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Abstract

We investigate how parameterized complexity theory can be used effectively to analyze
problems at higher levels of the Polynomial Hierarchy (PH). A key part of this investigation
is the development of new parameterized complexity classes that lie between the first
and second level of the PH.

The framework of parameterized complexity has been used productively over the last two
decades to yield a detailed picture of the computational complexity of problems in NP. In
parameterized complexity, the inherent difficulty of problems is measured with respect to
multiple parameters of the input, rather than just the input size in bits. However, many
relevant problems that come up in artificial intelligence and other branches of computer
science are located at higher levels of the PH. The theoretical tools developed in the
literature are of limited use in the parameterized complexity analysis of such problems.
This is largely due to the fact that these tools are built exclusively around the notion of
fixed-parameter tractability. To adequately study the complexity of problems at higher
levels of the PH, additional theory is needed that incorporates other, more permissive
notions of tractability. These tractability notions are based on fixed-parameter tractable
encodings into problems (in NP) for which optimized solving algorithms are available
that work extremely well in many practical settings.

We develop a new theoretical toolbox that enables a more satisfactory parameterized
complexity analysis of problems at higher levels of the PH. Moreover, we use this new
machinery to initiate an extensive investigation of the parameterized complexity of many
natural problems from a variety of domains.

We achieve these results by means of a theoretical, mathematical study. We develop a
range of new parameterized complexity classes that lie between the first and second level
of the PH, and we relate these to known classes. These complexity classes can be used to
establish both positive and negative results. Additionally, we substantiate the developed
theory by showing that many natural problems from different areas are complete for
these new classes.

The results in this thesis can immediately be used in future research to better identify
settings where the technique of employing fixed-parameter tractable encodings into NP
problems has the potential to lead to practically efficient solving algorithms. Moreover,
our results open up a range of interesting and relevant questions for future theoretical
research.
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Kurzfassung

In dieser Arbeit wird untersucht, wie man die Theorie der parametrisierten Komplexität
benutzen kann, um Probleme auf höheren Ebenen der Polynomialzeithierarchie (PH)
zu analysieren. Eine zentrale Rolle in dieser Untersuchung spielt die Entwicklung neuer
parametrisierter Komplexitätsklassen zwischen der ersten und der zweiten Ebene der PH.

Das Paradigma der parametrisierten Komplexität hat sich in den vergangenen zwei Jahr-
zehnten als nützlich erwiesen, um ein detailliertes Bild von der Berechnungskomplexität
von Problemen in NP zu erhalten. In diesem Paradigma wertet man die Berechnungs-
komplexität von Problemen anhand mehrerer Parameter der Eingabe, anstatt nur der
Eingabegröße in Bits. Viele relevante Probleme, die im Bereich der Künstlichen Intelligenz
und in anderen Bereichen der Informatik auftreten, befinden sich dennoch auf höheren
Ebenen der PH. Die bisher verwendeten theoretischen Werkzeuge der parametrisierten
Komplexität sind für die rigorose Analyse solcher Probleme nur sehr eingeschränkt an-
wendtbar. Ein wichtiger Grund dafür ist die Tatsache, dass diese Werkzeuge ausschließlich
um die Idee der Fest-Parameter-Handhabbarkeit (fixed-parameter tractability) herum
entwickelt worden sind. Um die Komplexität von Problemen auf höheren Ebenen der PH
umfassend untersuchen zu können, ist ein neuer theoretischen Rahmen erforderlich,
der mächtigere Konzepte der Berechenbarkeit miteinbezieht. Solche Konzepte basieren
auf fest-Parameter-handhabbaren Reduktionen auf Probleme (in NP), für die optimier-
te Lösungsalgorithmen existieren, die in vielen praktischen Situationen sehr effizient
funktionieren.

Wir entwickeln neue theoretische Werkzeuge, die eine rigorose parametrisierte Komplexitäts-
analyse der Probleme auf höheren Ebenen der PH ermöglichen. Zudem verwenden wir
dieses neu entwickelte Instrumentarium um eine rigorose Untersuchung vieler natürlichen
Probleme aus verschiedenen Bereichen zu initiieren.

Diese Ergebnisse erreichen wir mittels einer theoretischen/mathematischen Studie. Wir
entwickeln eine breite Palette an neuen parametrisierten Komplexitätsklassen, die sich
zwischen der ersten und der zweiten Ebene der PH befinden, und wir untersuchen
das Verhältnis dieser neuen Klassen untereinander, und zu bisher verwendeten Klassen.
Die neuen Komplexitätsklassen können dafür benutzt werden um sowohl positive als
auch negative Komplexitätsergebnisse zu erlangen. Außerdem untermauern wir die neu
entwickelte Theorie, indem wir zeigen, dass viele natürliche Probleme aus verschiedenen
Bereichen der Informatik für diese neuen Komplexitätsklassen vollständig sind.
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Die Ergebnisse, die in dieser Arbeit erzielt werden, können unmittelbar in zukünftiger
Forschung benutzt werden, um besser festzustellen, unter welchen Bedingungen es möglich
ist, schwere Probleme durch fest-Parameter-handhabbare Reduktionen auf gewisse in der
Praxis effizient lösbare NP-Probleme zu lösen. Des Weiteren eröffnen unsere Ergebnisse
eine Vielfalt an interessanten und signifikanten theoretischen Fragen.
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CHAPTER 1
Introduction

Perhaps the single most profound fact that has been
uncovered by computer science so far is the ubiquity
of computational intractability.

— Rod Downey and Mike Fellows,
Parameterized Complexity [67]

Life in modern societies is full of hard problems. What is the best way to organize
the economy? Or can you finally make the decision to quit that job that pays well
but makes you unhappy? The hard problems that are pertinent to this thesis, however,
are of a more computational nature, and consist of search problems for which even the
fanciest, most modern supercomputers often fail to find a solution within a reasonable
amount of time—by any standard—due to the combinatorial explosion in the search
space. Such problems show up in a myriad of settings—they play a role in abstract,
scientific domains such as computer science, physics and bioinformatics, but also lie at
the basis of worldly tasks like finding optimal routes or schedules. A striking example of
such a computationally intractable problem is the problem of finding the shortest total
route for a traveller that wants to visit every city on a given map. The relevance of such
problems for copious areas of human activity is hard to overestimate.

Research on computer science and engineering has led to a multitude of ways of dealing
with computational intractability. Two of the most productive of these approaches are
(1) the use of fixed-parameter tractable algorithms to efficiently solve problem inputs that
exhibit certain types of structure, and (2) solving intractable problems by encoding problem
inputs into the language of key problems for which powerful algorithms are available that
work well in many cases (e.g., the problem of propositional satisfiability, also called SAT)—
and subsequently using these algorithms to solve the problem. Recently, a potentially
more powerful method has been put forward that combines these two approaches: using
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1. Introduction

fixed-parameter tractable algorithms to encode problem inputs as inputs for problems
such as SAT.

In this thesis, we perform a theoretical analysis of the possibilities and limits of this novel
approach. We use the framework of parameterized complexity theory to make precise
the general concept of using fixed-parameter tractable algorithms to encode problems
into SAT, and we distinguish several different formal interpretations of this concept.
We develop a new completeness theory that allows us to adequately characterize the
computational complexity of problems for which this new approach might be applied
successfully, and we show how these new theoretical tools can be used—in combination
with existing tools—to identify the limits of the method of fixed-parameter tractable
SAT encodings. Moreover, we initiate a structured investigation of the possibilities of
this method by using the developed theoretical tools for a complexity analysis of a wide
range of problems from numerous domains in computer science and artificial intelligence.

1.1 Context: Intractability and a New Way of Coping

In order to properly describe the problem addressed in this thesis, we firstly give a brief
overview of existing research on computational intractability, and the two methods for
coping with intractability that we mentioned above.

One of the most productive ways of analyzing the running time of an algorithm is
by studying its worst-case complexity—that is, identifying the maximum number z(n)
of steps that the algorithm takes on any input of size n. This allows researchers, for
instance, to make the crucial distinction between exponential-time algorithms—with
running times such as 2n—and polynomial-time algorithms—with running times such
as n2. Problems that are solvable using polynomial-time algorithms are often described as
tractable, as these algorithms can generally be employed successfully in practice. Similarly,
problems that (suspectedly) do not admit algorithms with such favorable running times
are commonly described as intractable.

Unfortunately, intractable problems are ubiquitous in a wide range of areas. The seminal
work of Garey and Johnson [86], for instance, lists hundreds of relevant intractable
problems. Therefore, intractability cannot simply be ignored. Research over the last
several decades has led to many ways of dealing with intractability (see, e.g., [59, 63, 68]).

For the purposes of this thesis, we are interested in two algorithmic methods that
have led to the development of many algorithms that can be used to effectively tackle
intractable problems in practice. The first of these methods involves extending the
notion of tractability to running times that are exponential (or worse), but where each
non-polynomial contribution to the running time depends only on a limited part of the
problem input that can be assumed to be small in practice (the parameter). This extended
notion of tractability is called fixed-parameter tractability. Examining the running time
of algorithms in terms of such a parameter—in addition to the input size—allows for the
design of algorithms that are tractable because they exploit structure that is present in

2



1.2. Structured Complexity Investigation

the input. The research area that investigates fixed-parameter tractable algorithms is
called parameterized complexity, and has been very productive over the last few decades
(see, e.g., [27, 57, 67, 66, 85, 165]). Even though fixed-parameter tractable algorithms
are not tractable in the sense of polynomial-time computation, they perform extremely
well in many settings.

The second method consists of encoding problem inputs (in polynomial time) as inputs
for one of a number of key problems, for which algorithms have been engineered that
work surprisingly well in many cases (but still take exponential time in the worst
case). Perhaps the most prominent target problem for such encodings is the problem
of propositional satisfiability (SAT). This method lies at the basis of some of the most
successful algorithmic techniques for important problems in hardware and software design,
operations research, artificial intelligence, and many other areas (see, e.g., [22]).

Both of these methods have been very successful in many important settings in computer
science and artificial intelligence. However, both methods also have their limits. For
fixed-parameter tractable algorithms to be useful in practice, the parameter needs to be
small. This often severely restricts the set of problem inputs for which fixed-parameter
tractable algorithms can be employed effectively. The use of polynomial-time SAT
encodings is restricted to a class of problems that is known as NP. Many important
problems fall outside this class, and thus these problems cannot be encoded into SAT
efficienty (that is, in polynomial time).

The motivation behind the work in this thesis comes from the idea of combining the
above two techniques for developing effective algorithms, which was recently put forward
(see, e.g., [82, 172]). In this combination, problem inputs are encoded into instances
of SAT by means of an algorithm that runs in fixed-parameter tractable time, rather
than in polynomial time. This way, the benefit of using parameterized complexity to
exploit structure that is present in the input can be combined with the great performance
of modern SAT solving algorithms. The use of such fpt-reductions to SAT (short for:
fixed-parameter tractable reductions to SAT) offers great potential for increasing the
range of problems for which SAT solving algorithms can be applied.

1.2 Structured Complexity Investigation

The concept of employing fixed-parameter tractable algorithms to encode inputs of
intractable problems as propositional formulas and subsequently calling a SAT solving
algorithm to decide the satisfiability of the propositional formula is straightforward
to implement. One identifies a suitable parameter, and uses the intuition behind this
parameter to construct an algorithm to perform the encoding that runs in fixed-parameter
tractable time. Many algorithmic techniques to develop fixed-parameter tractable algo-
rithms are known, and these can be readily applied to develop fixed-parameter tractable
SAT encodings.

Unsurprisingly, not in all cases the problem input can be encoded as a propositional
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1. Introduction

formula in fixed-parameter tractable time. There are problems for which it is evident that
an fpt-reduction to SAT is not possible. For instance, if a problem falls outside the class
NP already for a single constant value of the parameter, then we cannot hope to construct
a fixed-parameter tractable SAT encoding. In such cases, we can use known tools from
parameterized and classical complexity theory to rule out fpt-reductions to SAT. There
are, however, also problems for which the situation is less obvious. For many problems,
there exists a SAT encoding that runs in polynomial-time for each separate value of the
parameter, where the order of the polynomial depends on the parameter value. Such
SAT encodings do not run in fixed-parameter tractable time, because the polynomial
running time—when the contribution of the parameter value on the running time is
disregarded—must be completely independent of any contribution of the parameter value
to the running time. In these more subtle cases, known parameterized complexity theory
does not provide adequate tools to rule out the possibility of fpt-reductions to SAT.

There are also cases where a problem input can be encoded in fixed-parameter tractable
time into two propositional formulas and can subsequently be solved by determining the
satisfiability of these formulas, but cannot be solved by an fixed-parameter tractable
encoding into a single propositional formula. More generally, the notion of fpt-reductions
to SAT can be extended to encodings into multiple propositional formulas, and every
increase in the number of propositional formulas leads to higher solving power. Known
parameterized complexity tools are not sufficient to explore the power of such fixed-
parameter tractable Turing reductions to SAT. Both for identifying when it is possible
to construct an fpt-reduction to a certain number of propositional formulas, and for
identifying when this is not possible, the known theory is lacking.

In short, in order to get a good understanding of how far exactly the potential of the
various notions of fpt-reductions to SAT reaches, a structured complexity investigation
needs to be performed—and for this an adequate complexity-theoretic framework needs
to be developed.

1.2.1 Problem Statement

In this thesis, we set out to enable and start a structured complexity-theoretic investigation
of the possibilities and limits of the method of using fpt-reductions to SAT to solve
intractable problems originating in computer science and artificial intelligence. We do so,
by and large, by addressing the following four gaps in the literature on parameterized
complexity theory and the application of parameterized complexity methods to investigate
problems arising in computer science and artificial intelligence.

1. The palette of the theoretical possibilities of encoding problem inputs in fixed-
parameter tractable time into various numbers of propositional formulas remains
largely unexplored. That is, only for the case of encodings into a single propositional
formula, the corresponding parameterized complexity class has been considered
in the literature—this class is known as para-NP. Moreover, even for this case,
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1.3. Contributions

membership in the class para-NP has only been interpreted as a positive result in
a handful of cases.

2. The theoretical techniques that are available to rule out the existence of fpt-reductions
to SAT are insufficient. Hardness results for several known parameterized com-
plexity classes (for instance, hardness for para-Σp

2) can be used to provide evidence
that fpt-reductions to SAT are not possible. However, hardness for these classes
can be established only in radical cases, where the impossibility of fpt-reductions
to SAT is obvious.

3. More generally, an appropriate fine-grained parameterized complexity toolbox is
lacking, to characterize the complexity of parameterized problems that lie at various
levels between the extremes of the spectrum—that is, between para-NP and para-Σp

2 .
Such a toolbox is necessary to obtain matching lower and upper bounds for the
complexity of many interesting parameterized problems that originate in numerous
areas of computer science and artificial intelligence.

4. The concept of employing fpt-reductions to SAT to deal with computational in-
tractability has been applied only for a very limited number of problems. For many
relevant and interesting problems that arise in various domains of computer sci-
ence and artificial intelligence, practically useful algorithms could potentially be
developed using the method of fpt-reductions to SAT. Therefore, there is need
for a structured parameterized complexity investigation for such problems, that is
focused on the possibilities and limits of fpt-reductions to SAT.

1.3 Contributions
In this section, we describe the contributions of this thesis, addressing the four shortcom-
ings of existing research about fpt-reductions to SAT that we pointed out above.

We investigate the different possibilities of solving parameterized problems by means of
fixed-parameter tractable many-to-one or Turing reductions to SAT, and the additional
power that is provided by more queries to a SAT oracle (for the case of Turing reductions).

• We provide the first structured parameterized complexity investigation where mem-
bership in para-NP and in para-co-NP is the foremost target for positive results.
The known parameterized complexity class para-NP consists of all problems that
admit a many-to-one fpt-reduction to SAT. Similarly, its dual class para-co-NP con-
sists of all problems that are many-to-one fpt-reducible to UNSAT, the co-problem
of SAT. Even though these classes are known from the literature, they have been
used as a target for positive complexity results only in a few cases.

• We consider several parameterized complexity classes that characterize parameterized
problems that can be solved by a fixed-parameter tractable Turing reduction to SAT—
that is, by an fpt-algorithm that can make a certain number of queries to a SAT
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1. Introduction

oracle. In addition to several parameterized complexity classes that are a result of a
generic scheme known from the literature for constructing parameterized complexity
classes, we consider the parameterized complexity class FPTNP[few] that consists
of those parameterized problems that can be solved by a fixed-parameter tractable
Turing reduction to SAT that uses at most f(k) oracle queries, where k denotes
the parameter value and f is some computable function.

• We develop theoretical tools for providing lower bounds on the number of oracle
queries for any fixed-parameter tractable algorithm to solve certain problems. These
tools allow us to distinguish between parameterized problems that admit a many-to-
one fpt-reduction to SAT, on the one hand, and problems that can only be solved
in fixed-parameter tractable time with multiple queries to a SAT oracle, on the
other hand.

To enable an investigation of the limits of fpt-reductions to SAT, we develop parameterized
complexity tools for showing that in certain cases fpt-reductions to SAT are not possible.

• We show that hardness for the known parameterized complexity class A[2] can be used
to argue that a parameterized problem does not admit a many-to-one fpt-reduction to
SAT. This argument is based on a complexity-theoretic assumption that is related
to the (non)existence of some subexponential-time algorithms. In particular, we
prove that if any A[2]-hard parameterized problem is many-to-one fpt-reducible to
SAT, then there exists a subexponential-time reduction from a canonical problem at
the second level of the Polynomial Hierarchy—QSat2(3DNF)—to SAT. Assuming
that such a subexponential-time reduction does not exist, we can then rule out
many-to-one fpt-reducibility to SAT by showing that a problem is A[2]-hard. (This
line of reasoning can also be applied to rule out many-to-one fpt-reductions to
UNSAT.)

• We show that hardness for A[2] can additionally be used to rule out fixed-parameter
tractable Turing reductions to SAT. Concretely, we prove that if any A[2]-hard
parameterized problem is solvable by a fixed-parameter tractable algorithm with
access to a SAT oracle, then there exists a subexponential-time Turing reduction
from QSat2(3DNF) to SAT.

We develop new parameterized complexity classes to accurately distinguish the subtly
different levels of complexity for parameterized variants of problems at higher levels of
the Polynomial Hierarchy.

• We provide formal evidence for the claim that the known parameterized complexity
classes are insufficient to adequately characterize the complexity of various parame-
terized variants of problems at the second level of the Polynomial Hierarchy. We do
so by considering the consistency problem for disjunctive answer set programming
as an example. We show that various parameterizations of this example cannot
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be complete for any of the known classes (under various complexity-theoretic
assumptions).

• We develop novel parameterized complexity classes that map out the parameterized
complexity landscape between the first and the second level of the Polynomial
Hierarchy. We denote these parameterized complexity classes by the names Σp

2 [k∗]
and Σp

2 [∗k, t], as they are based on various weighted parameterized variants of the
quantified satisfiability problem QSat2 that is canonical for the class Σp

2 at the
second level of the Polynomial Hierarchy. They can be considered as generalizations
of the parameterized complexity classes of the well-known Weft hierarchy.

• We strengthen the intuition behind the type of non-determinism that plays a role in
the problems in these parameterized complexity classes by establishing alternative
characterizations of several of these classes. The new parameterized complexity
classes are based on various variants of a quantified satisfiability problem for Boolean
circuits. We give alternative characterizations that are based on (i) variants of a
quantified satisfiability problem for propositional formulas, (ii) the model checking
problem for a particular class of first-order logic formulas, and (iii) a particular
class of alternating Turing machines. The third characterization can be seen as an
analogue of the Cook-Levin Theorem for the new parameterized complexity classes.

• We show that the new parameterized complexity classes give rise to a completeness
theory that can be used to characterize the complexity of interesting parameterized
problems, which is not possible using previously known parameterized complexity
classes. We establish this point by looking again at the example of the consistency
problem for disjunctive answer set programming.

• We further substantiate the new completeness theory by showing that many natural
parameterized variants of interesting problems at the second level of the Polynomial
Hierarchy are complete for (one of) the novel parameterized complexity classes.
These problems originate from a variety of domains from computer science and
artificial intelligence.

• We demonstrate that the new parameterized complexity classes can be used to
strengthen the toolbox for providing evidence that fpt-reductions to SAT are not
possible in certain cases. In particular, we show that any problem that is hard for
several of the new parameterized complexity classes does not admit an fpt-reduction
to SAT, unless there exists a subexponential-time reduction from QSat2 to SAT.

• We draw connections between the newly developed parameterized complexity classes
and other areas of (parameterized) complexity theory. Concretely, in addition to
establishing relations to the (non)existence of various subexponential-time algo-
rithms, we relate these classes to the area of non-uniform parameterized complexity,
resulting in several parameterized analogues of the Karp-Lipton Theorem.

7
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• We generalize the newly developed parameterized complexity classes to arbitrary
levels of the Polynomial Hierarchy. These additional classes have the capability of
providing a very fine-grained analysis of the complexity of parameterized problems
at every level of the Polynomial Hierarchy.

• We develop another novel parameterized complexity class that arises when investi-
gating natural parameterized variants of PSPACE-complete problems. This class
adds to the richness of the parameterized complexity toolbox for classifying pa-
rameterized variants of problems at various levels of the Polynomial Hierarchy and
problems in PSPACE.

We initiate a structured parameterized complexity investigation for problems from various
domains of computer science and artificial intelligence that is focused on identifying
settings where fpt-reductions to SAT are possible.

• We demonstrate the potential of fpt-reductions to SAT for obtaining positive results
that could lead to useful algorithms by pointing out several results from the literature
that can be seen as fpt-reductions to SAT. Several of these existing results had
not previously been identified as fpt-reductions to SAT. For one of the cases that
we consider, the algorithmic technique that gives rise to the fpt-reduction to SAT
underlies one of the most competitive algorithmic approaches available to solve
this problem—namely, the method of bounded model checking for (a fragment
of) linear-time temporal logic, which has important applications in many areas of
computer science and engineering.

• We show productive techniques from parameterized complexity theory can be used to
develop fixed-parameter tractable reductions to SAT. In particular, we show how
the concepts of treewidth and backdoors can be used to identify settings where
fpt-reductions to SAT are possible.

• We use the developed theoretical machinery to investigate whether fpt-reductions to
SAT are possible for many natural parameterizations of a wide range of problems
from various areas of computer science and artificial intelligence. For several
cases we construct fpt-reductions to SAT, and for many other cases we establish
completeness results for various classes in the parameterized complexity landscape
at higher levels of the Polynomial Hierarchy.

• We provide an overview of this parameterized complexity investigation focused on
the possibilities and limits of fpt-reductions to SAT in the form of a compendium.
This compendium provides a list of all parameterized problems that we consider in
this thesis, together with the complexity results that we establish for these problems.
These parameterized problems are based on problems whose complexity lies at the
second level of the Polynomial Hierarchy or higher.

8
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1.3.1 Main Contributions

The most important contributions of this thesis can be summarized as follows.

• We pave the way for future research that investigates whether useful algorithms can
be developed using the method of fpt-reductions to SAT for concrete problems from
computer science, artificial intelligence, and other domains.

– We develop a theoretical parameterized complexity framework that contains
both (1) parameterized complexity classes for the various possible incarna-
tions of the general scheme of fpt-reductions to SAT, and (2) parameterized
complexity classes for problems that do not admit fpt-reductions to SAT.

– We show how this framework can be used for many relevant parameterized
problems to determine whether an fpt-reduction to SAT is possible, and if so,
what kind of fpt-reduction to SAT is needed to solve the problem.

– We initiate a structured investigation of the parameterized complexity of prob-
lems at higher levels of the Polynomial Hierarchy by considering many natural
parameterized variants of such problems, and analyzing their complexity using
the new theoretical framework.

1.3.2 Overview of the Parameterized Complexity Framework

We provide a graphical overview of the most prominent parameterized complexity classes
that feature in the theoretical framework that we develop in this thesis in Figure 1.1 on
page 10. This figure shows how the newly developed parameterized complexity classes
relate to previously known parameterized complexity classes, by indicating where they
fit in the parameterized complexity landscape. The classes that are most relevant for the
results in this thesis are located between the classes para-NP and para-co-NP, on the
one hand, and the classes para-Σp

2 and para-Πp
2 , on the other hand.

1.3.3 Research Impact

Even though it might seem at first sight that the results in this thesis only affect a
highly specialized and technical subfield of theoretical computer science, the impact of
our work extends to a broader range of research and applications in the area of computer
science and engineering. For a description of the impact of our results that is aimed at an
audience without specialized training in theoretical computer science or (parameterized)
complexity theory, we refer to Section 17.2.

1.4 Roadmap
The remainder of this thesis, after this introductory chapter, is divided into six parts.
In the first of these parts (Part I: Foundations), we provide an overview of relevant
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Figure 1.1: The most prominent parameterized complexity classes that feature in this
thesis.

concepts and results from the areas of traditional computational complexity theory and
parameterized complexity theory, in Chapters 2 and 3, respectively. In particular, in
Chapter 2 we put particular focus on complexity classes beyond NP, such as the classes
of the Polynomial Hierarchy. In Chapter 3, after introducing and discussing the notion of
fixed-parameter tractability and the corresponding parameterized complexity class FPT,
we consider several other relevant parameterized complexity classes, such as the classes
of the Weft hierarchy and the classes para-NP, para-co-NP, para-Σp

2 and para-Πp
2 .

Then, in the next part (Part II: Beyond para-NP), we motivate and develop the
parameterized complexity framework that can be used to investigate the possibilities
and limits of fpt-reductions to SAT. We begin in Chapter 4 by surveying to what extent
the existing parameterized complexity literature can be used to investigate the power
of fpt-reductions to SAT. In particular, we consider several algorithmic results that
can be seen as fpt-reductions to SAT, and we illustrate how productive parameterized
complexity techniques can be used to obtain fpt-reductions to SAT. We also consider
the first examples of parameterized problems that are unlikely to admit an fpt-reduction
to SAT—claims that we support by showing hardness for the parameterized complexity
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classes A[2] and para-Σp
2 .

Then, in Chapter 5, we argue that new parameterized complexity classes are needed
to adequately characterize the complexity of many relevant parameterized variants of
problems at higher levels of the Polynomial Hierarchy. In particular, we introduce the
consistency problem for disjunctive answer set programming as a running example—
this problem is complete for the second level of the Polynomial Hierarchy—and we
consider various parameterized variants of this problem. We prove that several of these
parameterized variants cannot be complete for any of the known parameterized complexity
classes (under various complexity-theoretic assumptions).

In Chapter 6, we introduce and develop the parameterized complexity classes that underlie
our framework. These classes are parameterized variants of the classical complexity class
Σp

2 that are based on various weighted variants of the quantified Boolean satisfiability
problem that is canonical for the second level of the Polynomial Hierarchy, and are
denoted by Σp

2 [k∗] and Σp
2 [∗k, t]. We also make some observations about the relation

between these new classes and known parameterized complexity classes, and we provide
alternative characterizations of the new classes based on first-order logic model checking
and alternating Turing machines. Moreover, we show completeness for several of the new
parameterized complexity classes for those parameterized variants of the running example
whose complexity we could not characterize adequately using known parameterized
complexity classes.

Finally, in Chapter 7, we investigate several parameterized complexity classes that
capture the possibilities of more powerful incarnations of the general scheme of fpt-
reductions to SAT—namely fixed-parameter tractable Turing reductions to SAT. Most
prominently, we introduce the parameterized complexity class FPTNP[few] consisting of
those parameterized problems that can be solved in fixed-parameter tractable time by an
algorithm that can query a SAT oracle up to f(k) times, where f is some computable
function and where k denotes the parameter value. We illustrate this complexity class
by giving several examples of problems that are complete for this class. Moreover, we
develop some theoretical tools to establish lower bounds on the number of oracle queries
that need to be made by fpt-algorithms to solve certain problems.

In the next part (Part III: Applying the Theory), we demonstrate how the newly
developed theory can be used to analyze whether concrete problems from various areas
of computer science and artificial intelligence admit fpt-reductions to SAT. In Chapter 8,
we perform such an analysis for various problems from the area of Knowledge Repre-
sentation and Reasoning, including abductive reasoning and a variant of the constraint
satisfaction problem. In Chapter 9, we turn to the model checking problem for various
fragments of temporal logics, where the Kripke structures are represented symbolically.
The parameterized complexity investigation of this problem leads us to consider the
parameterized complexity class PH(level), which is a new parameterized variant of the
classical complexity class PSPACE. Then, in Chapter 10, we investigate various problems
related to propositional satisfiability—such as minimizing DNF formulas and implicants
of DNF formulas, and repairing inconsistent knowledge bases. In Chapter 11, we look
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at several parameterized variants of two problems that arise in the area of judgment
aggregation—which is a subdomain of the research area of computational social choice.
In Chapter 12, we study the parameterized complexity of a number of parameterized
variants of the problem of propositional planning, before we finish this part in Chapter 13
by analyzing a number of graph problems, such as the problem of extending 3-colorings
of the leaves of a graph to complete proper 3-colorings of the entire graph.

In the fourth part (Part IV: Relation to Other Topics in Complexity Theory),
we investigate the relation between the parameterized complexity classes Σp

2 [k∗] and
Σp

2 [∗k, t] that we developed, and concepts from other areas of computational complexity
theory. Most notably, in Chapter 14, we extend a known result that relates parameterized
complexity with subexponential-time complexity to the newly developed parameterized
complexity classes in our framework. This known result relates the conjecture that FPT 6=
W[1] to the hypothesis that 3SAT cannot be solved in subexponential time. In particular,
we show that parameterized problems that are hard for A[2], Σp

2 [k∗] or Σp
2 [∗k, t] do not

admit fpt-reductions to SAT unless there exists one of various types of subexponential-
time reductions from one of several quantified Boolean satisfiability problems that are
canonical for the second level of the Polynomial Hierarchy to SAT or UNSAT.

Then, in Chapter 15, we study how the new parameterized complexity classes in our
framework relate to various non-uniform parameterized complexity classes. This culmi-
nates in several parameterized analogues of the Karp-Lipton Theorem, that establish a
close connection between non-uniform parameterized complexity and different parame-
terized variants of the classes of the Polynomial Hierarchy. For instance, one of these
results states that if all problems in W[1] are solvable by circuits of fixed-parameter
tractable size, then Πp

2 [∗k, 1] ⊆ para-Σp
2 . In addition, to further motivate the investiga-

tion of non-uniform parameterized complexity classes, we show how several non-uniform
parameterized complexity classes can be used in the setting of parameterized compilability.

We wrap up our investigation in the last regular part (Part V: Conclusions). In
Chapter 16, we discuss open questions that remain and directions for future research.
For instance, we elaborate on the possibility of gaining additional solving power by
considering fixed-parameter tractable algorithms that have access to SAT oracles that
can return satisfying assignments for propositional formulas that are satisfiable. Also,
we suggest a way of distinguishing between various types of many-to-one fpt-reductions
to SAT, which is based on a generalization of the concept of kernelization. Then, in
Chapter 17, we summarize the results obtained in this thesis, and the impact of these
results within the area of computer science and engineering.

In the final part of the thesis (Appendices), we provide some additional material.
In Appendix A, we give an overview of the parameterized complexity results that we
obtained—for all problems from the different areas of computer science and artificial
intelligence that we considered—in the form of a compendium. Finally, in Appendix B,
we generalize the parameterized complexity classes Σp

2 [k∗] and Σp
2 [∗k, t] to higher levels

of the Polynomial Hierarchy.
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We provide an an overview of all parameterized problems that we consider in this thesis
(grouped by their computational complexity), in the Index of Parameterized Problems
on page 399. On page 395 in the List of Symbols, we give a compilation of symbolic
abbreviations that we use throughout the thesis, together with their meaning.

To help the reader find their way through the many chapters of this thesis, we provide
a visual overview of the dependencies between the different chapters of this thesis in
Figure 1.2 on page 14, together with several suggestions for what chapters to read and
what chapters to skip. These suggestions allow the reader to focus on one of several
different themes.

1.5 Reflecting on the Theoretical Paradigm
We conclude this introductory chapter by briefly reflecting on several aspects of the
paradigm of parameterized complexity that we adopt and on several properties of the
theoretical framework that we develop to investigate the limits and possibilities of fpt-
reductions to SAT. Many aspects of the parameterized complexity paradigm that we
discuss are not unique to the work in this thesis. Nevertheless, this discussion does help
to shed light on the power and limitations of the framework that we develop.

1.5.1 Black Box Algorithms for NP-complete Problems

The parameterized complexity framework that we develop is based on a worst-case
asymptotic complexity perspective. However, the exceptional performance of SAT solving
algorithms cannot (yet) be satisfactorily explained in such a worst-case framework—in
the worst case, all known SAT solving algorithms take exponential time, for instance.
Therefore, the worst-case complexity paradigm alone cannot completely analyze the
potential of the method of (1) first encoding problem inputs in fixed-parameter tractable
time into one or more propositional formulas, and (2) subsequently using a SAT solving
algorithm as a black box to decide the satisfiability of these formulas, and thereby solving
the original problem input. Nevertheless, we use the worst-case complexity approach, for
the following two reasons.

Firstly, the worst-case asymptotic complexity perspective turns out to be mathematically
most productive. By adopting this perspective, we can use many techniques and tools
from previous research on the topic of (parameterized) complexity theory that is also
based on this perspective. Moreover, this way, we can relate our framework and the
results that we establish to existing results in parameterized complexity theory. In short,
using the worst-case complexity approach gives us access to a large and well-developed
toolbox of mathematical methods.

Secondly, by using the worst-case complexity viewpoint, we can give performance guar-
antees on the running time of the algorithms that encode problem inputs as inputs for
SAT. This way, we can ensure that the computational bottleneck for the entire solving
method is not in the phase where the problem input is encoded as a propositional formula.
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After all, these encodings are intended to be used to obtain an effective problem solving
approach.

Moreover, so far, in the discussion of NP-complete problems for which there exist highly
efficient algorithms that work well in many settings in practice, we restricted our attention
to the propositional satisfiability problem (SAT). For instance, we speak of “fpt-reductions
to SAT.” However, as the parameterized complexity framework that we develop is based
on a worst-case asymptotic complexity perspective, one could use any other NP-complete
problem instead. Take the problem of integer linear programming (ILP) as an example.
This problem is NP-complete, and so for any parameterized problem there exists an
fpt-reduction to SAT if and only if there exists an fpt-reduction to ILP. For this reason,
all NP-complete problems can be used interchangeably in our theoretical framework.
For the sake of convenience, in the remainder of the thesis, we will continue to speak of
fpt-reductions to SAT.

In practice, it can of course make a huge difference for the efficiency of solving a
particular problem whether you use a SAT solving algorithm or an algorithm for ILP.
However, the aim of the work in this thesis is to develop a general theoretic framework,
that is not restricted to specific problems and that can be used to investigate the
theoretical possibilities and limits of the method of combining fpt-reductions and effective
algorithms for NP-complete problems, rather than differentiating between the advantages
of algorithms for one NP-complete problem over algorithms for another.

1.5.2 Focus on the Second Level of the Polynomial Hierarchy

In the development of our parameterized complexity framework, we focus mainly on
parameterized variants of the complexity classes of the second level of the Polynomial
Hierarchy. One reason for this is that the second level of the Polynomial Hierarchy is
populated with many natural interesting problems that arise in many areas of computer
science and artificial intelligence [178], whereas this is less the case for higher levels of the
Polynomial Hierarchy. Another reason is that focusing on the second level results in a
relatively tame setting, where we can conveniently investigate the various phenomena that
play a role. Then, after having understood these phenomena and the way in which they
interact in this setting, we can generalize our findings to higher levels of the Polynomial
Hierarchy.

1.5.3 Complexity-Theoretic Assumptions

As is typically done in research on computational complexity, several lower bound results
that we establish in this thesis are based on various complexity-theoretic assumptions.
Because it is not known for certain whether the complexity classes P and NP are different
or not, the use of such assumptions is necessary to establish suitable lower bounds. Namely,
if P = NP, then all problems in the Polynomial Hierarchy can trivially be reduced to
SAT—in fact, in this case, they can all be solved in polynomial time. Therefore, it
is reasonable to use various complexity-theoretic assumptions to establish complexity
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results, especially if these assumptions are widely believed and related to many important
topics in complexity theory. An example of such a widely-believed assumption states
that the Polynomial Hierarchy does not collapse—this is conjectured, for instance, in
several textbooks on the topic of computational complexity theory [7, 169].

However, for a number of the results that we develop in this thesis, we use complexity-
theoretic assumptions that are less standard—consequently, there is a much less wide
belief that these assumptions hold. For instance, our result that A[2]-hard parameterized
problems do not admit an fpt-reduction to SAT is based on the assumption that there is
no subexponential-time reduction from the problem QSat2(3DNF) to SAT. Nonetheless,
the use of such atypical assumptions to establish complexity results is part of a productive
methodology, for the following reason. Suppose, on the one hand, that the assumption
turns out to be true. Then the complexity results that have been developed on top of
this assumption are valid, and thus we have made valuable discoveries. On the other
hand, if the assumption turns out to be false, we also gain useful knowledge about the
computational complexity of important problems. For instance, if we were to learn that
there in fact do exist subexponential-time reductions from QSat2(3DNF) to SAT, this
would be an enormous breakthrough in our understanding of the Polynomial Hierarchy.
In other words, the use of complexity-theoretic assumptions (related to important topics
in complexity theory) to establish lower bound results can act as a double-edged sword—
either way it cuts, we gain useful knowledge.

Nevertheless, we urge the reader to be skeptical about the truth (or falsity) of the
complexity-theoretic assumptions that feature in the results in this thesis. Even if a
complexity-theoretic assumption serves as a useful working hypothesis in the development
of theoretical results that relate different concepts in complexity theory to each other, it
need not be true. Accordingly, it is probably wise to exercise a certain amount of care
when communicating results that involve atypical complexity-theoretic assumptions [191].

1.5.4 Worst-Case Behavior of Fpt-Reductions

In our framework, we use the standard requirement on the running time of an algorithm
(or reduction) in order for it to qualify as fixed-parameter tractable—namely, that its
running time must be bounded by f(k)nc, where f is an arbitrary computable function,
where c is an arbitrary constant, where n denotes the input size, and where k denotes the
parameter value. One can easily think of examples where such a running time can be very
effective—for instance, when f(k) = 2k and c = 2. However, this definition also allows for
examples where the function f is much wilder. For instance, an algorithm whose running
time is bounded by A(k, k)n2—where A denotes the Ackermann function—also qualifies
as fixed-parameter tractable, since the Ackermann function is computable, even though
it grows faster than any primitive recursive function. Already for very small values of k
(e.g., k ≥ 4), this running time can become very impractical. Nevertheless, there are
several reasons why the admissive definition of fixed-parameter tractability is useful.

First of all, allowing arbitrary computable functions f leads to a robust and well-behaved
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mathematical theory. For instance, when composing two fpt-reductions, the upper bound
on the running time of the resulting reduction contains a factor f1(f2(k)), where f1 and f2
are computable functions. Because we admit any computable function in the upper
bound of fixed-parameter tractable algorithms, we know from the fact that the composed
function (f1 ◦ f2) is computable that the composed reduction is also an fpt-reduction.
In short, allowing arbitrary computable functions f in the definition of fixed-parameter
tractability results in useful mathematical properties of the framework.

Secondly, by allowing arbitrary computable functions f , the lower bound results that
we develop are stronger. Namely, when we establish that an fpt-reduction to SAT is
not possible in certain cases, for no choice of computable function f , we also rule out
fpt-reductions to SAT whose running time bound includes reasonable functions f such
as f(k) = 2k. However, conversely, ruling out the existence of a reduction to SAT that
runs in time 2knc, for some constant c, leaves open the possibility of a reduction that
runs in time 22knc, for instance. In other words, the weaker our restrictions on the notion
of fixed-parameter tractability, the more powerful our negative results can be.

Interestingly, it turns out that for many problems that are classified as fixed-parameter
tractable, the running time of algorithms to solve these problems can be bounded using
reasonably tame functions f . Often, once a problem is proved to be fixed-parameter
tractable, insight is gained that can be used to construct efficient algorithms, and further
algorithms for the problem are developed whose running time bound is based on a
reasonable function f . We expect that a similar phenomenon occurs in the discovery and
development of fpt-reductions to SAT.

We point out that a similar objection can be made for the admissive definition of
polynomial-time solvability—namely that the corresponding requirement on the running
time of O(nc), for some arbitrary constant c, also allows for unreasonable running times.
For instance, a running time of n1000 is considered polynomial, but is highly impractical
already when n = 2. Arguments similar to the ones described above can be made to
justify the choice of this liberal definition of polynomial-time solvability.

Notes
The results in this thesis appeared in conference papers in the proceedings of COM-
SOC 2014 [77], KR 2014 [115], SAT 2014 [112], SOFSEM 2015 [113], AAMAS 2015 [78],
IJCAI 2015 [109], KR 2016 [114], COMSOC 2016 [106], and ECAI 2016 [107], as well as
in technical reports [105, 111, 116] and unpublished manuscripts [108, 110].
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CHAPTER 2
Complexity Theory and

Non-determinism

Pretty well everybody outside the area of computer
science thinks that if your program is running too
slowly, what you need is a faster machine.

— Rod Downey and Mike Fellows,
Fundamentals of Parameterized Complexity [66]

In order to establish some common ground on various concepts from computational
complexity theory that will play a role in this thesis, we begin with giving a brief overview
of these concepts. This will also allow us to clarify some notation that we will use
throughout the thesis.

We begin by reviewing the overall framework that is used to analyze the complexity of
computational problems, and by reviewing arguably the most commonly used complexity
classes: P and NP. Then we move to the classes of the Polynomial Hierarchy and the
class PSPACE. We discuss several classes of problems that can be solved with a bounded
number of queries to an NP oracle, and we finish by mentioning some central concepts
and results related to a branch of complexity theory known as non-uniform complexity.

Readers that are familiar with complexity theory can safely cherry-pick what parts of
this chapter to read. For a more detailed treatment of these topics, we refer to textbooks
on complexity theory [7, 69, 93, 94, 135, 169, 182].

2.1 Basics of Complexity Theory: P, NP
With the aim of abstracting away from immaterial details, in complexity theory we often
restrict our attention to decision problems. In such problems, one is given an input x ∈ Σ∗
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represented as a string over some finite alphabet Σ. (We fix an arbitrary but fixed finite
alphabet Σ.) The problem is then to decide whether the string x satisfies a certain
property Q. Formally, this property can be expressed as a formal language Q ⊆ Σ∗ of
strings satisfying the property. We also equate the decision problem with this set Q.
We say that an algorithm solves the problem Q if for all inputs x ∈ Σ∗, the algorithm
correctly decides whether x ∈ Q. (We use the words input and instance interchangeably.)

Complexity theory studies the number of steps that an optimal algorithm needs to solve
such problems. Here, the number of steps is measured in terms of the input size |x| = n.
In most cases, a worst-case perspective is taken. This means that for each input size n, we
measure the maximum number of steps that the algorithm takes on any input of size n.
When expressing the running time of an algorithm, we focus on upper bound guarantees.
For instance, we say that an algorithm runs in time n2 if for each input x ∈ Σ∗, the
algorithm takes at most (but possibly less) than |x|2 steps.

Moreover, when we express the running time of algorithms, we often do not explicitly
give an exact function that upper bounds the running time, but we say what the order
of this function is. In order to explain this more precisely, we introduce the concept of
“big-O”. We also consider several related notions.

Let f, g : N → N be arbitrary functions. Then we say that f is order of g—written f
is O(g), or f(n) is O(g(n))—if there is some c ∈ N and some n0 ∈ N such that for
all n ≥ n0 it holds that f(n) ≤ cg(n). Intuitively, if f(n) is O(g(n)), it means that f(n)
grows asymptotically at most as fast as g(n).

A counterpart of big-O is little-o, that expresses that a function f(n) grows asymptotically
strictly slower than the function g(n). There are various ways of formally expressing
this. We will use the following definition of little-o, as used by Flum and Grohe [85,
Definition 3.22]. Let f, g be computable functions with the positive integers as domain
and range. We say that f is o(g) if there is a computable function h such that for all ` ≥ 1
and n ≥ h(`), we have that f(n) ≤ g(n)/`. Equivalently, f is o(g) if and only if there
exists a positive integer n0 and a nondecreasing and unbounded computable function ι
such that for all n ≥ n0 we have that f(n) ≤ g(n)/ι(n) [85, Lemma 3.23].

There are also counterparts of big-O and little-o that express lower bounds, rather than
upper bounds. We write that f(n) is Ω(g(n)) if there is some c ∈ N and some n0 ∈ N such
that for all n ≥ n0 it holds that f(n) ≥ cg(n). Moreover, we write that f(n) is ω(g(n)) if
for for all c ∈ N there is some n0 ∈ N such that for all n ≥ n0 it holds that f(n) > cg(n).

To illustrate how the concept of big-O is usually used to express the important aspect of
the running of an algorithm, consider an algorithm whose running time can be upper
bounded by the function 2n+ 1.5n2. Unless we want to be really precise, we will often
say that this algorithm runs in time O(n2), as 2n+ 1.5n2 is O(n2). A function p : N→ N
is called a polynomial if it is O(nc), for some constant c ∈ N.
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2.1.1 Traditional Tractability: P
Traditionally, research in computer science has focused on the complexity class P as the
embodiment of the notion of tractable problems. This complexity class is defined as the
class of all decision problems for which there exists an algorithm that solves the problem
in polynomial time—that is, in time O(nc), for some constant c ∈ N.

So far, we have been a little imprecise about how we count the amount of time (or the
number of steps) than an algorithm takes. A mathematically formal way of defining this
is provided by the notion of Turing machines, which were introduced in the foundational
work of Alan Turing [188].

Formally, a (deterministic) Turing machine is a tuple M = (S,Σ,∆, s0, F ), where:

• S is the finite, non-empty set of states;

• Σ is the finite, non-empty alphabet;

• s0 ∈ S is the initial state;

• F ⊆ S is the set of accepting states; and

• ∆ : S × (Σ ∪ {$,�})→ S × (Σ ∪ {$})× {L,R,S} is the transition function.

Here $,� 6∈ Σ are special symbols. A Turing machine operates on an infinite, one-
dimensional tape, containing a cell for each n ∈ N. (In this section, we only consider
Turing machines with a single tape. Turing machines with multiple tapes are also
commonly considered.) Intuitively, this tape is bounded to the left and unbounded to
the right. The leftmost cell, the 0-th cell, of each tape carries a “$”, and initially, all
other tape cells carry the blank symbol. The input is written on the first tape, starting
with the first cell, the cell immediately to the right of the “$”.

A configuration is a tuple C = (s, x, p), where s ∈ S, x ∈ Σ∗, and p ∈ [0, |x| + 1].
Intuitively, $x�� . . . is the sequence of symbols in the cells of the tape, and the head scans
the p-th cell of the tape. The initial configuration for an input x ∈ Σ∗ is C0(x) = (s, x, 1).

A computation step of M is a pair (C,C ′) of configurations such that the transformation
from C to C ′ obeys the transition function. Here, the symbol L indicates that the head
moves one step to the left, the symbol R indicates that the head moves one step to the
right, and the symbol S indicates that the head does not move. We omit the formal
details. If (C,C ′) is a computation step of M. we call C ′ a successor configuration of C.
A halting configuration is a configuration that has no successor configuration. A halting
configuration is accepting if its state is in F . We say that the machine M accepts an
input x if the initial configuration C0(x) leads to an accepting halting configuration.

We use Turing machines to formally model algorithms. We say that an algorithm, given
in the form of a Turing machine M, solves a problem Q if for each x ∈ Σ∗ the machine M
accepts x if and only if x ∈ Q. We then formally define the amount of time that the
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algorithm takes on input x as the number of computation steps between the initial
configuration C0(x) and the halting configuration.

Turing machines can also be used to model algorithms that give an output. We say that
a Turing machine M outputs the string y ∈ Σ∗ on some input x ∈ Σ∗ if in the accepting
configuration leading from the initial configuration C0(x), the tape contains the string y.

2.1.2 Traditional Intractability: NP and NP-completeness

Using the notion of tractability, is it easy to define intractability: a problem is intractable
if it is not tractable. However, it turned out that this naive notion of intractability is
unproductive for a large class of problems from many areas of computer science. For
these problems, nobody has been able to find a polynomial-time algorithm, and nobody
has been able to prove that no such algorithm exists. For this reason, the concept of
NP-completeness was introduced.

The complexity class NP consists of all problems that are solvable using a non-deterministic
Turing machine (NTM). Non-deterministic Turing machines are defined similarly to de-
terministic Turing machines, with the only difference that instead of a transition function,
a transition relation ∆ ⊆ S × (Σ ∪ {$,�}) × S × (Σ ∪ {$}) × {L,R,S} is used. This
way, for each configuration, multiple successor configurations are possible. Then, a
non-deterministic Turing machine M solves a problem Q if for each input x ∈ Σ∗ it
holds that x ∈ Q if and only if there exists some computation path from the initial
configuration C0(x) to some accepting halting configuration. The running time of M is
defined to be the length of the longest path from C0(x) to any halting configuration.

There are problems in the class NP for which the best known algorithms run in time 2Ω(n).
To substantiate the suspicion that a certain problem is not polynomial-time solvable, one
can relate this problem to other problems in NP using the concept of reductions.

Let Q1 and Q2 be two decision problems. A polynomial-time reduction from Q1 to Q2 is
a polynomial-time algorithm that for each input x1 ∈ Σ∗ produces an output x2 such
that x1 ∈ Q1 if and only if x2 ∈ Q2. (Such reductions are also called many-to-one
reductions, or Karp reductions.)

We then say that a problem Q is NP-hard if for each problem Q′ ∈ NP, there is a
polynomial-time reduction from Q′ to Q. Intuitively, an NP-hard problem Q is as hard
as any problem in NP, because if Q were polynomial-time solvable, then each problem in
NP would be polynomial-time solvable. A problem Q is NP-complete if it is both in NP
and NP-hard.

A practically useful way of proving NP-completeness is offered by the Cook-Levin Theorem
[54, 143]. This seminal result identified a first NP-complete problem: SAT. As a result,
subsequent NP-hardness proofs only need to provide a polynomial-time reduction from
this single problem, rather than providing a reduction from arbitrary problems in NP.

SAT is the satisfiability problem of propositional logic. In propositional logic, formulas
are built from a countably infinite set of propositional variables x1, x2, . . . , the Boolean
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constants 0 and 1, and the Boolean operators ∧,∨,¬,→, and ↔. For any propositional
formula, we let Var(ϕ) denote the set of propositional variables occurring in ϕ. Truth of
such propositional formulas is defined in the usual way. That is, a truth assignment α :
Var(ϕ)→ B satisfies a formula ϕ if the formula evaluates to the truth value 1 when the
assignment α is applied to the variables occuring in ϕ. (By a slight abuse of notation, we
use 0 and 1 to denote both truth values and syntactical constants.) If a truth assignment α
satisfies a formula ϕ, we write α |= ϕ. A formula ϕ is satisfiable (or consistent) if there
exists a truth assignment α such that α |= ϕ. Similarly, we say that a set Φ of formulas
is satisfiable (or consistent) if there is a truth assignment α that simultaneously satisfies
all formulas in Φ. If every truth assignment that satisfies a formula ϕ1 also satisfies a
formula ϕ2, we write ϕ1 |= ϕ2.

We briefly introduce some notation for propositional formulas that we will use throughout
the thesis. If γ = {x1 7→ d1, . . . , xn 7→ dn} is a function that maps some variables of a
formula ϕ to other variables or to truth values, then we let ϕ[γ] denote the application of γ
to the formula ϕ—here we simplify the resulting formula as much as possible, after the
application of γ, e.g., 1∧ (x1∨x2) becomes (x1∨x2). We also write ϕ[x1 7→ d1, . . . , xn 7→
dn] to denote ϕ[γ]. A literal is a propositional variable x or a negated variable ¬x. The
complement x of a positive literal x is ¬x, and the complement ¬x of a negative literal ¬x
is x. For literals l ∈ {x,¬x}, we let Var(l) = x denote the variable occurring in l. A clause
is a finite set of literals, not containing a complementary pair x, ¬x, and is interpreted
as the disjunction of these literals. A term is a finite set of literals, not containing a
complementary pair x, ¬x, and is interpreted as the conjunction of these literals. A
formula in conjunctive normal form (CNF) is a finite set of clauses, interpreted as the
conjunction of these clauses. A formula in disjunctive normal form (DNF) is a finite set
of terms, interpreted as the disjunction of these terms. Let r ≥ 2. A formula is in rCNF
if it consists of a conjunction of clauses that each contain at most r literals. Similarly, a
formula is in rDNF if it consists of a disjunction of terms that each contain at most r
literals. We define the size of a propositional formula ϕ to be the number of occurrences
of Boolean operators in ϕ plus the number of occurrences of propositional variables in ϕ.
(Note that the size of a propositional formula differs from the bitsize—i.e., the number of
bits needed to represent the formula in binary—which is larger by a logarithmic factor.)
The size of a CNF formula ϕ is linear in

∑
c∈ϕ |c|. The number of clauses of a CNF

formula ϕ is denoted by |ϕ|. Similarly, the size of a DNF formula ϕ is linear in
∑
t∈ϕ |t|.

The number of terms of a DNF formula ϕ is denoted by |ϕ|.

The Cook-Levin Theorem [54, 143] states that the satisfiability problem of propositional
logic—which is defined as the set SAT containing all strings x ∈ Σ∗ that encode a
satisfiable propositional formula—is NP-complete. In fact, it states that this problem is
NP-hard even when restricted to propositional formulas in 3CNF. This restriction of the
problem is denoted by 3SAT.

It is widely believed that the classes P and NP are different (see, e.g., [87]), but no formal
proof of this statement is known. In fact, this is arguably the most famous and most
important open problem in theoretical computer science. Nevertheless, the concept of
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NP-hardness is traditionally used in computer science to capture intractability, and has
been used to indicate the absence of polynomial-time algorithms for many problems. For
instance, the opus of Garey and Johnson [86] lists hundreds of relevant problems that
are NP-complete.

A complexity class that is also often considered is the dual co-NP of NP, that consists of
all problems Q for which the problem co-Q = {x ∈ Σ∗ : x 6∈ Q } is in NP. It is believed
that NP = co-NP, but no formal proof of this statement is known. The class co-NP
bears a similar relation to P as NP, that is, P = NP if and only if P = co-NP. An
important example of a co-NP-complete problem is the problem UNSAT, which consists
of all strings x ∈ Σ∗ that encode an unsatisfiable propositional formula.

2.2 The Polynomial Hierarchy and Polynomial Space
There are also many natural decision problems that are not contained in the classical
complexity classes P, NP, and co-NP. In this section, we consider several complexity
classes that can be used to characterize the complexity of many such problems.

2.2.1 Polynomial Hierarchy

The Polynomial Hierarchy (PH) [162, 169, 184, 197] contains a hierarchy of complexity
classes Σp

i and Πp
i , for all i ≥ 0. These classes Σp

i and Πp
i are defined by means of non-

deterministic Turing machines with an oracle. Let O be a decision problem, e.g., O = SAT.
A Turing machine M with access to an O oracle is a Turing machine with a dedicated
oracle tape and dedicated states qquery, qyes and qno. Whenever M is in the state qquery, it
does not proceed according to the transition relation, but instead it transitions into the
state qyes if the oracle tape contains a string x that is a yes-instance for the problem O,
i.e., if x ∈ O, and it transitions into the state qno if x 6∈ O.

For any complexity class C, we let NPC be the set of decision problems that is decided
in polynomial time by a non-deterministic Turing machine with an oracle for a problem
that is complete for the class C. Then, the classes Σp

i and Πp
i , for i ≥ 0, are defined by

letting:
Σp

0 = Πp
0 = P,

and for each i ≥ 1:

Σp
i = NPΣp

i−1 , and

Πp
i = co-NPΣp

i−1 .

In particular, the class Σp
1 coincides with the class NP. It is believed that the PH is

strict—that is, that for each i ∈ N it holds that Σp
i 6= Πp

i and thus that Σp
i 6= Σp

i+1—but
no formal proof of this statement is known.

We give an alternative characterization of the classes Σp
i using the satisfiability problem

of various classes of quantified Boolean formulas. A (prenex) quantified Boolean formula
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(QBF) is a formula of the form Q1X1Q2X2 . . . QmXm.ψ, where each Qi is a quantifier
in {∃,∀}, where the Xi are disjoint sets of propositional variables, and ψ is a Boolean
formula over the variables in

⋃m
i=1Xi. We call ψ the matrix of the formula. Truth of

such formulas is defined in the usual way. That is, a formula of the form ∃X.ϕ is true
if there exists a truth assignment α : X → B such that ϕ[α] is true, and a formula
of the form ∀X.ϕ is true if for all truth assignment α : X → B it holds that ϕ[α] is
true—here ϕ[α] denotes the formula obtained from ϕ by applying the truth assignment α
to the matrix of ϕ. We say that a QBF is in QDNF if the matrix is in DNF, and we say
that a QBF is in QCNF if the matrix is in CNF.

Alternatively, the semantics of quantified Boolean formulas can be defined using QBF
models [177]. Let ϕ = Q1x1 . . . Qnxn.ψ be a quantified Boolean formula. A QBF model
for ϕ is a tree of (partial) truth assignments where (1) each truth assignment assigns
values to the variables x1, . . . , xi for some i ∈ [n], (2) the root is the empty assignment,
and for all assignments α in the tree, assigning truth values to the variables x1, . . . , xi
for some i ∈ [n], the following conditions hold: (3) if i < n, every child of α agrees
with α on the variables x1, . . . , xi, and assigns a truth value to xi+1 (and to no other
variables); (4) if i = n, i.e., if α is a total truth assignment on the variables x1, . . . , xn,
then α satisfies ψ, and α has no children; (5) if i < n i.e., if α does not assign a truth
value to xi+1, and Qi = ∃, then α has one child α′ that assigns some truth value to xi+1;
and (6) if i < n i.e., if α does not assign a truth value to xi+1, and Qi = ∀, then α has
two children α1 and α2 that assign different truth values to xi+1. It is straightforward to
show that a quantified Boolean formula ϕ is true if and only if there exists a QBF model
for ϕ. Note that this definition of QBF models is a special case of the original definition
[177].

For each i ≥ 1, the decision problem QSati is defined as follows.

QSati
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QiXi.ψ, where Qi is a
universal quantifier if i is even and an existential quantifier if i is odd, and where ψ
is quantifier-free.
Question: Is ϕ true?

For each nonnegative integer i ≤ 0, the problem QSati is complete for the class Σp
i under

polynomial-time reductions [184, 197]. Moreover, Σp
i -hardness of QSati holds already

when the matrix of the input formula is restricted to 3CNF for odd i, and restricted
to 3DNF for even i. For any class C of propositional formulas, we let QSati(C) denote
the problem QSati restricted to QBFs where the matrix is in C.

2.2.2 Polynomial Space

Next, we briefly consider the complexity class PSPACE, consisting of all decision problems
that can be solved by an algorithm that uses a polynomial amount of space (or memory).
The amount of space that a Turing machine uses for an input x ∈ Σ∗ is defined as the
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number of tape cells to which it writes during the computation. In other words, the
class PSPACE consists of all problems that can be solved using space O(nc), for some
constant c ∈ N. The class PSPACE contains all classes of the PH, that is, for each i ∈ N
it holds that Σp

i ∪Πp
i ⊆ PSPACE.

The following variant of the problems QSati—where the maximum number of quantifier
alternations is not bounded by a constant—is PSPACE-complete [185].

QSat
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QnXn.ψ, where Qi is a
universal quantifier if i is even and an existential quantifier if i is odd, and where ψ
is quantifier-free.
Question: Is ϕ true?

2.2.3 Alternating Turing Machines

The class PSPACE and the classes of the PH can also be characterized using alternating
Turing machines. We use the same notation as Flum and Grohe [85, Appendix A.1].

Let m ≥ 1 be a positive integer. An alternating Turing machine (ATM) with m tapes is
a 6-tuple M = (S∃, S∀,Σ,∆, s0, F ), where:

• S∃ and S∀ are disjoint sets;

• S = S∃ ∪ S∀ is the finite, non-empty set of states;

• Σ is the finite, non-empty alphabet;

• s0 ∈ S is the initial state;

• F ⊆ S is the set of accepting states;

• ∆ ⊆ S × (Σ ∪ {$,�})m × S × (Σ ∪ {$})m × {L,R,S}m is the transition relation.
The elements of ∆ are the transitions.

• $,� 6∈ Σ are special symbols. “$” marks the left end of any tape. It cannot be
overwritten and only allows R-transitions.1 “�” is the blank symbol.

Intuitively, the tapes of our machine are bounded to the left and unbounded to the right.
The leftmost cell, the 0-th cell, of each tape carries a “$”, and initially, all other tape
cells carry the blank symbol. The input is written on the first tape, starting with the
first cell, the cell immediately to the right of the “$”.

1To formally achieve that “$” marks the left end of the tapes, we require that whenever
(s, (a1, . . . , am), s′, (a′1, . . . , a′m), (d1, . . . , dm)) ∈ ∆, then for all i ∈ [m] it holds that ai = $ if and
only if a′i = $ and that ai = $ implies di = R.
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A configuration is a tuple C = (s, x1, p1, . . . , xm, pm), where s ∈ S, xi ∈ Σ∗, and pi ∈
[0, |xi|+ 1] for each i ∈ [k]. Intuitively, $xi�� . . . is the sequence of symbols in the cells
of tape i, and the head of tape i scans the pi-th cell. The initial configuration for an
input x ∈ Σ∗ is C0(x) = (s0, x, 1, ε, 1, . . . , ε, 1), where ε denotes the empty word.

A computation step of M is a pair (C,C ′) of configurations such that the transformation
from C to C ′ obeys the transition relation. We omit the formal details. We write C → C ′

to denote that (C,C ′) is a computation step ofM. If C → C ′, we call C ′ a successor config-
uration of C. A halting configuration is a configuration that has no successor configuration.
A halting configuration is accepting if its state is in F . A step C → C ′ is non-deterministic
if there is a configuration C ′′ 6= C ′ such that C → C ′′, and is existential if C is an existen-
tial configuration. A state s ∈ S is called deterministic if for any a1, . . . , am ∈ Σ∪{$,�},
there is at most one (s, (a1, . . . , am), s′, (a′1, . . . , a′m), (d1, . . . , dm)) ∈ ∆. Similarly, we call
a non-halting configuration deterministic if its state is deterministic, and non-deterministic
otherwise.

A configuration is called existential if it is not a halting configuration and its state is
in S∃, and universal if it is not a halting configuration and its state is in S∀. Intuitively,
in an existential configuration, there must be one possible run that leads to acceptance,
whereas in a universal configuration, all runs must lead to acceptance. Formally, a run
of an ATM M is a directed tree where each node is labeled with a configuration of M
such that:

• The root is labeled with an initial configuration.

• If a vertex is labeled with an existential configuration C, then the vertex has
precisely one child that is labeled with a successor configuration of C.

• If a vertex is labeled with a universal configuration C, then for every successor
configuration C ′ of C the vertex has a child that is labeled with C ′.

We often identify nodes of the tree with the configurations with which they are labeled.
The run is finite if the tree is finite, and infinite otherwise. The length of the run is the
height of the tree. The run is accepting if it is finite and every leaf is labeled with an
accepting configuration. If the root of a run ρ is labeled with C0(x), then ρ is a run with
input x. Any path from the root of a run ρ to a leaf of ρ is called a computation path.

The language (or problem) accepted by M is the set QM of all x ∈ Σ∗ such that there is
an accepting run of M with initial configuration C0(x). M runs in time t : N→ N if for
every x ∈ Σ∗ the length of every run of M with input x is at most t(|x|).

A step C → C ′ is an alternation if either C is existential and C ′ is universal, or vice
versa. A run ρ of M is `-alternating, for an ` ∈ N, if on every path in the tree associated
with ρ, there are less than ` alternations between existential and universal configurations.
The machine M is `-alternating if every run of M is `-alternating.
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The classes Σp
i , Πp

i and PSPACE can be characterized using ATMs as follows. Let i ≥ 1.
The class Σp

i consists of all problems that are decided by an i-alternating polynomial-
time ATM M = (S∃, S∀,Σ,∆, s0, F ) such that s0 ∈ S∃. Similarly, the class Πp

i con-
sists of all problems that are decided by an i-alternating polynomial-time ATM M =
(S∃, S∀,Σ,∆, s0, F ) such that s0 ∈ S∀. Finally, the class PSPACE consists of all problems
that are decided by a polynomial-time ATM [40].

2.3 Bounded Query Complexity
In the previous section, we considered complexity classes based on non-deterministic
Turing machines with an oracle. Next, we consider a number of classes containing
problems that can be solved by deterministic Turing machines with access to an oracle.
The branch of complexity theory that studies how many queries to an oracle are needed
to solve certain problems is often called bounded query complexity.

We begin with some classes that can be solved by a constant number of queries to an oracle
in NP. The Boolean Hierarchy (BH) [35, 41, 125] consists of a hierarchy of complexity
classes BHi for all i ≥ 1. Each class BHi can be characterized as the class of problems that
can be reduced in polynomial time to the problem BHi-Sat, which is defined inductively
as follows. The problem BH1-Sat consists of all sequences (ϕ) of length 1, where ϕ is a
satisfiable propositional formula. For even i ≥ 2, the problem BHi-Sat consists of all
sequences (ϕ1, . . . , ϕi) of propositional formulas such that both (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-
Sat and ϕi is unsatisfiable. For odd i ≥ 2, the problem BHi-Sat consists of all
sequences (ϕ1, . . . , ϕi) of propositional formulas such that (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-Sat
or ϕi is satisfiable. The class BH2 is also denoted by DP, and the problem BH2-Sat is
also denoted by SAT-UNSAT. For each i ≥ 1, problems in the class BHi can be solved
in deterministic polynomial time using i queries to an oracle in NP.

Next, we briefly discuss two more classes of problems that can be solved in polynomial
time by a Turing machine that has access to an NP oracle. The first class that we consider
is the class ∆p

2 , consisting of those problems that can be solved by a polynomial-time
algorithm with access to an NP oracle that can make a polynomial number of calls to
this oracle. However, for many problems less than a polynomial number of calls to the
NP oracle are needed. The class Θp

2 contains problems that can be solved in polynomial
time by means of querying the NP oracle only O(logn) times, where n is the size of the
input.

The classes ∆p
2 and Θp

2 can be characterized as follows using non-deterministic Turing
machines with a designated output tape. Let M be an NTM with multiple tapes, where
one of the tapes is used as output tape. We say that the length of the output is bounded
by a function z : N→ N if for each input x ∈ Σ∗, it holds that for each computation path
of the machine M when given input x, the length of the output y ∈ Σ∗ is at most z(n),
where n = |x| denotes the size of the input. A problem Q is in ∆p

2 if and only if there
exists an NTM M with an output tape such that for any input x ∈ Σ∗ it holds that x ∈ Q
if and only if there exists an accepting computation path of M for input x such that the
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output for this computation path is lexicographically larger than the output for any other
computation path of M for input x. A similar characterization holds for the class Θp

2 ,
with the only difference that the output of M is bounded by a function that is O(logn)
[183].

The following problem is complete for the class Θp
2 under polynomial-time reductions [48,

137, 192].

Max-Model
Instance: A satisfiable propositional formula ϕ, and a variable w ∈ Var(ϕ).
Question: Is there a model of ϕ that sets a maximal number of variables in Var(ϕ)
to true (among all models of ϕ) and that sets w to true?

2.4 Non-Uniform Complexity
We conclude this chapter by surveying some basic notions and results from an area of
complexity theory known as non-uniform complexity, which is related to the investigation
of lower bounds for Boolean circuits.

A (Boolean) circuit is a directed, acyclic graph, where all nodes are labelled with either a
Boolean constant 0 or 1, the name of a variable x, or one of the Boolean operators ¬,∧,
or ∨. If a node is labelled with a constant or with the name of a variable, it has indegree 0;
if it is labelled with ¬, it has indegree 1; if it is labelled with ∧ or ∨, it has indegree larger
than 1. Moreover, there is a single node with outdegree 0, called the output node. (We
restrict our attention to Boolean circuits with a single output node). The nodes labelled
with the name of a variable are called input nodes (or simply variables). All nodes that
are not input nodes are called the gates of the circuits. Let v1, . . . , vn be the variables of
a circuit C, and let α : {v1, . . . , vn} → B be a truth assignment for these variables. The
gates of the circuit are then assigned truth values according to the operators with which
they are labelled. The truth value that the output gate of the circuit gets under the
truth assignment, is denoted by C[α]. Moreover, let α : V → B be a truth assignment to
a subset V ⊆ {v1, . . . , vn} of variables of the circuit C—such an assignment is called a
partial assignment to the variables in C. We then let C[α] denote the circuit obtained
from C by replacing each variable v ∈ V by a gate labelled with the constant α(v).
Possibly, the circuit can be simplified after such an instantiation, e.g., if a gate labelled
with ∧ that has an incoming edge from a gate labelled with 0, we can replace it by a
gate labelled with 0. Let C be a class of Boolean circuits. We say that C is closed under
partial instantiation if for each circuit C ∈ C and for each partial assignment α to the
variables in C it holds that C[α] ∈ C.

Let Q be a problem over the alphabet Σ = B. Moreover, let (Cn)n∈N be a family of
Boolean circuits, where for each n ∈ N, the circuit Cn has exactly n variables v1, . . . , vn.
We say that the problem Q is decided by (Cn)n∈N if for each input x ∈ Σ∗, consisting
of the symbols x1x2 . . . xn, it holds that x ∈ Q if and only if Cn[α] = 1, where α :
{v1, . . . , vn} → B is defined by letting α(vi) = xi, for each i ∈ [n]. Moreover, we say that
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a family (Cn)n∈N is of polynomial size if there exists a polynomial p such that |Cn| ≤ z(n)
for each n ∈ N. The complexity class P/poly consists of all decision problems that are
decided by some polynomial-size family of Boolean circuits. The class P/poly is called a
non-uniform class.

Alternatively, the class P/poly can be characterized using the concept of polynomial-
size advice strings. That is, a problem Q is in P/poly if and only if there exists some
polynomial p and a problem Q′ ∈ P such that for each n ∈ N there exists some advice
string αn ∈ Σp(n) of length p(n) such that for each string x ∈ Q if and only if (α|x|, x) ∈ Q′.

The class P/poly is a strict superset of P, i.e., P ( P/poly. Intuitively, non-uniformity
provides additional solving power because the advice strings can be uncomputable. To give
an example, consider an uncomputable unary set, such as the following set S = { 1m : m
is the index of a Turing machine that halts on the empty input }. Then S ∈ P/poly,
because for each input size n, the advice string αn simply encodes whether 1n ∈ S or
not. In fact, this argument shows that any unary set U ⊆ {1}∗ is in P/poly. However,
since S is uncomputable, we know that S 6∈ P.

A central result relating the class P/poly to the classes of the Polynomial Hierarchy is the
Karp-Lipton Theorem [126, 127]. This result states that if NP ⊆ P/poly, then Σp

2 = Πp
2 ,

and thus the PH collapses at the second level. In other words, the Karp-Lipton Theorem
states that SAT cannot be solved by polynomial-size circuits, unless the PH collapses.
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CHAPTER 3
Parameterized Complexity

Theory

Parameterized complexity is based on a deal with the
devil of intractability.

— Rod Downey and Mike Fellows,
Parameterized Complexity [67]

In Chapter 2, we went over some of the central notions and results from the theory of
classical complexity, that play a role in this thesis. In this chapter, we will give a similar
overview of the area of parameterized complexity theory.

We begin by explaining the key idea that underlies the perspective taken in parameterized
complexity. Then, we will define the most important parameterized complexity classes
that play a role in nearly every parameterized complexity analysis. We then turn to
some more parameterized complexity classes that are less commonly used—several of
these classes provide the starting point for the theoretical investigations in this thesis.
Finally, we consider a number of well-known problems that are complete for various
parameterized complexity classes.

This overview of parameterized complexity differs from most other treatments of pa-
rameterized complexity in that it places more emphasis on parameterized analogues of
complexity classes involving non-determinism and alternation. For more background on
parameterized complexity, we refer to other sources [57, 64, 66, 67, 85, 165].

3.1 Fixed-Parameter Tractability
The driving force behind the area of parameterized complexity is the observation that
the worst-case perspective classically taken in complexity theory leads to an analysis of

33



3. Parameterized Complexity Theory

the complexity of a problem where the only thing you know about an input is its size in
bits, whereas in essentially all cases where you are faced with the task of designing an
algorithm to solve a computational problem, you know more about the inputs than just
their size. Parameterized complexity provides tools for a multi-dimensional complexity
analysis where you can take such additional information about the input into account.

To explain this idea in more detail, we consider the problem of model checking for the
temporal logic LTL. This is a modal logic in which one can express a variety of temporal
properties of automated systems. For the model checking problem, the input consists of
a modelMof an automated system and an LTL formula ϕ, and the question is to decide
whether the system satisfies the property expressed by the formula. (For a more detailed
definition of LTL and its model checking problem, we refer to Chapter 9.) This problem
is PSPACE-complete, and therefore there is no algorithm known that solves the problem
in time less than 2Ω(n), where n denotes the input size. However, this classical complexity
diagnosis is based on the fact that we know nothing about the relation between the size
of the modelM and the size of the formula ϕ. Now suppose that you are working on an
application of this problem, where in all cases the formula ϕ is much smaller than the
modelM—for example, the formula ϕ expresses the property that the automated system
never gets stuck in a deadlock state, which can be expressed by an extremely small
LTL formula. In this situation the PSPACE-hardness verdict of classical complexity is
overshadowed by the fact that the problem can also be solved in time O(2kmc), where k
denotes the size of the formula ϕ, m denotes the size of the model M, and c is some
constant. In other words, we can use our knowledge that the formula is small for the
inputs that we care about to identify algorithms that work well for those inputs.

The concept of identifying information about problem inputs that can be exploited
algorithmically is formally captured in parameterized complexity by the notions of
parameterized problems and fixed-parameter tractability. A parameterized problem Q is a
subset of Σ∗×N. For an instance (x, k) ∈ Σ∗×N, we call x the main part of the instance
and k the parameter. A parameterized problem Q is fixed-parameter tractable if there
exists a computable function f : N→ N, a constant c ∈ N, and an algorithm that decides
whether (x, k) ∈ Q in time f(k)nc, where n denotes the size of x. Such an algorithm is
called an fpt-algorithm, and this amount of time is called fixed-parameter tractable time
(or fpt-time). The class of all parameterized problems that are fixed-parameter tractable
is denoted by FPT. For instance, the model checking problem for LTL is fixed-parameter
tractable, when the parameter is the size of the LTL formula in the input.

3.1.1 Polynomial-time Solvability for Constant Parameter Values

One might think that the concept of fixed-parameter tractability can be characterized
by the fact that for any fixed (i.e., constant) value of the parameter, the problem is
polynomial-time tractable. While it is true that every fixed-parameter tractable problems
admits a polynomial-time algorithm for each fixed value of the parameter, the converse is
not true in general. To elaborate on this, we consider the parameterized complexity class
XP, that consists of all parameterized problems Q for which there exists a computable

34



3.1. Fixed-Parameter Tractability

function f : N → N and an algorithm that decides whether (x, k) ∈ Q in time |x|f(k).
Each problem Q ∈ XP can also be solved in polynomial time for each fixed value of the
parameter. However, the order of the polynomial depends on the parameter value k,
whereas for fixed-parameter tractable problems the order of the polynomial is independent
of the value k. It is therefore not surprising that FPT 6= XP. To see why this difference
leads us to consider FPT as a class of tractable problems, and XP not, consider the
following two running time bounds: 2kn2 and nk. Already for the values n = 1000
and k = 10, for instance, the difference between these two functions is enormous.

3.1.2 Integers as Parameter Values

The use of nonnegative integers as parameter values to capture any kind of structure
that could be present in the input might seem restrictive. One can alternatively define
parameterized problems as sets Q ⊆ Σ∗ × Σ∗, where the parameter value is a string k ∈
Σ∗ rather than an integer, and correspondingly adapt the notion of fixed-parameter
tractability using functions f : Σ∗ → N. This alternative definition does not capture a
wider range of problems that are fixed-parameter tractable, because we put no bound on
the running time of the functions f . Therefore, one could in principle always encode any
parameter value k ∈ Σ∗ as an integer.

Similarly, one could combine multiple parameters into a single parameter by taking
their sum. Suppose that you have an algorithm that runs in time f(k1, k2)nc for any
input x ∈ Σ∗ and any two parameter values k1, k2 ∈ N, where n is the size of x, f is some
computable function, and c is some constant. Then there exists another computable
function f ′ such that the algorithm runs in time f ′(k)nc, where k = k1 + k2. By a similar
argument, one can combine any number of parameters into a single parameter.

The potential to use integers as parameter values to successfully capture structure in
problem inputs is illustrated by the following two examples of parameters that have been
used fruitfully in many settings. The first example is that of the notion of treewidth,
which, intuitively, expresses how much a graph is like a tree. Trees have treewidth 1, and
the lower the treewidth of a graph, the more it is like a tree. (For a definition of the notion
of treewidth, we refer to Section 4.2.1.2.) Many NP-hard problems are fixed-parameter
tractable when parameterized by the treewidth of a graph representation of the input (see,
e.g., [26]). The second example concerns the parameter of backdoor size (see, e.g., [88]).
Backdoors are typically considered for logic-related problems, and, intuitively, consist of a
set of variables that have the property that once they are instantiated, the problem inputs
falls into a class of inputs for which the problem can be solved efficiently. For instance,
for propositional formulas in 2CNF, the satisfiability problem is polynomial-time solvable,
and the problem 3SAT is fixed-parameter tractable when parameterized by the size of
the smallest backdoor to 2CNF.

One final thing that we should mention about the general set-up of parameterized
complexity theory is that parameters are often formally modelled differently, using
(polynomial-time computable) functions κ : Σ∗ → N. Instead of viewing parameterized
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problems as sets Q ⊆ Σ∗ × N, where the parameter value is given explicitly as part of
the input, parameterized problems are then considered as pairs (Q, κ), where Q ⊆ Σ∗ is
a classical decision problem. For each input x ∈ Σ∗, the parameter value is then given
by κ(x). For the purpose of this thesis, the difference between these two different formal
ways of capturing parameter values is immaterial.

3.1.3 Alternative Characterizations of FPT

We end this section on fixed-parameter tractability by giving two alternative character-
izations of the class FPT. The first of these states that FPT consists of exactly those
parameterized problems that can be solved in polynomial-time after performing a pre-
computation that depends on the parameter value only. Formally, FPT consists of those
parameterized problems Q ⊆ Σ∗ × N, for which there a computable function f : N→ Σ∗,
and a problem Q′ ⊆ Σ∗ × Σ∗ that is in P, such that for all instances (x, k) ∈ Σ∗ × N
it holds that (x, k) ∈ Q if and only if (x, f(k)) ∈ Q′. In this definition, the function f
performs the precomputation. As we will see in the next section in more detail, by
replacing the complexity class P in the above definition by another class K, we can
construct a parameterized analogue para-K of any classical complexity class K.

The other alternative characterization of FPT uses the concept of kernelization. Kernel-
izations can be seen as preprocessing algorithms with performance guarantees. Formally,
a kernelization for a parameterized problem Q ⊆ Σ∗ × N is a polynomial-time algo-
rithm A for which there exist computable functions f, g : N → N such that for any
instance (x, k) ∈ Σ∗ × N, the algorithm A, when given (x, k) as input, produces another
instance (x′, k′) such that: (1) (x, k) ∈ Q if and only if (x′, k′) ∈ Q; (2) |x′| ≤ f(k); and
(3) k′ ≤ g(k). In other words, the kernelization produces an equivalent instance whose
size is bounded by a function of the parameter only. Any parameterized problem that is
decidable is fixed-parameter tractable if and only if it has a kernelization [165].

3.2 Fixed-Parameter Intractability

Similarly to the traditional theory of computational complexity, the theory of parameter-
ized complexity also offers a completeness theory, along with various intractability classes,
that can be used to provide evidence that certain problems are not fixed-parameter
tractable. In this section, we will give an overview of the notions of hardness and
completeness that are used in parameterized complexity, and we will consider several
parameterized intractability classes.

The first prerequisite for a successful completeness theory is an appropriate notion of
reductions. In parameterized complexity, this role is filled by fpt-reductions. Let Q ⊆
Σ∗ × N and Q′ ⊆ Σ∗ × N be two parameterized problems. An fpt-reduction from Q
to Q′ is a mapping R : Σ∗ × N → Σ∗ × N from instances of Q to instances of Q′ such
that there exist a computable function g : N → N such that for all (x, k) ∈ Σ∗ × N it
holds that (1) R is computable in fpt-time, (2) (x, k) ∈ Q if and only if R(x, k) ∈ Q′,

36



3.2. Fixed-Parameter Intractability

and (3) k′ ≤ g(k), where R(x, k) = (x′, k′). The last requirement, intuitively, is there
to ensure that the composition of an fpt-reduction and another fpt-algorithm is also an
fpt-algorithm. If the value k′ is unrestricted, it might be the case that the factor f(k′)
does not depend only on the original parameter value k. As a result of this requirement,
the class FPT is closed under fpt-reductions.

3.2.1 The Classes para-K

As already mentioned in Section 3.1.3, for each classical complexity class K, we can
construct a parameterized analogue para-K. This works as follows. Let K be a classical
complexity class, e.g., NP. The parameterized complexity class para-K is then defined as
the class of all parameterized problems L ⊆ Σ∗ × N for which there exist a computable
function f : N → Σ∗ and a problem Q′ ⊆ Σ∗ × Σ∗ such that Q ∈ K, such that for all
instances (x, k) ∈ Σ∗×N it holds that (x, k) ∈ Q if and only if (x, f(k)) ∈ Q′. Intuitively,
the class para-K consists of all problems that are in K after a precomputation that
only involves the parameter. A common example of such parameterized analogues of
classical complexity classes is the parameterized complexity class para-NP. This class
can alternatively be defined as the class of parameterized problems that are solvable
in fpt-time by a non-deterministic algorithm [84]. Other examples include the classes
para-Σp

2 , para-Π
p
2 and para-PSPACE.

Using the classes para-K and the notion of fpt-reductions, one can already provide
evidence that certain parameterized problems are not fixed-parameter tractable. For
instance, a parameterized problem Q is para-NP-hard if each problem Q′ ∈ para-NP
is fpt-reducible to Q. Moreover, a problem is para-NP-complete if it is both para-NP-
hard and in para-NP. (These notions of hardness and completeness hold for every
parameterized complexity class.) An example of a para-NP-complete problem is a
parameterized version SAT(constant) of SAT where the parameter is a fixed constant,
that is, SAT(constant) = { (x, 1) : x ∈ SAT }. In fact, for any classical complexity class K
and any K-complete problem Q, it holds that the parameterized problem Q(constant) =
{ (x, 1) : x ∈ Q } is para-K-complete. If a para-K-hard parameterized problem is fixed-
parameter tractable, then K = P. For example, a para-NP-hard parameterized problem
is not fixed-parameter tractable, unless P = NP.

3.2.2 The Weft Hierarchy

For many interesting parameterized problems, it turns out that a more subtle hardness
theory is needed to provide evidence that they are not fixed-parameter tractable. These
problems are polynomial-time solvable for each constant value of the parameter—that is,
they are in XP—and therefore they cannot be para-NP-hard, unless P = NP. The most
prominent hardness theory that is used to analyze the complexity of such problems consists
of the Weft hierarchy, containing the classes W[1] ⊆W[2] ⊆ · · · ⊆W[SAT] ⊆W[P]. (All
these inclusions are believed to be strict.) The parameterized complexity classes W[t],
for t ∈ N+ ∪ {SAT,P}, are based on weighted variants of the satisfiability problem for
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various classes of Boolean circuits and formulas. We consider Boolean circuits with a
single output gate (see Section 2.4 for a definition of Boolean circuits). We say that
a Boolean circuit is a formula if all its gates have outdegree at most 1. Moreover, we
distinguish between small gates, with indegree at most 2, and large gates, with indegree
larger than 2. The depth of a circuit is the length of a longest path from any variable to
the output gate. The weft of a circuit is the largest number of large gates on any path
from a variable to the output gate. We say that a truth assignment for a Boolean circuit
has weight k if it sets exactly k of the variables of the circuit to true. We denote the
class of Boolean circuits with depth u and weft t by circt,u. We denote the class of all
Boolean circuits by circ, and the class of all Boolean formulas by form. Now, for any
class C of Boolean circuits, we define the following parameterized problem.

WSat(C)
Instance: A Boolean circuit C ∈ C, and an integer k.
Parameter: k.
Question: Does there exist an assignment of weight k that satisfies C?

The parameterized complexity classes W[t], for t ∈ N+ ∪{SAT,P}, are defined as follows:

W[t] = [ {WSat(circt,u) : u ≥ 1 } ]fpt, for each t ≥ 1;
W[SAT] = [ {WSat(form)} ]fpt; and

W[P] = [ {WSat(circ)} ]fpt.

Here the notation [ S ]fpt denotes the closure of the set S of parameterized problems
under fpt-reductions—that is, [ S ]fpt consists of all parameterized problems that can be
fpt-reduced to some problem S ∈ S. It is widely believed that FPT 6= W[1], and it turns
out that there are many parameterized problems that are complete for W[1] or W[2].

An example of a W[1]-complete problem is the problem Multi-Colored Clique
[80], which is often called MCC for short. Instances for this problem consist of
tuples (V,E, k), where k is a positive integer, V is a finite set of vertices partitioned
into k subsets V1, . . . , Vk, and (V,E) is a simple graph. The parameter is k. The question
is whether there exists a k-clique in (V,E) that contains a vertex in each Vi—that is, a
set V ′ = {v1, . . . , vk} such that vi ∈ Vi, for each i ∈ [k], and {vi, vj} ∈ E, for each i, j ∈ [k]
with i < j.

An example of a parameterized problem that is complete for the class W[SAT] is
Monotone-WSat(form) [2]. In this problem, the input consists of a monotone proposi-
tional formula ϕ—i.e., ϕ contains no negations—and a positive integer k. The parameter
is k, and the question is whether there exists a truth assignment that sets at most k
variables in Var(ϕ) true and that satisfies ϕ.

3.2.3 The A-Hierarchy and First-Order Logic

Parameterized counterparts for the classes of the Polynomial Hierarchy are provided
by the parameterized complexity classes para-Σp

i and para-Πp
i . However, for many
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interesting parameterized problems, these classes cannot be used. As explained for the
example of para-NP in Section 3.2.2, parameterized problems that are in XP cannot be
complete for these classes, unless P = NP. Parameterized complexity theory features
other intractability classes that are counterparts of the Polynomial Hierarchy that are
applicable also for problems inside XP. These classes A[t], for each t ≥ 1, form the
A-hierarchy, and can be best described using first-order logic model checking.

We define the basic concepts of first-order logic. A (relational) vocabulary τ is a finite set
of relation symbols. Each relation symbol R has an arity arity(R) ≥ 1. A structure A of
vocabulary τ , or τ -structure (or simply structure), consists of a set A called the domain
(or universe) and an interpretation RA ⊆ Aarity(R) for each relation symbol R ∈ τ .
In first-order logic, formulas are built from a countably infinite set {x1, x2, . . .} of
variables, relation symbols, existential and universal quantification, and the Boolean
operators ¬,∧, and ∨. That is, if R ∈ τ is a relation symbol of arity a, and x1, . . . , xa
are variables, then R(x1, . . . , xa) is a formula. Moreover, if ϕ1 and ϕ2 are formulas and x
is a variable, then ∃x.ϕ1, ∀x.ϕ1, ¬ϕ1, (ϕ1 ∧ ϕ2), and (ϕ1 ∨ ϕ2) are also formulas. We
use (ϕ1 → ϕ2) as an abbreviation for (¬ϕ1∨ϕ2), and we use (ϕ1 ↔ ϕ2) as an abbreviation
for ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)). For a formula ϕ, we call the variables occurring in ϕ that
are not bound by any quantifier the free variables of ϕ, and we write Free(ϕ) to denote
the set of free variables in a formula ϕ. Formally, Free(ϕ) is defined inductively as follows:

Free(R(x1, . . . , xa)) = {x1, . . . , xa},
Free(¬ϕ) = Free(ϕ),

Free(ϕ1 ∧ ϕ2) = Free(ϕ1) ∪ Free(ϕ2),
Free(ϕ1 ∨ ϕ2) = Free(ϕ1) ∪ Free(ϕ2),

Free(∃x.ϕ) = Free(ϕ)\{x}, and
Free(∀x.ϕ) = Free(ϕ)\{x}.

Truth of first-order formulas given a structure and an assignment to the free variables of
the formula is defined in the usual way. Let A be a τ -structure with universe A, let ϕ be a
first-order formula over the vocabulary τ , and let α : Free(ϕ)→ A be an assignment. We
often consider the assignment α as a set of mappings, i.e., α = {x 7→ α(x) : x ∈ Free(ϕ) }.
Then the following conditions define when ϕ is true in A given α, written A, α |= ϕ.

A, α |= R(x1, . . . , xa) if and only if (x1, . . . , xa) ∈ RA,
A, α |= ¬ϕ if and only if A, α 6|= ϕ,

A, α |= (ϕ1 ∧ ϕ2) if and only if A, α |= ϕ1 and A, α |= ϕ2,

A, α |= (ϕ1 ∨ ϕ2) if and only if A, α |= ϕ1 or A, α |= ϕ2,

A, α |= ∃x.ϕ if and only if A, α ∪ {x 7→ a} |= ϕ for some a ∈ A, and
A, α |= ∃x.ϕ if and only if A, α ∪ {x 7→ a} |= ϕ for each a ∈ A.

For more details, we refer to textbooks (see, e.g., [85, Section 4.2]). A first-order logic
sentence is a first-order logic formula that contains no free variables, i.e., a formula ϕ
such that Free(ϕ) = ∅. For sentences ϕ, we write A |= ϕ to denote A, ∅ |= ϕ.
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Let i ≥ 1. We say that a first-order logic sentence ϕ is a Σi sentence if it is of the
form ∃x1

1, . . . , x
1
`1
.∀x2

1, . . . , x
2
`2
. . . Qix

i
1, . . . , x

i
`i
.ψ, where Qi = ∃ if i is odd and Qi = ∀

if i is even, and where ψ is quantifier-free. For instance, Σ2 sentences are of the
form ∃x1

1, . . . , x
1
`1
.∀x2

1, . . . , x
2
`2
.ψ. For each i ≥ 1, the parameterized problem MC(Σi) is

defined as follows. Inputs consist of a structure A and a Σi sentence ϕ (over the same
signature τ), and the parameter is |ϕ|. The question is to decide whether A |= ϕ. The
classes A[t], for each t ≥ 1, are defined as follows:

A[t] = [ MC(Σt) ]fpt.

So in particular, the problem MC(Σ2) is A[2]-complete. The problem remains A[2]-hard
when (1) `1 = `2, (2) τ is a fixed signature containing only binary predicates, and (3) ψ
is a disjunction of atoms [85, Lemma 8.10].

3.2.4 The Classes XNP, Xco-NP, XΣp
i , and XΠp

i

We conclude our overview of known parameterized classes with several other parameterized
analogues of classical complexity classes. Above, we already saw the class XP, which
consists of all parameterized problems that are solvable by an algorithm that, for each
parameter value k, runs in polynomial-time (where the order of the polynomial is
bounded by f(k), for some computable function f). A slight variant of this class is the
(non-uniform) class XPnu, that can be defined using the notion of slices. Let Q be a
parameterized problem. For each positive integer s ≥ 1, the s-th slice of Q is defined as
the classical problem Qs = {x : (x, s) ∈ Q }. Then XPnu consist of those parameterized
problems Q such that for each s ∈ N, the slice Qs is polynomial-time solvable. This
class can be called non-uniform, because the polynomial-time algorithms for the different
slices Qs might not be computable from the values s ∈ N.

This definition straightforwardly generalizes to arbitrary classical complexity classes.
Let K be a classical complexity class. Then, the parameterized complexity class XKnu
consists of those parameterized problems Q such that for each s ∈ N, the slice Qs is
in K [67, 84]. (Originally, the classes XKnu were introduced under the names XK. We
use the names XKnu to emphasize the non-uniformity that is present in these classes,
and to distinguish these classes from uniform counterparts such as XP.)

As it is often more convenient to work with uniform counterparts of these classes, we
will define such counterparts for several cases. We begin with the case where K = NP.
The parameterized complexity class XNP consists of all parameterized problems Q for
which there exists a computable function f : N → N and an algorithm that decides
whether (x, k) ∈ Q in non-deterministic time |x|f(k), for some computable function f .
The second case is that of the dual class, denoted by Xco-NP. That is, Xco-NP consists
of all parameterized problems Q such that co-Q ∈ XNP, where co-Q = { (x, k) ∈
Σ∗ × N : (x, k) 6∈ Q }. More generally, we consider the case where K = Σp

i or K = Πp
i ,

for some i ∈ N. We define these classes using alternating Turing machines. The
parameterized complexity class XΣp

i consists of all parameterized problems Q for which
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there exists an i-alternating ATM M = (S∃, S∀,Σ,∆, s0, F ) with s0 ∈ S∃, that decides
whether (x, k) ∈ Q in time |x|f(k), for some computable function f . Similarly, the
parameterized complexity class XΠp

i consists of all parameterized problems Q for which
there exists an i-alternating ATM M = (S∃, S∀,Σ,∆, s0, F ) with s0 ∈ S∀, that decides
whether (x, k) ∈ Q in time |x|f(k), for some computable function f .
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CHAPTER 4
Fpt-Reducibility to SAT

While we still seem to be quite far from resolving the
questions about the computational complexity of SAT,
progress on the engineering side has been nothing
short of spectacular.

— Moshe Y. Vardi [190]

In the traditional parameterized complexity literature, the concept of fixed-parameter
tractability is commonly used as a desideratum for algorithms that solve a particular
problem in its entirety (i.e., fpt-algorithms) [27, 67, 66, 85, 165]. Less attention has been
given to reducing one problem in fixed-parameter tractable time to another problem that
can be attacked by means of other algorithmic techniques. However, this latter solving
strategy has the potential of producing algorithmic methods that work well in practical
settings for highly intractable problems, in view of the outstanding performance of modern
SAT solvers on many instances occurring in practice [22, 96, 152, 158, 175]—and efficient
solvers for other NP-complete problems such as integer linear programming (ILP) and the
constraint satisfaction problem (CSP). In this thesis, we carry out a structured theoretical
investigation of the possibilities and limits of the technique of solving problems by first
reducing them to one or more instances of SAT in fixed-parameter tractable time, and
invoking a SAT solver to solve the SAT instances (and thereby solving the instance of
the original problem).

Transforming instances of one problem to instances of another problem in fixed-parameter
tractable time is a concept that is ubiquitous in parameterized complexity. Algorithms
that perform such a transformation are known as fpt-reductions. (Technically, fpt-
reductions must satisfy the additional requirement that the parameter value of the
resulting instance is bounded by a computable function of the original parameter value.)
Fpt-reductions play a vital role in showing fixed-parameter intractability: they are used
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to show hardness for intractability classes. They are occasionally also used to show
fixed-parameter tractability by reducing some problem to another problem that is already
known to be fixed-parameter tractable. However, fpt-reductions have seldom been used in
combination with algorithmic techniques developed outside of parameterized complexity.

When taking a worst-case complexity-theoretic point of view and when considering
polynomials of arbitrary order, it does not matter to what NP-complete problem one
reduces problem instances. For the sake of convenience, we will take SAT as the canonical
NP-complete problem that we reduce to, and we will speak informally of “fpt-reductions
to SAT.”

The technique of using fpt-reductions to SAT makes most sense for problems that are
highly intractable, i.e., problems whose complexity lies at the second level of the PH or
higher, as problems at the first level of the PH can be encoded into SAT in polynomial
time. In our investigation, we therefore focus mainly on problems that lie at higher
levels of the PH and problems that are even PSPACE-complete. The solvers that are
available for problems at these levels of complexity are generally not as successful as
the solvers available for problems at the first level of the PH. Therefore, the investment
of computational resources (when using fpt-reductions rather than polynomial-time
reductions) could pay off, if more efficient solvers could then be used to solve the problem.

This generic scheme of solving a problem by means of an fpt-reduction to SAT can be
embodied in various ways. For instance, there are various formal interpretations of the
concept of problem reductions that one could choose. We begin our investigation in this
chapter by considering an interpretation of the idea of fpt-reductions to SAT that is based
on the most widely used form of problem reductions: many-to-one (or Karp) reductions.
In this setting, a fixed-parameter tractable algorithm R takes as input an instance (x, k)
of a parameterized problem Q, and outputs an instance x′ of SAT such that (x, k) ∈ Q if
and only if x′ ∈ SAT. Equivalently, one can consider this reduction R as an fpt-reduction
from Q to the parameterized problem SAT(constant) = { (x, 1) : x ∈ SAT }, where the
parameter value k = 1 is constant. For the sake of convenience, we will use the following
(notational) convention throughout this thesis.

Convention 1. We say that a parameterized problem is fpt-reducible to SAT if it is
fpt-reducible to SAT(constant).

It is straightforward to show that SAT(constant) is para-NP-complete—membership
follows from the fact that SAT is in NP and hardness follows from the fact that the only
slice of SAT(constant) is NP-hard. This leads to the following observation, that shows
that the parameterized complexity class para-NP captures exactly those parameterized
problems that are many-to-one fpt-reducible to SAT.

Observation 2. A parameterized problem is many-to-one fpt-reducible to SAT if and
only if it is in para-NP.
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Most modern SAT solvers are complete solvers, i.e., for every instance x they report
one of two possible answers: “x ∈ SAT” or “x 6∈ SAT”. Therefore, it also makes sense
to consider (many-to-one) reductions to UNSAT, the co-problem of SAT. Many-to-one
fpt-reductions to UNSAT are defined similarly to many-to-one fpt-reductions to SAT,
and a parameterized problem Q is many-to-one fpt-reducible to UNSAT if and only
if Q ∈ para-co-NP.

In this view, para-NP-membership results and para-co-NP-membership results can be
considered as positive results for parameterized problems based on problems that are
hard for the second level of the PH (or higher). For several problems, such positive
results have been developed in the literature. Additionally, there are several results in
the literature that can be rephrased as fpt-reductions to SAT. On the other hand, there
are of course also problems that do not admit fpt-reductions to SAT.

Outline of this chapter In this chapter, we survey to what extent the existing
parameterized complexity literature can be used to investigate the possibilities and limits
of many-to-one fpt-reductions to SAT.

Firstly, to provide some context on the great performance of SAT solvers in practice, in
Section 4.1, we give a brief overview of the engineering achievements for SAT solving
(and related) algorithms that have been attained over the last few decades.

Then, in Section 4.2, we describe several many-to-one fpt-reductions to SAT (or UN-
SAT), several of which appeared in the literature. We use these results to argue that
several productive parameterized complexity techniques—namely, using treewidth and
backdoors—can also be used to obtain fpt-reductions to SAT.

In Section 4.3, we give a foretaste of the use of more powerful fpt-reductions to SAT
(namely Turing reductions). In particular, we consider a problem that can be solved by
means of such an fpt-time Turing reduction to SAT.

Finally, in Section 4.4, we give several examples of parameterized problems that are
unlikely to admit an fpt-reduction to SAT, and illustrate how known parameterized
complexity classes (e.g., A[2] and para-Σp

2) can be used to support such irreducibility
claims using hardness results.

4.1 Modern SAT Solvers

Over the last two decades, enormous progress has been made on the engineering of SAT
solving algorithms. As Moshe Vardi put it, this progress has been “nothing short of
spectacular” [190]. To provide context for the potential of using fpt-reductions to SAT for
obtaining practically useful solving methods, we give a brief (and incomplete) historical
overview of the development and success of SAT solving algorithms1, and we describe

1We restrict ourselves to complete solving methods, i.e., algorithms that give a correct answer for
every possible input.
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some of the most important algorithmic techniques behind their amazing performance.
For a more detailed account of the history and working of modern SAT solvers, we refer
to the literature [96, 128].

4.1.1 The Success of SAT Solvers

Research in the 1960s and 1970s identified SAT—the satisfiability problem for proposi-
tional formulas—as a key problem underlying hundreds of important search problems from
a variety of areas in computer science and other domains. Important milestones in this
research are the Cook-Levin Theorem [54, 143]—which states that SAT is NP-complete,
even when restricted to propositional formulas that are in CNF—and the seminal book
by Garey and Johnson [86]—which provides an enormous list of problems that can be
reduced to SAT.

These results form the basis for the currently widely held belief that SAT cannot be solved
faster than in exponential time, in the worst case. It is easy to see that the problem can
be solved in exponential time. The naive truth table algorithm, that goes over all possible
truth assignments, runs in time 2O(n) for every input, where n denotes the number of
variables of the formula. However, already in the 1960s, algorithms were constructed
that are much faster in many cases. An important example of such an algorithm is the
DPLL algorithm—named after Martin Davis, Hilary Putnam, George Logemann, and
Donald W. Loveland—that underlies a large majority of today’s efficient SAT solving
algorithms. The DPLL algorithm is an improvement on the straightforward backtracking
algorithm that traverses the search tree containing all possible truth assignments, and is
based on the eager use of unit propagation (instantiating unit clauses) and pure literal
elimination (instantiating variables that occur only positively or only negatively) to the
reduced formula corresponding to the current node in the search tree. These techniques
efficiently prune the search space, allowing the algorithm to be must faster than the
worst-case exponential bound in many cases.

Since the 1990s, numerous important improvements have been made to the basic DPLL
algorithm, leading to a much wider range of inputs for which the algorithms work
extremely fast. (Below, in Section 4.1.2, we discuss several of the principal techniques
that feature in modern SAT algorithms.) In fact, the performance of modern SAT
solvers is so impressive that it can be seen as a serious challenge to the relevance of
the worst-case intractability status of SAT. This progress is stimulated by the yearly
International Conference on Theory and Applications of Satisfiability Testing—also
named SAT—which hosts a SAT solving competition each year, where SAT solving
algorithms compete against each other on a wide range of benchmark instances, many
of which find their origin in real-world industrial applications or hard combinatorial
problems.

Due to their great performance, SAT solvers can increasingly be used as efficient general-
purpose tools to solve hard problems in a plethora of areas in computer science and
artificial intelligence. As an illustration, we mention two cases where SAT solvers have
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been successfully applied to problems that are traditionally not considered to be closely
related to propositional satisfiability. The first example is related to software and
hardware verification, where the problem is to decide whether an abstract model of an
automated system satisfies a desired temporal property (e.g., whether the system will
never get stuck in a particular state). For this problem, SAT algorithms are at the basis
of one of the most efficient solving methods available [18, 21, 20, 52]. The second example
concerns the problem of planning in artificial intelligence, where the task is to find a
sequence of actions (given a set of available actions) that achieves a certain goal [129,
130]. (We consider these problems again in Chapters 9 and 12, respectively.)

4.1.2 Algorithmic Techniques

We continue by discussing some of the most important algorithmic techniques used in
modern SAT algorithms. The first valuable technique that we consider is that of clause
learning. Whenever a conflict is reached, (1) the resolution rule is used on the clauses
involved in the conflict to extract information about the cause of the conflict, (2) this
information is remembered in the form of a learned clause, i.e., a clause entailed by the
formula, and (3) this information is used to prune the search elsewhere in the search
space. There are various choices one can make when implementing such conflict-driven
learning—e.g., what clause to learn, and which clauses to remember—resulting in different
learning schemes.

A second influential technique, that is used in combination with clause learning, is the
technique of non-chronological backjumping [156, 157]. This refers to the practice of
jumping back to (and reverting) a decision in the search tree that is not the decision
that was made last chronologically, upon reaching a conflict. The choice of decision to
revert to is often made using clauses learned from the conflict. Algorithms that employ
clause learning in combination with non-chronological backjumping are often referred to
as conflict-driven clause learning (CDCL) algorithms.

Yet another important method is the use of randomized restarts [97], where clause learning
algorithms can arbitrarily stop and restart the search, keeping the clauses that were
learned so far during the search. Such restarts are a way of exploiting randomization to
improve the efficiency of the search algorithms. Most solvers employ aggressive restart
strategies, restarting after a very small number of backtracks.

The use of efficient (lazy) data structures to implement constraint propagation has also
led to rewarding improvements. The most successful example of this is the two watched
literals scheme [163], where—rather than maintaining a counter for each clause to keep
track of the number of literals that are not yet satisfied—two literals are watched in each
clause, triggering unit propagation when one of them is falsified. This method allows for
lazy updating of the status of clauses, which results in a significant decrease in overhead.

Besides using the advanced methods that we described above, the performance of SAT
solving algorithms can be greatly improved by choosing the right branching heuristics.
Even for the vanilla version of the DPLL algorithm, whenever a decision is to be
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made, there are many possibilities for choosing which literal to assign which truth value.
Branching heuristics can be static (i.e., choosing on the basis of a fixed strategy) or
dynamic (i.e., making a choice that depends on the reduced formula corresponding to
the current node in the search tree), and often have an enormous effect on the efficiency
of the algorithm.

4.1.3 Successful Algorithms for Other NP-complete Problems

We finish Section 4.1 by considering a number of other NP-complete problems for which
algorithms have been developed that work well in many cases, and briefly describing
some of the main algorithmic techniques used to solve these problems. As mentioned
above, because we take a worst-case point of view and because we consider polynomials
of arbitrary order, the theory that we develop in this thesis applies to any NP-complete
problem.

4.1.3.1 Satisfiability Modulo Theories

The problem of Satisfiability Modulo Theories (SMT) [13] consists of finding a satisfying
assignment for a Boolean formula where the atomic propositions are statements from some
background theory (expressed in first-order logic where certain function and predicate
symbols have a predefined meaning). An example of such a background theory is the
theory of integer arithmetic—where atomic propositions could be of the form (x+5 ≤ 2y),
for instance.

One of the most important solving methods for the problem of SMT involves the
combination of DPLL-based search algorithms with dedicated solvers for the background
theory at hand. These background theory solvers take as input a collection of statements
in the theory, and decide whether this collection of statements is satisfiable. In order
for the DPLL-based algorithms to work well in combination with the theory solvers, it
is important that the theory solvers have various features. For instance, (1) the theory
solvers should be able to provide a model in case a collection of statements is satisfiable,
(2) the theory solvers should be able to provide an explanation in case a collection of
statements is unsatisfiable (e.g., a proof of unsatisfiability), and (3) the theory solver
should be able to perform various types of deductive reasoning (e.g., detecting that a
satisfiable collection of statements implies another statement).

4.1.3.2 Constraint Satisfaction

The Constraint Satisfaction Problem (CSP) [174] consists of finding an assignment for a
set of variables (each with a finite domain) that satisfies a given set of constraints. The
constraints are represented as a list of possible subassignments that are allowed for the
variables to which the constraint applies. This way, many types of constraints can be
expressed easily, resulting in a convenient method of modelling search problems of many
different kinds. The approach of solving search problems by modelling them as instances
of the constraint satisfaction problem and subsequently solving them using CSP solvers is

50



4.1. Modern SAT Solvers

also known as constraint programming. We consider the constraint satisfaction problem
in more detail in Section 4.4.2.

One of the most successful solving methods for the constraint satisfaction problem is
based on algorithms that traverse a search tree, similarly to DPLL-based algorithms
for SAT. Going down a branch in the search tree corresponds to assigning a value to
a variable. At each node in the search tree, the problem is simplified by removing
(combinations of) variable-value assignments that can not be used in any solution. This
simplification process is known as constraint propagation, and it is a very general concept
that includes many types of reasoning. For example, one could consider unit propagation
as a type of constraint propagation. Whenever there are no possible values left for some
variable, the algorithm backtracks and goes back up in the search tree. These search
algorithms are often improved by means of look-ahead techniques that examine part of
the search tree before deciding which branch to go down on, in order to anticipate the
effects of this branching decision.

4.1.3.3 Answer Set Programming

Answer Set Programming (ASP) [31, 90, 153] is a form of logic programming that is
based on the stable model (or answer set) semantics of logic programs. The problem of
finding an answer set for a (propositional) logic program is NP-complete. The stable
model semantics of answer set programming allows for a convenient way of modelling
search problems that involve the closed-world assumption, for example. We consider a
more expressive variant of answer set programming (where the head of rules may include
disjunctions) in more detail in Sections 4.2.3 and 5.1.

Answer set solvers are algorithms for finding and enumerating answer sets for a given
logic program. Many of the most successful answer set solvers are based on extensions of
DPLL-based SAT solving algorithms, where additional steps are performed to ensure
that solutions that are found are answer sets—each answer set of a logic program is also
a satisfying assignment of the propositional formula that expresses the logic program,
but not vice versa. These answer set solvers also often make use of the techniques of
clause learning and non-chronological backjumping.

4.1.3.4 (Mixed) Integer Linear Programming

Linear programming consists of finding an optimal solution of a linear function, sub-
ject to linear inequality constraints—that is, finding a combination of values for vari-
ables x1, . . . , xn that both (1) maximizes (or minimizes) the value of c1x1 + · · ·+ cnxn
and that (2) satisfies a given set of constraints of the form a1x1 + · · · + anxn ≤ b,
where ai, b, ci ∈ Z. If the values for the variables xi are allowed to be rational numbers,
this problem can be solved in polynomial time (for instance using the simplex method [55,
Section 29.3]). However, for the case where (some of) the variables are restricted to
have integer values, no polynomial-time algorithms are known—this variant is referred
to as (Mixed) Integer Linear Programming (ILP/MILP) [195]. For this variant, the
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problem of finding an integer solution that achieves a given value for the linear function
is NP-complete.

Many of the most efficient algorithms for (mixed) integer linear programming are based on
the following general scheme. This scheme uses relaxations of the integer linear program
where the solutions are not required to have integer values—any solution for the program
is also a solution for the relaxation, but not necessarily vice versa. The scheme consists
of initially taking the (non-integer) relaxation of the integer linear program that consists
of the same constraints, and using one of the available polynomial-time algorithms to
find an optimal solution for this relaxation. If the solution that is found is an integer
solution, then this is an optimal (integer) solution for the original integer linear program.
Otherwise, the relaxation is augmented with a linear inequality that is not satisfied by the
current (non-integer) solution, but that is satisfied by each integer solution. This process
of finding optimal solutions for the relaxation and refining the relaxation is repeated until
an optimal integer solution is found. There are various choices that one could make for
the inequalities that are introduced to rule out non-integer solutions. For example, one
could directly rule out a particular non-integer value in the current solution—e.g., if the
current solution assigns variable x1 to 3.2, one could require that x1 ≤ 3 or x1 ≥ 4. As
disjunctions of inequalities are not expressible in the problem, this yields a search tree.
Algorithms based on adding this type of inequalities are often called branch-and-bound
methods. Another type of inequality that is often introduced to rule out non-integer
solutions is based on the facets of the convex hull of integer solutions—adding this type
of inequalities is referred to as the cutting-plane method.

4.2 Various Fpt-Reductions to SAT

In this section, we consider fpt-reductions to SAT (or UNSAT) for several parameterized
problems. Some of these results have appeared in the literature (albeit not always
interpreted as fpt-reductions to SAT). In particular, we give several examples how the
productive parameterized complexity methods of using treewidth and backdoor size as
parameters can be used to obtain fpt-reductions to SAT.

4.2.1 Quantified Boolean Satisfiability

We begin by considering several parameterized variants related to the satisfiability
problem for quantified Boolean formulas (QBFs). Concretely, we consider the problem
QSat parameterized by the number of universal variables, and a parameterized variant
of the problem QSat2(DNF)—the satisfiability problem of QBFs with an ∃∀ quantifier
prefix whose matrix is in DNF.

4.2.1.1 Quantifier Expansion

The problem of deciding satisfiability of a QBF does not allow a polynomial-time SAT
encoding (unless NP = PSPACE). However, if the number of universal variables is small,
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one can use known methods in QBF solving [9, 19] to get an many-to-one fpt-reduction
to SAT. Consider the following parameterized problem.

QSat(#∀-vars)
Instance: A quantified Boolean formula ϕ.
Parameter: The number of universally quantified variables of ϕ.
Question: Is ϕ true?

Since the problem QSat is PSPACE-complete in general, the following para-NP-membership
result can be seen as a positive example of a setting where many-to-one fpt-reduction to
SAT can be applied successfully.

Proposition 3. QSat(#∀-vars) is para-NP-complete.

Proof. The problem of deciding the satisfiability of a propositional formula can be seen
as the problem of deciding whether a quantified Boolean formula with only existentially
quantified variables is true. Therefore, the problem QSat(#∀-vars) is NP-hard already
for the parameter value k = 0. Thus QSat(#∀-vars) is para-NP-hard.

To show membership in para-NP, we give an fpt-time reduction to the problem of deciding
truth of a quantified Boolean formula with only existentially quantified variables. We do
so by repeatedly applying universal quantifier expansion [9, 19]. This is a transformation
that eliminates the rightmost universally quantified variable from a quantified Boolean
formula as follows. Let ϕ = Q1x1 . . . Q`−1x`−1∀x`∃x`+1 . . . ∃xm.ψ be a quantified Boolean
formula, where Qi ∈ {∃, ∀} for all i ∈ [` − 1]. We eliminate the universally quantified
variable x` by transforming ϕ into a quantified Boolean formula ϕ′ that is true if and only
if ϕ is true. We introduce a copy x′i of the variables xi with i ∈ [`+1,m], Then, we obtain
the (quantifier-free) formula ψ′ from ψ by replacing each occurrence of a variable x ∈ X
in ψ by the corresponding copy x′. Finally, we define the quantified Boolean formula ϕ′
as follows:

ϕ′ = Q1x1 . . . Q`−1x`−1∃x`+1 . . . ∃xm∃x′`+1 . . . ∃x′m.(ψ[x` 7→ 1] ∧ ψ′[x` 7→ 0]).

It can be readily verified that ϕ′ is true if and only if ϕ is true.

Each time we perform this transformation, we blow up the quantified Boolean formula
with a factor of at most 2. Therefore, eliminating all k universally quantified variables in
this manner results in an existentially quantified formula that is at most a factor of 2k
larger than the original formula.

4.2.1.2 Existential and Universal Treewidth

Next, we investigate the parameterized complexity of a parameterized variant of the
problem QSat2(DNF). This parameterization is related to the incidence treewidth of
QDNF formulas. Remember that a QDNF formula is a QBF whose matrix is in DNF.
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The graph parameter treewidth measures the tree-likeness of a graph, and is defined as
follows. A tree decomposition of a graph G = (V,E) is a pair (T , (Bt)t∈T ) where T =
(T, F ) is a rooted tree and (Bt)t∈T is a family of subsets of V such that:

• for every v ∈ V , the set B−1(v) = { t ∈ T : v ∈ Bt } is nonempty and connected
in T ; and

• for every edge {v, w} ∈ E, there is a t ∈ T such that v, w ∈ Bt.

The width of the decomposition (T , (Bt)t∈T ) is the number max{ |Bt| : t ∈ T } − 1.
The treewidth of G is the minimum width over all tree decompositions of G. Let G
be a graph and k a nonnegative integer. There is an fpt-algorithm that computes a
tree decomposition of G of width k if it exists, and fails otherwise [23]. We call a tree
decomposition (T , (Bt)t∈T ) nice if every node t ∈ T is of one of the following four types:

• leaf node: t has no children and |Bt| = 1;

• introduce node: t has one child t′ and Bt = Bt′ ∪ {v} for some vertex v 6∈ Bt′ ;

• forget node: t has one child t′ and Bt = Bt′\{v} for some vertex v ∈ Bt′ ; or

• join node: t has two children t1, t2 and Bt = Bt1 = Bt2 .

Given any graph G and a tree decomposition of G of width k, a nice tree decomposition
of G of width k can be computed in polynomial time [131].

Many hard problems are fixed-parameter tractable when parameterized by the treewidth
of a graph associated with the input [26, 100]. By associating the following graph with a
QDNF formulas one can use treewidth also as a parameter for problems where the input
is a QDNF formula.

The incidence graph of a QDNF formula ϕ is the bipartite graph where one side of the
partition consists of the variables and the other side consists of the terms. A variable
and a term are adjacent if the variable appears (positively or negatively) in the term.
The incidence treewidth of ϕ, in symbols itw(ϕ), is the treewidth of the incidence graph
of ϕ. It is well known that checking the truth of a QDNF formula ϕ whose number
of quantifier alternations is bounded by a constant is fixed-parameter tractable when
parameterized by itw(ϕ) (this can easily be shown using Courcelle’s Theorem [100]).

Bounding the treewidth of the entire incidence graph is very restrictive. Instead, we
investigate whether bounding the treewidth of certain subgraphs of the incidence graph
is sufficient to reduce the complexity. To this aim, we define the existential incidence
treewidth of a QDNF formula ϕ, in symbols ∃-itw(ϕ), as the treewidth of the incidence
graph of ϕ after deletion of all universal variables. The universal incidence treewidth,
in symbols ∀-itw(ϕ), is the treewidth of the incidence graph of ϕ after deletion of all
existential variables.
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(a) (b) (c)

Figure 4.1: Incidence graph of a QDNF formula (a). Universal variables are drawn with
black round shapes, existential variables with white round shapes, and terms are drawn
with square shapes. Both deleting the universal variables (b) and the existential variables
(c) significantly decreases the treewidth of the incidence graph.

The existential and universal treewidth can be small for formulas whose incidence
treewidth is arbitrarily large. Take for instance a QDNF formula ϕ whose incidence
graph is an n× n grid, as in Figure 4.1. In this example, ∃-itw(ϕ) = ∀-itw(ϕ) = 2 (since
after the deletion of the universal or the existential variables the incidence graph becomes
a collection of trivial path-like graphs), but itw(ϕ) = n [24]. Hence, a tractability result
in terms of existential or universal incidence treewidth would apply to a significantly
larger class of instances than a tractability result in terms of incidence treewidth.

In this section, we characterize the complexity of checking the satisfiability of QDNF
formulas with an ∃∀ prefix, parameterized by ∀-itw. That is, we consider the following
parameterized variant of QSat2(DNF).

QSat2(∀-itw)
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, where ψ is a quantifier-free
formula in DNF, with universal incidence treewidth k.
Parameter: k.
Question: Is ϕ true?

For this problem, we assume that a tree decomposition of width k is given as part of the
input. We may assume this without loss of generality, since a tree decomposition can be
computed in fpt-time [23].

(We return to the problem QSat2(DNF) in Section 4.4, where we analyze the complexity
of a natural counterpart of QSat2(∀-itw)—the problem QSat2(DNF) parameterized by
the existential incidence treewidth ∃-itw.)

We show that the problem QSat2(∀-itw) is para-NP-complete.

Theorem 4. QSat2(∀-itw) is para-NP-complete.

Proof. We show para-NP-hardness by showing that the problem is already NP-hard
when restricted to instances where the parameter value is 1 [84]. We reduce from SAT,
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and the idea behind this reduction is to reduce the instance of SAT to an instance of
QSat2 whose matrix is in DNF by using the standard Tseitin transformation, resulting
in tree-like interactions between the universally quantified variables.

Let ϕ be a propositional formula whose satisfiability we want to decide, with Var(ϕ) =
X. Assume without loss of generality that ϕ contains only the connectives ¬ and ∧.
Equivalently, we want to determine whether the QBF ψ = ∃X.∀∅.ϕ is true. We can
transform ψ into an equivalent QBF ψ′ = ∃X.∀Y.χ whose matrix is in DNF by using the
standard Tseitin transformation [187] as follows.

Let Sub(ϕ) = {r1, . . . , rs} be the set of subformulas of ϕ. We let Y = {y1, . . . , ys} contain
one propositional variable yi for each ri ∈ Sub(ϕ). Then, we define ψ′ = ∃X.∀Y.χ, where
χ = rϕ ∨

∨
i∈[u] χi, and:

χi =


(ri ∧ rj) ∨ (¬ri ∧ ¬rj) if ri = ¬rj ;
(ri ∧ ¬x) ∨ (¬ri ∧ x) if ri = x ∈ X;
(ri ∧ ¬rj) ∨ (ri ∧ ¬rk) ∨ (¬ri ∧ rj ∧ rk) if ri = rj ∧ rk.

It is straightforward to verify that ψ and ψ′ are equivalent. Moreover, IG(Y, χ) is a
tree, and thus has treewidth 1. Therefore, it is easy to construct a tree decomposi-
tion (T , (Bt)t∈T ) of IG(Y, χ) of width 1 in polynomial time. Then (T , (Bt)t∈T ) and ψ′
together are an instance of (QSat2(∀-itw))1 such that ψ′ is true if and only if ϕ is
satisfiable.

Next, we show para-NP-membership of QSat2(∀-itw). Let ϕ = ∃X.∀Y.ψ be a quantified
Boolean formula where ψ = δ1 ∨ · · · ∨ δu, and let (T , (Bt)t∈T ) be a tree decomposition
of IG(Y, ψ) of width k. We may assume without loss of generality that (T , (Bt)t∈T )
is a nice tree decomposition. We may also assume without loss of generality that for
each t ∈ T , Bt contains some y ∈ Y . We construct a CNF formula ϕ′ that is satisfiable if
and only if ϕ is true. The idea is to construct a formula that encodes the following guess-
and-check algorithm. Firstly, the algorithm guesses an assignment γ to the existential
variables. Then, the algorithm uses a dynamic programming approach using the tree
decomposition to decide whether the formula instantiated with γ is valid. This dynamic
programming approach is widely used to solve problems for instances where some graph
representing the structure of the instance has small treewidth (see, e.g., [25]).

Next, we show how to encode this guess-and-check algorithm into a formula ϕ′ that is
satisfiable if and only if the algorithm accepts. We let Var(ϕ′) = X ∪ Z where Z =
{ zt,α,i : t ∈ T, α : Var(t)→ B, i ∈ [u] }. Intuitively, the variables zt,α,i represent whether
at least one assignment extending α (to the variables occurring in nodes t′ below t)
violates the term δi of ψ. We then construct ϕ′ as follows by using the structure of the
tree decomposition. For all t ∈ T , all α : Var(t)→ B, all i ∈ [u], and each literal l ∈ δi
such that Var(l) ∈ X, we introduce the clause:

(l→ zt,α,i). (4.1)

56



4.2. Various Fpt-Reductions to SAT

Then, for all t ∈ T , all α : Var(t)→ B, and all i ∈ [u] such that for some l ∈ δi it holds
that Var(l) ∈ Y and α(l) = 0, we introduce the clause:

(zt,α,i). (4.2)

Next, let t ∈ T be any introduction node with child t′, and let α : Var(t′) → B be
an arbitrary assignment. For any assignment α′ : Var(t) → B that extends α, and for
each i ∈ [u], we introduce the clause:

(zt′,α,i → zt,α′,i). (4.3)

Then, let t ∈ T be any forget node with child t′, and let α : Var(t)→ B be an arbitrary
assignment. For any assignment α′ : Var(t′)→ B that extends α, and for each i ∈ [u], we
introduce the clause:

(zt′,α′,i → zt,α,i). (4.4)

Next, let t ∈ T be any join node with children t1, t2, and let α : Var(t) → B be an
arbitrary assignment. For each i ∈ [u], we introduce the clauses:

(zt1,α,i → zt,α,i) and (zt2,α,i → zt,α,i). (4.5)

Finally, for the root node troot ∈ T and for each α : Var(troot) → B we introduce the
clause: ∨

i∈[u]
¬ztroot,α,i. (4.6)

It is straightforward to verify that ϕ′ contains O(2k|T |) clauses.

We now show that ϕ is true if and only if ϕ′ is satisfiable.

(⇒) Assume that there exists an assignment β : X → B such that ∀Y.ψ[β] is true. We
construct an assignment γ : Z → B such that β ∪ γ satisfies ϕ′. Let C be the set of
clauses (zt,α,i) such that ϕ′ contains a clause (l → zt,α,i) for which β(l) = 1. Since C
together with the clauses (4.2–4.5) forms a definite Horn formula χ, we can compute its
unique subset-minimal model (by unit-propagation). Let γ be this subset-minimal model
of χ. We show that γ also satisfies the clauses (4.6). Let α : Var(troot)→ B be an arbitrary
assignment. Since ∀Y.ψ[β] is true, we know that there exists an assignment α′ : Y → B
extending α such that ψ[α′ ∪ β] is true, i.e., for some i ∈ [u] the term δi is satisfied
by α′ ∪ β. This assignment α′ induces a family (αt)t∈T of assignments as follows: for
each t ∈ T , the assignment αt is the restriction of α′ to the variables Var(t). It is
straightforward to verify that γ(zt,αt,i) = 0 for all t ∈ T . Therefore, since α = αtroot , the
clause

∨
i∈[u](¬ztroot,α,i) is satisfied. Since α was arbitrary, we know that γ satisfies all

clauses in (4.6). Thus, β ∪ γ satisfies ϕ′.

(⇐) Assume that there is an assignment β : X → B and an assignment γ : Z → B
such that β ∪ γ satisfies ϕ′. We show that ∀Y.ψ[β] is true. Let α′ : Y → B be an
arbitrary assignment. We show that for some i ∈ [u], α′∪β satisfies the term δi, and thus
that ψ[α′∪β] is true. The assignment α′ induces a family (αt)t∈T of assignments as follows:

57



4. Fpt-Reducibility to SAT

for each t ∈ T , the assignment αt is the restriction of α′ to the variables Var(t). Since γ
satisfies the clauses (4.6), we know that there exists some i ∈ [u] such that γ(ztroot,αtroot ,i

) =
0. It is straightforward to verify that γ(zt,αt,i) = 0 for all t ∈ T then; otherwise, the
clauses (4.3–4.5) would force γ(ztroot,αtroot ,i

) to be 1. Then, by the clauses (4.1–4.2) we
know that α′ must satisfy δi. Since α′ was arbitrary, we know that ∀Y.ψ[β] is true, and
thus that ϕ is true.

Instead of incidence graphs, one can also use primal graphs to model the structure of
QDNF formulas (see, e.g., [8, 168]). In the primal graph of a QDNF ϕ, the vertices
are the variables of ϕ, and two variables are connected by an edge if and only if they
appear together in some term in the matrix of ϕ. The parameters of primal treewidth,
universal primal treewidth, and existential primal treewidth are defined analogously to
the corresponding parameters based on the incidence graph. The parameter incidence
treewidth is more general than primal treewidth in the sense that small primal treewidth
implies small incidence treewidth [134, 176], but the converse does not hold in general.
Therefore, Theorem 4 also holds when universal primal treewidth is used as parameter.

4.2.2 Backdoors for Abductive Reasoning

The following example that we consider is related to two notions of backdoors for the
problem of (propositional) abductive reasoning. An abduction instance P consists of
a tuple (V,H,M, T ), where V is a finite set of variables, H ⊆ V is a finite set of
hypotheses, M ⊆ V is a set of manifestations, and T is the theory, which is a CNF
formula. It is required that M ∩H = ∅. A set S ⊆ H is a solution (or explanation) of P
if (i) T ∪ S is consistent and (ii) T ∪ S |= M . The problem Abduction then consists of
deciding whether a given abduction instance has a solution (that is not larger than a
given maximum size).

Abduction
Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Question: Does there exist a solution S of P of size at most m?

This problem is Σp
2-complete in general [72]. However, when restricted to Horn formulas,

the problem Abduction is NP-complete [180]. Also, when restricted to Krom (2CNF)
formulas, the problem Abduction is NP-complete [167, Lemma 61]. Pfandler, Rümmele
and Szeider have showed that the problem admits a many-to-one fpt-reduction to SAT,
when parameterized by the distance to Horn or Krom [172]. This notion of distance is
formalized as follows, using the concept of backdoors, which was introduced by Williams
et al. [196]. Backdoors have been used before in the context of parameterized complexity.
For an example, see the survey article of Gaspers and Szeider about the use of backdoors
for satisfiability [88].

Let C be a class of CNF formulas, called the base class, e.g., the class of Horn formulas or
the class of Krom formulas. A strong C-backdoor of a CNF formula ϕ is a set B ⊆ Var(ϕ)
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of variables such that ϕ[τ ] ∈ C for every truth assignment τ : B → B. Deciding if a CNF
formula ϕ has a strong Horn-backdoor or a strong Krom-backdoor of size at most k can
be decided in fixed-parameter tractable time [88, 166]. Moreover, in case ϕ has such a
strong backdoor of size at most k, such a backdoor B can be computed in fixed-parameter
tractable time.

To state the many-to-one fpt-reductions to SAT developed by Pfandler et al. [172],
we consider the parameterizations that compute the size of the smallest strong Horn-
backdoor or Krom-backdoor of a given CNF formula ϕ. These values can be computed
in fixed-parameter tractable time (with respect to their own values). The problem
Abduction parameterized by the size of the smallest Horn-backdoor of T and by the
size of the smallest Krom-backdoor of T , we denote by Abduction(Horn-bd-size) and
Abduction(Krom-bd-size), respectively.

Proposition 5 ([172, Theorem 4]). Abduction(Horn-bd-size) is para-NP-complete.

Proposition 6 ([172, Theorem 9]). Abduction(Krom-bd-size) is para-NP-complete.

We will consider more parameterizations of the problem of propositional abduction in
Section 8.2.

4.2.3 Backdoors for Disjunctive Answer Set Programming

The next example that we consider also concerns the use of backdoors to obtain an
fpt-reduction to SAT. This example involves the logic programming setting of answer set
programming (ASP) [31, 90, 153]. In particular, we will consider the consistency problem
for disjunctive answer set programs. (In Chapter 5, we will return to the consistency
problem for disjunctive answer set programs, and we will use it as a running example
throughout Chapter 6).

Let A be a countably infinite set of atoms. A disjunctive logic program (or simply:
a program) P is a finite set of rules of the form r = (a1 ∨ · · · ∨ ak ← b1, . . . , bm,
not c1, . . . ,not cn), for k,m, n ≥ 0, where all ai, bj and cl are atoms from A. A rule is
called disjunctive if k > 1, and it is called normal if k ≤ 1 (note that we only call rules
with strictly more than one disjunct in the head disjunctive).

We let At(P ) denote the set of all atoms occurring in P . By literals we mean atoms a or
their negations not a. The (Gelfond-Lifschitz) reduct of a program P with respect to a
set M of atoms, denoted PM , is the program obtained from P by: (i) removing rules
with not a in the body, for each a ∈M , and (ii) removing literals not a from all other
rules [91]. An answer set A of a program P is a subset-minimal model of the reduct PA.

The consistency problem for disjunctive answer set programming is defined as follows,
and involves deciding whether a given program has an answer set.
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ASP-consistency
Instance: A disjunctive logic program P .
Question: Does P have an answer set?

The problem is Σp
2-complete in general [71].

We consider a parameterized variant of this problem that has been studied by Fichte
and Szeider [82]. For this variant, the parameter is based on the notion of backdoors
to normality for disjunctive logic programs. A set B of atoms is a normality-backdoor
for a program P if deleting the atoms b ∈ B (and their negations) from the rules of P
results in a normal program. Deciding if a program P has a normality-backdoor of size
at most k can be decided in fixed-parameter tractable time [82]. Moreover, in case P
has a normality-backdoor of size at most k, such a backdoor B can be computed in
fixed-parameter tractable time.

We consider the following parameterized problem.

ASP-consistency(norm.bd-size)
Instance: A disjunctive logic program P .
Parameter: The size of the smallest normality-backdoor for P .
Question: Does P have an answer set?

This problem admits an fpt-reduction to SAT.

Proposition 7 ([82]). ASP-consistency(norm.bd-size) is para-NP-complete.

4.2.4 Bounded Model Checking

The final example of a result that can be seen as a manifestation of the general scheme
of many-to-one fpt-reductions to SAT, is an fpt-reduction to UNSAT, and concerns the
model checking problem of linear-time temporal logic (LTL). This is a temporal logic that
is widely used in the area of software and hardware verification, for instance, to specify
desired system behavior. The model checking problem for LTL is the problem of deciding
whether a given system satisfies the property specified by a given LTL formula. This
problem is central for the task of verification, and is well-known to be PSPACE-complete
in general (see, e.g., [11]).

When parameterized by the size of the logic formula, the problem is fixed-parameter
tractable when the description of the system is spelled-out explicitly (see, e.g., [11, 85]).
However, as the size of the systems grows extremely rapidly when more features are
added to it (this is known as the state explosion problem), systems are often described
succinctly using (generic or domain-specific) description formalisms—in this case, the
system is said to be described symbolically. When the system is described symbolically,
the LTL model checking problem parameterized by the size of the logic formula is
para-PSPACE-complete (see Proposition 96 in Chapter 9).
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For this symbolic model checking problem of LTL, parameterized by the size of the logic
formula, a result has been developed in the literature that can be seen as a many-to-one
fpt-reduction to UNSAT. Kroening et al. [138] identified a restricted sublanguage of LTL
and a restricted class of structures for which the problem becomes para-co-NP-complete
(see Proposition 97).

We consider the (symbolic) model checking problem for LTL, parameterized by the size
of the logic formula, in more detail in Chapter 9.

4.3 Sneak Preview: Fpt-Time Turing Reductions to SAT
In this section, we briefly consider the idea of using fpt-time Turing reductions to SAT
to solve problems at higher levels of the Polynomial Hierarchy. We will return to this
idea in later chapters (most prominently in Chapter 7).

The parameterized problem that we examine here is related to the topic of judgment
aggregation in the area of computational social choice. Judgment aggregation studies
the question of how a group of individuals can make consistent collective judgments on
a logically related set of issues. Such a set of issues is often modelled using agendas.
An agenda is a finite, nonempty set Φ of propositional formulas that does not contain
any doubly-negated formulas and that is closed under complementation, i.e., Φ =
{ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn}, where for each i ∈ [n], the formula ϕi does not have negation
as its outermost logical connective.

There are several procedures that can be used to construct a collective outcome given a
set of individual judgments for a particular agenda. Arguably the simplest such procedure
is the majority rule, that chooses between ϕi and ¬ϕi, for each i, on the basis of which
of these is judged to be true by more individuals. However, not for every agenda Φ this
procedure is guaranteed to result in a logically consistent outcome, even if the individual
judgments are required to be logically consistent.

It turns out that those agendas for which the majority rule is guaranteed to produce
a consistent outcome are exactly those agendas that satisfy the property that every
inconsistent subset of the agenda itself contains an inconsistent subset of size at most 2 [75,
164]. We consider the problem of deciding whether a given agenda satisfies this property—
denoted by Majority-Safety. (We consider the problem Majority-Safety in more
detail in Chapter 11, where we analyze the complexity of several parameterized variants
of the problem.)

In general the problem is Πp
2-complete [75]. However, whenever parameterized by the

number of formulas in the agenda (each of which can be of unbounded size), we show that
the problem is solvable by an fpt-time Turing reduction to SAT. That is, it is solvable by
an fpt-algorithm that has access to a SAT oracle. Moreover, for any input with parameter
value k, this fpt-algorithm queries the SAT oracle only 2O(k) times. (For more details on
fpt-time Turing reductions to SAT, we refer to Chapter 7.)

Concretely, we consider the following parameterized problem.
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Majority-Safety(agenda-size)
Instance: An agenda Φ containing 2k formulas.
Parameter: k.
Question: Does every inconsistent subset of Φ itself contain an inconsistent subset
of size at most 2?

We describe how Majority-Safety(agenda-size) can be solved in fpt-time by an algo-
rithm that queries a SAT oracle at most 2O(k) times. (This result features as Proposi-
tion 128 in Chapter 11.) The fpt-algorithm A works as follows. It iterates over each
subset Φ′ ⊆ Φ of size at least 3, that does not contain as subset {ϕi,¬ϕi} for any i ∈ [n].
There are at most 2k such subsets Φ′. Then, for each such subset Φ′, the algorithm A
verifies that Φ′ is not minimally inconsistent. If at any point, some minimally incon-
sistent Φ′ of size at least 3 is found, the algorithm rejects the input. Otherwise, after
having iterated over all subsets without having found a minimally inconsistent subset of
size at least 3, the algorithm accepts the input.

For each Φ′, the algorithm A decides as follows whether Φ′ is minimally inconsistent, i.e.,
whether it contains no inconsistent proper subset Φ′′ ( Φ′. Firstly, by a single query
to the SAT oracle, it checks whether Φ′ is inconsistent. Then, by using another oracle
query, it checks whether there is a proper subset Φ′′ ⊆ Φ′ that is inconsistent. This is
the case if and only if the following propositional formula χ is unsatisfiable:

χ =
∧
ψ∈Φ

 ∧
ψ′∈Φ\{ψ}

ψ′

ψ ,
where the notation [ϕ]ψ denotes the propositional formula obtained from ϕ by replacing
each occurrence of a variable x ∈ Var(ϕ) in ϕ by a copy xψ. Then, the set Φ′ is minimally
inconsistent if and only if the first oracle query returns “unsatisfiable” and the second
oracle query returns “satisfiable”, i.e., if Φ′ is inconsistent and contains no inconsistent
proper subset Φ′′ ⊆ Φ′.

For each Φ′, the algorithm uses 2 queries to the SAT oracle, so overall, the algorithm A
uses 2O(k) oracle queries. Moreover, the algorithm A runs in time 2O(k)nc, where n
denotes the input size and c is some constant.

4.4 Irreducibility

Clearly, not every parameterized variant of a problem that is hard for the second level
of the PH admits an fpt-reduction to SAT. In this section, we consider two examples
of parameterized problems that can be shown (under various complexity-theoretic as-
sumptions) not to be fpt-reducible to SAT, by means of hardness results for known
parameterized complexity classes.
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4.4.1 Hardness for para-Σp
2

As a first extreme example, consider a Σp
2-complete problem (such as QSat2) with a

(trivial) constant parameterization, i.e., for each instance the parameter value k is a fixed
constant c ∈ N. This parameterized problem is para-Σp

2-complete, and does not admit an
fpt-reduction to SAT unless the PH collapses. Since the parameter value k is constant,
such an fpt-reduction would also be a polynomial-time reduction from QSat2 to SAT.

Another, less trivial, example of a parameterized variant of QSat2 that does not admit
an fpt-reduction to SAT unless the PH collapses, for similar reasons, is the following
natural counterpart of QSat2(∀-itw). Here the parameter is the existential incidence
treewidth of any QDNF formula.

QSat2(∃-itw)
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, where ψ is a quantifier-free
formula in DNF, with existential incidence treewidth k.
Parameter: k.
Question: Is ϕ true?

We show para-Σp
2-completeness for QSat2(∃-itw).

Proposition 8. QSat2(∃-itw) is para-Σp
2-complete.

Proof. Membership in para-Σp
2 is obvious. To show para-Σp

2-hardness, it suffices to show
that the problem is already Σp

2-hard when the parameter value is restricted to 1 [84].
We show this by means of a reduction from QSat2. The idea of this reduction is to
introduce for each existentially quantified variable x a corresponding universally quantified
variable zx that is used to represent the truth value assigned to x. Each of the existentially
quantified variables then only directly interacts with universally quantified variables.

Take an arbitrary instance of QSat2, specified by ϕ = ∃X.∀Y.ψ(X,Y ), where ψ(X,Y )
is in DNF. We introduce a new set Z = { zx : x ∈ X } of variables. It is straightforward
to verify that ϕ = ∃X.∀Y.ψ(X,Y ) is equivalent to the formula ∃Z.∀X.∀Y.χ, where:

χ =
∨
x∈X

(
(x ∧ ¬zx) ∨ (¬x ∧ zx)

)
∨ ψ(Z, Y ).

Also, clearly, IG(Z, χ′) consists only of isolated paths of length 2, and thus has treewidth 1.
Thus, the unparameterized problem consisting of all yes-instances of QSat2(∃-itw), where
the input formula is in DNF and the parameter value is 1, is Σp

2-hard. This proves that
QSat2(∃-itw) is para-Σp

2-hard.

The proof of Proposition 8 also shows that QSat2(DNF) is para-Σp
2-hard when parame-

terized by the existential primal treewidth of the QBF.
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4.4.2 Hardness for A[2]
There are also parameterized problems that do not admit an fpt-reduction to SAT (under
reasonable complexity-theoretic assumptions), but whose hardness is not as blatant as in
the previous severe examples. We show how existing tools from parameterized complexity
theory can be used to rule out fpt-reductions to SAT in such more subtle cases, where
hardness for para-Σp

2 or para-Πp
2 cannot be used.

Concretely, we consider a problem that is Σp
2-complete, together with a natural parame-

terization of the problem. We characterize the complexity of this parameterized problem
using an existing parameterized variant of the PH. Namely, we show that the problem is
A[2]-complete. Moreover, we preview a result from Chapter 14 that hardness for A[2]
can be used to give evidence that a problem does not admit an fpt-reduction to SAT.

The problem that we consider involves deciding whether a given set of constraints contains
a small unsatisfiable subset. In order to define the problem, we introduce several relevant
notions from the area of constraint satisfaction.

Let D be a finite set of values (called the domain). An n-ary relation on D is a set of
n-tuples of elements from D. Let V be a countably infinite set of variables. A constraint
of arity n is a pair (S,R) where S = (v1, . . . , vn) is a sequence of variables from V and R
is an n-ary relation (called the constraint relation). An assignment α : V ′ → D is a
mapping defined on a set V ′ ⊆ V of variables. An assigment α : V ′ → D satisfies
a constraint C = ((v1, . . . , vn), R) if Var(C) ⊆ V ′ and (α(v1), . . . , α(vn)) ∈ R. If the
domain D is not explicitly given, we can derive it from any set I of constraints by taking
the set of all values occurring in the constraint relation of any constraint in I.

An assignment α : Var(I) → D is a solution for a finite set I of constraints if it
simultaneously satisfies all the constraints in I. A finite set I of constraints is satisfiable
if there exists a solution for it; it is unsatisfiable otherwise.

Now, we consider the following parameterized problem of deciding whether a given CSP
instance has an unsatisfiable subset of size at most k.

Small-CSP-Unsat-Subset
Instance: A CSP instance I, and a positive integer k.
Parameter: k.
Question: Is there an unsatisfiable subset I ′ ⊆ I of size k?

We firstly show that the unparameterized variant of the problem is Σp
2-complete—this

problem is denoted by CSP-Unsat-Subset. In order to do so, we consider the problem
CNF-Unsat-Subset. In this latter problem, instances consist of CNF formulas ϕ and
a positive integer m ≥ 1, and the question is to decide if there is an unsatisfiable
subset ϕ′ ⊆ ϕ of size m. The problem CNF-Unsat-Subset is Σp

2-complete [144]. We
start by showing that Σp

2-hardness holds already for a restricted fragment of inputs.

Proposition 9. CNF-Unsat-Subset is Σp
2-hard, even when restricted to CNF formulas

containing only clauses of size at most 3.
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Proof. Let (ϕ,m) be an instance of CNF-Unsat-Subset. We show how to trans-
form (ϕ,m) into an equivalent instance (ϕ′,m′) in polynomial time, where ϕ′ contains
only clauses of size at most 3.

Let u be the maximum size of any clause appearing in ϕ. We firstly transform ϕ into
a formula ϕ1 that contains an unsatisfiable subset of size m1 = m+ 1 if and only if ϕ
contains an unsatisfiable subset of size m. Moreover, each unsatisfiable subset of ϕ1
must contain one particular (unit) clause. Let z 6∈ Var(ϕ) be a fresh variable. We
let ϕ1 = {{z}} ∪ { c ∪ {z} : c ∈ ϕ }. It is straightforward to show that each unsatisfiable
subset of ϕ1 must contain the clause {z}, and that there exists a natural correspondence
between unsatisfiable subset of ϕ (of size m) and unsatisfiable subset of ϕ1 (of size m1).

Next, we transform ϕ1 into a formula ϕ2 that has only clauses that are either unit clauses,
or clauses of size u+ 1. We introduce u fresh variables z1, . . . , zu 6∈ Var(ϕ1). Then, for
each clause c ∈ ϕ1 of size ` ∈ [u+ 1], we add the clause c′ = c ∪ {z`, z`+1, . . . , zu} to ϕ2.
Moreover, we add the unit clauses c1, . . . , cu, where ci = {zi} for each i ∈ [u]. to ϕ2.

Firstly, we show that each unsatisfiable subset ψ of ϕ2 must contain the unit
clauses c1, . . . , cu. To derive a contradiction, suppose that this is not the case, that is, there
is some i ∈ [u] such that ci 6∈ ψ. We know that ψ must contain the clause {z, z1, . . . , zu}.
Moreover, we know that all other clauses in ψ contain the literal z. Then any truth
assignment that sets z to 0 and that sets zi to 0 satisfies ψ, which is a contradiction with
our assumption that ψ is unsatisfiable. Therefore, we can conclude that each unsatisfiable
subset of ϕ2 contains all of the clauses c1, . . . , cu.

Moreover, there exists a natural correspondence between unsatisfiable subsets of ϕ1
of size m1 and unsatisfiable subsets of ϕ2 of size m2 = m1 + u. Therefore, (ϕ1,m1)
and (ϕ2,m2) are equivalent instances of CNF-Unsat-Subset. Moreover, we know that
each unsatisfiable subset ψ ⊆ ϕ2 of size m2 contains exactly u unit clauses and m1 clauses
of size exactly u+ 1.

We can now transform (ϕ2,m2) into an equivalent instance (ϕ′,m′) as follows. Each
clause c = {l1, . . . , lu+1} ∈ ϕ2 of size u+ 1, we replace by the clauses {l1, yc1}, {yc1, l2, yc2},
. . . , {ycu−1, lu, y

c
u}, and {ycu, lu+1}, where the variables yc1, . . . , ycu are fresh variables.

Clearly, ϕ′ contains only clauses of size at most 3. Moreover, it is straightforward to
verify that ϕ2 contains an unsatisfiable subset of size m2 if and only if ϕ′ contains an
unsatisfiable subset of size m′ = (u + 1)m1 + u = (u + 1)(m + 1) + u. Therefore, ϕ
contains an unsatisfiable subset of size m if and only if ϕ′ contains an unsatisfiable subset
of size m′.

This result also provides a polynomial-time reduction from the Σp
2-complete problem of

CNF-Unsat-Subset to the problem CSP-Unsat-Subset, by expressing each clause of
size 3 as a constraint over 3 variables and with a constraint relation containing 7 tuples.
Given that a proof of Σp

2-membership is routine, this gives us the following result

Corollary 10. CSP-Unsat-Subset is Σp
2-complete.
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Having shown that the unparameterized problem CSP-Unsat-Subset is Σp
2-complete,

we can now turn our attention to the parameterized problem Small-CSP-Unsat-Subset
and show that it is A[2]-complete. This result follows directly from Lemmas 12 and 13,
that we will prove below.

Proposition 11. Small-CSP-Unsat-Subset is A[2]-complete.

This is one of the first A[2]-completeness results in the literature, and arguably the first
A[2]-completeness result for a problem that did not feature in the theoretical development
of the A-hierarchy (see [85, Chapter 8]).

In Chapter 14, we will give evidence that parameterized problems that are A[2]-hard do
not admit an fpt-reduction to SAT. In particular, if any A[2]-hard parameterized problem
is in para-NP (i.e, if A[2] ⊆ para-NP), then there is a subexponential-time reduction
from the Σp

2-complete problem QSat2(3DNF) to SAT (Theorem 166 and Corollary 167).
A subexponential-time reduction is a reduction that runs in time 2o(n), where n denotes
the number of variables, i.e., a reduction that runs in time 2n/s(n), for some unbounded,
nondecreasing, computable function s. In other words, under the assumption that such
subexponential-time reductions from QSat2(3DNF) to SAT do not exist, we can use
A[2]-hardness to rule out many-to-one fpt-reductions to SAT. In Chapter 14, we also
show how A[2]-hardness rules out many-to-one fpt-reductions to UNSAT under a similar
assumption.

We conclude this section by giving a detailed proof that Small-CSP-Unsat-Subset is
A[2]-complete. In Lemma 12, we show membership, and in Lemma 13, we show hardness.

Lemma 12. Small-CSP-Unsat-Subset is in A[2].

Proof. We show membership in A[2] by fpt-reducing the problem to MC(Σ2). Let (I, k)
be an instance of Small-CSP-Unsat-Subset, with I = {C1, . . . , Cm}, and Ci = (Si, Ri)
for each i ∈ [m]. Moreover, let u be the maximum number of tuples in any of the constraint
relations Ri.

We construct an instance (A, ϕ) of MC(Σ2) (over a fixed signature τ) as follows. We
define the universe A of A as follows:

A = {c1, . . . , cm} ∪ {t1, . . . , tu}.

Intuitively, the elements ci represent the constraints Ci, and the elements tj represent
tuples in constraint relations Ri.

We introduce unary relations C and T to τ . Intuitively, C encodes whether an element
represents a constraint, and T encodes whether an element represents a tuple. We let:

CA = {c1, . . . , cm} and TA = {t1, . . . , tu}.
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We introduce a binary relation I to τ that intuitively encodes whether a constraint Ci
has at least j tuples. We let:

IA = { (ci, tj) : |Ri| ≥ j }.

Finally, we introduce a 4-ary relation N to τ , that intuitively represents whether a
tuple tj1 in the constraint relation Ri1 and a tuple tj2 in the constraint relation Ri2 are
non-conflicting. (Moreover, it ensures that there is a j1-th tuple in Ri1 and a j2-th tuple
in Ri2 .) We let:

NA = { (ci1 , tj1 , ci2 , tj2) : i1 ∈ [m], j1 ∈ [|Ri1 |], i2 ∈ [m], j2 ∈ [|Ri2 |],
the j1-th tuple in Ri1 and the j2-th tuple in Ri2 are not conflicting }.

Then, we define the first-order logic sentence ϕ as follows:

ϕ = ∃x1, . . . , xk.∀y1, . . . , yk.∧
i∈[k]

C(xi) ∧
( ∧
i∈[k]

(T (yi) ∧ I(xi, yi))
)
→
( ∨
i,j∈[k],i<j

¬N(xi, yi, xj , yj)
)
.

Clearly |ϕ| ≤ f(k) for some function f .

Any assignment α : {x1, . . . , xk} → {c1, . . . , cm} then naturally corresponds to a sub-
set I ′ ⊆ I of size k. Also, any subsequent assignment β : {y1, . . . , yk} → {t1, . . . , tu}
that for each i ∈ [k] assigns yi to a sufficiently small value tj (that is, j ∈ [|R`|]
where α(xi) = c`) naturally corresponds to a choice of a tuple tj in the constraint
relation Ri of each constraint Ci ∈ I ′. Using these correspondences, it is straightforward
to verify that (I, k) ∈ Small-CSP-Unsat-Subset if and only if A |= ϕ.

Finally, we show A[2]-hardness for the parameterized problem Small-CSP-Unsat-
Subset.

Lemma 13. Small-CSP-Unsat-Subset is A[2]-hard.

Proof. We show A[2]-hardness by means of an fpt-reduction from MC(Σ2). Take an
arbitrary instance of MC(Σ2), consisting of a structure A with universe A (over the fixed
binary signature τ), and a first-order formula ϕ = ∃x1, . . . , xk.∀y1, . . . , yk.ψ, where ψ
is a disjunction of atoms. We construct a CSP instance I and an integer k′, such
that (I, k′) ∈ Small-CSP-Unsat-Subset if and only if A |= ϕ.

We define k′ =
(k

2
)

+ k + 1. We let the domain of I be D = A ∪ {0, 1, . . . , k}. We may
assume without loss of generality that A ∩ {0, 1, . . . , k} = ∅. We introduce the following
variables:

Var(I) = V ∪W ∪X ∪ Z, where
V = {v},
W = {wi : i ∈ [k] },
X = {xi,a : i ∈ [k], a ∈ A },
Y = { yi : i ∈ [k] }, and
Z = { zi,j : i, j ∈ [k], i < j }.
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The constraints in I are defined as follows. For each i, j ∈ [k] with i < j and each a1, a2 ∈
A, we introduce a constraint Ci,j,a1,a2 for which Var(Ci,j,a1,a2) = {v, xi,a1 , xj,a2 , yi, yj , zi,j}.
The constraint relation has the following k2|A|2 + 1 tuples. For each i′ ∈ [0, k] such
that i 6= i′, for each j′ ∈ [0, k] such that j 6= j′, and for each a3, a4 ∈ A, there is a
tuple ri′,j′,a3,a4 . Each such tuple ri′,j′,a3,a4 sets xi,a1 to j′, sets xj,a2 to i′, sets yi to a3,
sets yj to a4, and sets v to 1. Moreover, it sets zi,j to 1 if at least one atom in ψ
containing only variables among xi, xj , yi, yj is satisfied by the partial assignment α =
{xi 7→ a1, xj 7→ a2, yi 7→ a3, yj 7→ a4}; otherwise it sets zi,j to 0. In addition, there is a
tuple that sets all variables in Var(Ci,j,a1,a2) to 0. In particular, this constraint rules out
that xi,a1 is set to j and that xj,a2 is set to i.

Then, for each i ∈ [k] and each a ∈ A, we introduce a constraint Ci,a for which Var(Ci,a) =
{xi,a, wi}. The constraint relation has 2k + 1 tuples. For each j ∈ [k] and each b ∈ B,
there is a tuple that sets xi,a to j and wi to b. In addition, there is a tuple that sets xi,a
to 0 and that sets wi to 1. In other words, this constraint enforces that wi is set to 1
if xi,a cannot be set to any value j > 0.

Finally, we introduce a constraint C0 for which Var(C0) = V ∪W ∪ Z. The constraint
relation has (2k − 1) · 2k′′ + 1 tuples, where k′′ =

(k
2
)
. For each assignment ρ : W ∪Z → B

such that at for at least one i ∈ [k] it holds that ρ(wi) = 1, there is a tuple that sets all
variables according to ρ, and that sets v to 0. Moreover, there is an additional tuple
that sets all variables wi ∈W to 1, that sets all variables zi,j ∈ Z to 0, and that sets v
to 1. In other words, C0 is satisfied if and only if either (1) at least one wi is set to 0, or
(2) all wi are set to 1 and all zi,j are set to 1.

Before we show the correctness of this reduction, we argue that each unsatisfiable
subset I ′ ⊆ I must include C0. Suppose that this is not the case. Then the assignment
that sets all variables wi ∈W to 1 and that sets all other variables to 0 satisfies I ′.

Also, we argue that each unsatisfiable subset I ′ ⊆ I must include some constraint Ci,ai
for each i ∈ [k], and some ai ∈ A. Suppose that this is not the case. Moreover,
let i1, . . . , im ∈ [k] with i1 < · · · < im be the indices for which I ′ does contain some
constraint Ci`,ai` . We know that there is some i0 ∈ [k] such that I ′ contains no
constraint Ci0,a (for a ∈ A). Then consider the assignment α : Var(I) → D that
sets wi` to 1 for each ` ∈ [m], and that sets all other variables to 0. Then α satisfies
all constraints Ci,j,a1,a2 and Ci,a in I ′. Since α sets at least one variable wi to 1, we
also know that α satisfies C0. Therefore, α must satisfy all constraints in I ′, which is a
contradiction with our assumption that I ′ is unsatisfiable.

Finally, we argue that for each unsatisfiable subset I ′ ⊆ I of size at most k′ there must
be some assignment α : {1, . . . , k} → A such that I ′ contains the constraints Ci,α(i) for
each i ∈ [k], and the constraints Ci,j,α(i),α(j) for each i, j ∈ [k] with i < j. Suppose
that this is not the case. By a straightforward counting argument, we then know that
it must be the case that for some i0 ∈ [k], and some j0 ∈ [k] such that i0 6= j0, there
is some Ci0,ai0 ∈ I

′ but for no aj0 the constraint Ci0,j0,ai0 ,aj0 is in I ′. (We implicitly
assume that j0 > i0; the case where j0 < i0 is entirely analogous.) Then consider the
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assignment α : Var(I)→ D that sets xi0,ai0 to j0, that sets wi0 to 0, and sets all other
variables in Var(I) to 0. The only constraints that are conflicting with α(xi0,ai0 ) = j0
are constraints Ci0,j0,ai0 ,aj0 , which by assumption are not contained in I ′. Therefore, it
is readily verified that α satisfies all constraints in I ′. This is a contradiction with our
assumption that I ′ is unsatisfiable.

We are now ready to prove that I has an unsatisfiable subset I ′ of size at most k′ if and only
if A |= ϕ, i.e., that (I, k′) ∈ Small-CSP-Unsat-Subset if and only if (A, ϕ) ∈MC(Σ2).

(⇒) Suppose that there is an unsatisfiable subset I ′ ⊆ I of at most k′ constraints. As we
showed above, then C0 ∈ I ′. Moreover there exists some assignment α : {1, . . . , k} → A
such that I ′ contains the constraints Ci,α(i) for each i ∈ [k], and the constraints Ci,j,α(i),α(j)
for each i, j ∈ [k] with i < j. Now consider the assignment α′ : X → A defined by
letting α′(xi) = α(i), for each i ∈ [k]. We claim that A, α′ |= ∀y1, . . . , yk.ψ. Take an
arbitrary assignment β′ : Y → A. We show that A, α′ ∪ β′ |= ψ. Consider the assign-
ment β : Var(I)→ D defined by letting β(yi) = β′(yi) for all yi ∈ Y , letting β(xi,a) = 0
for all xi,a ∈ X, letting β(v) = 1, letting β(zi,j) = 0 for all zi,j ∈ Z, and letting β(wi) = 1
for all wi ∈ W . Since I ′ is unsatisfiable, we know that β cannot satisfy all constraints
in I ′. The only possible contradiction is that some constraint Ci0,j0,α(i0),α(j0) ∈ I ′ does
not allow zi0,j0 to be set to 0. By construction of Ci0,j0,α(i0),α(j0), this is only the case
if α′ ∪ β′ satisfies some atom in ψ. Therefore, we can conclude that A, α′ ∪ β′ |= ψ.
Since β′ was arbitrary, we know that A, α′ |= ∀y1, . . . , yk.ψ. Therefore, A |= ϕ, and
thus (A, ϕ) ∈MC(Σ2).

(⇐) Conversely, suppose that A |= ϕ, that is, that there exists some assignment α :
{x1, . . . , xk} → A such that A, α |= ∀y1, . . . , yk.ψ. Consider the following subset I ′ ⊆ I
of constraints:

I ′ = {C0} ∪ {Ci,α(xi) : i ∈ [k] } ∪ {Ci,j,α(xi),α(xj) : i, j ∈ [k], i < j }.

Clearly, |I ′| = k′. We claim that I ′ is unsatisfiable. To derive a contradiction, suppose
that I ′ is satisfiable, i.e., that there is an assignment β′ : Var(I)→ D that satisfies all
constraints in I ′. Take an arbitrary i ∈ [k]. Since I ′ contains the constraints Ci,j,α(xi),α(xj)
for all j > i, and the constraints Cj,i,α(xj),α(xi) for all j < i, we know that β′ must
set xi,α(xi) to 0, and thus since I ′ contains the constraint Ci,α(xi), we know that β′
must set wi to 1. Then, since I ′ contains C0, we know that β′ sets all zi,j ∈ Z to 0,
and that β′ sets v to 1. Moreover, since I ′ contains the constraints Ci,j,α(xi),α(xj) for
all i, j ∈ [k] with i < j, we know that β′(yi) ∈ A, for all yi ∈ Y . Then, consider the
restriction β : {y1, . . . , yk} → A of β′ to the variables in Y , i.e., β(yi) = β′(yi) for
all yi ∈ Y . Since A, α |= ∀y1, . . . , yk.ψ, we know that A, α∪β |= ψ, that is, there must be
some atom R in ψ that is satisfied by α ∪ β. Let i0, j0 ∈ [k] with i0 < j0 be indices such
that the variables in R are among {xi0 , xj0 , yi0 , yj0} (we know such i0, j0 exist, because R
is unary or binary). Then by construction of Ci0,j0,α(xi0 ),α(xj0 ), we know that β′ is forced
to set zi0,j0 to 1. This is a contradiction with our previous conclusion that β′(zi,j) = 0 for
all zi,j ∈ Z. Therefore, we can conclude that I ′ is unsatisfiable, and that (I, k′) ∈ Small-
CSP-Unsat-Subset.
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Summary
In this chapter, we introduced the concept of fpt-reducibility to SAT (or to other problems
in NP) as a new, more permissive notion of tractability for the parameterized complexity
analysis of problems at higher levels of the PH. We discussed the formal interpretation of
this tractability notion in the framework of parameterized complexity theory. Moreover,
we surveyed to what extent results and tools from the literature can be used to investigate
the possibilities and limits of fpt-reductions to SAT. We consider several cases where
known techniques can be used to obtain fixed-parameter tractable reductions to SAT
for different problems. Additionally, we showed how hardness for known parameterized
complexity classes can be employed in some cases to show that fpt-reductions to SAT
are not possible.

Notes
Propositions 3 and 8 and Theorem 4 appeared in a paper in the proceedings of
SAT 2014 [112]. Propositions 9 and 11 and Corollary 10 were shown in an unpub-
lished manuscript [108].
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CHAPTER 5
The Need for a New

Completeness Theory

If I had an hour to solve a problem, I’d spend 55
minutes thinking about the problem and 5 minutes
thinking about solutions.

— Albert Einstein

In Chapter 4, we showed that known parameterized complexity classes such as para-NP
and para-co-NP can be used to characterize many-to-one fpt-reductions to SAT and
UNSAT. Moreover, we illustrated how hardness for known parameterized complexity
classes can be used to give evidence that many-to-one fpt-reductions to SAT or UNSAT
do not exist. We did so by showing for several parameterized problems that they are
complete for one of the known parameterized complexity classes A[2] and para-Σp

2 .

In this chapter, we argue that the known parameterized complexity classes—the ones
mentioned above, as well as familiar classes such as W[1] and XP, and other classes such
as para-Πp

2 , XNP, and Xco-NP—do not suffice to characterize the complexity of many
natural parameterized variants of problems that lie at higher levels of the PH. We do so
by considering various parameterized variants of the Σp

2-complete consistency problem
for disjunctive answer set programming as an example (we already briefly considered
this problem in Section 4.2.3). We show that several of these parameterized variants
are complete for known parameterized complexity classes, but that other parameterized
variants are not complete for any known class (under various complexity-theoretic
assumptions).

Because these natural parameterized problems are not complete for any of the known
classes, additional parameterized complexity classes are called for to adequately char-
acterize the complexity of such problem. In other words, the results in this chapter
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5. The Need for a New Completeness Theory

provide the motivation for developing a new completeness theory, which we will do in
Chapter 6. We will use the example of the consistency problem for disjunctive answer
set programming as a running example throughout Chapter 6.

Outline of this chapter: We begin in Section 5.1 by considering several natural
parameterized variants of the consistency problem for disjunctive answer set programming.
Moreover, for several of these parameterized variants, we show that their complexity can
be characterized using the known parameterized complexity classes para-NP, para-co-NP
and para-Σp

2 .

Then, in Section 5.2, we turn to the remaining parameterizations for the consistency
problem for disjunctive answer set programming, and we argue that these problems
are not complete for any of the known parameterized complexity classes. In particular,
we show that these parameterized problems cannot be complete for any of the classes
depicted above the top dashed gray line in Figure 5.1 (or for any superset of these classes),
and that these problems cannot be complete for any of the classes depicted below the
bottom dashed gray line in Figure 5.1 (or for any subset of these classes). In other words,
any parameterized complexity class for which these parameterized problems are complete
must lie between the dashed gray lines.

para-Σp
2 para-Πp

2

para-NP

W[1]
W[2]

W[P]

para-co-NP

co-W[P]

co-W[1]
co-W[2]

para-∆p
2

FPT

XP

XNP Xco-NP

A[2] co-A[2]

Figure 5.1: Known parameterized complexity classes.
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5.1 Running Example: Disjunctive Answer Set
Programming

We begin by considering the consistency problem for disjunctive answer set programming
[31, 90, 153]—that we already briefly considered in Section 4.2.3—in more detail. For the
reader’s convenience, we repeat the basic definitions of disjunctive answer set programming
here, before defining several parameterized variants of the consistency problem that we
did not yet consider in Section 4.2.3.

Let A be a countably infinite set of atoms. A disjunctive logic program (or simply:
a program) P is a finite set of rules of the form r = (a1 ∨ · · · ∨ ak ← b1, . . . , bm,
not c1, . . . ,not cn), for k,m, n ≥ 0, where all ai, bj and cl are atoms from A. A rule
is called disjunctive if k > 1, and it is called normal if k ≤ 1 (note that we only call
rules with strictly more than one disjunct in the head disjunctive). A rule is called
negation-free if n = 0. A program is called normal if all its rules are normal, and called
negation-free if all its rules are negation-free. A rule is called a constraint if k = 0. A
rule is called dual-normal if it is either a constraint, or m ≤ 1.

We let At(P ) denote the set of all atoms occurring in P . By literals we mean atoms a or
their negations not a. With NF(r) we denote the rule (a1 ∨ · · · ∨ ak ← b1, . . . , bm). The
(Gelfond-Lifschitz) reduct of a program P with respect to a set M of atoms, denoted PM ,
is the program obtained from P by: (i) removing rules with not a in the body, for
each a ∈M , and (ii) removing literals not a from all other rules [91]. An answer set A
of a program P is a subset-minimal model of the reduct PA. The answer sets of a
program P can alternatively be characterized as follows (see, e.g., [81, Proposition 3]). A
set M ⊆ At(P ) is an answer set of P if and only if it is a model of Pc and an answer set
of Pr, where Pc is the program consisting of all constraints in P , and Pr = P\Pc. We
give an example of a program and one of its answer sets below, in Example 14.

The consistency problem for disjunctive answer set programming is defined as follows,
and involves deciding whether a given program has an answer set.

ASP-consistency
Instance: A disjunctive logic program P .
Question: Does P have an answer set?

The problem is Σp
2-complete in general [71].

Two of the parameterizations for this problem that we consider are related to atoms
that must be part of any answer set of a program P . We identify a subset Comp(P ) of
compulsory atoms, that any answer set must include. Given a program P , we let Comp(P )
be the smallest set such that: (i) if (w ← not w) is a rule of P , then w ∈ Comp(P ); and
(ii) if (b← a1, . . . , an) is a rule of P , and a1, . . . , an ∈ Comp(P ), then b ∈ Comp(P ). We
then let the set Cont(P ) of contingent atoms be those atoms that occur in P but are not in
Comp(P ). We call a rule contingent if all the atoms that appear in the head are contingent.
In fact, we could use any polynomial time computable algorithm A that computes for
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every program P a set CompA(P ) of atoms that must be included in any answer set of P .
We restrict ourselves to the algorithm described above that computes Comp(P ). As
parameterizations of ASP-consistency, we consider the number of contingent atoms
in the program P , and the number of contingent rules of P .

Additionally, we consider as parameters the number of disjunctive rules of P (i.e., the
number of rules with strictly more than one disjunct in the head), the number of rules of P
that are not dual-normal, and the maximum number of times that any atom occurs in P .
An overview of all parameterizations that we consider for the problem ASP-consistency,
together with the names of the corresponding parameterized problems, can be found in
Table 5.1. In this table, the parameter that we considered in Section 4.2.3—the size of
the smallest normality-backdoor—is also included.

Name of parameterized problem Description of parameter

ASP-cons(norm.bd-size) size of the smallest normality-backdoor
ASP-cons(#cont.atoms) number of contingent atoms
ASP-cons(#cont.rules) number of contingent rules
ASP-cons(#disj.rules) number of disjunctive rules
ASP-cons(#non-dual-normal.rules) number of non-dual-normal rules
ASP-cons(max.atom.occ.) maximum number of times that any atom occurs

Table 5.1: Parameterizations for ASP-consistency (abbreviated ASP-cons).

To illustrate the central concepts in disjunctive answer set programming and the parame-
ters for ASP-consistency that we defined above, we consider the following example.
Example 14. Let P be the program consisting of the following rules over the atoms a, . . . , f :

a← (r1)
b ∨ c← a (r2)

d← b,not c (r3)
e← a,not b (r4)
f ← a (r5)

To see that M = {a, b, d, f} is an answer set of P , consider the reduct PM :

a←
b ∨ c← a

d← b

f ← a

The set M is a model of PM , and no strict subset M ′ (M is a model of PM .

The size of the smallest normality-backdoor for P is 1 (the set B = {b} is a normality-
backdoor, for example). The program P contains 4 contingent atoms (the atoms b, c, d, e)
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and 3 contingent rules (the rules r2–r4). The program P contains 1 disjunctive rule (the
rule r2), and 1 non-dual-normal rule (the rule r5). Finally, the maximum number of
times that any atom occurs is 4 (the atom a occurs 4 times). a

5.1.1 Parameterized Variants Where Known Theory Suffices

Next, we show for several of the parameterized variants of ASP-consistency that they
are complete for known parameterized complexity classes. As we have already seen in
Section 4.2.3, the problem is para-NP-complete when parameterized by the size of the
smallest normality-backdoor of the program.

Proposition 15 ([82]). ASP-consistency(norm.bd-size) is para-NP-complete.

Next, we show that the problem is complete for para-co-NP when parameterized by the
number of contingent atoms of the program.

Proposition 16. ASP-consistency(#cont.atoms) is para-co-NP-complete.

Proof. Hardness for para-co-NP follows from a reduction by Eiter and Gottlob [71,
Theorem 3]. They give a reduction from QSat2 to ASP-consistency. We can view this
reduction as a polynomial-time reduction from UNSAT to the slice of ASP-consistency-
(#cont.atoms) where the parameter value is 0. Namely, considering an instance of UNSAT
as an instance of QSat2 with no existentially quantified variables, the reduction results
in an equivalent instance of ASP-consistency that has no contingent atoms. Therefore,
we can conclude that ASP-consistency(#cont.atoms) is para-co-NP-hard.

We show membership in para-co-NP. Let P be a program that contains k contingent
atoms. We describe an fpt-reduction to SAT for the dual problem whether P has no
answer set. This is then also an fpt-reduction from ASP-consistency(#cont.atoms)
to UNSAT. Since each answer set of P must contain all atoms in Comp(P ), there
are only 2k candidate answer sets that we need to consider, namely N ∪ Comp(P )
for each N ⊆ Cont(P ). For each such set MN = N ∪ Comp(P ) it can be checked in
deterministic polynomial time whether MN is a model of PMN , and it can be checked by
an NP-algorithm whetherMN is not a minimal model of PMN (namely, a counterexample
consisting of a model M ′ (MN of PMN can be found in non-deterministic polynomial
time). Therefore, by the NP-completeness of SAT, for each N ⊆ Cont(P ), there exists
a propositional formula ϕN that is satisfiable if and only if MN is not a minimal
model of PMN . Moreover, we can construct such a formula ϕN in polynomial time, for
each N ⊆ Cont(P ). All together, it holds that for no N ⊆ Cont(P ) the set N ∪Comp(P )
is an answer set if and only if the disjunction

∨
N⊆Cont(P ) ϕN is satisfiable.

Finally, we show that the problem is para-Σp
2-complete when parameterized by the

maximum number of times that any atom occurs in the program.

Proposition 17. ASP-consistency(max.atom.occ.) is para-Σp
2-complete.
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Proof. We consider the following polynomial-time transformation on disjunctive logic
programs. Let P be an arbitrary program, and let x be an atom of P that occurs ` ≥ 3
times. We introduce new atoms xj for all j ∈ [`]. We replace each occurrence of x in P
by a unique atom xj . Then, to P , we add the rules (xj+1 ← xj), for all j ∈ [`− 1], and
the rule (x1 ← x`). We call the resulting program P ′. It is straightforward to verify that
P has an answer set if and only if P ′ has an answer set.

The transformation described above can be repeatedly applied to ensure that each atom
occurs at most 3 times. This gives us a polynomial-time reduction from an arbitrary
instance of the Σp

2-hard problem ASP-consistency to an instance where each atom
occurs at most 3 times. Therefore, ASP-consistency(max.atom.occ.) is para-Σp

2-hard.
Membership in para-Σp

2 follows from Σp
2-membership of the problem ASP-consistency-

.

5.2 Motivating New Theory

In this section, we argue that the remaining parameterized variants of ASP-consistency-
—the parameterized problems ASP-consistency(#cont.rules), ASP-consistency-
(#disj.rules) and ASP-consistency(#non-dual-normal.rules)—are not complete for
any known parameterized complexity classes. We do so by showing that these problems
are not complete for any of the parameterized complexity classes that are depicted in
Figure 5.1 on page 72 (under various complexity-theoretic assumptions). (For some
technical results that we use in this argument and that need meticulous preparations to
establish, we defer to Chapter 14.)

We describe the general lines of the arguments that we use to rule out completeness for
known parameterized complexity classes, before we work out the required proofs in detail.

Firstly, we rule out membership in para-NP and para-co-NP, and any parameterized
complexity class contained in either of them. Membership in para-NP or para-co-NP
would mean that there exists a many-to-one fpt-reduction to SAT or UNSAT, respectively.
To get an intuition why membership in these classes is highly unlikely, one can attempt to
construct an fpt-reduction to SAT or UNSAT for ASP-consistency(#cont.rules), ASP-
consistency(#disj.rules) or ASP-consistency(#non-dual-normal.rules), and the pro-
found obstacles that would have to be overcome to succeed in this become immediately
apparent. Nevertheless, we provide more tangible evidence in Chapters 6 and 14 that
these problems are not contained in para-NP or para-co-NP. For the case of ASP-
consistency(#cont.rules), for instance, see Theorem 28 and Proposition 57 in Chap-
ter 6 and Corollary 177 in Chapter 14. These results show that ASP-consistency-
(#cont.rules) is not in para-NP, unless NP = co-NP, and that ASP-consistency-
(#cont.rules) is not in para-co-NP, unless there exists a subexponential-time reduction
from QSat2 to UNSAT.

Then, to rule out membership in XP—or any parameterized complexity classes contained
in XP, such as the classes of the Weft hierarchy or A[2]—we argue in Section 5.2.1 that
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the three parameterized variants of ASP-consistency that we consider are each hard
for either para-NP or para-co-NP. If any problem is both hard for either para-NP or
para-co-NP and in XP, then P = NP. Therefore, these parameterized problems are not
in XP, unless P = NP.

We can rule out membership in para-∆p
2 , by using results that we provide in Chapters 6

and 14. Membership in para-∆p
2 amounts to the existence of an fpt-time Turing reduction

to SAT. The results in Chapters 6 and 14 imply that such an fpt-time Turing reduction
to SAT does not exist for the parameterized problems that we consider, assuming that
various subexponential-time Turing reductions from the second level to the first level of
the PH do not exist. To take the case of ASP-consistency(#cont.rules) as example
again, Theorem 28 in Chapter 6 implies that ASP-consistency(#cont.rules) is A[2]-
hard, and therefore by Theorem 171 in Chapter 14 the problem is not in para-∆p

2 , unless
there exists a subexponential-time Turing reduction from QSat2(3DNF) to SAT.

The arguments in the previous paragraphs show that the parameterized problems ASP-
consistency(#cont.rules), ASP-consistency(#disj.rules) and ASP-consistency-
(#non-dual-normal.rules) cannot be complete for any parameterized complexity class
that is depicted below the bottom dashed gray line in Figure 5.1. Next, we argue that
they can also not be complete for any of the classes depicted above the top dashed gray
line in Figure 5.1.

To rule out hardness for para-Σp
2 or para-Πp

2 , we show in Section 5.2.2 that each of
the parameterized problems is in XNP or in Xco-NP. If there is any problem that is
both hard for either para-Σp

2 or para-Πp
2 and in XNP or Xco-NP, then NP = co-NP

[84, Proposition 8]. Therefore, the parameterized problems are not hard for para-Σp
2 or

para-Πp
2 , unless NP = co-NP.

Finally, we can rule out hardness for XNP or Xco-NP under the assumption that
there exists no subexponential-time reduction from QSatt(3CNF ∪ 3DNF) to QSat2,
for any t ≥ 3. This follows by results in Chapters 6 and 14. For the case of ASP-
consistency(#cont.rules), for example, this follows from Theorem 28 in Chapter 6 and
Corollary 173 in Chapter 14.

By eliminating the possibility that these remaining parameterized variants of ASP-
consistency are complete for any known parameterized complexity class, we motivate
the development of new parameterized complexity tools to characterize the complexity of
these problems and similar parameterized variants of problems at higher levels of the
PH. The completeness theory that we define and work out in Chapter 6 will be this new
toolbox.

5.2.1 Hardness for para-NP and para-co-NP
In this section, we point out known proofs from the literature that can be used to
show that each of the parameterized problems ASP-consistency(#cont.rules), ASP-
consistency(#disj.rules) and ASP-consistency(#non-dual-normal.rules) is hard for
either para-NP or para-co-NP.
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The parameterized problem ASP-consistency(#cont.rules) is para-co-NP-hard. This
hardness result can be shown straightforwardly by using the reduction in a proof of
Eiter and Gottlob [71, Theorem 3] as a reduction from UNSAT to the problem ASP-
consistency restricted to instances without contingent rules. Moreover, the parameter-
ized problem ASP-consistency(#disj.rules) is para-NP-hard. This follows from the fact
that deciding whether a program without disjunctive rules has an answer set is NP-hard
[154]. Finally, the parameterized problem ASP-consistency(#non-dual-normal.rules)
is para-NP-hard, because the consistency problem restricted to disjunctive programs
without non-dual-normal rules is NP-hard [186].

5.2.2 Membership in XNP and Xco-NP
Finally, we show that the parameterized problems ASP-consistency(#cont.rules),
ASP-consistency(#disj.rules) and ASP-consistency(#non-dual-normal.rules) are
all contained in either XNP or Xco-NP.

Firstly, we show that when the number of disjunctive rules is bounded by a fixed constant
the problem ASP-consistency is in NP. In order to prove this, we use the following
lemma.

Lemma 18. Let P be a negation-free disjunctive logic program, and let M be a minimal
model of P , i.e., there is no model M ′ (M of P . Then there exists a subset R ⊆ P of
disjunctive rules and a mapping µ : R→ At(P ) such that:

• for each r ∈ R, the value µ(r) is an atom in the head of r; and

• M = Mµ, where Mµ is the smallest set such that:

– Rng(µ) ⊆Mµ, and
– if b1, . . . , bm ∈Mµ, and (a← b1, . . . , bm) ∈ P , then a ∈Mµ.

Proof. We give an indirect proof. Assume that M is a minimal model of P , but there
exist no suitable R and µ. We will derive a contradiction. Since M is a model of P ,
we know that for each disjunctive rule ri either holds (i) that M does not satisfy the
body, or (ii) that M satisfies an atom ai in the head. We construct the set R and the
mapping µ as follows. For each ri, we let ri ∈ R and µ(ri) = ai if and only if M satisfies
an atom ai in the head of the disjunctive rule ri.

Clearly, Rng(µ) ⊆M . Define A0 = Rng(µ). For each i ∈ N, we define Ai+1 as follows:

Ai+1 = Ai ∪ { a : (a← b1, . . . , bm) ∈ P, b1, . . . , bm ∈ Ai }.

We show by induction on i that Ai ⊆ M for all i ∈ N. Clearly, A0 ⊆ M . Assume
that Ai ⊆ M , and let a ∈ Ai+1\Ai be an arbitrary atom. This can only be the case
if b1, . . . , bm ∈ Ai and (a ← b1, . . . , bm) ∈ P . However, since M is a model of P ,
also a ∈M . Therefore, Ai+1 ⊆M .
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Now, define M ′ =
⋃
i∈MAi. We have that M ′ ⊆M . We show that M ′ is a model of P .

Clearly, M ′ satisfies all normal rules of P . Let r = (a1 ∨ · · · ∨ an ← b1, . . . , bn) be a
disjunctive rule of P , and assume that M ′ does not satisfy r. Then it must be the case
that b1, . . . , bm ∈ M ′ and a1, . . . , an 6∈ M ′. However, since M ′ ⊆ M , we know that M
satisfies the body of r. Therefore, by construction of R and µ, we know that ai ∈M , for
some i ∈ [n], and thus r ∈ R and µ(r) = ai, and so ai ∈ A0 ⊆M ′. This is a contradiction
with our previous conclusion that a1, . . . , an 6∈M ′. Therefore, we can conclude that M ′
is a model of P .

If M ′ ( M , we have a contradiction with the fact that M is a minimal model of P .
Otherwise, if M ′ = M , then we have a contradiction with the fact that M cannot
be represented in the way described above by suitable R and µ. This concludes our
proof.

With this technical result in place, we are now ready to show that ASP-consistency is
in NP when the number of disjunctive rules is bounded by a constant.

Proposition 19. Let d be a fixed positive integer. The restriction of ASP-consistency
to programs containing at most d disjunctive rules is in NP.

Proof. We sketch a guess-and-check algorithm A that solves the problem. Let P be a
disjunctive logic program with at most d disjunctive rules. The algorithm A guesses a
subset M ⊆ At(P ). All that remains is to verify that M is a minimal model of PM . We
employ Lemma 18 to do so. Concretely, the algorithm iterates over all combinations
of a suitable set R and a suitable mapping µ, as defined in Lemma 18. There are at
most O((|At(P )|+ 1)d) of these, which is polynomial in the input size. For each such
mapping µ, we compute the set Mµ. Moreover, we check if Mµ is a model of PM . If it
is a model of PM , we check if Mµ ( M . If this is the case, we know that M is not a
minimal model of PM , and the algorithm A rejects the input. Otherwise, the algorithm
continues.

Then, after having gone over all possible mappings µ (and the corresponding sets Mµ)
without having found some Mµ (M that is a model of PM , the algorithm accepts. In
this case, we can safely conclude that M is a minimal model of PM . If this were not
the case, by definition, we know that there is a model M ′ ( M of PM . But then, by
Lemma 18, we know that M ′ = Mµ for some µ, which is a contradiction with the fact
that we found no Mµ (M that is a model of PM . Therefore, the algorithm A accepts if
and only if M is a minimal model of PM , and thus it accepts if and only if P has an
answer set.

Next, we show that when the number of contingent rules is bounded by a fixed constant
the problem ASP-consistency is in co-NP. Again, to show this, we use a technical
lemma.
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Lemma 20. Let P be a disjunctive logic program, and let M be an answer set of P . Then
there exists a subset R ⊆ P of contingent rules and a mapping µ : R→ Cont(P ) such that
for each r ∈ R it holds that µ(r) occurs in the head of r, and M = Comp(P ) ∪ Rng(µ).

Proof. We show that M = Rng(µ)∪Comp(P ) for some subset R ⊆ P of contingent rules
and some mapping µ : R→ Cont(P ) such that for each r ∈ R it holds that µ(r) occurs in
the head of r. SinceM is an answer set of P , we know that for each contingent rule r of P it
holds that either (i) NF(r) 6∈ PM , or (ii) NF(r) ∈ PM and M satisfies the body of NF(r),
or (iii) NF(r) ∈ PM and M does not satisfy the body of NF(r). Recall that NF(r) is
the rule r where all negative literals are removed. We construct the subset R ⊆ P of
contingent rules and the mapping µ : R→ Cont(P ) as follows. For each r, if case (i) or
(iii) holds, we let r 6∈ R. If case (ii) holds for rule r, then since M is a model of PM , we
know that there exists some d ∈M ∩ Cont(P ) such that d occurs in the head of NF(r).
We then let r ∈ R and we let µ(r) = d. Clearly, Rng(µ) ⊆M , so Rng(µ)∪Comp(P ) ⊆M .
Now, to show that M ⊆ Rng(µ)∪Comp(P ), assume the contrary, i.e., assume that there
exists some d ∈ (M ∩ Cont(P )) such that d 6∈ Rng(µ). Then M\{d} is a model of PM ,
and therefore M is not a subset-minimal model of PM . This is a contradiction with our
assumption that M is an answer set of P . Therefore, M = Rng(µ) ∪ Comp(P ).

We are now ready to show that ASP-consistency is in co-NP when the number of
contingent rules is bounded by a constant.

Proposition 21. Let d be a fixed positive integer. The restriction of ASP-consistency
to programs containing at most d contingent rules is in co-NP.

Proof. We sketch a guess-and-check algorithm A that decides whether programs P
containing at most d contingent rules have no answer set. Let P be an arbitrary program.
Then any answer set can be represented by means of a suitable subset R ⊆ P and a
suitable mapping µ, as described in Lemma 20. Let MR,µ denote the possible answer
set corresponding to R and µ. There are at most O((|P | + 1)d) candidate sets MR,µ.
The algorithm A guesses a subset M ′R,µ (MR,µ for each such R and µ. Then, it verifies
whether for all M ′R,µ it holds that M ′R,µ is a model of PMR,µ , and it accepts if and only
if this is the case. Therefore, it accepts if and only if P has no answer set.

We show that when the number of non-dual-normal is bounded by a fixed constant the
problem ASP-consistency is in NP. Once again, we use a technical lemma.

Lemma 22. Let P be a negation-free disjunctive logic program, and let M be a maximal
model of P , i.e., there is no model M ′ )M of P . Then there exists a subset R ⊆ P of
non-dual-normal rules and a mapping µ : R→ At(P ) such that:

• for each r ∈ R, the value µ(r) is an atom in the body of r; and

• M = At(P )\Eµ, where Eµ is the smallest set such that:
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– Rng(µ) ⊆ Eµ, and
– if b1, . . . , bm ∈ Eµ, and (b1 ∨ · · · ∨ bm ← a) ∈ P , then a ∈ Eµ.

Proof. We give an indirect proof. Assume that M is a maximal model of P , but there
exist no suitable R and µ. We will derive a contradiction. Since M is a model of P , we
know that for each non-dual-normal rule ri either holds (i) that M does not satisfy an
atom bi in the body, or (ii) that M satisfies the head. We construct the set R and the
mapping µ as follows. For each ri, we let ri ∈ R and µ(ri) = bi if and only if M does not
satisfy some atom bi in the body of the disjunctive rule ri.

Let E = At(P )\M . Clearly, Rng(µ) ⊆ E. Define E0 = Rng(µ). For each i ∈ N, we
define Ei+1 as follows:

Ei+1 = Ei ∪ { a : (b1 ∨ · · · ∨ bm ← a) ∈ P, b1, . . . , bm ∈ Ei }.

We show by induction on i that Ei ⊆ E for all i ∈ N. Clearly, E0 ⊆ E. Assume
that Ei ⊆ E, and let a ∈ Ei+1\Ei be an arbitrary atom. This can only be the case
if b1, . . . , bm ∈ Ei and (b1 ∨ · · · ∨ bm ← a) ∈ P . However, since M = At(P )\E is a model
of P , we get that a 6∈M and thus that a ∈ E. Therefore, Ei+1 ⊆ E.

Now, define E′ =
⋃
i∈MEi. We have that E′ ⊆ E. We show that M ′ = At(P )\E′ is a

model of P . Clearly, M ′ satisfies all dual-normal rules of P . Let r = (a1 ∨ · · · ∨ an ←
b1, . . . , bn) be a non-dual-normal rule of P , and assume thatM ′ does not satisfy r. Then it
must be the case that b1, . . . , bm ∈M ′ and a1, . . . , an 6∈M ′. In other words, b1, . . . , bm 6∈
E′ and a1, . . . , an ∈ E′. However, since E′ ⊆ E, we know that a1, . . . , an ∈ E, and thus
that M does not satisfy the head of r. Therefore, by construction of R and µ, we know
that bi ∈ E, for some i ∈ [n], and thus r ∈ R and µ(r) = bi, and so bi ∈ E0 ⊆ E′. This
is a contradiction with our previous conclusion that b1, . . . , bm 6∈ E′. Therefore, we can
conclude that M ′ is a model of P .

Since E′ ⊆ E, we know that M ′ ⊇M . If M ′ )M , we have a contradiction with the fact
that M is a maximal model of P . Otherwise, if M ′ = M , then we have a contradiction
with the fact that M cannot be represented in the way described above by suitable R
and µ. This concludes our proof.

Now that we have established this technical lemma, we show that ASP-consistency is
in NP when the number of non-dual-normal rules is bounded by a constant.

Proposition 23. Let d be a fixed positive integer. The restriction of ASP-consistency
to programs containing at most d non-dual-normal rules is in NP.

Proof. We sketch a guess-and-check algorithm A that solves the problem. Let P be a
disjunctive logic program with at most d non-dual-normal rules. The algorithm A guesses
a subset M ⊆ At(P ), and verifies that M satisfies all constraints in P , i.e., all rules of
the form (← b1, . . . , bm,not c1, . . . ,not cn). All that remains is to verify that M is a
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minimal model of (P ′)M , where P ′ is obtained from P by removing all constraints. In
order to do so, we use the fact that M is a minimal model of (P ′)M if and only if for
all m ∈M the following program Pm,M has no models:

Pm,M = (P ′)M ∪ {← a : a ∈ At(P )\M } ∪ {← m}.

(This construction using the programs Pm,M has also been used by Fichte et al. [81].)

The algorithm A proceeds as follows. It iterates over all m ∈ M , and for each m it
computes the program Pm,M . Clearly, each such Pm,M has at most d non-dual-normal
rules (and only constraints with one atom in the body). We now employ Lemma 22 to
decide if Pm,M has a model. The algorithm iterates over all combinations of a suitable setR
and a suitable mapping µ, as defined in Lemma 22. There are at most O((|At(P )|+ 1)d)
of these, which is polynomial in the input size. For each such mapping µ, the algorithm
computes the set Eµ. Moreover, the algorithm checks whether Mµ = At(P )\Eµ is a
model of Pm,M . If this is the case, then we know that Pm,M has some model, and
therefore that M is not a minimal model of PM , and the algorithm rejects the input.
If Mµ is not a model of Pm,M , the algorithm continues.

Then, after having gone over all possible m ∈ M and all possible mappings µ without
having found some Mµ that is a model of Pm,M , the algorithm accepts. In this case,
we can safely conclude that M is a minimal model of PM . If this were not the case,
there would be some m ∈ M such that Pm,M has a model (and in particular, Pm,M
has a maximal model M ′). But then, by Lemma 22, we know that M ′ = Mµ for some
suitable µ, which is a contradiction with the fact that we found no Mµ that is a model
of Pm,M . Therefore, the algorithm A accepts if and only if M is a minimal model of PM ,
and thus it accepts if and only if P has an answer set.

The algorithms given in the proofs of Propositions 19, 23 and 21 are the same for each
positive value d of the parameter (only the running times differ for different parameter
values). Therefore, we directly get the following membership results in XNP and Xco-NP.

Corollary 24. The parameterized problems ASP-consistency(#disj.rules) and ASP-
consistency(#non-dual-normal.rules) are in XNP.

Corollary 25. The parameterized problem ASP-consistency(#cont.rules) is in
Xco-NP.

Summary
In this chapter, we argued for the need to introduce new parameterized complexity classes
between the first and second level of the PH. To do so, we considered the consistency
problem for disjunctive answer set programs, which is an important problem that comes
up in the declarative programming paradigm of answer set programming. We showed
that several natural parameterized variants of this problem are not complete for any of
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the parameterized complexity classes that are known from the literature (under various
complexity-theoretic assumptions). From this, we concluded that new classes are needed
to adequately characterize the parameterized complexity of these problems.

Notes
The results in this chapter appeared in a paper in the proceedings of KR 2014 [115, 116].
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CHAPTER 6
A New Completeness Theory

Alright, it’s time to define some complexity classes.
(Then again, when isn’t it time?)

— Scott Aaronson, Quantum Computing Since
Democritus [1]

In Chapter 5, we identified several natural parameterized variants of our running example
(the consistency problem for disjunctive answer set programming) whose complexity
cannot be adequately characterized using the known parameterized complexity classes.
That is, we argued that these parameterized complexity problems are not complete for
any of the known parameterized complexity classes. In this chapter, we define and develop
novel parameterized complexity classes that can be used to characterize the complexity
of these (and other) problems. The new classes are based on weighted variants of the
satisfiability problem for quantified Boolean formulas, analogously to the way the classes
of the Weft hierarchy are based on weighted variants of propositional satisfiability.

Outline of this chapter In Section 6.1, we introduce the new parameterized complex-
ity classes. In particular, we define two hierarchies Σp

2 [k∗, t] and Σp
2 [∗k, t] of parameterized

complexity classes (for t ∈ N+∪{SAT,P}), dubbed “k-∗” and “∗-k” for the combinations
of weighted and unrestricted quantifier blocks in their definitions.

Then, in Section 6.2, we have a closer look at the classes of the k-∗ hierarchy. We show
that this hierarchy in fact collapses to a single parameterized complexity class—this class
we call Σp

2 [k∗]. We show that one of the parameterizations of our running example is
complete for this class. We also provide alternative characterizations of Σp

2 [k∗], using
(1) first-order logic model checking and (2) alternating Turing machines.

In Section 6.3, we have a closer look at the classes of the ∗-k hierarchy. We provide
a normalization result for the first level of this hierarchy, showing that the canonical
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problem for Σp
2 [∗k, 1] is already complete for this class when restricted to quantified

Boolean formulas whose matrix is in 3DNF. We also provide a normalization result for
the top level Σp

2 [∗k,P] of the hierarchy, and we give an alternative characterization of
Σp

2 [∗k,P] using alternating Turing machines. We then show that two parameterizations
of our running example are complete for the class Σp

2 [∗k,P].

Finally, in Section 6.4, we investigate how the new complexity classes relate to several
relevant (parameterized) complexity classes known from the literature. In particular, we
present results that the classes Σp

2 [k∗] and Σp
2 [∗k, t] are different from the classes para-NP,

para-co-NP, para-Σp
2 , and para-Πp

2 (under various complexity-theoretic assumptions).

6.1 New Parameterized Complexity Classes
In this section, we define several hierarchies of parameterized complexity classes. These
classes are based on weighted variants of QSat2, the satisfiability problem for quantified
Boolean formulas with an ∃∀ quantifier prefix. An instance of the problem QSat2 has
both an existential quantifier and a universal quantifier block. Therefore, there are several
ways of restricting the weight of assignments. Restricting the weight of assignments to
the existential quantifier block results in the k-∗ hierarchy, and restricting the weight
of assignments to the universal quantifier block results in the ∗-k hierarchy. Moreover,
restricting the weight of assignments to both quantifier blocks simultaneously results
in a hierarchy of classes (dubbed “k-k”) that are closely related to the classes of the
A-hierarchy.

6.1.1 The Hierarchies Σp
2[k∗, t] and Σp

2[∗k, t]
The hierarchies of classes Σp

2 [k∗, t] and Σp
2 [∗k, t] are based on the following two parameter-

ized decision problems. Let C be a class of Boolean circuits. The problem Σp
2 [k∗]-WSat(C)

provides the foundation for the k-∗ hierarchy.

Σp
2 [k∗]-WSat(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and
a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k such that for all
truth assignments β to Y the assignment α ∪ β satisfies C?

Similarly, the problem Σp
2 [∗k]-WSat(C) provides the foundation for the ∗-k hierarchy.

Σp
2 [∗k]-WSat(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and
a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth
assignments β to Y of weight k the assignment α ∪ β satisfies C?
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For the sake of convenience, instances to these two problems consisting of a circuit C
over sets X and Y of variables and a positive integer k, we will denote by (∃X.∀Y.C, k).

We now define the following parameterized complexity classes, that together form the
k-∗ hierarchy:

Σp
2 [k∗, t] = [ {Σp

2 [k∗]-WSat(circt,u) : u ≥ 1 } ]fpt,
Σp

2 [k∗,SAT] = [ Σp
2 [k∗]-WSat(form) ]fpt, and

Σp
2 [k∗,P] = [ Σp

2 [k∗]-WSat(circ) ]fpt.

Similarly, we define the classes of the ∗-k hierarchy as follows:

Σp
2 [∗k, t] = [ {Σp

2 [∗k]-WSat(circt,u) : u ≥ 1 } ]fpt,
Σp

2 [∗k,SAT] = [ Σp
2 [∗k]-WSat(form) ]fpt, and

Σp
2 [∗k,P] = [ Σp

2 [∗k]-WSat(circ) ]fpt.

Remember that the notation [ · ]fpt denotes the class of all parameterized problems
that are fpt-reducible to the referenced (set of) problem(s). Remember also that circt,u
denotes the class of all Boolean circuits of weft t and depth u, that form denotes the
class of all Booelan circuits that represent a propositional formula, and that circ denotes
the class of all Boolean circuits. These definitions are entirely analogous to those of the
parameterized complexity classes W[t] of the W-hierarchy [67, 66].

By definition of the classes Σp
2 [k∗, t] and Σp

2 [k∗, t], we directly get the following inclusions:

Σp
2 [k∗, 1] ⊆ Σp

2 [k∗, 2] ⊆ · · · ⊆ Σp
2 [k∗, SAT] ⊆ Σp

2 [k∗,P], and

Σp
2 [∗k, 1] ⊆ Σp

2 [∗k, 2] ⊆ · · · ⊆ Σp
2 [∗k, SAT] ⊆ Σp

2 [∗k,P].

Dual to the classical complexity class Σp
2 is its co-class Πp

2 , whose canonical complete prob-
lem is complementary to the problem QSat2. Similarly, we can define dual classes for each
of the parameterized complexity classes in the k-∗ and ∗-k hierarchies. These co-classes
are based on problems complementary to the problems Σp

2 [k∗]-WSat and Σp
2 [∗k]-WSat,

i.e., these problems have as yes-instances exactly the no-instances of Σp
2 [k∗]-WSat

and Σp
2 [∗k]-WSat, respectively. Equivalently, these complementary problems can be

considered as variants of Σp
2 [k∗]-WSat and Σp

2 [∗k]-WSat where the existential and
universal quantifiers are swapped. These dual classes are denoted by Πp

2 [k∗]-WSat and
Πp

2 [∗k]-WSat. We use a similar notation for the dual complexity classes, e.g., we denote
co-Σp

2 [∗k, t] by Πp
2 [∗k, t].

6.1.2 Another Hierarchy

Similarly to the definition of the complexity classes of the k-∗ and ∗-k hierarchies, one
can define weighted variants of the problem QSat2 with weight restrictions on both
quantifier blocks. This results in the parameterized complexity classes Σp

2 [kk, t], whose
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definition is based on the following parameterized complexity problem. Let C be a class
of Boolean circuits. The problem Σp

2 [kk]-WSat(C) provides the foundation for the k-k
hierarchy.

Σp
2 [kk]-WSat(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and
a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k such that for all
truth assignments β to Y of weight k the assignment α ∪ β satisfies C?

The classes Σp
2 [kk, t], for t ∈ N+ ∪ {SAT,P} are then defined as follows:

Σp
2 [kk, t] = [ {Σp

2 [kk]-WSat(circt,u) : u ≥ 1 } ]fpt,
Σp

2 [kk,SAT] = [ Σp
2 [kk]-WSat(form) ]fpt, and

Σp
2 [kk,P] = [ Σp

2 [kk]-WSat(circ) ]fpt.

The complexity class Σp
2 [kk,SAT] has been defined and considered by Gottlob, Scarcello

and Sideri [101] under the name Σ2W[SAT]. Also, for each t ∈ N+, variants of the
problems Σp

2 [kk, t] have been studied in the literature (see, e.g., [85, Chapter 8]). Based
on these problems, the parameterized complexity classes A[2,t] (for t ≥ 1) have been
defined. These classes generalize A[2], because A[2] = A[2,1]. Due to fact that the classes
A[2,t] and the classes Σp

2 [kk, t] are defined in a very similar way—in fact, the canonical
problems for the classes A[2,t] are a special case of the problems Σp

2 [kk]-WSat(circt,u)—
it is straightforward to verify that for all t ≥ 1 it holds that A[2,t] ⊆ Σp

2 [kk, t].

Moreover, it can also routinely be proved that for each t ∈ N+ ∪ {SAT,P} it holds
that Σp

2 [kk, t] ⊆ Σp
2 [k∗, t] and that Σp

2 [kk, t] ⊆ Σp
2 [∗k, t]. Therefore, we directly get the

following result (that we state without proof), that relates A[2] and the classes of the k-∗
and ∗-k hierarchies.

Proposition 26. Let t ∈ N+ ∪ {SAT,P}. Then A[2] ⊆ Σp
2 [k∗, t] and A[2] ⊆ Σp

2 [∗k, t].

6.2 The Parameterized Complexity Class Σp
2[k∗]

In this section, we consider the classes Σp
2 [k∗, t] of the k-∗ hierarchy in more detail. It

turns out that this hierarchy collapses entirely into a single parameterized complexity
class, that we denote by Σp

2 [k∗]. We start by showing this collapse. Then, we show that
Σp

2 [k∗] can be used to characterize the complexity of one of the parameterized problems
in our running example. In particular, we show that ASP-consistency(#cont.rules) is
Σp

2 [k∗]-complete. Finally, we characterize the class Σp
2 [k∗] using first-order logic model

checking and alternating Turing machines.
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6.2.1 Collapse

We begin with showing that the classes of the k-∗ hierarchy all coincide. We do so by
showing that Σp

2 [k∗, 1] = Σp
2 [k∗,P].

Theorem 27 (Collapse of the k-∗ hierarchy). Σp
2 [k∗, 1] = Σp

2 [k∗,P].

Proof. Since by definition Σp
2 [k∗, 1] ⊆ Σp

2 [k∗, 2] ⊆ . . . ⊆ Σp
2 [k∗,P], it suffices to show that

Σp
2 [k∗,P] ⊆ Σp

2 [k∗, 1]. We show this by giving an fpt-reduction from Σp
2 [k∗]-WSat(circ)

to Σp
2 [k∗]-WSat(3DNF). Since 3DNF ⊆ circ1,3, this suffices. We remark that this

reduction is based on the standard Tseitin transformation that transforms arbitrary
Boolean formulas into 3CNF by means of additional variables.

Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat(circ) with ϕ = ∃X.∀Y.C. Assume without

loss of generality that C contains only binary conjunctions and negations. Let o denote
the output gate of C. We construct an instance (ϕ′, k) of Σp

2 [k∗]-WSat(3DNF) as follows.
The formula ϕ′ will be over the set of variables X∪Y ∪Z, where Z = { zr : r ∈ Nodes(C) }.
For each r ∈ Nodes(C), we define a subformula χr. We distinguish three cases. If r =
r1 ∧ r2, then we let χr = (zr ∧ ¬zr1) ∨ (zr ∧ ¬zr2) ∨ (zr1 ∧ zr2 ∧ ¬zr). If r = ¬r1, then
we let χr = (zr ∧ zr1) ∨ (¬zr ∧ ¬zr1). If r = w, for some w ∈ X ∪ Y , then we let χr =
(zr ∧ ¬w) ∨ (¬zr ∧w). Now we define ϕ′ = ∃X.∀Y ∪ Z.ψ, where ψ =

∨
r∈Nodes(C) χr ∨ zo.

We prove the correctness of this reduction.

(⇒) Assume that (ϕ, k) ∈ Σp
2 [k∗]-WSat(circ). This means that there exists an as-

signment α : X → B of weight k such that ∀Y.C[α] evaluates to true. We show
that (ϕ′, k) ∈ Σp

2 [k∗]-WSat(3DNF), by showing that ∀Y ∪ Z.ψ[α] evaluates to true.
Let β : Y ∪ Z → B be an arbitrary assignment to the variables Y ∪ Z, and let β′
be the restriction of β to the variables Y . We distinguish two cases: either (i) for
each r ∈ Nodes(C) it holds that β(zr) coincides with the value that gate r gets in the
circuit C given assignment α ∪ β′, or (ii) this is not the case. In case (i), by the fact
that α ∪ β′ satisfies C, we know that β(zo) = 1, and therefore α ∪ β satisfies ψ. In case
(ii), we know that for some gate r ∈ Nodes(C), the value of β(zr) does not coincide with
the value assigned to r in C given the assignment α ∪ β′. We may assume without loss
of generality that for all parent nodes r′ of r it holds that β(zr′) coincides with the value
assigned to r′ by α ∪ β′. In this case, there is some term of χr that is satisfied by α ∪ β.
From this we can conclude that (ϕ′, k) ∈ Σp

2 [k∗]-WSat(3DNF).

(⇐) Assume that (ϕ′, k) ∈ Σp
2 [k∗]-WSat(3DNF). This means that there exists some

assignment α : X → B of weight k such that ∀Y ∪ Z.ψ[α] evaluates to true. We now
show that ∀Y.C[α] evaluates to true as well. Let β′ : Y → B be an arbitrary assignment
to the variables Y . Define β′′ : Z → B as follows. For any r ∈ Nodes(C), we let β′′(r)
be the value assigned to the node r in the circuit C by the assignment α ∪ β′. We
then let β = β′ ∪ β′′. Now, since ∀Y ∪ Z.ψ[α] evaluates to true, we know that α ∪ β
satisfies ψ. By construction of β, we know that α ∪ β does not satisfy the term χr for
any r ∈ Nodes(C). Therefore, we know that β(zo) = 1. By construction of β, this implies
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that α ∪ β′ satisfies C. Since β′ was arbitrary, we can conclude that ∀Y.C[α] evaluates
to true, and therefore that (ϕ, k) ∈ Σp

2 [k∗]-WSat(circ).

As mentioned above, in order to simplify notation, we will use Σp
2 [k∗] to denote the class

Σp
2 [k∗, 1] = . . . = Σp

2 [k∗,P]. Also, for the sake of convenience, by a slight abuse of notation,
we will often denote the problems Σp

2 [k∗]-WSat(circ) and Σp
2 [k∗]-WSat(form) by

Σp
2 [k∗]-WSat.

6.2.2 Answer Set Programming and Completeness for Σp
2[k∗]

Next, we turn to one of the parameterized problems in our running example: ASP-
consistency(#cont.rules). We show that this parameterized problem is complete for
the class Σp

2 [k∗].

Theorem 28. ASP-consistency(#cont.rules) is Σp
2 [k∗]-complete.

This result follows directly from Lemmas 29 and 30, that we show below.

Lemma 29. ASP-consistency(#cont.rules) is Σp
2 [k∗]-hard.

Proof. We give an fpt-reduction from Σp
2 [k∗]-WSat(3DNF). This reduction is a pa-

rameterized version of a reduction of Eiter and Gottlob [71, Theorem 3]. Let (ϕ, k)
be an instance of Σp

2 [k∗]-WSat(3DNF), where ϕ = ∃X.∀Y.ψ, X = {x1, . . . , xn}, Y =
{y1, . . . , ym}, ψ = δ1 ∨ · · · ∨ δu, and δ` = l`1 ∧ l`2 ∧ l`3 for each ` ∈ [u]. We construct a
disjunctive program P . We consider the sets X and Y of variables as atoms. In addition,
we introduce fresh atoms v1, . . . , vn, z1, . . . , zm, w, and xji for each j ∈ [k] and i ∈ [n].
We let P consist of the rules described as follows:

xj
1 ∨ · · · ∨ xj

n ← for j ∈ [k]; (6.1)

← xj
i , x

j′

i for i ∈ [n], and j, j′ ∈ [k] with j < j′; (6.2)
yi ∨ zi ← for i ∈ [m]; (6.3)

yi ← w for i ∈ [m]; (6.4)
zi ← w for i ∈ [m]; (6.5)
w ← zi, zi for i ∈ [m]; (6.6)
xi ← w for i ∈ [n]; (6.7)
xi ← xj

i for i ∈ [n] and j ∈ [k]; (6.8)
vi ← w for i ∈ [n]; (6.9)
vi ← not x1

i , . . . ,not xk
i for i ∈ [n]; (6.10)

w ← σ(l`1), σ(l`2), σ(l`3) for ` ∈ [u]; (6.11)
w ← not w. (6.12)

Here we let σ(xi) = xi and σ(¬xi) = vi for each i ∈ [n]; and we let σ(yj) = yj
and σ(¬yj) = zj for each j ∈ [m]. Intuitively, vi corresponds to ¬xi, and zj corresponds
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to ¬yj . The main difference with the reduction of Eiter and Gottlob [71] is that we
use the rules in (6.1), (6.2), (6.8) and (6.10) to let the variables xi and vi represent an
assignment of weight k to the variables in X. The rules in (6.7) and (6.9) ensure that
the atoms vi and xi are compulsory. It is straightforward to verify that Comp(P ) =
{w} ∪ {xi, vi : i ∈ [n] } ∪ { yi, zi : i ∈ [m] }. Notice that P has exactly k contingent rules,
namely the rules in (6.1). We show that (ϕ, k) ∈ Σp

2 [k∗]-WSat(3DNF) if and only if P
has an answer set.

(⇒) Assume that there exists an assignment α : X → B of weight k such that ∀Y.ψ[α]
is true. Let {xi1 , . . . , xik} denote the set {xi : i ∈ [n], α(xi) = 1 }. We construct an
answer set M of P . We let M = {x`i` : ` ∈ [k] } ∪ Comp(P ). The reduct PM consists of
Rules (6.1)–(6.9) and (6.11), together with rules (vi ←) for all i ∈ [n] such that α(xi) = 0.
We show that M is a minimal model of PM . We proceed indirectly and assume to the
contrary that there exists a model M ′ (M of PM . By Rule (6.8) and the rules (vi ←),
we know that for all i ∈ [n] it holds that xi ∈M ′ if α(xi) = 1, and vi ∈M ′ if α(xi) = 0.
If x`i` 6∈M

′ for any ` ∈ [k], thenM ′ is not a model of PM . Therefore, {x1
i1 , . . . , x

k
ik
} ⊆M ′.

Also, it holds that w 6∈M ′. To show this, assume the contrary, i.e., assume that w ∈M ′.
Then, by Rules (6.4), (6.5), (6.7) and (6.9), it follows that M ′ = M , which contradicts
our assumption that M ′ (M . By Rules (6.3) and (6.6), we know that |{yi, zi} ∩M ′| = 1
for each i ∈ [m]. We define the assignment β : Y → B by letting β(yi) = 1 if and only
if yi ∈ M ′, for all i ∈ [m]. Since ∀Y.ψ[α] is true, we know that α ∪ β satisfies some
term δ` of ψ. It is straightforward to verify that σ(l`1), σ(l`2), σ(l`3) ∈M ′. Therefore, by
Rule (6.11), w ∈M ′, which is a contradiction with our assumption that w 6∈M ′. From
this we can conclude that M is a minimal model of PM , and thus that M is an answer
set of P .

(⇐) Assume that M is an answer set of P . Clearly, Comp(P ) ⊆ M . Also, since
Rules (6.1) and (6.2) are rules of PM ,M must contain atoms x1

i1 , . . . , x
k
ik
for some i1, . . . , ik.

We know that PM contains Rules (6.1)–(6.9) and (6.11), as well as the rules (vi ←) for
all i ∈ [n] such that for no j ∈ [k] it holds that xji ∈M ′. We define the assignment α :
X → B by letting α(xi) = 1 if and only if i ∈ {i1, . . . , ik}. The assignment α has weight k.
We show that ∀Y.ψ[α] is true. Let β : Y → B be an arbitrary assignment. Construct
the set M ′ ( M by letting M ′ = (M ∩ {xji : i ∈ [n], j ∈ [k] }) ∪ {xi : i ∈ [n], α(xi) =
1 } ∪ { vi : i ∈ [n], α(vi) = 0 } ∪ { yi : i ∈ [m], β(yi) = 1 } ∪ { zi : i ∈ [m], β(yi) = 0 }.
Since M is a minimal model of PM and M ′ (M , we know that M ′ cannot be a model
of PM . Clearly, M ′ satisfies Rules (6.1)–(6.9), and all rules of PM of the form (vi ←).
Thus there must be some instantiation of Rule (6.11) thatM ′ does not satisfy. This means
that there exists some ` ∈ [u] such that σ(l`1), σ(l`2), σ(l`3) ∈M ′. By construction of M ′,
this means that α∪ β satisfies δ`, and thus satisfies ψ. Since β was chosen arbitrarily, we
can conclude that ∀Y.ψ[α] is true, and therefore (ϕ, k) ∈ Σp

2 [k∗]-WSat(3DNF).

Next, we show Σp
2 [k∗]-membership.

Lemma 30. ASP-consistency(#cont.rules) is in Σp
2 [k∗].
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Proof. We show membership in Σp
2 [k∗] by reducing ASP-consistency(#cont.rules) to

Σp
2 [k∗]-WSat. Let P be a program, where r1, . . . , rk are the contingent rules of P

and where At(P ) = {d1, . . . , dn}. We construct a quantified Boolean formula ϕ =
∃X.∀Y.∀Z.∀W.ψ such that (ϕ, k) ∈ Σp

2 [k∗]-WSat if and only if P has an answer set.

In order to do so, we firstly construct a Boolean formula ψP (z1, . . . , zn, z
′
1, . . . , z

′
n) (or,

for short: ψP ) over variables z1, . . . , zn, z
′
1, . . . , z

′
n such that for any M ⊆ At(P ) and

anyM ′ ⊆ At(P ) holds thatM is a model of PM ′ if and only if ψP [αM ∪αM ′ ] evaluates to
true, where αM : {z1, . . . , zn} → B is defined by letting αM (zi) = 1 if and only if di ∈M ,
and αM ′ : {z′1, . . . , z′n} → B is defined by letting αM ′(z′i) = 1 if and only if di ∈M ′, for
all i ∈ [n]. We define:

ψP =
∧
r∈P

(
ψ1
r ∨ ψ2

r

)
;

ψ1
r =

(
z′
i31
∨ · · · ∨ z′i3c

)
; and

ψ2
r =

((
zi11
∨ · · · ∨ zi1a

)
←
(
zi21
∧ · · · ∧ zi2

b

))
,

where r = (di11 ∨ · · · ∨ di1a ← di21
, . . . , di2

b
,not di31 , . . . ,not di3c ).

It is easy to verify that ψP satisfies the required property.

We now introduce the set X of existentially quantified variables of ϕ. For each contingent
rule ri of P we let ai1, . . . , ai`i denote the atoms that occur in the head of ri. For
each ri, we introduce variables xi0, xi1, . . . , xi`i , i.e., X = {xij : i ∈ [k], j ∈ [0, `i] }.
Furthermore, for each atom di, we add universally quantified variables yi, zi and wi,
i.e., Y = { yi : i ∈ [n] }, Z = { zi : i ∈ [n] }, and W = {wi : i ∈ [n] }.

We then construct ψ as follows:

ψ = ψX ∧
(
ψ1
Y ∨ ψW ∨ ψmin

)
∧ (ψ1

Y ∨ ψ2
Y );

ψX =
∧
i∈[k]

 ∨
j∈[`i]

xij ∧
∧

j,j′∈[0,`i],j<j′
(¬xij ∨ ¬xij′)

 ;

ψ1
Y =

∨
i∈[k]

∨
j∈[`i]

ψi,jy ∨
∨

di∈Cont(P )
ψdiy ∨

∨
di∈Comp(P )

¬yi;

ψdmy =


(ym ∧ ¬xi1j1 ∧ · · · ∧ ¬x

iu
ju

)
if {xij : i ∈ [k], j ∈ [`i], aij = dm }

= {ai1j1 , . . . , a
iu
ju
},

⊥ if {xij : i ∈ [k], j ∈ [`i], aij = dm } = ∅;
ψi,jy = (xij ∧ ¬ym) where aij = dm;
ψ2
Y = ψP (y1, . . . , yn, y1, . . . , yn);

ψW =
∨
i∈[n]

(wi ↔ (yi ↔ zi));

ψmin = ψ1
min ∨ ψ2

min ∨ ψ3
min;

ψ1
min =

∨
i∈[n]

(zi ∧ ¬yi) ;
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ψ2
min = (¬w1 ∧ · · · ∧ ¬wm); and
ψ3
min = ¬ψP (z1, . . . , zn, y1, . . . , yn).

The idea behind this construction is the following. The variables in X represent guessing
at most one atom in the head of each contingent rule to be true. By Lemma 20, such
a guess represents a possible answer set M ⊆ At(P ). The formula ψX ensures that for
each i ∈ [k], exactly one xij is set to true. The formula ψ1

Y filters out every assignment
in which the variables Y are not set corresponding to M . The formula ψ2

Y filters out
every assignment corresponding to a candidate M ⊆ At(P ) such that M 6|= P . The
formula ψW filters out every assignment such that wi is not set to the value (yi ⊕ zi).
The formula ψ1

min filters out every assignment where the variables Z correspond to a
set M ′ such that M ′ 6⊆ M . The formula ψ2

min filters out every assignment where the
variables Z correspond to the set M , by referring to the variables wi. The formula ψ3

min,
finally, ensures that in every remaining assignment, the variables Z do not correspond to
a set M ′ ⊆M such that M ′ |= P . We now formally prove that P has an answer set if
and only if (ϕ, k) ∈ Σp

2 [k∗]-WSat.

(⇒) Assume that P has an answer set M . By Lemma 20, we know that there exist some
subset R ⊆ {r1, . . . , rk} and a mapping µ : R→ Cont(P ) such that for each r ∈ R, µ(r)
occurs in the head of r, and such that M = Rng(µ) ∪ Comp(P ). We construct the
mapping αµ : X → B by letting αµ(xij) = 1 if and only if ri ∈ R and µ(ri) = aij , and
letting αµ(xi0) = 1 if and only if ri 6∈ R. Clearly, αµ has weight k and satisfies ψX .
We show that ∀Y.∀Z.∀W.ψ evaluates to true. Let β : Y ∪ Z ∪W → B be an arbitrary
assignment. We let MY = { di : i ∈ [m], β(yi) = 1 }, and MZ = { di : i ∈ [m], β(zi) = 1 }.
We distinguish a number of cases:

(i) either MY 6= M ,

(ii) or the previous case does not apply and for some i ∈ [m], β(wi) 6= (β(yi)⊕ β(zi)),

(ii) or all previous cases do not apply and MZ 6⊆MY ,

(iv) or all previous cases do not apply and MZ = MY ,

(v) or all previous cases do not apply and MZ 6|= PM ,

(vi) or all previous cases do not apply and MZ |= PM .

The following is now straightforward to verify. In case (i), α∪β satisfies ψ1
Y . Thus, α∪β

satisfies ψ. In all further cases, we know that α ∪ β satisfies ψ2
Y , since MY = M ,

and M |= PM . In case (ii), α ∪ β satisfies ψW . In case (iii), α ∪ β satisfies ψ1
min. In

case (iv), α ∪ β satisfies ψ2
min. In case (v), α ∪ β satisfies ψ3

min. In case (vi), we get a
direct contradiction from the facts that MZ ( M , that MZ |= PM , and that M is a
subset-minimal model of PM . We can thus conclude, that in any case α ∪ β satisfies ψ.
Therefore, ∀Y ∪ Z ∪W.ψ evaluates to true, and thus (ϕ, k) ∈ Σp

2 [k∗]-WSat.
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(⇐) Assume that (ϕ, k) ∈ Σp
2 [k∗]-WSat. This means that there exists an assignment β :

X → B of weight k such that ∀Y ∪ Z ∪W.ψ[α] evaluates to true. We construct M =
Comp(P ) ∪ { dm : i ∈ [k], j ∈ [`i], α(xij) = 1, aij = dm }. We show that M is an answer
set of P . Construct an assignment β1 : Y ∪ Z ∪W → B as follows. We let β1(yi) = 1
if and only if di ∈ M . For all y ∈ Z ∪W , the assignment β1(y) is arbitrary. We know
that α ∪ β1 satisfies ψ, and thus that α ∪ β1 satisfies (ψ1

Y ∨ ψ2
Y ). It is straightforward to

verify that α ∪ β1 does not satisfy ψ1
Y . Therefore α ∪ β1 satisfies ψ2

Y . From this, we can
conclude that M |= PM .

Now we show that M is a subset-minimal model of PM . Let M ′ ⊆ At(P ) be an arbitrary
set such that M ′ ( M . We show that M ′ 6|= PM . We construct an assignment β2 :
Y ∪ Z ∪W → B as follows. For all yi ∈ Y , we let β2(yi) = 1 if and only if di ∈ M .
For all zi ∈ Z, let β2(zi) = 1 if and only if di ∈ M ′. For all wi ∈ W , let β2(wi) =
β2(yi) ⊕ β2(zi). It is straightforward to verify that α ∪ β2 satisfies ¬ψ1

Y , ¬ψW , ¬ψ1
min,

and ¬ψ2
min. Therefore, since α ∪ β2 satisfies ψ, we know that α ∪ β2 satisfies ψ3

min.
Therefore, we know thatM ′ 6|= PM . This concludes our proof thatM is a subset-minimal
model of PM , and thus we can conclude that M is an answer set of P .

6.2.3 Additional Characterizations of Σp
2[k∗]

Finally, we provide a number of different equivalent characterizations of Σp
2 [k∗]. In

particular, we characterize Σp
2 [k∗] using a parameterized model checking problem for

first-order logic formulas and using alternating Turing machines.

6.2.3.1 First-order Model Checking Characterization

We begin with giving an equivalent characterization of the class Σp
2 [k∗] in terms of model

checking of first-order logic formulas. The perspective of first-order logic model checking
is also used in parameterized complexity theory to define the classes A[t] [85]. Consider
the following parameterized model checking problem for first-order logic formulas (with
an ∃∀ quantifier prefix) with k existential variables.

Σp
2 [k∗]-MC

Instance: A first-order logic sentence ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ over a vocabu-
lary τ , where ψ is quantifier-free, and a finite τ -structure A.
Parameter: k.
Question: Is it the case that A |= ϕ?

We show that this problem is complete for the class Σp
2 [k∗].

Theorem 31. Σp
2 [k∗]-MC is Σp

2 [k∗]-complete.

This completeness result follows Lemmas 32 and 33, that we prove below.

Lemma 32. Σp
2 [k∗]-MC is in Σp

2 [k∗].
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Proof. We show Σp
2 [k∗]-membership of Σp

2 [k∗]-MC by giving an fpt-reduction
to Σp

2 [k∗]-WSat. Let (ϕ,A) be an instance of Σp
2 [k∗]-MC, where ϕ =

∃x1, . . . , xk.∀y1, . . . , yn.ψ is a first-order logic sentence over vocabulary τ , and A is
a τ -structure with domain A. We assume without loss of generality that ψ contains only
connectives ∧ and ¬.

We construct an instance (ϕ′, k) of Σp
2 [k∗]-WSat, where ϕ is of the form ∃X ′.∀Y ′.ψ′.

We define:
X ′ = {x′i,a : i ∈ [k], a ∈ A }, and
Y ′ = { y′j,a : j ∈ [n], a ∈ A }.

In order to define ψ′, we will use the following auxiliary function µ on subformulas of ψ:

µ(χ) =



µ(χ1) ∧ µ(χ2) if χ = χ1 ∧ χ2,
¬µ(χ1) if χ = ¬χ1,∨
i∈[u]

(
ψz1,ai1

∧ · · · ∧ ψzm,aim
) if χ = R(z1, . . . , zm) and

RA = {(a1
1, . . . , a

1
m), . . . , (au1 , . . . , aum)},

where for each z ∈ X ∪ Y and each a ∈ A we define:

ψz,a =
{
x′i,a if z = xi,
y′j,a if z = yj .

Now, we define ψ′ as follows:

ψ′ = ψ′unique-X′ ∧
(
ψ′unique-Y ′ → µ(ψ)

)
, where

ψ′unique-X′ =
∧
i∈[k]

 ∨
a∈A

x′i,a ∧
∧

a,a′∈A
a6=a′

(¬x′i,a ∨ ¬x′i,a′)

 , and
ψ′unique-Y ′ =

∧
j∈[n]

 ∨
a∈A

y′j,a ∧
∧

a,a′∈A
a6=a′

(¬y′j,a ∨ ¬y′j,a′)

 .
We show that (A, ϕ) ∈ Σp

2 [k∗]-MC if and only if (ϕ′, k) ∈ Σp
2 [k∗]-WSat.

(⇒) Assume that there exists an assignment α : {x1, . . . , xk} → A such that A, α |=
∀y1, . . . , yn.ψ. We define the assignment α′ : X ′ → B where α′(x′i,a) = 1 if and only
if α(xi) = a. Clearly, α′ has weight k. Also, note that α′ satisfies ψ′unique-X′ . Now, let β′ :
Y ′ → B be an arbitrary assignment. We show that α′∪β′ satisfies ψ′. We distinguish two
cases: either (i) for each j ∈ [n], there is a unique aj ∈ A such that β′(y′j,aj ) = 1, or (ii)
this is not the case. In case (i), α′ ∪β′ satisfies ψ′unique-Y ′ , so we have to show that α′ ∪β′
satisfies µ(ψ). Define the assignment β : {y1, . . . , yn} → A by letting β(yj) = aj . We
know that A, α∪ β |= ψ. It is now straightforward to show by induction on the structure
of ψ that for each subformula χ of ψ holds that that α′ ∪ β′ satisfies µ(χ) if and only
if A, α ∪ β |= χ. We then know in particular that α′ ∪ β′ satisfies µ(ψ). In case (ii),
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we know that α′ ∪ β′ does not satisfy ψ′unique-Y ′ , and therefore α′ ∪ β′ satisfies ψ′. This
concludes our proof that (ϕ′, k) ∈ Σp

2 [k∗]-WSat.

(⇐) Assume that there exists an assignment α : X ′ → B of weight k such that ∀Y ′.ψ′[α]
is true. Since ψ′unique-X′ contains only variables in X ′, we know that α satisfies ψ′unique-X′ .
From this, we can conclude that for each i ∈ [k], there is some unique ai ∈ A such
that α(x′i,ai) = 1. Now, define the assignment α′ : {x1, . . . , xk} → A by letting α′(xi) = ai.

We show thatA, α′ |= ∀y1, . . . , yn.ψ. Let β′ : {y1, . . . , yn} → A be an arbitrary assignment.
We define β : Y ′ → B by letting β(y′i,a) = 1 if and only if β(yi) = a. It is straightforward
to verify that β satisfies ψ′unique-Y ′ . We know that α ∪ β satisfies ψ′, so therefore α ∪ β
satisfies µ(ψ). It is now straightforward to show by induction on the structure of ψ that
for each subformula χ of ψ holds that that α∪β satisfies µ(χ) if and only if A, α′∪β′ |= χ.
We then know in particular that A, α′ ∪ β′ |= ψ. This concludes our proof that (A, ϕ) ∈
Σp

2 [k∗]-MC.

Next, we show Σp
2 [k∗]-hardness.

Lemma 33. Σp
2 [k∗]-MC is Σp

2 [k∗]-hard.

Proof. We show Σp
2 [k∗]-hardness by giving an fpt-reduction from Σp

2 [k∗]-WSat(DNF).
Let (ϕ, k) specify an instance of Σp

2 [k∗]-WSat, where ϕ = ∃X.∀Y.ψ, X =
{x1, . . . , xn}, Y = {y1, . . . , ym}, ψ = δ1∨· · ·∨δu, and for each ` ∈ [u], δ` = l`1∨ l`2∨ l`3. We
construct an instance (A, ϕ′) of Σp

2 [k∗]-MC. In order to do so, we first fix the following
vocabulary τ (which does not depend on the instance (ϕ, k)): it contains unary relation
symbols D, X and Y , and binary relation symbols C1, C2, C3 and O. We construct the
domain A of A as follows:

A = X ∪ Y ∪ { δ` : ` ∈ [u] } ∪ {?}.

Then, we define:

DA = { δ` : ` ∈ [u] };
XA = X;
Y A = Y ∪ {?};
CAd = { (δ`, z) : ` ∈ [u], z ∈ X ∪ Y, l`d ∈ {x,¬x} } for d ∈ [3]; and
OA = { (δ`, δ`′) : `, `′ ∈ [u], ` < `′ }.

Intuitively, the relations D, X and Y serve to distinguish the various subsets of the
domain A. The relations Cd, for d ∈ [3], encode (part of) the structure of the matrix ψ
of the formula ϕ. The relation O encodes a linear ordering on the terms δ`.

We now define the formula ϕ′ as follows:

ϕ′ = ∃u1, . . . , uk.∀v1, . . . , vm.∀w1, . . . , wu.χ,
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where we define χ to be of the following form:

χ = χUproper ∧ ((χVproper ∧ χWexact)→ χsat).

We will define the subformulas of χ below. Intuitively, the assignment of the variables ui
will correspond to an assignment α : X → B of weight k that sets a variable x ∈ X to
true if and only if some ui is assigned to x. Similarly, any assignment of the variables vi
will correspond to an assignment β : Y → { 0, 1} that sets y ∈ Y to true if and only if
some vi is assigned to y. The variables w` will function to refer to the elements δ` ∈ A.

The formula χUproper ensures that the variables u1, . . . , uk select exactly k different elements
from X. We define:

χUproper =
∧
i∈[k]

X(ui) ∧
∧

i,i′∈[k],i<i′
(ui 6= ui′).

For the sake of clarity, we use the formula χVproper to check whether each variable vi is
assigned to a value in Y ∪ {?}. We define:

χVproper =
∧
i∈[m]

Y (vi).

Next, the formula χWexact encodes whether the variables w1, . . . , wu get assigned exactly to
the elements δ1, . . . , δu (and also in that order, i.e., w` gets assigned δ` for each ` ∈ [u]).
We let:

χWexact =
∧
`∈[u]

D(w`) ∧
∧

`,`′∈[u],`<`′
O(w`, w`′).

Finally, we can turn to the formula χsat, which represents whether the assignments α
and β represented by the assignment to the variables ui and vj satisfies ψ. We define:

χsat =
∨
`∈[u]

χ`sat,

where we let:
χ`sat = χ`,1sat ∧ χ

`,2
sat ∧ χ

`,3
sat,

and for each d ∈ [3] we let:

χ`,dsat =



∨
j∈[k]

Cd(w`, uj) if l`d = x ∈ X,

∧
j∈[k]
¬Cd(w`, uj) if l`d = ¬x for some x ∈ X,

∨
j∈[m]

Cd(w`, vj) if l`d = y ∈ Y ,

∧
j∈[m]

¬Cd(w`, vj) if l`d = ¬y for some y ∈ X.
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Intuitively, for each ` ∈ [u] and each d ∈ [3], the formula χ`,dsat will be satsified by the
assignments to the variables ui and vi if and only if the corresponding assignments α
to X and β to Y satisfy l`d.

It is straightforward to verify that the instance (A, ϕ′) can be constructed in polynomial
time. We show that (ϕ, k) ∈ Σp

2 [k∗]-WSat(3DNF) if and only if (A, ϕ′) ∈ Σp
2 [k∗]-MC.

(⇒) Assume that there exists an assignment α : X → B of weight k such that ∀Y.ψ[α] is
true. We show that A |= ϕ′. Let {x ∈ X : α(x) = 1 } = {xi1 , . . . , xik}. We define the
assignment µ : {u1, . . . , uk} → A by letting µ(xj) = xij for all j ∈ [k]. It is straightforward
to verify that A, µ |= ψUproper. Now, let ν : {y1, . . . , ym, w1, . . . , wu} → A be an arbitrary
assignment. We need to show that A, µ ∪ ν |= χ, and we thus need to show that
A, µ∪ν |= (χVproper∧χWexact)→ χsat. We distinguish several cases: either (i) ν(yi) 6∈ Y ∪{?}
for some i ∈ [m], or (ii) the above is not the case and ν(w`) 6= δ` for some ` ∈ [u],
or (iii) neither of the above is the case. In case (i), it is straightforward to verify
that A, µ∪ν |= ¬χVproper. In case (ii), it is straightforward to verify that A, µ∪ν |= ¬χWexact.
Consider case (iii). We construct the assignment β : Y → B by letting β(y) = 1 if and
only if ν(vi) = y for some i ∈ [m]. We know that α∪ β satisfies ψ, and thus in particular
that α∪ β satisfies some term δ`. It is now straightforward to verify that A, µ∪ ν |= χ`sat,
and thus that A, µ ∪ ν |= χsat. This concludes our proof that A |= ϕ′.

(⇐) Assume that A |= ϕ′. We show that (ϕ, k) ∈ Σp
2 [k∗]-WSat(3DNF). We

know that there exists an assignment µ : {u1, . . . , uk} → A such that A, µ |=
∀u1, . . . , um.∀w1, . . . , wu.χ. Since A, µ |= χUproper, we know that µ assigns the variables ui
to k different values x ∈ X. Define α : X → B by letting α(x) = 1 if and only if µ(ui) = x
for some i ∈ [k]. Clearly, α has weight k. Now, let β : Y → B be an arbitrary assignment.
Construct the assignment ν : {v1, . . . , vm, w1, . . . , wu} as follows. For each i ∈ [m], we
let ν(vi) = yi if β(yi) = 1, and we let ν(vi) = ? otherwise. Also, for each ` ∈ [u], we
let ν(w`) = δ`. It is straightforward to verify that A, µ ∪ ν |= χVproper ∧ χWexact. Therefore,
we know that A, µ∪ν |= χsat, and thus that for some ` ∈ [u] it holds that A, µ∪ν |= χ`sat.
It is now straightforward to verify that α ∪ β satisfies δ`. Since β was arbitrary, this
concludes our proof that (ϕ, k) ∈ Σp

2 [k∗]-WSat.

The problem Σp
2 [k∗]-MC takes the relational vocabulary τ over which the structure A

and the first-order logic sentence ϕ are defined as part of the input. However, the
proof of Lemma 33 shows that the problem Σp

2 [k∗]-MC is Σp
2 [k∗]-hard already when the

vocabulary τ is fixed and contains only unary and binary relation symbols.

6.2.3.2 Another Weighted Satisfiability Characterization

Next, we show that for the canonical problem Σp
2 [k∗]-WSat, it does not matter whether

we require the weight of truth assignments to the existential variables to be exactly k or
at most k. Formally, we consider the problem Σp

2 [k∗]-WSat≤k, that is defined as follows.
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Σp
2 [k∗]-WSat≤k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is quantifier-free,
and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at most k, such that
for all truth assignments β to Y the assignment α ∪ β satisfies ψ?

We show that Σp
2 [k∗]-WSat≤k is Σp

2 [k∗]-complete. This characterization will serve as a
technical lemma for the results in Section 6.2.3.3.

Proposition 34. Σp
2 [k∗]-WSat≤k is Σp

2 [k∗]-complete.

Proof. Firstly, to show membership in Σp
2 [k∗], we give an fpt-reduction from Σp

2 [k∗]-
WSat≤k to Σp

2 [k∗]-WSat. Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat≤k, with ϕ =

∃X.∀Y.ψ. We construct an instance (ϕ′, k) of Σp
2 [k∗]-WSat. Let X ′ = {x′1, . . . , x′k}.

Now define ϕ′ = ∃X ∪ X ′.∀Y.ψ. We show that (ϕ, k) ∈ Σp
2 [k∗]-WSat≤k if and only

if (ϕ′, k) ∈ Σp
2 [k∗]-WSat.

(⇒) Assume that (ϕ, k) ∈ Σp
2 [k∗]-WSat≤k. This means that there exists an assignment α :

X → B of weight ` ≤ k such that ∀Y.ψ[α] evaluates to true. Define the assignment α′ :
X ′ → B as follows. We let α′(x′i) = 1 if and only if i ∈ [k]−`. Then the assignment α∪α′
has weight k, and ∀Y.ψ[α ∪ α′] evaluates to true. Therefore, (ϕ′, k) ∈ Σp

2 [k∗]-WSat.

(⇐) Assume that (ϕ′, k) ∈ Σp
2 [k∗]-WSat. This means that there exists an assignment α :

X ∪X ′ → B of weight k such that ∀Y.ψ[α] evaluates to true. Now let α′ be the restriction
of α to the set X of variables. Clearly, α′ has weight at most k. Also, since ψ contains
no variables in X ′, we know that ∀Y.ψ[α′] evaluates to true. Therefore, (ϕ, k) ∈ Σp

2 [k∗]-
WSat≤k.

Then, to show Σp
2 [k∗]-hardness, we give an fpt-reduction from Σp

2 [k∗]-WSat to Σp
2 [k∗]-

WSat≤k. Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat, where ϕ = ∃X.∀Y.ψ, and X =

{x1, . . . , xn}. We construct an instance (ϕ′, k′) of Σp
2 [k∗]-WSat≤k. Let C = { cij : i ∈

[k], j ∈ [n] } be a set of fresh propositional variables. Intuitively, we can think of the
variables cij as being placed in a matrix with k columns and n rows: variable cij is
positioned in the i-th column and in the j-th row. We ensure that in each column, exactly
one variable is set to true (see ψcol below), and that in each row, at most one variable
is set to true (see ψrow below). This way, any satisfying assignment must set exactly k
variables in the matrix to true, in different rows. Next, we ensure that if any variable in
the j-th row is set to true, that xj is set to true (see ψcorr below). This way, we know
that exactly k variables xj must be set to true in any satisfying assignment.

Formally, we define:

ϕ′ = ∃X ∪ C.∀Y.ψ′;
k′ = 2k;
ψ′ = ψcol ∧ ψrow ∧ ψcorr ∧ ψ;
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ψcol =
∧
j∈[n]

 ∨
i∈[k]

cij ∧
∧

i,i′∈[k],i<i′
(¬cij ∨ ¬ci

′
j )

 ;

ψrow =
∧
i∈[k]

∧
j,j′∈[n],j<j′

(¬cij ∨ ¬cij′); and

ψcorr =
∧
i∈[k]

∧
j∈[n]

cij → xj .

Any assignment α : X ∪C → B that satisfies ψcol∧ψrow must set the variables c1
j1 , . . . , c

k
jk

to true, for some j1, . . . , jk ∈ [n], j1 < · · · < jk. Furthermore, if α satisfies ψcorr, it must
also set xj1 , . . . , xjk to true.

It is now easy to show that (ϕ, k) ∈ Σp
2 [k∗]-WSat if and only if (ϕ′, k′) ∈ Σp

2 [k∗]-
WSat≤k. Let α : X → B be an assignment of weight k such that ∀Y.ψ[α] is true,
where {xi : i ∈ [n], α(xi) = 1 } = {xj1 , . . . , xjk}. Then consider the assignment γ : C → B
where γ(cij) = 1 if and only if j = ji. Then the assignment α ∪ γ has weight k′, and has
the property that ∀Y.ψ′[α ∪ γ] is true.

Conversely, let γ : X ∪ C → B be an assignment of weigth k′ such that ∀Y.ψ′[γ] is
true. Then the restriction α of γ to the variables X has weight k, and has the property
that ∀Y.ψ[α] is true.

Then, before we continue with characterizing the parameterized complexity class Σp
2 [k∗]

using alternating Turing machines, we make a brief digression. We consider another
variant of the weighted satisfiability problem Σp

2 [k∗]-WSat, where the truth assignments
to the existentially quantified variables are not restricted to have weight at most k, but
to have weight at least k. In contrast to the former restriction, the latter restriction
results in a problem that is para-Σp

2-complete.

Formally, we consider the problem Σp
2 [k∗]-WSat≥k, that is defined as follows.

Σp
2 [k∗]-WSat≥k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at least k, such that
for all truth assignments β to Y the assignment α ∪ β satisfies ψ?

We show that the problem Σp
2 [k∗]-WSat≥k is para-Σp

2-complete.

Proposition 35. Σp
2 [k∗]-WSat≥k is para-Σp

2-complete.

Proof. To show para-Σp
2-membership, we reduce the problem to QSat2. Let (ϕ, k) be

an instance of Σp
2 [k∗]-WSat≥k, where ϕ = ∃X.∀Y.ψ. We construct an instance ϕ′ of

QSat2 as follows.

100



6.2. The Parameterized Complexity Class Σp
2 [k∗]

We let Z be a set of fresh variables. Then, let χ be a propositional formula on the
variables Y ∪ Z that is unsatisfiable if and only if less than k variables in Y are set to
true. This formula χ is straightforward to construct, and we omit the details of the
construction here. Then, we let ϕ′ = ∃X.∀Y ∪ Z.ψ′, where ψ′ = χ → ψ. We claim
that (ϕ, k) ∈ Σp

2 [k∗]-WSat≥k if and only if ϕ′ ∈ QSat2.

(⇒) Assume that (ϕ, k) ∈ Σp
2 [k∗]-WSat≥k, i.e., that there exists a truth assignment α :

X → B such that for all truth assignments β : Y → B of weight at least k it holds
that ψ[α ∪ β] is true. We show that ϕ′ ∈ QSat2. We show that ∀Y ∪ Z.ψ′[α] is true.
Let γ : Y ∪Z → B be an arbitrary truth assignment. We distinguish two cases: either (i) γ
satisfies χ or (ii) this is not the case. In case (i), we know that χ is satisfied, and thus
that γ sets at least k variables in Y to true. Therefore, we know that ψ[α∪γ] is true, and
thus that α ∪ γ satisfies ψ′. In case (ii), α ∪ γ satisfies ψ′ because it does not satisfy χ.
Then, since γ was arbitrary, we know that ϕ′ ∈ QSat2.

(⇐) Conversely, assume that ϕ′ ∈ QSat2, i.e., that there exists an truth assignment α :
X → B such that for all truth assignments γ : Y ∪ Z → B it holds that ψ′[α ∪ γ] is
true. We show that (ϕ, k) ∈ Σp

2 [k∗]-WSat≥k. In particular, we show that for all truth
assignments β : Y → B of weight at least k it holds that ψ[α ∪ β] is true. Let β : Y → B
be a truth assignment of weight at least k. Since, by construction, χ is satisfiable if
and only if at least k variables in Y are set to true, we know that we can extend the
assignment β to a truth assignment γ : Y ∪Z → B that satisfies χ. Then, since ψ′[α ∪ γ]
is true, and since γ satisfies χ, we know that α∪ γ satisfies ψ. Moreover, since ψ contains
only variables in X ∪ Y , and since γ coincides with β on the variables in Y , we know
that ψ[α ∪ β] is true. Since β was arbitrary, we can conclude that (ϕ, k) ∈ Σp

2 [k∗]-
WSat≥k.

Then, to show para-Σp
2-hardness, it suffices to show that the problem is already Σp

2-hard
when the parameter value is restricted to 1 [84]. We give a polynomial-time reduction
from QSat2 to the slice of Σp

2 [k∗]-WSat≥k where k = 1. Let ϕ = ∃X.∀Y.ψ be an
instance of QSat2. We let ϕ′ = ∃X.∀Y ′.ψ, where Y ′ = Y ∪ {y0} for a fresh variable y0.
Moreover, we let k = 1. We claim that ϕ ∈ QSat2 if and only if (ϕ′, k) ∈ Σp

2 [k∗]-
WSat≥k.

(⇒) Assume that ϕ ∈ QSat2, i.e., that there exists a truth assignment α : X → B
such that ∀Y.ψ[α] is true. We show that for all truth assignments β : Y ′ → B of weight
at least 1 it holds that ψ[α ∪ β] is true. Let β : Y ′ → B be an arbitrary such truth
assignment. Clearly, since ψ contains only variables in Y and since ∀Y.ψ[α] is true, we
know that ψ[α ∪ β] is true. Thus, we can conclude that (ϕ, k) ∈ Σp

2 [k∗]-WSat≥k.

(⇐) Conversely, assume that (ϕ, k) ∈ Σp
2 [k∗]-WSat≥k, i.e., that there exists a truth

assignment α : X → B such that for all truth assignments β : Y ′ → B of weight at least 1
it holds that ψ[α ∪ β] is true. We show that ∀Y.ψ[α] is true. Let β : Y → B be an
arbitrary truth assignment. Construct the truth assignment β′ : Y ′ → B as follows. On
the variables in Y , β and β′ coincide, and β′(y′) = 1. Clearly, β′ has weight at least 1, and
thus ψ[α∪β′] is true. Since ψ does not contain the variable y0, we then know that ψ[α∪β]
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is true as well. Then, since β was arbitrary, we can conclude that ϕ ∈ QSat2.

6.2.3.3 Alternating Turing Machine Characterization

Finally, we give a characterization of the class Σp
2 [k∗] by means of alternating Turing

machines.

We consider two particular types of ATMs. An ∃∀-Turing machine (or simply ∃∀-
machine) is a 2-alternating ATM (S∃, S∀,Σ,∆, s0, F ), where s0 ∈ S∃. Let `, t ≥ 1
be positive integers. We say that an ∃∀-machine M halts (on the empty string) with
existential cost ` and universal cost t if:

• there is an accepting run of M with input ε,

• each computation path of M contains at most ` existential configurations and at
most t universal configurations.

Let P be a parameterized problem. An Σp
2 [k∗]-machine for P is a ∃∀-machine M such

that there exists a computable function f and a polynomial p such that

• M decides P in time f(k) · p(|x|); and

• and for all instances (x, k) of P and each computation path R of M with input (x, k),
at most f(k) · log |x| of the existential configurations of R are non-deterministic.

We say that a parameterized problem P is decided by some Σp
2 [k∗]-machine if there exists

a Σp
2 [k∗]-machine for P .

Let m ∈ N be a positive integer. We consider the following parameterized problem.

Σp
2 [k∗]-TM-haltm

Instance: An ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal
cost t?

Moreover, we consider the following parameterized problem.

Σp
2 [k∗]-TM-halt∗

Instance: An ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal
cost t?

Note that for Σp
2 [k∗]-TM-haltm, the number m of tapes of the ∃∀-machines in the input

is a fixed constant, whereas for Σp
2 [k∗]-TM-halt∗, the number of tapes is given as part

of the input.
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The parameterized complexity class Σp
2 [k∗] can then be characterized by alternating

Turing machines as follows. These results can be seen as an analogue to the Cook-Levin
Theorem for the complexity class Σp

2 [k∗].

Theorem 36. The problem Σp
2 [k∗]-TM-halt∗ is Σp

2 [k∗]-complete, and so is the problem
Σp

2 [k∗]-TM-haltm for each m ∈ N+.

Theorem 37. Σp
2 [k∗] is exactly the class of parameterized decision problems P that are

decided by some Σp
2 [k∗]-machine.

Proof of Theorems 36 and 37. In order to show these results, we will use the following
statements. We show how the results follow from these statements. We then present the
statements (with a detailed proof) as Propositions 39–42.

(i) Σp
2 [k∗]-TM-halt∗ ≤fpt Σp

2 [k∗]-MC (Proposition 39).

(ii) For any parameterized problem P that is decided by some Σp
2 [k∗]-machine with m

tapes, it holds that P ≤fpt Σp
2 [k∗]-TM-haltm+1 (Proposition 40).

(iii) There is an Σp
2 [k∗]-machine with a single tape that decides Σp

2 [k∗]-WSat≤k (Propo-
sition 41).

(iv) Let A and B be parameterized problem. If B is decided by some Σp
2 [k∗]-machine

with m tapes, and if A ≤fpt B, then A is decided by some Σp
2 [k∗]-machine with m

tapes (Proposition 42).

In addition to these statements, we will need one result known from the literature
(Corollary 44, which follows from Proposition 43).

(v) Σp
2 [k∗]-TM-halt2 ≤fpt Σp

2 [k∗]-TM-halt1 (Corollary 44).

To see that these statements imply the desired results, observe the following.

Together, (ii) and (iii) imply that Σp
2 [k∗]-WSat≤k ≤fpt Σp

2 [k∗]-TM-halt2. Clearly, for
all m ≥ 2, Σp

2 [k∗]-TM-halt2 ≤fpt Σp
2 [k∗]-TM-haltm. This gives us Σp

2 [k∗]-hardness of
Σp

2 [k∗]-TM-haltm, for all m ≥ 2. Σp
2 [k∗]-hardness of Σp

2 [k∗]-TM-halt1 follows from
Corollary 44, which implies that there is an fpt-reduction from Σp

2 [k∗]-TM-halt2 to
Σp

2 [k∗]-TM-halt1. This also implies that Σp
2 [k∗]-TM-halt∗ is Σp

2 [k∗]-hard. Then, by
(i), and since Σp

2 [k∗]-MC is in Σp
2 [k∗] by Theorem 31, we obtain Σp

2 [k∗]-completeness of
Σp

2 [k∗]-TM-halt∗ and Σp
2 [k∗]-TM-haltm, for each m ≥ 1.

By (i) and (ii), and by transitivity of fpt-reductions, we have that any parameterized
problem P that is decided by an Σp

2 [k∗]-machine is fpt-reducible to Σp
2 [k∗]-WSat, and

thus is in Σp
2 [k∗]. Conversely, let P be any parameterized problem in Σp

2 [k∗]. Then, by
Σp

2 [k∗]-hardness of Σp
2 [k∗]-WSat≤k, we know that P ≤fpt Σp

2 [k∗]-WSat≤k. By (iii) and
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(iv), we know that P is decided by some Σp
2 [k∗]-machine with a single tape. From this

we conclude that Σp
2 [k∗] is exactly the class of parameterized problems P decided by

some Σp
2 [k∗]-machine.

We give detailed proofs of the Propositions 39–42 that were used in the proof of Theo-
rems 36 and 37. We first prove the following technical lemma.

Lemma 38. Let M be an ∃∀-machine with m tapes and let k, t ∈ N. We can construct
an ∃∀-machine M′ with m tapes (in time polynomial in |(M, k, t)|) such that the following
are equivalent:

• there is an accepting run ρ of M′ with input ε and each computation path in ρ
contains exactly k existential configurations and exactly t universal configurations

• M halts on ε with existential cost k and universal cost t.

Proof. Let M = (S∃, S∀,Σ,∆, s0, F ) be an ∃∀-machine with m tapes. Now construct M =
(S′∃, S′∀,Σ,∆′, s0, F

′) as follows:

S′∃ = { si : s ∈ S∃, i ∈ [k + t] },
S′∀ = { si : s ∈ S∀, i ∈ [k + t] },
∆′ = { (si, a, s′i+1, a

′, d) : (s, a, s′, a′, d) ∈ ∆, i ∈ [k + t− 1] } ∪
{ (si, a, si+1, a,Sm) : s ∈ S∃ ∪ S∀, a ∈ Σm }, and

F ′ = { fk+t : f ∈ F }.

To see that M′ satisfies the required properties, it suffices to see that for each (accepting)
computation path C1 → . . . → Ck′+t′ of M with input ε that contains existential
configurations C1, . . . , Ck′ and universal configurations Ck′+1, . . . , Ck′+t′ for k′ ∈ [k]
and t′ ∈ [t], it holds that

C1
1 → . . .→ Ck

′
k′ → Ck

′+1
k′ → . . .→ Ckk′ → Ck+1

k′+1 → . . .→ Ck+t′
k′+t′ → Ck+t′+1

k′+t′ → . . .→ Ck+t
k′+t′

is an (accepting) computation path of M′ with input ε, where for each i ∈ [k + t] and
each j ∈ [k]′ + t′ we let Cij be the configuration (si, x1, p1, . . . , xm, pm), where Cj =
(s, x1, p1, . . . , xm, pm).

With this technical lemma in place, we can now prove the first statement that we used in
the proof of Theorems 36 and 37.

Proposition 39. Σp
2 [k∗]-TM-halt∗ ≤fpt Σp

2 [k∗]-MC

Proof. Let (M, k, t) be an instance of Σp
2 [k∗]-TM-halt∗, where M = (S∃, S∀,Σ,∆, s0, F )

is an ∃∀-machine with m tapes, and k and t are positive integers. We constuct in fpt-time
an instance (A, ϕ) of Σp

2 [k∗]-MC, such that (M, k, t) ∈ Σp
2 [k∗]-TM-halt∗ if and only

if (A, ϕ) ∈ Σp
2 [k∗]-MC. By Lemma 38, it suffices to construct (A, ϕ) in such a way
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that (A, ϕ) ∈ Σp
2 [k∗]-WSat if and only if there exists an accepting run ρ of M with

input ε such that each computation path of ρ contains exactly k existential configurations
and exactly t universal configurations.

We construct A to be a τ -structure with domain A. We will define the vocabulary τ
below. The domain A of A is defined as follows:

A = S ∪ Σ ∪ {$,�} ∪ {L,R,S} ∪ {0, . . . ,max{m, k + t− 1}} ∪ T,

where T is the set of tuples (a1, . . . , am) ∈ (Σ ∪ {$,�})m and of tuples (d1, . . . , dm) ∈
{L,R,S}m occurring in transitions of ∆. Observe that |A| = O(k + t+ |M|).

We now describe the relation symbols in τ and their interpretation in A. The vocabulary τ
contains the 5-ary relation symbol D (intended as “transition relation”), and the ternary
relation symbol P (intended as “projection relation”), with the following interpretations:

DA = ∆, and
PA = { (j, b, bj) : j ∈ [m], b ∈ T, b = (b1, . . . , bm) }.

Moreover, τ contains the unary relation symbols Rtape, Rcell, Rblank, Rend, Rsymbol, Rinit,
Racc, Rleft, Rright, Rstay, R∃, R∀, Ri for each i ∈ [k+ t− 1], and Ra for each a ∈ Σ, which
are interpreted in A as follows:

RAtape = {1, . . . ,m}, RAcell = {1, . . . , k + t}, RAblank = {�}, RAend = {$}, RAsymbol = Σ,
RAinit = {s0}, RAacc = F,RAleft = {L}, RAright = {R}, RAstay = {S}, RA∃ = S∃, R

A
∀ = S∀,

RAi = {i} for each i ∈ [k + t− 1], and RAa = {a} for each a ∈ Σ.

Next, we define a formula that is intended to provide a fixed interpretation of some
variables that we can use to refer to the elements of the singleton relations of A:

ψconstants = Rblank(z�) ∧Rend(z$) ∧Rblank(z�) ∧Rleft(zleft) ∧Rright(zright) ∧
Rstay(zstay) ∧

∧
i∈[0,k+t−1]

Ri(zi) ∧
∧
a∈Σ

Ra(za).

The formula ϕ that we will construct aims to express that there exist k transitions
(from existential states), such that for any sequence of t− 1 transitions (from universal
states), the entire sequence of transitions results in an accepting state. It will contain
variables si, ti, s′i, t′i, di, for i ∈ [k + t− 1].

The formula ϕ will also contain variables pi,j and qi,j,`, for each k+i ∈ [k+t], each j ∈ [m]
and each ` ∈ [k+ t]. The variables pi,j will encode the position of the tape head for tape j
at the i-th configuration in the computation path, and the variables qi,j,` will encode the
symbol that is at cell ` of tape j at the i-th configuration in the computation path.

The position of the tape heads and the contents of the tapes for configurations 1 to k in
the computation path, will not be encoded by means of variables, but by means of the
formulas ψsymbol,i and ψposition,i, which we define below.
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In addition the formula ϕ will contain variables z�, z$, zinit, zleft, zright, zstay, z1, . . . , zk+t,
za1 , . . . , za|Σ| , where Σ = {a1, . . . , a|Σ|}, that we will use to refer to elements of the
singleton relations of A. We define ϕ as follows:

ϕ = ∃s1, t1, s
′
1, t
′
1, d1, . . . , sk, tk, s

′
k, t
′
k, dk.

∀z�, z$, zinit, zleft, zright, zstay, z1, . . . , zk+t, za1 , . . . , za|Σ| .

∀sk+1, tk+1, s
′
k+1, t

′
k+1, dk+1, . . . , sk+t−1, tk+t−1, s

′
k+t−1, t

′
k+t−1, dk+t−1.

∀pk+1,1, . . . , pk+t,m.qk+1,1,1, . . . , qk+t,m,k+t.ψ,

ψ = ψconstants → (ψ∃-states ∧ ψ∃-tapes ∧ ((ψ∀-states ∧ ψ∀-tapes)→ ψaccept)) ,
ψ∃-states = (s1 = zinit) ∧

∧
i∈[k]

D(si, ti, s′i, t′i, di) ∧
∧

i∈[k]−1
((si+1 = s′i) ∧R∃(si+1)) ,

ψ∀-states =
∧

k+i∈[k+t−1]
D(si, ti, s′i, t′i, di) ∧

∧
i∈[k,k+t−2]

((si+1 = s′i) ∧R∀(si+1)) , and

ψaccept = Racc(s′k+t−1),

where we define the formulas ψ∃-tapes and ψ∀-tapes below. In order to do so, for each i ∈
[k + 1] we define the quantifier-free formulas

ψsymbol,i(w, p, a, vi) and ψposition,i(w, p, vi),

with vi = s1, t1, s
′
1, t
′
1, d1, . . . , si−1, ti−1, s

′
i−1, t

′
i−1, di−1. Intuitively:

• ψsymbol,i(w, p, a, vi) represents whether, starting with empty tapes, whenever the
sequence of transitions in vi has been carried out, then the p-th cell of the w-th
tape contains the symbol a; and

• ψposition,i(w, p, vi) represents whether, starting with empty tapes, whenever the
sequence of transitions in vi has been carried out, then the head of the w-th tape
is at position p.

We define ψsymbol,i(w, p, a, vi) and ψposition,i(w, p, vi) simultaneously by induction on i as
follows:

ψsymbol,1(w, p, a) = Rtape(w) ∧Rcell(p) ∧
(p = z0 → a = z$) ∧ (p 6= z0 → a = z�),

ψposition,1(w, p) = Rtape(w) ∧ (p = z1),

ψsymbol,i+1(w, p, a, vi+1) = Rtape(w) ∧Rcell(p) ∧
((ψposition(w, p, vi) ∧ P (w, t′i, x)) ∨
(¬ψposition(w, p, vi) ∧ ψsymbol,i(w, p, a, vi))),

ψposition,i+1(w, p, vi+1) = Rtape(w) ∧ ψleft,i+1(w, p, vi+1) ∧ ψright,i+1(w, p, vi+1) ∧
ψstay,i+1(w, p, vi+1),
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ψleft,i+1(w, p, vi+1) = P (w, di, zleft) ∧
∨

j∈[i+1]
(ψposition,i(w, zj , vi) ∧ (p = zj−1)),

ψright,i+1(w, p, vi+1) = P (w, di, zright) ∧
∨

j∈[i+1]
(ψposition,i(w, zj , vi) ∧ (p = zj+1)),

and

ψstay,i+1(w, p, vi+1) = P (w, di, zstay) ∧
∨

j∈[i+1]
(ψposition,i(w, zj , vi) ∧ (p = zj)).

Note that for each i ∈ [k], the size of the formulas ψsymbol,i(w, p, a, vi)
and ψposition,i(w, p, vi) only depends on k. We can now define ψ∃-tapes:

ψ∃-tapes = ∀w.∀p.∀a.
∧
i∈[k]

((ψposition,i(w, p, vi) ∧ ψsymbol,i(w, p, a, vi))→ P (w, ti, a)) .

Intuitively, the formulas ψ∃-states and ψ∃-tapes together represent whether the transitions
specified by si, ti, s′i, t′i, di, for i ∈ [k], together constitute a valid (partial) computation
path.

Next, we define the formula ψ∀-tapes:

ψ∀-tapes = ψ∀-tapes-1 ∧ ψ∀-tapes-2 ∧ ψ∀-tapes-3 ∧ ψ∀-tapes-4 ∧ ψ∀-tapes-5,

ψ∀-tapes-1 =
∧

i∈[k+1,k+t]
j∈[m]

Rcell(pi,j) ∧
∧

`∈[k+t]
Rsymbol(qi,j,`)

 ,

ψ∀-tapes-2 =
∧
j∈[m]


∧

`∈[k+1]
a∈Σ

((qk+1,j,` = za)↔ ψsymbol,k+1(zj , zk+1, za, vk+1)) ∧∧
`∈[k+2,k+t]

(qk+1,j,` = z�)

 ,

ψ∀-tapes-3 =
∧
j∈[m]
i∈[k+1]

((pk+1,j = zi)↔ ψposition,k+1(zj , zi, vk+1)) ,

ψ∀-tapes-4 =
∧
j∈[m]

i∈[k+1,k+t−1]
`∈[k+t]

 (P (zj , di, zleft) ∧ (pi,j = z`))→ (pi+1,j = z`−1) ∧
(P (zj , di, zright) ∧ (pi,j = z`))→ (pi+1,j = z`+1) ∧
(P (zj , di, zstay) ∧ (pi,j = z`))→ (pi+1,j = z`) ∧

 , and
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ψ∀-tapes-5 =
∧
j∈[m]

i∈[k+1,k+t−1]
`∈[k+t]
a∈Σ

 ((pi,j 6= z`)→ (qi+1,j,` = qi,j,`)) ∧
((pi,j = z`) ∧ P (zj , ti, za)→ (qi,j,` = za)) ∧
((pi,j = z`) ∧ P (zj , t′i, za)→ (qi+1,j,` = za))

 .

Intuitively, the formulas ψ∀-states and ψ∀-tapes together represent whether the transitions
specified by si, ti, s′i, t′i, di, for k+i ∈ [k+t−1], together constitute a valid (partial) compu-
tation path, extending the computation path represented by the transitions si, ti, s′i, t′i, di,
for i ∈ [k].

It is straightforward to verify that ϕ is (logically equivalent to a formula) of the right
form, containing k′ = 5k existentially quantified variables. Also, it is now straightforward
to verify that (M, k, t) ∈ Σp

2 [k∗]-TM-halt∗ if and only if (A, ϕ) ∈ Σp
2 [k∗]-MC.

Next, we turn our attention to the second statement that we used in the proof of
Theorems 36 and 37.

Proposition 40. For any parameterized problem P that is decided by some Σp
2 [k∗]-

machine with m tapes, it holds that P ≤fpt Σp
2 [k∗]-TM-haltm+1.

Proof. Let P be a parameterized problem, and let M = (S∃, S∀,Σ,∆, s0, F ) be an Σp
2 [k∗]-

machine with m tapes that decides it, i.e., there exists some computable function f and
some polynomial p such that for any instance (x, k) of P we have that any computation
path ofM with input (x, k) has length at most f(k)·p(|x|) and contains at most f(k)·log |x|
non-deterministic existential configurations. We show how to construct in fpt-time for each
instance (x, k) of P an ∃∀-machine M(x,k) with m+1 tapes, and positive integers k′, t ∈ N
such that M(x,k) accepts the empty string with existential cost k′ and universal cost t if
and only if M accepts (x, k).

The idea of this construction is the following. We add to Σ a fresh symbol σ(C1,...,Cu)
for each sequence of possible “transitions” T1, . . . , Tu of M, where u ≤ dlog |x|e. The
machineM(x,k) starts with non-deterministically writing down f(k) symbols σ(T1,...,Tdlog |x|e)
to tape m+ 1 (stage 1). This can be done using k′ non-deterministic existential steps.
Then, using universal steps, it writes down the input (x, k) to its first tape (stage 2). It
continues with simulating the existential steps in the execution of M with input (x, k)
(stage 3): each deterministic existential step can simply be performed by a deterministic
universal step, and each non-deterministic existential step can be simulated by “reading
off” the next configuration from the symbols on tape m+ 1, and transitioning into this
configuration (if this step is allowed by ∆). Finally, the machine M(x,k) simply performs
the universal steps in the execution of M with input (x, k) (stage 4).

Let (x, k) be an arbitrary instance of P . We construct M(x,k) = (S′∃, S′∀,Σ′,∆′, s′0, F ′).
We split the construction of M(x,k) into several steps that correspond to the various
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stages in the execution of M(x,k) described above. We begin with defining Σ′:

Σ′ = Σ ∪ {σ(T1,...,Tu) : u ∈ [0, dlog |x|e], i ∈ [u],
Tu = (s, a, d), s ∈ S, a ∈ Σm, d ∈ {L,R,S}m }.

Observe that for each s ∈ S and each a ∈ Σm, each Tu = (s′, a′, d) specifies a tu-
ple (s, a, s′, a′, d) that may or may not be contained in ∆, i.e., a “possible transition.”
Note that also σ() ∈ Σ′, where () denotes the empty sequence. Moreover, it is straightfor-
ward to verify that |Σ′| = |Σ|+O(|x|).

We now construct the formal machinery that executes the first stage of the execution
of M(x,k). We let:

S1,∃ = {s1,guess, s1,done}, and
∆′1 = { (s1,guess, a, s1,guess, a

′, d) : a = �m+1, a′ = �mσ(T1,...,Tdlog |x|e),

i ∈ [dlog |x|e], Ti ∈ S × Σm × {L,R,S}m, d = SmR } ∪
{ (s1,guess, a, s1,done, a, d) : a = �m+1, d = SmL } ∪
{ (s1,done, a, s1,done, a, d) : a ∈ {�}m × Σ′, d = SmL } ∪
{ (s1,done, a, s2,0, a, d) : a = �m$, d = SmR },

where we will define s2,0 ∈ S′∀ below (s2,0 will be the first state of the second stage
of M(x,k)). Furthermore, we let:

s′0 = s1,guess.

The intuition behind the above construction is that state s1,guess can be used as many
times as necessary to write the symbol σ(T1,...,Tdlog |x|e) to the (m+ 1)-th tape, for some
sequence T1, . . . , Tdlog |x|e of “possible transitions.” Then, the state s1,done moves the tape
head of tape m+ 1 back to the first position, in order to continue with the second stage
of the execution of M(x,k).

We continue with the definition of those parts of M(x,k) that perform the second stage
of the execution of M(x,k), i.e., writing down the input (x, k) to the first tape. Let the
sequence (σ1, . . . , σn) ∈ Σn denote the representation of (x, k) using the alphabet Σ. We
define:

S2,∀ = { s2,i : i ∈ [n] } ∪ {s2,n+1 = s2,done}, and
∆′2 = { (s2,i, a, s2,i+1, a

′, d) : i ∈ [n], a ∈ �mσ, σ ∈ Σ′, a = σi�m−1σ, d = R(S)m } ∪
{ (s2,done, a, s2,done, a, d) : a ∈ Σ× {�}m−1 × Σ′, d = LSm } ∪
{ (s2,done, a, s3,0, a, d) : a = {$} × {�}m−1 × Σ′, d = RSm },

where we will define s3,0 ∈ S′∀ below (s3,0 will be the first state of the second stage
of M(x,k)). Intuitively, each state s2,i writes the i-th symbol of the representation of (x, k)
(that is, symbol σi) to the first tape, and state s2,n+1 = s2,done moves the tape head of
the first tape back to the first position. Note that the states in S2,∀ are deterministic.
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Next, we continue with the definition of those parts of M(x,k) that perform the third
stage of the execution of M(x,k), i.e., simulating the existential steps in the execution
of M with input (x, k). We define:

S3,∀ = S∃, and
∆′3 = {∆′3,s : s ∈ S∃ },

where for each s ∈ S∃ we define the set ∆′3,s ⊆ ∆′3 as follows:

∆′3,s = {∆′3,s,a : a ∈ Σm },

and where for each s ∈ S∃ and each a ∈ Σm we define:

∆(s,a) = { (s′, a′, d) : (s, a, s′, a′, d) ∈ ∆ },

∆′3,s,a =



{ (s, aσ′, s′, a′σ′, dS) : σ′ ∈ Σ′ } if ∆(s,a) = {(s′, a′, d)},
{ (s, aσ(T1,...,Tu), s

′, a′σ(T2,...,Tu), dS) :
u ∈ [dlog |x|e],
T1 = (s′, a′, d), (s, a, s′, a′, d) ∈ ∆ } ∪
{(s, aσ(), s, a�,SmR)}

if |∆(s,a)| > 1,

∅ otherwise.

Observe that there exist transitions from states in S3,∀ to states in S∀; this will be
unproblematic, since we will have that S∀ ⊆ S′∀ (see below). Intuitively, each state in S∃
that is deterministic in M simply performs its behavior from M on the first m tapes, and
ignores tape m+ 1. Each state in S∃ that would lead to non-deterministic behavior in M,
performs the transition T1 that is written as first “possible transition” in the currently
read symbol σ(T1,...,Tu) on tape m+ 1 (if this transition is allowed by ∆), and removes T1
from tape m+ 1 (by replacing σ(T1,...,Tu) by σ(T2,...,Tu)). Note that the states in S3,∀ are
deterministic.

We continue with formally defining the part of M(x,k) that performs stage 4, i.e., per-
forming the (possibly non-deterministic) universal steps in the execution of M with
input (x, k). We define:

S4,∀ = S∀, and
∆′4 = { (s, aδ′, s′, a′δ′, dS) : s ∈ S∀, a ∈ Σm, (s, a, s′, a′, d) ∈ ∆ }.

Intuitively, each state in S∀ simply performs its behavior from M on the first m tapes,
and ignores tape m+ 1. Note that the states in S4,∀ may be non-deterministic.

We conclude our definition of M(x,k) = (S′∃, S′∀,Σ′,∆′, s′0, F ′):

S′∃ = S1,∃,

S′∀ = S2,∀ ∪ S3,∀ ∪ S4,∀,

∆′ = ∆′1 ∪∆′2 ∪∆′3 ∪∆′4,
s′0 = s1,guess (as mentioned above), and
F ′ = F.
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Finally, we define k′ and t:

k′ = 2f(k) + 2 and t = 2|(x, k)|+ f(k) · (p(|x|) + 1) + 2.

Intuitively, M′ needs k′ = 2f(k) + 2 existential steps to write down f(k) sym-
bols σ(T1,...,Tdlog |x|e) and return the tape head of tape m + 1 to the first position. It
needs 2|(x, k)|+ 2 steps to write the input (x, k) to the first tape and return the tape
head of tape 1 to the first position. It needs ≤ f(k) · p(|x|) + f(k) steps to simulate the
existential steps in the execution of M with input (x, k), and to perform the universal
steps in the execution of M with input (x, k).

This concludes our construction of the instance (M(x,k), k′, t) of Σp
2 [k∗]-TM-haltm+1.

It is straightforward to verify that (x, k) ∈ P if and only if (M(x,k), k′, t) ∈ Σp
2 [k∗]-TM-

haltm+1, by showing that M accepts (x, k) if and only if (M(x,k), k′, t) ∈ Σp
2 [k∗]-TM-

haltm+1.

Then, we prove the third statement that we used in the proof of Theorems 36 and 37.

Proposition 41. There is an Σp
2 [k∗]-machine with a single tape that decides Σp

2 [k∗]-
WSat≤k.

Proof. We describe an Σp
2 [k∗]-machine M with 1 tape for Σp

2 [k∗]-WSat≤k, that accepts
the language Σp

2 [k∗]-WSat≤k. We will not spell out the machine M = (S∃, S∀,Σ,∆, s0, F )
in full detail, but describe M in such detail that the working of M is clear and writing
down the complete formal description of M can be done straightforwardly.

We assume that instances (ϕ, k) are encoded as strings σ1σ2 . . . σn over an alphabet Σ′ ⊆ Σ.
We denote the representation of an instance (ϕ, k) using the alphabet Σ′ by Repr(ϕ, k).
Also, for any Boolean formula ψ(Z) over variables Z and any (partial) assignment γ :
Z → B, we let Repr(ψ, γ) denote the representation (using alphabet Σ) of the formula ψ,
where each variable z ∈ Dom(γ) is replaced by the constant value γ(z).

Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat≤k, where ϕ = ∃X.∀Y.ψ, X = {x1, . . . , xn},

and Y = {y1, . . . , ym}. In the initial configuration of M, the tape contains the word
Repr(ϕ, k). We construct M in such a way that it proceeds in seven stages. Intuitively,
in stage 1, M adds �Repr(ψ, ∅) to the right of the tape contents. We will refer to this
word Repr(ψ, ∅) as the representation of ψ. In stage 2, it appends the word (�1 . . . 1),
containing dlogne = u 1s, k times to the right of the tape contents. Next, in stage 3, M
(non-deterministically) overwrites each such word (�1 . . . 1) by (�b1, . . . , bu), for some
bits b1, . . . , bu ∈ B. Then, in stage 4, it repeatedly reads some word (�b1, . . . , bu) written
at the rightmost part of the tape, and in the representation of ψ, written as “second
word” on the tape, instantiates variable xi to the value 1, where b1 . . . bu is the binary
representation of i. After stage 4, at most k variables xi are instantiated to 1. Then, in
stage 5, M instantiates the remaining variables xi in the representation of ψ to the value 0.
These first five stages are all implemented using states in S∃. The remaining two stages
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are implemented using states in S∀. In stage 6, M non-deterministically instantiates each
variable yj in the representation of ψ to some truth value 0 or 1. Finally, in stage 7, the
machine verifies whether the fully instantiated formula ψ evaluates to true or not, and
accepts if and only if the formula ψ evaluates to true.

We now give a more detailed description of the seven stages of M, by describing what
each stage does to the tape contents, and by giving bounds on the number of steps that
each stage needs. In the initial configuration, the tape contents w0 are as follows (we
omit trailing blank symbols):

w0 = $Repr(ϕ, k).

In stage 1, M transforms the tape contents w0 to the following contents w1:

w1 = $Repr(ϕ, k)�Repr(ψ, ∅),

where ∅ denotes the empty assignment to the variables X ∪ Y . This addition to the tape
contents can be done by means of O(|Repr(ϕ, k)|) deterministic existential steps.

Next, in stage 2, M adds to the tape contents k words of the form (�1 . . . 1), each
containing dlogne 1s, resulting in the tape contents w2 after stage 2:

w2 = $Repr(ϕ, k)�Repr(ψ, ∅)�
dlogne︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸
word 1

�

dlogne︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸
word 2

� . . .�

dlogne︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

word k

.

This addition to the tape contents can be done by means of O(k · |Repr(ϕ, k)|2) deter-
ministic existential steps.

Then, in stage 3, M proceeds non-deterministically. It replaces each word of the
form (�1 . . . 1) that were written to the tape in stage 2 by a word of the form (�b1, . . . , bu),
for some bits b1, . . . , bu ∈ B ⊆ Σ. Here we let u = dlogne. Resultingly, the tape con-
tents w3 after stage 3 are:

w3 = $Repr(ϕ, k)�Repr(ψ, ∅)�b11 . . . b1u�b21 . . . b2u� . . .�bk1 . . . b
k
u,

where for each i ∈ [k] and each j ∈ [u], bij ∈ B. This transformation of the tape contents
can be done by means of O(k · dlogne) non-deterministic existential steps.

In stage 4, M repeatedly performs the following transformation of the tape contents, until
all words �bi1 . . . biu are removed. The tape contents w′3 before each such transformation
are as follows:

w′3 = $Repr(ϕ, k)�Repr(ψ, α)�b11 . . . b1u�b21 . . . b2u� . . .�b`1 . . . b
`
u,

for some partial assignment α : X → B, and some ` ∈ [k]. Each such transformation
functions in such a way that the tape contents w′′3 afterwards are:

w′′3 = $Repr(ϕ, k)�Repr(ψ, α′)�b11 . . . b1u�b21 . . . b2u� . . .�b`−1
1 . . . b`−1

u ,
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where the bit string b`1 . . . b`u is the binary representation of the integer i ≤ 2u, and where
the assignment α′ is defined for all j ∈ [n], by:

α′(xj) =


α(xj) if xj ∈ Dom(α),
1 if xj 6∈ Dom(α) and j = i,
undefined otherwise.

Each such transformation can be implemented by means of O(|Repr(ψ, α)|2 · kdlogne)
deterministic existential steps. After all the k transformation of stage 4 are performed,
the tape contents w4 are thus as follows:

w4 = $Repr(ϕ, k)�Repr(ψ, αpos),

where αpos : X → B is the partial assignment such that Dom(αpos) = {i1, . . . , ik},
and αpos(xij ) = 1 for each j ∈ [k], where for each j ∈ [k], the integer ij is such
that bj1 . . . bju is the binary representation of ij . The operations in stage 4 can be
implemented by means of O(|Repr(ψ, ∅)|2 · k2dlogne) deterministic existential steps.

Next, in stage 5, the machine M transforms the tape contents by modifying the
word Repr(ψ, αpos), resulting in w5:

w5 = $Repr(ϕ, k)�Repr(ψ, α),

where the complete assignment α′ : X → B is defined as follows:

α(x) =
{
αpos(x) if x ∈ Dom(αpos),
0 otherwise.

This can be done using O(|Repr(ψ, αpos)|) non-deterministic existential steps. Note that
the assignment α has weight at most k.

Now, in stage 6, the machine M alternates to universal steps. It non-deterministically
transforms the tape contents using O(|Repr(ψ, α)|) non-deterministic universal steps,
resulting in the tape contents w6:

w6 = $Repr(ϕ, k)�Repr(ψ, α ∪ β),

for some complete assignment β : Y → B.

Finally, in stage 7, M checks whether the assignment α ∪ β satisfies the formula ψ. This
check can be done by means of O(|Repr(ψ, α ∪ β)|) deterministic universal steps. The
machine M accepts if and only if α ∪ β satisfies ψ.

It is straightforward to verify that there exists a computable function f and a polynomial p
such that each computation path of M with input (ϕ, k) has length at most f(k) · p(|ϕ|)
and contains at most f(k) · log |ϕ| non-deterministic existential configurations. Also,
it is straightforward to verify that M accepts an input (ϕ, k) if and only if (ϕ, k) ∈
Σp

2 [k∗]-WSat≤k. This concludes our proof that the Σp
2 [k∗]-machine M decides Σp

2 [k∗]-
WSat≤k.
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We now prove the fourth statement that we used in the proof of Theorems 36 and 37.

Proposition 42. Let A and B be parameterized problem, and let m ∈ N be a positive
integer. If B is decided by some Σp

2 [k∗]-machine with m tapes, and if A ≤fpt B, then A
is decided by some Σp

2 [k∗]-machine with m tapes.

Proof. Let R be the fpt-reduction from A to B, and let M be an algorithm that de-
cides B and that can be implemented by an Σp

2 [k∗]-machine with m tapes. Clearly, the
composition of R and M is an algorithm that decides A. It is straightforward to verify
that the composition of R and M can be implemented by an Σp

2 [k∗]-machine with m
tapes.

Finally, we state the result known from the literature that we used in the proof of
Theorems 36 and 37.

Proposition 43 ([122, Theorems 8.9 and 8.10]). Let m ≥ 1 be a (fixed) positive integer.
For each ATM M with m tapes, there exists an ATM M′ with 1 tape such that:

• M and M′ are equivalent, i.e., they accept the same language;

• M′ simulates n steps of M using O(n2) steps; and

• M′ simulates existential steps of M using existential steps, and simulates universal
steps of M using universal steps.

Corollary 44. Σp
2 [k∗]-TM-halt2 ≤fpt Σp

2 [k∗]-TM-halt1.

This concludes our detailed treatment of the proof of Theorems 36 and 37.

6.3 The Σp
2[∗k, t] Hierarchy

We now turn our attention to the ∗-k hierarchy. Unlike in the k-∗ hierarchy, in the
canonical quantified Boolean satisfiability problems of the ∗-k hierarchy, we cannot add
auxiliary variables to the second quantifier block whose truth assignment is not restricted.
Therefore, the proof technique used to show Theorem 27 cannot be used to show a
collapse of the ∗-k hierarchy. Due to the similarity to the W-hierarchy, it is plausible
that the classes of the ∗-k hierarchy are distinct.

In this section, we give normalization results for the classes Σp
2 [∗k, 1] and Σp

2 [∗k,P].
We also give a characterization of the class Σp

2 [∗k,P] in terms of alternating Turing
machines. In addition, we show completeness results for the class Σp

2 [∗k,P] for two
parameterized variants of our running example: ASP-consistency(#disj.rules) and
ASP-consistency(#non-dual-normal.rules).
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6.3.1 A Normalization Result for Σp
2[∗k, 1]

We begin with showing normalization results for (the canonical problem of) the parame-
terized complexity class Σp

2 [∗k, 1]. In particular, we show that the problem Σp
2 [∗k]-WSat

is already Σp
2 [∗k, 1]-hard when the input circuits are restricted to formulas in c-DNF,

for any constant c ≥ 2. For the sake of convenience, we switch our perspective to the
co-problem Πp

2 [∗k]-WSat when stating and proving the following results. Because we
can make heavy use of the original normalization proof for the class W[1] by Downey and
Fellows [65, 67, 66] to prove this normalization result, we provide only proof sketches.

Lemma 45. For any u ≥ 1, Πp
2 [∗k]-WSat(circ1,u) ≤fpt Πp

2 [∗k]-WSat(s-CNF), where
s = 2u + 1.

Proof (sketch). The reduction is completely analogous to the reduction used in the proof
of Downey and Fellows [65, Lemma 2.1], where the presence of universally quantified
variables is handled in four steps. In Steps 1 and 2, in which only the form of the
circuit is modified, no changes are needed. In Step 3, universally quantified variables can
be handled exactly as existentially quantified variables. Step 4 can be performed with
only a slight modification, the only difference being that universally quantified variables
appearing in the input circuit will also appear in the resulting clauses that verify whether
a given product-of-sums or sum-of-products is satisfied. It is straightforward to verify
that this reduction with the mentioned modifications works for our purposes.

Theorem 46. Πp
2 [∗k]-WSat(2CNF) is Πp

2 [∗k, 1]-complete.

Proof (sketch). Clearly Πp
2 [∗k]-WSat(2CNF) is in Πp

2 [∗k, 1], since a 2CNF for-
mula can be considered as a constant-depth circuit of weft 1. To show
that Πp

2 [∗k]-WSat(2CNF) is Πp
2 [∗k, 1]-hard, we give an fpt-reduction from

Πp
2 [∗k]-WSat(circ1,u) to Πp

2 [∗k]-WSat(2CNF), for arbitrary u ≥ 1. By Lemma 45, we
know that we can reduce Πp

2 [∗k]-WSat(circ1,u) to Πp
2 [∗k]-WSat(s-CNF), for s = 2u+1.

We continue the reduction in multiple steps. In each step, we let C denote the circuit
resulting from the previous step, and we let Y denote the universally quantified and X the
existentially quantified variables of C, and we let k denote the parameter value. We only
briefly describe the last two steps, since these are completely analogous to constructions
in the work of Downey and Fellows [67].

Step 1: contracting the universally quantified variables. This step transforms C
into a CNF formula C ′ such that each clause contains at most one variable in Y such
that (C, k) is a yes-instance if and only if (C ′, k) is a yes-instance. We introduce new
universally quantified variables Y ′ containing a variable y′A for each set A of literals
over Y of size at least 1 and at most s. Now, it is straightforward to construct a set D of
polynomially many ternary clauses over Y and Y ′ such that the following property holds.
An assignment α to Y ∪ Y ′ satisfies D if and only if for each subset A = {l1, . . . , lb} of
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literals over Y it holds that α(l1) = α(l2) = . . . = α(lb) = 1 if and only if α(y′A) = 1.
Note that we do not directly add the set D of clauses to the formula C ′.

We introduce k − 1 new existentially quantified variables x?1, . . . , x?k−1. We add binary
clauses to C ′ that enforce that the variables x?1, . . . , x?k−1 all get the same truth assignment.
Also, we add binary clauses to C ′ that enforce that each x ∈ X is set to false if x?1 is set
to true.

We introduce |D| existentially quantified variables, including a variable x′′d for each
clause d ∈ D. For each d ∈ D, we add the following clauses to C ′. Let d = (l1, l2, l3),
where each li is a literal over Y ∪ Y ′. We add the clauses (¬x′′d ∨ ¬l1), (¬x′′d ∨ ¬l2)
and (¬x′′d ∨ ¬l3), enforcing that the clause d cannot be satisfied if x′′d is set to true.

We then modify the clauses of C as follows. Let c = (lx1 , . . . , lxs1 , l
y
1 , . . . , l

y
s2) be a clause

of C, where lx1 , . . . , lxs1 are literals over X, and ly1 , . . . , lys2 are literals over Y . We replace c
by the clause (lx1 , . . . , lxs1 , x

?
1, y
′
B), where B = {ly1 , . . . , lys2}. Clauses c of C that contain

no literals over the variables Y remain unchanged.

The idea of this reduction is the following. If x?1 is set to true, then exactly one of the
variables x′′d must be set to true, which can only result in an satisfying assignment if the
clause d ∈ D is not satisfied. Therefore, if an assignment α to the variables Y ∪ Y ′ does
not satisfy D, there is a satisfying assignment of weight k that sets both x?1 and x′′d to
true, for some d ∈ D that is not satisfied by α. Otherwise, we know that the value α
assigns to variables y′A corresponds to the value α assigns to

∧
a∈A a, for A ⊆ Lit(Y ).

Then any satisfying assignments of weight k for C is also a satisfying assignments of
weight k for C ′.

Step 2: making C antimonotone in X. This step transforms C into a circuit C ′
that has only negative occurrences of existentially quantified variables, and transforms k
into k′ depending only on k, such that (C, k) is a yes-instance if and only if (C ′, k′) is
a yes-instance. The reduction is completely analogous to the reduction in the proof of
Downey and Fellows [67, Theorem 10.6].

Step 3: contracting the existentially quantified variables. This step trans-
forms C into a circuit C ′ in CNF that contains only clauses with two variables in X
and no variables in Y and clauses with one variable in X and one variable in Y , and
transforms k into k′ depending only on k, such that (C, k) is a yes-instance if and only
if (C ′, k′) is a yes-instance. The reduction is completely analogous to the reduction in
the proof of Downey and Fellows [67, Theorem 10.7].

Corollary 47. For any fixed integer r ≥ 2, the problem Σp
2 [∗k]-WSat(r-DNF) is

Σp
2 [∗k, 1]-complete.
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6.3.2 A Normalization Result for Σp
2[∗k, P]

Next, we provide a normalization result for Σp
2 [∗k,P]. In order to do so, we will need

some definitions. Let C be a quantified Boolean circuit over two disjoint sets X and Y
of variables that is in negation normal form. We say that C is monotone in the variables
in Y if the only negation nodes that occur in the circuit C ′ have variables in X as inputs,
i.e., the variables in Y can appear only positively in the circuit. Then, the following
restriction of Σp

2 [∗k]-WSat is already Σp
2 [∗k,P]-hard.

Proposition 48. The problem Σp
2 [∗k]-WSat is Σp

2 [∗k,P]-hard, even when restricted
to quantified circuits that are in negation normal form and that are monotone in the
universal variables.

Proof. We give an fpt-reduction from the problem Σp
2 [∗k]-WSat to the problem

Σp
2 [∗k]-WSat restricted to circuits that are monotone in the universal variables. Let (C, k)

be an instance of Σp
2 [∗k]-WSat, where C is a quantified Boolean circuit over the set X

of existential variables and the set Y of universal variables, where X = {x1, . . . , xn} and
where Y = {y1, . . . , ym}. We construct an equivalent instance (C ′, k) of Σp

2 [∗k]-WSat
where C ′ is a quantified Boolean circuit over the set X of existential variables and the
set Y ′ of universal variables, and where the circuit C ′ is monotone in Y ′. We may assume
without loss of generality that C is in negation normal form. If this is not the case, we
can simply transform C into an equivalent circuit that has this property using the De
Morgan rule. The form of the circuit C is depicted in Figure 6.1.

This construction bears some resemblance to the construction used in a proof by Flum
and Grohe [85, Theorem 3.14]. The plan is to replace the variables in Y by k copies of
them, grouped in sets Y 1, . . . , Y k of new variables. Each assignment of weight k to the
new variables that sets a copy of a different variable to true in each set Y i corresponds
exactly to an assignment of weight k to the original variables in Y . Moreover, we will
ensure that each assignment of weight k to the new variables that does not set a copy of a
different variable to true in each set Y i satisfies the newly constructed circuit. Using these
new variables we can then construct internal nodes yj and y′j that, for each assignment to
the new input nodes Y ′, evaluate to the truth value assigned to yj and ¬yj , respectively,
by the corresponding truth assignment to the original input nodes Y .

We will describe this construction in more detail. The construction is also depicted in
Figure 6.2. We let Y ′ = { yij : i ∈ [k], j ∈ [m] }. We introduce a number of new internal
nodes. For each j ∈ [m], we introduce an internal node yj , that is the disjunction of
the input nodes yij , for i ∈ [k]. That is, the internal node yj is true if and only if yij is
true for some i ∈ [k]. Intuitively, this node yj corresponds to the input node yj in the
original circuit C. Moreover, we introduce an internal node y′j,i for each j ∈ [m] and
each i ∈ [k], that is the disjunction of yij′ , for each j′ ∈ [m] such that j 6= j′. That is,
the node y′j,i is true if and only if yij′ is true for some j′ that is different from j. Then,
we introduce the node y′j , for each j ∈ [m], that is the conjunction of the nodes y′j,i
for i ∈ [k]. That is, the node y′j is true if and only if for each i ∈ [k] there is some j′ 6= j

117



6. A New Completeness Theory

for which the input node yij is true. Intuitively, this node y′j corresponds to the negated
input node ¬yj in the original circuit C. Also, for each i ∈ [k] and each j, j′ ∈ [m]
with j < j′, we add an internal node zj,j

′

i that is the conjunction of the input nodes yij
and yij′ . Then, for each i ∈ [k] we add the internal node zi that is the conjunction of all
nodes zj,j

′

i , for j, j′ ∈ [m], j < j′. Intuitively, zi is true if and only if at least two input
nodes in the set Yi are set to true. In addition, we add a subcircuit B that acts on the
nodes y′1, . . . , y′m, and that is satisfied if and only if at least m− k+ 1 of the nodes y′j are
set to true. It is straightforward to construct such a circuit B in polynomial time. Then,
we add the subcircuit C with input nodes x1, . . . , xn, negated input nodes ¬x1, . . . ,¬xn,
where the input nodes y1, . . . , ym are identified with the internal nodes y1, . . . , ym in
the newly constructed circuit C ′, and where the negated input nodes ¬y1, . . . ,¬ym are
identified with the internal nodes y′1, . . . , y′m in the newly constructed circuit C ′. Finally,
we let the output node be the disjunction of the nodes z1, . . . , zk and the output nodes
of the subcircuits C and B. Since C is a circuit in negation normal form, the circuit C ′
is monotone in Y ′. We claim that for each assignment α : X → B it holds that the
circuit C[α] is satisfied by all assignments of weight k if and only if C ′[α] is satisfied by
all assignments of weight k.

x1 . . . xn¬x1. . .¬xn y1 . . . ym¬y1. . .¬ym

C

Figure 6.1: The original quantified Boolean circuit C in the proof of Proposition 48.

(⇒) Let α : X → B be an arbitrary truth assignment. Assume that C[α] is satisfied by
all truth assignments β : Y → B of weight k. We show that C ′[α] is satisfied by all truth
assignments β′ : Y ′ → B of weight k. Let β′ : Y ′ → B be an arbitrary truth assignment of
weight k. We distinguish several cases: either (i) for some i ∈ [k] there are some j, j′ ∈ [m]
with j < j′ such that β′(yij) = β′(yij′) = 1, or (ii) for each i ∈ [k] there is exactly one `i
such that β′(yi`i) = 1 and for some i, i′ ∈ [k] with i < i′ it holds that `i = `i′ , or (iii) for
each i ∈ [k] there is exactly one `i such that β′(yi`i) = 1 and for each i, i′ ∈ [k] with i < i′

it holds that `i 6= `i′ . In case (i), we know that the assignment β′ sets the node zj,j
′

i

to true. Therefore, β′ sets the node zi to true, and thus satisfies the circuit C ′[α]. In
case (ii), we know that β′ sets y′j to true for at least m − k + 1 different values of j.
Therefore, β′ satisfies the subcircuit B, and thus satisfies C ′[α]. Finally, in case (iii), we
know that β′ sets exactly k different internal nodes yj to true, and for each j ∈ [m] sets
the internal node y′j to true if and only if it sets yj to false. Then, since C[α] is satisfied
by all truth assignments of weight k, we know that β′ satisfies the subcircuit C, and thus
satisfies C ′[α]. Since β′ was arbitrary, we can conclude that C ′[α] is satisfied by all truth
assignments β′ : Y ′ → B of weight k.
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y1
1 . . . y1

m y2
1 . . . y2

m
. . . yk1

. . . ykm

∨
y1

. . . ∨
ym

∧y′1

∨
y′1,1

. . . ∨
y′1,k

. . . ∧ y′m

∨
y′m,1

. . . ∨
y′m,k

∨
z1

. . . ∨
zk

∧
z1,1
1

. . . ∧
zm−1,m
1

. . . ∧
z1,1
k

. . . ∧
zm−1,m
k

C
B

∨

Figure 6.2: The constructed quantified Boolean circuit C ′ in the proof of Proposition 48.

(⇐) Let α : X → B be an arbitrary truth assignment. Assume that C ′[α] is satisfied
by all truth assignments β′ : Y ′ → B of weight k. We show that C[α] is satisfied by
all truth assignments β : Y → B of weight k. Let β : Y → B be an arbitrary truth
assignment of weight k. We now define the truth assignment β′ : Y ′ → B as follows.
Let {y`1 , . . . , y`k} = { yj : j ∈ [m], β(yj) = 1 }. For each i ∈ [k] and each j ∈ [m] we
let β′(yij) = 1 if and only if j = `i. Clearly, β′ has weight k. Moreover, the assignment β′
sets the nodes z1, . . . , zk to false. Furthermore, it is the case that β′ sets the internal
node yj in C ′ to true for exactly those j ∈ [m] for which β(yj) = 1, and it sets the internal
node y′j in C ′ to true for exactly those j ∈ [m] for which β(yj) = 0. Thus, β′ sets (the
output node of) the subcircuit B to false. Therefore, since β′ satisfies the circuit C ′[α],
we can conclude that β′ satisfies the subcircuit C, and thus that β satisfies C[α]. Since β
was arbitrary, we can conclude that C[α] is satisfied by all truth assignments β : Y → B
of weight k.

6.3.3 Answer Set Programming and Σp
2[∗k, P]-Completeness

In this section, we show that two parameterized variants of our running example—ASP-
consistency(#disj.rules) and ASP-consistency(#non-dual-normal.rules)—are com-
plete for the parameterized complexity class Σp

2 [∗k,P]. We begin with the parameterized
problem ASP-consistency(#disj.rules).

Theorem 49. ASP-consistency(#disj.rules) is Σp
2 [∗k,P]-complete.

Proof. In order to show hardness, we give an fpt-reduction from Σp
2 [∗k]-WSat. Let (C, k)
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be an instance of Σp
2 [∗k]-WSat, where C is a quantified Boolean circuit over existen-

tial variables X and universal variables Y , where X = {x1, . . . , xn}, and where Y =
{y1, . . . , ym}. By Proposition 48, we may assume without loss of generality that C is in
negation normal form and that it is monotone in Y , i.e., that the variables y1, . . . , ym
occur only positively in C. We construct a disjunctive program P as follows. We consider
the variables in X and Y as atoms. In addition, we introduce fresh atoms v1, . . . , vn, w,
and yji for all j ∈ [k], i ∈ [m]. Also, for each internal node g of C, we introduce a fresh
atom zg. We let P consist of the rules described as follows:

xi ← not vi for i ∈ [n]; (6.13)
vi ← not xi for i ∈ [n]; (6.14)

yj
1 ∨ · · · ∨ yj

m ← for j ∈ [k]; (6.15)
yi ← yj

i for i ∈ [m]; (6.16)
yj

i ← w for i ∈ [m] and j ∈ [k]; (6.17)

w ← yj
i , y

j′

i for i ∈ [m], j, j′ ∈ [k] and j < j′; (6.18)
zg ← w for each internal node g of C; (6.19)
zg ← σ(g1), . . . , σ(gu) for each conjunction node g of C;

with inputs g1, . . . , gu (6.20)
zg ← σ(gi) for each disjunction node g of C

with inputs g1, . . . , gu, and each i ∈ [u]; (6.21)
w ← zo where o is the output node of C; (6.22)
w ← not w. (6.23)

Here, we define the following mapping σ from nodes of C to variables in V . For each
non-negated input node xi ∈ X, we let σ(xi) = xi. For each negated input node ¬xi,
for xi ∈ X, we let σ(¬xi) = vi. For each input node yj ∈ Y , we let σ(y) = yj . For
each internal node g, we let σ(g) = zg. Intuitively, vi corresponds to ¬xi. One of the
main differences with the reduction of Eiter and Gottlob [71] is that we use the rules
in (6.15)–(6.18) to let the variables yi represent an assignment of weight k to the variables
in Y . Another main difference is that we encode an arbitrary Boolean circuit, rather
than just a DNF formula, in the rules (6.19)–(6.22). Note that P has k disjunctive rules,
namely the rules (6.15). We show that (C, k) ∈ Σp

2 [∗k]-WSat if and only if P has an
answer set.

(⇒) Assume there exists an assignment α : X → B such that for each assignment β :
Y → B of weight k it holds that α∪β satisfies C. We show that M = {xi : α(xi) = 1, i ∈
[n] } ∪ { yji , yi : i ∈ [m], j ∈ [k] } ∪ { zg : g an internal node of C } ∪ {w} is an answer set
of P . We have that PM consists of Rules (6.15)–(6.22), the rules (xi ←) for all i ∈ [n] such
that α(xi) = 1, and the rules (vi ←) for all i ∈ [n] such that α(xi) = 0. Clearly, M is a
model of PM . We show thatM is a minimal model of PM . AssumeM ′ (M is a minimal
model of PM . If M ′ does not coincide with M on the atoms xi and vi, then M ′ is not a
model of PM . If w ∈M ′, then by Rules (6.16), (6.17) and (6.19),M ′ = M . Therefore, w 6∈
M ′. By Rule (6.15), we have that y1

i1 , y
2
i2 , . . . , y

k
ik
∈ M ′, for some i1, . . . , ik ∈ [m]
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with i1, . . . , ik. By Rule (6.18), we know that i1, . . . , ik are all different, since otherwise
it would have to hold that w ∈ M ′. By Rule (6.16), it holds that yi1 , . . . , yik ∈ M ′.
By minimality of M ′, we know that { i ∈ [m] : i 6∈ {i1, . . . , ik} } ∩M ′ = ∅. Define the
assignment γ : X ∪Y → B by letting γ(xi) = 1 if and only if xi ∈M ′ and γ(yi) = 1 if and
only if yi ∈M ′. Clearly, γ coincides with α on X, and γ assigns exactly k variables yj
to true. Now, since (C, k) ∈ Σp

2 [∗k]-WSat, we know that γ satisfies C. Using the
Rules (6.20) and (6.21), we can show by an inductive argument that for each internal
node g of C that is set to true by γ it must hold that zg ∈M ′. Since γ satisfies C, it sets
the output node o of C to true, and thus by Rule (6.22), we know that w ∈M ′. This is
a contradiction. From this we can conclude that no model M ′ (M of PM exists, and
thus M is an answer set of P .

(⇐) Assume P has an answer set M . We know that w ∈ M , since otherwise (w ←)
would be a rule of PM , and then M would not be a model of PM . Then, by
Rules (6.16) and (6.17), also yi, yji ∈ M for all i ∈ [m] and j ∈ [k]. We show that for
each i ∈ [n] it holds that |M∩{xi, vi}| = 1. Assume that for some i ∈ [n],M∩{xi, vi} = ∅.
Then (xi ←) and (vi ←) would be rules of PM , and then M would not be a model of PM ,
which is a contradiction. Assume instead that {xi, vi} ⊆M . Then PM would contain no
rules with xi and vi in the head, and hence M would not be a minimal model of PM ,
which is a contradiction.

We now construct an assigment α : X → B such that for all assignments β : Y → B of
weight k it holds that ψ[α ∪ β] evaluates to true. Define α by letting α(xi) = 1 if and
only if xi ∈M . Now let β be an arbitrary truth assignment to Y of weight k. We show
that α ∪ β satisfies C. We proceed indirectly, and assume to the contrary that α ∪ β
does not satisfy C. We construct a model M ′ ( M of PM . We let yi1 , . . . , yik denote
the k variables yi such that β(yi) = 1. We let M ′ consist of (M ∩ {xi, vi : i ∈ [n] }),
of { y`i` , yi` : ` ∈ [k] }, and of { zg : g an internal node of C set to true by α ∪ β }. For all
rules of PM other than Rules (6.20)–(6.22), it is clear that M ′ satisfies them. It holds
that M ′ also satisfies Rules (6.20)–(6.21), since M ′ contains zg for all internal nodes g
of C that are satisfied by α∪β. Then, since α∪β does not satisfy the output node o of C,
we know that zo 6∈ M ′, and thus M ′ satisfies Rule (6.22). It then holds that M ′ ( M
is a model of PM , which is a contradiction with the fact that M is an answer set of P .
From this we can conclude that α ∪ β satisfies C. Since β was arbitrary, we know this
holds for all truth assignments β to Y of weight k. Therefore, (C, k) ∈ Σp

2 [∗k]-WSat.

To show membership in Σp
2 [∗k,P], we give an fpt-reduction to Σp

2 [∗k]-WSat. Let P be an
instance of ASP-consistency(#disj.rules), where P is a disjunctive logic program that
contains k disjunctive rules and that contains atoms {a1, . . . , an}. Let r1, . . . , rk be the
disjunctive rules of P , where the head of rule ri is a1

i ∨· · ·∨a
`i
i , for each i ∈ [k]. Moreover,

let ` =
∑
i∈[k] `i + k. We sketch an algorithm that takes as input two bitstrings: one

string x = x1 . . . xn, of length n, and one string z = z1 . . . z` of length ` containing exactly k
1’s. Moreover, we consider the string z as the concatenation of the strings z1, . . . , zk,
where zi = zi,0 . . . zi,`i . Firstly, the algorithm checks (0) whether each zi contains exactly
one 1. If this checks fails, the algorithm accepts the input. Otherwise, the algorithm
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constructs the set M = { ai : xi = 1 }, and it checks (1) whether M is a model of the
reduct PM . Moreover, the algorithm constructs the subset R of disjunctive rules that is
defined as follows. For each i ∈ [k], it holds that ri ∈ R if and only if zi,0 = 0. In addition,
it constructs the mapping µ : R → At(P ), by letting µ(ri) = aji for the unique j ∈ [`i]
for which zi,j = 1. The algorithm constructs the set Mµ, as defined in Lemma 18. Then,
the algorithm checks (2) whether Mµ is not a strict subset of M . The algorithm accepts
the input if and only if both checks (1) and (2) pass. We can choose this algorithm so
that it runs in polynomial time.

Now, by Lemma 18, it is straightforward to verify that P ∈ ASP-consistency-
(#disj.rules) if and only if there exists some strings x such that for all strings z containing
exactly k 1’s the algorithm accepts. Since the algorithm runs in polynomial time, we can
construct in polynomial time a quantified Boolean circuit C over the set X of existential
variables and the set Z of universal variables, with the property that the algorithm
accepts for some strings x and for all suitable strings z if and only if there is a truth
assignment α : X → B such that for all truth assignments β : Z → B of weight k
the assignment α ∪ β satisfies C. In other words, (C, k) ∈ Σp

2 [∗k]-WSat if and only
if P ∈ ASP-consistency(#disj.rules).

In the above proof, to show Σp
2 [∗k,P]-membership, we (implicitly) appealed to a version

of the Cook-Levin Theorem to transform a polynomial-time computation (that uses a
non-deterministically guessed input) into a circuit of polynomial size. In Section 6.3.4,
we will prove an analogue of the Cook-Levin Theorem for the class Σp

2 [∗k,P] in terms of
alternating Turing machines, that might be more convenient for showing membership in
the class Σp

2 [∗k,P].

For the problem ASP-consistency(#disj.rules), Σp
2 [∗k,P]-hardness holds even in the

case where each atom occurs only a constant number of times in the input program.

Corollary 50. Let ` ≥ 3. ASP-consistency(#disj.rules) is Σp
2 [∗k,P]-hard, even when

each atom occurs at most ` times.

Proof. The reduction in the proof of Proposition 17 can be seen as an fpt-reduction
that maps any instance of ASP-consistency(#disj.rules) to another instance of ASP-
consistency(#disj.rules) in which each atom occurs at most ` times.

Next, we show Σp
2 [∗k,P]-completeness for the parameterized problem ASP-consistency-

(#non-dual-normal.rules).

Theorem 51. ASP-consistency(#non-dual-normal.rules) is Σp
2 [∗k,P]-complete.

Proof. To show hardness, we give an fpt-reduction from Σp
2 [∗k]-WSat. Let (C, k) be an

instance of Σp
2 [∗k]-WSat, where C = ∃X.∀Y.C, X = {x1, . . . , xn}, and Y = {y1, . . . , ym}.

By Proposition 48, we may assume without loss of generality that C is monotone in Y ,
i.e., that the variables y1, . . . , ym occur only positively in C. We construct a disjunctive
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program P as follows. We consider the variables X and Y as atoms. In addition, we
introduce fresh atoms v1, . . . , vn, w, and yji for all j ∈ [k], i ∈ [m]. Also, for each internal
node g of C, we introduce a fresh atom zg. We let P consist of the following rules:

xi ← not vi for i ∈ [n]; (6.24)
vi ← not xi for i ∈ [n]; (6.25)
w ← yj

1, . . . , y
j
m for j ∈ [k]; (6.26)

yj
i ← yi for i ∈ [m], j ∈ [k]; (6.27)
yj

i ← w for i ∈ [m], j ∈ [k]; (6.28)
zg ← w for each internal node g of C; (6.29)
z ← w (6.30)
yi ← w for i ∈ [m] (6.31)

yj
i ∨ y

j′

i ← z for i ∈ [m], j, j′ ∈ [k], j < j′; (6.32)
σ(g1) ∨ · · · ∨ σ(gu)← zg for each conjunction node g of C with inputs g1, . . . , gu; (6.33)

σ(gi)← zg for each disjunction node g of C with inputs g1, . . . , gu,
and each i ∈ [u]; (6.34)

zo ← z where o is the output node of C; (6.35)
w ∨ z ← (6.36)

w ← not w. (6.37)

Here, we define the following mapping σ from nodes of C to variables in V . For each
non-negated input node xi ∈ X, we let σ(xi) = vi. For each negated input node ¬xi,
for xi ∈ X, we let σ(¬xi) = xi. For each input node yj ∈ Y , we let σ(y) = yj . For each
internal node g, we let σ(g) = zg. Intuitively, vi corresponds to ¬xi. Note, however,
that σ negates literals over variables in X. Note that P has k rules that are not dual-Horn,
namely the rules (6.26). We show that (ϕ, k) ∈ Σp

2 [∗k]-WSat if and only if P has an
answer set.

(⇒) Assume there exists an assignment α : X → B such that for each assignment β :
Y → B of weight k it holds that α∪β satisfies C. We show that M = {xi : α(xi) = 1, i ∈
[n] }∪{ yji , yi : i ∈ [m], j ∈ [k] }∪{ zg : g an internal node of C }∪{w, z} is an answer set
of P . We have that PM consists of Rules (6.26)–(6.36), the rules (xi ←) for all i ∈ [n]
such that α(xi) = 1, and the rules (vi ←) for all i ∈ [n] such that α(xi) = 0. Clearly, M
is a model of PM . We show that M is a minimal model of PM . Assume M ′ (M is a
minimal model of PM . IfM ′ does not coincide withM on the atoms xi and vi, thenM ′ is
not a model of PM . If w ∈M ′, then by Rules (6.28)–(6.31),M ′ = M . Therefore, w 6∈M ′.
By Rule (6.26), we have that y1

i1 , y
2
i2 , . . . , y

k
ik
6∈ M ′, for some i1, . . . , ik ∈ [m]. By

Rule (6.32) and (6.36), we know that i1, . . . , ik are all different, since otherwise it would
have to hold that w ∈ M ′. By Rule (6.27), it holds that yi1 , . . . , yik 6∈ M ′. Define the
assignment γ : X ∪ Y → B by letting γ(xi) = 1 if and only if xi ∈ M ′ and γ(yi) = 1
if and only if yi ∈ M ′. Clearly, γ coincides with α on X, and γ assigns exactly k
variables yj to true. Now, since (C, k) ∈ Σp

2 [∗k]-WSat, we know that γ satisfies C. Using
the Rules (6.33) and (6.34), we can show by an inductive argument that for each internal
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node g of C that is forced to true by γ it must hold that zg 6∈M ′. Since γ satisfies C, it
forces the output node o of C to be true, and thus by Rule (6.35), we know that z 6∈M ′.
Then, by Rule (6.36), we know that w ∈M ′, which is a contradiction. From this we can
conclude that no model M ′ (M of PM exists, and thus M is an answer set of P .

(⇐) Assume P has an answer set M . We know that w ∈ M , since otherwise (w ←)
would be a rule of PM , and then M would not be a model of PM . Then, by Rules (6.28)–
(6.31), also yi, yji ∈ M for all i ∈ [m] and j ∈ [k], zg ∈ M for all internal nodes g of C,
and z ∈ M . We show that for each i ∈ [n] it holds that |M ∩ {xi, vi}| = 1. Assume
that for some i ∈ [n], M ∩ {xi, vi} = ∅. Then (xi ←) and (vi ←) would be rules of PM ,
and then M would not be a model of PM , which is a contradiction. Assume instead
that {xi, vi} ⊆ M . Then PM would contain no rules with xi and vi in the head, and
hence M would not be a minimal model of PM , which is a contradiction.

We now construct an assigment α : X → B such that for all assignments β : Y → B of
weight k it holds that ψ[α∪β] evaluates to true. Define α by letting α(xi) = 1 if and only
if xi ∈M . Now let β be an arbitrary truth assignment to Y of weight k. We show that α∪β
satisfies C. We proceed indirectly, and assume to the contrary that α∪β does not satisfy C.
We construct a model M ′ ( M of PM . We let yi1 , . . . , yik denote the k variables yi
such that β(yi) = 1. We let M ′ consist of (M ∩ {xi, vi : i ∈ [n] }), of { yji , yi : i ∈
[m], j ∈ [k] }\{ y`i` , yi` : ` ∈ [k] }, of { zg : g an internal node of C not satisfied by α ∪ β },
and of {z}. For all rules of PM other than Rules (6.33)–(6.35), it is clear that M ′
satisfies them. It holds that M ′ also satisfies Rules (6.33)–(6.34), since M ′ does not
contain zg for all internal nodes g of C that are satisfied by α ∪ β. Then, since α ∪ β
does not satisfy the output node o of C, we know that zo ∈ M ′, and thus M ′ satisfies
Rule (6.35). It then holds that M ′ (M is a model of PM , which is a contradiction with
the fact that M is an answer set of P . From this we can conclude that α ∪ β satisfies C.
Since β was arbitrary, we know this holds for all truth assignments β to Y of weight k.
Therefore, (C, k) ∈ Σp

2 [∗k]-WSat.

We defer the proof of membership in Σp
2 [∗k,P] until after we provided an additional

characterization of Σp
2 [∗k,P] in terms of alternating Turing machines.

Also for the problem ASP-consistency(#non-dual-normal.rules), Σp
2 [∗k,P]-hardness

holds even in the case where each atom occurs only a constant number of times in the
input program.

Corollary 52. Let ` ≥ 3. ASP-consistency(#non-dual-normal.rules) is Σp
2 [∗k,P]-

hard, even when each atom occurs at most ` times.

Proof. The reduction in the proof of Proposition 17 can be seen as an fpt-reduction that
maps any instance of ASP-consistency(#non-dual-normal.rules) to another instance
of ASP-consistency(#non-dual-normal.rules) in which each atom occurs at most `
times.
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6.3.4 Alternating Turing Machine Characterization

In this section, we give an alternative characterization of Σp
2 [∗k,P] in terms of ATMs. In

particular, we show that Σp
2 [∗k,P] contains those parameterized decision problems that

can be decided by a certain class of alternating Turing machines. This characterization
can be used conveniently to show membership in Σp

2 [∗k,P], which we illustrate by showing
Σp

2 [∗k,P]-membership for ASP-consistency(#non-dual-normal.rules)—thereby com-
pleting the proof of Theorem 51.

We consider the following restrictions on ATMs.

Definition 53. Let Q be a parameterized problem. An Σp
2 [∗k,P]-machine for Q is a

∃∀-machine M such that there exists a computable function f and a polynomial p such
that:

1. M decides P in time f(k)p(|x|); and

2. for all instances (x, k) of Q and each computation path R of M with input (x, k),
at most f(k) log |x| of the universal configurations of R are non-deterministic.

We say that a parameterized problem Q is decided by some Σp
2 [∗k,P]-machine if there

exists a Σp
2 [∗k,P]-machine for Q. a

Proposition 54. Let Q be a parameterized problem. Then Q ∈ Σp
2 [∗k,P] if and only

if Q is decided by some Σp
2 [∗k,P]-machine.

Proof. The result follows directly from Lemmas 55 and 56.

We begin by showing that all problems that are decided by some Σp
2 [∗k,P]-machine are

in Σp
2 [∗k,P].

Lemma 55. If a parameterized problem Q is decided by some Σp
2 [∗k,P]-machine,

then Q ∈ Σp
2 [∗k,P].

Proof (sketch). We describe a way of constructing, for each instance (x, k) of Q, an
instance (ϕ, k′) of Σp

2 [∗k]-WSat(circ) that is a yes-instance if and only if (x, k) ∈ Q.
Our construction is based on the well-known proof of the Cook-Levin Theorem [54, 143].

We begin with some observations. Let M be an Σp
2 [∗k,P]-machine for Q. We may assume

without loss of generality that for any non-deterministic transition of M, there are exactly
two possible ways of proceeding. Any run of M on input (x, k) can be specified entirely
by indicating what non-deterministic choices M makes. Given (a representation of) these
non-deterministic choices, determining whether this run of M is an accepting run can
be done in fpt-time in (x, k)—simply by simulating M using the given choices. In other
words, to decide whether M accepts an input (x, k), we need to decide whether there
exists some sequence s1 of non-deterministic choices for the existential phase of the
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computation, such that for all sequences s2 of non-deterministic choices for the universal
phase of the computation it holds that the run of M on (x, k) that is specified by (s1, s2)
is an accepting run.

By definition of Σp
2 [∗k,P]-machines, we know that there is some computable function f

and some constant c such that for each input (x, k) with |x| = n,

1. M runs in time f(k)nc and

2. M makes at most f(k) logn non-deterministic choices in the universal phase of the
computation.

Therefore, in particular, in the existential phase of the computation M makes at
most f(k)nc non-deterministic choices. We can encode all possibilities for the 2f(k)nc

different possible combinations of choices that M makes in the existential phase of
the computation using f(k)nc existential variables of ϕ. Moreover, since there are at
most 2f(k) logn = nf(k) different possible combinations of choices that M makes in the
universal phase of the computation, we can encode these possibilities using n universal
variables, whose assignments are restricted to set only k′ = f(k) variables to true.

The circuit C then simulates the behavior of M on input (x, k) with the non-deterministic
behavior given by (s1, s2) as specified by the assignment to the variables. Since such a
simulation can be done in fpt-time, we know we can encode this simulation in a circuit C
that can be constructed in fpt-time. Then, (C, k′) is a yes-instance of Σp

2 [∗k]-WSat(circ)
if and only if M accepts (x, k), which is the case if and only if (x, k) ∈ Q.

Next, we show the converse statement. That is, we show that each problem that is in
Σp

2 [∗k,P] is decided by some Σp
2 [∗k,P]-machine.

Lemma 56. Let Q be a parameterized problem. If Q ∈ Σp
2 [∗k,P], then Q is decided by

some Σp
2 [∗k,P]-machine.

Proof (sketch). We describe the Σp
2 [∗k,P]-machine M that decides Q. Let (x, k) be an

instance of Q. The computation of M proceeds in two stages. The first stage only
involves deterministic computation. Because Q ∈ Σp

2 [∗k,P], we know that there exists an
fpt-reduction R from Q to Σp

2 [∗k]-WSat(circ). In the first stage, M computes R(x, k) =
(C, k′). This can be done in (deterministic) time f(k)nc, for some computable function f
and some constant c, where n = |x|. Moreover, we know that k′ ≤ g(k) for some
computable function g, and that |C| ≤ f(k)nc.

In the second stage, M decides whether (C, k′) ∈ Σp
2 [∗k]-WSat(circ). Let X be the

set of existential variables of C, and Y the set of universal variables of C. In the
existential phase of the computation, M guesses a truth assignment to the variables in X.
Since |X| ≤ f(k)nc, this can be done using at most f(k)nc (existential) non-deterministic
steps. Then, in the universal phase of the computation, M guesses a truth assignment to
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the variables in Y of weight at most k′. Since |Y | ≤ f(k)nc and k′ ≤ g(k), this can be done
using at most g(k) log(f(k)nc) = g(k)f(k) + g(k)c logn ≤ cg(k)2f(k) logn (universal)
non-deterministic steps. Finally, M verifies whether the guessed truth assignments to the
variables in X and Y satisfy the circuit.

It is readily verified that M correctly decides whether (C, k′) ∈ Σp
2 [∗k]-WSat(circ), and

thus whether (x, k) ∈ Q. Moreover, M satisfies the bounds on the number of (existential
and universal) non-deterministic steps, so M is an Σp

2 [∗k,P]-machine for Q.

Using this alternative characterization of Σp
2 [∗k,P], we can now conveniently finish the

proof of Theorem 51.

Proof of Theorem 51 (continued). We show membership in Σp
2 [∗k,P] for ASP-

consistency(#non-dual-normal.rules), by describing an Σp
2 [∗k,P]-machine M for the

problem. The algorithm computed by the machine M is entirely similar to the algorithm
in the proof of Proposition 23 in Chapter 4. Let P be a disjunctive logic program with k
non-dual-Horn rules. Firstly, in the existential phase of the computation, the machine M
guesses a subset M ⊆ At(P ). Then, in order to verify whether M is a minimal model
of PM , it verifies whether for all m ∈ M the program Pm,M (as defined in the proof
of Proposition 23) has no models. It does so as follows. In the universal phase of the
computation, the machine M non-deterministically guesses some m ∈ M . This can
be done using log |At(P )| non-deterministic choices. Then, similarly to the proof of
Proposition 23, it verifies that there is no suitable set R and suitable mapping µ, as
defined in Lemma 22, such that the set Mµ is a model of Pm,M . It does so by guessing a
suitable set R and a suitable mapping µ, still in the universal phase of the computation.
Since there are at most O((|At(P )|+ 1)k) possible combinations of R and µ, this can
be done using k log(|At(P )|+ 1) non-deterministic choices. Then, it computes Mµ and
checks if Mµ is a model of Pm,M . If this is the case, the machine M rejects the input.
Otherwise, it accepts.

Similarly to the proof of Proposition 23, we then get that M accepts the input if
and only if P has an answer set. Moreover, it is readily verified that M satisfies the
bounds on the number of (existential and universal) non-deterministic steps, so M is an
Σp

2 [∗k,P]-machine for ASP-consistency(#non-dual-normal.rules).

It is an interesting topic for future research to investigate machine characterizations
for the classes Σp

2 [∗k, 1] and Σp
2 [∗k, 2]. Such characterizations could be similar to the

characterization of the class Σp
2 [k∗] using the problems Σp

2 [k∗]-TM-haltm (Theorem 36),
which is in turn similar to machine characterizations for the classes W[1] and W[2] [36,
39, 85].
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6.4 Relation to Known Parameterized Complexity
Classes

Finally, we relate the classes of the k-∗ and ∗-k hierarchies to known (parameterized)
complexity classes. In particular, we give evidence that these classes differ from the
parameterized complexity classes para-NP, para-co-NP, para-Σp

2 and para-Πp
2 .

6.4.1 Relation of Σp
2[k∗] to Other Classes

We begin with investigating the relation of Σp
2 [k∗] to known (parameterized) complexity

classes.

It is straightforward to see that Σp
2 [k∗] ⊆ para-Σp

2 . In polynomial time, any for-
mula ∃X.∀Y.ψ can be transformed into a quantified Boolean formula with a ∃∀ quantifier
prefix that is true if and only if for some assignment α of weight k to the variables X the
formula ∀Y.ψ[α] is true. Also, trivially, para-co-NP ⊆ Σp

2 [k∗], because the para-co-NP-
complete parameterized problem UNSAT(constant) can be seen as a special case of
Σp

2 [k∗]-WSat. To summarize, we observe the following inclusions:

para-co-NP ⊆ Σp
2 [k∗] ⊆ para-Σp

2 and para-NP ⊆ Πp
2 [k∗] ⊆ para-Πp

2 .

This immediately leads to the following result.

Proposition 57. If Σp
2 [k∗] ⊆ para-NP, then NP = co-NP.

It is also not difficult to see that Σp
2 [k∗] ⊆ Xco-NP. This is witnessed by the straight-

forward brute-force algorithm to solve Σp
2 [k∗]-WSat that tries out all

(n
k

)
= O(nk)

assignments of weight k to the existentially quantified variables (and that uses non-
determinism to handle the assignment to the universally quantified variables).

A natural question to ask is whether para-NP ⊆ Σp
2 [k∗]. Since para-NP ⊆ Xco-NP

implies NP = co-NP [84, Proposition 8], this is unlikely. We give a direct proof of this
statement.

Proposition 58. If para-NP ⊆ Σp
2 [k∗], then NP = co-NP.

Proof. Assume that para-NP ⊆ Σp
2 [k∗]. The parameterized problem Q = { (ϕ, 1) : ϕ ∈

SAT } is in para-NP. Then also Q ∈ Σp
2 [k∗]. This means that there is an fpt-

reduction R from Q to Σp
2 [k∗]-WSat. We construct a polynomial-time reduction S

from SAT to UNSAT. Let ϕ be an instance of SAT. The reduction R maps (ϕ, 1)
to an instance (ϕ′, f(1)) of Σp

2 [k∗]-WSat, where f is some computable function
and ϕ′ = ∃X.∀Y.ψ, such that (ϕ′, f(1)) ∈ Σp

2 [k∗]-WSat if and only if ϕ ∈ SAT. Note
that f(1) is a constant, since f is a fixed function. To emphasize this, we let c = f(1), and
we will use c to denote f(1). By definition, we know that (ϕ′, c) ∈ Σp

2 [k∗]-WSat if and
only if for some truth assignment α to the variables X of weight c, the formula ∀Y.ψ[α]
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is true. Let ta(X, c) denote the set of all truth assignments to X of weight c. We then
get that ϕ ∈ SAT if and only if the formula ∀Y.χ is true, where χ is defined as follows:

χ =
∨

α∈ta(X,c)
ψ[α]

It is straightforward to verify that the mapping ϕ 7→ ¬χ is a polynomial-time reduction
from SAT to UNSAT.

This implies that Σp
2 [k∗] is likely to be a strict subset of para-Σp

2 .

Corollary 59. If Σp
2 [k∗] = para-Σp

2, then NP = co-NP.

The following result shows another way in which the class Σp
2 [k∗] relates to the com-

plexity class co-NP. Let P be a parameterized decision problem, and let c ≥ 1 be an
integer. Recall that the c-th slice of P , denoted by Pc, is the (unparameterized) decision
problem {x : (x, c) ∈ P }.

Proposition 60. Let P be a parameterized problem complete for Σp
2 [k∗], and let c ≥ 1.

Then Pc is in co-NP. Moreover, there exists some integer d ≥ 1 such that P1 ∪ · · · ∪ Pd
is co-NP-complete.

Proof. We show co-NP-membership of Pc, by constructing a polynomial-time reduction S
from Pc to UNSAT. Since P ∈ Σp

2 [k∗], we know that there exists an fpt-reduction R
from P to Σp

2 [k∗]-WSat(Φ). Therefore, there exist computable functions f and g and
a polynomial p such that for all instances (x, k) of P , R(x, k) = (x′, k′) is computable
in time f(k) · p(|x|) and k′ ≤ g(k). We describe the reduction S. Let x be an arbitrary
instance of Pc. We know R maps (x, c) to (ϕ, k′), for some k′ ≤ g(c), where ϕ = ∃X.∀Y.ψ.
Note that k′ is bounded by a constant g(c) = d. Let ta(X, k′) denote the set of all
truth assignment to X of weight k′. Then, for each α ∈ ta(X, k′), we let Y α be the
set containing of a copy yα of each variable y ∈ Y , and we let Y ′ =

⋃
α∈ta(X,k′) Y

α.
We then get that ϕ is equivalent to the formula ∀Y ′.χ, where χ =

∨
α∈ta(X,k′)(ψ[α])α.

Here, (ψ[α])α denotes the formula ψ[α] where each variable y ∈ Y is replaced by its
copy yα. Also, the size of χ is polynomial in the size of ψ. We then let S(x) = ¬χ. It
is straightforward to verify that S is a correct polynomial-time reduction from Pc to
UNSAT.

We show that there exists a function f such that for any positive integer s ≥ 1, there
is a polynomial-time reduction from UNSAT to P1 ∪ · · · ∪ Pf(s). Then, in particu-
lar, P1 ∪ · · · ∪ Pf(1) is co-NP-complete. Let s ≥ 1 be an arbitrary integer. We con-
struct the reduction S. There is a trivial polynomial-time reduction S from UNSAT
to (Σp

2 [k∗]-WSat)s, that maps a Boolean formula ϕ over a set of variables Y to the in-
stance (∃{x1, . . . , xs}.∀Y.¬χ, s) of Σp

2 [k∗]-WSat. Since P is Σp
2 [k∗]-complete, there exists

an fpt-reduction R from Σp
2 [k∗]-WSat to P . From this, we know that there exists a non-

decreasing and unbounded function f such that for each instance (x, k) of Σp
2 [k∗]-WSat
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it holds that k′ ≤ f(k), where R(x, k) = (x′, k′). This reduction R is a polynomial-time
reduction from (Σp

2 [k∗]-WSat)s to P1 ∪ · · · ∪ Pf(s). Composing the polynomial-time
reductions S and R, we obtain a reduction from UNSAT to P1 ∪ · · · ∪ Pf(s).

Finally, we relate Σp
2 [k∗] to the classes para-co-NP and para-Πp

2 . We already observed
that para-co-NP ⊆ Σp

2 [k∗]. In Chapter 14, we give evidence that this inclusion is strict.
Concretely, we show that if para-co-NP = Σp

2 [k∗], then there is a subexponential-time
reduction from QSat2 to UNSAT (Corollary 177).

The class Σp
2 [k∗] is likely to be incomparable to para-Πp

2 (w.r.t. set inclusion). It is not
difficult to see that if para-Πp

2 ⊆ Σp
2 [k∗], then Σp

2 = Πp
2 . For the other direction, we show

in Chapter 14 that if Σp
2 [k∗] ⊆ para-Πp

2 , then there is a subexponential-time reduction
from QSat2(3DNF) to co-QSat2 (Proposition 169).

6.4.2 Relation of Σp
2[∗k, t] to Other Classes

Next, we continue with relating the classes of the ∗-k hierarchy to known (parameterized)
complexity classes. Similarly to the case of k-∗, we can observe the following inclusions:

para-NP ⊆ Σp
2 [∗k, 1] ⊆ · · · ⊆ Σp

2 [∗k,P] ⊆ para-Σp
2

and
para-co-NP ⊆ Πp

2 [∗k, 1] ⊆ · · · ⊆ Πp
2 [∗k,P] ⊆ para-Πp

2 .

This immediately leads to the following result.

Proposition 61. If Σp
2 [∗k, 1] ⊆ para-co-NP, then NP = co-NP.

It is also not so difficult to see that Σp
2 [∗k,P] ⊆ XNP. This is witnessed by the

straightforward brute-force algorithm to solve Σp
2 [∗k]-WSat that tries out all

(n
k

)
= O(nk)

assignments of weight k to the universally quantified variables (and that uses non-
determinism to handle the assignment to the existentially quantified variables).

A natural question to ask is whether para-co-NP is contained in any of the classes Σp
2 [∗k, t].

Since para-co-NP ⊆ XNP implies NP = co-NP [84, Proposition 8], this is unlikely. We
show how to prove this result directly.

Proposition 62. If para-co-NP ⊆ Σp
2 [∗k,P], then NP = co-NP.

Proof (sketch). With an argument similar to the one in the proof of Proposition 58,
a polynomial-time reduction from UNSAT to SAT can be constructed. An additional
technical observation needed for this case is that SAT is in NP also when the input is a
Boolean circuit (rather than a propositional formula).

This immediately gives us the following separation.

Corollary 63. If Σp
2 [∗k,P] = para-Σp

2, then NP = co-NP.
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Similarly to the class Σp
2 [k∗], the classes Πp

2 [∗k, t] relate to the complexity class co-NP in
the following way.

Proposition 64. Let P be a parameterized problem that is contained in Πp
2 [∗k,P] and

that is hard for Πp
2 [∗k, 1], and let c ≥ 1. Then Pc is in co-NP. Moreover, there exists

some integer d ≥ 1 such that P1 ∪ · · · ∪ Pd is co-NP-complete.

Proof. The proof of this proposition is similar to the proof of Proposition 60. We show
co-NP-membership of Pc, by constructing a polynomial-time reduction S from Pc to
UNSAT. Since P ∈ Πp

2 [∗k,P], we know that there exists an fpt-reduction R from P
to Πp

2 [∗k]-WSat(Γ). Therefore, there exist computable functions f and g and a poly-
nomial p such that for all instances (x, k) of P , R(x, k) = (x′, k′) is computable in
time f(k) · p(|x|) and k′ ≤ g(k). We describe the reduction S. Let x be an arbitrary
instance of Pc. We know R maps (x, c) to (ϕ, k′), for some k′ ≤ g(c), where ϕ = ∃X.∀Y.C.
Note that k′ is bounded by a constant g(c) = d. Let ta(X, k′) denote the set of all
truth assignment to X of weight k′. We then get that ϕ is equivalent to the quantified
circuit ∀Y.C ′, where C ′ ≡

∨
α∈ta(X,k′)C[α]. Also, the size of C ′ is polynomial in the size

of C. It is straightforward to construct a propositional formula ψ that is valid if and only
if C ′ is valid. We then let S(x) = ¬ψ. Then, S is a correct polynomial-time reduction
from Pc to UNSAT.

We show that there exists a function f such that for any positive integer s ≥ 1, there
is a polynomial-time reduction from UNSAT to P1 ∪ · · · ∪ Pf(s). Then, in particu-
lar, P1 ∪ · · · ∪ Pf(1) is co-NP-complete. Let s ≥ 1 be an arbitrary integer. We con-
struct the reduction S. There is a trivial polynomial-time reduction S from UNSAT
to (Πp

2 [∗k]-WSat(3DNF))s, that maps a Boolean formula χ in 3CNF over a set of vari-
ables Y to the instance (∀Y.∃{x1, . . . , xs}.¬χ, s) of Πp

2 [∗k]-WSat(3DNF). Since P is
Πp

2 [∗k, 1]-hard, there exists an fpt-reduction R from Πp
2 [∗k]-WSat(3DNF) to P . From

this, we know that there exists a nondecreasing and unbounded function f such that for
each instance (x, k) of Πp

2 [∗k]-WSat(3DNF) it holds that k′ ≤ f(k), where R(x, k) =
(x′, k′). This reduction R is a polynomial-time reduction from (Πp

2 [∗k]-WSat(3DNF))s
to P1 ∪ · · · ∪ Pf(s). Composing the polynomial-time reductions S and R, we obtain a
reduction from UNSAT to P1 ∪ · · · ∪ Pf(s).

Finally, we relate the classes Σp
2 [∗k, t] to the classes para-NP and para-Πp

2 . We already
observed that para-NP ⊆ Σp

2 [∗k, 1]. In Chapter 14, we give evidence that this inclusion is
strict. Concretely, we show that if para-NP = Σp

2 [∗k, 1], then there is a subexponential-
time reduction from QSat2(3DNF) to SAT (Corollary 167). Also, if para-NP = Σp

2 [∗k, 2],
then there is a subexponential-time reduction from QSat2(DNF) to SAT (Corollary 175).

The classes Σp
2 [∗k, t] are likely to be incomparable to para-Πp

2 (w.r.t. set inclusion). It is
not difficult to see that if para-Πp

2 ⊆ Σp
2 [∗k,P], then Σp

2 = Πp
2 . For the other direction,

we show in Chapter 14 that if Σp
2 [∗k, 1] ⊆ para-Πp

2 , then there is a subexponential-time
reduction from QSat2(3DNF) to co-QSat2 (Proposition 169).
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6.4.3 Relation Between Σp
2[k∗] and Σp

2[∗k, t]
Above, we related the classes Σp

2 [k∗] and Σp
2 [∗k, t] to previously known complexity classes.

A natural question that arises when comparing the parameterized complexity classes
Σp

2 [k∗] and Σp
2 [∗k, t] to other classes, is what the relation is between the classes Σp

2 [k∗]
and Σp

2 [∗k, t] themselves. We will address this question in Section 14.3, because in order
to satisfactorily answer this question, we need to consider some technical machinery in
more detail—which we will do in Chapter 14. In particular, we will show that these
classes are different from each other—under various complexity-theoretic assumptions.

Summary
In this chapter, we developed the new parameterized complexity classes that we motivated
in Chapter 5. In particular, we defined two hierarchies of parameterized complexity
classes Σp

2 [k∗, t] and Σp
2 [∗k, t], that are based on weighted variants of the quantified

Boolean satisfiability problem QSat2. We showed that the hierarchy containing the
classes Σp

2 [k∗, t] collapses to a single class Σp
2 [k∗]. We provided a foundation for future

completeness results for the new classes by showing that the inputs for the canonical
weighted satisfiability problems that underlie these classes can be transformed into
several normal forms. Also, we gave alternative characterizations of the newly developed
classes—among others in terms of alternating Turing machines—and we related these
classes to several relevant parameterized complexity classes that are known from the
literature. Moreover, we showed that the parameterized variants of the consistency
problem for disjunctive answer set programming—whose complexity we showed cannot
be characterized adequately using classes known from the literature—are complete for
several of the introduced parameterized complexity classes.

Notes
The results in Sections 6.2.3.1 and 6.2.3.3 appeared in a paper in the proceedings of
SOFSEM 2015 [113]. The results in Section 6.3.4 appeared in a paper in the proceedings
of IJCAI 2015 [109]. The remaining results in this chapter appeared in a paper in the
proceedings of KR 2014 [115, 116].

In previous work [77, 78, 105, 109, 111, 112, 115, 116, 113] the class Σp
2 [k∗] appeared

under the names ∃k∀ and ∃k∀∗. Similarly, the classes Σp
2 [∗k, t] appeared under the

names ∃∀k-W[t] and ∃∗∀k-W[t].

We would like to thank Hubie Chen for suggesting to use first-order model checking to
obtain an alternative characterization of the class Σp

2 [k∗].
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CHAPTER 7
Fpt-algorithms with Access to a

SAT Oracle

“The Answer... Is... Forty-two,” said Deep Thought,
with infinite majesty and calm.
— Douglas Adams, The Hitchhiker’s Guide to the

Galaxy [4]

In Chapter 4, we introduced the idea of fpt-reductions to SAT. Moreover, in Chapters 4–
6, we discussed one interpretation of this generic scheme, and we started a theoretical
investigation about the limits and possibilities of this type of fpt-reductions to SAT.
These fpt-reductions to SAT are based on many-to-one (or Karp) reductions. That is,
these reductions transform an instance (x, k) of a parameterized problem Q to a single
equivalent instance ϕ of SAT—in other words, (x, k) ∈ Q if and only if ϕ ∈ SAT.

The practical motivation for considering fpt-reductions to SAT is that they could serve as
a theoretical starting point for efficient solving methods, due to the excellent performance
of modern SAT solvers. For instances with a small parameter value, an fpt-reduction
to SAT can be used to efficiently encode the instance into an instance ϕ of SAT, and
subsequently solving the problem by invoking the SAT solver on ϕ. However, for this
solving strategy, there is no evident reason for such a strict bound on the number of calls
to the SAT solver (allowing only a single call). On the contrary, research in classical
complexity indicates that increasing the number of calls to a SAT solver strictly increases
the solving power [42, 118, 137, 192]. Moreover, the approach of calling a SAT solver
multiple times to solve various problems, has been shown to be quite effective in practice
(see, e.g., [15, 70, 155]).

In this chapter, we consider other formalizations of the scheme of fpt-reductions to SAT,
where the restriction on the number of calls to the SAT solver is relaxed. Namely, we
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7. Fpt-algorithms with Access to a SAT Oracle

consider fpt-reductions to SAT that are based on Turing reductions. In this setting, an
fpt-reduction to SAT (for a parameterized problem Q) is a fixed-parameter tractable
algorithm R that decides Q, and that can make multiple queries to a SAT oracle. A SAT
oracle is a black box machine that returns the answer to a query “ϕ ∈ SAT?” in a single
time step. The theoretical investigation in this chapter can serve as a theoretical starting
point for solving strategies that are more powerful than strategies based on many-to-one
fpt-reductions to SAT, but can still be efficient in practice.

Despite the efficiency of modern SAT solvers, SAT solvers do not behave exactly like SAT
oracles. Most notably, unlike the idealized SAT oracles, a SAT solver in practice needs
more than a single time step to decide for an instance ϕ whether ϕ ∈ SAT. For this
reason, we investigate the concept of fpt-time Turing reductions to SAT using various
bounds on the number of oracle queries.

Outline of this chapter In Section 7.1, we begin with reviewing several parameterized
complexity classes, known from the literature, consisting of those problems that can be
solved by a fixed-parameter tractable algorithm that can query a SAT oracle (for various
bounds on the number of oracle queries that can be made).

Absent from this inventory of complexity classes for fpt-time Turing reductions to SAT
is the class consisting of all problems solvable in fpt-time using f(k) calls to a SAT
oracle, where f is some computable function and k is the parameter value. In Section 7.2,
we introduce this absent class—and name it FPTNP[few]. Moreover, we show that it
can also be seen as a parameterized variant of the Boolean Hierarchy. We consider
several examples of parameterized problems that can be solved in fpt-time using f(k)
SAT queries, and we show that these problems are complete for FPTNP[few] (under
fpt-reductions).

In Section 7.3, we show how hardness for FPTNP[few]—and hardness for the classes A[2],
Σp

2 [k∗], and Σp
2 [∗k, t]—can be used to obtain lower bounds on the number of SAT queries

made by any fpt-algorithm that solves a problem.

Then, in Section 7.4, we consider another alternative characterization of the class
FPTNP[few], based on bounded optimization problems. Moreover, we illustrate this
characterization using another parameterized problems that is complete for FPTNP[few].

Finally, in Section 7.5, we consider an extension of FPTNP[few] based on a more powerful
oracle model where the SAT oracles return a satisfying assignment for yes-answers. We
show that for the case of decision problems this extension does not yield more power,
but for the case of search problems it does.

7.1 Known Parameterized Complexity Classes
We begin with surveying parameterized complexity classes known from the literature that
consist of those parameterized problems solvable by means of fixed-parameter tractable
algorithms that can query a SAT oracle, for various bounds on the number of oracle queries.
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These known parameterized complexity classes are all of the form para-K, where K is a
classical complexity class [84] (see Chapter 3). Let K be a classical complexity class. Then,
intuitively, para-K consists of those problems Q that are in K after a precomputation on
the parameter value k. That is, a parameterized problem Q is in para-K if there is a
computable function f : N→ Σ∗ and a problem Q′ ∈ K such that for all instances (x, k)
of Q it holds that (x, k) ∈ Q if and only if (x, f(k)) ∈ Q′.

For the sake of convenience, we repeat the definition of Turing machines with oracle
access (again, see Chapter 3). Let O be a decision problem, e.g., O = SAT. A Turing
machine M with an O oracle is a Turing machine with a dedicated oracle tape and
dedicated states qquery, qyes and qno. Whenever M is in the state qquery, it does not
proceed according to the transition relation, but instead it transitions into the state qyes if
the oracle tape contains a string x that is a yes-instance for the problem O (i.e., if x ∈ O),
and it transitions into the state qno otherwise (i.e., if x 6∈ O). We will also often speak of
algorithms that query an oracle. In this case, we mean an algorithm implemented by a
Turing machine with an oracle.

The first parameterized complexity class that we consider is based on the Boolean
Hierarchy (BH) [35, 41, 125]. The classical complexity class BH consists of all decision
problems that are decided by some polynomial-time algorithm that queries a SAT oracle a
constant number of times. (Equivalently, BH can be characterized as the class of problems
that can be expressed as a Boolean combination of sets in NP.) Correspondingly, the
parameterized complexity class para-BH consists of those parameterized problems that
are decided by some fpt-algorithm that queries a SAT oracle a constant number of times.

Next, we consider the class para-∆p
2 . The classical complexity class ∆p

2 consists of all
decision problems that are decided by a polynomial-time algorithms that can query a
SAT oracle. Correspondingly, the parameterized complexity class para-∆p

2 consists of
those parameterized problems that are decided by an fpt-algorithm with a SAT oracle.
Both for ∆p

2 and para-∆p
2 , the number of queries to the SAT oracle is only bounded by

the running time of the algorithm.

Then, one can consider various restrictions of the class ∆p
2 . Let z : N → N be a

function. Then the classical complexity class ∆p
2 [z(n)] consists of all problems that are

decided by some polynomial-time algorithm that, for any instance x of size n, queries
a SAT oracle at most z(n) times. A commonly considered restriction of ∆p

2 is the
class Θp

2 =
⋃
c∈N ∆p

2 [c logn] [170]—that is, the class of problems that are decided by a
polynomial-time algorithm that queries a SAT oracle O(logn) times. The class para-Θp

2
then consists of those parameterized problems that are decided by an fpt-algorithm that
queries a SAT oracle f(k) logn times, for some computable function f .

In order to compare the amount of SAT queries allowed for fpt-algorithms witnessing
membership in the classes para-BH, para-Θp

2 and para-∆p
2 in a uniform setting, we

consider the parameterized complexity classes FPTNP[g(n, k)] for functions g : N2 → N.

Definition 65. Let g : N2 → N be a function. Then FPTNP[g(n, k)] is defined as
the class of all parameterized problems Q for which there exists a deterministic Turing
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machine M, with an oracle O ∈ NP, such that M decides Q in fpt-time, and for each
instance (x, k) of Q, the machine M makes at most g(n, k) oracle queries when executed
on input (x, k), where n = |x|. a

Using the classes FPTNP[g(n, k)], we can then express the classes para-BH, para-Θp
2 , and

para-∆p
2 as follows.

Observation 66. The following equations hold.

para-BH =
⋃
c∈N

FPTNP[c]

para-Θp
2 =

⋃
f computable

FPTNP[f(k) logn]

para-∆p
2 =

⋃
f computable

c∈N

FPTNP[f(k)nc]

The various classes discussed above only differ with respect to the number of SAT queries
that are allowed. From a practical point of view, the number of calls to a SAT solver may
seem to be relatively insignificant, assuming that the queries are easy for the solver, and
the solver can reuse information from previous calls [17, 121, 194]. The technique where
a SAT solver is called multiple times, and where the solver reuses information computed
in previous calls, is called incremental SAT solving. For a theoretical worst-case model,
however, one must assume that all queries involve hard SAT instances, and that no
information from previous queries can be reused. Therefore, in a theoretical analysis, it
makes sense to study the number of SAT queries made by fpt-time algorithms.

Finally, we briefly consider some special cases of the class para-BH. One can consider the
class FPTNP[c], for any constant c ∈ N. Similar restrictions, for fixed constants c, have
been considered for the class BH (we return to these in Section 7.2). We show that the
classes FPTNP[c] are strictly larger than para-NP and para-co-NP (unless NP = co-NP),
even for the case where c = 1. This indicates that fpt-time Turing reductions to SAT are
more powerful than many-to-one fpt-reductions to SAT.

Proposition 67. It holds that para-NP ∪ para-co-NP ⊆ FPTNP[1]. Moreover, this
inclusion is strict, unless NP = co-NP.

Proof. The inclusion para-NP ∪ para-co-NP ⊆ FPTNP[1] can be shown routinely. To see
that the inclusion is strict (unless NP = co-NP), suppose that para-NP ∪ para-co-NP =
FPTNP[1]. Consider the following problem Q:

Q = { (x, 0) : x ∈ UNSAT } ∪ { (x, 1) : x ∈ SAT }.

Clearly, Q ∈ FPTNP[1]. Then, by assumption, Q ∈ para-NP or Q ∈ para-co-NP.
Suppose that Q ∈ para-NP. The case for Q ∈ para-co-NP is entirely analogous. Then
the para-co-NP-complete problem Q′ = { (x, 0) : x ∈ UNSAT } is also in para-NP,
since Q′ ⊆ Q. From this, it immediately follows that NP = co-NP.
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7.2 The Parameterized Complexity Class FPTNP[few]
In the inventory of parameterized complexity classes corresponding to various notions
of fpt-time Turing reductions to SAT, that we considered in Section 7.1, one natural
parameterized complexity class is missing. This is the class of parameterized problems
that are decided by an fpt-algorithm that queries a SAT oracle f(k) times, for some
computable function f . In this section, we consider this class, which we name FPTNP[few].
Moreover, we show that it can be seen as a parameterized variant of the Boolean Hierarchy.

Definition 68. The parameterized complexity class FPTNP[few] is defined as follows:

FPTNP[few] =
⋃

f computable
FPTNP[f(k)]

Put differently, FPTNP[few] consists of all parameterized problems Q that can be decided
by an fpt-algorithm that has access to an oracle O ∈ NP such that for each instance (x, k)
of Q, the algorithm makes at most f(k) oracle queries, for some computable function f . a

It is straightforward to verify that FPTNP[few] is closed under fpt-reductions. Moreover,
clearly, para-BH ⊆ FPTNP[few] ⊆ para-Θp

2 ⊆ para-∆p
2 .

For the unparameterized case, it matters whether queries to the NP oracle are adaptive
or parallel—that is, whether the algorithm has to write down all its oracle queries before
the answer to any of the queries is given (parallel), or whether an answer to one oracle
query can be used to construct the next oracle query (adaptive). (We will define the
notion of parallel oracle queries formally in Section 7.5.) This is essentially the difference
between the classes Θp

2 and ∆p
2 [33, 120, 132]. Note that this distinction is not relevant

for problems in FPTNP[few], since f(k) adaptive oracle queries can straightforwardly be
simulated by means of 2f(k)+1 parallel queries. Without loss of generality, assume that
the oracle O = SAT. For each possible partition of the f(k) adaptive queries into a set Y
of queries with a yes-answer and a set N of queries with a no-answer, one can construct
two propositional formulas ϕyes =

∧
y∈Y ϕy and ϕno =

∨
n∈N ϕn such that ϕyes ∈ SAT

and ϕno 6∈ SAT if and only if the partition into the sets Y and N corresponds to the
answers that the oracle gives to the queries. Here the formulas ϕy and ϕn are all pairwise
disjoint, and can be constructed by simulating the algorithm (that makes adaptive query
queries) using the answers specified by Y and N . This way, one can determine the
answers to all the f(k) adaptive oracle queries using 2f(k)+1 parallel oracle queries.

7.2.1 A Parameterized Variant of the Boolean Hierarchy

Next, we introduce a parameterized variant BH(level) of the Boolean hierarachy, and
show that it coincides with FPTNP[few]. To define the class BH(level), we consider the
following parameterized decision problem, that is based on the canonical problems BHi-
Sat of the classes BHi in the Boolean Hierarchy. Remember that the Boolean Hierarchy is
defined using a hierarchy of complexity classes BHi, for all i ≥ 1: BH =

⋃
i∈NBHi. Each of

137



7. Fpt-algorithms with Access to a SAT Oracle

these classes BHi can be characterized as the class of problems that can be reduced to the
problem BHi-Sat, which is defined inductively as follows. The problem BH1-Sat consists
of all sequences (ϕ), where ϕ ∈ SAT. For even i ≥ 2, the problem BHi-Sat consists
of all sequences (ϕ1, . . . , ϕi) of propositional formulas such that both (ϕ1, . . . , ϕi−1) ∈
BH(i−1)-Sat and ϕi ∈ UNSAT. For odd i ≥ 2, the problem BHi-Sat consists of all
sequences (ϕ1, . . . , ϕi) of propositional formulas such that (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-Sat
or ϕi ∈ SAT.

In order to define the class BH(level), we consider the following parameterized problem.

BH(level)-Sat
Instance: A positive integer k and a sequence (ϕ1, . . . , ϕk) of propositional formulas.
Parameter: k.
Question: (ϕ1, . . . , ϕk) ∈ BHk-Sat?

The parameterized complexity class BH(level) then consists of all parameterized problems
that can be fpt-reduced to the problem BH(level)-Sat. In other words, the class BH(level)
consists of all parameterized problems Q for which there exists an fpt-reduction that
reduces each instance (x, k) of Q to an instance of some problem in the f(k)-th level of
the Boolean Hierarchy, for some computable function f . In the remainder of this section,
we show that the classes FPTNP[few] and BH(level) coincide.

Theorem 69. FPTNP[few] = BH(level)

Proof. The result follows directly from Lemmas 70 and 71.

We begin by showing that BH(level) ⊆ FPTNP[few].

Lemma 70. Let Q be a parameterized problem that is contained in BH(level). Then
there exists an algorithm A that decides Q in fpt-time using at most f(k) SAT queries,
where k is the parameter value and f is some computable function.

Proof. We construct an algorithm that decides whether (x, k) ∈ Q. Since Q ∈ BH(level),
we know that there exists an fpt-reduction R that reduces any instance (x, k) of Q to
an instance R(x, k) = (x′, k′) of BH(level)-Sat. We know that x′ = (ϕ1, . . . , ϕk′), and
that k′ ≤ g(k) for some computable function g. The algorithm, given an instance (x, k),
firstly computes (x′, k′). Then, for each i ∈ [k′], it decides whether ϕi is satisfiable by
a single SAT query. Since (x′, k′) corresponds to a Boolean combination of statements
concerning the satisfiability of the formulas ϕi, the algorithm can then decide in fpt-time
whether (x′, k′) ∈ BH(level)-Sat.

Next, we show the converse inclusion, that is, we show that FPTNP[few] ⊆ BH(level).
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Lemma 71. Let Q be a parameterized problem that is in FPTNP[few], i.e., there exists
an algorithm A that decides Q in fpt-time using at most g(k) SAT queries, where k
is the parameter value and g is some computable function. Then there exists an fpt-
reduction that reduces an instance (x, k) of Q to an instance (x′, k′) of BH(level)-Sat,
where k′ ≤ 2g(k)+1.

Proof. We use the algorithm A to construct an fpt-reduction from Q to BH(level)-Sat.
We will use the known fact that a disjunction of m SAT-UNSAT instances can be reduced
to a single instance of BH2m-Sat [35]. Let (x, k) be an instance of Q. We may assume
without loss of generality that A makes exactly g(k) SAT queries on any input (x, k).
Consider the set B = Bg(k). We interpret each sequence b = (b1, . . . , bg(k)) ∈ B as a
sequence of answers to the SAT queries made by A; a 0 corresponds to the answer of the
SAT query being “unsatisfiable” and a 1 corresponds to the answer being “satisfiable.”
For each b ∈ B, we simulate the algorithm A on input (x, k) by using the answer specified
by bi to the i-th SAT query. Let us write Ab(x, k) to denote the simulation of A on
input (x, k) where the answers to the SAT queries are specified by b. By performing this
simulation for each b ∈ B, we can determine in fpt-time the set B′ ⊆ B of sequences b
such that Ab(x, k) accepts.

We know that A accepts (x, k) if and only if the “correct” sequence of answers is contained
in B′, in other words, A accepts (x, k) if and only if there exists some b = (b1, . . . , bg(k)) ∈
B′ such that for each bi it holds that if bi = 0 then ψi is unsatisfiable, and if bi = 1
then ψi is satisfiable, where ψi denotes the formula used for the i-th SAT query made
by Ab(x, k). For each b ∈ B′, we construct an instance I(b) = (ϕ1, ϕ0) of SAT-UNSAT
that is a yes-instance if and only if the above condition holds for sequence b, as follows.
Let (ψ1, . . . , ψg(k)) be the propositional formulas that Ab(x, k) uses for the SAT queries,
i.e., ψi corresponds to the formula used for the i-th SAT query of Ab(x, k). We may
assume without loss of generality that the formulas ψi are variable disjoint, i.e., for
each i, i′ ∈ [g(k)] with i < i′, it holds that Var(ψi) ∩ Var(ψi′) = ∅. We construct the
instance (ϕ1, ϕ0) as follows:

C1 = { i ∈ [g(k)] : bi = 1 };
ϕ1 =

∧
j∈C1

ψj ;

C0 = { i ∈ [g(k)] : bi = 0 }; and
ϕ0 =

∨
j∈C0

ψj .

It is straightforward to verify that I(b) ∈ SAT-UNSAT if and only if b corresponds to the
“correct” sequence of answers for the SAT queries made by A, i.e., for each bi with bi = 0
it holds that ψi is unsatisfiable, and for each bi with bi = 1 it holds that ψi is satisfiable.

We constructed ` instances I(b1), . . . , I(b`) of SAT-UNSAT, for some ` ≤ 2g(k), such that
the algorithm A accepts the instance (x, k), and thus (x, k) ∈ Q, if and only if there exists
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some i ∈ [`] such that I(b`) ∈ SAT-UNSAT. In other words, we reduced our original
instance (x, k) of Q to a disjunction of ` ≤ 2g(k) instances of SAT-UNSAT. We know
that such a disjunction can be reduced to an instance of BH2`-Sat [35]. This completes
our fpt-reduction from Q to BH(level).

The bound of 2g(k)+1 in the proof of Lemma 71 can be improved to a bound of 2g(k) using
the “mind change technique” [14, 132, 193]. For our purposes any bound depending only
on k suffices.

7.2.2 Satisfiability Problems Complete for FPTNP[few]
We consider to parameterized problems that based on two notions of maximal models
for propositional formulas. Using the characterization of FPTNP[few] as a parameterized
variant of the Boolean Hierarchy, we show that these two problems are FPTNP[few]-
complete.

We begin by defining the two notions of maximal models. Let ϕ be a propositional
formula, and let X ⊆ Var(ϕ) be a subset of variables of ϕ. Moreover, fix an arbitrary
linear ordering on X. We say that an assignment α : Var(ϕ) → B is an X-maximal
model of ϕ if α satisfies ϕ and there exists no assignment α′ that satisfies ϕ and that sets
more variables in X to true than α. We say that an assignment α : Var(ϕ)→ B is the
lexicographically X-maximal model of ϕ if α satisfies ϕ and there exists no assignment α′
that satisfies ϕ and that is lexicographically strictly larger than α, when restricted to the
variables in X.

Consider the following three parameterized problems.

Odd-Local-Max-Model
Instance: A propositional formula ϕ, and a subset X ⊆ Var(ϕ) of variables.
Parameter: |X|.
Question: Do the X-maximal models of ϕ set an odd number of variables in X to
true?

Odd-Local-Lex-Max-Model
Instance: A propositional formula ϕ, and a subset X ⊆ Var(ϕ) of variables.
Parameter: |X|.
Question: Does the lexicographically X-maximal model of ϕ set an odd number of
variables in X to true?

Local-Max-Model
Instance: A satisfiable propositional formula ϕ, a subset X ⊆ Var(ϕ) of variables,
and a variable w ∈ X.
Parameter: |X|.
Question: Is there a model of ϕ that sets a maximal number of variables in X to
true (among all models of ϕ) and that sets w to true?
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We show that these three problems are FPTNP[few]-complete. Membership in FPTNP[few]
can be shown straightforwardly. To show FPTNP[few]-hardness, we consider the following
auxiliary problem.

Bounded-SAT-UNSAT-Disjunction
Instance: A family (ϕi, ϕ′i)i∈[k] of pairs of propositional formulas.
Parameter: k.
Question: Is there some ` ∈ [k] such that (ϕ`, ϕ′`) ∈ SAT-UNSAT?

We begin by showing that Bounded-SAT-UNSAT-Disjunction is FPTNP[few]-
complete.

Proposition 72. Bounded-SAT-UNSAT-Disjunction is FPTNP[few]-complete.

Proof. Membership in FPTNP[few] can be shown routinely. Hardness for FPTNP[few]
follows directly from the fact that every instance (ϕ1, . . . , ϕk) of BH(level)-Sat can be
expressed as a disjunction of f(k) instances of SAT-UNSAT [35], for some computable
function f .

Then, we can show FPTNP[few]-hardness for Odd-Local-Max-Model and Odd-
Local-Lex-Max-Model by providing an fpt-reduction from Bounded-SAT-UNSAT-
Disjunction.

Proposition 73. Odd-Local-Max-Model is FPTNP[few]-complete.

Proof. Membership in FPTNP[few] can be shown routinely. We show hardness by giving
an fpt-reduction from Bounded-SAT-UNSAT-Disjunction. Let (ϕi, ϕ′i)i∈[k] be an
instance of Bounded-SAT-UNSAT-Disjunction. We assume without loss of generality
that the formulas ϕi and ϕ′i are all variable-disjoint. We construct an instance (ψ,Z)
of Odd-Local-Max-Model as follows. We consider the following disjoint sets of
propositional variables:

Y =
⋃
i∈[k]

(Var(ϕi) ∪Var(ϕ′i)),

X = {xi, x′i : i ∈ [k] },
Y = { yi, y′i : i ∈ [k] }, and
W = {w}.

We let Z = X ∪ Y ∪W .

We then define the formula ψ to be the conjunction of the following propositional formulas.
Firstly, we ensure that whenever some xi is true, then ϕi must be satisfied, and whenever
some x′i is true, then ϕ′i must be satisfied. We do so by means of the following formula:∧

i∈[k]
((xi → ϕi) ∧ (x′i → ϕ′i)).
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Then, we ensure that the variables yi and y′i get the same truth value as the variables xi
and x′i (respectively): ∧

i∈[k]
((xi ↔ yi) ∧ (x′i ↔ y′i)).

Finally, we ensure that w can only be true if there is some i ∈ [k] such that xi is true
and x′i is false:

w ↔
∨
i∈[k]

(xi ∧ ¬x′i).

The satisfying assignment of ψ that sets as many variables in Z to true as possible satisfies
as many of the formulas ϕi and ϕ′i as possible. Moreover, the number of variables in Z that
are set to true is odd if and only if w is satisfied. This is the case for the Z-maximal model
if and only if there is some i ∈ [k] where ϕi is satisfied and ϕ′i is not satisfied. Because this
model is Z-maximal, we know that ϕ′i is unsatisfiable. Therefore (ϕi, ϕ′i) ∈ SAT-UNSAT.
Conversely, if (ϕi, ϕ′i) ∈ SAT-UNSAT for some i ∈ [k], we get that the Z-maximal model
satisfies w.

Thus (ϕi, ϕ′i)i∈[k] ∈ Odd-Local-Max-Model if and only if (ψ,Z) ∈ Odd-Local-Max-
Model.

To show FPTNP[few]-hardness for Odd-Local-Lex-Max-Model, we can also use the
reduction that we used in the FPTNP[few]-hardness proof in Proposition 73.

Proposition 74. Odd-Local-Lex-Max-Model is FPTNP[few]-complete.

Proof. Membership in FPTNP[few] can be shown routinely. Hardness follows from the
fpt-reduction in the proof of Proposition 73, which is also an fpt-reduction from Bounded-
SAT-UNSAT-Disjunction to Odd-Local-Lex-Max-Model, for an arbitrary linear
ordering on the variables in Z where the variable w is ordered last.

Similarly, to show FPTNP[few]-hardness for Local-Max-Model, we can also use the
reduction that we used in the FPTNP[few]-hardness proof in Proposition 73.

Proposition 75. Local-Max-Model is FPTNP[few]-complete.

Proof. Membership in FPTNP[few] can be shown routinely. To show hardness, we
can straightforwardly modify the fpt-reduction in the proof of Proposition 73, to an
fpt-reduction from Bounded-SAT-UNSAT-Disjunction to Local-Max-Model, by
taking (ψ,Z,w) as the constructed instance of Local-Max-Model.
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7.3 Lower Bounds on the Number of Oracle Queries

In this section, we show how hardness for the parameterized complexity class FPTNP[few]
(for a parameterized problem Q) can be used to show a lower bound on the number of
SAT queries made by any fpt-algorithm that solves Q. In particular, we show that any
FPTNP[few]-hard problem Q cannot be solved by an fpt-algorithm that queries a SAT
oracle only O(1) times, unless the Polynomial Hierarchy collapses. Moreover, we preview
a result from Chapter 14 that hardness for the parameterized complexity classes A[2],
Σp

2 [k∗] and Σp
2 [∗k, t] can be used to show that problems cannot be solved in fpt-time

using f(k) SAT queries.

We begin with showing the ω(1) lower bound based on FPTNP[few]-hardness.

Proposition 76. Let Q be any FPTNP[few]-hard parameterized problem. Then Q is
not solvable by an fpt-algorithm that uses only O(1) SAT queries, unless the Polynomial
Hierarchy collapses.

Proof. Assume that Q is solvable by an fpt-algorithm that uses only c SAT queries,
where c is a constant. We will show that the PH collapses. Since Q is BH(level)-hard,
we know that there exists an fpt-reduction R1 from BH(level)-Sat to Q. Then, by
Lemma 71, there exists an fpt-reduction R2 from Q to BH(level)-Sat, that reduces any
instance (x′, k′) of Q to an instance (x′′, k′′) of BH(level)-Sat, where k′′ ≤ 2c+1. Then,
the composition R of R1 and R2 is an fpt-reduction from BH(level)-Sat to itself such
that any instance (x, k) of BH(level)-Sat is reduced to an equivalent instance (x′′, k′′) of
BH(level)-Sat, where k′′ ≤ m = 2c+1. We can straightforwardly modify this reduction
to always produce an instance (x′′,m) of BH(level)-Sat, by adding trivial instances of
SAT to the sequence x′′.

We now show that the Boolean Hierarchy collapses to the m-th level, where m = 2c+1.
Let y be an instance of BHm+1-Sat. We can then see the reductionR as a polynomial-time
reduction from BHm+1-Sat to BHm-Sat: the fpt-reduction R runs in time f(k) · nO(1),
and since k = m+ 1 is a constant, the factor f(k) is constant. From this we can conclude
that BHm = BHm+1. Thus, the BH collapses, and consequently the PH collapses [41,
125].

In Chapter 14, we show that we can rule out that a parameterized problem Q is solvable in
fpt-time using only f(k) SAT queries (for some computable function f) by showing that Q
is hard for A[2], Σp

2 [k∗] or Σp
2 [∗k, t]—under various complexity-theoretic assumptions. For

instance, for the case of A[2], we show that if any A[2]-hard problem is in FPTNP[few],
then there exists a subexponential-time Turing reduction from QSat2(3DNF) to SAT,
that is, a Turing reduction that runs in time 2o(n), where n is the number of variables
(Corollary 172). For more details, we refer to Chapter 14.
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7.4 Bounded Optimization Problems

In Section 7.2, we showed that the class FPTNP[few] can be seen as a parameterized
variant of the Boolean Hierarchy. In this section, we consider another alternative charac-
terization of the class FPTNP[few] that is based on bounded optimization problems. In
particular, this characterization is based on the problem of maximizing the output of a non-
deterministic Turing machine that outputs positive integers represented by binary strings
of length at most f(k), where k is the parameter value and f is some computable function.
Moreover, we illustrate this characterization by showing FPTNP[few]-completeness for
yet another parameterized problem.

The characterization in terms of bounded optimization problems is similar to results of
Spakowski for the class Θp

2 [183]. We use the following notation. Let w ∈ B∗. By |w|1 we
denote the number of 1’s occurring in w. We characterize FPTNP[few] as follows.

Theorem 77. A parameterized problem Q is in FPTNP[few] if and only if there is an
NTM M with output tape such that there exist a polynomial p and computable functions f
and g such that for every instance (x, k) of Q:

1. Every computation path of M(x, k) has length at most f(k) · p(|x|).

2. The length of the output of every computation path of M(x, k) is bounded by g(k).

3. Every two paths ρ1 and ρ2 of M(x, k) have the same acceptance behavior whenever
they have the same number of 1’s in the output.

4. It holds that (x, k) ∈ Q if and only if M accepts (x, k) on ρmax, where ρmax is a
computation path with the maximum number of 1’s in the output.

Proof. (⇒) Let Q be an arbitrary language in FPTNP[few]. Then there exists a deter-
ministic Turing machine M1, with an oracle C ∈ NP, that decides Q. Without loss
of generality, we assume that M1 queries exactly f(k) strings to the oracle for every
input (x, k). Because C ∈ NP, there exists some D ∈ P and a polynomial r such that:

z ∈ C if and only if there exists some y with |y| ≤ r(|z|) such that (x, y) ∈ D.

We construct an NTM M2 that operates as follows on input (x, k):

Step 1: Non-deterministically guess b1, b2, . . . , bf(k) ∈ B.

Step 2: On each path ρ with guessed b1, b2, . . . , bf(k), construct the oracle
queries q1, q2, . . . , qf(k) ∈ Σ∗ by simulating MC

1 (x, k), where the answers to the
queries of M1 to C are substituted by b1, b2, . . . , bf(k)—take “yes” as an answer to
the i-th query if and only if bi = 1.
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Step 3: Successively, for each i with bi = 1, non-deterministically guess a string yi
with |yi| ≤ r(|qi|). Verify that each (qi, yi) is in D. Output the string “0” and reject
on the current path ρ if at least one such test fails. Otherwise, continue as follows
on ρ.

Step 4: Output the string w = 11 . . . 1, where |w| = number(b1 . . . bf(k)) + 1. We know
that |w| = 2O(f(k)).

Step 5: Accept on ρ if and only if the computation of MC
1 (x, k) simulated in Step 2 was

accepting.

Clearly, the machine M2 runs in fpt-time. Let ρmax be any path reaching Step 4
with lexicographically maximum b1 . . . bf(k) among all paths reaching Step 4. It is
straightforward to see that:

• The bits b1 . . . bf(k) guessed on ρmax represent the correct oracle answers to the
queries made by MC

1 on input (x, k).

• The output string w for ρmax has a maximum number of 1’s among the output
strings of all paths of M2.

Therefore, MC
1 accepts (x, k) if and only if M2(x, k) accepts in Step 5 on path ρmax.

(⇐) Let M1 be a suitable non-deterministic Turing machine with output tape.
Hence, (x, k) ∈ Q if and only if M1 accepts (x, k) on ρmax, where ρmax is a compu-
tation path of M1(x, k) with a maximum number of 1’s in the output. We have to show
that Q ∈ FPTNP[few].

We sketch an FPTNP[few] algorithm A that decides Q. We know that there exists a
computable function g such that the length of the output wρ of any computation path ρ
is bounded by g(k), i.e., |wρ| ≤ g(k). Let O be the following decision problem. Instances
of O are triples (M, `, b), where M is an NTM, ` is a positive integer, and b ∈ B∗. Any
instance (M, `, 1) is a yes-instance if and only if M has an accepting computation path ρ
of M1 where |wρ|1 = `, and any instance (M, `, 0) is a yes-instance if and only if M has
a rejecting computation path ρ with |wρ|1 = `. Clearly, O is a language in NP. For
each ` ∈ [g(k)], the algorithm A queries (M1, `, b) for all b ∈ B. Then, the algorithm A
determines `max, where:

`max = max{ ` : ` ∈ [g(k)], for some b ∈ B: (M1, `, b) ∈ O }.

Finally, the algorithm accepts if and only if (M1, `max, 1) ∈ O. It is straightforward
to verify that A correctly decides whether M1 accepts (x, k) on ρmax. Also, A is an
fpt-algorithm that queries the language O at most 2g(k) times.
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Next, we consider another parameterized problem that we show to be FPTNP[few]-
complete. We use the characterization of FPTNP[few] in terms of bounded optimization
problems to show FPTNP[few]-hardness for this problem. This is a proof “from first
principles,” i.e., a proof that does not rely on a reduction from another FPTNP[few]-
complete problem.

Let ϕ be a propositional formula, and let X ⊆ Var(ϕ) be a subset of variables occurring
in ϕ. We define max1(ϕ,X) as follows:

max1(ϕ,X) = max{ |{x ∈ X : α(x) = 1 }| : (α : Var(ϕ)→ B), ϕ[α] = 1 }.

That is, max1(ϕ,X) is the maximum number of variables in X set to true by any
assignment that satisfies ϕ. Now, consider the following parameterized problem.

Local-Max-Model-Comparison
Instance: Two satisfiable propositional formulas ϕ1 and ϕ2, a positive integer k,
and a subset X ⊆ Var(ϕ1) ∩Var(ϕ2) of k variables.
Parameter: k.
Question: max1(ϕ1, X) = max1(ϕ2, X)?

We show that this problem is FPTNP[few]-complete.

Proposition 78. Local-Max-Model-Comparison is FPTNP[few]-complete.

Proof. We firstly show membership in FPTNP[few]. Let (ϕ1, ϕ2, k,X) be an instance of
Local-Max-Model-Comparison. Then the following problem O is in NP:

O = { (ϕ,m) : ϕ is a propositional formula, t.e. (α : Var(ϕ)→ B)
s.t. ϕ[α] = 1, and α sets exactly m variables in X to 1 }.

We sketch an fpt-algorithm A that decides Local-Max-Model-Comparison and that
makes 2k queries to the oracle O. First, A asks whether (ϕi,m) ∈ O for all i ∈ {1, 2}
and all m ∈ [k]. From the answers to these queries, it is straightforward to determine
whether max1(ϕ1, X) = max1(ϕ2, X).

Next, we show that Local-Max-Model-Comparison is FPTNP[few]-hard. Let Q be
an arbitrary problem in FPTNP[few]. We give an fpt-reduction from Q to Local-Max-
Model-Comparison. By Theorem 77, we know that there exists an NTM M with
output tape such that there exists a polynomial p and computable functions f and g
such that for every (x, k) ∈ Σ∗ ×N: (1) every computation path of M(x, k) has length at
most f(k) · p(|x|), (2) the length of the output of every computation path of M(x, k) is
bounded by g(k), (3) every two paths ρ1 and ρ2 of M(x, k) have the same acceptance
behavior whenever they have the same number of 1’s in the output, and (4) (x, k) ∈ Q if
and only if M accepts (x, k) on ρmax. Assume without loss of generality that for every
input (x, k) there is at least one (accepting or non-accepting) computation path of M(x, k)
with at least one 1 in the output.
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Let (x, k) be an instance of Q. We now construct two propositional formulas ϕ1(x, k)
and ϕ2(x, k) as follows. In order to do so, we will make use of the well-known proof of the
Cook-Levin Theorem [54, 143], in which a non-deterministic Turing machine M′ together
with an input (x, k) ∈ Σ∗ × N is transformed into a formula ϕM′(x,k) propositional atoms
of the form:

• state(q, i), representing whether M(x, k) is in state q at time step i;

• tape(σ, i, `,m), representing whether in the execution of M(x, k) the `-th cell of the
m-th tape contains symbol σ at time step i;

• head(i, `,m), representing whether in the execution of M(x, k) the head of the m-th
tape is at position ` at time step i.

Furthermore, whenever M′ halts within f(k) · p(|x|) steps when given an input (x, k),
for some polynomial p and some computable function f , then the formula ϕM(x,k) is
bounded in size by f ′(k) ·p′(|x|), for some polynomial p′ and some computable function f ′.
Moreover, we know that the output tape of M can only contain 0’s and 1’s. Therefore,
we introduce the following additional variables:

• output(i, `), representing whether in the execution of M(x, k) the `-th cell of the
output tape contains a 1 at time step i.

Observe that we only need the variables output(i, `) for ` ∈ [g(k)].

Now, we construct the formulas ϕ1(x, k) and ϕ2(x, k). Assume without loss of generality
that every computation path of M(x, k) is of length exactly f(k) · p(|x|) = r. The for-
mula ϕ1(x, k) contains the variables described above, and it satisfiable if and only if the
instantiation of the variables corresponds to a valid (accepting or non-accepting) compu-
tation path of M(x, k). The formula ϕ2(x, k) also contains the variables described above,
and it satisfiable if and only if either (1) all variables are set to 0, or (2) the instantiation
of the variables corresponds to a valid and accepting computation path of M(x, k). It is
straightforward to verify that both ϕ1(x, k) and ϕ2(x, k) are satisfiable. Furthermore, the
set X ⊆ Var(ϕ1(x, k))∩Var(ϕ2(x, k)) consists of the variables output(r, `), for ` ∈ [g(k)].
Clearly, |X| = g(k).

By construction of ϕ1(x, k) and ϕ2(x, k), it is straightforward to verify
that max1(ϕ1(x, k), X)) ≥ max1(ϕ2(x, k), X)) (since every satisfying assignment
for ϕ2(x, k) that corresponds to a computation path is also a satisfying assign-
ment for ϕ1(x, k)). It is also straightforward to verify that max1(ϕ1(x, k), X)) =
max1(ϕ2(x, k), X)) if and only ifM(x, k) accepts on ρmax. Therefore we know that (x, k) ∈
Q if and only if (ϕ1(x, k), ϕ2(x, k), X, g(k)) ∈ Local-Max-Model-Comparison.
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7.5 Witness-Producing SAT Oracles

In this section, we consider an extension of the class FPTNP[few] based on a more powerful
oracle model, where the SAT oracles return a satisfying assignment for yes-answers. It
can be argued that this extended oracle model more closely resembles the setting of
algorithms that invoke a SAT solver, because SAT solvers in practice also return a
satisfying assignment when given a satisfying formula as input. We investigate the
additional solving power that this more powerful oracle model yields. We show that for
the case of decision problems, exactly the same set of problems can be solved in fpt-time
using f(k) SAT queries in both oracle models. On the other hand, we show that for
the case of search problems, the oracles that return satisfying assignments lead to more
solving power.

Because our analysis of the additional solving power yielded by the witness oracle model
also applies to several classical complexity classes (based on polynomial-time algorithms
that query a SAT oracle), we consider various notions both from a classical complexity
perspective as well as from a parameterized complexity perspective.

Search problems We begin with defining the concept of search problems. A (classical)
search problem is a setQ ⊆ Σ∗×Σ∗ of pairs of strings. Intuitively, each such pair (x, y) ∈ Q
specifies an answer y to an input x. We say that an algorithm solves Q if on any
input x ∈ Σ∗, it outputs a string y ∈ Σ∗ such that (x, y) ∈ Q if such a string y
exists, and outputs “none” otherwise. Similarly, a parameterized search problem is a
set Q ⊆ Σ∗ × Σ∗ × N of triples (x, y, k). Intuitively, each such triple (x, y, k) specifies
an answer y to an input (x, k). solves Q if on any input (x, k) ∈ Σ∗ × N, it outputs
a string y ∈ Σ∗ such that (x, y, k) ∈ Q if such a string y exists, and outputs “none”
otherwise. When speaking about inputs (x, k) of Q, we let k denote the parameter value.

Witness oracles Next, we formally define the oracle model based on witness oracles.
Let O be a search problem, i.e., a set O ∈ Σ∗ × Σ∗ of pairs of strings. A Turing machine
with access to a witness O oracle is a Turing machine M that has a dedicated oracle tape
and dedicated states qquery, qyes and qno. Whenever M is in the state qquery it transitions
into the state qyes if the oracle tape contains a string x such that there exists some y ∈ Σ∗
such that (x, y) ∈ O, and in addition the contents of the oracle tape are replaced by (the
encoding of) such a string y; it transitions into the state qno if there exists no y such
that C(x, y). Such transitions are called oracle queries.

Throughout this section, we will also consider SAT as a search problem. That is, in this
case we let:

SAT = { (ϕ, α) : ϕ is a propositional formula, α : Var(ϕ)→ B, ϕ[α] = 1 }.

Whether we use SAT to denote this search problem or the usual decision problem will be
clear from the context. For instance, whenever we write “witness SAT oracle”, we denote
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the search problem. Moreover, if we want to emphasize that we use the decision problem
SAT as an oracle, we write “decision SAT oracle.”

When speaking about a witness NP oracle, we mean a search problem O for which the
following problem is in NP:

{x : x ∈ Σ∗, there is some y with |y| = |x|O(1) such that (x, y) ∈ O }.

Parallel oracle access We also consider some complexity classes that are based on
Turing machines that have parallel access to an oracle. Let O be a decision problem.
A Turing machine M with parallel access to a decision O oracle is a Turing machine
with a dedicated oracle tape, and dedicated states qquery and qdone. The machine M can
write several strings x1, . . . , xu to the oracle tape, separated by a designated symbol $.
Then, once during the computation, M can enter the state qquery, after which it does not
proceed according to the transition relation, but instead it transitions into the state qdone.
Moreover, when this special transition occurs, the contents of the oracle tape are replaced
by a bitstring b1 . . . bu, where bi = 1 if and only if xi ∈ C, for all i ∈ [u], where x1$ . . . $xu
is the content of the oracle tape. In this case, we say that the machine makes u oracle
queries.

In a similar way, we define Turing machines with access to a witness O oracle, for search
problems O. The only difference is that the contents of the oracle tape are not replaced
by a bitstring representing whether xi ∈ O, but by a sequence of answers a1$ . . . $au,
where ai encodes “none” if there exists no y such that (xi, y) ∈ O; and otherwise, if there
exists some y such that (xi, y) ∈ O, the answer ai encodes such a string y.

Complexity classes Finally, before we start the investigation of the additional power
yielded by the witness oracle model, we consider various (parameterized) complexity
classes containing decision and search problems.

In Section 7.1, we considered the class Θp
2 , consisting of those decision problems that

are solved by a polynomial-time algorithm that queries a decision SAT oracle O(logn)
times. This class coincides with the class PNP

|| , consisting of all decision problems that
are decided by a polynomial-time algorithm that has access to a decision SAT oracle [33,
120, 132]. Similarly, we consider the class FΘp

2 of search problems that are solved by a
polynomial-time algorithm that queries a decision SAT oracle O(logn) times. Also, the
class FPNP

|| consists of all search problems that are solved by a polynomial-time algorithm
that has parallel access to a SAT oracle. Analogously, we define the classes FΘp

2 [wit]
and FPNP

|| [wit], based on algorithms with (parallel) access to witness SAT oracles. (The
complexity class FΘp

2 [wit] coincides with the class FNP//OptP[log], that is defined as
the set of all search problems that can be solved by a non-deterministic polynomial-time
Turing machine that receives as advice the answer to one “NP optimization” computation
[48, 133].) In Section 7.1, we also considered the class ∆p

2 , consisting of those decision
problems that are solved by a polynomial-time algorithm with access to a decision SAT
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oracle. Similarly to the definitions above, we define the complexity classes F∆p
2 and

F∆p
2 [wit] of search problems.

Finally, we consider several classes of parameterized search problems. We consider the
complexity class FPTNP[few,wit] of parameterized decision problems that are decided by
an fpt-algorithm that queries a witness SAT oracle at most f(k) times, where k denotes the
parameter value and f is some computable function. Similarly, the class FFPTNP[few,wit]
consists of all parameterized search problems that are solved by an fpt-algorithm that
queries a witness SAT oracle at most f(k) times. The classes FPTNP

|| [few,wit] and
FFPTNP

|| [few,wit] consist of all parameterized decision and search problems (respectively),
that are solved by an fpt-algorithm with parallel access to a witness SAT oracle, that
makes at most f(k) queries for any input (x, k), for some computable function f .

7.5.1 Comparing the Oracle Models for Decision Problems

We firstly compare the two different oracle models (decision vs. witness SAT oracles)
in the setting of decision problems. We begin by showing that for polynomial-time
algorithms without any further bounds on the number of oracle queries, the two models
are equally powerful. Then, we show a similar result for polynomial-time algorithms
that can query the oracle a logarithmic number of times. Finally, we show how these
results can be adapted to the parameterized setting. In particular, we show that for
fixed-parameter tractable algorithms that can query the oracle f(k) times, the two oracle
models are equally powerful.

We begin with showing that for the case of ∆p
2 , witness oracles are not more powerful

than decision oracles.

Proposition 79. ∆p
2 [wit] = ∆p

2.

Proof (sketch). By the self-reducibility of SAT, one can query a decision oracle a linear
number of times to extract a satisfying assignment for any satisfying propositional
formula ϕ. Therefore, any polynomial-time algorithm with access to a witness SAT oracle
can straightforwardly be modified to work also with a decision SAT oracle.

Next, we turn our attention to the case of Θp
2 . The following proof is based on a result

by Spakowski [183, Proposition 3.2.3]. The following result was actually already known
from the literature [136, Corollary 6.3.5]. However, since we want to apply a modification
of the proof to the case of FPTNP[few], we give a proof of the statement.

Proposition 80. Θp
2 [wit] = Θp

2.

Proof (sketch). Clearly Θp
2 ⊆ Θp

2 [wit]. We show that Θp
2 [wit] ⊆ Θp

2 . Let Q ∈ Θp
2 [wit]

be an arbitrary problem. We show that Q ∈ Θp
2 . Let A be the algorithm that decides

for any instance x of Q with |x| = n whether x ∈ Q in polynomial time, by querying a
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witness NP oracle at most O(logn) times. We may assume without loss of generality
that M queries the oracle exactly z(n) = O(logn) times on any input of length n.

We construct an NTM M that has an output tape, and that has the following property:
x ∈ Q if and only if M accepts x on some computation path with a maximum number
of 1’s in the output. Here the maximum is taken over all possible (accepting or rejecting)
computation paths of M.

We let M implement the following guess-and-check algorithm. Let x be an instance
of Q with |x| = n. For i ∈ [z(n)], the algorithm guesses some bi ∈ B. Furthermore, for
each i ∈ [z(n)] such that bi = 1, the algorithm guesses a (polynomial-length) witness wi
corresponding to the “yes-answer” bi. Then, we let the algorithm simulate A where the
bits b1, . . . , bz(n) are used for the oracle answers, and where the witnesses wi are used for
the witnesses corresponding to the “yes-answers.” Then, for each i ∈ [z(n)] the algorithm
verifies whether wi is indeed a correct witness that justifies the “yes-answer” for the i-th
query made to the NP oracle. If there is any incorrect witness wi, the algorithm outputs
the binary string 0 of length 1, and rejects. Otherwise, it continues. Then, the algorithm
outputs the string 1w+1, where w is the number whose binary representation is the
string b1 . . . bz(n). Since z(n) = O(logn), we know that w is polynomial in n. Finally, the
algorithm accepts the input x if and only if the simulation of A with the guessed bits bi
and the guessed witnesses wi accepted. It is straightforward to verify that M satisfies
the required property.

Next, we develop an algorithm witnessing that Q ∈ Θp
2 , i.e., a polynomial-time algorithm

that decides for any input x of Q with |x| = n whether x ∈ Q by making O(logn) queries
to a decision NP oracle. We use two different NP oracles. The first oracle decides,
given a non-determinisic TM M, an input x, and an integer m, whether there exists a
computation path of M on input x with m 1’s in the output. The second oracle decides,
given a non-determinisic TM M, an input x, and an integer m, whether there exists an
accepting computation path of M on input x with m 1’s in the output.

Let x be an instance of Q with |x| = n. We know that x ∈ Q if and only if there
is some accepting computation path of M on input x with a maximum number of 1’s
in the output. Moreover, we know that any computation path of M on input x has
at most 2z(n)+1 = nO(1) 1’s in the output. With binary search, we can determine the
maximum number wmax of 1’s in any computation path of N on input x with O(logn)
queries to the first NP oracle. Subsequently, we can use one query to the second NP
oracle to decide whether there exists an accepting computation path of N with input x
that has wmax 1’s in the output, and therefore whether x ∈ Q. This concludes our proof
that Q ∈ Θp

2 .

Finally, we show how the proof of Proposition 80 can be modified to show for the case of
FPTNP[few] that witness oracles do not yield more solving power.

Proposition 81. FPTNP[few,wit] = FPTNP[few].
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Proof (sketch). We show that FPTNP[few,wit] ⊆ FPTNP[few]. Let Q be a problem in
FPTNP[few,wit], that is, there is an fpt-algorithm A for Q that queries a witness NP
oracle f(k) times. We transform this algorithm into an fpt-algorithm A′ for Q that
queries a decision NP oracle f(k) times. The general idea of this transformation is entirely
similar to the construction used in the proof of Proposition 80. It is readily verified that
applying this construction to this case yields the required fpt-algorithm A′.

An interesting topic for future research is the relation between the classes FPTNP[few]
and FPTNP

|| [few,wit]. It is unclear if and how the argument why the class FPTNP[few]
does not change when defined based on parallel oracle access (as sketched in the beginning
of Section 7.2) can be extended to answer this question. Similarly, the relation between
the classes Θp

2 [wit] and PNP
|| [wit] remains open.

7.5.2 Comparing the Oracle Models for Search Problems

We then turn our attention to the setting of search problems. We show that in this
setting, the witness oracle model is in fact more powerful than the decision oracle model
(except in the case of F∆p

2).

We begin with the case of F∆p
2 .

Proposition 82. F∆p
2 [wit] = F∆p

2.

Proof. The proof of Proposition 79 also works to show this result.

Then, for the case of FΘp
2 and FFPTNP[few], we will make use of a result by Gottlob

and Fermüller [99, Theorem 5.4]. This result states that the search problem SAT cannot
be solved by a polynomial-time algorithm that queries a decision NP oracle O(logn)
times (unless P = NP). This directly gives us the following result. The inclusion FΘp

2 ⊆
FΘp

2 [wit] is trivial, and is likely to be strict.

Observation 83. FΘp
2 ( FΘp

2 [wit], unless P = NP.

Proof. This follows directly from a result by Gottlob and Fermüller [99, Theorem 5.4].

Similarly, the inclusion FFPTNP[few] ⊆ FFPTNP[few,wit] is trivial, and is likely to be
strict for the same reason.

Observation 84. FFPTNP[few] ( FFPTNP[few,wit], unless P = NP.

Proof. This follows directly from a result by Gottlob and Fermüller [99, Theorem 5.4].
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Moreover, in Section 10.2, we will consider a search problem that is in FFPTNP[few,wit],
but not in FFPTNP[few], unless W[P] = FPT (see Proposition 122).

Finally, we argue that in the setting of search problems in fact only the last SAT query
needs to return a satisfying assignment. We firstly show this for the case of FΘp

2 [wit].
Again, the result for the case of FΘp

2 [wit] was already known from the literature [136,
Lemma 6.3.4]. Since we want to apply a modification of the proof to the case of
FFPTNP[few], we nevertheless indicate how the statement can be proved.

Proposition 85. Let Q ∈ FΘp
2 [wit] be an arbitrary search problem. Then there exists

a polynomial-time algorithm with access to a decision NP oracle O1 and a witness
NP oracle O2, that solves Q by making O(logn) queries to the decision oracle O1 and
subsequently a single query to the witness oracle O2, where n denotes the input size.

Proof (idea). Let A be an polynomial-time algorithm that solves Q by making loga-
rithmically many queries to a witness NP oracle. Construct an algorithm similar to
the algorithm constructed in the proof of Proposition 80, i.e. an algorithm that makes
logarithmically many queries to a decision NP oracle, but that replaces the (single) last
query to the decision NP oracle by a query to the witness NP oracle in order to compute
some output of Q(x).

This proof can be modified to show a similar result for the case of FFPTNP[few,wit].

Proposition 86. Let Q ∈ FFPTNP[few,wit] be an arbitrary parameterized search prob-
lem. Then there exists an fpt-algorithm with access to a decision NP oracle O1 and a
witness NP oracle O2, that solves Q by making f(k) queries to the decision oracle O1
and subsequently a single query to the witness oracle O2.

Proof (sketch). The proof of Proposition 85 can be straightforwardly modified to show
this statement.

Similarly to the case for decision problems, interesting topics for future research are
the relation between the classes FFPTNP[few,wit] and FFPTNP

|| [few,wit] and the relation
between the classes FΘp

2 [wit] and FPNP
|| [wit]. It has been shown that FΘp

2 6= FPNP
|| ,

unless the ETH fails [124]—that is, unless there is some 2o(n)-time algorithm for 3SAT,
where n denotes the number of variables. It would be interesting to investigate whether
the techniques used to show this can be extended to separate FFPTNP[few,wit] from
FFPTNP

|| [few,wit] or to separate FΘp
2 [wit] from FPNP

|| [wit].

Summary
In this chapter, we considered several ways of generalizing (many-to-one) fpt-reducibility
to SAT to the notion of fpt-time Turing reductions to SAT—that is, fpt-algorithms that
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have access to an NP oracle. These different variants are based on different bounds on the
number of oracle queries that the algorithms can make. The variant that we studied in
most detail leads to the parameterized complexity class FPTNP[few], where the number
of queries is allowed to depend only on the parameter value (and not on the input size).
We showed that this class can alternatively be seen as a parameterized variant of the
Boolean Hierarchy. Moreover, we showed how hardness results for various parameterized
complexity classes can be employed to obtain lower bounds on the number of NP oracle
queries made by any fpt-algorithm that solves a particular problem. Finally, we briefly
considered an extension of the class FPTNP[few], where the oracles return a witness in
case of a yes-answer.

Notes
The results in Sections 7.2.1 and 7.3 were shown in a paper that appeared in the
proceedings of COMSOC 2014 [77] and in the proceedings of AAMAS 2015 [78].

In previous work [77, 78, 109, 111, 112], the class FPTNP[few] appeared under the
name FPTNP[f(k)].
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CHAPTER 8
Problems in Knowledge

Representation and Reasoning

In Chapters 4–7, we developed parameterized complexity tools to adequately characterize
the computational complexity of parameterized variants of problems that lie at the
second level of the Polynomial Hierarchy (or higher). We are particularly interested
in using these tools (as well as other parameterized complexity tools) to discriminate
parameterized problems that admit an fpt-reduction to SAT from problems that do not.
In Chapter 8–13, we will apply these tools to concrete problems from various domains of
computer science and artificial intelligence.

For an overview of all parameterized problems that we consider in this thesis (grouped
by their computational complexity), we refer to the Index of Parameterized Problems on
page 399.

In this chapter, we begin by investigating the parameterized complexity of several
problems from the area of Knowledge Representation and Reasoning.

Outline of this chapter In Section 8.1, we give an overview of the parameterized
complexity results that we found in Chapters 4 and 6 for the consistency problem
for disjunctive answer set programming. This problem served as a running example
throughout Chapter 6. For this problem, there are several parameterizations that admit
an fpt-reduction to SAT, and several other parameterizations that do not (the latter are
complete for Σp

2 [k∗] and Σp
2 [∗k,P]).

Then, in Section 8.2, we consider several parameterizations of the problem of abductive
reasoning over propositional theories. In particular, we consider two types of parameters
that measure the distance to a tractable base class. One of these types leads to fpt-
reductions to SAT (for two tractable base classes). We show that the other type of
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parameters leads to problems that do not admit fpt-reductions to SAT (these problems
are complete for Σp

2 [∗k, 1] and Σp
2 [∗k,P]).

Finally, in Section 8.3, we consider a parameterized problem that captures a robust
notion of satisfiability in the setting of constraint satisfaction. We show that this problem
is Πp

2 [k∗]-complete.

8.1 Disjunctive Answer Set Programming

We begin by briefly reviewing the parameterized complexity results for the consistency
problem for disjunctive answer set programming that we discussed in Chapters 4–6. For
a detailed definition of this problem, we refer to Section 5.1.

The problem ASP-consistency is Σp
2-complete [71]. The different parameterizations

that we consider for this problem are complete for various parameterized complexity
classes between para-NP and para-co-NP, on the one hand, and para-Σp

2 , on the other
hand. An overview of these results is provided in Table 8.1. (For an overview of the
definition of the parameterized problems referred to in this table, we refer to Table 5.1
on page 74.)

Problem Parameterized Complexity

ASP-consistency(norm.bd-size) para-NP-complete (Proposition 15, [82])
ASP-consistency(#cont.atoms) para-co-NP-complete (Proposition 16)
ASP-consistency(#cont.rules) Σp

2 [k∗]-complete (Theorem 28)
ASP-consistency(#disj.rules) Σp

2 [∗k,P]-complete (Theorem 49)
ASP-consistency(#non-dual-normal.rules) Σp

2 [∗k,P]-complete (Theorem 51)
ASP-consistency(max.atom.occ.) para-Σp

2-complete (Proposition 17)

Table 8.1: Parameterized complexity results for ASP-consistency.

We hope that these parameterized complexity results can help guide engineering efforts for
practical answer set solvers (i.e., algorithms to solve reasoning problems based on answer
set programming). Many answer set solvers already employ SAT solving techniques, e.g.,
Cmodels [92], ASSAT [146], and Clasp [89]. Work has also been done on translations
from ASP to SAT, both for classes of programs for which reasoning problems are within
NP or co-NP [16, 79, 123, 146] and for classes of programs with reasoning problems
beyond NP and co-NP [123, 142, 145].

8.2 Abductive Reasoning

Next, we analyze the computational complexity of two additional parameterizations of
the propositional abduction problem. We already considered two parameterized variants
of this problem in Chapter 4 (for a definition of the problem of propositional abduction
and these parameterizations, we refer to Section 4.2.2). The problem is Σp

2-complete in
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general [72], but it is only NP-complete when restricted to Horn theories [180] or to Krom
(2CNF) theories [167, Lemma 61]. The parameters that we considered for this problem
in Section 4.2.2 capture a distance measure to these tractable base classes, based on the
notion of (strong) backdoors. For these parameters, the problem admits an fpt-reduction
to SAT (see the work of Pfandler, Rümmele and Szeider [172], and Propositions 5 and 6).

In this section, we consider two more parameterizations for the propositional abduction
problem, that also capture a distance measure to the tractable base classes of Horn and
Krom theories. The parameterizations considered by Pfandler et al. and in Section 4.2.2
count the (minimum) number of variables that need to be eliminated to end up in the
base class. The parameters that we consider in this section count the number of clauses
that need to be eliminated to end up in the base class.

In particular, we consider the following two parameterized problems.

Abduction(#non-Horn-clauses):
Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses of T that are not Horn clauses.
Question: Does there exist a solution S of P of size at most m?

Abduction(#non-Krom-clauses):
Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses of T that are not Krom clauses.
Question: Does there exist a solution S of P of size at most m?

We show that these parameterized problems are complete for different levels of the
Σp

2 [∗k, t] hierarchy. We begin by proving Σp
2 [∗k,P]-completeness for the problem Ab-

duction(#non-Horn-clauses). It will be instructive to firstly consider an alternative
NP-hardness proof for the problem Abduction restricted to Horn theories. We give a
reduction directly from the canonical NP-complete problem 3SAT. The Σp

2 [∗k,P]-hardness
proof for Abduction(#non-Horn-clauses) that we give below is based on a similar idea
as the one behind this NP-hardness proof.

Proposition 87. Abduction is NP-hard, even when restricted to instances where the
theory is a Horn formula.

Proof. We show NP-hardness by giving a polynomial-time reduction from 3SAT.
Let ϕ = c1 ∧ · · · ∧ cm be a 3CNF formula with Var(ϕ) = {x1, . . . , xn}. We construct an
instance (P,m) of Abduction, where P = (V,H,M, T ) and where the theory T is a
Horn formula. We let:

X = {xi : i ∈ [n] };
X ′ = {x′i : i ∈ [n] };
Y = { yj : j ∈ [m] };
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V = X ∪X ′ ∪ Y ;
H = X ∪X ′;
M = Y ;
T = { (¬xi ∨ ¬x′i) : i ∈ [n] } ∪

{ (σ(lj1)→ yj), (σ(lj1)→ yj), (σ(lj1)→ yj) : j ∈ [m], cj = (lj1 ∨ l
j
2 ∨ l

j
3) }; and

m = |X|,

where the function σ : Lit(X)→ X ∪X ′ is defined by letting σ(x) = x and σ(¬x) = x′,
for all x ∈ X. Clearly, T is a Horn formula. We claim that ϕ is satisfiable if and only
if P has a solution of size at most m.

(⇒) Assume that ϕ is satisfiable, i.e., that there exists a truth assignment α : X → B that
satisfies ϕ. We construct the solution S = {x ∈ X : α(x) = 1 } ∪ {x′ : x ∈ X,α(x) =
0 } ⊆ H, which has exactly m elements. We know that T ∪ S is satisfiable, because the
following truth assignment β : V → B satisfies T ∪ S. For each x ∈ X, we let β(x) = 1
if and only if α(x) = 1 and β(x′) = 1 if and only if α(x) = 0, and for each y ∈ Y we
let β(y) = 1. We show that T ∪ S |= M . Let yj ∈M be an arbitrary manifestation. We
show that T ∪ S |= yj . Since α satisfies cj , we know that alpha satisfies some literal l`j .
Therefore, σ(l`j) ∈ S, and thus since (σ(l`j)→ yj) ∈ T , we know that T ∪S |= yj . Since yj
was arbitrary, we can conclude that T ∪ S |= M . Therefore, S is a solution of P.

(⇐) Assume that P has a solution S ⊆ H of size at most m. Since (¬x ∨ ¬x′) ∈ T for
each x ∈ X, and T ∪S is consistent, we know that for no x ∈ X it holds that both x ∈ S
and x′ ∈ S. We then define the truth assignment α : X → B by letting α(x) = 1 if
and only if x ∈ S, for each x ∈ X. We show that α satisfies ϕ. Let cj be an arbitrary
clause of ϕ. We know that T ∪ S |= M , and so in particular T ∪ S |= yj . This can only
be the case if z ∈ S and (z → yj) ∈ T . We distinguish two cases: either (i) z = x for
some x ∈ X, or (ii) z = x′ for some x ∈ X. In case (i), we know that x ∈ cj . Moreover,
we know that x ∈ S and therefore that α(x) = 1. Thus α satisfies cj . In case (ii), we
know that ¬x ∈ cj . Moreover, we know that x′ ∈ S, and thus that x 6∈ S, and therefore
that α(x) = 0. Thus α satisfies cj . Since cj was arbitrary, we can conclude that α
satisfies ϕ.

Before we can show that Abduction(#non-Horn-clauses) is Σp
2 [∗k,P]-complete, we need

to consider the following observation.

Observation 88. Let ϕ be a CNF formula consisting of k non-Horn clauses c1, . . . , ck,
and m Horn clauses c′1, . . . , c′m. Let ϕ′ denote the Horn part of ϕ, i.e., ϕ′ = {c′1, . . . , c′m}.
Then ϕ is satisfiable if and only if for some L ∈ { {l1, . . . , lk} : li ∈ ci } the formula ϕ′∧

∧
L

is satisfiable.

Proof. (⇒) Assume that ϕ is satisfiable, i.e., that there is a truth assignment α : Var(ϕ)→
B that satisfies all clauses of ϕ. So in particular, α satisfies all clauses in ϕ′. Then,
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also, for each i ∈ [k], α satisfies some literal li ∈ ci. In other words α satisfies ϕ′ ∧
∧
L,

where L = {l1, . . . , lk}.

(⇐) Assume that there is some L ∈ { {l1, . . . , lk} : li ∈ ci } such that ϕ′∧
∧
L is satisfiable.

Then there exists an assignment α : Var(ϕ)→ B that satisfies all clauses in ϕ′ and that
satisfies

∧
L. It suffices to show that α satisfies all clauses c1, . . . , ck. This follows directly

from the fact that α satisfies L and that L contains a literal li ∈ ci for each i ∈ [k].

We can now establish Σp
2 [∗k,P]-completeness for Abduction(#non-Horn-clauses). The

hardness proof is based on an idea that is similar to the one behind the above NP-hardness
proof, and uses the normalization result for Σp

2 [∗k,P] of Proposition 48 (in Section 6.3.2).

Proposition 89. Abduction(#non-Horn-clauses) is Σp
2 [∗k,P]-complete.

Proof. Firstly, we show that Abduction(#non-Horn-clauses) is Σp
2 [∗k,P]-hard by giv-

ing an fpt-reduction from the problem Σp
2 [∗k]-WSat(circ). Let (C, k) be an in-

stance of Σp
2 [∗k]-WSat(circ), where C = ∃X.∀Y.C is a quantified Boolean circuit,

where X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We construct an instance (P,m) of Ab-
duction(#non-Horn-clauses), where P = (V,H,M, T ) is an abduction instance whose
theory T is a CNF formula with k non-Horn clauses. By Proposition 48, we may as-
sume without loss of generality that C is in negation normal form and that the only
negation nodes in C have input nodes in X as input. Moreover, we may assume with-
out loss of generality that for each truth assignment α : X → B there exists a truth
assignment β : Y → B of weight k such that α ∪ β satisfies C. We let:

X0 = {x0 : x ∈ X };
X1 = {x1 : x ∈ X };
W = {wg : g is an internal node of C };
V = X0 ∪X1 ∪ Y ∪W ∪ {z} ∪

{ yij : i ∈ [k], j ∈ [m] };
H = X0 ∪X1;
m = |X|;
M = {z};
T = { (yi1 ∨ · · · ∨ yim) : i ∈ [k] } ∪

{ (yij → yj) : i ∈ [k], j ∈ [m] } ∪

{ (¬yij ∨ ¬yi
′
j ) : i, i′ ∈ [k], i < i′, j ∈ [m] } ∪

{ (¬x0 ∨ ¬x1) : x ∈ X } ∪
TC ,

where we construct the set TC as follows. Firstly, we define the following mapping σ
from nodes of C to variables in V . For each non-negated input node x ∈ X, we
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let σ(x) = x1. For each negated input node ¬x, for x ∈ X, we let σ(¬x) = x0. For
each input node yj ∈ Y , we let σ(y) = yj . For each internal node g, we let σ(g) = wg.
Then, for each internal conjunction node g with inputs g1, . . . , gu, we add the Horn
clause ((σ(g1) ∧ · · · ∧ σ(gu)) → σ(g)) to TC. For each internal disjunction node g with
inputs g1, . . . , gu, we add the Horn clauses (σ(g1)→ σ(g)), . . . , (σ(gu)→ σ(g)) to TC . In
addition, we add the Horn clause (σ(go)→ z) to TC, where go is the output node of C.
Clearly, T is a CNF formula that contains k non-Horn clauses.

Intuitively, for each x ∈ X, the variable x1 represents setting x to true and the variable x0

represents setting x to false. Then, each subset S ⊆ H of size m that satisfies T
corresponds to a truth assignment to the input nodes in X, because T contains a
clause (¬x0 ∨ ¬x1) for each x ∈ X. Moreover, each assignment that satisfies T must set
exactly k variables yj to true. Finally, the clauses in TC ensure that the variable z must
be set to true for each assignment that corresponds to a satisfying assignment of C.

We now show that (C, k) ∈ Σp
2 [∗k]-WSat(circ) if and only if (P,m) ∈ Ab-

duction(#non-Horn-clauses).

(⇒) Assume that (C, k) ∈ Σp
2 [∗k]-WSat(circ), i.e., that there exists a truth assign-

ment α : X → B such that for all truth assignments β : Y → B of weight k the
assignment α ∪ β satisfies C. We show that (P,m) ∈ Abduction. We construct the
solution S ⊆ H by letting S = {x1 : x ∈ X,α(x) = 1 } ∪ {x0 : x ∈ X,α(x) = 0 }.
Clearly, |S| = m. Since C[α] is satisfiable, and since C[α] is monotone, we know that T ∪S
is satisfiable; setting all variables in Y ∪W ∪ {z} to true (and setting the variables yij
appropriately) satisfies T ∪ S. Next, we show that T ∪ S |= M . Let γ : V → B be an
arbitrary truth assignment that satisfies T ∪ S. We then know that γ(x1) = 1 if and
only if α(x) = 1 and γ(x0) = 1 if and only if α(x) = 0. Moreover, we know that γ sets
exactly k variables yj to true. Then, since α ∪ β satisfies C, for each assignment β of
weight k, we know that the clauses in TC ensure that γ sets z to true. Therefore, since γ
was arbitrary, we know that T ∪ S |= {z}. Thus (P,m) ∈ Abduction.

(⇐) Conversely, assume that (P,m) ∈ Abduction, i.e., that there exists a solution S ⊆
H of size at most m such that T ∪ S is satisfiable and T ∪ S |= M . We may assume
without loss of generality that |S| = m. We show that (C, k) ∈ Σp

2 [∗k]-WSat(circ). We
define the truth assignment α : X → B as follows. For each x ∈ X, we let α(x) = 1
if and only if x1 ∈ S. We claim that for any truth assignment β : Y → B of weight k
it holds that α ∪ β satisfies C. Let β : Y → B be an arbitrary truth assignment.
Let {y`1 , . . . , y`k} = { yj : j ∈ [m], β(yj) = 1. We construct the partial assignment γ :
V → B as follows. We let γ(x1) = 1 if and only if x1 ∈ S and γ(x0) = 1 if and only
if x0 ∈ S, for each x ∈ X. Moreover, we let γ(yj) = β(yj), and γ(yij) = 1 if and only
if j = `i, for each j ∈ [m]. Since T ∪ S |= z, we know that (T ∪ S)[γ] |= z. Moreover, we
know that (T ∪ S)[γ] is satisfiable. By a straightforward inductive argument, we then
know that for each internal node g of C it holds that α ∪ β sets g to true if and only
if (T ∪ S)[γ] |= wg. Then, since (wo → z) ∈ T (where o is the output node of C) and
since (T ∪ S)[γ] |= z, we know that α ∪ β satisfies C. Since β was arbitrary, we can
conclude that (C, k) ∈ Σp

2 [∗k]-WSat(circ).
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Next, we show membership in Σp
2 [∗k,P]. Let (P,m) be an instance of Ab-

duction(#non-Horn-clauses), where P = (V,H,M, T ) is an abduction instance whose
theory T contains k non-Horn clauses. Let V = {v1, . . . , vu} and H = {h1, . . . , hn}.
Let c1, . . . , ck be the non-Horn clauses of T , with ci = l1i ∨ · · · ∨ l

`i
i for each i ∈ [k]. Also,

let T ′ denote the set of Horn clauses in T . Moreover, let ` =
∑
i∈[k] `i. We sketch an

algorithm that takes as input three bitstrings: one string x = x1 . . . xn, of length n, one
string y = y1 . . . yu, of length u, and one string zz1 . . . z` of length ` containing exactly k
1’s. Moreover, we consider the string z as the concatenation of the strings z1, . . . , zk,
where zi = zi,1 . . . zi,`i . The algorithm checks (1) whether x contains at most m 1’s, it
checks (2) whether the truth assignment α : V → B defined by α(vj) = 1 if and only
if yj = 1 satisfies T ∪ S, where the set S ⊆ H is given by S = {hi ∈ H : xi = 1 }, and it
checks (3) if it is the case that if (3a) each string zi contains exactly one 1, then (3b) it
holds that Lz ∪ T ′ ∪ S |= M , where Lz = { lb ∈ ci : b ∈ [`i], zi,b = 1 }. Since T ′ is a Horn
formula and Lz and S consist of unit clauses, we can choose this algorithm so that it
runs in polynomial time.

Now, it is straightforward to verify that (P,m) ∈ Abduction if and only if there
exists some strings x and y such that for all strings z containing k 1’s the algorithm
accepts. Since the algorithm runs in polynomial time, we can construct a quantified
Boolean circuit C = ∃X.∃Y.∀Z.C in polynomial time with the property that the algorithm
accepts for some strings x, y and for all suitable strings z if and only if there is a truth
assignment α : X ∪ Y → B such that for all truth assignments β : Z → B of weight k
the assignment α ∪ β satisfies C. In other words, (C, k) ∈ Σp

2 [∗k]-WSat if and only
if (P,m) ∈ Abduction.

Next, we turn to showing Σp
2 [∗k, 1]-completeness for Abduction(#non-Krom-clauses).

In order to show Σp
2 [∗k, 1]-hardness, we firstly show that we can restrict our attention to

instances of the problem Πp
2 [∗k]-WSat(2CNF) of a particular type.

Lemma 90. Let (ϕ, k) be an instance of Πp
2 [∗k]-WSat(2CNF), where ϕ = ∀X.∃Y.ψ. In

fpt-time, we can construct an equivalent instance (ϕ′, k′) of Πp
2 [∗k]-WSat where ϕ′ =

∀X ′.∃Y ′.ψ′, and where ψ′ is a CNF formula that has exactly k′′ = k + 2 clauses of size
more than 2, with the property that for each truth assignment γ : X ′ ∪ Y ′ → B that sets
more than k′ variables in Y ′ to true, the formula ψ′[γ] is false.

Proof. Let (ϕ, k) be an instance of Πp
2 [∗k]-WSat(2CNF), where ϕ = ∀X.∃Y.ψ and

where Y = {y1, . . . , ym}. We construct the following instance (ϕ′, k′) with ϕ′ = ∀X.∃Y ′.ψ′
as follows. We let Y ′ = Y ∪ Y ′ ∪W , where

Y ′ = { yij : i ∈ [k], j ∈ [m] },

and where
W = {wij,j′ : i ∈ [0, k + 1], j, j′ ∈ [0,m+ 1], j ≤ j′ }.

Intuitively, the variables yij encode which variables in Y are set to true, and the vari-
ables wij,j′ encode “gaps” between the true variables in Y . If a variable yij is true, we
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will require that yj is true as well. Moreover, if a variable wij,j′ is true, we will require
that yi−1

j and yij′ are true, and that yj′′ is false, for all j′′ ∈ [j + 1, j′ − 1] (for the cases
where i = 0 or i = k + 1, the requirements are slightly different). Finally, we will have
non-binary clauses to ensure that for each i ∈ [0, k + 1], there is some gap variable wij,j′
that is set to true.

Concretely, we let ψ′ consist of the following clauses:

ψ′ = ψ ∪
{ (¬yij ∨ ¬yij′) : i ∈ [k], j, j′ ∈ [m], j < j′ } ∪ (8.1)
{ (¬wij1,j′1 ∨ ¬w

i
j2,j′2

) : i ∈ [0, k], j1, j′1 ∈ [m+ 1], j1 ≤ j′1,

j2, j
′
2 ∈ [m+ 1], j2 ≤ j′2, (j1, j′1) 6= (j2, j′2) } ∪ (8.2)

{ (yij → yj) : i ∈ [k], j ∈ [m] } ∪ (8.3)

{ (yij → ¬yi
′
j′) : i, i′ ∈ [k], i < i′, j, j′ ∈ [m], j′ ≤ j } ∪ (8.4)

{ (wij,j′ → yi−1
j ), (wij,j′ → yij′) : i ∈ [2, k], j, j′ ∈ [m+ 1], j ≤ j′ } ∪ (8.5)

{ (wij,j′ → ¬yj′′) : i ∈ [0, k + 1], j′′ ∈ [j + 1, j′ − 1] } ∪ (8.6)
{ (w0

j,j′ → y1
j′) : j, j′ ∈ [m+ 1], j ≤ j′ } ∪ (8.7)

{ (¬w0
j,j′) : j, j′ ∈ [m+ 1], j ≤ j′ } ∪ (8.8)

{ (wk+1
j,j′ → ykj ) : j, j′ ∈ [m+ 1], j ≤ j′ } ∪ (8.9)

{ (¬wk+1
j,j′ ) : j, j′ ∈ [0,m+ 1], j ≤ j′ } ∪ (8.10)

{
∨
{wij,j′ : j, j′ ∈ [0,m+ 1], j ≤ j′ } : i ∈ [0, k + 1] }. (8.11)

Finally, we let k′ = 3k + 2. Clearly, ψ′ has k′′ clauses of size more than 2. We claim
that (ψ, k) ∈ Πp

2 [∗k]-WSat if and only if (ψ′, k′) ∈ Πp
2 [∗k]-WSat.

(⇒) Assume that (ψ, k) ∈ Πp
2 [∗k]-WSat. We show that (ψ′, k′) ∈ Πp

2 [∗k]-WSat. Let α :
X → B be an arbitrary assignment. We show that there exists an assignment β :
Y ′ → B of weight k′ such that ψ′[α ∪ β] is true. Since (ψ, k) ∈ Πp

2 [∗k]-WSat, we know
that there exists an assignment β′ : Y → B of weight k such that ψ[α ∪ β′] is true.
Let {`1, . . . , `k} = { ` ∈ [m] : β′(y`) = 1 } be the indices of variables yi that β′ sets to
true, such that `1 < · · · < `k. We construct the assignment β : Y ′ → B as follows. For
each y ∈ Y , we let β(y) = β′(y). For each i ∈ [k] and each j ∈ [m], we let β(yij) = 1 if
and only if j = `i. Moreover, for each j, j′ ∈ [m+ 1] with j ≤ j′, we let β(w0

j,j′) = 1 if
and only if j = 0 and j′ = `1. For each j, j′ ∈ [m+ 1] with j ≤ j′, we let β(wk+1

j,j′ ) = 1
if and only if j = `k and j′ = m+ 1. Finally, for each i ∈ [2, k] and each j, j′ ∈ [m+ 1]
with j ≤ j′, we let β(wij,j′) = 1 if and only if j = `i−1 and j′ = `i. Then β has weight
exactly k′ = 3k+ 2. Also, it holds that ψ′[α∪ β] is true. Therefore, since α was arbitrary,
we know that (ψ′, k′) ∈ Πp

2 [∗k]-WSat.

(⇐) Conversely, assume that (ψ′, k′) ∈ Πp
2 [∗k]-WSat. We show that then also (ψ, k) ∈

Πp
2 [∗k]-WSat. Let α : X → B be an arbitrary truth assignment. Then, since (ψ′, k′) ∈

164



8.2. Abductive Reasoning

Πp
2 [∗k]-WSat, we know that there exists a truth assignment β : Y ′ → B of weight k′ =

3k+ 2 such that ψ′[α∪β] is true. We claim that the truth assignment β′ : Y → B defined
by β(y) = β′(y) for each y ∈ Y , i.e., the restriction of β to Y , has weight k. Firstly, we
know that β′ sets exactly k+ 2 variables in W to true, by clauses (8.2) and (8.11). Then,
by clauses (8.1), (8.4–8.5) and (8.7–8.10), we know that β′ sets exactly k variables in Y ′
to true. Thus, by clauses (8.4), β′ sets exactly k variables in Y to true as well. Moreover,
since β satisfies ψ and ψ contains only variables in X ∪Y , we know that α∪β′ satisfies ψ.
Since α was arbitrary, we know that (ψ, k) ∈ Πp

2 [∗k]-WSat.

Moreover, we claim that for each truth assignment γ : X ∪Y ′ → B that sets more than k′
variables in Y ′ to true, the formula ψ′[γ] is false. Let γ be a truth assignment that
satisfies ψ′. We know that γ sets exactly k + 2 variables in W to true, by clauses (8.2)
and (8.11). Then, by clauses (8.1), (8.4–8.5) and (8.7–8.10), we know that γ sets exactly k
variables in Y ′ to true. Then, by clauses (8.3), γ sets at least k variables in Y to true as
well. By clauses (8.6), we know that γ sets exactly k variables in Y to true. Thus, γ sets
exactly k′ variables in Y ′ to true.

Then, in order to show membership in Σp
2 [∗k, 1], we use the following observation, that is

similar to Observation 88.

Observation 91. Let ϕ be a CNF formula consisting of k non-binary clauses c1, . . . , ck,
and m binary clauses c′1, . . . , c′m. Let ϕ′ denote the binary part of ϕ, i.e., ϕ′ = {c′1, . . . , c′m}.
Then ϕ is satisfiable if and only if for some L ∈ { {l1, . . . , lk} : li ∈ ci } the formula ϕ′∧

∧
L

is satisfiable.

Proof. The proof is entirely similar to the proof of Observation 88.

We are now ready to show Σp
2 [∗k, 1]-completeness for Abduction(#non-Krom-clauses).

Proposition 92. Abduction(#non-Krom-clauses) is Σp
2 [∗k, 1]-complete.

Proof. We begin by showing that Abduction(#non-Krom-clauses) is Σp
2 [∗k, 1]-hard.

We do so by giving an fpt-reduction from the problem Σp
2 [∗k]-WSat(2DNF). Let (ϕ, k)

be an instance of Σp
2 [∗k]-WSat(2DNF), where ϕ = ∃X.∀Y.ψ, X = {x1, . . . , xn}, Y =

{y1, . . . , ym}. By Lemma 90, we can transform (ϕ, k) in fpt-time into an equivalent
instance (ϕ′, k′) with ϕ = ∃X ′.∀Y ′.ψ′, for which holds that any truth assignment that
sets more than k′ variables in Y ′ to true satisfies ψ′, under the condition that ψ′
contains k′ terms of size more than 2. Therefore, we will assume without loss of
generality that our instance (ϕ, k) satisfies these properties, i.e., we assume that any
truth assignment γ : X ∪ Y → B that sets more than k variables in Y to true satisfies ψ,
and that ψ contains k terms of size more than 2. We may also assume without loss
of generality that for any truth assignment α : X → B, the formula ψ[α] is falsifiable.
We will construct an equivalent instance (P,m) of Abduction(#non-Krom-clauses),
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where the theory T of the abduction instance P = (V,H,M, T ) contains exactly k′ = 2k
non-binary clauses. We let:

X0 = {x0 : x ∈ X };
X1 = {x1 : x ∈ X };
V = X0 ∪X1 ∪X ∪ Y ∪ {z} ∪

{ yij : i ∈ [k], j ∈ [m] };
H = X0 ∪X1;
m = |X|;
M = {z}; and
T = { (yi1 ∨ · · · ∨ yim ∨ z) : i ∈ [k] } ∪

{ (yij → yj) : i ∈ [k], j ∈ [m] } ∪

{ (¬yij ∨ ¬yi
′
j ) : i, i′ ∈ [k], i < i′, j ∈ [m] } ∪

{ (¬x0 ∨ ¬x1) : x ∈ X } ∪
{ (x0 → ¬x), (x1 → x) : x ∈ X } ∪
{¬δ : δ ∈ ψ }.

Clearly, T is a CNF formula that contains 2k non-binary clauses. We claim that (ϕ, k) ∈
Σp

2 [∗k]-WSat if and only if (P,m) ∈ Abduction(#non-Krom-clauses).

(⇒) Assume that there exists a truth assignment α : X → B such that for all truth
assignments β : Y → B of weight k it holds that ψ[α ∪ β] is true. We show that the
set X ′ = {x0 : x ∈ X,α(x) = 0 } ∪ {x1 : x ∈ X,α(x) = 1 } is a solution of P of size m =
|X|. Since ψ[α] is falsifiable, we can satisfy T ∪X ′ by setting all variables yij to false (and
choosing appropriate truth values for the remaining variables). Thus, it suffices to show
that T ∪X ′ |= z. Assume that there exists a truth assignment γ that simultaneously
satisfies T ∪ X ′ and ¬z. Then there must exist distinct indices i1, . . . , ik ∈ [k] such
that γ(y`i`) = 1 for all ` ∈ [k]. We distinguish two cases: either (i) γ restricted to Y has
weight more than k or (ii) γ restricted to Y has weight exactly k. In either case, we know
that γ does not satisfy the clauses {¬δ : δ ∈ ψ }, and thus does not satisfy T , which is a
contradiction with our previous assumption. Therefore, we can assume that there exists
no γ that satisfies both T ∪X ′ and sets z to false. Thus T ∪X ′ |= z.

(⇐) Assume that there exists a solution X ′ ⊆ H of size at most m such that T ∪ X ′
is satisfiable and such that T ∪ X ′ |= z. Consider the truth assignment α : X → B
defined by letting α(x) = 1 if and only if x1 ∈ X ′. We show that for any truth
assignment β : Y → B of weight k it holds that ψ[α ∪ β] is true. Let β : Y → B be
an arbitrary truth assignment. Moreover, let γ : V → B be defined as follows. For
each x ∈ X we let γ(x) = γ(x1) = α(x) = 1 − γ(x0). Since T ∪ X ′ is satisfiable, we
then know that α sets all variables in X ′ to true. For each y ∈ Y , we let γ(y) = β(y).
Let {yi1 , . . . , yik} = { y ∈ Y : β(y) = 1 }. Then, we let γ(y`j) = 1 if and only if i` = j.
Finally, we let γ(z) = 0. We know that T ∪X ′ |= z. We also know that γ sets all the
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variables in X ′ to true. Moreover, it is straightforward to verify that γ |= T\{¬δ : δ ∈ ψ }.
Therefore, it must hold that γ 6|= {¬δ : δ ∈ ψ }, and thus that γ |= ψ. Since γ restricted
to the variables in ψ coincides with α ∪ β, we can conclude that ψ[α ∪ β] is true.

Next, we show that Abduction(#non-Krom-clauses) is in Σp
2 [∗k, 1] by giving an fpt-

reduction to the problem Σp
2 [∗k]-WSat(Γ1,u) for some constant u. Let (P,m) be an

instance of Abduction(#non-Krom-clauses) where P = (V,H,M, T ) and where T is a
2CNF formula consisting of n binary clauses c′1, . . . , c′m and k non-binary clauses c1, . . . , ck.
We will construct a Boolean circuit C(X,Y ) of weft 1 over the variables in X ∪ Y , in
such a way that (P,m) ∈ Abduction(#non-Krom-clauses) if and only if there exists a
truth assignment α : X → B such that for every truth assignment β : Y → B of weight k
it holds that C[α ∪ β] is true.

The idea of this reduction is the following. We will use existential variables to encode a
guess for a solution S ⊆ H of size at most m. Then, we will use existential variables to
encode a guess for the truth assignment that is consistent with S and that satisfies T ,
which we will ensure using a set of clauses of bounded size. Then, we will use universal
variables to encode the condition that all assignments satisfying one literal in each of the
clauses c1, . . . , ck are inconsistent with S and

∨
m∈M ¬m, which we will ensure using a

DNF formula with terms of bounded size.

Firstly, we introduce the existential variables X = XS ∪ V , where

XS = {xjh : j ∈ [m], h ∈ H } ∪ {xh : h ∈ H }.

Then we construct the CNF formula χ (with clauses of unbounded size) as follows:

χ = { {xjh : h ∈ H } : j ∈ [m] } ∪
{ (¬xjh ∨ ¬x

j
h′) : j ∈ [m], h ∈ H,h′ ∈ H,h 6= h′ } ∪

{ (xjh → xh) : j ∈ [m], h ∈ H } ∪
{ (xh → h) : h ∈ H } ∪
T.

The formula χ is satisfiable if and only if there exists a subset S ⊆ H of size at most m
such that T ∪ S is satisfiable.

Then, in polynomial time we can transform χ into a 3CNF formula χ′ with Var(χ′) = X∪
X ′ that is satisfiable if and only if χ is satisfiable. Moreover, for any truth assignment α :
X → B it is the case that χ[α] is true if and only if χ′[α] is satisfiable. This can be done
using the standard Tseitin transformation [187].

Next, we will introduce the set of universal variables Y where:

Y = { yil : i ∈ [k], l ∈ ci } ∪ { ym : m ∈M }.

We will construct a DNF formula ϕ with clauses of bounded size that encodes whether
all assignments satisfying (at least) one literal in each of the clauses c1, . . . , ck are
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inconsistent with S and
∨
m∈M ¬m. We will define ϕ = ϕ1∨ϕ2∨ϕ3, where we will define

the subformulas ϕ1, ϕ2 and ϕ3 below.

We define the DNF formula ϕ1 by letting:

ϕ1 = { (yil ∧ yil′) : i ∈ [k], l ∈ ci, l′ ∈ ci, l 6= l′ },

and we define the DNF formula ϕ2 by letting:

ϕ2 = { (ym ∧ ym′) : m,m′ ∈M,m 6= m′ }.

We will define the formula ϕ3, that encodes whether S and the set L = { li ∈ ci : i ∈
[k], the variableyili is set to true } are inconsistent with the binary part T ′ of T and ¬m,
where m is the manifestation for which holds that ym is set to true. We may assume
without loss of generality that T ′ ∧ ¬m is consistent. If it were the case that T ′ |= m, we
would be able to detect this in polynomial time, and we could remove m from M . We
may also assume without loss of generality that T ′ is consistent.

We claim that T ′ is inconsistent with S ∪ L ∪ {¬m} if and only if either (i) there are
some literals l, l′ ∈ S ∪ L. such that there is a path from l to l′ in the implication graph
of T ′, or (ii) there is some literal l ∈ S ∪ L such that there is a path from l to m in
the implication graph of T ′. Assume that neither (i) nor (ii) is the case. Then we can
satisfy T ′ and S ∪ L ∪ {¬m} simultaneously by setting all literals in S ∪ L ∪ {¬m} to
true, as well all literals l′ for which there is a path from some literal l ∈ S ∪L to l′ in the
implication graph of T ′ (and setting the remaining variables appropriately). Conversely,
if either (i) or (ii) holds, then T ′ is inconsistent with S ∪ L ∪ {¬m}.

We now define ϕ3 as follows:

ϕ3 = { (xh ∧ xh′) : h ∈ H,h′ ∈ H,
there is a path from h to h′ in the implication graph of T ′ } ∪
{ (xh ∧ yil) : i ∈ [k], h ∈ H, l ∈ ci,

there is a path from h to l in the implication graph of T ′ } ∪
{ (yil ∧ yi

′
l′ ) : i, i′ ∈ [k], i 6= i′, l ∈ ci, l′ ∈ ci′ ,

there is a path from l to l′ in the implication graph of T ′ } ∪
{ (xh ∧ ym) : h ∈ H,m ∈M,

there is a path from h to m in the implication graph of T ′ } ∪
{ (yil ∧ ym) : i ∈ [k], l ∈ ci,m ∈M,

there is a path from l to m in the implication graph of T ′ }.

Finally, we let:
C = ∃X ∪X ′.∀Y.(χ′ ∧ ϕ).

The (quantified) circuit C has at most one gate of unbounded arity in each root-to-leaf
path, and thus has weft 1.

To show the correctness of our reduction, we prove that (P,m) ∈ Ab-
duction(#non-Krom-clauses) if and only if (C, k) ∈ Σp

2 [∗k]-WSat.
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(⇒) Assume that (P,m) ∈ Abduction(#non-Krom-clauses), i.e., that there exists a
solution S ⊆ H of size at most m such that T ∪ S is consistent and T ∪ S |= M .
Let S = {s1, . . . , sm′}, with m′ ≤ m. Then define the truth assignment α : XS → B
by letting α(xh) = 1 if and only if h ∈ S, and α(xih) = 1 if and only if either h = si
or m′ < i ≤ m and h = sm′ . Moreover, since T ∪ S is consistent, we know there exists a
truth assignment α : V → B that satisfies T ∪ S. Then, α ∪ α′ satisfies χ, and so we can
extend α ∪ α′ to a truth assignment α′′ : X ∪X ′ → B that satisfies χ′. We show that for
any truth assignment β : Y → B of weight k it holds that ϕ[α′′ ∪ β] is true. Let β be an
arbitrary such truth assignment. We distinguish two cases: either (i) β satisfies exactly
one yjl for each j ∈ [k], and exactly one ym, for m ∈ M , or (ii) this is not the case. In
case (ii), β satisfies ϕ1 ∨ ϕ2, and thus α′′ ∪ β satisfies ϕ. In case (i), let m be the unique
manifestation m ∈M for which holds that β(ym) = 1. Moreover, let L = {l1, . . . , lk} be
the (unique) set of literals for which holds that β(yili) = 1 for all i ∈ [k]. Since S is a
solution for P , we know that T ∪ S |= m. Then, we also know that T ′ ∪ S ∪ L ∪ {¬m} is
inconsistent. Since T ′ contains only binary clauses, this can only be the case if there is an
appropriate path in the implication graph of T ′ corresponding to a term in ϕ3, satisfied
by β. Thus α′′ ∪ β satisfies ϕ.

(⇐) Conversely, assume that (C, k) ∈ Σp
2 [∗k]-WSat, i.e., that there exists an assign-

ment α : X ∪ X ′ → B such that for all assignments β : Y → B of weight k it holds
that (ψ′ ∧ ϕ)[α ∪ β] is true. We show that (P,m) ∈ Abduction(#non-Krom-clauses).
We define the set S ⊆ H by letting S = {h ∈ H : α(xh) = 1 }. We claim that S is a
solution of the abduction instance P of size at most m. Since χ′ contains only variables
in X ∪X ′, we know that α satisfies χ′. Since any assignment satisfies χ′ if and only if it
satisfies χ, and by construction of χ any satisfying assignment sets at most m variables xh,
for h ∈ H, to true, we know that |S| ≤ m. Moreover, since α satisfies χ′, we know
that T ∪ S is consistent. All that remains to show is that T ∪ S ∪ {m} is inconsistent,
for each m ∈M . Let m ∈M be an arbitrary manifestation. We show that T ∪ S ∪ {m}
is unsatisfiable. By Observation 91, we know that T ∪ S ∪ {m} is unsatisfiable if and
only if L ∪ T ′ ∪ S ∪ {m} is unsatisfiable for each L ∈ { {l1, . . . , lk} : li ∈ ci }, where T ′ is
the subset of T consisting of all Krom clauses of T . Let L = {l1, . . . , lk} be an arbitrary
such set. We show that L ∪ T ′ ∪ S ∪ {m} is unsatisfiable. We construct the truth assign-
ment β : Y → B as follows. For each ` ∈ [k] we let β(y`l ) = 1 if and only if l = l`, and for
each m′ ∈M we let β(ym′) = 1 if and only if m′ = m. Clearly, β has weight k. Therefore,
we know that α∪β satisfies ϕ. Also, α∪β falsifies ϕ1 and ϕ2. Thus, α∪β must satisfy ϕ3.
However, by construction of ϕ3, then there must exist a path in the implication graph
of T ′ that witnesses that L ∪ T ′ ∪ S ∪ {m} is unsatisfiable. From this we can conclude
that T ∪S∪{m} is unsatisfiable for each m ∈M , and thus that T ∪S |= M . Hence, S is a
solution of P of size at mostm, and thus (P,m) ∈ Abduction(#non-Krom-clauses).

8.3 Robust Constraint Satisfaction
The final example of a problem that arises in the area of Knowledge Representation and
Reasoning that we consider, is the problem of robust constraint satisfaction. Various
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robust constraint satisfaction problems were considered by Gottlob [98] and Abramsky,
Gottlob and Kolaitis [3]. These problems are concerned with the question of whether, for
an instance of the constraint satisfaction problem, every partial assignment of a particular
size can be extended to a full solution. We consider a natural parameterization of this
problem (where the parameter is the size of the partial assignment), and we show that
this parameterized problem is complete for Σp

2 [k∗].

We begin with formally defining the concept of robust satisfiability for CSP instances. For
a definition of basic notions from the area of constraint satisfaction, we refer to Section 4.4.
Let I be a CSP instance, and let α : V → D be an assignment to some subset V ⊆ Var(I)
of variables of I. We say that α violates a constraint C = ((v1, . . . , vr), R) of I if there
is no extension β of α to the variables in Var(I) such that (β(v1), . . . , β(vr)) ∈ R. Let k
be a positive integer. We say that a CSP instance I is k-robustly satisfiable if for each
instantiation α : V → D defined on some subset V ⊆ Var(I) of k variables (i.e., |V | = k)
that does not violate any constraint of I, it holds that α can be extended to a solution
for the CSP instance I.

We consider the following parameterized problem.

Robust-CSP-SAT
Instance: A CSP instance I, and a positive integer k.
Parameter: k.
Question: Is I k-robustly satisfiable?

We show that this problem is Πp
2 [k∗]-complete. In order to show Πp

2 [k∗]-hardness, we
firstly prove the following technical lemma.

Lemma 93. Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat. In polynomial time, we can

construct an instance (ϕ′, k) of Σp
2 [k∗]-WSat with ϕ′ = ∃X.∀Y.ψ, such that:

• (ϕ′, k) ∈ Σp
2 [k∗]-WSat if and only if (ϕ, k) ∈ Σp

2 [k∗]-WSat; and

• for any assignment α : X → B that has weight m 6= k, it holds that ∀Y.ψ[α] is true.

Proof. Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat, where ϕ = ∃X.∀Y.ψ, and where

X = {x1, . . . , xn}. We construct an instance (ϕ′, k), with ϕ′ = ∃X.∀Y ∪Z.ψ′. We define:

Z = { zij : i ∈ [k], j ∈ [n] }.

Intuitively, one can think of the variables zij as being positioned in a matrix with n rows
and k columns: the variable zij is placed in the j-th row and the i-th column. We will
use this matrix to verify whether exactly k variables in X are set to true.

We define ψ′ as follows:

ψ′ = (ψX,Zcorr ∧ ψZrow ∧ ψZcol)→ ψ;
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ψX,Zcorr =
∧
j∈[n]

 ∧
i∈[k]

(zij → xj) ∧ (xj →
∨
i∈[k]

zij)

 ;

ψZrow =
∧
j∈[n]

∧
i,i′∈[k],i<i′

(¬zij ∨ ¬zi
′
j ); and

ψZcol =
∧
i∈[k]

 ∧
j,j′∈[n],j<j′

(¬zij ∨ ¬zij′) ∧
∨
j∈[n]

zij

 .
Intuitively, the formula ψX,Zcorr ensures that exactly those xj are set to true for which there
exists some zij that is set to true. The formula ψZrow ensures that in each row of the
matrix filled with variables zij , there is at most one variable set to true. The formula ψZcol
ensures that in each column there is exactly one variable set to true.

We show that (ϕ, k) ∈ Σp
2 [k∗]-WSat if and only if (ϕ′, k′) ∈ Σp

2 [k∗]-WSat.

(⇒) Let α : X → B be an assignment of weight k such that ∀Y.ψ[α] is true. We
show that ∀Y ∪ Z.ψ′[α] is true. Let β : Y ∪ Z → B be an arbitrary truth assignment.
We distinguish two cases: either (i) for each i ∈ [k] there is a unique ji ∈ [n] such
that β(ziji) = 1 and α(xji) = 1, or (ii) this is not the case. In case (i), it is straightforward
to verify that α ∪ β satisfies (ψX,Zcorr ∧ ψZrow ∧ ψZcol). Then, since ∀Y.ψ[α] is true, we know
that α∪β satisfies ψ, and thus that α∪β satisfies ψ′. In case (ii), we know that α∪β does
not satisfy (ψX,Zcorr ∧ψZrow ∧ψZcol), and thus that α∪ β satisfies ψ′. Therefore, ∀Y ∪Z.ψ′[α]
is true.

(⇐) Assume that there exists an assignment α : X → B of weight k such that ∀Y ∪Z.ψ′[α]
is true. We show that ∀Y.ψ[α] is true. Let β : Y → B be an arbitrary truth assignment.
Let {xj : j ∈ [n], α(xj) = 1 } = {xj1 , . . . , xjk}. We construct the assignment γ : Z → B
by letting γ(zij) = 1 if and only if j = ji. We know that α∪β∪γ satisfies ψ′. Clearly, α∪γ
satisfies (ψX,Zcorr ∧ ψZrow ∧ ψZcol). Hence, α ∪ β must satisfy ψ. Since β was arbitrary, we
know that ∀Y.ψ[α] is true.

Next, it is straightforward to verify that for any assignment α : X → B that has
weight m 6= k′, it holds that for no assignment γ : Z → B it is the case that α ∪ γ
satisfies (ψX,Zcorr ∧ ψZrow ∧ ψZcol), and thus that ∀Y.ψ[α] is true.

We are now ready to show Πp
2 [k∗]-completeness for Robust-CSP-SAT.

Proposition 94. Robust-CSP-SAT is Πp
2 [k∗]-complete. Moreover, Πp

2 [k∗]-hardness
holds even when the domain size |D| is restricted to 2.

Proof. We begin by showing membership in Πp
2 [k∗]. We do so by giving an fpt-reduction

from Robust-CSP-SAT to Πp
2 [k∗]-WSat. Let (I, k) be an instance of Robust-CSP-

SAT, where I is a CSP instance, where Var(I) = {v1, . . . , vn}, where D = {d1, . . . , dm}
is the domain of I, and where k is a positive integer. We construct an instance (ϕ, k) of
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Πp
2 [k∗]-WSat. For the formula ϕ, we use propositional variables Z = { zij : i ∈ [n], j ∈

[m] } and Y = { yij : i ∈ [n], j ∈ [m] }. Intuitively, the variables zij will represent an
arbitrary assignment α that assigns values to k variables in Var(I). Any variable zij
represents that variable vi gets assigned value dj . The variables yij will represent the
solution β that extends the arbitrary assignment α. Similarly, any variable yij represents
that variable vi gets assigned value dj .

We then let ϕ = ∀Z.∃Y.ψ with ψ = (ψZproper ∧ ¬ψZviolate) → (ψY,Zcorr ∧ ψYproper ∧
∧
C∈I ψ

Y
C ).

We will describe the subformulas of ϕ below, as well as the intuition behind them.

We start with the formula ψZproper. This formula represents whether for each variable vi
at most one value is chosen for the assignment α. We let:

ψZproper =
∧
i∈[n]

∧
j,j′∈[m],j<j′

(¬zij ∨ ¬zij′).

Next, we consider the formula ψZviolate. This subformula encodes whether the assignment α
violates some constraint C ∈ I. We let:

ψZviolate =
∨

C=(S,R)∈I

∧
d∈R

∨
z∈Ψd,C

z,

where we define the set Ψd,C ⊆ Z as follows. Let C = ((vi1 , . . . , vir), R) ∈ I and d =
(dj1 , . . . , djr) ∈ R. Then we let:

Ψd,C = { zi`j : ` ∈ [r], j 6= j` }.

Intuitively, the set Ψd,C contains the variables zij that represent those variable assignments
in α that prevent that β satisfies C by assigning Var(C) to d.

Then, the formula ψYproper ensures that for each variable vi exactly one value dj is chosen
in β. We define:

ψYproper =
∧
i∈[n]

 ∨
j∈[m]

yij ∧
∧

j,j′∈[m],j<j′
(¬yij ∨ ¬yij′)

 .
Next, the formula ψY,Zcorr ensures that β is indeed an extension of α. We define:

ψY,Zcorr =
∧
i∈[n]

∧
j∈[m]

(zij → yij).

Finally, for each C ∈ I, the formula ψYC represents whether β satisfies C. Let C =
((vi1 , . . . , vir), R) ∈ I. We define:

ψYC =
∨

(dj1 ,...,djr )∈R

∧
`∈[r]

yi`j` .
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We now argue that (I, k) ∈ Robust-CSP-SAT if and only if (ϕ, k) ∈ Πp
2 [k∗]-WSat.

(⇒) Assume that I is k-robustly satisfiable. We show that (ϕ, k) ∈ Πp
2 [k∗]-WSat.

Let α : Z → B be an arbitrary assignment of weight k. If α(zij) = α(zij′) = 1 for
some i ∈ [n] and some j, j′ ∈ [m] with j < j′, then α (and any extension of it)
satisfies ¬ψZproper. Therefore, ∃Y.ψ[α] is true. We can thus restrict our attention to the
case where for each i ∈ [n], there is at most one ji ∈ [m] such that α(ziji) = 1. Define the
subset V ⊆ Var(I) and the instantiation µ : V → D by letting vi ∈ V and µ(vi) = dj if
and only if α(zij) = 1. Clearly, µ assigns values to k different variables.

We distinguish two cases: either (i) µ violates some constraint c ∈ C, or (ii) µ violates
no constraint in C. In case (i), it is straightforward to verify that α satisfies ψZviolate.
Therefore, ∃Y.ψ[α] is true. Next, consider case (ii). Since I is k-robustly satisfiable,
we know that there exists some complete instantiation ν : Var(I)→ D that extends µ,
and that satisfies all constraints C ∈ I. Now, define the assignment β : Y → B by
letting β(yij) = 1 if and only if ν(vi) = dj . It is straightforward to verify that α ∪ β
satisfies ψY,Zcorr, and that β satisfies ψYproper and ψYC for all C ∈ I. Therefore, α ∪ β
satisfies ψ. This concludes our proof that (ϕ, k) ∈ Πp

2 [k∗]-WSat.

(⇐) Assume that (ϕ, k) ∈ Πp
2 [k∗]-WSat. We show that I is k-robustly satisfiable.

Let V ⊆ Var(I) be an arbitrary subset of k variables, and let µ : V → D be an arbitrary
instantiation that does not violate any constraint C ∈ I. Define the assignment α : Z → B
by letting α(zij) = 1 if and only if vi ∈ V and µ(vi) = dj . Clearly, the assignment α has
weight k. Therefore, there must exist an assignment β : Y → B such that α∪β satisfies ψ.
It is straightforward to verify that α satisfies ψZproper ∧ ¬ψZviolate. Therefore, α ∪ β must
satisfy ψY,Zcorr ∧ ψYproper and ψYC for all C ∈ I. Since α ∪ β satisfies ψYproper, we know that
for each i ∈ [n], there is a unique ji ∈ [m] such that β(yiji) = 1. Define the complete
instantiation ν : V → D by letting ν(vi) = dji . It is straightforward to verify that ν
extends µ, since α ∪ β satisfies ψY,Zcorr. Also, since α ∪ β satisfies ψYC for all C ∈ I, it
follows that ν satisfies each C ∈ I. Therefore, ν is a solution of the CSP instance I.
This concludes our proof that I is k-robustly satisfiable.

Next, we show that Robust-CSP-SAT is Πp
2 [k∗]-hard. We do so by giving an fpt-

reduction from Πp
2 [k∗]-WSat(3CNF) to Robust-CSP-SAT. Let (ϕ, k) be an instance

of Πp
2 [k∗]-WSat(3CNF), with ϕ = ∀X.∃Y.ψ, and ψ = c1 ∧ · · · ∧ cu. By Lemma 93,

we may assume without loss of generality that for any assignment α : X → B of
weight m 6= k, we have that ∃Y.ψ[α] is false. We construct an instance (I, k) of Robust-
CSP-SAT as follows. We define the set Var(I) of variables by Var(I) = X ∪ Y ′,
where Y ′ = { yi : y ∈ Y, i ∈ [2k + 1] }, and we let D = B. We will define the set I of
constraints below, by representing each clause ci of ψ as a set of clauses whose length is
bounded by f(k), for some fixed function f .

The intuition behind the construction of I is the following. We replace each variable y ∈ Y ,
by 2k+ 1 copies yi of it. Assigning a variable y ∈ Y to a value b ∈ B will then correspond
to assigning a majority of variables yi to b, i.e., assigning at least k + 1 variables yi to b.
In order to encode this transformation in the constraints of I, intuitively, we will replace
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each occurrence of a variable y by the conjunction:

ψy =
∧

i1,...,ik+1∈[2k+1],i1<···<ik+1

(yi1 ∨ · · · ∨ yik+1),

and replace each occurrence of a literal ¬y by a similar conjunction. We will then multiply
the resulting formula out into CNF. Note that whenever a majority of variables yi is set
to b ∈ B, then the formula ψy will also evaluate to b.

In the construction of C, we will directly encode the CNF formula that is a result of the
transformation described above. For each literal l = y ∈ Y , let li denote yi, and for each
literal l = ¬y with y ∈ Y , let li denote ¬yi. For each literal l over the variables X ∪ Y ,
we define a set σ(l) of clauses:

σ(l) =
{
{ (li1 ∨ · · · ∨ lik+1) : i1, . . . , ik+1 ∈ [2k + 1], i1 < · · · < ik+1 } if l is a literal over Y ;
{l} if l is a literal over X.

Note that for each literal l, it holds that |σ(l)| ≤ g(k) =
(2k+1
k+1

)
. Next, for each

clause ci = li1 ∨ li2 ∨ li3 of ψ, we introduce to I a set σ(ci) of clauses:

σ(ci) = { d1 ∨ d2 ∨ d3 : d1 ∈ σ(li1), d2 ∈ σ(li2), d3 ∈ σ(li3) }.

Note that |σ(ci)| ≤ g(k)3. Formally, we let I be the set of constraints corresponding to the
set

⋃
i∈[u] σ(ci) of clauses. Since each such clause is of length at most 3(k+1), representing

a clause by means of a constraint can be done by specifying ≤ 23(k+1) − 1 tuples, i.e., all
tuples satisfying the clause. Therefore, the instance (I, k) can be constructed in fpt-time.

We now argue that (ϕ, k) ∈ Πp
2 [k∗]-WSat(3CNF) if and only if (I, k) ∈ Robust-CSP-

SAT.

(⇒) Assume that (ϕ, k) ∈ Πp
2 [k∗]-WSat(3CNF). We show that I is k-robustly satisfiable.

Let µ : Var(I) → D be an arbitrary partial assignment with |Dom(µ)| = k that does
not violate any constraint in I. We know that |Dom(µ) ∩ X| ≤ k, and in particular
that |{x ∈ Dom(µ) ∩X : µ(x) = 1 }| = m ≤ k. Now define the assignment α : X → B
as follows. For any x ∈ X, if x ∈ Dom(µ), then let α(x) = µ(x). Also, for k − m
variables x′ ∈ X\Dom(µ), we let α(x′) = 1. For all other variables x′ ∈ X\Dom(µ), we
let α(x′) = 0. Then α has weight k. Therefore, there must exist an assignment β : Y → B
such that ψ[α ∪ β] is true. Now, define the assignment ν : Var(I) → D extending µ
as follows. For each z ∈ Dom(µ), we let ν(z) = µ(z). For each x ∈ X\Dom(µ), we
let ν(x) = α(x). For each yi ∈ Y ′\Dom(µ), we let ν(yi) = β(y). It is straightforward to
verify that for each y ∈ Y , β(y) = b ∈ B if and only if ν sets at least k+1 variables yi to b.
Using this fact, and the fact that α ∪ β satisfies each clause ci of ψ, it is straightforward
to verify that ν satisfies each constraint of I, and therefore that ν is a solution of the
CSP instance I. This concludes our proof that (I, k) ∈ Robust-CSP-SAT.

(⇐) Now, assume that (Z,D,C) is k-robustly satisfiable. We show that (ϕ, k) ∈
Πp

2 [k∗]-WSat(3CNF). Let α : X → B be an arbitrary assignment of weight k. Now define
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the partial assignment µ : Z → D by letting x ∈ Dom(µ) and µ(x) = α(x) if and only
if α(x) = 1, for all x ∈ X. Clearly, |Dom(µ)| = k, and µ does not violate any constraints
of C. Therefore, we know that there exists an extension ν : Z → D of µ that is a solution
for the CSP instance (Z,D,C). For all x ∈ X\Dom(µ) it holds that ν(x) = 0. If this
weren’t the case, this would violate our assumption that for all assignments α′ : X → B
with weight m 6= k we have that ∃Y.ψ[α′] is false. Therefore, we know that ν coincides
with α on the variables X. Now, we define the assignment β : Y → B by letting β(y) = 1
if and only if for at least k + 1 different yi it holds that ν(yi) = 1.

We then verify that ψ[α∪ β] is true. Let ci be a clause of ψ. We know that ν satisfies all
clauses in σ(ci). Assume that α ∪ β does not satisfy ci = li1 ∨ li2 ∨ li3. Then, α ∪ β sets
all literals li1, li2 and li3 to false. Therefore, for any literal lij over Y , ν sets at least k + 1
copies of lij to false. From this, we can conclude that there is some clause in σ(ci) that
is set to false by ν, which is a contradiction. Therefore, we know that ψ[α ∪ β] is true.
This concludes our proof that (ϕ, k) ∈ Πp

2 [k∗]-WSat(3CNF).

Notes
The results in Sections 8.1 and 8.3 appeared in a paper in the proceedings of KR 2014 [115,
116]. The results in Section 8.2 were shown in an unpublished manuscript [110].
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CHAPTER 9
Model Checking for Temporal

Logics

In Chapter 8, we started to apply the parameterized complexity tools that we developed in
Chapters 4–7 to concrete problems from various domains of computer science and artificial
intelligence. In this chapter, we continue this investigation by analyzing the parameterized
complexity of various parameterized problems related to temporal reasoning. In particular,
we study several parameterized variants of the model checking problem for various
(fragments of) temporal logics.

Temporal logic model checking is an important problem with applications in key areas
of computer science and engineering, among others in the verification of software and
hardware systems (see, e.g., [11, 51, 53, 83]). The problem consists of checking whether a
model, given in the form of a labelled relational structure (a Kripke structure), satisfies a
temporal property, given as a logic formula. Underlining the importance of temporal logic
model checking, the ACM 2007 Turing Award was given for foundational research on the
topic [50]. Indispensable for the state-of-the-art in solving this problem in industrial-size
settings is the algorithmic technique of symbolic model checking using SAT solvers (called
bounded model checking), where the SAT solvers are employed to find counterexamples
[18, 20, 21, 52].

The approach of bounded model checking generally works well in cases where the Kripke
structure is large, but the temporal logic specification is small. Since the framework of
parameterized complexity is able to distinguish an additional measure of the input, that
can be much smaller than the input size, a parameterized complexity approach would be
especially suited for a theoretical complexity analysis. However, previous parameterized
complexity analyses have not been able to fill the gap. First of all, existing parameterized
complexity analyses [60, 85, 95, 150, 160] have only considered the problem for settings
where the Kripke structure is spelled-out explicitly (or consists of a small number of
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explicitly spelled-out components), which is highly impractical in many cases. In fact,
the so-called state explosion problem is a major obstacle for developing practically useful
techniques [49]. For this reason, the Kripke structures are often described symbolically,
for instance using propositional formulas, which allows for exponentially more succinct
encodings of the structures. Secondly, whereas parameterized complexity analysis is
traditionally focused on fixed-parameter tractability for positive results, the technique of
bounded model checking revolves around encoding the problem as an instance of SAT.
Therefore, the standard parameterized complexity analysis is bound to concentrate on
very restrictive cases in order to obtain fixed-parameter tractability, unaware of some of
the more liberal settings where bounded model checking can be applied.

In this chapter, we provide a parameterized complexity analysis that reveals the possibili-
ties and limits of the technique of bounded model checking. More specifically, we analyze
the complexity of the model checking problem for fragments of various temporal logics,
where we take the size of the temporal logic formula as parameter. In our formalization
of the problem, the Kripke structures are represented symbolically (and can thus be
of size exponential in the size of their description). Moreover, our complexity analysis
focuses on whether the problems admit fpt-reductions to SAT or not.

As a by-product of our investigation, we introduce the parameterized complexity class
PH(level), that is another parameterized variant of the Polynomial Hierarchy. This
class can be seen as an analogue of the parameterized variant BH(level) of the Boolean
Hierarchy, that we considered in Chapter 7. It is based on the satisfiability problem of
quantified Boolean formulas parameterized by the number of quantifier alternations.

Outline of this chapter We begin in Section 9.1 by introducing the syntax and
semantics of three of the most widespread temporal logics (LTL, CTL and CTL?). These
linear-time and branching-time propositional modal logics are the temporal logics that we
consider in this chapter. Moreover, for each of these logics, we also consider the fragments
where several temporal operators (namely, U and/or X) are disallowed. Additionally,
we briefly review known (parameterized) complexity results for their model checking
problems.

Then, in Section 9.2, we consider another formalization of the model checking problem,
where the Kripke structures are represented symbolically. We argue that without re-
strictions on the Kripke structures, in this setting the problem is PSPACE-hard even
for temporal logic formulas of constant size (Proposition 96). However, for the setting
where the recurrence diameter of the Kripke structures (the size of the largest loop-free
path) is required to be bounded by a polynomial of the input size, we identify a logic
fragment whose model checking problem admits an fpt-reduction to SAT. In particular,
we interpret a known result for bounded model checking for the fragment of LTL without
U and X operators as membership in para-co-NP (Proposition 97).

In Section 9.3, we introduce the new parameterized complexity class PH(level). We show
that this class can also be characterized by means of an parameterized first-order logic
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model checking problem, as well as by means of alternating Turing machines that alternate
between existential and universal configurations only a small number of times (depending
only on the parameter). Moreover, we briefly relate this class to other parameterized
variants of the Polynomial Hierarchy.

Finally, in Section 9.4, we develop the parameterized complexity results that indicate
that for all other fragments of the temporal logics that we consider, the symbolic model
checking problem does not admit an fpt-reduction to SAT. More precisely, we give a
complete parameterized complexity classification of the problem of checking whether
a given Kripke structure, that is specified symbolically using a propositional formula
and whose recurrence diameter is polynomial in the size of the propositional formula,
satisfies a given temporal logic specification, parameterized by the size of the temporal
logic formula.

• We extend the para-co-NP-membership result for the logic LTL where both opera-
tors U and X are disallowed to a para-co-NP-completeness result (Proposition 97
in Section 9.2).

• We show that the problem is para-PSPACE-complete for LTL (and so also for
its generalization CTL?) when at least one of the operators U and X is allowed
(Theorems 100 and 101).

• We show that in all remaining cases (all fragments of CTL, and the fragment
of CTL? without the operators U and X) the problem is complete for PH(level)
(Theorems 103 and 104).

In short, we show that the only case (for the fragments of temporal logics that we
consider) where the technique of bounded model checking can be applied is the fragment
of LTL without the operators U and X. An overview of the parameterized complexity
results that we develop in this chapter can be found in Table 9.1.

logic L LTL CTL CTL?

L para-PSPACE-c (Thms 100,101) PH(level)-c (Thm 103) para-PSPACE-c (Thms 100,101)
L\X para-PSPACE-c (Thm 101) PH(level)-c (Thm 103) para-PSPACE-c (Thm 101)
L\U para-PSPACE-c (Thm 100) PH(level)-c (Thm 103) para-PSPACE-c (Thm 100)
L\U,X para-co-NP-c (Prop 97) PH(level)-c (Thm 103) PH(level)-c (Thm 104)

Table 9.1: Parameterized complexity results for the problem Symbolic-MC?[L] for the
different (fragments of) logics L. In this problem, the recurrence diameter of the structure
is polynomially bounded. The problem Symbolic-MC[L], where the recurrence diameter
is unbounded, is para-PSPACE-complete in all cases.

Related Work Computational complexity analysis has been a central aspect in the
study of temporal logic model checking problems, and naturally these problems have
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9. Model Checking for Temporal Logics

been analyzed from a parameterized complexity point of view. For instance, LTL model
checking parameterized by the size of the logic formula features as a textbook example for
fixed-parameter tractability [85]. For the temporal logic CTL, parameterized complexity
has also been used to study the problems of model checking and satisfiability [60, 95,
150, 160]. As the SAT encoding techniques used for bounded LTL model checking result
in an incomplete solving method in general, limits on the cases in which this particular
encoding can be used as a complete solving method have been studied [32, 52, 138].

9.1 The (Parameterized) Complexity of Model Checking

In this section, we give a brief overview of the definition of the temporal logics LTL,
CTL and CTL? that we consider in this chapter. Moreover, we survey some well-known
(parameterized) complexity results for the model checking problem for these logics.

9.1.1 Temporal Logics

We begin with defining the semantical structures for all temporal logics. In the remainder
of the chapter, we let P be a finite set of propositions. A Kripke structure is a tupleM =
(S,R, V, s0), where S is a finite set of states, where R ⊆ S × S is a binary relation on
the set of states called the transition relation, where V : S → 2P is a valuation function
that assigns each state to a set of propositions, and where s0 ∈ S is the initial state. An
example of a Kripke structure is given in Figure 9.1. We say that a finite sequence s1 . . . s`
of states si ∈ S is a finite path in M if (si, si+1) ∈ R for each i ∈ [` − 1]. Similarly,
we say that an infinite sequence s1s2s3 . . . of states si ∈ S is an infinite path in M
if (si, si+1) ∈ R for each i ≥ 1.

•
¬p1,¬p2

•
¬p1, p2

•
p1,¬p2

•
p1, p2

Figure 9.1: An example Kripke structureM1 for the set P = {p1, p2} of propositions.

Now, we can define the syntax of the logic LTL. LTL formulas over the set P of atomic
propositions are formed according to the following grammar (here p ranges over P ), given
by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | Fϕ | (ϕUϕ).

We consider the usual abbreviations, such as ϕ1 ∨ϕ2 = ¬(¬ϕ1 ∧¬ϕ2). In addition, we let
the abbreviation Gϕ denote ¬F¬ϕ. Intuitively, the formula Xϕ expresses that ϕ is true
in the next (time) step, Fϕ expresses that ϕ becomes true at some point in the future, Gϕ
expresses that ϕ is true at all times from now on, and ϕ1Uϕ2 expresses that ϕ2 becomes
true at some point in time, and until then the formula ϕ1 is true at all points. Formally,
the semantics of LTL formulas are defined for Kripke structures, using the notion of
(infinite) paths. LetM = (S,R, V, s0) be a Kripke structure, and s1 = s1s2s3 . . . be a
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path inM. Moreover, let si = sisi+1si+2 . . . for each i ≥ 2. Truth of LTL formulas ϕ on
paths s (denoted s |= ϕ) is defined inductively as follows:

si |= p if p ∈ V (si)
si |= ϕ1 ∧ ϕ2 if si |= ϕ1 and si |= ϕ2
si |= ¬ϕ if si 6|= ϕ
si |= Xϕ if si+1 |= ϕ
si |= Fϕ if for some j ≥ 0, si+j |= ϕ
si |= ϕ1Uϕ2 if there is some j ≥ 0 such that si+j |= ϕ2

and si+j′ |= ϕ for each j′ ∈ [0, j − 1]

Then, we say that an LTL formula ϕ is true in the Kripke structureM (denotedM |= ϕ)
if for all infinite paths s starting in s0 it holds that s |= ϕ. For instance, considering the
exampleM1 from Figure 9.1, it holds thatM1 |= FGp2.

Next, we can define the syntax of the logic CTL?, which consists of two different types of
formulas: state formulas and path formulas. When we refer to CTL? formulas without
specifying the type, we refer to state formulas. Given the set P of atomic propositions,
the syntax of CTL? formulas is defined by the following grammar (here Φ denotes CTL?
state formulas, ϕ denotes CTL? path formulas, and p ranges over P ), given by:

Φ ::= p | ¬Φ | (Φ ∧ Φ) | ∃ϕ.

ϕ ::= Φ | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | Fϕ | (ϕUϕ).

Again, we consider the usual abbreviations, such as ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), for state
formulas as well as for path formulas. Moreover, we let the abbreviation Gϕ denote ¬F¬ϕ,
and we let the abbreviation ∀ϕ denote ¬∃¬ϕ. Path formulas have the same intended
meaning as LTL formulas. State formulas, in addition, allow explicit quantification over
paths, which is not possible in LTL.

Formally, the semantics of CTL? formulas are defined inductively as follows. LetM =
(S,R, V, s0) be a Kripke structure, s ∈ S be a state inM and s1 = s1s2s3 . . . be a path
inM. Again, let si = sisi+1si+2 . . . for each i ≥ 2. The truth of CTL? state formulas Φ
on states s (denoted s |= Φ) is defined as follows:

s |= p if p ∈ V (s)
s |= Φ1 ∧ Φ2 if s |= Φ1 and s |= Φ2
s |= ¬Φ if s 6|= Φ
s |= ∃ϕ if there is some path s inM starting in s such that s |= ϕ

The truth of CTL? path formulas ϕ on paths s (denoted s |= ϕ) is defined as follows:
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si |= Φ if si |= Φ
si |= ϕ1 ∧ ϕ2 if si |= ϕ1 and si |= ϕ2
si |= ¬ϕ if si 6|= ϕ
si |= Xϕ if si+1 |= ϕ
si |= Fϕ if for some j ≥ 0, si+j |= ϕ
si |= ϕ1Uϕ2 if there is some j ≥ 0 such that si+j |= ϕ2

and si+j′ |= ϕ for each j′ ∈ [0, j − 1]

Then, we say that a CTL? formula Φ is true in the Kripke structureM (denotedM |= Φ)
if s0 |= Φ. For example, again taking the structure M1, it holds that M1 |= ∃(Xp1 ∧
∀GXXp2).

Next, the syntax of the logic CTL is defined similarly to the syntax of CTL?. Only the
grammar for path formulas ϕ differs, namely:

ϕ ::= XΦ | FΦ | (ΦUΦ).

In particular, this means that every CTL state formula, (CTL formula for short) is
also a CTL? formula. The semantics for CTL formulas is defined as for their CTL?
counterparts. Moreover, we say that a CTL formula Φ is true in the Kripke structureM
(denotedM |= Φ) if s0 |= Φ.

For each of the logics L ∈ {LTL,CTL,CTL?}, we consider the fragments L\X, L\U
and L\U,X. In the fragment L\X, the X-operator is disallowed. Similarly, in the
fragment L\U, the U-operator is disallowed. In the fragment L\U,X, neither the X-
operator nor the U-operator is allowed. Note that the logic LTL\X is also known as
UTL, and the logic LTL\U,X is also known as UTL\X (see, e.g., [138]).

9.1.2 (Parameterized) Complexity Results

Next, we review some known (parameterized) complexity results for the model checking
problem of the different temporal logics. Formally, we consider the problem MC[L],
for each of the temporal logics L, where the input is a Kripke structureM and an L
formula ϕ, and the question is to decide whetherM |= ϕ. Note that in this problem the
Kripke structureM is given explicitly in the input.

MC[L]
Input: A Kripke structureM, and an L formula ϕ.
Question: M |= ϕ?

We will also consider this computational task as a parameterized problem, where the
parameter is the size of the logic formula. We will use the same name for the parameterized
problem (it is clear from the context which problem we refer to). It is well known that
the problems MC[LTL] and MC[CTL?] are PSPACE-complete, and that the problem
MC[CTL] is polynomial-time solvable (see, e.g., [11]). It is also well known that the
problems MC[LTL] and MC[CTL?] are fixed-parameter tractable when parameterized
by the size of the logic formula (see, e.g., [11, 85]).
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9.2 Symbolically Represented Kripke Structures

A challenge occurring in practical verification settings is that the Kripke structures are too
large to handle. Therefore, these Kripke structures are often not written down explicitly,
but rather represented symbolically by encoding them succinctly using propositional
formulas. In this section, we consider a (parameterized) decision problem that can
be used to model the task of symbolic model checking. We show that this problem
is PSPACE-hard for all (fragments of) temporal logics that we consider, even when
restricted to formulas of constant size.

Moreover, we consider a restriction of the problem that admits an fpt-reduction to
SAT. In particular, we interpret a known result for bounded model checking for the
fragment of LTL without U and X operators as membership in para-co-NP, for the
setting where the recurrence diameter of the Kripke structures (the size of the largest
loop-free path) is bounded by a polynomial of the input size. Additionally, we extend
this to a para-co-NP-completeness result.

9.2.1 PSPACE-hardness for Symbolic Model Checking

We begin by defining how Kripke structures can be represented symbolically using
propositional formulas. Let P = {p1, . . . , pm} be a finite set of propositional vari-
ables. A symbolically represented Kripke structure over P is a tuple M = (ϕR, α0),
where ϕR(x1, . . . , xm, x

′
1, . . . , x

′
m) is a propositional formula over the variables x1, . . . , xm,

x′1, . . . , x
′
m, and where α0 ∈ Bm is a truth assignment to the variables in P . The

Kripke structure associated with M is (S,R, V, α0), where S = Bm consists of all
truth assignments to P , where (α, α′) ∈ R if and only if ϕR[α, α′] is true, and
where V (α) = { pi : α(pi) = 1 }.

Example 95. Let P = {p1, p2}. The Kripke structure M1 from Figure 9.1 can be
symbolically represented by (ϕR, α0), where ϕR(x1, x2, x

′
1, x
′
2) = [(¬x1 ∧¬x2)→ (¬x′1 ↔

x′2)] ∧ [(¬x1 ↔ x2)→ (x′1 ∧ x′2)] ∧ [(x1 ∧ x2)→ (x′1 ∧ x′2)], and α0 = (0, 0). a

We can now consider the symbolic variant Symbolic-MC[L] of the model checking
problem, for each of the temporal logics L.

Symbolic-MC[L]
Input: A symbolically represented Kripke structureM, and an L formula ϕ.
Question: M |= ϕ?

Similarly to the case of MC[L], we will also consider Symbolic-MC[L] as a parameterized
problem, where the parameter is |ϕ|. Interestingly, for the logics LTL and CTL?, the
complexity of the model checking problem does not change when Kripke structures are
represented symbolically: Symbolic-MC[LTL] and Symbolic-MC[CTL?] are PSPACE-
complete (see [140]). However, for the logic CTL, the complexity of the problem does
show an increase. In fact, the problem is already PSPACE-hard for very simple formulas.
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Proposition 96. Symbolic-MC[LTL] is PSPACE-hard even when restricted to the
case where ϕ = Gp. Symbolic-MC[CTL] and Symbolic-MC[CTL?] are PSPACE-hard
even when restricted to the case where ϕ = ∀Gp.

Proof. We give a polynomial-time reduction from QSat. Let ϕ =
∃x1.∀x2 . . . ∃xm−1.∀xm.ψ be a quantified Boolean formula. We construct a sym-
bolically represented Kripke structureM as follows. We consider the following set of
variables:

Z = {xi, yi : i ∈ [m] } ∪ {d, t}.

The initial state α0 is the all-zeroes assignment to Z.

We construct the formula ϕR representing the transition relation ofM. We let:

ϕR(Z,Z ′) = ϕR,0(Z,Z ′) ∨
∧
j∈[4]

ϕR,j(Z,Z ′),

where we define the formulas ϕR,j(Z,Z ′) below. The intuition behind the construction
ofM is that any path will correspond to a strategy for choosing the valuation of the
existentially quantified variables. We use the variables yi to indicate which variables xi
have already been assigned a value. In fact, we ensure that in every reachable state, the
variables yi that are set to true are a consecutive sequence y1, . . . , yi for some i ∈ [m].
We use the following formula ϕR,1(Z,Z ′) to do this:

ϕR,1(Z,Z ′) =
∧

i∈[m−1]
¬y′i → ¬y′i+1.

Moreover, we ensure for any transition from state α to state α′, that α and α′ differ on
at most one variable yi, using the following formula ϕR,2(Z,Z ′):

ϕR,2(Z,Z ′) =
∧
i∈[m]

[¬(yi ↔ y′i)→
∧

i′∈[i+1,m]
(yi′ ↔ y′i′)].

Furthermore, below we will use the following auxiliary formulas, that ensure that for any
transition, the number of variables yi that are true strictly increases (if not all yi are set
to true) or decreases (if not all yi are set to false), respectively:

ϕy-incr(Z,Z ′) = (¬y1 → y′1) ∧
∧

i∈[m−1]
(yi ∧ ¬yi+1)→ y′i+1,

ϕy-decr(Z,Z ′) = (ym → ¬y′m) ∧
∧

i∈[m−1]
(yi ∧ ¬yi+1)→ ¬y′i.

Next, we ensure that in all reachable states, whenever yi is false, xi also has to be false.
We do so using the following formula ϕR,3(Z,Z ′):

ϕR,3(Z,Z ′) =
∧

i∈[m−1]
¬y′i → ¬x′i.
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•
(w, ↓, 0)

•
(w, ↑, 0)

•
(w0, ↓, 0)

•
(w0, ↑, 0)

•
(w1, ↓, 0)

•
(w1, ↑, 0)

a
a
b

b

(a) Gadget for words w of odd length < m.

•
(w, ↓, 0)

•
(w, ↑, 0)

•
(w0, ↓, 0)

•
(w0, ↑, 0)

•
(w1, ↓, 0)

•
(w1, ↑, 0)

c

d

b

(b) Gadget for words w of even length < m.

•
(w, ↓, 0)

•
(w, ↑, 0)

e

(c) Gadget for words w of length m that
satisfy ψ.

•
(w, ↓, 0)

•
(w, ↓, 1)

•
(w, ↑, 0)

f g

(d) Gadget for words w of length m that
do not satisfy ψ.

Figure 9.2: Gadgets for the proof of Proposition 96. The labels on the relations indicate
what part of ϕR,4 is used to encode the relations.

Because of the above restrictions, we can restrict our attention to states α for which
holds (1) that y1, . . . , yi are true, for some i ∈ [m], and all remaining variables yj are
false, and (2) that all variables xj for j ∈ [i+ 1,m] are false. We will denote these states
by tuples (w, e, t), where w ∈ Bi, e ∈ {↑, ↓} and t ∈ B. A tuple (w, d, t) with |w| = i
denotes the state α that sets y1, . . . , yi to true, sets x1, . . . , xi according to w, sets d to
true if and only if e = ↑, and sets the variable t according to the value in the tuple.

The idea behind how we continue constructing ϕR is that we piece together all possible
instantiations of the gadgets in Figure 9.2. This results in a large directed acyclic graph
containing states (w, e, t), with the property that any path that visits a state (w, ↓, 0)
ultimately also visits the state (w, ↑, 0). This property allows us to use the gadgets in
the following way. The gadget for a word w of odd length i < m enforces that whenever
a path visits the state (w, ↓, 0), it must also visit the state (wb, ↓, 0) for some b ∈ B.
Intuitively, this simulates existential quantifiers. This property allows us to use the
gadgets in the following way. The gadget for a word w of even length i < m enforces
that whenever a path visits the state (w, ↓, 0), it must also visit both states (wb, ↓, 0)
for b ∈ B. Intuitively, this simulates universal quantifiers. Moreover, the gadgets for
words w of length m enforce that on the way from (w, ↓, 0) to (w, ↑, 0) the state (w, ↓, 1)
is visited if and only if w corresponds to a truth assignment to the variables in X that
does not satisfy ψ.

We make sure that ϕR encodes exactly the transitions from α1 = (w1, e1, t1) to α2 =
(w2, e2, t2) from the gadgets described above by means of the following (sub)formulas
of ϕR. We distinguish seven cases. The labels on the arrows in Figure 9.2 indicate which
case applies to which relation in the gadgets.

(a) The string w1 is of odd length less than m and e1 = ↓ and t1 = 0. We ensure
that w2 = w1b for some b ∈ B, that e2 = ↓ and that t2 = 0.
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(b) It holds that e1 = ↑, t1 = 0 and the string w1 either (i) is of even length less than m
or (ii) is of odd length less than m and ends with 1. We ensure that w2 is the
string w1 without the last symbol, that e2 = ↑, and that t2 = 0.

(c) The string w1 is of even length less than m and e1 = ↓ and t1 = 0. We ensure
that w2 = w10, that e2 = ↓ and that t2 = 0.

(d) It holds that e1 = ↑, t1 = 0 and the string w1 is of odd length less than m and ends
with 0. We ensure that w2 is the string w1 where the last symbol is replaced by
a 1, that e2 = ↓, and that t2 = 0.

(e) The string w1 is of length m, e1 = ↓ and t1 = 0. Moreover, w1 satisfies ψ. We
ensure that w2 = w1, that e2 = ↑ and that t2 = 0.

(f) The string w1 is of length m, e1 = ↓ and t1 = 0. Moreover, w1 does not satisfy ψ.
We ensure that w2 = w1, that e2 = ↓ and that t2 = 1.

(g) The string w1 is of length m, e1 = ↓ and t1 = 1. We ensure that w2 = w1,
that e2 = ↑ and that t2 = 0.

Formally, we construct the formula ϕR,4(Z,Z ′) as follows:

ϕR,4(Z,Z ′) =∧
i∈[m]
i odd

[[¬ym ∧ d ∧ ¬t ∧ yi ∧ ¬yi+1]→ [d′ ∧ ¬t′ ∧ y′i+1 ∧
∧

i′∈[i]
(xi ↔ x′i)]] (a);

∧
∧

i∈[m]
i even

[[¬ym ∧ ¬d ∧ ¬t ∧ yi ∧ ¬yi+1]→ [¬d′ ∧ ¬t′ ∧ ¬y′i ∧
∧

i′∈[i−1]
(xi ↔ x′i)]] (b.i);

∧
∧

i∈[m]
i odd

[[¬ym ∧ ¬d ∧ ¬t ∧ yi ∧ ¬yi+1 ∧ xi]→ [¬d′ ∧ ¬t′ ∧ ¬y′i ∧
∧

i′∈[i−1]
(xi ↔ x′i)]] (b.ii);

∧
∧

i∈[m]
i even

[[¬ym ∧ d ∧ ¬t ∧ yi ∧ ¬yi+1]→ [d′ ∧ ¬t′ ∧ y′i+1 ∧ ¬x′i+1 ∧
∧

i′∈[i]
(xi ↔ x′i)]] (c);

∧
∧

i∈[m]
i odd

[[¬ym ∧ ¬d ∧ ¬t ∧ yi ∧ ¬yi+1 ∧ ¬xi]→

[d′ ∧ ¬t′ ∧ y′i ∧ ¬y′i+1 ∧ x′i ∧
∧

i′∈[i−1]
(xi ↔ x′i)] (d);

∧ [d ∧ ¬t ∧ ψ ∧
∧

i∈[m]
yi]→ [¬d′ ∧ ¬t′ ∧

∧
i∈[m]

(y′i ∧ (xi ↔ x′i))] (e);

∧ [d ∧ ¬t ∧ ¬ψ ∧
∧

i∈[m]
yi]→ [d′ ∧ t′ ∧

∧
i∈[m]

(y′i ∧ (xi ↔ x′i))] (f);

∧ [d ∧ t ∧ ¬ψ ∧
∧

i∈[m]
yi]→ [¬d′ ∧ ¬t′ ∧

∧
i∈[m]

(y′i ∧ (xi ↔ x′i))] (g);

Finally, we make sure that the state (ε, ↑, 0) has a self-loop, by means of the following
formula ϕR,0:

ϕR,0(Z,Z ′) =
∧

z∈Z\{d}
¬z ∧

∧
z′∈Z′\{d′}

¬z′.

We let the temporal logic formula whose truth is to be checked be Gt in the case of LTL,
and ∀Gt in the case of CTL or CTL? (these formulas are equivalent).

186



9.2. Symbolically Represented Kripke Structures

We claim that ϕ has a QBF model if and only if M |= Gt, where M is specified
by (ϕR, α0). This holds because there is a correspondence between QBF models for ϕ
and paths in M that satisfy the proposition t in each state. Each such path in M
can be transformed into a QBF model for ϕ by removing the direction of the arrows,
removing self-loops, merging states (w, ↓, 0) and (w, ↑, 0) into a single truth assignment
corresponding to the word w. Because such a path does not visit any state where t is
true, the leaves of the resulting tree satisfy ψ, and therefore the resulting tree is a QBF
model for ϕ. Vice versa, each QBF model can be used similarly to obtain a path inM
that satisfies Gt.

9.2.2 An Fpt-Reduction to SAT for LTL\U,X
The result of Proposition 96 seems to indicate that the model checking problem for
the temporal logics LTL, CTL and CTL? is intractable when Kripke structures are
represented symbolically, even when the logic formulas are extremely simple. However, in
the literature further restrictions have been identified that allow the problem to be solved
by means of an encoding into SAT, which allows the use of practically very efficient
SAT solving methods. In the hardness proof of Proposition 96, the Kripke structure has
only a single path, which contains exponentially many different states. Intuitively, such
exponential-length paths may be the cause of PSPACE-hardness. To circumvent this
source of hardness, and to go towards the mentioned setting where the problem can be
solved by means of a SAT encoding, we need to restrict the recurrence diameter. The
recurrence diameter rd(M) of a Kripke structureM is the length of the longest simple
(non-repeating) path in M. We consider the following variant of Symbolic-MC[L],
where the recurrence diameter of the Kripke structures is restricted.1

Symbolic-MC?[L]
Input: A symbolically represented Kripke structureM, rd(M) in unary, and an L
formula ϕ.
Parameter: |ϕ|.
Question: M |= ϕ?

This restricted setting has been studied by Kroening et al. [138]. In particular, they
showed that the model checking problem for LTL\U,X allows an encoding into SAT
that is linear in rd(M), even when the Kripke structureM is represented symbolically,
and can thus be of exponential size. Using the result of Kroening et al., we obtain
para-co-NP-completeness.

Proposition 97. Symbolic-MC?[LTL\U,X] is para-co-NP-complete.

Proof (sketch). Kroening et al. [138] use the technique of bounded model checking [18,
21, 52], where SAT solvers are used to find a ‘lasso-shaped’ path in a Kripke structure

1An equivalent way of phrasing the problem is to require that the recurrence diameter of the Kripke
modelM is polynomial in the size of its description (ϕR, α0).
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•
(0, 0, α0)

•
(0, 1, α1)

...
•

(0, 1, α`)

•
(0, 1, α`+1)...
•

(0, 1, αu)

•
(1, 1, α`+1)...
•

(1, 1, αu)

Figure 9.3: The Kripke structure in the proof of Proposition 97. (Only the reachable
part is depicted.)

that satisfies an LTL formula ϕ. They show that for LTL\U,X formulas, the largest
possible length of such lasso-shaped paths that needs to be considered (also called the
completeness threshold) is linear in rd(M). However, the completeness threshold depends
linearly on the size of a particular type of generalized Büchi automaton expressing ϕ,
which in general is exponential in the size of ϕ. Therefore, this SAT encoding does not
run in polynomial time, but it does run in fixed-parameter tractable time when the size
of ϕ is the parameter. Their encoding of the problem of finding a counterexample into
SAT can be seen as an encoding of the model checking problem into UNSAT.

We show para-co-NP-hardness by showing that the problem Symbolic-MC?[LTL\U,X]
is co-NP-hard already for formulas of constant size. We do so by a reduction from UNSAT.
Let ψ be a propositional formula over the variables x1, . . . , xn. We construct an instance
of Symbolic-MC?[LTL\U,X] as follows. We consider the set P = {y0, y1, x1, . . . , xn}
of propositional variables. We then construct the symbolically represented Kripke
structureM given by (ϕR, α0) as follows. This structureM is depicted in Figure 9.3.
We let α0 = 0, i.e., the all-zeroes assignment. Then we define ϕR as follows:

ϕR,4(y0, y1, x, y
′
0, y
′
1, x
′) =

(¬y1 → (¬y′0 ∧ y′1)) (a);
∧ (y1 →

∧
i∈[n]

(xi ↔ x′i)) (b);

∧ ((y1 ∧ ψ(x1, . . . , xn)→ (y′0 ∧ y′1)) (c);
∧ ((y1 ∧ ¬ψ(x1, . . . , xn)→ (¬y′0 ∧ y′1)) (d).

The transition relation given by ϕR allows a transition from α0 to the state (0, 1, α) for
any truth assignment α to the variables x1, . . . , xn. Then, if this assignment α satisfies ψ,
a transition is allowed to the looping state (1, 1, α). Otherwise, if α does not satisfy ψ,
the only transition from state (0, 1, α) is to itself. Finally, we define the LTL formula to
be ϕ = G¬y0.

Moreover, rd(M) = 2, and the LTL formula ϕ is of constant size, and contains only the
temporal operator G. It is straightforward to verify that M |= ϕ if and only if ψ is
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unsatisfiable.

In the remainder of this chapter, we will give parameterized complexity results that
give evidence that this is the only case in this setting where such an fpt-reduction to
SAT is possible. In order to do so, we first make a little digression to introduce a new
parameterized complexity class, that can be seen as a parameterized variant of the
Polynomial Hierarchy.

9.3 Another Parameterized Variant of the Polynomial
Hierarchy

In order to completely characterize the parameterized complexity of the problem
Symbolic-MC?[L]—that we defined in Section 9.2—for all (fragments of) logics L,
we need to introduce a parameterized complexity class, that is another parameterized
variant of the Polynomial Hierarchy.

For each level of the PH, the number of quantifier alternations is bounded by a constant.
If we allow an unbounded number of quantifier alternations, we get the complexity class
PSPACE (see, e.g., [7, Theorem 5.10]). Parameterized complexity theory allows a middle
way: neither letting the number of quantifier alternations be bounded by a constant, nor
removing all bounds on the number of quantifier alternations, but bounding the number
of quantifier alternations by a function of the parameter. We consider the following
parameterized problem QSat(level).

QSat(level)
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QkXkψ, where Qk is a
universal quantifier if k is even and an existential quantifier if k is odd, and where ψ
is quantifier-free.
Parameter: k.
Question: Is ϕ true?

We define the parameterized complexity class PH(level) to be the class of all parameterized
problems that can be fpt-reduced to QSat(level).

9.3.1 Alternative Characterizations

Next, we show an alternative characterization of the class PH(level) using Alternating
Turing machines (ATMs). We will use this characterization below to show membership
in PH(level). For the sake of convenience, we begin by briefly repeating some properties
of alternating Turing machines. For more details, we refer to Section 2.2.

The states of an ATM are partitioned into existential and universal states. Intuitively,
if the ATM M is in an existential state, it accepts if there is some successor state that
accepts, and if M is in a universal state, it accepts if all successor states accept. We say
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that M is `-alternating, for ` ≥ 0, if for each input x, for each run of M on x, and for
each computation path in this run, there are at most ` transitions from an existential
state to a universal state, or vice versa. The class PH(level) consists of all problems that
can be solved in fixed-parameter tractable time by an ATM whose number of alternations
is bounded by a function of the parameter.

Proposition 98. Let Q be a parameterized problem. Then Q ∈ PH(level) if and only if
there exist a computable function f : N→ N and an ATM M such that: (1) M solves Q
in fixed-parameter tractable time, and (2) for each slice Qk of Q, M is f(k)-alternating.

Proof. First of all, we observe that the class of parameterized problems that can be solved
in fpt-time by an f(k)-alternating ATM is closed under fpt-reductions. Next, we describe
how an instance ϕ = ∃X1∀X2 . . . ∀Xkψ of the problem QSat(level) can be solved by
a (fixed) ATM M that is k-alternating. Using non-determinism in its first existential
phase, M guesses truth values for the variables in X1. Then, using non-determinism in
the subsequent universal phase, M guesses truth values for the variables in X2. Similarly,
using alternating existential and universal phases, M guesses truth values for all variables
in all other Xi. Then, using deterministic computation, M verifies whether the guessed
truth values satisfy ψ, and accepts the input if and only if ψ is satisfied. Clearly, ϕ is
true if and only if M accepts ϕ.

For the other direction, let Q be an arbitrary parameterized problem that is decided in
fpt-time by an ATM M that is f(k)-alternating. We assume without loss of generality
that f(k) is even. We give an fpt-reduction from Q to QSat(level), using standard ideas
from the proof of the Cook-Levin Theorem. We assume without loss of generality that for
each non-deterministic step that M takes, there are only two possible transitions. If this
were not the case, we could straightforwardly transform M so that it satisfies this property.
Let y be an arbitrary instance for Q, with |y| = n. We know that M runs in fpt-time,
i.e., in time g(k)nc, for some computable function g and some constant c. Therefore, we
know in particular that in each phase (existential or universal), M makes at most g(k)nc
non-deterministic (binary) choices. We introduce f(k) sets X1, . . . , Xf(k), where each
set Xi contains g(k)nc propositional variables xi,1, . . . , xi,g(k)nc . The interpretation of
these variables is that variable xi,j specifies which transition to take in the j-th non-
deterministic step in the i-th phase of the computation. Using (the truth values of)
these variables in X1, . . . , Xf(k), we can then in fpt-time decide whether M ends up in
an accepting state using these transitions (when given input y). Therefore, we can in
fpt-time construct a Boolean circuit C over the variables in X1, . . . , Xf(k) that captures
this simulation procedure. Then, the quantified Boolean circuit ∃X1∀X2 . . . ∀Xf(k)C is
true if and only if y ∈ Q. Finally, we can easily transform this to a quantified Boolean
formula of the right form, for instance by using a standard Tseitin transformation to
transform C into an equivalent universally quantified DNF formula ∃Zψ. The result of
the reduction is then the quantified Boolean formula ∃X1∀X2 . . . ∀Xf(k)∀Y ψ, which is
an instance of QSat(level), and which is true if and only if y ∈ Q.
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As a direct consequence of this definition, we get that the class PH(level) is closed under
fpt-reductions. Next, to further illustrate the robustnest of the class PH(level), we charac-
terize this class using first-order logic model checking (which has also been used to charac-
terize the classes of the well-known W-hierarchy and the A-hierarchy; see, e.g., [85]). Con-
sider the problem MC[FO], where the input consists of a relational structure A, and a first-
order formula ϕ = ∃x1,1, . . . , x1,`1 .∀x2,1, . . . , x2,`1 .∃x3,1, . . . , x3,`1 . . . Qkxk,1, . . . , xk,`k .ψ in
prenex form, where Qk = ∀ if k is even and Qk = ∃ if k is odd. The question is
whether A |= ϕ. The problem MC[FO] is PH(level)-complete when parameterized
by (k − 1).2 We denote this parameterized problem by MC[FO](quant.alt.).

Proposition 99. MC[FO](quant.alt.) is PH(level)-complete.

Proof. We fpt-reduce QSat(level) and MC[FO](quant.alt.) to each other. The reduc-
tion from QSat(level) to MC[FO](quant.alt.) is very straightforward. We construct a
relational structure A with two elements 0, 1 in its domain, and two unary predicates T
and F , where TA = {1} and FA = {0}. Then we transform the quantified Boolean
formula ϕ to a first-order formula ϕ′ by transforming each positive literal x to the
first-order atom T (x) and transforming each negative literal ¬x to the atom F (x). It is
easy to verify the correctness of this reduction.

For the other direction, we describe the fpt-reduction from
MC[FO](quant.alt.) to QSat(level). Let ϕ = ∃x1,1, . . . , x1,`1 .∀x2,1, . . . , x2,`1 .
∃x3,1, . . . , x3,`1 . . . Qkxk,1, . . . , xk,`k .ψ, together with the relational structure A
with domain A, be an instance of MC[FO](quant.alt.) (we assume without loss
of generality that k is even). We replace each first-order variable xi,j with |A|
propositional variables xai,j , for a ∈ A. Let X ′i denote the set of propositional
replacement variables xai,j for j ∈ [`i]. Then, for each i, we construct a formula χi
that ensures that for each xi,j with j ∈ [`i] there is exactly one xai,j that is true.
Next, we transform ψ into a propositional formula ψ′ as follows. Each occurrence
of an atom R(xi1,j1 , . . . , xir,jr) in ψ, where RA = {(a1,1, . . . , a1,r), . . . , (a`,1, . . . , a`,r),
we replace by the disjunction

∨
i∈[`](x

ai,1
i1,j1
∧ · · · ∧ xai,rir,jr

). Finally, we construct the
propositional formula ψ′′ = χ1 ∧ (χ2 → (χ3 ∧ (χ4 → · · · (χk → ψ′)) · · · ). The final
result of the reduction is the quantified Boolean formula ∃X ′1.∀X ′2.∃X ′3 . . . ∀X ′k.ψ′′. The
correctness of this reduction can be verified straightforwardly.

9.3.2 Relation to other parameterized variants of the PH

In the previous chapters of this thesis, we considered more parameterized variants of the
Polynomial Hierarchy. We briefly consider how the class PH(level) relates to these classes.
Firstly, for each i ≥ 1, the parameterized complexity classes para-Σp

i and para-Πp
i are

contained in the class PH(level). So in particular, the classes Σp
2 [k∗] and Σp

2 [∗k, t] are
2The problem MC[FO] is also PH(level)-complete when parameterized by k. We use the parame-

ter (k − 1) because it corresponds to the number of quantifier alternations. The parameter k corresponds
to the number of quantifier blocks.
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also contained in PH(level). Moreover, PH(level) is contained in para-PSPACE. These
inclusions are all strict, unless the PH collapses.

Another parameterized variant of the PH that has been studied is the A-hierarchy,
containing the parameterized complexity classes A[t] for each t ≥ 1. Remember that
each class A[t] is defined as the class of all problems that can be fpt-reduced to MC[FO],
restricted to first-order formulas ϕ (in prenex form) with a quantifier prefix that starts
with an existential quantifier and that contains t quantifier alternations, parameterized by
the size of ϕ. From this definition, it directly follows that A[t] is contained in PH(level),
for each t ≥ 1. The A-hierarchy also contains the parameterized classes AW[∗] ⊆
AW[SAT] ⊆ AW[P], each of which contains the classes A[t], for each t ≥ 1. These classes
are also contained in PH(level). Moreover, the inclusion of all these classes in PH(level)
is strict, unless P = NP.

9.4 Completeness for PH(level) and para-PSPACE
In this section, we provide a complete parameterized complexity classification for the
problem Symbolic-MC?[L]. We already considered the case for L = LTL\U,X in
Section 9.2.2, which was shown to be para-co-NP-complete. We give (negative) parame-
terized complexity results for the other cases. An overview of the results can be found in
Table 9.1 on page 179. Firstly, we show that for the case of LTL, allowing at least one of
the temporal operators U or X leads to para-PSPACE-completeness.

Theorem 100. Symbolic-MC?[LTL\U] is para-PSPACE-complete.

Proof. Membership follows from the PSPACE-membership of Symbolic-MC[LTL]. We
show hardness by showing that the problem is already PSPACE-hard for a constant pa-
rameter value. We do so by giving a reduction from QSat. Let ϕ0 = ∀x1.∃x2 . . . Qnxn.ψ
be a quantified Boolean formula. We may assume without loss of generality that (n
mod 4) = 1, and thus that Qn = ∀. We construct a Kripke structureM symbolically
represented by (ϕR, α0), whose reachability diameter is polynomial in the size of ϕ0,
and an LTL formula ϕ that does not contain the U operator, in such a way that ϕ0
is true if and only if M 6|= ¬ϕ. (So technically, we are reducing to the co-problem of
Symbolic-MC?[LTL\U]. Since PSPACE is closed under complement, this suffices to
show PSPACE-hardness.)

The idea is to construct a full binary tree (of exponential size), with bidirectional
transitions between each parent and child, and to label the nodes of this tree in such a
way that a constant-size LTL formula can be used to force paths to be a traversal of this
tree corresponding to a QBF model of the formula ϕ0. The idea of using LTL formulas
to force paths to be traversals of exponential-size binary trees was already mentioned by
[138]. We construct the Kripke structureM as depicted in Figure 9.4.

We first show how to construct M = (ϕR, α0). Remember that P = {x1, . . . , xn,
y1, . . . , yn, a1, al, ar, a

′
1, a
′
l, a
′
r, e1, e2, e

′
1, e
′
2, f, g}. We let α0 be the assignment that sets
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only the propositional variables a1, e
′
2 to true, and all other propositional variables to

false. Then, we define ϕR(p?, p) to be the conjunction of the following subformulas. The
first conjunct

(g ↔ e′1 ∧
∧

p∈P\{e′1,g}
¬p)

ensures that g is only true in the sink state, and the second conjunct

(g → (a1 ∧ e′2 ∧
∧

p∈P\{a1,e′2}
¬p))

ensures that the sink state is only reachable from the initial state. Next, we make
sure that the states in the tree have the correct truth values for the propositional
variables y1, . . . , yn, i.e., that for each node in the i-th level of the tree, exactly the
variables y1, . . . , yi are true. This is ensured by the following conjuncts:∧

i∈[2,n]
(yi → yi−1),∧

i∈[n−1]
(¬yi → ¬yi+1), and∧

i∈[n−1]
(¬(yi ∧ yi+1 ∧ ¬y?i ∧ ¬y?i+1) ∧ ¬(y?i ∧ y?i+1 ∧ ¬yi ∧ ¬yi+1)).

We ensure that the propositional variable f is true exactly in the leafs of the tree, using
the conjunct:

(f ↔
∧
i∈[n]

yi).

Then, we ensure that each node at the i-th level of the tree corresponds to a partial
truth assignment to the variables x1, . . . , xi that agrees with its parent node on the
variables x1, . . . , xi−1. We do so by means of the following conjuncts:∧

i∈[n]
(¬yi → ¬xi), and∧

i∈[n]
((yi ↔ y?i )→ (xi ↔ x?i )).

Finally, we enforce the intended truth values for the propositional variables in A =
{a1, al, ar, a

′
1, a
′
l, a
′
r} and in E = {e1, e2, e

′
1, e
′
2}. In order to do so, we introduce two

auxiliary formulas ϕl-ch and ϕr-ch, that encode whether a node in the tree is a left or a
right child:

ϕl-ch(p) =
∨
i∈[n]

(yi ∧ ¬yi+1 ∧ ¬xi) ∨ (yn ∧ ¬xn), and

ϕr-ch(p) =
∨
i∈[n]

(yi ∧ ¬yi+1 ∧ xi) ∨ (yn ∧ xn).

Moreover, we introduce another auxiliary formula ϕdown(p?, p), that encodes whether the
transition goes down the tree:

ϕdown(p?, p) =
∨
i∈[n]

(¬yi ∧ y?i ).
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Using these auxiliary formulas, we construct the following conjuncts of ϕR, that enforce
the intended interpretation of the propositional variables in A and E:

(¬g ∧ ϕdown(p?, p) ∧ a?1 ∧ ϕl-ch(p))→ (al ∧ e1),
(¬g ∧ ϕdown(p?, p) ∧ a?1 ∧ ϕr-ch(p))→ (ar ∧ e1),
(¬g ∧ ϕdown(p?, p) ∧ (a′1)? ∧ ϕl-ch(p))→ (a′l ∧ e′1),
(¬g ∧ ϕdown(p?, p) ∧ (a′1)? ∧ ϕr-ch(p))→ (a′r ∧ e′1),
(¬g ∧ ϕdown(p?, p) ∧ e?1)→ (e2 ∧ a′1),
(¬g ∧ ϕdown(p?, p) ∧ (e′1)?)→ (e′2 ∧ a1),
(¬g ∧ ¬ϕdown(p?, p) ∧ a?1 ∧ ϕl-ch(p))→ (a′l ∧ e′1),
(¬g ∧ ¬ϕdown(p?, p) ∧ a?1 ∧ ϕr-ch(p))→ (a′r ∧ e′1),
(¬g ∧ ¬ϕdown(p?, p) ∧ (a′1)? ∧ ϕl-ch(p))→ (al ∧ e1),
(¬g ∧ ¬ϕdown(p?, p) ∧ (a′1)? ∧ ϕr-ch(p))→ (ar ∧ e1),
(¬g ∧ ¬ϕdown(p?, p) ∧ e?1 → (a1 ∧ e′2),
(¬g ∧ ¬ϕdown(p?, p) ∧ (e′1)? → (a′1 ∧ e2),∧
c∈A

(c→
∧

c′∈A\{c}
¬c′), and∧

c∈E
(c→

∧
c′∈E\{c}

¬c′).

This concludes our construction of the Kripke structureM as depicted in Figure 9.4.

It is straightforward to check that the recurrence diameter rd(M) ofM is bounded by 2n
as the longest simple path inM is from some leaf in the tree to another leaf.

•
a1, e′2

•
al, e1

•
ar, e1

•
e2, a′1

•e2, a
′
1 •e2, a′1 •

e2, a′1

•
e′1, a

′
l

•e
′
1, a
′
r • e′1, a′l •e′1, a′r •e′1, a

′
l •e′1, a

′
r •

e′1, a
′
l •

e′1, a
′
r

•e′2, a1 •
e′2, a1
• • • • • • • • • • • • • •

•
e′1, g

...
...

•e1, al, f •
e1, ar, f

• e1, al, f . . .

...
...

•••. . .

y = (1, 1, 0), x = (0, 1, 0)

Figure 9.4: The Kripke structure in the proof of Proposition 100. (Only the reachable
part is depicted.)

More concretely, the intuition behind the construction ofM is as follows. Every transition
from the i-th level to the (i+1)-th level (where the root is at the 0-th level) corresponds to
assigning a truth value to the variable xi+1. We use variables x = (x1, . . . , xn) to keep track
of the truth assignment in the current position of the tree, and variables y = (y1, . . . , yn)
to keep track of what level in the tree the current position is (at level i, exactly the
variables y1, . . . , yi are set to true). At the even levels i, we use the variables a1, al, ar
(and a′1, a

′
l, a
′
r) to ensure that (in a single path) both possible truth assignments to
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the (universally quantified) variable xi+1 are used. At the odd levels i, we use the
variables e1, e2 (and e′1, e′2) to ensure that one of both possible truth assignments to the
(existentially quantified) variable xi+1 is used. We need the copies a′1, e′1, . . . to be able to
enforce the intended (downward and upward) traversal of the tree. Then, the variable f
is used to signal that a leaf has been reached, and the variable g is used to signal that
the path is in the sink state.

Next, we give a detailed specification of the LTL formula ϕ, that enforces a traversal
of the treeM corresponding to a QBF model of the formula ϕ0. The LTL formula ϕ
consists of a conjunction of several subformulas. The first conjunct of ϕ is Xal, which
ensures that the path starts by going down to the left child of the root of the tree. The
next conjuncts are G[(a1∧Xe1∧¬Xf)→ XXe2] and G[(a′1∧Xe′1∧¬Xf)→ XXe′2], which
ensure that after a transition corresponding to setting a universal variable to some value,
the path goes further down the tree (if possible). The conjuncts G[(e1 ∧Xe2)→ XXa′l]
and G[(e′1 ∧Xe′2)→ XXal] ensure that after setting an existential variable to some value,
the path goes further down the tree by setting the next universal variable to 0. The
conjunct G[(a1∧Xe1∧Xf)→ XXa1] ensures that after reaching a leaf of the tree, the path
goes back up. The conjuncts G[(al∧Xa1)→ XXar] and G[(a′l∧Xa′1)→ XXa′r] ensure that
after the path goes back up a transition corresponding to setting a universal variable xi to 0,
the path continues (downwards) with the transition corresponding to setting the variable xi
to 1. The conjuncts G[(ar ∧Xa1)→ XXe′1] and G[(a′r ∧Xa′1)→ XXe1] ensure that after
the path goes back up a transition corresponding to setting a universal variable xi to 0,
the path continues (upwards) by going back up on the transition corresponding to setting
variable xi−1. The conjuncts G[(e2 ∧ Xe1)→ XXa1] and G[(e′2 ∧ Xe′1 ∧ X¬g)→ XXa′1]
ensure that after the path goes back up a transition corresponding to setting an existential
variable xi to some value, the path continues (upwards) by going back up on the transition
corresponding to setting variable xi−1 (if possible).

Finally, we need to ensure that this tree traversal corresponds to a QBF model for
the formula ϕ0, i.e., that all total assignments that appear along the path satisfy the
matrix ψ of ϕ0. We do so by adding a last conjunct to ϕ. However, to keep the LTL
formula ϕ of constant size, we need to introduce a propositional variable that abbreviates
the truth of ψ. By Lemma 102, we may assume without loss of generality that there is a
propositional variable zψ in P that in each state is set to 1 if and only if this state sets
the formula ψ to true. We then let the final conjunct of ϕ be G[f → zψ]. Clearly, the
size of ϕ is constant.

We can then show that ϕ0 is true if and only ifM 6|= ¬ϕ. By construction ofM and ϕ,
all paths starting in the initial state ofM that satisfy ϕ naturally correspond to a QBF
model of ϕ0, and all QBF models of ϕ0 correspond to such a path. Assume that ϕ0
is true. Then there exists a QBF model of ϕ0. Then there exists a path satisfying ϕ,
and thusM 6|= ¬ϕ. Conversely, assume thatM 6|= ¬ϕ. Then there exists a path that
satisfies ϕ. Therefore, there exists a QBF model of ϕ0, and thus ϕ0 is true.

We continue with showing para-PSPACE-hardness for the fragment of LTL where the
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U-operator is allowed.

Theorem 101. Symbolic-MC?[LTL\X] is para-PSPACE-complete.

Proof. Membership follows from the PSPACE-membership of Symbolic-MC[LTL]. We
show para-PSPACE-hardness by modifying the reduction in the proof of Theorem 100.
The idea is to simulate the X operator using the U operator. Given an instance of
QSat, we construct the Kripke structureM and the LTL formula ϕ as in the proof of
Theorem 100. Then, we modifyM and ϕ as follows. Firstly, we add a fresh variable x0
to the set of propositions P , we ensure that x0 is false in the initial state α0, and we
modify ϕR so that in each transition, the variable x0 swaps truth values. Then, it is
straightforward to see that any LTL formula of the form Xϕ′ is equivalent to the LTL
formula (x0 → x0U(¬x0∧ϕ′))∧(¬x0 → ¬x0U(x0∧ϕ′)), on structures where x0 shows this
alternating behavior. Using this equivalence, we can recursively replace all occurrences
of the X operator in the LTL formula ϕ. This leads to an exponential blow-up in the
size of ϕ, but since ϕ is of constant size, this blow-up is permissible.

Next, we show that for the case of CTL, the problem is complete for PH(level), even
when both temporal operators U and X are disallowed. In order to establish this result,
we need the following technical lemma.

Lemma 102. Given a symbolically represented Kripke structure M given by (ϕR, α0)
over the set P of propositional variables, and a propositional formula ψ over P , we can
construct in polynomial time a Kripke structureM′ given by (ϕ′R, α′0) over the set P ∪{z}
of variables (where z 6∈ P ) such that:

• there exists an isomorphism ρ between the states in the reachable part ofM and the
states in the reachable part ofM′ that respects the initial states and the transition
relations,

• each state s in the reachable part ofM agrees with ρ(s) on the variables in P , and

• for each state s in the reachable part of M it holds that ρ(s) |= z if and only
if s |= ψ.

Proof. Intuitively, the required Kripke structureM′ can be constructed by adding the
variable z to the set P of propositions, and modifying the formula ϕR specifying the
transition relation and the initial state α0 appropriately. In the new initial state α′0, the
variable z gets the truth value 1 if and only if α0 |= ψ. Moreover, the transition relation
specified by ϕ′R ensures that in any reached state α, the variable z gets the truth value 1
if and only if α |= ψ.

Concretely, we defineM′ = (ϕ′R, α′0) over the set P ∪{z} as follows. We let α′0(p) = α0(p)
for all p ∈ P , and we let α′0(z) = 1 if and only if α0 |= ψ. Then, we define ϕ′R by letting:

ϕ′R(x, z, x′, z′) = ϕR(x, x′) ∧ (z′ ↔ ψ(x)).
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The isomorphism ρ can then be constructed as follows. For each state α inM, ρ(α) =
α ∪ {z 7→ 1} if α |= ψ, and ρ(α) = α ∪ {z 7→ 0} if α 6|= ψ.
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Figure 9.5: The Kripke structure in the proof of Theorem 103. (Only the reachable part
is depicted.)

We can now show PH(level)-completeness for the case of CTL\U,X.

Theorem 103. Symbolic-MC?[CTL] is PH(level)-complete. Moreover, hardness al-
ready holds for Symbolic-MC?[CTL\U,X].

Proof. In order to show hardness, we give an fpt-reduction from QSat(level). Let ϕ =
∃X1∀X2 . . . QkXkψ be an instance of QSat(level). We construct a Kripke structureM
over a set P of propositional variables represented symbolically by (ϕR, α0), with poly-
nomial recurrence diameter, and a CTL formula Φ such that ϕ is true if and only
ifM |= Φ.

The idea is to let M consist of a (directed) tree of exponential size, as depicted in
Figure 9.5. The tree consists of k levels (where the root is at the 0-th level). All nodes
on the i-th level are labelled with proposition li. Moreover, each node is associated with
a truth assignment over the variables in X =

⋃
i∈[k]Xi. For each node n at the i-th

level (for i ∈ [0, k − 1]) with corresponding truth assignment αn, and for each truth
assignment α to the variables in Xi+1, there is a child node of n (at the (i+ 1)-th level)
whose corresponding assignment agrees with α on the variables in Xi+1. Also, the truth
assignment corresponding to each child of n agrees with αn on the variables in X1, . . . , Xi.
Moreover, by Lemma 102, we may assume without loss of generality that there is a
propositional variable zψ in P that in each state is set to 1 if and only if this state sets
the propositional formula ψ (over X) to true.

We show how to construct the Kripke structure M = (ϕR, α0). Remember that P =
X1 ∪ · · · ∪ Xk ∪ {l0, l1, . . . , lk} (for the sake of simplicity, we leave treatment of the
propositional variable zψ to the technique discussed in the proof of Lemma 102). We
let α0 be the truth assignment that sets only the propositional variable l0 to true, and
all other propositional variables to false. Then, we define ϕR(p, p′) as the conjunction
of several subformulas. The first conjuncts ensure that in each level of the tree, the
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propositional variables li get the right truth value:∧
i∈[0,k−1]

li → l′i+1, (lk → l′k) and
∧

i,i′∈[k],i<i′
¬(l′i ∧ l′i′).

The following conjunct ensures that the partial truth assignment of a node at the i-th
level of the tree agrees with its parent on all variables in X1, . . . , Xi−1.∧

i∈[n]
(l′i →

∧
x∈X1∪···∪Xi−1

(x↔ x′)).

This concludes our construction of the Kripke structure M as depicted in Figure 9.5.
Clearly, the longest simple path inM is a root-to-leaf path, which has length k.

Then, using this structureM, we can express the quantified Boolean formula ϕ in CTL
as follows. We define Φ = ∃F(l1 ∧ ∀F(l2 ∧ ∃F(l3 ∧ · · ·QkF(lk ∧ zψ) · · · )). By construction
of Φ, we get that those subtrees of M that naturally correspond to witnesses for the
truth of this CTL formula Φ exactly correspond to the QBF models for ϕ. From this, we
directly get that ϕ is true if and only ifM |= Φ.

In order to prove membership in PH(level), we show that Symbolic-MC?[CTL] can be
decided in fpt-time by an ATM M that is f(k)-alternating. The algorithm implemented
by M takes a different approach than the well-known dynamic programming algorithm for
CTL model checking for explicitly encoded Kripke structures (see, e.g., [11, Section 6.4.1]).
Since symbolically represented Kripke structures can be of size exponential in the input,
this bottom-up algorithm would require exponential time. Instead, we employ a top-down
approach, using (existential and universal) non-determinism to quantify over the possibly
exponential number of states.

We consider the function CTL-MC, given in pseudo-code in Algorithm 9.1, which takes as
input the Kripke structureM in form of its representation (ϕR, α0), a state α inM, a
CTL formula Φ and the recurrence diameter rd(M) ofM (in unary), and outputs 1 if
and only if α makes Φ true. The algorithm only needs to check for paths of length at
most m = rd(M) in the case of the U operator, because any path longer than m must
cycle. Note that in this algorithm, we omit the case for the operator F, as any CTL
formula ∃FΦ is equivalent to ∃>UΦ. It is readily verified that this algorithm correctly
computes whetherM, α |= Φ. Therefore,M |= Φ if and only if CTL-MC(M, α0, Φ, m)
returns 1, where m is the unary encoding of rd(M).

It remains to verify that the algorithm CTL-MC can be implemented in fpt-time by an
f(k)-alternating ATM M. We can construct M in such a way that the existential guesses
are done using the existential non-deterministic states of M, and the universal guesses by
the universal non-deterministic states. Note that the recursive call in the case for ¬Φ1 is
preceded by a negation, so the existential and universal non-determinism swaps within
this recursive call. The recursion depth of the algorithm is bounded by |Φ| = k, since
each recursive call strictly decreases the size of the CTL formula used. Moreover, in
each call of the function CTL-MC, at most two recursive calls are made (not counting
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Algorithm 9.1: Recursive CTL model checking using bounded alternation.
1 function CTL-MC(M, α, Φ, m):
2 switch Φ do
3 case p ∈ P : return α(p) ;
4 case ¬Φ1 : return not CTL-MC(M, α, Φ1, m) ;
5 case Φ1 ∧ Φ2 : return CTL-MC(M, α, Φ1, m) and CTL-MC(M, α, Φ2,

m) ;
6 case ∃XΦ1 :
7 (existentially) pick a state α′ inM ; /* guess next state */
8 if ϕR(α, α′) is false then return 0 ; /* check transition */
9 return CTL-MC(M, α′, Φ1, m) ; /* recurse */

10 end
11 case ∃Φ1UΦ2 :
12 (existentially) pick some m′ ≤ m ; /* guess path length */
13 (existentially) pick states α1, . . . , αm′ inM ; /* guess path */
14 (universally) pick some j ∈ [m′ − 1] ; /* cover all states */
15 if ϕR(αj , αj+1) is false then return 0 ; /* check transition */
16 if CTL-MC(M, αj, Φ1, m) = 0 then return 0 ; /* recurse */
17 return CTL-MC(M, αm′, Φ2, m) ; /* recurse */

18 end
19 endsw
20 end

recursive calls at deeper levels of recursion). Therefore, the running time of M is bounded
by 2kpoly(n), where n is the input size. Also, since in each call of the function at most
two alternations between existential and universal non-determinism are used (again, not
counting at deeper levels of recursion), we know that M is 2k-alternating. (This bound
on the number of alternations needed can be improved with a more careful analysis and
some optimizations to the algorithm.)

Finally, we complete the parameterized complexity classification of the problem
Symbolic-MC? by showing membership in PH(level) for the case of CTL?\U,X.

Theorem 104. Symbolic-MC?[CTL?\U,X] is PH(level)-complete.

Proof. Hardness for PH(level) follows from Theorem 103. We show membership in
PH(level), by describing an algorithm A to solve the problem that can be implemented
by an ATM M that runs in fpt-time and that is f(k)-alternating. The algorithm works
similarly to Algorithm 9.1, described in the proof of Theorem 103, and recursively decides
the truth of a CTL? formula in a state. The difference with Algorithm 9.1 is that it does
not look only at the outermost temporal operators of the CTL? formula in a recursive
step, but considers possibly larger subformulas in each recursive step. Let ∃ϕ be a

199



9. Model Checking for Temporal Logics

CTL? formula, and let s be a state inM. The algorithm A then considers all maximal
subformulas ψ1, . . . , ψ` of ϕ that are CTL? state formulas as atomic propositions p1, . . . , p`,
turning the formula ϕ into an LTL formula. Since ϕ does not contain the operators U and
X, we know that in order to check the existence of an infinite path satisfying ϕ, it suffices
to look for lasso-shaped paths of bounded length (linear in rd(M) and exponential in
the size of ϕ), i.e., a finite path followed by a finite cycle [138]. The algorithm A then
uses (existential) non-determinism to guess such a lasso-shaped path π, and to guess
for each state which of the propositions p1, . . . , p` are true, and verifies that π witnesses
truth of ∃ϕ. Then, in order to ensure that it correctly determines whether ∃ϕ is true,
the algorithm needs to verify that it guessed the right truth values for p1, . . . , p` in π.
It does so by recursively determining, for each state s′ in the lasso-shaped path π, and
each pi, whether ψi is true in s′ if and only if it guessed pi to be true in s′. (In order
to ensure that in each level of recursion there are only a constant number of recursive
calls, like Algorithm 9.1, the algorithm A uses universal non-determinism iterate over
each pi and each s′.) The algorithm then reports that ∃ϕ is true in s if and only if (1)
the guesses for π and the truth values of p1, . . . , p` together form a correct witness for
truth of ∃ϕ, and (2) for each pi and each s′ it holds that pi was guessed to be true in s′
if and only if ψi is in fact true in s′. The recursive cases for CTL? formulas where the
outermost operator is not temporal are analogous to Algorithm 9.1. Like Algorithm 9.1,
the algorithm runs in fpt-time and is 2k-alternating.

Notes
The results in this chapter appeared in a paper in the proceedings of KR 2016 [114].
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CHAPTER 10
Problems Related to

Propositional Satisfiability

In this chapter, we continue the parameterized complexity investigation of problems at
higher levels of the Polynomial Hierarchy using the parameterized complexity tools that
we developed in Chapters 4–7. We look at several parameterized variants of problems
related to propositional satisfiability.

In particular, we consider several parameterized variants of the problems of minimizing
implicants of DNF formulas and minimizing DNF formulas. Moreover, we consider two
parameterized problems related to finding inconsistent subsets of propositional knowledge
bases and identifying subsets of propositional knowledge bases whose deletion restores
consistency of the knowledge base.

Outline of this chapter We begin in Section 10.1 by considering several parame-
terizations of minimization problems related to DNF formulas and implicants of DNF
formulas. We firstly consider the problem of deciding, given a DNF formula ϕ and an
implicant C of ϕ, whether there exists an implicant C ′ ⊆ C whose size is at most a
given upper bound. We consider this problem parameterized (1) by the size of the given
implicant, (2) by the upper bound, and (3) by the difference between the size of the
given implicant and the given upper bound. For the first parameterization, we show that
the problem is para-co-NP-complete, and for the latter two, we show that the problem is
Σp

2 [k∗]-complete.

Then, we consider the problem of deciding, given a DNF formula ϕ, whether there exists
an equivalent subformula of ϕ whose size is at most a given upper bound. As parameters,
we consider (1) the given upper bound and (2) the difference between the size of ϕ and
the given upper bound. For the first parameter, we show membership in Σp

2 [k∗] and in
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10. Problems Related to Propositional Satisfiability

FPTNP[few], and we show hardness for para-co-NP. For the second parameter, we show
Σp

2 [k∗]-completeness.

Finally, in Section 10.2, we investigate two parameterized problems related to finding
inconsistent subsets of sets of propositional formulas, and finding subsets that can be
deleted to repair the inconsistency. Firstly, we consider the problem of deciding, given a
set Φ of propopositional formulas, whether the minimum size of any inconsistent subset
of Φ is both odd and bounded by a given upper bound k. The parameter in this problem
is the upper bound k. We show that this problem is Σp

2 [k∗]-complete. For the other
problem that we consider, one is given a set Φ of propositional formulas, and the task
is to compute a subset Φ′ ⊆ Φ of minimum size (smaller than a given upper bound)
such that Φ\Φ′ is satisfiable, if such a set exists. The parameter is the upper bound
on the subsets Φ′. We show that this problem can be solved in fpt-time using O(k)
witness SAT oracle queries. Moreover, we show that a decision variant of this problem is
FPTNP[few]-complete.

10.1 Minimization of DNF Formulas and Implicants

In this section, we analyze the parameterized complexity of various problems related to
minimizing DNF formulas and implicants of DNF formulas.

10.1.1 Minimizing Implicants

We begin with the problems related to minimizing implicants of DNF formulas. Let ϕ be
a DNF formula. We say that a set C of literals is an implicant of ϕ if all assignments
that satisfy

∧
l∈C l also satisfy ϕ.

The following decision problem—that is related to the question of whether a given
implicant of a DNF formula can be reduced in size—is Σp

2-complete [189].

Shortest-Implicant-Core
Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer m.
Question: Does there exist an implicant C ′ ⊆ C of ϕ of size m?

We consider three parameterizations of this problem:

• Shortest-Implicant-Core(implicant size), where the parameter k = n is the
size of the given implicant;

• Shortest-Implicant-Core(core size), where the parameter k = m is the size of
the minimized implicant; and

• Shortest-Implicant-Core(reduction size), where the parameter k = n −m is
the difference in size between the original implicant and the minimized implicant.
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We firstly show that the first parameterized problem admits an fpt-reduction to SAT.
Concretely, we show that the problem is para-co-NP-complete.

Proposition 105. Shortest-Implicant-Core(implicant size) is para-co-NP-
complete.

Proof. To show para-co-NP-hardness, we give a polynomial-time reduction from UNSAT
to the slice of Shortest-Implicant-Core(implicant size) for the parameter value 1.
Let ϕ be an instance of UNSAT consisting of a CNF formula. Let x 6∈ Var(ϕ)
be a fresh variable. We construct an instance (ψ, {x}) of Shortest-Implicant-
Core(implicant size) as follows. We let ψ = (¬ϕ ∨ x). We know that there is ex-
actly one C ′ ( C, namely C ′ = ∅. It is straightforward to verify that ∅ is an implicant
of ψ if and only if ¬ϕ is valid, or equivalently, if and only if ϕ is unsatisfiable.

To show para-co-NP-membership, we give an fpt-reduction from Shortest-Implicant-
Core(implicant size) to UNSAT. Let (ψ,C) be an instance of Shortest-Implicant-
Core(implicant size). For each D ( C, we let ψD be a copy of ψ where each x ∈ Var(ψ)
is replaced by a copy xD of x. Furthermore, for each D ( C, we define the set σ(D) =
{xD : x ∈ C ′ } containing a copy xD for each x ∈ C ′. We construct an instance ϕ
of UNSAT by letting ϕ =

∧
D(C(

∧
σ(D) ∧ ¬ψC′). Clearly, ϕ can be constructed in

time 2k · ||ψ||. It is straightforward to verify that ϕ is satisfiable if and only if no D ( C
is an implicant of ψ.

Next, we analyze the parameterized complexity of the problem Shortest-Implicant-
Core(core size). We show that the problem is Σp

2 [k∗]-complete. In order to prove Σp
2 [k∗]-

hardness of Shortest-Implicant-Core(core size), we need the following technical
lemma. We omit its straightforward proof.

Lemma 106. Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat. In polynomial time, we can

construct an equivalent instance (ϕ′, k) of Σp
2 [k∗]-WSat with ϕ′ = ∃X.∀Y.ψ, such that

for every assignment α : X → B that has weight m 6= k, it holds that ∀Y.ψ[α] is true.

We are now in a position to show Σp
2 [k∗]-completeness for the problem Shortest-

Implicant-Core(core size).

Proposition 107. Shortest-Implicant-Core(core size) is Σp
2 [k∗]-complete.

Proof (sketch). To show hardness, we give an fpt-reduction from Σp
2 [k∗]-WSat(DNF)

to Shortest-Implicant-Core(core size). Intuitively, the choice for some C ′ ⊆ C
with |C ′| = k corresponds directly to the choice of some assignment α : X → B of
weight k. Both involve a choice between

(n
k

)
candidates, and in both cases verifying

whether the chosen candidate witnesses that the instance is a yes-instance involves solving
a co-NP-complete problem. Any implicant C ′ forces those variables x that are included
in C ′ to be set to true (and the other variables are not forced to take any truth value).
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However, by Lemma 106, any assignment that sets more than k variables x to true will
trivially satisfy ψ. Therefore, the only relevant assignment is the assignment that sets
only those x to true that are forced to be true by some C ′ of length k, and hence the
choice for such a C ′ corresponds exactly to the choice for some assignment α of weight k.
To verify whether some C ′ of length k is an implicant of the formula ϕ is equivalent to
checking whether the formula

∧
c∈C′ c∧ϕ is valid, which in turn is equivalent to checking

whether a formula ∀Y.ψ[α] is true, for some assignment α.

Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat(DNF), with ϕ = ∃X.∀Y.ψ. By Lemma 106, we

may assume without loss of generality that for any assignment α : X → B of weight m 6=
k, ∀Y.ψ[α] is true. We may also assume without loss of generality that |X| > k; if this were
not the case, (ϕ, k) would trivially be a no-instance. We construct an instance (ϕ′, C, k)
of Shortest-Implicant-Core(core size) by letting Var(ϕ′) = X ∪ Y , C =

∧
x∈X x,

and ϕ′ = ψ. Clearly, ϕ′ is a Boolean formula in DNF. Also, consider the assignment α :
X → B where α(x) = 1 for all x ∈ X. We know that ∀Y.ψ[α] is true, since α has weight
more than k. Therefore C is an implicant of ϕ′. We omit a detailed proof of correctness
for this reduction.

To show membership in Σp
2 [k∗], we give an fpt-reduction from Shortest-Implicant-

Core(core size) to Σp
2 [k∗]-WSat. This reduction uses exactly the same similarity be-

tween the two problems, i.e., the fact that assignments of weight k correspond exactly to
implicants of length k, and that verifying whether this choice witnesses that the instance
is a yes-instance in both cases involves checking validity of a propositional formula.
We describe the reduction, and omit a detailed proof of correctness. Let (ϕ,C, k)
be an instance of Shortest-Implicant-Core(core size), where C = {c1, . . . , cn}.
We construct an instance (ϕ′, k) of Σp

2 [k∗]-WSat, where ϕ′ = ∃X.∀Y.ψ, by defin-
ing X = {x1, . . . , xn}, Y = Var(ϕ), ψ = ψX,Ycorr → ϕ, and ψX,Ycorr =

∧
i∈[n](xi → ci).

Finally, we show Σp
2 [k∗]-completeness for Shortest-Implicant-Core(reduction size).

Proposition 108. Shortest-Implicant-Core(reduction size) is Σp
2 [k∗]-complete.

Proof (sketch). As an auxiliary problem, we consider the parameterized problem Σp
2 [k∗]-

WSatn−k, which is a variant of Σp
2 [k∗]-WSat. Given an input consisting of a QBF ϕ =

∃X.∀Y.ψ with |X| = n and an integer k, the problem is to decide whether there exists
an assignment α to X with weight n− k such that ∀Y.ψ[α] is true. The parameter for
this problem is k. We claim that this problem has the following properties. We omit the
straightforward proof of these claims.

Claim 1. Σp
2 [k∗]-WSatn−k is Σp

2 [k∗]-complete.

Claim 2. Let (ϕ, k) be an instance of Σp
2 [k∗]-WSatn−k. In polynomial time, we can

construct an equivalent instance (ϕ′, k) of Σp
2 [k∗]-WSatn−k with ϕ′ = ∃X.∀Y.ψ, such

that for any assignment α : X → B that has weight m 6= (|X| − k), it holds that ∀Y.ψ[α]
is true.
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Using these claims, both membership and hardness for Σp
2 [k∗] follow straightforwardly

using arguments similar to the Σp
2 [k∗]-completeness proof of Shortest-Implicant-

Core(core size). The fpt-reductions in the proof of Proposition 107 show that Shortest-
Implicant-Core(reduction size) fpt-reduces to and from Σp

2 [k∗]-WSatn−k.

10.1.2 Minimizing DNF Formulas

Next, we turn our attention to the problems related to minimizing DNF formulas.

The following decision problem—that is related to the question of whether a given DNF
can be reduced in size—is Σp

2-complete [189]. We say that a DNF formula ϕ is a term-wise
subformula of another DNF formula ϕ′ if for all terms t ∈ ϕ there exists a term t′ ∈ ϕ′
such that t ⊆ t′.

DNF-Minimization
Instance: A DNF formula ϕ of size n, and an integer m.
Question: Does there exist a term-wise subformula ϕ′ of ϕ of size m such that ϕ ≡
ϕ′?

We consider two parameterizations of this problem:

• DNF-Minimization(reduction size), where the parameter k = n −m is the dif-
ference in size between the original formula ϕ and the minimized formula ϕ′;
and

• DNF-Minimization(core size), where the parameter k = m is the size of the
minimized formula ϕ′.

We firstly show that the problem DNF-Minimization(reduction size) is Σp
2 [k∗]-complete.

Proposition 109. DNF-Minimization(reduction size) is Σp
2 [k∗]-complete.

Proof (sketch). To show Σp
2 [k∗]-hardness, we use the reduction from the literature that

is used to show Σp
2-hardness for DNF-Minimization. The polynomial-time reduction

from Shortest-Implicant-Core to DNF-Minimization given by Umans [189, Theo-
rem 2.2] is an fpt-reduction from Shortest-Implicant-Core(reduction size) to DNF-
Minimization(reduction size).

To show membership in Σp
2 [k∗], we describe an algorithm A that solves the problem

and that can be implemented by an Σp
2 [k∗]-machine. Let (ϕ, k) be an instance of DNF-

Minimization(reduction size). The algorithm A firstly guesses k literal occurrences
in ϕ that are to be removed, resulting in the DNF formula ϕ′. This can be done in
the existential phase using f(k) logn non-deterministic steps. Then, in the universal
phase, the algorithm A verifies that ϕ ≡ ϕ′. This can be done using polynomially many
non-deterministic steps.
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We then turn to analyzing the parameterized complexity of DNF-
Minimization(core size). We begin with an easy lower bound.

Proposition 110. DNF-Minimization(core size) is para-co-NP-hard.

Proof. We show that the slice of DNF-Minimization(core size) for the parameter value 2
is co-NP-hard, by giving a polynomial time reduction from UNSAT. Let ψ be an instance
of UNSAT. Assume without loss of generality that ψ is in CNF. We construct an
instance (ϕ, 2) of DNF-Minimization(core size) by letting ϕ = ¬ψ ∨ (x1 ∧ x2 ∧ x3), for
fresh variables x1, x2, x3 6∈ Var(ψ). We show that ψ is unsatisfiable if and only there
exists a DNF formula ϕ′ of size 2 that is equivalent to ϕ.

(⇒) Assume that ψ is unsatisfiable. Then ¬ψ is valid, and therefore so is ϕ. Let y ∈ Var(ψ)
be some variable that occurs both positively and negatively in ψ. Then ϕ′ = y ∨ ¬y is a
DNF formula of size 2 that is equivalent to ϕ.

(⇐) Assume that ψ is satisfiable. Then there exists an assignment α : Var(ψ)→ B such
that ψ[α] = 1. Then the variables x1, x2, x3 are all relevant in ϕ. The assignment α1 =
α ∪ {x2 7→ 1, x3 7→ 1} witnesses that x1 is relevant in ϕ, for instance. Therefore, by
Lemma 112, any DNF formula equivalent to ϕ must contain all variables x1, x2, x3, and
thus must be of size at least 3.

Next, we give an upper bound on the complexity of DNF-Minimization(core size), by
showing Σp

2 [k∗]-membership.

Proposition 111. DNF-Minimization(core size) is in Σp
2 [k∗].

Proof. We give an fpt-reduction to Σp
2 [k∗]-WSat. Let (ϕ, k) be an instance of DNF-

Minimization(core size), where ϕ is a DNF formula. Let X = Var(ϕ). We construct
an instance (ϕ′, k′) of Σp

2 [k∗]-WSat as follows. We introduce the set Y = {yi,x : i ∈
[k], x ∈ X } of variables. Intuitively, the variables yi,x represent a choice of (at most) k
variables x ∈ X to be used in the minimized DNF formula. Let ψ1, . . . , ψb be an
enumeration of all possible DNF formulas of size ≤ k on the (fresh) variables z1, . . . , zk.
By straightforward counting, we know that b ≤ f(k), for some function f = 2O(k log k).
Moreover, for each j ∈ [b], let ψj = tj,1 ∨ · · · ∨ tj,wj , and for each ` ∈ [wj ], let tj,` =
lj,`,1 ∧ · · · ∧ lj,`,vj,` . We introduce another set U = {uj : j ∈ [b] } of variables. Intuitively,
these variables will be used to select the shape ψj of the minimized DNF formula. We
then perform our construction by letting ϕ′ = ∃Y.∃U.∀X.ϕ′′, where ϕ′′ = ϕYproper ∧ϕUone ∧∧
j∈[b](uj → (ϕ↔

∨
`∈[wj ] ϕ

j,`
sat)). Here, the formula ϕYproper ensures that for each i ∈ [k]

there is exactly one xi ∈ X such that yi,xi is true, and that the xi are all distinct.
It consists of clauses

∨
x∈X yi,x, (¬yi,x ∨ ¬yi′,x) and (¬yi,x ∨ ¬yi,x′), for each i, i′ ∈ [k]

with i < i′ and each x, x′ ∈ X such that x 6= x′. The formula ϕUone ensures there is exactly
one j ∈ [b] such that uj is true, and consists of the clause

∨
j∈[b] uj and clauses (¬uj∨¬uj′)

for each j, j′ ∈ [u] with j < j′. For each j ∈ [b], the assignment to the variables in Y
represents a DNF formula χj that is obtained by taking the ψj and replacing each zi
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in ψj by the unique xi for which yi,xi is true. Next, the formulas ϕj,`sat =
∧
t∈[vj,`] ϕ

j,`,t
sat

encode whether the `-th term of χj is satisfied by the assignment to the variables
in X. For this, we let ϕj,`,t =

∧
x∈X(ym,x → x) if lj,`,t = zm for some m ∈ [k],

and we let ϕj,`,t =
∧
x∈X(ym,x → ¬x) if lj,`,t = ¬zm for some m ∈ [k]. Finally, we

let k′ = k + 1. We show that (ϕ, k) ∈ DNF-Minimization(core size) if and only
if (ϕ′, k′) ∈ Σp

2 [k∗]-WSat.

(⇒) Assume that there exists a DNF χ of size ≤ k such that ϕ ≡ χ. By Lemma 112, we
may assume without loss of generality that Var(χ) ⊆ Var(ϕ). Then clearly there exists
some DNF formula ψj over the variables z1, . . . , zk and some distinct variables x1, . . . , xk ∈
X such that χ = ψj [z1 7→ x1, . . . , zk 7→ xk]. We construct the assignment α : Y ∪ U → B
of weight k′ as follows. We let α(yi,x) = 1 if and only if x = xi, and we let α(uj′) = 1 if
and only if j′ = j.

It is straightforward to verify that α satisfies the formulas ϕYproper and ϕUone. We show
that ∀X.(

∧
j∈[b](uj → (ϕ ↔

∨
`∈[wj ] ϕ

j,`
sat)))[α] is true. Let β : X → B be an arbitrary

truth assignment. Clearly, for each j′ ∈ [u] such that j′ 6= j, the implication is satisfied,
because α(uj′) = 0. We show that (ϕ↔

∨
`∈[wj ] ϕ

j,`
sat)[α ∪ β] is true. If ϕ[β] is true, then

since χ ≡ ϕ, we know that some term tj,`[z1 7→ x1, . . . , zk 7→ xk] of χ is satisfied. It is
straightforward to verify that ϕj,`sat is satisfied then as well. Conversely, if ϕ[β] is not true,
then an analogous argument shows that for no ` ∈ [wj ] the formula ϕj,`sat is satisfied. This
concludes our proof that (ϕ′, k′) ∈ Σp

2 [k∗]-WSat.

(⇐) Assume that there exists some assignment α : Y ∪U → B of weight k such that ∀X.ϕ′′
is true. Clearly, for each i ∈ [k], α there must be exactly one xi ∈ X such that α sets yi,xi
to true, and there must be exactly one j ∈ [b] such that α sets uj to true, since otherwise
the formulas ϕYproper and ϕUone would not be satisfied. Consider the formula χ that
is obtained from ψj by replacing the variables z1, . . . , zk by the variables x1, . . . , xk,
respectively. We know that the size of χ is at most k. We show that ϕ ≡ χ.

Let β : X → B be an arbitrary truth assignment. We show that ϕ[β] = χ[β].
Since α(uj) = 1, we know that α ∪ β must satisfy the formula (ϕ ↔

∨
`∈[wj ] ϕ

j,`
sat).

Assume that β satisfies χ, i.e., β satisfies some term tj,`[z1 7→ x1, . . . , zk 7→ xk] of χ. It is
straightforward to verify that then ϕj,`sat[α ∪ β] is true. Then also ϕ[α ∪ β] = ϕ[β] is true.
Conversely, assume that β satisfies ϕ. Then we know that

∨
`∈[wj ] ϕ

j,`
sat[α ∪ β] is true, i.e.,

there exists some ` ∈ [wj ] such that ϕj,`sat[α ∪ β] is true. It is then straightforward to
verify that the term tj,`[z1 7→ x1, . . . , zk 7→ xk] is satisfied by β. This concludes our proof
that (ϕ, k) ∈ DNF-Minimization(core size).

Finally, we show that the problem DNF-Minimization(core size) is in FPTNP[few]. In
particular, we show that it can be solved with an fpt-algorithm that uses at most dlog2 ke+
1 queries to a SAT oracle. Moreover, this algorithm works even for the case where
equivalent DNF formulas that are not term-wise subformulas of ϕ are also accepted.
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In order to show this, we will consider the notion of relevant variables, and establish
several lemmas that help us to describe and analyze the algorithm. Let ϕ be a DNF
formula and let x ∈ Var(ϕ) be a variable occurring in ϕ. We call x relevant in ϕ if there
exists some assignment α : Var(ϕ)\{x} → B such that ϕ[α ∪ {x 7→ 0}] 6= ϕ[α ∪ {x 7→ 1}].

We begin with the following lemma, that we state without proof.

Lemma 112. Let ϕ be a DNF formula and let ϕ′ be a DNF formula of minimal size
that it is equivalent to ϕ. Then for every variable x ∈ Var(ϕ) it holds that x ∈ Var(ϕ′) if
and only if x is relevant in ϕ.

Proof. Assume that x ∈ Var(ϕ) is relevant in ϕ. We show that x ∈ Var(ϕ′). Let X =
Var(ϕ) ∪Var(ϕ′). Then there exists some assignment α : X\{x} → B such that ϕ[α1] 6=
ϕ[α2], where α1 = α ∪ {x 7→ 0} and α2 = α ∪ {x 7→ 1}. Assume that x 6∈ Var(ϕ′).
Then ϕ′[α1] = ϕ′[α2] because ϕ1 and ϕ2 coincide on Var(ϕ′). This is a contradiction
with the assumption that ϕ and ϕ′ are equivalent. Therefore, x ∈ Var(ϕ′).

Conversely, assume that x ∈ Var(ϕ) is not relevant in ϕ. We show that x 6∈ Var(ϕ′). By
definition we know that for each assignment α : X\{x} → B it holds that ϕ[α1] = ϕ[α2],
where α1 = α ∪ {x 7→ 0} and α2 = α ∪ {x 7→ 1}. Assume that x ∈ Var(ϕ′). Then ϕ′

is equivalent to the DNF formula ϕ′[x 7→ 0], which is strictly smaller than ϕ′. This
contradicts minimality of ϕ′. Therefore, x 6∈ Var(ϕ′).

The algorithm for DNF-Minimization(core size) that we will construct below uses a
SAT oracle to answer the question of whether for a DNF formula ϕ there exist (at least)
some given number of variables that are relevant in ϕ. We show how to encode this
problem into SAT (in polynomial time).

Lemma 113. Given a DNF formula ϕ and a positive integer m (given in unary), deciding
whether there are at least m variables that are relevant in ϕ is in NP.

Proof. We describe a guess-and-check algorithm that decides the problem. The algorithm
first guesses m distinct variables occurring in ϕ, and for each guessed variable x the
algorithm guesses an assignment αx to the remaining variables Var(ϕ)\{x}. Then, the
algorithm verifies whether the guessed variables are really relevant by checking that,
under αx, assigning different values to x changes the outcome of the Boolean function
represented by ϕ, i.e., ϕ[αx ∪ {x 7→ 0}] 6= ϕ[αx ∪ {x 7→ 1}]. It is straightforward to
construct a SAT instance ψ that implements this guess-and-check procedure. Moreover,
from any assignment that satisfies ψ it is easy to extract the relevant variables.

Before we can show FPTNP[few]-membership for DNF-Minimization(core size), we
consider one more technical lemma.

Lemma 114. Let x1, . . . , xk be propositional variables. There are 2O(k log k) different
DNF formulas ψ over the variables x1, . . . , xk that are of size k.
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Proof. Each suitable DNF formula ψ = t1 ∨ · · · ∨ t` can be formed by writing down a
sequence σ = (l1, . . . , lk) of literals li over x1, . . . , xk, and splitting this sequence into
terms, i.e., choosing integers d1, . . . , d`+1 ∈ [k + 1] with d1 = 1 and d1 < · · · < d`+1 such
that ti = {ldi , . . . , ldi+1−1} for each i ∈ [`]. To see that there are 2O(k log k) formulas ψ, it
suffices to see that there are O(kk) sequences σ, and O(2k) choices for the integers di.

Algorithm 10.1: Solving the problem DNF-Minimization(core size) in fpt-time
using dlog ke+ 1 queries to a SAT oracle.
input : an instance (ϕ, k) of DNF-Minimization(core size)
output : YES iff (ϕ, k) ∈ DNF-Minimization(core size)

1 rvars ← ∅ ; // relevant variables in ϕ
2 i← 0; j ← k + 2 ; // bounds on # of rvars
3 while i+ 1 < j do // logarithmic search for the # of rvars
4 `← d(i+ j)/2e ;
5 check using SAT oracle if there are at least ` relevant variables in ϕ ;
6 if the SAT oracle returns a model M then
7 rvars← the ` relevant variables encoded by the model M ;
8 end
9 else break;

10 end
11 if |rvars| > k then
12 return “no” ; // too many rvars for any DNF of size ≤ k
13 else
14 foreach DNF formula ψ of size k over rvars do // 2O(k log k) of these
15 construct a formula ϕψ that is unsatisfiable iff ψ ≡ ϕ;

// the formulas ϕψ must be variable disjoint

16 end
17 query the SAT oracle whether

∧
ψ ϕψ is satisfiable ;

18 if the SAT oracle returns “yes” then
19 return “no” ; // no candidate ψ is equivalent to ϕ
20 else
21 return “yes” ; // some candidate ψ is equivalent to ϕ
22 end
23 end

Proposition 115. DNF-Minimization(core size) can be solved by an fpt-algorithm that
uses dlog ke+ 1 queries to a SAT oracle. Moreover, the first dlog ke queries to the oracle
are of size O(k2n2), and the last query is of size 2O(k log k) · n, where n is the input size.

Proof. The algorithm given in pseudo-code in Algorithm 10.1 solves the problem DNF-
Minimization(core size) in the required time bounds. By Lemma 112, we know that
any minimal equivalent formula of ϕ must contain all and only the variables that are
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relevant in ϕ. By Proposition 81, we may assume without loss of generality that the
SAT oracle is a witness oracle. The algorithm firstly determines how many variables
are relevant in ϕ. By Lemma 113, we know that this can be done with a binary search
using dlog ke SAT queries. If there are more than k relevant variables, the algorithm
rejects. Otherwise, the algorithm will have computed the set rvars of relevant variables.
Next, with a single oracle query, it checks whether there exists some equivalent DNF
formula ψ of size at most k over the variables in rvars. By Lemma 114, we know that
there are 2O(k log k) different DNF formulas ψ of size at most k over the variables in rvars.
Verifying whether a particular DNF formula ψ is equivalent to the original formula ϕ
can be done by checking whether the formula ϕψ = (ψ ∧ ¬ϕ) ∨ (¬ψ ∧ ϕ) is unsatisfiable.
Verifying whether there exists some suitable DNF formula ψ that is equivalent to ϕ can
be done by making variable-disjoint copies of all ϕψ and checking whether the conjunction
of these copies is unsatisfiable.

The algorithm used to show membership in FPTNP[few] can be modified straightforwardly
to return a DNF formula ψ of size at most k that is equivalent to an input ϕ if such a
formula ψ exists. The algorithm would need to search for this ψ that is equivalent to ϕ,
for which it would need an additional O(k log k) SAT queries.

Corollary 116. There is an algorithm A that (1) when given a DNF formula ϕ and a
positive integer k, computes a DNF formula ψ of size at most k such that ψ ≡ ϕ, if such
a ψ exists, and returns “none” otherwise, and (2) runs in time f(k)nc and queries a
witness SAT oracle at most O(k log k) times, for some computable function f and some
constant c, where n denotes the input size.

10.2 Inconsistency Repair
Finally, we analyze two parameterized problems that are related to the task of finding
inconsistent subsets of sets of propositional formulas, and the task of finding subsets that
can be deleted to repair the inconsistency. We begin with the following parameterized
problem, that is related to the former task.

Odd-Bounded-Inconsistent-Set
Instance: An inconsistent set Φ of propositional formulas, and a positive integer k.
Parameter: k.
Question: Is the minimum size of an inconsistent subset Φ′ of Φ both odd and at
most k?

We show that this problem is Σp
2 [k∗]-hard. In order to prove Σp

2 [k∗]-hardness, we need
the following technical lemma, that is similar to Lemma 106. We omit its straightforward
proof.

Lemma 117. Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat. In polynomial time, we can

construct an equivalent instance (ϕ′, k) of Σp
2 [k∗]-WSat with ϕ′ = ∃X.∀Y.ψ, such that

for every assignment α : X → B that has weight m 6= k, it holds that ∀Y.ψ[α] is false.
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Using this lemma, we can show the Σp
2 [k∗]-hardness result.

Proposition 118. Odd-Bounded-Inconsistent-Set is Σp
2 [k∗]-hard.

Proof. We show Σp
2 [k∗]-hardness by giving an fpt-reduction from Σp

2 [k∗]-WSat. Let (ϕ, k)
be an instance of Σp

2 [k∗]-WSat, where ϕ = ∃X.∀Y.ψ and X = {x1, . . . , xn}. By
Lemma 117, we may assume without loss of generality that for any truth assign-
ment α : X → B of weight m 6= k it holds that ∀Y.ψ[α] is false. We construct an
instance (Φ, k′) of Odd-Bounded-Inconsistent-Set as follows. We introduce fresh
variables z1, . . . , zn. We let k′ = 2k + 1 and:

Φ = {z1, . . . , zn, (z1 → x1), . . . , (zn → xn),¬ψ}.

We show that (ϕ, k) ∈ Σp
2 [k∗]-WSat if and only if (Φ, k′) ∈ Odd-Bounded-

Inconsistent-Set.

(⇒) Suppose that (ϕ, k) ∈ Σp
2 [k∗]-WSat. This means that there is some truth as-

signment α : X → B of weight k such that ∀Y.ψ[α] is true. Consider the following
set Φ′ ⊆ Φ:

Φ′ = {¬ψ} ∪ { zi, (zi → xi) : i ∈ [n], α(xi) = 1 }.
Since ∀Y.ψ[α] is true, we know that Φ′ is unsatisfiable. Moreover, since for all truth
assignments α′ : X → B of weight m < k it holds that ∀Y.ψ[α] is false, we can conclude
that there is no smaller set Φ′′ ⊆ Φ that is unsatisfiable. Then, since |Φ′| ≤ k′ and |Φ′| is
odd, we can conclude that (Φ, k′) ∈ Odd-Bounded-Inconsistent-Set.

(⇐) Conversely, suppose that (Φ, k′) ∈ Odd-Bounded-Inconsistent-Set. This means
that there is some subset Φ′ ⊆ Φ of odd size at most k that is unsatisfiable, and that there
is no unsatisfiable subset Φ′′ ⊆ Φ of smaller size. Clearly ¬ψ ∈ Φ′, since otherwise Φ′
would be satisfiable. Also, since Φ′ is an unsatisfiable subset of minimal size, we know
that for any i ∈ [n], it holds that zi ∈ Φ if and only if (zi → xi) ∈ Φ. Construct the
truth assignment α : X → B as follows. For each i ∈ [n], we let α(xi) = 1 if and only
if zi ∈ Φ. Then, because |Φ′| ≤ k′, we know that α has weight at most k. Moreover, since
for each α′ : X → B of weight m < k it holds that ∀Y.ψ[α] is false, we know that α must
be of weight exactly k. If this were not the case, Φ′ could not be unsatisfiable. Then, by
construction of α, we know that ∀Y.ψ[α] is true. Therefore, (ϕ, k) ∈ Σp

2 [k∗]-WSat.

Next, we consider a parameterized problem that is related to repairing inconsistencies
in a propositional knowledge base. Let Φ be a set of propositional formulas. We say
that a subset Φ′ ⊆ Φ is a repair set of Φ if Φ\Φ′ is consistent. We denote the minimum
size of any repair set of Φ by the minimum repair size of Φ. Now consider the following
parameterized decision problem.

Odd-Bounded-Repair-Set
Instance: A set Φ of propositional formulas, and a positive integer k.
Parameter: k.
Question: Is the minimum repair size of Φ both odd and at most k?
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We show that the problem can be solved in fpt-time using f(k) queries to a SAT oracle.

Proposition 119. Odd-Bounded-Repair-Set is FPTNP[few]-complete. Moreover,
FPTNP[few]-hardness holds even for the setting where all propositional formulas are
single clauses.

Proof. To show membership in FPTNP[few], we describe an algorithm A that solves
Odd-Bounded-Repair-Set, that runs in fpt-time, and that queries an NP oracle at
most k + 1 times, for some computable function f . Let (Φ, k) be an instance of Odd-
Bounded-Repair-Set. The following problem O is in NP:

O = { (Φ, `) : Φ is a set of propositional formulas,
there is some Φ′ ⊆ Φ such that Φ\Φ′ is satisfiable, and |Φ′| ≤ ` }.

Then, by querying an O oracle k + 1 times—namely using the queries (Φ, 0), (Φ, 1),
(Φ, 2), . . . , (Φ, k)—the algorithm A can determine the minimum repair size of Φ if it is
at most k—namely, the smallest ` such that (Φ, `) ∈ O. If (Φ, k) 6∈ O, the algorithm A
rejects the input. Otherwise, the algorithms A accepts the input (Φ, k) if and only if the
minimum repair size ` is odd. It is straightforward to verify that the algorithm correctly
decides whether (Φ, k) ∈ Odd-Bounded-Repair-Set, and runs in fpt-time.

Next, we show FPTNP[few]-hardness by giving an fpt-reduction from Odd-Local-
Max-Model. Let (ϕ,X) be an instance of Odd-Local-Max-Model, where X =
{x1, . . . , xk}. We may assume without loss of generality that ϕ is a CNF formula, i.e.,
that ϕ = c1 ∧ · · · ∧ cu, where each cj is a clause. If this were not the case, we could
transform ϕ to a CNF formula ϕ′ (such that for each assignment α to X, it holds that ϕ[α]
is satisfiable if and only if ϕ′[α] is satisfiable), using the standard Tseitin transformation
[187]. Moreover, we may assume without loss of generality that k is even.

We construct an instance (Φ, k) of Odd-Bounded-Repair-Set as follows. Let m = 2k.
We introduce the set Z = { zi,j : i ∈ [m], j ∈ [u] } of fresh variables. We let:

Φ = {x1, . . . , xk} ∪ { (cj ∨ zi,j), (cj ∨ zi,j) : i ∈ [m], j ∈ [u] }.

We show that (Φ, k) ∈ Odd-Bounded-Repair-Set if and only if (ϕ,X) ∈ Odd-Local-
Max-Model.

(⇒) Suppose that (Φ, k) ∈ Odd-Bounded-Repair-Set. This means that there is a
set Φ′ ⊆ Φ of odd size such that Φ\Φ′ is consistent, and for each Φ′′ ⊆ Φ with |Φ′′| < |Φ′|
it holds that Φ\Φ′′ is inconsistent. Since m > k, we know that Φ\Φ′ contains some
formulas of the form (cj ∨ zi,j) and of the form (cj ∨ zi,j), for each j ∈ [u]. Therefore,
we know that Φ\Φ′ |= ϕ. We show that Φ′ contains no formulas of the form (cj ∨ zi,j)
or of the form (cj ∨ zi,j). Suppose that this is not the case, i.e., that (cj ∨ zi,j) ∈ Φ′ for
some j ∈ [m]; the case for (cj∨zi,j) is entirely analogous. Then Φ′′ = Φ′\{(cj∨zi,j)} ( Φ′
has the property that Φ\Φ′′ is consistent. This is a contradiction, so we can conclude
that Φ′ contains no formulas of the form (cj ∨ zi,j) or of the form (cj ∨ zi,j). In other
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words, Φ′ = {xi1 , . . . , xiu}, for some i1, . . . , iu ∈ [k] with i1 < · · · < iu. Since Φ\Φ′ is
consistent, we know that there is a model of ϕ that sets exactly the variables in X\Φ′ to
true. Moreover, there is no model of ϕ that sets more variables in X to true. Since k is
even and |Φ′| is odd, we know that the X-maximal models of ϕ set an odd number of
variables in X to true. In other words, (ϕ,X) ∈ Odd-Local-Max-Model.

(⇐) Conversely, suppose that (ϕ,X) ∈ Odd-Local-Max-Model. This means that
the X-maximal models of ϕ set an odd number of variables in X to true. Let α be an
arbitrary X-maximal model of ϕ. Consider the set Φ′ ⊆ Φ that is defined as follows:

Φ′ = {xi : i ∈ [k], α(xi) = 0 }.

Clearly, Φ\Φ′ is consistent. We show that for any Φ′′ ⊆ Φ with |Φ′′| < |Φ′| it holds
that Φ\Φ′′ is inconsistent. Suppose that the contrary would be true, i.e., that there is
some Φ′′ ⊆ Φ with |Φ′′| < |Φ′| such that Φ\Φ′′ is consistent. Then, by construction of Φ,
there must be some model α′ of ϕ that sets all the variables in X ∩Φ′′ to true. Moreover,
it holds that |X ∩ Φ′′| < |X ∩ Φ′|, so α′ sets more variables in X to true than α. This
is a contradiction with the fact that α is an X-maximal model of ϕ. Therefore, we can
conclude that Φ′ is a repair set of Φ of minimum size. In other words, (Φ, k) ∈ Odd-
Bounded-Repair-Set.

The algorithm described in the membership part of the proof of Proposition 119 (when
given access to a witness SAT oracle) can directly be used to compute minimum size
repair sets of size at most k.

Corollary 120. There is an algorithm A that (1) when given a set Φ of propositional
formulas and a positive integer k, computes a minimum size repair set of Φ of size at
most k, if this exists, and returns “none” otherwise, and (2) runs in time f(k)nc and
queries a witness SAT oracle at most k times, for some computable function f and some
constant c, where n denotes the input size.

Moreover, we know that the number of SAT queries that any fpt-algorithm needs to make
for computing minimum size repair sets of size at most k must depend on the value of k.

Proposition 121. There is no algorithm A that (1) when given a set Φ of clauses and a
positive integer k, computes a minimum size repair set of Φ of size at most k, if this exists,
and returns “none” otherwise, and (2) runs in time f(k)nc and queries a witness SAT
oracle at most c times, for some computable function f and some constant c, where n
denotes the input size, unless the PH collapses.

Proof (sketch). Suppose that such an algorithm A exists. We can then show that the
problem Odd-Bounded-Repair-Set can be solved in fpt-time using O(1) decision SAT
oracle queries, using an argument similar to the one used in the proof of Proposition 81.
Then, by Proposition 76, we can conclude that the PH collapses.
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Finally, we show that computing minimum size repair sets of size at most k cannot be
done in fpt-time using a small number of queries to a decision SAT oracle.

Proposition 122. There is no algorithm A that (1) when given a set Φ of clauses and
a positive integer k, computes a minimum size repair set of Φ of size at most k, if this
exists, and returns “none” otherwise, and (2) runs in time f(k)nc and queries a decision
SAT oracle at most f(k) + O(logn) times, for some computable function f and some
constant c, where n denotes the input size, unless W[P] = FPT.

Proof. Suppose that a suitable algorithm A exists. We show that W[P] = FPT, by
providing an fpt-algorithm for the problem WSat(circ). Let (C, k) be an instance
of WSat(circ), where C is a Boolean circuit with input nodes X = {x1, . . . , xn}. We
may assume without loss of generality that for each truth assignment α : X → B of
weightm 6= k it holds that C[α] is false. If this were not the case, one can straightforwardly
transform C into a circuit C ′ that satisfies this property such that for each truth
assignment α : X → B of weight k it holds that C[α] = C ′[α].

We firstly transform C into a CNF formula ϕ that satisfies the property that for each
truth assignment α : X → B it holds that C[α] is true if and only if ϕ[α] is satisfiable.
This can be done straightforwardly using the standard Tseitin transformation [187].
Let c1, . . . , cu be the clauses of ϕ.

We then construct a set Φ of clauses as follows. Let m = 2k. We introduce the
set Z = { zi,j : i ∈ [m], j ∈ [u] } of fresh variables. Then we let:

Φ = {¬x1, . . . ,¬xn} ∪ { (cj ∨ zi,j), (cj ∨ zi,j) : i ∈ [m], j ∈ [u] }.

By using an argument that is similar to the one in the proof of Proposition 119, one can
show that repair sets Φ′ of Φ of size k are in a one-to-one correspondence with satisfying
assignments of C of weight k.

Next, we simulate the algorithm A with input (Φ, k), without querying the SAT oracle.
Instead, we iterate over all possible answers that the oracle gives. Since the oracle is
queried at most f(k)+O(logn) times, and the oracle gives binary answers (it is a decision
oracle), we know that there are at most 2f(k)nc possible sequences of answers, for some
constant c. For each such sequence b of answers, we simulate the algorithm A. If the
simulation of A on (Φ, k) using b returns “none”, we continue with the next sequence b′.
If the simulation returns some repair set Φ′ of size at most k, we do the following. Firstly,
we check whether |Φ′| = k and Φ′ ⊆ X. If this is not the case, we continue with next
sequence b′. If this is the case, we construct the truth assignment α : X → B of weight k
corresponding to Φ′. We then check whether C[α] is true. If this is the case, we know
that (C, k) ∈WSat(circ), and we are done. If this is not the case, we continue with
the next sequence b′.

Finally, if we iterated over all sequences b of answers for the oracle queries, and we did
not find a satisfying truth assignment for C of weight k, we can conclude that (C, k) 6∈
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WSat(circ). This is true because if it would be the case that (C, k) ∈ WSat(circ),
then there is some minimum size repair set Φ′ of Φ of size k (from which a suitable truth
assignment α can be constructed), and thus there is some sequence b of answers to the
oracle queries for which the simulation of A would have resulted in such a set Φ′. Since
we found no such set Φ′, we know that it cannot be the case that (C, k) ∈WSat(circ),
and we thus know that (C, k) 6∈WSat(circ).

It is readily verified that the algorithm to solve WSat(circ) runs in fixed-parameter
tractable time. Thus W[P] = FPT.

Notes
The results in Section 10.1 appeared in a paper in the proceedings of SAT 2014 [112].
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CHAPTER 11
Problems in Judgment

Aggregation

In this chapter, we investigate various parameterized variants of problems that arise in
the area of judgment aggregation in computational social choice—this is a continuation of
our parameterized complexity investigation of problems at higher levels of the Polynomial
Hierarchy using the parameterized complexity tools that we developed in Chapters 4–7.
In particular, we study the problem of agenda safety for the majority rule in judgment
aggregation, as well as the problem of computing outcomes for the Kemeny judgment
aggregation procedure.

Overview of this chapter We begin in Section 11.1 with introducing some basic
notions from the area of judgment aggregation. In particular, we introduce the two
judgment aggregation procedures that play a role in this chapter: the majority rule
and the Kemeny rule. Moreover, we introduce two formal frameworks that have been
used in the literature to study judgment aggregation: a formula-based framework and a
constraint-based framework.

Then, in Section 11.2, we investigate the parameterized complexity of the problem of
deciding whether an agenda is safe for the majority judgment aggregation rule. This
problem is Σp

2-complete in general. The parameterizations that we consider for this
problem range from simple syntactic parameters (such as the number of formulas in the
agenda or the maximum size of any formula in the agenda) to more intricate parameters
(such as the treewidth of several different graphs that capture the interaction between
formulas in the agenda). An overview of all parameterized variants that we consider,
together with the parameterized complexity results that we obtain, can be found in
Table 11.1.
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Parameter Complexity

maximum formula size (`) para-Πp
2-complete (Proposition 127)

maximum variable degree (d) para-Πp
2-complete (Proposition 127)

`+ d para-Πp
2-complete (Proposition 127)

agenda size in FPTNP[few], i.e., solvable in fpt-time with f(k)
SAT queries, where f(k) = 2O(k) (Proposition 128)
and f(k) = Ω(log k) (Proposition 131)

counterexample size Πp
2 [k∗]-hard (Proposition 137)

formula primal treewidth fixed-parameter tractable (Proposition 132)
clausal primal treewidth para-Πp

2-complete (Proposition 133)
formula incidence treewidth para-Πp

2-complete (Proposition 134)
clausal incidence treewidth para-Πp

2-complete (Proposition 135)

Table 11.1: Complexity results for the different parameterized variants of the agenda
safety problem for the majority rule.

Finally, in Section 11.3, we provide a parameterized complexity analysis of the problem of
computing an outcome for the Kemeny judgment aggregation procedure, a Θp

2-complete
problem. We study this problem both in the setting of formula-based and in the setting
of constraint-based judgment aggregation (these are two formal judgment aggregation
frameworks). We consider all possible combinations of a number of parameters, including
the number of issues in the agenda, the maximum size of formulas in the agenda,
and the number of individuals that are involved in the judgment aggregation scenario.
The parameterized complexity results that we obtain for the formula-based judgment
aggregation framework are summarized in Table 11.2, and the results for the constraint-
based framework are summarized in Table 11.3 (in both tables, a star denotes an arbitrary
choice for the subset).

Parameters parameterized complexity result

c, n,m in FPT (Proposition 140)
h, p in FPTNP[few] (Proposition 138)
n in FPTNP[few] (Proposition 139)

h, n,m, p FPTNP[few]-hard (Proposition 145)
c, h, n, p FPTNP[few]-hard (Proposition 146)
c, h,m, p FPTNP[few]-hard (Proposition 147)
c, h,m para-Θp

2-hard (Corollary 143)
c,m, p para-Θp

2-hard (Proposition 144)

Table 11.2: Parameterized complexity results for fb-Outcome-Kemeny.
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Parameters parameterized complexity result

c in FPT (Proposition 149)
n in FPT (Proposition 148)
h in XP (Proposition 150)
h, p W[SAT]-hard (Proposition 151)
p para-Θp

2-hard (Proposition 152)

Table 11.3: Parameterized complexity results for cb-Outcome-Kemeny.

11.1 Judgment Aggregation
Judgment aggregation studies how a group of individuals can make collective judgments
on a logically related set of issues, and is situated in the interdisciplinary field of
computational social choice [30]. Various issues that arise in the area of judgment
aggregation play a role in the following example, known as the discursive dilemma (or
doctrinal paradox). Suppose three friends want to go for a scenic run on the weekend,
and they are choosing the location for their run. None of them has access to a car, and
they only want to go to beautiful locations. Consequently, a location is suitable if and
only if (1) it is easily accessible by public transport or by bike and (2) it is beautiful.
Further, suppose the three friends have a possible location in mind, and they want to
reach a decision by a simple majority vote, and suppose that the results of the vote are
as in Figure 11.1.

easily accessible beautiful suitable
friend 1 no yes no
friend 2 yes no no
friend 3 yes yes yes
majority yes yes no

Figure 11.1: The outcome of the majority vote by the three friends.

Clearly, the majority outcome of the vote is not consistent with the friends’ definition of a
suitable location for their run. The group opinion is that the location is easily accessible
by public transport or bike and that it is beautiful, but that the location is not suitable.

Judgment aggregation offers various ways around this awkward situation. A first way of
avoiding this dilemma is to identify the settings in which such an inconsistent majority
outcome could possibly occur, and to use majority vote only in cases where this is
guaranteed not to happen. This is known as agenda safety (for the majority rule)—a set
of logically connected issues, or an agenda, is called safe if for no possible way of casting
votes, the outcome of a majority vote results in an inconsistent group opinion.

A second method of solving the issue of the doctrinal paradox is to use a different
way of forming a group opinion than the simple majority vote. There are plenty of
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judgment aggregation procedures that guarantee a logically consistent collective opinion,
for every possible combination of individual opinions. One of the best-known judgment
aggregation procedures that ensures a consistent outcome is the Kemeny rule. This
procedure selects those consistent opinions that minimize the cumulative distance to the
individual opinions—here every yes-no disagreement adds 1 to the distance (for more
details, see Sections 11.1.1 and 11.1.2). That is, the Kemeny rule might appoint multiple
candidates for a group opinion, and to decide between them an additional tie-breaking
mechanism would be needed.

In the remainder of this chapter, we study the parameterized complexity of various
problems related to deciding the safety of an agenda, and to computing outcomes for
the Kemeny judgment aggregation procedure. Before we are ready to do this, we need
to introduce two formal frameworks for modeling the setting of judgment aggregation:
the framework of formula-based judgment aggregation (as used by, e.g., [62, 73, 75, 104,
141, 147, 148]) and the framework of constraint-based judgment aggregation (as used by,
e.g., [102, 103]). We describe these two frameworks in the following sections.

11.1.1 Formula-Based Judgment Aggregation

We begin with explaining the framework of formula-based judgment aggregation. For
more details, we refer to textbooks and overview articles on the topic [30, 104, 147, 148].

In this framework, a set of logically related issues is modeled by an agenda. An agenda is
a finite, nonempty set Φ of formulas that does not contain any doubly-negated formulas
and that is closed under complementation, i.e., Φ = {ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn}, where
for each i ∈ [n], the formula ϕi does not have negation as its outermost logical connective.
Moreover, if Φ = {ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn} is an agenda, then we let [Φ] = {ϕ1, . . . , ϕn}
denote the pre-agenda associated to the agenda Φ. We denote the bitsize of the agenda Φ
by ||Φ|| =

∑
ϕ∈Φ |ϕ|.

(Individual and group) opinions are modeled by judgment sets. A judgment set J for an
agenda Φ is a subset J ⊆ Φ. We call a judgment set J complete if for each ϕ ∈ [Φ] it
holds that ϕ ∈ J or ¬ϕ ∈ J ; and we call it consistent if there exists a truth assignment
that makes all formulas in J true. It is natural to require that every feasible (individual
or group) opinion is consistent.

We associate with each agenda Φ an integrity constraint Γ, that can be used to further
restrict the set of feasible opinions. Such an integrity constraint consists of a single
propositional formula. In the remainder of the paper, if no integrity constraint is specified,
we implicitly assume that Γ = >. We say that a judgment set J is Γ-consistent if there
exists a truth assignment that simultaneously makes all formulas in J and Γ true.
Let J (Φ,Γ) denote the set of all complete and Γ-consistent subsets of Φ. We say that
finite sequences J ∈ J (Φ,Γ)+ of complete and Γ-consistent judgment sets are profiles,
and where convenient we equate a profile J = (J1, . . . , Jp) with the multiset {J1, . . . , Jp}.1

1By a slight abuse of notation, we use the same brackets for sets and multisets.
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A judgment aggregation procedure (or rule) for the agenda Φ and the integrity constraint Γ
is a function F that takes as input a profile J ∈ J (Φ,Γ)+, and that produces a non-empty
set of non-empty judgment sets, i.e., it produces an element in 22Φ\{∅}\{∅}. We call a
judgment aggregation procedure F resolute if for any profile J it returns a singleton,
i.e., |F (J)| = 1; otherwise, we call F irresolute.

An example of a resolute judgment aggregation procedure is the majority rule Majority,
where Majority(J) = {J∗} and where ϕ ∈ J∗ if and only if ϕ occurs in the majority
of judgment sets in J , for all ϕ ∈ [Φ] (in case of a tie between ϕ and ¬ϕ, for ϕ ∈ [Φ],
we arbitrarily let ϕ ∈ J∗). We call a judgment aggregation procedure F complete and
Γ-consistent, if J is complete and Γ-consistent, respectively, for every J ∈ J (Φ,Γ)+ and
every J ∈ F (J).

As we have seen earlier in Section 11.1, the procedure Majority is not consistent.
Consider the agenda Φ with [Φ] = {p, q, p ∧ q}, and the profile J = (J1, J2, J3),
where J1 = {¬p, q,¬(p ∧ q)}, J2 = {p,¬q,¬(p ∧ q)}, and J3 = {p, q, (p ∧ q)}. The
unique outcome {p, q,¬(p ∧ q)} in Majority(J) is inconsistent.

The Kemeny judgment aggregation procedure is based on a notion of distance. This
distance is based on the Hamming distance d(J, J ′) = |{ϕ ∈ [Φ] : ϕ ∈ (J \J ′)∪ (J ′ \J) }|
between two complete judgment sets J, J ′. Intuitively, the Hamming distance d(J, J ′)
counts the number of issues on which two judgment sets disagree. Let J be a single
Γ-consistent and complete judgment set, and let (J1, . . . , Jp) = J ∈ J (Φ,Γ)+ be a profile.
We define the distance between J and J to be Dist(J,J) =

∑
i∈[p] d(J, Ji). Then, we

let the outcome KemenyΦ,Γ(J) of the Kemeny rule be the set of those J∗ ∈ J (Φ,Γ) for
which there is no J ∈ J (Φ,Γ) such that Dist(J,J) < Dist(J∗,J). If Φ and Γ are clear
from the context, we often write Kemeny(J) to denote KemenyΦ,Γ(J). Intuitively, the
Kemeny rule selects those complete and Γ-consistent judgment sets that minimize the
cumulative Hamming distance to the judgment sets in the profile. The Kemeny rule is
irresolute, complete and Γ-consistent.

11.1.2 Constraint-Based Judgment Aggregation

We continue with explaining the framework of constraint-based judgment aggregation.
For more details, we refer to the work of Grandi and Endriss [102, 103].

In this framework, a set of logically related issues is modeled by a number of propositional
variables that are connected by an integrity constraint. Let I = {x1, . . . , xn} be a
finite set of issues (in the form of propositional variables). Intuitively, these issues
are the topics about which the individuals want to combine their judgments. A truth
assignment α : I → B is called a ballot, and represents an opinion that individuals and
the group can have. We will also denote ballots α by a binary vector (b1, . . . , bn) ∈ Bn,
where bi = α(xi) for each i ∈ [n]. Moreover, we say that (p1, . . . , pn) ∈ {0, 1, ?}n
is a partial ballot, and that (p1, . . . , pn) agrees with a ballot (b1, . . . , bn) if pi = bi
whenever pi 6= ?, for all i ∈ [n].
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Additionally, we consider an integrity constraint Γ, that can be used to restrict the set of
feasible opinions (for both the individuals and the group). The integrity constraint Γ is a
satisfiable propositional formula on the variables x1, . . . , xn. We define the set R(I,Γ) of
rational ballots to be the ballots (for I) that satisfy the integrity constraint Γ. Rational
ballots in the constraint-based judgment aggregation framework correspond to complete
and Γ-consistent judgment sets in the formula-based judgment aggregation framework.
We say that finite sequences r ∈ R(I,Γ)+ of rational ballots are profiles, and where
convenient we equate a profile r = (r1, . . . , rp) with the (multi)set {r1, . . . , rp}.

A judgment aggregation procedure (or rule), for the set I of issues and the integrity
constraint Γ, is a function F that takes as input a profile r ∈ R(I,Γ)+, and that produces
a non-empty set of ballots. We call a judgment aggregation procedure F rational (or
consistent), if r is rational for every r ∈ R(I,Γ)+ and every r ∈ F (r).

As an example of a judgment aggregation procedure we consider the majority
rule Majority, where Majority(r) = {(b1, . . . , bn)} and where each bi agrees with
the majority of the i-th bits in the ballots in r (in case of a tie, we arbitrarily
let bi = 1). To see that Majority is not rational, consider the set I = {x1, x2, x3}
of issues, the integrity constraint Γ = x3 ↔ (x1 → x2), and the profile r = (r1, r2, r3),
where r1 = (1, 1, 1), r2 = (1, 0, 0), and r3 = (0, 0, 1). The unique outcome (1, 0, 1)
in Majority(r) is not rational.

The Kemeny aggregation procedure is defined for the constraint-based judgment aggrega-
tion framework as follows. Similarly to the case for formula-based judgment aggregation,
the Kemeny rule is based on the Hamming distance d(r, r′) = |{ i ∈ [n] : bi 6= b′i }|,
between two rational ballots r = (b1, . . . , bn) and r′ = (b′1, . . . , b′n) for the set I of issues
and the integrity constraint Γ. Let r be a single ballot, and let (r1, . . . , rp) = r ∈ R(I,Γ)+

be a profile. We define the distance between r and r to be Dist(r, r) =
∑
i∈[p] d(r, ri).

Then, we let the outcome KemenyI,Γ(r) of the Kemeny rule be the set of those bal-
lots r∗ ∈ R(I,Γ) for which there is no r ∈ R(I,Γ) such that Dist(r, r) < Dist(r∗, r). If I
and Γ are clear from the context, we often write Kemeny(r) to denote KemenyI,Γ(r).
The Kemeny rule is irresolute and rational.

One can transform each agenda (together with an integrity constraint) in the formula-
based judgment aggregation framework to an equivalent set of issues together with an
integrity constraint in the constraint-based judgment aggregation framework. In the
worst case, this translation leads to a blow-up in size. Vice versa, translating from
the constraint-based framework to the formula-based framework is possible with only a
polynomial size increase. However, this latter translation is not possible in polynomial
time (unless P = NP). For more details on these issues, we refer to the work of Endriss,
Grandi, De Haan, and Lang [74].
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11.2 Agenda Safety for the Majority Rule

In this section, we will study the parameterized complexity of the problem of deciding
whether a given agenda Φ is safe for the majority rule. We will only study this problem
in the framework of formula-based judgment aggregation. Moreover, we will study this
problem only in the setting where the integrity constraint is trivial, that is, where Γ = >.
In the remainder of this section, we will omit any mention of the integrity constraint Γ.
We will consider a number of parameterizations for this problem.

Remember that an agenda Φ is safe for the majority rule if for any possible profile J
for the agenda Φ, the majority outcome J∗, where Majority(J) = {J∗}, is consistent.
Safety for the majority rule can be characterized using the following property. An
agenda Φ satisfies the median property (MP) if every inconsistent subset of Φ has itself
an inconsistent subset of size at most 2. An agenda Φ is safe for the majority rule if and
only if Φ satisfies the median property [75, 164].

As an illustration of this characterization of agenda safety for the majority rule using the
median property, consider the example of an agenda Φ that is not safe for the majority
rule—that we discussed in Section 11.1—where [Φ] = {p, q, p ∧ q}. We have that Φ does
not satisfy the median property, because it contains the subset {p, q,¬(p ∧ q)} ⊆ Φ that
is inconsistent, but that itself contains no inconsistent subset of size 2.

Concretely, we study the following decision problem Majority-Safety. This problem
is Πp

2-complete [75].

Majority-Safety
Instance: An agenda Φ.
Question: Is Φ safe for the majority rule?

The parameterizations that we consider for this problem are both simple syntactic
parameters that count the number of formulas or the maximum formula size, for instance,
and more intricate parameters such as the treewidth of various graphs that model the
structure of agendas. An overview of all parameterized variants that we consider, together
with the parameterized complexity results that we obtain, can be found in Table 11.1.

11.2.1 CNF Formulas

Before we start with the parameterized complexity investigation of the problem
Majority-Safety, we show that we can restrict our attention to agendas contain-
ing only formulas in CNF. In particular, we show how to transform any agenda Φ to an
agenda Φ′, containing only formulas in CNF (and their negations), that is safe if and
only if Φ is safe. Moreover, the formulas in Φ′ are in one-to-one correspondence with
the formulas in Φ, and any conjunction of a subset of Φ′ is satisfiable if and only if the
corresponding subset of Φ is satisfiable. For this, we will need the following lemma, whose
proof is based on the well-known Tseitin transformation [187].
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Lemma 123. Let ϕ be a propositional formula. We can construct a CNF formula ϕ′
such that Var(ϕ′) ⊇ Var(ϕ) and for each truth assignment α : Var(ϕ)→ B it holds that α
satisfies ϕ if and only if there exists an assignment β : (Var(ϕ′)\Var(ϕ))→ B such that
the assignment α ∪ β satisfies ϕ′.

Proof. Assume without loss of generality that ϕ contains only the connectives ∧ and ¬.
Let Sub(ϕ) denote the set of all subformulas of ϕ. We let Var(ϕ′) = Var(ϕ) ∪ { zχ : χ ∈
Sub(ϕ) }, where each zχ is a fresh variable. We then define ϕ′ to be the formula χϕ ∧∧
χ∈Sub(ϕ) σ(χ), where we define the formulas σ(χ), for each χ ∈ Sub(ϕ) as follows. If χ = l

is a literal, we let σ(χ) = (zl → l)∧(l→ zl); if χ = ¬χ′, we let σ(χ) = (zχ → ¬zχ′)∧(zχ′ →
¬zχ); and if χ = χ1 ∧ χ2, we let σ(χ) = (zχ → zχ1) ∧ (zχ → zχ2) ∧ (¬zχ1 ∨ ¬zχ2 → ¬zχ).
Let α : Var(ϕ)→ B be an arbitrary truth assignment. We claim that α satisfies ϕ if and
only if there exists an assignment β : (Var(ϕ′)\Var(ϕ))→ B such that α ∪ β satisfies ϕ′.
Define the assignment β′ as follows. For each χ ∈ Sub(ϕ), we let β(zχ) = 1 if and
only if α satisfies χ. Clearly, if α satisfies ϕ, then α ∪ β′ satisfies ϕ′. Conversely, for
any assignment β : (Var(ϕ′)\Var(ϕ)) → B that does not coincide with β′, clearly, the
assignment α ∪ β does not satisfy some clause of ϕ′. Moreover, if α ∪ β′ satisfies ϕ′,
then α satisfies ϕ.

We can now show how to transform any agenda Φ in polynomial time to an agenda Φ′,
containing only formulas in CNF (and their negations), that is safe if and only if Φ is
safe.

Proposition 124. Let Φ be an agenda with [Φ] = {ϕ1, . . . , ϕn}. We can construct in
polynomial time an agenda Φ′ with [Φ′] = {ϕ′1, . . . , ϕ′n} such that each ϕ′i is in CNF
and any subset Ψ = {ϕi1 , . . . , ϕim1

,¬ϕj1 , . . . ,¬ϕjm2
} of Φ is consistent if and only

if Ψ′ = {ϕ′i1 , . . . , ϕ
′
im ,¬ϕ

′
j1 , . . . ,¬ϕ

′
jm2
} is consistent.

Proof. Let Φ be an agenda with [Φ] = {ϕ1, . . . , ϕn}. By Lemma 123, we can transform
each ϕi in linear time to a CNF formula ϕ′i such that Var(ϕ′i) ⊇ Var(ϕi) and for each
truth assignment α : Var(ϕi)→ B we have that α satisfies ϕi if and only if there exists
an assignment β : (Var(ϕ′i)\Var(ϕi)) → B such that the assignment α ∪ β satisfies ϕ′i.
Because we can introduce fresh variables for constructing each ϕ′i, we can assume without
loss of generality that for each i, i′ ∈ [n] with i < i′ it is the case that (Var(ϕ′i)\Var(ϕi))∩
(Var(ϕ′i′)\Var(ϕi′)) = ∅. Let Ψ = {ϕi1 , . . . , ϕim1

,¬ϕj1 , . . . ,¬ϕjm2
} be an arbitrary subset

of Φ. We show that Ψ is consistent if and only if Ψ′ = {ϕ′i1 , . . . , ϕ
′
im1

,¬ϕ′j1 , . . . ,¬ϕ
′
jm2
}

is consistent.

(⇒) Let α : Var(Ψ)→ B be an assignment that satisfies all formulas in Ψ. By construction
of the formulas ϕ′i, by Lemma 123, and by the fact that for each i, i′ ∈ [n] with i < i′ it
is the case that (Var(ϕ′i)\Var(ϕi)) ∩ (Var(ϕ′i′)\Var(ϕi′)) = ∅, we know that there exists
an assignment β : (Var(Ψ′)\Var(Ψ))→ B such that α ∪ β satisfies all formulas in Ψ.
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(⇐) Conversely, assume that there exists an assignment α : Var(Ψ′)→ B that satisfies all
formulas in Ψ′. Then, by construction of the formulas ϕ′i, we know that Var(Ψ′) ⊆ Var(Ψ).
Now, by Lemma 123, we know that α satisfies all formulas in Ψ as well.

Intuitively, the above result shows that, using additional auxiliary variables, each agenda
can be rewritten into another agenda that contains only formulas in CNF (or their
negation) that are equivalent (with respect to satisfiability) to the formulas in the original
agenda.

11.2.2 Syntactic Restrictions

We begin with considering a number of parameterizations for the problem Majority-
Safety that impose syntactic restrictions on the agenda, that is, these parameters
measure various aspects that can be directly read off from the syntactic representation of
the agenda. Concretely, we parameterize by the size of formulas ϕ ∈ Φ, by the maximum
number of times that any variable occurs in Φ (the degree of Φ), and by the number of
formulas occurring in Φ. Formally, we consider the following parameterized problems:

• Majority-Safety(formula-size), where the parameter is ` = max{ |ϕ| : ϕ ∈ Φ };

• Majority-Safety(degree), where the parameter is the degree d of Φ;

• Majority-Safety(degree + formula size), where the parameter is `+ d; and

• Majority-Safety(agenda-size), where the parameter is |Φ|.

Here we define the degree of an agenda Φ to be the maximum number of times that any
variable x ∈ Var(Φ) occurs in [Φ], i.e., maxx∈Var(Φ)(

∑
ϕ∈[Φ] occ(x, ϕ)), where occ(x, ϕ)

denotes the number of times that x occurs in ϕ.

These parameters can be assumed to be small in many natural settings. The assumption
that the size of formulas in an agenda is small corresponds to the expectation that the
separate statements that the individuals are judging are in a sense atomic, and therefore
of bounded size. The assumption that the degree of an agenda is small corresponds to the
expectation that each proposition that occurs in the statements to be judged occurs only
a small number of times. The assumption that the number of formulas in the agenda is
small is based on the fact that the individuals need to form an opinion on all formulas in
the agenda.

11.2.2.1 Agendas with Small Formulas and Small Degree

We start by showing that parameterizing by (the sum of) the maximum formula size
and the degree of the agenda Φ does not decrease the complexity of deciding whether
the agenda is safe, even when the pre-agenda associated to Φ contains only formulas
in 2CNF ∩Horn. Intuitively, these restrictions on the form and size of the formulas in
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the agenda do not rule out the complex interactions between the formulas in the agenda
that involve many formulas simultaneously, and that give rise to the Πp

2-hardness of the
problem.

Proposition 125. Majority-Safety(formula-size) is para-Πp
2-complete.

Proof. Membership in para-Πp
2 follows from the Πp

2-membership of Majority-Safety.
We show para-Πp

2-hardness by giving a polynomial-time reduction from co-QSat2(3CNF)
to the problem {x : (x, c) ∈Majority-Safety(formula-size) }, where c is bounded by
the size of formulas of the form ¬((¬x1 ∨ ¬x2 ∨ ¬x3) ∧ ¬z). This reduction is a modified
variant of a reduction given by Endriss et al. [75, Lemma 11]. Let ϕ = ∀X.∃Y.ψ be an
instance of co-QSat2, where ψ = c1 ∧ · · · ∧ cm is in 3CNF, and where X = {x1, . . . , xm}.
We may assume without loss of generality that none of the ci is a unit clause. We construct
the agenda Φ = {x1,¬x1, . . . , xn,¬xn, (c1∧¬z1),¬(c1∧¬z1), . . . , (cm∧¬zm),¬(cm∧¬zm)},
where Z = {z1, . . . , zm} is a set of fresh variables. We show that Φ satisfies the median
property if and only if ϕ is true.

(⇒) Suppose that ϕ is false, i.e., there exists some α : X → B such that ∀Y.¬ψ[α] is
true. Let L = {xi : i ∈ [n], α(xi) = 1 } ∪ {¬xi : i ∈ [n], α(xi) = 0 }. We know that α
is the unique assignment to the variables in X that satisfies L. Now consider Φ′ =
L ∪ {(c1 ∧ z1), . . . , (cm ∧ zm)}.

We firstly show that Φ′ is inconsistent. We proceed indirectly and assume that Φ′ is
consistent, i.e., there exists an assignment β : Y ∪ Z → B such that α ∪ β satisfies Φ′.
Then α ∪ β must satisfy each ci. Therefore, β satisfies ψ[α], which contradicts our
assumption that ∀Y.¬ψ[α] is true. Therefore, we can conclude that Φ′ is inconsistent.

Next, we show that each subset Φ′′ ⊆ Φ′ of size 2 is consistent. Let Φ′′ ⊆ Φ′ be
an arbitrary subset of size 2. We distinguish three cases: either (i) Φ′′ = {li, lj} for
some i, j ∈ [n] with i < j; (ii) Φ′′ = {li, (cj ∧ ¬zj)} for some i ∈ [n] and some j ∈ [m]; or
(iii) Φ′′ = {(ci ∧ ¬zi), (cj ∧ ¬zj)} for some i, j ∈ [m] with i < j. In case (i), clearly Φ′′ is
consistent. In case (ii) and (iii), Φ′′ is consistent because ci and cj are not unit clauses.

(⇐) Conversely, suppose that Φ does not satisfy the median property, i.e., there exists
an inconsistent subset Φ′ ⊆ Φ that itself does not contain an inconsistent subset of size 2.
We show that ϕ is false. Firstly, we show that Ψ′ = Φ′\{¬(c1 ∧ ¬z1), . . . ,¬(cm ∧ ¬zm)}
is inconsistent. We proceed indirectly, and assume that Ψ′ is consistent, i.e., there
exists an assignment γ : Var(Ψ′) → B such that γ satisfies Ψ′. Now let Z ′ = { zi : i ∈
[m],¬(ci ∧ ¬zi) ∈ Φ′ } and let γ′ : Z ′ → B be defined by letting γ′(z) = 0 for all z ∈ Z ′.
Since Ψ′ contains no negated pairs of formulas, we know that Z ′ ∩Var(Ψ′) = ∅. Then the
assignment γ ∪ γ′ satisfies Φ′, since γ satisfies all ψ ∈ Ψ′ and γ′ satisfies all ϕ ∈ Φ′\Ψ′.
This is a contradiction with our assumption that Φ′ is inconsistent, so we can conclude
that Ψ′ is inconsistent.

Now let the assignment α : X → B be defined as follows. For each x ∈ X, we let α(x) = 1
if x ∈ Ψ′, we let α(x) = 0 if ¬x ∈ Ψ′, and we (arbitrarily) define α(x) = 1 otherwise. We
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now show that ¬∃Y.ψ[α] is true. We proceed indirectly, and assume that there exists an
assignment β : Y → B such that ψ[α∪β] is true. Now consider the assignment γ : Z → B
such that γ(z) = 0 for all z ∈ Z. We claim that the assignment α ∪ β ∪ γ satisfies Ψ′.
Let χ ∈ Ψ′ be an arbitrary formula. We distinguish two cases: either (i) χ ∈ {xi,¬xi}
for some i ∈ [n]; or (ii) χ = (ci ∧ ¬zi) for some i ∈ [m]. In case (i), we know that α
satisfies χ. For case (ii), we know that α∪β satisfies ci, since α∪β satisfies ψ. Moreover,
we know that γ satisfies ¬zi. Therefore, α ∪ β ∪ γ satisfies χ. This is a contradiction
with our previous conclusion that Ψ′ is inconsistent, so we can conclude that ¬∃Y.ψ[α] is
true. From this, we know that ∀X.∃Y.ψ is false.

Next, using the following technical lemma and the reduction given in the proof of Propo-
sition 125, we get para-Πp

2-completeness of Majority-Safety(degree + formula size).
The hardness result holds even when we restrict the formulas to be in Horn ∩ 2CNF.

Lemma 126. The problem co-QSat2(3CNF) is Πp
2-hard even when restricted to in-

stances ϕ = ∀X.∃Y.ψ where each x ∈ X occurs at most 2 times in ψ and each y ∈ Y
occurs at most 3 times in ψ.

Proof. Let ϕ = ∀X.∃Y.ψ be an instance of co-QSat2(3CNF). We construct in polynomial
time an equivalent instance ϕ′ = ∀X ′.∃Y ′.ψ′ of co-QSat2(3CNF) such that each x ∈ X ′
occurs at most 2 times in ψ′ and each y ∈ Y ′ occurs at most 3 times in ψ′.

Firstly, we construct an equivalent formula ϕ1 = ∀X.∃Y1.ψ1 such that each x ∈ X1 occurs
at most 2 times in ψ1. We do this by repeatedly applying the following transformation.
Let z ∈ X be any variable that occurs m > 3 times in ψ. We create m copies z1, . . . , zm
of z, that we add to the set Y of existentially quantified variables. We replace each
occurrence of z in ψ by a distinct copy zi. Finally, we ensure equivalence of ψ1 and ψ
by letting ψ1 = ψ ∧ ψzequiv, where we define ψzequiv to be the conjunction of binary
clauses (zi → zi+1) for each i ∈ [m − 1], the binary clause (zm → z1), and the binary
clauses (z → z1) and (z1 → z). Repeated application of this transformation results in a
formula ϕ1 that satisfies the required properties.

Then, we transform ϕ1 into an equivalent formula ϕ2 = ∀X.∃Y2.ψ2 such that each y ∈ Y2
occurs at most 3 times in ψ2. Moreover, each x ∈ X occurs as many times in ψ2 as it did
in ψ1 (i.e., twice). We use a similar strategy as we did in the first phase: we repeatedly
apply the following transformation. Let y ∈ Y1 be any variable that occurs m > 3 times
in ψ1. We create m copies y1, . . . , ym of y, that we add to the set Y1 of existentially
quantified variables. Then we replace each occurrence of y in ψ by a distinct copy yi.
Finally, we ensure equivalence of ψ2 and ψ1 by letting ψ2 = ψyequiv ∧ ψ1, where we
define ψyequiv to the conjunction of the binary clauses (yi → yi+1) for all i ∈ [m− 1] and
the binary clause (ym → y1). Again, repeated application of this transformation results
in a formula ϕ2 that satisfies the required properties.

We now show that Majority-Safety(degree+formula size) is para-Πp
2-hard, even when

we restrict the formulas to be in Horn ∩ 2CNF.
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Proposition 127. Majority-Safety(degree+formula size) is para-Πp
2-hard even when

restricted to agendas Φ such that all formulas ϕ ∈ [Φ] are in Horn ∩ 2CNF.

Proof. We consider the reduction used to show Proposition 125. The agenda Φ that we
constructed contains only formulas of the form xi or their negation, and formulas of the
form (ci ∧ ¬zi), where ci is a clause, or their negation. Clearly, the formulas xi and ¬xi
are (equivalent to formulas) in Horn∩2CNF. It suffices to show that each formula ϕ ∈ Φ
with ϕ = (ci ∧ ¬zi) is equivalent to a formula ϕ′ ∈ Horn ∩ 2CNF. Let ci = (li1 ∨ li2 ∨ li3).
Observe that (ci ∧ ¬zi) = ((li1 ∨ li2 ∨ li3) ∧ ¬zi) ≡ (li1 ∨ ¬zi) ∧ (li2 ∨ ¬zi) ∧ (li3 ∨ ¬zi). Thus,
we can construct Φ in such a way that [Φ] contains only formulas in Horn ∩ 2CNF.

11.2.2.2 Agendas with Few Formulas

Next, we parameterize the problem by the number of formulas occurring in the agenda.
We will show that the problem Majority-Safety(agenda-size) can be solved by an
fpt-algorithm that uses f(k) SAT queries, where k denotes the parameter value. That is,
the problem is in the class FPTNP[few]. Intuitively, the fpt-algorithm that we construct
will exploit the fact that the agenda only contains few formulas, by considering all possible
inconsistent subsets of the agenda, and using a SAT solver to verify that these all have
an inconsistent subset of size at most 2.

Proposition 128. There exists an algorithm that decides Majority-Safety(agenda-
size) in fpt-time using at most 2O(k) queries to a SAT oracle, where k is the parameter
value. That is, Majority-Safety(agenda-size) is in FPTNP[few].

Proof. The algorithm that we described in Section 4.3 solves the problem in fixed-
parameter tractable time and uses at most 2O(k) queries to a SAT oracle.

Moreover, we give evidence that this is the best that one can do, i.e., that there exists no
fpt-algorithm that uses a significantly smaller number of SAT queries, under a common
complexity-theoretic assumption. We show that Majority-Safety(agenda-size) is
complete for the class FPTNP[few]. We start with identifying an easier hardness result,
which we will then extend to hardness for the class FPTNP[few].

Lemma 129. Majority-Safety(agenda-size) is para-co-DP-hard.

Proof. We prove hardness for para-co-DP by giving a polynomial-time reduction from
SAT-UNSAT to co-Majority-Safety, such that the resulting instance is an agenda of
constant size. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT. We construct the agenda Φ
with [Φ] = {ψ1, ψ2, ψ3} by letting ψ1 = r1∧p1∧ϕ1, ψ2 = r2∧p2, and ψ3 = r3∧((p1∧p2)→
ϕ2), where {r1, r2, r3, p1, p2} are distinct fresh variables not occurring in ϕ1 nor in ϕ2.
We show that Φ does not satisfy the MP if and only if (ϕ1, ϕ2) ∈ SAT-UNSAT.

(⇒) Assume that Φ does not satisfy the MP. Then there exists a satisfiable complement-
free subagenda Φ′ ⊆ Φ such that each subset Φ′′ ⊆ Φ′ of size 2 is satisfiable. We
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dinstinguish several cases: either (i) Φ′ = [Φ] = {ψ1, ψ2, ψ3}, or (ii) the above case does
not hold and Φ′ contains ψ1, or (iii) the above two cases do not hold.

We show that in case (i) we can conclude that (ϕ1, ϕ2) ∈ SAT-UNSAT. By assumption,
every subset Φ′′ ⊆ Φ of size 2 is satisfiable. Therefore, we can conclude that the formula ψ1
is satisfiable. Hence, ϕ1 is satisfiable. Next, we show that ϕ2 is unsatisfiable. We proceed
indirectly, and we assume that there exists some assignment α : Var(ϕ2) → B that
satisfies ϕ2. We construct a satisfying assignment α′ : Var(Φ)→ B for Φ, which leads to a
contradiction. We let α′ coincide with α on the variables in Var(ϕ2). Moreover, we know
that there exists some satisfying assignment β : Var(ϕ1)→ B for ϕ1. We let α′ coincide
with β on the variables in Var(ϕ1). Finally, we let α′(x) = 1 for each x ∈ {r1, r2, r3, p1, p2}.
Clearly, α′ satisfies all formulas in Φ then. This leads to a contradiction with the fact
that Φ is unsatisfiable, and therefore we can conclude that ϕ2 is unsatisfiable.

Next, we show that case (ii) cannot occur. We know that ψ1 ∈ Φ′, and that each
subset Φ′′ ⊆ Φ of size 2 is satisfiable. Therefore, we know that ϕ1 is satisfiable. Let β :
Var(ϕ1) → B be a satisfying assignment for ϕ1. We extend the assignment β to an
assignment β′ : Var(Φ) → B that satisfies Φ′. We let β′(r1) = β′(p1) = 1. If ψ2 ∈ Φ,
we let β′(r2) = β′(p2) = 1; otherwise, if ¬ψ2 ∈ Φ, we let β′(r2) = 0. If ψ3 ∈ Φ, we
let β′(r3) = 1 and β′(p2) = 0; otherwise, if ¬ψ3 ∈ Φ, we let β′(r3) = 0. On the other
variables, we let β′ be defined arbitrarily. Since not both ψ2 ∈ Φ and ψ3 ∈ Φ, we know
that β′ is well-defined. It is easy to verify that β′ satisfies Φ′, which is a contradiction
with our assumption that Φ′ is unsatisfiable. From this we can conclude that case (ii)
cannot occur.

Finally, we show that case (iii) cannot occur either. We construct an assignment β :
Var(Φ)→ B that satisfies Φ′. We know that ¬ψ1 ∈ Φ′. Let β(r1) = β(p1) = 0. If ψ2 ∈ Φ′,
we let β(r2) = β(p2) = 1; otherwise, if ¬ψ2 ∈ Φ′, we let β(r2) = 0; If ψ3 ∈ Φ′, we
let β(r3) = 1; otherwise, if ¬ψ3 ∈ Φ′, we let β(r3) = 0. It is easy to verify that β
satisfies Ψ, which is a contradiction with our assumption that Φ′ is unsatisfiable. From
this we can conclude that case (iii) cannot occur.

(⇐) Conversely, assume that ϕ1 is satisfiable and that ϕ2 is unsatisfiable. Then consider
the complement-free subagenda Φ′ ⊆ Φ given by Φ′ = [Φ] = {ψ1, ψ2, ψ3}. Since ψ1, ψ2 |=
p1 ∧ p2 and ϕ2 is unsatisfiable, we get that Φ′ is unsatisfiable. However, since ϕ1 is
satisfiable, we get that each subset of Φ′ of size 2 is satisfiable. Therefore, Φ does not
satisfy the MP.

Proposition 130. Majority-Safety(agenda-size) is FPTNP[few]-hard.

Proof. We give an fpt-reduction from BH(level)-Sat to co-Majority-Safety(agenda-
size). Since co-BH(level)-Sat is FPTNP[few]-complete, this suffices. Without loss of
generality, we assume that k ≥ 2 is even. Let the sequence (ϕ1, . . . , ϕk) specify an instance
of BH(level)-Sat. We know that we can construct in polynomial time a sequence of
formulas (ϕ1, ψ1, . . . , ϕ`, ψ`), where ` = k/2, such that (ϕ1, . . . , ϕk) ∈ BHk-Sat if and
only if for some i ∈ [`] it holds that (χi, ψi) ∈ SAT-UNSAT [35].
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Now, for each i ∈ [`], we can use the reduction in the proof of Lemma 129 to construct
in polynomial time an agenda Φi of constant size such that Φi does not satisfy the
median property if and only if (χi, ψi) ∈ SAT-UNSAT. Moreover, we can ensure that
the agendas Φi are variable-disjoint. We now construct the agenda Φ =

⋃
i∈[`] Φi. Below,

we show that Φ does not satisfy the median property if and only if (χi, ψi) ∈ SAT-
UNSAT for some i ∈ [`]. We know this latter condition holds if and only if our original
instance (ϕ1, . . . , ϕk) ∈ BHk-Sat. Moreover, since |Φ| = O(k), we obtain a correct
fpt-reduction.

All that remains is to show that Φ does not satisfy the median property if and only
if (χi, ψi) ∈ SAT-UNSAT for some i ∈ [`].

(⇒) Assume that Φ does not satisfy the median property. Then there exists a subset Φ′ ⊆
Φ that is unsatisfiable such that each Φ′′ ⊆ Φ′ of size 2 is satisfiable. Moreover, we can
assume Φ′ to be minimal with this property. Since Φ is partitioned into the variable disjoint
subsets Φi, and since Φ′ is minimal, we know that Φ′ ⊆ Φi, for some i ∈ [`]. Then Φi

does not satisfy the median property, from which we can conclude that (χi, ψi) ∈ SAT-
UNSAT.

(⇐) Conversely, assume that (χi, ψi) ∈ SAT-UNSAT for some i ∈ [`]. Then by construc-
tion of Φi, we know that Φi does not satisfy the median property. Therefore, since Φi ⊆ Φ,
we know that Φ does not satisfy the median property.

By Proposition 76, we know that Majority-Safety(agenda-size) is not solvable in
fixed-parameter tractable time using O(1) queries to a SAT oracle, unless the Polynomial
Hierarchy collapses. This lower bound holds for any FPTNP[few]-hard problem. For the
particular case of Majority-Safety(agenda-size), we can improve this bound from ω(1)
to Ω(log k).

Proposition 131. Majority-Safety(agenda-size) is not solvable by an fpt-algorithm
that uses o(log k) SAT queries, where k denotes the parameter value, unless the PH
collapses.

Proof. The proof is analogous to the proof of Proposition 76. Suppose that Majority-
Safety(agenda-size) is solvable by an algorithm that runs in fixed-parameter tractable
time and that uses h(k) = o(log k) SAT queries. We show that the BH collapses, and
thus that consequently the PH collapses. By the proof of Proposition 130, we know
that BH(level)-Sat can be fpt-reduced to the problem Majority-Safety(agenda-size)
in such a way that the parameter value k increases at most linearly to h′(k) = O(k).
Moreover, the proof of Proposition 128 can be straightforwardly modified to show that
Majority-Safety(agenda-size) can be fpt-reduced to BH(level)-Sat in such a way
that the resulting parameter value k′ is bounded by a function h′′(k) = 2O(k), where k
is the original parameter value. We can now combine these fpt-reductions to obtain a
polynomial-time reduction that witnesses the collapse of the BH. We know that there
exists some integer ` such that h′′(h′(h(`))) = `′ < `. Applying the composing the
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fpt-reductions gives us a polynomial-time reduction from the problem BH`-Sat to the
problem BH`′-Sat. Since `′ < `, this shows that the BH collapses to the `′-th level.
Since a collapse of the BH implies a collapse of the PH [125, 41], we can conclude that
Majority-Safety(agenda-size) is not solvable by an fpt-algorithm that uses o(log k)
SAT queries, unless the PH collapses.

11.2.3 Bounded Treewidth

In the previous section, we considered various parameters for the problem Majority-
Safety that capture structure in the problem input that can easily be read off from the
syntactic representation of the problem input. A more intricate type of structure that the
agenda Φ can exhibit is the way in which the formulas ϕ ∈ Φ interact with each other. As
an extreme example, consider the case of an agenda Φ with [Φ] = {ϕ1, . . . , ϕm}, where all
formulas ϕi are variable-disjoint. Clearly, any minimal inconsistent subset of this agenda
has size 1, and thus this agenda is safe for the majority rule. In less extreme cases, the
formulas of the agenda are allowed to interact (i.e., to have variables in common), but
their interaction is structured in a particular way. The type of structured interaction
that we consider in this section is the extent to which various graphs representing the
interaction between formulas of the agenda resemble a tree—this is captured by the
treewidth of these graphs. Treewidth is commonly used in the parameterized complexity
analysis of hard problems in various fields. Intuitively, one could think of agendas of
bounded treewidth as agendas where the propositional variables are divided into a number
of groups, each containing a small number of variables, where the interaction between
such groups is tree-like.

Let Φ be an agenda with [Φ] = {ϕ1, . . . , ϕm}, where each ϕi is a CNF formula. We define
the following graphs that are intended to capture the interaction between formulas in Φ.
The formula primal graph Gfp(Φ) of Φ has as vertices the variables Var(Φ) occurring in
the agenda, and two variables are connected by an edge if there exists a formula ϕi in
which they both occur. The formula incidence graph Gfi(Φ) of Φ is a bipartite graph
whose vertices consist of (1) the variables Var(Φ) occurring in the agenda and (2) the
formulas ϕi ∈ [Φ]. A variable x ∈ Var(Φ) is connected by an edge with a formula ϕi ∈ [Φ]
if x occurs in ϕi, i.e., x ∈ Var(ϕi). The clausal primal graph Gcp(Φ) of Φ has as
vertices the variables Var(Φ) occurring in the agenda, and two variables are connected
by an edge if there exists a formula ϕi and a clause c ∈ ϕi in which they both occur.
The clausal incidence graph Gci(Φ) of Φ is a bipartite graph whose vertices consist
of (1) the variables Var(Φ) occurring in the agenda and (2) the clauses c occurring in
formulas ϕi ∈ [Φ]. A variable x ∈ Var(Φ) is connected by an edge with a clause c of the
formula ϕi ∈ [Φ] if x occurs in c, i.e., x ∈ Var(c).

We consider the following parameterized variants of the problem Majority-Safety:

• Majority-Safety(f-tw), where the parameter is the treewidth of the formula
primal graph (the formula primal treewidth);
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• Majority-Safety(c-tw), where the parameter is the treewidth of the clausal
primal graph (the clausal primal treewidth);

• Majority-Safety(f-tw∗) where the parameter is the treewidth of the formula
incidence graph (the formula incidence treewidth); and

• Majority-Safety(c-tw∗) where the parameter is the treewidth of the clausal
incidence graph (the clausal incidence treewidth).

We show that the presence of tree-like structure in only one of these four graphs leads
to a reduction in the complexity of the problem Majority-Safety. We show that
Majority-Safety(f-tw) is fixed-parameter tractable, and for the remaining three pa-
rameters, the problem is para-Πp

2-complete.

We begin by showing that the problem is fixed-parameter tractable when parameterized
by the formula primal treewidth.

Proposition 132. Majority-Safety(f-tw) is fixed-parameter tractable.

Proof. We will use Courcelle’s Theorem, which states that checking whether a relational
structure A satisfies a monadic second-order logic (MSOL) sentence ϕ is fixed-parameter
tractable, parameterized by the treewidth of the Gaifman graph of A plus the size of ϕ
(cf. [56, 85]). The Gaifman graph of A has as vertices all elements in the universe of A,
and two elements a, b are connected with an edge if they occur together in some tuple in
the interpretation RA of some relation symbol R.

Let Φ be an instance of Majority-Safety, where [Φ] = {ϕ1, . . . , ϕm} and each ϕi is a
CNF formula, that has formula primal treewidth k. That is, there is a tree decomposition
of the formula primal graph of Φ of width k+ 1. We construct a relational structure A =
(A, ·A) and a (fixed) MSOL sentence ϕ, such that A |= ϕ if and only if Φ ∈Majority-
Safety. We let A = Φ ∪ Var(Φ) ∪ { c ∈ ϕi : i ∈ [m] }. Moreover, we introduce unary
relation symbols F, V,C and binary relation symbols I+, I−, D. We let:

FA = Φ;
V A = Var(Φ);
CA = { c ∈ ϕi : i ∈ [m] };

(I+)A = { (c, x) : c ∈ ϕi, i ∈ [m], x occurs pos. in c };
(I−)A = { (c, x) : c ∈ ϕi, i ∈ [m], x occurs neg. in c }; and

D = { (ϕi, c) : i ∈ [m], c ∈ ϕi }.

We can transform a tree decomposition T of width k + 1 for the formula primal graph
of Φ into a tree decomposition T ′ of the Gaifman graph of A of width k + 3. Because
all variables occurring in any formula ϕi ∈ Φ form a clique in the formula primal graph,
they must occur in some bag of T , we can extend this bag to a subtree where all edges
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between ϕi, all clauses c ∈ ϕi and the variables in Var(ϕi) are covered as well. This can
be done in such a way that T ′ has width k + 3.

We then use the following MSOL sentence ϕ (that does not depend on Φ), where:

ϕ = ¬∃P1 ⊆ F.∃P2 ⊆ F.
[∀p ∈ P1.¬P2(p) ∧ (|P1 ∪ P2| ≥ 3) ∧
¬ϕsat(P1, P2) ∧ ϕmin(P1, P2);

ϕsat(P1, P2) = ∃S.[∀p ∈ P1.∀c.[C(c) ∧D(p, c)]→
[∃s.(S(s) ∧ I+(c, s)) ∨ (¬S(s) ∧ I−(c, s))]] ∧
[∀p ∈ P2.∃c.[C(c) ∧D(p, c) ∧ ∀s.
(I+(c, s)→ ¬S(s)) ∧ (I−(c, s)→ S(s))]]; and

ϕmin(P1, P2) = ∀P ′1 ⊆ P1.∀P ′2 ⊆ P2.

((P ′1 ∪ P ′2) ( (P1 ∪ P2))→ ϕsat(P ′1, P ′2).

Here we use the abbreviation ∃P ⊆ F.ψ to denote the formula ∃P.∀p(P (p)→ F (p)) ∧ ψ.
Moreover, we also use the abbreviation (|P | ≥ q) and (P ( P ′) with the usual meaning.

Intuitively, the second-order quantification ∃P1 guesses a subset of [Φ] and the second-
order quantification ∃P2 guesses a subset of {¬ϕ : ϕ ∈ [Φ] }, such that P1 ∪ P2 is a
minimally unsatisfiable subset of Φ of cardinality ≥ 3. The formula ¬ϕsat(P1, P2) enforces
that P1 ∪ P2 is unsatisfiable, and the formula ϕmin encodes that it is minimally so, i.e.,
that all strict subsets of P1 ∪ P2 are satisfiable.

It is readily verified that A |= ϕ if and only if Φ ∈Majority-Safety. Therefore, since
the size of ϕ is constant and A has treewidth at most k + 2, we get that Majority-
Safety(f-tw) is fixed-parameter tractable by Courcelle’s Theorem.

Next, we show that the problem is para-Πp
2-complete when parameterized by the clausal

primal treewidth.

Proposition 133. Majority-Safety(c-tw) is para-Πp
2-complete.

Proof. We show para-Πp
2-hardness by showing that the problem is already Πp

2-hard for
constant values of the parameter. We do so by giving a reduction from co-QSat2(3CNF).
This reduction is a modified variant of a reduction given by Endriss et al. [75, Lemma 11].
Let ϕ = ∀X.∃Y.ψ be an instance of co-QSat2, where ψ = c1 ∧ · · · ∧ cm is in 3CNF, and
where X = {x1, . . . , xm}. Moreover, for each i ∈ [m], let ci consist of the literals li1, li2
and li3. We may assume without loss of generality that none of the ci is equivalent to a
unit clause.

We construct the agenda Φ as follows. We introduce fresh variables zij for i ∈ [m]
and j ∈ [3]. Let Z denote the set of all such variables zij . Then, we let [Φ] = {x1, . . . , xn}∪
{ (zi1 ∨ ¬li1) ∧ (zi2 ∨ ¬li2) ∧ (zi3 ∨ ¬li3) : i ∈ [m] }. It is straightforward to verify that the
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clausal primal graph of Φ is a tree, and thus that Φ has clausal primal treewidth 1. We
show that Φ satisfies the median property if and only if ϕ is true.

(⇒) Suppose that ϕ is false, i.e., there exists some α : X → B such that ∀Y.¬ψ[α] is
true. Let L = {xi : i ∈ [n], α(xi) = 1 } ∪ {¬xi : i ∈ [n], α(xi) = 0 }. We know that α
is the unique assignment to the variables in X that satisfies L. Now consider Φ′ =
L ∪ {¬((zi1 ∨ ¬li1) ∧ (zi2 ∨ ¬li2) ∧ (zi3 ∨ ¬li3)) : i ∈ [m] }.

We firstly show that Φ′ is inconsistent. We proceed indirectly and assume that Φ′ is
consistent, i.e., there exists an assignment β : Y ∪ Z → B such that α ∪ β satisfies Φ′.
Then α∪β must satisfy each ci, since ¬((zi1∨¬li1)∧(zi2∨¬li2)∧(zi3∨¬li3)) |= ci. Therefore, β
satisfies ψ[α], which contradicts our assumption that ∀Y.¬ψ[α] is true. Therefore, we
can conclude that Φ′ is inconsistent.

Next, we show that each subset Φ′′ ⊆ Φ′ of size 2 is consistent. Let Φ′′ ⊆ Φ′ be an arbitrary
subset of size 2. We distinguish three cases: either (i) Φ′′ = {li, lj} for some i, j ∈ [n]
with i < j; (ii) Φ′′ = {li,¬((zj1∨¬l

j
1)∧(zj2∨¬l

j
2)∧(zj3∨¬l

j
3))} for some i ∈ [n] and some j ∈

[m]; or (iii) Φ′′ = {¬((zi1∨¬li1)∧(zi2∨¬li2)∧(zi3∨¬li3)),¬((zj1∨¬l
j
1)∧(zj2∨¬l

j
2)∧(zj3∨¬l

j
3))}

for some i, j ∈ [m] with i < j. In case (i), clearly Φ′′ is consistent. In case (ii) and (iii), Φ′′
is consistent because ci and cj are not equivalent to unit clauses.

(⇐) Conversely, suppose that Φ does not satisfy the median property, i.e., there exists
an inconsistent subset Φ′ ⊆ Φ that itself does not contain an inconsistent subset of
size 2. We show that ϕ is false. Firstly, we show that Ψ′ = Φ′\{ (zi1 ∨ ¬li1) ∧ (zi2 ∨
¬li2) ∧ (zi3 ∨ ¬li3) : i ∈ [m] } is inconsistent. We proceed indirectly, and assume that Ψ′ is
consistent, i.e., there exists an assignment γ : Var(Ψ′)→ B such that γ satisfies Ψ′. Now
let Z ′ = { zi1, zi2, zi3 : i ∈ [m], (zi1∨¬li1)∧(zi2∨¬li2)∧(zi3∨¬li3) ∈ Φ′ } and let γ′ : Z ′ → B be
defined by letting γ′(z) = 1 for all z ∈ Z ′. Since Ψ′ contains no negated pairs of formulas,
we know that Z ′ ∩Var(Ψ′) = ∅. Then the assignment γ ∪ γ′ satisfies Φ′, since γ satisfies
all ψ ∈ Ψ′ and γ′ satisfies all ϕ ∈ Φ′\Ψ′. This is a contradiction with our assumption
that Φ′ is inconsistent, so we can conclude that Ψ′ is inconsistent.

Now let the assignment α : X → B be defined as follows. For each x ∈ X, we let α(x) = 1
if x ∈ Ψ′, we let α(x) = 0 if ¬x ∈ Ψ′, and we (arbitrarily) define α(x) = 1 otherwise. We
now show that ¬∃Y.ψ[α] is true. We proceed indirectly, and assume that there exists an
assignment β : Y → B such that ψ[α ∪ β] is true. Consider the assignment γ : Z → B
such that γ(z) = 0 for all z ∈ Z. We claim that the assignment α ∪ β ∪ γ satisfies Ψ′.
Let χ ∈ Ψ′ be an arbitrary formula. We distinguish two cases: either (i) χ ∈ {xi,¬xi} for
some i ∈ [n]; or (ii) χ = ¬((zi1∨¬li1)∧ (zi2∨¬li2)∧ (zi3∨¬li3)) for some i ∈ [m]. In case (i),
we know that α satisfies χ. For case (ii), we know that α ∪ β satisfies ci, since α ∪ β
satisfies ψ. Moreover, we know that γ sets each zij to 0. Therefore, we know that α∪β∪γ
satisfies χ. This is a contradiction with our previous conclusion that Ψ′ is inconsistent,
so we can conclude that ¬∃Y.ψ[α] is true. From this, we know that ∀X.∃Y.ψ is false.

We show that bounding the formula incidence treewidth also does not improve the
complexity of the problem Majority-Safety. The problem is para-Πp

2-complete when
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parameterized by the formula incidence treewidth.

Proposition 134. Majority-Safety(f-tw∗) is para-Πp
2-complete.

Proof. We observe that the Πp
2-hardness proof of Majority-Safety given by Endriss,

Grandi and Porello [75, Lemmas 22 and 24] shows that the problem Majority-Safety
is already Πp

2-hard for agendas with formula incidence treewidth 1. This implies that
Majority-Safety(f-tw∗) is para-Πp

2-hard.

Finally, when parameterized by the clausal incidence treewidth, the problem is also
para-Πp

2-complete.

Proposition 135. Majority-Safety(c-tw∗) is para-Πp
2-complete.

Proof. The agenda Φ used in the construction in the proof of Proposition 133 also has
clausal incidence treewidth 1. Therefore, para-Πp

2-hardness also holds for this case.

11.2.4 Small Counterexamples

Next, we consider the following parameterized variant Majority-Safety(c.e.-size) of
the problem Majority-Safety. The problem consists of deciding, given an agenda Φ,
and an integer k, whether every inconsistent subset Φ′ of Φ of size k has itself an
inconsistent subset of size at most 2. The parameter is k.

Assuming that counterexamples to the MP are small in practice corresponds to the
assumption that whenever several statements together imply another statement, this
latter statement is already implied by a small number of the former statements. In other
words, the interaction between statements is, in a sense, local.

This problem is also related to agenda safety for supermajority rules. A supermajority
rule accepts any proposition in the agenda if and only if a certain supermajority of the
individuals, specified by a threshold proportion 1

2 < q ≤ 1, accepts the proposition. Such
rules always produce consistent outcomes if the threshold is greater than k−1

k , where k is
the size of the largest minimally inconsistent subagenda [61, 147].

Unfortunately, it turns out that this parameterization does not lead to a significant
(practically exploitable) improvement in the computational complexity. In order to prove
this, we will need the following technical lemma.

Lemma 136. Let (ϕ, k) be an instance of Πp
2 [k∗]-WSat. In polynomial time, we

can construct an equivalent instance (ϕ′, k) of Πp
2 [k∗]-WSat such that: (1) for every

assignment α : X → B of weight m > k, the formula ∃Y.ψ[α] is false; and (2) for every
assignment α : X → B of weigth m < k, the formula ∃Y.ψ[α] is true.

Proof. Let (ϕ, k) be an instance of Πp
2 [k∗]-WSat, with ϕ = ∀X.∃Y.ψ. We construct the

instance ϕ′ = ∀X.∃Y ∪ Z.ψ′ as follows. We define the set Z of variables by letting Z =
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{ zx,i : x ∈ X, i ∈ [k] }. Intuitively, these variables keep track of how many variables
in X are set to true. We define the formula ψ′ = ψZproper ∧ (ψZfew ∨ ψ), where ψZproper =∧
x∈X

∨
i∈[k] zx,i ∧

∧
i∈[k]

∧
x,x′∈X,x 6=x′(¬zx,i ∨ ¬zx′,i) ∧

∧
x∈X

∧
i,i′∈[k],i<i′(¬zx,i ∨ ¬zx,i′),

and ψZfew =
∨
i∈[k]

∧
x∈X ¬zx,i. The formula ψZproper enforces that for any x ∈ X that is

set to true, there must be some i ∈ [k] such that zx,i is set to true as well. Moreover, it
enforces that for each x ∈ X there is at most one i ∈ [k] such that zx,i is true, and for
each i ∈ [k], there is at most one x ∈ X such that zx,i is true. The formula ψZfew is true if
and only if there exists some i ∈ [k] such that zx,i is false for all x ∈ X.

It is now straightforward to verify that for each assignment α : X → B it holds that (i) if α
has weight k, then ∃Y ∪ Z.ψ′[α] is true if and only if ∃Y.ψ[α] is true, (ii) if α has weight
less than k, then ∃Y ∪ Z.ψ′[α] is always true, and (iii) if α has weight more than k,
then ∃Y ∪ Z.ψ′[α] is never true.

Using the previous lemma, we can now show that the problem Majority-Safety(c.e.-
size) is Πp

2 [k∗]-hard. This result is very similar to to Proposition 118 in Chapter 10.

Proposition 137. Majority-Safety(c.e.-size) is Πp
2 [k∗]-hard.

Proof. In order to show Πp
2 [k∗]-hardness, we provide an fpt-reduction from Πp

2 [k∗]-WSat
to Majority-Safety(c.e.-size). Let (ϕ, k) be an instance of Πp

2 [k∗]-WSat, where ϕ =
∀X.∃Y.ψ is a quantified Boolean formula, X = {x1, . . . , xn}, and k is a positive integer.
We may assume without loss of generality that ϕ satisfies properties (1) and (2) described
in Lemma 136. We define the agenda Φ = {x1,¬x1, . . . , xn,¬xn, (ψ ∧ z),¬(ψ ∧ z)},
where z is a fresh variable. We show that for all assignments α : X → B of weight k it is
the case that ∃Y.ψ[α] is true if and only if every inconsistent subset Φ′ of Φ of size k + 1
has itself an inconsistent subset of size 2.

(⇒) Assume that there exists an inconsistent subset Φ′ of Φ of size k + 1 that has itself
no inconsistent subset of size 2. It is straightforward to see that for no ϕ ∈ Φ, Φ′ contains
both ϕ and ∼ϕ. If Φ′ does not contain (ψ ∧ z), we can easily satisfy Φ′ by setting z to
false and satisfying all literals in Φ′. Therefore, (ψ ∧ z) ∈ Φ′. We show that Φ′ contains
exactly k positive literals xj for some j ∈ [m]. We proceed indirectly, and assume
the contrary, i.e., that Φ′ contains at most k − 1 positive literals xj for some j ∈ [m].
Let L = Φ′ ∩X. Consider the assignment α : X → B such that α(x) = 1 if and only
if x ∈ Φ. Clearly, α has weight strictly less than k. Therefore, we know that there
exists an assignment β : Y → B such that α ∪ β satisfies ψ. Additionally, consider the
assignment γ : {z} → B such that γ(z) = 1. Then α∪β∪γ satisfies Φ′, which contradicts
our assumption that Φ′ is inconsistent. From this we can conclude that |Φ′ ∩X| = k.

Now, again consider the assignment α : X → B such that α(x) = 1 if and only if x ∈ Φ.
Clearly, α has weight k. We show that the formula ∃Y.ψ[α] is false. We proceed
indirectly, and assume that there exists an assignment β : Y → B such that α ∪ β
satisfies ψ. Consider the assignment γ : {z} → B such that γ(z) = 1. It is straightforward
to verify that α∪β∪γ satisfies Φ′, which contradicts our assumption that Φ′ is inconsistent.
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Therefore, we conclude that ∃Y.ψ[α] is false, and thus that it is not the case that for all
assignments α : X → B of weight k it is the case that ∃Y.ψ[α] is true.

(⇐) Assume that there exists an assignment α : X → B of weight k such that ¬∃Y.ψ[α]
is true. Let L = {xi : i ∈ [n], α(xi) = 1 }. Consider the subagenda Φ′ = L ∪ {(ψ ∧ z)}.
We show that Φ′ is inconsistent. We proceed indirectly, and assume that there exists an
assignment β : X ∪ Y ∪ {z} → B that satisfies Φ′. Clearly, β(xi) = 1 for all xi ∈ L. We
show that β(x) = 0 for all x ∈ X\L. We proceed indirectly, and assume the contrary,
i.e., β(x) = 1 for some x ∈ X\L. Then the restriction of β to the variables in X has
weight m > k. Therefore, since for all assignments β′ : X → {0, 1 } of weight strictly
larger than k the formula ∃Y.ψ[β′] is false, we know that β does not satisfy ψ. From this
we can conclude that β(x) = 0 for all x ∈ X\L. We then know that the restriction β|X
of β to the variables in X has weigth k. Also, since (ψ∧z) ∈ Φ, we know that β satisfies ψ.
This is a contradiction with our assumption that ¬∃Y.ψ[β|X ] is true. Therefore, we know
that β cannot exist, and thus that Φ′ is inconsistent.

We now show that each subset Φ′′ of Φ′ of size 2 is consistent. Let Φ′′ ⊆ Φ′ be an arbitrary
subset of size 2. We distinguish two cases: either (i) Φ′′ = {xi, xj} for some i, j ∈ [n]
with i < j, or (ii) Φ′′ = {xi, (ψ ∧ z)} for some i ∈ [n]. In case (i), clearly Φ′′ is consistent.
In case (ii), we get that Φ′′ is consistent by the fact that for every assignment α : X → B
of weight m < k the formula ∃Y.ψ[α] is true. This completes our proof that Φ′ does not
satisfy the median property.

Intuitively, restricting attention to counterexamples of size k, still leaves a search space
of O(nk) possible counterexamples (where n is the input size). Moreover, since there is
no restriction on the agenda, searching this space for a counterexample (or verifying that
no such counterexample exists) is computationally hard.

11.3 Computing Outcomes for the Kemeny Rule

In this section, we will study the parameterized complexity of computing an outcome of
the Kemeny judgment aggregation procedure. We investigate this problem both for the
formula-based judgment aggregation framework and for the constraint-based judgment
aggregation framework. In both settings, this problem is Θp

2-complete [75, 102, 141].

We consider a number of natural parameters for this problem—capturing various aspects
of the problem input that can reasonably be expected to be small in some applications—
and we give a complete parameterized complexity classification for the problem of
computing the outcome of the Kemeny rule, for every combination of these parameters.
The parameters that we consider are:

• the number n of issues that the individuals (and the group) form an opinion on;

• the maximum size m of formulas used to represent the issues;
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• the size c of the integrity constraint used to limit the set of feasible opinions;

• the number p of individuals; and

• the maximum (Hamming) distance h between any two individual opinions.

For the formula-based judgment aggregation framework, we will study the following
formalization fb-Outcome-Kemeny of the problem of computing an outcome for the
Kemeny rule. Any algorithm that solves fb-Outcome-Kemeny can be used to construct
some J∗ ∈ Kemeny(J), with polynomial overhead, by iteratively calling the algorithm and
adding formulas to the set L. Moreover, multiple outcomes J∗1 , J∗2 , . . . can be constructed
by adding previously found outcomes as the sets Li.

fb-Outcome-Kemeny
Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+ and
subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆ J∗
for each i ∈ [u]?

The parameters that we consider for the problem fb-Outcome-Kemeny are defined
straightforwardly. For an instance (Φ,Γ,J , L, L1, . . . , Lu) of fb-Outcome-Kemeny
with J = (J1, . . . , Jp), we let n = |[Φ]|, m = max{ |ϕ| : ϕ ∈ [Φ] }, c = |Γ|, p = |J |,
and h = max{ d(Ji, Ji′) : i, i′ ∈ [p] }.

For the constraint-based judgment aggregation framework, we will study the fol-
lowing problem formalization cb-Outcome-Kemeny. Similarly to algorithms for
fb-Outcome-Kemeny, algorithms that solve cb-Outcome-Kemeny can be used to
construct multiple outcomes subsequently.

cb-Outcome-Kemeny
Instance: A set I of issues with an integrity constraint Γ, a profile r ∈ R(I,Γ)+

and partial ballots l, l1, . . . , lu (for I), with u ≥ 0.
Question: Is there a ballot r∗ ∈ Kemeny(r) such that l agrees with r∗ and each li
does not agree with r∗?

We define the parameters that we consider for cb-Outcome-Kemeny as follows. For
an instance (I,Γ, r, l, l1, . . . , lu) of cb-Outcome-Kemeny with r = (r1, . . . , rp), we
let n = |I|, c = |Γ|, p = |r|, and h = max{ d(ri, ri′) : i, i′ ∈ [p] }. We remark that
the parameter m does not make sense in the constraint-based framework, as issues are
not represented by a logic formula. When needed, the parameter m for cb-Outcome-
Kemeny is defined by letting m = 1.

For the framework of formula-based judgment aggregation, we give a tight classification for
each possible case. In particular, we show the following. When parameterized by any set
of parameters that includes c, n and m, the problem is fixed-parameter tractable (Proposi-
tion 140). Otherwise, when parameterized by any set of parameters that includes either n
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or both h and p, the problem is FPTNP[few]-complete (Propositions 138, 139, 145, 146
and 147). For all remaining cases, the problem is para-Θp

2-complete (Corollary 143 and
Proposition 144).

For the framework of constraint-based judgment aggregation, we show the following results.
When parameterized by any set of parameters that includes either c or n, the problem is
fixed-parameter tractable (Propositions 148 and 149). Otherwise, when parameterized
by any set of parameters that includes h, the problem is W[SAT]-hard and is in XP
(Propositions 150 and 151). For all remaining cases, the problem is para-Θp

2-complete
(Proposition 152).

The results for the formula-based judgment aggregation framework are summarized
in Table 11.2, and the results for the constraint-based framework are summarized in
Table 11.3.

The remainder of this section is organized as follows. We develop upper and lower bounds
for the parameterized variants of fb-Outcome-Kemeny in Sections 11.3.1, and 11.3.2,
respectively, and we develop upper and lower bounds for the parameterized variants
of cb-Outcome-Kemeny in Sections 11.3.3, and 11.3.4, respectively. Then, in Sec-
tion 11.3.5, we provide a short overview of the parameterize complexity of fb-Outcome-
Kemeny and cb-Outcome-Kemeny for all possible combinations of the parameters
that we considered for these two problems.

11.3.1 Upper Bounds for the Formula-Based Framework

We begin with showing upper bounds for fb-Outcome-Kemeny. When parameterized
either (i) by both h and p or (ii) by n, the problem is in FPTNP[few].

Proposition 138. fb-Outcome-Kemeny parameterized by h and p is in FPTNP[few].

Proof. The main idea behind this proof is that with these parameters, we can derive
a suitable upper bound on the minimum distance of any complete and Γ-consistent
judgment set to the profile J , such that the usual binary search algorithm with access to
an NP oracle only needs to make O(log h+ log p) oracle queries.

We describe an algorithm A that solves fb-Outcome-Kemeny with the required number
of oracle queries. Let (Φ,Γ,J , L, L1, . . . , Lu) be an instance. The algorithm needs to
determine the minimum distance d(J,J) for any complete and Γ-consistent judgment
set J to the profile J . Let d∗ denote this minimum distance. An upper bound on d∗ is
given by h(p− 1). This upper bound can be derived as follows. Take an arbitrary J ∈ J .
Clearly d(J, J) = 0, and for every J ′ ∈ J with J 6= J ′ we know that d(J, J ′) ≤ h.
Therefore, d(J,J) ≤ h(p− 1). Since J ∈ J , we know that J is complete and Γ-consistent.
Therefore, the minimum distance of any complete and Γ-consistent judgment set to the
profile J is at most h(p− 1).

The algorithm A firstly computes d∗. Since d∗ ≤ h(p − 1), with binary search this
can be done using at most dlog h(p − 1)e = O(log h + log p) queries to an oracle—the
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oracle decides for a given value d0 whether there exists a complete and Γ-consistent
judgment set J with d(J,J) ≤ d0. Then, with a single additional oracle query, the
algorithm A determines whether there exists a complete and Γ-consistent judgment
set J∗ with d(J∗,J) = d∗, L ⊆ J∗, and Lj 6⊆ J∗ for each j ∈ [u].

When parameterized by the number n of formulas in the pre-agenda, the number of
possible judgment sets is bounded by a function of the parameter. This allows the
problem to be solved in fixed-parameter tractable time, using a single query to an NP
oracle for each judgment set to determine whether it it Γ-consistent.

Proposition 139. fb-Outcome-Kemeny parameterized by n is in FPTNP[few].

Proof. The main idea behind this proof is that the number of possible judgment sets is
bounded by the parameter, that is, there are only 2n possible complete judgment sets.
We describe an algorithm A that solves the problem in fixed-parameter tractable time
by querying an NP oracle at most 2n times. Let (Φ,Γ,J , L, L1, . . . , Lu) be an instance.
Firstly, the algorithm A enumerates all possible complete judgment sets J1, . . . , J2n ⊆ Φ.
Then, for each such set Ji, the algorithm uses the NP oracle to determine whether Ji is
Γ-consistent. Each judgment set Ji that is not Γ-consistent, is discarded. This can be
done straightforwardly using 2n calls to the NP oracle—one for each set Ji. (The number
of oracle calls that are needed can be improved to O(n) by using binary search on the
number of Γ-consistent sets Ji.)

Then, for each of the remaining (Γ-consistent) judgment sets Ji, the algorithm A computes
the cumulative Hamming distance d(Ji,J) to the profile J . This can be done in polynomial
time. Then, those Ji for which this distance is not minimal—that is, those Ji for which
there exists some Ji′ such that d(Ji′ ,J) < d(Ji,J)—are discarded as well. The remaining
judgment sets Ji then are exactly the complete and Γ-consistent judgment sets with a
minimum distance to the profile J .

Finally, the algorithm goes over each of these remaining sets Ji, and checks whether L ⊆ Ji
and Lj 6⊆ Ji for all j ∈ [u]. This can clearly be done in polynomial time. If this check
succeeds for some Ji, the algorithm A accepts the input, and otherwise, the algorithm
rejects the input.

When additionally parameterizing by c and m, Γ-consistency of the judgment sets can
be decided in fixed-parameter tractable time, and thus the whole problem becomes
fixed-parameter tractable.

Proposition 140. fb-Outcome-Kemeny parameterized by c, n and m is fixed-
parameter tractable.

Proof. We describe an fpt-algorithm A that solves the problem.
Let (Φ,Γ,J , L, L1, . . . , Lu) be an instance. The algorithm A works exactly in
the same way as the algorithm in the proof of Proposition 139. The only difference is
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that in order to check whether a given judgment set Ji is Γ-consistent, it does not need
to make an oracle query. Determining whether a given judgment set Ji is Γ-consistent
can be done in a brute-force fashion (e.g., using truth tables) in time 2c+nm · |Ji|, since
there are at most c+ nm propositional variables involved. Therefore, the algorithm runs
in fixed-parameter tractable time.

11.3.2 Lower Bounds for the Formula-Based Framework

Next, we turn to parameterized hardness results for the problem fb-Outcome-Kemeny.
We begin with showing that the problem is para-Θp

2-hard even when parameterized
by c, h and m. We will use the following lemma.

Lemma 141. Let ϕ be a propositional formula on the variables x1, . . . , xn. In polynomial
time we can construct a propositional formula ϕ′ with Var(ϕ′) ⊇ Var(ϕ) ∪ {z1, . . . , zn}
such that for every truth assignment α : Var(ϕ)→ B it holds that (1) ϕ[α] is true if and
only if ϕ′[α] is satisfiable, and (2) if α sets exactly i variables to true, then ϕ′[α] |= zi.

Proof. Let ϕ be a propositional formula on the variables x1, . . . , xn. We construct the
formula ϕ′ as follows. We introduce propositional variables zi,j and zi for each i ∈ [n] and
each j ∈ [i]. Intuitively, the variables zi,j encodes whether among the variables x1, . . . , xi
at least j variables are set to true, and the variables zi encode whether among the
variables x1, . . . , xn exactly i variables are set to true.

We let ϕ′ be a conjunction of several formulas. The first conjunct of ϕ′ is the original
formula ϕ. Then, we add the following conjunct:

z1,1 ↔ x1.

Moreover, for each i ∈ [n] such that i > 1, we add:xi ↔ ∧
j∈[i]

(zi,j ↔ zi−1,j−1)

 ∧
¬xi ↔ ∧

j∈[i]
(zi,j ↔ zi−1,j)

 ,
where for any i ∈ [n], zi,0 abbreviates >. Finally, for each i ∈ [n], we add:

zi ↔ (zn,i ∧ ¬zn,i+1),

where zn,n+1 abbreviates ⊥.

It is straightforward to verify that the formula ϕ′ satisfies the required properties.

Proposition 142. fb-Outcome-Kemeny parameterized by c and h is para-Θp
2-hard.

Proof. We show that fb-Outcome-Kemeny is Θp
2-hard already for a constant value

of the parameters, by giving a reduction from Max-Model. Let (ϕ,w) be an instance
of Max-Model with Var(ϕ) = {x1, . . . , xn} and w = x1. Without loss of generality,
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we may assume that there is a model α of ϕ that sets at least two variables xi to
true. By Lemma 141, we can construct a suitable formula ϕ′ = c1 ∧ · · · ∧ cb with
additional variables z1, . . . , zn that represent a lower bound on the number of variables
among x1, . . . , xn that are true in models of ϕ.

We construct the agenda Φ by letting [Φ] = {zw, z¬w, z1, . . . , zn} ∪ { yw,i, y¬w,i : i ∈
[n+ 1] } ∪ { yi,j : i ∈ [n], j ∈ [i] } ∪ {χ, χ′}, where zw, z¬w and all yw,i, y¬w,i, yi,j are fresh
variables. We let Y = { yw,i, y¬w,i : i ∈ [n+ 1] } ∪ { yi,j : i ∈ [n], j ∈ [i] }. Moreover, we
let χ be such that χ ≡ ¬((

∨
Y ∧

∨
([Φ]\Y ))∨ ((zw ↔ w ↔ ¬z¬w)∧ϕ′)), and we define χ′

such that χ′ ≡ χ (that is, we let χ′ be a syntactic variant of χ).

Then, we construct the profile J as follows. We let J = { Jw,i, J¬w,i : i ∈ [n + 1] } ∪
{ Ji,j : i ∈ [n], j ∈ [i] }. Each of the judgment sets in the profile includes exactly
two formulas in [Φ]. Consequently, the maximum Hamming distance between any
two judgment sets in the profile is 4. For each i ∈ [n + 1], we let {yw,i, zw} ⊆ Jw,i
and {y¬w,i, z¬w} ⊆ J¬w,i. Moreover, for each i ∈ [n] and each j ∈ [i], we let {yi,j , zi} ⊆ Ji,j .
It is straightforward to verify that each J ∈ J is consistent. Finally, we let L = {zw}, Γ =
>, and u = 0.

In other words, all formulas in [Φ] are excluded in a majority of the judgment sets in the
profile J . However, some formulas in [Φ] are included in more judgment sets in the profile
than others. The formulas zw and z¬w are both included in n+ 1 sets. Each formula zi
(for i ∈ [n]) is included in exactly i sets. All formulas in Y are included in exactly one
set. Finally, the formulas χ and χ′ are included in none of the sets. Intuitively, the
formulas that are included in more judgment sets in the profile are cheaper to include in
any candidate outcome J∗.

The complete judgment set that minimizes the cumulative Hamming distance to the
profile J is the set J0 = {¬ψ : ψ ∈ [Φ] } that includes no formulas in [Φ]. However,
this set is inconsistent, which is straightforward to verify using the definition of χ. It
can be made consistent by adding two formulas ψ1, ψ2 from [Φ] (and removing their
complements). The choice of ψ1, ψ2 that leads to a consistent judgment set with minimum
distance to the profile is by letting ψ1 ∈ {zw, z¬w} and letting ψ2 = z`, where ` is the
maximum number of variables among x1, . . . , xn set to true in any model of ϕ. Moreover,
whenever ψ1 = zw, the resulting judgment set is consistent if and only if there is a model
of ϕ that sets ` variables among x1, . . . , xn to true, including the variable w. From this,
we directly know that (ϕ,w) ∈Max-Model if and only if (Φ,Γ,J , L) ∈ fb-Outcome-
Kemeny. This concludes our para-Θp

2-hardness proof.

This hardness result can straightforwardly be extended to the case where all formulas in
the agenda are of constant size, by using the well-known Tseitin transformation [187],
leading to the following corollary.

Corollary 143. fb-Outcome-Kemeny parameterized by c, h and m is para-Θp
2-hard.
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Proof. We can modify the proof of Proposition 142 as follows. We replace the formula ¬χ
(and its syntactic variant ¬χ′) by a 3CNF formula that has the same effect. By using
the standard Tseitin transformation [187], we can transform ¬χ into a 3CNF formula ψ
such that for each truth assignment α : Var(¬χ) → B it holds that ¬χ[α] is true
if and only if ψ[α] is satisfiable. Moreover, we can do this in such a way that the
variables in Var(ψ)\Var(¬χ) are fresh variables. Similarly, we transform ¬χ′ into a
3CNF formula ψ′. Let ψ = c1 ∧ · · · ∧ cb and ψ′ = c′1 ∧ · · · ∧ c′b (we can straightforwardly
ensure that ψ and ψ′ have the same number of clauses). Then, similarly to the proof of
Proposition 142, we let [Φ] = {zw, z¬w, z1, . . . , zn}∪ { yw,i, y¬w,i : i ∈ [n+ 1] }∪ { yi,j : i ∈
[n], j ∈ [i] } ∪ { ci, c′i : i ∈ [b] }. That is, instead of adding χ and χ′ to the agenda, we add
the clauses of ψ and ψ′ as separate formulas to the agenda.

In the proof of Proposition 142, we had that ¬χ,¬χ′ ∈ J for all judgment sets J ∈ J .
Instead, we now ensure that for all J ∈ J , we have ci, c′i ∈ J for all i ∈ [b]. From this, it
follows that the set Kemeny(J) of outcomes is in one-to-one correspondence with the set
of outcomes in the proof of Proposition 142. Moreover, the maximum Hamming distance
between any two judgment sets in the profile J is 4.

The problem is also para-Θp
2-hard when parameterized by c, m and p.

Proposition 144. fb-Outcome-Kemeny parameterized by c, m and p is para-Θp
2-

hard.

Proof. We firstly show para-Θp
2-hardness for the problem parameterized by c and p, by

giving a reduction from Max-Model that uses constant values of c and p. This reduction
can be seen as a modification of the Θp

2-hardness proof for fb-Outcome-Kemeny given
by Endriss and De Haan [76, Proposition 7 and Corollary 8].

Let (ϕ,w) be an instance of Max-Model. We may assume without loss of generality
that ϕ is satisfiable by some truth assignment that sets at least one variable in Var(ϕ) to
true. We construct an instance (Φ,Γ,J , L) of fb-Outcome-Kemeny as follows. Take
an integer b such that b > 3

2 |Var(ϕ)|, e.g., b = 3|Var(ϕ)|+1. Let [Φ] = Var(ϕ)∪{ zi,j : i ∈
[b], j ∈ [3] } ∪ {ϕ′i : i ∈ [b] }, where each of the formulas ϕ′i is a syntactic variant of the
following formula ϕ′. We define ϕ′ = (

∨
j∈[3]

∧
i∈[b] zi,j) ∨ ϕ. Intuitively, the formula ϕ′ is

true either if (i) all variables zi,j are set to true for some j ∈ [3], or if (ii) ϕ is satisfied.
Then we let J = {J1, J2, J3}, where for each j ∈ [3], we let Jj contain the formulas zi,j
for all i ∈ [b], all formulas in Var(ϕ), all the formulas ϕ′i, and no other formulas from [Φ].
(For each ϕ ∈ [Φ], if ϕ 6∈ Jj , we let ¬ϕ ∈ Jj .) Clearly, the judgment sets J1, J2 and J3 are
all complete and consistent. Moreover, we let Γ = >, and L = {w}. It is straightforward
to verify that the parameters c and p have constant values.

We now argue that there is some J∗ ∈ Kemeny(J) with L ⊆ J∗ if and only if (ϕ,w) ∈
Max-Model. To see this, we first observe that the only complete and consistent
judgment sets J for which it holds that d(J,J) < d(Jj ,J) (for any j ∈ [3]) must satisfy
that J |= ϕ. Moreover, among those judgment sets J for which J |= ϕ, the judgment
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sets that minimize the distance to the profile J satisfy that zi,j 6∈ J for all i ∈ [b] and
all j ∈ [3], and ϕ′i ∈ J for all i ∈ [b]. Using these observations, we directly get that there
is some J∗ ∈ Kemeny(J) with L ⊆ J∗ if and only if there is a model of ϕ that sets a
maximal number of variables in Var(ϕ) to true and that sets the variable w to true.

Then, to show that the problem is also para-Θp
2-hard when parameterized by c, m and p,

we can modify the above reduction in a way that is entirely similar to the proof of
Corollary 143, replacing the formulas ϕ′i by the clauses of 3CNF formulas that have the
same effect on the consistency of judgment sets as the formulas ϕ′i.

For all parameterizations that do not include all of the parameters c, n and m, the
problem fb-Outcome-Kemeny is FPTNP[few]-hard. We begin with the case where c
can be unbounded; this proof can be extended straightforwardly to the other two cases.

Proposition 145. fb-Outcome-Kemeny parameterized by h, n, m and p is
FPTNP[few]-hard.

Proof. We show FPTNP[few]-hardness by giving an fpt-reduction from Local-Max-
Model. (This reduction from Local-Max-Model is very similar to the reduction from
Max-Model used in the proof of Proposition 144.) Let (ϕ,X,w) be an instance of
Local-Max-Model, with X = {x1, . . . , xk}. We construct an instance (Φ,Γ,J , L) as
follows. Take an integer b such that b > 3

2 |X|, e.g., let b = 3|X| + 1. We let [Φ] =
X ∪ { zi,j : i ∈ [b], j ∈ [3] }. Moreover, we let Γ = ϕ′ = (

∨
j∈[3]

∧
i∈[b] zi,j) ∨ ϕ. Intuitively,

the formula Γ is true either if (i) all variables zi,j are set to true for some j ∈ [3], or
if (ii) ϕ is satisfied. Then we let J = {J1, J2, J3}, where for each j ∈ [3], we let Jj
contain the formulas zi,j for all i ∈ [b], and all formulas in X, and no other formulas
in [Φ]. (For each ϕ ∈ [Φ], if ϕ 6∈ Jj , we let ¬ϕ ∈ Jj .) Clearly, the judgment sets J1, J2
and J3 are all complete and Γ-consistent. Finally, we let L = {w}. It is easy to verify
that h = 2b = 6k + 2 and n = 3b + k = 10k + 3, where k = |X|, and that m and p
are constant. Therefore, all parameter values are bounded by a function of the original
parameter k.

We now argue that there is some J∗ ∈ Kemeny(J) with L ⊆ J∗ if and only if (ϕ,X,w) ∈
Local-Max-Model. The argument for this conclusion is similar to the argument used
in the proof of Proposition 144. We first observe that the only complete and consistent
judgment sets J for which it holds that d(J,J) < d(Jj ,J) (for any j ∈ [3]) must satisfy
that J |= ϕ. Moreover, among those judgment sets J for which J |= ϕ, the judgment
sets that minimize the distance to the profile J satisfy that zi,j 6∈ J for all i ∈ [b] and
all j ∈ [3]. Using these observations, we directly get that there is some J∗ ∈ Kemeny(J)
with L ⊆ J∗ if and only if there is a model of ϕ that sets a maximal number of variables
in X to true and that sets the variable w to true.

Proposition 146. fb-Outcome-Kemeny parameterized by c, h, n and p is
FPTNP[few]-hard.
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Proof. We can show FPTNP[few]-hardness by modifying the reduction from Local-Max-
Model used in the proof of Proposition 145. Rather than using the formula ϕ′ as the
integrity constraint Γ, we let Γ = >, and we add b syntactic variants ϕ′1, . . . , ϕ′b of ϕ′ (and
their negations) to the agenda Φ—that is, the formulas ϕ′i for i ∈ [b] are all syntactically
different from each other, but for each such formula ϕ′i it holds that ϕ′ ≡ ϕ′i. The
judgment sets J1, J2 and J3 in the profile J all include each of these formulas ϕ′i.

As a result, the parameter value h remains the same. The value of the parameter p
remains a constant, and the value of the parameter n increases only by b, so it remains
bounded by a function of the original parameter k.

It is straightforward to verify that there are enough syntactic variants of the formula ϕ′
in all judgment sets in the profile that for any complete and consistent judgment set J∗
that minimizes the distance to the profile, it must hold that J∗ |= ϕ′. Therefore, we get
that the modified reduction is a correct reduction from Local-Max-Model, and thus
that the problem is FPTNP[few]-hard.

Proposition 147. fb-Outcome-Kemeny parameterized by c, h, m and p is
FPTNP[few]-hard.

Proof. We show FPTNP[few]-hardness by modifying the (already modified) reduction
from Local-Max-Model given in the proof of Proposition 146. In this reduction, the
agenda included a small number of formulas ϕ′i, that were each of unbounded size. By
using the same trick that we used in the proof of Corollary 143, we can use the standard
Tseitin transformation [187] to transform each of these formulas into a 3CNF formula ϕ′′i
that will have the same effect. Then, rather than including ϕ′i in the agenda Φ, we
include all clauses of the formula ϕ′′i in the agenda Φ. Then, in the judgment sets J1, J2
and J3 in the profile J , we also include the clauses of ϕ′′i instead of the single formula ϕ′i,
for all i ∈ [b].

As a result, the number n of formulas in Φ is not bounded by a function of the original
parameter k anymore, but the maximum size m of any formula in the agenda Φ is now
bounded by a constant. Using the arguments used in the proofs of Corollary 143 and
Proposition 146, it is then straightforward to verify the correctness of this modified
reduction.

11.3.3 Upper Bounds for the Constraint-Based Framework

We now turn to showing upper bounds for cb-Outcome-Kemeny. When parameterized
by the number n of issues, the number of possible ballots is bounded by a function of the
parameter. This allows the problem to be solved in fixed-parameter tractable time.

Proposition 148. cb-Outcome-Kemeny parameterized by n is fixed-parameter
tractable.
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Proof. The main idea behind this proof is that the number of possible ballots is bounded
by the parameter, that is, there are only 2n possible (rational) ballots. We describe an algo-
rithm A that solves the problem in fixed-parameter tractable time. Let (I,Γ, r, l, l1, . . . , lu)
be an instance. Firstly, the algorithm A enumerates all possible ballots r1, . . . , r2n ∈ Bn.
Then, for each such ballot ri, the algorithm determines whether ri is rational, by checking
whether Γ[ri] is true. This can be done in polynomial time. Each irrational ballot is
discarded.

Then, for each of the remaining (rational) ballots ri, the algorithm A computes the
cumulative Hamming distance d(ri, r) to the profile r. This can also be done in polynomial
time. Then, those ri for which this distance is not minimal—that is, those ri for which
there exists some ri′ such that d(ri′ , r) < d(ri, r)—are discarded as well. The remaining
ballots ri then are exactly those rational ballots with a minimum distance to the profile r.

Finally, the algorithm goes over each of these remaining ballots ri, and checks whether l
agrees with ri and whether for all j ∈ [u], lj does not agree with ri. If this check succeeds
for some ri, the algorithm A accepts the input, and otherwise, the algorithm rejects the
input.

Since the size c of the integrity constraint is an upper bound on the number of issues
that play a non-trivial role in the problem, this fixed-parameter tractability result easily
extends to the parameter c.

Proposition 149. cb-Outcome-Kemeny parameterized by c is fixed-parameter
tractable.

Proof. Since |Γ| = c, we know that the number of propositional variables in Γ is also
bounded by the parameter c. Take an instance (I,Γ, r, l, l1, . . . , lu). Then, let I ′ =
Var(Γ) ⊆ I be the subset of issues that are mentioned in the integrity constraint Γ.
We know that any outcome r∗ ∈ Kemeny(r) agrees with the majority of ballots in r
on every issue in I\I ′ (in case of a tie, either choice works). Therefore, all that
remains is to determine whether there are suitable choices for the issues in I (to obtain
some r∗ ∈ Kemeny(r) that agrees with l and does not agree with lj for all j ∈ [u]). By
Proposition 148, we know that this is fixed-parameter tractable in |I ′|. Since |I ′| ≤ c, we
get fixed-parameter tractability also for cb-Outcome-Kemeny parameterized by c.

Bounding the maximum Hamming distance h between any two ballots in the profile gives
us membership in XP.

Proposition 150. cb-Outcome-Kemeny parameterized by h is in XP.

Proof. Let (I,Γ, r, l, l1, . . . , lu) be an instance, with r = (r1, . . . , rp). We describe an
algorithm to solve the problem in time O(p · nh · nd), for some constant d. The main
idea behind this algorithm is the fact that each ballot whose Hamming distance to every
ballot in the profile is more than h is irrelevant.

246



11.3. Computing Outcomes for the Kemeny Rule

Take a ballot r such that d(r, ri) > h for each i ∈ [p]. We show that there exists a rational
ballot r′ with d(r′, r) < d(r, r). Take any ballot in the profile, e.g., r′ = r1. Clearly, r′ is
rational. Since d(r, ri) > h for each i ∈ [p], we know that d(r, r) > hp. On the other hand,
for r′ we know that d(r′, ri) ≤ h for each i ∈ [p] (and d(r′, r1) = 0), so d(r′, r) ≤ h(p− 1).
Therefore, d(r′, r) < d(r, r).

We thus know that every rational ballot with minimum distance to the profile lies at
Hamming distance at most h to some ballot ri in the profile r. The algorithm works as
follows. It firstly enumerates all ballots with Hamming distance at most h to some ri ∈ r.
This can be done in time O(p · nh). Then, similarly to the algorithm in the proof of
Proposition 148, it discards those ballots that are not rational, and subsequently discards
those ballots that do not have minimum distance to the profile. Finally, it iterates over
all remaining rational ballots with minimum distance to determine whether there is one
among them that agrees with l and disagrees with each lj .

11.3.4 Lower Bounds for the Constraint-Based Framework

Finally, we show parameterized hardness results for cb-Outcome-Kemeny. When
parameterized by both h and p, the problem is W[SAT]-hard.

Proposition 151. cb-Outcome-Kemeny parameterized by h and p is W[SAT]-hard.

Proof. We give an fpt-reduction from the W[SAT]-complete problem Monotone-
WSat(form). Let (ϕ, k) be an instance of Monotone-WSat(form). We construct
an instance (I,Γ, r, l) of cb-Outcome-Kemeny as follows. We let I = Var(ϕ) ∪ {z} ∪
{ yi,j : i ∈ [3], j ∈ [3k + 3] }. Moreover, we let Γ = (z ∧ ϕ) ∨ (¬z ∧

∨
i∈[3](

∧
j∈[3k+3] yi,j)).

We define r = (r1, r2, r3) as follows. For each ri, we let ri(w) = 0 for all w ∈ {z}∪Var(ϕ).
Moreover, for each ri and each y`,j , we let ri(y`,j) = 1 if and only if ` = i. It is readily
verified that r1, r2 and r3 are all rational. Finally, we let l be the partial assignment for
which l(z) = 1, and that is undefined on all remaining variables. This completes our
construction. Clearly, p = 3. Moreover, h = 6k + 6.

By construction of Γ, the only ballots that are rational—and that can have a smaller
distance to the profile r than the ballots r1, r2 and r3—are those ballots r∗ that
satisfy (z ∧ ϕ). The ballots r1, r2 and r3 have distance 4(3k + 3) = 12k + 12 to the
profile r. Any ballot r∗ that satisfies (z ∧ ϕ) minimizes its distance to r by setting all
variables yi,j to false. Any such ballot r∗ has distance 3(3k+ 3) + 3(w+ 1) = 9k+ 3w+ 12
to the profile r, where w is the number of variables among Var(ϕ) that it sets to true.
Therefore, the distance of such a ballot r∗ to the profile r is smaller than (or equal to)
the distance of r1, r2 and r3 to r if and only if 9k + 3w + 12 ≤ 12k + 12, which is the
case if and only if w ≤ k. From this we can conclude that there is some r∗ ∈ Kemeny(r)
that agrees with l if and only if (ϕ, k) ∈Monotone-WSat(form).

Finally, the proof of Proposition 144 can be modified to work also for the problem
cb-Outcome-Kemeny parameterized by p, showing para-Θp

2-hardness for this case.
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Proposition 152. cb-Outcome-Kemeny parameterized by p is para-Θp
2-hard.

Proof. We modify the Θp
2-hardness reduction used in the proof of Proposition 144 to

work also for the case of cb-Outcome-Kemeny for a constant value of the parameter p.
Instead of adding the formulas ϕ′i to the agenda Φ, as done in the proof of Proposition 144,
we let Γ = ϕ′. The remaining formulas in the agenda Φ were all propositional variables,
and thus we can transform the instance (Φ,Γ,J , L) that we constructed for fb-Outcome-
Kemeny into an instance (I,Γ, r, l), where r and l are constructed entirely analogously
to J and L. Clearly, p = 3. Moreover, by a similar argument to the one that is used
in the proof of Proposition 144, we get that (I,Γ, r, l) ∈ cb-Outcome-Kemeny if and
only if (ϕ,w) ∈Max-Model.

11.3.5 Overview

In Figures 11.4 and 11.5, we provide an overview of the parameterize complexity of
fb-Outcome-Kemeny and cb-Outcome-Kemeny for all possible combinations of the
parameters that we considered for these two problems.

Complexity when parameterized by

in FPT {c, n,m}, {c, h, n,m}, {c, n,m, p}, {c, h, n,m, p}

FPTNP[few]-complete {n}, {c, n}, {h, n}, {h, p}, {n,m}, {n, p}, {c, h, n},
{c, h, p}, {c, n, p}, {h, n,m}, {h, n, p}, {h,m, p},
{n,m, p}, {c, h, n, p}, {c, h,m, p}, {h, n,m, p}

para-Θp
2-complete ∅, {c}, {h}, {m}, {p}, {c, h}, {c,m}, {c, p}, {h,m},

{m, p}, {c, h,m}, {c,m, p}

Table 11.4: Parameterized complexity of fb-Outcome-Kemeny for different sets of
parameters.

Complexity when parameterized by

in FPT {c}, {n}, {c, h}, {c, n}, {c, p}, {h, n}, {n, p}, {c, h, n},
{c, h, p}, {c, n, p}, {h, n, p}, {c, h, n, p}

in XP, W[SAT]-hard {h}, {h, p}
para-Θp

2-complete ∅, {p}

Table 11.5: Parameterized complexity of cb-Outcome-Kemeny for different sets of
parameters.
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Notes
The results in Section 11.2 were shown in a paper that appeared in the proceedings of
COMSOC 2014 [77] and in the proceedings of AAMAS 2015 [78]. The results in Sec-
tion 11.3 were shown in a paper that appeared in the proceedings of COMSOC 2016 [106]
and in the proceedings of ECAI 2016 [107].
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CHAPTER 12
Planning Problems

In this chapter, we continue our parameterized complexity investigation of problems at
higher levels of the Polynomial Hierarchy by investigating various parameterized problems
that arise in the area of planning. In particular, we study several parameterized variants
of natural planning problems that involve uncertainty about the initial state, as well as a
planning problem where one needs to satisfy as many “soft goals” as possible in addition
to satisfying the “hard goal”.

Overview of this chapter We begin in Section 12.1 with explaining the formal
planning framework that we use in this chapter (SAS+ planning). Then, in Section 12.2,
we consider several parameterized problems that are related to planning with uncertainty
in the initial state. We show that the parameterized problems that we consider are
complete for para-NP, para-DP, Σp

2 [k∗] and Σp
2 [∗k,P], respectively.

Finally, in Section 12.3, we consider a parameterized problem that involves an optimization
component. That is, in this problem a plan is sought that optimizes the number of “soft
goals” that are satisfied in addition to the “hard goal.” We show that this problem,
parameterized by the number of soft goals, is FPTNP[few]-complete.

12.1 SAS+ Planning

We begin by describing the framework of SAS+ planning, that we will use in this chapter
(see, e.g., [10]). Let V = {v1, . . . , vn} be a finite set of variables over a finite domain D.
Furthermore, let D+ = D ∪ {u}, where u is a special undefined value not present in D.
Then Dn is the set of total states and (D+)n is the set of partial states over V and D.
Intuitively, a state (d1, . . . , dn) ∈ Dn corresponds to an assignment that assigns to each
variable vi ∈ V the value di ∈ D, and a partial state corresponds to a partial assignment
that assigns a value to some variables vi ∈ V . Clearly, Dn ⊆ (D+)n—that is, each total
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state is also a partial state. Let (d1, . . . , dn) = s ∈ (D+)n be a state. Then the value of a
variable vi in state s is denoted by s[vi] = di.

An SAS+ instance is a tuple P = (V,D,A, I,G) where V is a set of variables, D is a
domain, A is a set of actions, I ∈ Dn is the initial state and G ∈ (D+)n is the (partial) goal
state. Each action a ∈ A has a precondition pre(a) ∈ (D+)n and an effect eff(a) ∈ (D+)n.

We will frequently use the convention that a variable has the value u in a precondi-
tion/effect unless a value is explicitly specified. Furthermore, by a slight abuse of notation,
we denote actions and partial states such as preconditions, effects, and goals as follows.
Let a ∈ A be an action, and let {p1, . . . , pm} ⊆ V be the set of variables that are not
assigned by pre(a) to the value u—that is, { v ∈ V : pre(a)[v] 6= u } = {p1, . . . , pm}.
Moreover, suppose that pre(a)[p1] = d1, . . . , pre(a)[pm] = dm. Then we denote the pre-
condition pre(a) by pre(a) = {p1 7→ d1, . . . , pm 7→ dm}. In particular, if pre(a) is the
partial state such that pre(a)[v] = u for each v ∈ V , we denote pre(a) by ∅. We use a
similar notation for effects. Let a be the action with pre(a) = {p1 7→ d1, . . . , pm 7→ dm}
and eff(a) = {e1 7→ d′1, . . . , e` 7→ d′`}. We then use the notation a : {p1 7→ d1, . . . , pm 7→
dm} → {e1 7→ d′1, . . . , em′ 7→ d′m′} to describe the action a.

Let a ∈ A be an action and s ∈ Dn be a state. Then a is valid in s if for all v ∈ V ,
either pre(a)[v] = s[v] or pre(a)[v] = u. The result of a in s is the state t ∈ Dn defined
as follows. Tor all v ∈ V , t[v] = eff(a)[v] if eff(a)[v] 6= u and t[v] = s[v] otherwise.
Let s0, s` ∈ Dn and let ω = (a1, . . . , a`) be a sequence of actions (of length `). We say
that ω is a plan from s0 to s` if either (i) ω is the empty sequence (and ` = 0, and
thus s0 = s`), or (ii) there are states s1, . . . , s`−1 ∈ Dn such that for each i ∈ [`], ai
is valid in si−1 and si is the result of ai in si−1. A state s ∈ Dn is a goal state if for
all v ∈ V , either G[v] = s[v] or G[v] = u. An action sequence ω is a plan for P if ω is a
plan from I to a goal state.

In planning instances, often so-called conditional effects are permitted as effects [171]. A
conditional effect is of the form s.t, where s, t ∈ (D+)n are partial states. Intuitively, such
a conditional effect ensures that the variable assignment t is only applied if the condition s
is satisfied. When allowing conditional effects, the effect of an action is not a partial
state eff(a) ∈ (D+)n, but a set eff(a) = {s1 .t1, . . . , s` .t`} of conditional effects. (For the
sake of simplicity, we assume that the partial states t1, . . . , t` are non-conflicting—that
is, there exist no v ∈ V and no i1, i2 ∈ [`] with i1 < i2 such that u 6= ti1 [v] 6= ti2 [v] 6= u.)
The result of an action a with eff(a) = {s1 . t1, . . . , s` . t`} in a state s (in which a is
valid) is the state t ∈ Dn that is defined as follows. For all v ∈ V , t[v] = ti[v] if there
exists some i ∈ [`] such that si is satisfied in s and ti[v] 6= u, and t[v] = s[v] otherwise.

12.2 Planning with Uncertainty

In this section, we consider various parameterized problems that involve planning with
uncertainty in the initial state. We start our analysis with the problem of deciding
whether there exists a plan that works for all possible initial states, where the plan length
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is polynomially bounded in the input size. The unparameterized variant of this problem
is known to be Σp

2-complete [12].

In this setting, in addition to the variables V , we consider a set Vu of n′ variables.
Intuitively, the value of the variables in Vu in the initial state is unknown. The question
is whether there exists an action sequence ω such that for each state I0 ∈ Dn+n′ that
extends I—that is, I0[v] = I[v] for each v ∈ V—it holds that ω is a plan for the SAS+

instance (V ∪ Vu, D,A, I0, G).

Concretely, we consider the following parameterized problem:

Polynomial-Planning(uncertainty)
Instance: A planning instance P = (V, Vu, D,A, I,G) containing additional vari-
ables Vu that are unknown in the initial state, i.e., for all v ∈ Vu it holds
that I(v) = u.
Parameter: |Vu|+ |D|.
Question: Is there a plan of polynomial length for P that works for all complete
initial states I0, i.e., for each possible way of completing I with a combination of
values for variables in Vu?

Intuitively, the problem Polynomial-Planning(uncertainty) involves finding a plan of
polynomial length that works regardless of the values of the unknown variables in the
initial state. We show that this problem is para-NP-complete.

Proposition 153. Polynomial-Planning(uncertainty) is para-NP-complete.

Proof. The basic idea behind the proof of membership in para-NP is that we can
enumerate all possible (complete) initial states I0 in fixed-parameter tractable time. Let n
be the input size andm = p(n) be a bound on the plan length where p is a polynomial that
bounds the plan length. To show membership, recall that classical (SAS+) planning is NP-
complete if an explicit upper bound m on the plan length is given (in unary). Thus, for a
classical planning instance P we can construct a propositional formula ϕ[P] in polynomial
time that is satisfiable if and only if there is a plan of length at most m for P. This
formula ϕ[P] contains (among others) variables VA that encode the choice of actions in the
plan. Due to the uncertainty in the initial state in Polynomial-Planning(uncertainty),
there is not a single initial state, but rather a set I of initial states of cardinality |D||Vu|.
Now let P′ be an instance of Polynomial-Planning(uncertainty) and I0 ∈ I. Then,
let P′(I0) denote the classical planning instance obtained by instantiating the unknown
variables in P′ with the values of the corresponding variables in I0. To show membership,
we construct the formula ψ =

∧
I0∈I ϕ[P′(I0)] that consists of conjuncts that are variable-

disjoint (with exception of the variables VA, that are shared among all formulas ϕ[P′(I0)]).
Then, ψ is satisfiable if and only if P′ is a yes-instance.

Hardness for para-NP follows from a proof by Kronegger, Pfandler, and Pichler [139,
Theorem 11], that shows NP-hardness for the problem even when Vu = ∅ and |D| = 2.
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The next problem that we consider is also related to planning with uncertainty in the
initial state. We consider the same setting, where we have additional variables Vu whose
value in the initial state is unknown. The crucial difference is that we ask whether an
action a0 is essential for achieving the goal. That is, the question is whether the goal can
be reached within the required number of steps (with a single plan that works for each
possible complete initial state) when the action a0 is available, and cannot be reached
(with a single plan for all initial states) when a0 is not available. Concretely, we consider
the following parameterized problem.

Polynomial-Planning-Essential-Action(uncertainty)
Instance: A planning instance P = (V, Vu, D,A, I,G) with unknown variables Vu.
Parameter: |Vu|+ |D|.
Question: Is there a plan of polynomial length for P that uses a0 and works for all
complete initial states I0, but there is no such plan for P without using a0?

We show that this problem is para-DP-complete.

Proposition 154. Polynomial-Planning-Essential-Action(uncertainty) is
para-DP-complete.

Proof. To establish hardness, we will show that we can encode an instance of the DP-
complete problem SAT-UNSAT into an instance of Polynomial-Planning-Essential-
Action(uncertainty) with Vu = ∅ and |D| = 2. Let (ϕ,ψ) be a SAT-UNSAT instance.
Recall that deciding whether a given planning instance has a plan of length at most m
(where m is given in unary) is NP-complete. Moreover, NP-hardness holds even for
the case where D = Dbin = B. Therefore, there are two planning instances Pϕ =
(Vϕ, Vu, Dbin, Aϕ, Iϕ, Gϕ) and Pψ = (Vψ, Vu, Dbin, Aψ, Iψ, Gψ) with Vu = ∅ and with
disjoint variables and actions, such that Pϕ (respectively, Pψ) has a plan of polynomial
length if and only if ϕ (respectively, ψ) is satisfiable. We then use the action a0 to verify
that Pψ has indeed no plan.

From Pψ we construct an instance P′ψ as follows: Let the set A′ψ = Aψ ∪ {a0 : ∅ → Gψ}
of actions be defined by adding to Aψ an additional action a0 with empty precondition
that immediately fulfills the goal Gψ. Further, let P′ψ = (Vψ, Vu, Dbin, A

′
ψ, Iψ, Gψ). We

now combine Pϕ and P′ψ to a single planning instance P∗. Notice that this can always be
done as the instances are disjoint (they share only the domain Dbin). The instance of
Polynomial-Planning-Essential-Action(uncertainty) is then given by (P∗, a0). It
is now easy to verify that ϕ is satisfiable and ψ is unsatisfiable if and only if there is a
plan for P∗ that uses a0 and there is no plan for P∗ that does not use a0.

We show membership in para-DP by giving a reduction to SAT-UNSAT. Let (P, a0)
be an instance of Polynomial-Planning-Essential-Action(uncertainty), where P =
(V, Vu, D,A, I,G), and let m be a bound on the plan length that is polynomial in the
input size. Without loss of generality, we assume that 0, 1 ∈ D. We have to check whether
there is a plan that uses a0 and that there is no plan without using a0. Recall from the
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proof of Theorem 153 that we can construct in fpt-time for an arbitrary instance P of
Polynomial-Planning(uncertainty) a propositional formula ϕ[P] that is satisfiable if
and only if P is a yes-instance.

For the case where action a0 is available, we simply consider the instance P. Moreover,
we consider the propositional formula ϕ[P], that is satisfiable if and only if P has a plan.
Then, for the case where a0 is not available, we consider the instance P′ that is obtained
from P by removing the action a0 from A. Similarly, we consider the propositional
formula ϕ[P′]. The instance of SAT-UNSAT is then given by (ϕ[P], ϕ[P′]). Then it holds
that (ϕ[P′], ϕ[P′′]) ∈ SAT-UNSAT if and only if there is a plan (of length at most m)
that uses action a0, and that there is no plan (of length at most m) without using
action a0.

In the next parameterized problem that we investigate, we take the plan length as
parameter. Concretely, we consider the following parameterized problem.

Bounded-Uncertain-Planning
Instance: A planning instance P = (V, Vu, D,A, I,G) with unknown variables Vu,
and an integer k.
Parameter: k.
Question: Is there a plan of length k for P that works for all complete initial
states I0?

We show that this problem is Σp
2 [k∗]-complete.

Proposition 155. Bounded-Uncertain-Planning is Σp
2 [k∗]-complete.

Proof. For membership in Σp
2 [k∗], we use the encoding of Rintanen [173] into QSat2

for planning instances with uncertainty in the initial state and a binary domain. In
this encoding, a QBF of the form ∃X.∀Y.ψ (with ψ quantifier-free) is constructed,
that is satisfiable if and only if there is a plan whose length is bounded by a given
integer. Moreover, X only contains variables representing actions. Furthermore, for truth
assignment α : X → B such that ∀Y.ψ[α] is true, the weight of α is equal to the plan
length. The encoding of Rintanen assumes a binary domain. Here, we consider planning
instances with an arbitrarily large domain. This reduction can straightforwardly be
modified to work also for larger domains. Therefore, this allows us to reduce the problem
to Σp

2 [k∗]-WSat.

To show Σp
2 [k∗]-hardness, we give an fpt-reduction from Σp

2 [k∗]-WSat(3DNF). In this re-
duction, we will make use of conditional effects. Let (ϕ, k) be an instance of Σp

2 [k∗]-WSat-
(3DNF), where k is an integer, ϕ = ∃X.∀Y.ψ, and ψ =

∨
i∈[m]

∧
j∈[3] li,j is a 3DNF formula

over X ∪ Y . We construct an instance P = (V, Vu, D,A, I,G) as follows. The variables of
the planning instance P are V = X∪{c1, . . . , ck}∪{e, g}. For every v ∈ X and i ∈ [k], we
introduce an action aiv : {v 7→ 0, ci 7→ 0, e 7→ 0} → {v 7→ 1, ci 7→ 1}. Furthermore, we in-
troduce two additional actions: ae : {c1 7→ 1, . . . , ck 7→ 1} → {e 7→ 1}, and ag : {e 7→ 1} →
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{
{l1,1 7→ 1, l1,2 7→ 1, l1,3 7→ 1} . {g 7→ 1}, . . . , {lm,1 7→ 1, lm,2 7→ 1, lm,3 7→ 1} . {g 7→ 1}

}
.

The set of actions A is then given by A = { aiv : v ∈ X, i ∈ [k] } ∪ {ae, ag}. Moreover, we
let Vu = Y , D = B, I = 0|V | and G = {g 7→ 1}.

The intuition of this encoding is to first guess an assignment α of weight k using k distinct
actions aiv, then to fix this assignment using action ae and finally to evaluate α according
to φ with the action ag. It is straightforward to check that (φ, k) is a yes-instance
of Σp

2 [k∗]-WSat(3DNF) if and only if there is a plan of length k′ = k + 2 for P that
works for all possible (complete) initial states.

For the final parameterized problem that we consider, the parameter captures the
extent to which the unknown variables can deviate from their default values. Let P =
(V, Vu, D,A, I,G) be a planning instance with unknown variables Vu. Without loss of
generality, we assume that 0 ∈ D. We call 0 the base value for the variables in Vu. The
parameter specifies an upper bound on the maximum number of unknown variables that
deviate from this base value. Intuitively, in this setting, there can be many unknown
variables, yet we only need to consider cases where few of them have unexpected values.
That is, we consider initial states I0 ∈ Dn+n′ that extend I and for which there are at
most d variables in Vu such that I0[d] 6= 0. The question is then whether there exists
an action sequence ω such that for each such state I0 it holds that ω is a plan for the
SAS+ instance (V ∪ Vu, D,A, I0, G). Concretely, we consider the following parameterized
problem.

Polynomial-Planning(bounded-deviation)
Instance: A planning instance P = (V, Vu, D,A, I,G) with unknown variables Vu,
and an integer d.
Parameter: d.
Question: Is there a plan of polynomial length for P that works for each complete
initial state I0 where at most d unknown variables deviate from the base value?

We show that this problem is Σp
2 [∗k,P]-complete.

Proposition 156. The problem Polynomial-Planning(bounded-deviation) is
Σp

2 [∗k,P]-complete.

Proof. To show membership in Σp
2 [∗k,P], we describe an algorithm to solve the prob-

lem that can be implemented by an Σp
2 [∗k,P]-machine. The algorithm first guesses a

sequence ω of m actions from A using m log |A| (binary) non-deterministic choices in the
existential phase of the computation. Then, in the universal phase, it verifies whether
this plan works for all cases where k of the unknown variables deviate from the base
value in the initial state. Each such initial state can be specified using k log (|Vu| · |D|)
non-deterministic choices (in the universal phase), and for any such initial state I, check-
ing whether the ω reaches a goal state from I can be done in polynomial time. This
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algorithm is correct and can be implemented by an Σp
2 [∗k,P]-machine. Therefore, by

Proposition 54, membership in Σp
2 [∗k,P] follows.

To show Σp
2 [∗k,P]-hardness, we give an fpt-reduction from Σp

2 [∗k]-WSat(circ). Intu-
itively, in this reduction, we will emulate the evaluation of the circuit by a planning
problem. Here, the goal is to set the output gate to true and the unknown variables are
used to model the universally quantified variables of the circuit. With help of the actions,
we sequentially evaluate the output of the gates in a fixed order to finally compute the
value of the output gate of the circuit. Recall that an instance of Σp

2 [∗k]-WSat(circ)
consists of a Boolean circuit C over two sets of disjoint input variables X and Y , and an
integer k. The question is whether there is an assignment α to the variables in X such
that for any assignment β to the variables in Y of weight k, the circuit C is satisfied
by α ∪ β.

Since a circuit can be seen as an acyclic directed graph, we may assume that the
gates g1, . . . , gm are numbered in such a way that for each gate gi, its inputs gj1 , . . . , gj`
are numbered in such a way that j1, . . . , j` < i. This numbering gives a natural ordering
of the gates, which ensures that all input values for a gate are already computed if the
output value is to be determined. We create the set L = {l1, . . . , lm} of variables. Then,
we introduce a new variable f and the action af : {f 7→ 0} → {f 7→ 1}. Furthermore, for
each variable x ∈ X, we create the action ax : {f 7→ 0} → {x 7→ 1}. For each gate gi, we
create an action agi , where:

pre(agi) = {f 7→ 1, li−1 7→ 1}
eff(agi) = {li 7→ 1} ∪ Γgi

Here Γgi depends on the type of gate gi and is obtained as follows. For each gate gi
we introduce the variable o(gi), representing the unnegated output of gate gi. Let the
unnegated input gates of gate g be g′1, . . . , g′p, and the negated ones be g′′1 , . . . , g′′l . To
simplify the presentation, we assume that each variable in Y is also represented by a
gate g, whose output is represented as o(g). If g is an ∧-gate we define:

Γgi =
{
{o(g′1) 7→ 1, . . . , o(g′p) 7→ 1, o(g′′1) 7→ 0, . . . , o(g′′l ) 7→ 0} . {o(g) 7→ 1}

}
If g is an ∨-gate, Γgi is defined analogously. Notice that the effects in the set Γgi
are conditional. Intuitively, executing the actions ag1 , . . . , agm in order corresponds to
evaluating the circuit using the given values for the variables in X and Y . Moreover,
executing these actions is the only way to set o(go) to 1, where go is the output gate of C.

To put things together, we set V = X ∪L∪{f}∪{ o(g) : g is a gate in C }, Vu = Y , A =
{af}∪{ ax : x ∈ X }∪{ ag : g is a gate in C }, I(v) = 0 for each v ∈ V , G = {o(go) 7→ 1},
where go is the output gate of C, and d = k. Moreover, we let m+ |X| the upper bound
on the plan length. Verifying the correctness of this reduction is straightforward.
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12.3 Soft Goal Optimization

In this section, we investigate a parameterized problem that involves an optimization
component. We consider planning instances that have two different types of goals: (1) a
hard goal Gh that needs to be satisfied in each solution, and (2) a soft goal Gs, for
which the number of satisfied variables needs to be maximized. We call a plan optimal
with respect to some given bound m on the plan length if it satisfies Gh and there does
not exist another plan with length at most m that satisfies Gh and that satisfies more
variables according to the soft goal Gs. We analyze the problem of finding an optimal
plan given a planning instance P = (V,D,A, I,Gh, Gs) and a bound m on the plan length,
parameterized by |Gs| = |{ v ∈ V : Gs(v) 6= u}|.

In general, finding an optimal plan for P given a boundm on the plan length in polynomial
time requires O(log |P|) SAT queries. We can find such a plan by performing binary
search on the number of fulfilled variables in the soft goal, asking whether at most `
variables in the soft goal can be fulfilled. We show that we can restrict the number of
SAT queries to a function of the number |Gs| of variables in the soft goal. In particular,
we show that planning with soft goals can be solved in fixed-parameter tractable time
using dlog |Gs|e SAT queries.

Proposition 157. Let P = (V,D,A, I,Gh, Gs) be a planning instance with a hard
goal Gh and a soft goal Gs, and let m be an integer that is polynomial in the input size.
Then finding a plan of length at most m that is optimal for P with respect to m (if it
exists) can be done in fpt-time using dlog |Gs|e SAT queries.

Proof (sketch). The problem of deciding whether there is a plan of length at most k that
reaches some state s′ satisfying the hard goal Gh and that agrees with the soft goal Gs
on at least u variables is in NP. Namely, one can guess such a plan, and verify whether
it satisfies the requirements. Therefore, any instance of this problem can be encoded into
an instance of SAT in polynomial time. Moreover, from a satisfying assignment (if one
exists) for such a SAT instance, we can extract in polynomial time a plan that satisfies
the requirements. Then we can find the maximum number u of variables contained in
the soft goal that can be fulfilled using dlog |Gs|e SAT queries, by using binary search.
Moreover, using the satisfying assignments that are given by the SAT solver, we can find
a plan that is optimal for P with respect to length m.

Secondly, we prove that the number of required SAT queries cannot be bounded by a
constant. In order to show that we cannot find such an optimal plan in fixed-parameter
tractable time using a constant number of SAT queries, we consider the following
parameterized decision problem.
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Polynomial-Optimization-Planning(#soft.goals)
Instance: A planning instance P = (V,D,A, I,Gh, Gs) with a hard goal Gh and a
soft goal Gs, and an integer m.
Parameter: |Gs|.
Question: Does there exist a plan of length at mostm that is optimal for P (w.r.t.m),
and that satisfies an odd number of variables of the soft goal?

We show that this problem is complete for the class FPTNP[few]. It then follows from
Proposition 76 that we cannot find an optimal plan in fpt-time using a constant number
of SAT queries, unless the Polynomial Hierarchy collapses.

Proposition 158. The problem Polynomial-Optimization-Planning(#soft.goals)
is FPTNP[few]-complete.

Proof (sketch). Membership in FPTNP[few] follows directly from Proposition 157. To
show hardness, we give an fpt-reduction from the problem Odd-Local-Max-Model.
Let (ϕ,X) specify an instance of Odd-Local-Max-Model. We may assume without
loss of generality that ϕ is in CNF. Let u be the number of clauses of ϕ. We construct
a planning instance P = (V,D,A, I,Gh, Gs), with a hard goal Gh and a soft goal Gs,
and an integer m bounding the plan length as follows. We let V = Var(ϕ) ∪ { zx : x ∈
Var(ϕ) } ∪ { yδ : δ is a clause of ϕ }, and D = B. For each variable x ∈ Var(ϕ), we
introduce two actions: ax0 : ∅ → {x 7→ 0, zx 7→ 1} and ax1 : ∅ → {x 7→ 1, zx 7→ 1}.
Moreover, for each clause δ in ϕ and each literal l in δ, we introduce an action aδl
whose precondition requires all variables zx to have value 1 and requires the variable
of l to be set in such a way that δ is satisfied, and whose effect ensures that yδ is
set to 1. We let I(v) = 0 for all v ∈ V , Gh = { yδ 7→ 1 : δ is a clause of ϕ }, and
Gs = {x 7→ 1 : x ∈ X }. Finally, we let m = |Var(ϕ)|+ u.

The intuition behind this reduction is that the actions axi can be used to enforce a truth
assignment over the variables in Var(ϕ), and that the actions aδl can be used to check that
such a truth assignment satisfies all clauses δ of ϕ. It is straightforward to verify that
those plans consisting of m actions—an action axi (for some i ∈ B) for each x ∈ Var(ϕ),
and an action aδl (for some l ∈ δ) for each δ ∈ ϕ—correspond to truth assignments
over Var(ϕ) that satisfy ϕ. Moreover, only plans of this form can satisfy the hard goal.
Then, finding such a plan that maximizes the number of fulfilled variables in the soft
goal corresponds to a satisfying truth assignment that maximizes the number of satisfied
variables in X. From this, the correctness of the reduction follows.

Notes
The results in this chapter appeared in a paper in the proceedings of IJCAI 2015 [109].
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CHAPTER 13
Graph Problems

In this chapter, we conclude our parameterized complexity investigation of problems at
higher levels of the Polynomial Hierarchy by looking at several parameterized variants of
two Πp

2-complete graph problems. We consider several parameterizations of the problem
of deciding whether particular 3-colorings of the leaves of a graph can be extended
to a proper 3-coloring of the entire graph. This problem is denoted by 3-Coloring-
Extension. Moreover, we consider a parameterized variant of the problem of deciding,
given a graph G = (V,E), whether each clique containing only vertices in a given subset V ′
of vertices of the graph can be extended to a larger clique (with a given lower bound)
using vertices outside the set V ′. This problem is denoted by Clique-Extension.

Outline of this chapter In Section 13.1, we analyze the complexity of several pa-
rameterized variants of 3-Coloring-Extension. For two parameters, the problem is
para-Πp

2-complete. For another parameter, the problem is para-NP-complete, and for yet
another parameter, the problem is Πp

2 [k∗]-complete.

Then, in Section 13.2, we consider the parameterized variant of Clique-Extension, pa-
rameterized by the lower bound of the clique extension. We show that this parameterized
problem is Πp

2 [∗k, 1]-complete.

13.1 Extending Graph Colorings
In this section, we consider several parameterized variants of the well-known Πp

2-complete
problem 3-Coloring-Extension, as considered by Ajtai, Fagin, and Stockmeyer [5].

Let G = (V,E) be a graph. We will denote those vertices v that have degree 1 by leaves.
We call a (partial) function c : V → {1, 2, 3} a 3-coloring (of G). Moreover, we say
that a 3-coloring c is proper if c assigns a color to every vertex v ∈ V , and if for each
edge e = {v1, v2} ∈ E holds that c(v1) 6= c(v2). Consider the following decision problem.
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3-Coloring-Extension
Instance: A graph G = (V,E) with n leaves, and an integer m.
Question: Can each 3-coloring that assigns a color to exactly m leaves of G (and to
no other vertices) be extended to a proper 3-coloring of G?

We consider the following parameterizations for this problem.

• 3-Coloring-Extension(degree), where the parameter is the degree of G, i.e., k =
deg(G);

• 3-Coloring-Extension(#leaves), where the parameter is the number of leaves
of G, i.e., k = n;

• 3-Coloring-Extension(#col.leaves), where the parameter is the number of leaves
that are pre-colored, i.e., k = m; and

• 3-Coloring-Extension(#uncol.leaves), where the parameter is the number of
leaves that are not pre-colored, i.e., k = n−m.

We begin by showing para-Πp
2-completeness for the problem parameterized by the degree

of the graph.

Proposition 159. 3-Coloring-Extension(degree) is para-Πp
2-complete.

Proof. It is known that 3-Coloring-Extension is already Πp
2-hard when restricted to

graphs of degree 4 [5]. From this, it follows immediately that 3-Coloring-Extension
is para-Πp

2-hard [84]. Membership in para-Πp
2 follows directly from the Πp

2-membership
of 3-Coloring-Extension.

Next, we show that the problem is para-NP-complete when parameterized by the number
of leaves.

Proposition 160. 3-Coloring-Extension(#leaves) is para-NP-complete.

Proof. To show membership in para-NP, we give an fpt-reduction to Sat. Let (G,m) be
an instance of 3-Coloring-Extension(#leaves), where k denotes the number of leaves
of G. We construct a propositional formula that is satisfiable if and only if (G,m) ∈
3-Coloring-Extension(#leaves). Let V ′ denote the set of leaves of G, and let C be the
set of all 3-colorings that assigns m vertices in V ′ to any color. We know that |C| ≤ 3k.
For each c ∈ C, we know that the problem of deciding whether c can be extended to a
proper 3-coloring of G is in NP. Therefore, for each c, we can construct a propositional
formula ϕc that is satisfiable if and only if c can be extended to a proper 3-coloring of G.
We may assume without loss of generality that for any distinct c, c′ ∈ C it holds that ϕc
and ϕc′ are variable-disjoint. We then let ϕ =

∧
c∈C ϕc. Clearly, ϕ is satisfiable if and
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only (G,m) ∈ 3-Coloring-Extension. Moreover, ϕ is of size O(3knd), where n is the
input size and d is some constant.

Hardness for para-NP follows directly from the NP-hardness of deciding whether a given
graph has a proper 3-coloring, which corresponds to the restriction of 3-Coloring-
Extension to instances with k = 0, i.e., to graphs that have no leaves.

Then, we show that, when parameterized by the number of leaves that are not pre-colored,
the problem is para-Πp

2-complete.

Proposition 161. 3-Coloring-Extension(#uncol.leaves) is para-Πp
2-complete.

Proof. We know that 3-Coloring-Extension is already Πp
2-hard when restricted to

instances where n = m (and thus where k = 0) [5]. From this, it follows immediately that
3-Coloring-Extension is para-Πp

2-hard [84]. Membership in para-Πp
2 follows directly

from the Πp
2-membership of 3-Coloring-Extension.

Finally, we show that the problem is Πp
2 [k∗]-complete when parameterized by the number

of leaves that are pre-colored.

Theorem 162. 3-Coloring-Extension(#col.leaves) is Πp
2 [k∗]-complete.

Proof. To show Πp
2 [k∗]-hardness, it suffices to observe that the polynomial-time reduction

from co-QSat2 to 3-Coloring-Extension to show Πp
2-hardness [5, Appendix] can be

seen as an fpt-reduction from Πp
2 [k∗]-WSat to 3-Coloring-Extension(#col.leaves).

To show membership, we give an fpt-reduction from 3-Coloring-Extension
(#col.leaves) to Πp

2 [k∗]-MC. Let (G,m) be an instance of 3-Coloring-Extension
(#col.leaves), where V ′ denotes the set of leaves of G, and where k = m is the
number of edges that can be pre-colored. Moreover, let V ′ = {v1, . . . , vn} and
let V = V ′ ∪ {vn+1, . . . , vu}. We construct an instance (A, ϕ) of Πp

2 [k∗]-MC. We define
the domain A = { av,i : v ∈ V ′, i ∈ [3] } ∪ {1, 2, 3}. Next, we define CA = {1, 2, 3},
SA = { (av,i, av,i′) : v ∈ V ′, i, i′ ∈ [3] }, and FA = { (j, j′) : j, j′ ∈ [3], j 6= j′ }.
Then, we can define the formula ϕ, by letting ϕ = ∀x1, . . . , xk.∃y1, . . . , yu.(ψ1 →
(ψ2 ∧ ψ3 ∧ ψ4)), where ψ1 =

∧
j,j′∈[k],j<j′ ¬S(xi, xi′), and ψ2 =

∧
j∈[u]C(yj), and ψ3 =∧

vj∈V ′,i∈[3]((
∨
`∈[k](x` = avj ,i))→ (yj = i)), and ψ4 =

∧
{vj ,vj′}∈E F (yj , yj′). It is straight-

forward to verify that (G,m) ∈ 3-Coloring-Extension if and only if A |= ϕ.

Intuitively, the assignments to the variables xi correspond to the pre-colorings of the
vertices in V ′. This is done by means of elements av,i, which represent the coloring of
vertex v with color i. The subformula ψ1 is used to disregard any assignments where
variables xi are not assigned to the intended elements. Moreover, the assignments to the
variables yi correspond to a proper 3-coloring extending the pre-coloring. The subfor-
mula ψ2 ensures that the variables yi are assigned to a color in {1, 2, 3}, the subformula ψ3
ensures that the coloring encoded by the assignment to the variables yi extends the
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pre-coloring encoded by the assignment to the variables xi, and the subformula ψ4 ensures
that the coloring is proper.

13.2 Extending Cliques

In this section, we analyze the complexity of a parameterized variant of the Πp
2-complete

problem Clique-Extension. We show that this parameterized problem is Πp
2 [∗k, 1]-

complete. Moreover, we show how the Πp
2 [∗k, 1]-hardness proof for this parameterized

problem can be adapted to show that the problem Clique-Extension is Πp
2-complete.

Let G = (V,E) be a graph. A clique C ⊆ V of G is a subset of vertices that induces
a complete subgraph of G, i.e., {v, v′} ∈ E for all v, v′ ∈ C such that v 6= v′. The
W[1]-complete problem of determining whether a graph has a clique of size k is an
important problem in the W-hierarchy, and is used in many W[1]-hardness proofs.

Consider the following parameterized variant of Clique-Extension.

Small-Clique-Extension
Instance: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.
Parameter: k.
Question: Is it the case that for each clique C ⊆ V ′, there is some k-clique D of G
such that C ∪D is a (|C|+ k)-clique?

We show Πp
2 [∗k, 1]-completeness for this problem Small-Clique-Extension.

Proposition 163. Small-Clique-Extension is Πp
2 [∗k, 1]-complete.

Proof. To show Πp
2 [∗k, 1]-hardness, we give an fpt-reduction from Πp

2 [∗k]-WSat(2CNF)
to Small-Clique-Extension. Let (ϕ, k) be an instance of Πp

2 [∗k]-WSat(2CNF),
where ϕ = ∀Y.∃X.ψ. By step 2 in the proof of Theorem 46, we may assume with-
out loss of generality that ψ is antimonotone in X, i.e., all literals of ψ that contain
variables in X are negative.

We construct an instance (G,V ′, k) of Small-Clique-Extension as follows. We define:

G = (V,E);
V ′ = { vy, v¬y : y ∈ Y };
V = V ′ ∪ { vx : x ∈ X };
E = EY ∪ EXY ;
EY = { {vy, v′} : y ∈ Y, v′ ∈ V ′, v′ 6= v¬y } ∪

{ {v¬y, v′} : y ∈ Y, v′ ∈ V ′, v′ 6= vy }; and
EXY = { {vx, vx′} : x ∈ X,x′ ∈ X, {¬x,¬x′} 6∈ ψ } ∪

{ {vx, vy} : x ∈ X, y ∈ Y, {¬x,¬y} 6∈ ψ } ∪
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{ {vx, v¬y} : x ∈ X, y ∈ Y, {¬x, y} 6∈ ψ }.

We claim that (ϕ, k) ∈ Πp
2 [∗k]-WSat(2CNF) if and only if (G,V ′, k) ∈ Small-Clique-

Extension.

(⇒) Assume that (ϕ, k) ∈ Πp
2 [∗k]-WSat(2CNF). Let C ⊆ V ′ be an arbitrary clique

of G. It suffices to consider maximal cliques C, i.e., assume there is no clique C ′ such
that C ( C ′ ⊆ V ′. If a maximal clique C can be extended with k elements in V to
another clique, then clearly this holds for all its subsets as well.

We show that for all y ∈ Y , either vy ∈ C or v¬y ∈ C. Assume the contrary, i.e.,
assume that for some y ∈ Y it holds that vy 6∈ C and v¬y 6∈ C. Then C ∪ {vy} ) C
is a clique. This contradicts our assumption that C is maximal. Now define the
assignment αC : Y → B by letting αC(y) = 1 if and only if vy ∈ C. We then know that
there exists an assignment β to the variables X of weight k such that αC ∪ β satisfies ψ.
Consider the set Dβ = { vx ∈ V : x ∈ X,β(x) = 1 } ⊆ V . Since β has weight k, we know
that |Dβ| = k. Also, Dβ ∩C = ∅, therefore |C ∪Dβ| = |C|+ k. By the construction of E,
and by the fact that αC ∪ β satisfies ψ, it follows that C ∪Dβ is a clique. To see this,
assume the contrary, i.e., assume that there exist v, v′ ∈ C ∪Dβ such that {v, v′} 6∈ E.
We assume that v = vx and v′ = vx′ for x, x′ ∈ X. The other cases are analogous.
Then {¬x,¬x′} ∈ ψ. Since vx, vx′ ∈ Dβ, we know that β(x) = β(x′) = 1. Then αC ∪ β
does not satisfy ψ, which is a contradiction. From this we can conclude that C ∪Dβ is
a (|C|+ k)-clique of G, and thus that (G,V ′, k) ∈ Small-Clique-Extension.

(⇐) Assume (G,V ′, k) ∈ Small-Clique-Extension. We show that for all assign-
ments α : Y → B there exists an assignment β : X → B of weight k such
that ψ[α ∪ β] evaluates to true. Let α : Y → B be an arbitrary assignment. Con-
sider Cα = { vy ∈ V : y ∈ Y, α(y) = 1 } ∪ { v¬y : y ∈ Y, α(y) = 0 } ⊆ V ′. By construction
of EY ⊆ E, it follows that Cα is a clique of G. We then know that there exists some
set D ⊆ V of size k such that Cα ∪D is a clique. We show that D ⊆ V \V ′. To show the
contrary, assume that this is not the case, i.e., assume that there exists some v ∈ D ∩ V ′.
By construction of Cα, we know that for each y ∈ Y , either vy ∈ C or v¬y ∈ Cα. We
also know that v ∈ {vy′ , v¬y′} for some y′ ∈ Y . Assume that v = vy′ ; the other case is
analogous. If vy′ ∈ Cα ∩D, then Cα ∪D cannot be a clique of size |Cα|+ k = |Cα|+ |D|.
Therefore, vy′ 6∈ Cα, and thus v¬y′ ∈ Cα. We then know that {vy′ , v¬y′} ⊆ Cα ∪ D.
However, {vy′ , v¬y′} 6∈ E, and therefore Cα ∪D is not a clique. This is a contradiction,
and thus D ⊆ V \V ′.

We define βD : X → B as follows. We let βD(x) = 1 if and only if vx ∈ D. Clearly, βD is
of weight k. We show that ψ[α∪βD] evaluates to true. Consider an arbitrary clause c of ψ.
Assume that c = {¬x, y} for some x ∈ X and some y ∈ Y ; the other cases are analogous.
To show the contrary, assume that α ∪ βD does not satisfy c, i.e., (α ∪ βD)(x) = 1
and (α ∪ βD)(y) = 0. Then vx ∈ D and v¬y ∈ C. However {vx, v¬y} 6∈ E, and
thus Cα ∪ D is not a clique. This is a contradiction, and therefore we can conclude
that α ∪ βD satisfies c. Since c was arbitrary, we know that ψ[α ∪ βD] evaluates to true.
Thus, (ϕ, k) ∈ Πp

2 [∗k]-WSat(2CNF).
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To show membership in Πp
2 [∗k, 1], we give an fpt-reduction from Small-Clique-

Extension to Πp
2 [∗k]-WSat(Γ1,3). Let (G,V ′, k) be an instance Small-Clique-

Extension, with G = (V,E). We construct an equivalent instance (C, k) of
Πp

2 [∗k]-WSat(Γ1,3). We will define a circuit C, that has universally quantified variables Y
and existentially quantified variables X. We present the circuit C as a propositional
formula. We define:

Y = { yv′ : v′ ∈ V ′ };
X = {xv : v ∈ V };
C = C1 ∨ (C2 ∧ C3);
C1 =

∨
{v1,v2}∈(V ′×V ′)\E

(yv1 ∧ yv2) ;

C2 =
∧

v′∈V ′
(¬yv′ ∨ ¬xv′) ;

C3 =
∧

e∈(V×V )\E
χe;

χe =
∧

z1∈Θ(v1)
z2∈Θ(v2)

(¬z1 ∨ ¬z2) , for all {v1, v2} = e ∈ (V × V )\E; and

Θ(v) =
{
{xv, yv} if v ∈ V ′,
{xv} otherwise,

for all v ∈ V .

We show that (G,V ′, k) ∈ Small-Clique-Extension if and only if (C, k) ∈
Πp

2 [∗k]-WSat(Γ1,3).

(⇒) Assume that (G,V ′, k) ∈ Small-Clique-Extension. This means that for each
clique F ⊆ (V ′ × V ′) there exists some set D ⊆ V of vertices such that F ∪ D is
a (|F | + k)-clique. We show that for each assignment α : Y → B there exists an
assignment β : X → B of weight k such that C[α ∪ β] evaluates to true. Let α : Y → B
be an arbitrary assignment. We define Fα = { v ∈ V ′ : α(yv) = 1 }. We distinguish
two cases: either (i) Fα is not a clique in G, or (ii) Fα is a clique in G. In case (i), we
know that there exist v1, v2 ∈ Fα such that {v1, v2} 6∈ E. Then α satisfies (yv1 ∧ yv2),
and therefore α satisfies C1 and C as well. Thus for every assignment β : X → B of
weight k, α ∪ β satisfies C.

Consider case (ii). Let m = |Fα|. We know that there exists a subset D ⊆ V of
vertices such that Fα ∪ D is an (m + k)-clique. Define the assignment β : X → B by
letting β(xv) = 1 if and only if v ∈ D. Clearly, β has weight k. We show that α ∪ β
satisfies C. We know there is no v ∈ V , such that v ∈ Fα ∩D, since otherwise Fα ∪D
could not be a clique of size m+ k. Therefore, α∪β satisfies C2. Since Fα ∪D is a clique,
we know that α ∪ β satisfies C3 as well. Thus α ∪ β satisfies C. This concludes our proof
that (C, k) ∈ Πp

2 [∗k]-WSat(Γ1,3).

(⇐) Assume that (C, k) ∈ Πp
2 [∗k]-WSat(Γ1,3). This means that for each assignment α :

Y → B there exists an assignment β : X → B of weight k such that C[α ∪ β] evaluates
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to true. Let F ⊆ (V ′ × V ′) be an arbitrary clique, and let m = |F |. We show that there
exists a set D ⊆ V of vertices such that F ∪D is an (m + k)-clique. Let αF : Y → B
be the assignment defined by letting αF (yv) = 1 if and only if v ∈ F . We know that
there must exist an assignment β : X → B of weight k such that C[αF ∪ β] evaluates to
true. Since F is a clique, it is straightforward to verify that αF ∪ β does not satisfy C1.
Therefore, αF ∪ β must satisfy C2 and C3. Consider Dβ = { v ∈ V : β(xv) = 1 }. Since β
has weight k, |D| = k. Because αF ∪ β satisfies C2, we know that F ∩ Dβ = ∅, and
thus that |F ∪ Dβ| = m + k. Because αF ∪ β satisfies C3, we know that F ∪ Dβ is a
clique in G. Since F was arbitrary, we can conclude that (G,V ′, k) ∈ Small-Clique-
Extension.

13.2.1 Πp
2-Completeness for Clique-Extension

We show that the Πp
2 [∗k, 1]-hardness proof for Small-Clique-Extension, that we gave

above, can be adapted to show that Clique-Extension is Πp
2-complete. In order to do

so, we consider the following intermediate problem.

Weighted-Πp
2-Sat(2CNF)

Instance: A quantified Boolean formula ϕ = ∀X.∃Y.ψ, where ψ is in 2CNF, and a
positive integer u.
Question: Is it the case for all truth assignments α : X → B there exists a truth
assignment β : Y → B of weight u such that ψ[α ∪ β] is true?

We firstly show that Weighted-Πp
2-Sat(2CNF) is Πp

2-complete.

Proposition 164. Weighted-Πp
2-Sat(2CNF) is Πp

2-complete. Moreover, hardness
already holds when restricted to instances (ϕ, u), where ϕ = ∀X.∃Y.ψ and where all
variables in Y appear only negatively in ψ.

Proof. Membership in Πp
2 can be shown routinely. To show Πp

2-hardness, we give a
polynomial-time reduction from co-QSat2(3CNF). Let ϕ = ∀X.∃Y.ψ be an instance of
co-QSat2 where ψ = c1∧· · ·∧cm is in 3CNF. Let cj = lj,1∨lj,2∨lj,3, for each j ∈ [m]. We
construct an instance (ϕ′, u) of Weighted-Πp

2-Sat(2CNF) with the required properties
as follows.

We introduce the variables Y ′ = { y′ : y ∈ Y }, which intuitively represent the negation of
the variables in Y . Moreover, we introduce the set Z = { zj,i : j ∈ [m], i ∈ [3] } of variables,
which we will use to encode whether a truth assignment satisfies the clauses c1, . . . , cm.
We define u = m+n. Moreover, we let ϕ′ = ∀X.∃Y.∃Y ′.∃Z.χ, where we define the 2CNF
formula χ below. We let χ consist of the following clauses.

Firstly, we add the claus (¬y ∨ ¬y′), for each y ∈ Y . These clauses ensure that for
each y ∈ Y , at most one of y and y′ is true.
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Then, we add the clauses (¬zj,1∨¬zj,2), (¬zj,1∨¬zj,3), and (¬zj,2∨¬zj,3), for each j ∈ [m].
These clauses ensure that for each clause cj , there is at most one variable zj,i that is true,
which represents that the i-th literal in clause j is satisfied.

Moreover, since u = m+ n, we know that for each y ∈ Y , exactly one of y and y′ is true,
and for each j ∈ [m], exactly one of the variables zj,1, zj,2, and zj,3 is true.

Finally, we add the clauses (¬zj,i ∨ σ(lj,i)), for each j ∈ [m] and each i ∈ [3], where σ is
defined as follows.

σ(l) =


x if l = x for x ∈ X,
¬x if l = ¬x for x ∈ X,
¬y if l = ¬y for y ∈ Y , and
¬y′ if l = y for y ∈ Y .

This concludes our construction of the instance (ϕ′, u). We show that ϕ ∈ co-QSat2 if
and only if (ϕ′, u) ∈Weighted-Πp

2-Sat(2CNF).

(⇒) Suppose that ϕ ∈ co-QSat2. We show that (ϕ′, u) ∈ Weighted-Πp
2-Sat(2CNF).

Let α : X → B be an arbitrary truth assignment. We show that there exists a truth
assignment β : Y ∪Y ′∪Z → B of weight u such that χ[α∪β] is true. Since ϕ ∈ co-QSat2,
we know that there exists a truth assignment β′ : Y → B such that ψ[α ∪ β′] is true.
We define the truth assignment β as follows. For each y ∈ Y , we let β(y) = β′(y)
and β(y′) = 1− β′(y). Since ψ[α ∪ β′] is true, we know that there exists for each j ∈ [m]
some ij ∈ [3] such that β satisfies the literal lj,ij . For each j ∈ [m] and each i ∈ [3], we
let β(zj,i) = 1 if and only if i = ij . It is straightforward to verify that χ[α ∪ β] is true.
Therefore, we know that (ϕ′, u) ∈Weighted-Πp

2-Sat(2CNF).

(⇐) Conversely, suppose that (ϕ′, u) ∈Weighted-Πp
2-Sat(2CNF). We show that ϕ ∈

co-QSat2. Let α : X → B be an arbitrary truth assignment. We show that there exists a
truth assignment β : Y → B such that ψ[α∪β] is true. Because (ϕ′, u) ∈Weighted-Πp

2-
Sat(2CNF), we know that there exists a truth assignment β′ : Y ∪Y ′∪Z → B of weight u
such that χ[α ∪ β′] is true. Moreover, as argued above, we know that for each y ∈ Y , the
assignment β′ sets exactly one of y and y′ to 1, and for each j ∈ [m], the assignment β′
sets exactly one of zj,1, zj,2, and zj,3 to 1. We define the truth assignment β as follows.
For each y ∈ Y , we let β(y) = β′(y). We show that ψ[α∪β] is true. Let cj be an arbitrary
clause of ψ. Then, we know that there is some i ∈ [3] such that β′(zj,i) = 1. Because χ
contains the clause (¬zj,i ∨ σ(lj,i)), we know that α ∪ β′ must satisfy σ(lj,i). It is then
readily verified that α ∪ β satisfies the literal lj,i. Since j was arbitrary, we can conclude
that α ∪ β satisfies all clauses cj , and thus satisfies ψ. Therefore, ϕ ∈ co-QSat2.

We are now ready to show Πp
2-completeness for Clique-Extension.

Corollary 165. The problem Clique-Extension is Πp
2-complete.

Proof. Membership in Πp
2 can be shown routinely. To show Πp

2-hardness, it suffices to see
that the reduction given in the proof of Proposition 163 can also be used as a polynomial-
time reduction from the Πp

2-hard problem Weighted-Πp
2-Sat(2CNF) (restricted to
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instances where existentially quantified variables only appear negatively) to the problem
Clique-Extension.

Notes
The results in Section 13.1 appeared in a paper in the proceedings of SOFSEM 2015 [113].
The results in Section 13.2 appeared in a technical report [116].
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CHAPTER 14
Subexponential-Time Reductions

In Chapters 4–7, we investigated several parameterized complexity classes for param-
eterized problems that admit (various types of) fpt-reductions to SAT. Moreover, we
considered parameterized complexity classes to characterize the complexity of intractable
problems, that seemingly do not admit fpt-reductions to SAT. We started a structural
investigation of the relation between these classes. For instance, we showed that the
classes Σp

2 [k∗] and Πp
2 [∗k, t] are incomparable to para-NP, unless NP = co-NP (Propo-

sitions 57, 58, 61, and 62 in Section 6.4). However, a number of relevant questions
remained unanswered in this structural complexity investigation. In this chapter, we
answer these questions by separating the classes para-NP, para-co-NP and FPTNP[few],
on the one hand, and the classes A[2], Σp

2 [k∗] and Σp
2 [∗k, t], on the other hand. These

separation results are contingent on some complexity-theoretic assumptions. In order
to state these assumptions, we will use some notions and terminology from the area of
subexponential-time complexity.

Generally speaking, subexponential-time complexity is the area of complexity theory
that investigates what difficult search problems can be solved asymptotically faster than
the brute force exponential-time algorithm. For instance, the problem 3SAT can be
solved by a brute force algorithm in time O(2n), where n is the number of variables
in the instance. A subexponential-time algorithm for 3SAT would run in time 2o(n).
Remember that a function f(n) is o(n) if f(n) ≤ n/s(n) for sufficiently large n and
for some unbounded, nondecreasing, computable function s. It is commonly believed
that there is no subexponential-time algorithm for 3SAT. This statement is known as
the Exponential Time Hypothesis (ETH), and is often used as a complexity-theoretic
assumption. This assumption is stronger than the assumption that P 6= NP; it could be
the case, for instance, that 3SAT admits a 2

√
n time algorithm, which is not polynomial,

but is subexponential.

The area of subexponential-time complexity is related to parameterized complexity theory
in several ways. Firstly, the subexponential-time complexity of problems can be studied
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within the framework of parameterized complexity. In order to set a baseline for the
brute force exponential-time algorithm, one considers a complexity (or search space size)
parameter n, in addition to the input size m. For the example of 3SAT, this parameter n
would be the number of variables in the instance, whereas the input size m is the bitsize
of the 3CNF formula. Then the exponential-time algorithm to which we compare possible
subexponential-time algorithms runs in time 2nmO(1). In other words, subexponential-
time complexity can be seen as a particular type of bounded fixed-parameter tractability
(see also [85, Chapters 15 and 16]).

Another connection between the fields of subexponential-time complexity and param-
eterized complexity is the use of assumptions from subexponential-time complexity to
separate parameterized complexity classes. One of the most prominent examples of this
is the result that, assuming the ETH, it holds that FPT 6= W[1] [37, 45, 46, 47, 149]. In
this chapter, we will use a similar approach to separate some of the classes discussed
in Chapters 4–7. We show that problems that are hard for A[2], Σp

2 [k∗] or Σp
2 [∗k, t]

do not admit fpt-reductions to SAT, assuming that there exist no subexponential-time
reductions from various hard problems at the second level of the PH to SAT or UNSAT.
(For more discussion on the use of such atypical complexity-theoretic assumptions, we
refer to Section 1.5.3.)

To avoid confusion, we point out that the subexponential-time reductions that we refer to
throughout this chapter are slightly more admissive than the type of reductions usually
used in the area of subexponential-time complexity (the latter are called serf-reductions,
or subexponential reduction families). These serf-reductions require that the complexity
parameter of the resulting instance is linear in the parameter of the original instance.
For the reductions that we refer to in this chapter, there are no constraints on the size of
the complexity parameter of the resulting instance.

Outline of this chapter Firstly, in Section 14.1, we briefly review a result from the
literature that implies that FPT 6= W[1], unless the ETH fails. We describe the general
idea behind its proof, because the proofs of the results in the remainder of the chapter
are based on the same idea.

Then, in Section 14.2, we work out the separation results for the classes A[2], Σp
2 [k∗] and

Σp
2 [∗k, t].

Finally, in Section 14.3, we show how some of the separation results can be used to argue
that the classes Σp

2 [k∗], Πp
2 [k∗], Σp

2 [∗k, t] and Πp
2 [∗k, t] are different from each other.

14.1 A Known Separation Result

We begin with reviewing a result from the literature. This result implies that FPT 6= W[1],
unless the ETH fails. More specifically, the result states that if the W[1]-complete
parameterized problem WSat(3CNF) can be solved in time f(k)mo(k), where k is the
parameter value and m is the input size, then the ETH fails [45, 46, 47]. Because the
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proofs of the results in Section 14.2 are based on the same idea that is behind the proof
of this result, we will explain the general lines of this idea.

Suppose that there is an algorithm A that solves the problem WSat(3CNF) in
time f(k)mo(k). We will use this algorithm to construct a 2o(n) time algorithm for
3SAT. Let ϕ be an arbitrary instance of 3SAT with n variables.

Firstly, we consider the inverse f−1 of the computable function f , that is defined
by letting f−1(h) = max{ q : f(q) ≤ h }. By assuming without loss of generality
that f is nondecreasing and unbounded, we get that f−1 is a nondecreasing, unbounded,
computable function.

We then divide the set Var(ϕ) of variables into k = f−1(n) partitions X1, . . . , Xk, each
of roughly the same size. Each such partition then contains approximately r = n

f−1(n)
variables.

We construct an instance ψ of WSat(3CNF) as follows. For each set Xi of variables,
we consider all possible truth assignments to these variables. There are roughly 2r of
these assignments. For each such truth assignment α, we introduce a propositional
variable yα to the instance of WSat(3CNF). We add clauses to ψ that ensure that no
two variables yα1 and yα2 , for different assignments α1, α2 to the same set Xi of variables
can both be set to true. Moreover, for each clause of ϕ we add a number of clauses
to ψ. Take a clause c of ϕ, and suppose that the 3 variables occurring in c appear in
different sets Xi1 , Xi2 , Xi3 . Then, for each triple (α1, α2, α3) of truth assignments to the
sets Xi1 , Xi2 , Xi3 (respectively) that together do not satisfy c, we add a clause to ψ that
ensures that the variables yα1 , yα2 , yα3 cannot all be set to true. We then get that there
is a satisfying assignment for ψ of weight k if and only if ϕ is satisfiable.

We can now decide if ϕ is satisfiable by using the algorithm A to decide if (ψ, k) ∈
WSat(3CNF). The instance ψ has at most n′ = k2r variables, and at most m′ = (n′)3

clauses. Moreover, the parameter value is k = f−1(n). By assumption, A runs in
time f(k)(m′)o(k). Due to our choice of k, we get that f(k) ≤ n. Moreover, we can assume
without loss of generality that f(h) ≥ 2h for all h, and thus that k = f−1(n) ≤ logn.
Then, by some careful analysis, we get that the running time f(k)(m′)o(k) of A is 2o(n),
witnessing that 3SAT can be solved in subexponential time, and thus that the ETH fails.

In the remainder of this chapter, we will show several results that are based on the same
idea as the one described above. That is, assuming the existence of a parameterized
algorithm for a logic problem with bounds on its running time similar to f(k)mo(k) (e.g.,
an algorithm to reduce a parameterized problem to SAT), we show that a subexponential-
time algorithm exists that solves a particular computational task (e.g., an algorithm to
reduce various problems at the second level of the PH to SAT) by partitioning the set of
variables in the input problem into roughly k = f−1(n) sets X1, . . . , Xk, and constructing
an equivalent instance of the appropriate problem by iterating over all truth assignments
to the variables in each of these sets Xi.
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14.2 More Separation Results

In this section, we will use the idea described in Section 14.1 to show various separa-
tion results for the classes A[2], Σp

2 [k∗] and Σp
2 [∗k, t], on the one hand, and para-NP,

para-co-NP and FPTNP[few], on the other hand.

14.2.1 Separation results for A[2]

We begin with separating the parameterized complexity class A[2] from the classes
para-NP, para-co-NP and FPTNP[few]. Firstly, we show that if A[2] ⊆ para-NP, then
there exists a subexponential-time reduction from QSat2(3DNF) to SAT. We prove the
following slightly stronger result.

Theorem 166. If there exists an f(k)mo(k1/3) time reduction from MC(Σ2) to SAT,
where k denotes the parameter value, m denotes the instance size, and f is some com-
putable function, then there exists a subexponential-time reduction from QSat2(3DNF)
to SAT, i.e., a reduction that runs in time 2o(n), where n denotes the number of variables.

Proof. Suppose that there is a reduction R from MC(Σ2) to SAT that runs in
time f(k)mo(k1/3), that is, it runs in time f(k)mk1/3/λ(k) for some computable func-
tion f and some computable, unbounded and nondecreasing function λ. We construct
a reduction from QSat2(3DNF) to SAT that, for sufficiently large values of n, runs
in time 2o(n), where n is the number of variables. Let (ϕ, k) be an instance of QSat2,
where ϕ = ∃X1.∀X2.ψ and where ψ is in 3DNF. We may assume without loss of general-
ity that |X1| = |X2|; we can add dummy variables to X1 and X2 to ensure this. Then,
let n = |X1| = |X2|. We denote the size of ψ by m. Let X = X1 ∪X2. We may assume
without loss of generality that f(`) ≥ 2` for all ` ≥ 1, and that f is nondecreasing and
unbounded.

We define the function g as follows:

g(`) = f(c · `3);

we will define the value of the constant c below. Then, define the function g−1 as follows:

g−1(h) = max{ q : g(2q + 1) ≤ h }.

Since the function f is nondecreasing and unbounded, the functions g and g−1 are
also nondecreasing and unbounded. Moreover, we get that g(2g−1(h) + 1) ≤ h. Also,
since f(`) ≥ 2` for all ` ≥ 1, we get that g(`) ≥ 2` for all ` ≥ 1, and therefore also
that g−1(h) ≤ log h, for all h ≥ 1.

We then choose the integers r and k as follows.

r = bn/g−1(n)c and k = dn/re.
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Due to this choice for k and r, we get the following inequalities:

r ≤ n

g−1(n) , k ≥ g−1(n), r ≥ n

2g−1(n) , and k ≤ 2g−1(n) + 1.

Next, we construct an instance (A, ϕ′) of MC(Σ2) such that A |= ϕ′ if and only if ϕ is
a yes-instance of QSat2. In order to do so, for each i ∈ [2], we split Xi into k disjoint
sets Xi,1, . . . , Xi,k. We do this in such a way that each set Xi,j has at most n/k elements,
i.e., |Xi,j | ≤ 2r for each i ∈ [2] and each j ∈ [k]. To construct ϕ′, we will introduce
a first-order variable yi,j for each i ∈ [2] and each j ∈ [k]. Intuitively, these variables
will be used to quantify over truth assignments to the variables in the sets Xi,j . For
each i ∈ [2], we let Yi = { yi,j : j ∈ [k] }. Moreover, for the sake of convenience, we
introduce alternative names for these variables. Let Z = Y1 ∪ Y2 = {z1, . . . , z2k}. Also,
for each i ∈ [2] and each j ∈ [k], we introduce a binary predicate symbol Si,j . In addition,
we introduce a ternary predicate symbol R. We then define the first-order formula ϕ′ as
follows:

ϕ′ = ∃Y1.∀Y2.(ψ′1 ∧ (ψ′2 → ψ′3));
ψ′i =

∧
j∈[k]

Si,j(yi,j) for each i ∈ [2]; and

ψ′3 =
∨

j1,j2,j3∈[2k],j1<j2<j3
R(zj1 , zj2 , zj3).

We define the relational structure A as follows. The universe A of A is defined as follows:

A = {α : i ∈ [2], j ∈ [k], (α : Xi,j → B) }.

Then, for each i ∈ [2] and each j ∈ [k], the interpretation of the relation Si,j is defined as
follows:

SAi,j = {α : (α : Xi,j → B) }.

Finally, the interpretation of the relation R is defined as follows:

RA = { (α1, α2, α3) : the assignment α1 ∪ α2 ∪ α3 satisfies some term in ψ }.

Let m′ = |A| + |ϕ′|, and k′ = |ϕ′|. Observe that by the construction of A, we know
that |A| ≤ k22r + 26r. Moreover, we have that k′ = |ϕ′| = O(k3). In fact, we can
straightforwardly construct ϕ′ in such a way that k′ = c · k3, for some constant c. We let
this constant c be the constant used for the definition of the function g above.

We verify that ϕ ∈ QSat2 if and only if A |= ϕ′.

(⇒) Suppose that ϕ ∈ QSat2. Then there is a truth assignment β1 : X1 → B such
that for all truth assignment β2 : X2 → B it holds that ψ[β1 ∪ β2] is true. We show
that A |= ϕ′. We define the assignment γ1 : Y1 → A as follows. For each j ∈ [k],
we let γ1(y1,j) = α1,j , where α1,j is the restriction of β1 to the variables in X1,j . We
show that for each assignment γ2 : Y2 → A it holds that A, γ1 ∪ γ2 |= ψ′. Take an
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arbitrary assignment γ2 : Y2 → A. Let γ = γ1 ∪ γ2. Clearly, γ satisfies ψ′1. Suppose
that γ satisfies ψ′2. We need to show that then γ also satisfies ψ′3. For each i ∈ [2] and
each j ∈ [k], we have that γ(yi,j) is a truth assignment to the propositional variables Xi,j .
Now consider the truth assignment β : X1 ∪ X2 → B that is defined as follows. For
each x ∈ Xi,j , we let β(x) = αi,j(x), where αi,j = γ(yi,j). By construction of γ1 and β,
we know that β agrees with β1 on the variables in X1. Therefore, we know that β
must satisfy ψ, that is, β must satisfy some term in ψ. Since each term contains at
most three literals, we know that there are some j1, j2, j3 ∈ [2k] with j1 < j2 < j3 such
that R(zj1 , zj2 , zj3) is satisfied by γ. Therefore, γ satisfies ψ′3. Since γ2 was arbitrary, we
can conclude that A |= ϕ′.

(⇐) Conversely, suppose that A |= ϕ′. That is, there is some assignment γ1 : Y1 → A
such that for all assignments γ2 : Y2 → A it holds that A, γ1 ∪ γ2 |= ψ′1 ∧ (ψ′2 → ψ′3).
We show that ϕ ∈ QSat2. Since ψ′1 contains only variables in Y1, we know that γ1
satisfies ψ′1. Consider the truth assignment β1 : X1 → B that is defined as follows. For
each x ∈ X1,j , we let β1(x) = α1,j(x), where α1,j = γ1(y1,j). We know that β1 is well
defined, because γ1 satisfies ψ′1. We show that for all truth assignments β2 : X2 → B it
holds that β1 ∪ β2 satisfies ψ. Take an arbitrary truth assignment β2 : X2 → B. Then,
we define γ2 : Y2 → A as follows. For each j ∈ [k], we let γ2(y2,j) = α2,j , where α2,j is
the restriction of β2 to the variables in X2,j . Let γ = γ1 ∪ γ2. Clearly, γ satisfies ψ′2.
Therefore, we know that γ also satisfies ψ′3. By construction of ψ′3 and A, there must be
some j1, j2, j3 ∈ [2k] with j1 < j2 < j3 such that R(zj1 , zj2 , zj3) is satisfied by γ. From
this, we can conclude that β1 ∪ β2 satisfies some term in ψ. Since β2 was arbitrary, we
can conclude that ϕ ∈ QSat2.

Since (A, ϕ′) is an instance of MC(Σ2), we can apply the reduction R to obtain an equiv-
alent instance ϕ′′ of SAT. By first constructing (A, ϕ′) from ϕ, and then constructing ϕ′′
from (A, ϕ′), we get a reduction R′ from QSat2 to SAT. We analyze the running time
of this reduction R′ in terms of the values n.

Firstly, constructing (A, ϕ′) can be done in time:

O(k22r · 26r · |ψ|) = 2o(n).

Then, applying the reduction R to obtain ϕ′′ from (A, ϕ′) takes time f(k′)(m′)(k′)1/3/λ(k′).
We analyze the different factors of this expression in terms of n. Firstly:

f(k′) = f(ck3) = g(k) ≤ g(2g−1(n) + 1) ≤ n.

Next, we define the function λ′. We want to ensure that the following inequality holds:

λ′(n) ≤ λ(ck3)g−1(n)
6(ck3)1/3 .

We do so by defining λ′ as follows:

λ′(h) = λ(cg−1(h)3)g−1(h)
6c1/3(2g−1(h) + 1)

.
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In order to see that λ′ is unbounded, we observe the following inequality:

λ′(h) ≥ λ(cg−1(h)3)g−1(h)
6c1/33g−1(h)

= λ(cg−1(h)3)
18c1/3 .

Then, in order to analyze the second factor (m′)(k′)1/3/λ(k′) in terms of n, we firstly
consider the following inequality:

(26r)(k′)1/3/λ(k′) ≤ 26n(k′)1/3/(λ(k′)g−1(n)) = 2n6(ck3)1/3/(λ(ck3)g−1(n)) ≤ 2n/λ′(n) = 2o(n).

We then get:

(m′)(k′)1/3/λ(k′) ≤ (k′ + k22r + 26r)(k′)1/3/λ(k′) ≤ (k′)k′kk′22r(k′)1/3/λ(k′)26r(k′)1/3/λ(k′).

Then, since (k′)k′ ≤ O(log3 n)O(log3 n) = 2o(n), we know that the factors (k′)k′

and kk
′ are 2o(n). Moreover, because we know that (26r)(k′)1/3/λ(k′) ≤ 2o(n) we know

that the factors 22r(k′)1/3/λ(k′) and 26r(k′)1/3/λ(k′) are also 2o(n). Therefore, we know
that (m′)(k′)1/3/λ(k′) is 2o(n). Concluding, the reduction R′ from QSat2(3DNF) to SAT
runs in time 2o(n).

Theorem 166 directly gives us the following corollary, separating A[2] from para-NP.

Corollary 167. If A[2] ⊆ para-NP, then there exists a subexponential-time reduction
from QSat2(3DNF) to SAT.

The proof of Theorem 166 can straightforwardly be modified to separate A[2] also from
para-co-NP.

Corollary 168. If A[2] ⊆ para-co-NP, then there exists a subexponential-time reduction
from QSat2(3DNF) to UNSAT.

We can extend these results to the more general case of A[t] and para-Σp
i (or para-Πp

i ),
for arbitrary t ≥ 2 and i ≥ 1.

Proposition 169. Let t ≥ 2 and i ≥ 1. If A[t] ⊆ para-Σp
i , then there exists

a subexponential-time reduction from QSatt(3DNF) to QSati for even t, and from
QSatt(3CNF) to QSati for odd t. If A[t] ⊆ para-Πp

i , then there exists a subexponential-
time reduction from QSatt(3DNF) to co-QSati for even t, and from QSatt(3CNF) to
co-QSati for odd t.

Proof (sketch). The proof of Theorem 166 straightforwardly generalizes to arbitrary t ≥ 2
and arbitrary i ≥ 1, both for para-Σp

i and para-Πp
i .

We can also use a modification of the proof of Theorem 166 to separate A[2] from FPT.
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Proposition 170. Let t ≥ 2. If A[t] = FPT, then QSatt restricted to instances whose
matrix is in 3DNF if t is even, and in 3CNF if t is odd, can be solved in time 2o(n),
where n denotes the number of variables.

Proof (sketch). The proof of Theorem 166 can straightforwardly be modified to show
this result.

Next, we separate A[2] from FPTNP[few]. We do so by showing that if A[2] ⊆ FPTNP[few],
then there exists a subexponential-time Turing reduction from QSat2(3DNF) to SAT.
We prove the following slightly stronger result.

Theorem 171. If there exists an f(k)mo(k1/3) time Turing reduction from MC(Σ2)
to SAT, where k denotes the parameter value, m denotes the instance size, and f is
some computable function, then there exists a subexponential-time Turing reduction from
QSat2(3DNF) to SAT, i.e., a Turing reduction that runs in time 2o(n), where n denotes
the number of variables.

Proof. Assuming the existence of an f(k)mo(k1/3) time Turing reduction from MC(Σ2) to
SAT, we can construct a subexponential-time Turing reduction from QSat2(3DNF) to
SAT analogously to the construction in the proof of Theorem 166. Firstly, we construct
an instance (A, ϕ′) as described in the proof of Theorem 166 in time 2o(n). Then, we
apply the reduction R to (A, ϕ′) to get a Turing reduction R′ from QSat2(3DNF) to
SAT. Since the reduction R runs in time f(k′)(m′)o(k1/3) = 2o(n), the reduction R′ also
runs in time 2o(n).

Theorem 171 directly gives us the following corollary, separating A[2] from FPTNP[few].

Corollary 172. If A[2] ⊆ FPTNP[few], then there exists a subexponential-time Turing
reduction from QSat2(3DNF) to SAT.

The above results also allow us to separate the classes Σp
2 [k∗] and Σp

2 [∗k, t] from the
parameterized complexity classes XNP and Xco-NP.

Corollary 173. If (i) Σp
2 [k∗] = XNP, (ii) Σp

2 [k∗] = Xco-NP, (iii) Σp
2 [∗k,P] = XNP, or

(iv) Σp
2 [∗k,P] = Xco-NP, then for each t ≥ 3 there is a subexponential-time reduction

from QSatt(3CNF) to QSat2 and from QSatt(3DNF) to QSat2.

Proof. Suppose that one of the statements (i)–(iv) holds. Then for each t ≥ 3 it holds
that A[t] ⊆ XP ⊆ XNP ∩ Xco-NP ⊆ para-Σp

2 . Therefore, the required consequence
follows from Proposition 169.
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14.2.2 Separation results for Σp
2[k∗] and Σp

2[∗k, t]

Next, we show that the above separation results for A[2] can be strengthened for the
cases of Σp

2 [k∗], Σp
2 [∗k, 2] and Σp

2 [∗k,P]. We begin with the case for Σp
2 [∗k, 2], and show

the following slightly stronger result.

Theorem 174. If there exists an f(k)no(k)mO(1) time reduction from Σp
2 [kk]-WSat(Γ2,4)

to SAT, where k denotes the parameter value, n denotes the number of variables
and m denotes the instance size, then there exists a subexponential-time reduction from
QSat2(DNF) to SAT, i.e., a reduction that runs in time 2o(n)mO(1), where n denotes
the number of variables and m denotes the instance size.

Proof. Assume that there exists a reduction R from Σp
2 [kk]-WSat(Γ2,4) to SAT that

runs in time f(k)nk/λ(k)mO(1), for some computable function f and some nondecreasing
and unbounded computable function λ.

We now construct a reduction from QSat2(DNF) to SAT that runs in time 2o(n)mO(1),
where n is the number of variables, and m is the instance size. Let ϕ = ∃X1.∀X2.ψ be an
instance of QSat2(DNF), where ψ is in DNF. We may assume without loss of generality
that |X1| = |X2| = n; we can add dummy variables to X1 and X2 to ensure this. We
denote the size of ψ by m. Let X = X1 ∪X2. We may assume without loss of generality
that f(k) ≥ 2k and that f is nondecreasing and unbounded. Define f−1 as follows:

f−1(h) = max{ q : f(2q + 1) ≤ h }.

Since the function f is nondecreasing and unbounded, the function f−1 is also nonde-
creasing and unbounded. Also, we know that f(2f−1(h) + 1) ≤ h, and since f(k) ≥ 2k,
we know that f−1(h) ≤ log h. We then choose the integers r and k as follows.

r = bn/f−1(n)c and k = dn/re.

Due to this choice for k and r, we get the following inequalities:

r ≤ n

f−1(n) , k ≥ f−1(n), r ≥ n

2f−1(n) , and k ≤ 2f−1(n) + 1.

We firstly construct an instance (ϕ′, k) of Σp
2 [kk]-WSat(Γ2,4) that is a yes-instance if and

only if ϕ is a yes-instance of QSat2(DNF). We will describe ϕ′ as a quantified Boolean
formula whose matrix corresponds to a circuit of depth 4 and weft 2. In order to do so,
for each i ∈ [2], we split Xi into k disjoint sets Xi,1, . . . , Xi,k. We do this in such a way
that each set Xi,j has at most n/k elements, i.e., |Xi,j | ≤ 2r for all i ∈ [2] and all j ∈ [k].
Now, for each truth assignment α : Xi,j → B we introduce a new variable yαi,j . Formally,
we define a set of variables Yi,j for each i ∈ [2] and each j ∈ [k]:

Yi,j = { yαi,j : (α : Xi,j → B) }.
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We have that |Yi,j | ≤ 22r, for each i ∈ [2] and each j ∈ [k]. We let Yi =
⋃
j∈[k] Yi,j , and

we let Y = Y1 ∪ Y2.

We continue the construction of the formula ϕ′. For each i ∈ [2], we define the formula ψYi
as follows:

ψYi =
∧
j∈[k]

∧
α,α′:Xi,j→B

α6=α′

(
¬yαi,j ∨ ¬yα

′
i,j

)
.

Then we define the auxiliary functions σ0, σ1 : X → 2Y , that map variables in X to sets
of variables in Y . For each x ∈ Xi,j , we let:

σ0(x) = { yαi,j : (α : Xi,j → B), α(x) = 0 }, and
σ1(x) = { yαi,j : (α : Xi,j → B), α(x) = 1 }.

Intuitively, for b ∈ B, σb(x) corresponds to those variables yαi,j where α is an assignment
that sets x to b.

Now, we construct a formula ψ′′, by transforming the formula ψ in the following way.
We replace each occurrence of a positive literal x ∈ Xi,j in ψ by the formula χx, that is
defined as follows:

χx =
∧

yαi,j∈σ0(x)
¬yαi,j .

Moreover, we replace each occurrence of a negative literal ¬x in ψ (for x ∈ Xi,j) by the
formula χ¬x, that is defined as follows:

χ¬x =
∧

yαi,j∈σ1(x)
¬yαi,j .

We can now define the quantified Boolean formula ϕ′. We let ϕ′ = ∃Y1.∀Y2.ψ
′, where ψ′

is defined as follows:
ψ′ = ψY1 ∧ (ψY2 → ψ′′).

The formula ψ′ can be seen as a circuit of depth 4 and weft 2. In the remainder, we will
refer to ψ′ as a circuit.

We verify that ϕ ∈ QSat2(DNF) if and only if (ϕ′, k) ∈ Σp
2 [kk]-WSat(Γ2,4).

(⇒) Assume that ϕ ∈ QSat2(DNF), i.e., that there exists a truth assignment β1 : X1 → B
such that for all truth assignments β2 : X2 → B it holds that ψ[β1 ∪ β2] is true. We
show that (ϕ′, k) ∈ Σp

2 [kk]-WSat. We define the truth assignment γ1 : Y1 → B by
letting γ1(yα1,j) = 1 if and only if β1 coincides with α on the variables X1,j , for each j ∈ [k]
and each α : X1,j → B. Clearly, γ1 has weight k. Moreover, γ1 satisfies ψY1 . We show
that for each truth assignment γ2 : Y2 → B of weight k it holds that ψ′[γ1 ∪ γ2] is
true. Let γ2 be an arbitrary truth assignment of weight k. We distinguish two cases:
either (i) γ2 does not satisfy ψY2 , or (ii) γ2 does satisfy ψY2 . In case (i), clearly, ψ′[γ1∪γ2]
is true. In case (ii), we know that for each j ∈ [k], there is exactly one αj : X2,j → B
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such that γ2(yα2,j) = 1. Now let β2 : X2 → B be the assignment that coincides with αj on
the variables Y2,j , for each j ∈ [k]. We know that ψ[β1 ∪ β2] is true. Then, by definition
of ψ′′, it follows that ψ′′[γ1 ∪ γ2] is true as well. Since γ2 was arbitrary, we can conclude
that (ϕ′, k) ∈ Σp

2 [kk]-WSat.

(⇐) Conversely, assume that (ϕ′, k) ∈ Σp
2 [kk]-WSat, i.e., that there exists a truth

assignment γ1 : Y1 → B of weight k such that for all truth assignments γ2 : Y2 → B of
weight k it holds that ψ′[γ1 ∪ γ2] is true. We show that ϕ ∈ QSat2. Since ψY1 contains
only variables in Y1, we know that γ1 satisfies ψY1 , i.e., that for each j ∈ [k] there is a
unique αj : X1,j → B such that γ1(yαj1,j) = 1. We define the truth assignment β1 : X1 → B
to be the unique truth assignment that coincides with αj for each j ∈ [k]. We show
that for all truth assignments β2 : X2 → B it holds that ψ[β1 ∪ β2] is true. Let β2
be an arbitrary truth assignment. We construct the truth assignment γ2 : Y2 → B
by letting γ2(yα2,j) = 1 if and only if β2 coincides with α on the variables in Y2,j , for
each j ∈ [k] and each α : X2,j → B. Clearly, γ2 has weight k. Moreover, γ2 satisfies ψY2 .
Therefore, since we know that ψ′[γ1 ∪ γ2] is true, we know that ψ′′[γ1 ∪ γ2] is true. Then,
by definition of ψ′′, it follows that ψ[β1 ∪ β2] is true as well. Since β2 was arbitrary, we
can conclude that ϕ ∈ QSat2(DNF).

We observe some properties of the quantified Boolean formula ϕ′ = ∃Y1.∀Y2.ψ
′. Each Yi,

for i ∈ [2], contains at most n′ = k22r variables. Furthermore, the circuit ψ′ has
size m′ ≤ O(k24r + 22rm) ≤ O(k24rm). Finally, it is straightforward to verify that the
circuit ψ′ can be constructed in time O((m′)2).

Since (ϕ′, k) is an instance of Σp
2 [kk]-WSat(Γ2,4), we can apply the reduction R to obtain

an equivalent instance (ϕ′′, k′′) of SAT. This reduction runs in time f(k)(n′)k/λ(k)(m′)O(1).
By first constructing (ϕ′, k) from ϕ, and then constructing ϕ′′ from (ϕ′, k), we get a
reduction R′ from QSat2(DNF) to SAT, that runs in time f(k)(n′)k/λ(k)(m′)O(1) +
O((m′)2). We analyze the running time of this reduction R′ in terms of the values n
and m. Firstly:

f(k) ≤ f(2f−1(n) + 1) ≤ n.

Next, we define the function λ′. We want to ensure that the following inequality holds:

λ′(n) ≤ λ(k)
6 .

We do so by defining λ′ as follows:

λ′(h) = λ(f−1(h))
6 .

Since both λ and f−1 are nondecreasing and unbounded, λ′ is a nondecreasing and
unbounded function.

We have,

(n′)k/λ(k) = (k22r)k/λ(k) ≤ kk22kr/λ(k) ≤ kk22kn/(λ(k)f−1(n)) ≤ kk26n/λ(k)

≤ kk2n/λ′(n) = O(logn)O(logn)2n/λ′(n) = 2o(n).
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Finally, consider the factor m′. Since f−1 is nondecreasing and unbounded,

m′ ≤ O(k24rm) = O(logn24n/f−1(n)m) = 2o(n)m.

Therefore, both terms (m′)O(1) and O((m′)2) in the running time of R′ are
bounded by 2o(n)mO(1). Combining all these, we conclude that the running
time f(k)(n′)k/λ(k)(m′)O(1) +O((m′)2) of R′ is bounded by 2o(n)mO(1). Therefore, R′ is a
subexponential-time reduction from QSat2(DNF) to SAT. This completes our proof.

Theorem 174 gives us the following corollary, separating Σp
2 [∗k, 2] from para-NP.

Corollary 175. If Σp
2 [∗k, 2] ⊆ para-NP, then there exists a subexponential-time reduction

from QSat2(DNF) to SAT.

Proof. The parameterized problem Σp
2 [kk]-WSat(Γ2,4) is in Σp

2 [∗k, 2]. Therefore, the
result for Σp

2 [∗k, 2] follows directly from Theorem 174.

Finally, the proof of Theorem 174 extends to even stronger results for the cases of
Σp

2 [∗k, SAT] and Σp
2 [∗k,P].

Corollary 176. If Σp
2 [∗k,SAT] ⊆ para-NP, then there exists a subexponential-time

reduction from QSat2 to SAT. Moreover, if Σp
2 [∗k,P] ⊆ para-NP, then there exists a

subexponential-time reduction from the extension of QSat2 to quantified Boolean circuits
to SAT.

Proof (sketch). The proof of Theorem 174 can straightforwardly be modified to show
this result.

A similar result as for the case of Σp
2 [∗k,P] holds for the case of Σp

2 [k∗].

Corollary 177. If Σp
2 [k∗] ⊆ para-co-NP, then there exists a subexponential-time reduc-

tion from the extension of QSat2 to quantified Boolean circuits to UNSAT.

Proof (sketch). The proof of Theorem 174 can straightforwardly be modified to show
this result.

14.3 Relating Σp
2[k∗] and Σp

2[∗k, t] to Each Other
In this section, we use some of the separation results that we developed in Section 14.2
to argue that the classes Σp

2 [k∗], Πp
2 [k∗], Σp

2 [∗k, t] and Πp
2 [∗k, t] are different from each

other.

We begin with some results that are based on the assumption that NP 6= co-NP.

Proposition 178. Assuming that NP 6= co-NP, the following statements hold:
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(i) Σp
2 [k∗] 6⊆ Πp

2 [k∗];

(ii) Σp
2 [∗k, 1] 6⊆ Πp

2 [∗k,P];

(iii) Σp
2 [k∗] 6⊆ Σp

2 [∗k,P]; and

(iv) Σp
2 [∗k, 1] 6⊆ Σp

2 [k∗].

Proof. These results all follow from the facts that para-co-NP ⊆ XNP implies NP =
co-NP, and that para-NP ⊆ Xco-NP implies NP = co-NP. Take for instance result (i).
Suppose that Σp

2 [k∗] ⊆ Πp
2 [k∗]. Since para-co-NP ⊆ Σp

2 [k∗] and Πp
2 [k∗] ⊆ XNP, we get

that para-co-NP ⊆ XNP, and thus that NP = co-NP. The other results can be proven
analogously.

All that remains to show now is that Σp
2 [k∗] 6⊆ Πp

2 [∗k,P] and Σp
2 [∗k, 1] 6⊆ Πp

2 [k∗].
Proposition 169 allows us to show these results, under the assumption that there is
no subexponential-time reduction from QSat2(3DNF) to co-QSat2.

Proposition 179. Assuming that there is no subexponential-time reduction
from QSat2(3DNF) to co-QSat2, the following statements hold:

(v) Σp
2 [k∗] 6⊆ Πp

2 [∗k,P]; and

(vi) Σp
2 [∗k, 1] 6⊆ Πp

2 [k∗].

Proof. We give a proof for result (v). The other result can be proven analogously.

Suppose that Σp
2 [k∗] ⊆ Πp

2 [∗k,P]. Then, since A[2] ⊆ Σp
2 [k∗] and Πp

2 [∗k,P] ⊆ para-Πp
2 ,

we get that A[2] ⊆ para-Πp
2 . Then, by Proposition 169, we get that there exists a

subexponential-time reduction from QSat2(3DNF) to co-QSat2.

Notes
Theorem 174 appeared in a technical report [116].
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CHAPTER 15
Non-Uniform Parameterized

Complexity

Traditional computational complexity research has shown that there is a close relation
between the Polynomial Hierarchy and the concept of non-uniformity. There are various
ways to define non-uniform algorithms (and the non-uniform complexity classes that
are based on them), one of which is by means of advice strings. For each input size n,
the algorithm gets an advice string αn—whose length is bounded by a particular func-
tion z(n)—that can be used to solve the problem for inputs of length n. This advice
string is given for free, and it is possibly hard to compute (or even uncomputable). The
close relation between advice and the PH is illustrated by the seminal result that if SAT
is solvable in polynomial time using advice strings of polynomial length, then the PH
collapses. This result is known as the Karp-Lipton Theorem [126, 127].

In this chapter, we investigate non-uniform variants of several parameterized complexity
classes, and their relation to some of the parameterized variants of the complexity classes
at the second level of the PH that we introduced in Chapter 6. This investigation
culminates in several parameterized analogues of the Karp-Lipton Theorem.

We give an overview of the different possible ways to define non-uniform variants of
parameterized complexity classes. Because parameterized complexity is a two-dimensional
complexity framework, there are more ways to obtain natural non-uniform complexity
classes than in the classical one-dimensional complexity framework. Moreover, we relate
various non-uniform parameterized complexity classes that have been considered in the
literature to each other (see, e.g., [44, 67, 85]). To our knowledge, this is the first
structured overview of non-uniform parameterized complexity in the literature.

Moreover, to further motivate the investigation of non-uniform parameterized complexity,
we show how some of the non-uniform complexity classes that we consider can be
used in the setting of parameterized compilability. In particular, we show a number
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of parameterized incompilability results that are based on the assumption that some
non-uniform parameterized complexity classes are different.

Outline of this chapter We begin in Section 15.1 with defining the most prominent
non-uniform parameterized complexity classes. These include the non-uniform parame-
terized complexity classes that have been considered in the literature, as well as most of
the parameterized complexity classes that play a role in the parameterized analogues of
the Karp-Lipton Theorem. Most of these non-uniform classes can be defined using the
concept of advice.

In Section 15.2, we prove some basic results about the non-uniform parameterized
complexity classes that we consider. We provide several alternative characterizations
of some of the non-uniform classes. Moreover, we relate several of these classes to each
other, by showing both inclusion and separation results.

Then, in Section 15.3, we show how non-uniform parameterized complexity can be
used in the setting of parameterized compilability. We briefly review a parameterized
compilability framework, that can be used to investigate questions about knowledge
compilation from a parameterized complexity perspective. This parameterized framework
has been proposed by Chen [44], and builds forth on the compilability framework by
Cadoli, Donini, Liberatore and Schaerf [34]. Moreover, we introduce a novel non-uniform
parameterized complexity class that can be used to investigate parameterized compilability
questions that could not be addressed adequately before.

Finally, in Section 15.4, we develop the parameterized analogues of the Karp-Lipton
Theorem, relating several parameterized complexity classes introduced in Chapter 6 to
non-uniform parameterized complexity classes.

15.1 Non-Uniform Parameterized Complexity Classes

In this section, we give a definition of the most important non-uniform parameterized
complexity classes that we discuss in this chapter. Most classes can be defined naturally
in a homogeneous way, namely by using advice. Only for the classes FPTnu and XPnu—
natural non-uniform variants of the parameterized complexity classes FPT and XP—the
most natural definition is of a different form.

An overview of all (non-uniform) parameterized complexity classes that we consider in
this chapter, including the classes defined in this section, can be found in Figure 15.1 on
page 292.

Whenever we speak of an arbitrary parameterized complexity class K in this chapter, we
assume that this class is closed under fpt-reductions. We will repeat this assumption for
some results, to emphasize that this assumption is needed to establish these results.
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15.1. Non-Uniform Parameterized Complexity Classes

15.1.1 Fpt-size and xp-size advice

We begin our exposition of non-uniform parameterized complexity classes with several
classes that are based on advice depending on both the input size n and the parameter
value k. Such classes, where the advice string α is of fpt-size, have been considered in
the context of parameterized knowledge compilation [44]. We define these classes, as
well as a natural variant where xp-size advice is allowed. We begin with the non-uniform
parameterized complexity classes based on fpt-size advice.

Definition 180 (fpt-size advice). Let K be a parameterized complexity class. We define
K/fpt to be the class of all parameterized problems Q for which there exists a parameterized
problem Q′ ∈ K, a computable function f and a constant c such that for each (n, k) ∈ N×N
there exists some α(n, k) ∈ Σ∗ of size f(k)nc with the property that for all instances (x, k)
it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′. a

The classes K/fpt have been defined by Chen as K/ppoly [44] (for parameterized
polynomial-size). Next, we turn to the non-uniform parameterized complexity classes
based on xp-size advice.

Definition 181 (xp-size advice). Let K be a parameterized complexity class. We define
K/xp to be the class of all parameterized problems Q for which there exists a parameterized
problem Q′ ∈ K and a computable function f such that for each (n, k) ∈ N × N there
exists some α(n, k) ∈ Σ∗ of size nf(k) with the property that for all instances (x, k) it
holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′. a

The above definition has the following direct consequence.

Observation 182. FPT/xp = XP/xp.

We will use the notation XP/xp for the class FPT/xp = XP/xp to emphasize that
an nf(k) running time is allowed for algorithms that witness membership in this class.

15.1.2 Slice-wise advice

We continue our exposition with non-uniform variants of parameterized complexity classes
based on (computable-size) advice for each slice. We say that the resulting non-uniform
parameterized complexity classes are based on slice-wise advice.

Definition 183 (slice-wise advice). Let K be a parameterized complexity class. We
define K/slice to be the class of all parameterized problems Q for which there exists a
parameterized problem Q′ ∈ K and a computable function f such that for each k ∈ N
there exists some advice string α(k) ∈ Σ∗ of size at most f(k) with the property that for
all instances (x, k) it holds that (x, k) ∈ Q if and only if (x, α(k), k) ∈ Q′. a
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Intuitively, the difference between the definitions of the classes K/slice and K/xp can be
explained as follows by taking as example K = XP. For problems in the class XP/slice,
for each parameter value k there must be a single (uniformly defined) polynomial-time
algorithm (whose descriptions must be of size computable from k). For problems in
the class XP/xp, for each parameter value k there can be a (non-uniformly defined)
polynomial-time algorithm (with similar size bounds).

We observe the following properties.

Observation 184. The class FPT/slice can straightforwardly be shown to be equivalent
to P/slice. Here we consider P as the parameterized complexity class consisting of all
parameterized problems that can be solved in polynomial time.

Observation 185. For each parameterized complexity class K, it holds that K ⊆
K/slice ⊆ K/fpt ⊆ K/xp.

15.1.3 Poly-size and kernel-size advice

Next, we present some additional natural non-uniform variants of parameterized com-
plexity classes that are also based on advice. These variants are natural notions of
non-uniform complexity that come up in analogy to the classes defined in Section 15.1.1,
and are based on polynomial-size (or poly-size) and kernel-size advice. We begin with
defining the classes based on poly-size advice.

Definition 186 (poly-size advice). Let K be a parameterized complexity class. We
define K/poly to be the class of all parameterized problems Q for which there exists a
parameterized problem Q′ ∈ K and a constant c such that for each (n, k) ∈ N× N there
exists some α(n, k) ∈ Σ∗ of size nc with the property that for all instances (x, k) it holds
that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′. a

This definition directly gives us the following relation to the classes K/fpt.

Observation 187. For each parameterized complexity class K, we have that K ⊆
K/poly ⊆ K/fpt.

Next, we define the classes based on kernel-size advice.

Definition 188 (kernel-size advice). Let K be a parameterized complexity class. We
define K/kernel to be the class of all parameterized problems Q for which there exists a
parameterized problem Q′ ∈ K and a computable function f such that for each (n, k) ∈ N×
N there exists some α(n, k) ∈ Σ∗ of size f(k) with the property that for all instances (x, k)
it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′. a

The classes K/kernel bear a similar relation to the classes K/fpt as the classes K/poly
do.

Observation 189. For each parameterized complexity class K, we have that K ⊆
K/kernel ⊆ K/fpt.
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15.1.4 Slice-wise non-uniformity

The last variant of non-uniformity that we consider can be called slice-wise non-uniformity.
Firstly, we consider the class FPTnu, where problems are required to be solvable in fpt-
time, but the algorithm for each slice can be different.

Definition 190 ([67]). The parameterized complexity class FPTnu is defined as the
class of all parameterized problems Q for which there exists a (possibly uncomputable)
function f and a constant c such that for every k ∈ N, the k-th slice Qk of Q is decidable
in time f(k)nc, where n is the size of the instance. a

The class FPTnu is the class of parameterized problems that are non-uniformly fixed-
parameter tractable in the sense that is discussed in textbooks [67, 85]. Moreover, it
coincides with a variant of the class FPT/slice, where the function f bounding the size
of the advice α(k) is not required to be computable (see [36, Theorem 1.3]).

Finally, we give a definition of the most prominent non-uniform variant of XP, that is
also presented in textbooks on parameterized complexity [67, 85].

Definition 191 ([67]). The parameterized complexity class XPnu is defined as the class
of all parameterized problems Q for which for each k ∈ N, the slice Qk = {x : (x, k) ∈ Q }
is polynomial-time solvable. a

We point out that in the definition of the class XPnu, the order of the polynomial that is a
bound on the running time of the algorithm that solves slice Qk of a problem Q ∈ XPnu is
allowed to vary for different values of k, and does not have to be bounded by a computable
function of k. In contrast, for problems Q in FPTnu, each slice Qk must be solvable
in time O(nc) for some fixed constant c. (Here the factor f(k) hidden by the big-oh
notation depends on k, and must be computable from k.)

15.2 Basic Results

In this section, we provide some basic results about the different non-uniform parameter-
ized complexity classes that we defined in the previous section. We begin with giving
several alternative characterizations of some of the classes. Then we relate several of
the classes to each other, by giving some separation (non-inclusion) results. A graphical
overview of the relations between the classes can be found in Figure 15.1.

15.2.1 Alternative Characterizations

We provide alternative characterizations of the non-uniform complexity classes defined
in Section 15.1, in terms of fpt-reductions with advice, in terms of Boolean circuits, by
using slice-wise solvability, and in terms of potentially uncomputable-size advice.
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XP
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FPT/poly

XP/poly
para-NP/poly

FPT/kernel

XP/kernel
para-NP/kernel

FPT/slice

XP/slice
para-NP/slice

XPnu

FPTnu

FPT/fpt

nu-few-NP

few-NP/fpt
XP/fpt

para-NP/fpt

FPT/xp = XP/xp

para-NP/xp

Figure 15.1: Non-uniform parameterized complexity classes. Most classes are defined
in Section 15.1. For a definition of few-NP, nu-few-NP and few-NP/fpt, we refer to
Section 15.3.3.
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15.2.1.1 Fpt-reductions with Advice

We show that the classes K/fpt, K/kernel and K/poly can be defined by means of fpt-
reductions with advice of appropriate size. We start with defining fpt-reductions with
fpt-size advice.

Definition 192 (fpt-reductions with fpt-size advice). Let Q,Q′ be parameterized
problems. We say that an fpt-algorithm R is an fpt-reduction with fpt-size advice
from Q to Q′ if there exist computable functions f, h and a constant c such that for
each (n, k) ∈ N × N there is an advice string α(n, k) of length f(k)nc such that for
each instance (x, k) ∈ Σ∗ × N it holds that (1) (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q,
and (2) k′ ≤ h(k), where (x′, k′) = R(x, α(|x|, k), k).

When there exists an fpt-reduction with fpt-advice from Q to Q′, we say that Q is
fpt-reducible to Q′ with fpt-size advice. a

We show that K/fpt can be characterized using reductions with fpt-size advice.

Proposition 193. Let K be a parameterized complexity class that is closed under fpt-
reductions. Then K/fpt coincides with the class of parameterized problems that are
fpt-reducible with fpt-size advice to some problem in K.

Proof. (⇒) Take an arbitrary problem Q ∈ K/fpt. Then, by definition, there exists
some Q′ ∈ K such that for each (n, k) ∈ N× N there exists some advice string α(n, k) of
fpt-size with the property that for each (x, k) ∈ Σ∗ × N it holds that (x, k) ∈ Q if and
only if (x, α(|x|, k), k) ∈ Q′. We construct an fpt-reduction R with fpt-size advice from Q
to Q′. For each (n, k), we let the advice string for R be the string α(n, k). Moreover, we
let R(x, k) = (x, α(n, k), k). This proves that Q is fpt-reducible to some problem in K
with fpt-size advice.

(⇐) Conversely, take an arbitrary parameterized problem Q that is fpt-reducible to some
problem Q′ ∈ K, by an fpt-reduction R with fpt-size advice. By definition, then, for
each (n, k) ∈ N × N there exists some fpt-size advice string α(n, k) with the property
that for each (x, k) ∈ Σ∗ × N it holds that (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q,
where (x′, k′) = R(x, α(|x|, k), k). We show that Q ∈ K/fpt by specifying fpt-size advice
for each (n, k) ∈ N×N and giving a problem Q′′ ∈ K such that for each (x, k) ∈ Σ∗×N it
holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′′. For each (n, k) ∈ N×N we let the
advice string be α(n, k). Moreover, we let Q′′ = { (x, y, k) ∈ Σ∗×Σ∗×N : R(x, y, k) ∈ Q′ }.
Since K is closed under fpt-reductions, we know that Q′′ ∈ K. Therefore, Q ∈ K/fpt.

Next, we extend this characterization to the cases of K/kernel and K/poly by introducting
fpt-reductions with kernel-size and polynomial-size advice, and showing that these can
be used to characterize K/kernel and K/poly, respectively. We begin with the case of
kernel-size advice.
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Definition 194 (fpt-reductions with kernel-size advice). Let Q,Q′ be parameterized
problems. We say that an fpt-algorithm R is an fpt-reduction with kernel-size advice
from Q to Q′ if there exist computable functions f, h such that for each (n, k) ∈ N× N
there is an advice string α(n, k) of length f(k) such that for each instance (x, k) ∈ Σ∗×N
it holds that (1) (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q, and (2) k′ ≤ h(k), where (x′, k′) =
R(x, α(|x|, k), k). a

Proposition 195. Let K be a parameterized complexity class that is closed under fpt-
reductions. Then K/kernel coincides with the class of parameterized problems that are
fpt-reducible with kernel-size advice to some problem in K.

Proof. The proof of Proposition 193 can straightforwardly be modified to show this
result.

Next, we turn to the case of poly-size advice.

Definition 196 (fpt-reductions with poly-size advice). Let Q,Q′ be parameterized
problems. We say that an fpt-algorithm R is an fpt-reduction with poly-size advice
from Q to Q′ if there exist a computable function h and a constant c such that for
each (n, k) ∈ N × N there is an advice string α(n, k) of length nc such that for each
instance (x, k) ∈ Σ∗ × N it holds that (1) (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q,
and (2) k′ ≤ h(k), where (x′, k′) = R(x, α(|x|, k), k). a

Proposition 197. Let K be a parameterized complexity class that is closed under fpt-
reductions. Then K/poly coincides with the class of parameterized problems that are
fpt-reducible with poly-size advice to some problem in K.

Proof. The proof of Proposition 193 can straightforwardly be modified to show this
result.

15.2.1.2 Circuits

We provide the alternative characterizations of the classes FPT/fpt and para-NP/fpt, in
terms of (families of) circuits. Let C be a circuit with m input nodes, and let x ∈ B∗ be
a bitstring of length n ≤ m. Then, by C[x] we denote the circuit obtained from C by
instantiating the first n input nodes according to the n values in x.

We begin with the case of FPT/fpt.

Proposition 198. The class FPT/fpt coincides with the set of all parameterized prob-
lems Q for which there exists a computable function f and a constant c such that for
each (n, k) ∈ N × N there is some circuit Cn,k of size f(k)nc that decides, for each
input x ∈ Bn of length n, whether (x, k) ∈ Q.
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Proof (sketch). Let Q be a problem that is solvable in fpt-time using an fpt-size advice
string α(n, k) that only depends on the input size n and the parameter value k. Then
for any (n, k), one can “hard-code” this advice and its use by the algorithm in an fpt-size
circuit Cn,k that decides for inputs x of length n whether (x, k) ∈ Q.

Conversely, if for a problem Q, for each (n, k) there exists an fpt-size circuit Cn,k that
decides for inputs x of length n whether (x, k) ∈ Q, then one can decide Q in fpt-time by
taking a description of this circuit as the advice string α(n, k), and simulating the circuit
on any input x of length n.

Next, we address the case of para-NP/fpt.

Proposition 199. The class para-NP/fpt coincides with the set of all parameterized
problems Q for which there exists a computable function f and a constant c such that
for each (n, k) ∈ N × N there is some circuit Cn,k of size f(k)nc such that, for each
input x ∈ Bn of length n, it holds that x ∈ Q if and only if Cn,k[x] is satisfiable.

Proof (idea). An argument similar to the one in the proof of Proposition 198 can be used
to show this result. In addition, one needs to use the well-known correspondence between
non-deterministic algorithms and satisfiability of circuits, as used in the Cook-Levin
Theorem [54, 143].

15.2.1.3 Slice-wise Polynomial-time Solvability

We show that the class XP/slice can be characterized using polynomial-time algorithms
for the different slices of the problem. Here, the order of the polynomials in the running
time must be bounded by a computable function.

Proposition 200. Let the class XPcomp
nu consist of all parameterized problems Q for

which there exists some computable function f such that for each k ∈ N, the slice Qk is
solvable in time nf(k), where n = |x|. It holds that XPcomp

nu = XP/slice.

Proof. (⇒) Let Q ∈ XPcomp
nu . Then there exists some computable function f such that

for each k there exists an algorithm Ak that solves Qk in time nf(k). Then for each k, we
define the advice string α(k) to be a description of Ak. On input (x, α(k), k) = (x,Ak, k),
we can then simulate the algorithm Ak on input (x, k), which runs in time |x|f(k).
Therefore, the problem of deciding whether (x, k) ∈ Q, given (x, α(k), k), is in XP. In
other words, Q ∈ XP/slice.

(⇐) Let Q ∈ XP/slice. Then for each k ∈ N there is some advice string α(k) such that
deciding if (x, k) ∈ Q, given (x, α(k), k), is in XP. In other words, there is an algorithm A
that decides whether (x, k) ∈ Q, given (x, α(k), k), in time |x|f(k), for some computable
function f . Take an arbitrary k ∈ N. Let the algorithm Ak be the algorithm A that
has “hard-coded” access to the advice string α(k). Then Ak decides the slice Qk of Q in
time nf(k), where n denotes the input size. Thus Q ∈ XPcomp

nu .
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15.2.1.4 Uncomputable-size Advice

Finally, we show that the class XPnu can be characterized using slice-wise advice, where
the size of the advice strings is not required to be bounded by a computable function.

Proposition 201. Let the class XP/u-slice consist of all parameterized problems Q for
which there exists a parameterized problem Q′ ∈ XP such that for each k ∈ N there
exists some advice string α(k) ∈ Σ∗ with the property that for all instances (x, k) it holds
that (x, k) ∈ Q if and only if (x, α(k), k) ∈ Q′. Then XPnu = XP/u-slice.

Proof (sketch). This result can be shown with an argument that is entirely similar to
the proof of Proposition 200.

15.2.2 Separations

Next, we give some (conditional and unconditional) non-inclusion results for some of
the non-uniform complexity classes that we defined in Section 15.1. Several of these
results can be shown rather straightforwardly, whereas others need a bit more technical
machinery.

We begin with relating the classes XPnu and XP/slice. The class XPnu clearly contains
the class XP/slice, and its subclasses. We show that this containment is strict.

Proposition 202. There exists a parameterized problem Q ∈ (XPnu) \ (XP/slice).

Proof. Let g be an increasing function that grows faster asymptotically than every
computable function. For instance, we can let g be the busy-beaver function, where for
each n ∈ N the value g(n) is the maximum number of steps performed by any Turing
machine with n states that halts when given the empty string as input. By the Time
Hierarchy Theorem [119], we know that for each m ∈ N there exists some problem Pm
that is solvable in time O(nm) but not in time O(nm−1), where n denotes the input size.
We then let Q be the following parameterized problem:

Q = { (x, k) : k ∈ N, x ∈ Pg(k) }.

For each value k, we know by assumption that Pg(k) is solvable in polynomial-time,
namely in time O(ng(k)). Therefore, Q ∈ XPnu.

We claim that Q 6∈ XP/slice. We proceed indirectly, and suppose that Q ∈ XP/slice.
Then there exist a computable function f such that for each k ∈ N, there exists some
advice string α(k) such that the problem of deciding if (x, k) ∈ Q, given (x, α(k), k), is
solvable in time nf(k), where n = |x| denotes the input size. We know that g grows faster
asymptotically than f . Therefore, there exists some ` such that g(`) > f(`). Consider
the slice Q` of Q. By “hard-coding” the advice string α(`) in an algorithm A`, we can
then solve Q` in time nf(`). However, by construction of Q, the slice Q` is not solvable
in time O(ng(`)−1), and thus also not solvable in time O(nf(`)), which is a contradiction.
Therefore, we can conclude that Q 6∈ XP/slice.
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Corollary 203. XP/slice ( XPnu.

Next, we will show that the different notions of non-uniformity that are used for classes like
FPT/fpt, on the one hand, and for the class XPnu, on the other hand, are incomparable.
In order to show this, we begin by exhibiting a parameterized problem that is in FPT/fpt
(and that is in fact also contained in FPT/kernel and FPT/poly) but that is not in XPnu.

Proposition 204. There exists a parameterized problem Q ∈ (FPT/fpt) \ (XPnu).

Proof. Let S be an undecidable unary set, e.g., the set of all strings 1m such that the
m-th Turing machine (in some enumeration of all Turing machines) halts when given the
empty string as input. We define the following parameterized problem Q:

Q = { (s, 1) : s ∈ S }.

Clearly, Q ∈ FPT/fpt, since for input size n there is at most one string s of length n
such that (s, 1) ∈ Q. We claim that Q 6∈ XPnu. We proceed indirectly, and we suppose
that Q ∈ XPnu. Then there is an algorithm A that decides the slice Q1 = {x : (x, 1) ∈ Q }
in polynomial-time. However, then the algorithm A can straightforwardly be modified to
decide the undecidable set S, which is a contradiction. Therefore, Q 6∈ XPnu.

The problem that we constructed that is not in XPnu, is also contained in FPT/poly and
FPT/kernel.

Corollary 205. There exists a parameterized problem Q ∈ (FPT/poly) \ (XPnu) and
there exists a parameterized problem Q ∈ (FPT/kernel) \ (XPnu).

Proof (sketch). The problem Q constructed in the proof of Proposition 204 is in fact
contained both in (FPT/poly) and in (FPT/kernel), and not in XPnu.

In order to complete our incomparability result, we show that there exists also a problem
that is contained in XPnu, but that is not contained in XP/xp. This result can also be
seen as a strenghtened version of Proposition 202.

Proposition 206. There exists a parameterized problem Q ∈ (XPnu) \ (XP/xp).

Proof. In order to show this, we will use a few theoretical tools. Firstly, we will consider
the busy-beaver function g : N→ N, where g(n) is defined to be the maximum number of
steps performed by any Turing machine with n states that halts on the empty string. It
is well-known and it can be shown straightforwardly that g grows faster asymptotically
than any computable function f .

Next, we will make use of the following facts. For each n ∈ N, there are 22n possible
Boolean functions F : Bn → B. Each such function is computed by a circuit of size at
most c2n, for some fixed constant c. (By the size of a circuit, we denote the number
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of bits required in a binary representation of the circuit.) Moreover, there are at
most 2f(n) circuits with n input nodes of size f(n). Additionally, we can enumerate all
circuits Cn1 , Cn2 , . . . with n input nodes (possibly allowing repetitions) in such a way that:

• for each m ∈ N, computing the m-th circuit Cnm in this enumeration can be done
in time O(m · |Cnm|2); and

• for each `, `′ ∈ N such that ` < `′ it holds that all circuits of size ` come before all
circuits of size `′ in this enumeration.

With these theoretical tools in place, we can begin constructing the problem Q. Since we
want Q ∈ XPnu, we need to ensure that all slices Qk of Q are solvable in polynomial-time.
However, the order of the polynomials that bounds the running time of the algorithms
solving the slices Qk does not need to be bounded by a computable function. This is
exactly the property that we will exploit. We will construct Q in such a way that the
running time needed to solve the slices Qk grows so fast that any XP/xp algorithm will
make a mistake on some slice Qk.

In addition to g, we will consider two other functions h1, h2, that are defined as follows.
Consider the following (infinite) sequences:

h1 = (

g(1) times︷ ︸︸ ︷
g(1)2, . . . , g(1)2,

g(2) times︷ ︸︸ ︷
g(2)2, . . . , g(2)2,

g(3) times︷ ︸︸ ︷
g(3)2, . . . , g(3)2, . . . ), and

h2 = (1, 2, . . . , g(1), 1, 2, . . . , g(2), 1, 2, . . . , g(3), 1, 2, . . . ).

We define h1(x) to be the x-th element in the sequence h1 and h2(x) to be the x-th
element in the sequence h2.

We then define Q ⊆ B∗ × N to be the parameterized problem that is recognized by the
following algorithm A. We make sure that A runs in polynomial time on each slice Qk. On
input (x, k) ∈ B∗ × N, where |x| = n, the algorithm A uses the enumeration Cn1 , Cn2 , . . .
of circuits on n input nodes, and tries to compute the h2(k)-th circuit Cnh2(k). If this
takes more than h1(k) steps, the algorithm accepts (x, k); otherwise, the algorithm
simulates Cnh2(k) on the input x ∈ Bn, and accepts if and only if x satisfies Cnh2(k). The
algorithm A runs in time O(h1(k)2 · n), so for each k ∈ N, it decides Qk in linear time.

We now show that Q 6∈ XP/xp. We proceed indirectly, and suppose that Q ∈ XP/xp.
Then there exists some computable function f : N→ N such that for each (n, k) ∈ N×N
there exists a circuit Cn,k of size nf(k) that decides for inputs x ∈ Bn whether (x, k) ∈ Q.
We now identify a pair (n0, k0) ∈ N× N of values such that (n0)f(k0) < 22n0 and g(k0) ≥
c2n0 . In other words, we want (n0, k0) to satisfy the property that f(k0) < 2n0/ logn0
and c2n0 ≤ g(k0). We can do this as follows. Since g(k) grows faster asymptotically than
any computable function, we know that there exists some k0 such that g(k0) > c2f(k0).
Moreover, we let n0 = f(k0). We then get that g(k0) > c2n0 and f(k0) = n0 < 2n0/ logn0.
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Now, let k1 ∈ N be the least integer such that h1(k1) = g(k0). Then, by construction
of h1, for each ` ∈ [0, g(k0)− 1], it holds that h1(k1 + `) = g(k0).

Now, since we know that (n0)f(k0) < 22n0 , we know that there exists some Boolean
function F0 : Bn0 → B on n0 variables that is not computed by any circuit of size (n0)f(k0).
However, this function F0 can be computed by some circuit of size c2n0 . Therefore,
because g(k0) > c2n0 , there is some ` ∈ [0, g(k0) − 1] such that the circuit Cn0

h2(k1+`)
computes F0. Moreover, we can choose ` in such a way that Cn0

h2(k1+`) is of size at
most c2n0 < g(k0). Therefore, computing Cn0

h2(k1+`), using the enumeration Cn0
1 , Cn0

2 , . . . ,
can be done in time h2(k1 + `)2 ≤ h1(k1 + `) = g(k0).

Now consider the pair (n0, k0) ∈ N × N of values. We assumed that there is some
circuit Cn0,k0 of size (n0)f(k0) that decides for inputs x ∈ Bn0 whether (x, k0) ∈ Q. By
construction of Q and by the choice of (n0, k0), we know that for each x ∈ Bn0 it must
hold that (x, k0) ∈ Q if and only if F0(x) = 1. This means that the circuit Cn0,k0

computes F0. However, since Cn0,k0 is of size (n0)f(k0), this is a contradiction with the
fact that F0 is not computable by a circuit of size (n0)f(k0). Therefore, we can conclude
that there exists no family of circuits Cn,k of size nf(k) for (n, k) ∈ N × N. In other
words, Q 6∈ XP/xp.

The above results (Propositions 204 and 206 and Corollary 205) give us the incomparability
results that we were after, which can be summarized as follows.

Corollary 207. Let K be a parameterized complexity class such that FPT/poly ⊆
K ⊆ XP/xp. Then K and XPnu are incomparable w.r.t. set-inclusion, i.e., K 6⊆ XPnu
and XPnu 6⊆ K.

Corollary 208. Let K be a parameterized complexity class such that FPT/kernel ⊆
K ⊆ XP/xp. Then K and XPnu are incomparable w.r.t. set-inclusion, i.e., K 6⊆ XPnu
and XPnu 6⊆ K.

In fact, the proof of Proposition 206 shows that there is a problem Q that is in FPTnu
but not in XP/xp.

Corollary 209. There exists a problem Q ∈ (FPTnu)\(XP/xp).

Proof. The problem Q from the proof of Proposition 206 is in (FPTnu)\(XP/xp).

This observation gives us the following incomparability result.

Corollary 210. Let K be a parameterized complexity class such that either FPT/poly ⊆
K ⊆ XP/xp or FPT/kernel ⊆ K ⊆ XP/xp. Then K and FPTnu are incomparable w.r.t.
set-inclusion, i.e., K 6⊆ FPTnu and FPTnu 6⊆ K.
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Next, we explore the power of the non-uniformity resulting from kernel-size and
polynomial-size advice. Firstly, we give an easy proof that both forms of non-uniformity
are more powerful than the uniform setting.

Proposition 211. For every (non-trivial) decidable parameterized complexity class K,
there is a parameterized problem Q ∈ (K/poly) \ K and a parameterized problem Q′ ∈
(K/kernel) \K.

Proof. The problem Q as constructed in the proof of Proposition 204 is also contained
in K/poly and K/kernel, for each non-trivial K. However, since Q is undecidable, we
know that Q 6∈ K.

Secondly, we show that the non-uniform parameterized complexity classes FPT/kernel
and FPT/poly are incomparable. We start by identifying a problem that is in FPT/poly
but not in FPT/kernel.

Proposition 212. There is a parameterized problem Q ∈ (FPT/poly) \ (FPT/kernel).

Proof. To show this result, it suffices to give a (classical) problem Q that is in P/poly
but that is not solvable in polynomial time using constant-size advice. If we have such
a problem Q, then the parameterized problem { (x, 1) : x ∈ Q } is in (FPT/poly) \
(FPT/kernel).

We use a diagonalization argument to construct the problem Q. Let (A1, c1), (A2, c2), . . .
be an enumeration of all pairs (Ai, ci) consisting of a polynomial-time algorithm Ai and
a constant ci. We will construct Q in such a way that for each algorithm Ai and each
advice string y of length ci, the algorithm Ai, when using the advice string y, makes a
mistake on some input. We construct Q in stages: one stage for each (Ai, ci). In stage i,
we make sure that Ai makes a mistake for each advice string y of length ci.

We now describe how to construct Q in a given stage i. Let (Ai, ci) be the pair consisting
of a polynomial-time algorithm Ai and a constant ci. Take an input size n that has not
yet been considered in previous stages, and such that n ≥ 2ci . Since we have infinitely
many input sizes at our disposal, we can always find such an n. Next, consider 2ci = u
(arbitrary, but different) input strings x1, . . . , xu of length n. Moreover, consider all
possible advice strings y1, . . . , yu of length ci. For each j ∈ [u], we let xj ∈ Q if and only
if the algorithm Ai, using the advice string yj , rejects the input string xj . For all other
input strings x of length n, we let x 6∈ Q. Note that Q contains at most 2ci ≤ n strings
of length n. This completes stage i. For all input lengths n that are not considered in
any stage of our construction, we let Q contain no strings of length n.

We show that Q ∈ P/poly. We define the advice for input size n to be a table consisting of
all strings in Q of length n. Since for each input length n, Q contains at most n strings of
this length, this table is of polynomial size. Deciding whether a string of length n is in Q
can clearly be done in polynomial time, when given such a table. Therefore, Q ∈ P/poly.
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On the other hand, we claim that Q is not solvable in polynomial time using a constant
number of bits as advice. We proceed indirectly, and suppose that there is a polynomial-
time algorithm A that decides Q, when given c bits of advice for each input size, for
some fixed constant c. We know that (A, c) appears in the enumeration of all pairs of
polynomial-time algorithms and constants. Let (Ai, ci) = (A, c), for some i ≥ 1. Then
consider the input size n that is used in stage i of the construction of Q. Moreover, let y
be the advice string (of length c) that the algorithm A uses to solve inputs of size n.
We know that y appeared as some string yj of length ci in stage i of the construction
of Q. Now consider input xj . By definition of Q, we know that the algorithm A gives
the wrong output for xj , when using yj as advice. Thus, A does not solve Q using c
bits of advice. Since A and c were arbitrary, we can conclude that Q is not solvable in
polynomial time using a constant number of bits as advice.

Next, we identify a problem that is in FPT/kernel but not in FPT/poly.

Proposition 213. There is a parameterized problem Q ∈ (FPT/kernel) \ (FPT/poly).

Proof. We use a diagonalization argument to construct the problem Q.
Let (A1, p1), (A2, p2), . . . be an enumeration of all pairs (Ai, pi) consisting of an
fpt-algorithm Ai and a polynomial pi. We will construct Q in such a way that for each
algorithm Ai and each polynomial pi, there is some input size n, such that for each
advice string y of size pi(n), the algorithm Ai makes a mistake on some input x of
length n when using y as advice. We construct Q in stages: one stage for each (Ai, pi).
In stage i, we make sure that Ai makes such a mistake for the polynomial pi.

We now describe how to construct Q in a given stage i. Let (Ai, pi) be the pair consisting
of an fpt-algorithm Ai and a polynomial pi. We may assume without loss of generality
that for each such polynomial pi it holds for all n that pi(n) ≥ n. Take an input size n
that has not yet been considered in previous stages. Since we have infinitely many
input sizes at our disposal, we can always find such an n. Moreover, fix the parameter
value k = pi(n). Then, consider all possible advice strings y1, . . . , yu of length pi(n),
where u = 2k. Also, consider u (arbitrary, but different) input strings x1, . . . , xu of
length n. For each j ∈ [u], we let (xj , k) ∈ Q if and only if the algorithm Ai, using the
advice string yj , rejects the input string xj . For all other input strings x of length n, we
let (x, k) 6∈ Q. Note that Q contains at most 2k ≤ n pairs (x, k), where x is a string of
length n. This completes stage i. For all pairs (n, k) consisting of an input length n and
a parameter value k that are not considered in any stage of our construction, we let Q
contain no pairs (x, k), where x is a string of length n.

We show that Q ∈ FPT/kernel. We define the advice for the pair (n, k), consisting of
input size n and parameter value k, to be a table consisting of all strings x of length n
such that (x, k) ∈ Q. Since for each input length n, Q contains at most 2k pairs (x, k),
where x is a string of length n ≤ k, this table is of size f(k) = O(k2k). Given a pair (x, k)
with x of length n, and given such a table for (n, k), deciding whether (x, k) ∈ Q can
clearly be done in fpt-time. Therefore, Q ∈ FPT/kernel.
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On the other hand, we claim that Q 6∈ FPT/poly. We proceed indirectly, and suppose
that there is an fpt-algorithm A that decides Q, when given p(n) bits of advice for each
input size n, for some fixed polynomial p. We know that (A, p) appears in the enumeration
of all pairs of fpt-algorithms and polynomials. Let (Ai, pi) = (A, p), for some i ≥ 1. Then
consider the input size n and the parameter value k = p(n) that are used in stage i of
the construction of Q. Moreover, let y be the advice string (of length p(n)) that the
algorithm A uses to solve inputs of size n. We know that y appeared as some string yj of
length p(n) in stage i of the construction of Q. Now consider input xj . By definition
of Q, we know that the algorithm A gives the wrong output for (xj , k), when using yj as
advice. Thus, A does not solve Q using p(n) bits of advice. Since A and p were arbitrary,
we can conclude that Q 6∈ FPT/poly.

As a consequence of the above results, the following relations hold between non-uniform
variants of the class FPT.

Corollary 214. It holds that:

• FPT ( FPT/poly ( FPT/fpt;

• FPT ( FPT/kernel ( FPT/fpt;

• FPT/poly 6⊆ FPT/kernel; and

• FPT/kernel 6⊆ FPT/poly.

In fact, this picture can be generalized to arbitrary (decidable) classes that contain FPT.
We begin by generalizing Propositions 212 and 213.

Proposition 215. For every decidable parameterized complexity class K, there is a
parameterized problem Q ∈ (FPT/poly) \ (K/kernel) and a parameterized problem Q′ ∈
(FPT/kernel) \ (K/poly).

Proof. The proofs of Propositions 212 and 213 can straightforwardly be modified to
show this result, by using an enumeration of all algorithms (rather than enumerating all
polynomial-time or fpt-time algorithms).

This gives us the following result, relating non-uniform variants of arbitrary classes K ⊇
FPT.

Corollary 216. For every decidable parameterized complexity class K such that FPT ⊆ K,
it holds that:

• K ( K/poly ( K/fpt;

• K ( K/kernel ( K/fpt;
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• K/poly 6⊆ K/kernel; and

• K/kernel 6⊆ K/poly.

Finally, we show that (under various complexity-theoretic assumptions), the class para-NP
is not contained in any of the classes K ⊆ XP/xp. The first case that we consider is that
of XP/kernel.

Proposition 217. If para-NP ⊆ XP/kernel, then P = NP.

Proof. Consider the para-NP-complete language SAT1 = { (ϕ, 1) : ϕ ∈ SAT }. By our
assumption that para-NP ⊆ XP/kernel, we get that SAT1 ∈ XP/kernel. That is, there
is some computable function f such that for each n ∈ N there exists some α(n) ∈ Σ∗ of
size f(k) with the property that for each instance (x, 1) of SAT1 with |x| = n, we can
decide in fpt-time, given (x, α(n, 1), 1), whether (x, 1) is a yes-instance of SAT1. In other
words, SAT is solvable in polynomial time using a constant number of bits of advice for
each input size n.

Then, by self-reducibility of SAT, in polynomial time, using constant-size advice, we can
also construct an algorithm A that computes a satisfying assignment of a propositional
formula, if it exists, and fails otherwise. We now show how to use this to construct an
algorithm B that solves SAT in polynomial time. The idea is the following. Since we
only need a constant number of bits of advice for algorithm A, we can simply try out all
(constantly many) possible advice strings in a brute force fashion. Given a propositional
formula ϕ, algorithm B iterates over all (constantly many) possible advice strings. For
each such string α, algorithm B simulates algorithm A on ϕ using α. If A outputs a
truth assignment for ϕ, algorithm B verifies whether this assignment satisfies ϕ. If it
does, then clearly ϕ is satisfiable, and so B accepts ϕ. If it does not, B continues with
the next possible advice string. If for no advice string, the simulation of A outputs a
truth assignment, B rejects ϕ. In this case, we can safely conclude that ϕ is unsatisfiable.
Since at least one advice string leads to correct behavior of A, we know that if ϕ were
satisfiable, a satisfying assignment would have been constructed in some simulation of A.
Thus, we can conclude that P = NP.

The second case that we consider is that of XP/xp.

Proposition 218. If para-NP ⊆ XP/xp, then the PH collapses to the second level.

Proof. Assume that para-NP ⊆ XP/xp. Consider the NP-complete language SAT1 =
{ (ϕ, 1) : ϕ ∈ SAT }. This is then in P/poly. Thus, NP ⊆ P/poly. By the Karp-Lipton
Theorem [126, 127], it follows that PH = Σp

2 .

This result gives us the following corollary.

Corollary 219. It holds that para-NP 6⊆ FPT/fpt, para-NP 6⊆ XP/fpt, para-NP 6⊆
FPT/poly and para-NP 6⊆ XP/poly, unless the PH collapses to the second level.
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15.3 Relation to Parameterized Knowledge Compilation

In this section, we show how several non-uniform parameterized complexity classes can
be used to establish negative results within the framework of parameterized knowledge
compilation.

Knowledge compilation is a technique of dealing with intractable problems where part of
the input stays stable for an extended amount of time (see, e.g., [34, 58, 159, 179]). Positive
knowledge compilation results amount to the (computationally expensive) preprocessing
of the stable part of the input, so that for each possible remainder of the input (the
varying part), the problem can be solved efficiently (using the preprocessed information).
A natural scenario where knowledge compilation can be used, for instance, is that of a
(stable) database D containing some body of knowledge, and (varying) queries q that are
posed against the database. Unfortunately, it turns out that many important problems
do not lead to positive compilation results. Parameterized knowledge compilation refers
to the use of the parameterized complexity framework to knowledge compilation, with
the aim of increasing the possibility of positive compilation results [44].

However, unsurprisingly, there are also problems that cannot be compiled even in the
parameterized setting. Most of these negative results are in fact conditional on some
non-uniform parameterized complexity classes being different. We give an overview of the
relation between parameterized incompilability results and non-uniform parameterized
complexity classes. In addition, we define some new non-uniform parameterized complex-
ity classes that can be used to get additional (conditional) parameterized incompilability
results.

The (parameterized) compilability framework that we use is based on the work by Cadoli
et al. [34] and Chen [44]. Relating non-uniform parameterized complexity to the more
recent framework of compilability by Chen [43] remains a topic for future research.

15.3.1 Parameterized Knowledge Compilation

We begin with reviewing the basic notions from (parameterized) knowledge compilability
theory.

15.3.1.1 Compilability

We provide some basic notions from the theory of compilability. For more details, we refer
to the work of Cadoli et al. [34]. In the following, we fix an alphabet Σ. We begin with
the basic definitions of compilation problems (formalized as knowledge representation
formalisms) and the class of polynomial-size compilable problems (comp-P).

Definition 220. A knowledge representation formalism (KRF) is a subset of Σ∗×Σ∗. a

Definition 221. We say that a function f : Σ∗ → Σ∗ is poly-size if there exists a
constant c such that for each (x, k) ∈ Σ∗ it holds that |f(x)| ≤ nc, where n = |x|. a
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Definition 222. Let K be a complexity class. A KRF F belongs to comp-K if there exist
(1) a computable poly-size function f : Σ∗ → Σ∗ and a KRF F ′ in K such that for all
pairs (x, y) ∈ Σ∗ × Σ∗ it holds that (x, y) ∈ F if and only if (f(x), y) ∈ F ′. a

Note that, unlike the original definition by Cadoli et al. [34], we require the compilation
function f to be computable. This is a reasonable requirement for practically useful
compilability results. To the best of our knowledge, there are no natural problems where
this distinction (between computable and possibly uncomputable compilation functions)
makes a difference.

Next, we turn to the definitions that are needed to establish incompilability results
(nucomp-K-hardness under nucomp-reductions).

Definition 223. Let K be a complexity class. A KRF F belongs to nucomp-K if there
exist (1) a poly-size function f : Σ∗ × 1∗ → Σ∗ and a KRF F ′ in K such that for all
pairs (x, y) ∈ Σ∗ × Σ∗ it holds that (x, y) ∈ F if and only if (f(x, 1|y|), y) ∈ F ′. a

Definition 224. A KRF F is nucomp-reducible to a KRF F ′ if there exist poly-size
functions f1, f2 : Σ∗× 1∗ → Σ∗, an poly-time function g : Σ∗×Σ∗ → Σ∗, such that for all
pairs (x, y) ∈ Σ∗×Σ∗ it holds that (x, y) ∈ F if and only if (f1(x, 1|y|), g(f2(x, 1|y|), y)) ∈
F ′. a

We do not require the compilation function f witnessing membership in nucomp-K, and
the compilation functions f1 and f2, nucomp-reducibility, to be computable. The reason
for this is that the class nucomp-K and the corresponding nucomp-reductions are intended
to show incompilability results, which are even stronger when possibly uncomputable
compilation functions are considered.

We will use the following notation of compilation problems. Consider the compilation
problem F specified as follows.

F
Offline instance: x ∈ Σ∗ with property P1.
Online instance: y ∈ Σ∗ with property P2.
Question: does (x, y) have property P3?

We use this notation to denote the KRF F = { (x, y) ∈ Σ∗ × Σ∗ : (x, y) satisfies
properties P1, P2, P3 }.

Finally, we consider compilation problems that are complete for the classes nucomp-K.

Definition 225. Let L be a decision problem. Then the KRF εL is defined as follows:

εL = {ε} × L = { (ε, x) : x ∈ L },

where ε is the empty string. a
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Proposition 226 ([34, Theorem 2.9]). Let K be a complexity class that is closed under
polynomial-time reductions. Let S be a problem that is complete for K (under polynomial-
time reductions). Then εS is complete for nucomp-K under (polynomial-time) nucomp-
reductions.

15.3.1.2 Parameterized Compilability

Next, we revisit the basic notions of parameterized compilability. For more details, we
refer to the work of Chen [44]. We begin with the basic definitions of parameterized
compilation problems (formalized as parameterized knowledge representation formalisms)
and the class of fpt-size compilable problems (par-comp-FPT).

Definition 227. A parameterized knowledge representation formalism (PKRF) is a
subset of Σ∗ × Σ∗ × N. A PKRF can also be seen as a parameterized problem by pairing
together the first two strings of each triple. a

Definition 228. We say that a function f : Σ∗ × N → Σ∗ is fpt-size if there exists a
constant c and a computable function h : N → N such that for each (x, k) ∈ Σ∗ × N it
holds that |f(x, k)| ≤ h(k)nc, where n = |x|. a

Definition 229. Let C be a parameterized complexity class. A PKRF F belongs to
par-comp-C if there exist an fpt-size computable function f : Σ∗×N→ Σ∗ and a PKRF F ′
in C such that for all triples (x, y, k) ∈ Σ∗ × Σ∗ × N and all natural numbers m ≥ |y| it
holds that (x, y, k) ∈ F if and only if (f(x, k), y, k) ∈ F ′. a

Note that we require the compilation function f witnessing membership in par-comp-C
to be computable. This is a reasonable requirement for practically useful compilability
results.

Next, we turn to the definitions that are needed to establish incompilability results
(par-nucomp-K-hardness under fpt-nucomp-reductions).

Definition 230. Let C be a parameterized complexity class. A PKRF F belongs to
par-nucomp-C if there exist an fpt-size function f : Σ∗ × 1∗ × N→ Σ∗ and a PKRF F ′

in C such that for all triples (x, y, k) ∈ Σ∗ × Σ∗ × N and all natural numbers m ≥ |y| it
holds that (x, y, k) ∈ F if and only if (f(x, 1m, k), y, k) ∈ F ′. a

Definition 231. A PKRF F is fpt-nucomp-reducible to a PKRF F ′ (denoted
by F ≤fpt

nucomp F
′) if there exist fpt-size functions f1, f2 : Σ∗ × 1∗ × N → Σ∗, an fpt-

time function g : Σ∗ × Σ∗ × N → Σ∗, and a computable function h : N → N such
that for all triples (x, y, k) ∈ Σ∗ × Σ∗ × N and all natural numbers m ≥ |y| it holds
that (x, y, k) ∈ F if and only if (f1(x, 1m, k), g(f2(x, 1m, k), y, k), h(k)) ∈ F ′. a

Intuitively, the function f1 transforms the offline instance x of F into an fpt-size offline
instance of F ′, and the function f2 transforms the offline instance x of F into an auxiliary
offline instance x′. The function g transforms the online instance y of F (together with
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the auxiliary offline instance x′) into an online instance of F ′. Finally, the function h
ensures that the parameter value for F ′ is not unbounded.

Note that, like the original definition by Chen [44], we do not require the compilation
function f witnessing membership in par-nucomp-K, and the compilation functions f1
and f2, fpt-nucomp-reducibility, to be computable. The reason for this is that the
class par-nucomp-K and the corresponding fpt-nucomp-reductions are intended to show
incompilability results, which are even stronger when possibly uncomputable compilation
functions are considered. Moreover, allowing possibly uncomputable compilation functions
allows us to establish closer connections to several non-uniform parameterized complexity
classes.

We will use the following notation of parameterized compilation problems. Consider the
parameterized compilation problem F specified as follows.

F
Offline instance: x ∈ Σ∗ with property P1.
Online instance: y ∈ Σ∗ with property P2.
Parameter: f(x, y) = k.
Question: does (x, y) have property P3?

We use this notation to denote the PKRF F = { (x, y, k) ∈ Σ∗ × Σ∗ × N : k =
f(x, y), (x, y, k) satisfies properties P1, P2, P3 }.

Finally, we consider compilation problems that are complete for the classes par-nucomp-K.

Definition 232. Let L be a parameterized decision problem. Then the PKRF εL is
defined as follows:

εL = { (ε, x, k) : (x, k) ∈ L },

where ε is the empty string. a

The following result is given without proof by Chen [44]. We provide a proof. The main
lines of the proof follow that of the proof of Proposition 226 (cf. [34, Theorem 2.9]).

Proposition 233 ([44, Theorem 17]). Let K be a parameterized complexity class. Let Q
be a parameterized problem that is complete for K (under fpt-reductions). Then εQ is
complete for par-nucomp-K (under fpt-nucomp-reductions).

Proof. Let Q be a parameterized problem that is K-complete under fpt-reductions.
Moreover, let A be an arbitrary PKRF in par-nucomp-K. Then there exist an fpt-size
function f : Σ∗ × 1∗ × N→ Σ∗ and a PKRF Q′ in K such that for all triples (x, y, k) ∈
Σ∗ × Σ∗ × N and all natural numbers m ≥ |y| it holds that:

(x, y, k) ∈ A if and only if (f(x, 1m, k), y, k) ∈ Q′.
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But Q′ ∈ K, so it can be reduced to Q by means of an fpt-reduction R:

(x, y, k) ∈ Q′ if and only if R(x, y, k) ∈ Q.

We now define an fpt-nucomp-reduction from A to εQ. We specify fpt-size functions f1, f2,
an fpt-time function g, and a computable function h, as follows:

f1(x, 1m, k) = ε,
f2(x, 1m, k) = f(x, 1m, k),
g(x′, y, k) = π1(R(x′, y, k)), and

h(k) = π2(R(x′, y, k)).

Here πi represents projection to the i-th element of a tuple. Since R is an fpt-reduction,
we know that π2(R(x′, y, k)) only depends on k, and can thus be expressed as a function h
that only depends on k.

We then get that for each m ≥ |y|:

(x, y, k) ∈ A if and only if (f(x, 1m, k), y, k) ∈ Q′
if and only if R(f(x, 1m, k), y, k) ∈ Q
if and only if (ε, R(f(x, 1m, k), y, k)) ∈ εQ
if and only if (f1(x, 1m, k), g(f2(x, 1m, k), y, k), h(k)) ∈ εQ.

Thus, this is a correct fpt-nucomp-reduction from A to εQ. Since A was an arbitrary
PKRF in par-nucomp-K, we can conclude that εQ is par-nucomp-K-complete.

15.3.2 (Conditional) Incompilability Results

To exemplify what role non-uniform parameterized complexity can play in parameterized
incompilability results, we give two examples of parameterized problems that do not
allow an fpt-size compilation, unless W[1] ⊆ FPT/fpt.

15.3.2.1 Constrained Clique

As first example, we will take the following problem Constrained-Clique. The def-
inition of this problem is analogous to the definition of the Constrained Vertex Cover
problem in the seminal paper by Cadoli et al. [34].

Constrained-Clique
Offline instance: A graph G = (V,E).
Online instance: Two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Question: Is there a clique C ⊆ V in G of size u such that C ∩V1 = ∅ and V2 ⊆ C?

We consider the following parameterization of this problem, where the parameter is the
number of vertices that have to be added to V2 to create a clique of size u.
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Constrained-Clique(sol.-size)
Offline instance: A graph G = (V,E).
Online instance: Two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = u− |V2|.
Question: Is there a clique C ⊆ V in G of size u such that C ∩V1 = ∅ and V2 ⊆ C?

We begin by showing that Constrained-Clique(sol.-size) is par-nucomp-W[1]-
complete. In order to do so, we will use the W[1]-compete problem Multi-Colored
Clique (for short: MCC) [80]. Instances of MCC are tuples (V,E, k), where k is a posi-
tive integer, V is a finite set of vertices partitioned into k subsets V1, . . . , Vk, and (V,E)
is a simple graph. The parameter is k. The question is whether there exists a k-clique
in (V,E) that contains a vertex in each set Vi.

Proposition 234. Constrained-Clique(sol.-size) is par-nucomp-W[1]-complete.
Moreover, hardness holds already for the restricted case where V2 = ∅ (and so u = k).

Proof. To show membership in par-nucomp-W[1], it suffices to show membership in W[1].
We give an fpt-reduction to Clique, which is contained in W[1]. Let (G, (V1, V2, u), k)
be an instance of Constrained-Clique(sol.-size). The reduction outputs the following
instance (G′, k) of Clique. The graphG′ is obtained fromG by removing all vertices in V1,
removing all vertices in V2, and all vertices that are not connected to each vertex v ∈ V2.

To show hardness for par-nucomp-W[1], we give a fpt-nucomp-reduction from εMCC
to Constrained-Clique(sol.-size). Since MCC is W[1]-hard, we know that the prob-
lem εMCC is par-nucomp-W[1]-hard (under fpt-nucomp-reductions). We specify fpt-size
functions f1, f2, a computable function h and an fpt-time function g such that for each
instance (δ,G, k) of εMCC it holds that for each m ≥ ||G||: (δ,G, k) ∈ εMCC if and only
if (f1(δ, 1m, k), g(f2(δ, 1m, k), G, k), h(k)) ∈ Constrained-Clique(sol.-size).

Let (δ,G, k) be an instance of εMCC, where G = (V,E), where the set V of vertices
is partitioned into subsets V1, . . . , Vk, and where Vi = {vi1, . . . , vin}, for each i ∈ [k].
We define f1(δ, 1m, k) to be the graph G′ = (V ′, E′). Here we let V ′ =

⋃
i∈[k] V

i ∪⋃
i,j∈[k],i<jW

i,j , where for each i ∈ [k] we let V i = { vi` : ` ∈ [m] }, and for each i, j ∈ [k]
with i < j we let W i,j = {wi,`1,j,`2 : `1, `2 ∈ [m] }. We let E′ consist of the following
edges. First, we connect all vertices between different sets V i, i.e., for each i, j ∈ [k]
with i < j, we connect each vertex vi` ∈ V i with each vertex vj`′ . Next, we connect all
vertices between different sets W i,j , i.e., for each i, j ∈ [k] with i < j and each i′, j′ ∈ [k]
with i′ < j′, we connect each vertex wi,`1,j,`2 with each vertex wi′,`′1,j′,`′2 . Then, we
connect vertices in W i,j and in V b for b 6= i and b 6= j, i.e., for each i, j ∈ [k] with i <
j, and each b ∈ [k] such that b 6∈ {i, j}, we connect each vertex wi,`1,j,`2 with each
vertex vb` . Finally, we describe the edges between vertices in W i,j and vertices in V i ∪ V j .
Let i, j ∈ [k] with i < j, and let `1, `2 ∈ [m]. Then we connect wi,`1,j,`2 with vi`1 and
with vj`2 . Then, we define h(k) = k′ = k +

(k
2
)
. We define f2(δ, 1m, k) = 1m. Finally,

we let g(1m, G, k) = (U1, U2, u). Here we let U1 = {wi,`1,j,`2 : i, j ∈ [k], i < j, (`1 >
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n ∨ `2 > n) } ∪ {wi,`1,j,`2 : i, j ∈ [k], i < j, {vi`1 , v
j
`2
} 6∈ E }. Moreover, we let U2 = ∅,

and we let u = |U2|+ k′ = k′. Clearly f1 and f2 are fpt-size functions, g is an fpt-time
computable function, and h is a computable function.

All that remains to show is that G has a (multi-colored) clique of size k if and only if G′
has a clique of size u that contains no vertex in V1. One direction is easy. Let C =
{v1
`1
, . . . , vk`k} be a multicolored clique in G. Then the set C ∪{wi,`i,j,`j : i, j ∈ [k], i < j }

is a clique in G′ of size k′ that contains no vertices in V1. Conversely, assume that G′ has a
clique C ′ of size k′ that contains no vertices in V1. We know that the set V ′ of vertices of G′
consists of k′ subsets for which holds that there are no edges between any two vertices of
the same subset. Namely, these subsets are V 1, . . . , V k,W 1,2, . . . ,W k−1,k. Therefore C ′
must contain one vertex from each of these subsets. Let C = C ′ ∩ V . We know that C
contains no vertex of the form vi` for ` ∈ [n + 1,m], because for each ` ∈ [n + 1,m],
the vertex vi` is not connected to any vertex W =

⋃
i,j∈[k],i<jW

i,j that is not contained
in V1. Therefore, we know that C ⊆ V and |C| = k. Let C = {v1

`1
, . . . , vk`k}, where for

each i ∈ [k] we have C ∩ Vi = {vi`i}. By definition of G′, we know that C ′ must contain
for each i, j ∈ [k] with i < j the vertex wi,`i,j,`j . Then, because we know that wi,`i,j,`j is
not in V1, by construction of V1 we know that {vi`i , v

j
`j
} ∈ E. Therefore, we can conclude

that C ′ is a (multicolored) clique in V . This concludes the correctness proof of our
fpt-nucomp-reduction from εMCC to Constrained-Clique(sol.-size).

We can then use this par-nucomp-W[1]-completeness result to relate the fpt-size
(in)compilability of this problem to the inclusion between W[1] and the non-uniform
parameterized complexity class FPT/fpt. In order to do so, we will first need the following
results. These results were already stated without proof by Chen [44]. We provide a
proof here.

Proposition 235 ([44, Proposition 16]). Let K be a parameterized complexity class. If
a parameterized problem S is in K/fpt, then εS ∈ par-nucomp-K.

Proof. Let S be a parameterized problem in K/fpt. Then, by definition, there exists an
fpt-size function f and a parameterized problem S′ ∈ K such that:

(y, k) ∈ S if and only if (f(1|y|, k), y, k) ∈ S′.

We show that εS ∈ par-nucomp-K. We specify an fpt-size function f ′ such that:

(ε, y, k) ∈ εS if and only if (f ′(ε, 1|y|, k), y, k).

We let f ′(x, y, k) = f(1|y|, k). It is straightforward to modify f ′ in such a way that it works
for each m ≥ |y|, rather than just for |y|. This witnesses that εS ∈ par-nucomp-K.

The proof of the next proposition follows the main lines of the proof of its counterpart in
classical compilability (cf. [34, Theorem 2.12]).
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Proposition 236 ([44, Theorem 18]). Let K and K′ be parameterized complexity
classes that are closed under fpt-reductions and that have complete problems. The inclu-
sion par-nucomp-K ⊆ par-nucomp-K′ holds if and only if the inclusion K/fpt ⊆ K′/fpt
holds.

Proof. First, we show that K/fpt ⊆ K′/fpt implies that par-nucomp-K ⊆ par-nucomp-K′.
Suppose that K/fpt ⊆ K′/fpt. Moreover, let S be a problem that is K-complete under
fpt-reductions. Then, by Proposition 233, εS is par-nucomp-K-complete. Also, since S ∈
K/fpt and K/fpt ⊆ K′/fpt, we know that S ∈ K′/fpt. Therefore, by Proposition 235, εS ∈
par-nucomp-K′. Then, since there is a par-nucomp-K-complete problem that is in
par-nucomp-K′, we get the inclusion par-nucomp-K ⊆ par-nucomp-K′.

Conversely, we show that par-nucomp-K ⊆ par-nucomp-K′ implies that K/fpt ⊆ K′/fpt.
Suppose that par-nucomp-K ⊆ par-nucomp-K′. Let S be an arbitrary problem in K/fpt.
We show that S ∈ K′/fpt. By definition, there exists an fpt-size function f and a
PRKF S′ ∈ K such that:

(y, k) ∈ S if and only if (f(1|y|, k), k) ∈ S′.

From this it follows that the PKRF εS is in par-nucomp-K. Therefore, it is also
in par-nucomp-K′. This means that there is an fpt-size function f ′ and a PKRF S′′ ∈ K′
such that for all instances (x, y, k):

(x, y, k) ∈ εS if and only if (f ′(x, 1|y|, k), y, k) ∈ S′′.

Then, we get that:

(y, k) ∈ S if and only if (ε, y, k) ∈ εS if and only if (f ′(ε, 1|y|, k), y, k) ∈ S′′.

Since f ′(ε, 1|y|, k) is an fpt-size function that depends on 1|y| and k alone, and since S′′ ∈
K′, we conclude that S ∈ K′/fpt. Since S was an arbitrary problem in K/fpt, we can
conclude that K/fpt ⊆ K′/fpt.

Additionally, we show that W[1]/fpt ⊆ FPT/fpt if and only if W[1] ⊆ FPT/fpt.

Proposition 237. Let K and K′ be parameterized complexity classes. Then it holds
that K/fpt ⊆ K′/fpt if and only if K ⊆ K′/fpt.

Proof. Since K ⊆ K/fpt, one inclusion follows immediately. We prove the converse
inclusion, namely that K ⊆ K′/fpt implies that K/fpt ⊆ K′/fpt.

Let Q be an arbitrary problem in K/fpt. This means that there exists a problem Q′ ∈ K
and fpt-size advice strings α(n, k) for each (n, k) ∈ N× N, such that:

(x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′.
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Moreover, since Q′ ∈ K, by assumption, we know that Q′ ∈ K′/fpt. Thus, there exists a
problem Q′′ ∈ K′ and fpt-size advice strings β(n, k) for each (n, k) ∈ N× N, such that:

(y, k) ∈ Q′ if and only if (y, β(|y|, k), k) ∈ Q′′,

where y = (x, α(|x|, k)). From this, we get that (x, k) ∈ Q if and only
if (x, α(|x|, k), β(|y|, k), k) ∈ Q′′. Therefore, Q ∈ K′/fpt.

This now gives us the following corollary.

Corollary 238. It holds that par-nucomp-W[1] ⊆ par-nucomp-FPT if and only if W[1] ⊆
FPT/fpt.

From this, we get the following result that Constrained-Clique(sol.-size) is fpt-size
incompilable, under the assumption that W[1] 6⊆ FPT/fpt.

Proposition 239. Constrained-Clique(sol.-size) is not in par-nucomp-FPT, and so
it is not in par-comp-FPT, unless W[1] ⊆ FPT/fpt.

15.3.2.2 Weighted Clause Entailment

As second example, we consider a parameterized variant of the clause entailment problem.
The clause entailment problem plays a central role in the literature on knowledge
compilation [34, 58, 159], and is defined as follows.

Clause-Entailment
Offline instance: A CNF formula ϕ.
Online instance: A clause c, i.e., a disjunction of literals.
Question: ϕ |= c?

We consider a weighted variant of the problem Clause-Entailment. In this variant,
we consider logical entailment with respect to truth assignments of a certain weight.
In particular, we say that a CNF formula ϕ entails a clause c with respect to truth
assignments of weight w, written ϕ |=w c, if for all truth assignments α to ϕ of weight w
it holds that if α satisfies ϕ, then α satisfies c as well. We consider the following
parameterized compilation problem.

Clause-Entailment(weight)
Offline instance: A CNF formula ϕ, and a positive integer w.
Online instance: A clause c.
Parameter: w.
Question: ϕ |=w c?

We show that Clause-Entailment(weight) is not fpt-size compilable unless W[1] ⊆
FPT/fpt. Similarly to the case of Constrained-Clique(sol.-size), we show that
Clause-Entailment(weight) is par-nucomp-co-W[1]-hard to derive this result.
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Proposition 240. Clause-Entailment(weight) is not in par-comp-FPT, unless
W[1] ⊆ FPT/fpt.

Proof. We show that the problem is par-nucomp-co-W[1]-hard. This suffices, since any
parameterized compilation problem is fpt-size compilable if and only if its co-problem
(the problem consisting of all the no-instances) is fpt-size compilable. We do so by giving
an fpt-nucomp-reduction from the problem εco-MCC = { (ε,G, k) : (G, k) 6∈ MCC }.
Let (ε,G, k) be an instance of εco-MCC, where G is a graph whose vertex set is partitioned
into V1, . . . , Vk, and let m ≥ |G|. Moreover, without loss of generality we may assume that
all sets Vi have the same cardinality; for each i ∈ [k], let Vi = {vi,1, . . . , vi,n}. To describe
the fpt-nucomp-reduction, we specify suitable functions f1, f2, g, h. We let f1(ε, 1m, k) be
the CNF formula ϕ that we will define below. Moreover, we let f2(ε, 1m, k) = 1m and we
let g(1m, G, k) be the clause δ that we will define below. Finally, we let h(k) = k′ = k+

(k
2
)
.

We let Var(ϕ) =
⋃
i∈[k]Xi ∪

⋃
i,j∈[k],i<j Yi,j . Here, for each i we let Xi = {xi,` : ` ∈ [m] }.

Also, for each i, j ∈ [k] with i < j, we let Yi,j = { yi,`1,j,`2 : `1 ∈ [k], `2 ∈ [k] }. Intuitively,
the variables xi,` encode the choice of vertices in a clique, and the variables yi,`1,j,`2 encode
the choice of edges. Then, for each set Z ∈ {Xi, Yi,j : i ∈ [k], j ∈ [i+ 1, k] } of variables,
and for each two variables z1, z2 ∈ Z, we add the clause (¬z1 ∨ ¬z2) to ϕ. This enforces
that each satisfying truth assignment of ϕ of weight k′ must satisfy exactly one variable
in each set Z. Moreover, for each i, j ∈ [k] with i < j, each `1 ∈ [m] and each `2 ∈ [m],
we add the clauses (¬yi,`1,j,`2 ∨xi,`1) and (¬yi,`1,j,`2 ∨xj,`2) to ϕ. Intuitively, these clauses
enforce that the choice of edges is compatible with the choice of vertices.

We define the clause δ = g(1m, G, k) as follows. Let n be the number of vertices in G.
For each i, j ∈ [k] with i < j, each `1 ∈ [m], and each `2 ∈ [m], we add the literal yi,`1,j,`2
to δ if one of the following cases holds: (i) either `1 > n or `2 > n, or (ii) there is no edge
in G between vi,`1 and vj,`2 .

We claim that satisfying truth assignments of ψ ∧ ¬δ of weight k′ are in one-to-one
correspondence with cliques in G of size k containing exactly one vertex in each Vi.
For each such clique V ′ = {v1,`1 , . . . , vk,`k} in G (with vi,`i ∈ Vi), one can obtain the
satisfying assignment that sets exactly those variables in the set X ′ = {xi,`i : i ∈
[k] } ∪ { yi,`i,j,`j : i, j ∈ [k], i < j } to true. Vice versa, from each satisfying assignment,
one can construct a suitable clique in G. With this correspondence, one can verify
straightforwardly that ϕ |=k′ δ if and only if (G, k) 6∈ MCC. This shows the correctness
of our reduction.

The result now follows from Corollary 238, which itself follows from Propositions 236
and 237.

Additionally, we give a direct proof that par-nucomp-co-W[1]-hardness entails incompi-
lability (under the assumption that W[1] 6⊆ FPT/fpt). Suppose that weighted clause
entailment is fpt-size compilable. We show that W[1] ⊆ FPT/fpt, by showing that MCC
can be solved in fpt-time using fpt-size advice. For an instance (G, k) of MCC we
firstly construct ϕ, δ and k′ according to the construction discussed above. We showed
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that ϕ 6|=k′ δ if and only if (G, k) ∈MCC. Since the offline instance (ϕ, k) of weighted
clause entailment depends only on the pair (n, k), where n = |G|, we can use the fpt-size
compilation c(ϕ, k) as the advice string to solve the problem MCC in fpt-time.

15.3.3 Restricting the instance space

In order to connect the parameterized compilability of another natural parameterized
variant of Constrained-Clique (that we will define in Section 15.3.4) to non-uniform
parameterized complexity, we will need some additional non-uniform parameterized
complexity classes. In this section, we develop these classes.

Concretely, we will define two new parameterized complexity classes: few-NP and
nu-few-NP. In order to define these classes, we will consider a particular type of functions,
and a parameterized decision problem based on such functions.

We point out that these classes are not directly connected to the class FewP consisting
of all NP problems with a polynomially-bounded number of solutions [6]. The classes
few-NP and nu-few-NP consist of problems that have few NP instances (each of which
can have many solutions).

We begin with defining the notion of (SAT instance) generators.

Definition 241 (generators). We say that a function γ : N3 → Σ∗ is a (SAT instance)
generator if for each (n, `, k) ∈ N3 it holds that:

• if ` ∈ [nk], then γ(n, `, k) is a SAT instance, i.e., a propositional formula;

• otherwise γ(n, `, k) is the trivial SAT instance ∅.

We say that a generator γ is nice if for each (n, `, k) the formula γ(n, `, k) has exactly n
variables. We say that a generator is a 3CNF generator if all the (non-trivial) instances
that it generates are propositional formulas in 3CNF.

Moreover, we say that a generator is (uniformly) fpt-time computable if there exists an
algorithm A, a computable function f and a constant c such that for each (n, `, k) ∈ N3

the algorithm A computes γ(n, `, k) in time f(k)nc.

We say that a generator is non-uniformly fpt-time computable if there exist a computable
function f and a constant c such that for each (n, k) ∈ N2, there exists an algorithm A(n,k)
that for each ` ∈ N computes γ(n, `, k) in time f(k)nc (this corresponds to the non-
uniformity notion of fpt-size advice). a

Using the notion of generators, we can now define the following two (schemes of) param-
eterized problems.

Definition 242. Let γ be a generator. We define the parameterized decision problem
FewSATγ as follows.
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FewSATγ

Instance: (n, `, k) ∈ N3, where n is given in unary and `, k are given in binary.
Parameter: k.
Question: is γ(n, `, k) satisfiable?

a

Definition 243. Let γ be a generator. We define the parameterized decision problem
FewUNSATγ as follows.

FewUNSATγ

Instance: (n, `, k) ∈ N3, where n is given in unary and `, k are given in binary.
Parameter: k.
Question: is γ(n, `, k) unsatisfiable?

a

Definition 244. We define the following parameterized complexity class few-NP:

few-NP = [{FewSATγ : γ is a uniformly fpt-time computable
nice 3CNF generator }]fpt. a

By using Definition 180, we could obtain the non-uniform variant few-NP/fpt of this
parameterized complexity class few-NP. However, the following definition of nu-few-NP
captures a more natural non-uniform version of the class few-NP, that turns out to be
more useful in the setting of parameterized knowledge compilation.

Definition 245. We define the following parameterized complexity class nu-few-NP:

nu-few-NP = [{FewSATγ : γ is a non-uniformly fpt-time computable
nice 3CNF generator }]fpt. a

The intuition behind the classes few-NP and nu-few-NP is the following. Both the classes
W[t] of the Weft hierarchy and the classes few-NP and nu-few-NP contain problems that
are restrictions of problems in NP. For the classes W[t] the set of possible witnesses is
restricted in number from 2O(n) to nO(k). The classes few-NP and nu-few-NP are based
on a dual restriction. For these classes, not the set of possible witnesses is restricted, but
the set of instances (for each input size n and parameter value k) is restricted in number
from 2O(n) to nO(k).

We illustrate the notion of (fpt-time computable) 3CNF generators using the following
example.
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Example 246. For each n ∈ N, there are 28n3 possible different 3CNF formulas over the
variables x1, . . . , xn, each of which can thus be described by 8n3 bits. On the other hand,
for each (n, k) ∈ N2, each integer ` ∈ [nk] can be described by k logn bits. We consider the
following example of an fpt-time computable 3CNF generator. Using an pseudorandom
generator, one can construct a function γ that for each (n, k) ∈ N2 and each bitstring
of length k logn (representing the number `) produces a seemingly random bitstring of
length 8n3 that is then interpreted as a 3CNF formula over the variables x1, . . . , xn. a

Before we put these newly introduced non-uniform parameterized complexity classes to
use by employing them to characterize the (in)compilability of certain parameterized
compilation problems, we make a few digressions and provide some alternative character-
izations of few-NP and nu-few-NP and relate them to other non-uniform parameterized
complexity classes.

15.3.3.1 Normalization results

It will be useful to develop some normalization results for the classes few-NP and
nu-few-NP. In this section, we will do so. We begin by showing that any uniformly
fpt-time computable 3CNF generator can be transformed into a nice 3CNF generator.

Proposition 247. Let γ be a uniformly fpt-time computable 3CNF generator that is not
necessarily nice. Then FewSATγ ∈ few-NP.

Proof. We construct a nice 3CNF generator γ′ and we give an fpt-reduction from
FewSATγ to FewSATγ′ . Let f be a computable function and let c be a constant
such that for each (n, `, k), γ(n, `, k) can be computed in time f(k)nc. We consider the
function π that is defined by π(n′, k) = b c

√
n′/f(k)c, i.e., for each (n′, k) ∈ N2 it holds

that n′ = f(k)nc where n = π(n′, k). This function π is fpt-time computable. Also, for
each (n′, k) ∈ N2 it holds that π(n′, k) ≤ n′.

Next, we construct the uniformly fpt-time computable 3CNF generator γ′ as follows.
We describe the algorithm that computes γ′. On input (n′, `, k), the algorithm first
computes n = π(n′, k). Then, it computes ϕ = γ(n, k, `). The formula ϕ is of size at
most f(k)nc, and thus contains at most f(k)nc variables. The algorithm then transform ϕ
into an equivalent formula ϕ′ that has exactly f(k)nc variables by adding dummy variables.
Finally, the algorithm returns ϕ′.

All that remains is to specify an fpt-reduction from FewSATγ to FewSATγ′ . Given
an instance (n, `, k) of FewSATγ , the reduction returns the instance (f(k)nc, `, k) of
FewSATγ′ . Clearly, this is computable in fpt-time. Since we know that γ′(f(k)nc, `, k) ≡
γ(n, `, k), this reduction is correct.

This result can straightforwardly be extended to the case of non-uniformly fpt-time
computable 3CNF generators.
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Proposition 248. Let γ be a non-uniformly fpt-time computable 3CNF generator that
is not necessarily nice. Then FewSATγ ∈ nu-few-NP.

Proof. Completely analogous to the proof of Proposition 247

Next, we show that any fpt-time computable generator can be transformed into a 3CNF
generator.

Proposition 249. Let γ be a uniformly fpt-time computable generator (that is not
necessarily a 3CNF generator). Then FewSATγ ∈ few-NP.

Proof. We construct a uniformly fpt-time computable 3CNF generator γ′ as follows.
We describe the algorithm that computes γ′. On input (n, `, k), the algorithm first
computes ϕ = γ(n, k, `). Using the well-known Tseitin transformation, the algorithm
constructs a formula ϕ′ in 3CNF that is equivalent to ϕ. The algorithm then re-
turns γ′(n, `, k) = ϕ′.

The generator γ′ is a uniformly fpt-time computable 3CNF generator that is not necessarily
nice. The identity mapping is then an fpt-reduction from FewSATγ to FewSATγ′ .
We know by Proposition 247 that FewSATγ′ ∈ few-NP. From this we can conclude
that FewSATγ ∈ few-NP.

This result can also straightforwardly be extended to the case of non-uniformly fpt-time
computable generators.

Proposition 250. Let γ be a non-uniformly fpt-time computable generator (that is not
necessarily a 3CNF generator). Then FewSATγ ∈ nu-few-NP.

Proof. Completely analogous to the proof of Proposition 249

The proofs of Propositions 247 and 249 (and of Propositions 248 and 250) can then be
straightforwardly combined to get the following alternative characterization of few-NP
and nu-few-NP.

Corollary 251. The class few-NP consists of all parameterized problems that are fpt-
reducible to FewSATγ, for some uniformly fpt-time computable generator. Similarly, the
class nu-few-NP consists of all parameterized problems that are fpt-reducible to FewSATγ,
for some non-uniformly fpt-time computable generator.
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15.3.3.2 Relating few-NP and nu-few-NP to other classes

We situate the classes few-NP and nu-few-NP in the landscape of (non-uniform) pa-
rameterized complexity classes that we considered in Section 15.1. We do so by giving
inclusion as well as separation results.

We begin with the following observation.

Observation 252. If P = NP, then few-NP ⊆ FPT and nu-few-NP ⊆ FPT/fpt.

Next, we establish some basic results relating few-NP and nu-few-NP to the classes FPT,
para-NP, para-NP/fpt and XP/xp.

Proposition 253. We have the following inclusions:

1. FPT ⊆ few-NP;

2. few-NP ⊆ nu-few-NP;

3. few-NP ⊆ para-NP;

4. nu-few-NP ⊆ para-NP/fpt;

5. few-NP ⊆ XP/xp;

6. nu-few-NP ⊆ XP/xp;

Proof. Inclusions 1 and 2 are trivial. Inclusion 3 can be shown as follows. For each
uniformly fpt-time computable generator γ, the problem FewSATγ can be decided in
non-deterministic fpt-time as follows. Firstly, compute ϕ = γ(n, `, k) in deterministic
fpt-time. Then, using non-determinism, decide if ϕ is satisfiable.

Next, Inclusion 4 can be shown as follows. For each non-uniformly fpt-time computable
generator γ, the problem FewSATγ can be decided in non-deterministic fpt-time using
fpt-size advice as follows. Firstly, compute ϕ = γ(n, `, k) in deterministic fpt-time using
fpt-size advice. Then, using non-determinism, decide if ϕ is satisfiable.

Inclusion 6 can be shown as follows. For each non-uniformly fpt-time computable
generator γ, the problem FewSATγ can be decided in xp-time using xp-size advice as
follows. For each (n, k), the advice α(n, k) is a lookup-table T of size O(nk) that contains
for each ` ∈ [nk] a bit T` ∈ B that represents whether γ(n, `, k) is satisfiable or not.

Then, Inclusion 5 follows directly from Inclusions 2 and 6.

The inclusion few-NP ⊆ para-NP is likely to be strict.

Observation 254. By Proposition 218, we then have that few-NP ( para-NP, unless
the PH collapses to the second level.
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In fact, we can get an even stronger result.

Proposition 255. If para-NP = few-NP, then P = NP.

Proof. Consider the NP-complete language SAT1 = { (ϕ, 1) : ϕ ∈ SAT }. We know
that SAT1 is para-NP-complete. By our assumption that para-NP = few-NP, we get
that there exists some uniformly fpt-time computable generator γ such that SAT1 is
fpt-reducible to FewSATγ . Call the fpt-reduction that witnesses this R. We then know
that there exists a computable function h such that for each instance (ϕ, 1) of SAT1, the
resulting instance R(ϕ, 1) of FewSATγ is of the form (n, `, k′), for some k′ ∈ [h(1)]. Let Q
be the restriction of FewSATγ to instances (n, `, k′) where k′ ∈ [h(1)]. Because h(1)
is a constant, we then have that Q, when considered as a classical (nonparameterized)
decision problem, is sparse, i.e., there is a constant c such that for each input size n
there are at most nc yes-instances of Q of length n. The fpt-reduction R then also
witnesses that SAT1, when considered as a classical (nonparameterized) decision problem,
is polynomial-time reducible to Q. Since SAT1 is NP-complete and Q is sparse, by
Mahaney’s Theorem [151], it then follows that P = NP.

Corollary 256. It holds that few-NP = para-NP if and only if P = NP.

Interestingly, one can prove—under the assumption that E 6= NE—that the class few-NP
lies strictly between FPT and para-NP [117, 161]. Here E denotes the class of all problems
that can be solved in deterministic time 2O(n), and NE denotes the class of all problems
that can be solved in non-deterministic time 2O(n), where n is the input size.

Finally, we show that nu-few-NP is incomparable to the class XPnu. We do so by
identifying a problem that is in nu-few-NP, but not in XPnu. By the fact that
nu-few-NP ⊆ XP/xp and by Proposition 206, this suffices to show that nu-few-NP 6⊆
XP/xp and XP/xp 6⊆ nu-few-NP.

Proposition 257. There exists a parameterized problem Q ∈ (nu-few-NP) \ (XPnu).

Proof (sketch). One can straightforwardly show that the problem constructed in the
proof of Proposition 204 is contained in nu-few-NP, but not in XPnu.

Corollary 258. It holds that nu-few-NP 6⊆ XP/xp and XP/xp 6⊆ nu-few-NP.

15.3.3.3 Differences between non-uniform variants of few-NP

Above, we (implicitly) provided two different possible definitions of a non-uniformly
defined variant of few-NP: few-NP/fpt and nu-few-NP. We briefly discuss how these
relate to each other.

The difference between few-NP/fpt and nu-few-NP can be described as follows. The class
few-NP/fpt consists of all parameterized problems that are non-uniformly fpt-reducible
to the problem FewSATγ , for some uniformly fpt-time computable generator γ. The
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class nu-few-NP consists of all parameterized problems that are uniformly fpt-reducible
to the problem FewSATγ , for some non-uniformly fpt-time computable generator γ.
For the usual parameterized complexity classes (such as FPT), adding non-uniformity
(in the form of fpt-size advice) either (i) to reductions or (ii) to the algorithms witnessing
membership in a complexity class, yields the same outcome. This is because one can
simply “save” the advice in the problem input. However, since for any problem in few-NP,
the problem input can only contain O(k logn) bits, for any fixed (n, k), you cannot “save”
the (fpt-size) advice string in the problem input.

The class nu-few-NP is the non-uniform variant of few-NP that results from the “circuit
non-uniformity” point of view (for each n and k, there is a different algorithm). The
class few-NP/fpt is the non-uniform variant of few-NP that results from the “advice non-
uniformity” point of view. Interestingly, for the parameterized complexity class few-NP
these two different notions of non-uniformity seem to differ. For all other parameterized
complexity classes that we have considered, these two notions of non-uniformity give rise
to the same class.

15.3.3.4 Characterizing few-NP in terms of 3-colorability

To illustrate that for the classes few-NP and nu-few-NP, it does not matter what NP-
complete base problem one chooses, we give a different characterization of these classes
in terms of a problem based on 3-colorability of graphs.

Definition 259 (graph generators). We say that a function γ : N3 → Σ∗ is a graph
generator if for each (n, `, k) ∈ N3 it holds that:

• if ` ∈ [nk], then γ(n, `, k) is a graph;

• otherwise γ(n, `, k) is the trivial empty graph (∅, ∅).

We say that a graph generator γ is nice if for each (n, `, k) the graph γ(n, `, k) has
exactly n vertices.

Moreover, we say that a generator is (uniformly) fpt-time computable if there exists an
algorithm A, a computable function f and a constant c such that for each (n, `, k) ∈ N3

the algorithm A computes γ(n, `, k) in time f(k)nc.

We say that a generator is non-uniformly fpt-time computable if there exist a computable
function f and a constant c such that for each (n, k) ∈ N2, there exists an algorithm A(n,k)
that for each ` ∈ N computes γ(n, `, k) in time f(k)nc. a

Using the concept of graph generators, we can now define the following parameterized
problem.

Definition 260. Let γ be a graph generator. We define the parameterized decision
problem Few3Colγ as follows.

320



15.3. Relation to Parameterized Knowledge Compilation

Few3Colγ
Instance: (n, `, k) ∈ N3, where n is given in unary and `, k are given in binary.
Parameter: k.
Question: is γ(n, `, k) 3-colorable?

a

We can then derive the following characterization of few-NP.

Proposition 261. It holds that few-NP = [{Few3Colγ : γ is a uniformly fpt-time
computable graph generator }]fpt.

Proof. Firstly, we show that for each uniformly fpt-time computable graph generator γ
it holds that Few3Colγ ∈ few-NP. Let γ be such a graph generator. We construct
the following uniformly fpt-time computable SAT instance generator γ′. We describe
the algorithm that computes γ′. On input (n, `, k), the algorithm firstly computes the
graph γ(n, `, k). By using the standard polynomial-time reduction from 3-colorability
to propositional satisfiability, we can construct (in polynomial time) a propositional
formula ϕ that is satisfiable if and only if γ(n, `, k) is 3-colorable. The algorithm
then returns γ′(n, `, k) = ϕ. It is then straightforward to verify that the identity
mapping is an fpt-reduction from Few3Colγ to FewSATγ′ . Therefore, we can conclude
that Few3Colγ ∈ few-NP.

Next, we show that for each problem Q ∈ few-NP, it holds that Q is fpt-reducible to
Few3Colγ for some uniformly fpt-time computable graph generator γ. For this, it
suffices to show that for each uniformly fpt-time computable nice 3CNF generator γ there
exists some uniformly fpt-time computable graph generator γ′ such that FewSATγ is
fpt-reducible to Few3Colγ′ .

Let γ be a uniformly fpt-time computable nice 3CNF generator. We construct the
following uniformly fpt-time computable graph generator γ′. We describe the algorithm
that computes γ′. On input (n, `, k), the algorithm firstly computes the 3CNF formula ϕ =
γ(n, `, k). By using the standard polynomial-time reduction from satisfiability of 3CNF
formulas to 3-colorability, we can construct (in polynomial time) a graph G that is
3-colorable if and only if ϕ is satisfiable. The algorithm then returns γ′(n, `, k) = G.
It is then straightforward to verify that the identity mapping is an fpt-reduction from
FewSATγ to Few3Colγ′ . This concludes our proof.

We get a similar characterization of nu-few-NP.

Proposition 262. nu-few-NP = [{Few3Colγ : γ is a non-uniformly fpt-time com-
putable graph generator }]fpt.

Proof. The proof is analogous to the proof of Proposition 261.
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15.3.3.5 Characterizing few-NP by filtering para-NP problems

To further illustrate the robustness of the classes few-NP and nu-few-NP, we give a
different characterization of these classes, in terms of applying what can be called
“well-behaved efficiently computable filters” to para-NP problems.

We begin with the definition of xp-numberings. These functions will be the foundation
of our notion of “filters.”

Definition 263. Let Q be a parameterized problem. We say that an xp-numbering of Q
is a function ρ : Σ∗ × N → N for which there exists a computable function f : N → N
such that:

• for each (n, k) ∈ N × N, ρ maps each instance (x, k) of Q with |x| = n to a
number ` ∈ [0, nf(k)];

• for any instance (x, k) of Q it holds that if ρ(x, k) = 0, then (x, k) 6∈ Q; and

• for each (n, k) ∈ N×N and any two instances (x, k), (x′, k) ∈ Σ∗×N with |x| = |x′| =
n it holds that ρ(x, k) = ρ(x′, k) implies that (x, k) ∈ Q if and only if (x′, k) ∈ Q.

Moreover, we say that an xp-numbering is an fpt-time xp-numbering if it is computable
in fixed-parameter tractable time. a

In the remainder of this section, we will consider the following class of parameterized
problems:

{A ∩B : A has an fpt-time xp-numbering, B ∈ para-NP }.

Intuitively, in this definition, one can consider fpt-time xp-numberings as efficiently
computable well-behaved filters. They are efficiently computable, because they run
in fpt-time. They are filters, because they reduce the para-NP set to a set where for
each (n, k), all instances can be decided by solving the problem for only nf(k) instances.
Finally, they are well-behaved, because one can identify for each instance if it boils
down to one of these nf(k) “crucial” instances, and if so, to which one of these instances
(indicated by a number ` ∈ [nf(k)]).

In fact, we will show that this class coincides with few-NP.

Proposition 264. {A∩B : A has an fpt-time xp-numbering, B ∈ para-NP } ⊆ few-NP.

Proof. Let Q = A ∩ B for some problem A that has an fpt-time xp-numbering ρ and
some B ∈ para-NP. We show that Q ∈ few-NP by showing that Q is fpt-reducible
to the problem FewSATγ for some uniformly fpt-time computable generator γ. The
main idea of this proof is to encode the concatenation of the inverse computation of
the xp-numbering ρ and the non-deterministic check of membership in B into the SAT
instance generated for some number ` ∈ [nk].
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Let f be the computable function such that for each input (x, k) with |x| = n it holds
that ρ(x, k) ≤ nf(k). We will construct the uniformly fpt-time generator γ below. Firstly,
we will specify the fpt-reduction R from Q to FewSATγ . Let (x, k) be an instance
of Q, with |x| = n. We let R(x, k) = (n, `, f(k)), where ` = ρ(x, k) ≤ nf(k). Next,
we will specify the generator γ. Since it is more informative to describe the non-
deterministic computation encoded in the SAT instance that γ outputs, we do so without
spelling out the resulting SAT instance. On input (n, `, k), the computation γ(n, `, k)
firstly computes k′ = f−1(k), i.e., the k′ such that f(k′) = k. This can be done in
deterministic fpt-time. Next, the computation γ(n, `, k) non-deterministically computes
an instance x of length n for which it holds that ρ(x, k) = `. Since for all instances x, x′
with ρ(x, k) = ρ(x′, k) it holds that (x, k) ∈ A if and only if (x′, k) ∈ A, we can
allow the computation to find any such instance x. Finally, the computation γ(n, `, k)
non-deterministically verifies that (x, k) ∈ B. Since B ∈ para-NP, this can be done
in non-deterministic fpt-time. As explained above, technically, γ encodes this non-
deterministic fpt-time computation γ(n, `, k) in a SAT instance of fpt-size. We get for
each instance (x, k) with |x| = n that (x, k) ∈ Q if and only if R(x, k) = (n, `, f(k)) ∈
FewSATγ . Therefore, Q ∈ few-NP.

Next, to establish an inclusion in the converse direction, we prove the following technical
lemma.

Lemma 265. Let Q = A ∩ B be a parameterized problem, where A is a problem that
has an fpt-time xp-numbering, and B ∈ para-NP. Moreover, let Q′ be a parameterized
problem that is fpt-reducible to Q. Then Q′ = A′ ∩B′ for some problem A′ that has an
fpt-time xp-numbering and some B′ ∈ para-NP.

Proof. We construct A′ and B′. Let R be the fpt-reduction from Q′ to Q. We let A′ be the
set consisting of the following instances. We let (x, k) ∈ A′ if and only if R(x, k) ∈ A. We
show that A′ has an fpt-time xp-numbering, by constructing such an xp-numbering ρ′. We
know that A has an fpt-time xp-numbering ρ. On input (x, k), the xp-numbering ρ′ returns
the value ` = ρ(R(x, k)). Since R is an fpt-reduction, is straightforward to construct
a computable function f ′ such that ` ≤ nf

′(k) for each instance (x, k) with |x| = n.
Moreover, since both R and ρ are fpt-time computable, the xp-numbering ρ′ is also
fpt-time computable.

Next, we construct the set B′, in a similar way. For each instance (x, k), we let (x, k) ∈ B′
if and only if R(x, k) ∈ B. Since B ∈ para-NP and since para-NP is closed under fpt-
reductions, we get that B′ ∈ para-NP.

These definitions then have the consequence that for each instance (x, k) it holds
that (x, k) ∈ Q′ if and only if (x, k) ∈ A′ ∩ B′. Namely, we get that (x, k) ∈ Q′ if
and only if R(x, k) ∈ Q, if and only if both R(x, k) ∈ A and R(x, k) ∈ B, if and only if
both (x, k) ∈ A′ and (x, k) ∈ B′, if and only if (x, k) ∈ A′ ∩B′.
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Using the above lemma, we can now prove that each problem in few-NP can be described
as the intersection of a problem in para-NP and a problem that has an fpt-time xp-
numbering.

Proposition 266. few-NP ⊆ {A∩B : A has an fpt-time xp-numbering, B ∈ para-NP }.

Proof. Let Q ∈ few-NP. We know that there is an fpt-reduction R from Q to FewSATγ ,
for some uniformly fpt-time computable generator γ. We show that Q is fpt-reducible
to a problem Q′ = A ∩B, for some problem A that has an fpt-time xp-numbering and
some B ∈ para-NP. By Lemma 265, this suffices to show that Q itself is of the required
form.

We specify the fpt-reduction R′, the problem A with its fpt-time xp-numbering ρ, and the
problem B ∈ para-NP. We begin with the fpt-reduction R′. On input (x, k) with |x| = n,
the reduction first computes R(x, k) = (n′, `′, k′). Here we know that k′ ≤ f(k) for
some computable function f . Next, it computes γ(n′, `′, k′) = ϕ. The reduction then
outputs R(x, k) = (x, ϕ, `′, k). We let the set A consist of all instances (x, ϕ, `′, k)
such that γ(n′, `′, k′) = ϕ, where R(x, k) = (n′, `′, k′), i.e., A checks whether ϕ and `′
are computed correctly from (x, k), according to R and γ. Next, we specify the xp-
numbering ρ of A. On input (x, ϕ, `′, k), the xp-numbering ρ checks whether (x, ϕ, `′, k) ∈
A; if so, it outputs ρ(x, ϕ, `′, k′) = `′; otherwise, it outputs ρ(x, ϕ, `′, k′) = 0. Since `′ ≤
|x|f(k), we know that ρ is in fact an xp-numbering. Moreover, ρ is fpt-time computable.
Finally, we specify the set B ∈ para-NP. For each input (x, ϕ, `′, k), we let (x, ϕ, `′, k) ∈ B
if and only if ϕ is satisfiable. Clearly, then, B ∈ para-NP. Now, since A checks whether ϕ
is computed correctly from (x, k) according to R and γ, and since B checks whether ϕ
is satisfiable, we get that (x, k) ∈ Q if and only if R′(x, k) ∈ A ∩B. This concludes our
proof.

We now get the following characterization of few-NP.

Theorem 267. The class few-NP can be characterized in the following way:

few-NP = {A ∩B : A has an fpt-time xp-numbering, B ∈ para-NP }.

Proof. The result follows directly from Propositions 264 and 266.

In an entirely analogous way, we can now derive the following characterization of
nu-few-NP, using xp-numberings ρ that can be computed by FPT/fpt algorithms.

Proposition 268. The class nu-few-NP can be characterized in the following way:

nu-few-NP = {A ∩B : A has an xp-numbering ρ that is computable
by a FPT/fpt algorithm, B ∈ para-NP }.

Proof. The proof is entirely analogous to the proofs of Lemma 265, Propositions 264
and 266, and Theorem 267.
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We illustrate this characterization of few-NP in terms of filtering by using it to show
that the following example problem is in few-NP. We consider the binary expansion of
irrational numbers. For instance, take the square root of two. We can compute the first n
bits of the binary expansion of

√
2 in time polynomial in n. Let bits(n,

√
2) denote the

first n bits in the binary expansion of
√

2.

Example 269. The following parameterized problem 3SATbdist-
√

2c is in few-NP:

3SATbdist-
√

2c = { (x, k) ∈ B∗ × N : x encodes a satisfiable
propositional formula, |x| = n, the Hamming
distance between x and bits(n,

√
2) is at most k }.

To see this, we express 3SATbdist-
√

2c as a problem of the form A ∩ B, where A has
an fpt-time computable xp-numbering and where B ∈ para-NP. We let B = 3SAT× N,
which is clearly in para-NP. Then we describe A and its fpt-time xp-numbering ρ. On
input (x, k), with |x| = n, we first compute y = bits(n,

√
2). Then we compute z = x⊕ y

(where ⊕ denotes the bitwise exclusive-or operator). This can be done in polynomial
time. Then, if z has more than k ones, we let (x, k) 6∈ A, and ρ(x, k) = 0. Otherwise, if z
has at most k ones, we let (x, k) ∈ A and we compute ρ(x, k) as follows. Let i1, . . . , iu,
with u ≤ k, be the indices of the bits in z = z1 . . . zn with ones, i.e., zij = 1 for all j ∈ [u].
We can extend this sequence of indices to a sequence i′1, . . . , i′k by adding k − u zeroes to
the beginning. We then concatenate i′1, . . . , i′k (each described using logn bits) into a
single bitstring i, and interpret this as a number `. We then let ρ(x, k) = `+ 1. Since
each i′j is described by logn bits, we have that i is of length k logn, and thus ` ∈ [nk].
Thus ρ is an xp-numbering. a

In fact, there is nothing special about the number
√

2 (well, there is, but not for this
example), except for the fact that the first n bits of its binary expansion are computable
in polynomial time. Consequently, for any other real number r for which we can compute
the first n bits of its binary expansion in polynomial time (in n), the similarly defined
problem SATbdist-rc is in few-NP.

15.3.3.6 Circuit characterization of nu-few-NP

Finally, we observe that the non-uniform parameterized complexity class nu-few-NP can
be characterized using Boolean circuits.

Proposition 270. The class nu-few-NP coincides with the set of all parameterized
problems Q for which there exists a computable function f and a constant c such that for
each (n, k) ∈ N×Σ∗ there is some circuit Cn,k of size f(k)nc such that, for each ` ∈ Bk logn,
it holds that (n, `, k) ∈ Q if and only if Cn,k[`] is satisfiable.

Proof (idea). An argument similar to the one in the proof of Proposition 199 can be used
to show this result.
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15.3.4 The parameterized compilability of finding small cliques

Using the non-uniform parameterized complexity class nu-few-NP defined in the previous
section, we can analyze the (in)compilability of several additional parameterized compila-
tion problems. We use another natural parameterized variant of Constrained-Clique
as an example to illustrate this.

We consider the following parameterized compilation problem.

Constrained-Clique(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there a clique C ⊆ V in G of size u such that C ∩V1 = ∅ and V2 ⊆ C?

We characterize the compilability of this parameterized compilation problem using the
parameterized complexity classes nu-few-NP and FPT/fpt. In order to do so, we consider
the following auxiliary parameterized compilation problem.

SATQuery(query-size)
Offline instance: a propositional formula ϕ.
Online instance: a set L of literals.
Parameter: k = |L|.
Question: is ϕ ∧

∧
l∈L l satisfiable?

We firstly show that we can focus on the restriction of the problem SATQuery(query-
size) to 3CNF formulas.

Proposition 271. The problem SATQuery(query-size) is equivalent to the restriction
of SATQuery(query-size) to offline instances in 3CNF (under fpt-nucomp-reductions).

Proof. We give an fpt-nucomp-reduction from SATQuery(query-size) to itself, where
the resulting offline instance is in 3CNF. In order to do so, we need to specify fpt-size
functions f1, f2, a computable function h and an fpt-time function g such that for each
instance (ϕ,L, k) of SATQuery(query-size) it holds that for each m ≥ |L|, (ϕ,L, k) ∈
SATQuery(query-size) if and only if (f1(ϕ, 1m, k), g(f2(ϕ, 1m, k), L, k), h(k)) ∈
SATQuery(query-size). By using the standard Tseitin transformations [187], we can
in polynomial time transform the formula ϕ into a 3CNF formula ϕ′ with the prop-
erty that Var(ϕ) ⊆ Var(ϕ′) and that for each truth assignment α : Var(ϕ)→ B it holds
that ϕ[α] is true if and only if ϕ′[α] is satisfiable. We then let f1(ϕ, 1m, k) = ϕ′. Moreover,
we let f2(ϕ, 1m, k) = ∅, we let g(∅, L, k) = L, and we let h(k) = k. It is straightforward
to verify the correctness of this fpt-nucomp-reduction.

Next, we relate the problem SATQuery(query-size) to the parameterized problem
FewSATγ , for any non-uniformly fpt-time computable generator γ. Here we consider
FewSATγ as a parameterized compilation problem.
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Proposition 272. Let γ be a non-uniformly fpt-time computable generator. Then
FewSATγ is fpt-nucomp-reducible to SATQuery(query-size).

Proof (sketch). We need to specify fpt-size functions f1, f2, a computable function h and
an fpt-time function g such that for each instance (n, `, k) of FewSATγ it holds that for
each m ≥ |`|:

(n, `, k) ∈ FewSATγ if and only if
(f1(n, 1m, k), g(f2(n, 1m, k), `, k), h(k)) ∈ SATQuery(query-size).

We let f2(n, 1m, k) = n. In addition, we let g(n, `, k) be an encoding L` of ` in terms
of a set of literals of size k over the variables xi,j , for i ∈ [n], j ∈ [k]. Then, we
let f1(n, 1m, k) = ϕ be a 3CNF formula that is satisfiable in conjunction with L` if and
only if γ(n, `, k) is satisfiable, for each ` ∈ [nk]. This can be done as follows.

By Proposition 250, we may assume without loss of generality that γ is a 3CNF generator.
Firstly, the formula ϕ contains clauses to ensure that at most k variables xi,j are true.
Then, we add 8n3 variables yi, corresponding to the 8n3 possible clauses c1, . . . , c8n3 of
size 3 over the variables x1, . . . , xn. Then, since for each (n, k) ∈ N2, the function γ(n, ·, k)
is computable in fpt-time, we can construct fpt-many clauses that ensure that, whenever L`
is satisfied, the variables yi must be set to true for the clauses ci ∈ γ(n, `, k). Finally, for
each such possible clause ci, we add clauses to ensure that whenever yi is set to true,
then the clause ci must be satisfied.

Next, we show that for the problems FewSATγ membership in par-nucomp-FPT is
equivalent to membership in FPT/fpt.

Proposition 273. Let γ be a generator. Then FewSATγ ∈ par-nucomp-FPT if and
only if FewSATγ ∈ FPT/fpt.

Proof. (⇒) Assume that there exists an fpt-size function f1, an fpt-time function g
a computable function h and a parameterized problem Q ∈ FPT such that for each
instance (n, `, k) of FewSATγ and each m ≥ |`| it holds that:

(n, `, k) ∈ FewSATγ if and only if (f1(n, 1m, k), g(`, k), h(k)) ∈ Q.

We show that FewSATγ ∈ FPT/fpt. Take an arbitrary (n, k) ∈ N2. Consider the
string α = f1(n, 1m, k) as advice, for some m ≥ |`| = k logn. Then deciding for
some ` ∈ [nk] whether (n, `, k) ∈ FewSATγ can be done in fpt-time using the advice
string α, by checking whether (α, g(`, k), h(k)) ∈ Q.

(⇐) Conversely, assume that FewSATγ ∈ FPT/fpt, i.e., that there exist a com-
putable function f and a constant c such that for each (n, k) ∈ N2 there exists
some advice string α(n, k) of length f(k)nc such that, given (α(n, k), n, `, k), decid-
ing whether (n, `, k) ∈ FewSATγ is fixed-parameter tractable. We then construct a
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fpt-size function f1, an fpt-time function g and a computable function h such that
there exists a parameterized problem Q ∈ FPT such that for each instance (n, `, k) of
FewSATγ and each m ≥ |`| it holds that:

(n, `, k) ∈ FewSATγ if and only if (f1(n, 1m, k), g(`, k), h(k)) ∈ Q.

We let f1(n, 1m, k) = (α(n, k), n), we let g(`, k) = ` and we let h(k) = k. Then, by
assumption, given (f1(n, 1m, k), g(`, k), h(k)), deciding whether (n, `, k) ∈ FewSATγ is
fixed-parameter tractable.

Finally, we show that nu-few-NP ⊆ FPT/fpt implies that SATQuery(query-size) ∈
par-nucomp-FPT.

Proposition 274. If FewSATγ ∈ FPT/fpt for each non-uniformly fpt-time computable
generator γ, then SATQuery(query-size) ∈ par-nucomp-FPT.

Proof. In order to show that SATQuery(query-size) ∈ par-nucomp-FPT, we specify an
fpt-size function f1, an fpt-time function g, a computable function h and a parameterized
problem Q ∈ FPT such that for all instances (ϕ,L, k) of SATQuery(query-size) and
each m ≥ |L| = k it holds that:

(ϕ,L, k) ∈ SATQuery(query-size) if and only if (f1(ϕ, 1m, k), g(L, k), h(k)) ∈ Q.

Assume without loss of generality that ϕ contains the variables x1, . . . , xn. There are
(at most) 2nk ≤ n2k sets of k literals over the variables x1, . . . , xn. Let L1, . . . , Lu be
an enumeration of these clauses. We consider the following non-uniformly fpt-time
computable generator γϕ. Given a triple (n′, `, k′) ∈ N3, we define γϕ(n′, `, k′) = ∅
if n′ 6= n, or k′ 6= 2k, or ` > u; otherwise, we define γϕ(n′, `, k′) = γϕ(n, `, 2k) to
be a propositional formula ϕ′ that is satisfiable if and only if ϕ ∧

∧
L` is satisfiable.

Then, (n′, `, k′) ∈ FewSATγϕ if and only if (ϕ,L`, k) ∈ SATQuery(query-size). By as-
sumption, FewSATγϕ ∈ FPT/fpt, and therefore there exists some algorithm A(n′,k′) that
decides whether (n′, `, k′) ∈ FewSATγϕ in fpt-time. We now let f1(ϕ, 1m, k) = α(n′,k′)
be a description of the algorithm A(n′,k′). Since A(n′,k′) runs in fixed-parameter tractable
time, we know that its description α(n′,k′) is of fpt-size. Moreover, we let g(L, k) = `,
for L = L`; and we let h(k) = k′ = 2k. The problem Q consists of simulating the
algorithm A(n′,k′) on input (n′, `, k′), which is fixed-parameter tractable. This completes
our fpt-nucomp-reduction.

The above results together give us the following theorem.

Theorem 275. SATQuery(query-size) ∈ par-nucomp-FPT if and only if nu-few-NP ⊆
FPT/fpt.
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Proof. (⇒) Assume that SATQuery(query-size) ∈ par-nucomp-FPT. Then by Proposi-
tion 272, we know that FewSATγ ∈ par-nucomp-FPT, for each non-uniformly fpt-time
computable generator γ. Then, by Proposition 273, we know that FewSATγ ∈ FPT/fpt,
for each non-uniformly fpt-time computable generator γ. In other words, nu-few-NP ⊆
FPT/fpt.

(⇐) Conversely, assume that nu-few-NP ⊆ FPT/fpt. Then for each non-uniformly
fpt-time computable generator γ, it holds that FewSATγ ∈ FPT/fpt. Then, by Propo-
sition 274, we know that SATQuery(query-size) ∈ par-nucomp-FPT.

With this characterization of the parameterized compilability of SATQuery(query-size),
we can return to the problem Constrained-Clique(constr.-size).

Proposition 276. The problem Constrained-Clique(constr.-size) is equivalent to
SATQuery(size) under fpt-nucomp-reductions.

Proof. Firstly, we give an fpt-nucomp-reduction from SATQuery(query-size) to
Constrained-Clique(constr.-size). Before we specify this reduction, we will look
at a well-known polynomial-time reduction from 3SAT to Clique. Let ϕ = c1 ∧ · · · ∧ cb,
and let Var(ϕ) = {x1, . . . , xn}. We construct a graph G = (V,E) as follows. We
let V = { (cj , l) : j ∈ [b], l ∈ cj } ∪ {xi, xi : i ∈ [n] }. We describe the edges of G as
three sets: (1) the edges between two vertices of the form (cj , l), (2) the edges between
two vertices of the form xi, xi, and (3) the edges between a vertex of the form (cj , l)
and a vertex of the form xi, xi. We describe set (1). Let (cj , l) and (cj′ , l′) be two
vertices. These vertices are connected by an edge if and only if both j 6= j′ and l 6= l′.
Next, we describe set (2). Two vertices v1, v2 ∈ {xi, xi : i ∈ [n] } are connected by an
edge if and only if v1 and v2 are not complementary literals xi and xi, for some i ∈ [n].
Finally, we describe set (3). Let (cj , l) and v ∈ {xi, xi : i ∈ [n] } be two vertices.
Then (cj , l) and v are connected by an edge if and only if l and v are not complementary
literals xi and xi, for some i ∈ [n]. We have that G has a clique of size n + b if and
only if ϕ is satisfiable. Moreover, each satisfying assignment α : {x1, . . . , xn} → B of ϕ
corresponds to a clique C = { l ∈ {xi, xi : i ∈ [n] } : α(l) = 1 } ∪ D of size n + b, for
some D ⊆ { (cj , l) ∈ V : α(l) = 1 }, and vice versa. This direct correspondence between
cliques and satisfying truth assignments has the following consequence. Let L be a set of
literals. There exists a clique of size n+ b in G that does not contain the vertices l ∈ L
if and only if there exists a satisfying truth assignment of ϕ that does not satisfy any
literal l ∈ L, which is the case if and only if there exists a satisfying truth assignment
of ϕ that satisfies the complement l of each l ∈ L.

We are now ready to specify our fpt-nucomp-reduction. In order to do so, we need to
specify fpt-size functions f1, f2, a computable function h and an fpt-time function g.
Let (ϕ,L, k) be an instance of SATQuery(query-size). We may assume without loss of
generality that ϕ is in 3CNF. We let f1(ϕ, 1m, k) = G, where G is the graph constructed
from ϕ as in the polynomial-time reduction from 3SAT to Clique that is described above.
We let f2(ϕ, 1m, k) = u = n+ b; we let g(u, L, k) = (u, V1, ∅), where V1 = { l : l ∈ L } is
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the set of vertices l in V corresponding to the complements of the literals in L. Finally,
we let h(k) = k. As argued above, we have that ϕ ∧

∧
l∈L l is satisfiable if and only if G

has a clique of size u that does not contain any vertex in V1. Therefore, this reduction is
correct.

Next, we give an fpt-nucomp-reduction from Constrained-Clique(constr.-size) to
SATQuery(query-size). In order to do so, we consider a polynomial-time reduction
from Clique to 3SAT. It is straightforward to construct, given a graph G = (V,E) and
an integer u ∈ [|V |], a 3CNF formula ϕu in polynomial time, such that ϕu is satisfiable if
and only if G contains a clique of size u. Moreover, we can do this in such a way that
the formulas ϕ1, . . . , ϕ|V | share a set of variables {xv : v ∈ V } with the property that
for each u ∈ [|V |] and each two subset V1, V2 ⊆ V it holds that G has a clique C ⊆ V of
size u that contains no vertex in V1 and that contains all vertices in V2 if and only if the
formula ϕu ∧

∧
l ∈ L is satisfiable, where L = {xv : v ∈ V1 } ∪ {xv : v ∈ V2 }.

Now, we are ready to specify our fpt-nucomp-reduction. In order to do so, we need
to specify fpt-size functions f1, f2, a computable function h and an fpt-time func-
tion g. Let (G, (V1, V2, u), k) be an instance of Constrained-Clique(constr.-size).
We let f1(G, 1m, k) = ψ, where we define ψ =

∧
j∈[|V |](yj → ϕj), where the formu-

las ϕj are constructed as in the polynomial-time reduction from Clique to 3SAT that
is described above. We let f2(G, 1m, k) = ∅, we let g(∅, (V1, V2, u), k) = L ∪ {yu},
where L = {xv : v ∈ V1 } ∪ {xv : v ∈ V2 }, and we let h(k) = k + 1. As argued above,
we have that G has a clique of size u that does not contain any vertex in V1 and that
contains all vertices in V2 if and only if ϕ ∧

∧
l∈L l ∧ yu is satisfiable. Therefore, this

reduction is correct.

Then, by Theorem 275 and Proposition 276, we know that Constrained-Clique(constr.-
size) is not fpt-size compilable, unless nu-few-NP ⊆ FPT/fpt.

Corollary 277. It holds that Constrained-Clique(constr.-size) ∈ par-comp-FPT
implies that nu-few-NP ⊆ FPT/fpt.

15.3.4.1 Clique size as part of the offline instance

In fact, requiring that the size of the cliques is part of the offline instance (rather than part
of the online instance) does not make a difference for the compilability of the problem.
Consider the following variant of Constrained-Clique(constr.-size), where the size of
the cliques is part of the offline instance.

Constrained-Cliqueoffline-size(constr.-size)
Offline instance: a graph G = (V,E), and a positive integer u ≥ 1.
Online instance: two subset V1, V2 ⊆ V of vertices.
Parameter: k = |V1|+ |V2|.
Question: is there a clique C ⊆ V in G of size u such that C ∩V1 = ∅ and V2 ⊆ C?
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This problem is also not fpt-size compilable, unless nu-few-NP ⊆ FPT/fpt.

Proposition 278. Constrained-Cliqueoffline-size(constr.-size) is equivalent to
SATQuery(query-size) under fpt-nucomp-reductions.

Proof. The proof of Proposition 276 can be easily modified to show this result.

Corollary 279. Constrained-Cliqueoffline-size(constr.-size) ∈ par-comp-FPT implies
that nu-few-NP ⊆ FPT/fpt.

15.3.5 Other parameterized compilation problems

In this section, we identify several other parameterized compilation problems to which
the problem SATQuery(query-size) (or its co-problem) can be fpt-nucomp-reduced. As
a result of Theorem 275, these parameterized compilation problems are not fpt-size
compilable, unless nu-few-NP ⊆ FPT/fpt.

15.3.5.1 Small Clause Entailment

Firstly, we consider another parameterized variant of the compilation problem Clause-
Entailment.

Clause-Entailment(clause-size)
Offline instance: A CNF formula ϕ, and a positive integer s.
Online instance: A clause c.
Parameter: s.
Question: |c| ≤ s and ϕ |= c?

We observe that co-SATQuery(query-size) can straightforwardly be fpt-nucomp-reduced
to this problem.

Proposition 280. The parameterized compilation problems co-SATQuery(query-size)
and Clause-Entailment(clause-size) are equivalent under fpt-nucomp-reductions.

Proof (sketch). An fpt-nucomp-reduction can be constructed straightforwardly by using
the fact that for any propositional formula ϕ and any set L of literals it holds that ϕ∧

∧
l∈L l

is satisfiable if and only if ϕ 6|= c, where c =
∨
l∈L l. Using a similar argument, an fpt-

nucomp-reduction in the other direction can also be constructed straightforwardly.

15.3.5.2 Hamiltonian Paths and the Travelling Salesperson Problem

Using ideas similar to the ones used in Section 15.3.4, we can show for some parameterized
compilation problems related to finding Hamiltonian paths and related to the Travelling
Salesperson Problem that they are equivalent to SATQuery(query-size) under fpt-
nucomp-reductions. The main idea that we use to show these equivalences is that
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the standard polynomial-time reductions from 3SAT to finding Hamiltonian paths in
(undirected or directed) graphs or to the TSP result in instances where specific edges
in the solutions correspond to the assignment of specific literals to specific truth values
in satisfying assignments of the original 3CNF formula. We consider the following
parameterized compilation problems.

Constrained-HP-undirected(constr.-size)
Offline instance: an undirected graph G = (V,E).
Online instance: two subsets E1, E2 ⊆ E of edges.
Parameter: k = |E1|+ |E2|.
Question: is there a Hamiltonian path π in G such that π includes no edge in E1
and includes each edge in E2?

Constrained-HP-directed(constr.-size)
Offline instance: a directed graph G = (V,E).
Online instance: two subsets E1, E2 ⊆ E of edges.
Parameter: k = |E1|+ |E2|.
Question: is there a Hamiltonian path π in G such that π includes no edge in E1
and includes each edge in E2?

Constrained-TSP(constr.-size)
Offline instance: a directed graph G = (V,E), and a cost c(e) ∈ N (given in binary)
for each edge e ∈ E.
Online instance: two subsets E1, E2 ⊆ E of edges, and a positive integer u ≥ 1
(given in binary).
Parameter: k = |E1|+ |E2|.
Question: is there a Hamiltonian cycle π in G of total cost ≤ u such that π includes
no edge in E1 and includes each edge in E2?

Proposition 281. The following three parameterized compilation problems are equivalent
to SATQuery(query-size) (under fpt-nucomp-reductions):

• Constrained-HP-undirected(constr.-size),

• Constrained-HP-directed(constr.-size), and

• Constrained-TSP(constr.-size).

Proof (sketch). The problems of finding a Hamiltonian path (in an undirected or
in a directed graph), finding a Hamiltonian cycle (in an undirected or in a di-
rected graph), and finding a tour of length ≤ u for an instance of the TSP are
classic NP-complete problems. The well-known polynomial-time reductions from
these problems to 3SAT and from 3SAT to these problems have a direct corre-
spondence between solutions of these problems and satisfying assignments of the
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3SAT instances, similar to the correspondence used in the proof of Proposition 276.
Using arguments that are completely analogous to the arguments used in these
proofs, we can show that the problems Constrained-HP-undirected(constr.-size),
Constrained-HP-directed(constr.-size), and Constrained-TSP(constr.-size) are
equivalent under fpt-nucomp-reductions to SATQuery(query-size).

We observe that the standard reductions can be modified straightforwardly
to work also for the restrictions of Constrained-HP-undirected(constr.-
size), Constrained-HP-directed(constr.-size), and Constrained-TSP(constr.-
size), where E1 = ∅, as well as for the restriction where E2 = ∅.

15.3.5.3 Graph Colorability

Next, we look at parameterized compilation problems that are based on graph colorability
problems. Again, by exploiting the well-known polynomial-time reductions to and from
3SAT, and the direct correspondence between solution to the coloring problems and
the satisfiability problem, we can establish equivalence between the following problems
and SATQuery(query-size). Consider the following parameterized compilation problem,
where r ≥ 1 is an arbitrary positive integer.

Constrained-r-Coloring(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: a partial r-coloring ρ, that assigns a color in {1, 2, 3} to a sub-
set V ′ ⊆ V of vertices.
Parameter: k = |V ′|.
Question: is there a proper r-coloring ρ′ of G that extends ρ?

We then get the following result (for which we omit the straightforward proof).

Proposition 282. Let r ≥ 1 be a positive integer. Then the parameterized compilation
problem Constrained-r-Coloring(constr.-size) is equivalent to SATQuery(query-
size) under fpt-nucomp-reductions.

15.3.5.4 Other Problems

Again, using similar ideas, exploiting well-known polynomial time reductions to and
from 3SAT, we observe that the following parameterized compilation problems are equiv-
alent to SATQuery(query-size) under fpt-nucomp-reductions. Consider the following
parameterized compilation problems.

Constrained-IS(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there an independent set C ⊆ V in G of size ≥ u such that C ∩ V1 = ∅
and V2 ⊆ C?
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Constrained-VC(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there a vertex cover C ⊆ V of G of size ≤ u such that C ∩ V1 = ∅
and V2 ⊆ C?

Constrained-DS(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there a dominating set C ⊆ V of G of size ≤ u such that C ∩ V1 = ∅
and V2 ⊆ C?

Constrained-HS(constr.-size)
Offline instance: a finite set T , and a collection S = {S1, . . . , Sb} of subsets of T .
Online instance: two subsets T1, T2 ⊆ T of elements, and a positive integer u ≥ 1.
Parameter: k = |T1|+ |T2|.
Question: is there a hitting set H ⊆ T of S of size ≤ u such that H ∩ T1 = ∅
and T2 ⊆ H?

A kernel in a directed graph G = (V,E) is a set K ⊆ V of vertices such that (1) no two
vertices in K are adjacent, and (2) for every vertex u ∈ V \K there is a vertex v ∈ K
such that (u, v) ∈ E.

Constrained-Kernel(constr.-size)
Offline instance: a directed graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices.
Parameter: k = |V1|+ |V2|.
Question: is there a kernel K ⊆ V of G such that K ∩ V1 = ∅ and V2 ⊆ C?

Constrained-EC(constr.-size)
Offline instance: a finite set T , and a collection S = {S1, . . . , Sb} of subsets of T .
Online instance: two subsets S1,S2 ⊆ S.
Parameter: k = |S1|+ |S2|.
Question: is there an exact cover C ⊆ S of T , i.e., a set C such that

⋃
C = T and

for each S, S′ ∈ C with S 6= S′ it holds that S ∩ S′ = ∅, such that C ∩ S1 = ∅
and S2 ⊆ C?
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Constrained-EC3S(constr.-size)
Offline instance: a finite set T , and a collection S = {S1, . . . , Sb} of subsets of T ,
each of size 3.
Online instance: two subsets S1,S2 ⊆ S.
Parameter: k = |S1|+ |S2|.
Question: is there an exact cover C ⊆ S of T , i.e., a set C such that

⋃
C = T and

for each S, S′ ∈ C with S 6= S′ it holds that S ∩ S′ = ∅, such that C ∩ S1 = ∅
and S2 ⊆ C?

Constrained-Knapsack(constr.-size)
Offline instance: a finite set T of elements, and for each t ∈ T a cost c(t) ∈ N and a
value v(t) ∈ N, both given in binary.
Online instance: two subsets T1, T2 ⊆ T , and two positive integers u1, u2 ≥ 1, both
given in binary.
Parameter: k = |T1|+ |T2|.
Question: is there an subset S ⊆ T such that

∑
s∈S c(s) ≤ u1, such that

∑
s∈S v(s) ≥

u2, and such that S ∩ T1 = ∅ and T2 ⊆ S?

We get the following results (for which we omit the straightforward proofs).

Proposition 283. The following parameterized compilation problems are equivalent to
SATQuery(query-size) under fpt-nucomp-reductions:

• Constrained-IS(constr.-size),

• Constrained-VC(constr.-size),

• Constrained-DS(constr.-size),

• Constrained-HS(constr.-size),

• Constrained-Kernel(constr.-size),

• Constrained-EC(constr.-size),

• Constrained-EC3S(constr.-size), and

• Constrained-Knapsack(constr.-size).

15.4 Parameterized Variants of the Karp-Lipton Theorem
Finally, we turn our attention to developing parameterized analogues of the Karp-Lipton
Theorem, which relate inclusions between certain non-uniform parameterized complexity
classes to inclusions between some of the parameterized variants of the PH that we
developed in Chapter 6. In order to develop these results, we consider another non-
uniform variant of parameterized complexity classes, based on advice of size f(k) logn
(we call this log-kernel-size advice).
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Definition 284 (log-kernel-size advice). Let K be a parameterized complexity class. We
define K/log-kernel to be the class of all parameterized problems Q for which there exists
a parameterized problem Q′ ∈ K and a computable function f such that for each (n, k) ∈
N × N there exists some α(n, k) ∈ Σ∗ of size f(k) logn with the property that for all
instances (x, k) with |x| = n, it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′. a

Our first analogue of the Karp-Lipton Theorem involves an inclusion between W[P] and
FPT/log-kernel.

Proposition 285. If W[P] ⊆ FPT/log-kernel, then Πp
2 [∗k,P] ⊆ Σp

2 [k∗].

Proof. Suppose that W[P] ⊆ FPT/log-kernel. Then there exists a computable func-
tion f such that for each (n, k) ∈ N × N there is some advice string α(n, k) of
length f(k) logn such that for any instance (x, k) of WSat(circ) with |x| = n, de-
ciding whether (x, k) ∈WSat(circ), given (x, α(n, k), k) is fixed-parameter tractable.
Then, by self-reducibility of WSat(circ), we can straightforwardly transform this fpt-
algorithm A1 that decides whether (x, k) ∈WSat(circ) into an fpt-algorithm A2 that,
given (x, α(n, k), k), computes a satisfying assignment for x of weight k, if it exists, and
fails otherwise. Here we assume without loss of generality that instances of WSat(circ)
are encoded in such a way that we can instantiate variables to truth values without
changing the size of the instance.

Our assumption that W[P] ⊆ FPT/log-kernel only implies that for each (n, k), a suitable
advice string α(n, k) exists. The idea of this proof is that we can guess this advice string
using (bounded weight) existential quantification. For any guessed string α(n, k), we can
use it to execute the fpt-algorithm A2 to compute a satisfying assignment (of weight k)
for an instance of Πp

2 [∗k]-WSat(circ) and to verify that this is in fact a correct satisfying
assignment. Moreover, we know that (at least) one of the advice strings α(n, k) is correct,
so if no guess leads to a satisfying assignment of weight k, we can conclude that no such
assignment exists.

We show that the Πp
2 [∗k,P]-complete problem Πp

2 [∗k]-WSat(circ) is contained in Σp
2 [k∗].

This suffices to show that Πp
2 [∗k,P] ⊆ Σp

2 [k∗]. We do so by giving an algorithm that
solves Πp

2 [∗k]-WSat(circ) and that can be implemented by an Σp
2 [k∗]-machine (see

Section 6.2.3.3), i.e., an algorithm that can use f(k) logn existential non-deterministic
steps, followed by f(k)nc universal non-deterministic steps, where n is the input size, f
is some computable function and c is some constant.

Take an arbitrary instance of Πp
2 [∗k]-WSat(circ) consisting of the quantified Boolean

instance ∀X.∃Y.C(X,Y ) and the positive integer k. Let n denote the size of this instance.
We construct the following algorithm B. Firstly, B guesses an advice string α(n, k) ∈
Bf(k) logn. Since we have an upper bound of f(k) logn on the length of this string, we
can guess this string in the f(k) logn existential non-deterministic steps of the algorithm.
Next, the algorithm needs to verify that for all truth assignments γ (of any weight) to the
variables in X, the instance C(X,Y )[γ] of WSat(circ) is a yes-instance. Using universal
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non-deterministic steps, the algorithmB guesses a truth assignment γ to the variables inX.
We assume without loss of generality that for any γ the instance C(X,Y )[γ] is of size n; if
this instance is smaller, we can simply add some padding to ensure that it is of the right
size. Then, using the guessed string α(n, k), the algorithm simulates the (deterministic)
fpt-algorithm A2 to decide whether (C(X,Y )[γ], k) ∈WSat(circ). Moreover, it verifies
whether the truth assignment of weight k that is constructed by A2 (if any) in fact
satisfies C(X,Y )[γ]. Clearly, this can be done using universal non-deterministic steps,
since deterministic steps are a special case of universal non-deterministic steps. Finally,
the algorithm accepts if and only if C(X,Y )[γ] has a satisfying assignment of weight k.

To see that the algorithm B correctly decides Πp
2 [∗k]-WSat(circ), we observe the

following. If the algorithm accepts an instance (C, k), then it must be the case that for all
truth assignments γ to the universal variables of C the algorithm verified that there exists
a satisfying assignment of weight k for C[γ]. Therefore, (C, k) ∈ Πp

2 [∗k]-WSat(circ).
Conversely, if B rejects an instance (C, k), it means that for all advice strings α(n, k)
of length f(k) logn, there is some truth assignment γ to the universal variables of C
such that simulating A2 with α(n, k) does not yield a satisfying assignment. Then, since
by assumption, at least one such advice string α(n, k) leads to correct behavior of A2,
we get that there exists some truth assignment γ to the universal variables of C such
that C[γ] does not have a satisfying assignment of weight k. In other words, (C, k) 6∈
Πp

2 [∗k]-WSat(circ).

Since FPT/slice ⊆ FPT/kernel ⊆ FPT/log-kernel, this result directly gives us the
following corollary.

Corollary 286. W[P] 6⊆ FPT/kernel and W[P] 6⊆ FPT/slice, unless Πp
2 [∗k,P] ⊆ Σp

2 [k∗].

The result of Proposition 285 can straightforwardly be extended to the other levels of
the Weft hierarchy, resulting in additional analogues of the Karp-Lipton Theorem.

Proposition 287. For each t ∈ N+ ∪ {SAT}, it holds that W[t] ⊆ FPT/log-kernel
implies Πp

2 [∗k, t] ⊆ Σp
2 [k∗].

Proof. The proof of Proposition 285 can straightforwardly be modified to show this
result.

Corollary 288. For each t ∈ N+ ∪{SAT}, it holds that W[t] 6⊆ FPT/kernel and W[t] 6⊆
FPT/slice, unless Πp

2 [∗k, t] ⊆ Σp
2 [k∗].

In addition, the proof of Proposition 285 can straightforwardly be extended to the case of
FPT/fpt, resulting in even more parameterized analogues of the Karp-Lipton Theorem.

Proposition 289. For each t ∈ N+ ∪ {SAT,P} it holds that W[t] 6⊆ FPT/fpt, un-
less Πp

2 [∗k, t] ⊆ para-Σp
2.
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Proof. The proof of Proposition 285 can straightforwardly be modified to show this
result.

To illustrate the connections that these parameterized analogues of the Karp-Lipton
Theorem make between different areas of parameterized complexity theory (that at first
sight might seem distant), we give an example. Consider the result of Proposition 239 (in
Section 15.3.2 on page 312). This result states that the parameterized compilation problem
Constrained-Clique(sol.-size) is not fpt-size compilable, unless W[1] ⊆ FPT/fpt.
Using the result of Proposition 289, we can now connect the (in)compilability of this
parameterized compilation problem to the relation between the parameterized complexity
classes Πp

2 [∗k, 1] and para-Σp
2 .

Corollary 290. Constrained-Clique(sol.-size) is not fpt-size compilable, un-
less Πp

2 [∗k, 1] ⊆ para-Σp
2.

Notes
The results in this chapter appeared in a technical report [105].
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CHAPTER 16
Open Problems & Future

Research Directions

The theoretical investigation that we performed in this thesis, leaves a number of open
questions and brings forth plenty of topics for future research. This includes theoretical
issues, as well as questions about the possibility of applying the theoretical results in this
thesis in an applied algorithmic setting. In this chapter, we point out several of the most
important topics for future research.

Outline of this chapter: We begin in Section 16.1 by discussing several topics that
are to be investigated in future research in order to study to what extent the theoretical
results in this thesis can benefit practical solving methodologies for problems at the
second level of the PH or higher.

Then, in Section 16.2, we discuss various theoretical (and technical) questions that the
research in this thesis has brought forward.

In Section 16.3, we sketch a possible direction for future research that investigates various
refined notions of fpt-reducibility to SAT that are based on bounds on the number of
variables in the produced SAT instances (or to put it differently, based on bounds on the
amount of non-determinism used).

In Section 16.4, we discuss topics for future research that are related to fpt-algorithms
that have access to witness-producing SAT oracles. We briefly discussed this oracle model
in Section 7.5. We also consider several questions that arise from our work and that are
related to identifying (lower and upper) bounds on the number of calls to a SAT oracle
that any fpt-algorithm needs to make to solve certain problems.

Finally, in Section 16.5, we propose several ideas that could be used to develop a
theoretical framework that is able to provide a complexity distinction between problems
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in para-NP. These ideas are based on a non-deterministic generalization of the concept
of generalized kernelization [28].

16.1 Improving Solving Methods

The theoretical research in this thesis is unmistakably motivated by the prospect of
using the concept of fpt-reductions to problems such as SAT—for which optimized,
well-performing algorithms are available off-the-shelf—to develop solving methods for
many problems at higher levels of the PH that come up in real-world settings. Therefore,
one of the most important directions for future research is to employ the theoretical
tools and results in this thesis to identify such cases. Our hope is that the algorithmic
approaches of (1) using the viewpoint of parameterized complexity to pinpoint structure
in the input that can be used to speed up algorithms and (2) putting to use the enormous
engineering advances in SAT solvers (and similar algorithms for other problems) by
encoding problem instances into SAT—that have both separately been tremendously
successful—will lead to even further improvements for the efficiency of solving algorithms
for problems in practically relevant settings when combined. Even if algorithms based on
this combined methodology outperform existing algorithms only in particular settings,
this could lead to tangible benefits.

At this point, there is only a single example of such a case where the combination of
employing a fixed-parameter tractable algorithm to encode a problem into SAT, and
subsequently solving the problem by calling a SAT solver, led to concrete, implemented
algorithms that can compete with other state-of-the-art algorithms. This example is the
problem of model checking for a fragment of the temporal logic LTL on very large Kripke
structures (that are encoded succinctly). We discussed this problem and the potential of
fpt-reductions to SAT to solve this problem in Section 4.2.4 and Chapter 9. Even though
this is only a single example of a case where the possibility of fpt-reductions to SAT
coincides with the development of practical algorithmic techniques based on SAT solvers,
we are optimistic that this example indicates a more general relation between positive
theoretical results and the possibility of solving methods that work well in real-world
settings.

There are several lines of research that could be fruitful in the search for more cases
where the combination of fixed-parameter tractable algorithms and SAT solvers can be
used to design algorithms that improve over existing algorithms for problems that are
relevant in practical settings. The first line of research that we like to point out consists
of taking a theoretical result that establishes the possibility of an fpt-reduction to SAT
and empirically investigating how well algorithms based on this result perform in practice.
This involves implementing an algorithm that performs the reduction witnessed by the
theoretical result, and that subsequently solves the problem by calling a SAT solver.
Moreover, the implemented algorithm needs to be optimized its efficiency needs to be
empirically tested on inputs that are representative for one or more particular problem
settings.
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A second promising research direction that has the potential of pointing out further set-
tings where algorithms based on fpt-reductions to SAT can lead to practical improvements
is to establish more theoretical results that establish the possibility of fpt-reductions
to SAT. As a natural part of this pursuit, the structured parameterized complexity
investigation of practically motivated problems at higher levels of the PH—that we
initiated in this thesis—can be extended to additional parameterizations and to more
problems. Moreover, to further facilitate this parameterized complexity investigation, it
would be beneficial to develop additional general techniques that can be used to establish
positive results in many different settings. A good example of such a general technique
could be a ‘meta-theorem’ that states that every parameterized problem that can be
expressed in a particular logic language is fpt-reducible to SAT (when parameterized by
a particular parameter).

16.2 Open Theoretical Problems

We presented many technical results in this thesis. We introduced a lot of technical
machinery, and obtaining a thorough understanding of this machinery involved overcoming
many non-trivial obstacles. We tried to be as meticulous as is possible within the scope of
a doctoral thesis. We aimed to give at least a basic answer to all of the most fundamental
questions that presented themselves. Of course, we had to leave some technical questions
to be answered in future research. Moreover, our results directly give rise to a range of
interesting theoretical questions that are to be addressed in future research.

In this section, we describe a number of topics that came up in the various chapters of
this thesis and that would be interesting to investigate in the future. In the remaining
sections of this chapter, we turn to several interesting research questions that emerge
from our research and that we want to address in more detail than the topics that we
mention in this section.

16.2.1 Further Study of the Σp
2[∗k, t] Hierarchy

As we showed in Section 6.2, the k-∗ hierarchy collapses into a single classe Σp
2 [k∗].

This collapse allowed us to focus on the single case of Σp
2 [k∗], rather than spreading

our attention over a whole hierarchy of subtly different classes, as in the case of the
Σp

2 [∗k, t] hierarchy. Moreover, the class Σp
2 [k∗] enjoys some properties that made it easier

to establish several technical results. For instance, the fact that the second quantifier
block for the canonical problem Σp

2 [k∗]-WSat is unweighted allowed us to show that
Σp

2 [k∗]-hardness for this problem already holds when the input is restricted to 3DNF
formulas. For the classes Σp

2 [∗k, t], on the contrary, several striking questions remain
open. We discuss several of them.

For the weighted satisfiability problems Σp
2 [∗k]-WSat(C) that are canonical for the differ-

ent classes Σp
2 [∗k, t], we showed in several settings that the circuits in C can be transformed

into one of various types of normal forms. For example, the problem Σp
2 [∗k]-WSat(2DNF)
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is already Σp
2 [∗k, 1]-hard. However, for the classes Σp

2 [∗k, t], for 2 ≤ t ∈ N+, we do not
have such normalization results. It would be interesting to investigate whether normal-
ization results hold that are similar to the ones for the classes W[t], for 2 ≤ t ∈ N+,
as is the case for t = 1. The techniques that we used to show the normalization result
for Σp

2 [∗k, 1], in Section 6.3.1, would need to be augmented significantly to obtain such
results.

Another obvious question that arises is whether the Σp
2 [∗k, t] hierarchy is proper, or

whether any two distinct levels in fact coincide. It remains unclear even whether the
equality Σp

2 [∗k, t] = Σp
2 [∗k, t + 1], for any t ∈ N+, implies a collapse at higher levels

than t. It would also be fascinating to determine what consequences a collapse of the
Σp

2 [∗k, t] would have. For instance, does the collapse of this hierarchy imply that other
parameterized complexity classes coincide with each other or with classes of the Σp

2 [∗k, t]
hierarchy? Finding answers to these questions is likely to be very difficult, because
similar questions remain open also for the Weft hierarchy. Since the Σp

2 [∗k, t] hierarchy
generalizes the Weft hierarchy, it is conceivable that answering any of these questions
will involve more tedious technical work than answering the corresponding question for
the Weft hierarchy.

A third aspect of the ∗-k hierarchy that would be interesting to study in future work
is the way in which the classes in the hierarchy can be characterized using notions and
problems other than the ones used to define the classes—that is, the weighted quantified
satisfiability problems Σp

2 [∗k]-WSat(C). For instance, can we characterize the classes
Σp

2 [∗k, t] using alternating Turing machines. For the class Σp
2 [∗k,P], we provided an

alternating Turing machine characterization in Section 6.3.4, but for the remaining classes
of the ∗-k hierarchy, such a characterization is absent. Characterizations of the classes
Σp

2 [∗k, 1] and Σp
2 [∗k, 2] in terms of alternating Turing machines could be similar in nature

to the machine characterizations of the parameterized complexity classes W[1] and W[2]
(see, e.g., [85]).

16.2.2 Further Study of the Relation Between Classes

We investigated how the new parameterized classes Σp
2 [k∗] and Σp

2 [∗k, t] relate to each
other and to other parameterized complexity classes. In fact, we provided results that
the classes Σp

2 [k∗] and Σp
2 [∗k, t] are indeed distinct from the classes depicted above and

below the dashed gray lines in Figure 5.1. For these separation results, we used different
complexity-theoretic assumptions. Some of these assumptions are very commonly used,
such as the assumption that NP 6= co-NP (that we used to show that para-NP 6⊆ Σp

2 [k∗]
and Σp

2 [k∗] 6⊆ para-NP in Section 6.4.1). For other results, we used assumptions that
might not sound unreasonable, but that are stronger and less standard. An example
of such an unusual complexity-theoretic assumption is the assumption that there exists
no 2o(n) time reduction from QSat2 to UNSAT, where n denotes the number of variables
in the QSat2 instance. We used this assumption to show that Σp

2 [k∗] 6⊆ para-co-NP, in
Section 14.2.2.

344



16.2. Open Theoretical Problems

It would considerably strengthen our conviction that the parameterized complexity
classes that we introduced are indeed different from classes that were known from the
literature, if we could establish the separation results mentioned above using weaker and
more common complexity-theoretic assumptions. On the other hand, it could also be
the case that some of our separation results actually do not hold, and thus that some
of the less usual complexity-theoretic assumptions that we used to demonstrate these
results are also false. A proof that confirms the falsity of any of the complexity-theoretic
assumptions that we used would certainly be interesting in and of itself, as we discussed
in Section 1.5.3.

Another interesting topic for future research is the relation between the parameterized
complexity classes Σp

2 [kk, t] and A[2,t], for t ∈ N+. As we pointed out in Section 6.1.2, it
holds that A[2,t] ⊆ Σp

2 [kk, t], for each t ∈ N+. Whether the converse inclusion also holds
remains open.

16.2.3 Other Topics

In Sections 7.3 and 14.2, we developed techniques to establish lower bounds on the
number of NP oracle queries needed by fpt-algorithms to solve particular problems. For
example, we showed that hardness for the class FPTNP[few] can be used to show that a
problem cannot be solved by an fpt-algorithm that uses O(1) queries to an NP oracle.
Moreover, this bound can be improved by inspecting the fpt-reductions used to show
FPTNP[few]-hardness. For instance, for the problem Majority-Safety(agenda-size),
we showed in Section 11.2.2.2 that any fpt-algorithm needs Ω(log k) NP oracle queries to
solve the problem. However, for all the problems that we considered in this thesis, there
is a notable gap between the lower bounds and the upper bounds that we obtained for the
number of oracle queries needed. As an illustration of this, for the problem Majority-
Safety(agenda-size), the lower bound is Ω(log k), and the upper bound is 2O(k). It
would be interesting to investigate how to obtain tighter (lower and upper) bounds on
the number of oracle queries needed by fpt-algorithms to solve various problems.

Another fascinating topic for future research is the relation between the non-uniform
parameterized complexity classes—that we considered in Chapter 15—and other notions
in the field of parameterized complexity theory. We investigated various connections that
these classes have with the concept of parameterized compilability (in Section 15.3) and
the classes Σp

2 [k∗] and Σp
2 [∗k, t] (in Section 15.4). An example of another notion whose

relation to non-uniform parameterized complexity would be interesting to study is that
of randomized fpt-algorithms.

Yet another idea for future research is to study the power of fpt-algorithms that can
query an oracle that is weaker than the NP oracles that we considered. For instance,
instead of equipping fpt-algorithms with an NP oracle, we could provide access to a
W[1] oracle (and put various bounds on the number of oracle queries that the algorithm
can make). This would give rise to the class FPTW[1][few] (and variants of it). Clearly,
it holds that FPTW[1][few] ⊆ FPTNP[few], and this inclusing is strict (unless P = NP).
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However, the exact relation between FPTW[1][few] and other parameterized complexity
classes seems to be more intricate to establish. Also, it would be interesting to identify
natural parameterized problems that are complete for FPTW[1][few] (and its variants).

16.2.4 Generalizing to Higher Levels of the PH

As we explained in Section 1.5.2, the focus in this thesis lies on problems at the second
level of the PH (rather than at higher levels of the PH). However, the concept of using
fpt-reductions to a problem in NP can be used for problems at any level of complexity.
Moreover, one could also investigate whether problems at higher levels of the PH can
be fpt-reduced to a lower level of the PH. For example, for a Σp

3-complete problem, an
fpt-reduction to QSat2 could be useful for developing improved algorithms.

The parameterized complexity classes Σp
2 [k∗] and Σp

2 [∗k, t] can straightforwardly be
generalized to higher levels of the PH. In Appendix B, we begin an investigation of
variants of these parameterized complexity classes at arbitrary levels of the PH, and
their relation to each other and to other parameterized complexity classes. It would be
interesting to extend the exploratory study in Appendix B to a more extensive analysis.
Additionally, it would be interesting to find natural problems that are complete for the
variants of Σp

2 [k∗] and Σp
2 [∗k, t] at higher levels of the PH. This is likely to be challenging,

as natural problems that are complete for the third level of the PH are already in short
supply.

16.3 Limited Non-Determinism

For the reductions to SAT that we studied in this thesis, we only considered bounds on
the running time of the reductions (namely, we required them to run in fixed-parameter
tractable time), but we did not consider bounds on the size of the SAT instances produced
by the reductions. This means that the SAT instances produced by these reductions can
contain f(k)nc propositional variables, where k is the parameter value, n is the input
size, f is a computable function and c is a constant. In many cases, modern SAT solvers
have no trouble dealing with instances that contain many variables. However, the larger
the number of variables, the larger the search space that the SAT solvers have to navigate.
For this reason, it might well be that a more refined notion of fpt-reducibility to SAT
more adequately captures the cases where the combination of fixed-parameter tractable
algorithms and SAT solving algorithms leads to practically efficient solving methods.
Such a refined notion of fpt-reducibility to SAT could place restrictions on the number of
variables in the produced SAT instances. For instance, one could consider reductions
that produce SAT instances containing only O(n) variables.

Such restrictions on the number of variables in the resulting satisfiability instances can
also be characterized differently, when considering the satisfiability problem for Boolean
circuits (Circuit-SAT) as target of the fpt-reductions. Fixed-parameter tractable re-
ductions to Circuit-SAT correspond to non-deterministic fpt-algorithms that solve the
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problem directly—this is a known characterization of the class para-NP [85, Chapter 2].
Moreover, the number of variables in the instance of Circuit-SAT that is produced by
the reduction is exactly the same as the number of non-deterministic bits used by the fpt-
algorithm that solves the problem. For instance, an fpt-reduction from a parameterized
problem Q to Circuit-SAT that produces instances with only O(n) variables corresponds
to a non-deterministic fpt-algorithm that solves Q using O(n) non-deterministic bits.

Various bounds on the number of variables in the produced SAT instances present
themselves as reasonable choices for refined notions of fpt-reducibility to SAT. For instance,
we could require the fpt-reductions to produce instances with only O(n) variables, or
with only f(k)n variables, where n is the input size, k is the parameter value, and f is a
computable function. Other reasonable options are to require the number of variables to
be bounded by O(n2) or f(k)n2.

One might be tempted to also consider the restriction that for each reduction there must
be some constant c such that the propositional formulas produced by this reduction
contain at most O(nc) variables. This, however, is not a restriction from the setting where
instances are allowed to contain f(k)nc variables, for the following reason. From the
inequality a ·b ≤ a2 +b2 (for all a, b ∈ N), we get that f(k)nc ≤ f(k)2 +n2c. Suppose that
we have an fpt-reduction that produces a formula ϕ with f(k)nc ≤ f(k)2 + n2c variables.
We can then straightforwardly modify this reduction as follows. After producing ϕ, it
(arbitrarily) chooses f(k)2 variables, and iterates over all possible truth assignments to
these variables (there are 2f(k)2 such assignments). Then, for each such truth assignment α,
it computes the formula ϕ[α] that results from applying α to ϕ and simplifying the
formula. Then, the resulting formula ϕ′ is the disjunction of all these formulas ϕ[α]. The
formula ϕ′ can be constructed in fpt-time, and contains at most n2c variables. By a
similar argument, we know that each fpt-reduction that produces propositional formulas
with f(k)n variables can be simulated by a reduction that produces formulas with only n2

variables.

It would be riveting and useful to investigate what problems we can solve using these
various restricted notions of fpt-reducibility to SAT. In order to satisfactorily study this,
a structured investigation would need to be set up. This investigation would include
finding natural parameterized problems that can be solved using the different notions
of fpt-reducibility to SAT. Moreover, a robust framework would have to be developed
with parameterized complexity classes (within para-NP) that capture the problems that
are fpt-reducible to SAT, with various restrictions on the number of variables in the
formulas produced by the fpt-reductions. The relation between these parameterized
complexity classes and their relation to other parameterized complexity classes could then
be analyzed, in order to establish the possibilities and limits of the different notions of
fpt-reducibility to SAT in more detail. Finally, an important aspect of the different refined
notions of fpt-reducibility to SAT that would have to be investigated experimentally is
the potential that these notions have for practical applications.
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16.4 Witness Oracles
In Section 7.5, we already briefly considered fixed-parameter tractable algorithms that
have access to a SAT oracle that is more powerful than the typical oracles that only
answer whether a propositional formula is satisfiable or unsatisfiable. These more powerful
oracles return a satisfying assignment for propositional formulas that are satisfiable. (For
a more formal definition of such witness oracles, we refer to Section 7.5.) Arguably, this
oracle model is more reasonable in a theoretical framework that is motivated by the
great performance of SAT solving algorithms in practice. This is because SAT solvers
actually do return a satisfying assignment when given a satisfiable formula as input. An
important direction for future research is to investigate the power that this more powerful
theoretical oracle model yields.

As we showed in Section 7.5, when considering decision problems, witness oracles do
not give additional power over yes-no oracles—at least not for the upper bounds on the
number of oracle queries that we considered: f(k), O(logn), or O(nc), where n denotes
the input size, k is the parameter value, f is a computable function and c is a constant.
Therefore, in order to adequately study the power offered by witness oracles, one needs to
consider search problems (and consequently, consider reductions that transform solutions
of one problem into solutions of another problem).

It is well known that even a single call to a witness oracle is more powerful than O(logn)
calls to a yes-no oracle, unless P 6= NP [99, Theorem 5.4]. From this, it immediately
follows that fixed-parameter tractable algorithms that can query a witness oracle f(k)
times can solve strictly more problems than fixed-parameter tractable algorithms that
can query a yes-no oracle f(k) times, for instance. However, to obtain a more detailed
understanding of the solving power of fixed-parameter tractable algorithms with access
to a witness NP oracle, a structured investigation is needed.

The main product of such an investigation would be a fine-grained framework with
parameterized complexity classes that capture what parameterized (search) problems
can be solved in fixed-parameter tractable time using different amounts of queries to
a witness NP oracle. Moreover, such a framework of parameterized complexity classes
could be supported by identifying natural parameterized search problems that populate
the various parameterized complexity classes. In addition, an essential part of such a
framework would be easy-to-use lower bound tools, that can be used to determine whether
a particular parameterized problem cannot be solved in fixed-parameter tractable time
using a particular number of queries to a witness NP oracle. Possibly, such lower bound
results could take the form of hardness for parameterized complexity classes that are
developed for this purpose.

In addition to returning satisfying assignments for satisfiable formulas, essentially all
modern SAT solvers are also able to return a proof of unsatisfiability for unsatisfiable
formulas. In fact, from the execution trace of a CDCL SAT solver when given an
unsatisfiable CNF formula as input, one can directly extract a resolution refutation
of the formula. Therefore, it might also be interesting to investigate an even stronger
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oracle model, where the oracle returns a satisfying assignment for satisfiable formulas and
returns a proof of unsatisfiability for unsatisfiable formulas. However, in the worst case,
such proofs of unsatisfiability are of super-polynomial size, unless NP = co-NP. Therefore,
it might be reasonable to place restrictions on the answers given by the oracle. For
instance, one could consider oracles that return a polynomial-size proof of unsatisfiability
when given an unsatisfiable formula, if such a proof exists, and otherwise simply returns
“no.”

In classical complexity theory, typically only search problems are considered where the
size of solutions grows linearly (or polynomially) in the input size. For instance, the size
of solutions for SAT (which consist of satisfying assignments for a propositional formula)
are linear in the size of the input. However, in the setting of parameterized problems,
it often makes sense to consider search problems where solutions are of size f(k) logn,
where n denotes the input size, k is the parameter value, and f is some computable
function. A good example of such a problem is the problem of finding a repair set of
size at most k, given an unsatisfiable set Φ of formulas, if such a repair set exists—we
considered this problem in Section 10.2. Solutions for this problem consist of a list
of k pointers to formulas in Φ, which can be described using k logn bits. It would be
interesting to see if the additional power yielded by witness oracles differs for search
problems where the size of solutions is, say, f(k) logn, rather than O(n) or O(nc).

Another interesting theoretical question for future research is what the power is of parallel
queries to a witness NP oracle. For instance, what is the relative power of fixed-parameter
tractable algorithms that can make f(k) (adaptive) queries to a witness NP oracle and
fixed-parameter tractable algorithms that can make f(k) queries to a witness NP oracle
in parallel?

16.5 Non-Deterministic Kernelization
In Section 16.3, we contemplated the idea that a more refined notion of fpt-reducibility to
SAT more adequately captures the cases where the combination of using fixed-parameter
tractable algorithms and employing SAT solvers could lead to practically efficient solving
methods. There, we considered restricted variants of fpt-reductions to SAT where the
number of variables in the produced SAT instances is bounded. In this section, we look
at another possible way of defining a refined notion of fpt-reducibility to SAT that is
based on a non-deterministic variant of the concept of generalized kernelization [28]. We
hope that the ideas that we describe in this section can be used to develop a framework
to make more fine-grained complexity distinctions between problems in para-NP, in a
similar way that the notion of kernelizations (with different size bounds) can be used to
distinguish between problems in FPT.

Moreover, such a framework could potentially be used to help establish bounds on the
function f in the running time of fpt-reductions to SAT for different parameterized
problems. An fpt-reduction to SAT that runs in time f(k)nc, where f is a function that is
computable but that grows extremely quickly—for instance, the Ackermann function—is
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likely to be inefficient even for small parameter values, even though it qualifies as an
fpt-reduction to SAT. Therefore, it would be useful to develop techniques that can be
used to provide bounds on the functions f needed in the running time of fpt-reductions
to SAT for different problems.

We introduce the following notion of non-deterministic kernelization. Essentially, this
is a non-deterministic version of the known concept of generalized kernelization, which
allows the target problem to be different from the original problem [28]. Intuitively, a
non-deterministic kernelization for a parameterized problem Q takes non-deterministic
time polynomial in the size of the original instance x to compute an equivalent instance x′
of the problem Q′ that is of size at most f(k).

Definition 291 (Non-deterministic kernelization). Let Q ⊆ Σ∗ × N be a parameterized
problem. Let C be a classical complexity class. We call an algorithm A a non-deterministic
kernelization for L into C (or ndK into C, for short) if there exists a problem Q′ ∈ C,
polynomials p, q, and a computable function f such that for each instance (x, k) ∈ Σ∗×N,
it holds that:

1. for each β ∈ Bp(|x|), A(x, k, β) is computable in time q(|x|);

2. (x, k) ∈ Q if and only if for some β ∈ Bp(|x|) it holds that A(x, k, β) ∈ Q′; and

3. for each β ∈ Bp(|x|), |A(x, k, β)| ≤ f(k). a

The notion of non-deterministic kernelization allows us to give an alternative characteri-
zation of the class para-NP.

Proposition 292. Let DEC be the class of all decidable decision problems. Then para-NP
coincides with the class of all parameterized problems that have an ndK into DEC.

Proof. Firstly, we show that any parameterized problem that has an ndK into DEC is in
para-NP. Take a parameterized problem Q that has an ndK into DEC. That is, there
are an algorithm A, polynomials p, q, a computable function f , and a problem Q′ ∈ DEC
as specified in the definition of non-deterministic kernelizations. We describe a non-
deterministic fpt-time algorithm to solve Q. Take an instance (x, k) ∈ Σ∗×N of Q. Firstly,
the algorithm non-deterministically guesses a string β ∈ Bp(|x|). Then, the algorithm
computes x′ = A(x, k, β) in polynomial time. We know that |x′| ≤ f(k). Moreover, we
know that x′ ∈ Q′ if and only if (x, k) ∈ Q. Finally, the algorithm decides whether x′ ∈ Q′.
This is possible, since Q′ ∈ DEC. Moreover, since |x′| ≤ f(k), the time it takes to decide
whether x′ ∈ Q′ depends only on k. Therefore, this algorithm runs in non-deterministic
fixed-parameter tractable time. From this, we can conclude that Q ∈ para-NP.

Conversely, suppose that Q ∈ para-NP. We show that Q has an ndK into DEC. We
know that there exists a non-deterministic fpt-time algorithm B that solves Q. That
is, for each instance (x, k) ∈ Σ∗ × N, the algorithm B runs in time g(k)r(n), where n
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denotes the size of x, g is a computable function, and r is a polynomial. Without loss
of generality, we may assume that r(n) ≥ n for all n ∈ N. We describe an algorithm A,
polynomials p, q, a computable function f , and a problem Q′ ∈ DEC as specified in the
definition of non-deterministic kernelizations.

Without loss of generality, we may assume that Q is non-trivial, i.e., that Q1 6= ∅ and Q1 6=
Σ∗, where Q1 = {x ∈ Σ∗ : (x, k) ∈ Q, k ∈ N }. We fix arbitrary x0 ∈ Σ∗\Q1 and x1 ∈ Q1.
We set p(n) = r(n)2, we let Q′ = Q1. Moreover, we let f(k) = g(k) + |x0|+ |x1|. The
algorithm A uses the bits in β ∈ Bp(n) to simulate the first p(n) steps of the execution of B
on (x, k). If B halts within p(n) steps and rejects the input, then A returns x0. Similarly,
if B halts within p(n) steps and accepts the input, then A returns x1. Otherwise, if B
does not halt within p(n) steps, A returns x. Clearly, q can be chosen in such a way
that A runs in time q(n).

We show that for each instance (x, k) ∈ Σ∗ ×N, it holds that (x, k) ∈ Q if and only if for
some β ∈ Bp(n) it holds that A(x, k, β) ∈ Q′, and that for each β ∈ Bp(n), |A(x, k, β)| ≤
f(k). Suppose that (x, k) ∈ Q. Moreover, suppose that there is some sequence of
non-deterministic choices that lead B to accept (x, k) in time p(n). Let β be a string that
corresponds to this sequence of non-deterministic choices. Then, A returns x1 ∈ Q′ when
given the string β. Clearly, |x1| ≤ f(k). Alternatively, suppose that for every sequence
of non-deterministic choices, B needs time more than p(n) = r(n)2 to accept (x, k).
Then, n ≤ r(n) ≤ g(k). Moreover, then there is some β such that A(x, k, β) = x.
Since (x, k) ∈ Q, it holds that x ∈ Q′. Also, since n ≤ g(k), we have that |x| ≤ f(k).
Conversely, suppose that (x, k) 6∈ Q. Take an arbitrary β ∈∈ Bp(n). Suppose that A halts
within p(n) steps when given (x, k) and β. Then A returns x0 6∈ Q′. Clearly, |x0| ≤ f(k).
Alternatively, suppose that A needs more than p(n) = r(n)2 steps to halt when given (x, k)
and β. Then, n ≤ r(n) ≤ g(k). Moreover, then A returns x. Since (x, k) 6∈ Q, we know
that x 6∈ Q′. Also, since n ≤ g(k), we have that |x| ≤ f(k). This concludes our description
of the ndK for Q into DEC.

In order to define different levels of complexity within the class para-NP, we consider
various restricted variants of non-deterministic kernelizations. There are various natural
ways to define such restricted notions of non-deterministic kernelizations. Firstly, one can
restrict the computational complexity of the target problems. That is, one can consider
non-deterministic kernelizations into different complexity classes C ⊆ DEC. For instance,
one can consider the subclass of para-NP consisting of all parameterized problems that
have an ndK into PSPACE.

Secondly, one can consider restricted variants of non-deterministic kernelizations by
putting restrictions on the size of the product of the kernelization function A. That
is, we can restrict the function f in Definition 291. At this point, we consider two
such size bounds on the kernelizations. Let A be a non-deterministic kernelization into
some complexity class C, as specified in Definition 291. Moreover, let f be the function
that bounds the size of the result of A, i.e., |A(x, k, β)| ≤ f(k) for all x, k, β. If f is
a polynomial, we call A a non-deterministic polynomial kernelization into C (or ndPK
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into C). If f is a linear function, we call A a non-deterministic linear kernelization
into C (or ndLK into C). We can also combine these two different ways of restricting
non-deterministic kernelizations to obtain additional restricted variants of ndKs. For
instance, one could consider ndPKs into PSPACE.

In many cases, the existence of such restricted variants of non-deterministic kernelizations
for some parameterized problem directly yields upper bounds on the running time needed
for fpt-reductions to SAT for this problem. Examples of this are the following two results.

Proposition 293. Let EXP be the class of all decision problems that can be decided in
time 2nO(1). Moreover, let Q be a parameterized problem that has an ndPK into EXP.
Then there exists a 2kO(1)

nO(1) time encoding into SAT for Q.

Proof (sketch). By an argument similar to the one used in the proof of Proposition 292,
it can be shown that any parameterized problem Q that has an ndPK into EXP can be
solved by a non-deterministic algorithm that runs in time 2kO(1)

nO(1). We know that the
class of parameterized problems that can be solved by a non-deterministic algorithm that
runs in time 2kO(1)

nO(1) coincides with the class of parameterized problems for which
there exists a 2kO(1)

nO(1) time encoding into SAT. Therefore, we know that there exists
a 2kO(1)

nO(1) time encoding into SAT for Q.

Proposition 294. Let E be the class of all decision problems that can be decided in
time 2O(n). Moreover, let Q be a parameterized problem that has an ndLK into E. Then
there exists a 2O(k)nO(1) time encoding into SAT for Q.

Proof (sketch). By an argument similar to the one used in the proof of Proposition 292,
it can be shown that any parameterized problem Q that has an ndLK into E can be
solved by a non-deterministic algorithm that runs in time 2O(k)nO(1). We know that the
class of parameterized problems that can be solved by a non-deterministic algorithm
that runs in time 2O(k)nO(1) coincides with the class of parameterized problems for which
there exists a 2O(k)nO(1) time encoding into SAT. Therefore, we know that there exists
a 2O(k)nO(1) time encoding into SAT for Q.

As these restricted variants of non-deterministic kernelizations directly give rise to a more
fine-grained distinction between parameterized problems within para-NP, it would be an
interesting topic for future research to develop a robust theory to classify parameterized
problems in para-NP according to what kind of non-deterministic kernelizations they
admit. For this, one needs to investigate the various different types of restricted variants
of non-deterministic kernelizations in more detail.

Moreover, one would need to explore appropriate notions of reductions—that is, reductions
that satisfy the property that if a parameterized problem Q has a certain kind of non-
deterministic kernelization and another parameterized problem Q′ is reducible to Q,
then Q′ also has this kind of non-deterministic kernelization. One example of such
an appropriate concept of reductions is the notion of polynomial time and parameter
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transformations, where the reduction runs in polynomial (deterministic) time and the
parameter value increases only by a polynomial amount [29]. Whenever a parameterized
problem Q has an ndPK into some class C and there is a polynomial time and parameter
transformation from another parameterized problem Q′ to Q, then Q′ also has an ndPK
into C. To obtain a similar preservation property for ndLKs, one could consider a
variant of such transformations where the running time and increase in parameter value
are linear, rather than polynomial. Additionally, one could consider non-deterministic
generalizations of these polynomial (or linear) time and parameter transformations.

A central research question in the development of a structured theory of the possibilities
and limits of the different types of non-deterministic kernelizations would be to identify
natural parameterized problems that inhabit the different levels of complexity within
para-NP characterized by the different types of non-deterministic kernelizations. Also,
it would be useful to develop theoretical tools that can be used to show that particular
parameterized problems do not admit certain types of non-deterministic kernelizations.
Finally, in order to establish how well the theoretical levels of complexity within para-NP—
that are induced by the various kinds of non-deterministic kernelizations—correspond to
how well solving methods based on fpt-reductions to SAT perform in practical settings,
extensive experimental research is needed.
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CHAPTER 17
Conclusion

In this chapter, we finish the main part of the thesis. We do so by summarizing our
results, in Section 17.1. Moreover, in Section 17.2, we consider the impact of our research
(and of future research based on the work in this thesis) for the area of computer science
and engineering. To allow a wider audience to understand and appreciate our results, we
describe the research impact in layperson’s terms.

17.1 Summary

In this thesis, we took on the problem of enabling and starting a structured complexity-
theoretic investigation of the possibilities and limits of using fpt-reductions to SAT to
solve intractable problems at higher levels of the Polynomial Hierarchy. Concretely, we
addressed four shortcomings of previous parameterized complexity research related to
fpt-reductions to SAT.

1. Of the numerous possible incarnations of the general scheme of fpt-reductions to
SAT, only the simplest had been considered—and only in very few cases.

2. Theoretical tools to rule out fpt-reductions to SAT were underdeveloped. That is,
only in obvious cases previously known parameterized complexity tools could be
used to show that an fpt-reduction to SAT is not possible.

3. A fine-grained parameterized complexity toolbox to adequately characterize the
complexity of parameterized variants of problems at higher levels of the Polynomial
Hierarchy was lacking.

4. Only for a very small number of problems it had been studied whether they admit
an fpt-reduction to SAT.
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We confronted these shortcomings with the following contributions.

We established a better understanding of the different possible forms of fpt-reductions to
SAT that can be employed, and the power that they provide.

• We provide the first structured parameterized complexity investigation that con-
centrates on fpt-reducibility to SAT as a positive result.

• We considered parameterized complexity classes that capture problems that can be
solved using various types of fpt-reductions to SAT: para-NP, para-co-NP, para-BH,
FPTNP[few], para-Θp

2 , and para-∆p
2 .

• We developed theoretical tools that can be used to provide lower bounds on the
number of oracle queries that is needed for any fpt-algorithm to solve certain
problems.

We enriched the theoretical machinery that can be used to rule out fixed-parameter
tractable reductions to SAT. The additional tools that we develop for this purpose can
also be used in subtle cases where previously known tools were not applicable.

• We show that parameterized problems that are hard for the parameterized com-
plexity class A[2] do not admit fpt-reductions to SAT—under the assumption that
there exists no subexponential-time reduction from the problem QSat2(3DNF) to
SAT.

We developed new parameterized complexity classes that can be used to accurately
characterize the complexity of parameterized variants of problems at higher levels of
the Polynomial Hierarchy. Using these new classes, subtly different levels of complexity
can be distinguished, which could not be done using previously known parameterized
complexity classes.

• We firstly argued that new parameterized complexity classes were needed, by
pointing out natural parameterized variants of a problem known from the literature,
and showing that these parameterized problems are not complete for any of the
known classes (under various complexity-theoretic assumptions).

• We develop the parameterized complexity classes Σp
2 [k∗] and Σp

2 [∗k, t]—which are
generalizations of the well-known classes of the Weft hierarchy—that map out the
parameterized complexity landscape between the first and the second level of the
Polynomial Hierarchy.

• We provided a solid understanding of the phenomena underlying these classes by
giving alternative characterizations of the classes in terms of (i) first-order logic
model checking, and (ii) alternating Turing machines—the latter characterization
yields an analogue of the Cook-Levin Theorem.
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• We showed that the new parameterized complexity classes can be used to charac-
terize the complexity of the parameterized problems that we showed earlier not to
be complete for any previously known parameterized complexity classes.

• We further substantiated the completeness theory yielded by the newly developed
parameterized complexity classes by showing that there are many natural parame-
terized variants of known problems at higher levels of the Polynomial Hierarchy
that are complete for the new classes.

• We demonstrated that the new classes add to the parameterized complexity toolbox
for providing evidence that fpt-reductions to SAT are not possible in certain cases.
We did so by showing that hardness for these classes rules out fpt-reductions to
SAT under weaker assumptions than for the case of hardness for A[2].

• We related the newly developed parameterized complexity classes to other areas of
(parameterized) complexity theory. In particular, we drew connections to the topics
of subexponential-time algorithms and non-uniform parameterized complexity—the
latter connection resulted in parameterized analogues of the Karp-Lipton Theorem.

• We generalized the new classes to arbitrary levels of the Polynomial Hierarchy—
resulting in a parameterized complexity landscape that can provide a very fine-
grained analysis of parameterized variants of problems at any level of the Polynomial
Hierarchy.

• We additionally developed another new parameterized complexity class that is a
natural parameterized variant of the classical complexity class PSPACE.

Using the parameterized complexity tools that are based on previously known parame-
terized complexity classes as well as on the newly developed parameterized complexity
classes, we initiated a structured analysis of the potential of fpt-reductions to SAT to
solve problems at higher levels of the Polynomial Hierarchy that originate in various
domains of computer science and artificial intelligence.

• We demonstrated that several non-trivial results from the literature can in fact
be considered as fpt-reductions to SAT. In the setting of symbolic temporal logic
model checking, one of the most competitive algorithms to solve the problem can
in fact be seen as an fpt-reduction to SAT.

• We showed that productive techniques from parameterized complexity—that is,
the concepts of treewidth and backdoors—can be used to develop fpt-reductions to
SAT.

• We investigated for what parameters fpt-reductions to SAT are possible for many
natural parameterizations of a wide range of problems from various areas of com-
puter science and artificial intelligence—the problems that we investigated include
problems related to answer set programming, temporal logic model checking, propo-
sitional planning, and minimization of proposional formulas.
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In short, in this thesis we paved the way for future parameterized complexity research that
further investigates whether the method of fpt-reductions to SAT can be used to develop
useful algorithms for problems from computer science, artificial intelligence, and other
domains. We developed a parameterized complexity toolbox that contains tools both
for (1) identifying cases where various possible implementations of the general scheme of
fpt-reductions to SAT can be used, and for (2) providing a detailed characterization of
the complexity of parameterized problems for which fpt-reductions to SAT are unlikely
to exist. We demonstrated how this toolbox can be used for many relevant parameterized
problems to determine whether an fpt-reduction to SAT is possible, and if so, what
kind of fpt-reduction to SAT is needed to solve the problem. Using the new toolbox,
we initiated a structured investigation of the parameterized complexity of problems at
higher levels of the Polynomial Hierarchy by considering many natural parameterized
variants of such problems and analyzing their complexity.

17.2 Research Impact

We describe the impact of our research (and of future research that builds upon our
results) for the area of computer science and engineering. To allow readers without a
background in theoretical computer science and computational complexity to better
understand and value our results, we avoid specialized technical language as much as
possible in this description. Moreover, to allow this section to be read by a general
audience, independently from the rest of the thesis, we also briefly repeat our main
contributions.

Intractable problems Computers are amazingly efficient for finding solutions to many
important problems, but there are also extremely many important problems for which
computers often need a paralyzing amount of time to find a solution (centuries or longer).
Such intractable problems do not only show up in many places in the sciences—physics,
biology, and economics, to name a few—but can also have life or death consequences—for
example, for the problem of finding the optimal match of organ donors to recipients.
There is no universal way of quickly finding solutions for these problems, according to
our current belief and understanding of computation. So it is extremely important to
develop methods that can solve these problems as fast as possible in as many cases as
possible.

Combining methods Computer science research has resulted in the development
of many solving methods that perform well in different cases. One of these methods
is the use of so-called fixed-parameter tractable algorithms, that are designed to work
well whenever the problem input shows one of various kinds of structure. Another of
these methods involves encoding problems into one of several key problems, for which
concentrated efforts have produced highly optimized algorithms. An example of such
a key problem is the problem of propositional satisfiability (or SAT, for short). Both
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of these methods have been studied intensively over the last two decades, and produce
solutions in a practical amount of time in many settings.

It has been proposed recently to combine these two approaches in a potentially more
powerful solving method. This combined method could be useful in many more cases
where the separate approaches both have trouble getting solutions. In order to study
the possibilities and limits of this new combined approach, new mathematical theory
is needed. Current theoretical tools are aimed at the analysis of both of the methods
separately, but do not work well when studying the combination of the two methods.

A new theoretical framework We extended current theoretical tools from the
paradigm of parameterized complexity theory to a new theoretical framework that makes
it possible to investigate the potential and the limits of the approach of solving problems
using fixed-parameter tractable encodings into SAT (or any of the other key problems).
Using this framework, it is possible to better identify the cases where this approach might
work in practice, and the cases where other methods are needed to solve the problem.

We also started to use this framework to analyze under what conditions the new combined
approach could work well for many intractable problems from a wide range of settings in
computer science and artificial intelligence.

Impact for applications With the many possible solving methods that are available,
computer scientists and engineers that work on finding solutions for concrete intractable
problems benefit greatly from guidance in what methods will work well for their problems.
The theoretical research in this thesis can be used to advance the knowledge that
developers use to guide their choices for designing algorithms. For example, when there
is little structure in the problem inputs faced by a developer that could be used to come
up with a fixed-parameter tractable encoding into SAT, the developer is probably better
off directing their efforts towards trying other methods to solve the problem.

It can be argued that the guidance that is offered directly by mathematical computational
complexity research (which includes the results in this thesis) is limited for practical
algorithm design. One reason for this is the fact that this research involves abstracting
away from many of the real-world details that play a role in the practice of solving
computational problems. Still, computational complexity analysis is needed to provide
the foundations for a better understanding of what methods work well in practice for
solving what problems and under what conditions. The use of theoretical knowledge for
computer science applications is neither to be overestimated, nor to be underestimated.

The theoretical analysis of concrete problems from many settings in computer science
and artifial intelligence—using the new theoretical framework—that we began in this
thesis, could serve as a starting point for future research on the practical knowledge that
algorithm developers need to make better design choices.
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Impact for fundamental computer science research Our present understanding
of the practical limit of what computers can and cannot do has been greatly influenced
by theoretical work that has been done over the last handful of decades. The work in
this thesis is a continuation of this foundational research, and forms a step forward in
our collective effort of understanding the power of computation.

More concretely, the tools that we constructed and the results that we established in
this thesis contribute to a more detailed understanding of the subtle levels of difficulty
that are inherent to intractable problems. The parameterized complexity classes that we
developed map out a finer landscape of the inherent difficulty in finding solutions for a
range of intractable problems than was previously known. Also, we illustrated how these
classes can be used to carry out a detailed complexity investigation for computational
problems from diverse domains.

This thesis is the first work that systematically investigates the combination of several
research topics in the area of theoretical computer science. As such, it naturally brings
to light many concrete, relevant, and interesting questions for future research. We hope
that this work sparks a rich body of future research.
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APPENDIX A
Compendium of Parameterized

Problems

In Chapters 8–13, we used the new parameterized complexity classes that we introduced in
Chapters 6 and 7 (and in Section 9.3) to analyze natural problems from numerous domains
in artificial intelligence and knowledge representation and reasoning, and computer science
at large. In this appendix, we give an overview of parameterized complexity results
for parameterized variants of problems in the PH, in the form of a compendium. This
compendium is similar in concept to the compendia by Schaefer and Umans [178] and
Cesati [38], that also list problems along with their computational complexity. The
problems in this list are categorized by area.

A.1 Propositional Logic

A.1.1 Weighted Quantified Boolean Satisfiability

The following problems are parameterized variants of the problem QSat2 where the
weight of assignments for the first quantifier block is restricted.

Σp
2 [k∗]-WSat(circ)

Instance: A Boolean circuit C over two disjoint sets X and Y of variables, and
a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k such that for
all truth assignments β to Y the assignment α ∪ β satisfies C?

Complexity: Σp
2 [k∗]-complete (by definition).
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Σp
2 [k∗]-WSat(form), or simply Σp

2 [k∗]-WSat

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is quantifier-free,
and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k such that for
all truth assignments β to Y the assignment α ∪ β satisfies ψ?

Complexity: Σp
2 [k∗]-complete (Theorem 27).

Σp
2 [k∗]-WSat(3DNF)

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is a quantifier-
free formula in 3DNF, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k such that for
all truth assignments β to Y the assignment α ∪ β satisfies ψ?

Complexity: Σp
2 [k∗]-complete (Theorem 27).

Σp
2 [k∗]-WSat≤k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is quantifier-free,
and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at most k, such
that for all truth assignments β to Y the assignment α ∪ β satisfies ψ?

Complexity: Σp
2 [k∗]-complete (Proposition 34).

Σp
2 [k∗]-WSat≥k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is quantifier-free,
and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at least k, such
that for all truth assignments β to Y the assignment α ∪ β satisfies ψ?

Complexity: para-Σp
2-complete (Proposition 35).
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Σp
2 [k∗]-WSatn−k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is quantifier-free
and where |X| = n, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X of weight n− k, such that for
all truth assignments β to Y the assignment α ∪ β satisfies ψ?

Complexity: Σp
2 [k∗]-complete (Claim 1 in the proof of Proposition 108).

The following problems are parameterized variants of the problem QSat2 where the
weight of assignments for the second quantifier block is restricted.

Σp
2 [∗k]-WSat(circ)

Instance: A Boolean circuit C over two disjoint sets X and Y of variables, and
a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth
assignments β to Y of weight k the assignment α ∪ β satisfies C?

Complexity: Σp
2 [∗k,P]-complete (by definition).

Σp
2 [∗k]-WSat(circt,u)

Instance: A Boolean circuit C over two disjoint sets X and Y of variables that
has depth u and weft t, and a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth
assignments β to Y of weight k the assignment α ∪ β satisfies C?

Complexity: Σp
2 [∗k, t]-complete (by definition).

Σp
2 [∗k]-WSat(form)

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is quantifier-free,
and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth
assignments β to Y of weight k the assignment α ∪ β satisfies C?

Complexity: Σp
2 [∗k, SAT]-complete (by definition).
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Σp
2 [∗k]-WSat(2DNF)

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, where ψ is a quantifier-
free formula in 2DNF, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth
assignments β to Y of weight k the assignment α ∪ β satisfies C?

Complexity: Σp
2 [∗k, 1]-complete (Theorem 46).

A.1.2 Quantified Boolean Satisfiability

The following problems are parameterized variants of the problem QSat (and its re-
striction QSat2). For the definition of universal and existential incidence treewidth of
quantified Boolean formulas of the form ∃X.∀Y.ψ, where ψ is a quantifier-free formula in
DNF, we refer to Section 4.2.1.2.

QSat(#∀-vars)

Instance: A quantified Boolean formula ϕ.
Parameter: The number of universally quantified variables of ϕ.
Question: Is ϕ true?

Complexity: para-NP-complete (Proposition 3).

QSat2(∀-itw)

Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, where ψ is a quantifier-
free formula in DNF, with universal incidence treewidth k.
Parameter: k.
Question: Is ϕ true?

Complexity: para-NP-complete (Proposition 4).

QSat2(∃-itw)

Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, where ψ is a quantifier-
free formula in DNF, with existential incidence treewidth k.
Parameter: k.
Question: Is ϕ true?

Complexity: para-Σp
2 (Proposition 8).
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QSat(level)

Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QkXkψ, where Qk
is a universal quantifier if k is even and an existential quantifier if k is odd, and
where ψ is quantifier-free.
Parameter: k.
Question: Is ϕ true?

Complexity: PH(level)-complete (by definition).

A.1.3 Minimization for DNF Formulas

The following parameterized problems are related to minimizing DNF formulas and
minimizing implicants of DNF formulas. For a definition of term-wise subformulas of
DNF formulas and implicants, we refer to Section 10.1.

DNF-Minimization(reduction size)

Instance: A DNF formula ϕ of size n, and an integer m.
Parameter: n−m.
Question: Does there exist a term-wise subformula ϕ′ of ϕ of size m such
that ϕ ≡ ϕ′?

Complexity: Σp
2 [k∗]-complete (Proposition 109).

DNF-Minimization(core size)

Instance: A DNF formula ϕ of size n, and an integer m.
Parameter: m.
Question: Does there exist a term-wise subformula ϕ′ of ϕ of size m such
that ϕ ≡ ϕ′?

Complexity: in Σp
2 [k∗] (Proposition 111), in FPTNP[few] (Proposition 115),

para-co-NP-hard (Proposition 110).

Shortest-Implicant-Core(implicant size)

Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer m.
Parameter: n.
Question: Does there exist an implicant C ′ ⊆ C of ϕ of size m?

Complexity: para-co-NP-complete (Proposition 105).
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Shortest-Implicant-Core(core size)

Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer m.
Parameter: m.
Question: Does there exist an implicant C ′ ⊆ C of ϕ of size m?

Complexity: Σp
2 [k∗]-complete (Proposition 107).

Shortest-Implicant-Core(reduction size)

Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer m.
Parameter: n−m.
Question: Does there exist an implicant C ′ ⊆ C of ϕ of size m?

Complexity: Σp
2 [k∗]-complete (Proposition 108).

A.1.4 Other

The following problems are various other parameterized problems that are related to
propositional satisfiability. For a definition of the problems BHi-Sat, we refer to
Section 7.2.1. For a definition of max1(ϕ,X), we refer to Section 7.4. For a definition of
(lexicographically) X-maximal models, we refer to Section 7.2.2. Finally, for a definition
of the minimum repair size of a set of formulas, we refer to Section 10.2.

BH(level)-Sat

Instance: A positive integer k and a sequence (ϕ1, . . . , ϕk) of propositional
formulas.
Parameter: k.
Question: (ϕ1, . . . , ϕk) ∈ BHk-Sat?

Complexity: FPTNP[few]-complete (Theorem 69).

Bounded-SAT-UNSAT-Disjunction

Instance: A family (ϕi, ϕ′i)i∈[k] of pairs of propositional formulas.
Parameter: k.
Question: Is there some ` ∈ [k] such that (ϕ`, ϕ′`) ∈ SAT-UNSAT?

Complexity: FPTNP[few]-complete (Proposition 72).
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Local-Max-Model

Instance: A satisfiable propositional formula ϕ, a subset X ⊆ Var(ϕ) of
variables, and a variable w ∈ X.
Parameter: |X|.
Question: Is there a model of ϕ that sets a maximal number of variables in X
to true (among all models of ϕ) and that sets w to true?

Complexity: FPTNP[few]-complete (Proposition 75).

Local-Max-Model-Comparison

Instance: Two satisfiable propositional formulas ϕ1 and ϕ2, a positive integer k,
and a subset X ⊆ Var(ϕ1) ∩Var(ϕ2) of k variables.
Parameter: k.
Question: max1(ϕ1, X) = max1(ϕ2, X)?

Complexity: FPTNP[few]-complete (Proposition 78).

Odd-Local-Max-Model

Instance: A propositional formula ϕ, and a subset X ⊆ Var(ϕ) of variables.
Parameter: |X|.
Question: Do the X-maximal models of ϕ set an odd number of variables in X
to true?

Complexity: FPTNP[few]-complete (Proposition 73).

Odd-Local-Lex-Max-Model

Instance: A propositional formula ϕ, and a subset X ⊆ Var(ϕ) of variables.
Parameter: |X|.
Question: Does the lexicographically X-maximal model of ϕ set an odd number
of variables in X to true?

Complexity: FPTNP[few]-complete (Proposition 74).

Odd-Bounded-Repair-Set

Instance: A set Φ of propositional formulas, and a positive integer k.
Parameter: k.
Question: Is the minimum repair size of Φ both odd and at most k?

Complexity: FPTNP[few]-complete (Proposition 119).
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Odd-Bounded-Inconsistent-Set

Instance: An inconsistent set Φ of propositional formulas, and a positive
integer k.
Parameter: k.
Question: Is the minimum size of an inconsistent subset Φ′ of Φ both odd and
at most k?

Complexity: Σp
2 [k∗]-hard (Proposition 118).

A.2 Knowledge Representation & Reasoning and
Artificial Intelligence

A.2.1 Disjunctive Answer Set Programming

The following problems are parameterized variants of the consistency problem for dis-
junctive answer set programming. For a detailed definition of disjunctive answer set
programming and of these parameterized problems, we refer to Section 5.1.

ASP-consistency(norm.bd-size)

Instance: A disjunctive logic program P .
Parameter: The size of the smallest normality-backdoor for P .
Question: Does P have an answer set?

Complexity: para-NP-complete [82].

ASP-consistency(#cont.atoms)

Instance: A disjunctive logic program P .
Parameter: The number of contingent atoms of P .
Question: Does P have an answer set?

Complexity: para-co-NP-complete (Proposition 16).

ASP-consistency(#cont.rules)

Instance: A disjunctive logic program P .
Parameter: The number of contingent rules of P .
Question: Does P have an answer set?

Complexity: Σp
2 [k∗]-complete (Theorem 28).
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ASP-consistency(#disj.rules)

Instance: A disjunctive logic program P .
Parameter: The number of disjunctive rules of P .
Question: Does P have an answer set?

Complexity: Σp
2 [∗k,P]-complete (Theorem 49).

ASP-consistency(#non-dual-normal.rules)

Instance: A disjunctive logic program P .
Parameter: The number of non-dual-normal rules of P .
Question: Does P have an answer set?

Complexity: Σp
2 [∗k,P]-complete (Theorem 51).

ASP-consistency(max.atom.occ.)

Instance: A disjunctive logic program P .
Parameter: The maximum number of times that any atom occurs in P .
Question: Does P have an answer set?

Complexity: para-Σp
2-complete (Proposition 17).

A.2.2 Abductive Reasoning

The following problems are related to abductive reasoning. For more details about
abduction and the parameters that are used, we refer to Section 8.2.

Abduction(Horn-bd-size)

Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The size of the smallest Horn-backdoor of T .
Question: Does there exist a solution S of P of size at most m?

Complexity: para-NP-complete [172].

Abduction(Krom-bd-size)

Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The size of the smallest Krom-backdoor of T .
Question: Does there exist a solution S of P of size at most m?

Complexity: para-NP-complete [172].
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Abduction(#non-Horn-clauses)

Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses of T that are not Horn clauses.
Question: Does there exist a solution S of P of size at most m?

Complexity: Σp
2 [∗k,P]-complete (Proposition 89).

Abduction(#non-Krom-clauses)

Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses of T that are not Krom clauses.
Question: Does there exist a solution S of P of size at most m?

Complexity: Σp
2 [∗k, 1]-complete (Proposition 92).

A.2.3 Constraint Satisfaction

The following problems are related to constraint satisfaction. For a definition of k-robust
satisfiability, we refer to Section 8.3.

Small-CSP-Unsat-Subset

Instance: A CSP instance I, and a positive integer k.
Parameter: k.
Question: Is there an unsatisfiable subset I ′ ⊆ I of size k?

Complexity: A[2]-complete (Proposition 11).

Robust-CSP-SAT

Instance: A CSP instance I, and a positive integer k.
Parameter: k.
Question: Is I k-robustly satisfiable?

Complexity: Πp
2 [k∗]-complete (Proposition 94).

A.2.4 Planning

The following problems are related to planning with uncertainty in the initial state and
to a variant of planning where the number of achieved goals is to be maximized. For
more details, we refer to Chapter 12.
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Polynomial-Planning(uncertainty)

Instance: A planning instance P = (V, Vu, D,A, I,G) containing additional
variables Vu that are unknown in the initial state, i.e., for all v ∈ Vu it holds
that I(v) = u.
Parameter: |Vu|+ |D|.
Question: Is there a plan of polynomial length for P that works for all complete
initial states I0, i.e., for each possible way of completing I with a combination
of values for variables in Vu?

Complexity: para-NP-complete (Proposition 153).

Polynomial-Planning-Essential-Action(uncertainty)

Instance: A planning instance P = (V, Vu, D,A, I,G) with unknown vari-
ables Vu.
Parameter: |Vu|+ |D|.
Question: Is there a plan of polynomial length for P that uses a0 and works for
all complete initial states I0, but there is no such plan for P without using a0?

Complexity: para-DP-complete (Proposition 154.

Bounded-Uncertain-Planning

Instance: A planning instance P = (V, Vu, D,A, I,G) with unknown variables Vu,
and an integer k.
Parameter: k.
Question: Is there a plan of length k for P that works for all complete initial
states I0?

Complexity: Σp
2 [k∗]-complete (Proposition 155).

Polynomial-Planning(bounded-deviation)

Instance: A planning instance P = (V, Vu, D,A, I,G) with unknown variables Vu,
and an integer d.
Parameter: d.
Question: Is there a plan of polynomial length for P that works for each complete
initial state I0 where at most d unknown variables deviate from the base value?

Complexity: Σp
2 [∗k,P]-complete (Proposition 156).
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Polynomial-Optimization-Planning(#soft.goals)

Instance: A planning instance P = (V,D,A, I,Gh, Gs) with a hard goal Gh and
a soft goal Gs, and an integer m.
Parameter: |Gs|.
Question: Does there exist a plan of length at most m that is optimal for P
(w.r.t. m), and that satisfies an odd number of variables of the soft goal?

Complexity: FPTNP[few]-complete (Proposition 158).

A.3 Model Checking

A.3.1 First-Order Logic

The following problems are parameterized variants of the model checking problem for
first-order logic.

Σp
2 [k∗]-MC

Instance: A first-order logic sentence ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ over a
vocabulary τ , where ψ is quantifier-free, and a finite τ -structure A.
Parameter: k.
Question: Is it the case that A |= ϕ?

Complexity: Σp
2 [k∗]-complete (Theorem 31).

MC[FO](quant.alt.)

Instance: A first-order logic sentence ϕ = Q1x1.Q2x2 . . . Qnxn.ψ over a vocabu-
lary τ , where ψ is quantifier-free, and a finite τ -structure A.
Parameter: The number of quantifier alternations of ϕ, i.e., |{ i ∈ [n− 1] : Qi 6=
Qi+1 }|.
Question: Is it the case that A |= ϕ?

Complexity: PH(level)-complete (Proposition 99).

A.3.2 Temporal Logics

The following problems are parameterized variants of the model checking problem for
(various fragments) of the temporal logics LTL, CTL and CTL?. For more details, we
refer to Chapter 9.
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Symbolic-MC?[L]

Input: A symbolically represented Kripke structureM, rd(M) in unary, and
an L formula ϕ.
Parameter: |ϕ|.
Question: M |= ϕ?

Complexity: para-NP-complete for L = LTL\U,X (Proposition 97),
PH(level)-complete for each L ∈ {CTL,CTL\U,CTL\X,CTL\U,X,
CTL?\U,X} (Theorems 103 and 104), and para-PSPACE-complete for
each L ∈ {L0,L0\U,L0\X : L0 ∈ {LTL,CTL?} } (Theorems 100 and 101).

Symbolic-MC[L]

Input: A symbolically represented Kripke structureM, and an L formula ϕ.
Parameter: |ϕ|.
Question: M |= ϕ?

Complexity: para-PSPACE-complete, for each L ∈ {L0,L0\U,L0\X,
L0\U,X : L0 ∈ {LTL,CTL,CTL?} } (Proposition 96).

A.4 Computational Social Choice

A.4.1 Agenda Safety in Judgment Aggregation

The following problems are related to the problem of agenda safety for the majority rule
in judgment aggregation. For more details, we refer to Section 11.2.

Majority-Safety(formula-size)

Instance: An agenda Φ.
Parameter: ` = max{ |ϕ| : ϕ ∈ Φ }.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2-complete (Proposition 127).

Majority-Safety(degree)

Instance: An agenda Φ.
Parameter: The degree d of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2-complete (Proposition 127).
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Majority-Safety(degree + formula size)

Instance: An agenda Φ.
Parameter: d+ `.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2-complete (Proposition 127).

Majority-Safety(agenda-size)

Instance: An agenda Φ.
Parameter: |Φ|.
Question: Is Φ safe for the majority rule?

Complexity: FPTNP[few]-complete (Propositions 128 and 130).

Majority-Safety(f-tw)

Instance: An agenda Φ, where each ϕ ∈ [Φ] is a CNF formula.
Parameter: The formula primal treewidth of Φ.
Question: Is Φ safe for the majority rule?

Complexity: in FPT (Proposition 132).

Majority-Safety(c-tw)

Instance: An agenda Φ, where each ϕ ∈ [Φ] is a CNF formula.
Parameter: The clausal primal treewidth of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2-complete (Proposition 133).

Majority-Safety(f-tw∗)

Instance: An agenda Φ, where each ϕ ∈ [Φ] is a CNF formula.
Parameter: The formula incidence treewidth of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2-complete (Proposition 134).
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Majority-Safety(c-tw∗)

Instance: An agenda Φ, where each ϕ ∈ [Φ] is a CNF formula.
Parameter: The clausal incidence treewidth of Φ.
Question: Is Φ safe for the majority rule?

Complexity: para-Πp
2-complete (Proposition 135).

Majority-Safety(c.e.-size)

Instance: An agenda Φ, and a positive integer k.
Parameter: k.
Question: Does every inconsistent subset Φ′ of Φ of size k itself have an
inconsistent subset of size at most 2?

Complexity: Πp
2 [k∗]-hard (Proposition 137).

A.4.2 Computing Outcomes in Judgment Aggregation

The following problems are related to the problem of computing outcomes for the Kemeny
rule in judgment aggregation. In particular, these are parameterized variants of the
problems fb-Outcome-Kemeny and cb-Outcome-Kemeny. For more details, we
refer to Section 11.3.

The parameters that we consider for the problem fb-Outcome-Kemeny are defined
as follows. For an instance (Φ,Γ,J , L, L1, . . . , Lu) of fb-Outcome-Kemeny with J =
(J1, . . . , Jp), we let n = |[Φ]|, m = max{ |ϕ| : ϕ ∈ [Φ] }, c = |Γ|, p = |J |, and h =
max{ d(Ji, Ji′) : i, i′ ∈ [p] }.

fb-Outcome-Kemeny(c, n,m)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: c+ n+m.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: in FPT (Proposition 140).
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fb-Outcome-Kemeny(h, p)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: h+ p.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: FPTNP[few]-complete (Propositions 138 and 145–147).

fb-Outcome-Kemeny(n)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: n.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: FPTNP[few]-complete (Propositions 139 and 145–147).

fb-Outcome-Kemeny(h, n,m, p)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: h+ n+m+ p.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: FPTNP[few]-complete (Propositions 138, 139 and 145).

fb-Outcome-Kemeny(c, h, n, p)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: c+ h+ n+ p.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: FPTNP[few]-complete (Propositions 138, 139 and 146).

378



A.4. Computational Social Choice

fb-Outcome-Kemeny(c, h,m, p)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: c+ h+m+ p.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: FPTNP[few]-complete (Propositions 138, 139 and 147).

fb-Outcome-Kemeny(c, h,m)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: c+ h+m.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: para-Θp
2-complete (Corollary 143).

fb-Outcome-Kemeny(c,m, p)

Instance: An agenda Φ with an integrity constraint Γ, a profile J ∈ J (Φ,Γ)+

and subsets L,L1, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Parameter: c+m+ p.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆ J∗ and Li 6⊆
J∗ for each i ∈ [u]?

Complexity: para-Θp
2-complete (Proposition 144).

The parameters that we consider for the problem cb-Outcome-Kemeny are defined
as follows. For an instance (I,Γ, r, l, l1, . . . , lu) of cb-Outcome-Kemeny with r =
(r1, . . . , rp), we let n = |I|, c = |Γ|, p = |r|, and h = max{ d(ri, ri′) : i, i′ ∈ [p] }.

cb-Outcome-Kemeny(c)

Instance: A set I of issues with an integrity constraint Γ, a profile r ∈ R(I,Γ)+

and partial ballots l, l1, . . . , lu (for I), with u ≥ 0.
Parameter: c.
Question: Is there a ballot r∗ ∈ Kemeny(r) such that l agrees with r∗ and
each li does not agree with r∗?

Complexity: in FPT (Proposition 149).
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cb-Outcome-Kemeny(n)

Instance: A set I of issues with an integrity constraint Γ, a profile r ∈ R(I,Γ)+

and partial ballots l, l1, . . . , lu (for I), with u ≥ 0.
Parameter: n.
Question: Is there a ballot r∗ ∈ Kemeny(r) such that l agrees with r∗ and
each li does not agree with r∗?

Complexity: in FPT (Proposition 148).

cb-Outcome-Kemeny(h)

Instance: A set I of issues with an integrity constraint Γ, a profile r ∈ R(I,Γ)+

and partial ballots l, l1, . . . , lu (for I), with u ≥ 0.
Parameter: h.
Question: Is there a ballot r∗ ∈ Kemeny(r) such that l agrees with r∗ and
each li does not agree with r∗?

Complexity: in XP (Proposition 150).

cb-Outcome-Kemeny(h, p)

Instance: A set I of issues with an integrity constraint Γ, a profile r ∈ R(I,Γ)+

and partial ballots l, l1, . . . , lu (for I), with u ≥ 0.
Parameter: h+ p.
Question: Is there a ballot r∗ ∈ Kemeny(r) such that l agrees with r∗ and
each li does not agree with r∗?

Complexity: W[SAT]-hard (Proposition 151).

cb-Outcome-Kemeny(p)

Instance: A set I of issues with an integrity constraint Γ, a profile r ∈ R(I,Γ)+

and partial ballots l, l1, . . . , lu (for I), with u ≥ 0.
Parameter: p.
Question: Is there a ballot r∗ ∈ Kemeny(r) such that l agrees with r∗ and
each li does not agree with r∗?

Complexity: para-Θp
2-complete (Proposition 152).
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A.5 Graph Theory

A.5.1 Extending 3-Colorings

The following parameterized problems are related to extending 3-colorings of the leaves
of a graph to proper 3-colorings of the entire graph.

3-Coloring-Extension(degree)

Instance: A graph G = (V,E) with n leaves, and an integer m.
Parameter: The degree of G.
Question: Can each 3-coloring that assigns a color to exactly m leaves of G
(and to no other vertices) be extended to a proper 3-coloring of G?

Complexity: para-Πp
2-complete (Proposition 159).

3-Coloring-Extension(#leaves)

Instance: A graph G = (V,E) with n leaves, and an integer m.
Parameter: n.
Question: Can each 3-coloring that assigns a color to exactly m leaves of G
(and to no other vertices) be extended to a proper 3-coloring of G?

Complexity: para-NP-complete (Proposition 160).

3-Coloring-Extension(#col.leaves)

Instance: A graph G = (V,E) with n leaves, and an integer m.
Parameter: m.
Question: Can each 3-coloring that assigns a color to exactly m leaves of G
(and to no other vertices) be extended to a proper 3-coloring of G?

Complexity: Πp
2 [k∗]-complete (Theorem 162).

3-Coloring-Extension(#uncol.leaves)

Instance: A graph G = (V,E) with n leaves, and an integer m.
Parameter: n−m.
Question: Can each 3-coloring that assigns a color to exactly m leaves of G
(and to no other vertices) be extended to a proper 3-coloring of G?

Complexity: para-Πp
2-complete (Proposition 161).

381



A. Compendium of Parameterized Problems

A.5.2 Extending Cliques

The following parameterized problem is related to extending cliques of a subgraph of a
graph to cliques of the entire graph.

Small-Clique-Extension

Instance: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.
Parameter: k.
Question: Is it the case that for each clique C ⊆ V ′, there is some k-clique D
of G such that C ∪D is a (|C|+ k)-clique?

Complexity: Πp
2 [∗k, 1]-complete (Proposition 163).

A.6 Alternating Turing Machines
The following parameterized problems are related to the halting problem for alternating
Turing machines. For more details, we refer to Section 6.2.3.3.

Σp
2 [k∗]-TM-haltm

Instance: An ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal
cost t?

Complexity: Σp
2 [k∗]-complete (Theorem 36).

Σp
2 [k∗]-TM-halt∗

Instance: An ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal
cost t?

Complexity: Σp
2 [k∗]-complete (Theorem 36).
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APPENDIX B
Generalization to Higher Levels

of the Polynomial Hierarchy

Ow! My brains!
— Douglas Adams, The Hitchhiker’s Guide to the

Galaxy [4]

In Parts II and III of this thesis, we developed tools that enable a comprehensive
parameterized complexity investigation of problems in the Polynomial Hierarchy, and
we carried out such an investigation for many natural problems that arise in a variety
of settings in computer science and artificial intelligence. In this investigation, we
concentrated on problems at the second level of the PH, as the second level is most
densely populated with natural problems (see, e.g., [178]). The tools that we developed
are also mainly aimed at the second level of the PH. For instance, in Chapter 6, we
introduced the parameterized complexity classes Σp

2 [k∗] and Σp
2 [∗k, t] that are based on

weighted variants of the quantified Boolean satisfiability problem that is canonical for the
second level of the Polynomial Hierarchy. However, there is no reason why this research
should remain confined to the second level of the PH.

In this appendix, we generalize the parameterized complexity tools that we developed
to higher levels of the PH. In particular, we consider variants of the classes Σp

2 [k∗] and
Σp

2 [∗k, t] for higher levels of the PH.

Outline of this chapter In Section B.1, we define the complexity classes Σp
i [w, t], for

arbitrary i ∈ N, w ∈ {∗, k}i, and t ∈ N+ ∪ {P,SAT}. These are parameterized weighted
variants of the classes Σp

i at arbitrary levels of the PH. The word w describes the weight
restriction to the quantified Boolean satisfiability problems on which these parameterized
complexity classes are based.
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B. Generalization to Higher Levels of the Polynomial Hierarchy

In Section B.2, we observe some basic properties of these classes and their relation to
each other and to known classes. In particular, we show that for various choices of i ∈ N
and w ∈ {∗, k}i, the classes Σp

i [w, t] coincide with known parameterized complexity classes.
Moreover, we identify some conditions for i1, i2 ∈ N, w1 ∈ {∗, k}i1 and w2 ∈ {∗, k}i2
under which it holds that Σp

i1
[w1, t] ⊆ Σp

i2
[w2, t].

Finally, in Section B.3, we pinpoint some conditions on i1, i2, w1, w2 for which we can
rule out that Σp

i1
[w1, t] ⊆ Σp

i2
[w2, t] (under various complexity-theoretic assumptions),

and we describe the settings for which it remains open whether Σp
i1

[w1, t] ⊆ Σp
i2

[w2, t].

B.1 The Parameterized Complexity Classes Σp
i [w, t]

We begin with defining the parameterized complexity classes Σp
i [w, t], for i ∈ N, w ∈ Bi,

and t ∈ N+ ∪ {SAT,P}. These classes generalize the parameterized complexity classes
Σp

2 [k∗] and Σp
2 [∗k, t]—that we introduced in Chapter 6—to higher levels of the Polynomial

Hierarchy. In order to do so, we define the parameterized problem Σp
i [w]-WSat(C), for

several classes C of Boolean circuits.

Intuitively, for any i ∈ N and any word w ∈ {∗, k}i over the symbols ∗ and k—where w =
v1v2 . . . vi—the problem Σp

i [w]-WSat is a parameterized, weighted variant of the problem
QSati, where the word w specifies the weight restriction for the different quantifier blocks—
that is, truth assignments for the j-th quantifier block are restricted to weight k if and
only if vj = k, and truth assignments for the j-th quantifier block are unrestricted if and
only if vj = ∗. Below, we give a formal recursive definition of the problems Σp

i [w]-WSat
and their dual counterparts Πp

i [w]-WSat.

In order to formally define these parameterized problems, we introduce the concept of
partially quantified Boolean circuits.

Definition 295. A partially quantified Boolean circuit D = Q1X1 . . . QnXn.C consists of
a Boolean circuit C over a set X of variables, and a quantifier prefix Q1X1 . . . QnXn, where
for each i ∈ [n], Qi ∈ {∃, ∀}, and where (

⋃
i∈[n]Xi) ⊆ X. We let Free(D) = X\(

⋃
i∈[n]Xi).

If Free(D) = ∅, we say that D is fully quantified.

For any truth assignment α : Free(D)→ B, truth of the fully quantified circuit D[α] is
defined as usual. a

We now turn to the recursive definition of the problems Σp
i [w]-WSat and Πp

i [w]-WSat.

Definition 296 (Σp
i [w]-WSat and Πp

i [w]-WSat). Let i ∈ N, and let w ∈ {∗, k}i be a
finite word of length i over the symbols ∗ and k, and let C be a class of Boolean circuits.
We define the parameterized decision problems Σp

i [w]-WSat(C) and Πp
i [w]-WSat(C) by

induction on i and on the structure of w as follows. Here we let ε denote the empty word.
We begin with the base case, where i = 0 and w = ε.
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B.1. The Parameterized Complexity Classes Σp
i [w, t]

Σp
0 [ε]-WSat(C)

Instance: A Boolean circuit C ∈ C, a truth assignment γ : Var(C) → B; and a
positive integer k.
Parameter: k.
Question: Does C[γ] evaluate to 1?

Next, we turn to the inductive cases. Let i > 0 and w′ ∈ {∗, k}i−1.

Σp
i [∗w′]-WSat(C)

Instance: A partially quantified Boolean circuit D = ∃X1.∀X2 . . . QiXi.C,
where C ∈ C is a Boolean circuit, and where Qi = ∃ if i is odd and Qi = ∀
if i is even, a truth assignment γ : Free(D)→ B, and a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α : X1 → B such
that (∀X2 . . . QiXi.C, α ∪ γ, k) ∈ Πp

i−1[w′]-WSat(C)?

Πp
i [∗w′]-WSat(C)

Instance: A partially quantified Boolean circuit D = ∀X1.∃X2 . . . QiXi.C,
where C ∈ C is a Boolean circuit, and where Qi = ∀ if i is odd and Qi = ∃
if i is even, a truth assignment γ : Free(D)→ B, and a positive integer k.
Parameter: k.
Question: Is it the case that for all truth assignments α : X1 → B it holds
that (∃X2 . . . QiXi.C, α ∪ γ, k) ∈ Σp

i−1[w′]-WSat(C)?

Σp
i [kw′]-WSat(C)

Instance: A partially quantified Boolean circuit D = ∃X1.∀X2 . . . QiXi.C,
where C ∈ C is a Boolean circuit, and where Qi = ∃ if i is odd and Qi = ∀
if i is even, a truth assignment γ : Free(D)→ B, and a positive integer k.
Parameter: k.
Question: Does there exist a truth assignment α : X1 → B of weight k such
that (∀X2 . . . QiXi.C, α ∪ γ, k) ∈ Πp

i−1[w′]-WSat(C)?

Πp
i [kw′]-WSat(C)

Instance: A partially quantified Boolean circuit D = ∀X1.∃X2 . . . QiXi.C,
where C ∈ C is a Boolean circuit, and where Qi = ∀ if i is odd and Qi = ∃
if i is even, a truth assignment γ : Free(D)→ B, and a positive integer k.
Parameter: k.
Question: Is it the case that for all truth assignments α : X1 → B of weight k it
holds that (∃X2 . . . QiXi.C, α ∪ γ, k) ∈ Σp

i−1[w′]-WSat(C)?

This concludes our definition of the parameterized decision problems Σp
i [w]-WSat(C). a
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B. Generalization to Higher Levels of the Polynomial Hierarchy

This definition results in a slightly different definition for the problems Σp
2 [∗k]-WSat(C)

and Σp
2 [k∗]-WSat(C) than the ones defined in Chapter 6. (For instance, for the definition

of Σp
2 [k∗]-WSat that we gave in this section, the input consists of a partially quantified

Boolean circuit D and a truth assignment α : Free(D)→ B, whereas for the definition
that we gave in Section 6.1, the input can be seen as a fully quantified Boolean circuit.)
However, the two problems are easily shown to be fpt-reducible to each other (for all
classes C of Boolean circuits that are closed under partial instantiation). Adding a partial
truth assignment γ to the input in the formulation of the problems Σp

i [w]-WSat and
Πp
i [w]-WSat allows for an easier recursive definition.

Definition 297 (Σp
i [w, t] and Πp

i [w, t]). In order to define the complexity classes Σp
i [w, t]

and Πp
i [w, t], we define the auxiliary function C(t) as follows:

C(t) =


{circt,d : d ≥ t } if t ∈ N+,
{form} if t = SAT,
{circ} if t = P.

Then, let i ∈ N, let w ∈ {∗, k}i be a finite word of length i over the symbols ∗ and k, and
let t ∈ N+ ∪ {SAT,P}. The parameterized complexity classes Σp

i [w, t] and Πp
i [w, t] are

defined as follows:

Σp
i [w, t] = [ {Σp

i [w]-WSat(C) : C ∈ C(t) } ]fpt, and
Πp
i [w, t] = [ {Πp

i [w]-WSat(C) : C ∈ C(t) } ]fpt.

Here the notation [ Q ]fpt denotes the class of all parameterized problems that are fpt-
reducible to some problem Q ∈ Q. a

A visual overview of some of the classes Σp
i [w, t] and Πp

i [w, t], for i ≤ 3, can be found in
Figure B.1.

B.2 Inclusion Results

We continue with a number of results and observations that establish equality and
inclusion between various classes Σp

i [w, t] and Πp
i [w, t]. We begin with a number of trivial

equalities, that are straightforward to verify.

Observation 298. The following equalities hold, for i > 0, w ∈ {∗, k}i, and t ∈
N+ ∪ {SAT,P}:

Πp
i [w, t] = co-Σp

i [w, t];

Σp
0 [ε, 1] = Σp

0 [ε, 2] = · · · = Σp
0 [ε,SAT] = Σp

0 [ε,P] =
Πp

0 [ε, 1] = Πp
0 [ε, 2] = · · · = Πp

0 [ε,SAT] = Πp
0 [ε,P] = FPT;
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B. Generalization to Higher Levels of the Polynomial Hierarchy

Σp
1 [k, t] = W[t];

Σp
1 [∗,P] = para-NP;

Πp
1 [∗,P] = para-co-NP;

Σp
2 [∗∗,P] = para-Σp

2 ;
Πp

2 [∗∗,P] = para-Πp
2 ;

Σp
i [∗i,P] = para-Σp

i ; and
Πp
i [∗i,P] = para-Πp

i .

In Chapter 6, we already saw that Σp
2 [k∗, 1] = Σp

2 [k∗, 2] = · · · = Σp
2 [k∗,P] (Theorem 27).

A similar result holds for every i > 1 and w ∈ {∗, k}i where w ends with a ∗—that is,
such that w = w′∗ for some w′ ∈ {∗, k}i−1.

Proposition 299. Let i ∈ N+ be a positive integer, and let w′ ∈ {∗, k}i−1. It holds
that Σp

i [w′∗, 1] = Σp
i [w′∗, 2] = · · · = Σp

i [w′∗,SAT] = Σp
i [w′∗,P].

Proof. The proof is entirely analogous to the proof of Theorem 27.

Similarly to the case for Σp
2 [k∗], we will drop t from the notation Σp

i [w, t] for each i > 0
and each w ∈ {∗, k} such that w = w′∗ for some w′ ∈ {∗, k}i−1.

Convention 300. Let i ∈ N+ be a positive integer, and let w′ ∈ {∗, k}i−1. We
use Σp

i [w′∗] to denote the class Σp
i [w′∗, 1] = Σp

i [w′∗,P].

We also straightforwardly get the following inclusions.

Observation 301. Let i, i1, i2 ∈ N, let w ∈ {∗, k}i, w1 ∈ {∗, k}i1 and w2 ∈ {∗, k}i2 be
finite words over the symbols ∗ and k, and let t ∈ N+ ∪ {SAT,P}. Then:

• if t ∈ N+, then Σp
i [w, t] ⊆ Σp

i [w, t+ 1];

• Σp
i [w, t] ⊆ Σp

i [w,SAT];

• Σp
i [w,SAT] ⊆ Σp

i [w,P];

• if i1 is even, then Σp
i [w, t] ⊆ Σp

i1+i+i2 [w1ww2, t]; and

• if i1 is odd, then Σp
i [w, t] ⊆ Πp

i1+i+i2 [w1ww2, t].

These last two inclusions involve classes Σp
i [w] and Σp

i′ [w′], where w is a particular type of
subsequence of w′. We can generalize these inclusions. We do so by introducing the concept
of parity-preserving subsequences. Let w1, w2 ∈ {∗, k}∗ be two words. We say that w1 is
a parity-preserving subsequence of w2 if w1 = v1v2 . . . vn, for some symbols v1, . . . , vn ∈
{∗, k}, and w2 = w′0v1w

′
1v2 . . . w

′
n−1vnw

′
n for some words w′1, . . . , w′n ∈ {∗, k}∗, where for

each i ∈ [n− 1] the word w′i is of even length. We then get the following inclusions.
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B.2. Inclusion Results

Observation 302. Let i1, i2 ∈ N, let w1 ∈ {∗, k}i1 and w2 ∈ {∗, k}i2 be some finite
words over the symbols ∗ and k, and let t ∈ N+ ∪ {SAT,P}. If w1 is a parity-preserving
subsequence of w2, then Σp

i1
[w1, t] ⊆ Σp

i2
[w2, t].

Observation 303. Let i1, i2, i3 ∈ N, where i3 is odd, let w1 ∈ {∗, k}i1, w2 ∈ {∗, k}i2,
and w3 ∈ {∗, k}i3 be some finite words over the symbols ∗ and k, and let t ∈ N+∪{SAT,P}.
If w1 is a parity-preserving subsequence of w2, then Σp

i1
[w1, t] ⊆ Πp

i3+i2 [w3w2, t].

Next, we show that the class Σp
i [w, t] is contained in Σp

i [∗i], for any i ∈ N and any
word w ∈ {∗, k}i.

Proposition 304. Let i ∈ N, and let w ∈ {∗, k}i be any finite word over the symbols ∗
and k. Then Σp

i [w,P] ⊆ Σp
i [∗i].

Proof (sketch). Similarly to our observation in the beginning of Section 6.4.1, for any
quantifier block QiXi, we can straightforwardly express the weight constraint for the
corresponding truth assignments using a Boolean circuit Ci. Then, by appropriately
using these additional Boolean circuits Ci, we can transform any instance of Σp

i [w]-WSat
into an equivalent instance of Σp

i [∗n]-WSat.

This inclusion result can be generalized. We identify some conditions under which it holds
that Σp

i [w1, t] ⊆ Σp
i [w2, t], for any i ∈ N, any w1, w2 ∈ {∗, k}i, and any t ∈ N+∪{SAT,P}.

Namely, this is the case whenever w2 can be obtained from w1 by replacing occurrences of
the symbol k to the symbol ∗. Formally, we say that for any i ∈ N and w1, w2 ∈ {∗, k}i—
where w1 = v1

1v
1
2 . . . v

1
i and w2 = v2

1v
2
2 . . . v

2
i—it is the case that w2 dominates w1 if for

each ` ∈ [i] it holds that whenever v1
` = ∗, then also v2

` = ∗ (but not necessarily vice
versa). If w2 dominates w1, then we get that Σp

i [w1, t] ⊆ Σp
i [w2, t].

Proposition 305. Let i ∈ N, let w1, w2 ∈ {∗, k}i be words of length i over the symbols ∗
and k such that w2 dominates w1, and let t ∈ N+ ∪{SAT,P}. Then Σp

i [w1, t] ⊆ Σp
i [w2, t].

Proof. The proof is entirely analogous to the proof of Proposition 304.

We finish this section by relating the classes Σp
i [w, t] and Πp

i [w, t] to some parame-
terized complexity classes known from the literature. Firstly, we observe that each
of the parameterized complexity classes Σp

i [w, t] and Πp
i [w, t] is contained in the class

para-PSPACE.

Observation 306. Let i ∈ N, let w ∈ {∗, k}i be a word of length i over the symbols ∗
and k, and let t ∈ N+ ∪ {SAT,P}. Then Σp

i [w, t] ⊆ para-PSPACE and Πp
i [w, t] ⊆

para-PSPACE.

Several of the classes Σp
i [w, t] and Πp

i [w, t] are also contained in the class XP.
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B. Generalization to Higher Levels of the Polynomial Hierarchy

Observation 307. Let i ∈ N, and let t ∈ N+ ∪ {SAT,P}. Then Σp
i [ki, t] ⊆ XP

and Πp
i [ki, t] ⊆ XP.

More generally, some of the classes Σp
i [w, t] and Πp

i [w, t] are contained in some of
the classes XΣp

j and XΠp
j . Clearly, for each i ∈ N, it holds that Σp

i [w, t] ⊆ XΣp
i

and Πp
i [w, t] ⊆ XΠp

i , for each w ∈ {∗, k}i and each t ∈ N+ ∪ {SAT,P}. However, in
various cases, Σp

i [w, t] and Πp
i [w, t] are contained in XΣp

j or XΠp
j for j < i. For example,

it holds that Σp
3 [∗k∗] ⊆ XΣp

1 = XNP. We capture several such inclusions in an inductive
manner.

Observation 308. Let t ∈ N+ ∪ {SAT,P}. It holds that:

• Σp
0 [ε, t] = Πp

0 [ε, t] = FPT ⊆ XP = XΣp
0 = XΠp

0.

Moreover, let i ∈ N+, let w ∈ {∗, k}i with w = v1 . . . vi, let w′ = v2 . . . vi, let j ∈ [i− 1],
and let K ∈ {XΣp

j ,XΠp
j }.

• If v1 = k, then:

– If Πp
i−1[w′, t] ⊆ K, then Σp

i [w, t] ⊆ K.

– If Σp
i−1[w′, t] ⊆ K, then Πp

i [w, t] ⊆ K.

• If v1 = ∗, j > 0, and Πp
i−1[w′, t] ⊆ XΣp

j , then Σp
i [w, t] ⊆ XΣp

j .

• If v1 = ∗ and Πp
i−1[w′, t] ⊆ XΠp

j , then Σp
i [w, t] ⊆ XΣp

j+1.

• If v1 = ∗ and Σp
i−1[w′, t] ⊆ XΣp

j , then Πp
i [w, t] ⊆ XΠp

j+1.

• If v1 = ∗, j > 0, and Σp
i−1[w′, t] ⊆ XΠp

j , then Πp
i [w, t] ⊆ XΠp

j .

B.3 Separation Results

Finally, we identify some conditions under which we can rule out inclusions between
the classes Σp

i [w, t] and Πp
i [w, t] (under various complexity-theoretic assumptions). The

conditions for which we established inclusions and the conditions for which we can rule
out inclusions are not exhaustive. We will also briefly discuss some of the cases that
neither satisfy the conditions that we identify in this section nor the conditions that we
identified in Section B.2. For such cases the relation between the classes Σp

i [w, t] and
Πp
i [w, t] remains open.

Consider arbitrary i1, i2 ∈ N and arbitrary words w1 ∈ {∗, k}i1 and w2 ∈ {∗, k}i2 over
the symbols ∗ and k. We consider various cases: either i1 > i2, i1 = i2, or i1 < i2. We
discuss these cases one after another.
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B.3.1 The case for i1 > i2

In the first case, where i1 > i2, we can establish a conditional result that Σp
i1

[w1, t] 6⊆
Σp
i2

[w2, t].

Proposition 309. Let i1, i2 ∈ N such that i1 > i2, and let w1 ∈ {∗, k}i1 be
any word of length i1 over the symbols ∗ and k. Then Σp

i1
[w, 1] 6⊆ Σp

i2
[∗i2 ], un-

less there is a subexponential-time reduction from QSati1(3CNF ∪ 3DNF) to QSati2.
Similarly, Σp

i1
[w, 1] 6⊆ Πp

i2
[∗i2 ], unless there is a subexponential-time reduction

from QSati1(3CNF ∪ 3DNF) to co-QSati2.

Proof. We know that A[i1] ⊆ Σp
i1

[w, 1], Σp
i2

[∗i2 ] = para-Σp
i2
, and Πp

i2
[∗i2 ] = para-Πp

i2
.

Therefore, in case i1 ≥ 2, the result follows from Proposition 169. In case i1 < 2, the
result follows from known results [46, 47, 45].

Corollary 310. Let i1, i2 ∈ N such that i1 > i2, and let w1 ∈ {∗, k}i1 and w2 ∈
{∗, k}i2 be any words over the symbols ∗ and k. Then Σp

i1
[w, 1] 6⊆ Σp

i2
[w2,P], un-

less there is a subexponential-time reduction from QSati1(3CNF ∪ 3DNF) to QSati2.
Similarly, Σp

i1
[w, 1] 6⊆ Πp

i2
[w2,P], unless there is a subexponential-time reduction

from QSati1(3CNF ∪ 3DNF) to co-QSati2.

For the special case where w1 = ∗i1 , we can establish non-inclusion even under a weaker
assumption.

Observation 311. Let i1, i2 ∈ N such that i1 > i2. Then Σp
i1

[∗i1 ] 6⊆ Σp
i2

[∗i2 ],
and Σp

i1
[∗i1 ] 6⊆ Πp

i2
[∗i2 ], unless the PH collapses.

Corollary 312. Let i1, i2 ∈ N such that i1 > i2, and let w2 ∈ {∗, k}i2 be any word of
length i2 over the symbols ∗ and k. Then Σp

i1
[∗i1 ] 6⊆ Σp

i2
[w2,P], and Σp

i1
[∗i1 ] 6⊆ Πp

i2
[w2,P],

unless the PH collapses.

B.3.2 The case for i1 = i2

Next, we turn to the case where i1 = i2 = i. In the particular case where i = 2,
we managed to obtain inclusion or (conditional) separation results in all cases. The
techniques that we used in this case turn out not to suffice for a similarly nice result in
the case for i > 2. We give several (conditional) separation results for the general case
where i1 = i2, and we discuss some of the cases where it remains open what the relation
is between the classes Σp

i [w, t].

In Section B.2, we showed that if a word w2 ∈ {∗, k}i dominates another word w1 ∈ {∗, k}i,
then Σp

i [w1, t] ⊆ Σp
i [w2, t], for any t ∈ N+ ∪ {SAT,P}. Conversely, however, if w1

dominates w2—and w1 6= w2—we get that Σp
i [w1, t] 6⊆ Σp

i [w2, t], unless the PH collapses.

Proposition 313. Let i ∈ N, let w1, w2 ∈ {∗, k}i such that w1 6= w2 and w1 domi-
nates w2, and let t ∈ N+∪{SAT,P}. Then Σp

i [w1, t] 6⊆ Σp
i [w2, t], unless the PH collapses.
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B. Generalization to Higher Levels of the Polynomial Hierarchy

Proof. Because w1 6= w2 and w1 dominates w2, we know that i > 0 and there exists
some j1, j2 ∈ N with i ≥ j1 > j2 such that one of the following holds:

(i) para-Σp
j1
⊆ Σp

i [w1, t] and Σp
i [w2, t] ⊆ XΣp

j2
,

(ii) para-Σp
j1
⊆ Σp

i [w1, t] and Σp
i [w2, t] ⊆ XΠp

j2
,

(iii) para-Πp
j1
⊆ Σp

i [w1, t] and Σp
i [w2, t] ⊆ XΣp

j2
, or

(iv) para-Πp
j1
⊆ Σp

i [w1, t] and Σp
i [w2, t] ⊆ XΠp

j2
.

In each of these cases, Σp
i [w1, t] ⊆ Σp

i [w2, t] implies a collapse of the PH.

In various cases, for words w1 and w2 for which neither w1 dominates w2 nor w2
dominates w1, we can establish that Σp

i [w1, t] 6⊆ Σp
i [w2, t] (assuming that the PH does not

collapse). Whenever there exist j1, j2 ∈ N with j1 > j2 such that para-Πp
j1
⊆ Σp

i [w1, t]
and Σp

i [w2, t] ⊆ XΣp
j2
, for instance, we know that Σp

i [w1, t] 6⊆ Σp
i [w2, t], unless the PH

collapses. To take a particular example, we get that Σp
3 [k∗∗] 6⊆ Σp

3 [∗k∗], unless the PH
collapses, because para-Πp

2 ⊆ Σp
3 [k∗∗] and Σp

3 [∗k∗] ⊆ XΣp
1 .

For many other words w1 and w2 for which neither w1 dominates w2 nor w2 dominates w1,
it remains open whether Σp

i1
[w1, t] ⊆ Σp

i2
[w2, t]. An example of this is the case where w1 =

kk∗∗∗ and w2 = ∗∗kk∗—that is, it is an open problem whether Σp
5 [kk∗∗∗] ⊆ Σp

5 [∗∗kk∗].
Similarly, it remains open whether Σp

5 [∗∗kk∗] ⊆ Σp
5 [kk∗∗∗].

Next, we turn to the relation between Σp
i [w1, t] and Πp

i [w2, t]. We can establish the
following (conditional) result that Σp

i [w, t] ⊆ Πp
i [w, t].

Proposition 314. Let i ∈ N, let w1, w2 ∈ {∗, k}i, and let t ∈ N+ ∪ {SAT,P}.
Then Σp

i [w1, t] 6⊆ Πp
i [w2, t], unless there exists a subexponential-time reduction

from QSati(3CNF ∪ 3DNF) to co-QSati.

Proof. We know that A[i] ⊆ Σp
i [w1, t] and Πp

i [w2, t] ⊆ para-Πp
i . Therefore by Proposi-

tion 169, we know that Σp
i [w1, t] 6⊆ Πp

i [w2, t] unless there exists a subexponential-time
reduction from QSati(3CNF ∪ 3DNF) to co-QSati.

In the particular case where w1 = w2 = w 6= ki, we can even show that Σp
i [w, t] 6⊆ Πp

i [w, t]
under a weaker assumption (namely, under the assumption that the PH does not collapse).

Proposition 315. Let i ∈ N, let w ∈ {∗, k}i such that w 6= ki, and let t ∈ N+∪{SAT,P}.
Then Σp

i [w, t] 6⊆ Πp
i [w, t], unless the PH collapses.

Proof. We know that there must be some j ∈ [i] with j > 0 such that one of the following
holds:

(i) para-Σp
j ⊆ Σp

i [w, t] and Πp
i [w, t] ⊆ XΠp

j ; or
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(ii) para-Πp
j ⊆ Σp

i [w, t] and Πp
i [w, t] ⊆ XΣp

j .

In both of these cases Σp
i [w, t] 6⊆ Πp

i [w, t] implies that the PH collapses.

B.3.3 The case for i1 < i2

Finally, we consider the case where i1 < i2. In Section B.2, we have already seen that
whenever a word w1 ∈ {∗, k}i1 is a parity-preserving subsequence of a word w2 ∈ {∗, k}i2 ,
or whenever w2 dominates w1, then Σp

i1
[w1, t] ⊆ Σp

i2
[w2, t], for any t ∈ N+∪{SAT,P}. Of

course, the inclusion relations obtained on the basis of these two properties also compose.
That is, whenever w1 is dominated by a third word w3 ∈ {∗, k}i1 , and w3 is a parity-
preserving subsequence of w2, then also Σp

i1
[w1, t] ⊆ Σp

i2
[w2, t]. For example, Σp

2 [kk,P] ⊆
Σp

3 [k∗∗], because the word w3 = k∗ dominates kk and is a parity-preserving subsequence
of k∗∗.

For various cases, we can establish (conditional) separation results that state
that Σp

i1
[w1, t] 6⊆ Σp

i2
[w2, t]. For instance, whenever there exist j1, j2 ∈ N with j1 > j2

such that para-Πp
j1
⊆ Σp

i1
[w1, t] and Σp

i2
[w2, t] ⊆ XΠp

j2
, we can conclude that Σp

i1
[w1, t] 6⊆

Σp
i2

[w2, t], unless the PH collapses. An example of this is the result that Σp
3 [k∗∗] 6⊆

Σp
4 [k∗k∗], unless the PH collapses—namely, we have that para-Πp

2 ⊆ Σp
3 [k∗∗]

and Σp
4 [k∗k∗] ⊆ XΠp

1 . The conditional separation results that we can obtain using
this type of argument are summarized in the following result. (This result also captures
similar separation results for the case where i1 = i2, that we discussed in Section B.3.2.)

Observation 316. Let K1,K2 be two parameterized complexity classes, e.g., K1,K2 ∈
{Σp

i [w, t],Π
p
i [w, t] : i ∈ N, w ∈ {∗, k}i, t ∈ N+ ∪ {SAT,P} }. Moreover, let j1, j2 ∈ N

with j1 > j2.

• If para-Σp
j2
⊆ K1 and K2 ⊆ XΠp

j2
, then K1 6⊆ K2, unless the PH collapses.

• If para-Πp
j2
⊆ K1 and K2 ⊆ XΣp

j2
, then K1 6⊆ K2, unless the PH collapses.

• If para-Σp
j1
⊆ K1 and K2 ⊆ XΣp

j2
, then K1 6⊆ K2, unless the PH collapses.

• If para-Πp
j1
⊆ K1 and K2 ⊆ XΠp

j2
, then K1 6⊆ K2, unless the PH collapses.

There are also cases where neither of the above two conditions applies (assuming that
the PH does not collapse)—that is, cases where inclusion cannot be established on the
basis of dominating words and parity-preserving subsequences, and where the separation
results of Observation 316 do not apply. For these cases, it remains open what the
relation is between the classes Σp

i [w, t] and Πp
i [w, t]. For example, it is an open problem

whether Σp
3 [∗k∗] ⊆ Σp

4 [k∗∗k,P].
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