) [21].

6.1.5 Restriction of Java

A list of some of the language features that should be avoided for WCET analyzable
real-time threads and bound memory usage:

WCET: Only analyzable language constructs are allowed (see [78]).

Static class initialization: Since the definition when to call the static class initializer
is problematic (see Section 4.2), they are disallowed. Move this code to a static
method (e.g. i ni t ()) and invoke it explicit in the initialization phase.

Inheritance: Reduce usage of interfaces and overridden methods.

String concatenation: In immortal memory scope only string concatenation with
string literals is allowed.

Finalization: f i n a l i z e () has a weak definition in Java. Because real-time
systems run forever, objects in the heap, which is immortal in this specifi-
cation, will never be finalized. Objects in scoped memory are released on
exitMemory(). However, finalizations on these objects complicate WCET
analysis of exi tMemory () .

Dynamic Class Loading: Due to the implementation and WCET analysis complex-
ity dynamic class loading is avoided.

A program analysis tool can greatly help in enforcing these restrictions.

126 6 JOP RUNTIME SYSTEM

public class Worker extends RtThread {

private SwEvent event;

public Worker(int p, int t,
SwEvent ev) {

super(p, t,
// create a scoped memory area
new Memory(10000)

);
event = ev;
irntO;

private void init() {
// all initialzation stuff
// has to be placed here

public void run() {

for (;;) {
work(); // do some work
event.fire(); // and fire an event

// some work in scoped memory
enterMemoryO ;
workWithMemO ;
exi tMemoryO ;

// wait for next period
if OwaitForNextPeriodO) {

missedDeadiineO ;

// should never reach this point

Listing 6.2: A periodic real-time thread

6.1 A REAL-TIME PROFILE FOR E M B E D D E D JAVA 127

// create an Event
Handler h = new Hand1er(3, 1000);

// create two worker threads with
// priorities according to their periods
FastWorker fw = new FastWorker(2, 2000);
Worker w = new Worker(l, 10000, h);

// change to mission phase for all
// periodic threads and event handler
RtThread.startMi ssion();

// do some non real—time work
// and invoke sleepQ or yieldO
for (;;) {

watchdogBlink();
Thread.sleep(500);

}
Listing 6.3: Start of the application

128 6 JOP RUNTIME SYSTEM

6.1.6 Implementation Results

The initial idea was to implement scheduling and dispatching in microcode. How-
ever, many Java bytecodes have a one to one mapping to a microcode instruction,
resulting in a single cycle execution. The performance gain of an algorithm coded in
microcode is therefore negligible. As a result, almost all of the scheduling is imple-
mented in Java. Only a small part of the dispatcher, a memory copy, is implemented
in microcode and exposed with a special bytecode.

Experimental results of basic scheduling benchmarks, such as periodic thread jit-
ter, context switch time for threads and asynchronous events, can be found in Sec-
tion 7.3.2.

To implement system functions, such as scheduling, in Java, access to JVM and
processor internal data structures have to be available. However, Java does not al-
low memory access or access to hardware devices. In JOP, this access is provided
by way of additional bytecodes. In the Java environment, these bytecodes are repre-
sented as static native methods. The compiled invoke instruction for these methods
(i nvokestat i c) is replaced by these additional bytecodes in the class file. This so-
lution provides a very efficient way to incorporate low-level functions into a pure Java
system. The translation can be performed during class loading to avoid non-standard
class files.

A pure Java system, without an underlying RTOS, is an unusual system with some
interesting new properties. Java is a safer execution environment than C (e.g. no
pointers) and the boundary between kernel and user space can become quite loose.
Scheduling, usually part of the operating system or the JVM, is implemented in Java
and executed in the same context as the application. This property provides an easy
path to a framework for user-defined scheduling.

6.2 User-Defined Scheduler

The novel approach to implement a real-time scheduler in Java opens up new pos-
sibilities. An obvious next step is to extend this system to provide a framework for
user-defined scheduling in Java. New applications, such as multimedia streaming,
result in soft real-time systems that need a more flexible scheduler than the tradi-
tional fixed priority based ones. This section provides a simple-to-use framework to
evaluate new scheduling concepts for these applications in real-time Java.

The following section analyzes which events are exposed to the scheduler and
which functions from the JVM need to be available in the user space. It is followed
by the definition of the framework and examples of how to implement a scheduler
using this framework.

6.2 USER-DEFINED SCHEDULER 129

6.2.1 Schedule Events

The most important element of the user-defined scheduler is to define which events
result in the scheduling of a new task. When such an event occurs, the user-defined
scheduler is invoked. It can update its task list and decide which task is dispatched.

Timer interrupt: For timed scheduling decisions, a programmable timer generates
exact timed interrupts. The scheduler controls the time interval for the next
interrupt.

HW interrupt: Each hardware-generated interrupt can be associated with an asyn-
chronous event. This allows the execution of a device driver under the control
of the scheduler. Latencies of the device driver can be controlled by assigning
the right priority in a priority scheduler.

Monitor: To allow different implementations of priority inversion protocols, hooks
for moni t o r e n t e r and moni torexi t are provided.

Thread block: Each thread can cease execution via a call of the scheduler. This
function is used to implement methods such as waitForNextPeriodO or
si eepO. The reason for blocking (e.g. end of periodic work) has to be com-
municated to the scheduler (e.g. next time to be unblocked for a periodic task).

SW event: Invoking fi r e () on an event provides support for signaling. wa i t () ,
no t i f yO or notifyAll () are not necessary. However, this mechanism is
not part of the scheduling framework. It can be implemented with the user-
defined scheduler and an associated thread class.

6.2.2 Data Structures

To implement a scheduler in Java, some JVM internal data structures need to be
accessible.

Object: In Java, any object (including an object from the class Cl ass for static meth-
ods) can be used for synchronization. Different priority inversion protocols
require different data structures to be associated with an object. Each object
provides a field, accessed through a Scheduler method, in which these data
structures can be attached.

Thread: A list of all threads is provided to the scheduler. The scheduler is also noti-
fied when a new thread object is created or a thread terminates. The scheduler
controls the start of threads.

130 6 JOP RUNTIME SYSTEM

6.2.3 Services for the Scheduler

The real-time JVM and the hardware platform have to provide some minimum ser-
vices. These services are exposed through Schedul er:

Dispatch: The current active thread is interrupted and a new thread is placed in the
run state.

Time: System time with high resolution (microseconds, if the hardware can provide
it) is used for time derived scheduling decisions.

Timer: A programmable timer interrupt (not a timer tick) is necessary for accurate
time triggered scheduling.

Interrupts: To protect the data structures of the scheduler all interrupts can be dis-
abled and enabled.

6.2.4 Class Scheduler

The class Schedul er has to be extended to implement a user-defined scheduler. The
class Task represents schedulable objects. For non-trivial scheduling algorithms,
Task is also extended. The scheduler lives in normal thread space. There is no
special context such as kernel space. The methods of Schedul er are categorized by
the caller module and described in detail below.

Application To use a scheduler in an application, the application only has to create
one instance of the scheduler class and has to decide when scheduling starts.

public Scheduler()

A single instance of the scheduler is created by the application.

public void start()

This method initiates the transition to the mission phase of the application. All cre-
ated tasks are started and scheduled under the control of the user scheduler.

Task A user-defined scheduler usually needs an associated user-defined thread class
(an extension of Task). This class interacts with the scheduler by invoking following
methods from Scheduler:

void addTask(Task t)

6.2 USER-DEFINED SCHEDULER 131

The scheduler has access to the list of created tasks to use at the start of scheduling.
For dynamic task creation after the start of the scheduler, this method is called by the
constructor of Task, to notify the scheduler to update its list.

void isDead(Task t)

The scheduler is notified when a Task returns from the run () method. The scheduler
removes this Task from the list of schedulable objects.

void block()

Every Task can cease execution via a call of the scheduler. This method is used to
implement methods such as waitForNextPeriodC) or s l eepO in a user defined
thread class.

Java Virtual Machine The methods listed below provide the essential points of
communication between the JVM and the scheduler. As a response to an interrupt
(hardware or timer), entrance or exit of a synchronized method/block the JVM in-
vokes a method from the scheduler.

abstract void schedu1e()

This is the main entry point for the scheduler. This method has to be overridden to
implement the scheduling algorithm. It is called from the JVM on a timed event or a
software interrupt (see genlnt ()) is issued (e.g. when a Task gives up execution).

void interi-upt(int nr)

The scheduler is notified on a hardware event. It can directly call an associated device
driver or use this information to unblock a waiting task.

void monitorEnter(Object o)
void monitorExit(Object o)

These methods are invoked by the JVM on synchronized methods and blocks (JVM
bytecodes monitorenter and monitorexit) . They provide hooks for executing
dynamic priority changes in the scheduler.

Scheduler Services of the JVM needed to implement a scheduler are provided
through static methods.

static final void genlnt()

This service from the JVM schedules a software interrupt. As a result, schedul e()
is called. This method is the standard way of switching control to the scheduler. It is
e.g. invoked by biockQ.

132 6 JOP RUNTIME SYSTEM

static final void enablelntO
static final void disablelntO

The scheduler cannot use monitors to protect its data structures as the scheduler itself
is in charge of handling monitors. To protect the data structures of the scheduler, it
can globally enable and disable interrupts.

s t a t i c f ina l void dispatch(Task nextTask, i n t nextTim)

This method dispatches a Task and schedules a timer interrupt at nextTi m.

static f inal void attachDataCObject obj, Object data)
static f inal Object getAttachedData(Object obj)

The behavior of the priority inversion avoidance protocol is defined by the user sched-
uler. The root of the Java class hierarchy (j ava. 1 ang. Obj ect) contains a JVM in-
ternal reference of generic type Object that can be used by the scheduler to attach
data structures for monitors. The first argument of these methods is the object that is
used as monitor.

Scheduler or Task The following two methods are utility functions useful for the
scheduler and the thread implementation.

static final int getNow()

To support time-triggered scheduling, the system provides access to a high-resolution
time or counter. The returned value is the time since startup in microseconds. The
exact resolution is implementation-dependent.

static final Task getRunningTask()

The current running Task (in which context the scheduler is called) is returned by
this method.

6.2.5 Class Task

A basic structure for schedulable objects is shown in Listing 6.4. This class is usually
extended to provide a thread implementation that fits to the user-defined scheduler.
The class Task is intended to be minimal. To avoid inheriting methods that do not fit
for some applications, it does not extend Java. 1 ang .Thread. However, Task can
be used to implement j ava. 1 ang. Th read.

The methods enterMemory and exitMemory are used by the application to pro-
vide scoped memory for temporary allocated objects. Task provides a list of active
tasks for the scheduler.

6.2 USER-DEFINED SCHEDULER 133

public class Task {

public Task()
public Task(Memory mem)
void startO

public void enterMemoryO
public void exitMemoryO

public void run()

static Task getFirstTask()
static Task getNextTask()

}
Listing 6.4: A basic schedulable object

One issue, raised by the implementation of the framework is the way in which
access rights to methods need to be denned in Java. All methods, except s t a r t () ,
should be p r iva t e or protected. However, some methods, such as scheduleO,
are invoked by a part of the JVM, which is also written in Java but resides in a
different package. This results in defining the methods as public and hoping that they
are not invoked by the application code. The C++ concept of friends would greatly
help in sharing information over package boundaries without making this information
public.

6.2.6 A Simple Example Scheduler

Listing 6.5 shows a full example of using this framework to implement a simple
round robin scheduler.

The only method that needs to be supplied is scheduleO- For a more advanced
scheduler, it is necessary to provide a combination of a user denned thread class and
a scheduler class. These two classes have to be tightly integrated, as the scheduler
uses information provided by the thread objects for its scheduling decisions.

134 6 JOP RUNTIME SYSTEM

public class RoundRobin extends Scheduler {

/ /
/ / test threads

//
static class Work extends Task {

private int c;

Work(int ch) {
c = ch;

}

public void run() {

for (;;) {
Dbg.wr(c); / / debug output

// busy wait to simulate
// 3 ms workload in Work.
int ts = Scheduler.getNow();
ts += 3000;
while (ts—Scheduler.getNow()>0)

/ / user scheduler starts here

public void addTask(Task t) {
/ / we do not allow tasks to be
// added after startQ.

/ / called by the JVM

6.2 USER-DEFINED S C H E D U L E R 1 1 5

/ /
public void schedule() {

Task t = getRunningTaskO .getNextTaskO ;
i f (t==null) t = Task.getFirstTaskO;
dispatch(t, getNowO+10000) ;

public s ta t i c void main(String[] args) {

new Work('a ') ;
new Work('b ') ;
new Work('c ') ;

RoundRobin rr = new RoundRobin();

rr.startO ;

}
}

Listing 6.5: A very simple scheduler

6.2.7 Interaction of Task, Scheduler and the JVM

The framework is used to re-implement the scheduler described in Section 6.1. In the
original implementation, the interaction between scheduling and threads was simple,
as the scheduling was part of the thread class. Using the framework, these functions
have to be split to two classes, extending Task and Scheduler. Both classes are
placed in the same package to provide simpler information sharing with some pro-
tection from the rest of the application. For performance reasons data structures are
directly exposed from one class to the other.

The resulting implementation is compatible with the first definition, with the ex-
ception that RtThread now extends Task. However, no changes in the application
code are necessary.

Figure 6.1 is an interaction example of this scheduler within the framework. The
interaction diagram shows the message sequences between two application tasks,
the scheduler, the JVM and the hardware. The hardware represents interrupt and
timer logic. The corresponding code fragments of the application, RtThread and
Pri ori tySchedul er are shown in Listing 6.6, 6.7 and 6.8. Task 2 is a periodic task
with a higher priority than Task 1.

136 6 JOP RUNTIME SYSTEM

Taski Task 2 Scheduler

Scheduling
decision

resume task

wFNP

block

Scheduling
decision

resume task

JVM Hardware

schedule

timer

interrupt

dispatch

switch set timer

Context
switch

genlnt

se* interrupt

schedule

interrupt

dispatch

switch set timer

Context
switch

[T] Application Q User defined Q Framework

Figure 6.1 : Interaction and message exchange between the application, the scheduler,
the JVM and the hardware

6.2 USER-DEFINED SCHEDULER \jn_

for (; ;) {
doPen'odicWorkO ;
waitForNextPeriodO ;

Listing 6.6: Code fragment oft the application

The first event is a timer event to unblock Task 2 for a new period. The generated
timer event results in a call of the user defined scheduler. The scheduler performs its
scheduling decision and issues a context switch to Task 2. With every context switch
the timer is reprogrammed to generate an interrupt at the next time triggered event
for a higher priority task. Task 2 performs the periodic work and ceases execution
by invocation of waitForNextPeriodO. The scheduler is called and requests an
interrupt from the hardware resulting in the same call sequence as with a timer or
other hardware interrupt. The software generated interrupt imposes negligible over-
head and results in a single entry point for the scheduler. Task 1 is the only ready task
in this example and is resumed by the scheduler.

Using a general scheduling framework for a real-time scheduler is not without
its costs. Additional methods are invoked from a scheduling event until the actual
dispatch takes place. The context switch is about 20% slower than in the original
implementation. It is the opinion of the author that the additional cost is outweighed
by the flexibility of the framework.

6.2.8 Predictability

The architecture of JOP is designed to simplify WCET analysis. Every JVM bytecode
maps to one ore more microcode instructions. Every microcode instruction takes
exactly one cycle to execute. Thus, the execution time at the bytecode level is known
cycle accurately. The microcode contains no data dependent or unbound loops that
would compromise the WCET analysis (see Section 7.4).

The worst-case time for dispatching is known cycle accurately on this architecture.
Only the time behavior of the user scheduler needs to be analyzed. With the known
WCET of every bytecode, as listed in Appendix D, the WCET of the scheduler can
be obtained by examining it at the bytecode level. This can be done manually or with
a WCET analysis tool.

138 6 JOP RUNTIME SYSTEM

public boolean waitForNextPeriod() {

synchronized(monitor) {

/ / ps is the instance of
// the PriorityScheduler
int nxt = ps.next[nr] + period;

i nt now = Scheduler.getNowO
i f (nxt-now < 0) {

/ / missed deadline
doMissActionO ;
return false;

} else {
/ / time for the next unblock
ps.next[nr] = nxt;

}
// just schedule an interrupt

// scheduleO gets called.

ps.blockO ;

}
return true;

}
Listing 6.7: Implementation in RtThread

6.2 USER-DEFINED SCHEDULER 139

public void scheduleO {

// Find the ready thread with
// the highest priority.
int nr = getReadyO ;

// Search the list of sleeping threads
// to find the nearest release time
// in the future of a higher priority
// thread than the one that will be
// released now.
int time = getNextTimer(nr);

// This time is used for the next
// timer interrupt.
// Perform the context switch.
dispatch(task[nr], time);
// No access to locals after this point.
// We are running in the NEW context!

}
Listing 6.8: Implementation of the PriorityScheduler

140 6 JOP RUNTIME SYSTEM

6.2.9 Related Work

Several implementations of user-level schedulers in standard operating systems have
been proposed. In [59], the Linux scheduling mechanism is enhanced. It is divided
into a dispatcher and an allocator. The dispatcher remains in kernel space; while the
allocator is implemented as a user space function. The allocator transforms four basic
scheduling parameters (priority, start time, finish time and budget) into scheduling
attributes to be used by the dispatcher. Many existing schedulers can be supported
with this parameter set, but others that are based on different parameters cannot be
implemented. This solution does not address the implementation of protocols for
shared resources.

A different approach defines a new API to enable applications to use application-
defined scheduling in a way compatible with the scheduling model defined in POSIX
[82]. It is implemented in the MaRTE OS, a minimal real-time kernel that provides
the C and Ada language POSIX interface. This interface has been submitted to the
Real-Time POSIX Working Group for consideration.

One approach to user-level scheduling in Java can be found in [29]. A thread
multiplexor, as part of the FLEX ahead-of-time compiler system for Java, is used
for utility accrual scheduling. However, the underlying operating system - in this
case Linux - can still be seen through the framework and there is no support for Java
synchronization.

6.2.10 Summary

This section and Section 6.1 consider the implementation of real-time scheduling on
a Java processor. The novelty of the described approach is in implementing func-
tions usually associated with an RTOS in Java. That means that real-time Java is not
based on an RTOS, and therefore not restricted to the functionality provided by the
RTOS. With JOP, a self-contained real-time system in pure Java becomes possible.
This system is augmented with a framework to provide scheduling functions at the
application level. The implementation of the specification, described in Section 6.1,
is successfully used as the basis for a commercial real-time application in the railway
industry. Future work will extend this framework to support multiple schedulers. A
useful combination of schedulers would be: one for standard Java. lang.Thread
(optimized for throughput), one for soft real-time tasks and one for hard real-time
tasks.

6.3 JVM ARCHITECTURE 141

6.3 JVM Architecture

This section presents the details of the implementation of the JVM on JOP. The rep-
resentation of objects and the stack frame is chosen to support JOP as processor for
real-time systems. However, since the data structures are realized through microcode
they can be easily changed for a system with different needs. For example: to sim-
plify a compacting GC a handle to an object can be implemented by changing the
microcode of get f i el d, putf i el d and new.

6.3.1 Runtime Data Structures

Memory is addressed as 32-bit data, which means that memory pointers are incre-
mented for every four bytes. No single byte or 16-bit access is necessary. The ab-
stract type reference is a pointer to memory that represents the object or an array.
The reference is pushed on the stack before an instruction can operate on it. A null
reference is represented by the value 0.

Stack Frame

On invocation of a method, the invoker's context is saved in a newly allocated frame
on the stack. It is restored when the method returns. The saved context consists of
following registers:

SP: Immediately before invocation the stack pointer points to the last argument for
the called function. This value is reduced by the argument count (i.e. the
arguments are consumed) and saved in the new stack frame.

PC: The pointer to the next bytecode instruction after the invoke instruction.

VP: The pointer to the memory area on the stack that contains the locals.

CP: The pointer to the constant pool of the class from the invoking method.

MP: The pointer to the method structure of the invoking method.

SP, PC and VP are registers in JOP while CP and MP are local variables of the
JVM. Figure 6.2 provides an example of the stack before and after invoking a method.
In this example, the called method has two arguments and contains two local vari-
ables. If the method is a virtual one, the first argument is the reference to the object
(the this-pointer). The arguments implicit become locals in the called method and are
accessed in the same way as local variables. The start of the stack frame (Frame in
the figure) needs not to be saved. It is not needed during execution of the method or

142 6 JOP RUNTIME SYSTEM

VP

SP

var_0
var_1
var_2

Previous

Previous

Previous

Previous

Previous

Operand

arg_0
arg_1

SP

PC

VP

CP

MP

stack

Old frame <

VP

Frame i

var_0
var_1
var_2

Previous SP

Previous PC

Previous VP

Previous CP

Previous MP

Operand stack

var_0
var 1
var_2
var_3

Previous SP

Previous PC

Previous VP

Previous CP

Previous MP

• 4 -

-4-1

SP

Figure 6.2: Stack change on method invocation

on return. To access the starting address of the frame (e.g. for an exception) it can be
calculated with information from the method structure:

Frame = VP + arg.cnt + locals ..cut

Object Layout

Figure 6.3 shows the representation of an object in memory. The object reference
points to the first instance variable of the object. At the offset — 1, a pointer is located
to access class information. To speed-up method invocation, it points directly to the
method table of the objects class instead of the beginning of the class data.

6.3 JVM ARCHITECTURE 143

Object reference

Method vector base

Instance variable 1

Instance variable 2

Instance variable n

Figure 6.3: Object format

Array reference

Array length

First element

Second element

Element n

Figure 6.4: Array format

Array Layout

Figure 6.4 shows the representation of an array in memory. The object reference
points to the first element of the array. At the offset — 1, the length of the array can
be found.

Class Structure

Runtime class information, as shown in Figure 6.5, consists of the class variables, the
dispatch table for the methods, the constant pool and an optional interface table.

The class reference is obtained from the constant pool when a new object is cre-
ated. The method vector base pointer is a reference from an object to its class (see
Figure 6.3). It is used on i nvokevi r tua l with an index retrieved from the constant
pool. A pointer to the method structure of the current method is saved in the JVM
variable MR The method structure, as shown in Figure 6.6, contains the starting ad-
dress and length of the method (in 32-bit words), argument and local variable count

144 6 JOP RUNTIME SYSTEM

Class reference

Method vector base |Hz£

Current Method (MP)

Constant Pool (CP)

...

^ — .

- •

Class variable 1

Class variable 2

Instance size

Interface table

_ Method
structure 0

Method
structure 1

Method
structure 2

Class reference

Constant pool length

Constant 1

Constant 2

Interface reference 0

Interface reference 1

|

> Static variables

Virtual method
> table

1

-<
> uonsiani pooi

^ Interface table

J
Figure 6.5: Runtime class structure

6.3 JVM ARCHITECTURE 145

Start address

Constant pool

Method length

Local count Arg. count

Figure 6.6: Method structure

and a pointer to the constant pool of the class. Since the constant pool is an often
accessed memory area, a pointer to it is kept in the JVM variable CP.

The interface table contains references to the method structures of the implementa-
tion. Only classes that implement an interface contain this table. To avoid searching
the class hierarchy on i nvokei nte rf ace, each interface method is assigned a unique
index. This provides constant execution time, but can lead to large interface tables.

The constant pool contains various constants of a class. The entry at index 0 is the
length of the pool. All constants, which are symbolic in the class files, are resolved
on class loading or during pre-linking. The different constant types and their values
after resolving are listed in Table 6.1. The names for the types are the same as in the
JVM specification [60].

Constant type Description

Class
Fieldref

Methodref

InterfaceMethodref
String

Integer
Float
Long
Double
NameAndType
Utf8

A pointer to a class (class reference)
For static fields: a direct pointer to the field
For object fields: the position relative to the object
reference
For static methods: a direct pointer to the method structure
For virtual methods: the offset in the method table
(= index*2) and the number of arguments
A system wide unique index into the interface table
A pointer to the string object that represents the string
constant
The constant value
The constant value
This constant value spans two entries in the constant pool
Same as for long constants
Not used
Not used

Table 6.1: Constant pool entries

7 Results

In this chapter, we will present the evaluation results for JOP, with respect to size,
performance and WCET. Table 7.1 compares JOP with other Java hardware solutions
(see also Chapter 3). The column year indicates the first date at which the processor
became available or the first publication about the processor. The research project
Komodo has now ceased, while FemtoJava is still being used as a basis for active
research.

We can see that JOP is the smallest realization in an FPGA and also has the highest
clock frequency. JOP also has a minimum CPI of 1 while, for Komodo and Femto-
Java, the minimum CPIs are four and three respectively.

JOP

picoJava

aJile

Moon

Lightfoot

Komodo

FemtoJava

Target
technology
Altéra,
Xilinx
FPGA
No
realization

ASIC 0.25//

Altéra
FPGA
Xilinx
FPGA
Xilinx
FPGA

Altéra Flex
10K

Size

1830 LCs,
3KB RAM

128K gates +
memory
25K gates +
ROM
3660 LCs,
4KB RAM

3400 LCs

2600 LCs

2000 LCs

Speed
[MHz]

100

100

40

33

4

Java
standard

J2ME CLDC

Full

J2ME CLDC

Subset: 69
bytecodes,
16-bit ALU

Min.
CPI

1

1

4

3

Year

2001

1999

2000

2000

2001

2000

2001

Table 7.1: Comparison of Java hardware with JOP

In the following section, the hardware platform that is used for benchmarking is
described. This is followed by a comparison of JOP's resource usage with other
soft-core processors. In the 'General Performance' section, a number of different so-
lutions for embedded Java are compared at the bytecode level and at the application
level. The basic properties of the real-time scheduler are evaluated using the Refer-

148 7 RESULTS

ence Implementation (RI) of the RTSJ on a Linux system and the real-time profile
from Section 6.1 on top of JOP. It is also shown that our objective of providing an
easy target for WCET analysis has been achieved. This chapter concludes with a
short description of real-world applications that use JOP.

7.1 Hardware Platforms

During the development of JOP and its predecessors, several different FPGA boards
were developed. The first experiments involved using Altéra FPGAs EPF8282,
EPF8452, EPF10K10 and ACEX 1K30 on boards that were connected to the printer
port of a PC for configuration, download and communication. The next step was
the development of a stand-alone board with FLASH memory and static RAM.
This board was developed in two variants, one with an ACEX 1K50 and the other
with a Cyclone EP1C6 or EPIC 12. Both boards are pin-compatible and are used in
commercial applications of JOP. The Cyclone board is the hardware that is used for
the following evaluations.

This board is an ideal development system for JOP. Static RAM and FLASH are
connected via independent buses to the FPGA. All unused FPGA pins and the serial
line are available via four connectors. The FLASH can be used to store configuration
data for the FPGA and application program/data. The FPGA can be configured with
a ByteBlasterMV download cable or loaded from the flash (with a small CPLD on
board). As the FLASH is also connected to the FPGA, it can be programmed from
the FPGA. This allows for upgrades of the Java program and even the processor
core itself in the field. The board is slightly different from other FPGA prototyping
boards, in that its connectors are on the bottom side. Therefore, it can be used as a
module (60mm x 48mm), i.e. as part of a larger board that contains the periphery.
The Cyclone board contains:

• Altéra Cyclone EP1C6Q240 or EP1C12Q240 ;

• Step Down voltage regulator (1V5)

• Crystal clock (20MHz) at the PLL input (up to 640MHz internal)

• 512KB FLASH (for FPGA configuration and program code)

• 1MB fast asynchronous RAM (15 ns)

• Up to 128MB NAND FLASH

• ByteBlasterMV port

7.2 RESOURCE USAGE 149

• Watchdog with LED

• EPM7064 PLD to configure the FPGA from the FLASH on watchdog reset

• Serial interface driver (MAX3232)

• 56 general-purpose 10 pins

The RAM consists of two independent 16-bit banks (with their own address and
control lines). Both RAM chips are on the bottom side of the PCB, directly under
the FPGA pins. As the traces are very short (under 10mm), it is possible to use the
RAMs at full speed without reflection problems. The two banks can be combined to
form 32-bit RAM or support two independent CPU cores. Pictures and the schematic
of the board can be found in Appendix F.

An expansion board hosts the CPU module and provides a complete Java proces-
sor system with Internet connection. A step down switching regulator with a large
AC/DC input range supplies the core board. All input and output pins are EMC/ESD-
protected and routed to large connectors (5.08mm Phoenix). Analog comparators can
be used to build sigma-delta ADCs. For FPGA projects with a network connection,
a CS8900 Ethernet controller with an RJ45 connector is included on the expansion
board.

7.2 Resource Usage

Cost, alongside energy consumption, is an important issue for embedded systems.
The cost of a chip is directly related to the die size (the cost per die is roughly propor-
tional to the square of the die area [40]). Chips with fewer gates also consume less
energy. Processors for embedded systems are therefore optimized for minimum chip
size. In this section, we will compare JOP with different processors in terms of size.

One major design objective in the development of JOP was to create a small system
that could be implemented in a low-cost FPGA. Table 7.2 shows the resource usage
for different configurations of JOP and different soft-core processors implemented
in an Altéra EP1C6 FPGA [16]. Estimating equivalent gate counts for designs in an
FPGA is problematic. It is therefore better to compare the two basic structures, LC
(logic cell) and memory.

150 7 RESULTS

Processor

JOP Minimal
JOP Basic
JOP Typical
Lightfoot1

NIOS A
NIOSB
SPEAR2

Resources
[LC]

1,077
1,452
1,831
3,400
1,828
2,923
1,700

Memory
[KB]

3.25
3.25
3.25
1
6.2
5.5
8

fmax
[MHz]

98
98

101
40

120
119
80

Table 7.2: FPGA soft-core processors

All configurations of JOP contain a memory interface to a 32-bit static RAM and
an 8-bit FLASH for the Java program and configuration data. The minimum config-
uration implements multiplication and the shift operations in microcode. In the basic
configuration, these operations are implemented as a sequential Booth multiplier and
a single-cycle barrel shifter. The typical configuration contains a variable block in-
struction cache (1KB, 4 blocks - see Section 5.8.2) and some useful I/O devices such
as an UART and a timer with interrupt logic for multi-threading. The typical configu-
ration of JOP needs about 30% of the LCs in a Cyclone EP1C6, thus leaving enough
resources free for application-specific logic.

Lightfoot [62] is a commercial Java processor, targeted at Xilinx FPGA architec-
tures. We can see from Table 7.2 that this processor needs about twice the resources
of JOP.

As a reference, NIOS [15], Altera's popular RISC soft-core, is also included in the
list. NIOS has a 16-bit instruction set, a 5-stage pipeline and can be configured with
a 16 or 32-bit datapath. Version A is the minimum configuration of NIOS. Version
B adds an external memory interface, multiplication support and a timer. Version A
is comparable with the minimal configuration of JOP, and Version B with its typical
configuration.

SPEAR [22] (Scalable Processor for Embedded Applications in Real-time Envi-
ronments) is a 16-bit processor with deterministic execution times. SPEAR contains

'The data for the Lightfoot processor is taken from the data sheet [62]. The frequency used is that in
a Vertex-II device from Xilinx. JOP can be clocked at 100MHz in the Vertex-II device, making this
comparison valid.

2As SPEAR uses internal memory blocks in asynchronous mode it is not possible to synthesize it
without modification for the Cyclone FPGA. The clock frequency of SPEAR in an Altéra Cyclone
is an estimate based on following facts: SPEAR can be clocked at 40MHz in an APEX device and
JOP can be clocked at 50MHz in the same device.

7.2 RESOURCE USAGE 151

Processor

JOP
picoJava
aJile
Pentium MMX

Core
[gate]

UK
128K
25K

Memory
[gate]

39K
314K
912K

Sum.
[gate]

50K
442K
937K

1125K

Table 7.3: Gate count estimates for various processors

predicated instructions to support single-path programming. SPEAR is included in
the list as it is also a processor designed for real-time systems.

To prove that the VHDL code for JOP is as portable as possible, JOP was also
implemented in a Xilinx Spartan-3 FPGA. Only the instantiation and initialization
code for the on-chip memories is vendor-specific, whilst the rest of the VHDL code
can be shared for the different targets. JOP consumes about the same LC count (1844
LCs) in the Spartan device, but has a slower clock frequency (83MHz).

From this comparison we can see that we have achieved our objective of designing
a small processor. The Java processor, Lightfoot, is 2.3 times larger (and 2.5 times
slower) than JOP in the basic configuration. A typical 32-bit RISC processor con-
sumes about 1.6 to 1.8 times the resources of JOP. However, the RISC processor can
be clocked 20% faster than JOP in the same technology. The only processor that is
similar in size is SPEAR. However, while SPEAR is a 16-bit processor, JOP contains
a 32-bit datapath.

Table 7.3 provides gate count estimates for JOP, picoJava, the aJile processor, and
the Intel Pentium MMX processor that is used in the benchmarks in the next section.
Equivalent gate count for an LC3 varies between 5.5 and 7.4 - we chose a factor of
6 gates per LC and 1.5 gates per memory bit for the estimated gate count for JOP
in the table. JOP is listed in the typical configuration that consumes 1831 LCs. The
Pentium MMX contains 4.5M transistors [26] that are equivalent to 1125K gates.

We can see from the table that the on-chip memory dominates the overall gate
count of JOP, and to an even greater extent, of the aJile processor. The aJile processor
is roughly the same size as the Pentium MMX, and both are about 20 times larger than
JOP.

3 The factors are derived from the data provided for various processors in Chapter 3 and from the
resource estimates in Section 5.5.

152 7 RESULTS

7.3 Performance

In this section, we will evaluate the performance of JOP in relation to other Java sys-
tems. Although JOP is intended as a processor with a low WCET for all operations,
its general performance is still important. In the first section, we will evaluate JOP's
average performance.

In the section that follows it, the implementation of the simple real-time profile, as
described in Section 6.1, on JOP is compared to the RI of the RTSJ on top of Linux.

7.3.1 General Performance

Running benchmarks is problematic, both generally and especially in the case of
embedded systems. The best benchmark would be the application that is intended to
run on the system being tested. To get comparable results SPEC provides benchmarks
for various systems. However, the one for Java, the SPECjvm98 [17], is usually too
large for embedded systems.

Due to the absence of a standard Java benchmark for embedded systems, a small
benchmark suit that should run on even the smallest device is provided here. It con-
tains several micro-benchmarks for evaluating CPI for single bytecodes or short se-
quences of bytecodes, a synthetic benchmark (the Sieve of Eratosthenes) and two
application benchmarks.

To provide a realistic workload for embedded systems, a real-time application was
adapted to create the first application benchmark (Kfl). The application is taken from
one of the nodes of a distributed motor control system [83] (see Section 7.5.1). A sim-
ulation of both the environment (sensors and actors) and the communication system
(commands from the master station) forms part of the benchmark, so as to simu-
late the real-world workload. The second application benchmark is an adaptation of
a tiny TCP/IP stack (Ejip) for embedded Java. This benchmark contains two UDP
server/clients, exchanging messages via a loopback device.

As we will see, there is a great variation in processing power across different em-
bedded systems. To cater for this variation, all benchmarks are 'self adjusting'. Each
benchmark consists of an aspect that is benchmarked in a loop and an 'overhead'
loop that contains any overheads from the benchmark that should be subtracted from
the result (this feature is designed for the micro-benchmarks). The loop count adapts
itself until the benchmark runs for more than a second. The number of iterations
per second is then calculated, which means that higher values indicate better perfor-
mance.

The benchmark framework only needs two system functions: one to measure time
in millisecond resolution and one to print the results. These functions are encap-

7.3 PERFORMANCE 153

sulated in LowLevel . Java and can be adapted to environments, in which the full
Java library is not available. For example, the leJOS system has very limited out-
put capabilities and there is therefore a special LowLevel . Java for this device. The
following list gives a brief description of the Java systems that were benchmarked:

JOP is implemented in a Cyclone FPGA, running at 100MHz. The main memory is
a 32-bit static RAM (15ns) with an access time of 3 clock cycles.

le JOS As an example for a low-end embedded device we use the RCX robot con-
troller from the LEGO MindStorms series. It contains a 16-bit Hitachi H8300
microcontroller [41], running at 16MHz. leJOS [85] is a tiny interpreting JVM
for the RCX.

TINI is an enhanced 8051 clone running a software JVM. The results were taken from
a custom board with a 20MHz crystal, and the chip's PLL is set to a factor of
2. The TINIOS firmware revision running on the board is 1.12p9.

Komodo Komodo [55] is a Java processor as a basis for research on real-time
scheduling on a multithreaded microcontroller (see Section 3.2.8). The
benchmark results were obtained by Matthias Pfeffer [75] on a cycle-accurate
simulation of Komodo. The values are obtained without garbage collec-
tion. According to Pfeffer, Komodo can be clocked with 33MHz in a Xlinix
XCV800.

JStamp aJile's JEMCore is a direct-execution Java processor that is available in two
different versions: the aJ-80 and the aJ-100 [2]. The aJ-100 provides a generic
8-bit, 16-bit or 32-bit external bus interface, while the aJ-80 only provides an
8-bit interface. A development system, the JStamp [91], was used for this
benchmark. It contains the aJ-80, clocked at 74MHz.

Sa Je is a board that contains the aJ-100 clocked with 100MHz and 10ns SRAM.

EJC The EJC (Embedded Java Controller) platform [27] is a typical example of a
JIT system on a RISC processor. The system is based on a 32-bit ARM720T
processor running at 74MHz. It contains up to 64 MB SDRAM and up to 16
MB of NOR flash.

SUN jvm is the Sun JVM 1.4.1, running on a 266MHz Pentium MMX under Linux.

gcj is the GNU compiler for Java. This configuration represents the batch compiler
solution, running on a 266MHz Pentium.

154 7 RESULTS

Xint As a reference the benchmark is also run with the Sun JVM in interpreting mode
(with option -Xint).

MB is the realization of Java on a RISC processor for an FPGA (Xilinx MicroBlaze
[18]). Java is compiled to C with a Java compiler for real-time systems [72]
and the C program is compiled with the standard GNU toolchain.

In Figure 7.1, the geometric mean of the two application benchmarks is shown. The
unit used for the result is iterations per second. Note that the vertical axis is logarith-
mic, in order to obtain useful figures to show the great variation in performance. The
top diagram shows absolute performance, while the bottom diagram shows the same
results scaled to a 1MHz clock frequency. The results of the application benchmarks
and the geometric mean are shown in Table 7.4. The raw data for all benchmarks can
be found in Appendix E.

It should be noted that scaling to a single clock frequency could prove problematic.
The relation between processor clock frequency and memory access time cannot al-
ways be maintained. To give an example, if we were to increase the results of the
100MHz JOP to lGHz, this would also involve reducing the memory access time
from 15ns to 1.5ns. Processors with lGHz clock frequency are already available, but
the fastest asynchronous SRAM to date has an access time of 10ns.

To compare the performance relatively to the size of the different systems, Fig-
ure 7.2 shows the performance of JOP, the aJlOO and the two PC versions relative
to the gate count (from Table 7.3) and clock frequency. Relative to size and clock
frequency, JOP outperforms the aJile processor by a factor of 19 and even the JIT-
compiler on the Pentium MMX by a factor of 4.

All the benchmarks measure how often a function is executed per second. There-
fore, execution time is only measured indirectly - a higher value means shorter exe-
cution time. In the Kfl benchmark, this function contains the main loop of the appli-
cation (see Listing 7.2) that is executed in a periodic cycle in the original application.
In the benchmark the wait for the next period is omitted, so that the time measured
solely represents execution time. The UDP benchmark contains the generation of a
request, transmitting it through the UDP/IP stack, generating the answer and trans-
mitting it back as a benchmark function. The iteration count is the number of received
answers per second.

In the application benchmarks, the main function is executed in a loop until one
second (or a longer period of time) has elapsed. For the application benchmark, there
is no 'overhead' loop. This feature is only used in the micro-benchmarks. As the
benchmark is self-adjusting, the measured time can also be longer than one second.
The result is the iteration count, scaled to one second.

7.3 PERFORMANCE 155

JOP
leJOS
UNI
Komodo
JStamp
SaJe
EJC
Sun jvm

gcj
Xint
MB 2KB/0KB

Frequency
[MHz]

100
16
40
33
74

103
74

266
266
266
100

Kfl

14,222
25
64

924
2,221

14,148
9,893

212,952
139,884

17,310
3,792

UDP/IP Geom. Mean
[Iterations/s]

6,050
13
29

520
1,004
6,415
2,822

91,851
38,460

8,747

9,276
18
43

693
1,493
9,527
5,284

139,857
73,348
12,305

Per MHz

93
1
1

21
20
92
71

526
276

46

Table 7.4: Application benchmarks on different Java systems. The table shows the
benchmark results in iterations per second - a higher value means higher
performance.

The accuracy of the measurement depends on the resolution of the system time.
For the measurements under Linux, the system time has a resolution of 10ms, result-
ing in an inaccuracy of 1%. The accuracy of the system time on le JOS, TINI and the
aJile is not known, but is considered to be in the same range. For JOP, a //s counter is
used for time measurement.

Discussion

When comparing JOP and the aJile processor against leJOS and TINI, we can see
that a Java processor is up to 500 times faster than an interpreting JVM on a standard
processor for an embedded system. The average performance of JOP is a little bit
better than a JIT-compiler solution on an embedded system, as represented by the
EJC system.

Even when scaled to the same clock frequency, each compiling JVM on a PC (Sun
jvm and gcj) is much faster than either embedded solution. However, as we saw
in Section 5.8, the kernel of the application is smaller than 4KB. It therefore fits in
the level one cache of the Pentium MMX (16KB + 16KB level one cache). For a
comparison with a Pentium class processor we would need a larger application.

JOP is about 6 times faster than the aJ80 Java processor on the popular JStamp
board. However, the aJ80 processor only contains an 8-bit memory interface, and

156 7 RESULTS

1000000

Ij»1 100000
"S
c
S 10000

!
a.

1000 - —

100 - -

10 -I—

1

I
2
S

0)

a.
a
>
ë

1000

100 ,—.

10 '%

1 * "t
\

-

v<y .er x-^ <£ <r >̂ <^ ^ <r - # •

Figure 7.1: Performance comparison of different Java systems with application
benchmarks. The diagrams show the geometric mean of the two bench-
marks in iterations per second - a higher value means higher perfor-
mance. The top diagram shows absolute performance, while the bottom
diagram shows the result scaled to 1MHz clock frequency.

7.3 PERFORMANCE 157

-2"5
o

1

1

I 1

« 1
Q.

S.
.1
4-1

SS

g. o,
0,

0,

2. -,

8 -

6

4 -

2

4

8

6 •

4 -

2

n p- | •-4*4-

JOP aJ100 Sun jvm gcj

Figure 7.2: Performance comparison of different Java systems with application
benchmarks. The diagram shows the result scaled to the chip size
(Kgates) and clock frequency (MHz).

suffers from this bottleneck. The SaJe system contains the aJlOO with 32-bit, 10ns
SRAMs and is as fast as JOP with its 15ns SRAMs.

The MicroBlaze system is a representation of a Java batch-compilation system
for a RISC processor. MicroBlaze is configured with the same cache4 as JOP and
clocked at the same frequency. JOP is about three times faster than this solution, thus
showing that native execution of Java bytecodes is faster than batch-compiled Java on
a similar system. However, the results of the MicroBlaze solution are at a preliminary
stage5, as the Java2C compiler [72] is still under development.

The micro-benchmarks are intended to give insight into the implementation of the
JVM. In Table 7.5, we can see the execution time in clock cycles of various byte-
codes. As almost all bytecodes manipulate the stack, it is not possible to measure the
execution time for a single bytecode. As a minimum requirement, a second instruc-
tion is necessary to reverse the stack operation.

For JOP we can deduce that the WCET for simple bytecodes (as given in Ap-
pendix D) is also the average execution time. We can see that the combination of
i 1 oad and i add executes in two cycles, which means that each of these two opera-

4The MicroBlaze with a 8KB data and 8KB instruction cache is about 2.5 times faster than JOP.
However, a 16KB memory is not available in low-cost FPGAs and is an unbalanced system with
respect to the LC/memory relation. Furthermore, the benchmark fits into a 4KB cache and the
resulting measurement does not include main memory access.

5As not all language constructs can be compiled, only the Kfl benchmark was measured.

158

iload iadd
iinc
ldc
iLicmplt taken
iLicmplt not taken
getfield
getstatic
iaload
invoke
invoke static
invoke interface

JOP

2
11
10
6
6

25
17
30

128
101
146

leJOS

836
422

1,340
1,609
1,520
1,879
1,676
1,082
4,759
3,875
5,094

TINI

789
388

1,128
1,265
1,211
2,398
4,463
1,543
6,495
5,869
6,797

Komodo

8
4

40
24
24
48
80
28

384
680

1617

JStamp

38
41
67
42
40

142
102
74

349
271
531

7

SaJe

8
11
9

18
14
23
15
13

112
92

148

RESULTS

Xint

17
2

31
36
37
39
40
30

182
164
193

Table 7.5: Execution time in clock cycles for various JVM bytecodes

tions is executed in a single cycle. The i i n c bytecode is one of the few instructions
that do not manipulate the stack and can be measured alone. As i i nc is not imple-
mented in hardware, we have a total of 11 cycles that are executed in microcode. It
is fair to assume that this comprises too great an overhead for an instruction that is
found in every iterative loop with an integer index. However, the decision to imple-
ment this instruction in microcode was derived from the observation that the dynamic
instruction count for i i nc is only 2% (see Section 5.1).

The sequence for the branch benchmark (i f_i cm pi t) contains the two load in-
structions that push the arguments onto the stack. The arguments are then consumed
by the branch instruction. This benchmark verifies that a branch requires a constant
four cycles on JOP, whether it is taken or not.

For compiling versions of the JVM, these micro-benchmarks do not produce useful
results. The compiler performs optimizations that make it impossible to measure
execution times at this fine a granularity.

During the evaluation of the aJile system, unexpected behavior was observed. The
aJ80 on the JStamp board is clocked at 7.3728MHz and the internal frequency can
be set with a PLL. The aJ80 is rated for 80MHz and the maximum PLL factor
that can be used is therefore ten. Running the benchmarks with different PLL set-
tings gave some strange results. For example, with a PLL multiplier setting of ten,
the aJ80 was about 12.8 times faster! Other PLL factors also resulted in a greater
than linear speedup. The only explanation we could find was that the internal time,
System. cu r rentTi meMi 11 i s () , used for the benchmarks depends on the PLL set-
ting. A comparison with the wall clock time showed that the internal time of the aJ80

7.3 PERFORMANCE 159

is 23% faster with a PLL factor of 1 and 2.4% faster with a factor often - a property
we would not expect on a processor that is marketed for real-time systems.

The SaJe board is also clocked with 7.3728MHz and the PLL factor is set to 14.
This gives a 103.2192MHz internal clock frequency. However, it is not known how
accurate the internal time is in this setting. The results for the SaJe board can also
suffer from the problem described above.

Execution Time Jitter

For real-time systems, the worst-case of the execution time is of primary importance.
We have measured the execution times of several iterations of the main function from
the Kfl benchmark. Figure 7.3 shows the measurements, scaled to the minimum
execution time.

A period of four iterations can be seen. This period results from simulating the
commands from the base station that are executed every fourth iteration. At iteration
10, a command to start the motor is issued. We see the resulting rise in execution
time at iteration 12 to process this command. At iteration 54, the simulation triggers
the end sensor and the motor is stopped.

The different execution times in the different modes of the application are inher-
ent in the design of the simulation. However, the ratio between the longest and the
shortest period is five for the JStamp, four for the gcj system and only three for JOP.
Therefore, a system with an aJile processor needs to be 1.7 times faster than JOP in
order to provide the same WCET for this measurement. At iteration 33, we can see
a higher execution time for the JStamp system that is not seen on JOP. This variation
at iteration 33 is not caused by the benchmark.

The execution time under gcj on the Linux system showed some very high peaks
(up to ten times the minimum, not shown in the figures). This observation was to be
expected, as the gcj/Linux system is not a real-time solution. The Sun JIT-solution
is omitted from the figure. As a result of the invocation of the compiler at some
point during the simulation, the worst-case ratio between the maximum and minimum
execution time was 1313 - showing that a JIT-compiler is impractical for real-time
applications.

It should be noted that execution time measurement is not a safe method for ob-
taining WCET estimates. However, in situations where no WCET analysis tool is
available, it can give some insight into the WCET behavior of different systems.

7.3.2 Real-Time Performance

In this section, the implementation of the simple real-time profile (from Section 6.1)
with JOP is compared with the Reference Implementation (RI) of the RTSJ (see Sec-

160 7 RESULTS

-JStamp -gcj JOP

31 41
Time [iteration]

«—JStamp -»-JOP

21

Time [iteration]

31

Figure 7.3: Execution time of the main function for the Kfl benchmark. The values
are scaled to the minimum execution time. The bottom figure shows a
detail of the top figure.

7.3 PERFORMANCE 161

Period
[//s]

50
70
100
500

1,000

Avg.

[/*]

50
70
100
500

1,000

Std. Dev.

L«s]
13
0
0
0
0

Min.

[/*]

35
70
100
500

1,000

Max.

L«s]
63
70
100
500

1,000

Table 7.6: Jitter of periodic threads with JOP

tion 4.4.3) on top of Linux. We use the Linux platform for the comparison, as it is the
only platform for which the RTSJ is available. The RI is an interpreting implemen-
tation of the JVM that is, however, not optimized for performance. A commercial
version of the RTSJ, JTime by TimeSys, should perform better. However, it was
not possible to get a license of JTime for research purposes. JOP is implemented in
Altera's low-cost Cyclone EP1C6 FPGA, and clocked with 100MHz. The test re-
sults for the RI were obtained on an Intel Pentium MMX 266MHz, running Linux
with two different kernels: a generic kernel version 2.4.20 and the real-time kernel
from TimeSys [92], as recommended for the RI. For each test, 500 measurements
were taken. Time was measured using a hardware counter in JOP and the time stamp
counter of the Pentium processor under Linux.

Periodic Threads

Many activities in real-time systems must be performed periodically. Low release
jitter is of major importance for tasks such as control loops. The test setting is
similar to the periodic thread test in [20]. A single real-time thread only calls
waitForNextPeriodO in a loop and records the time between subsequent calls.
A second idle thread, with a lower priority, merely consumes processing time. This
test setting results in two context switches per period. Table 7.6 shows the average,
standard deviation and extreme values for different period times on JOP. The same
values are shown in Table 7.7 for the RI. Please note that the values are in //s for JOP
and in ms for the RI.

Using microsecond accurate timer interrupts, programmed by the scheduler, results
in excellent performance of periodic threads in JOP. No jitter from the scheduler can
be seen with a single thread at periods longer than 70//S.

The measurement for the RI excludes the first values measured. The first values are
misleading as the RI behaves unpredictably at startup. The RI performs inaccurately

162 7 RESULTS

Period Avg. Std. Dev. Min. Max.
[ms] [ms] [ms] [ms] [ms]

5
10
20
35
50

100

4
6

20
35
50

100

.0

.6

.0

.0

.0

.0

7
9
0
5
0
0

.92

.34

.015

.001

.018

.002

0
0

19
29
49
99

.017

.019

.87

.75

.95

.94

19.90
19.94
20.14
40.25
50.06

100.1

Table 7.7:

JOP
RI Linux
RI TS Linux

Jitter of periodic threads

Avg.

2,686
4,253

12,923

Std. Dev.

14
1,239
1,145

with RI/RTSJ

Min.

2,676
3,232

11,529

Max.

2,709
19,628
21,090

Table 7.8: Time for a thread switch in clock cycles

at periods below 20ms. This effect has also been observed in [19]. Larger periods
that are multiples of 10ms have very low jitter. However, using a period such as 35ms
shows a standard deviation of five ms. A detailed look into the collected samples only
shows values of 30 and 40ms. This implies a timer tick of 10ms in the underlying
operating system. No significant difference is observed when running this test on
the generic Linux kernel and the TimeSys kernel. The commercial version of the
TimeSys Linux kernel should perform better as the resolution of the timer tick is
lms and a programmable time can be used for periodic threads. However, it was not
possible to obtain a license to evaluate the combination of JTime on the commercial
Linux kernel. Table 7.7 represents the measurements on the generic kernel. This
comparison shows the advantage of an adjustable timer interrupt over a fixed timer
tick.

Context Switch

This test setting consists of two threads. A low priority thread continuously
stores the current time in a shared variable. A high priority periodic thread
measures the time difference between this value and the time immediately af-
ter wai tForNextPeriod() . Table 7.8 gives the times for the context switch in
processor clock cycles.

7.3 PERFORMANCE 163

Avg. Std. Dev. Min. Max.

JOP 2,935 7 2,773 2,935
RI Linux 53,685 7,014 47,400 87,196
RITS Linux 69,273 7,832 63,060 101,292

Table 7.9: Dispatch latency of event handlers in clock cycles

This test did not produce the expected behavior from the RI on the generic Linux
kernel. When the low priority thread ran in this tight loop, the high priority thread was
not scheduled. After inserting aThread .y ie idO and an operating system call, such
as System. out . p ri nt () , in this loop, the test performed as expected. This indicates
a major problem in either the RI or the operating system scheduler. This problem did
not occur when the RI was run on the TimeSys Linux kernel. However, the context
switch time on the TimeSys kernel is three times longer than on the standard kernel.

Asynchronous Event Handler

In this test setting, a high priority event handler is triggered by a low priority pe-
riodic thread. As AsynchEventHandler performs poorly in the RI (see [19]), a
BoundAsynchEventHandler is used for the RI test program. The time elapsed
between the invocation of fi re () and the first statement of the event handler was
measured. Table 7.9 shows the elapsed times in clock cycles for JOP and the RTSJ
RI.

The time taken to dispatch an asynchronous event is similar to the context switch
time in JOP. This is to be expected as events are scheduled and dispatched as threads.
The minimum value only occurred in the first event, all following events having been
dispatched in the maximum time.

In the RI, the dispatch time is about 12 times larger than a context switch with a
significant variation in time. This indicates that the implementation of fi r e O and
the communication of the event to the underlying operating system are not optimal.
The time factor between context switch and event handling on the TimeSys kernel is
lower than on the standard kernel, but is nevertheless still significant.

Summary

In this section, we have compared the RTSJ on top of Linux with the implementation
of a simple real-time profile on top of JOP. The RTSJ addresses several issues relating
to the use of Java for real-time systems. However, the RTSJ is a specification too
large and complex to be implemented in small embedded systems. We therefore

164 7 RESULTS

use the simpler real-time profile for JOP. Tight integration of the real-time scheduler
with the supporting processor results in an efficient platform for Java in embedded
real-time systems. A performance comparison between this implementation and the
RTSJ showed that a dedicated Java processor without an underlying operating system
is more predictable than trying to adopt a general purpose OS for real-time systems.
Time will show if an implementation of the RTSJ on a real RTOS will outperform
the presented solution.

7.4 WCET

Worst-case execution time (WCET) estimates of tasks are essential for designing and
verifying real-time systems. WCET estimates can be obtained either by measurement
or static analysis. The problem with using measurements is that the execution times
of tasks tend to be sensitive to their inputs. As a rule, measurement does not guarantee
safe WCET estimates. Instead, static analysis is necessary for hard real-time systems.
Static analysis is usually divided into a number of different phases:

Path analysis generates the control flow graph (a directed graph of basic blocks) of
the program and annotates (manual or automatic) loops with bounds.

Low-level analysis determines the execution time of basic blocks obtained by the
path analysis. A model of the processor and the pipeline provides the execution
time for the instruction sequence.

Global low-level analysis determines the influence of hardware features such as
caches on program execution time. This analysis can use information from
the path analysis to provide less pessimistic values.

WCET Calculation collapses the control flow graph to provide the final WCET esti-
mate. Alternative paths in the graph are collapsed to a single value (the largest
of the alternatives) and loops are collapsed once the loop bound is known.

For the low-level analysis, a good timing model of the processor is needed. The main
problem for the low-level analysis is the execution time dependency of instructions in
modern processors that are not designed for real-time systems. JOP is designed to be
an easy target for WCET analysis. The WCET of each bytecode can be predicted in
terms of number of cycles it requires. There are no dependencies between bytecodes.

Each bytecode is implemented by microcode. We can obtain the WCET of a single
bytecode by performing WCET analysis at the microcode level. To prove that there
are no time dependencies between bytecodes, we have to show that no processor
states are shared between different bytecodes.

7.4 WCET 165

7.4.1 Microcode Path Analysis

To obtain the WCET values for the individual bytecodes we perform the path analysis
at the microcode level. First, we have to ensure that a number of restrictions (from
[78]) of the code are fulfilled:

• Programs must not contain unbounded recursion. This property is satisfied by
the fact that there exists no call instruction in microcode.

• Function pointers and computed gotos complicate the path analysis and
should therefore be avoided. Only simple conditional branches are available at
the microcode level.

• The upper bound of each loop has to be known. This is the only point that has
to be verified by inspection of the microcode.

To detect loops in the microcode we have to find all backward branches (e.g.
with a negative branch offset). The branch offsets can be found in a VHDL file
(offtbl .vhd) that is generated during microcode assembly. In the current imple-
mentation of the JVM there are ten different negative offsets. However, not each
offset represents a loop. Most of these branches are used to share common code. All
backward branches found in j vm. asm are summarized below:

• Three branches are found in the initialization code of the JVM. They are not
part of a bytecode implementation and can be ignored.

• Five branches are used by exceptions, the interrupt bytecode, and for the call
of Java implemented bytecodes. The target of these branches is found in the
implementation of i nvoke to share part of the microcode sequence. These
branches are therefore not part of a loop.

• One branch is found in the implementation of i mul to perform a fixed delay.
The iteration count for this loop is constant.

• Two backward branches share the same offset and are used in loops to move
data between the stack memory and main memory. This loop is not part of a
regular bytecode. It is contained in a system function used by the scheduler for
the task switch. The bound for this loop has to be determined in the scheduler
code.

A few bytecodes are implemented in Java. The implementation can be found in the
class com. j opdesi gn. sys . 3 VM and can be analyzed in the same way as application
code. The bytecodes id iv and i rem contain a constant loop. The bytecodes new

166 7 RESULTS

and anewarray contain loops to initialize (with zero values) new objects or arrays.
The loop is bound by the size of the object or array. The bytecode "lookupswi tch 6

performs a linear search through a table of branch offsets. The WCET depends on
the table size that can be found as part of the instruction.

As the microcode sequences are very short, the calculation of the control flow
graph for each bytecode is done manually.

7.4.2 Microcode Low-level Analysis

To calculate the execution time of basic blocks in the microcode, we need to establish
the timing of microcode instructions on JO P. All microcode instructions except wai t
execute in a single cycle, reducing the low-level analysis to a case of merely counting
the instructions.

The wai t instruction is used to stall the processor and wait for the memory subsys-
tem to finish a memory transaction. The execution time of the wai t instruction de-
pends on the memory system and, if the memory system is predictable, has a known
WCET. A main memory consisting of SRAM chips can provide this predictability
and this solution is therefore advised. The predictable handling of DMA, which is
used for the instruction cache fill, is explained in Section 5.8.3. The wait instruc-
tion is the only way to stall the processor. Hardware events, such as interrupts (see
Section 5.4.5), do not stall the processor.

Microcode is stored in on-chip memory with single cycle access. Each microcode
instruction is a single word long and there is no need for either caching or prefetching
at this stage. We can therefore omit performing a low-level analysis. No pipeline
analysis [28], with its possible unbound timing effects, is necessary.

7.4.3 Bytecode Independency

We have seen that all microcode instructions except wai t take one cycle to execute
and are therefore independent of other instructions. This property directly translates
to independency of bytecode instructions.

The wai t microcode instruction provides a convenient way to hide memory access
time. A memory read or write can be triggered in microcode (with stmra and stmwd)
and the processor can continue with microcode instructions. When the data from a
memory read is needed, the processor explicitly waits until it becomes available.

For a memory store, this wait can be deferred until the memory system is used
next. It is possible to initiate the store in a bytecode such as putf i el d and continue

6lookupswitch is one way of implementing the Java switch statement. The other bytecode, tableswitch,
uses an index in the table of branch offsets and has therefore a constant execution time.

7.4 WCET 167

with the execution of the next bytecode, even when the store has not been completed.
In this case, we introduce a dependency over bytecode boundaries, as the state of the
memory system is shared. To avoid these dependencies that are difficult to analyze,
each bytecode that accesses memory waits (preferably at the end of the microcode
sequence) for the memory system.

Furthermore, the deferring of wai t in a store operation results in an additional
wai t in every read operation. Since read operations are more frequent than write
operations (15% vs. 2.5%, see Section 5.1), the performance gain from the hidden
memory store is lost.

7.4.4 WCET of Bytecodes

The control flow of the individual bytecodes together with the basic block length (that
directly corresponds with the execution time) and the time for memory access result
in the WCET (and BCET) values of the bytecodes. These values can be found in
Appendix D.

7.4.5 Evaluation

We conclude this section with a worst and best case analysis of a classic example, the
Bubble Sort algorithm. The values calculated are compared with the measurements
of the execution time on JOP on all permutations of the input data. Figure 7.1 shows
the test program in Java. The algorithm contains two nested loops and one condition.
We use an array of five elements to perform the measurements for all permutations
(i.e. 5! = 120) of the input data. The number of iterations of the outer loop is one
less than the array size: c\ = N — 1, in this case four. The inner loop is executed
C2 = X;ii i — c\ (ci + l) /2 times, i.e. ten times in our example.

The compiled version, i.e. the bytecodes of the test program, split into basic blocks,
is given in Table 7.10. The fourth column contains the execution time of the byte-
codes and the basic blocks in clock cycles.

The annotated control flow graph (CFG) of the example is shown in Figure 7.4.
The edges contain labels showing how often the path between two nodes is taken.
We can identify the outer loop, containing the blocks B2, B3, B4 and B8. The inner
loop consists of blocks B4, B5, B6 and B7. Block B6 is executed when the condition
of the i f statement is true. The path from B5 to B7 is the only path that depends on
the input data.

168 7 RESULTS

final static int N = 5;

static void sort(int[] a) {

int i , j , vl, v2;
/ / loop count = N—l
for (i=N-l; i>0; —i) {

/ / loop count = (N-l)*N/2
for (j=l; j<=i ; ++j) {

vl = a[j- l];
v2 = a[j];
if (vl > v2) {

a[j] = vl;
a[j-l] = v2;

Listing 7.1: Bubble Sort in Java

7.4 WCET

Block

Bl

B2

B3

B4

B5

B6

Addr.

0:
1:

2:
3:

6:
7:

8:
9:
10:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
24:
25:
27:

30:
31:
32:
33:
34:
35:
36:

Bytecode

iconst_4
istore_ 1

iload_l
ifle53

iconst.l
istore_2

iload_2
iload_l
iLicmpgt 47

aload_0
iload_2
iconst.l
isub
iaload
istore_3
aload_0
iload_2
iaload
istore 4
iload_3
iload 4
if_icmple 41

aload.O
iload_2
iload_3
iastore
aload_0
iload_2
iconst_l

Cycles

2
1
1
5
1
4
2
1
1
6
1
1
4

74
1
1
1
1

29
1
1
1

29
2
1
2
4

73
1
1
1

32
1
1
1

WCET
Count

1

5

4

14

10

10

Total

2

25

8

84

740

730

169

BCET
Count

1

5

4

14

10

0

Total

2

25

8

84

740

0

Table 7.10: WCET and BCET in clock cycles of the Bubble Sort test program

170 7 RESULTS

WCET BCET
Block Addr. Bytecode Cycles Count Total Count Total

B7 15 10 150 10 150

37:
38:
40:

41:
44:

47:
50:

isub
iload 4
iastore

iinc 2, 1
goto 8

iinc 1, -1
goto 2

1
2

32
15
11
4

15
11
4

B8 15 4 60 4 60

B9 1 1
53: return

Execution time calculated 1,799 1,069
Execution time measured 1,799 1,069

Table 7.10: WCET and BCET in clock cycles of the Bubble Sort test program

The values in the fifth and seventh columns (Count) of Table 7.10 are derived from
the CFG and show how often the basic blocks are executed in the worst and best
cases. The WCET and BCET value for each block is calculated by multiplying the
clock cycles by the execution frequency. The overall WCET and BCET values are
calculated by summing the values of the individual blocks Bl to B8. The last block
(B9) is omitted, as the measurement does not contain the return statement.

The execution time of the program is measured using the cycle counter in JOP.
The current time is taken at both the entry of the method and at the end, resulting
in a measurement spanning from block Bl to the beginning of block B9. The last
statement, the re turn , is not part of the measurement. The difference between these
two values (less the additional 8 cycles introduced by the measurement itself) is given
as the execution time in clock cycles (the last row in Table 7.10). The measured
WCET and BCET values are exactly the same as the calculated values.

In Figure 7.5, the measured execution times for all 120 permutations of the input
data are shown. The vertical axis shows the execution time in clock cycles and the
horizontal axis the number of the test run. The first input sample is an already sorted
array and results in the lowest execution time. The last sample is the worst-case value
resulting from the reversely ordered input data. We can also see the 11 different exe-
cution times that result from executing basic block B6 (which performs the element
exchange and takes 73 clock cycles) between 0 and 10 times.

7.4 WCET 171

Figure 7.4: The control flow graph of the Bubble Sort example

172 7 RESULTS

1900

77 1800

"ü 1700
o

•g 1600
_o
<L 1500
u
E 1400

1300 -—<

o 1200

UJ 1100

1000

•
• • t^

• • • • • « •
• • • • • • • «4»

«+• • •
«• •

• • • «

•

• • •
• • • •

•4»

• •

» «

4M

• • •

M>
•

«

•

4

•

• • i
4M" •

• • • • •
»• • •

•

• •

•

• 4

• • •

M»

20 40 60 80

Experiment number

100 120

Figure 7.5: Execution time in clock cycles of the Bubble Sort program

This example has demonstrated that JOP is a simple target for the WCET analysis.
Most bytecodes have a single execution time (WCET = BCET), and the WCET of a
task depends only on the control flow. No pipeline or data dependencies complicate
the low-level part of the WCET analysis.

7.5 Applications

During the research for this thesis, the first working version of JOP was used in a real-
world application. Using an architecture under development in a commercial project
entails risks. Nevertheless, this was deemed to be the best way to prove the feasibility
of the processor. In this section, the experiences of the first project involving JOP are
summarized.

7.5.1 Motor Control

In rail cargo, a large amount of time is spent on loading and unloading of goods
wagons. The contact wire above the wagons is the main obstacle. Balfour Beatty
Austria developed and patented a technical solution, the so-called Kippfahrleitung,
to tilt up the contact wire. This is done on a line up to one kilometer. An asynchrony
motor on each mast is used for this tilting. However, it has to be done synchronously
on the whole line.

Each motor is controlled by an embedded system. This system also measures the

7.5 APPLICATIONS 173

Figure 7.6: Picture of a Kippfahrleitung mast in down and up position

position and communicates with a base station. Figure 7.6 shows the mast with the
motor and the control system in the 'down' and 'up' positions. The base station has
to control the deviation of individual positions during the tilt. It also includes the user
interface for the operator. In technical terms, this is a distributed, embedded real-time
control system, communicating over an RS485 network.

Real Hardware

Although this system is not mass-produced, there were nevertheless cost constraints.
Even a small FPGA is more expensive than a general purpose CPU. To compensate
for this, additional chips for the memory and the FPGA configuration were optimized
for cost. One standard 128KB Flash was used to hold FPGA configuration data, the
Java program and a logbook. External main memory was reduced to 128KB with an
8-bit data bus.

To reduce external components, the boot process is a little complicated. A watch-
dog circuit delivers a reset signal to a 32 macro-cell PLD. This PLD loads the con-
figuration data into the FPGA. When the FPGA starts, it disables the PLD and loads
the Java program from the Flash into the external RAM. After the JVM is initialized,
the program starts at mai n () .

The motor is controlled by silicon switches connected to the FPGA with opto cou-

174 7 RESULTS

piers. The position is measured with two end sensors and a revolving sensor. The
processor supervises the voltage and current of the motor supply. A display and key-
board are attached to the base station for user interface. The communication bus (up
to one kilometer) is attached via an isolated RS485 data interface.

Synthesized Hardware

The following I/O modules were added to the JOP core in the FPGA:

• Timer

• UART for debugging

• UART with FIFO for the RS485 line

• Four sigma delta ADCs

• I/O ports

Five switches in the power line needed to be controlled by the program. A wrong
setting of the switches due to a software error could result in a short circuit. Ensur-
ing that this could not happen was a straightforward task at the VHDL level. The
sigma-delta ADCs are used to measure the temperature of the silicon switches and
the current through the motor.

Software Architecture

The main task of the program was to measure the position using the revolving sensor
and communicate with the base station. This has to be done under real-time con-
straints. This is not a very complicated task. However, at the time of development,
many features from a full-blown JVM implementation, such as threads or objects,
were missing in JOR The resulting Java was more like a tiny Java. It had to be kept
in mind which Java constructs were supported by JOR Because there was no multi-
threading capability, and in the interests of simplicity, a simple infinite loop with
constant time intervals was used. Listing 7.2 shows the simplified program structure.
After initialization and memory allocation, this loop was entered and did never exit.

Communication

Communication is based on a client server structure. Only the base station is allowed
to send a request to a single mast station. This station is then required to reply. The
maximum reply time is bounded by two time intervals. The base station handles

7.5 APPLICATIONS 175

public static void main(String[] args) {

ini tO;
Timer.startO ;
foreverO ;
/ / this point is NEVER reached

private static void foreverO {

for (;;) {
Msg.loopO ;
Triac.loopO ;
i f (Msg. avail able) {

handleMsgO ;
} else {

chkMsgTimeoutC);
}
handleWatchDogO;
Timer.waitForNextlnterval();

Listing 7.2: Simplified program structure

176 7 RESULTS

timeout and retry. If an irrecoverable error occurs, the base station switches off the
power to the mast stations, including the power supply to the motor. This is the safe
state of the whole system.

From the mast station perspective, every mast station supervises the base station.
The base station is required to send requests on a regular basis. If this requirement
is violated, the mast station switches off its motor. The data is exchanged in small
packets of four bytes, including a one-byte CRC. To simplify the development, com-
mands to program the Flash in the mast stations and force a reset were included. It
is therefore possible to update the program, or even change the FPGA configuration,
over the network.

7.5.2 Further Projects

TAL, short for TeleAlarm, is a remote tele-control and data logging system. TAL
communicates via a modem or an Ethernet bus with a SCADA system or via SMS
with a mobile phone. For this application, a minimal TCP/IP stack needed to be
implemented. This stack was the reason for implementing threads and a simple real-
time system in JOP.

Another application of JOP is in a communication device with soft real-time prop-
erties - Austrian Railways' (ÖBB) new security system for single-track lines. Each
locomotive is equipped with a GPS receiver and a communication device. The posi-
tion of the train, differential correction data for GPS and commands are exchanged
with a server at the central station over a GPRS virtual private network. JOP is the
heart of the communication device in the locomotive. The flexibility of the FPGA
and an Internet connection to the embedded system make it possible to upgrade the
software and even the processor in the field.

7.6 Summary

In this chapter, we presented an evaluation of JOP. We have seen that JOP is the
smallest hardware realization of the JVM available to date. Due to the efficient im-
plementation of the stack architecture, JOP is also smaller than a comparable RISC
processor in an FPGA. Implemented in an FPGA, JOP has the highest clock fre-
quency of all known Java processors.

We compared JOP against several embedded Java systems and, as a reference, with
Java on a standard PC. A Java processor is up to 500 times faster than an interpreting
JVM on a standard processor for an embedded system. JOP is about six times faster

7.6 SUMMARY 177

than the aJ80 Java processor and as fast as the aJlOO7. Preliminary results using
compiled Java for a RISC processor in an FPGA, with a similar resource usage and
maximum clock frequency to JOP, showed that native execution of Java bytecodes is
faster than compiled Java.

We compared the basic properties of the real-time scheduler on JOP against the
RTSJ implementation on Linux. The integration of the scheduler in the JVM, and
the timer interrupt under scheduler control, results in an efficient platform for Java
in embedded real-time systems. JOP performs better and more predictably than the
reference implementation of the RTSJ under Linux.

We also performed WCET analysis of the implemented JVM at the microcode
level. This analysis provides the WCET and BCET values for the individual byte-
codes. We have also shown that there are no dependencies between individual byte-
codes. This feature, in combination with the method cache (see Section 5.8), makes
JOP an easy target for low-level WCET analysis of Java applications.

Usage of JOP in three real-world applications showed that the processor is mature
enough to be used in commercial projects.

7The measured aJlOO system contained faster SRAMs than the FPGA board for JOP.

8 Conclusions

In this chapter we will undertake a short review of the thesis and summarize the
contributions. Java for real-time systems is a very new and active research area. This
chapter is completed by suggestions for future research, based on the proposed Java
processor.

8.1 Conclusions

In the following list, we draw conclusions about the Java processor presented in this
thesis, in relation to the problem stated in Section 3.4:

1. A time-predictable Java platform has been demonstrated. As shown in Sec-
tion 5.7 and 5.8, the architectural design decisions and a time-predictable cache
provide the basis for a time-predictable Java processor. In Section 7.4, it was
shown that all bytecodes have a known WCET and there are no pipeline de-
pendencies. JOP's architecture can therefore be modeled cycle-accurately for
the low-level WCET analysis.

2. The implementation of a RISC-style stack architecture, with a novel mapping
of Java bytecodes to microcode addresses (see Section 5.3), and the analysis
of the JVM stack usage pattern (see Section 5.5) with the resource-efficient
two-level stack cache resulted in a small design. In fact, JOP is the smallest
implementation of the JVM in hardware available to date.

3. The usage of JOP in real-world applications, as described in Section 7.5, shows
that JOP is a working processor and not only a theoretical architecture.

4. Comparing JOP with various embedded Java solutions in Section 7.3 showed
that the time-predictable processor architecture does not need to be slow. JOP's
average performance is similar to that of non real-time Java systems.

5. The flexibility of an FPGA allows for a HW/SW-co-design approach, with the
aim of generating application-specific configurations of JOP.

180 8 CONCLUSIONS

6. In Section 6.1, a simple real-time profile for Java was defined. This profile
solves a number of issues that arise from using standard Java for real-time sys-
tems. This profile was elaborated upon in Section 6.2 to create a framework for
a user-defined scheduler in Java, thus enabling the implementation of advanced
scheduling concepts at the application level.

8.2 Summary of Contributions

The research contributions made by this thesis are related to two areas: real-time Java
and resource-constrained embedded systems.

A Real-Time Java Processor

The goal of time-predictable execution of Java programs was a first-class guiding
principle throughout the development of JOP:

• The execution time for Java bytecodes can be exactly predicted in terms of
the number of clock cycles. JOP is therefore a straightforward target for low-
level WCET analysis. There is no mutual dependency between consecutive
bytecodes that could result in unbounded timing effects.

• In order to provide time-predictable execution of Java bytecodes, the proces-
sor pipeline is designed without any prefetching or queuing. This fact avoids
hard-to-analyze and possibly unbounded pipeline dependencies. There are no
pipeline stalls, caused by interrupts or the memory subsystem, to complicate
the WCET analysis.

• A pipelined processor architecture calls for higher memory bandwidth. A
standard technique to avoid processing bottlenecks due to the higher mem-
ory bandwidth is caching. However, standard cache organizations improve the
average execution time but are difficult to predict for WCET analysis. Two
time-predictable caches are proposed for JOP: a stack cache as a substitution
for the data cache and a method cache to cache the instructions.

As the stack is a heavily accessed memory region, the stack - or part of it - is
placed in local memory. This part of the stack is referred to as the stack cache
and described in Section 5.5. Fill and spill of the stack cache is subjected to
microcode control and therefore time-predictable.

In Section 5.8, a novel way to organize an instruction cache, as method cache,
is given. The cache stores complete methods, and cache misses only occur on

8.2 SUMMARY OF CONTRIBUTIONS 18J_

method invocation and return. Cache block replacement depends on the call
tree, instead of instruction addresses. This method cache is easy to analyze
with respect to worst-case behavior and still provides substantial performance
gain when compared against a solution without an instruction cache.

• The above described time-predictable processor provides the basis for real-time
Java. The issues with standard Java and the Real-Time Specification for Java
were analyzed in Chapter 4. To enable real-time Java to operate on resource-
constrained devices, a simple real-time profile was defined in Section 6.1 and
implemented in Java on JOP. The beauty of this approach is in implementing
functions usually associated with an RTOS in Java. This means that real-time
Java is not based on an RTOS, and therefore not restricted to the functionality
provided by the RTOS. With JOP, a self-contained real-time system in pure
Java becomes possible.

The tight integration of the scheduler and the hardware that generates schedule
events results in low latency and low jitter of the task dispatch.

• The defined real-time profile suggests a new way to handle hardware interrupts
to avoid interference between blocking device drivers and application tasks.
Hardware interrupts other than the timer interrupt are represented as asyn-
chronous events with an associated thread. These events are normal schedu-
lable objects and subject to the control of the scheduler. With a minimum
interarrival time, these events, and the associated device drivers, can be incor-
porated into the priority assignment and schedulability analysis in the same
way as normal application tasks.

The above-described contributions result in a time-predictable execution environ-
ment for real-time applications written in Java, without the resource implications and
unpredictability of a JIT-compiler. The proposed processor architecture is a straight-
forward target for low-level WCET analysis.

Implementing a real-time scheduler in Java opens up new possibilities. The sched-
uler is extended to provide a framework for user-defined scheduling in Java. In Sec-
tion 6.2, we analyzed which events are exposed to the scheduler and which functions
from the JVM need to be available in the user space. A simple-to-use framework to
evaluate new scheduling concepts is given.

A Resource-Constrained Processor

Embedded systems are usually very resource-constrained. Using a low-cost FPGA as
the main target technology forced the design to be small. The following architectural

182 8 CONCLUSIONS

features address this issue:

• The architecture of JOP is best described as:

The JVM is a CISC stack architecture, whereas JOP is a RISC stack
architecture.

JOP contains its own instruction set, called microcode in this thesis, with a
novel way of mapping bytecodes to microcode addresses. This mapping has
zero overheads as described in Section 5.3. Basic bytecode instructions have a
one-to-one mapping to microcode instructions and therefore execute in a single
cycle. The stack architecture allows compact encoding of microinstructions in
8 bit to save internal memory.

This approach allows flexible implementation of Java bytecodes in hardware,
as a microcode sequence or even in Java itself.

• The analysis of the JVM stack usage pattern in Section 5.5 led to the design
of a resource-efficient two-level stack cache. This two-level stack cache fits to
the embedded memory technologies of current FPGAs and ASICs and ensures
fast execution of basic instructions.

Part of the stack cache, which is implemented in an on-chip memory, is also
used for microcode variables and constants. This resource sharing does not
only reduce the number of memory blocks needed for the processor, but also
the number of data paths to and from the execution unit.

• Interrupts are considered hard to handle in a pipelined processor, resulting in
a complex (and therefore resource consuming) implementation. In JOP, the
above mentioned bytecode-microcode mapping is used in a clever way to avoid
interrupt handling in the core pipeline. Interrupts generate special bytecodes
that are inserted in a transparent way in the bytecode stream. Interrupt han-
dlers can be implemented in the same way as bytecodes are implemented: in
microcode or in Java.

The above design decisions where chosen to keep the size of the processor small
without sacrificing performance. JOP is the smallest Java processor available to date
that provides the basis for an implementation of the CLDC specification (see Sec-
tion 4.3.1). JOP is a fast execution environment for Java, without the resource im-
plications and unpredictability of a JIT-compiler. The average performance of JOP is
similar to that of mainstream, non real-time Java systems.

JOP is a flexible architecture that allows different configurations for different appli-
cation domains. Therefore, size can be traded against performance. As an example,

8.3 FUTURE RESEARCH DIRECTIONS 183

resource intensive instructions, such as floating point operations, can be implemented
in Java. The flexibility of an FPGA implementation also allows adding application-
specific hardware accelerators to JOP.

The small size of the processor allows usage of low-cost FPGAs in embedded sys-
tems that can compete against standard microcontroller. JOP has been implemented
in several different FPGA families and is used in different real-world applications.

Programs for embedded and real-time systems are usually multi-threaded and a
small design provides a path to a multi-processor system in a mid-sized FPGA or in
an ASIC.

A tiny architecture also opens new application fields when implemented in an
ASIC. Smart sensors and actuators, for example, are very sensitive to cost, which
is proportional to the die area.

8.3 Future Research Directions

JOP provides a basis for various directions for future research. Some suggestions are
given below:

Real-time garbage collector: In Section 6.1, a real-time profile was defined that
avoids the unpredictability of a garbage collector. However, there have been
advances in the research field of real-time GCs. Hardware support of a real-
time GC would be an interesting topic for further research.

Another question that remains with a real-time GC is the analysis of the
worst-case memory consumptions of tasks (similar to the WCET values), and
scheduling the GC so that it can keep up with the allocation rate.

Hardware accelerator: The flexibility of an FPGA implementation of a processor
opens up new possibilities for hardware accelerators. We have shown in Sec-
tion 5.6 how the implementation of a bytecode can be moved between hard-
ware and software. A further step would be to generate an application specific-
system in which part of the application code is moved to hardware. Ideally, the
hardware description should be extracted automatically from the Java source.
Preliminary work in this area, using JOP as its basis, can be found in [35].

Hardware scheduler: In JOP, scheduling and dispatch is done in Java (with some
microcode support). For tasks with very short periods, the scheduling over-
heads can prove to be too high. A scheduler implemented in hardware can
shorten this time, due to the parallel nature of the algorithm.

184 8 CONCLUSIONS

Multiprocessor JVM: In order to generate a small and predictable processor, sev-
eral advanced and resource-consuming features (such as instruction folding
or branch prediction) were omitted from the design. The resulting low re-
source usage of JOP makes it possible to integrate more than one processor in
an FPGA. Since embedded applications are naturally multi-threaded systems,
the performance can easily be enhanced using a multi-processor solution. A
multi-processor JVM with shared memory offers following research possibil-
ities: scheduling of Java threads and synchronization between the processors;
WCET analysis for the shared memory access.

Instruction cache: The cache solution proposed in Section 5.8 provides predictable
instruction cache behavior while, in the average case, still performing in a sim-
ilar way to a direct-mapped cache. However, an analysis tool for the worst-case
behavior is still needed. With this tool, and a more complex analysis tool for
traditional instruction caches, we also need to verify that the worst-case miss
penalty is lower than with a traditional instruction cache.

A second interesting aspect of the proposed method cache is the fact that the
replacement decision on a cache miss only occurs on method invoke and return.
The infrequency of this decision means that more time is available for more
advanced replacement algorithms.

Real-time Java: Although there is already a definition for real-time Java, i.e. the
RTSJ [8], this definition is not necessarily adequate. There is ongoing research
on how memory should be managed for real-time Java applications: scoped
memory, as suggested by the RTSJ, usage of a real-time GC, or application
managed memory through memory pools. However, almost no research has
been done into how the Java library which has proven a major part of Java's
success, can be used in real-time systems or how it can be adapted to do so.
The question of what the best memory management is for the Java standard
library remains unanswered.

Java computer: How would a processor architecture and operating system architec-
ture look in a 'Java only' system? Here, we need to rethink our approach to
processes, protection, kernel- and user-space, and virtual memory. The stan-
dard approach of using memory protection between different processes is nec-
essary for applications that are programmed in languages that use memory ad-
dresses as data, i.e. pointer usage and pointer manipulation. In Java, no mem-
ory addresses are visible and pointer manipulation is not possible. This very
important feature of Java makes Java a safe language. Therefore, an error-
free JVM means we do not need memory protection between processes and

8.3 FUTURE RESEARCH DIRECTIONS 185

we do not need to make a distinction between kernel and user space (with all
the overhead) in a Java system. Another reason for using virtual addresses is
link addresses. However, in Java this issue does not exist, as all classes are
linked dynamically and the code itself (i.e. the bytecodes) only uses relative
addressing.

Another issue here is the paging mechanism in virtual memory system, which
has to be redesigned for a Java computer. For this, we need to merge the vir-
tual memory management with the GC. It does not make sense to have a vir-
tual memory manager that works with plain (e.g. 4KB) memory pages without
knowledge about object lifetime. We therefore need to incorporate the virtual
memory paging with a generational GC. The GC knows which objects have not
been accessed for a long time and can be swapped out to the disc. Handling
paging as part of the GC process also avoids page fault exceptions and thereby
simplifies the processor architecture.

Another question is whether we can substitute the process notation with
threads, or whether we need several JVMs on a Java only system. It depends.
If we can live with the concept of shared static class members, we can substi-
tute heavyweight processes with lightweight threads. It is also possible that we
would have to define some further thread local data structures in the operation
system.

It is the opinion of the author that Java is a promising language for future real-time
systems. However, a number of issues remain to be solved. JOP, with its time-
predictable execution of Java bytecodes, is an important but nevertheless only a small
part of a real-time Java system.

Bibliography

[1] Georg Acher. JIFFY—Ein FPGA-basierter Java Just-in-Time Compiler für
eingebettete Anwendungen. PhD thesis, Technische Universität München, 2003.

[2] aJile Systems Inc. aJ-100 Real-time Low Power Java Processor, preliminary
data sheet, 2000.

[3] ARM. Jazelle - ARM Architecture Extensions for Java Applications, white
paper.

[4] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding Worst-Case
Instruction Cache Performance. In IEEE Real-Time Systems Symposium, pages
172-181, 1994.

[5] Iain Bate, Guillem Bernât, Greg Murphy, and Peter Puschner. Low-Level Anal-
ysis of a Portable Java Byte Code WCET Analysis Framework. In Proc. 7th
International Conference on Real-Time Computing Systems and Applications,
pages 39-48, Dec. 2000.

[6] Elliot Berk. JLex: A Lexical Analyzer Generator for Java. Available at
http://www.cs.princeton.edu/ appel/modern/java/JLex/.

[7] G. Bernât, A. Burns, and A. Wellings. Portable Worst-Case Execution Time
Analysis Using Java Byte Code. In Proc. 12th EUROMICRO Conference on
Real-time Systems, Jun 2000.

[8] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr, and
Mark Turnbull. The Real-Time Specification for Java. Java Series. Addison-
Wesley, June 2000.

[9] Ben Brosgol and Brian Dobbing. Real-time Convergence of Ada and Java. In
Proceedings of the 2001 annual ACM SIGAda international conference on Ada,
pages 11-26. ACM Press, 2001.

188 ' BIBLIOGRAPHY

[10] Alan Bums and Andrew J. Wellings. Real-Time Systems and Programming
Languages: ADA 95, Real-Time Java, and Real-Time POSIX. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[11] J. V. Busquets-Mataix, A. Wellings, J. J. Serrano, R. Ors, and P. Gil. Adding
Instruction Cache Effect to Schedulability Analysis of Preemptive Real-Time
Systems. In IEEE Real-Time Technology and Applications Symposium (RTAS
'96), pages 204-213, Washington - Brussels - Tokyo, June 1996. IEEE Com-
puter Society Press.

[12] Clemens Cap, Dirk Timmermann, Frank Golatowski, Hagen Ploog, Stephan
Preuss, and Thomas Geithner. Integration of Java processor core JSM into
SmartDev(ices). In Proceedings of the 8th IEEE International Conference on
Emerging Technologies and Factory Automation, Oktober 2001.

[13] Cyrille Comar, Gary Dismukes, and Franco Gasperoni. Targeting GNAT to the
Java Virtual Machine. In Proceedings of the conference on TRI-Ada '97, pages
149-161. ACM Press, 1997.

[14] Nazomi Communications. JA 108 Product Brief. Available at
http : //www.nazomi. com.

[15] Altéra Corporation. Nios Soft Core Embedded Processor, ver. 1. data sheet,
June 2000.

[16] Altéra Corporation. Cyclone FPGA Family Data Sheet, ver. 1.2, April 2003.

[17] Standard Performance Evaluation Corporation. The SPEC JVM98 Benchmark
Suite. Available at http://www.spec.org/, August 1998.

[18] Xilinx Corporation. MicroBlaze Processor Reference Guide, EDK v6.2 edition,
data sheet, December 2003.

[19] Angelo Corsaro and Douglas C. Schmidt. The Design and Performance of the
jRate Real-Time Java Implementation. In On the Move to Meaningful Internet
Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confederated International Con-
ferences DOA, CoopIS and ODBASE 2002, pages 900-921. Springer-Verlag,
2002.

[20] Angelo Corsaro and Douglas C. Schmidt. Evaluating Real-Time Java Features
and Performance for Real-Time Embedded Systems. In Proceedings of the
Eighth IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS'02), page 90. IEEE Computer Society, 2002.

BIBLIOGRAPHY 189

[21] Angelo Corsaro and Douglas C. Schmidt. The Design and Performance of Real-
Time Java Middleware. IEEE Transactions on Parallel and Distributed Systems,
14(11): 1155-1167, November 2003.

[22] Martin Delvai, Wolfgang Huber, Peter Puschner, and Andreas Steininger. Pro-
cessor Support for Temporal Predictability - The SPEAR Design Example.
In Proc. 15th Euromicro International Conference on Real-Time Systems, Jul.
2003.

[23] S. Dey, P. Sanchez, D. Panigrahi, L. Chen, C. Taylor, and K. Sekar. Using a
Soft Core in a SOC Design: Experiences with picoJava. IEEE Design and Test
of Computers, 17(3):60-71, July 2000.

[24] Brian Dobbing and Alan Burns. The Ravenscar Tasking Profile for High In-
tegrity Real-Time Programs. In Proceedings of the 1998 annual ACMSIGAda
international conference on Ada, pages 1-6. ACM Press, 1998.

[25] Tom Dowling, James Power, and John Waldron. Relating Static and Dynamic
Measurements for the Java Virtual Machine Instruction Set. In N.E. Mastorakis,
editor, Recent Advances in Simulation, Computational Methods and Soft Com-
puting. WSEAS Press, 2002.

[26] M. Eden and M. Kagan. The Pentium Processor with MMX Technology. In
Proceedings ofCompcon '97, pages 260-262. IEEE Computer Society, 1997.

[27] EJC. The EJC (Embedded Java Controller) platform. Available at
http : //www. embedded-web. com/index.html.

[28] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, 2002.

[29] S. Feizabadi, W. Beebee, B. Ravindran, P. Li, and M. Rinard. Utility Ac-
crual Scheduling with Real-Time Java. Lecture Notes in Computer Science,
2889:550-563, 2003.

[30] FLEX. FLEX, a compiler infrastructure written in Java for Java. Available at
http://www.flex-compiler.csail.mit.edu/.

[31] Vincent Gay-Para. KJC Kopi Java Compiler. Available at http://www.dms.at/.

[32] C. J. Glossner. The DEFLT-JAVA Engine. PhD thesis, Delft University of Tech-
nology, 2001.

190 BIBLIOGRAPHY

[33] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. The Java Series. Addison-Wesley, Boston, Mass.,
2000.

[34] David Gregg, James Power, and John Waldron. Benchmarking the Java Virtual
Architecture - The SPECJVM98 Benchmark Suite. In N. Vijaykrishnan and
M. Wolczko, editors, Java Microarchitectures, pages 1-18. Kluwer Academic,
2002.

[35] Flavius Guian, Per Andersson, Krzysztof Kuchcinski, and Martin Schoeberl.
Automatic Generation of Application-Specific Systems Based on a Micro-
programmed Java Core. In Proceedings of the 20th ACM Symposium on Applied
Computing, Embedded Systems track, Santa Fee, New Mexico, March 2005.

[36] Tom R. Halfhill. Imsys Hedges Bets on Java. Microprocessor Report, August
2000.

[37] D.S. Hardin. Real-Time Objects on the Bare Metal: An Efficient Hardware
Realization of the JavaTM Virtual Machine. In Proceedings of the Fourth In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing,
page 53. IEEE Computer Society, 2001.

[38] C.A. Healy, D.B. Whalley, and M.G. Harmon. Integrating the Timing Analysis
of Pipelining and Instruction Caching. In IEEE Real-Time Systems Symposium,
pages 288-297, 1995.

[39] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wil-
helm. The Influence of Processor Architecture on the Design and Results of
WCET Tools. Proceedings of the IEEE, 91(7): 1038-1054, Jul. 2003.

[40] John Hennessy and David Patterson. Computer Architecture: A Quantitative
Approach, 3rd ed. Morgan Kaufmann Publishers Inc., Palo Alto, CA 94303,
2002.

[41] Hitachi. Hitachi Single-Chip Microcomputer H8/3297 Series. Hardware Man-
ual.

[42] Imsys AB. ISAJ Reference 2.0, January 2001.

[43] Imsys AB. the Cjip Technical Reference Manual / V0.24, 2003.

[44] Derivation Systems Inc. LavaCORE Configurable Java Processor Core, data
sheet, April 2001.

BIBLIOGRAPHY 191

[45] S.A. Ito, L. Cairo, and R.P. Jacobi. Making Java Work for Microcontroller
Applications. IEEE Design & Test of Computers, 18(5): 100-110, 2001.

[46] E. Douglas Jensen. A Proposed Initial Approach to Distributed Real-Time
Java. In Third IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2000), pages 2-6, March 2000.

[47] Nilsen K., Carnahan L., and Ruark M. Requirements for Real-Time Exten-
sions for the Java Platform. Available at http://www.nist.gov/rt-java/, Septem-
ber 1999.

[48] Kaffe. Kaffe, a complete virtual machine and class library set which allows the
execution of Java code. Available at http://www.kaffe.org.

[49] K. B. Kent. The Co-Disgn of Virtual Machines Using Reconfigurable Hardware.
PhD thesis, University of Victoria, 2003.

[50] A. Kim and J. M. Chang. Designing a Java Microprocessor Core using FPGA
Technology. IEE Computing & Control Engineering Journal, 11(3): 135—141,
June 2000.

[51] M. H. Klein, T. Ralya, B. Pollak, and R. Obenza. A Practitioner's Handbook for
Real-Time Analysis : Guide to Rate Monotonie Analysis for Real-Time Systems.
Kluwer Academic Publ., Boston, MA, USA, 1993.

[52] Phillip Koopman. Stack Computers: The New Wave. Ellis Horwood, 1989. Out
of print, now available over the internet.

[53] Andreas Krall. Efficient JavaVM Just-in-Time Compilation. In Proceedings
of the 1998 International Conference on Parallel Architectures and Compila-
tion Techniques (PACT '98), pages 205-212, Paris, October 12-18, 1998. IEEE
Computer Society Press.

[54] Andreas Krall and Reinhard Grafl. CACAO - A 64 bit JavaVM Just-in-Time
Compiler. In Geoffrey C. Fox and Wei Li, editors, PPoPP '97 Workshop on Java
for Science and Engineering Computation, Las Vegas, June 1997. ACM.

[55] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and Th. Ungerer. Real-
time Event-handling and Scheduling on a Multithreaded Java microcontroller.
Microprocessors and Microsystems, 27(1) : 19-31, 2003.

[56] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-Java: A High Integrity
Profile for Real-Time Java. In Proceedings of the 2002 joint ACM-ISCOPE
conference on Java Grande, pages 131-140. ACM Press, 2002.

192 BIBLIOGRAPHY

[57] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha,
Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis
of Cache-Related Preemption Delay in Fixed-Priority Preemptive Scheduling.
IEEE Trans. Comput., 47(6):700-713, 1998.

[58] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance Estima-
tion of Embedded Software with Instruction Cache Modeling. In Proceedings
of the 1995 IEEE/ACM international conference on Computer-aided design,
pages 380-387. IEEE Computer Society, 1995.

[59] Kwei-Jay Lin and Yu-Chung Wang. The Design and Implementation of Teal-
Time Schedulers in RED-linux. Proceedings of the IEEE, 91(7): 1114-1130,
July 2003.

[60] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Ad-
dison-Wesley, Reading, MA, USA, second edition, 1999.

[61] C. L. Liu and James W. Lay land. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. J. ACM, 20(l):46-61, 1973.

[62] Digital Communication Technologies Ltd. Lightfoot 32-bit Java Processor
Core, data sheet, September 2001.

[63] Vulcan ASIC Ltd. Moon vl.0. data sheet, January 2000.

[64] Vulcan ASIC Ltd. Moon2 - 32 Bit Native Java Technology-Based Processor,
product folder, 2003.

[65] Sun Microsystems. A Brief History of the Green Project. Available at:
http : //today.j ava. net/j ag/o Id/green/.

[66] Sun Microsystems. Java 2 Platform, Micro Edition (J2ME). Available at:
http://java.sun.com/j2me/docs/.

[67] Sun Microsystems. Java Technology: The Early Years. Available at:
http://java.sun.com/fearures/1998/05/birthday.html.

[68] Chuck Moore. ShBoom on ShBoom: A Microcosm of Software and Hardware
Tools. In Proceedings 1990 Rochester Forth Conference, pages 21-27, New
York, June 1990.

[69] M. Mrva, K. Buchenrieder, and R. Kress. A scalable architecture for multi-
threaded JAVA applications. In Proceedings of the conference on Design, au-
tomation and test in Europe, pages 868-874. IEEE Computer Society, 1998.

BIBLIOGRAPHY 193

[70] Albert F. Niessner and Edward G. Benowitz. RTS J Memory Areas and Their Af-
fects on the Performance of a Flight-Like Attitude Control System. In Workshop
on Java Technologies for Real-Time and Embedded Systems (JTRES), LNCS,
2003.

[71] K. Nilsen and S. Lee. PERC Real-Time API (Draft 1.3). NewMonics, July
1998.

[72] Anders Nilsson. Compiling Java for Real-Time Systems. Licentiate thesis,
Dept. of Computer Science, Lund University, May 2004.

[73] J. Michael O'Connor and Marc Tremblay. picoJava-I: The Java Virtual Machine
in Hardware. IEEE Micro, 17(2):45-53, 1997.

[74] Krzysztof Palacz, Jason Baker, Chapman Flack, Christian Grothoff, Hiroshi
Yamauchi, and Jan Vitek. Engineering a Customizable Intermediate Represen-
tation. In ACM SIGPLAN 2003 Workshop on Interpreters, Virtual Machines
and Emulators (IVME2003). ACM SIGPLAN, 2003.

[75] Matthias Pfeffer. Ein echtzeitföhiges Java-System för einen mehrfadigen Java-
Mikrocontroller. PhD thesis, University of Augsburg, 2000.

[76] James Power and John Waldron. A Method-Level Analysis of Object-Oriented
Techniques in Java. Technical Report NUIM-CS-TR-2002-07, Department of
Computer Science, NUI Maynooth, Ireland, 2002.

[77] PTSC. IGNITE Processor Brochure, Rev 1.0. Available at
http://www.ptsc.com.

[78] P. Puschner and Ch. Koza. Calculating the Maximum Execution Time of Real-
Time Programs. Real-Time Syst., 1(2):159-176, 1989.

[79] P. Puschner and A. J. Wellings. A Profile for High Integrity Real-Time Java
Programs. In 4th IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC), 2001.

[80] R. Radhakrishnan. Microarchitectural Techniques to Enable Efficient Java Ex-
ecution. PhD thesis, University of Texas at Austin, 2000.

[81] Ramesh Radhakrishnan, N. Vijaykrishnan, Lizy Kurian John, Anand Sivasubra-
maniam, Juan Rubio, and Jyotsna Sabarinathan. Java Runtime Systems: Char-
acterization and Architectural Implications. IEEE Trans. Comput., 50(2): 131-
146,2001.

194 BIBLIOGRAPHY

[82] Mario Aldea Rivas and Michael Gonzalez Harbour. POSIX-Compatible
Application-Defined Scheduling in MaRTE OS. In Proceedings of the 14th Eu-
romicro Conference on Real-Time Systems, page 67. IEEE Computer Society,
2002.

[83] Martin Schoeberl. Using a Java Optimized Processor in a Real World Applica-
tion. In Proceedings of the First Workshop on Intelligent Solutions in Embedded
Systems (WISES 2003), pages 165-176, Austria, Vienna, June 2003.

[84] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Trans. Comput., 39(9): 1175-
1185, 1990.

[85] Jose Solorzano. leJOS: Java based OS for Lego RCX. Available at:
http://lejos.sourceforge.net/.

[86] International J Consortium Specification. Real-Time Core Extensions, Draft
1.0.14. Available at http://www.j-consortium.org/, September 2000.

[87] International J Consortium Specification. Real-Time Data Access, Release 1.0.
Available at http://www.j-consortium.org/, November 2001.

[88] John A. Stankovic. Misconceptions About Real-Time Computing: A Serious
Problem for Next-Generation Systems. Computer, 21(10): 10-19, 1988.

[89] Sun. picoJava-II Microarchitecture Guide. Sun Microsystems, March 1999.

[90] Sun. picoJava-II Programmer's Reference Manual. Sun Microsystems, March
1999.

[91] Systronix. JStamp Real-Time Native Java Module, data sheet.

[92] TimeSys. Linux RTOS Standard Edition. Available at http://www.timesys.com/.

[93] TimeSys. Real-Time Specification for Java, Reference Implementation. Avail-
able at http://www.timesys.com/.

[94] A. Wellings, R. Clark, D. Jensen, and D. Wells. A Framework for Integrating
the Real-Time Specification for Java and Java's Remote Method Invocation, hi
5th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2002), pages 13-22, April 2002.

[95] R. Zulauf. Entwurf eines Java-Mikrocontrollers und prototypische Implemen-
tierung auf einem FPGA. Master's thesis, University of Karlsruhe, 2000.

A Publications

1. Martin Schoeberl. Using a Java Optimized Processor in a Real World Applica-
tion. In Proceedings of the First Workshop on Intelligent Solutions in Embed-
ded Systems (WISES 2003), pages 165-176, Austria, Vienna, June 2003.

2. Martin Schoeberl. Design Decisions for a Java Processor. In Tagungsband
Austrochip 2003, pages 115-118, Linz, Austria, October 2003.

3. Martin Schoeberl. JOP: A Java Optimized Processor. In R. Meersman, Z. Tari,
and D. Schmidt, editors, On the Move to Meaningful Internet Systems 2003:
Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES
2003), volume 2889 of Lecture Notes in Computer Science, pages 346-359,
Catania, Italy, November 2003. Springer.

4. Martin Schoeberl. Restrictions of Java for Embedded Real-Time Systems.
In Proceedings of the 7th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2004), pages 93-100, Vienna, Aus-
tria, May 2004.

5. Martin Schoeberl. Design Rationale of a Processor Architecture for Predictable
Real-Time Execution of Java Programs. In Proceedings of the 10th Interna-
tional Conference on Real-Time and Embedded Computing Systems and Ap-
plications (RTCSA 2004), Gothenburg, Sweden, August 2004.

6. Martin Schoeberl. Real-Time Scheduling on a Java Processor. In Proceedings
of the 10th International Conference on Real-Time and Embedded Computing
Systems and Applications (RTCSA 2004), Gothenburg, Sweden, August 2004.

7. Martin Schoeberl. Java Technology in an FPGA. In Proceedings of the Inter-
national Conference on Field-Programmable Logic and its applications (FPL
2004), Antwerp, Belgium, August 2004.

8. Martin Schoeberl. A Time Predictable Instruction Cache for a Java Proces-
sor. In Robert Meersman, Zahir Tari, and Angelo Corsario, editors, On the
Move to Meaningful Internet Systems 2004: Workshop on Java Technologies
for Real-Time and Embedded Systems (JTRES 2004), volume 3292 of Lecture

196 A PUBLICATIONS

Notes in Computer Science, pages 371-382, AgiaNapa, Cyprus, October 2004.
Springer.

9. Flavius Guian, Per Andersson, Krzysztof Kuchcinski, and Martin Schoeberl.
Automatic Generation of Application-Specific Systems Based on a Micro-
programmed Java Core. To appear in Proceedings of the 20th ACM Sympo-
sium on Applied Computing, Embedded Systems track, Santa Fee, New Mex-
ico, March 2005.

10. Martin Schoeberl. Design and Implementation of an Efficient Stack Machine.
To appear in Proceedings of the 12th IEEE Reconfigurable Architecture Work-
shop (RAW2005), Denver, Colorado, USA, April 2005. IEEE.

B Acronyms

ADC Analog to Digital Converter
ALU Arithmetic and Logic Unit
ASIC Application-Specific Integrated Circuit
BCET Best Case Execution Time
CFG Control Flow Graph
CISC Complex Instruction Set Computer
CLDC Connected Limited Device Configuration
CPI average Clock cycles Per Instruction
CRC Cyclic Redundancy Check
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
EDF Earliest Deadline First
EMC Electromagnetic Compatibility
ESD Electrostatic Discharge
FIFO Fist In, First Out
FPGA Field Programmable Gate Array
GC Garbage Collect(ion/or)
IC Instruction Count
ILP Instruction Level Parallelism
JOP Java Optimized Processor
J2ME Java2 Micro Edition
J2SE Java2 Standard Edition
JDK Java Development Kit
JIT Just-In-Time
JVM Java Virtual Machine
LC Logic Cell
LRU Least-Recently Used
MBIB Memory Bytes read per Instruction Byte
MCIB Memory Cycles per Instruction Byte
MP Miss Penalty
MTIB Memory Transactions per Instruction Byte
MUX Multiplexer

198 B ACRONYMS

OO Object Oriented
OS Operating System
RISC Reduced Instruction Set Computer
RT Real-Time
RTOS Real-Time Operating System
RTSJ Real-Time Specification for Java
SCADA Supervisory Control And Data Acquisition
SDRAM Synchronous DRAM
SRAM Static Random Access Memory
TOS Top Of Stack
UART Universal Asynchronous Receiver/Transmitter
VHDL Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language
WCET Worst-Case Execution Time

C JOP Instruction Set

The instruction set of JOP, the so-called microcode, is described in this appendix.
Each instruction consists of a single instruction word (8 bits) without extra operands
and executes in a single cycle1. Table C.I lists the registers and internal memory
areas that are used in the dataflow description.

Name Description

A Top of the stack
B The element one below the top of stack
stack[] The stack buffer for the rest of the stack
sp The stack pointer for the stack buffer
vp The variable pointer. Points to the first local in the stack buffer
pc Microcode program counter
offtbl Table for branch offsets
jpc Program counter for the Java bytecode
opd 8 bit operand from the bytecode fetch unit
opdi6 16 bit operand from the bytecode fetch unit
ioar Address register of the 10 subsystem
memrda Read address register of the memory subsystem
memwra Write address register of the memory subsystem
memrdd Read data register of the memory subsystem
memwrd Write data register of the memory subsystem
mula, mulb Operands of the hardware multiplier
muh- Result register of the hardware multiplier
member Bytecode address and length register of the memory subsystem
bestart Method start address register in the method cache

Table C.1 : JOP hardware registers and memory areas

'The only multicycle instruction is wait and depends on the access time of the external memory

200 C JOP INSTRUCTION SET

pop

Operation Pop the top operand stack value

Opcode 00000000

Dataflow B -> A
stack[sp] —> B
sp — 1 —» sp

JVM equivalent pop

Description Pop the top value from the operand stack.

and

Operation Boolean AND i nt

Opcode 00000001

Dataflow
stack[sp) —> B

JVM equivalent i and

Description Build the bitwise AND (conjunction) of the two top elements
of the stack and push back the result onto the operand stack.

C JOP INSTRUCTION SET 201

or

Operation Boolean OR i nt

Opcode 00000010

Dataflow
stack[sp] —> B
sp—l^sp

JVM equivalent i o r

Description Build the bitwise inclusive OR (disjunction) of the two top
elements of the stack and push back the result onto the operand
stack.

xor

Operation Boolean XOR i nt

Opcode 00000011

Dataflow A ̂ B —> A
stack[sp\ —> B
sp—l^sp

JVM equivalent ixor

Description Build the bitwise exclusive OR (negation of equivalence) of
the two top elements of the stack and push back the result
onto the operand stack.

202 C JOP INSTRUCTION SET

add

Operation Add i nt

Opcode 00000100

Dataflow A+B^A
stack[sp] —> B
sp— \ —> sp

JVM equivalent i add

Description Add the two top elements from the stack and push back the
result onto the operand stack.

sub

Operation Subtract i nt

Opcode 00000101

Dataflow A-B^A
stack[sp] —> B
sp—\ —> sp

JVM equivalent i s u b

Description Subtract the two top elements from the stack and push back
the result onto the operand stack.

C JOP INSTRUCTION SET 203

stioa

Operation

Opcode

Dataflow

JVM equivalent

Description

Store 10 address

00001000

A —> ioar

stack[sp\ —> B
sp—l—^sp

The top value from the stack is stored in the IO address regis-
ter. This address is used on following read (1 di od) and write
(s t i od) operations.

stiod

Operation

Opcode

Dataflow

Store IO data

00001001

A —* io device
B-+A
stack[sp) —> B

JVM equivalent

Description The top value from the stack is stored in the IO device. The
IO device is selected by the previous s t i oa.

204 C JOP INSTRUCTION SET

stmra

Operation

Opcode

Dataflow

JVM equivalent

Description

Store memory read address

00001010

A —* memrda
B^A
stack[sp] —> B
sp—\ —> sp

The top value from the stack is stored as read address in the
memory subsystem. This operation starts the concurrent mem-
ory read. The processor can continue with other operations.
When the datum is needed a wai t instruction stalls the pro-
cessor till the read access is finished. The value is read with
Idmrd.

stmwa

Operation

Opcode

Dataflow

Store memory write address

00001011

A —* memwra

stack[sp] —» B

JVM equivalent

Description The top value from the stack is stored as write address in the
memory subsystem for a following stmwd.

C JOP INSTRUCTION SET 205

stmwd

Operation

Opcode

Dataflow

JVM equivalent

Description

Store memory write data

00001100

A —> memwrd

stack[sp) —> B
sp— I —> sp

The top value from the stack is stored as write data in the mem-
ory subsystem. This operation starts the concurrent memory
write The processor can continue with other operations. The
wai t instruction stalls the processor till the write access is fin-
ished.

stmul

Operation

Opcode

Dataflow

JVM equivalent

Description

Multiply i nt

00001101

A —> mula
B -> mulb
B-+A
stack[sp] —> B
sp— 1 —> sp

The top value from the stack is stored as first operand for the
multiplier. The value one below the top of stack is stored as
second operand for the multiplier. This operation starts the
multiplier. The result is read with the 1 dmul instruction.

206 C JOP INSTRUCTION SET

stbcrd

Operation

Opcode

Dataflow

JVM equivalent

Description

Start bytecode read

00001111

A —» member
B^A
stack[sp] —• B
sp—\—>sp

The top value from the stack is stored as address and length
of a method in the memory subsystem. This operation starts
the memory transfer from the main memory to the bytecode
cache (DMA). The processor can continue with other opera-
tions. The wai t instruction stalls the processor till the transfer
has finished. No other memory accesses are allowed during
the bytecode read.

st<n>

Operation Store 32-bit word into local variable

Opcode

Dataflow

OOOlOOnn

A —> stack\yp + n]

stack[sp] —* B

sp—\—^sp

JVM equivalent as tore_<n>, i s to re_<n>, fs tore_<n>

Description The value on the top of the operand stack is popped and stored
in the local variable at position n.

C JOP INSTRUCTION SET 207

st

Operation

Opcode

Dataflow

Store 32-bit word into local variable

00010101

A —> stack\yp + opd]

stack[sp) —> B

JVM equivalent astore, i s tore, fstore

Description The value on the top of the operand stack is popped and stored
in the local variable at position opd. opd is taken from the
bytecode instruction stream.

stvp

Operation

Opcode

Dataflow

JVM equivalent

Description

Store variable pointer

00011000

A —> vp
B-+A
stack[sp\ —> B

sp—\ —> sp

The value on the top of the operand stack is popped and stored
in the variable pointer (vp).

208 C JOP INSTRUCTION SET

stjpc

Operation Store Java program counter

Opcode 00011001

Dataflow A —> jpc

stack[sp] —> B
sp—l^sp

JVM equivalent

Description The value on the top of the operand stack is popped and stored
in the Java program counter (j pc).

stsp

Operation Store stack pointer

Opcode 00011011

Dataflow A —> sp
B-+A
stack[sp] —> B

JVM equivalent

Description The value on the top of the operand stack is popped and stored
in the stack pointer (sp).

C JOP INSTRUCTION SET 209

ushr

Operation

Opcode

Dataflow

Logical shift rigth i nt

00011100

stack[sp\ —> B
sp—\-+sp

JVM equivalent i u s h r

Description The values are popped from the operand stack. An i nt result
is calculated by shifting the TOS-1 value rigth by s position,
with zero extension, where s is the value of the low 5 bits of
the TOS. The result is pushed onto the operand stack.

shl

Operation

Opcode

Dataflow

Shift left i n t

00011101

stack[sp] —> B
sp-\ —> sp

JVM equivalent i shl

Description The values are popped from the operand stack. An i nt result
is calculated by shifting the TOS-1 value left by s position,
where s is the value of the low 5 bits of the TOS. The result is
pushed onto the operand stack.

210 C JOP INSTRUCTION SET

shr

Operation

Opcode

Dataflow

Arithmetic shift rigth i nt

00011110

st ack[sp\ —» B

JVM equivalent i s h r

Description The values are popped from the operand stack. An i nt result
is calculated by shifting the TOS-1 value rigth by s position,
with sign extension, where s is the value of the low 5 bits of
the TOS. The result is pushed onto the operand stack.

stm

Operation

Opcode

Dataflow

Store in local memory

OOlnnnnn

A —> stack[n]
B->A
stack[sp] —> B

JVM equivalent

Description The top value from the operand stack is stored in the local
memory (stack) at position n. These 32 memory destinations
represent microcode local variables.

C JOP INSTRUCTION SET 211

bz

Operation Branch if value is zero

Opcode

Dataflow

JVM equivalent

Description

OlOnnnnn

if A = 0 then pc + offtbl[n] + 2 -» pc

stack[sp] —> B
sp — 1 —> sp

If the top value from the operand stai
branch is taken. The value is popped from the operand stack.
Due to a pipeline delay, the zero flag is delayed one cycle, i.e.
the value from the last but one instruction is taken. The branch
is followed by two branch delay slots. The branch offset is
taken from the table offtbl indexed by n.

212 C JOP INSTRUCTION SET

bnz

Operation

Opcode

Dataflow

Branch if value is not zero

Ollnnnnn

if A ^ 0 then pc + offtbl[ri[

stack[sp] —> B

JVM equivalent

Description If the top value from the operand stack is not zero a microcode
branch is taken. The value is popped from the operand stack.
Due to a pipeline delay, the zero flag is delayed one cycle, i.e.
the value from the last but one instruction is taken. The branch
is followed by two branch delay slots. The branch offset is
taken from the table offtbl indexed by n.

C JOP INSTRUCTION SET 213

n op

Operation Do nothing

Opcode 10000000

Dataflow —

JVM equivalent nop

Description The famous no operation instruction.

wait

Operation Wait for memory completion

Opcode looooooi

Dataflow —

JVM equivalent

Description This instruction stalls the processor until a pending memory
instruction (stmra, stmwd or s tbcrd) has completed. Two
consecutive wai t instructions are necessary for a correct stall
of the decode and execute stage.

214 C JOP INSTRUCTION SET

jbr

Operation

Opcode

Dataflow

Conditional bytecode branch and goto

10000010

JVM equivalent i f nu l l , ifnonnull, ifeq, ifne, i f l t , ifge,
i fg t , i f l e , if_acmpeq, if_acmpne, if.icmpeq,
if_icmpne, ifvicmpit, if.icmpge, if.icmpgt,
i f_i cmpl e, goto

Description Execute a bytecode branch or goto. The branch condition and
offset are calculated in the bytecode fetch unit. Arguments
must be removed with pop instructions in the following mi-
crocode instructions.

Idm

Operation

Opcode

Dataflow

JVM equivalent

Description

Load from local memory

lOlnnnnn

stack[n\ —> A

A-+B
B —» stack[sp+ 1]
sp+l —> sp

The value from the local memory (stack) at position n is
pushed onto the operand stack. These 32 memory destinations
represent microcode local variables.

C JOP INSTRUCTION SET 215

Idi

Operation Load from local memory

Opcode

Dataflow

JVM equivalent

Description

HOnnnnn

stack[n + 32] -y A

B—>stack[sp+l]
sp + 1 —* sp

The value from th
pushed onto the operand stack. These 32 memory destinations
represent microcode constants.

Idiod

Operation

Opcode

Dataflow

JVM equivalent

Description

Load 10 data

11100001

io device —> A
A^B
B^>stack[sp+\]
sp+\ —> sp

The value from the IO device is pushed onto the operand stack.
The IO device is selected by the previous s t i oa.

216 C JOP INSTRUCTION SET

Idmrd

Operation

Opcode

Dataflow

JVM equivalent

Description

Load memory read data

11100010

memrdd —» A

B -^stack[sp+\]
sp + 1 —> sp

The value from the memory system after a memory read is
pushed onto the operand stack. This operation is usually pre-
ceded by two wai t instructions.

Idmul

Load multiplier result

11100101

mulr —» A

Operation

Opcode

Dataflow
A
B
sp+\ —> sp

JVM equivalent (i mul)

Description The result of the multiplier is pushed onto the operand stack.

C JOP INSTRUCTION SET 217

Idbcstart

Operation

Opcode

Dataflow

JVM equivalent

Description

Load method start

11100111

best art —> A

B —> stack[sp+ 1]
sp + 1 —• sp

The method start ;
the operand stack.

ld<n>

Operation Load 32-bit word from local variable

Opcode HlOlOnn

Dataflow stack\yp + n] —> A

B -
sp+ 1 —» sp

JVM equivalent a1oad_<n>, i1oad_<n>, fload_<n>

Description The local variable at position n is pushed onto the operand
stack.

218 C JOP INSTRUCTION SET

Id

Operation Load 32-bit word from local variable

Opcode 11101101

Dataflow stack[vp + opd] —> A

B^>stack[sp+\]
sp + 1 —» sp

JVM equivalent aload, iioad, fioad

Description The local variable at position opd is pushed onto the operand
stack, opd is taken from the bytecode instruction stream.

Idsp

Operation

Opcode

Dataflow

JVM equivalent

Description

Load stack pointer

11110000

sp —> A

B —> stack[sp+ 1]
5/7+1 —> Sp

The stack pointer i

C JOP INSTRUCTION SET 219

Idvp

Operation Load variable pointer

Opcode 11110001

Dataflow vp —» A

B -> stack[sp + \]
sp + 1 —> sp

JVM equivalent

Description The variable pointer is pushed onto the operand stack.

Idjpc

Operation Load Java program counter

Opcode 11110010

Dataflow jpc —» A

sp + 1 —> sp

JVM equivalent

Description The Java program counter is pushed onto the operand stack.

220 C JOP INSTRUCTION SET

ldjopd.Su

Operation Load 8-bit bytecode operand unsigned

Opcode 11110100

Dataflow opd —> A

A->B
B -+stack[sp+l]
sp + 1 —> sp

JVM equivalent

Description A single byte from the bytecode stream is pushed as i nt onto
the operand stack.

ld.opd.8s

Operation Load 8-bit bytecode operand signed

Opcode 11110101

Dataflow opd —» A

A^B
B -+stack[sp+l]
sp-\-\ —» sp

JVM equivalent (bipush)

Description A single byte from the bytecode stream is sign-extended to an
i nt and pushed onto the operand stack.

C JOP INSTRUCTION SET 221

ld.opdJ.6u

Operation Load 16-bit bytecode operand unsigned

Opcode 11110110

Dataflow opdA6^>A

B^stack[sp+\]
sp+l —> sp

JVM equivalent

Description A 16-bit word from the bytecode stream is pushed as i nt onto
the operand stack.

ld-opd-16s

Operation Load 16-bit bytecode operand signed

Opcode llllOlii

Dataflow opdA6 —> A
A^B
B->stack[sp+l]
sp+l —» sp

JVM equivalent (si push)

Description A 16-bit word from the bytecode stream is sign-extended to
an i nt and pushed onto the operand stack.

222 C JOP INSTRUCTION SET

dup

Operation

Opcode

Dataflow

Duplicate the top operand stack value

11111000

B^>stack[sp+\]
sp + 1 —> sp

JVM equivalent dup

Description Duplicate the top value on the operand stack and push it onto
the operand stack.

D Bytecode Execution Time

Table D.I lists the bytecodes of the JVM with their opcode, mnemonics, the imple-
mentation type and the execution time on JOP. In the implementation column hw
means that this bytecode has a microcode equivalent, me means that a microcode se-
quence implements the bytecode, Java means the bytecode is implemented in Java,
and a '-' indicates that this bytecode is not yet implemented. For bytecodes with a
variable execution time the minimum and maximum values are given.

Opcode

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Instruction

nop
aconst_null
iconst_ml
iconst_0
iconst_l
iconst_2
iconst_3
iconst_4
iconst_5
lconst-0
lconst_l
fconst.O
fconst_l
fconst_2
dconst_0
dconst_l
bipush
sipush
ldc
ldc_w
Idc2_w20

iload
lload

Implementation

hw
hw
hw
hw
hw
hw
hw
hw
hw
me
me

-
-
-
-
me
me
me
me
me
me
me

Cycles

1
1
1
1
1
1
1
1
1
2
2

2
3

3+r
4+r

8+2*r
2

11

Table D.1 : Implemented bytecodes and execution time in cycles

224 D BYTECODE EXECUTION TIME

Opcode

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Instruction

fload
dload
aload
iload_0
iload.l
iload_2
iload_3
lload_0
lload_l
lload.2
lload_3
fload_0
fload_l
fload_2
fload_3
dload_0
dload_l
dload_2
dload.3
aload.O
aload-1
aload_2
aload_3
iaload46

laload
faload46

daload
aaload46

baload46

caload46

saload46

i store
lstore
fstore
dstore
astore

Implementation

me
me
me
hw
hw
hw
hw
me
me
me
me
hw
hw
hw
hw
me
me
me
me
hw
hw
hw
hw
me
_
me
_
me
me
me
me
me
me
me
me
me

Cycles

2
11
2
1
1
1
1
2
2
2

11
1
1
1
1
2
2
2

11
1
1
1
1

19+2*r

19+2*r

19+2*r
19+2*r
19+2*r
19+2*r

2
11
2

11
2

Table D.1 : Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 225

Opcode

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Instruction

istore.O
istore_l
istore_2
istore_3
lstore_0
lstore.l
lstore_2
lstore_3
fstore.O
fstore_l
fstore_2
fstore_3
dstore_0
dstore_l
dstore_2
dstore_3
astore_0
astore_l
astore_2
astore_3
iastore79

lastore
fastore79

dastore
aastore79

bastore79

castore'*
sastore79

pop
pop2
dup
dup_xl
dup_x2
dup2
dup2_xl
dup2_x2

Implementation

hw
hw
hw
hw
me
me
me
me
hw
hw
hw
hw
me
me
me
me
hw
hw
hw
hw
me

me
.
me
me
me
me
hw
me
hw
me
-
me
-
-

Cycles

1
1
1
1
2
2
2

11
1
1
1
1
2
2
2

11
1
1
1
1

22+r+w

22+r+w

22+r+w
22+r+w
22+r+w
22+r+w

1
2
1
5

6

Table D.1: Implemented bytecodes and execution time in cycles

226 D BYTECODE EXECUTION TIME

Opcode

95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Instruction

swap
iadd
ladd
fadd
dadd
isub
lsub
fsub
dsub
imul
lmul
fmul
dmul
idiv
ldiv
fdiv
ddiv
irem
lrem
frem
drem
ineg
lneg
fheg
dneg
ishl
lshl
ishr
lshr
iushr
lushr
iand
land
ior
lor
ixor

Implementation

-
hw
Java
Java
-
hw
Java
Java
-
me
-
-
-
Java
-
-
-
Java
-
-
-
me
Java
-
-
hw
-
hw
-
hw
Java
hw
-
hw
-
hw

Cycles

1

1

35

4

1

1

1

1

1

1

Table D.1 : Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 227

Opcode

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

Instruction

lxor
iinc
i21
i2f
i2d
12i
12f
12d
f2i

m
f2d
d2i
d21
d2f
i2b
i2c
i2s
lcmp
fcmpl
fcmpg
dcmpl
dcmpg
ifeq
ifne
iflt
ifge
ifgt
ifle
if.icmpeq
iflicmpne
if_icmplt
if_icmpge
iflicmpgt
iLicmple
iLacmpeq
iLacmpne

Implementation

Java
me
Java
-
-
me
-
-
-
-
-
-
-
-
-
me
-
Java
-
-
-
-
me
me
me
me
me
me
me
me
me
me
me
me
me
me

Cycles

11

3

2

4
4
4
4
4
4
4
4
4
4
4
4
4
4

Table D.1: Implemented bytecodes and execution time in cycles

228 D BYTECODE EXECUTION TIME

Opcode

167
168
169
170
171'
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

Instruction

goto
jsr
ret
tableswitch170

lookupswitch171

ireturn172

lretum173

freturn172

dreturn173

areturn172

return177

getstatic
putstatic
getfield
putfield
invokevirtual182

invokespecial183

invokestatic183

invokeinterface18 5

unused_ba
new187

1 RR

newarray ö

anewarray
arraylength
athrow
checkcast
instanceof
monitorenter
monitorexit
wide
multianewarray
ifnull
ifnonnull
goto_w
jsr_w
breakpoint

. Implementation

me
-
-
Java
Java
me
me
me
me
me
me
me
me
me
me
me
me
me
me
-
Java
me
Java
me
-
-
-
hw
hw
-
-
hw
hw
-
-
-

Cycles

4

15+r+b
17+r+b
15+r+b
17+r+b
15+r+b
13+r+b
4+2*r
5+r+w
10+2*r

13+r+w
78+4*r+b
58+3*r+b
58+3*r+b
84+6*r+b

12+w

2+r

9
10/11

4
4

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 229

Opcode

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

Instruction

reserved
reserved
reserved
reserved
reserved
reserved
jopsys_rd
jopsys_wr
jopsys_rdmem
jopsys-wrmem
jopsys_rdint
jopsys.wrint
jopsys.getsp
jopsys.setsp
jopsys.getvp
jopsys_setvp
jopsys_int2ext219

jopsys_ext2int220

jopsys_nop
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved

Implementation

-

-
-
-
me
me
me
me
me
me
me
me
hw
me
me
me
me
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Cycles

3
3
r

w+1
8
8
3
4
1
2

12+n*(19+w)
12+n*(19+w)

1

Table D.1: Implemented bytecodes and execution time in cycles

230 D BYTECODE EXECUTION TIME

Opcode

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Instruction

reserved
sys_int
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved

Implementation

-
Java
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Cycles

Table D.1 : Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 231

The bytecodes that access memory are indicated by an r for a memory read and an
w for a memory write at the cycles column. The cycles for the memory access have
to be added to the execution time. These two values are implementation dependent
(clock frequency versus RAM access time, data bus width); for the Cyclone EP1C6
board with 15ns SRAMs and lOOMHz clock frequency these values are both 6 cycles
(3 cycles for the memory access and 3 cycles due to pipeline delays). The memory
access time for the bytecode load a is 3 clock cycles for this board.

For some bytecodes, part of the memory latency can be hidden by executing mi-
crocode during the memory access. However, these cycles can only be subtracted
when the memory access time (r or w) is longer than 4 cycles. The exact execution
time with the subtraction of the saved cycles is given in the footnote.

On a method invoke or return the bytecode has to be loaded into the cache on a

20The exact value is 8 + r+\ r \ '' r~6.
[4 : r < 6

46The exact value is 19 + r + j r~^ [^ ^

79The exact value is 22 + (r~2
A ' r ^ \ +w

{ 4 : r < 6
170tableswitch execution time depends to a great extent on the caching of the corresponding Java method

or the memory transfer time for the method.
171lookupswitch execution time depends to a great extent on the caching of the corresponding Java

method or the memory transfer time for the method, lookupswitch also depends on the argument as
it performs a linear search in the jump table.

l72The exact value is: 15 +

173The exact value is: 15 +

l77The exact value is: 13 +

182x1, t , • -TO -> i r ~ 3 • r > 1 J r ~ 2 • r > 6 1 b ~ 3 9 • b > 3 9

l5ZTheexact va ue is: 78 + 2r+< „ ~ +< ~ , + ^ , ~ , „
\ 4 : r < 7 \ 4 : r < 6 \ 0 : è < 3 9

183The exact value is: 58 + r +

l85The exact value is:

7 new execution time depends to a great extent on the caching of the corresponding Java method or
the memory transfer time for the method, new also depends on the size of the created object as the
memory for the object is filled with zeros.

188The time to clear the array is not included.

219Theexact value is 12 + n(19+< . ~ ,_). n is the number of words transferred.
[4 : w < 12 '

220The exact value is 12 + n(19 + I \ ~). n is the number of words transferred.

232 D BYTECODE EXECUTION TIME

cache miss. The load time b is:

, _ f 2 + (n + 1)a : cache miss
\ 0 : each hit

with n as the length of the method in number of 32-bit words. For short methods
the load time of the method on a cache miss, or part of it, is hidden by microcode
execution. The exact value is given in the footnote.

E Benchmark Results

Frequency [MHz]

iload iadd
iinc
ldc
ifJcmplt taken
if Jcmplt not taken
getfield
getstatic
iaload
invoke
invoke static
invoke interface
Sieve
Kfl
UDP/IP

geom. Mean App

geom. Mean App/MHz

JOP

100

49,344,000
9,078,000

10,010,000
16,644,000
16,710,000
4,002,000
5,874,000
3,328,000

781,935
989,222
684,896

4,286
14,222
6,050

9,276

79

leJOS

16

19,140
37,925
11,941
9,941

10,529
8,515
9,547

14,787
3,362
4,129
3,141

7
25
13

18

1

TIM

40

50,724
103,044
35,463
31,629
33,032
16,684
8,962

25,924
6,159
6,815
5,885

15
64
29

43

1

Komodo

33

4,111,569
8,318,030

825,446
1,372,264
1,375,754

687,877
412,723

1,180,501
85,874
48,510
20402

627
924
520

693

21

1
1
1
1
1

JStamp

73.728

,934,642
,789,378
,101,445
,747,626
,833,174
518,071
723,155
992,969
211,406
271,933
138,847

564
2,221
1,004

1,493

20

Table E.1 : Raw data of all benchmarks in [iterations/s] I.

234 E BENCHMARK RESULTS

Frequency [MHz]

iload iadd
iinc
ldc
iflicmplt taken
if.icmplt not taken
getfield
getstatic
iaload
invoke
invoke static
invoke interface
Sieve
Kfl
UDP/IP

geom. Mean App

App/MHz

SaJe

103

12,710,000
9,320,000

11,275,000
5,652,000
7,281,000
4,433,000
6,786,000
7,854,000

894,689
1,084,359

674,759
3,972

14,148
6,415

9,527

92

EJC

74

72,315,000
36,002,000
23,967,000
35,925,000
71,697,000

7,212,000
17,962,000
5,966,000
1,703,000

309,132
1,598,000

9,475
9,893
2,822

5,284

71

Sun jvm

266

84,307,000
296,941,000
132,626,000
128,561,000
246,723,000
90,687,000
86,703,000
65,536,000
10,022,000

270,600,000
10,010,000

52,681
212,952
91,851

139,857

526

gcj

266

248,551,000
88,069,000

86,480,000
89,240,000

122,016,000
241,398,000

23,967,000
20,092,000
7,898,000
5,588,000

39,432
139,884
38,460

73,348

276

Xint

266

15,363,000
122,228,000

8,719,000
7,449,000
7,206,000
6,853,000
6,700,000
8,962,000
1,458,381
1,620,673
1,381,523

6,601
17,310
8,747

12,305

46

Table E.2: Raw data of all benchmarks in [iterations/s] II.

E BENCHMARK. RESULTS 235

Type

Prefetch buffer
Single method cache
Two block cache
Four block cache
Direct-mapped 8 bytes
Direct-mapped 16 bytes
Direct-mapped 32 bytes
Direct-mapped 8 bytes
Direct-mapped 16 bytes
Direct-mapped 32 bytes
Direct-mapped 8 bytes
Direct-mapped 16 bytes
Direct-mapped 32 bytes
Variable block cache 8 blocks
Variable block cache 16 blocks
Variable block cache 32 blocks
Variable block cache 64 blocks
Variable block cache 8 blocks
Variable block cache 16 blocks
Variable block cache 32 blocks
Variable block cache 64 blocks
Variable block cache 8 blocks
Variable block cache 16 blocks
Variable block cache 32 blocks
Variable block cache 64 blocks

Size

8B
1KB
2KB
4KB
1KB
1KB
1KB
2KB
2KB
2KB
4KB
4KB
4KB
1KB
1KB
1KB
1KB
2KB
2KB
2KB
2KB
4KB
4KB
4KB
4KB

MBIB

1.37
2.32
1.21
0.90
0.28
0.38
0.58
0.17
0.25
0.41
0.00
0.01
0.01
0.80
0.71
0.70
0.70
0.73
0.37
0.24
0.12
0.73
0.25
0.01
0.00

MTIB

0.342
0.021
0.013
0.010
0.035
0.024
0.018
0.022
0.015
0.013
0.001
0.000
0.000
0.009
0.008
0.008
0.008
0.008
0.004
0.003
0.001
0.008
0.003
0.000
0.000

Memory access

SRAM

1.02
1.18
0.62
0.46
0.18
0.22
0.31
0.11
0.14
0.22
0.00
0.00
0.00
0.41
0.36
0.36
0.36
0.37
0.19
0.12
0.06
0.37
0.13
0.00
0.00

SDRAM

2.05
0.69
0.37
0.27
0.25
0.22
0.24
0.15
0.14
0.17
0.00
0.00
0.00
0.24
0.22
0.21
0.21
0.22
0.11
0.08
0.04
0.22
0.08
0.00
0.00

time

DDR

1.71
0.39
0.21
0.16
0.19
0.16
0.15
0.12
0.10
0.11
0.00
0.00
0.00
0.14
0.12
0.12
0.12
0.13
0.06
0.04
0.02
0.13
0.05
0.00
0.00

Table E.3: Cache performance in MBIB and MTIB of all variations of the method
cache and a conventional direct-mapped cache. Average memory access
time per instruction byte for three different main memory technologies.
Memory access times are in clock cycles.

F Cyclone FPGA Board

RS-232 Line
Driver/Receiver

Configuration
PLD

20 MHz
Oscillator

Watchdog

RAM 256Kx16
Bank A

Flash 512Kx8

RAM 256Kx16
BankB

Figure F.1 : Top and bottom side of the Cyclone FPGA board

238 F CYCLONE FPGA BOARD

iClRfl
RftT1A_A0
RAP1A Al
RAf1A_A2
RAfiA A3
RArtA.AI
RAttA_A5
RAHA_A6
RArtA_A7
RAHA A8
RAMAIA9

RArlA_A10
RAfiA.AIl
RAMA Al2
RAnA_A13
RAflA AM
RAf1A_A15
RAMA Al 6
RAMA.Al7

RArlA_D0
RAt1A_Dl
RAr1A_D2
RArlA_D3
RAF1A D1
RAtlA_D5
RAMA 06
RAHA.D7
RAfiA 08
RAHA.OS

RAMA D10
RAMA.DH
RAMA D12
RAMA.D13
RAflA _ DM
RAf1A_D15

RAMA NCS
RAflA.NOE
RArtA.NUE

CYCLONE

64
66
6B
74
76
10?
H3
115
11?
119
118
116
1 H
168
106
67
65
63

82
84
86
88
94
98
100
104
101
99
95
93
87
85
83
79

78
73
105
77
75

1
2
3
4
5
18
19
20
21
22
23
24
25
26
27
42
43
14

7
B
9
10
13
H
15
16
29
30
31
32
35
36
37
38

6
41
17
39
40

RAH256KX16T

_32

RftnB_fl0
RAnB Al
ame.n
RfVlB fl3
RAHB.A1
RAUB A5
0«1B R6
R«1B_n7
RAF1B fl8
RfinB>9

RfMIB A1Q
RftnB.«)
RW1B ftl2
RraiB_W3
RflP1B_ftl 4
RflH8_A15
RftnB_ftl6
RftriB_Al?

RfVIB 00
R«18_0!
RftHB D2
RmB.03
RAttB D4
RAI1B_D5
RfVIB 06
Rrais o?
RIWB 08
RmB_D9

RfinB_D10
RWIB.Dll
RfinB_D12
RAMB D13
RIVIB.DM
RW1B_D15

RnnB.NCS
RftriB NOE
RfinB.NUE
RAMB NLB
RfinB.NUB

CYCLONE

237
235
233
227
225
194
188
186
1B4
1B2
1B3
165
187
193
195
234
236
238

219
217
215
213
207
203
201
197
200
202
206
208
214
216
218
222

223
228
196
224
226

1
2
3
4
5
18
19
20
21
22
23
24
25
26
27
12
13
11

7
8
9
10
13
11
15
16
29
30
31
32
35
36
37
38

6
11
17
39
10

Rf in256KXl6T

ur.rt* PI i ?

4
C18

1

6

C7

UIN SU

nOOE GND

.T3485A-1.5

3 SU

5

2

S'

U 1

GND

irriMT nrriMT
Jçî JÇ2 JÇ3 JÇ1 JÇ13 JÇM JÇ15 JÇI7

GND

t5 JÇS Jç? JÇ8 JÇ9 JçiB Jç i l JÇ12 T[Ç22

"jT®" Tan "]TBn "̂ 01-1 "[Tan TT0n "^Bn "^Bn T*33u

GND

GND

52_

2L_

102_
1B3_

\l
iaa_
19S_
205_
212_
212_
221_
230_
23i_

22_

159_

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

GND
GND
GND
GND
GND
GND
GND
GNO
GNO
GNO
GND
GND
GNO

UCC
UCC
UCC
UCC
UCC
UCC
UCC
<JLt
VCC
UCC
UCC
UCC

UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT
UCCINT

_22
H89

289
_231

US7

_LZ2
_Z0
_S2

154 u r m PI i 7

SS.
SI

_1S8

_220
_229

Date: 20.08.2003 13:48:16

TITLE: cyco re

Ver.: CC0304

Sheet: 1/3

Figure F.2: Schematic of the Cyclone FPGA board, page 1

F CYCLONE FPGA BOARD 239

FL De ri
FL Dl FL fll
FL_02 F L . «
FL.D3 FL.R3
FL 04 FL M
FL_D5 FL.A5
FL D6 FL A6
FL D7 FL K?

FL.K
FL_fi9

TCK/DCLK
TOO/CONF.D
ThS/NCONF
NSTAI
TOI/OATA0
UIO
UCC
GND
GND

nSELl
tiSELe
NSTflTUS
NC0NFI6
CONF.DONE
OCLK
NCE
NCEO
0ATA8

Date: 20. 08. 2003 13:48:46
TITLE: cycore

Ver.: CC0304
Sheet: 2/3

Figure F.3: Schematic of the Cyclone FPGA board, page 2

240 F CYCLONE FPGA BOARD

-NnzTin«> ÎZë

ucc
GND

Ll
12
L3
L4
L5
L6
L7
L8
L9

Lie
GNO
LU
L12
L13
L14
L15
Lia
Ll?
L18
L19
L20
GND

3
4
5
6
7
S
9
le
a
12
_12
M15
là
17
19
19
20
21
22
23

2
3

5

8
11
12
13

38
39

12
13
53
51
55
56
57

I0.L1
I0.L2
10. L3
I0.L1
I0.L5
I0.L6
I0.L7
I0.L8
I0.L9
IO.L10

IO.Lll
I0.L12
I0.L13
I0.L14
I0.L15
I0.L16
IO L17
IO L18
I0_Ll9
IO L20

o o o o o o

I C I I O

CYCLONE

o o o o o o o

ÎO.RI
10 C2
10.R3
10 R1
10 P5
10.06

10 07
10.08
10 09

10 R\e
10 Rll
I0.B12
10.013

10 014
10.015
10 016

o 10 017
g £ S 10.018
2 - - 10 020

r4 f^ ^1 ^ ^ ^ ^J \Q f^ ^ ^ Ç

{DmmzœmcDœzc

175
171
173
170
169

168
167
163
162
lél

i«e
159

MB
133
136
131
132
128
126

39
10
11
12
13
11_
15
16
17
18
19
5B
51
52_
53
54
55
56
57
58
59

GND
01
02
03
04
05
06
GND
07
08
09
010
Rll
RI 2
RI 3
GNO
R14
RI 5
RI 6
RI 7
RI 8
RI 9
R20
GND

GND

Date: 20. 08. 2003 13:48:16
TITLE: cycore

Ver.:
Sheet: 3/3

Figure F.4: Schematic of the Cyclone FPGA board, page 3

Curriculum Vitae
Martin Schöberl

November 2nd 1966 Born in St. Polten, Austria

1973-1976 Elementary School in St. Polten

1976 - 1980 Comprehensive Secondary School in St. Polten

1980 - 1986 Engineering School for Communications Engineering

and Electronics in St. Polten
May 1986 School leaving examination with distinction

1986 - 1994 Studies of Computer Science at the
Vienna University of Technology

1986-1987 Software engineer at
SYSGRAPH Computergraphik GmbH

1987-1991 Software engineer at
COIN Computerentwicklungen GmbH

1992 - 1994 Software engineer at
Wirtschafts- und Sozialwissenschaftliches Rechenzentrum

since 1994 Self-employed with projects in automation
and supervision for EVN, Balfour Beatty and OBB

1993 - 2000 Studies of Jazz guitar at the

Prayner and Gustav Mahler Conservatory, Vienna

November 1994 Master's Degree in Computer Science

1996 Civil Service in Vienna

Summer 1999 Studies of Jazz guitar at the

Berklee College of Music, Boston, USA
June 2000 Conservatory Diploma in Jazz guitar at the

Gustav Mahler Conservatory, Vienna
since 2000 PhD Studies of Computer Science at the

Vienna University of Technology

