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Abstract

Radar, seismic and and wireless communication systems observe waves (hidden in noise) by sensor ar-
rays. Those systems infer the originating (spatially-sparse) set of sources, within a minimum prescribed
resolution and with as few sensors as feasible. These requirements lead to under-determined systems
of equations.

Compressed sensing is an active research field which treats the recovery of a set of sources from
an under-determined system of equations exploiting sparsity. Naturally two main questions arise in
this context. Firstly, what is the minimum number of equations/sensors for which reconstruction can be
guaranteed and secondly, how to achieve efficient reconstruction regarding the sensors’ observations?

Solutions to the first question provide insights into the design of linear measurements and use
quantities like the restricted isometry property or coherence to describe well-behaved matrices, such as
equiangular tight frames. Algorithms as answers to the second question mostly rely on the assumption,
that the measurements were made in accordance to the reconstruction guarantees.

Suppose that one has to work with existing data acquisition systems, the measurement matrix is
given a priori and algorithms studied under too idealistic assumptions are prone to failure.

This thesis shows that well known greedy algorithms like orthogonal matching pursuit are not
suited for array processing problems. We devise an algorithm based on the generalized Least Absolute
Shrinkage and Selection Operator (LASSO), which is a penalized least squares problem. The heuristi-
cally chosen `1 penalty term ensures strict convexity and that strong duality holds.

The corresponding dual problem is interpretable as a weighted conventional beamformer acting
on the residuals of the LASSO. Based on physical insights provided by the dual problem’s solution,
three procedures for single snapshot reconstruction and one for sequential online reconstruction are
proposed and analysed.

The sequential procedure assumes a weighted Laplace-like prior for the sources such that the
maximum a posteriori source estimate at the current time step is the solution to a generalized LASSO
problem. For the sequential implementation, the posterior distribution is fitted to the Laplace-like
density by use of the dual solution.
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Kurzfassung

Sensorgruppensignalverarbeitung für Wellenfelder erfolgt in vielen technischen Systemen wie der
Funkortung und -abstandsmessung, der Seismologie und im Mobilfunk. Aus den Messungen möglichst
weniger Sensoren soll Rückschluss über die räumliche Verteilung der Quellen gezogen werden. Wer-
den weniger Sensoren als aufzulösende Quellpunkte verwendet, so führt dies zu unterbestimmten
Gleichungssystemen.

Komprimiertes Abtasten (Compressed Sensing) bezeichnet ein immer noch aktuelles Teilgebiet
der Linearen Algebra, in dem unterbestimmte lineare Gleichungssysteme unter einer Spärlichkeitsan-
nahme (die meisten Einträge des Lösungvektors sind Null) gelöst werden.
Dabei stellen sich folgende Fragen: Was ist die minimale Anzahl an Gleichungen und wie kann,
ausgehend von diesen, der Datenvektor rekonstruiert werden?

Die Beantwortung der ersten Frage liefert Einblicke in die Struktur der linearen Messungen. Die
Qualität der Messmatrizen wird mittels der "Restricted Isometry Property" (RIP) oder der Kohärenz
beschrieben. Algorithmen, die aus der Beantwortung der zweiten Frage resultieren, beruhen auf den
zuvor gewonnenen Ergebnissen (Frage 1).

Werden existierende Datenerfassungssysteme verwendet, kann auf die Gestalt der Messmatrix
nur wenig Einfluss genommen werden; oftmals zeigen die Matrizen unerwünschte Eigenschaften.
Dadurch verringert sich die Effizienz jener Algorithmen, die eine niedrige RIP Konstante oder niedrige
Kohärenz aufweisen.

Diese Arbeit zeigt, dass bereits bekannte "greedy algorithms", wie "orthogonal matching pursuit",
nicht für Sensorgruppensignalverarbeitung geeignet sind. Unsere Minimierungsaufgabe wird durch
ein verwandtes Problem - Hinzunahme eines `1 Terms in der Kostenfunktion statt der Spärlichkeitsan-
nahme - ersetzt. Dieses verwandte, konvexe Problem ist bekannt als "generalized LASSO".

Das zugehörige duale Problem kann als gewichteter Beamformer interpretiert werden. Aus den
dadurch gewonnenen physikalischen Einsichten können Algorithmen für die Rekonstruktion von
Einzelmessungen und für die sequentielle Rekonstruktion gewonnen werden.

Für die sequentielle Rekonstruktion wird die a-priori Wahrscheinlichkeitdichte jedes Elementes
als Laplace-ähnlich angenommen. Dadurch einsteht erneut ein "generalized LASSO" als maximum-
a-posteriori Schätzer. Wiederum ist es die duale Variable, mittels der die posteriori Verteilung als
Laplace-ähnlich genähert werden kann.
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1. Introduction

1.1. Notation

The following incomplete table introduces the mathematical notation and variables which are exten-
sively used throughout the thesis.

Table 1.1.: Table of mathematical notation and frequently used variables.

M ,v , matrix and vector
MI , matrix consisting of the columns ofM indexed by I
v[k] , time - k dependent vector
N (M) , nullspace of the matrixM , i.e., {v

∣∣Mv = 0}
˜(•) , linear transformation such as Fourier transform or matrix multi-

plication
(•)+ , Moore-Penrose inverse
(•)−1 , matrix inverse
(•)H , conjugate transposition

(•)−H , inverse of the conjugate transposed matrix
‖•‖p , `p norm, including the zero (pseudo) norm
|•| , element-wise magnitude of a vector (scalar is a special case) or

cardinality of a set

Variables

a steering vector / atoms
A dictionary consisting of steering vectors a
D generalization matrix, restricted to be a real, positive and diago-

nal matrix
k time index
k wave vector
λ wavelength or source prior hyperparameter
M number of hypothetical source directions
M active set, support of x
µ regularization parameter
N number of sensors
s sparsity level, cardinality ofM
θm direction corresponding to the mth steering vector / column of

A
u Lagrange multiplier / dual vector
x complex source amplitudes (sparse vector)
y observations

1



1. Introduction

1.2. Research Question

The aim of this diploma thesis is to find a computationally tractable program to solve an inverse
array processing problem. By observing noisy wave signals we want to infer a spatially sparse set of
directions of arrivals (DOA). We formalize this more mathematically:

Given s ∈ N spatially distributed far-field narrowband point sources with complex amplitudes
x ∈ CM and an array of sensors modelled by a matrix (dictionary)A ∈ CN×M (N < M ), find a program
to solve

x`0 = argmin
x
‖y −Ax‖22 subject to ‖x‖0 ≤ s . (P0)

The `2 norm as the typical least squares observation error minimizer is constraint to sparseness with
the pseudo norm ‖x‖0, which is simply a counter of non-zero entries in x. Checking a variable in C
for zero is numerically very insecure, so that we re-define (P0) such that it becomes a special case of a
numerically stable version.
The active setM is defined as the set of all indices m with |xm| > δ, δ ≥ 0 ∈ R

M = {m
∣∣ |xm| > δ} . (1.1)

The zero norm constraint is now replaced by the cardinality of the active set and (P0) is rewritten to

x`0 = argmin
x
‖y −Ax‖22 subject to |M| ≤ s . (P0’)

For the choice of δ = 0 we recover the original statement. In a second stage, this plain minimization
problem should be modified such that it is able to model prior knowledge and allows for a sequential
implementation.

1.3. Greedy Methods

Although the formulation of (P0) and (P0’) appear quite intuitive they are NP-hard combinatorial prob-
lems [Nat95] and thus intractable already for small dimensions. Greedy algorithms which approximate
the solution by incremental/iterative accumulation of the active set divide into two main classes.

Orthogonal Matching Pursuit (OMP) adds the index, which best fits the measurements, to the ac-
tive set at each iteration and regresses onto the dictionary spanned by the active columns [TG07]. An
extension to OMP is Compressive Sampling Matching Pursuit (CoSaMP), which allows to add multiple
fitting indices at a time and hard thresholds after the regression to keep only s active indices [NT09].
The main problem of OMP (and CoSaMP) is the incremental reconstruction. The indices already found
remain in the active set. If two source waves are impinging under nearby angles, they are interpreted
as one joint source in the first iteration and the algorithm has no change to separate the sources later
on. "Nearby" will be specified in terms of coherence. For the sake of completeness both algorithms are
provided in Appendix A.1 and A.2.

Besides these matching pursuits there are iterative thresholding algorithms which basically soft
or hard threshold the output of the matched filter AH . They are derived by minimizing a surrogate
objective function [Ela10]. Thresholding algorithms are even more prone to failure for high coherence
and will not be part of this thesis.

2



1.4. Penalized Least Squares

1.4. Penalized Least Squares

The most prominent idea to solve (P0) is to relax the zero norm to the closest convex p norm, i.e., the `1
norm [CRT06; Tro06]

x`1 = argmin
x
‖y −Ax‖22 subject to ‖x‖1 ≤ ε . (P1)

This relaxation suffers from the drawback that the dependency ε(s) is non-linear and unknown. The
explicit norm constraint of (P1) can be made implicit with Lagrange multipliers and was first discussed
by Robert Tibshirani [Tib96] who gave it the name Least Absolute Shrinkage and Selection Operator
(LASSO)

x`1 = argmin
x
‖y −Ax‖22 + µ ‖x‖1 . (P1’)

The relation between µ and ε is known to be [Lor+09]

µ = 2
∥∥∥AH (y −Ax`1(ε))

∥∥∥
∞
, ε = ‖x`1(µ)‖1 . (1.2)

The objective function of (P1’) is a penalized least squares problem, where µ trades off the fidelity to the
measurements and the sparsity level. It can be understood as Tikhonov regularization [Tik95] or in the
context of variational analysis as proximity operator [RW09]. In a Bayesian framework this penalization
could also be recognized as a maximum a posteriori (MAP) estimate [Gri11].
The idea of relaxing to the `1 norm is illustrated in Figure 1.1. For noise free measurements (y = Ax)
the solution vector is given for the smallest norm ball which explains the observation and depending on
the selected p ≤ 1 norm, the solution vector x`p may be sparse.

p = 1/2

p = 1

p = 2

p = ∞
y=Ax

x1

x2

Figure 1.1.: Solution to an (noise free) under-determined system of equationA for different penalization
norms. The norm balls of p = 1/2, p = 1, p = 2 and p =∞ are shown in dotted-orange, blue,
red and dash-dotted-black respectively. The sparse solution is only achieved with p ≤ 1
norms.
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1. Introduction

1.5. Outline

Chapter 2 provides the mathematical model for the array processing setup. Through the way common
sensor arrays, e.g., Uniform Linear Arrays (ULA), are built, the columns ofA are almost parallel, which
is termed coherent in compressed sensing (CS) literature. Most recovery guarantees for CS are assuming
low coherence and we will show that OMP is prone to failure.

Chapter 3 therefore focusses on the LASSO since `1 relaxation methods are generally more robust to
coherence. With `1 approaches we encounter new problems. Firstly a systematic error between the `0
and `1 solution will be described and secondly an estimator which relates the desired sparsity level to
the regularization parameter is needed. Our workhorse to analyse the LASSO will be its dual problem.

Chapter 4 will then be devoted to the regularization parameter estimator. After explaining a necessary
approximation we derive a slow OMP-like and a faster CoSaMP-like procedure. In return for a lengthy
analysis of the dual problem to the generalized LASSO we are able to formulate a procedure which
works entirely in the dual domain.

Chapter 5 presents the re-interpretation of `1 norm constraints as a (Laplacian) prior in a Bayesian esti-
mation framework. By approximating the posterior distribution with a Laplacian, a sequential Bayesian
estimation task is performed and a sequential algorithm is explained in detail.

Chapter 6 concludes the thesis with a short discussion on the results and on more advanced - atomic
norm based - approaches.

4



2. Array Signal Processing

Array processing is a kind of space-time processing. Many sensors located at different positions in space
observe waveforms at different times in order to draw conclusions about the spatial distribution of the
wave sources.

2.1. Narrowband Far-Field Description

This section follows the arguments and mostly the notation of [VT02]. We assume the propagation
medium to be linear, homogeneous, isotropic, time-invariant, deterministic, infinitely extended and
lossless. The N uncoupled, linear, isotropic sensors sample the the incident field at positions pn, n ∈
{0, . . . , N − 1} . The signal output of the N sensors at time t are stacked into one vector and scaled by√
N 1

ỹ(p, t) =
1√
N




ỹ(p0, t)

ỹ(p1, t)
...

ỹ(pN−1, t)



. (2.1)

As the sensors and the propagation medium are assumed to be linear, we first analyse ỹ(p, t) for one
impinging source wave. Many sources simply cause a superposition at the sensors output. Assuming
that the sources are sufficiently far away, the incident field has a plane wave front, so that the sampled
signal ỹ consists of delayed copies of the same signal carried by the wave with wave vector k. We are
able to write

ỹ(p, t,k) =
1√
N




ỹ(t− τp0
)

ỹ(t− τp1
)

...
ỹ(t− τpN−1

)




(2.2)

FT⇔y(p, ω,k) =
1√
N




e−jωτp0

e−jωτp1

...
e−jωτpN−1



y(ω) =

1√
N




e−jk
Tp0

e−jk
Tp1

...
e−jk

TpN−1




︸ ︷︷ ︸
a(k)

y(ω)
monochr.

= a(k)

with delay τpn = kTpn
ω . Here τpn measures the travel time in propagation direction of the wavefront to

sensor n, although it is very doubtful to assign a planar wave to a spatially concentrated source point;
the reformulation with the wave vector k is therefore a more reasonable representation. The vector
a captures all spatial characteristics of the spatial array and is called array manifold vector / steering
vector. A monochromatic wave with unit amplitude is described as ỹn(t,pn) = ej(ωt−k

Tpn) = ejωtan(k),
and its Fourier transform at frequency ω is y(p, ω,k) = a(k). The only remaining parameters for source

1The normalization step is not necessary at this point, but it will be beneficial later on as the measurement matrix have unit
column `2-norm.

5



2. Array Signal Processing

Figure 2.1.: Schematic illustration of the array processing problem with three impinging narrowband
far-field sources and N sensors. W.l.o.g. the ULA is drawn for N even. The parallel lines
reflect the plane wave fronts.

position inferring are the delay differences τpn to each sensor element. In Figure 2.1, three sources
are illustrated, the sources corresponding to θ2 and θ3 cause a similar observation y and constitute the
difficult, coherent estimation task.

2.2. Matrix Description

As the set of possible wavevectors is infinite, we have to discretize the angular space, such that we
allow only for finite number of possible k. For a discrete set of wavevectors km, m ∈ {1, . . . ,M} the
corresponding steering vectors form the matrix model

y =
1√
N

(
a(k1),a(k2), . . . ,a(kM )

)

︸ ︷︷ ︸
A∈CN×M




x1(k1)

x2(k2)
...

xM (kM )



. (2.3)

In case that we use more discretization points M than sensor elements N , A is under-determined and
there is no unique solution to (2.3); the sparsity constraint allows us to retrieve it.

Signal to Noise Ratio

The matrix model is augmented by additive noise. For this sub-section we explicitly express the time
dependency in all relevant variables with square brackets (immediately thereafter, the brackets are
dropped until Section 5.2)

y[k] = Ax[k] + n[k] . (2.4)

The noise is then assumed to be both spatially and temporally white Gaussian

E
{
n[k]nH [k + l]

}
=

{
σ2I, for l = 0,

0 otherwise .
(2.5)

6



2.3. Uniform Linear Array

We define the Signal to Noise Ratio (SNR) as the ratio of the expected receive power in the absence of
noise and the expected receive power for no signal present. With the noise definition and the assumption
of a deterministic signal x the SNR at time step k becomes

SNR[k] = 10 log10


E

{∥∥y
∣∣
n≡0

∥∥2

2

}

E
{∥∥y

∣∣
x≡0

∥∥2

2

}


 = 10 log10


E

{
‖Ax[k]‖22

}

E
{
‖n[k]‖22

}


 = 10 log10

(
‖Ax[k]‖22
Nσ2

)
. (2.6)

2.3. Uniform Linear Array

Throughout the whole thesis a λ/2 spaced horizontal ULA withN = 30 elements is utilized. Iff isotropic
sensors are nλ2 , n ∈ N spaced, their measurement are decoupled; in all other cases the model should
consider coupling [IN10]. The sensors are placed on the x axis, centred around the origin

pn,y = pn,z = 0, pn,x =

(
n− N − 1

2

)
λ

2
. (2.7)

The angular space is sampled linearly and the wavevectors in a homogeneous medium are expressed
with unit vectors e 2

km =
2π

λ
eθm , eθm =




sin(θm)

×
×


 , θm =

π(m− 1)

M
−π

2
. (2.8)

With all previous assumptions the elements of the steering vector a(km) = a(θm) derive to

an(θm) =
1√
N
e−jπ sin(θm)(n−N−1

2 ) , (2.9)

and the matrix-vector description is given as

y = Ax =
1√
N

exp




−jπ







−N−1
2

...
N−1

2


 [sin (θ1) sin(θ2) . . . sin(θM )]







x . (2.10)

2.4. Coherence

From (2.10) it is apparent that the measurement matrix A has almost parallel columns (atoms a) near
endfire −90◦ and 90◦. The compressed sensing community titles this effect as coherence.
The columns of A are `2 normalized, i.e., ‖am‖2 = 1, thereby the coherence measures the correlation
between two steering vectors by means of their inner product

coh(ai,aj) = aHi aj , (2.11)

and the mutual coherence is the maximum of all possible coherences

mutual coh(A) =
∥∥∥AHA− I

∥∥∥
max

=
∥∥∥vec

(
AHA− I

)∥∥∥
∞
, (2.12)

where the max matrix norm is equal to the element of largest magnitude which is identical to the `∞
norm of the vectorized matrix.

2The y and z values of the unit vectors do not enter in the formula. They "don’t care"⇒ ×.
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2. Array Signal Processing

The mutual coherence serves as measure for the compressive sensing suitability ofA. OMP for instance
has recovery guarantees based on the mutual coherence. Figure 2.2 depicts the coherence of our 30 sen-
sor ULA and degree-wise sampling between −90◦ and 90◦ ⇒ A ∈ C30×181.

coherence ULA

 
80 60 40 20 0 20 40 60 80

80

60

40

20

0

20

40

60

80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DOA [degrees]

D
O

A
 [d

eg
re

es
]

DOA [degrees]

D
O

A
 [d

eg
re

es
]

Figure 2.2.: Magnitude of the coherence AHA of the 30 sensors ULA and a degree-wise discritization
between −90◦ and +90◦. The regions of strongest coherence displayed in red are broader at
endfire.

From Figure 2.2 we are able to conclude that coherence is really dependent on the source angle. Near
endfire (±90◦), nearby sources always look strongly coherent; they produce very similar measurements
on an ULA. At broadside they can come much closer and still produce more distinguishable measure-
ments. Hence, whenever we talk about coherence later on, we implicitly mean the mutual coherence of the
restricted dictionaryAM.

2.4.1. OMP Recovery Guarantees

A further insight from (2.10) is the dependency of the coherence on the angular sampling. The finer
the grid the stronger the coherence will be! Next we analyse this relationship with well known OMP
recovery guarantees, similar to [TGA14].
OMP yields successful recovery for s-sparse signals if [Tro04]

mutual coh(A) ≤ 1

2s− 1
. (2.13)

Due to the structure of the dictionaryAwe know that the coherence is maximum between neighbouring
columns which are ∆θ = cπ

M , c � 1, spaced. W.l.o.g. we choose ∆θ = 1
M and the mutual coherence

becomes

mutual coh(A) = max
a(θm)

| coh(a(θm),a(θm + ∆θ))|

= max
θm

1

N

∣∣∣∣

N−1
2∑

n=−N−1
2

ejπn(sin(θm+∆θ)−sin(θm))

∣∣∣∣ ≈
1

N

∣∣∣∣

N−1
2∑

n=−N−1
2

ejπn∆θ

∣∣∣∣ . (2.14)

In the last step the small-angle approximation (c� 1 !) was used. The right hand side of (2.14) is known
as Dirichlet kernel which is approximated by a sinc function

1

N

∣∣∣∣

N−1
2∑

n=−N−1
2

ejπn∆θ

∣∣∣∣ =
1

N

∣∣∣∣
sin(π∆θN2 )

sin(π∆θ)

∣∣∣∣ ≈
∣∣∣∣ sinc

(
∆θ

N

2

)∣∣∣∣ . (2.15)
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2.4. Coherence
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Figure 2.3.: Maximum gridsize for guaranteed OMP recovery of a 30 sensor ULA.

Whenever the angular discritization is smaller than 2
N (this is safely fulfilled as we would like to dis-

critize such that an under-determined system of equations N < M → 1
2
N
M < 1

2 results) the sinc function
is positive and has a well defined inverse

mutual coh(A) ≈ sinc

(
∆θ

N

2

)
≤ 1

2s− 1
⇔ 1

M
= ∆θ ≥ 2

N
sinc−1

(
1

2s− 1

)
. (2.16)

Because sinc(ξ), ξ ∈ (0, 1) is monotonically decreasing, the greater equal sign flips if (2.16) is inverted.

M ≤ N

2

1

sinc−1

(
1

2s−1

) (2.17)

The bound of inequality (2.17) is drawn in Figure 2.3. For s = 1 there is a pole and arbitrarily fine
sampling is possible, but for s ≥ 2 sparse recovery is not guaranteed. The result of this simple analysis
is quite remarkable. It shows that greedy algorithms such as OMP, CoSaMP and thresholding algorithms
(which we disqualified from the beginning due to their even stronger sensitivity to coherence) are not
suited for array processing problems in their plain form.

2.4.2. Offset Regions due to Coherence

Another negative effect of coherence was demonstrated in [XGM14]. For SNR > 6 dB, coherence defines
a region of possible offsets around the true DOA θm associated with steering vector am. All possible
outcomes are from the set

O =

{
ai | coh (ai,am) ≥

√
1− 4 · 10−

SNR
10

}
. (2.18)

The offset region O will be shown with circles around the true DOA in the figures of the next chapter.
An intuitive argument is: Due to high coherence in relation to the SNR, a steering vector close to the
correct one leads to a stronger decrease of the objective function and is therefore a valid solution of the
optimization program.
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3. Generalized LASSO

In the previous chapter we have seen that coherence limits the performance of greedy algorithms. The
current chapter is devoted to `1 relaxation methods. Various works have shown the robustness of `1
methods to coherence or more frequently to the Restricted Isometry Property (RIP). The RIP constant δs
for sparsity degree s is related to the mutual coherence

δs(A) ≤ smutual coh(A) . (3.1)

Basis Pursuit (BP) for instance allows for more than 3.7 times higher RIP constants than OMP [FR13].
In literature there are several different names given to a related approach. BP minimizes ‖x‖1 while
keeping the measurement mismatch bounded ‖y −Ax‖2 ≤ η, Basis Pursuit De-Noising (BPDN)
minimizes the measurement mismatch under an `1 constraint. Both approaches yield the same
Lagrangian formulation and can be converted into each other by inverting the regularization parameter
µ
BP

= µ
BPDN

−1.

The Lagrangian formulation of BP and BPDN - called LASSO - was originally intended as a sta-
tistical tool, which naturally selects a subset of variables of strongest effect and therefore rather
proposed as a regression program for over-determined system of equations.

3.1. Generalization

A matrix D of arbitrary shape and structure was added to the penalty term by Ryan Tibshirani [TT11].
He named the new program generalized LASSO. Throughout the whole text we assume the matrixD to
be quadratic and non-singular. This severe constraint actually means that the generalized LASSO could
be considered as the plain LASSO program

min
x
‖y −Ax‖22 + µ‖Dx︸︷︷︸

x̃

‖1 = min
x̃
‖y −AD−1x̃‖22 + µ‖x̃‖1 . (3.2)

As most of the approaches in this thesis are inspired by the work of Ryan Tibshirani, we keep the name
generalized LASSO.
Our workhorse to solve (P0) is the following (still non-convex) constrained generalized LASSO problem

x`1 = argmin
x

(
min
µ>0

(
‖y −Ax‖22 + µ‖Dx‖1

))

subject to ‖x‖0 ≤ s . (P2)

The zero norm of the generalized LASSO is piecewise constant as illustrated in Figure 3.1 so that the
constraint of (P2) is translated to a regularization parameter interval
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3. Generalized LASSO
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Figure 3.1.: The number of active indices as a function of the regularization parameter µ. The active set
changes at candidate points µ∗i and is constant in between. The red circles indicate excellent
regularization parameter µi for an active set size i.

x`1 = argmin
x

(
min
µ>0

(
‖y −Ax‖22 + µ‖Dx‖1

))

subject to µ∗(s+1) < µ < µ∗s , (P2’)

which yields an unconstrained generalized LASSO problem if the regularization parameter would be
known

x`1 = argmin
x
‖y −Ax‖22 + (1 + ε)µ∗(s+1)

︸ ︷︷ ︸
µ

‖Dx‖1 . (P2”)

Consequently, the aim of the current and the following chapter is to motivate and derive the regulariza-
tion parameter estimator. The dual problem of the generalized LASSO will be our tool of choice.

3.2. Lagrangian and Dual Problem

The discussion of the dual problem follows the notation introduced in [BV04]. A primal complex-valued
convex problem in standard form reads

min
x
f0(x) (3.3)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , q ,

with a convex objective function f0 : CM → R, convex inequality constraint fi : CM → R and affine
equality constraints hj : CM → C. The primal problem (P2”) does not have any constraint but pursuing
as in [TT11], we introduce trivial equality constraints

min
x,z

(
‖y −Ax‖22 + µ‖z‖1

)
subject to z = Dx . (3.4)

The real Lagrangian to the standard form is formulated via Lagrangian multipliers
{
ui ∈ R

∣∣ui ≥ 0
}

and
vi ∈ C

L(x,u,v) = f0(x) +

m∑

i=1

uifi(x) + Re




q∑

j=1

vjhj(x)


 . (3.5)
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3.2. Lagrangian and Dual Problem

The Lagrangian to (P2”) develops into

L(x, z,u) = ‖y −Ax‖22 + µ‖z‖1 + Re
[
uH(Dx− z)

]
= L1(x,u) + L2(z,u) . (3.6)

Note that the Lagrangian is a sum of two Lagrangians, the first depending on the primal vector x and
the dual vector u and the second on the dual vector and our auxiliary vector z only.
The dual function is defined as infimum of the Lagrangian over the primal variables

g(u,v) = inf
x
L(x,u,v) . (3.7)

For the generalized LASSO we have to distinguish between two cases. The dual function is only un-
bounded below if the elements of the dual vector are bounded and within a subspace ofA given by the
basis U . The next sub-section will be devoted to the derivation of the dual function

g(u) =





yHy − ‖AA+y − 1
2 (AH)+DHu‖22 if ‖u‖∞ ≤ µ and (DU)Hu = 0,

−∞ otherwise .

(3.8)

As the Lagrangian multipliers of the inequality constraints are non-negative, the maximum of the dual
function, i.e., the dual problem, is always less or equal to the minimum of the primal problem.

max
u,v

g(u,v)
{
≤ min

x
f0(x)

}
(3.9)

subject to ui ≥ 0, i = 1, . . . ,m

Our primal problem is unconstrained (we only introduced trivial constraints), therefore strong duality
holds. Strong duality implies the equality of the objective function value of the primal and dual problem.
Strong duality is a nice property, but is not exploited as we are only interested in the minimizers x,u
and not in the objective function value itself.
The dual problem of the generalized LASSO is hence a magnitude and subspace constraint least squares
(LS) problem

max
u∈CM

yHy − ‖ỹ − D̃H
u‖22 (3.10)

subject to ‖u‖∞ ≤ µ, (3.11)

(DU)Hu = 0, (3.12)

where U is a basis of N (A) and the following abbreviations

D̃ =
1

2
DA+, (3.13)

AA+ = P span(A), (3.14)

ỹ = P span(A) y , (3.15)

were introduced. Projection matrices such as P span(A) are discussed in Appendix B.2.

Derivation of the Dual Function

To derive the dual function, the Lagrangian is minimized over x and z. The Lagrangian partitions
nicely into a x dependent and a z dependent part so that the minimization is done separately. The two

13



3. Generalized LASSO

partitions are
L1(x,u) = ‖y −Ax‖22 + Re

[
uHDx

]
(3.16)

L2(z,u) = µ‖z‖1 − Re[uHz] . (3.17)

Partition L1 is differentiable and the minimizer x̂ is found by differentiation, which gives

DHu = 2AH (y −Ax̂) . (3.18)

If DHu ∈ span(AH), i.e., it is orthogonal to N (A) ⇒ UHDHu = 0, where U is a basis of N (A), the
minimizer solution x̂ derives to

x̂ = A+y + ξ︸ ︷︷ ︸
x̂LS

−1

2
(AHA)+DHu , (3.19)

with ξ ∈ N (A). The first part of L1 gets expanded to

‖y −Ax̂‖22 = ‖y‖22 + ‖Ax̂‖22 − 2 Re[yHAx̂] , (3.20)

and the second part is expressed solely by x̂ using (3.18),

Re
[
(DHu)H x̂

]
= Re

[
2(y −Ax̂)HAx̂

]
= 2 Re

[
yHAx̂

]
− 2‖Ax̂‖22 . (3.21)

Equations (3.20) and (3.21) are summed and x̂ is replaced by (3.19) to arrive at

L1(x̂,u) = ‖y‖22 − ‖Ax̂‖22 = yHy − ‖AA+y − 1

2
(AH)+DHu‖22 = yHy − ‖ỹ − D̃H

u‖22 . (3.22)

To minimize L2 we first write the `1 norm and the inner product as a sum and transform the complex
entries to polar coordinates Re[u∗mzm] = Re[|um| |zm| eiφ]

L2(z,u) = µ‖z‖1 − Re[uHz] =

M∑

m=1

(µ|zm| − Re[u∗mzm]) =

M∑

m=1

(µ− |um| cosφ)︸ ︷︷ ︸
cm≥ 0 ?

|zm| . (3.23)

If all coefficients cm ≥ 0 for all choices zm ∈ C then

inf
z

(
µ‖z‖1 − Re[uHz]

)
= 0, (3.24)

otherwise (3.23) is unbounded below. As cos(φ) is always less or equal to one is suffices that all |um| are
bounded by µ.

3.3. Theorems and Corollaries to the Dual Problem

The following theorem and corollaries are a direct quotation of [MGZ15] and [ZGM15].

3.3.1. Beamforming on the LASSO residuals

Theorem 1. If D is non-singular, the dual vector u is the output of a weighted conventional beamformer acting
on the vector of residuals, i.e.

u = 2D−HAH(y −Ax`1) , (3.25)
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3.3. Theorems and Corollaries to the Dual Problem

where x`1 is such that the box constraint
‖u‖∞ ≤ µ (3.26)

is fulfilled.

Proof. This is derived straight forward from the results of Section 3.2 by knowing that the minimizer of
the Lagrangian x̂ is also the minimizer of (P2”) at a unique Lagrange multiplier u, i.e. x`1 . To facilitate
reading we name the nullspace part xnull

`1
instead of ξ in some latter figures.

3.3.2. Implications of the Active Set on the Dual Vector

Corollary 1. If the mth primal coordinate is active, i.e. x`1,m 6= 0 then the box constraint (3.26) is tight in the
mth dual coordinate. Formally, for any choice of δ > 0

|x`1,m| > δ ⇒ |um| = µ, (m = 1, . . . ,M). (3.27)

Informally, we say that the mth dual coordinate hits the boundary when the mth primal coordinate becomes
active. Conversely, when the bound on |um| is loose (i.e. the constraint on um is inactive), the corresponding
primal variable xm is zero (the mth primal coordinate is inactive). The active setM is

M =
{
m
∣∣ |x`1,m| > δ

}
⊆
{
m
∣∣ |um| = µ

}
= U . (3.28)

Proof. In [MGZ15], Corollary 1 was proven with complex valued sub-gradients. Here, a different longer
but more insightful approach based on the dual problem of the dual problem is presented. We first have
to express the inequality (3.26) in a different fashion

‖u‖∞ ≤ µ⇔ um︸︷︷︸
|um|eiφm

e−iφm − µ ≤ 0, ∀m . (3.29)

We incorporate the explicit constraints of the dual problem into the objective function via the Lagrangian
multipliers λ ∈ RM , λi ≥ 0, ∀i = 1 . . .M and ν ∈ CM

L(u,λ,ν) = yHy − ‖ỹ − D̃H
u‖22 + λH

(
ue−iφ − µ

)
+ Re

{
νH(DU)Hu

}
. (3.30)

The dual problem is concave, thus the dual-dual must solve the Karush-Kuhn-Tucker (KKT) conditions.
We already have "primal feasibility" (here it should be termed dual feasibility) and "dual feasibility"
(dual-dual feasibility). Next the gradient must evaluate to zero

∇uL(u,λ,ν) = 2D̃(ỹ − D̃H
u) + λeiφ + (DU)ν = 0 . (3.31)

Now we write out our abbreviations for D̃ and ỹ to express λ in terms of the remaining components

−λeiφ = 2
1

2
DA+(AA+y − 1

2
(A+)HDHu) + (DU)ν (3.32)

D−1λeiφ = A+AA+
︸ ︷︷ ︸

A+

y − 1

2
A+(A+)H︸ ︷︷ ︸

(AHA)+

DHu+ Uν︸︷︷︸
ξ

(3.33)

D−1λeiφ = A+y + ξ − 1

2
(AHA)+DHu (3.34)

comparing with Equation (3.19)
D−1λeiφ

!
= x̂⇔ λ = D|x̂| , (3.35)
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3. Generalized LASSO

where |x̂| is short for the vector of all magnitudes.
The last missing KKT condition is complementary slackness

λH
(
ue−iφ − µ

)
= 0 (3.36)

|x̂|H
(
ue−iφ − µ

)
= 0 . (3.37)

We are now able to conclude the following statements1

|x̂m| > 0 ⇒ um = µeiφ (3.38)

um < µeiφ ⇒ |x̂m| = 0 . (3.39)

The nullspace part ξ may differ from xnull
`1

but all terms which lie in span(AH) are equal. As there is
always a part of the solution in span(AH), simply because the noise is not zero there, we safely replace
x̂ by x`1 in all conclusions above.

3.3.3. Phase Equality of the Primal and the Dual Solution

Corollary 2. If matrix D is diagonal with real-valued positive diagonal entries, then the phase angles of the
corresponding entries of the dual and primal solution vectors are equal.

arg(um) = arg(x`1,m), ∀m ∈M (3.40)

Proof. The objective function of the complex-valued generalized LASSO problem (P2”) is assigned to
the symbol f0

f0(x) = ‖y −Ax‖22 + µ‖Dx‖1 . (3.41)

The subderivative ∂f0(x) as introduced in [Ber99] is the set of all subgradients g. [BST12] extended this
concept to complex valued functions by use of Wirtinger’s calculus. A vector g is said to be subgradient
at x0 if the inequality

f0(x) ≥ f0(x0) + gH (x− x0) , (3.42)

is fulfilled. A subgradient equals the gradient if f0(x) is differentiable at x and exists even if the function
f0 is not differentiable at x0; g is not unique then. With this definition the subderivate is written as

∂f0(x0) =
{
g
∣∣f0(x) ≥ f0(x0) + gH (x− x0)

}
. (3.43)

The subderivative for the LASSO objective function is thus expressible as

∂f0(x) = − 2AH(y −Ax)︸ ︷︷ ︸
DHu

+µ∂‖Dx‖1 . (3.44)

Next, with the restrictions for D - diagonal matrix with positive real-valued diagonal entries - the sub-
derivative of the penalty term becomes

∂‖Dx‖1 =





Dmm
xm
|xm| for Dmmxm 6= 0

{z ∈ C, |z| ≤ 1} for Dmmxm = 0 .

(3.45)

1Unfortunately, the very useful statement |um| = µ⇒ |x̂m| > 0 cannot be concluded this way!
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3.4. Systematic Error of the `1 Relaxation

The minimality condition for f0(x) is equivalent to setting (3.44) to zero. For all m with Dmmxm 6= 0 it
follows that

D∗mm
um
µ

= Dmm
xm
|xm|

. (3.46)

Corollary 1 allows us to replace µ by |um| at the active set, and in the last step we cancel Dmm = D∗mm

um
|um|

=
xm
|xm|

. (3.47)

This also proves Corollary 1 as the right hand side of (3.47) has unit magnitude after cancelling Dmm. It
readily follows that |um| = µ.

3.3.4. Linearity in the Regularization Parameter

Corollary 3. The primal and the dual solutions to the complex-valued generalized LASSO problem are continuous
and piecewise linear in the regularization parameter µ > 0. The changes in slope occur at those values for µ where
the set of active indicesM changes.

Proof. This corollary has been proven for various assumptions in different works, please have a look
into Appendix B in [MGZ15] and the references therein.

3.4. Systematic Error of the `1 Relaxation

The solution of the generalized LASSO is known up to the nullspace part xnull
`1

which does not affect the
objective function’s value of (P0) or the `2 part of the LASSO objective function, the nullspace component
enters via the `1 penalty only. Next we assume that the problems (P0) and (P2) yield the same sparsity
patternM and look at the difference of the solution vectors x`0 and x`1 .
The gradient of (P0) at the active set must be the zero vector

(
∇‖y −Ax`0‖22

)
M

= −2AH
M (y −AMx`0,M) = 0 . (3.48)

For (P2”) the right hand side of (3.48) cannot be zero as it is known from Theorem 1 to be the scaled dual
variable

2AH
M (y −AMx`1,M) = DH

MuM , (3.49)

and Corollary 1 asserts the value of the dual variable at the active set

2AH
M (y −AMx`1,M) = DH

Mµe
jθM . (3.50)

To express this discrepancy we set
x`0,M = x`1,M + ∆ , (3.51)

and use (3.48) to arrive at

2AH
M (y −AM (x`0,M −∆)) = DH

Mµe
jθM (3.52)

2AH
MAM∆ = µDH

Me
jθM (3.53)

17



3. Generalized LASSO

The systematic error (in the span of A) of the `0 and `1 solution is thus a function of the regularization
parameter µ, the dictionaryA and the generalization matrixD

∆ =
µ

2

(
AH
MAM

)−1

DH
Me

jθM . (3.54)

Figure 3.2.: Constructive summation of the solution parts. The least norm solution together with the
nullspace part form a least squares solution which is deteriorated by the last part containing
the dual vector. The last part in red explains the systematic error between (P0) and (P2”).
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Figure 3.3.: Solution parts for a DOA problem. The minimum norm solution in black is able to resolve
all sources but suffers from the high sidelobe levels, where other sources could hide. The
nullspace illustrated in blue gives the minimization enough degrees of freedom to produce
a sparse solution, as it sums destructively outside the active set and constructively within.

Figure 3.2 illustrates the individual parts of x`1 = A+y + xnull
`1
− 1

2 (AHA)+DHu. A+y is the mini-
mum norm solution of the under-determined system of equations which is generally non-sparse. The
nullspace gives the necessary degrees of freedom to generate a sparse solution, which corresponds to
the intersection of the line y = Ax with the x or y axis. Both intersection points are valid solutions for
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3.5. Beampattern of the Dual Vector

(P0) but for (P2”) only an intersection with the y axis is a possible solution as the `1 norm solution is at a
minimum there. Due to the inherent ∆ term the amplitude of the `1 solution is a shrunk version of the
true solution. Figure 3.3 shows the magnitude of the solution parts for a DOA estimation problem. The
true (`0) solution is marked with circles. At the active set, the three summands add up constructively
and destructively outside. The minimum norm solution is obviously non-sparse and the blue spikes of
the nullspace solution part indicate already, that the sparsity originates from the nullspace.

Reduction of the Systematic Error

Equation (3.54) reveals possible countermeasures against the systematic error:

µ A lower regularization parameter leads to a lower systematic error, therefore an additional
minimization over µ was included in our "workhorse" (P2).

AH
MAM In case we allow for dictionary learning, e.g., a sensor sub-set selection of a larger ULA, the

coherence of the sources can be minimized. We do not consider this option and stay with the
30 sensor ULA.

DM If the generalization matrix elements Dmm are close to zero for m ∈ M the systematic error
disappears. But the "prior" knowledge of the active set is not obtained by running the LASSO
program once. One either has to iterate [CWB08] with the same measurements or one has to
take observations sequentially on static sources [Mec+13; ZGM15].

Item 1 is automatically fulfilled by the construction of our problem, but item 2 and 3 are either not
possible or often not considered. Another way to reduce the systematic error is to assume the active set
obtained by (P2”) and (P0) is equal and use the columns associated with the active set to perform a LS
regression

x`0 = A+
My . (3.55)

3.5. Beampattern of the Dual Vector

For the next sections, we use a dictionary with M = 81 hypothetical source locations θm ∈ [−20◦, 20◦]

with 0.5◦ spacing. Theorem 1 and Corollary 1 allow now a marvellous physical interpretation of the so-
lution to the dual problem - the dual vector. Without technical proofs we realize the improved resolution
capabilities of LASSO over conventional beamforming by inspection of the dual vector’s beampattern.
Figure 3.4 depicts beampatterns of the dual vector, where subfigure a) starts by a large regularization
parameter µ which is decreased until we find all sources as they are given in in Table 3.1 .

No. DOA (◦) Power (lin.)
1 −6.0 4.0
2 −1.0 7.0
3 4.0 9.0
4 9.0 7.0
5 14.0 12.0
6 19.0 5.0

Table 3.1.: Source parameters for the first simulation scenario.

The different sub-figures of Figure 3.4 show:
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a) µ > ‖2D−HAHy‖∞: The box constraint (3.26) is without action and the solution u = 2D−HAHy

gives the maximum dual objective value as

yHy − ‖ỹ − D̃H
u‖22 = yHy − ‖AA+y − 1

2
(A+)HDH2D−HAH

︸ ︷︷ ︸
(A+)HAH=(AA+)H=AA+

y‖22 = yHy . (3.56)

Clearly this implies that x`1 ≡ 0. The dual vector is the output of a re-weighted (D) matched filter
(MF). By the maxima of this re-weighted MF one could already guess the directions of 3 sources
which amounts basically to the resolution capability of conventional beam forming, i.e., matched
filtering.

b) By Corollary 1 we know that it is necessary that an entry of the dual vector hits the boundary
(its magnitude becomes µ) to get a primal coordinate active. The primal coordinate starts to grow
from 0 and if µ→ 0 its magnitude is no longer a shrunk version. Its limiting value is calculated by
the LS regression on the dictionary consisting of the steering vectors of the active bins x`0 = A+

My

.

c) By lowering the regularization parameter more and more, the beampattern of the re-weighted MF
and the dual vector start to disagree. A strong source has not more impact on the dual vector
beampattern than a weak source as the contributions are limited by µ. This explains the improved
resolution.

d-e) More and more sources get active till

f) finally all six sources are detected.

The circles around the true DOA are a graphical representation of the offset regions due to coherence.
Remember, anything within this region is a valid solution.

3.6. Solution Path

The foregoing discussion is now treated more formally. As already mentioned, LASSO was initially
proposed as a statistical tool for variable selection. In that sense statisticians plot solution paths to
depict the magnitude of all elements of the solution vector (both the primal and the dual) as a function
of the regularization parameter µ. For the real valued LASSO, the piece-wise linearity as shown in
Corollary 3 is used to formulate an efficient algorithm for producing the solution path [Efr+04]. For the
real valued generalized LASSO a solution path generating algorithm was formulated in the dual domain
[TT11]. For the complex valued (weighted) LASSO (D is a real, positive and diagonal matrix) a solution
path algorithm in the primal domain is formulated in [PV12] and [Mec+13]. For the following figures
the solution path was generated by individual LASSO runs for each µ. We are showing the magnitude
of the dual and primal vector only, as Corollary 2 assures the equality of the phases anyway.

3.6.1. Over-determined Case

For the first illustration of a solution path we reduce the size of the dictionaryA such that we keep only
the steering vectors corresponding to sources. The dictionary is thus over-determined A ∈ C30×6 and
the solution vector x`1 has just six entries which makes Figure 3.5 clearly laid out.
Although six sources are active all the time, depending on the chosen µ, some of the weaker sources
are forced to zero, thus LASSO selects those sources of largest impact. The shrinkage as an inherent
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Figure 3.4.: Scaled beampattern of the conventional beamformer (spatial matched filter) 2D−HAHy
compared to the dual vector for different regularization parameter µ (a-f) at 30dB SNR. The
dual vector starts to differ from the conventional beamformer as the first source gets active.
As the impact of the stronger sources is limited weaker sources are detectable as depicted in
the last sub-figure f).
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3. Generalized LASSO
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Figure 3.5.: Solution path of an over-determined system of equations at 40dB SNR. The bound |um| < µ
is shown with the dashed black line.

problem of LASSO is also well depicted, as the source magnitude raises till its true value at µ→ 0 (which
amounts to plain LS). The black vertical bars illustrate Corollary 1, as for each active primal coordinate
the corresponding dual coordinate is on the boundary. From Figure 3.5 we motivate the procedure for
the regularization parameter selection (introduced in the next chapter). Before the first source becomes
active the entries of the dual vector are constant and given by 2D−HAHy, the maximum of these entries
will hit the boundary µ first and the corresponding entry of the primal vector is non-zero, i.e. active.
From that µ level on, the magnitudes of u vary with µ, but one may already guess when the next dual
entry hits the boundary.

3.6.2. Under-determined Case

The solution path of the over-determined system of equations was simple and intuitive. Now we are
interested in under-determined systems of equations. We use the same dictionary as in the beampattern
section (A ∈ C30×81). Instead of plotting all 81 entries of the primal and dual solution vector, we restrict
the solution path to the source coordinates. The two top sub-figures of Figure 3.6 are showing the same
parameters as Figure 3.5. The top sub-figure showing the dual variable seems to be identical to the over-
determined case and pretty robust to noise, cf. the right top sub-figure at higher noise level. The second
sub-figure from the top needs a more careful explanation. At the first glance it seems that the kinks
of the primal variable do not coincide with the hitting times of the dual variable, therefore violating
Corollary 3, which states that the changes of the slope occur whenever the active set changes. In fact,
at each kink the set of non-zero entries in x changes. As mentioned in Section 2.4.2, due to the high
coherence there is an offset region around the true DOA and any outcome within this offset region is a
valid solution. Figure 3.4f) shows that there could be more than one active bin within that region and
that there is a trade-off between the power of the bins. If the primal entries within the offset region
are summed coherently, the energy is conserved, and the equivalent magnitude xengergy ∝ ‖AOx`1,O‖2
rises linearly as in Figure 3.5, cf. the second sub-figure from below. The bottom sub-figure shows the
`0 solution - the regression with the restricted dictionary AM - which is much more robust in terms of
coherence.
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Figure 3.6.: Solution paths of 10 realizations of an under-determined system of equations at 40dB and
20dB SNR. The dual vector at the corresponding source positions is fairly robust to noise
and coherence. Quite the contrary to the dual vector is the primal solution which is effected
strongly by the offset regions (2.18). The "energy detector" is a reasonable workaround for
illustration purposes.
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4. Procedures

The active set of the LASSO solution is constant on an µ interval and the `0 norm changes at certain
µ∗i, the candidate points [PV12]. The superscript i denotes the sparsity degree for µ∗i ≥ µ > µ∗(i+1).
The i − µ curve therefore looks staircase-shaped, cf. Figure 3.1. The aim of this chapter is to derive a
procedure which estimates the candidate points based on the insights given by Theorem 1 and Corol-
lary 1. Although there are (fast) approaches like [PV12; Mec+13], our approach uses an approximation
to save computational complexity significantly. The coarsest approximation runs a MF once and uses
that output for regularization parameter prediction/estimation.

4.1. Approximations

From Theorem 1 we know that the magnitude of the entries of the dual vector are bounded by the
regularization parameter and furthermore we know that the dual vector’s shape is formed essentially
by the conjugate transposed dictionary AH , i.e., "beamforming on the residuals". Corollary 1 tells us
that there are at least |M| entries in the dual vector with magnitude µ at those entries where the source
magnitudes are active (|xm| > δ).
In other words, we expect to see a peak, formed byAH , of height µ, for each active source. We define
the peak(u, p) function which returns the pth largest local peak in magnitude of the vector u equally to
MATLAB’s implementation [MAT13]

PKS = findpeaks(X) finds local peaks in the data vector X. A local peak is defined as a data sample
which is either larger than the two neighboring samples or is equal to Inf.

Consequently, if two sources have at least one bin between each other (otherwise the definition of a local
peak is not fulfilled) the following fix point equation holds true

µi = peak
(∣∣u(µi)

∣∣, i
)

= peak
(
u(µi), i

)
. (4.1)

Equation (4.1) states that the ith local peak of the dual vector, with µ∗i ≥ µi > µ∗(i+1) , has magnitude
µi. This kind of fix point equations are unhandy as we need a lot of LASSO runs for convergence.

The approximations of this section are motivated by the following expansion of the dual vector
for a possible new source position n

un(µi) =
2

D∗n,n
aHn
(
y −Ax`1(µi)

)
=

2

D∗n,n
aHn

(
y −

∑

m∈Mi

amx`1,m(µi)

)
(4.2)

|aHn am|�1
≈ 2

D∗n,n
aHn

(
y −

∑

m∈Mi−1

amx`1,m(µi−1)

)
order-rec. procedure (4.3)

aHn am≈0
≈ 2

D∗n,n
aHn y fast procedure (4.4)
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4. Procedures

An example showing the coherence AHA was depicted in Figure 2.2. For certain DOAs the coherence
aHn am is zero or very small. This is very fortunate as amx`1,m(µi) has little impact on un then and the
chosen regularization parameter µ has no or little influence on the magnitude of un; we replace x`1,m(µi)

by x`1,m(µi−1). From (4.3) we conclude for weakly coherent sources

µi = peak(u(µi), i) ≈ peak(u(µi−1), i) . (4.5)

Through Equation (4.5) we have found a rule for predicting µi, the regularization parameter such that
u has i peaks of magnitude µi. Remember, this is the necessary condition to find i active sources.
In fact, the approximation in (4.3) or better in (4.4) is always perfect for the first active source as
x`1 (µ > 2D−HAHy) ≡ 0 and the candidate point estimate for two active sources is obtained from
µ2 = peak(u(µ = ‖2D−HAHy‖∞), 2) . By developing this idea further, we obtain the order recur-
sive procedure, which produces all order solutions p = |M| up to the desired sparsity degree s. This
procedure is actually "OMP like" as it adds one source per iteration, but as a key difference, the active
indices may change from iteration to iteration.
What happens to u if all sources are incoherent? We could have predicted the ith level of the peaks in
u from the re-weighted matched filter µi ≈ peak(2D−HAHy, i) as indicated in (4.4). This amounts to
a really computationally cheap matrix multiplication. Indeed it is identified as a very delicate approxi-
mation of the dual vector

µi ≈ peak(u(µi−1), i) ≈ peak(u(µi−1), i) ≈ · · · ≈ peak(u(µ > 2D−HAHy), i) = peak(2D−HAHy, i) . (4.6)

Maybe we do not end up with the desired sparsity level and need to iterate some steps, but overall this
approach is much faster if we are not interested in all order solutions p. Anything in between, e.g. to
predict based on u(µ2) the regularization parameter to obtain four active sources, i.e., µ4, could also be
considered. To stick to the metaphor from before, this faster approach is "CoSaMP like".

4.2. Order Recursive Procedure

As already mentioned, the order recursive procedure proposed in this section can be intuitively under-
stood as a kind of "high coherence OMP". Instead of choosing the index with highest correlation to the
dictionary, we run LASSO (at a specific µ level) to detect the active set. The main advantage is simply a
possible change of the active set from order to order. A toy-example is the case of two nearby impinging
sources which are seen as a strong joint source for p = 1 and as two separated sources for p = 2.

Figure 4.1 shows the signal flow chart of the algorithm described in Table 4.1. Based on the beamformer
on the residuals, i.e., the dual vector, the regularization parameter is estimated according to the approx-
imation (4.3) and passed to the generalized LASSO.
If the generalized LASSO is solved via primal-dual interior point methods [Wri97], the dual variable
comes at no computationally cost directly from the solver and is used for the estimation of the next or-
der regularization parameter. This feedback path is represented by a dotted line. In case the generalized
LASSO solver does not provide the dual vector, we need to evoke Theorem 1 and use the primal vector
to calculate the vector of residuals r.
From the LASSO’s solution the active set is determined such that small spurious peaks are ignored.
Depending on the size of the active set

• the peaksearcher must adopt µ to get another peak in u as the active set is still too low - a peak of
the dual vector does not belong to an active source.
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Figure 4.1.: Signal flow diagram for the primal based procedures. The main difference between the order
recursive and the fast procedure is hidden inside the bold framed peaksearcher.

• the regularization is bisected as there are too many sources (this case is not shown in Table 4.1).

• the x`0 solution is calculated by a regression on the restricted dictionaryAM .

The informal description of the order recursive procedure is now formalized in Table 4.1.

Given: A ∈ CN×M ,D ∈ diagRM , y ∈ CN
Given: s ∈ N , F ∈]0, 1[.

1: Initialize i = 0, p = 1, x0
`1

= 0, u0 = 2D−HAHy

2: while p < s
i = i+ 1

3: µi = (1− F ) peak
(
ui−1, i

)
+ F peak

(
ui−1, i+ 1

)

4a: xi`1 = solution to LASSO problem for A,D,y, µ = µi

4b ui = 2D−HAH
(
y −Axi`1

)

5: Mi = {m
∣∣∣ |xi`1,m| > δi}, δi = ε‖xi`1‖∞

6: if |Mi| < p
7: i = i+ 1
8: else
9: xp`0 = A+

Mi
y

10: Mp =Mi

11: p = p+ 1
12: end

13: end

Output: xp`0 ,Mp ∀p = 1 . . . s

Table 4.1.: Order recursive procedure to approximate (P2”).

line 1 The procedure starts with the initialization of the loop-counter i, the peak-counter p and the
residual vector r = y.

line 2 As long as the desired sparsity degree is not reached we keep iterating and count up the loop-
counter i.

line 3 The approximation of Section 4.1 is now used to choose the ith regularization parameter as con-
vex combination of the estimated candidate points of i and i + 1 sources active and is traded
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4. Procedures

off by the parameter 0 < F < 1. F � 1 means that the µ is chosen higher as needed and the
systematic error/shrinkage is bigger than necessary. F � 0 means we may risk to lower µ too
fast and get two additional sources active. For the simulations we have chosen F = 0.9.

line 4 The solution of the generalized LASSO is now used to calculate the dual vector for the next
iteration (as already mentioned, this is omitted for primal-dual interior point methods).

line 5 The active set is determined and the threshold δ is chosen such that numerical artefacts (small
spurious peaks) are not considered as an active source.

line 6 Based on the size of the active set, the procedure branches off.

line 7 If the cardinality of the active set is less than the current output order p, the regularization pa-
rameter estimator searches for the next peak in u (µ is decreased).

line 8 If the cardinality equals the intended order the output variables (line 9, line 10) are generated.

line 11 Finally, the procedure aims for the next order solution and p is counted up.

The effectiveness of the proposed procedure is demonstrated on a synthetic example with eight sources
at direction and powers given in Table 4.2. The noise is zero-mean complex-valued circularly symmet-
rically normally distributed, i.e., n ∼ CN (0, I).

No. DOA+90 (◦) Power (dB)
1 45 -5
2 60 10
3 76 5
4 99 0
5 107 11
6 120 12
7 134 9
8 162 25

Table 4.2.: Source parameters for the second simulation scenario.

4.3. Fast Procedure

The main drawback of the order recursive method is its run time. It needs at least s LASSO runs to
converge. We use the same idea as in CoSaMP [NT09], to add more active indices at a time and risk an
imprecise regularization parameter estimation. The approximation (4.4) allows us to predict to regular-
ization parameter for the sth order already without any LASSO run, simply by looking at the peak levels
of the re-weighted matched filter. As mentioned above, if the sources are coherent the first estimated
µ may produce the wrong sparsity order. If the order is too low, the dual vector is used for the next
improved estimation. If the order is too high, bisection is used until the desired sparsity order is met.
The signal flow diagram is still equal to Figure 4.1 since entire knowledge is hidden in the µ - estima-
tor / peaksearcher. The runtime of the algorithm is hard to forecast well, but simulations have shown a
speed-up factor of approximately three. The new procedure is formulated in Table 4.3.
The main differences is shown in the following line:

line 3 We try to find the regularization parameter µ such that we obtain the desired sparsity level s in
one shot. The initial u = 2D−HAHy is very likely produce a wrong sparsity order. On that
account we make the next, more precise, µ estimate based on the dual vector u .
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4.4. Fully Dual Approach
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Figure 4.2.: Dual vector for order-recursive approach corresponding to step p = 1 (a and b), p = 2 (c
and d), and p = 8 (e and f). Left column: Dual (dB) for the previous step which is used for
predicting µ (horizontal line). Right column: Dual (lin) normalized with µ (maximum is 1),
the true source locations are marked with ◦, and the actual value of µ and number of sources
found is also indicated.

4.4. Fully Dual Approach

Equation (3.28) of Corollary 1 states that searching for peaks in the dual vector amounts to a relaxation
of the active set (M⊆ U). Primal active entries enforce the bound on the corresponding dual entry to be
tight, but the opposite must not hold true. The equality |um| = µ is only a necessary condition for xm to
be in the active set. Despite this fact, we chose µ such that there is a new peak in u in each iteration (as
before), but check with regression on the relaxed set U whether the peak belongs to a true active source
or not.
At this point it may appear ill-advised to solve the relaxed problem as no gains are visible. The fully dual
formulation for the LASSO is of academic interest only, but for grid-free DOA estimation, e.g. [Tan+13],
where no discritization of the angular space takes place, the dimensions of the primal problem are
infinite while the dimension of the dual problem are still bounded. It is essential to formulate a similar
procedure then.
Both primal-based procedures are re-formulable to work fully in the dual domain. In this thesis only
the fast procedure is repeated and the key steps of the procedure given in Table 4.4 are:

line 3 Find the regularization parameter exactly as in the primal procedure.

line 4 Solve the dual problem to the generalized LASSO.

line 5 Find the peaks of magnitude µ within a reasonable numerical precision.

line 6 Perform the LS regression with the columns indexed by U and check if all indices after the regres-
sion are really active.
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4. Procedures

Given: A ∈ CN×M ,D ∈ diagRM , y ∈ CN
Given: s ∈ N , F ∈]0, 1[

1: Initialize i = 0, x0
`1

= 0, u0 = 2D−HAHy

2: while |Mi| < s
i = i+ 1

3: µi = (1− F ) peak
(
ui−1, s

)
+ F peak

(
ui−1, s+ 1

)

4a: xi`1 = solution to LASSO problem for A,D,y, µ = µi

4b ui = 2D−HAH
(
y −Axi`1

)

5: Mi = {m
∣∣∣ |xi`1,m| > δi}, δi = ε‖xi`1‖∞

6: end

7: xs`0 = A+
Mi
y

8: Ms =Mi

Output: xs`0 ,Ms

Table 4.3.: Fast iterative primal-based procedure to approximate (P2”).
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Figure 4.3.: Dual vector for the fast iterative approach for localizing s = 8 sources for step i = 1 (a and
b), i = 2 (c and d), and i = 3 (e and f). Left column: Dual (dB) for the previous step which is
used for selecting µ (horizontal line). Right column: Dual (lin) normalized with µ (maximum
is 1), the true source locations are marked with ◦, and the actual value of µ and number of
sources found is also indicated.
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Figure 4.4.: Signal flow diagram for the fully dual procedure. The size of the active set is determined
from the regression on the relaxed active set U , so that a pseudo-inverse must be calculated
each iteration.

Given: A ∈ CN×M ,D ∈ diagRM , y ∈ CN
Given: s ∈ N , F ∈]0, 1[

1: Initialize i = 0, u0 = 2D−HAHy

2: while |Mi| < s
i = i+ 1

3: µi = (1− F ) peak
(
ui−1, s

)
+ F peak

(
ui−1, s+ 1

)

4: ui = solution to dual problem for A,D,y, µ = µi

5: Ui = {m
∣∣∣ 1− |u

i
m|
µ < εµ}

6a: xi`0 = A+
Uiy

6b: Mi = {m
∣∣∣ |xi`0,m| > δi}, δi = ε‖xi`0‖∞

7: end

8: xs`0 = A+
Mi
y

9: Ms =Mi

Output: xs`0 ,Ms

Table 4.4.: Iterative dual-based procedure to approximate (P2”).
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5. Sequential Bayesian Estimation

This chapter will be published at the 3rd Workshop on Compressed Sensing Theory and its Applications to
Radar, Sonar and Remote Sensing [ZGM15] and is presented in a more or less unchanged fashion. At some
points more detailed explanations and derivations are added.
The sparse Kalman filters of Namrata Vaswani [Vas09; Vas10] are well performing algorithms which
were not derived by optimality conditions and run CS algorithms on the LS or Kalman filtered residuals,
cf. Section A.3. Our approach is likewise not deduced by optimality but it was titled density evolution
to emphasise the physical motivation behind.

5.1. Bayesian Inference

For the observation y according to the linear model (2.4), the conditional probability density given the
source vector x is

p(y|x) =
exp

(
− 1
σ2 ‖y −Ax‖22

)

(πσ2)N
. (5.1)

For the source vector x, a prior probability density is assumed in form of a multivariate complex
Laplace-like density [He+07],

p(x) =

M∏

m=1

pm(xm), with pm(x) =
(λm)2

2π
e−λm|xm| , (5.2)

with associated hyperparameters λm > 0 modelling the source signal strength at location θm. xm =

|xm|ejφm is the complex source signal at hypothetical source location θm. Note that (5.2) defines the joint
distribution for |xm| and φm with the phases uniformly distributed on [0, 2π), for m = 1, . . . ,M . The
prior mean and variances are

E{x} = 0, E{xxH} = 6 diag
(
λ−2

1 , . . . , λ−2
M

)
. (5.3)

The covariance factor seems unfamiliar but follows directly from a polar coordinate transformation
xm = reiϕ and integration over r from 0 to∞ and ϕ from −π to π

E{|xm|2} =

π∫

−π

1

2π
dϕ

︸ ︷︷ ︸
1

∞∫

0

r2 λ2
m e−λmr r dr =

6

λ2
m

. (5.4)

Taking the logarithm of (5.2) gives

− ln p(x) =

M∑

m=1

λm|xm| − 2

M∑

m=1

lnλm +M ln 2π . (5.5)
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5. Sequential Bayesian Estimation

input generalized
LASSO

update
step

z−1

prediction
step

outputs

y[k] u[k]

x`1 [k]

λ[k|k]

w[k + 1] λ[k + 1]

Figure 5.1.: Signal flow diagram for sequential Bayesian estimation at step k. The generalized LASSO
is implemented according (4.3). The update step is based on a mean fit of the posterior
distribution and the prediction step utilizes a diffusion-like motion model.

For the posterior probability density function (pdf) p(x|y), Bayes’ rule is used for obtaining the general-
ized LASSO Lagrangian [TT11; Mec+13]

1

σ2
‖y −Ax‖22 + µ ‖Wx‖1 , (5.6)

with the weights 0 < wm ≤ 1

W =
1

µ
diag(λ) = diag(w) . (5.7)

Equivalently to (5.6), this is reformulated as

‖y −Ax‖22 + µ ‖Dx‖1 , (5.8)

with
D = σ2W . (5.9)

The minimization of (5.8) constitutes a strictly convex optimization problem. Minimizing the general-
ized LASSO Lagrangian (5.8) with respect to x for given µ, and w = (w1, . . . , wM )T , λ = µw, gives a
sparse MAP source estimate x`1 . This minimization problem promotes sparse solutions in which the `1
constraint is weighted by giving every source amplitude its own hyperparameter wm.

5.2. Sequential Estimation

[Mec+13] proposed and analysed a sequential Bayesian sparse source reconstruction which is now in-
terpretable as solving both the generalized LASSO problem (3.4) and its dual (3.10)–(3.12) at step k.
Remember, the dependency of time is denoted explicitly in all relevant variables, e.g. y[k] to denote the
data at step k.
First, the history of all previous array observations is summarized in Y [k − 1] = (y[1], . . . ,y[k − 1]).
Given the history Y [k − 1] and the new data y[k], we seek the MAP source estimate x`1 [k] for the linear
model (2.4) at step k under the `1–constraint.

5.2.1. Update Step

In [Mec+13] two approximations were introduced in order to relate the (non-Laplace-like) posterior
weight vector λ[k|k] to the prior weight vector λ[k] in (5.2). By means of Theorem 1 and Corollary 1,
both approximations for the posterior weight vector are expressible by the dual solution.
The preferable approximation, based on a mean fit, leads to following relation between posterior and
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5.2. Sequential Estimation

prior weight vector in the complement of the active set

λm[k|k] = λm[k]

(
1−

∣∣aHm 2
σ2 (y[k]−Ax`1)

∣∣2

λ2
m[k]

)
∀m 6∈ M[k], (5.10)

and in the active set the posterior weight vector must be zero

λm[k|k] = 0, ∀m ∈M[k] . (5.11)

By Theorem 1 we express the numerator of (5.10) by the dual vector u and the weights w. Corollary 1
links Equations (5.10) and (5.11), as (5.10) is zero for |um| = µ.

Theorem 2. With the mean fit approximation, the posterior weight vector λ[k|k] is related to the prior weight
vector λ[k] by the dual solution u[k] at step k,

λm[k|k] = λm[k]

(
1− |um[k]|2

µ2[k]

)
. (5.12)

Due to Theorem 1 and Corollary 1, µ is equal to the max-norm of u and Theorem 2 is expressible solely by the dual
vector u

λm[k|k] = λm[k]

(
1− |um[k]|2
‖u[k]‖2∞

)
. (5.13)

Equation (5.13) shows that the dual coordinate equals µ and the posterior weights become zero at source
positions m ∈ M. Outside the active set, the probability of finding a source depends on the relative
sidelobe power level of the beamformer of the LASSO residuals, cf. Theorem 1.

5.2.2. Prediction Step

In sequential estimation, typically the prior for the upcoming step k + 1 is calculated from the current
posterior and a state-transition probability density function (“motion model”). In a Markovian stochas-
tic framework this is based on the Chapman-Kolmogorov equation [RAG04]. For Brownian motion
the state-transition probability density satisfies the diffusion equation. Our prediction step is therefore
based on a diffusion model. Where diffusion occurs just in the neighbourhood of active sources.

Neighborhood of an active source

The index neighborhood of m is denoted asNm = {j
∣∣ m− l, . . . ,m+ l}. If any λj [k|k] ∈ Nm is less than

the threshold λ0 then a source is active in the neighborhood of m with high probability.
The motion model is defined via complementary cumulative distribution functions (ccdf) of the neigh-
borhood magnitudes,

P

{
|xm[k + 1]| > δ

∣∣∣∣x[k]

}
=

l∑

j=−l
αj P {|xm+j [k]| > δ} , (5.14)
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5. Sequential Bayesian Estimation

with non-negative coefficients αj and
∑
j αj = 1. The ccdf, after a polar coordinate transformation

xm = rme
iϕm , evaluates to

P

{
|xm[k + 1]| > δ

∣∣∣∣x[k]

}
=

l∑

j=−l
αj

π∫

−π

dϕ
m+j

2π

∞∫

δ

λ2
m+j

[k|k]e−λm+j
[k|k]r

m+j r
m+j

dr
m+j

=

l∑

j=−l
αj (λm+j [k|k] δ + 1) e−λm+j [k|k] δ ,

and by taking the negative derivative w.r.t. δ, we obtain the magnitude’s probability density

− ∂

∂δ
P

{
|xm[k + 1]| > δ

∣∣∣∣x[k]

}
= 2πδ

l∑

j=−l
αj

(λm+j [k|k])2

2π
e−λm+j [k|k] δ , (5.15)

which is a mixture of Erlang-2 distributions with variances 2(λm+j [k|k])−2, cf. Eq. (5.2).
We approximate the mixture by a Laplace-like density of the form (5.2). We choose to fit the variance of
the Laplace-like density such that

1

(λm[k + 1])2
=

l∑

j=−l
αj

1

(λm+j [k|k])
2 . (5.16)

We note that (5.16) is ill-behaved whenever a posterior weight λm+j [k|k] = 0. In this case, a small offset
ε > 0 is added to stabilize (5.16) numerically. The predicted λ[k + 1] is the product of the regularization
parameter µ[k + 1] and the weights w[k + 1]. As µ[k + 1] is not yet known at step k, we need to assume
that the regularization parameter remains constant between k and k + 1, i.e.,

1

(λm[k + 1])2
=

1

(µ[k + 1]wm[k + 1])2
≈ 1

(µ[k]wm[k + 1])2
. (5.17)

The predicted weights wm[k + 1] are then calculated from the weighted harmonic mean, i.e.,

(wm[k + 1])
2

=




l∑

j=−l

αj

(wm+j [k])
2



−1

. (5.18)

The weights are bounded, 0 < wm[k + 1] ≤ 1. The weighted harmonic mean is a special instance of
the weighted Hölder mean [Bul03], see Section 5.2.3. To express the uncertainty of the prediction, the
weights are increased by an offset w0 > 0, similar to process noise in Kalman filtering.

Not in the neighborhood of an active source

The posterior λj [k|k] exceeds the threshold λ0 which indicates that it is improbable for a source to be
near DOA θj . At step k+ 1, we penalize the DOA θj by adding a multiple of weight uncertainty w0, i.e.,
wm[k + 1] = wm[k] + cw0 with c > 1. In the simulations, w0 = 0.01 and c = 10. To guarantee that the
weights remain upper bounded by one, the weighting vector is normalized to ‖w‖∞ = 1.

5.2.3. Conservative Prediction

The weighted harmonic mean (5.18) is a pessimistic mean as low values have stronger impact on the
mean. Generally, it tends to broaden the low weight region. To mitigate this undesirable effect, we
investigate alternative rules for the predicted weights.
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5.3. Bayesian Procedure

A weighted Hölder mean is defined as [Bul03]

Mp(w
2
1, . . . , w

2
n) =




l∑

j=l

αj
(
w2
j

)p



1
p

,

l∑

j=l

αj = 1. (5.19)

For the choice of power p = −1, the weighted Hölder mean coincides with the weighted harmonic mean
(5.18). The following inequality holds for weighted Hölder means,

Mp < Mq, for p < q . (5.20)

Any Hölder mean with p > 0 is not dominated by lower weights and the arithmetic mean (p = 1) is the
tightest conservative choice of weighting coefficients for Laplace-like prior. Notice [PV11] has used a
max-log approximation instead of (5.16) which amounts to picking M+∞, the least tight bound.

5.3. Bayesian Procedure

The Bayesian procedure is formalized in Table 5.1 as a loop over time step k which processes the single
snapshot array observation y[k] when it becomes available.

line 3 The weighting coefficients for the generalized LASSO problem (3.4) are defined for the current
step k.

line 4 The s-sparse solution is implemented via the procedure given in Table 4.3 and the dual solution
is evaluated by weighted beamforming of the residuals.

line 6 The posterior weighting coefficients are evaluated in line 6 ,

line 7 which are needed for the prediction step.

Implementation of density evolution procedure:
Given constants: A ∈ CN×M , w[1] ∈ [0, 1]M , s ∈ N

1: for k = 1, 2, 3, . . .
2: Input: y[k] ∈ CN

w[k] = w[k]/‖w[k]‖∞
3: D[k] = σ2 diag(w[k])
4a: x`1 [k] = s-sparse solution to generalized LASSO (3.4) at k
4b: u[k] = corresponding dual solution via Theorem 1
5: Update λ[k|k] via Theorem 2
6: w[k + 1] = motion model prediction(λ[k|k])
7: Output: x`1 [k] ∈ CM , λ[k|k] ∈ CM
8: end

Table 5.1.: Primal/Dual formulation of sequential Bayesian sparse signal reconstruction.

We investigate the weight evolution, for 361 DOAs which are half-degree spaced, from step k = 1 to
k = 100, where the generalized LASSO of Table 5.1 is solved by CVX [GBY08] at each step. In Figure
5.2 the weight evolution of sources with trivial motion model, l = 0 and α0 = 1 is shown. In Figure 5.3
movement is modelled with a uniform motion model (l = 2, αj = 1

2l+1 = 0.2). We can observe the trade
off between having precise estimates for the static sources and a good quality estimate of the moving
source.
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Figure 5.2.: Weight evolution for three sources at DOA 20◦, 0◦,−20◦, the third source moves with 0.5◦

per time step; w0 = 0.01, c = 1, SNR = 20dB .
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Figure 5.3.: Weight evolution for three sources at DOA 20◦, 0◦,−20◦, the third source moves with 0.5◦

per time step; w0 = 0.01, c = 10, SNR = 20dB .

A reasonable compromise of capturing the motion of a source while still improving the estimate of the
static sources is to use an l > 0 and a conservative choice of the weights. Figure 5.4 uses the same
motion model as in Figure 5.3, but the weighted arithmetic mean is used, i.e. Equation (5.19) for power
parameter p = 1. For the arithmetic mean, the low weight region of the static sources is narrower than
for the harmonic mean. This comes at the expense of the traceability of the moving source.
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Figure 5.4.: Conservative weight evolution for three sources at DOA 20◦; 0◦;−20◦, the third source
moves with 0.5◦ per time step; w0 = 0.01, c = 10, SNR = 20dB .

The proposed DOA tracking procedure from Table 5.1 is compared to "Compressive Sensing on Kalman
filtered residuals (KF-CS)" [Vas09] in Figure 5.5. For KF-CS µ is chosen non-adaptively analogous to
the value given in [QLV09]:Algorithm 1. The density evolution approach with p = −1 mean recovers
the static sources worse than the Kalman filter and the conservative (p = 1) approach, but in return the
moving source is traced well.
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Figure 5.5.: Active setM of different tracking algorithms.
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6. Conclusions

6.1. Results

The dual problem to the generalized LASSO is interpretable as a weighted conventional beamformer
acting on the LASSO residuals. Due to an affine one-to-one relation between the dual and primal
vectors there is no need to solve the dual problem and any results formulated for the primal problem
are readily extendible to the dual problem.

The s-sparse reconstruction solution x`0 is generally different from the LASSO solution x`1 . As-
suming the active set is equal for (P0’) and (P2”), the difference between x`0 and x`1 is characterized
via the dual vector and shows its strong linear dependence on the regularization parameter µ and the
basis coherence of the active sources, cf. Equation (3.54).

Based on mathematical and physical insights, an order-recursive and a faster (iterative) LASSO-
based procedure are proposed and evaluated. These procedures use the dual variable of the generalized
LASSO for regularization parameter estimation. We predict the candidate points where the active set
changes. Further, a fully dual-based procedure is formulated which solves only the dual problem.

At last, a sequential reconstruction procedure was proposed. The dual variable is propagated to
the update step, which approximates the posterior distribution with a Laplace-like distribution (see
Figure 5.1). From the approximated posterior together with a motion model, the prior for the next
step is derived and the procedure is ready for the next step. Without the prediction step using a trivial
motion model, the proposed procedure is fully equivalent to the procedure in [Mec+13]. By including a
non-trivial motion model we have shown superior performance by means of a synthetic example.

6.2. Discussion and Outlook

The generalized LASSO framework seems very promising because efficient dedicated solvers, e.g.,
alternating direction method of multipliers [Boy+12], are available. The main difficulty is the limited
angular sampling. The finer the angular sampling the higher the coherence will be. On the other hand
if the sampling is too coarse many sources will not be localized on (or at least close to) a discretization
bin to which we refer as basis mismatch [Chi+11].

One way to circumvent this problem is adaptive grid refinement [TGA14; MÇW05] in which the
grid is refined at regions where sources were found. Obviously this leads to many reconstruction runs
as the problem is just postponed.

A more promising way to eliminate all basis mismatch problems is to use a continuous, primal
parameter space. This is a huge step, like from signal detection (hypothesis testing) to parameter
estimation and with infinite dimension / continuous space new problems arise. The continuous
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6. Conclusions

problems are formulated with atomic norms [BTR13] and these are solvable in the dual domain which
has finite dimensionality [Tan+13]. In this sense, our approach in Table 4.4 is a discrete approach for the
atomic norm problem.

At an early stage, in Equation (3.2), we restricted the generalization matrix D to be real, positive
and diagonal shaped. This is a severe limitation as the generalized LASSO can be transformed into
a plain LASSO problem if D is regular. [TT11] has indicated that the use of Dfused leads to the fused
LASSO problem [Tib+05].

Dfused =




−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

. . .

0 0 0 . . . −1 1




(6.1)

Through the smoothness introduced with Dfused it might be possible to improve the estimation of dis-
tributed sources [VCK95]. But as Dfused is not regular all theorems and corollaries developed in this
thesis do not hold for the fused LASSO.
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A. Algorithms

A.1. Orthogonal Matching Pursuit

Table A.1 gives the Orthogonal Matching Pursuit (OMP) algorithm as introduced in [TG07] adapted to
our notation.

Implementation of (P0) via OMP:
Given constants: A ∈ CN×M , s ∈ N

1: for k = 1, 2, . . . , s
2: Input: y ∈ CN

3: mk = argmax
m={1,...,M}\Mk−1

{(
AH(y −Axk−1

`0

)
m

}

4: Mk =Mk−1 ∪mk

5: xk`0,M = A+
Mky

6: end
7: Output: xs`0,Mk

Table A.1.: OMP implementation

The main difference of OMP and our LASSO based approach is found in line 3. In OMP one uses the
regression output x`0 instead of x`1 and detects the active set directly from the matched filter output.

A.2. Compressive Sampling Matching Pursuit

Table A.2 presents the implementation of the Compressive Sampling Matching Pursuit (CoSaMP) as
proposed by [NT09].

Implementation of (P0) via CoSaMP:
Given constants: A ∈ CN×M , s ∈ N

1: iterate until stopping criterion met
2: Input: y ∈ CN

3: mk = L2s

{
AH

(
y −Axk−1

)}

4: Mk =Mk−1 ∪mk

5: xk`0,M = A+
Mky

6: x = Hs(x
k
`0,M)

7: end
8: Output: xs`0,M

Table A.2.: CoSaMP implementation

The operator L2s takes the 2s largest elements and the hard thresholding operator Hs sets all except the
s largest elements zero. Obviously, the two operators are closely related as Hs(x) = xLs(x), see, e.g.,
[FR13] for details.
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A. Algorithms

A.3. Compressive Sensing on Kalman Filtered Residual

The algorithm introduced in [Vas09] is re-written and adapted to our notation in Table A.3. After an
initial Kalman filtering phase, CS is ran on the residuals yres[k] = y[k] −Axinit[k]. The initial and the
residual solution determine a temporary active set on which LS regression takes place. To account for
vanished sources, the regressed vector is controlled for activity and a final LS is applied.

Implementation of sequential estimation via Kalman filtering:
Given constants: A ∈ CN×M , P 0, σ2

sys, µres

2: Input: y[k] ∈ CN
Initial Kalman filtering

3: P [k|k − 1] = P [k − 1] + σ2
sysIM

4: K[k] = P [k|k − 1]AH
(
AP [k|k − 1]AH + σI

)−1

5: P [k] = (I −K[k]A)P [k|k − 1]
6: xinit[k] = (I −K[k]A)x[k − 1] +K[k]y[k]
7: yres[k] = y[k]−Axinit[k]

Compressed sensing on the residuals
8: xres[k] = LASSO (A, µres)
9: x[k] = xinit[k] + xres[k]

Active set detection and regression
10: Mtemp[k] = {m

∣∣∣ |xm[k]| > δ}, δ = ε‖x[k]‖∞
11: x′`0,Mtemp [k] = A+

Mtemp[k]y[k]

Deletion and final LS
12: M[k] = {m

∣∣∣ |x′`0,m[k]| > δ}, δ = ε‖x[k]‖∞
13: x`0,M[k] = A+

M[k]y[k]

Covariance update

14: PM,M[k] = σ2

(
AH
MAM

)−1

15: end
Output: x`0 [k]

Table A.3.: Compressive Sensing on Kalman filtered residuals - Implementation
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B. Moore-Pensrose Inverse and Projections

B.1. Moore-Penrose Inverse

This section is a short excerpt of [BH12]. The Moore-Penrose Inverse provides a solution to the least
squares problem x = argminx ‖y −Ax‖. All possible minimizers are within the set

{
A+y +

(
I −A+A

)
︸ ︷︷ ︸
P null(AH )

z, z ∈ CM
}
. (B.1)

For over-determined system of equations the projection onto the left nullspace vanishes and for under-
determined ones this nullspace term makes the solution non-unique.
The common approach for describing the Moore-Penrose inverse makes use of the singular value de-
composition of A. The singular value decomposition factors a matrix into a product of unitary and
diagonal matrices

A = (U1 U2︸ ︷︷ ︸
U

) Σ

(
V 1

V 2︸ ︷︷ ︸
V

)H
. (B.2)

The matrix Σ contains descending sorted non-negative singular values which usually leads to some
zero blocks belonging to nullspaces.

Σ =




σ1

...
. . . · · · 0 · · ·

σr
...

...
...

· · · 0 · · · · · · 0 · · ·
...

...




⇔ Σ+ =




1
σ1

...
. . . · · · 0 · · ·

1
σr

...
...

...
· · · 0 · · · · · · 0 · · ·

...
...




(B.3)

With Σ+ the Moore-Penrose inverse is now defined as

A+ = V Σ+UH , (B.4)

as the following conditions for a pseudo-inverse are fulfilled

AA+A = A UΣV HV︸ ︷︷ ︸
I

Σ+UHU︸ ︷︷ ︸
I

ΣV H = UΣV H (B.5)

A+AA+ = A+ V Σ+UHUΣV HV Σ+UH = V Σ+UH . (B.6)
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B. Moore-Pensrose Inverse and Projections

Properties of the Moore-Penrose Inverse

Table B.1.: Table of Moore-Penrose inverse properties

(A+)+ = A (A+)H = (AH)+

(cA)+ = c−1(A)+ ∀ c ∈ C, c 6= 0

A+ = A+(A+)HAH A = AAH(A+)H

AH = AHAA+ A+ = AH(A+)HA+

A = (A+)HAHA AH = A+AAH

B.2. Projections

Throughout this thesis at several positions, products of the dictionary and its Moore-Penrose inverse
occur. All these products are projections on the four fundamental subspaces. Our dictionary A is over
complete (under-determined) therefore lower zero blocks in Σ are non existing and the non-zero singu-
lar values are shown in figure B.1.
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Figure B.1.: Non-zero singular values of the 30× 81 dictionary A. Some of the singular values are close
to zero which makesA numerically bad conditioned.

Projection onto the Column Space

AA+ = UΣV HV Σ+UH = U

(
I 0

0 0

)
UH = U1U

H
1 = P span(A) (B.7)

Projection onto the Right Nullspace

I −AA+ = UIUH −U
(
I 0

0 0

)
UH = U

(
0 0

0 I

)
UH = U2U

H
2 = P null(A) (B.8)

Projection onto the Rowspace

A+A = V Σ+UHUΣV H = V 1V
H
1 = P span(AH) (B.9)
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Projection onto the Left Nullspace

I −A+A = V V H − V 1V
H
1 = V 2V

H
2 = P null(AH) (B.10)
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Figure B.2.: Magnitude of the different projection matrices.
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C. Matlab Code

C.1. Single Snapshot Procedures

C.1.1. Configuration and Simulation Start

1 %% Sin gle time sample
2 c l o s e a l l ;
3 c l e a r a l l ; %c l c ;
4

5 %% generate A
6 ULA;
7

8 %% generate sources
9 coherence = ’ strong ’ ; %’ strong ’ , ’ small ’ , ’ none ’ , ’ super_strong ’

10 SOURCES;
11

12 %% s i n g l e shot measurement
13 n o i s e l e s s = f a l s e ;
14 snr = 2 0 ; % signal−to−noise r a t i o in dB
15 MEASUREMENTS;
16

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 %change s e t t i n g s here to obta in d i f f e r e n t algori thms
19 % i t e r a t i v e => f a s t , n o n i t e r a t i v e => order r e c u r s i v e
20 i t e r a t i v e = true ;
21 d e t e c t i o n = ’ primal ’ ; %’ primal ’ , ’ dual ’
22 dual_ lasso = f a l s e ; % du al _ la ss = true leads to the algo in Table IV
23 p l o t _ i n _ f i g = true ;
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25

26 x_l1=zeros ( n , 1 ) ;
27 x_l0=zeros ( n , 1 ) ;
28 a c t i v e _ s e t = [ ] ;
29

30 %==== l i n e 1 ====
31 p=1; %s p a r s i t y order counter
32 i i =0 ; %peaks in dual counter
33 F = 0 . 7 0 ; %trade o f f parameter
34 f f =0 ; %f i g u r e counter
35 u1=2∗pinv (D) ∗A’∗yn ;
36

37 %==== l i n e 2 ====
38 while p<=s
39 i i = i i +1 ;
40

41 i f p l o t _ i n _ f i g
42 f f =1 ;
43 e l s e
44 f f = f f +1;
45 end
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46

47 i f i i >2∗ s
48 break ; %to prevent i n f i n i t e loops
49 end
50

51 %==== l i n e 3 ====
52 [ mu_val , ~ ] = findpeaks ( abs ( u1 ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ , 0 . 0 0 1∗max( abs (2∗ pinv (D)

∗A’∗yn ) ) ) ;
53

54 i f i t e r a t i v e
55 mu=(1−F ) ∗mu_val ( s ) +F∗mu_val ( s +1) ;
56 e l s e
57 mu=(1−F ) ∗mu_val ( i i ) +F∗mu_val ( i i +1) ;
58 end
59

60 i f ~dual_ lasso
61 %==== l i n e 4a =====
62 cvx_begin
63 cvx_quiet t rue
64 v a r i a b l e x_ l1 ( n ) complex
65 v a r i a b l e z ( n ) complex
66 dual v a r i a b l e u
67 dual v a r i a b l e v
68 minimize ( sum_square_abs ( yn − A∗x_l1 ) + mu∗ norm ( z , 1 ) )
69 s u b j e c t to
70 u : r e a l ( z ) == r e a l (D∗x_l1 ) ;
71 v : imag ( z ) == imag (D∗x_l1 ) ;
72 cvx_end
73

74 %==== l i n e 4b =====
75 u1=complex ( u , v ) ;
76 % u1 = 2∗pinv (D) ∗A’ ∗ ( y−A∗x_l1 ) ;
77 e l s e
78 i f strcmp ( detec t ion , ’ primal ’ )
79 e r r o r ( ’ f o r dual_ lasso only dual d e t e c t i o n i s p o s s i b l e ’ ) ;
80 end
81

82 D_t i lde=D∗pinv (A) ;
83 P=A∗pinv (A) ;
84 y _ t i l d e =P∗y ;
85 U=n u l l (A) ;
86 zerovector=zeros ( n−m, 1 ) ;
87

88 cvx_begin
89 v a r i a b l e u1 ( n ) complex ;
90 maximize ( sum_square_abs ( y )− sum_square_abs ( y _ t i l d e−c transpose

( D_t i lde ) ∗u1 ) ) ;
91 s u b j e c t to
92 c transpose (D∗U) ∗u1==zerovector
93 norm ( u1 , I n f ) <= mu
94 cvx_end
95 end
96

97 i f p l o t _ i n _ f i g
98 c l f
99 end

100 f i g u r e ( f f )
101 subplot ( 2 1 1 )
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102 p l o t ( theta ,20∗ log10 ( abs (2∗ pinv (D) ∗A’∗yn ) /(max( abs (2∗ pinv (D) ∗A’∗yn ) ) ) ) , ’ b ’ , theta ,20∗ log10 (
abs ( u1 ) /(max( abs ( u1 ) ) ) ) , ’ k ’ , t h e t a ( pf ) , zeros ( s i z e ( pf ) ) , ’ or ’ ) ;%, theta ,20∗ log10 (mu/max(
abs (2∗ pinv (D) ∗A’∗yn ) ) ) ∗ones ( s i z e ( t h e t a ) ) , ’ k : ’ ) ;

103 l =legend ( ’ $2 \mathbf {D}^{−H} \mathbf {A}^H \mathbf { y } $ ’ , ’ $2 \mathbf {D}^{−H} \mathbf {A}^H (\
mathbf { y}−\mathbf {A}\ mathbf { x } ) $ ’ , ’ $ {\rm sources } $ ’ , ’ Locat ion ’ , ’ SouthWest ’ ) ;

104 s e t ( l , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
105 x l a b e l ( ’DOA [ degrees ] ’ ) ; y l a b e l ( ’ normalized power ( dB ) ’ ) ; s e t ( gca , ’ xlim ’ , [ t h e t a ( 1 ) t h e t a (

end ) ] , ’ ylim ’ ,[−40 1 ] )
106

107 %==== l i n e 5 ====
108 switch d e t e c t i o n
109 case ’ primal ’
110 eps_x = 10^−4;
111 [~ , a c t i v e _ s e t ] = findpeaks ( abs ( x_ l1 ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,max

([10^−4 eps_x∗norm ( x_l1 , ’ i n f ’ ) ] ) ) ;
112 case ’ dual ’
113 eps_u = 10^−2;
114 [~ , a c t i v e _ s e t ] = findpeaks ( abs ( u1 ) /mu, ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,1−eps_u

) ;
115 end
116 i f ( length ( a c t i v e _ s e t ) > p ) && (~ i t e r a t i v e )
117 a c t i v e _ s e t = a c t i v e _ s e t ( 1 : p ) ;
118 end
119

120 s i z e _ a c t i v e =length ( a c t i v e _ s e t ) ;
121

122 %==== l i n e 6 f f ====
123 i f ~ i t e r a t i v e %order r e c u r s i v e
124 switch d e t e c t i o n
125 case ’ primal ’
126 i f s i z e _ a c t i v e <p
127 i i = i i +1 ;
128 e l s e
129 x _ a c t i v e =pinv (A( : , a c t i v e _ s e t ) ) ∗yn ;
130 x_l0=zeros ( s i z e ( u ) ) ;
131 x_l0 ( a c t i v e _ s e t ) = x _ a c t i v e ;
132 p=p+1;
133 end
134 case ’ dual ’
135 x _ a c t i v e =pinv (A( : , a c t i v e _ s e t ) ) ∗yn ;
136 eps_l0 = 10^−4;
137 l0_norm=sum( abs ( x _ a c t i v e ) >eps_l0 ) ; %check 0 norm
138 i f l0_norm<p
139 i i = i i +1 ;
140 e l s e
141 x_l0=zeros ( s i z e ( u ) ) ;
142 x_l0 ( a c t i v e _ s e t ) = x _ a c t i v e ;
143 p=p+1;
144 end
145 end
146 e l s e %f a s t algo
147 x _ a c t i v e =pinv (A( : , a c t i v e _ s e t ) ) ∗yn ;
148 x_l0=zeros ( s i z e ( u ) ) ;
149 x_l0 ( a c t i v e _ s e t ) = x _ a c t i v e ;
150

151 switch d e t e c t i o n
152 case ’ primal ’
153 i f s i z e _ a c t i v e >= s
154 break ;
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155 end
156 case ’ dual ’
157 eps_l0 = 10^−4;
158 l0_norm=sum( abs ( x _ a c t i v e ) >eps_l0 ) ; %check 0 norm
159 i f l0_norm >= s
160 break ;
161 end
162 end
163 end
164

165 f i g u r e ( f f )
166 subplot ( 2 1 2 )
167 hold on ;
168 stem ( theta ,20∗ log10 ( abs ( x_ l0 ) ) , ’ b ’ , ’ f i l l e d ’ ) ;
169 stem ( theta ,20∗ log10 ( abs ( fk ) ) , ’ r ’ ) ;
170 t i t l e ( [ num2str ( p−1) ’ sparse vec tor es t imate ( r e a l s p a r s i t y degree ’ num2str ( s ) ’ ) |M| = ’

num2str ( length ( a c t i v e _ s e t ) ) ] ) ;
171 x l a b e l ( ’DOA [ degrees ] ’ ) ; y l a b e l ( ’ power ( dB ) ’ ) ; s e t ( gca , ’ xlim ’ , [ t h e t a ( 1 ) t h e t a ( end ) ] , ’ ylim ’

, [ 0 20∗ log10 (max( abs ( fk ) ) ) +10] )
172 l =legend ( ’ $ {\ e l l _ 0 } \ ; \ ; {\rm e s t i m a t e s } $ ’ , ’ $ {\rm true } \ ; \ ; {\rm sources } $ ’ , ’ Locat ion ’ , ’

SouthWest ’ ) ;
173 s e t ( l , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
174

175 i f p l o t _ i n _ f i g
176 wai t forbut tonpress
177 end
178 end
179

180 %to p l o t in the i t e r a t i v e case a f t e r the break
181 f i g u r e ( f f )
182 subplot ( 2 1 2 )
183

184 hold on ;
185 stem ( theta ,20∗ log10 ( abs ( x_ l0 ) ) , ’ b ’ , ’ f i l l e d ’ ) ;
186 stem ( theta ,20∗ log10 ( abs ( fk ) ) , ’ r ’ ) ;
187 t i t l e ( [ num2str ( p−1) ’ sparse vec tor es t imate ( r e a l s p a r s i t y degree ’ num2str ( s ) ’ ) |M| = ’

num2str ( length ( a c t i v e _ s e t ) ) ] ) ;
188 x l a b e l ( ’DOA [ degrees ] ’ ) ; y l a b e l ( ’ power ( dB ) ’ ) ; s e t ( gca , ’ xlim ’ , [ t h e t a ( 1 ) t h e t a ( end ) ] , ’ ylim ’ , [ 0

20∗ log10 (max( abs ( fk ) ) ) +10] )
189 l =legend ( ’ $ {\ e l l _ 0 } \ ; \ ; {\rm e s t i m a t e s } $ ’ , ’ $ {\rm true } \ ; \ ; {\rm sources } $ ’ , ’ Locat ion ’ , ’

SouthWest ’ ) ;
190 s e t ( l , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;

C.1.2. ULA Model Generation

1 % Parameters
2 c = 1500 ; % speed of sound
3 f = 2 0 0 ; % frequency
4 lambda = c/ f ; % wavelength
5 k = 2∗pi/lambda ;% wavenumber
6

7 % ULA−h o r i z o n t a l
8 N=30;
9 d = 1/2∗ lambda ; % i n t e r s e n s o r spacing

10 q = 0 : 1 : (N−1) ;% sensor numbering
11 xq = ( q−(N−1) /2)∗d ; % sensor l o c a t i o n s
12

13 t h e t a = −9 0 : 0 . 5 : 9 0 ;
14 t h e t a _ r = t h e t a ∗pi /180;
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15 u = s i n ( t h e t a _ r ) ;
16

17 % Dimensions of the problem
18 n = length ( u ) ; % t o t a l length of the grid ( long s i g n a l )
19 m = length ( xq ) ; % number of measurements m<n
20

21 % Represenation matrix ( s t e e r i n g matrix )
22 A = (1/ s q r t ( n ) ) ∗exp (1 i ∗2∗pi/lambda∗xq ’∗u ) ;

C.1.3. Source Settings

1 switch coherence
2 case ’ s trong ’
3 pf ( 1 ) = f l o o r ( n/2)−5;
4 pf ( 2 ) = f l o o r ( n/2) +10;
5 pf ( 3 ) = f l o o r ( n/2) +17;
6 pf ( 4 ) = f l o o r ( n/2) +150;
7 s = 4 ; % s p a r s i t y l e v e l = # of sources s<<n
8

9 % Source vec tor
10 fk = zeros ( n , 1 ) ;
11 fk ( pf ( 1 ) ) = −8;
12 fk ( pf ( 2 ) ) = +13 i ;
13 fk ( pf ( 3 ) ) = +10∗(1 i +1)/ s q r t ( 2 ) ;
14 fk ( pf ( 4 ) ) = (−10∗(1 i +2)/ s q r t ( 5 ) ) ;
15

16 case ’ super_strong ’
17 pf ( 1 ) = f l o o r ( n/2)−5;
18 pf ( 2 ) = f l o o r ( n/2) +10;
19 pf ( 3 ) = f l o o r ( n/2) +13;
20 pf ( 4 ) = f l o o r ( n/2) +150;
21 s = 4 ; % s p a r s i t y l e v e l = # of sources s<<n
22

23 % Source vec tor
24 fk = zeros ( n , 1 ) ;
25 fk ( pf ( 1 ) ) = −8;
26 fk ( pf ( 2 ) ) = +13 i ;
27 fk ( pf ( 3 ) ) = +10∗(1 i +1)/ s q r t ( 2 ) ;
28 fk ( pf ( 4 ) ) = (−10∗(1 i +2)/ s q r t ( 5 ) ) ;
29

30 case ’ small ’
31 pf ( 1 ) = f l o o r ( n/2)−5;
32 pf ( 2 ) = f l o o r ( n/2) +10;
33 pf ( 3 ) = f l o o r ( n/2) +150;
34 s = 3 ; % s p a r s i t y l e v e l = # of sources s<<n
35

36 % Source vec tor
37 fk = zeros ( n , 1 ) ;
38 fk ( pf ( 1 ) ) = −8;
39 fk ( pf ( 2 ) ) = +13 i ;
40 fk ( pf ( 3 ) ) = (−10∗(1 i +2)/ s q r t ( 5 ) ) ;
41

42 case ’ none ’
43 pf ( 1 ) = f l o o r ( n/2)−38;
44 pf ( 2 ) = f l o o r ( n/2) +1;
45 pf ( 3 ) = f l o o r ( n/2) +40;
46 s = 3 ; % s p a r s i t y l e v e l = # of sources s<<n
47

48 % Source vec tor
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49 fk = zeros ( n , 1 ) ;
50 fk ( pf ( 1 ) ) = −7;
51 fk ( pf ( 2 ) ) = +13 i ;
52 fk ( pf ( 3 ) ) = +10∗(1 i +1)/ s q r t ( 2 ) ;
53 end

C.1.4. Measurement Generation

1 % Measurements ( sensor s i g n a l s )
2 y = A∗ fk ;
3

4 % Noisy measurements
5 r n l = 10^(− snr /20)∗norm ( y ) ; % r e l a t i v e noise l e v e l
6

7 % Spec i fy rand stream
8 stream = RandStream ( ’ mt19937ar ’ , ’ Seed ’ , 1 ) ;
9

10 % Generate noise
11 nwhite= randn ( stream ,m, 2 ) ;
12 nwhite=complex ( nwhite ( : , 1 ) , nwhite ( : , 2 ) ) / s q r t ( 2 ) ;
13 e = nwhite ∗ r n l /m; % e r r o r vec tor
14

15 i f n o i s e l e s s
16 yn = y ;
17 e l s e
18 yn = y+ e ; % adding noise to the data vec tor
19 end
20

21 Weights = eye ( n ) ;
22

23 i f n o i s e l e s s
24 D= Weights ;
25 e l s e
26 D= r n l ^2∗Weights ;
27 end

C.2. Sequential Procedures

C.2.1. Configuration and Simulation Start

1 %% Si ngle time sample
2 c l o s e a l l ; % cab ( ’ l a s t ’ ) ; %c l o s e a l l or keep l a s t f i g u r e open
3 c l e a r a l l ; %c l c ;
4

5 %% generate A
6 ULA;
7

8 %%%%%%%%%%%%%%%
9 t imesteps =3;

10 r e a l i z a t i o n s =1;
11 %%%%%%%%%%%%%%%
12

13 %f i x random seed f o r f a i r comparison
14 seed = RandStream ( ’ mcg16807 ’ , ’ Seed ’ , 5 ) ;
15 RandStream . setGlobalStream ( seed ) ;
16

17 s i z e _ a c t = nan ( r e a l i z a t i o n s , t imesteps ) ;
18 l 2 _ r e s = nan ( r e a l i z a t i o n s , t imesteps ) ;
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19 l 2 _ r e f = nan ( r e a l i z a t i o n s , t imesteps ) ;
20 mu_history = nan ( r e a l i z a t i o n s , t imesteps ) ;
21 a c t i v e _ p a t t e r n = nan ( 3 0 , r e a l i z a t i o n s , t imesteps ) ;
22 source_pat tern = nan ( 3 0 , t imesteps ) ;
23 TOT=0; FA =0;
24 Weights = eye ( n ) ;
25 dens_evo=nan ( n , t imesteps ) ;
26

27 approach = ’ dens i ty ’ ; %density , kalman
28

29 f o r r =1: r e a l i z a t i o n s
30

31 f o r t =1: t imesteps
32

33 %% generate sources
34 pf ( 1 ) = f l o o r ( n/2)−38;
35 pf ( 1 ) = pf ( 1 ) + t ; %move to the r i g h t each t imestep
36 pf ( 2 ) = f l o o r ( n/2) +1;
37 pf ( 3 ) = f l o o r ( n/2) +40;
38

39 s = length ( pf ) ; % s p a r s i t y l e v e l = # of sources s<<n
40 source_pat tern ( 1 : s , t ) =pf−f l o o r ( n/2) ;
41

42 % Source vec tor
43 fk = zeros ( n , 1 ) ;
44 fk ( pf ( 1 ) ) = −7;
45 fk ( pf ( 2 ) ) = +13 i ;
46 fk ( pf ( 3 ) ) = +10∗(1 i +1)/ s q r t ( 2 ) ;
47

48 %% generate measurements
49 SNR = 2 0 ;
50 y = A∗ fk ;
51

52 r n l = 10^(−SNR/20)∗norm ( y ) ; % r e l a t i v e noise l e v e l
53 nwhite = complex ( randn (m, 1 ) , randn (m, 1 ) ) / s q r t ( 2 ) ; % complex i . i . d . ~ N( 0 , 1 )
54 e = nwhite ∗ r n l ; % e r r o r vec tor
55

56 yn = y+ e ; % adding noise to the data vec tor
57 D= r n l ^2∗Weights ;
58

59 %% s e q u e n t i a l approaches
60 switch approach
61 case ’ dens i ty ’
62 DENSITY_EVO ;
63 l 2 _ r e f ( r , t ) = norm ( yn−A∗ x _ r e f ) ; %r e f e r e n c e s o l u t i o n with W= I
64 case ’ kalman ’
65 SPARSE_KALMAN;
66 end
67

68 %a c t i v e s e t pa t te rn
69 a c t i v e _ p a t t e r n ( 1 : length ( a c t i v e _ s e t ) , r , t ) = a c t i v e _ s e t−f l o o r ( n/2) ;
70

71 %benchmark parameters
72 s i z e _ a c t ( r , t ) = length ( a c t i v e _ s e t ) ;
73 l 2 _ r e s ( r , t ) = norm ( yn−A∗x_hat ) ;
74 mu_history ( r , t ) =mu( end ) ;
75

76 %% TIME ON TARGET? FALSE ALARM?
77 d e l t a =2;
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78 x _ f a l s e =x_hat ;
79 f o r i i =1 : s
80 i f norm ( x_hat ( pf ( i i )−d e l t a : pf ( i i ) + d e l t a ) ) > (2∗ d e l t a +1)∗ r n l % i t h source detec ted

?
81 TOT=TOT+1;
82 end
83 x _ f a l s e ( ( pf ( i i )−d e l t a : pf ( i i ) + d e l t a ) ) =zeros ( s i z e ( ( pf ( i i )−d e l t a : pf ( i i ) + d e l t a ) ) ) ;
84 end
85 %how many f a l s e alarms ?
86 FA=FA+sum( x _ f a l s e > r n l ) ;
87 end
88 end
89

90 f i g u r e ( 2 ) % benchmark parameters
91 hold on
92 subplot ( 3 , 1 , 1 )
93 stem (mean( s i z e _ a c t , 1 ) ) ;
94 y l a b e l ( ’ $| \mathcal {M} |$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
95 subplot ( 3 , 1 , 2 )
96 p l o t ( 1 : t imesteps , mean( mu_history , 1 ) ) ;
97 y l a b e l ( ’ $\mu$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
98 subplot ( 3 , 1 , 3 )
99 p l o t ( 1 : t imesteps , mean( l 2 _ r e s , 1 ) ./norm ( e ) ) ;

100 y l a b e l ( ’ $\ f r a c {\|\mathbf { y } [ k]−\mathbf {A}\ mathbf { x } [ k]\| _2 }{\|\ mathbf { n}\| _2 } $ ’ , ’ i n t e r p r e t e r ’ ,
’ l a t e x ’ ) ;

101 x l a b e l ( ’ time ’ ) ;
102

103 f i g u r e ( 3 ) % outcome of the t r a c k e r
104 hold on ;
105 p l o t ( source_pat tern ( : , : ) ’ , ’ r ’ ) ;
106 f o r r r =1: r e a l i z a t i o n s
107 i f strcmp ( approach , ’ kalman ’ )
108 marker= ’ gs ’ ;
109 e l s e i f p==−1
110 marker= ’ ko ’ ;
111 e l s e i f p==1
112 marker= ’b> ’ ;
113 end
114 p l o t ( 1 : t imesteps , squeeze ( a c t i v e _ p a t t e r n ( 1 : 2 0 , rr , : ) ) , marker , ’ markersize ’ , 4 ) ;
115 end
116 s e t ( gca , ’ xlim ’ , [ 1 t imesteps ] , ’ ylim ’ , [ t h e t a ( 1 ) t h e t a ( end ) ] )
117

118 %dummy o b j e c t s f o r legend
119 p = p l o t ( 1 : t imesteps , nan ( s i z e ( 1 : t imesteps ) ) , ’ r ’ , 1 : t imesteps , nan ( s i z e ( 1 : t imesteps ) ) , ’ ko ’ , 1 :

t imesteps , nan ( s i z e ( 1 : t imesteps ) ) , ’b> ’ , 1 : t imesteps , nan ( s i z e ( 1 : t imesteps ) ) , ’ gs ’ ) ;
120 l eg=legend ( p , ’ t rue t r a j e c t o r y ’ , ’ dens i ty evolut ion $p=−1$ ’ , ’ dens i ty evolut ion $p=1$ ’ , ’CS on

Kalman f i l t . r e s . ’ ) ;
121 s e t ( leg , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ l o c a t i o n ’ , ’ southeas t ’ ) ;
122

123 %TOT p r o b a b i l i t y
124 P_TOT=TOT/( s∗ r e a l i z a t i o n s ∗ t imesteps ) ;
125

126 %FA p r o b a b i l i t y
127 P_FA = FA/( s∗ r e a l i z a t i o n s ∗ t imesteps ) ;

C.2.2. CS on Kalman Filtered Residuals

1 sigma_sys= r n l /100;
2 P=zeros ( n , n ) ;
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3

4 i f t ==1 %at time 0 j u s t CS
5 %taken from " Real−time dynamic MR image r e c o n t r u c t i o n . . . , Vaswani "
6 mu= s q r t (2∗ log2 ( n ) ) ∗ r n l ;
7

8 cvx_begin quie t
9 v a r i a b l e x _ i n i t ( n ) complex

10 minimize ( sum_square_abs ( yn − A∗ x _ i n i t ) + mu ∗ norm ( x _ i n i t , 1 ) )
11 cvx_end
12

13 % d e t e c t a c t i v e s e t
14 a c t i v e _ s e t = [ ] ;
15 eps_x = 10^−4;
16 [~ , a c t i v e _ s e t ]= findpeaks ( abs ( x _ i n i t ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,max([10^−4 eps_x∗

norm ( x _ i n i t , ’ i n f ’ ) ] ) ) ;
17 e l s e
18 %Kalman f i l t e r i n g
19 I_T = zeros ( n , 1 ) ;
20 I_T ( a c t i v e _ s e t ) =1;
21 I_T=diag ( I_T ) ;
22

23 P_pred = P + sigma_sys ∗ I_T ;
24 K_gain = P_pred∗A’∗ pinv (A∗P_pred∗A’+ r n l ∗eye (m) ) ;
25 P = ( eye ( n )−K_gain∗A) ∗P_pred ;
26

27 x _ i n i t =( eye ( n )−K_gain∗A) ∗x_hat+K_gain∗yn ;
28 end
29

30 %% r e s i d u a l s ( c r e a t i o n )
31 y_res = yn−A∗ x _ i n i t ;
32

33 mu_res = 0 .6∗mu; %h e u r i s t i c a l l y chosen
34

35 cvx_begin quie t
36 v a r i a b l e x_res ( n ) complex
37 minimize ( sum_square_abs ( y_res − A∗x_res ) + mu_res∗ norm(1∗ x_res , 1 ) )
38 cvx_end
39

40 x_help = x _ i n i t +x_res ;
41

42 % d e t e c t a c t i v e s e t
43 a c t i v e _ s e t = [ ] ;
44 eps_x = 10^−4;
45 [~ , a c t i v e _ s e t ]= findpeaks ( abs ( x_help ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,max([10^−4 eps_x∗norm

( x_help , ’ i n f ’ ) ] ) ) ;
46

47 % LS r e g r e s s i o n on a c t i v e s e t
48 x_hat = zeros ( s i z e ( x_help ) ) ;
49 x_hat ( a c t i v e _ s e t ) =pinv (A( : , a c t i v e _ s e t ) ) ∗yn ;
50

51 %% d e l e t i o n ( a n n i h i l a t i o n )
52 [~ , a c t i v e _ s e t ]= findpeaks ( abs ( x_hat ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,1 ) ;
53 x_hat = zeros ( s i z e ( x_hat ) ) ;
54 x_hat ( a c t i v e _ s e t ) =pinv (A( : , a c t i v e _ s e t ) ) ∗yn ;
55

56 %% update e r r o r covar iance matrix
57 P=zeros ( n , n ) ;
58 P ( a c t i v e _ s e t , a c t i v e _ s e t ) =pinv (A( : , a c t i v e _ s e t ) ’∗A( : , a c t i v e _ s e t ) ) ∗ r n l ^2;
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C.2.3. Density Evolution

1 %% produce r e f e r e n c e with W=eye ( ) weights
2 GEN_LASSO_non_seq ; % x _ r e f
3

4 % d e t e c t a c t i v e s e t f o r non seq
5 ac t ive_se t_non = [ ] ;
6 eps_x = 10^−4;
7 [~ , ac t ive_se t_non ]= findpeaks ( abs ( x _ r e f ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,max([10^−4 eps_x∗

norm ( x_ref , ’ i n f ’ ) ] ) ) ;
8

9 x _ r e f _ l 0 =zeros ( s i z e ( x _ r e f ) ) ;
10 x _ r e f _ l 0 ( ac t ive_se t_non ) =pinv (A( : , ac t ive_se t_non ) ) ∗yn ;
11

12 %===========================
13 %% s e q u e n t i a l implementation
14 GEN_LASSO;
15

16 % d e t e c t a c t i v e s e t
17 a c t i v e _ s e t = [ ] ;
18 eps_x = 10^−4;
19 [~ , a c t i v e _ s e t ]= findpeaks ( abs ( x_hat ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,max([10^−4 eps_x∗norm (

x_hat , ’ i n f ’ ) ] ) ) ;
20

21 x_hat_ l0=zeros ( s i z e ( x_hat ) ) ;
22 x_hat_ l0 ( a c t i v e _ s e t ) =pinv (A( : , a c t i v e _ s e t ) ) ∗yn ;
23

24 lambda = diag ( Weights ∗ mu( end ) ) ;
25

26 %% update step
27 % mean f i t
28 lambda_up = lambda .∗ ( 1 − (1/mu( end ) ^2)∗abs ( u1 ) . ^ 2 ) ;
29 W_up = lambda_up/mu( end ) ;
30 W_up= max(W_up,100∗ eps ) ; % to prevent undefined d i v i s i o n
31

32 %% p r e d i c t i o n step
33 W_pre = nan ( s i z e (W_up) ) ;
34

35 % uniform motion model
36 l =2 ;
37 Motion = diag ( ones ( 1 , 2∗ l +1) /(2∗ l +1) ) ; %uniform motion model
38

39 %%%%%%
40 p= −1;
41 w_0 = 0 . 0 1 ;
42 f a c t o r = 1 0 ;
43 %%%%%%
44

45 f o r zz =1:n
46 i f sum( zz = = [ 1 : ( l +1) , n−( l +1) : n ] ) >0 % no motion model f o r the border region
47 W_pre ( zz ) = W_up( zz ) + f a c t o r ∗w_0 ;
48 e l s e
49 i f min (W_up( zz−l : zz+ l ) ) <eps_x % neighbourhood of an a c t i v e source ?
50 i f p==0 % weighted geometric mean
51 W_pre ( zz ) = exp (sum( Motion∗ log (W_up( zz−l : zz+ l ) ) ) ) +w_0 ;
52 e l s e % a l l other means bes ides min and max
53 W_pre ( zz ) = (sum( Motion∗W_up( zz−l : zz+ l ) . ^ ( 2∗p ) ) ) ^(1/(2∗p ) ) +w_0 ;
54 end
55 e l s e
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56 W_pre ( zz ) =W_up( zz ) + f a c t o r ∗w_0 ;
57 end
58 end
59 end
60

61 Weights = diag ( W_pre/norm ( W_pre , ’ i n f ’ ) ) ; %r e s c a l e
62 lambda = diag ( Weights ∗ mu( end ) ) ;
63

64 dens_evo ( : , t , r ) =diag ( Weights ) ;
65 i f t == t imesteps && r == r e a l i z a t i o n s
66 f i g u r e ( 1 )
67 imagesc ( 1 : t , theta , mean( dens_evo , 3 ) ) ;
68 s e t ( gca , ’ xlim ’ , [ 1 t imesteps ] , ’ ylim ’ , [ t h e t a ( 1 ) t h e t a ( end ) ] )
69 x l a b e l ( ’ time step $k$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
70 y l a b e l ( ’DOA’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
71 t i t l e ( ’ Weight Evolution ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
72 colormap ( ’ hot ’ ) ;
73 c o l or ba r ;
74 end

C.2.4. Generalized LASSO Implementation

1 mu= [ ] ;
2 u1=2∗pinv (D) ∗A’∗yn ;
3 mu_save = norm ( u1 , ’ i n f ’ ) ;
4 i i =0 ; %loopcounter
5 F = 0 . 9 ;
6 p=0;
7

8 while 1
9 i i = i i +1 ;

10

11 i f p<s % do not in case of b i s e c t i o n
12 [ mu_val , ~ ] = findpeaks ( abs ( u1 ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,0 .000001∗max( abs (2∗

pinv (D) ∗A’∗yn ) ) ) ;
13 mu( i i ) =(1−F ) ∗mu_val ( i i ) +F∗mu_val ( i i +1) ;
14 end
15

16 %Here the genera l ized LASSO i s solved via Primal−Dual I n t e r i o r−Point Methods
17 x_hat=zeros ( n , 1 ) ;
18 cvx_begin quie t
19 v a r i a b l e x_hat ( n ) complex
20 v a r i a b l e z ( n ) complex
21 dual v a r i a b l e u
22 dual v a r i a b l e v
23 minimize ( sum_square_abs ( yn − A∗x_hat ) + mu( i i ) ∗ norm ( z , 1 ) )
24 s u b j e c t to
25 u : r e a l ( z ) == r e a l (D∗x_hat ) ;
26 v : imag ( z ) == imag (D∗x_hat ) ;
27 cvx_end
28 u1=complex ( u , v ) ;
29

30 %d e t e c t i o n of the a c t i v e s e t in the primal domain
31 eps_x = 10^−4;
32 [~ , a c t i v e _ s e t ] = findpeaks ( abs ( x_hat ) , ’SORTSTR ’ , ’ descend ’ , ’MINPEAKHEIGHT ’ ,max([10^−4 eps_x

∗norm ( x_hat , ’ i n f ’ ) ] ) ) ;
33

34 p=length ( a c t i v e _ s e t ) ;
35
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36 i f p == s
37 break
38 e l s e i f p > s %s t a r t b i s e c t i o n
39 mu( i i +1) = (mu( i i ) +mu_save ) /2;
40 e l s e i f p<s
41 i f i i >2∗ s
42 break ; %to prevent i n f i n i t e loops
43 end
44 mu_save=mu( i i ) ; %save mu f o r a poss ib ly occuring b i s e c t i o n
45 end
46 end
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Beamforming of the Residuals is the LASSO’s Dual
Christoph F. Mecklenbräuker, Senior Member, IEEE, Peter Gerstoft, Member, IEEE, Erich Zöchmann

Abstract—Waves hidden in additive noise are observed by a
sensor array. The waves are assumed to originate from a sparse
set of sources. We treat the estimation of the sparse set of
sources as a generalized complex-valued LASSO problem. The
generalized complex-valued LASSO problem is strictly convex
and strong duality holds. The corresponding dual problem is
interpretable as a weighted conventional beamformer acting on
the residuals of the LASSO. Moreover, this establishes a simple
linear-affine relation between the dual and primal vectors. The
solution path of the complex-valued LASSO is analyzed and three
procedures for signal processing are proposed and evaluated
which are based on the generalized LASSO and its dual: An
order-recursive procedure and two iterative procedures which
are based on a further approximation.

Index Terms—sparsity, generalized LASSO, duality theory

I. INTRODUCTION

The modification of quadratic optimization criteria by in-
troducing suitable constraints leads to sparse solutions. This
idea has opened new directions in many fields of signal
processing, e.g., in linear regression, compressive sensing,
channel identification, and equalization. The use of (possibly
weighted) `1-norms induces sparsity of the solution.

The early results for sparse signals [1], [2], [3], [4] have
been extended to compressible (approximately sparse) signals
and sparse signals buried in noise [5], [6], [7], [8], [9]
which renders the framework applicable to problems in array
processing.

Tibshirani [10] noted that the generalized LASSO problem
is difficult to analyze directly because the nondifferentiable `1
penalty is composed with a linear transformation. He showed
that it is more intuitive to derive a solution path to the
corresponding Lagrangian dual problem. Moreover, the dual
approach comes without additional computational cost.

Fortunati et al. [11] found that super-resolution beyond the
Rayleigh limit is achievable for compressed sensing based
beamformers even for the single snapshot case. Xenaki et al.
[14] noted that such techniques are implementable with single-
snapshot data and irregular array configurations. Their bias and
resolution analysis indicates that sparse signal reconstruction
enjoys robust performance in most of the angular spectrum.

Weiss and Zoubir use an upper bound of the mean squared
residuals to jointly mitigate the error contributions from noise
and sensing matrix mismatch [12]. Compressed sensing can
be formulated without a discrete sensing matrix, gridless
compressed sensing [13], [15], [16], [17]. In this approach an
atomic norm is used in the primal domain with a continuous
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primal variable. The support of the primal variable found
in the dual domain. While more complicated, their approach
have many similarities with our dual solution where we use a
discrete sensing matrix and `1 norm.

Similar to [18], the generalized LASSO is formulated for
complex-valued observations acquired from a sensor array. It is
shown here that the corresponding dual vector is interpretable
as the output of a weighted conventional beamformer (CBF)
acting on the residuals of the linear observation model, cf.
[19]. The maximum magnitudes of the dual vector is used
for selecting the regularization parameter of the generalized
LASSO. This is the basis for an efficient order-recursive
procedure to solve the sparse signal reconstruction problem
[20], [21], [22] at the desired sparsity level.

Further, we discuss and interpret the solutions to the gen-
eralized LASSO problem in the primal and dual domain and
show its relation to the `0-constrained solution.

A. Notation

Matrices A,B, . . . and vectors a, b, . . . are complex-valued
and denoted by boldface letters. The zero vector is 0. The Her-
mitian transpose, inverse, and Moore-Penrose pseudo inverse
are denoted as XH ,X−1,X+ respectively. We abbreviate
X−H = (XH)−1. The complex vector space of dimension
N is written as CN . N is the null space of A and span(A)
denotes the linear hull of A. The projection onto span(A) is
P

A
. The `p-norm is written as ‖ · ‖p.

II. PROBLEM FORMULATION

We start from the following problem formulation: Let y ∈
CN and A ∈ CN×M . Find the best sparse solution x`0 ∈ CM
with sparsity level s ∈ N such that the squared measurement
residuals are minimal,

x`0 = argmin
x
‖y −Ax‖22 subject to ‖x‖0 ≤ s , (P0)

where ‖·‖p denotes the `p-norm. The problem (P0) is known as
`0-reconstruction. It is non-convex and hard to solve, cf. [23].
Therefore, the `0-constraint in (P0) is commonly relaxed to
an `1 constraint which renders the problem (P1) to be convex.
Further, a matrix D is introduced in the formulation of the
constraint which gives flexibility in the problem definition.
Several variants are discussed in [10]. This gives

x`1 = argmin
x
‖y −Ax‖22 subject to ‖Dx‖1 ≤ ε . (P1)

In the following, this problem is referred to as the complex-
valued generalized LASSO problem. Incorporating the `1
norm constraint into the objective function results in the
equivalent formulation (P1′),

x`1 = argmin
x

(
‖y −Ax‖22 + µ‖Dx‖1

)
. (P1′)
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The problems (P0) and (P1′) yield the same sparsity level
s = ‖x‖0 of their solutions if the regularization parameter µ
in (P1′) is suitably chosen.

Strong duality does not hold for `0-reconstruction (P0) and
studying its dual problem does not seem a useful exercise as
the duality gap is infinite. The real-valued generalized LASSO
problem and its dual were analyzed in [10].

In this contribution, a similar analysis is carried out for
the complex-valued problem (P1′) which has straightforward
applications in array signal processing. Based on this analysis,
we propose and analyze an efficient procedure for approximat-
ing the solution to (P0) for a given sparsity level s which is
based on the dual to (P1′). To formalize this idea, we introduce
the following (non-convex) problem

x`1 = argmin
x

(
min
µ>0

(
‖y −Ax‖22 + µ‖Dx‖1

))

subject to ‖x‖0 ≤ s .
(P2)

for which we seek an efficient solver.

III. DUAL PROBLEM TO THE GENERALIZED LASSO

The generalized LASSO problem [10] is written in con-
straint form, all vectors and matrices are assumed to be
complex-valued. The following discussion is valid for arbi-
trary N,M ∈ N: both the over-determined and the under-
determined cases are included. Following [24], [25], a new
vector z ∈ CM and a new equality constraint z = Dx are
introduced , to obtain the equivalent problem

min
x,z

(
‖y −Ax‖22 + µ‖z‖1

)
subject to z =Dx . (1)

The complex-valued dual vector u = (u1, . . . , uM )T is
introduced and associated with the new equality constraint.
The corresponding Lagrangian is

L(x, z,u)= ‖y −Ax‖22 + µ‖z‖1 +Re
[
uH(Dx− z)

]
(2)

= L1(x,u) + L2(z,u). (3)

To derive the dual problem, the Lagrangian is minimized over
x and z. The terms involving x are

L1(x,u) = ‖y −Ax‖22 +Re
(
uHDx

)
. (4)

The terms in (2) involving z are

L2(z,u) = µ‖z‖1 − Re(uHz) . (5)

The value x̂ minimizing (4) is found by differentiation. This
gives

DHu = 2AH (y −Ax̂) (6)

and
AHAx̂ = AHy − 1

2
DHu . (7)

If DHu ∈ span(AH) the solution to (7) becomes,

x̂ = A+y + ξ︸ ︷︷ ︸
x̂LS

−1

2
(AHA)+DHu , (8)

where (·)+ denotes the Moore-Penrose pseudo inverse of X ,
i.e. X+ = (XHX)+XH . Here, ξ ∈ N (A) is a nullspace

Fig. 1. Sketch of the relations between the primal solution and the terms
in (9): least norm solution xleast norm, least squares solution xLS, and the
sparse solutions x`0 , x`1 . The nullspace term ξ is any vector along the line
perpendicular to A+. The red arrow represents the last term in (9) which is
perpendicular to ξ.
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Fig. 2. Numerical example solution terms in Eq. (9) versus direction of
arrival (DOA).

term which enables x̂ to deviate from the least norm solution
A+y. The nullspace N (A) is {ξ ∈ CM |Aξ = 0}. By
identifying ξ = xnull

`1
, we specialize (8) to the solution of

(P1′),

x`1 = A+y + xnull
`1 −

1

2
(AHA)+DHu. (9)

Thus, the solution to the generalized LASSO problem (8)
consists of three terms. These are illustrated schematically
in Fig. 1. The first two terms are the least norm solution
A+y and the nullspace solution ξ which together form the
unconstrained least squares (LS) solution x̂LS. The third term
in (8) is associated with the dual solution. Fig. 2 shows the
three terms of (9) individually for a simple array-processing
scenario. The continuous angle θ is discretized uniformly in
[−90, 90] using 361 samples and the wavefield is observed
by 30 sensors resulting in a complex-valued 30 × 361 A
matrix (see section IV-A). At those primal coordinates m
which correspond to directions of arrival at −5◦, 10◦ and 150◦
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in Fig. 2, the three terms sum up constructively resulting in
a non-zero xm (“the mth source position is active”), while
for all other entries they interfere destructively. The case of
constructive interference is illustrated in Fig. 1 which is in
constrast to the case of destructive interference when the three
terms in (8) sum up to zero. This is formulated rigorously in
Corollary 1.

We evaluate (4) at the minimizing solution x̂ and express
the result solely by the dual u. Firstly, we expand

‖y −Ax̂‖22 = ‖y‖22 + ‖Ax̂‖22 − 2Re{yHAx̂} (10)

Secondly using (6),

(DHu)H x̂ = 2(y −Ax̂)HAx̂
= 2yHAx̂− 2‖Ax̂‖22 (11)

Eq.(10) and the real part of (11) are summed. This results in

L1(x̂,u) = ‖y‖22 − ‖Ax̂‖22
= yHy − ‖ỹ − D̃H

u‖22 , (12)

where we used (8) and introduced the abbreviations

D̃ =
1

2
DA+, (13)

AA+ = P
A
, (14)

ỹ = P
A
y . (15)

Formally, the subspace constraint DHu ∈ span(AH) is
formulated as (DU)Hu = 0 where U is a unitary basis of
the null space N . This results in

inf
x
L1(x,u) =

{
yHy − ‖ỹ − D̃H

u‖22 , if (DU)Hu = 0,
−∞, otherwise.

(16)
Next (5) is minimized with respect to z, see Appendix A,

inf
z
L2(z,u) =

{
0, if ‖u‖∞ ≤ µ
−∞, otherwise. (17)

Combining (16) and (17), the dual problem to the generalized
LASSO (1) is,

max
u∈CM

yHy − ‖ỹ − D̃H
u‖22 (18a)

subject to ‖u‖∞ ≤ µ, (18b)
(DU)Hu = 0. (18c)

Equation (6) can be solved for u if the row space constraint
(18c) is fulfilled. The result is summarized in the following

Theorem 1. If D is non-singular, the dual vector u is the
output of a weighted CBF acting on the vector of residuals,
i.e.

u = 2D−HAH(y −Ax`1) , (19)

where x`1 is such that the box constraint (18b) is fulfilled.

The dual vector u gives an indication of the sensitivity
of the primal solution to small changes in the constraints
of the primal problem [24]. In [10], it was worked out for
the real-valued case that the solution to (P1′) can be more
easily constructed and better understood via the dual problem.
Theorem 1 asserts a linear one-to-one relation between the

corresponding dual and primal solution vectors also in the
complex-valued case. Thus, any results formulated in the
primal domain are readily applicable in the dual domain.
This allows a more fundamental interpretation of sequential
Bayesian approaches to density evolution for sparse source
reconstruction [20], [21]: they can be rewritten in a form that
shows that they solve a generalized complex-valued LASSO
problem and its dual. The posterior probability density is
actually related to the dual solution.

The following corollaries clarify useful element-wise re-
lations between the primal and dual solutions: Corollary 1
relates the magnitudes of the corresponding primal and dual
coordinates. Further, Corollary 2 certifies what conditions on
D are sufficient for guaranteeing that the phase angles of the
corresponding primal and dual coordinates are equal. Finally,
Corollary 3 states that both the primal and the dual solutions
to (P1′) are piecewise linear in the regularization parameter µ.

Corollary 1. If the mth primal coordinate is active, i.e.
x`1,m 6= 0 then the box constraint (18b) is tight in the mth
dual coordinate. Formally,

x`1,m 6= 0 ⇒ |um| = µ, (m = 1, . . . ,M). (20)

Informally, we say that the mth dual coordinate hits the
boundary when the mth primal coordinate becomes active.
Conversely, when the bound on |um| is loose (i.e. the con-
straint on um is inactive), the corresponding primal variable
xm is zero (the mth primal coordinate is inactive). The proof
is given in Appendix B. The active set M is

M =
{
m
∣∣x`1,m 6= 0

}
⊆
{
m
∣∣ |um| = µ

}
= U . (21)

The active set M implicitly depends on the choice of µ in
problem (P1′). Let M contain exactly s indices,

M = {m1, m2, . . . , ms}. (22)

Corollary 2. If matrix D is diagonal with real-valued positive
diagonal entries, then the phase angles of the corresponding
entries of the dual and primal solution vectors are equal.

arg(um) = arg(x`1,m), ∀m ∈M (23)

Corollary 3. The primal and the dual solutions to the
complex-valued generalized LASSO problem (P1′) are con-
tinuous and piecewise linear in the regularization parameter
µ > 0. The changes in slope occur at those values for µ where
the set of active indices M changes.

The proofs for these corollaries are given in Appendix B.

A. Relation to the `0 solution

It is now assumed that M defines the indices of the s non-
zero elements of the corresponding `0 solution. In other words:
the `1 and `0 solutions share the same sparsity pattern. The `0
solution with sparsity s is then obtained by regressing the s
active columns of A to the data y in the least-squares sense.
Let

AM = [am1 , am2 , . . . ,ams ] , (24)
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where am denotes the mth column of A. The `0 solution
becomes (cf. Appendix C)

x`0 = A+
My . (25)

Here, A+
M = (AH

MAM)−1AH
M is the left inverse of AM.

By subtracting (9) from (25) and restricting the equations to
the contracted basis AM yields

AM(x`0 − x`1) =
1

2
AM

(
AH
MAM

)+
DH
MuM (26)

= D̃
H

Mµe
jθ . (27)

In the image of A, the `0-reconstruction problem (P0) and the
generalized LASSO (P1′) coincide if the LASSO problem is
pre-informed (prior knowledge) by setting Dmm, m ∈ M
to zero. The prior knowledge is obtainable by an iterative
re-weighting process [26] or by a sequential procedure on
stationary sources [21].

IV. DIRECTION OF ARRIVAL ESTIMATION

For the numerical examples, we model a uniform linear
array (ULA), which is described with its steering vectors
representing the incident wave for each array element.

A. Array Data Model

Let x = (x1, . . . , xM )T be a vector of complex-valued
source amplitudes. We observe time-sampled waveforms on
an array of N sensors which are stacked in the vector y. The
following linear model for the narrowband sensor array data
y at frequency ω is assumed,

y = Ax+ n . (28)

The mth column of the transfer matrix A is the array steering
vector am for hypothetical waves from direction of arrival
(DOA) θm. To simplify the analysis all columns are normal-
ized such that their `2 norm is one. The transfer matrix A is
constructed by sampling all possible directions or arrival, but
only very few of these correspond to real sources. Therefore,
the dimension of A is N ×M with N �M and x is sparse.
In our setting, the number of hypothetical source locations M
is much larger than the number of sensors N , i.e. N � M .
The linear model equations (28) are underdetermined.

The nmth element of A is modeled by

Anm =
1√
N

exp [j(n− 1)π sin θm] . (29)

Here θm = π(m−1)
M −π/2 is the DOA of the mth hypothetical

DOA to the nth array element.
The additive noise vector n is assumed spatially uncorre-

lated and follows a zero-mean complex normal distribution
with diagonal covariance matrix σ2I .

For the observation y according to the linear model (28),
the conditional probability density given the source vector x
is

p(y|x) = exp
(
− 1
σ2 ‖y −Ax‖22

)

(πσ2)N
. (30)

For the source vector x, a prior probability density is assumed
in form of a multivariate complex Laplace-like density [27],

p(x) =
M∏

m=1

(
λm√
2π

)2

e−λm|xm| , (31)

with associated hyperparameters λm > 0 modeling the source
signal strength at location θm. xm = |xm|ejφm is the complex
source signal at hypothetical source location θm. Note that
(31) defines a joint distribution for |xm| and φm for all m =
1, . . . ,M . Taking the logarithm gives

− ln p(x) =

M∑

m=1

λm|xm| − 2

M∑

m=1

lnλm +M ln 2π . (32)

For the posterior probability density function (pdf) p(x|y),
Bayes’ rule is used for obtaining the generalized LASSO
Lagrangian [10], [21]

1

σ2
‖y −Ax‖22 + µ ‖Wx‖1 (33)

with
W =

1

µ
diag(λ) = diag(w). (34)

Minimizing the generalized LASSO Lagrangian (35) with
respect to x for given µ, and w = (w1, . . . , wM )T , λ = µw,
gives a sparse MAP source estimate x`1 . This minimization
problem promotes sparse solutions in which the `1 constraint
is weighted by giving every source amplitude its own hyper-
parameter wm.

Equivalently to (33), this is reformulated as

‖y −Ax‖22 + µ ‖Dx‖1 , (35)

with
D = σ2W . (36)

The minimization of (35) constitutes a strictly convex opti-
mization problem.

B. Basis coherence

The chosen examples feature different levels of basis coher-
ence in order to examine the solution’s behavior. As described
in [14], the basis coherence is a measure of correlation
between two steering vectors and defined as the inner product
between atoms, i.e. the columns of A. The maximum of these
inner products is called mutual coherence and is customarily
used for performance guarantees of recovery algorithms. To
state the difference formally:

coh (ai,aj) = ai
Haj (37)

mutual coh(A) =
∥∥∥AHA− I

∥∥∥
∞

(38)

The mutual coherence is bounded between 0 and 1 and [14]
has shown that the coherence defines a region of possible
offsets around the true DOA θm associated with steering vector
am. The region of possible offsets is marked in Fig. 7 as
circles (“◦”).
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Fig. 3. Dual (a) and primal (b) coordinates for 3 well separated sources with
low basis coherence.

C. Numerical Example

The following numerical example in Figs. 3 and 4 demon-
strates the dual solution and the classical CBF output for
N = 30 and M = 361. The example is noiseless and the
diagonal matrix D = I is non-informative in the Bayesian
sense. In Fig. 3, the LASSO with µ = 1 is solved for a scenario
with three sources at DOA −5◦, 10◦, 150◦ and all sources have
same power level (see Fig. 3b), whereas in Fig. 4, an additional
fourth source at 14◦ is included into the scenario.

1) CBF resolvable regime: In Fig. 3, we investigate the
performance when the steering vectors of the active sources
have small basis coherence. The basis of source 1 is weakly
coherent with source 2, coh ≈ 0.02 using (37).

Figure 3a shows the normalized beampattern of the CBF
(blue) and the pattern of the dual vector (black). This figure
shows that the true source parameters (DOA and power) are
well estimated.

2) Beyond the CBF capabilities: Figure 4a shows that the
sources are not separable with the CBF, because the steering
vectors belonging to source 2 and 3 are coherent, coh = 0.61
using (37). The (generalized) LASSO approach is still capable
of resolving all 4 sources. Figure 4b shows that the true source
locations (DOA) are still well estimated, in constrast to the
source powers.

V. SOLUTION PATH

The problems (P0)–(P2) are complex-valued and the cor-
responding solution paths behave differently from what is
described in Ref. [10]. In the following figures, only the
magnitudes of the primal and dual solution coordinates are
illustrated. Note that Corollary 1 guarantees that the phases
of the active primary solution elements and their duals are
identical and independent from µ.
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Fig. 4. Dual (a) and primal (b) coordinates for 4 sources with higher basis
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Fig. 5. Magnitudes of the solution paths versus µ for the simulation
parameters in Table I and SNR = 40 dB: (a) dual, and (b) primal vectors for
the case of the complete basis.

A. Complete Basis

First (Fig. 5) discusses the dual and primal solution for a
complete basis with M = 6, sparsity level s = 6, and N = 30
sensors linearly spaced with half wavelength spacing. This
simulation scenario is not sparse and all steering vectors am
for 1 ≤ m ≤ M will eventually be used to reconstruct the
data for small µ. The source parameters that are used in the
simulation scenario are given in Table I. The signal to noise
ratio is defined as

SNR = 10 log10
(
E‖Ax‖22 /E‖n‖22

)
dB, (39)

and chosen to be SNR = 40dB. The diagonal matrix D = I
is again chosen to be non informative.

We discuss the solution paths in Figs. 5–9 from right
(µ = ∞) to left (µ = 0). Initially all dual solution paths are
horizontal (slope = 0), since the primal solution x`1 = 0 for
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Fig. 6. Magnitudes of the solution paths versus µ for the simulation
parameters in Table I and SNR = 40 dB: (a) dual, and (b, c and d) primal
vectors for the case of an 80-vector overcomplete basis. For the primal
coordinates the peak within ±2 bins from the true bin is tracked based on
(b) maximum (c) energy. The magnitudes of the corresponding elements of
x`0 are shown in (d).

No. DOA (◦) Power (lin.)
1 −6.0 4.0
2 −1.0 7.0
3 4.0 9.0
4 9.0 7.0
5 14.0 12.0
6 19.0 5.0

TABLE I
SOURCE PARAMETERS FOR SIMULATION SCENARIO

µ > 2‖D−HAHy‖∞. In this strongly penalized regime, the
dual vector is the output of the weighted CBF u =D−HAHy
which does not depend on µ.

At the point µ1 = 2‖D−HAHy‖∞ the first dual coordinate
hits the boundary (18b). This occurs at µ1 = 21 in Fig. 5a
and the corresponding primal coordinate becomes active. As
long the active set M does not change, the magnitude of the
corresponding dual coordinate is µ, due to Corollary 1. The
remaining dual coordinates change slope relative to the basis
coherence level of the active set.

As µ decreases, the source magnitudes at the primal active
indices increase since the `1-constraint in (P1′) becomes less
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Fig. 7. Dual and primal coordinates at selected values of µ for 81-vector
overcomplete basis for SNR = 40 dB.

important, see Fig. 5b. The second source will become active
when the next dual coordinate hits the boundary (at µ1 = 17
in Fig. 5).

When the active set is constant, the primary and dual solu-
tion is piecewise linearly with µ, as proved in Corollary 3. The
changes in slope are quite gentle, as shown for the example
in Fig. 5 . Finally, at µ = 0 the problem (P1′) degenerates to
an unconstrained (underdetermined) least squares problem. Its
primal solution x̂ = x̂LS, see (8), is not unique and the dual
vector is trivial, u = 0.

B. Overcomplete Basis

We now enlarge the basis to M = 81 with hypothetical
source locations θm ∈ [−20◦, 20◦] with 0.5◦ spacing, and all
other parameters as before. The solution is now sparse.

The LASSO path [28] is illustrated in Fig. 6 where we
expect the source location estimate to be up to ±2 bins from
the true source location. The dual Fig. 6a appears to be quite
similar to Fig. 5a.

Corollary 3 gives that the primary solution should change
linearly, as demonstrated for the complete basis in Fig. 5)b.
Here we explain why this is not the case for the overcomplete
basis primary solution in Fig. 6b . This can be understood be
examining the full solution at selected values of µ (stars (*)
in Fig. 6). At µ = 20 just one solution is active, only the
black source (source 5) is active though one bin to the left,
as shown in Fig. 7. Between µ = 16 and µ = 11, the black
source appears constant, this is because at large values the
source is initially located in a neighboring bin. As µ decreases,
the correct bin receive more power, see Fig7 for µ = 15 and
µ = 10. When it is stronger than the neighbor bin at (µ = 11),
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Fig. 8. For 10 noise realizations, magnitudes of the solution paths versus µ
for the simulation parameters in Table I and SNR = 40 dB: (a) dual, and (b, c
and d) primal vectors for the case of an 80-vector overcomplete basis. For the
primal coordinates the peak within ±2 bins from the true bin is tracked based
on (b) maximum (c) energy. The magnitudes of the corresponding elements
of x`0 are shown in (d).

this source power will start increase again. This trading in
source power causes the fluctuations in Fig. 6b.

One way to correct for this fluctuation is to sum the coherent
energy for all bins near a source, i.e., multiplying the source
vector with the corresponding neighbor columns ofA and then
compute the energy based on the average received power at
each sensor. This gives a steady rise in power as shown in
Fig. 6c.

We motivate solving (P1′) as a substitute for `0-
reconstruction (P0)—finding the active indexes of the `1
solution, see Fig. 6d. The `0 primal can be found with the
restricted basis and the value of the `1 primal from (8), which
depends on µ, or by just solving (25).

To investigate the sensitivity to noise, 10 LASSO paths are
simulated for 10 noise realizations for both SNR = 40 dB
(Fig. 8) and SNR = 20 dB (Fig 9). The dual (Figs. 8a and 9a),
appears quite stable to noise, but the primal |x`1| (Figs. 8b and
9b) show quite large variation with noise. This is because the
noise causes the active indexes to shift and thus the magnitude
to vary. The mapping to energy |xenergy| (Figs. 8c and 9c) or
the |x`0| solution (Figs. 8d and 9d) makes the solution much
more stable.
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Fig. 9. As Fig. 8, but with SNR = 20 dB:

VI. SOLUTION PROCEDURES

Motivated by Theorem 1 and Corollary 1, we propose the
order-recursive procedure in Table II for approximating the
solution to problem (P2), a faster iterative procedure in Table
III, and a dual-based iterative procedure in Table IV.

As shown by Theorem 1, the dual vector is actually a CBF
acting on the LASSO residuals which will hit the boundary
(|um| = µ) if the corresponding primal coordinate xm is
active. This insight leads to an estimator for the regularization
parameter µ for a given sparsity order.

The LASSO path [28] is illustrated in Fig. 10. Starting
from a large choice of regularization parameter µ and then
decreasing, we observe incremental changes in the active set at
specific values µ∗p of the regularization parameter. The active
set remains constant within the interval µ∗p > µ > µ∗p+1.
Assuming the sequence µ∗1, µ∗2, . . . known, we follow a path
of regularization parameters µ1, µ2, . . . where µp is slightly
higher than the lower end µ∗p+1 of the regularization interval.
Specifically, µp = (1 − F )µ∗p + Fµ∗p+1 with F < 1. For
the numerical examples F = 0.9 is used. This F is chosen
because the primal solution x`1 is closest to x`0 ) at the lower
end of the interval.

The order recursive procedure in Table II finds one source
at a time as µ is lowered, the iterative procedure in Table III
iterates on the finding the number of active sources, the dual
iterative procedure in Table IV is entirely in the dual domain.
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In the following we focus on the1 order recursive procedure,
and indicate the differences to the other approaches.

A. Primary-based

The procedure starts with the all-zero solution x0
`1

= 0
in line 1. This corresponds to a large value of µ = µ0 >
2‖D−HAHy‖∞, but is not used directly. The first value of
µ, µ1 is chosen based on the first peak in u for x`1 = 0. The
`∞-norm is implemented by calling the peak(u, p)–function
for p = 1 in line 3. For this purpose, we define the peak(u, p)–
function which returns the pth largest local peak in magnitude
of the vector u. A local peak is defined as an element which
is larger than its adjacent elements.

In lines 4–5 in Table II, the generalized LASSO problem
(P1′) is solved for µ = µ1 and the corresponding active set is
detected by thresholding (at this point, the active set contains
only a single active index). Then, by assuming that the active
set is also valid for the solution to the `0-problem (P0), the
solution xp`0 is computed. Next, we start an iteration loop with
counter i which reduces the regularization parameter µ by
inserting the updated dual variable u1 into line 3.

The next choice of regularization parameter µ2 is selected
in the interval [µ∗2, µ∗3[ which we estimate by the 2nd and
3rd largest peaks of the dual variable. This is illustrated in
Fig. 10. This is implemented in line 3. Then, we solve (P1′)
for µ = µ2 < µ1 and continue the iteration until the desired
sparsity level s is reached.

In line 5, the active setM is approximated by thresholding
of the primal solution.

If the number of elements in M equals the loop counter
i then the basis is restricted to M and the corresponding
`0-solution is computed in lines 9–13. Otherwise, at least
one peak of the dual vector is a sidelobe artifact. Then an
additional peak in u must be included for estimating the next
µ. This is implemented by incrementing the loop counter i in
line 8, which keeps track of the number of peaks in u.

The order-recursive procedure in Table II employs an ap-
proximation of the height of the ith local peak given the
(i− 1)th solution. Theorem 1 together with Corollary 1 gives
µi = peak(ui, i). The underlying assumption is that the next
source will become active at the location corresponding to
the dual coordinate of the next peak. This assumption is not
universally valid as discussed below (44).

From the box constraint (18b), it is concluded that the level
of the ith peak in u does not change much during the iteration
over i: It is bounded by the difference in regularization
parameter. For µ′ < µ′′,

peak(u(µ′′), i)− peak(u(µ′), i) ≤ µ′′ − µ′. (40)

This allows to approximate

µi = peak(ui, i) ≈ peak(ui−1, i) . (41)

This approximation is not limited to a single iteration. There-
fore, (41) can be extended further to

µi ≈ peak(ui−1, i) ≈ peak(ui−2, i) ≈ · · · ≈ peak(u0, i) .
(42)

This observation motivates the iterative procedure in Table III.
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Fig. 10. Illustration of the LASSO path: Number of active indices versus
the regularization parameter µ. Increments in the active set occur at µ∗p

For i = 0 there is no previous basis, and the relation (42) is
exact. If (AHA) were a diagonal matrix, the relation would
also be exact. This follows from

ui = 2D−HAH
(
y −A xi`1

)

= 2D−H(AHy − (AHA) xi`1). (43)

A diagonal coherence matrix implies the mutual coherence is
zero, which is not possible for M > N . From (43), it is seen
that the coherence matrix of the basis (AHA) is re-weighted
by the primal solution vector xi`1 in the ith iteration. The
accuracy of the approximation (42) depends on the magnitudes
of the off-diagonal elements of the coherence matrix. For
discussing the approximation accuracy, note that µi depends
on the peaks in the magnitude of |ui|

ui = 2D−HAH

(
y −

∑

m∈Mi

amx
i
`1,m

)
(44)

As long as the next active column is orthogonal to all active
columns am with m ∈Mi, the approximation is exact.

Although (44) appears to be quite complicated, Corollary 3
assures that the dual coordinate is linear in the regularization
parameter for all µ∗(p+1) < µ < µ∗p. It may happen that the
coordinate corresponding to the (i+1)st peak becomes active
first, although peak(ui−1, i) > peak(ui−1, i+1). In this case,
two sources become active as the regularization parameter is
chosen too low. This is not treated in the tables to keep them
simple, but this exception can be handled by, e.g., bisection.

B. Dual-based

As asserted by (21), searching for active indices in the
dual domain is effectively a form of relaxation of the primal
problem (P1′). This amounts to peak finding in the output of
a beamformer acting on the residuals, cf. Theorem 1. In line
5, the active setM is effectively approximated by the relaxed
set Ui.

Instead of the primal (P1′), the dual (18a)–(18c) is solved
exclusively. As a demonstrative example, we provide the fast
iterative algorithm formulated in the dual domain in Table IV.
Note that the gird-free atomic norm solutions [13], [15], [16],
[17] follows a solution approach similar to this.

VII. SIMULATION

In this section, the performance of the proposed dual esti-
mation procedures is evaluated based on numerical simulation.
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Given: A ∈ CN×M , D ∈ diagRM , y ∈ CN
Given: s ∈ N , F ∈]0, 1[.

1: Initialize i = 0, p = 1, x0
`1

= 0, u0 = 2D−HAHy

2: while p < s
i = i+ 1

3: µi = (1− F ) peak
(
ui−1, i

)
+ F peak

(
ui−1, i+ 1

)

4a: xi`1 = solution to problem (P1′) for A,D,y, µ = µi

4b ui = 2D−HAH
(
y −Axi`1

)

5: Mi = {m
∣∣∣ |xi`1,m| > δi}, δi = ε‖xi`1‖∞

which ensures that |Mi| ≤ i

7: if |Mi| < p
8: i = i+ 1
9: else
10: xp`0

= A+
Mi
y

11: Mp =Mi

12: p = p+ 1
13: end

14: end

15: Output: xp`0 ,Mp ∀p = 1 . . . s

TABLE II
ORDER-RECURSIVE PROCEDURE TO APPROXIMATE (P2).

Given: A ∈ CN×M , D ∈ diagRM , y ∈ CN
Given: s ∈ N , F ∈]0, 1[

1: Initialize i = 0, x0
`1

= 0, u0 = 2D−HAHy

2: while |Mi| < s
i = i+ 1

3: µi = (1− F ) peak
(
ui−1, s

)
+ F peak

(
ui−1, s+ 1

)

4a: xi`1 = solution to problem (P1′) for A,D,y, µ = µi

4b ui = 2D−HAH
(
y −Axi`1

)

5: Mi = {m
∣∣∣ |xi`1,m| > δi}, δi = ε‖xi`1‖∞

which ensures that |Mi| ≤ i
7: end

8: xs`0 = A+
Mi
y

9: Ms =Mi

10: Output: xs`0 ,Ms

TABLE III
ITERATIVE PRIMAL-BASED PROCEDURE TO APPROXIMATE (P2).

We use synthetic data from a uniform linear array with N = 64
elements with half-wavelength spacing. The angular domain
is discretized by θm = (m − 1) 180

◦

M with m = 1, . . . ,M
and M = 180. The simulation scenario includes s = 8 far-
field sources modelled by plane waves (28). The uncorrelated
noise n is zero-mean complex-valued circularly symmetric
normally distributed∼ N (0, I), i.e. 0 dB power. Eight sources
are stationary at θT = [45, 60, 76, 99, 107, 120, 134, 162]
degrees relative to endfire with constant power level (PL)
[−5, 10, 5, 0, 11, 12, 9, 25] dB [21].

The dual solution for the order-recursive approach, Table II,
corresponds to the results shown in Fig. 11. The faster iterative
approach, Table III, yields the results in Fig. 12. The dual
solution using the primal solution from the previous iteration
is interpreted as a weighted CBF and used for the selection
of µ (left column). Next, the convex optimization is carried

Given: A ∈ CN×M , D ∈ diagRM , y ∈ CN
Given: s ∈ N , F ∈]0, 1[

1: Initialize i = 0, u0 = 2D−HAHy

2: while |Mi| < s
i = i+ 1

3: µi = (1− F ) peak
(
ui−1, s

)
+ F peak

(
ui−1, s+ 1

)

4: ui = solution to (18a)− (18c) for A,D,y, µ = µi

5: Ui = {m
∣∣∣ 1− |u

i
m|
µ

< εµ}
6a: xi`0 = A+

Uiy

6b: Mi = {m
∣∣∣ |xi`0,m| > δi}, δi = ε‖xi`0‖∞

7: end

8: xs`0 = A+
Mi
y

9: Ms =Mi

10: Output: xs`0 ,Ms

TABLE IV
ITERATIVE DUAL-BASED PROCEDURE TO APPROXIMATE (P2).

out for that value of µ giving the dual solution. We plot the
dual solution on a linear scale and normalized to a maximum
value of 1 which is customary in implementations of the dual
for compressed sensing [13], [15], [16]. The number of active
sources (see right column in Figs. 11 and 12) are determined
according to line 5 in Tables II and III.

For the order-recursive approach step 1, the µ is selected
based on the main peak θ = 162◦ and a large side lobe at
θ = 170◦. The solution progresses steadily down the LASSO
path. Figure 12 shows the faster iterative approach in Table
III for the 8-source problem. In the first iteration we use a µ
between the 8th and 9th peak based on the CBF solution (Fig.
12a). There are many sidelobes associated with the source at
θ = 162◦. As soon as the dominant source is determined, the
sidelobes in the residuals are reduced and only 5 sources are
observed. After two more iterations, all 8 sources are found
at their correct locations.

For both procedures, the main CPU time is used in solving
the convex optimization problem. Thus the iterative procedure
is a factor 8/3 faster in this case than the straightforward ap-
proach which strictly follows the LASSO path. The approach
described in Table II has approximately the same CPU time
usage as the approach in Ref. [21], but it is conceptually
simpler and provides deeper physical insight into the problem.

VIII. CONCLUSION

The complex-valued generalized LASSO problem is strictly
convex and strong duality holds. The corresponding dual
problem is interpretable as a weighted CBF acting on the
residuals of the LASSO. There is a linear one-to-one relation
between the dual and primal vectors. Any results formulated
for the primal problem are readily extendable to the dual
problem. Thus, the sensitivity of the primal solution to small
changes in the constraints can be easily assessed.

While the LASSO solution gives the x`1 solution it is
usually the x`0 solution that is of interest. The difference be-
tween the x`0 and the x`1 is characterized via the dual vector
and show its strong linear dependence on the regularization



10

50 100 150
0

10

20

30

40
a)

50 100 150
0

0.2

0.4

0.6

0.8

1 b)
 mu: 35.6dB, #sources 1

50 100 150
0

10

20

30

40
c)

50 100 150
0

0.2

0.4

0.6

0.8

1 d)
 mu: 31.8dB, #sources 2

Angle (deg)
50 100 150

u
 [
d
B

]

0

10

20

30

40
e)

50 100 150

u
 [
lin

]

0

0.2

0.4

0.6

0.8

1 f)
 mu: 14.8dB, #sources 8

Fig. 11. Dual coordinates for order-recursive approach corresponding to step
p = 1 (a and b), p = 2 (c and d), and p = 8 (e and f). Left column: Dual
(dB) for the previous step which is used for selecting µ (horizontal line).
Right column: Dual (lin) normalized with µ (maximum is 1), the true source
locations are marked with ◦, and the actual value of µ and number of sources
found is also indicated.

50 100 150
0

10

20

30

40
a)

50 100 150
0

0.2

0.4

0.6

0.8

1 b)
 mu: 28dB, #sources 5

50 100 150
0

10

20

30

40
c)

50 100 150
0

0.2

0.4

0.6

0.8

1 d)
 mu: 18.4dB, #sources 7

Angle (deg)
50 100 150

u
 [
d
B

]

0

10

20

30

40
e)

50 100 150

u
 [
lin

]

0

0.2

0.4

0.6

0.8

1 f)
 mu: 15.1dB, #sources 8

Fig. 12. Dual coordinates iterative approach corresponding for localizing
s = 8 sources for step i = 1 (a and b), i = 2 (c and d), and i = 3 (e and
f). Left column: Dual (dB) for the previous step which is used for selecting
µ (horizontal line). Right column: Dual (lin) normalized with µ (maximum
is 1), the true source locations are marked with ◦, and the actual value of µ
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parameter µ and the basis coherence of the active sources,
Eq. (26).

Based on mathematical and physical insight, an order-
recursive and a faster iterative LASSO-based procedure are
proposed and evaluated. These procedures use the dual vari-
able of the generalized LASSO for regularization parameter
selection, which greatly facilitates computation of the path
as we can predict the changes in the active indexes. Further,
a dual-based procedure is formulated which solves only the
dual problem. The examples demonstrate the procedures,

confirming that the dual and primal coordinates are piecewise
linear in the regularization parameter µ.

APPENDIX A

Proof of (17): Set u = (u1, u2, . . . , uM )T ∈ CM .

µ‖z‖1 − Re(uHz) =
M∑

m=1

(µ|zm| − Re(u∗mzm)) (A1)

Further, u∗mzm = |um| |zm| ejφmm , where the phase difference
φmm depends on both um and zm. We continue from (A1)

=

M∑

m=1

(µ− |um| cosφmm)︸ ︷︷ ︸
µ̃m≥ 0 ?

|zm|. (A2)

If all coefficients µ̃m ≥ 0 for all choices zm ∈ C then

min
z

(
µ‖z‖1 − Re(uHz)

)
= 0, (A3)

otherwise there is no lower bound on the minimum. Therefore,
all |um| must be bounded, i.e. |um| ≤ µ∀m = 1, . . . ,M to
ensure that all µ̃m ≥ 0 for all possible phase differences −1 ≤
cosφmm ≤ 1. Finally, we note that ‖u‖∞ = maxm |um|.

APPENDIX B: PROOFS OF COROLLARIES 1, 2, AND 3

Proof for Corollary 1

Let the objective function of the complex-valued generalized
LASSO problem (P1′) be

L = ‖y −Ax‖22 + µ‖Dx‖1 . (B1)

In the following, we evaluate the subderivative ∂L [29] as the
set of all complex subgradients as introduced in [30]. First, we
observe

∂L = −2AH(y −Ax) + µ∂‖Dx‖1 . (B2)

Next, it is assumed that D is a diagonal matrix with positive
real-valued diagonal entries. It follows that

∂‖Dx‖1 =





D∗mmxm

|Dmmxm| for Dmmxm 6= 0

{z ∈ C, |z| ≤ 1} for Dmmxm = 0
(B3)

The minimality condition for L is equivalent to setting (B2)
to zero. For all m with Dmmxm 6= 0 and with (19), this gives

µ
D∗mmxm
|Dmmxm|

= um . (B4)

It readily follows that |um| = µ.

Proof for Corollary 2

For matrices D with positive diagonal entries, we conclude
for the active set, m ∈M,

µej arg(xm) =
2

Dmm
eHmA

H (y −Ax) = um , (B5)

where em is the mth standard basis vector. This concludes the
proof of Corollary 2.
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Proof for Corollary 3

For the primal vector, this was shown in the real-valued case
by Tibshirani [1]. For the complex-valued case, this is a direct
consequence of Appendix B in [21]. For the dual vector, this
was shown in the real-valued case by Tibshirani [10]. For the
complex-valued case, this readily follows from Theorem 1.

APPENDIX C: `0 SOLUTION

The gradient (cf. Appendix B) of the (P0)– and (P1)–
objective functions is

∇‖y −Ax‖22 = −2AH (y −Ax) (C1)

For the active signal components, xm with m ∈ M, the `0-
constraint of (P0) is without effect and the solution results
from setting the gradient to zero, i.e. solving the normal
equations.

AH
My = AH

MAMx`0,M ⇒ x`0,M = A+
My (C2)

We set
x`0,M = x`1,M + ∆ . (C3)

This is inserted into (C1),

∇‖y −Ax`1,M‖22 = −2AH (y −A(x`0,M −∆)) . (C4)

Using (6) gives

2AH
M (y −AMx`1,M) = DH

MuM (C5)
2AH
M (y −AM (x`0,M −∆)) = DH

Mµe
jθM (C6)

2AH
MAM∆ = µDH

Me
jθM (C7)

This results in

∆ =
µ

2

(
AH
MAM

)−1
DH
Me

jθM (C8)

which depends on µ both explicitly and implicitly throughM.
If the set of nonzero elements of (P0) is equal to the active
set of (P1′), the solutions of (P0) and (P1′) differ by (C8).
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Abstract—A sequential Bayesian approach to density evolution
for sparse source reconstruction is proposed and analysed which
alternatingly solves a generalized LASSO problem and its dual.
Waves are observed by a sensor array. The waves are emitted by
a spatially-sparse set of sources. A weighted Laplace-like prior
is assumed for the sources such that the maximum a posteriori
source estimate at the current time step is the solution to a
generalized LASSO problem. The posterior Laplace-like density
at step k is approximated by the corresponding dual solution.
The posterior density at step k leads to the prior density at k+1
by applying a motion model. Thus, a sequence of generalized
LASSO problems is solved for estimating the temporal evolution
of a sparse source field.

Index Terms—sequential estimation, Bayesian estimation, spar-
sity, generalized LASSO.

I. INTRODUCTION

In this contribution, the online estimation of sparse signals
is solved from noisy data samples that become available
sequentially in time [2], [3], [4]. The proposed online estimator
alternatingly solves a generalized LASSO problem and its
dual. Besides the actual reconstruction, we are also interested
in the probability density of the source amplitudes and their
temporal evolution.

Previously, the Bayesian approach [5], [6], [7] was extended
to sequential Maximum A Posteriori (MAP) estimation for
sparse signals [3], [1]. A sequential MAP filter which pre-
serves sparsity was approximated based on [9]. It uses a single
new measurement snapshot in each step.

The theory is formulated so that it is applicable to sparse
source estimation in higher spatial dimensions.

II. DUAL PROBLEM TO THE GENERALIZED LASSO

The generalized LASSO as introduced in [8] penalizes a
weighted sum of the optimization variables

min
x

(
‖y −Ax‖22 + µ‖Dx‖1

)
, (1)

where A is the complex-valued dictionary, x,y are complex-
valued vectors and µ > 0. We seek solutions x with given
sparsity degree s ∈ N,

‖x‖0 = s . (2)

The regularization parameter µ is chosen to satisfy (2).

Following [11], the generalized complex-valued LASSO
problem is re-written as

min
x,z

(
‖y −Ax‖22 + µ‖z‖1

)
subject to z =Dx , (3)

but now we restrict D to be diagonal with real, positive
entries. This substitution provides a Lagrangian multiplier for
each element in x, and in fact these Lagrangian multipliers
will update the corresponding hyperparameters later on.

The dual problem to the generalized LASSO (3) is [8],
[10],

max
u∈CM

yHy − ‖AA+y − 1

2

(
DA+

)H
u‖22 (4a)

subject to ‖u‖∞ ≤ µ, (4b)
(DU)Hu = 0 , (4c)

where A+ denotes the Moore-Penrose inverse of the dictio-
nary A. Having solved the primal problem, the corresponding
dual solution is easily computed with the help of the following
theorem [10].

Theorem 1. The dual vector u is the output of a weighted
classical beamformer (weighted matched filter) acting on the
vector of residuals, i.e.,

u = 2(DH)−1AH(y −Ax`1) , (5)

where x`1 - the solution to the primal problem (17) - is such,
that the box constraint

‖u‖∞ ≤ µ (6)

is fulfilled.

Built upon Theorem 1 the following corollary was proven
in [10].

Corollary 1. If the mth primal coordinate is active, i.e.
x`1,m 6= 0 then the box constraint (6) is tight in the mth
dual coordinate. Formally, for any choice δ > 0,

|x`1,m| > δ ⇒ |um| = µ, (m = 1, . . . ,M) . (7)

Informally, we say that the mth dual coordinate hits the
boundary when the mth primal coordinate becomes active.



We define the active set M as the set of all indices m with
|x`1,m| > δ,

M = {m
∣∣ |x`1,m| > δ}. (8)

III. DIRECTION OF ARRIVAL ESTIMATION

For the numerical examples, we model a uniform linear
array (ULA) which is described with its steering vectors
representing the incident wave for each array element.

Let x = (x1, . . . , xM )T be a vector of complex-valued
source amplitudes. We observe time-sampled waveforms on
an array of N sensors which are stacked in the vector y. The
following linear model for the narrowband sensor array data
y at frequency ω is assumed,

y = Ax+ n . (9)

The mth column of the transfer matrix A is the array steering
vector am for hypothetical waves from direction of arrival
(DOA) θm. All columns are normalized such that their `2
norm is one. The transfer matrix A is constructed by sampling
all possible directions or arrival, but only very few of these
correspond to real sources. Therefore, the dimension of A is
N ×M with N � M and x is sparse. The linear model
equations (9) are under-determined.
The nmth element of A is modelled by

Anm =
1√
N

exp [−j(n− 1)π sin θm] . (10)

Here θm = π(m−1)
M −π/2 is the DOA of the mth hypothetical

DOA to the nth sensor element of the sensor array.
The additive noise vector n is assumed to be spatially uncor-

related and follows the zero-mean complex normal distribution
with diagonal covariance matrix σ2I .

For the observation y according to the linear model (9), the
conditional probability density given the source vector x is

p(y|x) = exp
(
− 1
σ2 ‖y −Ax‖22

)

(πσ2)N
. (11)

For the source vector x, a prior probability density is assumed
in form of a multivariate complex Laplace-like density [12],

p(x) =
M∏

m=1

pm(xm), with pm(x) =
(λm)2

2π
e−λm|xm| ,

(12)
with associated hyperparameters λm > 0 modelling the source
signal strength at location θm. xm = |xm|ejϕm is the complex
source signal at hypothetical source location θm. Note that (12)
defines the joint distribution for |xm| = rm and ϕm with the
phases uniformly distributed on [0, 2π), for m = 1, . . . ,M .
The prior mean and variances are

E{x} = 0, E{xxH} = 6diag
(
λ−21 , . . . , λ−2M

)
. (13)

Taking the logarithm of (12) gives

− ln p(x) =

M∑

m=1

λm|xm| − 2

M∑

m=1

lnλm +M ln 2π . (14)

input generalized LASSO update step

z−1

prediction step

outputs

y[k] u[k]

x`1 [k]

λ[k|k]

w[k + 1] λ[k + 1]

Fig. 1. Signal flow diagram for sequential Bayesian estimation at step k

For the posterior probability density function (pdf) p(x|y),
Bayes’ rule is used for obtaining the generalized LASSO
Lagrangian [8], [1]

1

σ2
‖y −Ax‖22 + µ ‖Wx‖1 (15)

with bounded weights ‖w‖∞ = 1

W = diag(w) =
1

µ
diag(λ) . (16)

Equivalently to (15), this is reformulated as

‖y −Ax‖22 + µ ‖Dx‖1 , (17)

with
D = σ2W . (18)

The minimization of (17) constitutes a strictly convex opti-
mization problem. Minimizing the generalized LASSO La-
grangian (17) with respect to x for given µ, and w =
(w1, . . . , wM )T , λ = µw, gives a sparse MAP source estimate
x`1 . This minimization problem promotes sparse solutions in
which the `1 constraint is weighted by giving every source
amplitude its own hyperparameter wm.

IV. SEQUENTIAL BAYESIAN ESTIMATION

In [1], a sequential Bayesian sparse source reconstruction
was proposed and analyzed which is now interpreted as solving
both the generalized LASSO problem (3) and its dual (4a)–
(4c) at step k. In the following, the dependency of time is
denoted explicitly in all relevant variables, e.g. y[k] to denote
the data at step k.

First, the history of all previous array observations is
summarized in Y [k − 1] = (y[1], . . . ,y[k − 1]). Given the
history Y [k−1] and the new data y[k], we seek the maximum
a posteriori (MAP) source estimate x`1 [k] for the linear model

y[k] = Ax[k] + n[k] , (19)

at step k under the `1–constraint. The additive noise n[k] is
assumed to be both spatially and temporally white,

E(n[k]n
H [k + l]) =

{
σ2I, for l = 0,
0 otherwise. (20)

The algorithm in [1] is reformulated in terms of the vector of
dual variables in Table I and shown schematically in Figure
1. It is actually the vector of dual variables which carries
the sequential information from each step, and not the primal
variables as customary in sequential filtering [14].



A. Update Step

In [1] two approximations were introduced in order to relate
the posterior weight vector λ[k|k] to the prior weight vector
λ[k] in the form of (12). By means of Theorem 1 and Corollary
1, both approximations for the posterior weight vector are
expressible by the dual solution. In the sequel we express the
superior approximation, the mean fit, by the dual vector.
In the complement of the active set, the relation between
posterior and prior weight vector is given as

λm[k|k] = λm[k]

(
1−

∣∣aHm 2
σ2 (y[k]−Ax`1)

∣∣2

λ2m[k]

)

∀m 6∈ M[k], (21)

and in the active set the posterior weight vector must be zero.

λm[k|k] = 0, ∀m ∈M[k] (22)

By Theorem 1 we express the numerator of (21) by the dual
vector u and the weights w. Corollary 1 links Equations (21)
and (22), as (21) is zero for |um| = µ .

Theorem 2. With the mean fit approximation, the posterior
weight vector λ[k|k] is related to the prior weight vector λ[k]
by the dual solution u[k] at step k,

λm[k|k] = λm[k]

(
1− |um[k]|2

µ2[k]

)
. (23)

Due to Theorem 1 and Corollary 1, µ is equal to the max-
norm of u and Theorem 2 is expressible solely by the dual
vector u

λm[k|k] = λm[k]

(
1− |um[k]|2
‖u[k]‖2∞

)
. (24)

Equation (24) shows that the dual coordinate equals µ and
the posterior weights become zero at source positions m ∈
M. Outside the active set, the probability of finding a source
depends on the relative sidelobe power level of the beamformer
of the LASSO residuals, cf. Theorem 1.

B. Prediction Step

In sequential estimation, typically the prior for the upcoming
step k + 1 is calculated from the current posterior and a
state-transition probability density function (“motion model”).
In a Markovian stochastic framework this is based on the
Chapman-Kolmogorov equation [14]. For Brownian motion
the state-transition probability density satisfies the diffusion
equation. Our prediction step is therefore based on a diffusion
model. Where diffusion occurs just in the neighbourhood of
active sources.

1) Neighborhood of an active source: The index
neighborhood of m is denoted asNm = {j

∣∣ m−l, . . . ,m+l}.
If any λj [k|k] ∈ Nm is less than the threshold λ0 then a
source is active in the neighborhood of m with high
probability.

The motion model is defined via the complementary

cumulative distribution function (ccdf) of the neighborhood
magnitudes,

P

{
|xm[k + 1]| > δ

∣∣∣∣x[k]
}

=

l∑

j=−l
αj P {|xm+j [k]| > δ} ,

(25)
with non-negative coefficients αj and

∑
j αj = 1. The

ccdf, after a polar coordinate transformation xm = rme
iϕm ,

evaluates to

P

{
|xm[k + 1]| > δ

∣∣∣∣x[k]
}

= (26)

=
l∑

j=−l
αj

π∫

−π

dϕ
m+j

2π

∞∫

δ

λ2
m+j

[k|k]e−λm+j
[k|k]r

m+j r
m+j

dr
m+j

=
l∑

j=−l
αj (λm+j [k|k] δ + 1) e−λm+j [k|k] δ ,

and by taking the negative derivative w.r.t. δ, we obtain the
magnitude’s probability density

− ∂

∂δ
P

{
|xm[k + 1]| > δ

∣∣∣∣x[k]
}

=

= 2πδ
l∑

j=−l
αj

(λm+j [k|k])2
2π

e−λm+j [k|k] δ (27)

which is a mixture of Erlang-2 distributions with variances
2(λm+j [k|k])−2, cf. Eq. (12).

We approximate the mixture by a Laplace-like density of the
form (12). We choose to fit the variance of the Laplace-like
density such that

1

(λm[k + 1])2
=

l∑

j=−l
αj

1

(λm+j [k|k])2
. (28)

We note that (28) is ill-behaved whenever a posterior weight
λm+j [k|k] = 0. In this case, a small offset ε > 0 is added to
stabilize (28) numerically. The predicted λ[k+1] is the product
of the regularization parameter µ[k+1] and the weights w[k+
1]. As µ[k+1] is not yet known at step k, we need to assume
that the regularization parameter remains constant between k
and k + 1, i.e.,

1

(λm[k + 1])2
=

1

(µ[k + 1]wm[k + 1])2
≈ 1

(µ[k]wm[k + 1])2
.

(29)
The predicted weights wm[k+1] are then calculated from the
weighted harmonic mean, i.e.,

(wm[k + 1])
2
=




l∑

j=−l

αj

(wm+j [k])
2



−1

. (30)

The weighted harmonic mean is a special instance of the
weighted Hölder mean [13], see Sec. V. To express the
uncertainty of the prediction, the weights are increased by an
offset w0 > 0, similar to process noise in Kalman filtering.



Implementation of density evolution procedure:
Given constants: A ∈ CN×M , w[1] ∈ [0, 1]M , s ∈ N

1: for k = 1, 2, 3, . . .
2: Input: y[k] ∈ CN

w[k] = w[k]/‖w[k]‖∞
3: D[k] = σ2 diag(w[k])
4: x`1 [k] = s-sparse solution to generalized LASSO (3) at k
5: u[k] = corresponding dual solution via Theorem 1
6: µ[k] = ‖u[k]‖∞
7: Update λ[k|k] via Theorem 2
8: w[k + 1] = motion model prediction(λ[k|k])
9: Output: x`1 [k] ∈ CM , λ[k|k] ∈ CM

10: end

TABLE I
PRIMAL/DUAL FORMULATION OF SEQUENTIAL BAYESIAN SPARSE SIGNAL

RECONSTRUCTION

2) Not in the neighborhood of an active source: The
posterior λj [k|k] exceeds the threshold λ0 which indicates
that it is improbable for a source to be near DOA θj . At step
k+1, we penalize the DOA j by adding a multiple of weight
uncertainty w0, i.e., wm[k + 1] = wm[k] + cw0 with c > 1.
In the simulations, w0 = 0.01 and c = 10.

To guarantee that the weights remain upper bounded by
1, the weighting vector is normalized to ‖w‖∞ = 1.
The Bayesian procedure is formalized in Table I as a loop
over time step k which processes the single snapshot array
observation y[k] when it becomes available. In line 3, the
weighting coefficients for the generalized LASSO problem
(3) are defined for the current step k. The s-sparse solution
in line 4 is implemented via the LASSO path [1], [10]. Next,
the corresponding dual solution is evaluated by weighted
beamforming of the residuals. Finally, the posterior weighting
coefficients are evaluated in line 7 which are needed for the
prediction step in line 8.

V. CONSERVATIVE CHOICE OF THE WEIGHTS

The weighted harmonic mean (30) is a pessimistic mean
as low values have stronger impact on the mean. Generally,
it tends to broaden the low weight region. This broad low
weight region leads to a jitter of the DOA estimate. To mitigate
this undesirable effect, we investigate alternative rules for the
predicted weights.
A weighted Hölder mean is defined as [13]

Mp(w
2
1, . . . , w

2
n) =




l∑

j=l

αj
(
w2
j

)p



1
p

,
l∑

j=l

αj = 1 .

(31)

For the choice of power p = −1, the weighted Hölder
mean coincides with the weighted harmonic mean (30). The
following inequality holds for weighted Hölder means,

Mp < Mq, for p < q . (32)

Any Hölder mean with p > 0 will not be dominated by
lower weights and the arithmetic mean (p = 1) is the tightest

conservative choice of weighting coefficients for Laplace-like
prior. [9] has used a max-log approximation instead of (28)
which amounts to picking M+∞, the least tight bound.

VI. SIMULATIONS

A. Weight Evolution

We investigate the weight evolution from step k = 1 to
k = 100, where the generalized LASSO of Table I is solved
by CVX [15] at each step. The ULA is equipped with N = 30
sensors and the angular space is sampled equidistantly with
half degree spacing between −90◦ and 90◦.
In Figure 2 the weight evolution of sources with trivial motion
model, l = 0 and α0 = 1 is shown. In Figure 3 movement is
modelled with a uniform motion model (l = 2, αj =

1
2l+1 =

0.2). Observe the trade off between having precise estimates
for the static sources and a good quality estimate of the moving
source.
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Fig. 2. Weight evolution for 3 sources at DOA 20◦, 0◦,−20◦, the third
source moves with 0.5◦ per time step; w0 = 0.01, c = 1, SNR = 20dB
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Fig. 3. Weight evolution for 3 sources at DOA 20◦, 0◦,−20◦, the third
source moves with 0.5◦ per time step; w0 = 0.01, c = 10, SNR = 20dB



A reasonable compromise of capturing the motion of a
source while still improving the estimate of the static sources
is to use an l > 0 and a conservative choice of the weights.
Figure 4 uses the same motion model as in Fig. 3, but the
weighted arithmetic mean is used, i.e. Equation (31) for power
parameter p = 1. For the arithmetic mean, the low weight
region of the static sources is narrower than for the harmonic
mean. This comes at the expense of the traceability of the
moving source.
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Fig. 4. Conservative weight evolution for 3 sources at DOA 20◦; 0◦;−20◦,
the third source moves with 0.5◦ per time step; w0 = 0.01, c = 10, SNR =
20dB

B. Comparison of the Tracking Results

The proposed DOA tracking procedure from Table I is com-
pared to ”Compressive Sensing on Kalman filtered residuals
(KF-CS)” [17] in Figure 5. For KF-CS µ is chosen non-
adaptively analogous to the value given in [18]:Algorithm 1.
The density evolution approach with p = −1 mean recovers
the static sources worse than the Kalman filter and the con-
servative (p = 1) approach, but in return the moving source is
traced well.

VII. CONCLUSION

A sequential reconstruction procedure was proposed which
uses both the primal and the dual solution to the generalized
LASSO. The dual variable is propagated to the update step,
which approximates the posterior distribution with a Laplace-
like distribution (see Fig. 1). From the approximated posterior
and a motion model, the prior for the next step is derived
and the procedure is ready for the next step. Without the
prediction step, the proposed procedure is fully equivalent
to the procedure in [1]. By including the motion model and
prediction step, we show superior performance by means of a
synthetic example.
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