
Hybrid Modeling of Production Systems:
Co-simulation and DEVS-based Approach

DIPLOMA THESIS

conducted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

supervised by
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner

submitted to the
Faculty of Electrical Engineering and Information Technology

Vienna University of Technology

by
Bernhard Heinzl

Braunspergengasse 12/2/6/40
1100 Wien

Wien, November 2016
(Signature of Author) (Signature of Advisor)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

When investigating physical systems, there is a growing need to perform increasingly com-
plex and cross-domain computer simulations, which require suited methods to describe
hybrid simulation models with both continuous and discrete-time dynamics. For example,
a simulation model of a production facility should be able to incorporate production
entities (discrete) as well as energy flows (continuous). However, implementing heteroge-
neous hybrid simulation models is still a challenge. Two alternative approaches for this
problem, both of which promise different advantages and drawbacks, are investigated and
evaluated in this thesis. The first and more common approach pursues coupling of several
simulation tools as part of a co-simulation. This is compared to a novel approach that
uses a formal model description based on DEVS (Discrete Event System Specification).

Two comprehensive case studies in the context of interdisciplinary simulation of pro-
duction facilities for energy efficiency investigations are implemented to demonstrate
both modeling approaches in practical application. Both case study models include
discrete as well as continuous aspects, reflecting components for production equipment,
energy system, building services and the building hull. For implementation, modern
state-of-the-art simulation tools from research literature are employed: BCVTB (Building
Controls Virtual Test Bed) provides a middleware solution for co-simulation, while the
MatlabDEVS Toolbox implements a hybrid DEVS simulator.

Based on the case studies, relevant modeling aspects are examined and compared how
these can be implemented using co-simulation and the DEVS-based approach, such
as modeling of discrete persistent entities, communication between components and
handling of differential equations. A subsequent evaluation provides a direct comparison
of both approaches with regard to relevant criteria derived from state-of-the-art literature,
including reusability of model components, modularity, support of simulation algorithms
and overall modeling effort.

Compared to co-simulation, the DEVS-based approach is able to provide integration
of continuous and discrete modeling aspects not just on the data level, but also on the
modeling level, which entails several major benefits for model development, including
improved modularity of hybrid components, model maintainability and ultimately better
reusability. However, DEVS-based modeling currently lacks support for high-level spe-
cialized modeling features, thus requiring more effort from model developers for initial
implementation.

i

Kurzfassung

Die Untersuchung technisch-physikalischer Systeme erfordert es heutzutage immer komple-
xere und interdisziplinäre Computersimulationen durchzuführen, wodurch wiederum geeig-
nete Verfahren zur Beschreibung von hybriden Simulationsmodellen mit kontinuierlicher
und diskreter Zeitdynamik erforderlich werden. Beispielsweise soll ein Simulationsmodell
eines industriellen Produktionsbetriebes in der Lage sein, sowohl Produktionseinheiten
(diskret) als auch Energieströme (kontinuierlich) zu modellieren. Die Implementierung
derartiger heterogener Simulationsmodelle ist allerdings noch immer eine große Herausfor-
derung. Zwei alternative Ansätze für dieses Problem, die beide unterschiedliche Vor- und
Nachteile versprechen, werden in dieser Arbeit untersucht. Der erste Ansatz verfolgt die
Kopplung mehrerer Simulationswerkzeuge als Teil einer Co-Simulation. Diese Möglichkeit
wird verglichen mit einem zweiten Ansatz basierend auf einer formalen Beschreibung von
hybriden Modellen mittels DEVS (Discrete Event System Specification).

Zwei umfassende Fallstudien aus dem Bereich der interdisziplinären Simulation von
Produktionsbetrieben demonstrieren diese Modellierungsansätze in der Praxis. Beide
Fallstudien umfassen sowohl diskrete als auch kontinuierliche Aspekte in Form von Produk-
tionsanlagen, Energiesysteme, Gebäudetechnik und Gebäudehülle. Zur Implementierung
werden State-of-the-Art-Simulationswerkzeuge eingesetzt: BCVTB (Building Controls
Virtual Test Bed) stellt eine Middleware-Lösung für die Co-Simulation zur Verfügung,
während die MatlabDEVS-Toolbox einen hybriden DEVS-Simulator implementiert.

Basierend auf den Fallstudien werden relevante Modellierungsaspekte verglichen, speziell
die Modellierung diskreter persistenter Entitäten, Kommunikation zwischen Kompo-
nenten und Handhabung von Differentialgleichungen. Eine anschließende Evaluierung
liefert einen direkten Vergleich beider Ansätze in Bezug auf relevante Kriterien, die
aus der Forschungsliteratur bezogen werden, u.a. Wiederverwendbarkeit, Modularität,
Unterstützung von einschlägigen Simulationsalgorithmen und Modellierungsaufwand.

Im Vergleich zur Co-Simulation ermöglicht der DEVS-basierte Ansatz eine Integration
von kontinuierlichen und diskreten Aspekten nicht nur auf der Datenebene sondern auch
auf der Modellebene, was wesentliche Vorteile für die Modellentwicklung mit sich bringt,
einschließlich verbesserter Modularität von hybriden Komponenten sowie Wiederverwend-
barkeit. Allerdings fehlt es einer DEVS-basierten Modellierung an Unterstützung von
spezialisierten Modellcharakteristiken, womit ein deutlich höherer Aufwand seitens der
Modellentwickler für die Erstimplementierung erforderlich wird.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Scope of the Work . 3
1.4 Method . 3

2 Co-simulation Case Study 5
2.1 Background . 5

2.1.1 Terminology . 6
2.1.2 Coupling Strategies . 9
2.1.3 Technologies and Tools for Co-simulation 13

2.2 Design . 14
2.2.1 Reference Model . 14
2.2.2 Co-simulation Architecture . 16
2.2.3 Data Exchange and Synchronization 20

2.3 Implementation . 20
2.3.1 Sub-Models . 20
2.3.2 BCVTB Middleware . 24
2.3.3 Validation . 26

2.4 Testing and Results . 26

3 DEVS-based Modeling Case Study 31
3.1 Background . 31

3.1.1 DEVS-based System Specification Formalisms 31
3.1.2 Tools for DEVS-based Hybrid Modeling and Simulation 38

3.2 Design . 40
3.2.1 Modular Hybrid Modeling Approach 40
3.2.2 Simulation Approach . 41

3.3 Implementation . 43
3.3.1 Hybrid Model Component: Oven 43
3.3.2 Overall Model . 48
3.3.3 Validation . 50

3.4 Testing and Results . 51

v

4 Evaluation and Comparison 55
4.1 Related Work . 55
4.2 Scope of the Evaluation . 57
4.3 Criteria . 58

4.3.1 User Considerations . 58
4.3.2 Modeling Capabilities . 60
4.3.3 Simulation Performance . 61

4.4 Evaluation of Co-Simulation . 61
4.5 Evaluation of hybrid DEVS-based Modeling 66
4.6 Comparison . 69
4.7 Conclusion . 71

5 Summary & Outlook 75
5.1 Summary . 75
5.2 Future Work . 76

A MatlabDEVS Source Code for the Oven Model 77

List of Figures 87

List of Tables 89

Bibliography 91

vi

CHAPTER 1
Introduction

1.1 Motivation
Energy and resource efficiency is becoming an increasingly important topic in the industrial
sector, due to its high energy consumption and associated costs, while at the same time
showing significant potential for savings [14], [96]. There is a variety of methods and
tools available that all aim at improving individual aspects of energy efficiency within
production facilities (e.g. reduction and reuse of waste heat, energy-efficient machinery,
reduction of building heating demand). Apart from these selected in-depth investigations,
there is a potential for additional energy savings that lies in optimizing interactions and
interdependencies of multiple domains, including production, energy infrastructure and
building technology. These additional potentials can be made accessible by comprehensive
cross-domain analysis of production facilities as a whole. The complexity of this task,
however, demands sophisticated technologies and tools to support decision-making
and assessment of qualified predictions about the impact of different energy saving
measures. This includes not only operation and production scheduling, but planning of
new production plants as well, where possibilities for change and their potential financial
impact are especially high.

One of the most promising approaches in this regard are simulation-based methodologies
[128] that aim at an integrated simulation of interdisciplinary aspects of production
facilities [53]. Yet, covering such systems as a whole in terms of a simulation model that
includes various domains, ranging from production machinery, energy system, to building
services and others, has proven difficult as it has to incorporate continuous as well as
discrete modeling aspects, such as energy flows, production entities or control signals
[105], resulting in so-called hybrid models [37], [132].

Implementing such heterogeneous hybrid simulation models still presents a challenge.
One possible approach pursues coupling of multiple simulation tools as part of a so-
called co-simulation (cooperative simulation).This allows utilizing established mature

1

1. Introduction

simulation environments including model descriptions and simulation algorithms tailored
to the respective system domain. Apart from the computational overhead, this type
of simulation introduces significant complexity into the modeling process, in particular
regarding model development, maintenance and reusability of existing components.

Co-simulation is one of the more common methods for hybrid simulation. Similar
methodologies can also be found in other areas, including cyber-physical systems [65],
smart grids [47] or embedded systems [5].

Other approaches to hybrid simulation aim at a formal model description, for example
based on DEVS (Discrete Event System Specification) [142] as a formalization of discrete-
event models. While such integrated model descriptions are promising in theory, they
remain subject of research [105] and still suffer from lack of available mature hybrid
simulation tools, preventing widespread acceptance in the industry.

1.2 Problem Statement
Both the DEVS formalism as well as co-simulation require a specific modeling approach
that implies certain advantages and drawbacks. While co-simulation is more common in
various areas, DEVS-based modeling promises potential advancements in terms of model
handling, modularity and reusability.

This is especially relevant for hybrid models with both continuous and discrete dynamics,
as these types of models pose additional restrictions on a possible implementation. For
co-simulation for example, respective discrete or continuous model aspects need to
be implemented in a suitable simulation software that is equipped with appropriate
computation algorithms.

As it is not clear how the novel DEVS-based approach compares to co-simulation in
practical application, both methods need to be investigated. In particular, we want
to take into consideration the application of interdisciplinary simulation of production
facilities in the context of energy efficiency investigations.

This leads to the following research questions, which are to be examined in the scope of
this thesis:

Research Question 1: Is a formal modeling approach based on DEVS suited for
interdisciplinary modeling and simulation of production systems?

Research Question 2: How does the DEVS-based approach compare to a common
co-simulation solution with regard to interdisciplinary production systems?

The answers to these questions will allow practitioners to determine which approach
is suited better for a particular application scenario by comparing and weighing the
possibilities based on relevant criteria.

2

1.3. Scope of the Work

1.3 Scope of the Work
The aim of this work is to investigate the viability of a DEVS-based approach to hybrid
simulation modeling compared to common co-simulation in practice. As a concrete
application field, we aim at interdisciplinary simulation of industrial production facilities.

For examining co-simulation and DEVS -based modeling, two case studies are carried
out, that demonstrate the differences, advantages and drawbacks of both approaches. A
subsequent comparison and qualitative evaluation will analyse advantages and disadvan-
tages of the novel DEVS approach in more detail, and evaluate which model description
is more suited for hybrid simulation in industrial environments. Special focus is put less
on simulation performance or numerical results than on effort for model development,
maintainability and reusability of model components.

This case-study-based investigation combines theoretical research with practical insights
from a concrete application, thereby allowing to derive results that could be utilized in
practice and provide incentives for further research on the basis of case study experience
[57]. For example, the study can potentially provide insights into how appropriate
DEVS-based hybrid simulation tools can be improved in the future and what features
they would have to offer in order to enable more wide-spread use in practical applications.

1.4 Method
First, relevant background for co-simulation and DEVS-based modeling is studied to
gain insights into respective modeling restrictions, simulation capabilities and features.
Relevant simulation tools are also examined to provide an overview of the current state
of the art.

Afterwards, an independent and comprehensive case study is carried out for each of the
considered modeling approaches to demonstrate practical application as well as gain
experience and information for the subsequent evaluation.

A survey of relevant literature on evaluation and selection of simulation software will
provide criteria, based on which both model descriptions will be evaluated.

Finally, a direct comparison of evaluation results will emphasize advantages and drawbacks
of each approach and will allow drawing conclusions in order to answer the research
questions specified at the beginning.

3

CHAPTER 2
Co-simulation Case Study

This chapter presents a case study of a co-simulation for interdisciplinary investigations
regarding energy efficiency of production facilities. Specifically, the case study focuses
on a production plant for a high-end metal-cutting company performing small series
production. The goal was to support the planning process of industrial facilities by
providing a tool that allows to compare different design variants, in order to assess the
effect of different energy saving measures.

The case study was carried out as part of the research project INFO1, and parts of the
work were also disseminated in various papers [12], [50], [51], [79] as well as in the final
project report [71].

In the following sections, the process of design and model development for the case study
is described (as well as some relevant background), to provide insights into the process of
performing a co-simulation. However, it is to mention that some parts of the case study
development process are not part of this thesis (for example developing the sub-models).
These parts are only described briefly, but are necessary in order to present the overall
context.

2.1 Background
The following section presents some relevant background and state of the art regarding
co-simulation. Starting from an attempt to classify concepts related to coupled modeling
and simulation in general, a definition of co-simulation is given. After that, common
coupling strategies are presented and compared as well as relevant technologies and tools
for implementing co-simulation solutions.

1http://projekt-info.org

5

http://projekt-info.org

2. Co-simulation Case Study

2.1.1 Terminology

As mentioned in the introduction, apart from ’classical’ modeling and simulation in
a single simulation environment, more and more approaches are now trying to couple
multiple equation solvers and/or multiple simulation environments [17], [21], [32], [41],
[47], [88], [131]. For continuous systems, [38] aims to classify coupling methods, resulting
in table 2.1.

Table 2.1: Classification of methods for coupled simulation (adapted from [113] and [135])

Monolithic simulation
(single numerical solver)

Distributed simulation
(multiple numerical solvers)

Monolithic modeling
(single modeling
environment)

I: Classical simulation II: Model separation

Distributed Modeling
(multiple modeling

environments)
III: Model coupling IV: Co-simulation

This table is also applicable for hybrid discrete/continuous systems if the term ’numerical
solver’ is interpreted more broadly to also include discrete-event schedulers.

Modeling and simulation using a single simulation tool, i.e. ’classical’ simulation (quad-
rant I) without coupling, is still the most present method. The simulation tool is often
specialized for the particular application domain (or covers multiple domains, for example
Modelica/Dymola), and provides libraries of pre-defined modeling elements that can be
reused to build complex models in a time-efficient manner [135]. These elements have
a mathematical or logical description with varying degree of detailing, depending on
the application. After the overall model has been parametrized, it is usually compiled
to arrive at an executable simulation, during which a numerical algorithm is used for
calculation that is provided by the simulation tool and is usually tailored to work well in
combination with the provided model description.

Besides classical simulation, it is often possible to implement individual model parts
in different modeling environments and export these models for importing them and
simulating them in a single simulation tool using a single solver. This method can be
called model coupling (quadrant III) or strong coupling [131]. The model export can
be carried out by exporting equations or simulation code, either as symbolic equations,
source code or compiled code [113]. In some cases, discretized equations are exported,
meaning that the numerical solver algorithm is also part of the export, which is why
this method falls under co-simulation (quadrant IV) in the classification used here. One

6

2.1. Background

prominent example in this regard is the Modelica Functional Mock-up Interface [13], see
also section 2.1.3 for more details.

In contrast, if only a single simulation environment is used for model implementation, in
which the model is then divided up into multiple simulation algorithms, this can be called
model separation (quadrant II). This allows for example to parallelize the simulation or
to separate stiff equations for solving them with an individual step size. This leads to
so-called multirate methods where two or more different step sizes are used for distinct
parts of the model [113], [123].

Finally, co-simulation (quadrant IV, sometimes also called solver coupling or simulator
coupling) uses multiple modeling environments as well as multiple numerical solvers,
allowing combining multiple step sizes as well as solver algorithms (e.g. explicit/im-
plicit). This is also referred to as multirate or multimethod simulation. In many cases
multidomain or multidisciplinary simulation models that use co-simulation are divided
into monodiciplinary sub-models that are then implemented in specialized simulation
environments [44], [113].

This classification provides a guideline on how to differentiate co-simulation from other
methods. There are similar definitions in various publications, for example [2, pp. 27-28]
defines co-simulation as an approach in which

...the subsystems are integrated by different time integration methods such
that each of these methods can be tailored to the solution behaviour of the
corresponding subsystem.

Other definitions are given for example in [87, p. 17], in which

...co-simulation is used to solve a coupled system by simulating each part with
its own coupleable simulation tool

or in [86, pp. 93-94], which states that co-simulation

...is a rather general approach to the simulation of coupled technical systems
and coupled physical phenomena in engineering with focus on instationary
(time-dependent) problems

and that it exploits

...the modular structure of coupled problems in all stages of the simulation
process beginning with the separate model setup and pre-processing for the
individual subsystems in different simulation tools.

In [122, p. 249], these definitions are summarized from an engineering point of view for
the co-simulation process as

7

2. Co-simulation Case Study

...a simulation process of the whole system, where two or more subsystems are
connected between each other in one simulation environment by specialised
communication interface(s) with a pre-defined time step for data exchange.

As we concur with these definitions in principle, we want to expand the descriptions
to also include variable communication intervals and hybrid systems, and propose the
following definition, which we will use for the remainder of this work:

Co-simulation (cooperative simulation) is a method for simulating heteroge-
neous (continuous, discrete or hybrid) system models (typically instationary
and time-dependent) by combining multiple sub-models and simulation algo-
rithms (integrators, event schedulers, etc.) from different simulation environ-
ments, where the sub-models exchange data during runtime via specialized
communication interfaces.

This definition incorporates middleware solutions for co-simulations (like BCVTB, see
section 2.2.2) as well as model import/export (for example with FMI, see section 2.1.3)
and various coupling strategies (see section 2.1.2) with fixed or variable communication
intervals as well as iterative schemes.

Co-simulation bears some similarities to Hardware-in-the-Loop (HIL) and Software-in-
the-Loop (SIL) methods where numerical solvers are replaced with different software or
hardware. However, HIL and SIL applications typically have to satisfy much stricter
real-time requirements [5], [62], [141], for example when developing embedded systems
[54]. In this context, also the term Model-in-the-Loop (MIL) is sometimes used [99], [144].

Co-simulation presents three immediately visible advantages (see also [135] and [12]):

• Modeling advantage: A co-simulation model may span multiple physical domains
with each domain sub-model being treated in a specially suited simulation envi-
ronment. This includes not only use of specially tailored model descriptions (e.g.
physical equations, data-based methods, discrete-event systems), but also user
interfaces and environments with which the individual domain experts are already
familiar with, ultimately resulting in accelerated model development.

• Simulation efficiency advantage: Each domain sub-system can employ different
algorithms for numerical calculations (e.g. differential equations solvers, discrete-
event schedulers, etc.), each of the tailored to the individual needs of the particular
sub-model (in terms of solver method, step size, etc.), resulting in a more time-
efficient co-simulation.

• Engineering advantage: Simultaneous model development in each engineering
domain allows accelerating the engineering and development process.

8

2.1. Background

On the other hand, prominent disadvantages of co-simulation include additional overhead
and thus reduced performance due to the necessary data exchange as well as possible
stability issues due to additional numerical errors [113], [135]. More details on this are
given in section 2.1.2 and chapter 4.

2.1.2 Coupling Strategies

As soon as there are multiple coupled numerical solvers involved (i.e. model separation
and co-simulation with regard to table 2.1), strategies are necessary to approximate
exchanged data between communication points and to synchronize the simulators involved
[113]. The typical coupling strategies for dynamic data exchange at runtime found in
most literature are loose coupling (also called weak coupling) and strong coupling [3],
[46], [129], [135]. While in loose coupling the simulators exchange data only at discrete
points in time (between these points the sub-models are calculated independently), strong
coupling implies that data is exchanged iteratively in each time step (in order to meet
certain convergence criteria).

Within the loose coupling scheme, two different types can be differentiated, i.e. so-called
Jacobi type and Gauß-Seidel type. While the Jacobi type describes parallel data exchange
between the simulators, Gauß-Seidel type employs sequential (alternating) communication.
Figure 2.1 presents an overview of the computation and data exchange procedures for
the different coupling strategies.

In addition to loose and strong coupling, the dynamic iteration scheme presents a
synthesis of both strategies by repeating a macro-step multiple times in order to improve
convergence [114].

b b b b

b b bb

t

t

b

bbb

(a) Loose coupling Gauß-Seidel type

b b b b

b b bb

t

t

b

bbb

(b) Loose coupling Jabobi type

b b b b

b

t

t

b

b b b b

(c) Strong coupling

b b b b

b b bb

t

t

b

bbb

(d) Dynamic Iteration

Figure 2.1: Different coupling strategies for co-simulation (adapted from [114] and [113]).
The blue and red arrows denote computation steps in simulator 1 and simulator 2,
respectively. The black arrows denotes data exchange.

In the relevant literature, these coupling strategies can also be found under different
terms:

9

2. Co-simulation Case Study

• Loose coupling Jacobi type [25], [46]: Weak coupling [3], ping-pong coupling [52],
Quasi-dynamic coupling [143], Conventional Parallel Staggered (CPS) Procedure
[30], naive modification for parallel processing [32].

• Loose coupling Gauß-Seidel type [46]: Conventional Serial Staggered (CSS) Proce-
dure [30], sequential staggered solution [32].

• Strong coupling [25]: Fully-dynamic coupling [143], Monolithic approach [123].

• Dynamic iteration [114]: Waveform relaxation [29], [76], [83].

In some literature, the term weak coupling (especially Jacobi type) is even used synony-
mously with co-simulation (see for example [3, p. 26]), while others also use the term
solver coupling [116].

For practical application, loose coupling presents the communication strategy that is
easiest to implement since no iterations are necessary that would require the simulators
to jump back in time (including re-initialization). The communication also does not
require deep integration into the numerical solver (like strong coupling). This is why
loose coupling (especially Jacobi type) is the strategy found most often in co-simulation
solutions, especially with commercial tools [113].

This motivates to briefly discuss in the following Jacobi type and Gauß-Seidel type of
loose coupling to illustrate their similarities and differences. For this, we consider a simple
example of two systems of ordinary differential equations with states x1 and x2, initial
conditions x1(0) = x1,0 and x2(0) = x2,0 and coupled input/output ui, yi, i ∈ {1, 2} [135]:

System 1: ẋ1 = f1(x1, u1), y1 = g1(x1, u1), (2.1)
System 2: ẋ2 = f2(x2, u2), y2 = g2(x2, u2), (2.2)
Coupling: u1 = y2 and u2 = y1. (2.3)

The values of y1 and y2 are the ones being exchanged between the two systems (i.e. the
coupling) and usually depend on the internal states as well as other inputs. Synchroni-
sation and data exchange takes place at equidistant time steps {t0, t1, t2, . . . , tN−1, tN}.
Each of these two systems may be calculated using a separate numerical algorithm. In
particular, let Φ1 and Φ2 denote the individual update functions that compute the values
of the state variables xk+1

1 and xk+1
2 , respectively, at the next synchronization time step

tk, k ∈ {0, 1, 2, . . . , N} (so-called macro-steps) together with respective outputs y1, y2:

xk+1
1 = Φ1(xk1, ũk1), yk+1

1 = g1(xk+1
1 , ũk1), (2.4)

xk+1
2 = Φ2(xk2, ũk2), yk+1

2 = g2(xk+1
2 , ũk2). (2.5)

The necessary input values ũk1, ũk2 have to be extrapolated or interpolated (depending on
the coupling scheme) from uki and uk+1

i , i ∈ {1, 2}, respectively [46]. See the following
sections on Jacobi type and Gauß-Seidel type for more details.

10

2.1. Background

Note that the update functions Φ1 and Φ2 are defined by a sequence of code instructions
executed in the respective simulation engine. For continuous systems like in equation (2.1),
these update functions typically represent differential equation solvers, For more general
systems (i.e. discrete, hybrid), they can incorporate arbitrary logic.

During computation of the respective update functions, each simulator may perform
several independent steps at discrete times tξ ∈ [tk, tk+1] (in this context they are also
called micro-steps), in order to advance from tk to tk+1. However, these steps are not
communicated to the outside.

Jacobi Type

For the Jacobi type of loose coupling, each simulator can be executed in (quasi-) parallel.
To advance from time tk to tk+1, each simulator used its own update function Φ1 and
Φ2, respectively (see equation (2.4)), for which the input values have to be extrapolated
using uk1 resp. uk2:

ũk1(t) = h1(t, uk1), (2.6)
ũk2(t) = h2(t, uk2), (2.7)

with extrapolation functions h1 and h2. This is because the values for uk+1
1 and uk+1

2 ,
respectively, are available only after the next communication at time tk+1. In many cases,
this extrapolation is simply done by using the constant value, i.e. ũk1(t) = uk1, ũ

k
2(t) = uk2,

but also higher-order extrapolations are possible.

At the end of the time step, the simulators exchange their new outputs yk+1
1 respectively

yk+1
2 with one another (see also the coupling in equation (2.1)):

uk+1
1 = yk+1

2 , (2.8)
uk+1

2 = yk+1
1 . (2.9)

Figure 2.2 shows the periodic sequence for data exchange between two coupled simulators.

Gauß-Seidel Type

When using Gauß-Seidel type of loose coupling, the simulators are executed sequentially
during each communication interval [tk, tk+1]. The update function that is executed first
– let that be Φ1 without limitation of generality – uses again an extrapolation of its input
uk1:

ũk1(t) = h1(t, uk1). (2.10)

At time tk+1 the new output value yk+1
1 = uk+1

2 is communicated to simulator 2, which
can then use an interpolation for its input,

ũk2(t) = h̃2(t, uk2, uk+1
2), (2.11)

11

2. Co-simulation Case Study

xk+1
1 = Φ1(xk

1 , ũ
k
1), yk+1

1 = g1(x
k+1
1 , ũk

1), ũk
1(t) = h1(t, uk

1)

Simulator 1 b
tk b b b

tk+1

xk+1
2 = Φ2(xk

2 , ũ
k
2), yk+1

2 = g2(x
k+1
2 , ũk

2), ũk
2(t) = h2(t, uk

2)

Simulator 2 b
tk

b

tk+1

b b b b b b

yk2 = uk
1

yk1 = uk
2

yk+1
2 = uk+1

1

yk+1
1 = uk+1

2

t

t

Figure 2.2: Data exchange between two coupled simulators according to Jacobi type
of loose coupling. Both input variables ũk1 and ũk2 have to be extrapolated between
communication intervals.

with an interpolation function h̃2. When simulator 2 is finished at time tk+1, it commu-
nicates its own output value yk+1

2 = uk+1
1 back to simulator 1. This periodic sequence is

illustrated in figure 2.3.

xk+1
1 = Φ1(xk

1 , ũ
k
1), yk+1

1 = g1(x
k+1
1 , ũk

1), ũk
1(t) = h1(t, uk

1)

Simulator 1 b
tk b b b

tk+1

xk+1
2 = Φ2(xk

2 , ũ
k
2), yk+1

2 = g2(x
k+1
2 , ũk

2), ũk
2(t) = h̃2(t, uk

2 , u
k+1
2)

Simulator 2 b
tk

b

tk+1

b b b b b b

yk2 = uk
1

yk+1
1 = uk+1

2

yk+1
2 = uk+1

1

t

t

Figure 2.3: Data exchange between two coupled simulators according to Gauß-Seidel
type of loose coupling. Simulator 1 is executed first and has to extrapolate its input ũk1,
simulator 2 can use interpolation for ũk2.

Which simulator is executed first is usually chosen depending on system characteristics of
the sub-model. In the fastest-first approach the stiff system having the higher frequency
dynamics is executed first, while the slowest-first computes the system with lower
frequency dynamics first [135].

The fastest-first approach promises smaller extrapolation errors (since the slower changing
models are the ones being extrapolated) while using slowest-first has a lower risk of
having to re-calculate (micro-) steps [123] and allows larger communication intervals [46].

To summarize, loose coupling presents one of the simplest forms of coupling schemes
for co-simulation, especially when using fixed communication intervals. While Gauß-
Seidel type reduces extrapolation errors during co-simulation, Jacobi-type allows parallel

12

2.1. Background

execution of the simulators, a simpler implementation (e.g. using constant extrapolation)
and the behaviour of the iterations does not depend on the calling sequence of the clients
[10].

If discrete-event systems or state events are involved in one or more of the sub-models
where the events influence other sub-models across the co-simulation, the coupling strate-
gies have to become more sophisticated, because these events have to be communicated
immediately and cannot wait until the next communication interval. For more details on
this, we refer to relevant literature, e.g. [3], [16], [34], [40], [129].

2.1.3 Technologies and Tools for Co-simulation

High-level Architecture

The Modeling and Simulation High Level Architecture (HLA), culminated in the IEEE
standard 1516-2010 [61], specifies a general-purpose architecture for interoperability of
distributed simulation. For interaction between simulation systems (so-called Federates),
it utilizes a runtime infrastructure (RTI), including a usually centralized data management
middleware and a Federation Object Model (FOM) that specifies semantics of the data
in a simulation.

Functional Mock-up Interface

Originating from the automotive industry, the Functional Mock-up Interface (FMI) [13],
[86] is a different tool-independent standard with the goal to support the exchange of
simulation models and co-simulation of dynamic models. In fact, the FMI specification
distinguishes between FMI for model exchange and FMI for co-simulation. It is interesting
to note that this distinction can also be explained with reference to section 2.1.2, where
FMI for model exchange corresponds to a strong coupling strategy while FMI for co-
simulation employs weak coupling (see also [3, p. 26]). But FMI for co-simulation also
supports more sophisticated strategies, e.g. communication step size control or higher
order signal extrapolation. While the FMI specification is designed to support a very
general class of middleware (master) algorithms, it does not define the master algorithm
itself [87].

FMI has gained popularity across different simulation tools, however it is focused pre-
dominantly on continuous models based on the Modelica language [37]. Although the
Modelica language allows to incorporate hybrid model characteristics in principle (in
terms of state events), it is not well-suited for event-driven simulations. For numerical
calculations, Modelica restricts the ability to combine ODE solvers with discrete-event
schedulers, resulting in workarounds and reduced performance. In this regard, there have
been some investigations to overcome these limitations [82], [94]. Other research efforts
are attempting to combine process-oriented modeling with Modelica, e.g. in the Modelica
DESLib library [110], however these solutions are still lacking maturity for practical use.

13

2. Co-simulation Case Study

Middleware solutions

There exists a multitude of software solutions for middleware-driven co-simulation, where
custom software handles orchestration and coordination between the simulation tools
[21], [39], [47], [88], [92], [106]. However, many of them are highly customized for specific
simulation tools and/or application areas [115] with low reusability of model parts. Only a
few middleware solutions, facilitate general-purpose use by including domain-independent
scientific computing environments and multi-domain simulation tools. One of these tools
is the Building Controls Virtual Test Bed (BCVTB) [139], which we use for the case
study presented in this chapter. More details on BCVTB are given in section 2.2.2.

Nearly all of these middleware tools offer coupling and data exchange only on imple-
mentation level, meaning that only raw data is exchanged without inherent semantics.
Therefore, managing and maintaining models and connections remains a challenge, which
we will see in the following sections.

2.2 Design

2.2.1 Reference Model

In order to promote systematic model development and a coordinated cooperation between
experts from different disciplines, a first step involves formalizing and documenting the
structure of the overall system under consideration [78]. This component-based reference
model is a generic description of a production plant with a focus on energy flows. It
is intended to give participating developers an overview of the components the system
is comprised of and, in particular, their dependencies and interfaces. This improves
understanding of the overall system and can serve as a basis for a concrete implementation
of individual model components, corresponding interfaces for communicating relevant
state variables (defined in the reference model) and their subsequent coupling to a
co-simulation.

Developing the reference model was not part of this thesis, but was developed as part
of a larger research project. However, as described, it was used as a basis for the
implementation of the co-simulation, which is why the reference model is briefly described
below. For a more detailed description, we refer to the corresponding documentation [71]
and [79].

Figure 2.4 shows the reference model of a production facility as a network of 16 parts with
dynamic variable connections (black arrows) as well as parameter dependencies (green
arrows). The model structure is based on a general description of components, parameters
and variables. Each of the components represents a distinct part of the overall system
and is found in a similar form in almost every production plant. A component does not
necessarily have to be of a physical nature. More concrete, two types of components are
distinguished:

14

2.2. Design

U

Environment
TGM

Thermal building model

TV

Thermal energy supply

TVR

Thermal energy supply:

control aspects

EV

Energy supply

EVR

Energy supply:

control aspects

BM

Lighting model

BMR

Lighting model:

control aspectsPU

Production support

equipment

PUR

Production support

equipment:

control aspects

MAS

Production machinery

PS

Production system

MAN

Management instrument

and decisions

WPU

Economical and political

environment

MV

Human behaviour

ME

Humans and appliances

U-TGM

U-TV

U-TVR

U-EV

U-BM

U-BMR

TGM-TVR

TGM-BM

TGM-BMR

TV-TVR

TV-EVR

TV-MAN

TV-TGM

TVR-TV

EV-EVR

EV-MAN

EVR-EV

BM-TGM

BM-MAN

BM-EVR

BM-BMR

PU-MAS

PU-MAN

PU-TGM

PU-TV

PU-TVR

PU-EVR

MAS-MAN

MAS-TGM

MAS-TV

MAS-TVR

MAS-EVR

MAS-PUR

PS-MAS

WPU-MAN

MV-ME

ME-TVR

MV-BMR

ME-TGM

ME-EVR

PUR-PU

U-EVR

MAS-PU

TV-MAS

TV-PU

G

Building structure

TGA

Building services

BA

Basic client requirements

PS-MAN

MP

Production layout

TV-EVEV-TV

EV-TVR

TVR-TGM

MV-TVR

MV-EVR

MV-BMR

MV-PS

MV-MAN

TVR-EVR

Figure 2.4: Reference model overview (taken from [71]). Physical components are in
blue, information components in red, plan elements in green. Black arrows show dynamic
variable connections, green arrows are static parameter associations.

• Physical components: Building structure, machine tools, people, the environment,
etc.

• Information components: Control strategies and algorithms, behavioural models,
political objectives, etc.

For encapsulating an individual component against the overall system, generic interfaces
are specified, via which the components exchange information (in the form of variables)
and thus interact with one another.

In addition to dynamic information exchange, planning components and parameter refer-
ences (see figure 2.4) take into account static dependencies between components, that may
occur for example during planning. These planning components are themselves not part
of a dynamic simulation, but rather provide additional guidance during parametrization.

This generic reference model aims at providing a system overview and itself does not
describe a concrete implementation of the internal behaviour of individual model elements.

15

2. Co-simulation Case Study

Instead, it follows a black-box view of its components, thereby remaining independent
of any concrete implementation language or simulation environment. This allows max-
imum flexibility for adapting individual parts to project-specific implementations and
requirements, in terms of model complexity, data availability, or numerical algorithms.

For a concrete model instantiation, individual or groups of components can be modelled
using physical relationships, parameter dependencies, data-based models or other rules,
thus determining their internal behaviour in terms of continuous as well as discrete-
time dynamics. Internal variables describe the current state of a component. Such
variables may represent physical data points (heat quantity, temperature, etc.) as well
as information states (e.g. status of a switch). Via the interfaces and dynamic variable
connections defined in the reference model, these states also influence other components,
creating dynamic dependencies, feedbacks and other complex interactions. For example,
production machines can supply usable waste heat and electrical power demand to
the building service model. Alongside, the thermal building model with its internal
loads calculates room temperatures, air exchange as well as energy demand for room
conditioning.

2.2.2 Co-simulation Architecture

Based on the reference model described in the previous section, the task was to imple-
ment a dynamic simulation of a production plant case study. In order to allow taking
into account dynamic interaction across the different physical domains, data exchange
between components is necessary at runtime – a mere ’static’ model coupling in terms of
sequential one-time simulation of each component would not be sufficient. An efficient
implementation of a simulation model spanning several engineering domains (machines,
energy system, building) also requires combining multiple model description formalisms
(e.g. differential equations, state machines or data-driven modeling). Since there does
not seem to be any suitable singe simulation tool available that would have met all of
these requirements and would have been able to fully model the overall system in the
necessary complexity and level of detail, a approach was chosen using co-simulation
between multiple simulation tools.

This approach also has a positive effect on the model development process, because each
sub-model covered by a single simulation tool can be developed and verified independently.
These models then have just to be extended to include necessary interfaces – which can
be derived from the reference model – before coupling them to perform a co-simulation.

Simulator Clients

For implementing individual sub-models, we consider various tools for modeling and
simulation of physical systems:

• MATLAB [126]: MATLAB (Matrix Laboratory) is a proprietary scientific numer-
ical computing environment developed by MathWorks. It offers mutli-paradigm

16

2.2. Design

modeling, algorithms for numerical analysis (including ODE solvers), plotting and
visualisation of data and creating user interfaces. Available additional packages
include symbolic computing, Simulink for graphical multi-domain dynamic simula-
tion, Simscape for modeling and simulation of physical systems among a number of
others2.

• Dymola [23]: Dymola (Dynamic Modeling Laboratory) is a modeling and simulation
environment for component-based equation-oriented modeling and simulation based
on the Modelica modeling language [85] (see also section 2.1.3). It allows simulating
physical-technical systems of multiple engineering domains, such as mechanical,
electrical, thermodynamics, hydraulic among others. Additional model libraries
(commercial as well as open-source) provide extended components for specialized
applications (powertrains, vehicle dynamics, air conditioning, etc.)3.

• EnergyPlus [130]: EnergyPlus is simulation tool for energy simulation of whole
buildings. It allows to model energy consumption for heating, cooling, ventilation,
lighting as well as other loads and calculate thermal zone conditions, heat and
mass transfer, and illumination. It can also take into account ambient weather
conditions. EnergyPlus is funded by the U.S. Department of Energy Building
Technologies Office. The core software is open-source and cross-platform with
various additionally available graphical front-ends4.

Middleware

The communication between different simulation environments has to be managed by
some additional software, so-called middleware, illustrated in figure 2.5. This middleware
not only coordinates the data exchange at runtime, but also ensures the synchronization
between the individual simulators.

S i m u l a t i o n M i d d l ew a r e

Simulator 1 Simulator nSimulator 2 . . .

Figure 2.5: Communication and data exchange between simulation tools is managed via
middleware.

For the implementation of a co-simulation between the simulation tools mentioned above,
a prototypical open-source software framework, called BCVTB (Building Controls Virtual

2See also https://www.mathworks.com/products/
3For an overview of available libraries, see https://www.modelica.org/libraries
4See also https://energyplus.net/interfaces

17

https://www.mathworks.com/products/
https://www.modelica.org/libraries
https://energyplus.net/interfaces

2. Co-simulation Case Study

Test Bed) [140], is available. BCVTB is developed at the Lawrence Berkeley National
Laboratory at the University of California [139]. Although BCVTB was initially intended
to be used in the area of building simulation, it can also be used for co-simulation in
other application fields, since it supports several multi-domain and domain-independent
simulation tools.

The BCVTB software follows a client/server architecture, illustrated in figure 2.6 for
two clients, where during initialization the BCVTB server calls the simulator clients
("System Call") and passes them a configuration file used to set up the communication.
The actual data exchange during runtime is the carried out between the client and the
BCVTB server via a BSD socket interface [140] for interprocess-communication using
the TCP/IP internet protocol family, which enables the co-simulation to be run over a
computer network [120]. A BCVTB director is responsible for passing data received from
one client on to another client according to a routing topology specified by the user.

Director

Actor

Config
file

Simulator 1

C library

BSD Socket
Client

BSD Socket
ServerTCP/IP

Config
file

C library

TCP/IP

Simulator 2

BSD Socket
Client

BSD Socket
Server

Actor

BCVTB

Figure 2.6: Architecture overview of the BCVTB software (adapted from [139]).

Overall Framework

Following figure 2.5, figure 2.7 shows an overview of the implemented co-simulation
framework with the software tools involved. For managing and processing the simulation
results, a second instance of MATLAB was provided. This instance is also a central
point of contact for the user to execute the simulation as well as to visualize the results,
provided via a graphical user interface in MATLAB, shown in figure 2.8.

18

2.2. Design

data

Figure 2.7: Overall framework for co-simulation between MATLAB, Dymola and Energy-
Plus. A second MATLAB instance provides processing and visualization of simulation
results.

Figure 2.8: Graphical user interface in MATLAB for executing the simulation and plotting
simulation results.

For logging and export of simulation results, the intuitive approach would be to tap
into the BCVTB server and from there pass the data to the second MATLAB instance.
However, due to usability issues with BCVTB, it was easier in the present implementation
to instead transfer the data to one of the clients, because it allowed for a much simpler
implementation of data processing and coordinated read/write access for a ’live preview’
of the results data in the graphical user interface (cf. figure 2.8) [71].

19

2. Co-simulation Case Study

2.2.3 Data Exchange and Synchronization

BCVTB employs data exchange between the different clients using a fixed synchronization
time step without iteration [140]. With reference to section 2.1.2, this corresponds to a
loose coupling scheme of Jacobi type. Some restrictions result from this coupling scheme:

• According to the Jacobi type scheme, inputs have to be extrapolated between
communication intervals, leading to increased numerical errors and in the worst
case even to stability problems.

• Although BCVTB allows to couple discrete and continuous models in theory, data
exchange is limited to fixed communication intervals, meaning that discrete events
cannot be communicated immediately to the other sub-models (like with other
coupling schemes, see [40], [129] for example). This not only increases numerical
errors but may even lead to unintended behaviour, which makes BCVTB not well
suited to include event-driven sub-models.

In addition, some care has to be taken regarding communication at the start of the
simulation, where initial values have to be exchanged including synchronization in such a
way that it does not matter which of the simulators is called first [140].

2.3 Implementation

Based on the co-simulation framework design described in the last section, a concrete
instance of a coupled simulation of a production facility case study could be implemented.
The developed reference model (see section 2.2.1) serves as the starting point for a
coordinated development of concrete implementations of the individual sub-models as
well as instantiating the co-simulation middleware. Developing and implementing the
sub-models themselves was not part of this work, but instead was carried out by several
domain experts within the scope of the research project INFO [71], which is why this
part is not described in detail here. The sub-models are however presented briefly, as
some insights are necessary for understanding of the overall co-simulation case study. For
a more comprehensive description, refer to [71]

2.3.1 Sub-Models

In coordination with the co-simulation framework design, the following sub-models were
implemented in the respective simulation environments:

• Machines and production system: MATLAB/Excel

• Energy system, building services and control aspects: Dymola

• Thermal building model and lighting: EnergyPlus

20

2.3. Implementation

These sub-models interact at runtime and exchange dynamic data. In addition, static
data is imported from tables during simulation, like environmental conditions and ambient
temperature for the building model or human behaviour in terms of energy and hot water
consumption.

Production Process, Machine and Production System

One intuitive approach to modeling machine tools and productions systems is to model
them as continuous physical systems with differential equations, e.g. by using object-
oriented languages like Modelica [85] or Simscape [127]. These languages enable developing
modular and extensible models from reusable model classes of structural components.
Because of the underlying acausal equation-oriented model description, these models
may also span multiple physical domains, incorporating electrical, mechanical as well as
thermal aspects of a machine tool. Extensive work has been carried out in this regard
(see [48] for example), to study the possibilities and applicability of this kind of model
description to studying energetic aspects of machine tools. As an example, figure 2.9
shows an object-oriented component model of a powertrain of a turning lathe (a certain
kind of machine tool) including energy conversion from electrical to mechanical to thermal
waste heat.

Figure 2.9: Multi-domain object diagram of a powertrain from the main drive of a turning
lathe (taken from [48]). The diagram models electric energy supply of an asynchronous
machine, the conversion to mechanical energy as well as transfer of waste heat.

These models allow to simulate very detailed scenarios of production processes (e.g.
executing NC code on a per-line basis) and to analyse in great detail energy flows inside
a machine tool. However, one has to consider that such detailed multi-domain models

21

2. Co-simulation Case Study

may cause numerical problems. These can be caused on the one hand by a large number
of coupled equations which have to be solved iteratively, and on the other hand also
by widely differing time constants between the components leading to stiff systems of
differential equations. See also [48] for more details.

Also, for simulating larger time periods (e.g. one week up to an entire year) as part of a
co-simulation together with building and energy system models, it is strictly necessary
to reduce the complexity of machine models by only incorporating main energy flows
relevant to the particular investigation. For this, alternative modeling approaches have to
be considered, for example using data-driven parametric models with significantly lower
temporal resolution (e.g. minutes instead of sub-seconds) and identifying energetically
relevant parameters from higher-resolution measurement data as well as from results of
detailed simulation models (e.g. like the one described above). From this high-resolution
data, different recurring operating states can be identified together with corresponding
energy levels and averaged durations, resulting in discretized load profiles.

For example, power consumptions can be compared in idle mode, during chipping
and without chipping, from which three basic energy levels can be identified (see also
figure 2.10): The base load Pbase, the dynamic load Pdyn (e.g. from drive motors) and
the processing-related load Pcut (for actually cutting the material). Averaged temporal
shares of individual energy levels on the overall processing time can be determined from
detailed simulations of production processes and analysing load profiles.

4000

4500

5000

5500

6000

6500

7000

7500

8000

P
o

w
e

r
[W

]

Measured power in kW
Modeled power in kW

Pbase

Pcut

Pdyn

Mon Tue Wed Thu Fri Sat Sun

Power with chipping

Power without chipping

Base load

Figure 2.10: Power consumption of a machine tool over time (left) with detail (right)
showing base load Pbase, dynamic load Pdyn and cutting power Pcut (adapted from [50]).

In addition to the electrical power consumption, its conversion to thermal waste heat
must also be studied. Some of this was already presented in [72]. The analysis shows
that only a small fraction (in most cases less than 1 %) of the total energy demand ends
up stored in the material itself by machining operations. The remaining energy used to
power electrical drives is subsequently converted to waste heat due to friction and other

22

2.3. Implementation

power losses. This waste heat is transferred to the environment or can be reused via heat
recovery systems. See also [71] for more details.

The described steps were used to instantiate the parametric machine tool model by
specifying5 parameters (specifically energy levels and averaged time durations) for an
existing machine pool in the scope of the case study. These instances were implemented
in Excel6 in combination with MATLAB. The model computes the energy demand, as
well as reusable and waste heat to the surrounding area. In the overall co-simulation,
this waste heat is transferred to the building model (as heat gain), reusable heat and
energy demand serve as input for the energy system model, respectively [50].

From a modeling perspective, it is important to note that this form of simplified load
profile based on states and time durations results in a purely discrete (time-driven) model,
as oppose to the continuous model shown in figure 2.9.

For validation, comparison of simulated load profiles and aggregated energy consumptions
with additional measurement data show excellent agreement with deviations in daily
energy consumption of less than 3 % [12], [71]. This not only confirms the feasibility of the
simplified modeling approach, which, as mentioned, is not only possible but necessary for
an overall co-simulation together with other sub-models, and that the resulting deviation
is practically negligible.

Building

The building sub-model describes the thermal aspects of the building hull and thermal
zones, which house the production. The model includes time schedules for heating, cooling,
occupancy and lighting as well as environmental influences (ambient temperature, weather
conditions, etc.). It does not include any building services since they are part of the energy
system model. During simulation, the model processes heat gains from people, lighting
(and possibly heat gains from production machines injected from the co-simulation) and
calculated heating and cooling demands.

For composing the building model, Building Information Modeling (BIM) methodologies
and tools were applied. BIM provides a parametric, three-dimensional digital building
model, but moreover a methodology to manage the essential building design and project
data in digital format throughout the life cycle of a building [28]. The building geometry,
floor layout, load bearing structure and hull are assembled and then exported to the
thermal building simulation tool EnergyPlus in order to perform the simulation.

5Going beyond that, it would even be possible in theory to dynamically adapt these parameter values
during simulation runtime by periodically invoking a detailed simulation for a short period of time, e.g.
for a one-time simulation of a repetitive production process [12]. This however has not been studied
in the current work and did not seem necessary for the level of abstraction used in the co-simulation
framework.

6This was due to practical advantages in the course of the project.

23

2. Co-simulation Case Study

Energy System

The energy system model describes all technical building services (TBS), i.e. equipment
for supplying the production plant with electric and thermal energy, e.g. pumps, chillers,
photovoltaic system and heat pumps. The model receives energy demand for production
and building conditioning as input and calculates primary and final energy demand.
For comparing design variants of the energy system, three different models have been
implemented using the Modelica modeling language and Dymola simulation environment,
see section 2.4 for more details.

Bearing in mind the intention to conduct a co-simulation of the energy system model
together with other sub-models, special requirements regarding simulation performance
and numerical stability had to be considered that differ from an isolated simulation.
Because of this, a classical signal-flow-based modeling paradigm was employed instead of
the acausal equation-oriented approach typically associated with Modelica [37]. This re-
duced description avoids overhead from (for this application unnecessarily) high modeling
details (e.g. two state variables to describe energy flow), yielding less model equations,
higher simulation speed and improved numerical stability, not least because of avoiding
high-index differential-algebraic equation systems and their index reduction [18]. For
instance, in [36] the authors describe numerical complications when using conventional
Modelica fluid connectors. For validation of model components, simulation results were
compared with data from test certificates and common literature of sub-systems like
pumps, chiller and heat pumps.

2.3.2 BCVTB Middleware

Using the BCVTB software tool described, the middleware was instantiated and the
interconnection network was implemented.

The necessary data exchange including its semantics could be derived from the reference
model (see section 2.2.1). The implementation of this schema is shown in figure 2.11.

BCVTB provides components, called Actors, that handle the low-level data exchange
with the individual clients during runtime, including establishing the socket connection
(see figure 2.6). These actors are coordinated by a superordinate so-called director,
that triggers the actors and determines the communication step size among other things.
BCVTB also provides a graphical user interface for instantiating and managing the Actors
as well as implementing the interconnection network by drawing signal connections, which
can be helpful especially for non-expert users. The graphical user interface in BCVTB
for the current case with Actors and signal connections is shown in figure 2.11.

On the client side, the sub-models have to be configured and extended by the respective
interface connections for data exchange. This can be achieved in the following way:

24

2.3. Implementation

Figure 2.11: BCVTB graphical user interface showing three actors (responsible for
communicating with the simulator clients) and signal connections.

• MATLAB: BCVTB provides a MATLAB script and libraries which can be called
by the model. In the current case study, the MATLAB instance also handles the
data input from the Excel model.

• Dymola: Similarly, a BCVTB interface component is available as part of the
Modelica buildings library7, which has to be connected to the model in order to
write and receive signals to and from the BCVTB block.

• EnergyPlus already comes with a generic external interface, to which BCVTB
can connect. From this interface, the exchanged signals are mapped to internal
EnergyPlus objects. This mapping has to be specified by the user in a separate
XML file.

A description on how to instantiate interface connections for BCVTB in various simulators
is also given in [140], chapter 5.

The step size for communication is generally defined in the BCVTB director component.
However, this alone is not sufficient. For the Dymola, MATLAB and EnergyPlus clients,
also the sub-models need an internal parameter for the communication step size to be able
to adjust necessary computation steps to the next communication point in advance during
runtime. This poses some restrictions on the flexibility of the communication between
BCVTB and the clients, as it is currently not possible to use an adaptive communication
step size or even alternative coupling schemes. However, simple tests showed that it is at
least possible to use multiple director8 components parallel to coordinate communication

7The Modelica Buildings library is available at http://simulationresearch.lbl.gov/
modelica/

8Synchronous Data Flow (SDF) directors to be exact

25

http://simulationresearch.lbl.gov/modelica/
http://simulationresearch.lbl.gov/modelica/

2. Co-simulation Case Study

between individual sub-groups of simulator clients with individual communication step
sizes.

As mentioned, the actual data exchange between the BCVTB server and the simulator
clients is achieved via socket connections (see also figure 2.6). As this is a rather low-level
form of handling data, variables have to be prepared and combined into a single data
vector before it can be transmitted over the socket. In BCVTB, these vectors have to be
manually divided up into its components before assembling them into new vectors for the
other clients according to the interconnection network. This procedure can also be seen
in figure 2.11. This process is not only cumbersome for larger models but also very error-
prone, especially if multiple people are involved. It is very important that the persons
instantiating the client and server interface must therefore agree on a common semantics
of the data vectors (i.e. which vector component represents which value, in which unit,
etc.). This semantics is not per se given by the reference model because it represents an
aspects that depends on the implementation and the participating simulators.

Finally, the implementation of the overall framework is presented in figure 2.12. As
mentioned, the MATLAB client exports the simulation results, which can then be used
for post-processing, e.g. by Excel or again in MATLAB.

2.3.3 Validation

Initial simulation results from the case study underwent detailed plausibility checks and
were validated by independent calculations. These are not presented in detail here, for
more we refer to [71]. Unfortunately, real-world validation was restricted due to lack of
real measurement data.

2.4 Testing and Results
The implemented and validated framework instance was then used to simulate different
scenarios and parameter settings and to analyse the impact of various energy saving
measures on the overall system [50]. In addition, well-defined interfaces allow replacing
individual sub-models with different instances without affecting other sub-models or the
framework, in order to compare for example different configurations for the energy system
and evaluate these variants with regard to energy efficiency, CO2 emissions or economic
viability.

In the following, exemplary simulation results are presented from the case study at hand in
different scenarios, in order to demonstrate the applicability of the dynamic co-simulation
and also to show which kind of conclusions are possible from this simulation-based
analysis. A more comprehensive description of results is also presented in [71] or [50].

The real-world case study focuses on an industrial production facility for a high-end
metal-cutting company performing small series production, with approximately 500
employees, 48 machine tools (machining centers, ovens and laser cutting machines) and

26

2.4. Testing and Results

an annual energy consumption of close to 8 Mio. kWh [71]. The new production building
with 20500 m2 production space and 15000 m2 office space and representative areas was
designed for energy efficiency and flexibility [72].

For the energy system model, three different design variants are compared in order to find
the configuration most suitable for the production facility in terms of energy efficiency.
The three variants differ mainly in the type of energy supply, see table 2.2 for an overview.

Table 2.2: Overview of the simulation scenarios comparing different design variants for
the energy system

Scenario 1 Scenario 2 Scenario 3

Heat supply
(base load)

combined heat
and power

(natural gas)
district heat groundwater well

& heat pump

Heat supply
(peak load) district heat district heat district heat

Heat recov.
from exhaust

air
heat pump heat exchanger heat pump

Warm water
supply

solar thermal &
electric

solar thermal &
electric

solar thermal &
electric

Cold supply absorption chiller compression
chiller groundwater well

Electricity
supply

photovoltaic,
combined heat

and power & grid

photovoltaic &
grid

photovoltaic &
grid

Simulation results compare the final energy demand for the three scenarios over a
simulation of one year, depicted in figure 2.13. The co-simulation requires a fixed
communication step size, for which 15 minutes was chosen.

Scenario 1 presents a significantly higher energy demand compared to the other scenarios,
which seems counter-intuitive at first because the scenario – just like the other ones –
was designed using state-of-the-art knowledge regarding energy efficiency technologies.

In order to uncover the reason behind this seemingly inefficient scenario 1, further inves-
tigations are necessary. When looking at a more detailed breakdown of the energy flows
through the system, as presented in the Sankey diagram in figure 2.14, it becomes obvious
that a significant energy demand is caused by inefficient operation of the absorption
chillers that convert heat into cooling energy. It turns out that these absorption chillers
had been designed (especially regarding choice of nominal power) to be able to cover peak

27

2. Co-simulation Case Study

cooling demands, that they however were operated only at partial load most of the time
(there was also no cold storage available), where these machines have very poor efficiency
[95]. This results in a high gas demand for the combined heat and power (CHP) unit (see
also table 2.2) that supplies the absorption chillers with heating energy. As a by-product
of the CHP, more electric energy is produced that can be fed back into the energy grid.

For a detailed energy flow analysis of scenarios 2 and 3 as well as further evaluation of
simulation results (e.g. life-cycle cost-benefit analysis), we refer to [71].

28

2.4. Testing and Results

Machines simulation
MATLAB/Excel

Post-processing
MATLAB

Energy System simulation
Dymola

Thermal building simulation
EnergyPlus

Figure 2.12: Overall co-simulation framework instance for the case study with BCVTB
middleware as well as MATLAB, Dymola and EnergyPlus simulation clients and post-
processing in MATLAB.

29

2. Co-simulation Case Study

Scenario 1 Scenario 2 Scenario 3
−2000

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

[M
W

h]

Electric energy from grid
Electric energy from PV
Energy from gas
Energy from discrict heat
Electric energy supplied to grid

Figure 2.13: Comparison of annual final energy demand for the three scenarios. Scenario
1 shows demand for natural gas to operate the CHP unit.

Electricity to grid

Electricity from grid

Electricity from PV

Natural gas

District heat

Solar heat

Recovered waste heat

Heat for room

conditioning

Cold for room

conditioning

Warm water

Waste heat from

exhaust air

Waste cold from

exhaust air

Electricity for HVAC

Small heat pumps,

pumps & ventilators

Heat

Cold

Absorption

chiller

Production

Office
Equipment

Lighting

Lighting

Equipment

Machines

Waste heat

CHP

Figure 2.14: Detailed energy flow for the energy system configuration of scenario 1
(adapted from [71]). The analysis shows that the high gas demand is a results from
inefficient operation of the absorption chillers.

30

CHAPTER 3
DEVS-based Modeling Case

Study

3.1 Background

This section presents some relevant background regarding the modeling formalism and
tools, on which the case study implementation is based.

3.1.1 DEVS-based System Specification Formalisms

The first DEVS formalism was introducted by Zeigler in 1976 [142] as a formalized
description of discrete-event systems, alongside similar specifications for discrete-time
systems (DTSS) and continuous differential equation systems (DESS).

Starting from an introduction into the foundational Classic DEVS formalism, we present
in the following extensions towards hybrid systems. All these DEVS-based formalisms
have in common that they provide means to build models from components. In particular,
they distinguish between atomic and coupled components. While atomic components
constitute the main building blocks modeling a specific internal behaviour, coupled
components are connections of blocks (either atomic or again coupled blocks) into larger
models. In addition, most DEVS-based formalisms provide an important property, called
closure under coupling, that guarantees that a coupling of systems in a DEVS formalism
defines a basic system in the same formalism. In other words, a coupled component
always behaves like an equivalent atomic component when looked at from the outside
[66]. Closure under coupling allows to use networks of components as components in a
larger coupled system. Together, this leads to a hierarchical, modular construction of
system models.

31

3. DEVS-based Modeling Case Study

Classic DEVS

The Discrete Event System Specification (DEVS) describes models with dynamics that
allow changes only at discrete points in time, called events. An atomic DEVS model is
defined by the tuple (see [142, p. 138])

DEV S = (X,Y, S, δext, δint, λ, ta) (3.1)

where

X is the set of input event values,
Y is the set of output event values,
S is the set of state values,
δext : Q×X → S is the external state transition function,
δint : S → S is the internal state transition function,
λ : S → Y is the output function,
ta : S → R+

0 ∪∞ is the time advance function,
Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]} is the set of total states.

To be precise, X, i.e the set of input event values, is the set of all possible values that an
input event can adopt [69]. So for example X may be Rn for n input ports. The same
goes of course for Y . The functions δint, δext, λ and ta define the system dynamics. In
short, the δext function is executed upon an incoming (external) event, δint reacts to an
internal event and λ computes the output values. An internal event itself is triggered
when time duration ta(s) is exceeded. So ta(s) is a (non-negative real) number that
specifies how long the system remains in a given state in absence of input events.

A more detailed description of the internal behaviour and the execution sequence is
given in the following, since it deems essential to understand in order to be able to
implement models using the DEVS formalism. Figure 3.1 shows the behaviour on an
atomic DEVS and figure 3.2 illustrates an example sequence of input and output events
with corresponding state trajectory.

îòïò ÓÑÜÛÔÔ×ÒÙ ÚÑÎÓßÔ×ÍÓ é

©¸»®»

È æ æ æ »¬ ±º °±·¾´» ·²°«¬ø»ò¹ò Î²÷

Ç æ æ æ »¬ ±º °±·¾´» ±«¬°«¬ø»ò¹ò Îõ Ò Î
³÷

Í æ æ æ »¬ ±º °±·¾´» ¬¿¬»øã¬¿¬» °¿½»÷

Ï ãºøå »÷¶ î Íå » î Åðå ¬¿ø÷Ã¹

»¨¬ æ Ï È ÿ Í æ æ æ »¨¬»®²¿´ ¬¿¬» ¬®¿²·¬·±² º«²½¬·±²

·²¬ æ Í ÿ Í æ æ æ ·²¬»®²¿´ ¬¿¬» ¬®¿²·¬·±² º«²½¬·±²

æ Í ÿ Ç æ æ æ ±«¬°«¬ º«²½¬·±²

¬¿ æ Í ÿ Îõð Åï æ æ æ ¬·³» ¿¼ª¿²½» º«²½¬·±² ø�´·º»°¿² ±º ¿ ¬¿¬»Œ÷

Ú·¹«®» îòî ¸±© ¿ ¹®¿°¸·½¿´ ·´´«¬®¿¬·±² ±º ¿² ¿¬±³·½ ÜÛÊÍ ¿²¼ ·¬ ©±®µ·²¹ °®·²½·°´»ò

 î Í
» î Åðå ¬¿ø÷Ã¨ î È § î Ç

 æã »¨¬øå »å ¨÷ æã ·²¬ø÷

§ æã ø÷

ÜÛÊÍ

» â ¬¿ø÷

¬´¿¬Ûª æã ¬

» ã ¬ ¬´¿¬Ûª

¬´¿¬Ûª æã ¬

Ú·¹«®» îòîæ Ù®¿°¸·½¿´ ·´´«¬®¿¬·±² ±º ¿² ¿¬±³·½ ÜÛÊÍò

ß ¿´®»¿¼§ ³»²¬·±²»¼ô ·² ¿ §¬»³ ¼»½®·¾»¼ ¾§ ¿ ÜÛÊÍô ±²´§ ¿¬ ¼·½®»¬» °±·²¬ ·² ¬·³»

±³»¬¸·²¹ ½¿² ½¸¿²¹»ò Í«½¸ ½¸¿²¹» ½¿² ¾» ½¿«»¼ ¾§ ¬©± ¬¸·²¹æ »·¬¸»® ¿² ·²°«¬ ³»¿¹»

¿®®·ª» ±² ±²» ±º ¬¸» ·²°«¬ °±®¬ ±® ¿² ·²¬»®²¿´ ¬·³» »ª»²¬ ±½½«®ò

¨ ¿¬ ¬¸» ·²°«¬ô ¬¸» »¨¬»®²¿´ ¬¿¬» ¬®¿²·¬·±²
º«²½¬·±² »¨¬ · »¨»½«¬»¼ ¿²¼ «°¼¿¬» ¬¸» ·²¬»®²¿´ ¬¿¬» ©·¬¸ ®»°»½¬ ¬± ¨ô ¬¸» ±´¼ ª¿´«» ±º ¿²¼
¬¸» ¬·³» » ·²½» ¬¸» ´¿¬ »ª»²¬ ±½½«®®»²½»ò ßº¬»®©¿®¼ ¬¸» ª¿´«» ±º » · »¬ ¾¿½µ ¬± ¦»®±ò

×² ¬¸» »½±²¼ ½¿»ô ¬¸» ª¿´«» ±º » ®»¿½¸» ¬¸» «°°»® ´·³·¬ º±® ¬¸» ¿¹» ±º ¬¸» ½«®®»²¬ ¬¿¬»
©¸·½¸ · ¹·ª»² ©·¬¸ ¬¿ø÷ ±«¬°«¬ º«²½¬·±² · »¨»½«¬»¼ô ©¸·½¸ ³¿§

´»¿¼ ¬± ¿² ±«¬°«¬ § ø§ ã å · ¿´± °±·¾´»ô ³»¿²·²¹ ²± ±«¬°«¬÷ ¿²¼ ¬¸»² ¬¸» ·²¬»®²¿´ ¬¿¬» ¬®¿²·ó

¬·±² º«²½¬·±² ·²¬ · »¨»½«¬»¼ò ·²¬ ¿¹¿·² «°¼¿¬» ¬¸» ·²¬»®²¿´ ¬¿¬» ±² ¾¿· ±º ¬¸» ±´¼ ¬¿¬» ª¿´«»

¿²¼ ®»»¬ » ¬± ¦»®±ò

ß ÜÛÊÍ · ½¿´´»¼ ´»¹·¬·³¿¬»ô ·º º±® »¿½¸ °±·¾´» »¬ ±º ·²·¬·¿´ ½±²¼·¬·±²ô ¬¸»®» · ±²´§ ¿

Figure 3.1: Operating principle of an atomic DEVS (taken from [102]).

32

3.1. Background

X

x1

t

S

t

s1

s2 = δint(s1)

s3 = δext(s2, e, x1)

s4 = δint(s3)

Y

t

y1 = λ(s1) y2 = λ(s3)

ta(s1) e ta(s3)

Figure 3.2: Input/Output events and state trajectory for an atomic DEVS model (adapted
from [69]).

After the system state has adopted the value s1 at time t1, the system waits for ta(s1)
units of time, after which it performs an internal transition at time t1 + ta(s1), changing
the state to s2 = δint(s1), but only after triggering an output event with the value
y1 = λ(s1)1. When an external event arrives at time t2 + e (assuming ta(s2) > e), the
state changes instantaneously to s3 = δext(s2, e, x1) using the external transition function
δext with respect to the input x1, the previous state value s2 and the elapsed time e since
the last transition. Afterwards, the elapsed time e is reset to zero. No output is produced
during an external transition [69], [102].

There are some restrictions for modeling atomic DEVS components, most notably
legitimacy of atomic DEVS, meaning that for each possible set of initial conditions, only
a finite number of events may occur during a finite amount of time. More precise, a
DEVS is defined as legitimate [142, p. 142] if for each s ∈ S,

lim
n→∞

∑
(s, n)→∞ (3.2)

In addition to atomic DEVS, the formalism also specifies coupled DEVS, which are
comprised of an external interface (input/output ports and values), sub-components

1Note that y1 may also be ∅, meaning no output.

33

3. DEVS-based Modeling Case Study

(which must again be DEVS models) and coupling relations [142, p. 150]:

N = (X,Y,D, {Md}d∈D, {Id}d∈D∪{N}, {Zi,d}i∈Id
, Select) (3.3)

where

X is a set of input events,
Y is a set of output events,
D is a set of component references (i.e. index set),

for each d ∈ D

Md is a Classic DEVS model (i.e. sub-component of the coupling),

for each d ∈ D ∪N

Id is the influencer set of d: Id ⊆ D ∪ {N}, d /∈ Id,

i.e. the set of components that influence the component d, and for each i ∈ Id, Zi,d is
the i-tod output translation function specifying the coupling relationships:

Zi,d :

X → Xd, if i = N

Yi → Y, if d = N

Yi → Xd, if d 6= N and i 6= N

Finally, Select is the tie-breaking function,

Select : 2D → D,

that arbitrates the occurrence of simultaneous events by resolving which component is
executed first.

It is to note that the coupling does not allow feedback loops where an output port of a
component is connected to an input port of the same component, i.e. d /∈ Id.

For simulating DEVS models, a simulator (i.e. the simulation engine) has to implement
steps to call atomic models, propagate output events and advance the simulation time.
We will not go into specifics of DEVS simulators, as it is beyond the scope of this work.
It should however be noted that there are several possibilities, one of the more intuitive
approaches where the simulation engine directly maps the hierarchical structure of the
model is described in [142] and [69]. This methods distinguishes between simulator
components for executing atomic events and coordinators for routing event messages
and invoking simulators inside couplings. Another approach described in [66] uses a flat
simulation structure, thus avoiding additional message traffic between hierarchical layers
of the simulation.

34

3.1. Background

Parallel DEVS

A Classic DEVS model without Select function would not be uniquely defined when both
an internal and external event occur at the same time. The Select function resolves this
problem by allowing only one component to be activated at any time, thus avoiding such
collisions [142, p. 140]. This resolution is performed however at the coupling level. In order
to avoid the restriction of strictly sequential execution, a modification of Classic DEVS
was proposed in [20] that handles collisions at the atomic level. The so-called Parallel
DEVS (PDEVS) formalism replaces the Select function with a confluent transistion
function δconf , leading to the following description of an atomic PDEVS [142, p. 143]:

PDEV S = (X,Y, S, δext, δint, δconf , λ, ta) (3.4)

where

X is the set of input event values,
Y is the set of output event values,
S is the set of state values,
δext : Q×Xb → S is the external state transition function,
δint : S → S is the internal state transition function,
δconf : S ×Xb → S is the confluent transition function,
λ : S → Y b is the output function,
ta : S → R+

0 ∪∞ is the time advance function,
Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]} is the set of total states.

The confluent transition function δconf is executed when an PDEVS atomic receives
external events at the same time of its internal transition, thus giving the modeller
complete control over the collision behaviour. So, instead of serializing model behaviour
(through a Select function), PDEVS leaves the decision of what serialization to use, if
any, to the individual atomic. Zeigler [142] also suggests a default definition for the
confluent transition:

δconf (s, x) = δext(δint(s), 0, x), (3.5)

i.e. concurrent events are resolved by first carrying out the internal event and afterwards
the external event. The Extended DEVS formalism [137], [138], a predecessor of PDEVS,
even went so far and predefined this behaviour for its component models [20]. In contrast,
PDEVS also allows other definitions to express special circumstances for concurrent
events.

Avoiding the serialization imposed by the coupling presents a modeling advantage for
the user in term of improved modularity and thus reusability as the behaviour of an
atomic DEVS does not depend on its coupling environment (i.e. Select function). In
addition, this improved independence also allows for the PDEVS atomics to be executed
in parallel.

35

3. DEVS-based Modeling Case Study

This parallelization however makes it necessary to introduce bags2 of input events, denoted
by Xb, to the external transition function. These bags can collect multiple input events
(that may arrive at a certain point in time), thus recognizing that inputs can arrive in
any order.

For coupled PDEVS models, the structure is almost identical to that for Classic DEVS,
except that the Select function is no longer needed:

N = (X,Y,D, {Md}d∈D, {Id}d∈D∪{N}, {Zi,d}i∈Id
) (3.6)

with X, Y , D, Id and Zi,d having the same meaning as for Classic DEVS coupled models
(see page 34) and Md is a Parallel DEVS model for each d ∈ D.

Hybrid PDEVS

So far, the DEVS and PDEVS formalisms can be used to describe discrete-event models.
There also have been efforts to develop similar formalisms for continuous systems. The
Differential Equation System Specification (DESS) [142] defines atomic as well as coupled
DESS with purely continuous behaviour using differential equations. DESS is not
described in detail here for reasons of brevity, for more details we refer to [102], [142].

For hybrid models including continuous as well as discrete behaviour, a hybrid classic
DEVS formalism was proposed for the first time by Prähofer [100], [101] in the 1990s, which
culminated later in the Discrete Event and Differential Equation System Specification
(DEV&DESS) [142]. DEV&DESS combines the discrete specification of DEVS and the
continuous specification of DESS.

However, as DEV&DESS builds upon Classic DEVS, it also inherits its shortcomings
including the Select function. For this reason Deatcu et al. [27] proposed an adaption of
Prähofer’s formal hybrid DEVS definition to the PDEVS formalism. The specification,
which we will denote with hyPDEVS in the following, includes discrete (Xd, Yd) and
continuous (Xc, Yc) input/output values as well as states (Sc, Sd) and defines a hybrid
atomic PDEVS as follows:

hyPDEV S = (X,Y, S, f, cse, λc, δstate, δext, δint, δconf , λd, ta) (3.7)

2Compared to a set of elements, a bag also allows multiple occurrences of an element, e.g.{a, b, c, a, b}
is a valid bag.

36

3.1. Background

where

X is the set of inputs, consisting of Xc and Xd,
Y is the set of outputs, consisting of Yc and Yd,
S is the set of states, consisting of Sc and Sd,
f : Q×Xc → Sc is the rate of change function,
λc : Sc ×Xc → Yc is the continuous output function,
cse : Sc → Sc is the state event condition function,
δstate : Q×Xc → S is the state event transition function,
δext : Q×Xb

d → S is the external state transition function,
δint : S → S is the internal state transition function,
δconf : S ×Xb

d → S is the confluent transition function,
λd : S → Y b

d is the discrete output function,
ta : S → R+

0 ∪∞ is the time advance function,
Q = {(s, e)|s ∈ S, e ∈ [0, ta(s)]} is the set of total states.

The rate of change function f defines the continuous dynamics in terms of ordinary
differential equations (ODEs). In addition to internal (i.e. time-driven) and external
events (from discrete inputs Xd), state events (threshold events from continuous states)
can be defined [98]. For this, the function cse defines the conditions (in terms of zero-
crossing) under which a state event is triggered. The state event is then carried out
by computing the state event transition function δstate. Since all three types of events
may occur concurrently, the confluent transition function δconf needs to be adapted
accordingly [27].

The specification for coupled models can be adapted from PDEVS (see equation (3.6) and
[105]) with slight modifications. The input and output sets X and Y , respectively, now
contain discrete as well as continuous values as well as the coupling relations Zi,d have
to distinguish between discrete and continuous connections. This leads to the following
specification for coupled hyPDEVS models:

N = (Xd ×Xc, Yd × Yc, D, {Md}d∈D, {Id}d∈D∪{N}, {Zi,d}i∈Id
) (3.8)

The DEV&DESS formalism gives a similar specification for coupled DEV&DESS models,
see [102], [142], except for the Select function.

One notable characteristics of hyPDEVS atomics is that their output function may in
principle depend on the continuous inputs Xc, see also equation (3.7). In fact, two types
of atomics are distinguished, in resemblence to state automata: While Mealy atomics
define λc : Sc ×Xc → Yc, Moore atomics define a simpler output function λc : Sc → Yc
that does only depend on the state values Sc. Why that is relevant is because Mealy type
atomics may cause algebraic loops in feedback couplings, i.e. a circular dependency of

37

3. DEVS-based Modeling Case Study

output from input values, which constitutes an illegitimate model. Usually, the modeller
has to prevent this scenario by taking care that each feedback coupling contains at least
one atomic of Moore type. This legitimacy restriction is closely related to the legitimacy
of atomic DEVS models, see equation (3.2).

These hybrid formalisms allow to specify continuous behaviour in term of differential
equations alongside discrete behaviour (including state events). However hyPDEVS as
well as DEV&DESS do not specify how to compute these differential equations during
simulations. Different discretizations can be employed including common ODE solvers.
In conjunction with DEVS, another discretization approach is quite popular, called
Quantized State System (QSS), where not the time is discretized, but the state values.
In particular, QSS calculates the point in time where a continuous state variable has
changed more than a certain quantum. QSS is closely connected to DEVS as a continuous
model discretized using QSS becomes essentially a discrete-event model, which can be
mapped to an atomic PDEVS model [27]. In addition, the state-based quantization
natively recognizes state events, which makes their handling easier [102]. For more details
on QSS, we refer to [18], [67], [68]

An abstract simulation engine for hyPDEVS models has to incorporate handling discrete
events as well as numerical integration algorithms and above all also the interactions
between continuous and discrete parts of the model. Apart from the QSS approach,
other simulator concepts exist, for example an ODE wrapper concept described in [27].
A prototype implementation in MATLAB, the so-called MatlabDEVS Toolbox, also
provides a direct implementation of the hyPDEVS formalism [26], [97]. More details are
given in section 3.1.2.

3.1.2 Tools for DEVS-based Hybrid Modeling and Simulation

There are a number of software tools for simulating DEVS models [35] which can probably
be attributed to the popularity of DEVS in academia. Some of the more popular DEVS
simulation tools include DEVSJAVA [112], CD++ [136], DEVSim++ [124], DEVS-C++
[19], JDEVS [33] and ADEVS [93].

Most of these tools, however, build on Classic DEVS or PDEVS and focus on purely
discrete models. In the context of this work, we are more interested in software tools
that implement hybrid DEVS-based formalisms. Two of the more prominent examples
are presented in the following.

PowerDEVS

PowerDEVS3 is an open-source software tool for DEVS-based hybrid systems modeling
and simulation developed by Kofman et al. [69]. It builds upon the Classic DEVS formal-
ism by embedding continuous behaviour using the QSS method (see also section 3.1.1).

3PowerDEVS is available at https://sourceforge.net/projects/powerdevs/

38

https://sourceforge.net/projects/powerdevs/

3.1. Background

PowerDEVS aims at providing a DEVS simulation environment with a block-oriented
graphical interface (that is similar to other established simulation tools) and library
handling, also allowing use by non-DEVS-expert by hiding atomic DEVS definitions. For
this, PowerDEVS is split into several independent programs, including a model editor
containing the graphical user interface and an atomic editor for editing atomic DEVS
models [11].

PowerDEVS implements some modifications of the Classic DEVS abstract simulator
algorithm [142], including real-time simulation capabilities and a simplified specification
for coupled DEVS models. For more details on PowerDEVS, we refer to [11], [69]

MatlabDEVS Toolbox

The MatlabDEVS Toolbox4 is developed by Deatcu et al. [97] and implements a
PDEVS simulator with ports in MATLAB. It also offers experimental features for hybrid
simulation, accompanied by the hyPDEVS formalism, which was presented in section 3.1.1.
The MatlabDEVS Toolbox aims at bringing DEVS to the engineering community, where
this approach is relatively unkown [97].

In fact, the MatlabDEVS Toolbox also implements an extension to hyPDEVS for variable
structure systems [26], which is based on the Dynamic Structure DEVS (DSDEVS)
specification [9]. As this extension is not relevant for our case study, we will leave this
aspect aside and focus on the hybrid PDEVS simulator implementation.

The user requires a general understanding of the hyPDEVS formalism in order to be
able to implement DEVS-based hybrid simulation models. Models are created in an
object-oriented manner by implementing classes of hyPDEVS atomics, which can then
be instantiated to create coupled models. In addition to coupling relations, also a root
coordinator model has to be specified.

For computing the differential equations, the MatlabDEVS Toolbox provides on the
one hand a mapping of a QSS algorithm into a PDEVS atomic. As an alternative, it
also implements a novel ODE wrapper concept [27], where a closed representation of
the continuous differential and algebraic equations is derived, in order to be computed
with common MATLAB ODE solvers. This allows using a large number of established
numerical methods for solving differential equations that are common in engineering
applications, like implicit integration algorithms, predictor-corrector methods or adaptive
step size control (for example, MATLAB’s Runge-Kutta method ode45 among others,
see [126] for more details). The modular hierarchical model itself is not modified, therefore
keeping the structural information intact.

During continuous simulation of an hyPDEVS model (cf. section 3.1.1), the ODE wrapper
function (which is called by the ODE solver) calls the continuous output function λc,
the rate of change functions f and the state event condition functions cse of all hybrid

4The MatlabDEVS Toolbox is available at https://www.mb.hs-wismar.de/cea/DEVS_Tbx/
MatlabDEVS_Tbx.html.

39

https://www.mb.hs-wismar.de/cea/DEVS_Tbx/MatlabDEVS_Tbx.html
https://www.mb.hs-wismar.de/cea/DEVS_Tbx/MatlabDEVS_Tbx.html

3. DEVS-based Modeling Case Study

atomic subcomponents to calculate continuous outputs and derivatives and check for
state events.

To allow interaction between discrete and continuous simulation, the root coordinator
coordinating the simulation of the overall model was modified to operate in three phases:
(i) initialization, (ii) discrete phase, and (iii) continuous phase. More details are given in
[27]. The runtime execution is then as follows: Based on the minimum time stamp for the
next internal event in any component, the root coordinator determines whether a discrete
or continuous simulation phase has to be entered. In particular, if there is no imminent
event, a continuous cycle is initiated that computes the differential equations until the
time of the next event. At that time, the discrete phase is entered that computes all
relevant atomic components according to standard (discrete) PDEVS behaviour. If all
internal and external transitions have been executed for that particular time step, the
simulation can progress by again entering continuous simulation first.

This way of handling the coordination between continuous and discrete simulation presents
an important advantage, namely that the continuous simulator always knows beforehand
when the next event occurs anywhere in the model5, in order to stop accordingly. This
simplifies the underlying coupling scheme. If ODE computation is localized to an
individual atomic component, it would have to be able to react to unforseen external
events (for example using rollback mechanisms), since it would then not be able to know
beforehand when such an event occurs.

Implementing DEVS-based models using the MatlabDEVS toolbox also has some re-
strictions, especially regarding Mealy type atomics (see section 3.1.1). As Mealy type
components need input values to compute output events, the user has to take care that
these are provided accordingly, either by using Moore type atomics in between Mealy
type atomics or by carefully considering the order of execution. Some further problems
with hybrid DEVS formalisms regarding Mealy type blocks are also described in [102].

3.2 Design

3.2.1 Modular Hybrid Modeling Approach

In the course of the research project BaMa (Balanced Manufacturing, see [49], [70], [77],
[80], a modularization approach was developed that aims at managing the complexity
presented during system analysis of industrial production facilities. This approach
divides the overall system from an energetic point of view into well-defined manageable
modules, which then allow a focused system analysis independent from the surrounding
environment. In the context of BaMa, these modular components are called cubes [70].

5This includes external as well as internal events, since every external event in DEVS is triggered by
an internal event of another atomic. State events are not a problem in this context as they are detected
by the ODE solver itself.

40

3.2. Design

Figure 3.3 depicts an example configuration of cubes dividing a production facility. A
cube can be, for example, a machine tool, a baking oven, a chiller providing cooling
energy or the thermal zone surrounding the production.

Thermal Zone 1

Building

Thermal Zone 2

Machine

OvenLogistics

Logistics
Energy, material, information

Heater

Chiller

Figure 3.3: Example configuration of a production facility consisting of different cubes.

A cube represents a certain physical component with defined behaviour that interacts
with its surroundings by exchanging energy, material and information. The cube concept
defines these interfaces on an abstract level in order to ensure its applicability in a
variety of production facilities as well as engineering domains. In particular, four different
domains are distinguished: Machines and production processes, logistics, technical
building services and building, see also figure 3.4. For more details, we refer to [70]

In a way, this extends the idea of an interdisciplinary reference model, which was applied
in co-simulation case study (see section 2.2.1 on page 14) by unifying the approach of
decomposition and the interface descriptions.

The cube approach also corresponds intuitively with the paradigm of component-based
modeling, which allows to build larger models from well-defined components, meaning
that cubes can also act as the building blocks of a simulation model. Here, this approach
of modularization and decomposition promises reusability of model components [6], [7],
which deems necessary in order to reduce the effort for developing and implementing
simulation models in medium- to large-scale applications. Especially for interdisciplinary
hybrid simulation models, this advantage cannot be underestimated.

3.2.2 Simulation Approach

The cube method described in the last section does not specify the way how to model
the inner behaviour of cubes. One intuitive approach to model energy-related aspects
is to draw energy balances around the borders of a cube and derive balance equations,
leading to continuous model dynamics in terms of differential and algebraic equations.

41

3. DEVS-based Modeling Case Study

Cube

Machine,

production process

Thermal process

Non-thermal

process

Building

Building hull

Thermal zone

Energy system, TBS

Energy converter

Energy storage and

networks

Logistics

Transport system

Handling system

Storage

Figure 3.4: Different categories of cubes, divided into four areas: Machine and production
process, building, energy system and technical building services, and logistics.

This description allows incorporating transient dynamic behaviour, which is essential
when analyzing time-dependent interaction between different cubes.

On the other hand, it is necessary to model material flow using entity-based structures
in combination with discrete events and states in order to be able to simulate persistent
and traceable products (e.g. work pieces). This discrete behaviour can best be described
using state machines.

These discrete and continuous aspects of a cube are often tightly coupled and interfere
with each other, e.g. the temperature inside an oven may reach a certain point during
heating, after which entities can be processed. Figure 3.5 illustrates this hybrid nature of
Cube models, encapsulating discrete and continuous behaviour within their boundaries.
The figue also shows again the three types of cube interfaces: material, energy and
information.

Still, uniting these modeling techniques in the form of cube models presents one of
the main challenges for implementation, which motivates the need for hybrid modeling
and sophisticated formal descriptions as well as software solutions for component-based
simulation.

The hybrid nature of cube models does not allow to easily split the overall hybrid
model into discrete and continuous subsystems, that would enable using a co-simulation
approach similar to the one used in our first case study (see chapter 2). Instead, we
follow an approach for integrated hybrid simulation, that also promotes flexibility and
reusability of models on a component level.

42

3.3. Implementation

25

Cube

discrete

continuous

Material (Entities)

Energy

Information

Figure 3.5: Hybrid nature of cube models encapsulating discrete material flow and
continuous energy behaviour.

A hybrid DEVS formalism presents a suitable choice for modeling these cubes, be-
cause it also follows a component-based paradigm and allows for an open, transparent
implementation.

First tests and an evaluation of PowerDEVS (see also section 3.1.2) proved unsatisfactory,
mainly regarding simultaneous events, see [102], [103] for more details. The reason is
that PowerDEVS employs a Classic DEVS simulation engine, which led us to switching
to the hyPDEVS specification (which was presented in section 3.1.1).

3.3 Implementation

The implementation of a production facility case study was carried out using the Mat-
labDEVS Toolbox as simulation environment, see also section 3.1.2. As mentioned, the
MatlabDEVS Toolbox implements the hyPDEVS specification based on Parallel DEVS.
For solving the differential equations, we employ the ODE wrapper approach provided
by the Toolbox.

3.3.1 Hybrid Model Component: Oven

As an example cube, we present the implementation of a simple conveyor oven model.
We consider this a representative example for demonstrating the implementation as the
oven model is truly hybrid, i.e. incorporating continuous as well as discrete aspects,
and contains all important aspects of a cube model, i.e. differential equations, discrete
entities, time-driven (internal) as well as external and state events, and a non-trivial state
machine. Developing the model itself was not part of this work, only the DEVS-based
implementation, which is why we will not go into detail regarding deriving the equations
and state machine.

43

3. DEVS-based Modeling Case Study

Model Description

The outer structure of the cube is composed by its interfaces over which it communicates
with other cubes, which are shown in figure 3.6, see also [105].

Demand electrical power (PelD)

Demand thermal power (QHD)

Entity in ACK (EINcom)

Oven

Electrical power (Pel)

Thermal power (QH)

Entity in (EIN) Entity out (EOUT)
Waste entity (EW)

Waste heat (QWH)

Recovered heat (Qrec)

Capacity (N)
Production schedule (Pplan)
Nominal power (PH)
Standby power (Ps)
Holding period (tB)
Set temperature (Ts)
Hysteresis (H)
Sign heating/cooling (sign)
Volume (V)
Heat transition (UA)
Heat capacity air (cpA)

Air density (ρA)
Waste heat utilization (η)
Waste fraction (α)

Parameters:

State variables:

State (p)
Heating state (h)
Entities (ent)

Temperature (T)

Ambient temperature (Ta)
Entity out ACK (EOUTcom)
Waste entity ACK (EAcom)

Figure 3.6: Interface of the presented oven model showing inputs (left) and outputs
(right). The figure also shows parameters and state variables of the internal model.

For the internal model, the continuous behaviour is modelled by balance equations for
energy-related variables, in particular the interior temperature T , waste heat Q̇WH and
recoverable heat output Q̇rec:

dT

dt
= Q̇H − (T − Ta) · UA
cpA · ρA · V +

∑
E∈entE.cp · E.m

, (3.9)

Q̇WH = ((T − Ta) · UA+ Pel) · (1− η), (3.10)
Q̇rec = ((T − Ta) · UA+ Pel) · η. (3.11)

where Ta denotes the ambient temperature, Q̇H the heating power input, cpA the specific
heat capacity, ρA the density of the thermal volume V , Pel the electric power input, n
the heat recovery factor and UA denotes the heat transition through the oven walls. The
term

∑
E∈entE.cp · E.m gives the sum of all heat capacities of all entities E ∈ ent inside

the oven.

The discrete behaviour of the oven governs the material flow, internal states and events
and can be described semi-formally using state diagrams, see figure 3.7.

44

3.3. Implementation

standby

holding output

EOUT = ent(N); EA = ent(N)
EOUT.T=T; EOUT.m=(1-a)*ent(N).m
EA.T=T; EA.m=alpha*ent(N).m

off

Initial

incoming

ent(1) = EIN
EINcom = TRUE

update

ent(i+1) = ent(i)

heating

waiting

[ent(N) != 0]

[ent == empty]

[t >=tB/N]

[Pplan signal]

[Pplan signal]

[TRUE]

[EIN & ent(1) == 0]

[EOUTcom & EAcom]

[Pplan signal]

[Pplan signal]

[EIN & ent(1) == 0]

[ent(N) == 0]

[TRUE]

[Pplan signal]

[Pplan signal] [sign*(T-Ts)>=0]

[t >= tB/N]

Figure 3.7: State diagram describing the discrete behaviour of the oven cube.

States are provided for off as well as standby mode, determined via Pplan signal.
This Pplan signal comes from another component that reads the production schedule,
which is provided by the user (input parameter, see also section 3.3.2). Similarly, the oven
can be activated via a Pplan signal, after which it enters the state heating, where
it requests energy for heating. When the requested temperature Ts is reached, state
waiting is entered where the oven holds temperature and waits for incoming Entities
(EIN). When an entity enters, the oven sends an acknowledgement signal (EINcom) and
enters state holding, where processing takes place. In the meantime, further entities
may enter (via state incoming). After the respective processing time (tB/N) of the first
entity has elapsed, the oven tries to send it on its output port (state output) and waits
for acknowledgement (EOUTcom) from the downstream station. If this acknowledgement
does not arrive in a timely fashion, the oven tries resending the same entity, and after
receiving EOUTcom, it again enters state holding or waiting, depending on whether
the entities are remaining or not. From the state waiting, the oven can be turned off,
again via a Pplan signal.

Depending on a waste parameter α, the oven can also output a waste entity (output
port EA) by splitting an outgoing entity into two, with the mass fractions α cotE.m and
(1− α) cotE.m, respectively.

It is interesting to note, that, when looking again at the state diagram in figure 3.7,
all three types of event transitions are present that are allowed when using hybrid
DEVS-based formalisms:

• Time-driven (internal) event: Processing finished (t ≥ tB/N),

• External event: Incoming entity (EIN), among others,

45

3. DEVS-based Modeling Case Study

• State-based event: Reaching internal temperature (sign·(T − Ts) ≥ 0)

The model equations also contain a user-defined parameter sign that allows to invert
the thermal behaviour of the oven to essentially be operated as a cooler or freezer.

Translation into hyPDEVS

This semi-formal model description for the oven cube, which is independent from any
DEVS-based implementation, now has to be translated into a hyPDEVS compliant model.
As presented in section 3.1.1 and in particular equation (3.7), the hyPDEVS formalism
defines an atomic components as the tuple

hyPDEV S = (X,Y, S, f, cse, λc, δstate, δext, δint, δconf , λd, ta) (3.12)

So as part of the modeling and translation process, one has to provide definitions for the
respective functions specified by hyPDEVS, i.e. external transition function δext, internal
transition function δint, confluent transition function δconf , discrete and continuous
output functions λ and λc, respectively, rate of change function f , state event functions
cse and δstate and time advance function ta.

Unfortunately, this is not a trivial process, as several important model-related aspects
have to be taken into account, which apply not only to the oven model, but all cubes
[105].

Entity push semantics Consider for example the situation depicted in figure 3.8. If
one wants to model exchanging entities between two stations A and B, the hyPDEVS
specification only takes into account rudimentary event-driven behaviour, i.e. station A
sends an entity in form of an event and station B has to process this event. However,
if for example station B is not able to accept the entity because its storage capacity is
reached, then it has to reject an incoming entity event. And in order for the entity to
not be dropped and lost, the station B has to notify station A about the rejection so
that station A can keep the entity. In terms of model robustness, it is preferable that
instead of an rejection, each acceptance is notified to station A via an acknowledgement
signal. As an alternative to this so-called push semantics, it would also be possible
to employ pull semantics where station B always has to request an entity first before
station A sends it. Nevertheless, there has to be some form of additional communication
between the two stations, which is handles via a control information path between sender
and recipient. In the tradition of common material flow simulation tools (e.g. Plant
Simulation) and due to some severe issues6 with the pull principle, we decided to employ
the push principle as the primary semantics for entity flow, although there are some
exceptions (e.g. fetching entities from a storage). In addition to the recipient having to
acknowledge each incoming entity, the sending station has to try to resend a rejected
entity periodically in order to avoid a deadlock.

6If used exessively, the pull principle can reverse the control flow through the entire model. More
details on this are also given in [105].

46

3.3. Implementation

station

A

station

B
Entity

Entity Entity

ACK / REQ

Figure 3.8: Simple example of two stations exchanging an entity, either using an acknowl-
edgement signal (ACK) or request signal (REQ).

Input Buffer The described communication for exchanging entities also causes an
additional iteration at constant time steps, during which messages are exchanged. Since
a typical hyDEVS simulation engine will reset all external messages in between such
iterations (since it assumes they have already been processed), even if they happen at
the same simulated time step, it is a significant improvement for concrete applications to
buffer incoming messages during iterations, at least as long as the time step does not
change. This ensures that messages do not get lost during concurrent signals. The most
prominent example of such a scenario also happens during entity exchange. Consider
again the example in figure 3.8 and assume that at a certain time step station A has
finished processing an entity, call it x, and tries to send it to station B. At the same
time, station A already receives another entity, call it y, at its input for future processing.
At this point, station A is not able to accept the entity y as it is still blocked from the
entity x and has to wait for acknowledgement from station B before it can discard x. As
long as the acknowledgement signal from station B comes in the same time step, station
A might still be able to accept entity y. But for this, y has to be buffered during the
entire exchange of entity x, otherwise it would be deleted from the input, because it has
not been processed immediately.

Implicit Prioritization As mentioned in the beginning of the chapter (see section 3.1),
Parallel DEVS (on which hyPDEVS is based) eliminates the Select function and with it
the need to provide an explicit prioritization for executing atomic models, which opened
the door for parallel processing. Unfortunately this also brings about modeling difficulties
as the modeller can not make assumptions anymore about input events that occur at a
particular time step also arriving concurrently, i.e. are available during the same iteration
of the external transition function δext. This problem has also been described in [102].
Also, during execution of δext, incoming events have to be processed sequentially, thus
imposing an implicit prioritization of input, depending on which is processed first. In the
worst case, this can lead to some unintended behaviour and the modeller has to be very
careful when implementing δext.

Mealy Behaviour As mentioned, Mealy type atomics may cause difficulties, because
they directly need an input signal for computing an output. The MatlabDEVS Toolbox
also poses some restrictions in this regard, which is why for some connections a workaround
had to be employed where a Moore type atomic, in particular a simple signal gain with
factor 1, is connected in between two Mealy type atomics. This is also shown in

47

3. DEVS-based Modeling Case Study

section 3.3.2. As said, this was necessary due to some software-specific restrictions,
however the underlying problem concerns the formalism itself and is not trivial to resolve.
Another peculiarity of the software concerns the number of continuous states necessary
for an atomic component, for which dummy states had to be used in some cases. This
can be seen in the source code in the appendix.

Finally, after considering the modeling aspects presented above, the hyPDEVS specifica-
tion for the oven cube atomic model could be implemented. The individual functions, i.e.
δint, δext are not presented here for reasons of clarity, instead we refer to the source code
in appendix A.

It is however interesting to note that during implementation we experienced that the
modeller always has to be aware of how the model is executed, i.e. which function
is called in which order. This was especially true for the output function λ and the
internal transition function δint as they are mostly executed in tandem, as explained
in section 3.1.1. The user can exploit this aspect for modeling, in some cases it is
even unavoidable. One notable exception to this λ-δint combination may occur during
concurrent events when δconf is executed immediately after λ. This may lead to additional
problems, which is why we propose to simplify δconf for our application by only using
the default behaviour (see also equation (3.5))

δconf (s, x) = δext(δint(s), 0, x),

This ensures that also in the δconf case, δint is executed immediately after λ, thus
respecting the λ-δint combination.

3.3.2 Overall Model

To demonstrate the feasibility of the modeling concept and the implemented cube
compoents, a simple example of a production plant was devised, shown in figure 3.9. The
example was inspired by an industrial bakery that produces baked goods in different
variants, fresh as well as frozen, and features a processing line with production and
logistics components, an energy supply system, thermal zones and a building hull.
Discrete material flow is incorporated as well as continuous energy flows and information
signals. The example model is intended to include various critical aspects necessary
for modeling production facilities, including: interaction of continuous and discrete
characteristics, complex flow of entities (splitting, merging, batching, different paths)
and scheduling of different product types.

In this example, the building cube contains four thermal zones, each representing a
distinct part of the facility: production hall, cold storage, plant room and office. The
thermal zones all have independent conditioning and exchange heat with each other via
specified heat transfer parameters.

48

3.3. Implementation

Building

ThermZone2

ThermZone1

ThermZone4ThermZone3

Storage

Mixer

SplitterOven

Freezer

Batcher

Provider

FIFO-Queue

Heater

Cold
Network

Electric
Network

Cooler

ProviderProvider

Heat
Network

Figure 3.9: Example of a simple production facility, consisting of a processing line (top),
energy system (bottom left) and thermal building cubes.

The energy system and energy network cubes are responsible for energy conversion and
distribution of energy inside the system, in the form of heating, cooling and electric energy.
This includes in particular a heater, chiller and energy grids with storage capacities.

For producing entities, respective ingredients are pulled from a storage and processed
along the production line, including mixing, splitting and batching/packaging. The
products either pass an oven for baking or a freezer for cooling, depending on the type of
product.

For specifying simulation scenarios, the user defines production schedules, which are read
as input parameters. Entries in the production schedule constitute commands for state
changes (see for example the oven in section 3.3.1 and especially figure 3.7).

In addition to the production schedule, process parameters can be adjusted for different
products based on a process sheet, e.g. oven temperature set point. Also, the simulation
reads external data for weather conditions and ambient temperature.

The described example was realized in the MatlabDEVS Toolbox using the already
implemented Cube atomic components. As mentioned, the toolbox employs an ODE
wrapper for computing the differential equations using MATLAB’s ode45 algorithm.

According to the coupled hyPEDEVS specification (see section 3.1.1), the continuous
and discrete coupling relations Zid have to be defined for all cube instances. Taken the
oven cube for example, the discrete couplings look as follows:

49

3. DEVS-based Modeling Case Study

Zid_model = {
% [...]
% oven
’belt1_stat’,’EOUT’, ’oven’,’EIN’;... % entity input from

previous station
’oven’,’EINcom’, ’belt1_stat’,’EOUTcom’;... % acknowledgement to

previous station
’oven’,’EOUT’, ’belt3_stat’,’EIN’;... % entity ouput to next

station
’belt3_stat’,’EINcom’, ’oven’,’EOUTcom’;... % acknowlegement

from next station
’oven’,’EA’, ’sink_waste’,’EIN’;... % waste entity output
’sink_waste’,’EINcom’, ’oven’,’EAcom’;... % acknowledgement from

waste output
% [...]

}

Similarly, the continuous couplings for the oven are specified using the continuous output
translation function:
CZid_model = {

% [...]
% oven
’e_grid’,8, ’gain23’,1;... % Pel input (via gain)
’gain23’,1, ’oven’,1;...
’heatinggrid’,3, ’gain1’,1;... % Q_H input (via gain)
’gain1’,1, ’oven’,2;...
’therm_zone1’,1, ’oven’,3;... % Ta input
’oven’,4, ’heatinggrid’,4;... % Q_HD output
’oven’,3, ’e_grid’,9;... %PelD output
’oven’,1, ’therm_zone1’,12;... %Q_WH output
% [...]
}

Unlike in Zid, where the ports of the atomics could be accessed directly via name, here
the ports have to be accessed via index number instead. This is due to an immaturity of
the MatlabDEVS Toolbox in this regard and may as well be fixed in future releases.

As mentioned, some of the continuous connections need to use gains in between in order
to resolve Mealy type behaviour.

3.3.3 Validation

Individual aspects of the overall model have been validated using independent implemen-
tations, which were developed as part of the research project BaMa. The continuous
sub-model including thermal zone cubes and energy systems components were imple-
mented and tested using Dymola and show satisfying consistency. The hyPDEVS-based
implementation of the oven cube could also be validated against and independent imple-
mentation in Dymola, which uses native data structures for representing entities. See

50

3.4. Testing and Results

[104] for more details. For validating the flow of entities, entry and exit times were
compared to independent calculations and also show satisfying agreement.

3.4 Testing and Results

In the following, exemplary simulation results are presented from different scenarios, in
order to demonstrate the application of the implemented case study model. Parts of
these results have also been presented in [105].

Production schedule and process sheet determine the production scenario and serve as
input parameters for the simulation. The simulation also reads external input data to
factor in ambient temperature conditions.

Table 3.1 shows the production schedules for two considered scenarios, which take place
over one day (00:00 to 24:00). Scenario 1 and 2 are intended to provide a comparison of
two different production configurations under the same conditions, i.e. the same number
of entities have to be produced by the end of the day.

Table 3.1: Production schedules for two example scenarios

Station Time State Product type Quantity
Scenario 1

Storage 02:30 prepare 1 8
10:00 prepare 2 16

Production 03:00 on 1
10:30 on 2
24:00 off -

Oven 00:00 heating 1
10:00 off -

Freezer 00:00 cooling 2
24:00 off -

Scenario 2
Storage 00:30 prepare 1 8

06:00 prepare 2 16
Production 01:00 on 1

06:30 on 2
16:00 off -

Oven 00:00 heating 1
07:00 off -

Freezer 06:00 cooling 2
15:30 off -

51

3. DEVS-based Modeling Case Study

As a result of the simulation, figure 3.10 presents a comparison of the entity flow between
the two scenarios.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

merging.count1
merging.count2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

splitting.count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

oven.count
freezer.count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

batching.count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

20

40

time [h]

sink.type1
sink.type2

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

merging.count1
merging.count2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

splitting.count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

oven.count
freezer.count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

batching.count

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

20

40

time [h]

sink.type1
sink.type2

(b) Scenario 2

Figure 3.10: Comparison of entity flow: Number of entities over time in the different
stations.

Figure 3.11 depicts the total energy demand over time for the two scenarios. The main
difference in the electric energy demand can be attributed to the lower power consumption
of the production line in scenario 2 in that it is switched off earlier after production has
finished. Heating and cooling demand present only a marginal difference due to slight
different operating times for oven and cooler (see also figure 3.12), but the main energy
demand stems from conditioning the thermal zones, which is the same for both scenarios.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

50

100

150

200

time [h]

E
ne

rg
y

[k
W

h]

Overall Energy

Electrical Grid Energy
Cooling Grid Energy
Heat Grid Energy

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

20

40

60

80

100

120

time [h]

E
ne

rg
y

[k
W

h]

Overall Energy

Electrical Grid Energy
Cooling Grid Energy
Heat Grid Energy

(b) Scenario 2

Figure 3.11: Comparison of energy demand: Energy consumption for heating, cooling
and electric energy over time.

In the comparison of temperature profiles for oven and freezer in figure 3.12, one can see
that, due to the production schedule being finished earlier in scenario 2, the stations can
be turned off earlier, thus preserving energy. The temperature fluctuations during the
day can be attributed to the two-point controller.

Finally, figure 3.13 depicts the profiles for thermal zone temperatures and ambient air
temperature. There are no significant differences visible, as the thermal zone temperatures

52

3.4. Testing and Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
−50

0

50

100

150

200

250

time [h]

te
m

pe
ra

tu
re

 [°
C

]

Oven and Freezer Temperature

oven.T
freezer.T

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
−50

0

50

100

150

200

250

time [h]

te
m

pe
ra

tu
re

 [°
C

]

Oven and Freezer Temperature

oven.T
freezer.T

(b) Scenario 2

Figure 3.12: Comparison of oven and freezer operation: Temperature profile for oven
and freezer over time.

mainly depend on the ambient temperature (which is the same for both scenarios) and
are only marginally influenced by waste heat from production machines.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

time [h]

te
m

pe
ra

tu
re

 [°
C

]

Zone Temperatures

Zone 1 Zone 2 Zone 3 Zone 4 Ambient

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

time [h]

te
m

pe
ra

tu
re

 [°
C

]
Zone Temperatures

Zone 1 Zone 2 Zone 3 Zone 4 Ambient

(b) Scenario 2

Figure 3.13: Comparison of thermal zone temperatures: Temperature profile for thermal
zones as well as ambient temperature over time.

53

CHAPTER 4
Evaluation and Comparison

After presenting both the co-simulation and DEVS-based modeling approach and their
practical application in case studies, we now want to address their feasibility with regard
to relevant criteria and compare them with each other. This evaluation is intended to
help choosing which of the fundamental modeling approaches is more suitable for specific
application use cases.

First, we present some related work regarding evaluation and selection of simulation
software and a description of chosen evaluation criteria. Afterwards, both the co-
simulation and DEVS-based modeling approach are evaluated and compared, followed by
some concluding remarks.

4.1 Related Work
Often simulation tools are evaluated either on their own merits, or in comparison with
other tools [90]. Not only is selecting a suitable simulation tool from a possible set of
alternatives in the presence of evaluation criteria typically a difficult complex multi-
criteria decision problem [4], [8], [60], but the large number of available tools adds
an additional scale to the problem. For this reason, several studies exist in research
literature concerning the selection of simulation software as well as evaluation techniques
and criteria. These can provide assistance during the decision making process and help
to manage a multitude of often intangible criteria.

Selection Methodologies

The authors of [125] describe a two-phase selection methodology for simulation software
selection. The first phase checks a wide list of potential candidates for availability of
the most important features and selects a subset based on specific criteria, while in the
second phase the remaining candidates are analysed and evaluated in detail [4]. Various

55

4. Evaluation and Comparison

methods can be used for evaluation in both phases, for example a method for extracting
and categorizing evaluation criteria like described in [90].

In [117], a framework is presented for choosing discrete-event simulation software. Starting
from a project objective, it addresses model use, dissemination and modeling range, among
other aspects.

Evaluation Techniques

Banks [8] suggested some considerations to be made regarding various criteria for selecting
simulation software and proposed a simple scoring model where values between zero and
ten are assigned to each criterion, which are then summed and normalized. In [134], the
authors compare four different manufacturing simulation tools by rating various groups
of criteria on a scale from one to ten.

The Analytic Hierarchy Process (AHP) [43], [107] provides an evaluation technique [24]
in form of a systematic approach for structuring and assessing complex multi-criteria
decision making problems. The technique originally stems from socio-economic research
and aims at reducing inconsistencies in human judgement. The assessment is based on a
multilevel hierarchical decomposition and quantification of objectives, interrelated criteria
and alternatives [119]. It provides a means to measure especially intangible factors by
using pairwise comparison matrices that quantify the relative importance on an absolute
scale of one element over another with respect to a common property. AHP is widely
used for solving decision making problems in various fields [63], [73], [119].

Although less prominent in literature, the Analytic Network Process (ANP) is a generali-
sation of the Analytic Hierarchy Process for decision problems that cannot be structured
hierarchically [43], [108], [109]. For example, Ayağ [4] proposed an ANP-based approach
to evaluate a set of simulation software alternatives.

Evaluation Criteria

Hlupic et al. [56] provide a comprehensive framework for selecting evaluating simulation
software, containing more than 310 criteria, which is intended to be applicable to any
simulation package regardless of its application area. It presents an advancement from
earlier research in the area of manufacturing simulators [55], [57], [59]. A comprehensive
description of all criteria is given in [57]. This evaluation framework has been tested
through several case studies. It is claimed that dozens of simulation specialists have
already used this evaluation framework for software selection [15].

Also based on this work, Nikoukaran et al. [89], [90] classified criteria for simulation
software selection into a hierarchical structure. However, they also do not aim to provide
a weighting of importance between these criteria.

A simplified framework is presented in [15], including most important features and
proposed guidelines to be used by non-experts. The features and guidelines are derived

56

4.2. Scope of the Evaluation

from practical experience and survey of literature and focus in particular on Business
Process Modeling (BPM).

In addition, a range of other authors proposed preferred lists of features and criteria with
varying range, classified into groups, e.g. [8], [24], [31], [60], [74], [75], [81], [90], [118], see
also [91] and [1] for an overview. In general, these lists overlap substantially, however,
since these criteria are usually intangible, the interpretations of these criteria often vary.

Tools for Selecting Simulation Software

The software tools SimSelect [58], based on the works of Hlupic et al. [55]–[57] uses a
database of evaluated software tools and user-specified priority needs to suggest suitable
simulation software and possible alternatives.

Similary, Smart Sim Selector [45] was developed for the purpose to provide user support
for selecting simulation software, using three different ranking techniques, including AHP.

4.2 Scope of the Evaluation

Evaluation of simulation software is often carried out on the basis of case studies [55],
[64]. The steps involved in a qualitative evaluation include formulating the research
question, collecting relevant data and interpreting the data in order to draw conclusions
regarding the research question [42], [64], [133].

Regarding this thesis, the research question was already formulated at the beginning of
this work (see section 1.2). The collected data are based mostly on the presented case
studies and the experience gathered during that time and what could be derived from
literature.

We intentionally focus our evaluation on the modeling methods and related aspects
instead of specific simulation tools, as both of the simulation tools employed in the case
studies (BCVTB and the MatlabDEVS toolbox, respectively) are currently still in a
prototype phase, which does not allow to make a fair and representative assessment
of practical software-related aspects, such as (graphical) user interface, visualisation
features, software costs or compatibility with other tools, like it is presented in most of
the literature mentioned above [56].

We also do not intend to judge the importance of individual criteria with respect to one
another as this typically depends on a concrete application scenario and is inevitably
subjective [15]. Instead, we focus on a qualitative evaluation and comparison [42] of the
modeling features, advantages and disadvantages co-simulation and the DEVS approach
entail, specifically in the context of interdisciplinary simulation of production systems.

Instead of directly comparing the two modeling approaches, we first want to evaluate
them individually on an absolute instead of relative scale. The evaluation is based
on own experience gathered during the two cases studies, which are considered to be

57

4. Evaluation and Comparison

representative for interdisciplinary modeling of production systems as they both contain
all major aspects and areas of investigation, i.e. production machines, logistics, building
as well as energy infrastructure.

In order to come to a final conclusion on which modeling approach to choose for a
particular application, one may use the qualitative results presented in this work and
additionally assign different levels of importance (like presented in [8]) or use for example
a more fine-grained method for quantification like the Analytic Hierarchy Process (AHP)
(see section 4.1).

4.3 Criteria
Based on a literature survey [8], [15], [24], [31], [56], [57], [60], [74], [75], [81], [90], [118],
[128] as well as practical experience, table 4.1 provides a list of criteria, that serve as
the basis for the following evaluation. The list has been adapted and reduced to reflect
the scope of our evaluation and aims to be as objective as possible. It includes basic
requirements, that are deemed necessary, especially in our focus of interdisciplinary
simulation in an industrial context.

The criteria are grouped into three categories that try to reflect a typical three-tier
architecture of software for modeling and simulation (see [111] for example).

The qualitative scale is divided into three steps (difficult/medium/easy, low/medium/high,
etc.), which are sorted from worst to best. In addition, we introduce two intermediate
steps for a more fine-grained assessment, resulting in the five-point scale shown in
figure 4.1.

difficult

large

low

not possible
medium

medium
medium

partly
easy

small
high

possible

Figure 4.1: Five-point scale for assessment of evaluation criteria.

The following sections give a more detailed explanation of the individual criteria.

4.3.1 User Considerations

This category is concerned with evaluation criteria from a user perspective and includes:

• Ease of use: Model development (expert): This criterion describes how easy it is for
an expert user to develop and implement a new model using the modeling approach
under consideration.

58

4.3. Criteria

Table 4.1: Evaluation criteria including qualitative scales, grouped into user considerations,
modeling capabilities, and simulation performance.

Ease of use:
Model de-
velopment
(expert)

Ease of use:
Simulation
user (non-
expert)

Ease of
learning

Ease of
debugging

Modeling
trans-

parency

Collabora-
tion

U
se

r
co

ns
id

er
at

io
ns

difficult
medium
easy

difficult
medium
easy

difficult
medium
easy

difficult
medium
easy

low
medium
high

difficult
medium
easy

General
features

Time effort
for model
building

Hierarchical
model
building

Modularity Model
reusability Flexibility

none
some
all

large
medium
small

not possible
partly
possible

not possible
partly
possible

difficult
medium
easy

difficult
medium
easy

Libraries
with

pre-defined
components

Level of
detail

Maintain-
ability

Model im-
port/export

Transfer-
ability

Separation
of modeling

and
simulation

M
od

el
in

g
ca

pa
bi

lit
ie

s

not prov.
user-def.
provided

low
medium
high

difficult
medium
easy

difficult
medium
easy

difficult
medium
easy

not possible
partly
possible

Perfor-
mance

efficiency
Accuracy Reliability

Use of
established
algorithms

Data
handling

Distributed
simulation

Si
m

ul
at

io
n

pe
rf

or
m

an
ce

low
medium
high

low
medium
high

low
medium
high

not possible
partly
possible

not prov.
partly
provided

not possible
partly
possible

• Ease of use: Simulation user (non-expert): Likewise, how easy is it for a non-expert
user to use a finished simulation model, change parameters or execute simulation
runs?

• Ease of learning: How easy is it for a novice user to learn the basic aspects to be
able to employ the modeling approach for various tasks?

• Ease of debugging: During model development and use, how much effort is necessary
for finding bugs and errors in the models?

• Modeling transparency: To which degree is an (expert) user able to gain insights
into the modeling language, simulation algorithm, etc. in order to understand and
trace the underlying simulation process.

59

4. Evaluation and Comparison

• Collaboration: How easy is it for multiple users to work together on the same model,
either simultaneously, sequentially, or otherwise? This aspect is especially relevant
when considering interdisciplinary investigations, where experts from different fields
need to work together towards a common goal.

4.3.2 Modeling Capabilities

The category modeling capabilities lists several criteria relevant for model development,
implementing as well as maintaining simulation models.

• General features: This criterion asks if all modeling features are provided which are
necessary for interdisciplinary modeling of production systems, including discrete
entities, energy flows or hybrid dynamics.

• Time effort for model building: This criterion estimates the overall time needed to
implement a model. This depends on many other factors, such as ease of use and
the complexity of the system being modelled [57].

• Hierarchical model building: Is it possible to compose models hierarchically, thereby
improving structure and clarity of the model?

• Modularity: Does the modeling method allow to encapsulate arbitrary parts of
the model into separate modules? This not only promotes reusability, but also
developing models step by step for easier debugging.

• Model reusability: This evaluates whether a modeling approach enables reuse of
models created previously, which improves modeling efficiency, model quality and
time needed for model building [15], [57].

• Flexibility: Is it possible for the modeller to add custom logic, e.g. as user-defined
pieces of code? This enables to model a variety of different types of systems instead
of being limited to a set of pre-defined components [56].

• Libraries of pre-defined components: Does the modeling approach allow making use
of already implemented and ready-to-use components, for example libraries offered
by the open-source community or third-party vendors? Such libraries are typically
offered in conjunction with a particular software tool.

• Level of detail: Which level of detail can be incorporated into a model and how
much effort does that take? This is also connected to the modeling flexibility
criterion.

• Maintainability: This criterion asks the level of effort necessary to maintain, adapt
and extend a model after its initial use by editing individual parts of the model.

• Model import/export: Is it possible to use the model or parts of the model in other
areas or to import models previously created for a different purpose?

60

4.4. Evaluation of Co-Simulation

• Transferability: According to [128], transferability stands for the broad applicability
of the general approach for different cases and purposes with reasonable effort, for
example for different industries or to answer different research questions.

• Separation of modeling and simulation: Is it possible to separate the model imple-
mentation from the simulation algorithm, for example in order to be able to test
different algorithms for the same model.

4.3.3 Simulation Performance

In the category simulation performance, we address issues regarding simulation execution
and use.

• Performance efficiency: This criterion asks the ratio of simulation speed to model
complexity. Questions shall be addressed such as how much overhead is involved due
to the modeling approach that slows down model execution. An efficient simulation
enables for example to employ simulation-based optimization techniques, which
usually involve a large number of simulation runs.

• Accuracy: This criterion estimates the level of accuracy with which the simulation
results can be provided in general. This also relates to numerical stability for
example.

• Reliability: How often is a model that is implemented using a certain modeling
approach prone to unexpected behaviour?

• Use of established algorithms: Is it possible to use established and trusted simulation
algorithms (for example ODE solvers) for simulation?

• Data handling: How easy is it to provide facilities for data storage, retrieval and
manipulation? This involves for example managing simulation results, but also
parameter settings and input data. This criterion like the others aims not so much
on the concrete simulation software as it does on the modeling approach that
facilitates a certain kind of software architecture.

• Distributed simulation: Does the modeling approach allow for distributed simulation
in general, in order to not only facilitate parallel execution, but also distributed
model development?

4.4 Evaluation of Co-Simulation
In the following tables 4.2 to 4.4, we present our assessment of the evaluation criteria
for the co-simulation modeling approach, based on practical experience gathered during
the case study as well as from relevant literature. The criteria are assessed individually
and independently from the evaluation of the DEVS-based approach in section 4.5 and is
based on the five-point scale presented in figure 4.1.

61

4. Evaluation and Comparison

Table 4.2: Evaluation of user consideration for the co-simulation modeling approach.

Criterion Assessment
Ease of use:
Model de-
velopment
(expert)

Model developers can, for the large part, resort to established
simulation tools. However, all developers involved need to agree
on a common interface structure and expert knowledge is re-
quired to establish the simulator coupling.

Ease of use:
Simulation
user (non-
expert)

Usually, multiple tools have to be executed during a simula-
tion run. Parameters for scenario-based simulation are often
scattered across multiple sub-models.

Ease of
learning

Established simulation tools are often easier to learn. On the
other hand, middleware solutions for co-simulation are still
experimental and require more background knowledge.

Ease of
debugging

Experience showed that co-simulation, where several software
tools run in parallel, are difficult to debug, not at least because
possible error messages from clients tend to get lost if not ade-
quately taken care of by the server. For debugging sub-models,
one can usually rely on the given simulation environments.

Modeling
trans-

parency

It is usually difficult to trace the simulation process in detail,
since it is distributed across several clients. In addition, com-
mercial simulation clients often do not provide access to the
underlying modeling language and the user has to believe that
the sub-models work as intended.

Collabora-
tion

Co-simulation of course enables multiple engineers to collaborate
together on a co-simulation model. However, significant commu-
nication is necessary to agree on common interfaces, which is a
non-trivial and error-prone task.

Even though co-simulation allows to use established simulation software in principal,
experience showed that typically not all features this software offers can be exploited
fully during a co-simulation, for example data visualisation and animation capabilities
are limited to the particular sub-model. These aspects reduce the initial advantage of
co-simulation from a user perspective.

62

4.4. Evaluation of Co-Simulation

Table 4.3: Evaluation of modeling capabilities for the co-simulation modeling approach.

Criterion Assessment

General
features

By combining adequate simulator clients, all necessary features
can be offered in general, including product entities and state
machines (discrete-event simulator) or energy flows (continuous
simulator).

Time effort
for model
building

Sub-models can be developed quickly using established function-
ality of respective simulation environments, especially if libraries
of pre-defined model components are available. Establishing the
coupling relations on the other hand can be cumbersome and
error-prone, especially when using low-level data communication
mechanisms (like BCVTB).

Hierarchi-
cal model
building

For the sub-models, individual simulators may allow hierarchical
composition. However, keeping a clear hierarchy for the overall
model is usually difficult due to inherent modeling restrictions.
For example, when using one continuous and one discrete sim-
ulator as part of a co-simulation, all continuous and discrete
parts of the overall model have to be divided into the respective
simulator.

Modularity

Similar to the hierarchical model building, achieving modularity
for sub-model components is typically not a problem. However,
a modular implementation for components spanning several
simulators (because they contain continuous as well as discrete
dynamics, for example) is usually not possible. One could per-
haps divide the overall model into smaller sub-models, each with
its own simulator, thereby improving modularity. This would,
however, also increase communication overhead significantly.

Model
reusability

Related to the modularity, individual sub-models and respec-
tive components can in principle be reused. Reusing coupling
relations on the other hand is typically not effective.

Flexibility

Flexibility in terms of user-defined logic usually concerns the
individual sub-models and the functionality of the respective
simulation clients. The co-simulation coupling may however
pose some restrictions due to its limited flexibility.

Libraries
with

pre-defined
components

Individual simulation environments may provide a substantial
basis of ready-to-use model components (like for example Mod-
elica/Dymola in our case study). These are, however, limited to
the individual sub-models and typically do not involve coupling
interfaces.

63

4. Evaluation and Comparison

(continued)

Level of
detail

Modeling capabilities of individual simulation tools are often
tailored to specific application domains (e.g. electrical circuits,
mechanical systems) and thereby provide sufficient level of mod-
eling detail.

Maintain-
ability

Due to the distributed nature of the co-simulation model, it is
difficult to maintain, extend and adapt the model for later use.
This difficulty is increased by the fact that model alterations
often involve adapting the coupling relations as well, which was
cumbersome and error-prone in our case study.

Model
import/ex-

port

This presents one significant advantage of co-simulation, namely
that sub-models can be imported from other areas. For example,
in our case study the building sub-model was developed using
Building Information Modeling (BIM) methodology and tools,
and could later on be used for co-simulation as well. In the same
way, sub-models may later be used for stand-alone simulations
with little modifications. Mainly the coupling interfaces need to
be altered during model import/export.

Transfer-
ability

Transferability is different from reusability since – even though
models may not be reusable – the generic modeling approach is
also applicable for various other domains of interest and mainly
depends on available simulator clients and their functionality.

Separation
of modeling

and
simulation

This also depends heavily on the possibilities of the client soft-
ware. Common simulation software typically allows separation
of the simulation algorithm from the implemented model, in
order to allow using different algorithms for the same model.
However, the coupling mechanism for the co-simulation – which
may be viewed as part of the simulation algorithm – is usually
embedded into the model. Thereby it is not easy to employ a
different coupling strategy without significant modifications.

One has to be careful in this regard to distinguish between modeling capabilities that
stem from the particular approach and the features that are provided by the software.
For example the High Level Architecture technology (see section 2.1.3) provides slightly
improved reusability of simulation models according to [7]. But nevertheless, the basic
approach of having to divide hybrid model components onto several simulators discourages
reusability on the modeling level.

64

4.4. Evaluation of Co-Simulation

Table 4.4: Evaluation of simulation performance for the co-simulation modeling approach.

Criterion Assessment

Perfor-
mance

efficiency

Although co-simulation allows using multiple simulation algo-
rithms, each tailored to the characteristics of the individual
sub-models, it also involves substantial communication overhead.
In addition, the modeling methods and level of detail used for
the sub-models are typically designed for stand-alone simulation,
and thus may bring about additional model overhead if this level
of details is unnecessarily high for co-simulation investigations.
This was evidenced in our case study (see section 2.3.1) and
required careful consideration regarding the level of modeling
detail.

Accuracy

Numerical accuracy was not studied in detail as part of the case
study. However, in chapter 2 it is mentioned that the discretiza-
tion of communication intervals and necessary extrapolation of
input signals lead to additional numerical errors, depending on
the coupling strategy and length of the communication interval.
Therefore, the communication step size (which is usually fixed)
has to be carefully considered by the user.

Reliability
The interaction of multiples software tools may cause some unex-
pected behaviour at some point, especially if the communication
is not implemented and executed in a transparent manner.

Use of
established
algorithms

As mentioned, the ability to employ algorithms of established
simulation tools, constitutes one of the major advantages of
co-simulation.

Data
handling

Data handling in co-simulation is a non-trivial task as the data
is typically scattered across multiple simulators, not all of which
the middleware has direct access to. Either the simulator clients
have to provide access to the remaining data or a superordinate
software instance has to manage and merge the data from the
sub-models.

Distributed
simulation

The communication between the simulators of course enables
distributed simulation of the sub-models, which in turn also fa-
cilitates user collaboration. Depending on the coupling strategy
(Jacobi type of loose coupling for example), the sub-models may
also be executed in parallel, thereby increasing simulation speed.

Due to the sensitivity of the simulation accuracy on the communication interval, there
are studies that have derived guidelines on how to choose an appropriate communication
step size, see [135] for example.

65

4. Evaluation and Comparison

4.5 Evaluation of hybrid DEVS-based Modeling
Tables 4.5 to 4.7 show the results of the evaluation for the DEVS-based modeling approach.
Like in the previous evaluation of the co-simulation approach, the criteria are assessed
individually and independently and presented in the five-point evaluation scale.

Table 4.5: Evaluation of user consideration for the DEVS-based modeling approach.

Criterion Assessment

Ease of use:
Model de-
velopment
(expert)

Initial model development requires substantial expert knowledge
due to the small number of features inherently provided by the
hyPDEVS formalism. The user has to manually implement
additional mechanisms to aid more specialized and high-level
features, like for example entity push semantics or input buffers,
as described in section 3.3.1.

Ease of use:
Simulation
user (non-
expert)

Due to the integrated nature of the completed model after imple-
mentation, subsequent use by non-experts becomes significantly
easier. The software is able to provide a uniform and consistent
user interface for setting parameters and defining scenarios.

Ease of
learning

The formal approach to modeling requires a substantial learn-
ing phase (compared to graphical model building for example)
[57], especially for users with limited modeling experience in
general. Although hyPDEVS itself is fairly intuitive, applying
the formalism in a concrete example requires some experience
and sometimes brings unintuitive results (for example due to
the separation of output and internal transition function).

Ease of
debugging

Integrated modeling of all relevant aspects also facilitates easier
debugging in general. However, the sometimes unintuitive model
implementations require a basic understanding of the DEVS
simulation engine during model debugging.

Modeling
trans-

parency

Because the DEVS specification itself as well as typical simula-
tion engines are open knowledge, it is easy to gain deep insight
into the inner workings of the simulation.

Collabora-
tion

Although it is possible to employ a modular approach where
different modules are developed and implemented by different
people (for example different domain experts), they all need a
basic understanding of the modeling formalism. In general, the
communication between the different experts has to be tighter
than when using co-simulation.

Regarding the DEVS-related usability issues, one must not get blinded by the fact that

66

4.5. Evaluation of hybrid DEVS-based Modeling

the MatlabDEVS Toolbox itself is still a prototype, because these issues for the most part
concern the underlying formalism. They are a result of the generic and low-level nature
of hyPDEVS, which does not pose many restrictions on what can be modelled on the one
hand, but on the other hand also does not provide support for more specialized modeling
features (e.g. robust handling of persistent entities, like described in section 3.3.1).

Evaluation of modeling capabilities for the DEVS-based modeling approach.

Criterion Assessment

General
features

The hybrid nature of the hyPDEVS formalism allows to model all
necessary features, including state machines, entities, continuous
dynamics for energy flows, etc.

Time effort
for model
building

Building atomic models initially requires substantial time effort
and expert knowledge, see also the criterion Ease of use: Model
development. As all necessary features can be provided in general,
many aspects have to be implemented by the model developer,
since they are not inherently supported by the formalism.

Hierarchi-
cal model
building

The hyPDEVS specification is designed to allow hierarchical
model composition.

Modularity

Along the line of hierarchical model building, modularity is one
of the features inherently supported by the DEVS specification.
And hyPDEVS in particular also allows modular encapsulation
of hybrid components that involve continuous as well as discrete
dynamics.

Model
reusability

Improved modularity and hierarchical model building also fa-
cilitate better model reusability, as hybrid components can be
encapsulated on every level of granularity in order to make them
accessible for reuse.

Flexibility

As difficult as the low-level approach of DEVS it makes for the
model developer to implement atomic models, it also allows
maximum flexibility in regard to customization. The simplicity
of the hyPDEVS formalism makes very little restrictions on
what is possible to model.

Libraries
with

pre-defined
components

Currently, there are almost no libraries available with ready-to-
use DEVS-based components. However, the prominent modu-
larity and model reusability allows model developers to create
such libraries themselves for reuse, thereby potentially reducing
the modeling effort for subsequent implementations.

67

4. Evaluation and Comparison

(continued)

Level of
detail

Although it is possible in general for the model developer to
implement models with an arbitrary level of detail, it demands
substantial effort, since no domain-specific modelling support is
given by the simulation environment. On the other hand, the
modular approach of hyPDEVS facilitates developing models
iteratively with increasing level of detail, since modular compo-
nents can be exchanged for more detailed ones, without affecting
the rest of the model.

Maintain-
ability

Due to the tight integration of all aspects on the modeling level,
it becomes easier for model developers to maintain, adapt and
extend their models.

Model
import/ex-

port

The specific model description and simulation engine of the
hyPDEVS formalism make it difficult to combine DEVS-based
models with other model implementations. In theory, it would
be possible to specify translation processes from other model
description into hyPDEVS and vice versa, in order to make them
accessible for model import/export. There are some studies in
this regard, which are related to DEVS [22], [121], however few
of them focus on hybrid continuous/discrete modeling and there
are almost no readily available tools, yet.

Transfer-
ability

The generality of the hyPDEVS modeling approach allows it to
be applied to different physical domains, industries as well as
research questions. It is however not without effort.

Separation
of modeling

and
simulation

The standard abstract DEVS simulation engine it tightly coupled
with its models. There are, however, other mechanisms to
provide separation on the implementation level, for example
inheritance in object-oriented programming.

Aside from the usability issues described in table 4.5, one of the main advantages of
the hyPDEVS approach that has emerged during the evaluation is the possibility for an
integrated description of continuous and discrete modeling aspects on the atomic level,
which results in better modularity, maintainability and ultimately also model reusability.

68

4.6. Comparison

Table 4.7: Evaluation of simulation performance for the DEVS-based modeling approach.

Criterion Assessment

Perfor-
mance

efficiency

The hyPDEVS approach allows for a lean and performance-
efficient implementation with little overhead for communication.
Moreover, there are techniques to improve simulation efficiency,
for example by flattening the hierarchical model structure during
compilation [20] to avoid passing simulator messages through
multiple hierarchy levels.

Accuracy

Because of the tighter integration of continuous and discrete
simulation aspects, additional numerical errors for example from
extrapolating signals are avoided, thereby improving accuracy.
Discrete events can be processed and propagated immediately
without delay.

Reliability

Increased modeling transparency for the user also reduces in-
stances where unexpected behaviour occurs. Depending on the
software implementation, reliability is typically high and easier
to manage for a single integrated simulation environment.

Use of
established
algorithms

As proven with the ODE wrapper method (see section 3.1.2), hy-
brid DEVS-based modeling can be combined with using common
and established ODE solvers [27]. For discrete-event simulation
on the other hand, a DEVS-specific engine has to be used, not
all of which can be considered established.

Data
handling

An integrated simulation environment makes it easier to provide
a unified infrastructure for managing simulation results, model
parameters or scenario configurations. Still, handling hetero-
geneous data, like for example continuous time series together
with discrete events, requires some effort.

Distributed
simulation

Although hyPDEVS is based on Parallel DEVS and thus fa-
cilitates parallel and distributed simulation, it usually involves
significant communication between the continuous solver and
discrete-event simulation engine. Therefore, the performance
efficiency in a distributed simulation depends on how the model
is partitioned.

4.6 Comparison

After assessing the co-simulation and DEVS-based modeling approach individually, we
now provide a direct side-by-side comparison with regard to the evaluation criteria,
shown in table 4.8. From the comparison, one can see that, generally speaking, co-
simulation demands less effort for model development, due to the broad support from

69

4. Evaluation and Comparison

different established simulators, available component libraries or model import/export
functionality. On the other hand, subsequent maintainability, performance efficiency and
ease of use for non-experts are lower, partly due to the modelling restrictions posed by
the co-simulation architecture.

Table 4.8: Comparison of evaluation criteria between co-simulation and DEVS-based
modeling.

Criterion Co-simulation DEVS-based
approach

Ease of use: Model development
(expert)

Ease of use: Simulation user
(non-expert)

Ease of learning

Ease of debugging

Modeling transparency

Collaboration

General features

Time effort for model building

Hierarchical model building

Modularity

Model reusability

Flexibility

Libraries with pre-defined
components

Level of detail

Maintainability

Model import/export

70

4.7. Conclusion

(continued)

Transferability

Separation of modeling and
simulation

Performance efficiency

Accuracy

Reliability

Use of established algorithms

Data handling

Distributed simulation

4.7 Conclusion
As mentioned before, we do not intend to judge the importance of individual evaluation
criteria, as this depends on the concrete application scenario. For some cases, it might be
sufficient to provide a low-effort initial implementation for a short-term simulation study
without intention of subsequent reuse. Then a co-simulation approach might be a more
suitable choice. On the other hand, if someone aims to develop a simulation environment
with integrated hybrid modeling capabilities and long-term use for non-experts, then it
might pay off to invest a higher initial development effort of a DEVS-based approach in
order to gain benefits in the long run.

The goal of this thesis was to identify whether a hybrid DEVS-based approach to modeling
and simulation of interdisciplinary production systems can be a suitable choice compared
to a common co-simulation approach. As presented in the case study and subsequent
evaluation, co-simulation presents a solution to hybrid simulation with lower initial effort
for model development. We were able to confirm the core advantages of the co-simulation
approach promised prior to the case study (see page 8), namely convenient modeling,
suited simulation algorithms and simultaneous model engineering. However, managing
simulator coupling and data exchange still presents a challenge and individual model
developers have to communicate closely and agree on common interfaces. This includes
not only an agreement on which variables need to be exchanged, but especially also their
semantics (e.g. order of variables in a vector, units of measurement), since semantics
often gets lost during low-level data exchange from one simulator to another. Here, a
common reference model can support communication between experts from different
fields, thereby reducing misunderstandings and subsequent mistakes.

71

4. Evaluation and Comparison

The formalism-based approach to modeling using hyPDEVS is general in nature, thereby
demanding a lot of effort for initial model development, because specialized and domain-
specific features (e.g. robust entity exchange, higher-level communication between model
components, specialized modelling details) first need to be developed by simulation
experts. Once these features are developed and supported by the simulation environment,
it becomes easier for other model developers to implement similar specialized models. For
long-term applications, the DEVS-based approach can enable significant modeling and
simulation advantages, even compared to co-simulation, including model maintainability
and extendibility, ease of use for non-expert simulation users, modularity and consequently
the ability to develop libraries of hybrid model components for others to use. In addition,
hyPDEVS as a specification is open and documented, thereby encouraging others to share
their implementations and develop similar software without having to rely on third-party
or proprietary software.

The reason the DEVS-based approach presents significant advantages for hybrid modeling
lies in the fact that hyPDEVS is able to provide integration of continuous and discrete
modeling aspects on the model level, as illustrated in figure 4.2. Compared to co-
simulation, which achieves integration on the simulation/runtime level by exchanging
data, integration on modeling level unifies hybrid model development, thereby eliminating
restrictions regarding model decomposition and modularity.

Simulator 1 Simulator 2

Sub-model 1 Sub-model 2
(continuous) (discrete)

Hybrid simulation

data

User interface 1 User interface 2

exchange

(a) Co-simulation

Hybrid simulator

Hybrid model

User interface

Hybrid simulation

PDEVS engine ODE solver

(discr.)(cont.)

(b) DEVS-based approach

Figure 4.2: Abstract three-tier architecture of a simulation environment (including user
interface, model and simulation engine) showing different levels of integration for co-
simulation and DEVS-based approach. For co-simulation, integration is typically achieved
only on the data simulation level by exchanging data during runtime. The DEVS-based
approach on the other hand allows integration of hybrid modeling aspects also on the
modeling level, thereby providing better modularity of hybrid components as well as a
consistent user interface.

Although some studies suggest that there are modeling restrictions and shortcomings
of Parallel DEVS (on which hyPDEVS is based), see [102], [103] for example, these did
not pose any substantial restrictions in our application and could easily be managed by
adequate modeling.

To summarize, and coming back to the research questions specified at the beginning of
this work (see section 1.2), we can conclude:

72

4.7. Conclusion

Research Question 1: Is a formal modeling approach based on DEVS suited for
interdisciplinary modeling and simulation of production systems?
The answer to this question is yes. Choosing especially a hybrid DEVS-based formalism
like hyPDEVS allows to model continuous as well as discrete characteristics in an
integrated manner in order to incorporate all relevant aspects for interdisciplinary
investigations of production systems. This includes discrete entities for logistics simulation,
state machines for event-driven logic (processing states, information messages, etc.) and
continuous dynamics in terms of differential equations. Especially differential equations
make it possible for example to model energetically relevant transient processes with
sufficient level of detail (compared to a purely discrete modeling approach, for example)
for comprehensive analysis of energy efficiency in an industrial context. The formal
approach makes little restrictions on what can be modelled in principle. As some of the
main advantages, a DEVS-based approach greatly facilitates modularity (even of hybrid
components), hierarchical model building (due to its closure under coupling) and, as a
result, reusability of hybrid models.

However, we also demonstrated in this thesis that the hyPDEVS formalism is generic
an basic in nature. For more specialized modeling applications (e.g. industrial physical
systems), model developers have to make effort to implement higher-level modeling
features themselves, like robust exchange of production entities for example.

Research Question 2: How does the DEVS-based approach compare to a common
co-simulation solution with regard to interdisciplinary production systems?
Unlike co-simulation, where integration is achieved in terms of data exchange on the
simulation/runtime level, the hyPDEVS approach provides integration of all relevant
modeling aspects (especially hybrid) also on the modeling level (see figure 4.2). This
presents one of the main differences between these two concepts. The tighter integration
enables several potential benefits, especially from a user perspective, including more
fine-grained modularity (even for hybrid components) and improved reusability. Many of
the features possible with co-simulation (distributed simulation, level of detail, etc.) are
also possible in principle using a DEVS-based approach. To encourage its use, however,
extensions to support high-level modeling features need to be developed.

73

CHAPTER 5
Summary & Outlook

5.1 Summary
In this work, we presented two approaches for hybrid modeling in the context of inter-
disciplinary simulation of industrial systems. Co-simulation aims at coupling multiple
simulators to form a single hybrid simulation. In comparison, the presented DEVS-based
approach provides a formal description of hybrid components (atomics) as well as coupled
models. For each of these two modeling approaches, we presented a case study on the
simulation of a production facility involving different engineering domains, such as pro-
duction machines, logistics, energy systems and thermal building aspects. The first case
study was developed using BCVTB as common co-simulation middleware that handles
synchronization and data exchange between multiple simulator clients. Communication
interfaces were derived based on a common reference model. For the second case study, we
employed a modular approach, where the production facility is divided into well-defined
components, called cubes.

Based on the experiences gathered during the case studies, we then evaluated an compared
both modeling approaches using criteria derived from relevant literature. The qualitative
results of the evaluation make no claim to be exhaustive, but rather aim at providing an
understanding of which approach is better suited for a particular simulation application.

It could be confirmed that co-simulation enables to employ established model descriptions
and suitable simulation algorithms on the one hand, and allows distributed model
development by multiple domain experts on the other hand. However, the co-simulation
case study also showed the importance of a shared reference model, in order for all model
developers to agree on common semantics of the co-simulation interfaces when using
low-level data exchange.

Compared to co-simulation, the DEVS-based approach is able to provide integration
of continuous and discrete modeling aspects not just on the data level, but also on the

75

5. Summary & Outlook

modeling level, which entails several major benefits for model development, including
improved modularity of hybrid components, model maintainability and ultimately better
reusability. However, some of the presented disadvantages of DEVS-based modeling
concern the genericity of the approach, which does not provide high-level support for
specialized modeling features, such as robust exchange of entities or specialized information
interfaces.

The benefits of the DEVS-based hybrid approach may potentially incentivise simulation
software developers to overcome the obstacle of higher initial demand for model develop-
ment in order to develop hybrid simulation tools based on hyPDEVS. Once higher-level
modeling features are supported by simulation software, DEVS-based hybrid simulation
could gain more widespread acceptance in the industry.

5.2 Future Work
One open topic that has not been fully addressed in this work is the validation and
comparison of simulation accuracy of the hyPDEVS solution compared to other established
implementations. Although a basic validation has been carried out in order to ensure
basic consistency, further studies need to investigate in greater depth the potential
discrepancies of this approach.

Based on the work presented in this thesis, several potential directions for future work
become visible. Regarding future development of co-simulation, the task of coupling
simulation tools could be greatly improved by providing semantic information coupling
as oppose to low-level data exchange. There are some studies that aim at employing
system integration technologies for co-simulation, for example [84] presents an approach
based on OPC Unified Architecture (OPC UA). However, these solutions are still in
their infancy and further developments could potentially eliminate some of the current
drawbacks of co-simulation while at the same time keeping its major advantages.

With regard to DEVS-based hybrid modeling, it was already mentioned that it would be
important to develop higher-level modeling features for specific domains of application.
These features could be provided as a kind of intermediate modeling layer that still uses
hyPDEVS as a substructure, but provides an automatic translation from a high-level
model description to a hyPDEVS-compliant implementation. This intermediate layer
would provide an abstraction of low-level DEVS functions, thereby hiding the specific
formalism from the user. DEVS-based simulation tools could potentially develop different
intermediate modeling layers for different fields of application while keeping a common
basis that would hold open the door for multi-domain modeling considerations.

76

APPENDIX A
MatlabDEVS Source Code for the

Oven Model

%% Ofen_v2_Cube
%%
classdef Ofen_v2_cube < hybridatomic

%% Description
% Class definition file for a *hybrid atomic PDEVS model
% that implements an oven for BaMa MOBA Example

%[...]
properties (Access = public)
end
methods

function obj = Ofen_v2_cube(name,inistates,c_inistates,
parameters,elapsed)
global Aplan
if nargin == 5

x = {’EIN’,’EOUTcom’,’EAcom’,’Pplan’};
y = {’EOUT’,’EA’,’EINcom’,’state’};

s = {’sigma’,’p’,’h’,’last_p’,’ent’,’enttype’,’entBuff’,’
entBuffGt’,’count’,’log’,’ACK’,’step’,’event’,’EOUTsent’,’
EAsent’};

sysparams = struct(’N’,num2str(parameters.N),’P_H’,
num2str(parameters.P_H),’P_S’,...
num2str(parameters.P_S),’tB’,num2str(parameters.

tB),’Tsoll’,num2str(parameters.Tsoll),’H’,
num2str(parameters.H),...

’V’,num2str(parameters.V),’UA’,num2str(parameters
.UA),’cpL’,num2str(parameters.cpL),’rhoL’,
num2str(parameters.rhoL),...

’eta’,num2str(parameters.eta),’alpha’,num2str(
parameters.alpha),’sign’,parameters.sign);

77

A. MatlabDEVS Source Code for the Oven Model

c_states = zeros(1,4);
mealy = 1;

else
error(’mistake at constructor method for class

Ofen_v2_cube’);
end
obj = obj@hybridatomic(name,x,y,s,c_states,mealy,elapsed,

sysparams); % incarnate the associated hybrid
simulator

obj.output_length = 4;

% initialize the continuous states
obj.c_states = c_inistates’;

% initialize the discrete states
obj.s.sigma = inistates.sigma;
obj.s.p = inistates.p;
obj.s.h = inistates.h;
obj.s.ent = cell(1,eval(obj.sysparams.N));
obj.s.enttype = 0; %necessary for accessing Aplan
obj.s.entBuff = Entity.empty();
obj.s.entBuffGt = -1;
obj.s.count = inistates.count;
obj.s.ACK = 0;
obj.s.last_p = ’’;
obj.s.step = eval(obj.sysparams.tB)/eval(obj.sysparams.N)
obj.s.event = false;
obj.s.EOUTsent = false;
obj.s.EAsent = false;

end

% Time advance ta
function ta = tafun(obj)

ta = obj.s.sigma;
end

% Confluent transition function delta_conf
function deltaconffun(obj,gt)

printLog(’t=%.2f: [dconf] %s\n’,gt, obj.name);
deltaintfun(obj);
deltaextfun(obj,gt);

end

% External transition function delta_ext
function deltaextfun(obj,gt)

global Aplan
%incoming Pplan signal
if ~isempty(obj.x.Pplan) && ...

(strcmp(obj.s.p, ’standby’) || strcmp(obj.s.p, ’

78

off’) || ...
strcmp(obj.s.p, ’holding’) || strcmp(obj.s.p,

’heating’) || strcmp(obj.s.p, ’waiting’))
if obj.x.Pplan{1} <= 0.5

obj.s.p = ’off’;
elseif obj.x.Pplan{1} <= 1.5

obj.s.p = ’standby’;
else %switch to heating or immediately to waiting,

depending on current temperature (c_states(1))
if obj.sysparams.sign*(obj.c_states(1) - eval(obj

.sysparams.Tsoll)) >= 0
obj.s.p = ’waiting’;

else
obj.s.p = ’heating’;

end
end
obj.s.sigma = 0; %schedule sending state update
printLog(’t=%.2f: [dext] %s receiving Pplan signal,

switching to state %s\n’,gt, obj.name, obj.s.p);
%enttype
if ~isempty(obj.x.Pplan{2})

obj.s.enttype = obj.x.Pplan{2};
printLog(’t=%.2f: [dext] %s receiving entity type

%d from Pplan\n’,gt, obj.name, obj.s.enttype)
;

end

elseif ~isempty(obj.x.Pplan)
if obj.tnext > gt && obj.s.sigma > 0

obj.s.sigma = obj.tnext - gt;
end
printLog(’t=%.2f: [dext] %s ignoring Pplan signal\n’,

gt, obj.name);
end

%incoming EOUTcom, EAcom need to be checked first, to
make room on the belt

if ~isempty(obj.x.EOUTcom)
obj.s.EOUTsent = true;
printLog(’t=%.2f: [dext] %s receiving EOUTcom\n’,gt,

obj.name);
end
if ~isempty(obj.x.EAcom)

obj.s.EAsent = true;
printLog(’t=%.2f: [dext] %s receiving EAcom\n’,gt,

obj.name);
end
if obj.s.EOUTsent && obj.s.EAsent

printLog(’t=%.2f: [dext] %s deleting entity and

79

A. MatlabDEVS Source Code for the Oven Model

shifting\n’,gt, obj.name);
%shift entities, update counters
shift_belt(obj);

%switch to state waiting or holding
%note: state might be overwritten by incoming entity

(see below)
if sum(cellfun(’isempty’,obj.s.ent)) == eval(obj.

sysparams.N)
obj.s.p = ’waiting’;
obj.s.sigma = inf;

else
obj.s.p = ’holding’;
obj.s.sigma = obj.s.step;

end
obj.s.EOUTsent = false;
obj.s.EAsent = false;

end

% reset buffer if not same timestep (where buffer was
filled)

if obj.s.entBuffGt ~= gt && ~isempty(obj.s.entBuff)
obj.s.entBuff = Entity.empty();
printLog(’t=%.2f: [dext] %s clearing buffer\n’,gt,

obj.name);
end
if ~isempty(obj.x.EIN)

printLog(’t=%.2f: [dext] %s putting entity (id=%d) in
buffer\n’,gt, obj.name, obj.x.EIN(1).id);

obj.s.entBuff = obj.x.EIN;
end

%incoming entity on port EIN
if ~isempty(obj.s.entBuff) && (isempty(obj.s.ent) ||

isempty(obj.s.ent{1})) && ...
(strcmp(obj.s.p, ’waiting’) || strcmp(obj.s.p, ’

holding’))
%add entity to list and consume
obj.s.ent{1} = obj.s.entBuff;
obj.s.entBuff = Entity.empty();
obj.s.count = obj.s.count + 1;
obj.s.p = ’holding’;

obj.s.sigma = 0; %schedule sending ACK
obj.s.ACK = true;
printLog(’t=%.2f: [dext] %s accepting entity from

buffer, sigma=%.2f\n’,gt, obj.name,obj.s.sigma);

elseif ~isempty(obj.s.entBuff)

80

if obj.tnext > gt && obj.s.sigma > 0
obj.s.sigma = obj.tnext - gt;

end
if obj.s.entBuffGt ~= gt

obj.s.entBuffGt = gt;
printLog(’t=%.2f: [dext] %s saving buffer time,

sigma=%.2f\n’,gt, obj.name, obj.s.sigma);
end

end
end

% Internal transition function delta_int
function deltaintfun(obj)

global Aplan
printLog(’t=%.2f: [dint] %s in %s\n’, obj.tnext, obj.name, obj.

s.p);
obj.s.event = false;
%if sigma not set explicitly further down, go passive
obj.s.sigma = inf;

%finished sending ACK
if obj.s.ACK == true

obj.s.ACK = false;
obj.s.sigma = obj.s.step;
printLog(’t=%.2f: [dint] %s ACK was sent, sigma=%.2f\

n’, obj.tnext, obj.name, obj.s.sigma);
return

end
if strcmp(obj.s.p, ’holding’)

% if there is a entity waiting on the furthest spot
if ~isempty(obj.s.ent{eval(obj.sysparams.N)})

obj.s.p = ’output’;
obj.s.sigma = 0;
printLog(’t=%.2f: [dint] %s furthest spot filled\

n’, obj.tnext, obj.name);
else

% shift immediately and stay in holding
shift_belt(obj)
obj.s.sigma = obj.s.step;

end
printLog(’t=%.2f: [dint] %s in holding, sigma=%.2f\n’

, obj.tnext, obj.name, obj.s.sigma);
return

elseif strcmp(obj.s.p, ’output’)
% stay in output (furthest spot blocked) and

reschedule
obj.s.sigma = obj.s.step;
printLog(’t=%.2f: [dint] %s in output, sigma=%.2f\n’,

obj.tnext, obj.name, obj.s.sigma);

81

A. MatlabDEVS Source Code for the Oven Model

return
end

end

% Discrete output function lambda
function lambdafun(obj)

global Aplan
%send state

if ~strcmp(obj.s.last_p, obj.s.p)
%printLog(’t=%.2f: [lambda] %s sending state=%s\n’,

obj.tnext, obj.name, obj.s.p);
obj.y.state = obj.s.p;
obj.s.last_p = obj.s.p;

end

%send ACK
if obj.s.ACK == true

obj.y.EINcom = 1;
printLog(’t=%.2f: [lambda] %s sending ACK\n’, obj.

tnext, obj.name);
end

%try to sent entities on EOUT and EA
if strcmp(obj.s.p,’output’)

%send EOUT
if ~obj.s.EOUTsent

obj.y.EOUT = obj.s.ent{eval(obj.sysparams.N)};
obj.y.EOUT.m = obj.y.EOUT.m * (1-eval(obj.

sysparams.alpha));
printLog(’t=%.2f: [lambda] %s sending entity (id

=%d) on EOUT\n’, obj.tnext, obj.name, obj.y.
EOUT.id);

end
%send EA
if ~obj.s.EAsent && eval(obj.sysparams.alpha) > 0

obj.y.EA = obj.s.ent{eval(obj.sysparams.N)};
obj.y.EA.m = obj.y.EA.m * eval(obj.sysparams.

alpha);
printLog(’t=%.2f: [lambda] %s sending entity (id

=%d) on EA\n’, obj.tnext, obj.name, obj.y.EA.
id);

else %alpha = 0 -> EA does not need to be sent
obj.s.EAsent = true;

end
end

end

% Rate of change function f

82

function dq = f(obj,gt,x,y)
global Aplan
% calculate sum of all entities’ influence (m*cp)
ent_sum = 0;
for i=1:eval(obj.sysparams.N)

if ~isempty(obj.s.ent{i})
ent_sum = ent_sum + obj.s.ent{i}.m*obj.s.ent{i}.

cp;
end

end

% differential equation: oven temperature T
dq(1) = (x(2)-(y(1)-x(3))*eval(obj.sysparams.UA))/...

(eval(obj.sysparams.cpL)*eval(obj.sysparams.rhoL)

*eval(obj.sysparams.V) + ent_sum);

% dummies for remaining continuous states
dq(2:4) = zeros(1,3);

%set temperature of next entity to be sent to oven
temperature

if ~isempty(obj.s.ent{end})
obj.s.ent{end}.T = y(1);

end
obj.c_states=y’;

end

% State event condition function c_se
function ret = cse(obj,gt,y)

global Aplan
%state event for when desired temperature is reached
%direction of state event corresponds to sign parameter (

oven vs. freezer)
if ~obj.s.event && strcmp(obj.s.p, ’heating’)

ret = [y(1)-eval(obj.sysparams.Tsoll), obj.sysparams.
sign, 1];

else
ret = [0, obj.sysparams.sign*1, 1];

end
end

% State event transition function delta_state
function obj = deltastatefun(obj,gt,y,event_number)

global Aplan
printLog(’t=%.2f: [dsf] %s entering deltastatefun\n’, gt,

obj.name);
obj.s.event = true;

% desired temperature reached

83

A. MatlabDEVS Source Code for the Oven Model

if event_number == 1
if strcmp(obj.s.p, ’heating’)

obj.s.p = ’waiting’;
obj.s.sigma = 0;
printLog(’t=%.2f: [dsf] %s temperature reached,

switching to state %s\n’, gt, obj.name, obj.s.
p);

end
end

end

% Continuous output function lambda_c
function cy = lambda_c(obj,gt,y,x)

% inputs: x(1) ... Pel
% x(2) ... Qw
% x(3) ... Tu
% states: y(1) ... T
%outputs: cy(1) ... QAW
% cy(2) ... Qrec
% cy(3) ... PelB
% cy(4) ... QwB
global Aplan
printLog(’t=%.2f: [lamba_c] %s entering lambda_c\n’, gt,

obj.name);
cy = zeros(4,1);

%algebraic equation: waste heat Q_WH
cy(1) = ((y(1)-x(3))*eval(obj.sysparams.UA)+x(1))*(1-eval

(obj.sysparams.eta));

%algebraic equation: recoverable heat Q_rec
cy(2) = ((y(1)-x(3))*eval(obj.sysparams.UA)+x(1))*eval(

obj.sysparams.eta);

%PelB and QwB:
switch obj.s.p

case ’off’
cy(3) = 0;
cy(4) = 0;

case ’standby’
cy(3) = eval(obj.sysparams.P_S);
cy(4) = 0;

otherwise %states ’heating’,’waiting’,’holding’,’
shifting’
cy(3) = eval(obj.sysparams.P_S);
cy(4) = obj.sysparams.sign*controller(obj.

sysparams.sign*(eval(obj.sysparams.Tsoll)-y(1)
),obj);

end

84

%logging for plotting of simulation results
%[...]

end

% Auxiliary function for two-level controller
function dQ = controller(dT,obj)

if strcmp(obj.s.h,’on’)
if dT<-eval(obj.sysparams.H)

obj.s.h=’off’;
end

else
if dT>eval(obj.sysparams.H)

obj.s.h=’on’;
end

end
if strcmp(obj.s.h,’on’)

dQ=eval(obj.sysparams.P_H);
else

dQ=0;
end

end

% Auxiliary function for shifting entities
function shift_belt(obj)

printLog(’t=??: [%s] %s shifting belt\n’, obj.s.p, obj.
name);

obj.s.ent = {[], obj.s.ent{1:length(obj.s.ent)-1}};
end

end
end

85

List of Figures

2.1 Different coupling strategies for co-simulation (adapted from [114] and [113]).
The blue and red arrows denote computation steps in simulator 1 and simulator
2, respectively. The black arrows denotes data exchange. 9

2.2 Data exchange between two coupled simulators according to Jacobi type
of loose coupling. Both input variables ũk1 and ũk2 have to be extrapolated
between communication intervals. 12

2.3 Data exchange between two coupled simulators according to Gauß-Seidel type
of loose coupling. Simulator 1 is executed first and has to extrapolate its
input ũk1, simulator 2 can use interpolation for ũk2. 12

2.4 Reference model overview (taken from [71]). Physical components are in blue,
information components in red, plan elements in green. Black arrows show
dynamic variable connections, green arrows are static parameter associations. 15

2.5 Communication and data exchange between simulation tools is managed via
middleware. 17

2.6 Architecture overview of the BCVTB software (adapted from [139]). 18
2.7 Overall framework for co-simulation between MATLAB, Dymola and Energy-

Plus. A second MATLAB instance provides processing and visualization of
simulation results. 19

2.8 Graphical user interface in MATLAB for executing the simulation and plotting
simulation results. 19

2.9 Multi-domain object diagram of a powertrain from the main drive of a turning
lathe (taken from [48]). The diagram models electric energy supply of an
asynchronous machine, the conversion to mechanical energy as well as transfer
of waste heat. 21

2.10 Power consumption of a machine tool over time (left) with detail (right)
showing base load Pbase, dynamic load Pdyn and cutting power Pcut (adapted
from [50]). 22

2.11 BCVTB graphical user interface showing three actors (responsible for com-
municating with the simulator clients) and signal connections. 25

2.12 Overall co-simulation framework instance for the case study with BCVTB
middleware as well as MATLAB, Dymola and EnergyPlus simulation clients
and post-processing in MATLAB. 29

87

2.13 Comparison of annual final energy demand for the three scenarios. Scenario 1
shows demand for natural gas to operate the CHP unit. 30

2.14 Detailed energy flow for the energy system configuration of scenario 1 (adapted
from [71]). The analysis shows that the high gas demand is a results from
inefficient operation of the absorption chillers. 30

3.1 Operating principle of an atomic DEVS (taken from [102]). 32
3.2 Input/Output events and state trajectory for an atomic DEVS model (adapted

from [69]). 33
3.3 Example configuration of a production facility consisting of different cubes. . 41
3.4 Different categories of cubes, divided into four areas: Machine and production

process, building, energy system and technical building services, and logistics. 42
3.5 Hybrid nature of cube models encapsulating discrete material flow and con-

tinuous energy behaviour. 43
3.6 Interface of the presented oven model showing inputs (left) and outputs (right).

The figure also shows parameters and state variables of the internal model. . 44
3.7 State diagram describing the discrete behaviour of the oven cube. 45
3.8 Simple example of two stations exchanging an entity, either using an acknowl-

edgement signal (ACK) or request signal (REQ). 47
3.9 Example of a simple production facility, consisting of a processing line (top),

energy system (bottom left) and thermal building cubes. 49
3.10 Comparison of entity flow: Number of entities over time in the different stations. 52
3.11 Comparison of energy demand: Energy consumption for heating, cooling and

electric energy over time. 52
3.12 Comparison of oven and freezer operation: Temperature profile for oven and

freezer over time. 53
3.13 Comparison of thermal zone temperatures: Temperature profile for thermal

zones as well as ambient temperature over time. 53

4.1 Five-point scale for assessment of evaluation criteria. 58
4.2 Abstract three-tier architecture of a simulation environment (including user

interface, model and simulation engine) showing different levels of integration
for co-simulation and DEVS-based approach. For co-simulation, integration is
typically achieved only on the data simulation level by exchanging data during
runtime. The DEVS-based approach on the other hand allows integration of
hybrid modeling aspects also on the modeling level, thereby providing better
modularity of hybrid components as well as a consistent user interface. 72

88

List of Tables

2.1 Classification of methods for coupled simulation (adapted from [113] and [135]) 6
2.2 Overview of the simulation scenarios comparing different design variants for

the energy system . 27

3.1 Production schedules for two example scenarios 51

4.1 Evaluation criteria including qualitative scales, grouped into user considera-
tions, modeling capabilities, and simulation performance. 59

4.2 Evaluation of user consideration for the co-simulation modeling approach. . . 62
4.3 Evaluation of modeling capabilities for the co-simulation modeling approach. 63
4.4 Evaluation of simulation performance for the co-simulation modeling approach. 65
4.5 Evaluation of user consideration for the DEVS-based modeling approach. . . 66
4.7 Evaluation of simulation performance for the DEVS-based modeling approach. 69
4.8 Comparison of evaluation criteria between co-simulation and DEVS-based

modeling. 70

89

Bibliography

[1] A. Arisha and M. El Baradie, “On the Selection of Simulation Software for
Manufacturing Application”, in Conference Papers, Queen’s University Belfast,
N. Ireland, Aug. 28–30, 2002, pp. 495–507. [Online]. Available: http://arrow.
dit.ie/buschmarcon/91.

[2] M. Arnold, A. Carrarini, A. Heckmann, and G. Hippmann, “Simulation Techniques
for Multidisciplinary Problems in Vehicle System Dynamics”, in Vehicle System
Dynamics Supplement 40, M. Valasek, Ed., Vienna, Austria, 2004, pp. 17–36, isbn:
978-90-265-1970-3. [Online]. Available: http://elib.dlr.de/12231/ (visited
on Oct. 27, 2016).

[3] M. U. Awais, “Distributed hybrid co-simulation”, Dissertation, TU Wien, Wien,
2015. [Online]. Available: http://media.obvsg.at/p-AC12706426-2001
(visited on Oct. 24, 2016).

[4] Z. Ayağ, “Evaluating simulation software alternatives through ANP”, in Pro-
ceedings of the 2011 International Conference on Industrial Engineering and
Operations Management, Kuala Lumpur, Malaysia, 2011. [Online]. Available:
http://ieomsociety.org/ieom2011/pdfs/IEOM079.pdf (visited on
Nov. 4, 2016).

[5] B. Bailey, R. Klein, and S. Leef, “Hardware/Software co-simulation strategies
for the future”, Mentor Graphics Co., http://www. mentor. com, 2000. [Online].
Available: http://newit.gsu.by/resources/articles/Mentor%5Ccos
im_strategies.pdf (visited on Oct. 7, 2016).

[6] O. Balci, “A life cycle for modeling and simulation”, SIMULATION, vol. 88,
no. 7, pp. 870–883, Jul. 1, 2012, issn: 0037-5497, 1741-3133. doi: 10.1177/
0037549712438469. [Online]. Available: http://sim.sagepub.com/cgi/
doi/10.1177/0037549712438469 (visited on Oct. 31, 2016).

[7] O. Balci, J. D. Arthur, and R. E. Nance, “Accomplishing reuse with a simulation
conceptual model”, in 2008 Winter Simulation Conference, Dec. 2008, pp. 959–965.
doi: 10.1109/WSC.2008.4736162.

91

http://arrow.dit.ie/buschmarcon/91
http://arrow.dit.ie/buschmarcon/91
http://elib.dlr.de/12231/
http://media.obvsg.at/p-AC12706426-2001
http://ieomsociety.org/ieom2011/pdfs/IEOM079.pdf
http://newit.gsu.by/resources/articles/Mentor%5Ccosim_strategies.pdf
http://newit.gsu.by/resources/articles/Mentor%5Ccosim_strategies.pdf
http://dx.doi.org/10.1177/0037549712438469
http://dx.doi.org/10.1177/0037549712438469
http://sim.sagepub.com/cgi/doi/10.1177/0037549712438469
http://sim.sagepub.com/cgi/doi/10.1177/0037549712438469
http://dx.doi.org/10.1109/WSC.2008.4736162

[8] J. Banks, “Selecting Simulation Software”, in Proceedings of the 23rd Conference
on Winter Simulation, ser. WSC ’91, Washington, DC, USA: IEEE Computer
Society, 1991, pp. 15–20, isbn: 978-0-7803-0181-8. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=304238.304249 (visited on Nov. 2,
2016).

[9] F. J. Barros, “Dynamic structure discrete event system specification: A new
formalism for dynamic structure modeling and simulation”, in Proceedings of the
27th Conference on Winter Simulation, IEEE Computer Society, 1995, pp. 781–
785. [Online]. Available: http://dl.acm.org/citation.cfm?id=224731
(visited on Oct. 30, 2016).

[10] J. Bastian, C. Clauß, S. Wolf, and P. Schneider, “Master for co-simulation using
FMI”, in Proceedings of the 8th International Modelica Conference; March 20th-
22nd; Technical Univeristy; Dresden; Germany, Linköping University Electronic
Press, 2011, pp. 115–120. [Online]. Available: http://www.ep.liu.se/ecp/
article.asp?issue=63&volume=&article=14 (visited on Nov. 5, 2016).

[11] F. Bergero and E. Kofman, “PowerDEVS: A tool for hybrid system modeling and
real-time simulation”, SIMULATION, vol. 87, pp. 113–132, 1-2 Jan. 1, 2011, issn:
0037-5497, 1741-3133. doi: 10.1177/0037549710368029. [Online]. Available:
http://sim.sagepub.com/cgi/doi/10.1177/0037549710368029
(visited on Oct. 31, 2016).

[12] F. Bleicher, F. Duer, I. Leobner, I. Kovacic, B. Heinzl, and W. Kastner, “Co-
simulation environment for optimizing energy efficiency in production systems”,
CIRP Annals - Manufacturing Technology, vol. 63, no. 1, pp. 441–444, 2014,
issn: 0007-8506. doi: 10.1016/j.cirp.2014.03.122. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/S
0007850614001255 (visited on Sep. 26, 2016).

[13] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Jung-
hanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J. V. Peetz,
and S. Wolf, “Functional Mockup Interface 2.0: The Standard for Tool indepen-
dent Exchange of Simulation Models”, 8th International Modelica Conference
2011, pp. 173–184, Nov. 2009. doi: 10.3384/ecp12076173. [Online]. Available:
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf.

[14] E. Bonneville and A. Rialhe, “Good practice for energy efficiency in industry”,
Efficiency & Ecodesign, 2006. [Online]. Available: http://www.leonardo-
energy.info/sites/leonardo- energy/files/root/Documents/
2009/DSM-industry.pdf (visited on Nov. 10, 2016).

[15] V. Bosilj-Vuksic, V. Ceric, and V. Hlupic, “Criteria for the evaluation of business
process simulation tools”, Interdisciplinary Journal of Information, Knowledge,
and Management, vol. 2, pp. 73–88, 2007, issn: 1555-1229. [Online]. Available:
http://www.ijikm.org/Volume2/IJIKMv2p073-088Bosilj396.pdf
(visited on Nov. 2, 2016).

92

http://dl.acm.org/citation.cfm?id=304238.304249
http://dl.acm.org/citation.cfm?id=304238.304249
http://dl.acm.org/citation.cfm?id=224731
http://www.ep.liu.se/ecp/article.asp?issue=63&volume=&article=14
http://www.ep.liu.se/ecp/article.asp?issue=63&volume=&article=14
http://dx.doi.org/10.1177/0037549710368029
http://sim.sagepub.com/cgi/doi/10.1177/0037549710368029
http://dx.doi.org/10.1016/j.cirp.2014.03.122
http://www.sciencedirect.com/science/article/pii/S0007850614001255
http://www.sciencedirect.com/science/article/pii/S0007850614001255
http://dx.doi.org/10.3384/ecp12076173
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
http://www.leonardo-energy.info/sites/leonardo-energy/files/root/Documents/2009/DSM-industry.pdf
http://www.leonardo-energy.info/sites/leonardo-energy/files/root/Documents/2009/DSM-industry.pdf
http://www.leonardo-energy.info/sites/leonardo-energy/files/root/Documents/2009/DSM-industry.pdf
http://www.ijikm.org/Volume2/IJIKMv2p073-088Bosilj396.pdf

[16] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E. M. Aboulhamid, “A
SystemC/Simulink co-simulation framework for continuous/discrete-events simula-
tion”, in 2006 IEEE International Behavioral Modeling and Simulation Workshop,
IEEE, 2006, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=4062043 (visited on Oct. 28, 2016).

[17] M. Busch, M. Arnold, A. Heckmann, and S. Dronka, “Interfacing SIMPACK
to Modelica/Dymola for multi-domain vehicle system simulations”, SIMPACK
News, vol. 11, no. 2, pp. 1–3, 2007. [Online]. Available: http://simpack.
com/fileadmin/simpack/doc/newsletter/2007/SN-2-2007_n.pdf
(visited on Oct. 29, 2016).

[18] F. E. Cellier and E. Kofman, Continuous System Simulation. New York: Springer,
2006, 643 pp., isbn: 978-0-387-26102-7 978-0-387-30260-7.

[19] H. Cho and Y. Cho, “Devs-C++ Reference Guide”, The University of Arizona, vol.
7, p. 11, 1997. [Online]. Available: http://acims.asu.edu/wp-content/
uploads/2012/02/devsc-user-ref.pdf (visited on Oct. 31, 2016).

[20] A. C. H. Chow and B. P. Zeigler, “Parallel DEVS: A Parallel, Hierarchical,
Modular, Modeling Formalism”, in Proceedings of the 1994 Winter Simulation
Conference, ser. WSC ’94, San Diego, CA, USA: Society for Computer Simulation
International, 1994, pp. 716–722, isbn: 978-0-7803-2109-0. [Online]. Available:
http://dl.acm.org/citation.cfm?id=193201.194336 (visited on
Oct. 30, 2016).

[21] S. Ciraci, J. Daily, and J. Fuller, “FNCS: A framework for power system and
communication networks co-simulation”, Proceedings Symposium on Theory of
Modeling & Simulation-DEVS Integrative, vol. 46, no. 4, pp. 256–263, 2014, issn:
07359276.

[22] M. C. D’Abreu and G. A. Wainer, “M/CD++: Modeling continuous systems
using Modelica and DEVS”, in 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 2005,
pp. 229–236. doi: 10.1109/MASCOTS.2005.36.

[23] Dassault Systèmes AB, Dymola Dynamic Modeling Laboratory: Getting Started
with Dymola, version 2017, Apr. 2016. [Online]. Available: http://www.3ds.
com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/Getting_started_
with_Dymola.pdf (visited on Oct. 8, 2016).

[24] L. Davis and G. Williams, “Evaluating and Selecting Simulation Software Using
the Analytic Hierarchy Process”, Integrated Manufacturing Systems, vol. 5, no. 1,
pp. 23–32, Mar. 1, 1994, issn: 0957-6061. doi: 10.1108/09576069410050314.
[Online]. Available: http://www.emeraldinsight.com/doi/full/10.
1108/09576069410050314 (visited on Nov. 2, 2016).

93

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4062043
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4062043
http://simpack.com/fileadmin/simpack/doc/newsletter/2007/SN-2-2007_n.pdf
http://simpack.com/fileadmin/simpack/doc/newsletter/2007/SN-2-2007_n.pdf
http://acims.asu.edu/wp-content/uploads/2012/02/devsc-user-ref.pdf
http://acims.asu.edu/wp-content/uploads/2012/02/devsc-user-ref.pdf
http://dl.acm.org/citation.cfm?id=193201.194336
http://dx.doi.org/10.1109/MASCOTS.2005.36
http://www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/Getting_started_with_Dymola.pdf
http://www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/Getting_started_with_Dymola.pdf
http://www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/Getting_started_with_Dymola.pdf
http://dx.doi.org/10.1108/09576069410050314
http://www.emeraldinsight.com/doi/full/10.1108/09576069410050314
http://www.emeraldinsight.com/doi/full/10.1108/09576069410050314

[25] E. De Sturler, J. Hoeflinger, L. Kale, and M. Bhandarkar, “A new approach
to software integration frameworks for multi-physics simulation codes”, in The
Architecture of Scientific Software, Springer, 2001, pp. 87–104. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-0-387-35407-
1_6 (visited on Oct. 28, 2016).

[26] C. Deatcu and T. Pawletta, “Towards dynamic structure hybrid devs for scientific
and technical computing environments”, in Proceedings MATHMOD 09 Vienna,
Vienna, 2009, pp. 2716–2719, isbn: 978-3-901608-35-3. [Online]. Available: http:
//www.mb.hs-wismar.de/cea/pubs/2009/2009-mathmod-devs.pdf
(visited on Oct. 30, 2016).

[27] C. Deatcu and T. Pawletta, “A Qualitative Comparison of Two Hybrid DEVS
Approaches”, SNE - Simulation Notes Europe, vol. 22, no. 1, pp. 15–24, 2012.
doi: 10.11128/sne.22.tn.10107. [Online]. Available: http://www.sne-
journal.org/fileadmin/user_upload/tx_pubdb/10107.sne.22.
tn_l.pdf.

[28] C. Eastman, K. Liston, R. Sacks, and K. Liston, BIM HANDBOOK, C. M.
Eastman, Ed. Hoboken, N.J: Wiley, 2008, 20–21; 65–84; 93–135, isbn: 978-0-470-
18528-5. [Online]. Available: http://s3.amazonaws.com/academia.edu.
documents/31207284/BIM_Handbook_1st.pdf?AWSAccessKeyId=
AKIAJ56TQJRTWSMTNPEA&Expires=1476630625&Signature=bPQf4Rpa
s5g05QebDfp/J3UKfhw=&response-content-disposition=inline;
%20filename=BIM_handbook_A_guide_to_buildi.

[29] F. Ebert, “On partitioned simulation of electrical circuits using dynamic iteration
methods”, 2008. [Online]. Available: https://www.depositonce.tu-berli
n.de/handle/11303/2294 (visited on Oct. 28, 2016).

[30] C. Farhat and M. Lesoinne, “Two efficient staggered algorithms for the serial and
parallel solution of three-dimensional nonlinear transient aeroelastic problems”,
Computer Methods in Applied Mechanics and Engineering, vol. 182, pp. 499–515,
3–4 Feb. 18, 2000, issn: 0045-7825. doi: 10.1016/S0045-7825(99)00206-6.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0045782599002066 (visited on Oct. 28, 2016).

[31] J. M. Fegan and G. M. Lane, “Introduction to simulation using Intelligent Simu-
lation Interface (ISI)”, in Simulation Conference, 1991. Proceedings., Winter, Dec.
1991, pp. 143–147. doi: 10.1109/WSC.1991.185608.

[32] C. A. Felippa, K. C. Park, and C. Farhat, “Partitioned analysis of coupled
mechanical systems”, Computer Methods in Applied Mechanics and Engineering,
Advances in Computational Methods for Fluid-Structure Interaction, vol. 190,
pp. 3247–3270, 24–25 Mar. 2, 2001, issn: 0045-7825. doi: 10.1016/S0045-
7825(00)00391-1. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0045782500003911 (visited on Oct. 28, 2016).

94

http://link.springer.com/chapter/10.1007/978-0-387-35407-1_6
http://link.springer.com/chapter/10.1007/978-0-387-35407-1_6
http://www.mb.hs-wismar.de/cea/pubs/2009/2009-mathmod-devs.pdf
http://www.mb.hs-wismar.de/cea/pubs/2009/2009-mathmod-devs.pdf
http://dx.doi.org/10.11128/sne.22.tn.10107
http://www.sne-journal.org/fileadmin/user_upload/tx_pubdb/10107.sne.22.tn_l.pdf
http://www.sne-journal.org/fileadmin/user_upload/tx_pubdb/10107.sne.22.tn_l.pdf
http://www.sne-journal.org/fileadmin/user_upload/tx_pubdb/10107.sne.22.tn_l.pdf
http://s3.amazonaws.com/academia.edu.documents/31207284/BIM_Handbook_1st.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1476630625&Signature=bPQf4Rpas5g05QebDfp/J3UKfhw=&response-content-disposition=inline;%20filename=BIM_handbook_A_guide_to_buildi
http://s3.amazonaws.com/academia.edu.documents/31207284/BIM_Handbook_1st.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1476630625&Signature=bPQf4Rpas5g05QebDfp/J3UKfhw=&response-content-disposition=inline;%20filename=BIM_handbook_A_guide_to_buildi
http://s3.amazonaws.com/academia.edu.documents/31207284/BIM_Handbook_1st.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1476630625&Signature=bPQf4Rpas5g05QebDfp/J3UKfhw=&response-content-disposition=inline;%20filename=BIM_handbook_A_guide_to_buildi
http://s3.amazonaws.com/academia.edu.documents/31207284/BIM_Handbook_1st.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1476630625&Signature=bPQf4Rpas5g05QebDfp/J3UKfhw=&response-content-disposition=inline;%20filename=BIM_handbook_A_guide_to_buildi
http://s3.amazonaws.com/academia.edu.documents/31207284/BIM_Handbook_1st.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1476630625&Signature=bPQf4Rpas5g05QebDfp/J3UKfhw=&response-content-disposition=inline;%20filename=BIM_handbook_A_guide_to_buildi
https://www.depositonce.tu-berlin.de/handle/11303/2294
https://www.depositonce.tu-berlin.de/handle/11303/2294
http://dx.doi.org/10.1016/S0045-7825(99)00206-6
http://www.sciencedirect.com/science/article/pii/S0045782599002066
http://www.sciencedirect.com/science/article/pii/S0045782599002066
http://dx.doi.org/10.1109/WSC.1991.185608
http://dx.doi.org/10.1016/S0045-7825(00)00391-1
http://dx.doi.org/10.1016/S0045-7825(00)00391-1
http://www.sciencedirect.com/science/article/pii/S0045782500003911
http://www.sciencedirect.com/science/article/pii/S0045782500003911

[33] J.-B. Filippi and P. Bisgambiglia, “JDEVS: An implementation of a DEVS based
formal framework for environmental modelling”, Environmental Modelling &
Software, Concepts, Methods and Applications in Environmental Model Integra-
tion, vol. 19, no. 3, pp. 261–274, Mar. 2004, issn: 1364-8152. doi: 10.1016/j.
envsoft.2003.08.016. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S136481520300210X (visited on Oct. 31,
2016).

[34] J. S. Fitzgerald, P. G. Larsen, K. G. Pierce, and M. H. G. Verhoef, “A formal
approach to collaborative modelling and co-simulation for embedded systems”,
Mathematical Structures in Computer Science, vol. 23, pp. 726–750, 04 Aug.
2013, issn: 0960-1295, 1469-8072. doi: 10.1017/S0960129512000242. [On-
line]. Available: http://www.journals.cambridge.org/abstract_
S0960129512000242 (visited on Oct. 28, 2016).

[35] R. Franceschini, P.-A. Bisgambiglia, L. Touraille, P. Bisgambiglia, and D. Hill,
“A survey of modelling and simulation software frameworks using Discrete Event
System Specification”, in OASICS-OpenAccess Series in Informatics, vol. 43,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2014/4772/ (visited on Oct. 6,
2016).

[36] R. Franke, F. Casella, M. Otter, M. Sielemann, H. Elmqvist, S. Mattson, and
H. Olsson, “Stream Connectors - An Extension of Modelica for Device-Oriented
Modeling of Convective Transport Phenomena”, in Proc. 7th International Model-
ica Conference, Oct. 2009, pp. 108–121. doi: 10.3384/ecp09430078. [Online].
Available: http://www.ep.liu.se/ecp_article/index.en.aspx?
issue=043;article=12%20http://www.ep.liu.se/ecp/043/012/
ecp09430078.pdf.

[37] P. A. Fritzson, Principles of Object-Oriented Modeling and Simulation with Mod-
elica 2.1. New York: IEEE Press, 2004, 897 pp., isbn: 978-0-471-47163-9.

[38] M. Geimer, T. Krüger, and P. Linsel, “Co-Simulation, gekoppelte Simulation oder
Simulationskopplung? Ein Versuch der Begriffsvereinheitlichung”, O+ P Zeitschrift
für Fluidtechnik-Aktorik, Steuerelektronik und Sensorik, vol. 50, pp. 11–12, 2006.
[Online]. Available: http://www.fast.kit.edu/mobima/288_486.php
(visited on Oct. 26, 2016).

[39] L. Gheorghe, “Continuous/Discrete Co-simulation interfaces from formalization to
implementation”, Dissertation, École Polytechnique de Montréal, 2009. [Online].
Available: http://publications.polymtl.ca/137/ (visited on Oct. 24,
2016).

[40] L. Gheorghe, F. Bouchhima, G. Nicolescu, and H. Boucheneb, “Formal definitions
of simulation interfaces in a continuous/discrete co-simulation tool”, in Seventeenth
IEEE International Workshop on Rapid System Prototyping (RSP’06), IEEE, 2006,

95

http://dx.doi.org/10.1016/j.envsoft.2003.08.016
http://dx.doi.org/10.1016/j.envsoft.2003.08.016
http://www.sciencedirect.com/science/article/pii/S136481520300210X
http://www.sciencedirect.com/science/article/pii/S136481520300210X
http://dx.doi.org/10.1017/S0960129512000242
http://www.journals.cambridge.org/abstract_S0960129512000242
http://www.journals.cambridge.org/abstract_S0960129512000242
http://drops.dagstuhl.de/opus/volltexte/2014/4772/
http://drops.dagstuhl.de/opus/volltexte/2014/4772/
http://dx.doi.org/10.3384/ecp09430078
http://www.ep.liu.se/ecp_article/index.en.aspx?issue=043;article=12%20http://www.ep.liu.se/ecp/043/012/ecp09430078.pdf
http://www.ep.liu.se/ecp_article/index.en.aspx?issue=043;article=12%20http://www.ep.liu.se/ecp/043/012/ecp09430078.pdf
http://www.ep.liu.se/ecp_article/index.en.aspx?issue=043;article=12%20http://www.ep.liu.se/ecp/043/012/ecp09430078.pdf
http://www.fast.kit.edu/mobima/288_486.php
http://publications.polymtl.ca/137/

pp. 186–192. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1630768 (visited on Oct. 7, 2016).

[41] F. González, M. González, and J. Cuadrado, “Weak coupling of multibody dy-
namics and block diagram simulation tools”, in ASME 2009 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2009, pp. 93–102. [Online].
Available: http://proceedings.asmedigitalcollection.asme.org/
proceeding.aspx?articleid=1649579 (visited on Oct. 29, 2016).

[42] L. Goodyear, Ed., Qualitative Inquiry in Evaluation: From Theory to Practice,
First edition, ser. Research methods for the social sciences 29, San Francisco, CA:
Jossey-Bass, 2014, 295 pp., isbn: 978-0-470-44767-3.

[43] A. Görener, “Comparing AHP and ANP: An application of strategic decisions
making in a manufacturing company”, International Journal of Business and
Social Science, vol. 3, no. 11, 2012. [Online]. Available: http://search.pr
oquest.com/openview/b737ed6e9120805a2251348721daefc5/1?pq-
origsite=gscholar (visited on Nov. 4, 2016).

[44] B. Gu, “Co-Simulation of Algebraically Coupled Dynamic Subsytems”, Disserta-
tion, Massachusetts Institute of Technology, Sep. 2001. [Online]. Available: http:
//dspace.mit.edu/bitstream/handle/1721.1/8695/49837078-
MIT.pdf?sequence=2 (visited on Oct. 29, 2016).

[45] A. Gupta, R. Verma, and K. Singh, “Smart Sim selector: A software for simulation
software selection”, International Journal of Engineering (IJE), vol. 3, no. 3, p. 175,
2009. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.227.1790&rep=rep1&type=pdf#page=5
(visited on Nov. 4, 2016).

[46] I. Hafner, “Möglichkeiten der co-simulation mit dem building controls virtual
test bed für den bereich der objektorientierten modellbildung physikalischer
systeme”, Diploma Thesis, TU Wien, Wien, 2013. [Online]. Available: http:
//www.ub.tuwien.ac.at/dipl/2013/AC07815180.pdf (visited on
Oct. 24, 2016).

[47] A. T. Al-Hammouri, “A comprehensive co-simulation platform for cyber-physical
systems”, Computer Communications, vol. 36, no. 1, pp. 8–19, Dec. 1, 2012, issn:
0140-3664. doi: 10.1016/j.comcom.2012.01.003.

[48] B. Heinzl, “Objektorientierte multi-domain-modellierung und simulation von
werkzeugmaschinen”, Diploma Thesis, TU Wien, Wien, 2012.

[49] ——, “Interdisziplinäre forschung zur energieoptimierung in fertigungsbetrieben”,
Blickpunkt Forschung: Energie, TU Wien, Sep. 28, 2015.

96

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1630768
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1630768
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1649579
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1649579
http://search.proquest.com/openview/b737ed6e9120805a2251348721daefc5/1?pq-origsite=gscholar
http://search.proquest.com/openview/b737ed6e9120805a2251348721daefc5/1?pq-origsite=gscholar
http://search.proquest.com/openview/b737ed6e9120805a2251348721daefc5/1?pq-origsite=gscholar
http://dspace.mit.edu/bitstream/handle/1721.1/8695/49837078-MIT.pdf?sequence=2
http://dspace.mit.edu/bitstream/handle/1721.1/8695/49837078-MIT.pdf?sequence=2
http://dspace.mit.edu/bitstream/handle/1721.1/8695/49837078-MIT.pdf?sequence=2
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.1790&rep=rep1&type=pdf#page=5
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.1790&rep=rep1&type=pdf#page=5
http://www.ub.tuwien.ac.at/dipl/2013/AC07815180.pdf
http://www.ub.tuwien.ac.at/dipl/2013/AC07815180.pdf
http://dx.doi.org/10.1016/j.comcom.2012.01.003

[50] B. Heinzl, W. Kastner, I. Leobner, F. Dür, F. Bleicher, and I. Kovacic, “Using
coupled simulation for planning of energy efficient production facilities”, in Model-
ing and Simulation of Cyber-Physical Energy Systems (MSCPES), 2014 Workshop
on, IEEE, 2014, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=6842397 (visited on Oct. 9, 2016).

[51] B. Heinzl, M. Rößler, N. Popper, I. Leobner, K. Ponweiser, W. Kastner, F. Dür, F.
Bleicher, and F. Breitenecker, “Interdisciplinary Strategies for Simulation-Based
Optimization of Energy Efficiency in Production Facilities”, in 2013 UKSim 15th
International Conference on Computer Modelling and Simulation, Apr. 2013,
pp. 304–309. doi: 10.1109/UKSim.2013.115. [Online]. Available: http://
ieeexplore.ieee.org/document/6527433/%20http://ieeexplore.
ieee.org/ielx7/6527367/6527368/06527433.pdf?tp=&arnumber=
6527433&isnumber=6527368%20http://ieeexplore.ieee.org/lpdo
cs/epic03/wrapper.htm?arnumber=6527433.

[52] J. Hensen, M. Bartak, and F. Drkal, “Modeling and simulation of a double-
skin facade system/Discussion”, ASHRAE Transactions, vol. 108, p. 1251, 2002.
[Online]. Available: http://search.proquest.com/openview/fad16f
65b4de69a709594a05254d4a72/1?pq-origsite=gscholar (visited on
Oct. 28, 2016).

[53] C. Herrmann, S. Thiede, S. Kara, and J. Hesselbach, “Energy oriented simulation of
manufacturing systems - Concept and application”, CIRP Annals - Manufacturing
Technology, vol. 60, no. 1, pp. 45–48, 2011, issn: 00078506. doi: 10.1016/j.
cirp.2011.03.127. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S0007850611001284.

[54] K. Hines, “Pia: A framework for embedded system co-simulation with dynamic
communication support”, Technial Report, University of Washington, 1996. [On-
line]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.26.7392&rep=rep1&type=pdf (visited on Oct. 7, 2016).

[55] V. Hlupic, “A comparative evaluation of ten manufacturing simulation packages”,
CIT Journal of computing and information technology, vol. 5, no. 1, pp. 21–32,
1997. [Online]. Available: http://cat.inist.fr/?aModele=afficheN&
cpsidt=2802185 (visited on Nov. 5, 2016).

[56] V. Hlupic, Z. Irani, and R. J. Paul, “Evaluation framework for simulation software”,
The International Journal of Advanced Manufacturing Technology, vol. 15, no.
5, pp. 366–382, 1999. [Online]. Available: http://link.springer.com/
article/10.1007/s001700050079 (visited on Nov. 3, 2016).

[57] V. Hlupic, “Simulation modelling software approaches to manufacturing problems”,
Dissertation, University of London, 1993. [Online]. Available: http://core.ac.
uk/download/pdf/4187477.pdf (visited on Nov. 5, 2016).

97

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842397
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6842397
http://dx.doi.org/10.1109/UKSim.2013.115
http://ieeexplore.ieee.org/document/6527433/%20http://ieeexplore.ieee.org/ielx7/6527367/6527368/06527433.pdf?tp=&arnumber=6527433&isnumber=6527368%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6527433
http://ieeexplore.ieee.org/document/6527433/%20http://ieeexplore.ieee.org/ielx7/6527367/6527368/06527433.pdf?tp=&arnumber=6527433&isnumber=6527368%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6527433
http://ieeexplore.ieee.org/document/6527433/%20http://ieeexplore.ieee.org/ielx7/6527367/6527368/06527433.pdf?tp=&arnumber=6527433&isnumber=6527368%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6527433
http://ieeexplore.ieee.org/document/6527433/%20http://ieeexplore.ieee.org/ielx7/6527367/6527368/06527433.pdf?tp=&arnumber=6527433&isnumber=6527368%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6527433
http://ieeexplore.ieee.org/document/6527433/%20http://ieeexplore.ieee.org/ielx7/6527367/6527368/06527433.pdf?tp=&arnumber=6527433&isnumber=6527368%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6527433
http://search.proquest.com/openview/fad16f65b4de69a709594a05254d4a72/1?pq-origsite=gscholar
http://search.proquest.com/openview/fad16f65b4de69a709594a05254d4a72/1?pq-origsite=gscholar
http://dx.doi.org/10.1016/j.cirp.2011.03.127
http://dx.doi.org/10.1016/j.cirp.2011.03.127
http://linkinghub.elsevier.com/retrieve/pii/S0007850611001284
http://linkinghub.elsevier.com/retrieve/pii/S0007850611001284
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.7392&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.7392&rep=rep1&type=pdf
http://cat.inist.fr/?aModele=afficheN&cpsidt=2802185
http://cat.inist.fr/?aModele=afficheN&cpsidt=2802185
http://link.springer.com/article/10.1007/s001700050079
http://link.springer.com/article/10.1007/s001700050079
http://core.ac.uk/download/pdf/4187477.pdf
http://core.ac.uk/download/pdf/4187477.pdf

[58] ——, “Simulation software selection using SimSelect”, Simulation, vol. 69, no. 4,
pp. 231–239, 1997. [Online]. Available: http://sim.sagepub.com/content/
69/4/231.short (visited on Nov. 6, 2016).

[59] V. Hlupic and R. J. Paul, “Simulation Software in Manufacturing Environments:
A Users’ Survey”, CIT. Journal of Computing and Information Technology, vol.
1, no. 3, pp. 205–212, Dec. 30, 2015, issn: 1846-3908. [Online]. Available: http:
//cit.fer.hr/index.php/CIT/article/view/3121 (visited on Nov. 2,
2016).

[60] K. Holder, “Selecting simulation software: An approach to the problem of selecting
software for a given modelling situation”, OR Insight, vol. 3, no. 4, pp. 19–24,
Oct. 1990, issn: 1759-0477. doi: 10.1057/ori.1990.32. [Online]. Available:
http://link.springer.com/10.1057/ori.1990.32 (visited on Nov. 6,
2016).

[61] IEEE-SA Standards Board, IEEE Standard for Modeling and Simulation (M &
S) High Level Architecture (HLA): Framework and Rules. New York: Institute
of Electrical and Electronics Engineers, 2010, isbn: 978-0-7381-6251-5. [Online].
Available: http://ieeexplore.ieee.org/servlet/opac?punumber=
5553438 (visited on Nov. 10, 2016).

[62] D. Justen, S. Hinzmann, and A. Mubarak, “X-in-the-loop-einsatz des xcp-protokolls”,
ATZelektronik, vol. 5, no. 1, pp. 56–61, Feb. 2010, issn: 1862-1791, 2192-8878. doi:
10.1007/BF03223997. [Online]. Available: http://link.springer.com/
10.1007/BF03223997 (visited on Oct. 28, 2016).

[63] A. Kandakoglu, M. Celik, and I. Akgun, “A multi-methodological approach for
shipping registry selection in maritime transportation industry”, Mathematical
and Computer Modelling, vol. 49, pp. 586–597, 3–4 Feb. 2009, issn: 0895-7177.
doi: 10.1016/j.mcm.2008.09.001. [Online]. Available: http://www.sci
encedirect.com/science/article/pii/S0895717708003361 (visited
on Nov. 6, 2016).

[64] B. Kaplan and J. A. Maxwell, “Qualitative research methods for evaluating com-
puter information systems”, in Evaluating the Organizational Impact of Health-
care Information Systems, Springer, 2005, pp. 30–55. [Online]. Available: http:
//link.springer.com/chapter/10.1007/0-387-30329-4_2 (visited
on Nov. 6, 2016).

[65] G. Karsai and J. Sztipanovits, “Model-integrated development of cyber-physical
systems”, in Ifip International Workshop on Software Technolgies for Embedded
and Ubiquitous Systems, Springer, 2008, pp. 46–54. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-540-87785-1_5
(visited on Nov. 10, 2016).

98

http://sim.sagepub.com/content/69/4/231.short
http://sim.sagepub.com/content/69/4/231.short
http://cit.fer.hr/index.php/CIT/article/view/3121
http://cit.fer.hr/index.php/CIT/article/view/3121
http://dx.doi.org/10.1057/ori.1990.32
http://link.springer.com/10.1057/ori.1990.32
http://ieeexplore.ieee.org/servlet/opac?punumber=5553438
http://ieeexplore.ieee.org/servlet/opac?punumber=5553438
http://dx.doi.org/10.1007/BF03223997
http://link.springer.com/10.1007/BF03223997
http://link.springer.com/10.1007/BF03223997
http://dx.doi.org/10.1016/j.mcm.2008.09.001
http://www.sciencedirect.com/science/article/pii/S0895717708003361
http://www.sciencedirect.com/science/article/pii/S0895717708003361
http://link.springer.com/chapter/10.1007/0-387-30329-4_2
http://link.springer.com/chapter/10.1007/0-387-30329-4_2
http://link.springer.com/chapter/10.1007/978-3-540-87785-1_5
http://link.springer.com/chapter/10.1007/978-3-540-87785-1_5

[66] K. Kim, W. Kang, B. Sagong, and H. Seo, “Efficient distributed simulation of
hierarchical DEVS models: Transforming model structure into a non-hierarchical
one”, in Simulation Symposium, 2000.(SS 2000) Proceedings. 33rd Annual, IEEE,
2000, pp. 227–233. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=844920 (visited on Oct. 30, 2016).

[67] E. Kofman, “Quantized-state control. A method for discrete event control of
continuous systems”, Latin American applied research, vol. 33, no. 4, pp. 399–406,
2003. [Online]. Available: http://pdf.easechem.com/pdf/14/v33n4a06.
pdf (visited on Oct. 30, 2016).

[68] E. Kofman and S. Junco, “Quantized-state systems: A DEVS Approach for
continuous system simulation”, Transactions of The Society for Modeling and
Simulation International, vol. 18, no. 3, pp. 123–132, 2001. [Online]. Available:
http://www.fceia.unr.edu.ar/~kofman/files/qss.pdf (visited on
Oct. 30, 2016).

[69] E. Kofman, M. Lapadula, and E. Pagliero, “PowerDEVS: A DEVS–based environ-
ment for hybrid system modeling and simulation”, School of Electronic Engineering,
Universidad Nacional de Rosario, Tech. Rep. LSD0306, 2003. [Online]. Available:
http://usuarios.fceia.unr.edu.ar/~kofman/files/lsd0306.pdf
(visited on Oct. 6, 2016).

[70] Konsortium Project Balanced Manufacturing, Documentation of BaMa Method-
ology, 2015. [Online]. Available: http://bama.ift.tuwien.ac.at/filea
dmin/t/bama/Documentation_of_BaMa_Methodology.pdf (visited on
Oct. 10, 2016).

[71] Konsortium Project INFO, “Info - interdisziplinäre forschung zur energieopti-
mierung in fertigungsbetrieben: Endbericht”, Konsortium Project INFO, Wien,
Publizierbarer Endbericht, Sep. 30, 2013, p. 132. [Online]. Available: http://www.
projekt-info.org/endbericht/2013-09-30%20publizierbarer_
endbericht_final.pdf (visited on Oct. 9, 2016).

[72] I. Kovacic, K. Orehounig, A. Mahdavi, F. Bleicher, A.-A. Dimitrou, and L. Wal-
tenbereger, “Energy Efficient Production – Interdisciplinary, Systemic Approach
through Integrated Simulation”, Strojarstvo: Journal for Theory and Application
in Mechanical Engineering, vol. 55, no. 1, pp. 17–34, 2013, issn: 0562-1887. [Online].
Available: http://publik.tuwien.ac.at/files/PubDat_222974.pdf%
20http://hrcak.srce.hr/index.php?show=clanak&id_clanak_
jezik=158086.

[73] M. Kurttila, M. Pesonen, J. Kangas, and M. Kajanus, “Utilizing the analytic
hierarchy process (AHP) in SWOT analysis - a hybrid method and its application
to a forest-certification case”, Forest Policy and Economics, vol. 1, no. 1, pp. 41–
52, May 1, 2000, issn: 1389-9341. doi: 10.1016/S1389-9341(99)00004-0.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389934199000040 (visited on Nov. 6, 2016).

99

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=844920
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=844920
http://pdf.easechem.com/pdf/14/v33n4a06.pdf
http://pdf.easechem.com/pdf/14/v33n4a06.pdf
http://www.fceia.unr.edu.ar/~kofman/files/qss.pdf
http://usuarios.fceia.unr.edu.ar/~kofman/files/lsd0306.pdf
http://bama.ift.tuwien.ac.at/fileadmin/t/bama/Documentation_of_BaMa_Methodology.pdf
http://bama.ift.tuwien.ac.at/fileadmin/t/bama/Documentation_of_BaMa_Methodology.pdf
http://www.projekt-info.org/endbericht/2013-09-30%20publizierbarer_endbericht_final.pdf
http://www.projekt-info.org/endbericht/2013-09-30%20publizierbarer_endbericht_final.pdf
http://www.projekt-info.org/endbericht/2013-09-30%20publizierbarer_endbericht_final.pdf
http://publik.tuwien.ac.at/files/PubDat_222974.pdf%20http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=158086
http://publik.tuwien.ac.at/files/PubDat_222974.pdf%20http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=158086
http://publik.tuwien.ac.at/files/PubDat_222974.pdf%20http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=158086
http://dx.doi.org/10.1016/S1389-9341(99)00004-0
http://www.sciencedirect.com/science/article/pii/S1389934199000040
http://www.sciencedirect.com/science/article/pii/S1389934199000040

[74] A. M. Law and S. W. Haider, “Selecting simulation software for manufacturing
applications: Practical guidelines & software survey”, Industrial Engineering, vol.
21, no. 5, pp. 33–46, 1989. [Online]. Available: http://dl.acm.org/citation.
cfm?id=70078 (visited on Nov. 6, 2016).

[75] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 2nd ed, ser.
McGraw-Hill series in industrial engineering and management science. New york:
McGraw-Hill, 1991, 759 pp., isbn: 978-0-07-036698-5.

[76] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, “The Waveform
Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 1, no. 3, pp. 131–145, Jul. 1982, issn: 0278-0070. doi: 10.1109/TCAD.1982.
1270004.

[77] I. Leobner, “Forschungsfabrik zur energieeffizienz: Bama - balanced manufactur-
ing”, Science Brunch 2014 - Leitprojekte für Leitmärkte, Sep. 22, 2014, [Online].
Available: https://www.klimafonds.gv.at/assets/Uploads/Broschr
en/Science-Brunch-Broschren/2014/KLIEN_2014_ScienceBrunch_
Leitprojekte_fuer_Leitmaerkte.pdf (visited on Oct. 30, 2016).

[78] ——, “Modeling of Energy Systems for Complex Simulations”, Dissertation, TU
Wien, Wien, 2016. [Online]. Available: http://publik.tuwien.ac.at/
files/PubDat_247849.pdf (visited on Oct. 31, 2016).

[79] I. Leobner, K. Ponweiser, G. Neugschwandtner, and W. Kastner, “Energy efficient
production-a holistic modeling approach”, in Sustainable Technologies (WCST),
2011 World Congress on, IEEE, 2011, pp. 62–67. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6114239
(visited on Oct. 9, 2016).

[80] I. Leobner, P. Smolek, B. Heinzl, I. Kovacic, F. Dür, K. Ponweiser, and W. Kastner,
“Balanced Manufacturing - a Methodology for Energy Efficient Production Plant
Operation”, in Proceedings of the 10th Conference on Sustainable Development of
Energy, Water and Environment Systems (SDEWES 2015), Dubrovnik, Croatia,
Sep. 27–Oct. 2, 2015.

[81] G. T. Mackulak, J. K. Cochran, and P. A. Savory, “Ascertaining important features
for industrial simulation environments”, Simulation, vol. 63, no. 4, pp. 211–221,
1994. [Online]. Available: http://sim.sagepub.com/content/63/4/211.
short (visited on Nov. 2, 2016).

[82] A. Mehlhase, “Konzepte für die modellierung und simulation strukturvariabler
modelle”, Dissertation, TU Berlin, 2015. [Online]. Available: https://www.
depositonce.tu-berlin.de/bitstream/11303/4811/2/mehlhase_
alexandra.pdf.

100

http://dl.acm.org/citation.cfm?id=70078
http://dl.acm.org/citation.cfm?id=70078
http://dx.doi.org/10.1109/TCAD.1982.1270004
http://dx.doi.org/10.1109/TCAD.1982.1270004
https://www.klimafonds.gv.at/assets/Uploads/Broschren/Science-Brunch-Broschren/2014/KLIEN_2014_ScienceBrunch_Leitprojekte_fuer_Leitmaerkte.pdf
https://www.klimafonds.gv.at/assets/Uploads/Broschren/Science-Brunch-Broschren/2014/KLIEN_2014_ScienceBrunch_Leitprojekte_fuer_Leitmaerkte.pdf
https://www.klimafonds.gv.at/assets/Uploads/Broschren/Science-Brunch-Broschren/2014/KLIEN_2014_ScienceBrunch_Leitprojekte_fuer_Leitmaerkte.pdf
http://publik.tuwien.ac.at/files/PubDat_247849.pdf
http://publik.tuwien.ac.at/files/PubDat_247849.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6114239
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6114239
http://sim.sagepub.com/content/63/4/211.short
http://sim.sagepub.com/content/63/4/211.short
https://www.depositonce.tu-berlin.de/bitstream/11303/4811/2/mehlhase_alexandra.pdf
https://www.depositonce.tu-berlin.de/bitstream/11303/4811/2/mehlhase_alexandra.pdf
https://www.depositonce.tu-berlin.de/bitstream/11303/4811/2/mehlhase_alexandra.pdf

[83] U. Miekkala and O. Nevanlinna, “Convergence of Dynamic Iteration Methods for
Initial Value Problems”, SIAM Journal on Scientific and Statistical Computing,
vol. 8, no. 4, pp. 459–482, Jul. 1987, issn: 0196-5204, 2168-3417. doi: 10.1137/
0908046. [Online]. Available: http://epubs.siam.org/doi/abs/10.
1137/0908046 (visited on Oct. 28, 2016).

[84] T. Miettinen et al., “Synchronized cooperative simulation: OPC UA based ap-
proach”, 2012. [Online]. Available: https://aaltodoc.aalto.fi/handle/
123456789/5201 (visited on Nov. 9, 2016).

[85] Modelica Association, Modelica - A Unified Object-Oriented Language for Systems
Modeling: Language Specification Version 3.3 Revision 1, Jul. 11, 2014. [Online].
Available: https://www.modelica.org/documents/%20ModelicaSpec
33Revision1.pdf (visited on Oct. 8, 2016).

[86] Modelica Association Project FMI, “Functional Mock-up Interface for Model
Exchange and Co-Simulation”, Version 2.0, Jul. 25, 2014. [Online]. Available:
https://svn.modelica.org/fmi/branches/public/specificati
ons/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
(visited on Oct. 27, 2016).

[87] Modelisar Consortium, “Functional Mock-up Interface for Co-Simulation”, Version
1.0, Oct. 12, 2010. [Online]. Available: https://svn.modelica.org/fmi/
branches/public/specifications/v1.0/FMI_for_CoSimulation_
v1.0.pdf (visited on Oct. 27, 2016).

[88] R. Mosshammer, F. Kupzog, M. Faschang, and M. Stifter, “Loose coupling archi-
tecture for co-simulation of heterogeneous components”, in Industrial Electronics
Society, IECON 2013-39th Annual Conference of the IEEE, IEEE, 2013, pp. 7570–
7575. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=6700394 (visited on Oct. 6, 2016).

[89] J. Nikoukaran, V. Hlupic, and R. J. Paul, “Criteria for Simulation Software
Evaluation”, in Proceedings of the 30th Conference on Winter Simulation, ser. WSC
’98, Los Alamitos, CA, USA: IEEE Computer Society Press, 1998, pp. 399–406,
isbn: 978-0-7803-5134-9. [Online]. Available: http://dl.acm.org/citation.
cfm?id=293172.293256 (visited on Nov. 2, 2016).

[90] J. Nikoukaran, V. Hlupic, and R. J. Paul, “A hierarchical framework for evaluating
simulation software”, Simulation Practice and Theory, vol. 7, no. 3, pp. 219–231,
May 15, 1999, issn: 0928-4869. doi: 10.1016/S0928-4869(98)00028-7.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0928486998000287 (visited on Nov. 2, 2016).

[91] J. Nikoukaran and R. J. Paul, “Software selection for simulation in manufacturing:
A review”, Simulation Practice and Theory, vol. 7, no. 1, pp. 1–14, Mar. 15,
1999, issn: 0928-4869. doi: 10.1016/S0928-4869(98)00022-6. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0928486998000226 (visited on Nov. 2, 2016).

101

http://dx.doi.org/10.1137/0908046
http://dx.doi.org/10.1137/0908046
http://epubs.siam.org/doi/abs/10.1137/0908046
http://epubs.siam.org/doi/abs/10.1137/0908046
https://aaltodoc.aalto.fi/handle/123456789/5201
https://aaltodoc.aalto.fi/handle/123456789/5201
https://www.modelica.org/documents/%20ModelicaSpec33Revision1.pdf
https://www.modelica.org/documents/%20ModelicaSpec33Revision1.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimulation_v1.0.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6700394
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6700394
http://dl.acm.org/citation.cfm?id=293172.293256
http://dl.acm.org/citation.cfm?id=293172.293256
http://dx.doi.org/10.1016/S0928-4869(98)00028-7
http://www.sciencedirect.com/science/article/pii/S0928486998000287
http://www.sciencedirect.com/science/article/pii/S0928486998000287
http://dx.doi.org/10.1016/S0928-4869(98)00022-6
http://www.sciencedirect.com/science/article/pii/S0928486998000226
http://www.sciencedirect.com/science/article/pii/S0928486998000226

[92] J. Nutaro, P. T. Kuruganti, L. Miller, S. Mullen, and M. Shankar, “Integrated
hybrid-simulation of electric power and communications systems”, in Power
Engineering Society General Meeting, 2007. IEEE, IEEE, 2007, pp. 1–8. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumbe
r=4275968 (visited on Oct. 5, 2016).

[93] J. Nutaro, “ADEVS (a discrete EVent system simulator)”, Arizona Center for
Integrative Modeling & Simulation (ACIMS), University of Arizona, Tucson.
Available at http://www. ece. arizona. edu/nutaro/index. php, 1999.

[94] C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schneider, P. Schwarz, M. Vetter,
C. Wittwer, A. Holm, T. Nouidui, J. Leopold, G. Schmidt, U. Doll, and A. Mattes,
“Mosilab: Development of a modelica based generic simulation tool supporting
model structural dynamics”, in 4th International Modelica Conference, Berlin,
2005, pp. 527–535. [Online]. Available: https://www.modelica.org/even
ts/Conference2005/authorindex/online_proceedings/Session6/
Session6c3.pdf.

[95] C. W. Park, J. H. Jeong, and Y. T. Kang, “Energy consumption characteristics
of an absorption chiller during the partial load operation”, International Journal
of Refrigeration, vol. 27, no. 8, pp. 948–954, Dec. 2004, issn: 0140-7007. doi:
10.1016/j.ijrefrig.2004.06.002. [Online]. Available: http://ww
w.sciencedirect.com/science/article/pii/S0140700704001057
(visited on Oct. 24, 2016).

[96] M. Paulus and F. Borggrefe, “The potential of demand-side management in energy-
intensive industries for electricity markets in Germany”, Applied Energy, The
5th Dubrovnik Conference on Sustainable Development of Energy, Water and
Environment Systems, held in Dubrovnik September/October 2009, vol. 88, no.
2, pp. 432–441, Feb. 2011, issn: 0306-2619. doi: 10.1016/j.apenergy.2010.
03.017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0306261910000814 (visited on Nov. 10, 2016).

[97] T. Pawletta, C. Deatcu, O. Hagendorf, S. Pawletta, and G. Colquhoun, “DEVS-
Based Modeling and Simulation in Scientific and Technical Computing Environ-
ments”, in Devs Integrative M&s Symposium (devs’06), vol. 38, 2006, pp. 151–
158. [Online]. Available: https://www.scs.org/confernc/springsim/
springsim06/prelimProgram/devs/22.html%20https://www.scs.
org/404.html.

[98] T. Pawletta, B. Lampe, S. Pawletta, and W. Drewelow, “A DEVS-Based Approach
for Modeling and Simulation of Hybrid Variable Structure Systems”, in Modelling,
Analysis, and Design of Hybrid Systems, S. Engell, G. Frehse, and E. Schnieder,
Eds., vol. 279, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 107–129,
isbn: 978-3-540-43812-0. [Online]. Available: http://link.springer.com/
10.1007/3-540-45426-8_7 (visited on Oct. 30, 2016).

102

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4275968
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4275968
https://www.modelica.org/events/Conference2005/authorindex/online_proceedings/Session6/Session6c3.pdf
https://www.modelica.org/events/Conference2005/authorindex/online_proceedings/Session6/Session6c3.pdf
https://www.modelica.org/events/Conference2005/authorindex/online_proceedings/Session6/Session6c3.pdf
http://dx.doi.org/10.1016/j.ijrefrig.2004.06.002
http://www.sciencedirect.com/science/article/pii/S0140700704001057
http://www.sciencedirect.com/science/article/pii/S0140700704001057
http://dx.doi.org/10.1016/j.apenergy.2010.03.017
http://dx.doi.org/10.1016/j.apenergy.2010.03.017
http://www.sciencedirect.com/science/article/pii/S0306261910000814
http://www.sciencedirect.com/science/article/pii/S0306261910000814
https://www.scs.org/confernc/springsim/springsim06/prelimProgram/devs/22.html%20https://www.scs.org/404.html
https://www.scs.org/confernc/springsim/springsim06/prelimProgram/devs/22.html%20https://www.scs.org/404.html
https://www.scs.org/confernc/springsim/springsim06/prelimProgram/devs/22.html%20https://www.scs.org/404.html
http://link.springer.com/10.1007/3-540-45426-8_7
http://link.springer.com/10.1007/3-540-45426-8_7

[99] A. R. Plummer, “Model-in-the-Loop Testing”, Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
vol. 220, no. 3, pp. 183–199, Jan. 1, 2006, issn: 0959-6518, 2041-3041. doi: 10.
1243/09596518JSCE207. [Online]. Available: http://sdj.sagepub.com/
lookup/10.1243/09596518JSCE207 (visited on Oct. 28, 2016).

[100] H. Prähofer, “System Theoretic Formalisms for Combined Discrete-Continuous Sys-
tem Simulation”, International Journal of General Systems, vol. 19, no. 3, pp. 219–
240, Oct. 1, 1991, issn: 0308-1079. doi: 10.1080/03081079108935175. [On-
line]. Available: http://dx.doi.org/10.1080/03081079108935175
(visited on Oct. 30, 2016).

[101] ——, “System Theoretic Foundations for Combined Discrete-Continuous System
Simulation”, Dissertation, Johannes Kepler Universität Linz, Linz, Austria, 1992.

[102] F. Preyser, “An Approach to Develop a User Friendly Way of Implementing
DEV&DESS Models in PowerDEVS”, Diploma Thesis, TU Wien, Wien, 2015.
[Online]. Available: http://www.ub.tuwien.ac.at/dipl/2015/AC
12315517.pdf (visited on Oct. 29, 2016).

[103] F. Preyser, B. Heinzl, P. Raich, and W. Kastner, “Towards Extending the Parallel-
DEVS Formalism to Improve Component Modularity”, presented at the ASIM
Workshop STS/GMMS 2015, Lippstadt, 2015.

[104] C. Pühringer, “Using the Modelica language to simulate hybrid models”, TU
Wien, Wien, Student Project, Oct. 3, 2016.

[105] P. Raich, B. Heinzl, F. Preyser, and W. Kastner, “Modeling Techniques for Inte-
grated Simulation of Industrial Systems Based on Hybrid PDEVS”, in 2016 Work-
shop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
Apr. 2016, pp. 1–6, isbn: 978-1-5090-1158-2. doi: 10.1109/MSCPES.2016.
7480221. [Online]. Available: http://ieeexplore.ieee.org/document/
7480221/?arnumber=7480221%20http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=7480221.

[106] S. Rohjans, S. Lehnhoff, S. Schütte, S. Scherfke, and S. Hussain, “Mosaik - A
modular platform for the evaluation of agent-based Smart Grid control”, in
2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe
2013, IEEE, 2013, pp. 1–5, isbn: 978-1-4799-2984-9. doi: 10.1109/ISGTEurope.
2013.6695486. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6695486.

[107] T. L. Saaty, “How to make a decision: The analytic hierarchy process”, European
Journal of Operational Research, Desicion making by the analytic hierarchy process:
Theory and applications, vol. 48, no. 1, pp. 9–26, Sep. 5, 1990, issn: 0377-2217.
doi: 10.1016/0377- 2217(90)90057- I. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/037722179090057I
(visited on Nov. 6, 2016).

[108] ——, “The analytical network process”, Pittsburgh: RWS Publications, 1996.

103

http://dx.doi.org/10.1243/09596518JSCE207
http://dx.doi.org/10.1243/09596518JSCE207
http://sdj.sagepub.com/lookup/10.1243/09596518JSCE207
http://sdj.sagepub.com/lookup/10.1243/09596518JSCE207
http://dx.doi.org/10.1080/03081079108935175
http://dx.doi.org/10.1080/03081079108935175
http://www.ub.tuwien.ac.at/dipl/2015/AC12315517.pdf
http://www.ub.tuwien.ac.at/dipl/2015/AC12315517.pdf
http://dx.doi.org/10.1109/MSCPES.2016.7480221
http://dx.doi.org/10.1109/MSCPES.2016.7480221
http://ieeexplore.ieee.org/document/7480221/?arnumber=7480221%20http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7480221
http://ieeexplore.ieee.org/document/7480221/?arnumber=7480221%20http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7480221
http://ieeexplore.ieee.org/document/7480221/?arnumber=7480221%20http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7480221
http://dx.doi.org/10.1109/ISGTEurope.2013.6695486
http://dx.doi.org/10.1109/ISGTEurope.2013.6695486
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6695486
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6695486
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://www.sciencedirect.com/science/article/pii/037722179090057I
http://www.sciencedirect.com/science/article/pii/037722179090057I

[109] T. L. Saaty and L. G. Vargas, Decision Making with the Analytic Network Pro-
cess: ECONOMIC, Political, Social and Technological Applications with Benefits,
Opportunities, Costs and Risks. Springer Science & Business Media, May 14, 2013,
330 pp., isbn: 978-1-4614-7279-7.

[110] V. Sanz, A. Urquia, and S. Dormido, “Parallel DEVS and Process-Oriented
Modeling in Modelica”, Proceedings 7th Modelica Conference, pp. 96–107, Oct.
2009, issn: 1650-3740. doi: 10.3384/ecp09430104. [Online]. Available: http:
//www.ep.liu.se/ecp/043/011/ecp09430104.pdf.

[111] H. S. Sarjoughian, D. R. Hild, Xiaolin Hu, and R. A. Strini, “Simulation-based
SW/HW Architectural Design Configurations for Distributed Mission Training
Systems”, Simulation, vol. 77, pp. 23–38, 1-2 Jul. 1, 2001, issn: 0037-5497. doi: 10.
1177/003754970107700102. [Online]. Available: http://sim.sagepub.
com/cgi/doi/10.1177/003754970107700102 (visited on Nov. 6, 2016).

[112] H. S. Sarjoughian and B. R. Zeigler, “DEVSJAVA: Basis for a DEVS-based
collaborative M&S environment”, Simulation Series, vol. 30, pp. 29–36, 1998.
[Online]. Available: https://www.researchgate.net/profile/Hessam_
Sarjoughian/publication/243778266_Devsjava_Basis_for_a_dev
s-based_collaborative_ms_environment/links/5418f6dc0cf203f
155adba65.pdf (visited on Oct. 31, 2016).

[113] R. Schmoll, Co-Simulation und Solverkopplung: Analyse komplexer multiphysikalis-
cher Systeme, in collab. with Kassel University Press GmbH, ser. Berichte des
Instituts für Mechanik 3/2015. Kassel: Kassel University Press, 2015, 152 pp.,
isbn: 978-3-86219-592-3.

[114] S. Schöps, H. De Gersem, A. Bartel, and M. Clemens, “Dynamic Iteration for
Field/Circuit Coupled Problems”, Talk, Karlsruhe Institute of Technology, 2012,
[Online]. Available: http://ace2012.math.kit.edu/abstracts/schoep
s_degersem_bartel_clemens.pdf (visited on Oct. 27, 2016).

[115] S. Schütte, S. Scherfke, and M. Sonnenschein, “Mosaik - Smart grid simulation
API: Toward a semantic based standard for interchanging smart grid simulations”,
SMARTGREENS 2012 - Proceedings of the 1st International Conference on Smart
Grids and Green IT Systems, no. 2, pp. 14–24, 2012. [Online]. Available: https:
//mosaik.offis.de/downloads/mosaik_SimAPI_SmartGreens2012.
pdf.

[116] B. Schweizer and D. Lu, “Semi-implicit co-simulation approach for solver coupling”,
Archive of Applied Mechanics, vol. 84, no. 12, pp. 1739–1769, Dec. 2014, issn:
0939-1533, 1432-0681. doi: 10.1007/s00419-014-0883-5. [Online]. Available:
http://link.springer.com/10.1007/s00419-014-0883-5 (visited on
Oct. 28, 2016).

[117] A. Seila, V. Čerić, and P. Tadikamalla, Applied Simulation Modeling. Brooks/Cole-
Thomson Learning, 2003. [Online]. Available: http://bib.irb.hr/prikazi-
rad?rad=129982 (visited on Nov. 6, 2016).

104

http://dx.doi.org/10.3384/ecp09430104
http://www.ep.liu.se/ecp/043/011/ecp09430104.pdf
http://www.ep.liu.se/ecp/043/011/ecp09430104.pdf
http://dx.doi.org/10.1177/003754970107700102
http://dx.doi.org/10.1177/003754970107700102
http://sim.sagepub.com/cgi/doi/10.1177/003754970107700102
http://sim.sagepub.com/cgi/doi/10.1177/003754970107700102
https://www.researchgate.net/profile/Hessam_Sarjoughian/publication/243778266_Devsjava_Basis_for_a_devs-based_collaborative_ms_environment/links/5418f6dc0cf203f155adba65.pdf
https://www.researchgate.net/profile/Hessam_Sarjoughian/publication/243778266_Devsjava_Basis_for_a_devs-based_collaborative_ms_environment/links/5418f6dc0cf203f155adba65.pdf
https://www.researchgate.net/profile/Hessam_Sarjoughian/publication/243778266_Devsjava_Basis_for_a_devs-based_collaborative_ms_environment/links/5418f6dc0cf203f155adba65.pdf
https://www.researchgate.net/profile/Hessam_Sarjoughian/publication/243778266_Devsjava_Basis_for_a_devs-based_collaborative_ms_environment/links/5418f6dc0cf203f155adba65.pdf
http://ace2012.math.kit.edu/abstracts/schoeps_degersem_bartel_clemens.pdf
http://ace2012.math.kit.edu/abstracts/schoeps_degersem_bartel_clemens.pdf
https://mosaik.offis.de/downloads/mosaik_SimAPI_SmartGreens2012.pdf
https://mosaik.offis.de/downloads/mosaik_SimAPI_SmartGreens2012.pdf
https://mosaik.offis.de/downloads/mosaik_SimAPI_SmartGreens2012.pdf
http://dx.doi.org/10.1007/s00419-014-0883-5
http://link.springer.com/10.1007/s00419-014-0883-5
http://bib.irb.hr/prikazi-rad?rad=129982
http://bib.irb.hr/prikazi-rad?rad=129982

[118] N. Shariatzadeh, G. Sivard, and D. Chen, “Software Evaluation Criteria for
Rapid Factory Layout Planning, Design and Simulation”, Procedia CIRP, 45th
CIRP Conference on Manufacturing Systems 2012, vol. 3, pp. 299–304, Jan. 1,
2012, issn: 2212-8271. doi: 10.1016/j.procir.2012.07.052. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S2212827112002247 (visited on Nov. 2, 2016).

[119] M. J. Sharma, I. Moon, and H. Bae, “Analytic hierarchy process to assess and
optimize distribution network”, Applied Mathematics and Computation, vol. 202,
no. 1, pp. 256–265, Aug. 1, 2008, issn: 0096-3003. doi: 10.1016/j.amc.2008.
02.008. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0096300308000957 (visited on Nov. 6, 2016).

[120] P. Smolek, “Objektorientierte modellierung und dynamische co-simulation mit
catia v6 am beispiel von kraftfahrzeugsystemen”, Diploma Thesis, TU Wien, Wien,
2013, 122 pp. [Online]. Available: http://www.ub.tuwien.ac.at/dipl/
2013/AC11200075.pdf (visited on Oct. 8, 2016).

[121] H. Song, “Infrastructure for DEVS Modelling and Experimentation”, Diploma
Thesis, McGill University, Montreal, Canada, 2006, 149 pp. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
112.9850&rep=rep1&type=pdf (visited on Nov. 4, 2016).

[122] M. Spiryagin, C. Cole, Y. Q. Sun, M. McClanachan, V. Spiryagin, and T. Mc-
Sweeney, Design and Simulation of Rail Vehicles. CRC Press, May 13, 2014,
330 pp., isbn: 978-1-4665-7567-7.

[123] M. Striebel, “Multirate - Introduction”, Talk, TU Wien, May 31, 2011.
[124] Tag Gon Kim, Chang Ho Sung, S.-Y. Hong, Jeong Hee Hong, Chang Beom

Choi, Jeong Hoon Kim, Kyung Min Seo, and Jang Won Bae, “DEVSim++
Toolset for Defense Modeling and Simulation and Interoperation”, The Journal
of Defense Modeling and Simulation: Applications, Methodology, Technology, vol.
8, no. 3, pp. 129–142, Jul. 1, 2011, issn: 1548-5129, 1557-380X. doi: 10.1177/
1548512910389203. [Online]. Available: http://dms.sagepub.com/cgi/
doi/10.1177/1548512910389203 (visited on Oct. 31, 2016).

[125] T. W. Tewoldeberhan, A. Verbraeck, E. Valentin, and G. Bardonnet, “Software
Evaluation and Selection: An Evaluation and Selection Methodology for Discrete-
event Simulation Software”, in Proceedings of the 34th Conference on Winter Sim-
ulation: EXPLORING NEW FRONTIERS, ser. WSC ’02, San Diego, California:
Winter Simulation Conference, 2002, pp. 67–75, isbn: 978-0-7803-7615-1. [Online].
Available: http://dl.acm.org/citation.cfm?id=1030453.1030465
(visited on Nov. 4, 2016).

[126] The MathWorks, MATLAB Documentation, version 9.1 (R2016b), Natick, Mas-
sachusetts, Oct. 8, 2016. [Online]. Available: http://www.mathworks.com/
help/matlab/index.html.

105

http://dx.doi.org/10.1016/j.procir.2012.07.052
http://www.sciencedirect.com/science/article/pii/S2212827112002247
http://www.sciencedirect.com/science/article/pii/S2212827112002247
http://dx.doi.org/10.1016/j.amc.2008.02.008
http://dx.doi.org/10.1016/j.amc.2008.02.008
http://www.sciencedirect.com/science/article/pii/S0096300308000957
http://www.sciencedirect.com/science/article/pii/S0096300308000957
http://www.ub.tuwien.ac.at/dipl/2013/AC11200075.pdf
http://www.ub.tuwien.ac.at/dipl/2013/AC11200075.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9850&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9850&rep=rep1&type=pdf
http://dx.doi.org/10.1177/1548512910389203
http://dx.doi.org/10.1177/1548512910389203
http://dms.sagepub.com/cgi/doi/10.1177/1548512910389203
http://dms.sagepub.com/cgi/doi/10.1177/1548512910389203
http://dl.acm.org/citation.cfm?id=1030453.1030465
http://www.mathworks.com/help/matlab/index.html
http://www.mathworks.com/help/matlab/index.html

[127] ——, Simscape Documentation, version 4.1 (R2016b), Natick, Massachusetts,
Oct. 8, 2016. [Online]. Available: https://www.mathworks.com/help/
physmod/simscape/.

[128] S. Thiede, Energy Efficiency in Manufacturing Systems, ser. Sustainable Produc-
tion, Life Cycle Engineering and Management. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, isbn: 978-3-642-25913-5 978-3-642-25914-2. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-25914-2 (visited on
Oct. 3, 2016).

[129] M. Trcka, “Co-simulation for performance prediction of innovative integrated
mechanical energy systems in buildings”, Dissertation, Technische Universiteit
Eindhoven, 2008. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.472.4041&rep=rep1&type=pdf
(visited on Oct. 25, 2016).

[130] U.S. Department of Energy, EnergyPlus Version 8.6 Documentation: Getting
Started, version 8.6, Sep. 30, 2016. [Online]. Available: https://energyplus.
net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.6.0/
GettingStarted.pdf (visited on Oct. 8, 2016).

[131] O. Vaculín, W. R. Krüger, and M. Valášek, “Overview of Coupling of Multibody
and Control Engineering Tools”, Vehicle System Dynamics, vol. 41, no. 5, pp. 415–
429, May 1, 2004, issn: 0042-3114. doi: 10.1080/00423110412331300363.
[Online]. Available: http://dx.doi.org/10.1080/00423110412331300363
(visited on Oct. 29, 2016).

[132] A. J. Van Der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical
Systems, ser. Lecture notes in control and information sciences. London ; New
York: Springer, 2000, vol. 251, 174 pp., isbn: 1-85233-233-6.

[133] J. M. Vaterlaus and B. J. Higginbotham, “Qualitative program evaluation meth-
ods”, in The Forum for Family and Consumer Issues, vol. 16, 2011.

[134] R. Verma, A. Gupta, and K. Singh, “A Critical Evaluation and Comparison
of Four Manufacturing Similation Softwares”, Kathmandu University Journal
of Science, Engineering and Technology, vol. 5, no. 1, pp. 104–120, 2009, issn:
1816-8752. doi: 10.3126/kuset.v5i1.2851. [Online]. Available: http:
//www.nepjol.info/index.php/KUSET/article/view/2851 (visited
on Nov. 4, 2016).

[135] L. Völker, Untersuchung des Kommunikationsintervalls bei der gekoppelten Sim-
ulation, ser. Karlsruher Schriftenreihe Fahrzeugsystemtechnik Bd. 6. Karlsruhe:
KIT Scientific Publ, 2011, 174 pp., isbn: 978-3-86644-611-3.

[136] G. Wainer, “CD++: A toolkit to develop DEVS models”, Software: Practice
and Experience, vol. 32, no. 13, pp. 1261–1306, 2002. [Online]. Available: http:
//onlinelibrary.wiley.com/doi/10.1002/spe.482/abstract
(visited on Oct. 31, 2016).

106

https://www.mathworks.com/help/physmod/simscape/
https://www.mathworks.com/help/physmod/simscape/
http://link.springer.com/10.1007/978-3-642-25914-2
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.4041&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.4041&rep=rep1&type=pdf
https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.6.0/GettingStarted.pdf
https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.6.0/GettingStarted.pdf
https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.6.0/GettingStarted.pdf
http://dx.doi.org/10.1080/00423110412331300363
http://dx.doi.org/10.1080/00423110412331300363
http://dx.doi.org/10.3126/kuset.v5i1.2851
http://www.nepjol.info/index.php/KUSET/article/view/2851
http://www.nepjol.info/index.php/KUSET/article/view/2851
http://onlinelibrary.wiley.com/doi/10.1002/spe.482/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.482/abstract

[137] Y.-H. Wang, “Discrete event simulation on a massively parallel computer.”, Disser-
tation, University of Arizona, 1992. [Online]. Available: http://arizona.
openrepository . com / arizona / handle / 10150 / 185913 (visited on
Oct. 30, 2016).

[138] Y.-H. Wang and B. P. Zeigler, “Extending the DEVS formalism for massively
parallel simulation”, Discrete Event Dynamic Systems: Theory and Applications,
vol. 3, pp. 193–218, 2-3 Jul. 1993, issn: 0924-6703, 1573-7594. doi: 10.1007/
BF01439849. [Online]. Available: http://link.springer.com/10.1007/
BF01439849 (visited on Oct. 30, 2016).

[139] M. Wetter, “Co-simulation of building energy and control systems with the building
controls virtual test bed”, Journal of Building Performance Simulation, vol. 4, no.
3, pp. 185–203, Sep. 2011, issn: 1940-1493, 1940-1507. doi: 10.1080/19401493.
2010.518631. [Online]. Available: http://www.tandfonline.com/doi/
abs/10.1080/19401493.2010.518631 (visited on Sep. 27, 2016).

[140] M. Wetter and T. Nouidui, Building Controls Virtual Test Bed - User Manual
Version 1.6.0, version 1.6.0, Berkeley, CA, Apr. 20, 2016. [Online]. Available:
http://simulationresearch.lbl.gov/bcvtb/releases/1.6.0/
doc/manual/bcvtb-manual.pdf.

[141] J. Zehetner, G. Stettinger, H. Kokal, and B. Toye, “Echtzeit-co-simulation für die
regelung eines motorprüfstands”, ATZ - Automobiltechnische Zeitschrift, vol. 116,
no. 2, pp. 40–45, Feb. 2014, issn: 0001-2785, 2192-8800. doi: 10.1007/s35148-
014-0042-x. [Online]. Available: http://link.springer.com/10.1007/
s35148-014-0042-x (visited on Oct. 28, 2016).

[142] B. P. Zeigler, H. Prähofer, and T. G. Kim, Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic
Press, 2000, 536 pp., isbn: 978-0-12-778455-7.

[143] Z. Zhai, “Developing an integrated building design tool by coupling building
energy simulation and computational fluid dynamics programs”, Dissertation,
Massachusetts Institute of Technology, 2003. [Online]. Available: http://dspac
e.mit.edu/handle/1721.1/17617 (visited on Oct. 28, 2016).

[144] W. Zhu, S. Pekarek, J. Jatskevich, O. Wasynczuk, and D. Delisle, “A Model-
in-the-Loop Interface to Emulate Source Dynamics in a Zonal DC Distribution
System”, IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 438–445,
Mar. 2005, issn: 0885-8993. doi: 10.1109/TPEL.2004.842973. [Online].
Available: http://ieeexplore.ieee.org/document/1408008/ (visited
on Oct. 28, 2016).

107

http://arizona.openrepository.com/arizona/handle/10150/185913
http://arizona.openrepository.com/arizona/handle/10150/185913
http://dx.doi.org/10.1007/BF01439849
http://dx.doi.org/10.1007/BF01439849
http://link.springer.com/10.1007/BF01439849
http://link.springer.com/10.1007/BF01439849
http://dx.doi.org/10.1080/19401493.2010.518631
http://dx.doi.org/10.1080/19401493.2010.518631
http://www.tandfonline.com/doi/abs/10.1080/19401493.2010.518631
http://www.tandfonline.com/doi/abs/10.1080/19401493.2010.518631
http://simulationresearch.lbl.gov/bcvtb/releases/1.6.0/doc/manual/bcvtb-manual.pdf
http://simulationresearch.lbl.gov/bcvtb/releases/1.6.0/doc/manual/bcvtb-manual.pdf
http://dx.doi.org/10.1007/s35148-014-0042-x
http://dx.doi.org/10.1007/s35148-014-0042-x
http://link.springer.com/10.1007/s35148-014-0042-x
http://link.springer.com/10.1007/s35148-014-0042-x
http://dspace.mit.edu/handle/1721.1/17617
http://dspace.mit.edu/handle/1721.1/17617
http://dx.doi.org/10.1109/TPEL.2004.842973
http://ieeexplore.ieee.org/document/1408008/

	Introduction
	Motivation
	Problem Statement
	Scope of the Work
	Method

	Co-simulation Case Study
	Background
	Terminology
	Coupling Strategies
	Technologies and Tools for Co-simulation

	Design
	Reference Model
	Co-simulation Architecture
	Data Exchange and Synchronization

	Implementation
	Sub-Models
	BCVTB Middleware
	Validation

	Testing and Results

	DEVS-based Modeling Case Study
	Background
	DEVS-based System Specification Formalisms
	Tools for DEVS-based Hybrid Modeling and Simulation

	Design
	Modular Hybrid Modeling Approach
	Simulation Approach

	Implementation
	Hybrid Model Component: Oven
	Overall Model
	Validation

	Testing and Results

	Evaluation and Comparison
	Related Work
	Scope of the Evaluation
	Criteria
	User Considerations
	Modeling Capabilities
	Simulation Performance

	Evaluation of Co-Simulation
	Evaluation of hybrid DEVS-based Modeling
	Comparison
	Conclusion

	Summary & Outlook
	Summary
	Future Work

	MatlabDEVS Source Code for the Oven Model
	List of Figures
	List of Tables
	Bibliography

