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Abstract

Susceptibility-Weighted Imaging (SWI) is a Magnetic Resonance Imaging (MRI) technique
that exploits both the magnitude and phase of the complex MRI signal to increase contrast
for tissues of different susceptibilities. Deoxygenated blood in in venous vessels is more
paramagnetic than the surrounding tissues, therefore veins can be depicted in SWI
without the need for external contrast agents. Identifying and segmenting the venous
vessels in whole-brain SWI scans facilitates the creation of three-dimensional models of
the cerebral venous vasculature. However, manual segmentation of veins in whole brain
SWI datasets is unfeasible due to the amount of manual labor required.

To date automatic segmentation approaches of veins from ultra-high field SWI datasets
have predominately been performed using only the magnitude images because of the
non-local and orientation dependent properties of the phase. However, in recent years,
dedicated algorithms have been established which aim to turn the complex phase infor-
mation into maps of the local susceptibility, a process that is known as Quantitative
Susceptibility Mapping (QSM).

In this project, a new approach to automatic venous vessel segmentation was developed
that uses information from magnitude images, phase images and the derived QSM images
of a multi-echo T ∗2 -weighted gradient echo scan. A Random Forest (RF) classifier was
used to segment veins based on a combination of appearance and shape features that
are computed separately from magnitude images, phase images and QSM images. This
supervised machine-learning approach also allowed us to investigate the importance of
each feature for the segmentation task. This not only gives insight to the importance
of magnitude, phase and QSM images for venous vessel segmentation, but because the
features were computed from multiple echoes, the feature importance findings can also
be used to suggest echo time settings for future data acquisition.

The segmentation approach was tested on datasets of five different healthy subjects,
two of which were partially annotated to serve as ground truth for training the RF and
for quantitatively evaluating the segmentation performance. In all of the performance
metrics used within our experiments, the RF approach yielded higher scores than either of
those features used individually. Specifically, the RF approach outperformed the common
vesselness filtering approach in all similarity measures that were computed against the
manual annotations. Visual assessment of 3D renderings of the surface veins confirmed
that the segmentations obtained by the RF approach did look very similar to renderings
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of the manual annotations. The results of the feature importance measurements indicate
that most of the information that is needed for surface vein segmentation is already
contained in the first echo, which potentially enables quicker data acquisition.

Overall the developed RF segmentation approach enables the generation high-quality,
patient-specific 3D models of the cerebral venous vasculature, which have the potential to
aid neurosurgeons in presurgical planning by helping them to localize brain regions that
need to be spared in order to minimize the risk of post-operative neurological deficits.
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CHAPTER 1
Introduction

1.1 Motivation
Around 3 or 4 persons per 100,000 are diagnosed with brain tumors annually. For many
of those patients, surgery is the best therapeutic option. The main goal of the resulting
neurosurgical procedures is to maximize tumor removal while minimizing post-operative
neurological deficits. Imaging techniques such as functional Magnetic Resonance Imaging
(fMRI) and Diffusion Tensor Imaging (DTI), alongside anatomical MRIs are used to
localize essential brain functions prior to surgery and provide insight about the complex
organization of the cerebral white matter[1]. Provided with this imaging informations,
neurosurgeons are able to plan which tissue needs to be resected and which needs to be
spared.

In order to correspond to the intraoperative camera view, images are usually registered
to the patient’s skull. During surgery, however, the brain moves and changes shape in
response to surgical manipulation and anesthesia [2], making it increasingly difficult to
apply imaging information as the operation proceeds. Venous vessels on the brain’s
surface are clearly visible to the neurosurgeon during operation and constitute a mesh
which moves and deforms with the underlying tissue. Therefore, using cerebral veins as
landmarks to register and relate other imaging information to has the potential to aid
neurosurgeons in intraoperative navigation.

With Susceptibility Weighted Imaging (SWI), veins can be depicted in high (sub-
millimeter) resolution without the need for external contrast agents [3]. The contrast in
SWI originates from susceptibility differences between deoxygenated (venous) blood and
the surrounding tissues and the effect of this susceptibility differences on the magnitude
and phase of the complex T2*-weighted MRI signal.

In order to create 3D models that visualize the venous vasculature which than can be
used for presurgical planning, veins within the image need to be segmented, i.e. voxels
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1. Introduction

that belong to venous vessels have to be labeled. Due to the density and complexity of the
cerebral venous vasculature it is impossible to manually label all veins of a whole-brain
3D SWI datasets within a reasonable time. Accurate automatic segmentation of veins in
conventional SWI, however, is challenging for the following reasons:

• SWI is also sensitive to other iron-rich brain structures such as the basal ganglia,
which therefore have similar gray level values.

• Surface veins and the surrounding skull both appear hypo-intense in SWI, which
makes it challenging to distinguish between the two.

• The changes in phase due to susceptibility differences are dependent on the geometry
and orientation to the main magnetic field and phase changes extend beyond areas
of altered susceptibility [4].

Recently developed methods of Quantitative Susceptibility Mapping (QSM) aim to
overcome orientation-dependence and non-locality of the phase image contrast and create
an image that depicts the underlying source of these phase changes: the local magnetic
susceptibility [4, 5]. Using QSM images, either instead of conventional magnitude images,
or as additional information, might increase the accuracy of automatic venous vessel
segmentation in susceptibility-based imaging and enable the generation of reliable maps
of surface veins to which neurosurgeons can then reference other imaging information.

1.2 Related Work
Table 1.1 shows a list of publications, which have dealt with automatic venous vessel
detection in susceptibility-based imaging. With the exception of Koopmans et. al. [6],
all those approaches were performed on images acquired at field strength of 3 T or lower.
This study was performed at 7 T, at which field strength susceptibility-differences produce
stronger field changes. This leads to more contrast in the phase images, which, due to
the orientation-dependent and non-local properties of the phase, can lead to artifacts in
fully processed SWIs. [6] For that reason Koopmans et. al. [6] and Jin et. al. [7] use
only the magnitude images for vessel extraction instead of fully processed SWIs. The
other publications listed in Table 1.1 all use fully processed SWIs.

Deistung et. al. [8], Koopmans et. al. [6], and Jin et. al. [7] use scale-space methods
such as Frangi vesselness filtering [12] and Vessel Enhancing Diffusion (VED) [13]. These
shape-based methods extract vessels based on a measure of local tubularity1. While these
approaches are particularly robust and produce acceptable results inside the brain, they
tend to undersegment veins on the cerebral surface. This is because in SWI, veins and
skull both appear hypo-intense and thus the surface veins do not show a fully developed
3D “tube-like” contrast.

1Frangi vesselness filtering and VED are described in detail in Chapter 3.
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1.2. Related Work

Table 1.1: List of publications that have performed automatic vein segmentation
in susceptibility-based MR imaging. In addition, information about the imaging
method, the segmentation approach, and (if available) the reported evaluation
scores is given.

Author / Year MRI
Method

Approach Field
Strengh

Evaluation Additional In-
formation

Deistung 2006 [8] SWI Frangi vesselness
filtering

1.5 T only visual Only Abstract

Koopmans 2008
[6]

SWI (Mag.
only)

Vessel Enhancing
Diffusion (VED)

3 T, 7 T Visual Comparison with
Manual Annotation

Jin 2010 [7] SWI (Mag.
only)

Frangi vesselness
filtering

3 T only visual Very similar to
Koopmans 2008

Bériault 2014 [9] SWI Expectation
Maximization +
Markov Random
Field (MRF)

3 T DICE on different ROIs:
subcortical & deep
veins=0.85, surface=0.81

Quant. compari-
son with Frangi:
subcort.&
deep=0.79,
surf.=0.48

Ward 2015 [10] SWI + QSM Gaussian mix-
ture model +
novel MRF that
uses Gabor fil-
ters

3 T DICE =0.52 compared to
manual annot. of SWI

Only Abstract;
reported DICE
for Frangi on
QSM=0.27,
Frangi on
SWI=0.46

Bériault 2015 [11] SWI Conditional Ran-
dom Fields, us-
ing appearance,
shape and loca-
tion information

3 T DICE: subcortical & deep
= 0.83, mid sag.& sur-
face= 0.82

Quant. compari-
son with Frangi&
spherical flux

In [9], Bériault et. al. performed venous vessel segmentation from SWI with a statistical
approach that is based on voxel appearance. An initial segmentation is formed by
estimating the intensity distributions of veins and background voxels using an expectation
maximization algorithm. This initial segmentation is then smoothed using an anisotropic
Markov Random Field (MRF) model that integrates spatial dependencies between
neighboring voxels. As final step a skull stripping procedure is computed to distinguish
between surface veins and skull. Bériault et. al. show that this approach is able to
segment veins on the cortical surface [9]. However, they also mention that this method
is not able to distinguish veins from other structures that appear hypo-intense in SWI,
such as basal ganglia.

In a recently (Dec. 2015) published paper [11], Bériault et. al. describe an enhanced
method for venous vessel segmentation from SWI. The approach uses a Conditional
Random Field (CRF) model that combines appearance, shape, and location information.
This sophisticated segmentation approach reportedly performs well both inside the brain
and on surface veins. One limitation that Bériault et. al mention in [11] is that they work
with standard SWI reconstruction that is implemented scanner. Thereby the phase and
magnitude information get merged together. Also the individual echoes (5) get averaged
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1. Introduction

to increase the signal to noise ratio. They mention that processing magnitude and phase
separately and treating the intensities specific to each echo as a vector of observations
rather than a signal average, does provide extra information which could potentially be
useful for the generation of segmentations that better describe the venous vasculature.
[11]

1.3 Aims and Hypothesis
In this thesis, a new approach to automatic venous vessel segmentation from ultra-high
field susceptibility-based MR imaging was developed and tested. Instead of segmenting
veins on the basis of conventionally processed SWI images, or using only the magnitude
image, a Random Forest [14] classifier is used to segment veins from a combination of
appearance and shape features that are computed separately from magnitude images,
phase images, and the derived QSM images of a multi-echo T ∗2 -weighted Gradient Echo
scan.

The performance of segmentations obtained with the multi-echo Random Forest model is
compared with the performance of segmentations obtained by using only a single image
(magnitude, phase, or QSM) of a particular echo as basis for segmentation. Special
emphasis is put on veins of the cerebral surface, which are especially challenging to
segment in conventional SWI, but, as mentioned earlier, have great potential to serve as
landmarks in neurosurgical procedures.

The Random Forest algorithm also has a built-in measure of feature importance, which
is used to investigate the importance of the magnitude, phase, and QSM features for
venous vessel segmentation. By using features that are computed from each echo of a
multi-echo sequence, we are further able to analyze which echo provides the most amount
of information for vessel segmentation and whether a multi-echo approach is beneficial.
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CHAPTER 2
Background: Susceptibility-Based

MR Imaging

Magnetic susceptibility is an intrinsic material property which can vary between different
types of tissues. With specialized Magnetic Resonance Imaging (MRI) acquisition
and post-processing techniques those susceptibility differences can be visualized. Since
deoxygenated blood has higher susceptibility values than its surrounding tissues, such
susceptibility-based imaging methods allow the depiction of venous vessels without the
need for external contrast agents.

In this chapter, the fundamentals of susceptibility-based magnetic resonance imaging are
discussed. First, the physical principles behind Nuclear Magnetic Resonance (NMR) are
explained in Section 2.1 and Section 2.2 introduces the hardware and sequence design in
Magnetic Resonance Imaging (MRI). Section 2.3 then focuses on magnetic susceptibility
and it’s effect in MRI. Finally, Sections 2.4 and 2.5 introduce two susceptibility-based
MR techniques: Susceptibility Weighted Imaging (SWI) and Quantitative Susceptibility
Mapping (QSM).

2.1 Principles of Nuclear Magnetic Resonance

2.1.1 Magnetic Spins

MRI makes use of the magnetic dipole moment of nucleons, which arises from their
intrinsic angular momentum, the so called spin. The relation between spin L and magnetic
moment µ for elemental particles is described by:

µ = γL (2.1)
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2. Background: Susceptibility-Based MR Imaging

with γ being the gyromagnetic ratio (γ ≈ 267.513× 106 rad s−1 T−1 for protons1).

When placed inside an external magnetic field B0, the nuclear spins precess around the
field lines with an angular frequency that is proportional to |B0| and the gyromagnetic
ratio γ:

ω0 = −γ |B0| . (2.2)

This precession frequency ω0 is also referred to as Larmor frequency. The interaction
of the magnetic moment with the external field also yields a magnetic energy, which is
determined by the orientation of µ to the magnetic field:

E = −µ ·B0 (2.3)

In classical physics µ and B0 could align along any orientation. Eq. (2.3) could therefore
be written as

E = − |µ| |B0| cos θ (2.4)

where θ is the angle between µ and B0. The magnetic energy would thus be at a
minimum when the spins are aligned with B0 (θ = 0), and at a maximum when µ and
B0 are anti-parallel (θ = 180◦).

However, according to quantum mechanics, both, the magnitude and the orientation of
L to an external field are quantized. That means only certain values are allowed:

|L| =~
√
I (I + 1) I = 0, 1

2 , 1,
3
2 , . . . (2.5)

Lz =~m m = −I,−I + 1, . . . , I − 1, I (2.6)

where ~ is equal to h/2π, with h being the Planck’s constant (≈ 6.626× 10−34 J s) and I
and m being quantum numbers. The spin quantum number I is particle-specific, and is
equal to 1

2 for protons, neutrons, and electrons.

With no external magnetic field applied, the spatial orientation of the spin is indiscriminate,
whereas in an external magnetic field the magnetic moment (and the spin with it) can
only be at a number of 2I + 1 discrete angles with the field direction. Assuming an
external magnetic field in z-direction, the z-component of the magnetic moment therefore
is (with Eqs. (2.1) and (2.6)):

µz = γ~m. (2.7)

The magnetic energy of a nucleon in an external magnetic field B0 (Eq. (2.3)) then
becomes

E = −γ~m |B0| m = −I,−I + 1, . . . , I − 1, I (2.8)

leaving only discrete energy levels, which depend on the quantum numberm. For particles
with I = 1

2 (i.e. protons, electrons, neutrons), this allows only two possible energy levels
1Due to the great abundance of water molecules in biological tissues, the proton in the hydrogen

atom has become the essential nucleon in MRI.
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2.1. Principles of Nuclear Magnetic Resonance

m = ±1
2 , with m = +1

2 being the low energy state (also called parallel or α state), and
m = −1

2 the high energy (anti-parallel or β) state. The energy difference ∆E between
the two states is increasing with the field strength (Zeeman effect):

∆E = γ~ |B0| . (2.9)

2.1.2 Macroscopic Magnetization

Within the B0 magnetic field, the whole spin ensemble will tend towards a state of
minimal total energy. Spin states with lower energy will therefore be favored compared
to those of higher energy. The spin population distribution is described by Boltzmann
statistics. For a nucleus with I equal 1

2 (e.g. a proton) the ratio of the two energy states
is described by

n1/2
n−1/2

= exp
( ∆E
kBT

)
= exp

(
γ~ |B0|
kBT

)
= exp

( ~ω0
kBT

)
(2.10)

where n±1/2 is the number of spins in the +1
2 , and −1

2 state respectively, ∆E is
the energy difference between the two states (2.9), kB the Boltzmann constant (≈
1.381× 10−23 J K−1), T the absolute temperature, and ω0 the Larmor (or resonance)
frequency (2.2). With a temperature of 310.15 K (human body temperature) and a
magnetic field of 7 T, the relative population difference between the two states amounts
only 0.0023 %. This means in an ensemble of 1 million protons, only 23 more will be in
the low energy state than in the high energy state.

The net magnetic moment M of a macroscopic sample (e.g. a voxel) consists of the vector
sum of the individual magnetic moments µ within the sample. M can be characterized
by a magnitude and a phase, as illustrated in Figure 2.1. The population difference
between the spin states leads to a net magnetization the z-direction, the direction of B0
(Fig. 2.2).

At thermal equilibrium, the spins have no phase coherence in the transverse plane,
therefore the net component in the x-y plane is 0. The signal can, as such, not be
detected by regular coils. In order to observe nuclear magnetization, the precessional
motion needs to be detected. Excitation pulses are used to generate a component in the
transverse plane.

2.1.3 Radio-Frequency (RF) Excitation

In a stationary external magnetic field B0 the macroscopic magnetization is static
and points in the direction of B0 (see Fig. 2.2). For imaging it necessary to flip the
magnetization towards the transverse plane (xy-direction). This is done by temporarily
applying an additional electromagnetic field (RF-pulse) in the transverse plane, which is
oscillating in the radio frequency (MHz) range. During the pulse, protons absorb energy
from the pulse at a particular frequency, the resonance frequency. A protons resonance
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2. Background: Susceptibility-Based MR Imaging

Figure 2.1: Magnitude and phase of the magnetization vector. Mz is the longi-
tudinal magnetization (parallel to B0) and Mxy is the transverse magnetization
(perpendicular to B0)

.

frequency ω is defined by the Larmor equation

ω = γ |B| (2.11)

where γ is the protons gyromagnetic ratio and B is the magnetic field experienced by the
proton. Only protons that meet the resonance criteria, i.e. spin with the same frequency
as the RF-pulse, respond to the RF-pulse.

Application of the RF-pulse has two effects on the spins. First, by absorbing energy,
protons are excited from the low energy state to the high energy state. The longitudinal
part Mz of the macroscopic net magnetization therefore decreases as the two energy
states become more evenly populated and eventually points in the opposite direction.
Second, the external field forces the spins into a state of phase coherence, which leads to
a transverse magnetization Mxy. Both effects together lead to a spiral movement of the
macroscopic net magnetization towards the xy-plane. In a rotating frame of reference, the
net magnetization vector tilts down during excitation. The amount of tilt is determined
by the amplitude and duration (t) of the RF-pulse.

α (t) = γB1t. (2.12)

A RF-pulse with a duration and amplitude such that the equilibrium magnetization is
tilted entirely into the transverse plane is known as 90◦ pulse (α = 90◦). A 180◦ pulse
inverts the initial longitudinal magnetization. Figure 2.3 illustrates the effect of a 90◦
pulse on the spins and the macroscopic magnetization.
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2.1. Principles of Nuclear Magnetic Resonance

Figure 2.2: Microscopic (a) and macroscopic (b) pictures of a collection of
spins in the presence of a stationary external magnetic field B0. Each individual
spin precesses around the magnetic field. In a frame of reference that is rotating
with ω0 around the z-axis, the magnetic moments appear stationary. The x-y-
components of the spins are randomly distributed, whereas the z component is
only one of two values. There are more spins in the +z direction than in the -z
direction, which results in a nonzero net magnetic vector M in the direction of
B0. (Image reproduced from Ref .[15])

To conclude, the excitation pulse tilts the net magnetic vector away from the equilibrium
state towards the transverse plane. The resulting nonzero transverse component rotates
around the z-axis at Larmor frequency. This time-dependent magnetic motion induces
an electrical current in the receiver coils, and can thereby be detected.

2.1.4 Relaxation

After excitation by the RF-pulse, the spin system gradually returns to a state of ther-
mal equilibrium. This process is known as relaxation and there are two independent
mechanisms that occur simultaneously: longitudinal relaxation and transversal relaxation.

Longitudinal Relaxation

During excitation, the spin system absorbed energy from the RF-pulse, which led to an
increased population of the high-energy configuration and thereby a decreased longitudinal
magnetization Mz. Longitudinal relaxation refers to the release of that added energy
to the protons surroundings, the lattice. The return of Mz to the equilibrium value M0
follows an exponential growth process

Mz (t) = M0

(
1− exp

(−t
T1

))
(2.13)

where t is the time following the RF pulse and T1 is the characteristic time constant
for longitudinal relaxation. T1 values in biological tissues range from a few hundred
milliseconds to a few seconds and are specific for a tissue of fluid. [17]
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2. Background: Susceptibility-Based MR Imaging

Figure 2.3: Effect of a 90◦ pulse on a spin ensemble within a static field B0
in z direction; shown in a rotating frame of reference. left: before the pulse:
Spins are at thermal equilibrium, with no phase coherence; net magnetization
in +z direction. middle: additional field B1 along x’ rotates generates phase
coherence between individual spins and thereby rotates the net magnetization
towards y’. right: endpoint of the 90◦ pulse: equal distribution in the spin states
and complete phase coherence resulting in a net magnetization along y’. (Image
reproduced from [16])

Transversal Relaxation

Following the RF pulse, the contributing spins precess in phase, thereby generating a
net transverse magnetization. However, stochastic fluctuations of the magnetic field at a
microscopic level due to spin-spin interaction leads to slightly altered precession rates
for individual spins. This causes the spin isochromats to fan out in time, reducing the
transverse component of the net magnetization vector Mxy. This irreversible decay of
Mxy by an exponential function with a a characteristic time T2, the spin-spin relaxation
time [17]:

Mxy (t) = Mxy (t = 0) exp
(−t
T2

)
. (2.14)

Additionally to spin-spin relaxation, there are other effects that contribute to the decay
of Mxy. Inhomogeneities of the main magnetic field (e.g. due to imperfect shimming) and
varying magnetic properties2 within the tissue cause variations in the precession speeds,
which again fans out the spins. The transverse magnetization therefore decays faster
than predicted by pure T2 relaxation which results in an effective transverse relaxation
time T ∗2 :

1
T ∗2

= 1
T2

+ 1
T ′2

(2.15)

2The field inhomogeneities induced by magnetic susceptibility differences are the root cause of the
image contrast in susceptibility-based imaging techniques and will be discussed in more detail in the
following sections.
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2.2. Magnetic Resonance Imaging

where T ′2 denotes the time constant for inhomogeneity-induced relaxation.[17, 18]

While a signal loss due to intrinsic T2 relaxation cannot be avoided, signal loss due to
field inhomogeneities can be reversed by applying a second RF pulse known as refocusing
pulse (a 180◦ pulse) [15]. However, as we will discuss in the following sections, the
accelerated decay of the signal due to local field inhomogeneities is actually desirable for
some imaging purposes such as venous vessel detection. Susceptibility-based MR imaging
techniques therefore use a gradient echo sequence, which does not have a refocusing pulse.

2.2 Magnetic Resonance Imaging

Up to now, we have discussed the physical principles of nuclear magnetic resonance; how
spins are excited to form a measurable net magnetic vector and the main relaxation
processes. In order to generate Magnetic Resonance Images (MRIs) however, we also
need to have spatial information, i.e. where in the body which signal comes from. This
necessitates spatial encoding of signal. In the following, the main constituents of an MRI
scanner are presented in Section 2.2.1 and the basic principles behind spatial encoding
are discussed in Section 2.2.2. Then the Gradient Echo sequence, which is used for
susceptibility-based image acquisition, is presented in Section 2.2.3.

2.2.1 MRI hardware

The main constituents of an MRI scanner are the main magnet that provides a large
static magnetic field, B0, gradient coils, and the radiofrequency coils that transmit the
RF pulse and receive the NMR signal.

Most MRI systems use superconducting electromagnets to generate the main field. These
consist of a coil that has been made superconductive by cooling it to 4 K using liquid
helium. The resulting field strength of B0 ranges up to 3 T in clinical practice and up to
15 T in research. A higher field strength leads to a higher Signal to Noise Ratio (SNR),
which can be used for higher spatial resolution or decreased scan time. [18]

The gradient coils enable the generation of linear gradient fields in all three spatial
dimensions: x,y and z. These gradients are used for the spatial encoding and localization
of the MRI signal, which is discussed in Section 2.2.2.

Transmit coils produce the radio-frequency electromagnetic field B1 that is perpendicular
to the B0 field. Transmit coils are usually volume coils that are able to deliver uniform
excitation throughout the scanned volume. They are either located inside the bore of
the magnet (for whole body scans up to 3 T) or closer to the body part that is to be
measured in the form of specialized head, knee or ankle coils. The transmit coils can also
be used to receive the MR signal. Dedicated arrays of receiver coils, however, are able to
produce better signal to noise ratios.
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2. Background: Susceptibility-Based MR Imaging

2.2.2 MRI - Signal Localisation

To localize the signal, spatial information needs to be encoded into the NMR signal. This
is done with the help of three sets of gradient coils, which are able to provide linear
magnetic field gradients along the x, y and z axis. In the following a brief description
of the way these gradients are used to encode spatial information in a prototypical 2D
imaging sequence is provided. More in depth explanations can be found in one of the
many excellent textbooks such as [19, 15, 20, 21].

Slice Selection As a first step (in 2D imaging), the excitation of the spins is limited to
a thin slice. This is done by applying a gradient simultaneously with the Radiofrequency
Pulse (RF-Pulse). The gradient Gz (assuming an axial slice selection) alters the precession
frequency in z-direction:

ω (z) = γB0 + γGz (2.16)

The RF-pulse only excites spins which match the resonance criteria, i.e. only spins that
are located in defined positions along the z-axis are excited. The slice thickness depends
on the amplitude of Gz and the bandwidth BW of the RF-pulse [20]:

∆z = BW

γGz
. (2.17)

Phase and Frequency encoding Subsequent to exciting a specific slice, the spatial
information along the x and y direction needs to be encoded. Similar to (2.16), the linear
gradients field gradients Gx and Gy can alter the precession frequency of the spins along
the x and y axis respectively, thus they can establish a relationship between the position
of the spins and their procession frequency:

ω (r) = γ (B0 + G · r) . (2.18)

This process is called frequency encoding. The MR signal induced in a coil S(t) is the
sum of all the excited spins in the volume, each resonating at a frequency corresponding
to it’s position along the gradient directions [21]:

S (t) =
∫
Mxy (r) exp (−iΦ (r, t)) dr (2.19)

with the phase angle
Φ (r, t) =

∫
ω (r) dt (2.20)

representing the accumulated phase changes. For the sake of simplicity (2.19) does not
consider relaxation phenomena. If we demodulate the signal (i.e. remove the rapid
oscillation caused by B0), the accumulated phase angle due to gradient imposition can
be written as

Φ (r, t) = γ

∫
G · rdt (2.21)
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2.2. Magnetic Resonance Imaging

With the definition
k (t) = γ

2π

∫
G (t) dt (2.22)

(2.19) writes as [21]:

S (t) = S (k (t))
∫
Mxy (r) exp (−i2πk (t) · r) dr (2.23)

This equation shows that the position variable r and the “spatial frequency” k (t) are
a Fourier pair and the signal we measure is the Fourier transform of the transverse
magnetization Mxy (r).

Thus after enough data points in the two dimensional k-space are acquired by manipulating
the gradients Gx and Gy, the image can be obtained via 2D Fourier transformation as
illustrated in Fig. 2.4. Various different strategies for traversing the k-space have been
developed; a good overview can be found in [21]. In Section 2.2.3 the gradient echo
sequence, which is used in susceptibility-based imaging is described.

Acquired k-space Data Image

Fourier
transform

Figure 2.4: Image Acquisition process in 2D. Datapoints in k-space are acquired
by altering Gx and Gy. A Fourier transform yields the desired image (magnitude
and phase). (Modified from [20])

3D sequences To obtain information in the third dimension, one can either repeat the
2D acquisition at shifted slice positions or use a 3D sequence. In 3D sequences a larger
volume or slab is excited and the gradient in the third dimension is used to fill a three
dimensional k-space (similar to the 3D). A 3D Fourier transform then yields the images.

2.2.3 Gradient Echo Imaging

In susceptibility-based imaging, high resolution 3D Gradient-echo (GE) sequences are
typically used for data acquisition[22]. GE sequences utilize time-varying gradient fields
to dephase and rephase the MR signal in such a way that one or multiple echo signals
can be created[22]. Figure 2.5 shows a generic 2D single-echo GE sequence. Within each
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2. Background: Susceptibility-Based MR Imaging

cycle (TR = repetition time), the following steps occur: First, the slice select gradient GS
together with the radiofrequency pulse select a particular slice. Then the phase encoding
gradient GP selects a particular ky in k-space (a different one for each repetition) as
described in Section 2.2.2. Simultaneously, the negative readout gradient GR dephases
the spins along the x direction, which puts us to the left side of the k-space. Then the
data readout starts, which is indicated in Fig. 2.5 by the Analog Digital Converter (ADC)
being active. During the readout, GR is active in the opposite direction. This traverses
the k-space in positive kx direction by first rephasing the spins along x, eventually creating
an echo (at time interval TE after the RF-pulse), and then dephasing them again. Thus
within each cycle one line in a 2D k-space gets filled.

Figure 2.5: Pulse timing of a generic 2D Gradient Echo Sequence. (Reproduced
from [22])

In practice, the generic GE-sequence described above is altered to form more sophisticated
sequences that fit the particular imaging needs. By repeatedly reversing the readout
gradient, for example, the echo creation process can be repeated multiple times during
one TR. Thereby multiple images, which differ in TE, can be formed. For 3D data
acquisition, the RF-pulse and GS are adjusted to excite a thicker slab and GS additionally
performs phase encoding steps similar to GP . For more details on GE-sequence design,
including spoiling and flow-compensation, the interested reader is referred to textbook
sources such as [18, 21].

2.3 Magnetic Susceptibility and it’s effect in MRI

As mentioned in Section 2.1.2, materials become magnetized in the presence of an
external magnetic fields. The amount (and direction) of this magnetization depends on
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the magnetic properties of the material. Magnetic Susceptibility χ is the measure which
relates the induced magnetization to the applied field. In most materials (including most
tissues in the body) the magnetization M depends linearly on the applied field H [15]:

M = χH. (2.24)

Based on their susceptibility values, materials may be broadly classified into three large
groups [23]:

Diamagnetic materials are materials with negative susceptibility values −1.0 < χ < 0.
The diamagnetic response is present in all materials and is usually very small.
It is the only magnetic response for most biological materials including water
(χ = −9.05× 10−6) and almost all human tissue.

Paramagnetic materials have components with unpaired electrons which results in a
magnetic moment that overrides the diamagnetic response. Prominent examples for
paramagnetic components are iron, magnesium and gadolinium. Most important
for vessel detection in susceptibility-based imaging is the fact that deoxygenated
haemoglobin is paramagnetic while oxygenated haemoglobin is diamagnetic. The
magnetic susceptibility of blood therefore is a function of the oxygenation level.
This effect is called BOLD effect (Blood Oxygen Level Dependent).

Ferromagnetic materials have large susceptibility values χ � 1 and may exhibit
magnetization even in the absence of an applied field. Eq. (2.24) does not apply
for those materials.

Due to the magnetization M, the actual magnetic field B inside a material within an
external magnetic field B0 = µ0H0 is given by

B = µ0 (H + M) (2.25)

where B is measured in Tesla (T), H is measured in Ampere/meter (A/m) and µ0 is the
absolute permeability of free space (µ0 = 4π × 10−7 T m/A) [18].

With Eq. (2.24), equation (2.25) can be written as

B = µ0 (1 + χ) H =
(1 + χ

χ

)
µ0M. (2.26)

The actual magnetic field inside a substance therefore is a function of the substance’s
susceptibility.

Furthermore, the field distribution outside the substance will also be perturbed by the
induced magnetization. The magnetic field Bout at a position r outside the object is a
function of the induced magnetization M, and the object’s shape, volume, and orientation
to B0 [18]:

Bout (r) = B0 + f (M, object shape, object size, r) . (2.27)
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2. Background: Susceptibility-Based MR Imaging

Figure 2.6: Magnetic susceptibility values of different materials and tissues.
The upper diagram uses a logarithmic scale to visualize the broad range of
observed susceptibility values. The bottom diagram shows the 10−6 range at
linear scale. Susceptibility values of human tissue (marked red) are mostly in
the range from -7.0 to -11.0 ppm. Notice that deoxygenated blood is more
paramagnetic compared to water and other soft tissue. (Figure modified from
[23])

Now, why are the local magnetic field changes that are caused by susceptibility differences
of interest? Because those field changes alter the precession frequency of the protons in
MRI (see Larmor equation: (2.11)). In order to understand the effects of susceptibility
differences on MRI, Section 2.3.1 describes susceptibility induced field perturbations
for some simple geometries and Section 2.3.2 describes the effects on the phase and
magnitude of the MR signal.

2.3.1 Magnetic Field Perturbation of a Sphere and a Cylinder

To understand the nature of the field perturbation that we can expect in MRI, it is
instructive to look at field perturbation solutions for some simple geometries. Table 2.1
shows expressions for the internal and external magnetic field of a sphere and an infinitely
long cylinder in vacuum. In those equations, r denotes the position vector of the point of
observation and a the radius of the cylinder or sphere. For the spherical case θ is the
angle that the position vector makes with the magnetic field B0. In the cylindrical case
θ represents the angle between the long axis of the cylinder and B0, and ϕ and ρ denote
the position vector in cylindrical coordinates. [18]
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2.3. Magnetic Susceptibility and it’s effect in MRI

Table 2.1: Equations for magnetic field inside and outside a sphere and an
infinitely long cylinder in vacuum. These equations assume susceptibility values
of χ� 1 which is the case for most human tissue. [18]

Internal Field External Field

Sphere B0 B0 + χB0
3 ·

a3

|r|3 ·
(
3 cos2 θ − 1

)
Cylinder B0 + χB0

6 ·
(
3 cos2 θ − 1

)
B0 + χB0

2 ·
a2

ρ2 · sin2 θ cos 2ϕ

When embedded in some external medium, the susceptibility term χ in the equations in
Table 2.1 is replaced by a term representing the susceptibility differences of the materials
∆χ = χsphere or cylinder−χoutside material and an additional field is added which is dependent
on the shape of the outside compartment [18].

Blood vessels can be modeled as cylindrical structures, and, in case of venous vessels,
their susceptibility differs from the surrounding tissue (see Fig 2.6). It is therefore
particularly important for vein detection purposes to understand the field perturbations
for cylindrical structures. Figure 2.7 illustrates the field perturbations for a cylindrical
structure oriented parallel and perpendicular to the magnetic field B0. As we will see
and discuss in the next sections, these images look very similar to the phase images close
to venous vessels.

(a) (b)

Figure 2.7: Simulated magnetic field perturbation of an infinite cylinder with
finite susceptibility oriented (a) parallel, and (b) perpendicular to the magnetic
field. It is clearly visible that the orientation to B0 has a strong effect on the
field. For the non-parallel case the susceptibility effects also alter field around
the object (see equations in Table 2.1). (Image reproduced from Ref. [24])
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2. Background: Susceptibility-Based MR Imaging

2.3.2 Effects of Magnetic Susceptibility in MRI

The signal received by the MR scanner is a complex vector that represents the transverse
component of the magnetic moment. The signal of each voxel can be written as

S (r, t) = M (r, TE) · e−iΦ(r,TE) (2.28)

where M (r, t) is the magnitude, and Φ (r, TE) is the phase of the signal at position r
and at the time TE 3.

In an idealized imaging scenario, all protons would experience the same magnetic field
B0, and would therefore precess at the same rate. Each voxel’s signal would thus have
identical phase

Φ (r) = ω · TE (2.29)
with ω being the Larmor precession rate (2.2).

However, as discussed in the previous section, there are changes in the local magnetic
field resulting from susceptibility differences between tissues. There are also other causes
for field inhomogeneities, such as imperfect gradient performance, object motion or
air-tissue interfaces. [18] For venous vessel imaging purposes, the susceptibility effects
are of interest.

The local field changes affect the magnitude and the phase of the MR signal. If the field
changes rapidly, i.e. the field varies significantly within a voxel, the spins within the voxel

3TE corresponds to the echo time in a gradient echo sequence, which represents the time interval
between the RF pulse and readout of the maximum gradient echo signal.

Figure 2.8: Illustration of the field inhomogeneity and spin dephasing effects
to be expected near the interface of a vein and the surrounding tissue. The
arrows represent the direction of the transverse magnetization vector. In this
example the vein is 180◦ out of phase with the surrounding tissue. The voxels
at the boundaries experience both field resulting in the dephasing of the spins
within the voxel and thus an attenuation of the signals magnitude (represented
by the voxel appearing darker). (Image reproduced from Ref. [18])
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2.3. Magnetic Susceptibility and it’s effect in MRI

dephase and the magnitude of the signal gets gets attenuated. [18] For field variations
that are of lower spatial frequency, the field within a voxel can still be regarded as being
constant. The precession frequency of the entire spin ensemble within the voxel however
will be altered. This becomes apparent in the signal’s phase. The phase of two voxels
experiencing different, but constant local magnetic fields differs by: [18]

∆Φ = −γ ·∆B0 · TE . (2.30)

Figure 2.8 shows a schematic illustration of the effects of susceptibility-induced field
changes on the phase and magnitude of a gradient echo signal.
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Figure 2.9: Processing steps to form a Susceptibility Weighted Image (SWI):
The data from a high resolution Gradient-Echo sequence is combined to form
magnitude and phase images. The phase image is unwrapped and high-pass
filtered. Then a phase mask is generated which is multiplied into the magnitude
image (a number of times) to enhance the magnitude’s contrast between tissues
with different susceptibility. The processing steps for Quantitative Susceptibility
Mapping (QSM) are also shown. QSM will be discussed in Section 2.5. (Courtesy
of Simon Robinson)
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2.4 Susceptibility Weighted Imaging
As discussed in the previous sections, both the magnitude and the phase of gradient echo
scans are sensitive to susceptibility. By using the phase information in combination with
the magnitude image, one can generate a susceptibility weighted image (SWI) that shows
enhanced contrast between tissues with different susceptibilities. [25, 18] Figure 2.9 gives
an overview of the processing steps typically used to form a SWI. In the following, the
processing steps for generating a susceptibility weighted image are described in more
detail.

2.4.1 Phase Unwrapping

The phase signal, as it is measured (Φmeasured), is limited to values ranging from 0 to
2π. So whenever the actual phase value (Φact) lies outside of that range, it still gets
represented by a value within the interval. That process is called phase wrapping or
aliasing and leads sharp borderlines appearing in the original phase image (Figure 2.10a).
In order to obtain the real range of the phase variations, the phase needs to be unwrapped,
which is equivalent to adding multiples of 2π at the appropriate positions:

Φact (r) = Φmeasured (r) + 2π · n (r) (2.31)

where n is an integer (positive or negative).

The original SWI approaches [27, 25] did not explicitly unwrap the phase, but instead used
a homodyne filter [28] to remove phase variations of low spatial frequencies. Homodyne

(a) (b)

Figure 2.10: (a) Raw phase image showing phase wraps and (b) corresponding
unwrapped phase image. Unwrapping was performed with a Laplacian-based
algorithm that is implemented in TGV-QSM [26].
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2.4. Susceptibility Weighted Imaging

filtering is performed by smoothing (low-pass filtering) the complex image and dividing
the smoothed version into the original complex signal to create a high-pass filter effect.
The obtained phase image only contains high frequency spatial components, which are
associated with susceptibility changes, while the low frequency components (background
field inhomogeneities) are filtered out. While homodyne filtering alone reduces the amount
of phase wraps, it does not eliminate them completely. [29]

An alternative to homodyne filtering is unwrapping the true phase by aiming to determine
n (r) in equation (2.31). Several unwrapping techniques have been successfully applied
to MR Phase data, such as ΦUN [30], PRELUDE [31] and Laplacian-based algorithms
[32]. Figure 2.10b shows the unwrapped version of Figure 2.10a. The unwrapped phase
images contains all spatial frequencies. However, in SWI, only the local field changes
that result from susceptibility changes are of interest. To remove contributions from
background field inhomogeneities, the unwrapped phase image can be high-pass filtered.

2.4.2 Combination of Magnitude and Phase

After the phase image has been unwrapped and high-pass filtered, a phase mask is
generated which is then combined with the corresponding magnitude image by voxel-wise
multiplication. The phase mask can be designed to enhance positive phase changes (Fig.
2.11a), negative phase changes (Fig. 2.11b), or both (Fig. 2.11c). In order to enhance
positive phase changes, for example, all voxels with Φ < 0 are set to unity, while the
voxels with positive phase values are scaled linearly from 1 to 0:

Φmasked =
{

1− Φ
Φmax

, if Φ > 0
1, otherwise.

(2.32)

The phase mask can be multiplied with the magnitude a number of times, each time
further reducing the magnitude signal in voxels with positive phase.

(a) positive (b) negative (c) triangular

Figure 2.11: Functions for creating the phase mask. (a) enhances positive
phase changes, (b) enhances negative phase changes, and (c) enhances both.

2.4.3 Minimum Intensity Projection

To visualize the venous vasculature in SWI, a minimum intensity projection (mIP) from
the fully processed SWI is typically used. [18] A mIP combines multiple adjacent slices
into one image by taking the minimum value at every position and displaying it. This
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2. Background: Susceptibility-Based MR Imaging

method for vein visualization relies on the assumption that the vein has smaller values
than any other point along the projection. [18] While this assumption is often true for
slices through the middle of the brain, mIP visualization of veins near the brain’s surface
is impractical because of the low magnitude values of voxels outside of the brain.

2.5 (Quantitative) Susceptibility Mapping
As discussed in Section 2.3 the phase images depict the field changes resulting from
the susceptibility distribution inside a sample. These field changes, however, can be
spatially distant to the source of susceptibility changes and depend on the geometry
and orientation to the main field [5]. Susceptibility mapping aims to map these field
changes back to their source: the local susceptibility distribution. The basic concept
behind (quantitative) susceptibility mapping is described in the following:

2.5.1 Basic Concept

Assuming a main magnetic field in z-direction, and susceptibility values χ � 1, the
magnetic field perturbation due the susceptibility distribution χ (r), can be written as

∆Bz (r) = B0 · χ (r) ∗G (r) (2.33)

where ∗ denotes a convolution and G (r) is the point dipole response function given by:

G (r) = 1
4π

3 cos2 θ − 1
r3 (2.34)

with θ being the angle between r and z.[5] Using the convolution theorem in Fourier
space (2.33) simplifies to

F [Bz (r)] = B0 · F [χ (r)] · F [G (r)] . (2.35)

The Fourier transform of G (r) is given by [5]

F [G (r)] = G (k) =


1
3 −

k2
z

|k|2 , for k 6= 0
0, for k = 0

(2.36)

where kx, ky and kz are the coordinates in k-space and |k|2 = k2
x + k2

y + k2
z , and the

Fourier transform of the susceptibility distribution χ (r) is χ (k). The magnetic field
perturbation ∆Bz is then found by computing the inverse Fourier transform of (2.35):

∆Bz (r) = B0 · F−1 [G (k) · χ (k)] (2.37)

To compute susceptibility maps from the phase images, (2.37) needs to be solved as an
inverse problem. However, due to zero values of G (k) along the magic angles, some
spatial frequencies are under-sampled, which means the inverse problem is ill-posed [5].
Several algorithms have been proposed for solving the ill-posed inverse problem, a review
can be found in [5].
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2.5. (Quantitative) Susceptibility Mapping

2.5.2 Venous Vessel Appearance in QSM

Figure 2.12 shows the appearance of venous vessels in phase images and QSM images. In
the phase images, the dipole effect is clearly visible with the phase appearing bright above
and below the vein, and appearing dark to the left and right. Using the conventional
SWI processing scheme, would incorrectly enhance the outside of veins perpendicular
to the field [18]. Susceptibility mapping removes the dipolar appearance and shows the
veins as continuous bright structures. There are however some streak artifacts in the
QSM image which appear along the magic angles.

Figure 2.12: Comparison of vessel appearance in phase images (a) and (b) vs
QSM images (c) and (d). (Image reproduced from [18, ch.25])
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CHAPTER 3
Background: Vessel Extraction

In this chapter, the basics for the vessel extraction and segmentation are laid out. In
Section 3.1, two popular vessel enhancing techniques, Frangi vesselness filtering and
Vessel Enhancing Diffusion are described. Then Section 3.2 defines the term segmentation
and discusses methods to perform segmentation. Finally, Section 3.3 deals with the
Random Forest (RF) classifier and explains how it can be applied for segmentation and
feature importance measurements.

3.1 Hessian-Based Vessel Enhancement

This section describes two methods which are often used for vessel detection and have
also been used in susceptibility based images (See Table 1.1). The two methods are
the multi-scale vessel enhancing filter developed by Frangi et al. [12], and the Vessel
Enhancing Diffusion (VED) filter by Manniesing et al. [13]. Both are built upon the
assumption that in 3D, vessels have a cylindrical structure, and use concepts of scale
space theory to search for such structures within images [12, 13].

Frangi’s multi-scale vessel enhancing filter examines the local structure of an image by
analyzing the Hessian matrix of each voxel at multiple scales. A vesselness measure is
obtained that represents the likelihood of each voxel to be part of a tubular (vessel-like)
structure. Vessel Enhancing Diffusion [13] utilizes the vesselness measure to steer an
anisotropic diffusion scheme, which aims at improving vein continuity and suppressing
non-vessel structures.

In the following, the methods from Frangi et al. and Manniesing et al. are described in
detail.
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3. Background: Vessel Extraction

3.1.1 Vesselness Filter (Frangi)

Hessian matrix and Scale Space

The Hessian matrix is a matrix that contains the second order partial derivatives in x, y
and z direction. Before we can go into detail about the analysis of the Hessian for vessel
detection, we need to define differentiation in an imaging context.

In scale space theory the (normalized) differentiation of an image I at position r is defined
as a convolution with derivatives of Gaussians [12]:

∂

∂x
I(r, σ) = σγI(r) ∗ ∂

∂x
G(r, σ) (3.1)

where the D-dimensional Gaussian is defined as [12]:

G(r, σ) = 1√
(2πσ2)D

e−
‖r‖2

2σ2 (3.2)

with standard deviation σ. The size of the standard deviation determines the scale of the
features that are being looked for. σγ in (3.1) is a normalization factor that is necessary
to allow a fair comparison of the features at multiple scales. When no scale is preferred
γ is set to unity [12].

The Hessian therefore is defined as a convolution of the original image with the the
partial second derivatives of a Gaussian. For a 3D image I (r) the Hessian (of scale σ)
reads as

H(r, σ) =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (3.3)

with the partial second derivatives Ixy = ∂2

∂x∂y
I (r, σ) being calculated as defined in (3.1).

Hessian Eigenvalue Analysis

The second derivative of a Gaussian kernel at position r at scale σ generates a kernel
that measures the contrast around r in the range (−σ, σ), as illustrated in Figure 3.1a. A
subsequent eigenvalue analysis of the Hessian gives the principal directions (eigenvectors
v̂i) in which the local second order structure can be decomposed. The three orthogonal
eigenvectors, scaled by their eigenvalues (λj) span an ellipsoid that describes the 2nd
order structure around a specific voxel (see Figure 3.1b). The shape of this ellipsoid, more
specificly the relations between the eigenvalues (see Table 3.1), allows one to determine
the geometrical structure that the voxel belongs to.

In 3D, an idealized vessel has a tubular structure. A voxel belonging to a vessel region
will, therefore, be signaled by λ1 being small and λ2 and λ3 of a large magnitude and
equal sign (positive sign for dark vessels on bright background and negative sign for
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3.1. Hessian-Based Vessel Enhancement

(a) Second order derivative of a Gaus-
sian kernel that measures the con-
trast inside/outside of the range (−σ, σ)
(here σ = 1).

(b) Second order ellipsoid that de-
scribes the local principal directions of
the curvature embedded in a tubular
(vessel-like) structure.

Figure 3.1: Illustrations relating to Vesselness Filtering (reproduced from [12]).

bright vessels):

|λ1| ≈ 0 (3.4)
|λ1| � |λ2| (3.5)
λ2 ≈ λ3. (3.6)

The eigenvector v̂1 will point in the direction of vessel.

Dissimilarity measures

To calculate the likelihood for each voxel to be part of a tubular (vessel-like) structure
Frangi et al. use three dissimilarity measures and combined them in a probability-like
estimation of vesselness.

λ1 λ2 λ3 Structure

L L L noisy, no preferred structure
L L H− plate like structure (bright)
L L H+ plate like structure (dark
L H− H− tubular structure (bright)
L H+ H+ tubular structure (dark)
H− H− H− blob-like structure (bright)
H+ H+ H+ blob-like structure (dark)

Table 3.1: Eigenvalues of the Hessian matrix and corresponding 3D image
structure [12]. The eigenvalues are ordered |λ1| ≤ |λ2| ≤ |λ3|. (L=low absolute
value, H=high absolute value, +/- indicate the sign of the eigenvalue.)
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3. Background: Vessel Extraction

The first dissimilarity measure differentiates between plate and line like structures:

A = |λ2|
|λ3|

. (3.7)

A will be 1 for line-like structures and go to zero for a plate-like pattern. Only values
between 0 and 1 are possible because λ3 will always be greater than λ2 or equal in
magnitude (they are sorted that way).

The second dissimilarity measure is a measure of the deviation from blob-like structures:

B = |λ1|√
|λ2||λ3|

(3.8)

This ratio attains its maximum when all three eigenvalues are about equal in magnitude
(blob like structures) and vanishes when λ1 ≈ 0.

In an idealized (noiseless) scenario the features A and B would be enough to measure
vessel-like structures, but in reality, medical images contain random noise fluctuations.
To prevent these fluctuations from producing unpredictable filter responses, a third
dissimilarity measure is needed. A distinguishing property of background pixels is that
the magnitude of the derivatives (and therefore the eigenvalues) is small [12]. Therefore
Frangi et al. proposed the use of the (Frobenius) norm of the Hessian as the third
dissimilarity measure:

S = ‖H‖F =
√
λ2

1 + λ2
2 + λ2

3 (3.9)

In the background, where no structure is present, S will be low. For regions, which are
part of a structure (see Table 3.1), at least one eigenvalue will be large. Therefore S will
be higher in those regions than in background regions. While the first two measures, A
and B, are grey-level invariant (i.e. they remain constant under intensity re-scaling), S
is sensitive to the absolute intensity of the image. [12]

Frangi Vesselness Function

All three measures (Eqs. (3.7) to (3.9)) are combined to define a single vesselness function.
In case of dark vessels on bright background the (Frangi-) vesselness is defined as:

VO(σ) =


0, for λ1 < 0 or λ2 < 0(

1− e−
A2
2α2

)
e
− B2

2β2

(
1− e−

S2
2γ2

)
, otherwise

(3.10)

where σ represents the current scale, and α, β and γ are parameters to adjust the
influence of each individual measure A, B and S (Eqs. (3.7) to (3.9)).

To detect all vessels, small and big, the vesselness response is calculated at multiple
scales σ by computing the Hessian with Gaussian derivatives at multiple scales. At every

28



3.1. Hessian-Based Vessel Enhancement

voxel location, the vesselness output with the highest response is selected to obtain a
final estimate of vesselness:

VF = max
σmin≤σ≤σmax

VO(σ) (3.11)

where σmin and σmax are the maximum and minimum scales at which relevant structures
are expected to be found. [12]

3.1.2 Vessel Enhancing Diffusion

Vessel Enhancing Diffusion (VED), described by Manniesing et al. in [13], is an iterative
process that combines a smoothed vesselness filter with a nonlinear anisotropic diffusion
scheme. During each iteration the vesselness measure is calculated. Then a diffusion
scheme of varying (an)isotropy is applied. Based on the response of the vesselness filter,
the diffusion tensor is constructed to achieve:

• isotropic diffusion for voxels with low vessel likelihood to reduce background noise
and

• strong anisotropic diffusion for vessel structures in the direction of the vessel to
improve vein continuity.

Smoothed Vesselness Filter (Manniesing Vesselness)

VED uses a vesselness filter that is based on Frangi’s vesselness filter (see Section 3.1.1).
However, the vesselness function defined in (3.10) is not smooth at the origin and can
thus not be used directly to construct a vesselness diffusion equation. [13] To cope with
that limitation, Manniesing et al. extended (3.10) with a smoothing term that resembles
a Gaussian function with its argument inverted [13]:

e
− 2c2

|λ2|λ2
3 (3.12)

The parameter c should be chosen small to only have influence around the origin [13].

Multiplying VO(σ) with the smoothness term results in a smoothed vesselness function

VS(σ) =


0, for λ1 ≤ 0 or λ2 ≤ 0(

1− e−
A2
2α2

)
e
− B2

2β2

(
1− e−

S2
2γ2

)
e
− 2c2

|λ2|λ2
3 , otherwise

(3.13)

with A, B and S being the dissimilarity measures defined in Eqs. (3.7) to (3.9) and α, β
and γ their respective weighting factors. Note that the domain definition has changed:
VM(σ) is set to zero for for λ{2,3} less or equal to zero oppose to VO(σ) = 0 for λ{2,3} < 0.

Similar to (3.10) a multiscale approach is achieved by taking the maximum response of
all scales for each voxel:

VM = max
σmin≤σ≤σmax

VS(σ) (3.14)
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3. Background: Vessel Extraction

Nonlinear, Anisotropic Vessel Enhancing Diffusion

In scale space theory, different scale versions of an image can be generated according to
the diffusion equation

It = ∇(D∇I) (3.15)

where I is the original image and D is a diffusion tensor that controls the amount and
direction of the blurring or smoothing.[13]

In order to guide the diffusion process to enhance vessel like structures, Manniesing et al.
defined the diffusion tensor D as follows

D = QΛ′QT (3.16)

with Q being a matrix that represents the eigenvectors of the Hessian Q = [v̂1, v̂2, v̂3]
and Λ′ a diagonal matrix that contains the following elements:

λ′1 = 1 + (ω − 1) · V( 1
s )

M (3.17)

λ′2 = λ′3 = 1 + (ε− 1) · V( 1
s )

M (3.18)

The parameters ω and ε control the anisotropic diffusion for vessel structures and the
parameter s can be used to control the sensitivity to the vesselness response. ω should
be a large value (may be larger than one) as it steers the diffusion in vessel direction. ε
should be chosen very small, but ε > 0 to ensure positive definiteness of the tensor. For
non-vessel structures (VM → 0), the diffusion is high and isotropic and background noise
is reduced.

3.2 Segmentation

Image segmentation can be defined as the process of extracting one or more objects
of interest from an image [33]. For the objective of this thesis, we are interested in
distinguishing venous vessels (Foreground) from the rest of the image (Background). The
goal is thus to assign a discrete label l (x) to each voxel x in the following way

l (x) =
{

0, if background
1, if venous vessel.

(3.19)

3.2.1 Thresholding

The simplest way do such a binary segmentation is by setting a threshold T and assigning
the label according to the voxel intensity I (x) in relation to T :

l (x) =
{

1, if I (x) < or > T

0, otherwise.
(3.20)
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3.2. Segmentation

The threshold T is often determined manually by interactively varying T until the result
is considered satisfactory by the human operator. A well-known method for automatically
determining T is Otsu’s method [34], which chooses T such that the intra-class variance
is minimal.

In SWI, veins appear hypo-intense compared to their surrounding. A quick way to
segment veins could therefore be thresholding the magnitude image or the processed
SWI. There are however other structures that appear hypo-intense, such as the iron-rich
basal ganglia or the skull surrounding the brain. Grey-value based thresholding on the
magnitude image or SWI would falsely classify those as veins.

A more accurate approach is to threshold vessel-enhanced versions of the images, which are
produced by applying one of the methods described in Section 3.1. This approach has been
used for venous vessel segmentation from fully processed SWI [35] and magnitude images
[8, 6]. However, these Hessian-based filters are based on idealized geometrical assumption
and tend to undersegment the vasculature when those geometrical assumptions are not
met.

3.2.2 Classifer

Segmentation can also be treated as a voxel-wise classification problem. Each voxel is
then represented as a point in an p-dimensional feature space with p being the number of
features that are used to describe the voxel. Such features can for example be the voxel
intensity or, as also used in this thesis, the vesselness measure that is computed for this
voxel (see Section 3.1.1). The features space can also be derived from multiple images,
like multi-echo MR-sequences, multiple MR-sequences or differently processed versions of
an image. Figure 3.2a shows an example of a 2 dimensional feature space.

Classifiers partitions the feature space into sub-populations by using data with known
labels. [36] Figure 3.2b illustrates this partitioning. New, i.e. unsegmented, voxels are
then labeled according to their position in the partitioned feature space.

Classifier-based segmentation pipelines are, in machine-learning terminology, supervised
methods, because they require training data that has been manually segmented and is
then used as reference for automatically segmenting new data. [36]

A wide range of classification algorithms can be used for segmentation tasks [36], some
popular examples are K-nearest neighbors (KNN) [37], Support Vector Machines (SVM)
[38] and Artificial Neural Networks. In this thesis, a Random Forest (RF) [14] classifier
is used, which constructs a multitude of decision trees and segments the image based
on the cumulative votes of the individual trees. A more detailed description of Random
Forests can be found in Section 3.3.
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Figure 3.2: Illustrative example of the classification procedure. (a) Training
dataset in a 2-dimensional feature space. For a segmentation task each point in
this space would represent a voxel, and the color would represent the class label
(e.g. red circle = vein, blue triangle = background). (b) shows the partitioning of
the feature space after the classifier has been trained. New samples (unsegmented
voxels) are classified according to this partitioning.

3.3 Random Forest

Random Forest (RF) is an ensemble classifier that was originally described by Leo
Breiman and Adele Cutler in [14]. It is based on constructing multiple decision trees (a
‘forest’) from randomly selected subsamples of the initial training data. Classification is
then performed by aggregating the individual tree’s vote and deciding for the statistical
mode. The averaging over multiple decision trees and the introduction of randomness
in the tree building process (see Section 3.3.1) improves the predictive accuracy and
controls over-fitting to the training data, i.e. it does not excessively adapt to the training
and fail to classify new data [14, 39].

Additionaly, the RF algorithm provides a built-in measurement of the ‘importance’ of
each feature for the classification [14]. Details on the variable importance measurement
are discussed in Section 3.3.2.

3.3.1 The Random Forest Algorithm

In the following the key concepts the RF algorithm algorithm are provided with a focus on
the application for segmentation tasks. A more general descriptions of the RF algorithm
can be found in [14, 39].

Random forests is a supervised learning algorithm. This means that for training the
algorithm, a labeled training set needs to be available. The training set consists of a
feature matrix XTrain = {x1,x2, . . . ,xn} ∈ Rn×p where each of the n training voxels
is represented in the p-dimensional feature space, and the corresponding output set

32



3.3. Random Forest

yTrain = {y1, y2, . . . , yn}. In the segmentation case yTrain contains the manually annotated
class labels of the training set.

From the provided training data, the RF prediction model is generated by the following
algorithm:

For each tree Tb, 1 ≤ b ≤ ntree:

1. Drawm cases at random with replacement to create a subset of the training
dataset. This procedure is often referred to as bootstrapping.

2. Recursively grow a decision tree Ti to the drawn sub-set by applying
following steps on each node:

a) Randomly sample mTry feature variables from the p features available
b) Choose the best feature variable / split-point from those mTry fea-

tures. The best split is defined as the split that results in the biggest
reduction of impurity.

c) Split the node at into two sub-nodes
d) Repeat the recursive steps for each sub-node until the node size falls

below a given minimum node size.

Breiman suggests the following parameters for classification tasks: mTry = √
p, a

bootstrap size m of about two thirds of the training data and a minimum node size of
one. [14]

Node Splitting and Impurity Measure

Ideally a node is split in such a way that each of the sub-nodes only consists of samples
of one class, i.e. each sub-node is pure. Hence, to determine the quality of a potential
split point, a measure of purity or impurity is required. In practice, the Entropy or the
Gini index are commonly used as impurity measures [39].

With nt denoting the total number of samples in a node t, nk the number of those samples
belonging to class k and

p (k|t) = nk
nt

(3.21)

representing the proportion of class k in the node t, the Gini impurity function iG (t) and
Entropy iE (t) are defined as:

iG (t) =
K∑
l 6=k

p(k|t)p(l|t) =
K∑
k=1

p(k|t)(1− p(k|t)) = 1−
K∑
k=1

p2(k|t) (3.22)

iE (t) = −
K∑
k=1

p(k|t) log2 p(k|t) (3.23)
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3. Background: Vessel Extraction

With those impurity measures, one can now determine the reduction of impurity for a
binary split of node t into two sub-nodes tL and tR by:

∆i (t) = i (t)− Pl · i (tL)− (1− PL) · i (tR) (3.24)

where Pl denotes the proportion of samples that are assigned to the left sub-node when
splitting the node at point s of the feature variable j:

Pl = Pl (j, s) = P (xj ≤ s) = ntL
nt

(3.25)

The best split then determined by finding the split that results in the biggest reduction
of impurity.

Segmentation / Prediction

Segmenting new data with a RF-model is done by predicting the class label ŷ for each of
the voxels xnew. Note that xnew is the feature space representation of a voxel that is to
be segmented. The features need to be extracted in the exact same way as the features
for the trainings set Xtrain have been extracted.

xnew is run down all of the trees of the RF-model and each tree ‘votes’ for one of the
class labels. In a segmentation, i.e. classification task, the predicted class label is then
the one that receives the majority of the votes.

3.3.2 Feature Importance

A useful property of the RF algorithm is that it also allows an estimate of the importance
of each feature for the classification task. The author of RF proposes two measures for
feature importance [14]. A detailed characterization of those of those can be found in
[40].

The first method referred to as Gini importance and is based on the Gini impurity
measurement (3.22). As discussed in the previous subsection, the Gini impurity function
iG can be used in as criteria to determine the split at each node. During the creation
of the RF model, one can now simply keep track of all the times a feature variable is
chosen as splitting criteria and average over the impurity reduction ∆iG (computed via
(3.24)) for each of those splits. This mean decrease of Gini impurity then serves as a
measurement of feature importance.

The second method for measuring feature importance in RF is referred to as permu-
tation importance. It measures the prediction strength of each variable by using the
Out-Of-Bag (OOB) samples. The OOB samples of each tree are those samples that
are not selected by the bootstrapping procedure, i.e are not used for the training of
the tree. The permutation importance is computed by the following procedure [40]:
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For each tree Tb, 1 ≤ b ≤ ntree:

1. Identify the OOB samples. (the samples that were not used for growing the tree
Tb)

2. Predict the class label for the OOB samples using Tb and count the correct predic-
tions.

3. for each feature j = 1, . . . p:

a) Randomly permute the OOB samples’ values of feature j
b) Predict the class labels for the modified OOB samples
c) Calculate the difference in the accuracy between the prediction of the unmodi-

fied OOB samples and the prediction of the permuted OOB samples

The decrease in accuracy resulting from the permutation of a feature j is averaged over
all trees and yields the features’ permutation importance.

According to [40] and [39] the Gini importance and the permutation importance correlate
well as long as the features are of the same type. Although the absolute values of the
two feature importance measurements differ, the most predictive features rank amongst
the top features in both.

Strobl et al. [41] showed that, when used for a mixture of continuous and categorical
types of features, the Gini importance measurements are biased towards continuous
features. They propose to use a modified version of permutation accuracy in those cases
[41].
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CHAPTER 4
Materials and Methods

4.1 Acquired Data
The datasets that are used in this thesis were acquired at a 7 Tesla MR whole body
scanner (Magnetom, Siemens Healthcare, Erlangen, Germany) with a 32-channel head
coil (Nova Medical, Wilmington, USA) at the High Field MR Centre at the Medical
University of Vienna.

A total number of nine datasets from five different healthy volunteers are used. The
subjects are referred to as s1, s3, s4, s5 and s6 1. For each subject, a high resolution
multi-echo 3D gradient echo scan was performed. Resolutions and echo times are listed
in Table 4.1. Subjects s5 and s6 were scanned with identical multi-echo sequences using
an isotropic resolution of 0.7 mm and echo times of TE = 7, 14, 20 ms. The resolutions
and echo times of subjects s1, s3 and s4 are slightly different.

The data from the 32 individual coils was combined using either the Virtual Reference
Coil approach [42] (for s1, s3, and s4), or the COMPOSER approach [43] (s5 and s6).
This results in one combined magnitude, and one combined (but not yet unwrapped)
phase image for each of the three echoes of each dataset. These magnitude and phase
images posed the starting point for the analysis done in this thesis.

For subject s6, two additional single-echo datasets were acquire in the same scan session.
The echo time for those single-echo sequences was set to TE = 7 ms to match the first echo
time of the multi-echo dataset. The resolution was set to isotropic 0.7 mm and isotropic
0.5 mm respectively. These single-echo datasets were used to test the performance of the
proposed Random Forest segmentation method on short single echo sequences, which are
faster in acquisition.

1The reason that there is no s2 is because there were problems in the reconstruction of the s2 dataset
and the same person was scanned again later (subject s5) with different acquisition parameters). Thus
the dataset s2 is not used.
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Table 4.1: Overview of the datasets that are used in this thesis, listing voxel
dimensions, echo times, Repetition Time (TR), Flip Angle (FA), Acquisition
Time (TA) and reconstruction method. All datasets are acquired at a field
strength of 7T. The datasets for subjects s1, s3, and s4 are combined using the
Virtual Reference Coil (VRC) [42] method and s5 and s6 are combined using
the COMPOSER [43] approach.

Subj. voxdim Echotimes [ms] TR [ms] FA [◦] TA Reconstr. Method[mm·10−1] TE1 TE2 TE3

s1 4x4x7 8 14 21 26 8 10 min 17 sec VRC
s3 5x5x5 7.5 13 19.5 ?a ?a ?a VRC
s4 5x5x12 8 12.3 17.5 27 15 5 min 37 sec VRC
s5 7x7x7 7 14 20 32 10 11 min 25 sec COMPOSER

s6
7x7x7 7 14 20 32 10 11 min 25 sec COMPOSER
7x7x7 7 - - 17 8 06 min 04 sec COMPOSER
5x5x5 7 - - 17 10 09 min 51 sec COMPOSER

aThe original data and scanning parameters were lost due to a harddisk failure.

4.2 Performance Metrics
In SWI vessel segmentation literature, evaluation of segmentation performance is often
performed visually [8, 6, 7] by overlaying the segmentation result on to minimum intensity
projections of the SWI data or visualizing 3D renderings of the segmentation. These
visualizations are then judged in terms of vessel-like appearance and connectivity of the
vessels. However, in order to assess the quality of the obtained segmentations quanti-
tatively and to enable a comparison of different segmentation approaches, quantitative
performance metrics are needed. Table 4.2 provides a list of such performance metrics,
which enable a quantitative evaluation of automatic segmentation results compared with
the “ground truth”. Since an actual “ground truth” is often not available, “ground truth”
refers to an expert’s interpretation of the image in form of a manually drawn label map.

All the performance metrics in Table 4.2 work on a voxel-by-voxel basis, i.e. they
compare the voxel labeling obtained by the automatic segmentation with the manually
assigned label. Although the metric “Accuracy” (the ratio of correctly classified voxels)
is very intuitive, it is not particularly informative for unbalanced test samples, as
in such cases it is biased towards the bigger class. Dice Similarity Coefficient and
Matthews Correlation Coefficient (MMC) can both handle unbalanced test data. In image
segmentation literature the Dice Similarity Coefficient is commonly used as performance
score. Therefore it was also used as main metric for evaluation in this thesis to simplify
comparison with other approaches. However, scores regrading the other performance
metrics are provided as well in order to enable detailed analysis of the segmentation
performance.
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Table 4.2: Performance Metrics for quantitative comparison of the automatic
segmentation with the “ground truth”, which is represented by a manually drawn
label map.

Notation Name Description

TP True Positives Number of voxels that are correctly classified as veins.
FP False Positives Number of voxels that are falsely classified as veins.
TN True Negatives Number of voxels that are correctly classified as background.
FN False Negatives Number of voxels that are incorrectly classified as background.
N Total number of (annotated) voxels.

Metric Equation Description

Precision TP
TP+FP

Ratio that measures how many of the
cases that are classified as positives are
actually true positives.

Recall TP
TP+FN

Ratio that measures how many of the
positives are found by the classifier.

Accuracy TP+TN
N

Ratio that measures how many of the
tested cases (voxels) are classified cor-
rectly.

Dice 2∗Precision∗Recall
Precision+Recall

Dice Similarity Coefficient: Harmonic Mean
between Precision and Recall. Also often
referred to as F1-Score.

AUC-ROC ∫ 1
0 ROC

Area under the Receiver Operating Char-
acteristics (ROC) Curve. ROC is a plot of
Sensitivity vs (1 - Specificity)

MMC TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN) Matthews Correlation Coefficient [44]
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CHAPTER 5
Analysis

In this chapter, the image processing and analysis that was performed within this thesis
is presented in detail. Starting with the raw multi-echo magnitude and phase images that
are acquired using a high-resolution, multi-echo Gradient Echo sequence (see Section 4.1),
the first steps are to unwrap the phase, generate QSM images, and remove intensity

Figure 5.1: Flowchart of the Random Forest (RF) vein segmentation pipeline
showing the necessary steps for training an RF model on manually annotated
training data and using this RF model to segment new data. The susceptibility-
based processing and feature extraction steps that are highlighted in green are
identical for training and segmentation.
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inhomogeneities. Section 5.1 describes these processing steps. Section 5.2 deals with the
analysis of vessel extraction from either a single magnitude or QSM image, or from a
combination of multiple features using the Random Forest (RF) algorithm. Figure 5.1
illustrates the RF vein segmentation pipeline that was developed and implemented in
this thesis.

5.1 Susceptibility Based Image Processing

5.1.1 Brainmask generation

In order to limit computation and analysis to the brain region, a binary mask was
computed, which indicates voxels within the brain as 1, and voxels outside the brain as 0.
Two methods of brainmask generation were tested in this thesis. The first was the Brain
Extraction Tool (BET) [45] from the FMRIB Software Library1 (FSL) and the second a
custom made MATLAB routine using the Statistical Parametric Mapping2 suite (SPM).

The procedure for generating the brainmask with SPM was automated in MATLAB
using SPMs matlabbatch system and comprises of the following steps:

1. Load the magnitude images into SPM (all three echoes of the multi-echo scans are
used)

2. Use the SPM Segmentation module to:

a) perform bias field correction (see Section 5.1.2)

b) generate 5 tissue probability maps, each representing voxel-wise probability of
belonging to one of the following tissues respectively: (p1) grey matter, (p2)
white matter, (p3) CSF, (p4) bone, and (p5) soft tissue. A detailed description
of SPMs segmentation procedure can be found in the user manual3 to SPM12.

3. Generate an initial brainmask BMinit from the probability maps by thresholding
the sum of the the probabilities for grey matter, white matter and CSF :

BMinit (x) =
{

1, if p1 (x) + p2 (x) + p3 (x) > 0.95
0, otherwise.

(5.1)

A threshold of 0.95 was used for all the datasets.

4. Close the gaps inside BMinit with MATLAB’s imclose function.
1FSL can be downloaded from: http://fsl.fmrib.ox.ac.uk/
2SPM12 can be downloaded from http://www.fil.ion.ucl.ac.uk/spm/software/
3The SPM12 user manual can be found at: http://www.fil.ion.ucl.ac.uk/spm/doc/manual.

pdf
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5.2. Vessel Extraction

5.1.2 Biasfield Correction

MR images often show a smoothly varying intensity inhomogeneity across the dataset
which has no anatomical relevance but is instead caused by factors such as magnetic field
inhomogeneities, non-uniform reception coil sensitivity, eddy currents, or electrodynamic
interactions with the measured object [46]. This intensity non-uniformity is referred to as
bias field and, although not always visible for a human observer, can obstruct automated
processing of the images [47]. Thus the bias field needs to be removed to perform robust
automatic segmentation.

In this work, bias field correction of the magnitude images was performed with SPM’s
Segmentation module (which was already used in the process of creating brainmasks as
described in Section 5.1.1).

5.1.3 Phase Processing and QSM computation

All processing steps for generating a Quantitative Susceptibility Map (QSM) from the
combined phase image (see Sections 2.4 and 2.5) were performed using a very recent
algorithm using Total Generalized Variation (TGV) developed by Langkammer et al.[26].

TGV-QSM4 takes magnitude image, phase image and a brainmask as input and performs
phase unwrapping[32], background field removal, and dipole inversion to generate a QSM
image [26]. In the original version, the brainmask is eroded to ensure the exclusion of
the noisy regions outside of the brain. This erosion, however removes significant parts of
the surface vasculature. Since, in this thesis, we are interested in the surface veins, the
PYTHON script was modified not to perform this erosion. Due to this omission of the
erosion step, the brainmask is required to be more accurate than in the original version.
The default parameters of 1000 iterations and a TGV-regularization-parameter-ratio of
α0
α1

= 1 are used for all QSM computations in this thesis.

5.2 Vessel Extraction

This section describes how different methods for segmenting veins from susceptibility
based images were performed and how they were analyzed. Section 5.2.1 describes the
manual annotation of a part of the datasets, which then served as “ground truth” for
training and evaluation of the automatic segmentation methods. Section 5.2.3 describes
the parameter optimization and evaluation of automatic vein segmentation via vesselness
filtering. Sections 5.2.4 and 5.2.5 explain the way the Random Forest algorithm was used
for vein segmentation and analysis of the feature importances.

4The program can be obtained from http://www.neuroimaging.at/pages/research/
quantitative-susceptibility-mapping.php.
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5. Analysis

5.2.1 Manual Annotation

Two datasets were manually annotated to serve as a reference for training the Machine
Learning algorithm and as gold standard for quantitative evaluation of the segmentation
performance. Annotation is the manual assignment of a label L (x) ∈ {0, 1, 2, 3} to
individual voxels. Because of the huge number of voxels within each dataset, annotation
of the whole 3D dataset would take a disproportionate amount of time. Thus only a
portion of the voxels within two datasets (s1 and s5) was annotated with either a vein, or
a background label. ITK-SNAP5 was used as annotation tool and both, a magnitude and
a QSM image were displayed simultaneously to help the identification of veins. Figure 5.2
shows a screenshot of the view during the annotation process.

Figure 5.2: Screenshot of the ITK-Snap window demonstrating the view that
was used in the annotation process. The magnitude image of echo 2 and the
QSM image of echo1 are displayed next to each other to help identify venous
vessels.

When only looking at individual slices it is difficult to distinguish betweens veins and
background. Therefore the annotation strategy was to identify veins by scrolling through
slices and following the veins, drawing the annotation voxel by voxel. Because not all
veins were annotated, it is unreasonable to treat all voxels that have not been annotated
as background. Thus a number of regions within the brain that do not contain venous
vessels were marked with a background label, using the paintbrush tool. Only voxels
with either a vein- or a background label were considered in training and for quantitative
evaluation.

5http://www.itksnap.org

44

http://www.itksnap.org


5.2. Vessel Extraction

Table 5.1: Number of manually annotated Voxels within dataset s1 and s5.
The label called “Sinuses” represents the superior sagittal sinus and the straight
sinus which are not considered for training and validation. The color of the label
corresponds with the colors in the visualization of the annotations (Fig. 5.3).

Voxelcount % of Brainvolume

s1 s5 s1 s5

Vein 76751 23227 0.64% 0.53%
Background 173224 48786 1.45% 1.12%
Sinuses 65779 - 0.55% -
# Voxels within Brainmask 11973907 4361245 - -

In order to capture the variety of different tissues in the background region, background
labels were drawn in multiple brain regions, focusing on regions that are challenging for
automatic vein segmentation such as the cerebral surface and basal ganglia. Figure 5.3
shows 3D renderings of the manual annotations of s1 and s5. In dataset s1 the superior
sagittal sinus and the straight sinus were initially marked as veins as well. However
these two sinuses are much bigger than the typical cerebral vein and thus would get a
disproportionately high importance in quantitative evaluation. The labeling of those two
sinuses were thus changed to a separate “Sinuses” label and was neither used for training
nor for quantitative evaluation. In dataset s5 those two sinuses were not annotated.
Table 5.1 shows the number of labeled voxels for each of the two annotated datasets.
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5. Analysis

s1 s5

Figure 5.3: 3D views of the manual annotations for datasets s1 (left) and s5
(right). Venous vessels annotations are displayed in red and background labels
are green. In s1, the superior sinus sagittalis and the straight sinus are labeled
in blue.
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5.2. Vessel Extraction

5.2.2 Data normalization

In MR images, the scale of the signal intensity varies between subjects. To get a uniform
intensity distribution across different datasets the intensity values were normalized using
the z-score:

I ′ (x) = I (x)− µ̂
σ̂

(5.2)

where µ̂ and σ̂ are the mean and standard deviation of the intensity values. For each
image, µ̂ and σ̂ were computed from all the voxels within the brainmask. The magnitude
and QSM images of each dataset were normalized in this way.

5.2.3 Frangi Vesselness

Frangi vesselness filtering was performed on the normalized magnitude and normal-
ized QSM images using MATLAB6. The vesselness computation can be tuned with 7
parameters: FrangiAlpha, FrangiBeta and FrangiC, which represent the α, β and γ
parameters from Eq. (3.10); the scale parameters ScaleRange (minimum and maximum
scale), NumScales (number of scales) and ScaleType (linear or exponential distribution
of the scales); and the BlackWhite option, which was set to True to detect vessels that
appear dark with respect to their surrounding and False to detect bright vessels.

An exhaustive grid search was performed on the magnitude and QSM images on the
two annotated multi-echo datasets s1 and s5 to optimize the parameters for the cerebral
vein segmentation task. This parameter iteration was computed for the images of each
echo individually to investigate if and how the echo time influences the performance

6An implementation of a Frangi vesselness filter can be found at: https://www.mathworks.com/
matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter

Table 5.2: Parameters for Frangi Vesselness Parameter Iteration on the nor-
malized magnitude and QSM images.

Parameter Value Reason

FrangiAlpha 0.5 Default parameters as described in Frangi’s original
paper [12].FrangiBeta 0.5

FrangiC varied Varied from 0.1 to 2. Stepsize 0.1

ScaleRange varied Tried 3 Ranges: [0.1 1]mm as in Koopmans paper [6],
[0.5 2.5]mm like Beriault [9], and [0.1 3]mm.

NumScales 7 Empirically determined. More scales did not improve
accuracy.ScaleType exp

BlackWhite True (Mag) Veins appear dark in magnitude images.
False (QSM) Veins appear bright in QSM images.
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5. Analysis

of the vesselness filter. The parameter settings that were used in the grid search are
summarized in Table 5.2.

In order to evaluate the vesselness filtering output, the output was turned into a binary
segmentation by thresholding. For each image, the threshold was optimized with respect
to the maximum Dice overlap with the manually annotated vein and background labels.
In addition to the Dice overlap score, multiple other performance metrics (see Table 4.2)
were computed.

5.2.4 Random Forest Segmentation

In order to segment venous vessels on the basis of information from the multi-echo
magnitude, phase, and QSM images, a Random Forest algorithm7(RF) was used to
classify each voxel within the brain as either vein or background. This section provides
a detailed explanation of how the RF algorithm was used, starting with the features
that are used. Then the processes of building an RF model and using this model for
vein segmentation are described. Finally the validation methods that were used are
elaborated.

Features

The features that are were for the RF segmentation are computed from the magnitude,
phase and QSM images of a multi-echo scan. Since all the images of each subject were
acquired in a single multi-echo scan, these images share a common space and do not need
to be coregistered. The following features were used in this thesis:

Mag Voxel intensity of the biasfield-corrected and normalized magnitude image

MagVess Frangi vesselness computed on the biasfield-corrected and normalized magni-
tude image. The following parameters are used: FrangiAlpha=FrangiBeta=0.5;
FrangiC=1; 7 exponentially spaced scales in the range of [0.1 1]mm; Black-
White=True

Ph Unwrapped phase value (computed with the laplace unwrapping method
implemented in TGV-QSM)

QSM Voxel intensity of the normalized QSM image

QSMVess Frangi vesselness computed on the normalized QSM image. Parameters used:
FrangiAlpha=FrangiBeta=0.5; FrangiC=1; 7 exponentially spaced scales in
the range of [0.1 1]mm; BlackWhite=False

The vesselness parameters for the features MagVess and QSMVess were selected after
the vesselness parameter iteration that is described in Section 5.2.3. As can be seen in

7The RF implementation used in this thesis can be downloaded from http://code.google.com/
p/randomforest-matlab/
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5.2. Vessel Extraction

Section 6.2 and Appendix A, the selected parameter sets were amongst those that yielded
the highest performance scores on all three echoes of both annotated datasets.

For each voxel within the brainmask BM, a feature vector f (x) was generated containing
either a subset or all of the features described above. The full feature vector using all
features from a 3 echo scan thus contained 15 features:

f full, ME (x) = {Mag (TE1,x) , Mag (TE2,x) , Mag (TE3,x) ,
MagVess (TE1,x) , MagVess (TE2,x) , MagVess (TE3,x) ,
Ph (TE1,x) , Ph (TE2,x) , Ph (TE3,x) ,
QSM (TE1,x) , QSM (TE2,x) , QSM (TE3,x) ,
QSMVess (TE1,x) QSMVess (TE2,x) , QSMVess (TE3,x)}

(5.3)

The feature vector was used for training a RF model and segmentation of new cases.

Training a RF Model

In order to obtain a segmentation model for a given feature subset, the RF needs to be
trained on this feature set. For this purpose, a representative number of the manually
annotated voxels (A) are used to form a training set T :

T =
{

(f (x) , y (x)) |x ∈ (ROItrain ∩ A)
}

(5.4)

that contains the feature vector f (x) and the corresponding vein, or background label
y (x) of all voxels within the training region ROItrain that have been annotated as either
vein or background. Details on how the data was divided up into test- and training set
are given in the Validation subsection below.

The influence of different values for the RF parameters ntrees and mTry was investigated
in an initial experiment using all annotated voxels of s5 and the full featureset f full,ME. In
accordance with that experiment (see Section 6.3.1 for details) and the suggestions from
Breiman et. al. [14] number of trees was set to ntrees = 200 and the number of features
tried at each split was set to the square root of the number of features mTry =

√
nFeat

in all experiments.

Segmentation with RF model

To segment veins in new data, each voxel is classified as either vein or background by
the trained RF model using the same feature set as in the training step (e.g. f full,ME).
The classification is based on the RF votes, where each tree in the RF model votes for
the voxel to either belong to the background class (ŷi = 0) or the vein class (ŷi = 1).
The ratio of trees that vote for the vein class 1

ntrees

∑ntrees
i=1 ŷi can be seen as the RF’s

confidence that the voxel belongs to a vein. The ratio for each voxel is stored in a votes
map which is then thresholded to obtain the segmentation. The default threshold in the
RF algorithm is 0.5, which is equivalent to a majority vote.
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Validation

To evaluate the segmentation performance of the proposed multi-echo RF method the
manually annotated data was split into training and test set. The annotated voxels
within the training set were used for training the Random Forest, and the annotated
voxels within the test set were used for quantitative evaluation using performance metrics
described in Section 4.2.

Two different ways of splitting the manually annotated voxels of datasets s1 and s5 into
test and train set were performed:

• To test the performance of the RF when training and test set originate from the
same dataset a 4-fold cross-validation technique was used for each of the two
annotated datasets. Each dataset was split evenly into 4 non-overlapping regions
of interest (ROIs). Three of the four regions (i.e. all the annotated voxels within
these three regions) were used for training an RF model. This RF model was then
used to segment the forth region. That whole procedure was repeated 4 times,
each time leaving a different region as test region and using the other 3 regions for
training. With this procedure the whole brain gets segmented without ever using
the same data for training and prediction. The segmentation generated in this way
is referred to as RF-intra.

• The second way was to use all of the annotated voxels of one annotated dataset
(either s1 or s5) to train an RF model and then segment the other dataset with that
RF model. The segmentations obtained in that way are referred to as RF-inter.

The performances of both, the RF-intra and RF-inter segmentations, were compared
to the segmentations obtained via thresholding the magnitude, phase, or QSM images
directly or via using a the Frangi vesselness filter on either the magnitude, or QSM images.
For the segmentation performance of the vesselness on the individual magnitude and
QSM images, the best scores obtained in the vesselness parameter iteration (Section 5.2.3)
were taken. The thresholding segmentation performances were also maximized w.r.t. the
highest Dice score. In other words, we compared the RF segmentation with the best
obtainable segmentation when using vesselness or thresholding on individual images.

Visual assessment of the segmentation performance in different brain regions was per-
formed by overlaying the segmentation onto a magnitude or QSM image. Also 3D
renderings of the segmented surface veins are shown.

Other datasets with varying acquisition parameters (see Table 4.1) were segmented as
well using RF-models trained on either s1 or s5. Because no annotations was available
for those datasets, those segmentations are evaluated only visually.
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5.2.5 Feature Importance

The Gini importance values, which are obtained when training a RF (see Section 6.4)
were used to assess the importance of the multi-echo magnitude, phase and QSM features
for the venous vessel segmentation task.

Additionally, in order to evaluate the quality of the Feature importance ranking, RF
training and prediction was performed using only subsets of features. Table 5.3 shows the
feature subsets that were used. Segmentation performance measurements were computed
in the same way the full featureset was evaluated.

Table 5.3: Name and feature-list of the feature subsets that are used for
evaluating the feature importance.

Subset List of features

f full,TE1 {Mag(TE1), MagVess(TE1), Ph(TE1), QSM(TE1), QSMVess(TE1)}

f full,TE2 {Mag(TE2), MagVess(TE2), Ph(TE2), QSM(TE2), QSMVess(TE2)}

f full,TE3 {Mag(TE3), MagVess(TE3), Ph(TE3), QSM(TE3), QSMVess(TE3)}

fMagOnly {Mag(TE1), Mag(TE2), Mag(TE3), MagVess(TE1), MagVess(TE2),
MagVess(TE3)}

fQSMOnly {QSM(TE1), QSM(TE2), QSM(TE3), QSMVess(TE1), QS-
MVess(TE2), QSMVess(TE3)}

fNoPhase {Mag(TE1), Mag(TE2), Mag(TE3), MagVess(TE1), MagVess(TE2),
MagVess(TE3), QSM(TE1), QSM(TE2), QSM(TE3), QSMVess(TE1),
QSMVess(TE2), QSMVess(TE3)}

fTop3-Gini {MagVess(TE2), QSM(TE1), QSMVess(TE1)}
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CHAPTER 6
Results

This chapter presents the obtained results in the following way: In Section 6.1 the visual
appearance of venous vessels in the magnitude, phase and QSM images of different echo
times is compared and the influence of the brainmask on the surface vein appearance in
QSMs is shown. Section 6.2 provides a quantitative summary of the vesselness parameter
iteration on magnitude and QSM images of different echo times. In Section 6.3 the
performance of the proposed Random Forest (RF) segmentation method is evaluated
and compared with the segmentations obtained with vesselness filtering and thresholding.
These comparisons are performed quantitatively using the manually annotated datasets
and visually. Finally the feature importance rankings are presented in Section 6.4.2.

6.1 Susceptibility Based Image Processing

For the computation of Quantitative Susceptibility Maps (QSM), a brainmask is needed
to avoid regions outside of the brain where the phase values are noisy and unreli-
able. Brainmasks that are computed with FSL-BET, which are typically used in QSM
computations[5], turned out to be too inaccurate when one is interested in depicting
the surface veins in QSM. Brainmasks that are computed by the method described in
Section 5.1.1 using the Statistical Parameter Mapping Tool (SPM) were more accurate
on our datasets and led to less artifacts in the surface regions of the QSMs. This is
demonstrated in Fig. 6.1, which shows one QSM image computed using a BET-mask
and one QSM image using the SPM-mask next to a magnitude image of the same slice.
One drawback of the SPM-mask is that some parts of the superior sagittal sinus, and
potentially some smaller parts of other surface veins, are cut away by the tight SPM-mask.
However as we will see in the 3D renderings of the segmented surface veins in Section 6.3,
there is enough of the veins left to allow good visualizations. For all the analysis going
forward, only voxels within the SPM mask are considered.
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Magnitude QSM, BET-mask QSM, SPM-mask

Figure 6.1: Surface vein appearance in a magnitude image (left) and two
QSM images. Both QSM images are computed using TGV-QSM with the same
parameters, once with a brainmask computed using FSL-BET (middle) and
once with a brainmask computed using SPM (right). QSM computation with
the larger BET-mask results in bright artifacts in regions close to the brain
surface, which hampers the identification of surface veins.

The use of multi-echo datasets enables us to investigate the influence of different echo
times (TE) on the depiction of veins on magnitude, phase and QSM images. Figure 6.2
shows images of the same slice in the mid-sagittal brain region for TEs of of 7, 14 and
20 ms. In the magnitude images, the contrast for veins increases for higher echo times.
Also the veins appear bigger in higher TE magnitude images than in the lower ones
due to increased signal loss around the veins by the susceptibility-induced fields. The
phase images, which have been unwrapped with the Laplace unwrapping method that is
implemented in the TGV-QSM program, show unwrapping errors in the 14 ms version
and even more at TE = 20 ms. The unwrapping errors are mostly located in and around
larger venous vessels. Therefore the QSM images generated from these later phase images
do not show the veins as clearly as the QSM image created from the 7 ms phase image.
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QSM

Mag

Phase 
uw

TE=7ms TE=14ms TE=20ms

Figure 6.2: Magnitude, phase and QSM images at three different echo times
acquired in a single scan, showing the change in venous vessel appearance
for progressing Echo Times (TE). The vein contrast in the magnitude image
increases with higher TE, while for QSM, the contrast is best for the shorter
TE.

6.2 Frangi Vesselness Parameter Iteration
As described in Section 5.2.3 we performed a grid search to optimize the Frangi Vesselness
parameters with respect to the maximum Dice overlap score with the manual annotations.
The parameter iteration was performed on the normalized magnitude and normalized
QSM images of each echo individually. Table 6.1 shows those parameter sets that
performed best. In all but one case a ScaleRange of 0.1 to 1 mm yielded the highest
score. In Appendix A, figures visualizing the performance of all parameter-sets on each
individual image are provided.
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Table 6.1: Frangi vesselness parameters for the normalized Magnitude and
normalized QSM images of s1 and s5 that yielded the highest Dice score after
parameter iteration. The scores regarding various other performance metrics
can be found in Tables 6.2 and 6.3.

Subj. Method TE [ms] Dice [%] FrangiC ScaleRange

min [mm] max [mm]

s5

Mag. Frangi
7 65.70 0.8 0.1 1
14 70.67 0.9 0.1 1
20 69.39 1 0.1 1

QSM Frangi
7 71.96 1.1 0.1 1
14 65.04 1.1 0.1 1
20 61.92 1 0.5 2.5

s1

Mag. Frangi
8 73.69 0.9 0.1 1
14 80.94 1 0.1 1
21 81.07 1.1 0.1 1

QSM Frangi
8 86.24 1.6 0.1 1
14 80.98 1.5 0.1 1
21 75.80 1.3 0.1 1
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Figure 6.3: Mean Dice score for Frangi Vesselness segmentation with a
ScaleRange of 0.1 to 1 computed on magnitude images (left), and QSM images
(right) for each echo. The individual plots for each image and all scale ranges
can be found in Appendix A.
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Figure 6.3 shows the mean Dice score of the individual echoes for a scale range of 0.1
to 1 over the different FrangiC values. For the magnitude images, echo2 (14 ms) and
echo3 (∼20ms) performed almost equal, both better than echo1 (∼7ms). However for
vesselness filtering on the QSM images, echo1 yielded best results. This indicates that a
multi-echo acquisition could be beneficial for vein segmentation.

In Section 6.3 the best individual Frangi vesselness segmentations are compared quanti-
tatively and visually with segmentations obtained by the proposed multi-echo Random
Forest (RF) approach. For the Frangi vesselness features in the RF a scale range of 0.1
to 1 mm and a FrangiC value of 1 is chosen for all the magnitude and the QSM images
of each echo.

6.3 Segmentation Performance of RF using all Features
(multi-echo)

6.3.1 Random Forest Parameter Optimization

To test the influence of the RF parameters mTry and nTrees, multiple RFs were trained
on all annotated voxels of s5 using all 15 features. Figure 6.4 shows the error rate
of the Out Of Bag samples for a growing number of trees using mTry values ranging
from 2 to 6. The error rate for all the curves drops exponentially until it stabilizes
at approximately 150 to 200 trees. The parameter mTry does not seem to have a
big influence on the error rate for this classification task. For all the following RF
segmentations in this thesis, the RF models are trained with nTrees = 200 and the
default value of mTry =

√
number of features (3 for the full featureset of 15).
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Figure 6.4: Out Of Bag (OOB) error rate while training a Random Forest
classifier on s5 using all features (5 features for each of the 3 echoes = 15) with
increasing number of trees for different mTry values ranging from 2 to 6.
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6. Results

6.3.2 Quantitative Segmentation performance compared to Manual
Annotation

The bar plots in Fig. 6.5 shows the Dice Similarity Coefficient between different automatic
segmentations and the manually annotated voxels of datasets s1 and s5. A more detailed
evaluation using multiple performance metrics is provided in Tables 6.2 and 6.3. For
each of the magnitude, QSM and phase thresholding segmentations, the threshold which
yielded the highest Dice score was chosen. In the “PhaseThreshPos” experiments, all
voxels that have a bigger phase value in the unwrapped images than the threshold
are classified as vein, similar to a positive phase mask in SWI (see Fig. 2.11). In the
“PhaseThreshNeg” voxels with a smaller value are classified as veins. For the vesselness
segmentations, the best values from the vesselness parameter iteration (Section 6.2) are
chosen. The way the annotated voxels are split into training and test dataset for intra-
and inter-dataset validation of the Random Forest is described in Section 5.2.4.
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Figure 6.5: Dice similarity coefficient of different segmentation methods com-
pared to manual annotation on s1 and s5.
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6.3. Segmentation Performance of RF using all Features (multi-echo)

Table 6.2: Detailed evaluation of segmentation performance on s5 compared
to the manual annotation. The operating point was set to the maximum Dice
similarity coefficient.

Method TE [ms] Dice [%] Accuracy [%] Precision [%] Recall [%] AUC-ROC [%] MCC [%]

MagThresh
7 60.24 75.76 63.37 57.41 74.92 56.65
14 64.71 74.33 57.75 73.58 80.46 58.51
20 63.67 73.09 56.03 73.73 77.89 57.45

QSMThresh
7 68.52 80.66 71.47 65.80 83.30 63.34
14 60.76 74.75 60.40 61.14 74.28 56.76
20 57.63 70.02 52.58 63.75 70.99 53.91

PhaseThreshPos
7 48.59 71.05 56.23 42.78 51.77 48.96
14 49.14 73.54 63.78 39.97 50.58 49.06
20 48.47 31.99 31.99 100.00 50.39 -

PhaseThreshNeg
7 48.47 31.99 31.99 100.00 48.23 -
14 48.47 31.99 31.99 100.00 49.42 -
20 48.47 31.99 31.99 100.00 49.61 -

MagVess
7 65.70 81.43 80.30 55.60 75.89 61.64
14 70.67 83.09 79.39 63.67 79.70 65.73
20 69.39 82.91 81.25 60.55 78.22 64.77

QSMVess
7 71.96 82.81 75.26 68.94 81.61 66.51
14 65.04 79.01 69.61 61.03 76.42 60.50
20 61.92 72.90 56.23 68.90 73.51 56.72

RF-Intra ME 88.04 92.45 89.26 86.86 97.18 83.85
RF-Inter-s1Model ME 78.64 86.26 78.20 79.08 92.76 72.84

Table 6.3: Detailed evaluation of segmentation performance on s1 compared
to the manual annotation. The operating point was set to the maximum Dice
similarity coefficient.

Method TE [ms] Dice [%] Accuracy [%] Precision [%] Recall [%] AUC-ROC [%] MCC [%]

MagThresh
8 75.29 84.91 80.59 70.64 88.14 69.79
14 83.43 89.52 85.97 81.04 92.83 78.31
21 83.34 89.26 84.14 82.56 93.04 78.05

QSMThresh
8 83.61 89.83 87.97 79.66 90.36 78.66
14 77.82 86.99 87.41 70.13 86.23 72.72
21 72.92 83.41 77.79 68.61 82.65 67.42

PhaseThreshPos
8 49.11 32.55 32.55 100.00 42.75 -
14 49.11 32.55 32.55 100.00 43.98 -
21 49.11 32.55 32.55 100.00 47.22 -

PhaseThreshNeg
8 53.14 73.15 61.51 46.78 57.25 51.78
14 54.75 76.64 74.08 43.43 56.02 52.93
21 50.23 72.39 60.77 42.80 52.78 49.85

MagVess
8 73.69 85.15 87.01 63.91 80.71 68.80
14 80.94 88.38 86.85 75.79 86.66 75.78
21 81.07 88.30 85.66 76.94 86.96 75.81

QSMVess
8 86.24 91.48 90.91 82.04 90.26 81.78
14 80.98 88.41 86.91 75.81 86.62 75.82
21 75.80 85.23 81.18 71.10 83.43 70.31

RF-Intra ME 93.31 95.65 93.56 93.06 98.74 90.52
RF-Inter-s5Model ME 90.41 93.85 91.74 89.12 97.83 86.75
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6. Results

In all of the performance metrics, the segmentation obtained by combining the features
using Random Forests yielded higher scores than the segmentations obtained by using
the features individually. Segmenting veins by only thresholding the unwrapped phase
values seems to be problematic. In some cases the highest Dice overlap score is yielded
by a threshold so low that all voxels are classified as veins. This is probably caused by
the nonlocal character of the phase.

It has to be emphasized that because quantitative evaluation requires a “ground truth”
to test against, these scores are only calculated from voxels that have manual annotations.
In s5 the annotated voxels are primarily focused on regions that are challenging for
automatic segmentation (see Section 5.2.1). Therefore the performance scores on this
dataset are generally lower than in s1.

6.3.3 Qualitative Segmentation Performance

Figures 6.6 to 6.8 illustrate the Random Forest segmentation of datasets s1 and s5 in
comparison with the those Frangi Vesselness segmentations that yielded the highest
Dice scores in Section 6.2. Fig. 6.6 shows minimum/maximum intensity projections of a
Magnitude image and the corresponding QSM image overlayed with the segmentations to
demonstrate the performance inside the brain, while Fig. 6.8 shows the 3D renderings of
the surface vein segmentations of the same subject. In Fig. 6.7, the 3D rendered surface
vein segmentations for s1 are shown.

With the magnitude vesselness segmentation approach, most of the veins inside the
brain are recognized. In the surface region however, the vesselness filter struggles to detect
veins because there, due to the hypointense appearance of both the veins and the skull,
the idealized vessel shape is not given. Because a lot of the manually annotated voxels
are on the surface (this is the region we are most interested in) and the segmentation
parameters are optimized for those annotations, the threshold for the magnitude vesselness
to classify a voxel as vein is forced to be rather low. This leads to a slight tendency for
oversegmentation inside the brain while still not detecting the surface veins sufficiently.

The QSM vesselness performs well on the surface veins. When compared with the 3D
rendering of the manually annotated surface veins of s1 (Fig. 6.7), one can see that all
the surface veins that are annotated are picked up by the QSM vesselness as well, and
even some that were not annotated. Inside the brain, the QSM vesselness segments most
of the veins as well, however it does miss some of the veins in the mid-sagittal region
while still having some obvious misclassifications.

Because the Random Forest model has information from the magnitude vesselness filter
as well as the QSM vesselness filter, alongside the intensity values, the RF segmentation
performs well both inside the brain and for surface veins.

In order to test generality, other datasets with slightly varying acquisition parameters
(see Table 4.1) are segmented with the RF models trained on either s5 or s1. The 3D
surface vein renderings of those segmentations are shown in Fig. 6.9 and Fig. 6.10 shows
the segmentations inside the brain.
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6.3. Segmentation Performance of RF using all Features (multi-echo)

Mag. 
Raw

Mag. 
Vess

QSM 
Raw

QSM 
Vess

RF-
Inter, 

AllFeat. 
Multi-
echo

Mid Axial (3.5mm slab) Top Axial (0.7mm slice) Mid Sagittal (3.5mm slab)

Figure 6.6: Comparison of binary vein segmentation of s5 using Frangi vessel-
ness filtering on the magnitude image (Echo2), Frangi vesselness on the QSM
image (Echo1) and the proposed RF. The RF was trained on a different dataset
(s1), which has different acquisition parameters (aquisition parameters are listed
in Table 4.1).
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6. Results

(a) Manual Annotation (b) Magnitude Vesselness (Echo 2)

(c) QSM Vesselness (Echo 1) (d) RF Inter, MultiEcho

Figure 6.7: Comparison of three automatic segmentation methods with the
manual annotation on the same subject (s1) in 3D. (b) and (c) show the best
segmentations obtained by thresholding the output of the Frangi vesselness filter
on the magnitude and QSM. (d) shows the segmentation obtained by using the
proposed Random Forest approach. (The RF model was trained on s5.)
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6.3. Segmentation Performance of RF using all Features (multi-echo)

(a) Magnitude Vesselness (b) QSM Vesselness (c) RF Inter, MultiEcho

Figure 6.8: Visualization of the surface vasculature of s5 after automatic
segmentation. (a) and (b) show the best segmentations obtained by thresholding
the output of the Frangi vesselness filter on the magnitude (Echo2) and QSM
(Echo1). (c) shows the segmentation obtained by using the proposed Random
Forest approach. (The RF model was trained on s1.)

(a) s3 (RFmodel: s1) (b) s4 (RFmodel: s1) (c) s6 (RFmodel: s5)

Figure 6.9: 3D surface vein rendering of the automatic segmentation of other
datasets using the proposed RF approach. s3 and s4 have slightly different
acquisition parameters than the datasets on which the RF models have been
trained (see Table 4.1).
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s3 (RFmodel: s1) s6 (RFmodel: s5)(a) s3 (RF-model: s1)

s3 (RFmodel: s1) s6 (RFmodel: s5)(b) s6 (RF-model: s5)

Figure 6.10: Automatic vein segmentation of other subjects using the RF
approach overlayed on minimum intensity projections of the Magnitude image.
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6.4. Feature Ranking

6.4 Feature Ranking

6.4.1 Gini Importance

As described in Section 3.3 the mean decrease of Gini impurity for a feature in the
Random Forest training step can be used as a measure for the feature’s importance. The
bar plots in Fig. 6.11 show these Gini importance values obtained by training a RF with
the full multi-echo feature set on all annotated data of s5 or s1 respectively. In both cases
the vesselness value computed on the (normalized) magnitude of the second echo and
the vesselness and intensity value of the QSM image of the first echo show the highest
importance values. Furthermore it is apparent from these importance values that the
first echo contains most of the information for the vein segmentation task.
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Figure 6.11: Feature importances for a Random Forest trained on all features
of the multi-echo datasets s5 (left), and one trained on s1 (right).

6.4.2 Segmentation Performance of Feature Subsets

In order to further investigate the importance of different features for venous vessel
segmentation, the RF training and segmentation was performed using only subsets of
features for training and segmentation. Tables 6.4 and 6.5 show the performance scores
of those feature-subsets for both annotated datasets, obtained by intra dataset cross-
validation (see Section 5.2.4). When comparing these performance scores, one can see
that including the as feature additionally to the Mag. and QSM features does not add a
lot of value, with Dice scores of 93.31% with the full feature-set versus 92.59% without
the phase for s1, and 88.04% versus 86.44% for s5. The performance scores of using only
the magnitude features (intensity and vesselness of each echo) are very similar to using
only the QSM intensity and vesselness features.

When only using the features from one particular echo, the first echo yields the highest
performance scores, closely followed by the second echo. This result further supports the
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findings from the Gini importance measurement, that most of the information necessary
for vein segmentation is contained in the shorter echoes.

In Figs. 6.12 and 6.13 the performance of single-echo Random Forest segmentations of the
surface veins is demonstrated. Figure 6.12 shows 3D renderings of three segmentations of
the same (multi-echo) dataset: a RF segmentation using features from all three echoes, a
RF segmentation using only the features of the first echo, and manually annotated veins.
In Fig. 6.12 the multi-echo RF segmentation of subject s6 is compared with single-echo
RF segmentations performed on different datasets of the same subject that are acquired
with single-echo sequences.

In both figures, the surface vein segmentations of the single-echo RF looks similar to
the multi-echo RF segmentations. This indicates that, for surface vein segmentation
purposes, it is sufficient to only use a single, short echo time.

Table 6.4: Segmentation performance of feature-subsets for RF-intra classifi-
cation on dataset s5. The features that are used for each subset are listed in
Table 5.3

Featureset Dice [%] Accuracy [%] Precision [%] Recall [%] AUC-ROC [%] MMC [%]

f full,TE1 84.46 90.21 85.82 83.14 94.78 79.54
f full,TE2 83.34 89.43 83.99 82.71 94.47 78.18
f full,TE3 79.91 87.22 80.34 79.49 92.56 74.31

fMagOnly 80.01 87.36 80.94 79.09 91.46 74.46
fQSMOnly 79.17 86.90 80.56 77.83 91.89 73.60
fNoPhase 86.44 91.45 87.69 85.23 96.21 81.89

fTop3-Gini 79.23 87.48 84.39 74.67 89.48 74.00
f full,MultiEcho 88.04 92.45 89.26 86.86 97.18 83.85

Table 6.5: Segmentation performance of feature-subsets for RF-intra classifi-
cation on dataset s1. The features that are used for each subset are listed in
Table 5.3.

Featureset Dice [%] Accuracy [%] Precision [%] Recall [%] AUC-ROC [%] MMC [%]

f full,TE1 91.89 94.77 92.75 91.06 97.94 88.66
f full,TE2 91.16 94.27 91.54 90.79 97.82 87.67
f full,TE3 89.33 93.06 89.36 89.31 97.10 85.29

fMagOnly 89.25 93.08 90.28 88.25 96.27 85.25
fQSMOnly 89.59 93.37 91.59 87.68 96.82 85.74
fNoPhase 92.59 95.23 93.69 91.52 98.40 89.60

fTop3-Gini 89.59 93.37 91.71 87.56 95.83 85.74
f full,MultiEcho 93.31 95.65 93.56 93.06 98.74 90.52
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(a) Manual Annotation (b) RF Inter, MultiEcho (c) RF Inter, TE1 only

Figure 6.12: Comparison of the surface vein segmentation of s1 obtained by
using only the features of the first echo (c) with the segmentation obtained by
using the full multi-echo feature set (b) and the manual annotation of the same
subject (a). Both, the multi-echo and the single-echo RF models are trained on
the annotated data of s5.

(a) Data: s6, TE = {7,14,20}
ms, voxdim 0.7 mm;
RF-model: s5, Multiecho

(b) Data: s6, TE = 7 ms,
voxdim 0.7 mm;
RF-model: s5, Echo1

(c) Data: s6, TE = 7 ms,
voxdim 0.5 mm;
RF-model: s1, Echo1

Figure 6.13: Comparison of RF surface vein segmentations of subject s6 using
data acquired in 3 different scans (see Table 4.1 for acquisition details): (a) is
the image from Fig. 6.9c using multi-echo acquisition and a RF-model trained
on all features of s5. (b) and (c) show the surface veins of the same subject
segmented from datasets acquired with single-echo sequences using a short echo
time of 7 ms and a voxel size of 0.7 mm and 0.5 respectively. The RF-models
that are used for segmenting (b) and (c) are trained using only features of the
first echo of s5 (b) or s1 (c).
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CHAPTER 7
Discussion and Conclusion

Patient-specific visualization and modeling of the cerebral vasculature can provide valuable
information for image-guided neurosurgical procedures and can thereby help to minimize
the risk of post-operative neurological deficits. In particular, 3D models of the surface
vasculature have the potential to be used as landmarks during surgery. In this project, a
method for segmentation of cerebral veins from ultra-high field susceptibility-based MR
imaging was developed. The presented method uses a Random Forest (RF) classifier to
segment veins from a combination of appearance and shape features that are computed
separately from magnitude images, phase images, and QSM images of a multi-echo T ∗2 -
weighted Gradient Echo scan. The RF approach was demonstrated to enable automatic
segmentation of veins inside the parenchyma and, more importantly, on the brain’s
surface, where standard methods such as vesselness filtering [8, 6] tend to undersegment
the veins. The results further indicate that most of the information that is needed
for (surface) vein segmentation is already contained in the first echo, which potentially
enables quicker data acquisition.

In the following sections the results that were reported in the previous chapter are
discussed and compared with the literature. First the susceptibility-based image pro-
cessing and the vesselness parameter iteration are discussed in Sections 7.1 and 7.2
respectively. Sections 7.3 and 7.4 then deal with the main contributions of the thesis: the
segmentation performance of the proposed Random Forest approach and the importance
of the individual features for venous vessel segmentation.

7.1 Susceptibility-based image processing

QSM computation In the original TGV-QSM publication [26], BET was used to
create an initial brainmask, which is then eroded to ensure the exclusion of noisy phase
regions outside the brain. This approach, however, cuts away the surface vasculature.
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7. Discussion and Conclusion

The SPM-based brainmask generation method was more accurate than BET. QSMs
generated with SPM-based brainmask showed surface veins more clearly.

A limitation of the SPM-based brainmask computation is, however, that the tight
brainmask cuts off significant parts of the Superior Sagittal Sinus (SSS) and can in some
cases cut off parts of other surface veins. This can be mitigated by adjusting the disk-size
parameter of MATLABs imclose function which is used in the creation of the SPM mask.
Using other methods of background field removal in QSM such as [48] might potentially
enable the visualization of the full venous vasculature of the cerebral surface including
the SSS.

Influence of echo time on venous contrast in magnitude and QSM images
A visual comparison of the venous contrast in magnitude and QSM images from the
different echo times was performed. In the magnitude images, the contrast for veins
was best developed in the second and third echoes (14 ms and 20 ms). This is in good
agreement with the findings from Koopmans et. al. in [6], who reported optimal venous
contrast in magnitude images at 15 ms for 7T acquisitions. For the calculated QSM
images, the veins were most clearly visible at the shortest echo time (7 ms). This is
consistent with [5], where, for imaging veins at 7 T, Haacke et. al. suggest an echo time
of “6 ms instead of the usual 10 ms used for SWI to reduce phase aliasing effects, in order
to reduce streaking and improve the accuracy of susceptibility mapping”. This difference
in echo time for optimal vein contrast in magnitude vs. QSM images indicates that a
multi-echo acquisition strategy might be beneficial for imaging veins.

7.2 Vesselness Parameter Iteration

The performance of venous vessel segmentations that are obtained by vesselness filtering
either magnitude images or QSM images was evaluated. All results presented for that
segmentation approach have to be considered as upper bound since the vesselness
parameters and the segmentation threshold were optimized for each image individually
using the manual annotations.

Vesselness filtering on the magnitude images Even given those optimized param-
eters, the vesselness filtering approach tends to undersegment surface veins when used on
magnitude images. Issues of the vesselness filter failing to accurately detect surface veins
from magnitude and SWI images have also been reported by Koopmans et. al. in [6] and
by Bériault et. al. in [9, 11].

Vesselness filtering on the QSM images In QSM images that are computed with
the tight SPM brainmask, the vesselness filtering approach did segment the surface veins
quite well, as the comparison with the manual annotation in Fig. 6.7 showed. Inside the
brain, however, the contrast for veins in QSM was not as good as in magnitude images.
Therefore, vesselness filtering the QSM did miss some of the veins inside the parenchyma,

70



7.3. Segmentation Performance of the Multi-Echo RF-Approach

while also generating some obvious false positives. To the author’s knowledge, the only
publication that also reported vesselness filtering on QSM (at 3 T) is the ISMRM abstract
by Ward et. al. [10]. They reported low performance scores for vesselness filtering
(DICE=0.27 for QSM and DICE = 0.46 for SWI). Supposedly, one reason for the low
scores is that they used Otsu thresholding [34] to transform the vesselness output to a
binary segmentation. They did not report the vesselness parameters that were used.

Influence of the echo time The vesselness filtering based segmentation approach
was performed on each of the three echoes ({7, 14, 20} ms for s5 and {8, 14, 21} ms
for s1) individually. For vesselness filtering on the magnitude images, the two longer
echo times (14 and 20/21 ms) yielded the higher performance scores, while for vesselness
filtering QSM images, the shorter echo time (7/8 ms) performed best.

7.3 Segmentation Performance of the Multi-Echo
RF-Approach

The segmentation approach that was developed within this thesis uses a Random Forest
algorithm to combine appearance and shape features from magnitude images, phase
images, and QSM images of a multi-echo T ∗2 weighted gradient echo scan. In all of the
performance metrics that were used within our experiments, the RF approach yielded
higher scores than either of those features used individually. Specifically, the RF approach
outperformed the common vesselness filtering approach in all similarity measures that
were computed against the manual annotations. Visual assessment of 3D renderings of
the surface veins confirmed that the segmentations obtained by the RF approach did look
very similar to renderings of the manual annotations. Generality of the approach was
shown by segmenting other datasets, some of which were acquired with slightly differing
acquisition parameters.

It has to be noted that quantitative evaluation that was performed within this thesis is
limited to regions that are manually annotated. This means that misclassifications in
regions that do not have manual annotations are not reflected in these measurements.
However, the used manual annotations are focused on regions that are of particular
interest for presurgical planning and regions that are reportedly difficult for automatic
segmentation such as the brain surface, the mid sagittal region, and the basal ganglia.

Furthermore the the manual annotations were performed by the author of this diploma. To
validate the quality of these manual annotation a second annotator (ideally a radiologist)
could annotate the same parts of the dataset.

One limitation of the proposed RF segmentation approach is that segmentation is
performed on a voxel-by-voxel basis. While some amount of information about each
voxel’s neighborhood is included in the vesselness features, including further neighborhood
information could help to smooth the segmentations and get rid of isolated false positives.
This could for example be done with Markov Random Fields or Conditional Random
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Fields, as done in [9, 11, 10]. Another possibility would be to further enforce tubularity
by performing Vessel Enhancing Diffusion [13] on the probabilistic output of the Random
Forest.

Another obvious limitation is that the Random Forest classification is a supervised
machine-learning approach, i.e. that the RF segmentation model is learned from manually
labeled training samples. Although we successfully segmented datasets, that were acquired
with slightly different scan parameters than the dataset on which the RF model was
trained on, the trained RF models are expected to fail at other field strengths or when
the acquisition parameters differ significantly. Further experiments would need to be
performed to determine the degree of accuracy loss that is introduced when varying the
data acquisition. Ideally the training set is acquired with the exact same sequence as the
datasets that are to be segmented.

7.4 Feature Importance

The Gini importance measurement, which is integrated in the RF algorithm, was used
to investigate the importance of each feature from the multi-echo dataset. Since the
Gini importance values are a byproduct of the training step, these measurements could
only be performed on the two annotated datasets. In both datasets the vesselness of the
second echo magnitude image and the vesselness and intensity value of the first echo
QSM showed the highest importance values. The results further indicated that most
information necessary for venous vessel segmentation is already contained in the first echo.
It’s important to keep in mind though, that these results represent those regions of the
brain that are used for training the RF, i.e. those voxels that were manually annotated1.
Since special emphasis was put on the segmentation of the surface veins, surface voxels are
represented to a disproportionately high degree in the manual annotations. The measured
feature importance thus mainly describes the importance for surface vein segmentation.

Finally, we investigated the segmentation performance of RF models that only use subsets
of the features. The results indicate that the first echo does in fact contain enough
information to accurately segment the surface vasculature. This could potentially lead to
shorter measurement times as using a short echo time allows the repetition time to be
reduced.

7.5 Conclusion

In this thesis, a method for automatic segmentation of cerebral veins from susceptibility-
based MR imaging was developed. The combination of features from magnitude, phase,
and QSM images has been shown to be more accurate than the standard vesselness
filtering approach, especially for the challenging task of surface vein segmentation. The

1For the feature importance measurements, RF models were trained on all annotated voxels.
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7.5. Conclusion

proposed segmentation framework was implemented in MATLAB, which enables fully
automatic whole-brain venous vessel segmentation.
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APPENDIX A
Vesselness Parameter Iteration

In the following pages plots of the quantitative evaluation scores for vesselness filtering
with different parameters on each of the echoes of the two annotated datasets s1 and s5
are provided. A.1 shows plots for the Dice similarity coefficient; A.2 shows the plots for
accuracy; A.3 the Matthews Correlation Coefficient (MMC); and A.4 the Area Under
the Receiver Operating Characteristics Curve (AUC_ROC).

In order to compare the the vesselness filtering output with the manually annotated
labels, the filter output is turned into a binary segmentation by thresholding. For each
trial the threshold was optimized w.r.t. the respective evaluation score (Dice, Accuracy,
or MMC).
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A. Vesselness Parameter Iteration
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Figure A.3: Accuracy for Vesselness Parameter Iterations on s5
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Figure A.4: Accuracy for Vesselness Parameter Iterations on s1
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Figure A.5: Matthews Correlation Coefficient (MCC) for Vesselness Parameter
Iterations on s5
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Figure A.6: Mathews Correlation Coefficient (MCC) for Vesselness Parameter
Iterations on s1
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A.4 Area under the Curve: Receiver Operating
Characteristics
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Figure A.7: Area under the Receiver Operating Characteristics Curve (AUC-
ROC) for Vesselness Parameter Iterations on s5
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Figure A.8: Area under the Receiver Operating Characteristics Curve (AUC-
ROC) for Vesselness Parameter Iterations on s1
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