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Abstract

Secret communication characterizes clandestine approaches of communication: Covert
channels conceal a communication’s mere existence, side channels are unintended by
the sender, and obfuscation conceals sender and/or receiver or hinders their correlation.
The ability to establish such secret communication provides a powerful instrument to
adversaries; attacks involving secret communication encompass in general three steps: (1)
the development of the secret communication channel, (2) the extraction of information
using this channel and finally (3) exploitation of the gained information to cause further
harm. Hitherto, research concentrates on the first aspect – channel development – and
assesses channel capacities to evaluate a channel’s impact on security. The more capacity,
the more dangerous a channel is considered. In some scenarios, a single bit of transmitted
data however suffices, whereas in other situations a high-capacity channel is useless due
to an overall lack of sensitive data. Hence, it is more promising to include the latter two
aspects, and ask for the information gained by an adversary as well as the advantages she
takes from this information. This line of action also implies that secret communication
must not be considered separately from its context.

In this thesis, we strive to advance research through the development of attack paths
including all steps from channel development to exploitation in order to improve the
understanding of secret communication and its impact on security. For the context,
we choose two contemporary scenarios in computer science, cloud computing and the
Internet Protocol version 6 (IPv6). While the first is a recently introduced operating
model that provides new functionality by reusing existing technology, the latter is a novel
technology replacing its predecessor with (almost) the same functionality and is going to
affect all Internet users – consciously or unconsciously – in the long run. We develop two
full attacks per context; our results emphasize that secret communication serves both,
benign and malicious, goals.
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Kurzfassung

Geheime Kommunikation bezeichnet heimliche Arten der Datenübertragung: Covert
Channels verbergen die Existenz von Kommunikation, ein Side Channel ist vom Sender
unerwünschte Kommunikation, und Obfuscation verschleiert Sender und/oder Empfän-
ger bzw. verhindert deren Korrelation. Für Angreifer ist geheime Kommunikation ein
mächtiges Werkzeug, und deren Angriffe bestehen üblicherweise aus drei Schritten: (1)
die Entwicklung des geheimen Kommunikationskanals, (2) die Informationsgewinnung
mithilfe des Kanals sowie (3) die Ausnutzung der erlangten Information um weiteren
Schaden anzurichten. Bisherige Arbeiten betrachten überwiegend den ersten Aspekt, die
Entwicklung von Kanälen. Um deren Einfluss auf die Security abschätzen zu können,
werden Übertragungskapazitäten beurteilt. Je mehr Kapazität ein Kanal hat, als desto
gefährlicher gilt er. Es gibt jedoch Szenarien, in denen ein einziges Bit an übertragener
Information ausreicht. Andererseits können Kanäle mit hoher Kapazität nutzlos sein,
wenn es keine sensiblen Daten, die verraten werden können, gibt. Deshalb ist es verspre-
chender auch die beiden anderen Schritte miteinzubeziehen, und nach der Information,
die ein Angreifer erlangen kann, sowie deren Nutzen für den Angreifer zu fragen. Diese
Vorgehensweise impliziert auch, dass geheime Kommunikation nicht unabhängig vom
Anwendungsszenario betrachtet werden kann.

In dieser Arbeit streben wir danach, das Verständnis für geheime Kommunikation und
deren Einfluss auf die Security zu erweitern. Wir entwickeln Angriffspfade, die alle
drei Schritte von der Entwicklung bis zur Ausnutzung umfassen. Als Rahmen wählen
wir zwei gegenwärtige Szenarien der Informatik, nämlich Cloud Computing sowie das
Internet Protocol version 6 (IPv6). Cloud Computing ist ein Betriebsmodell, das neue
Funktionalität für eine breite Kundenbasis durch Wiederverwendung von vorhandener
Technologie bietet. IPv6 ist hingegen eine neue Technologie, die ihren Vorgänger mit mehr
oder weniger derselben Funktionalität ersetzen soll, und langfristig alle Internetnutzer
(ob bewusst oder unbewusst) betreffen wird. Wir entwickeln zwei vollständige Angriffe
pro Szenario, und unsere Ergebnisse zeigen, dass geheime Kommunikation in guter, aber
auch in böser Absicht genutzt werden kann.
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CHAPTER 1
Introduction

1.1 Motivation
Transmission of data over the Internet follows a regular pattern. A sender intends to send
a message to a receiver, and embeds data in packets. These packets do not only hold the
payload, but also packet headers. The latter contain information that is needed for packet
delivery, and designates the path to the receiver. Finally, the receiver re-extracts the data
from the packets upon receipt, and processes it according to its needs. Transmitted data
might be encrypted, and thus only accessible by the receiver. Nevertheless, it remains
clear who intends to communicate with whom, who is the sender/receiver, what remains
header data for the purpose of packet delivery, and what is the actual data – albeit an
outsider might be hindered to access it as a consequence of encryption.

In contrast, secret communication characterizes more clandestine approaches of commu-
nication. Clandestineness manifests in multiple ways, and results in distinct deviations
from the classic pattern of communication. Covert channels are intended by both, sender
and receiver; but exploit a resource that is unintended for communication as the com-
munication partners aim to conceal the communication’s mere existence from observers.
Side channels are unintended by the sender, and arise from specific implementation
characteristics. The third concept is obfuscation; obfuscation intends to conceal sender
and/or receiver, or to hinder their correlation; an observer is however aware that com-
munication is prevalent. Summarizing their difference from the classic pattern, covert
channels trick observers to believe in the non-existence of communication, side channels
lack the intention for data transmission and obfuscation attempts to hide who is talking
with whom. Secret communication’s goals are manifold, and not necessarily of bad
faith as emphasized by the following enumeration: industrial espionage, whistleblowing,
censorship evasion, exchange of illegal or regime-critical content, superficial compliance
to cryptography laws, gain of transmission capacity, compliance checking, reconnaissance,
data extraction from compromised hosts or malware communication.
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1. Introduction

The Internet evolves, and so does secret communication; among recent changes in the
Internet are cloud computing and the transition to the Internet Protocol version 6 (IPv6).
The first describes a novel operational model characterized by unprecedented flexibility.
A cloud provider leases out infrastructure, platforms or software to a large customer
base on a pay-per-use basis. Even though utilized technologies are not novel themselves,
the potential for secret communication in cloud computing is considered to be elevated
as former implicit security assumptions, e. g., with regard to perimeter protection, are
now violated. Whereas, the latter is a new protocol replacing today’s Internet Protocol
version 4 (IPv4) to overcome address shortage. While providing (almost) no additional
functionality in comparison to its predecessor, it is going to affect all Internet users in
the long run – consciously or unconsciously. Especially its increased address length forms
a sound substrate for secret communication; this channel is especially worthwhile as
addresses must not be simply scotched; they are a required for successful packet delivery.

1.2 Problem Statement/Aim of this Work
The Internet is subject to continuous further development; and secret communication
evolves in step. The introduction and advancement of technologies bears chances for new
approaches of secret communication, but might also supersede legacy channels; however,
there will always be some sort of secret communication available. Secret communication
is however not an end in itself, but rather establishes a basis for later attacks. A full
attack is characterized by the following steps:

1. Channel Development: The adversary discovers potential for a new approach of
secret communication, and develops the channel accordingly. At this stage, the
adversary does not necessarily have to interact with the later victim(s); she might
alternatively test the channel in a test setup.

2. Information Extraction: An adversary uses the previously developed channel in order
to gain information from the victim. Such information might be cryptographic keys,
but also Internet Protocol (IP) addresses, type and version of operation systems,
availability of a certain file or local proximity.

3. Exploitation: The adversary investigates the gained information and exploits
the latter in order to perform an attack. Attacks are diverse, and range from
unauthorized access to encrypted messages using the gained key to launching
denial-of-service attacks targeted to the revealed characteristics of the victim.

Hitherto, research, e. g., [1], concentrates on the first aspect, channel development. A
channel’s mere existence does however not necessarily point to a lack of security; it is their
potential of leaking sensitive information and the latter’s exploitation that transforms
secret communication into a security risk. To evaluate a channel’s impact on security,
existing approaches assess channel capacities; the more capacity, the more dangerous

2



1.3. Contributions

a channel is considered. For example, the Orange Book by the US Department of
Defense defines a channel with more than 100 bit/s as “high” [2]. In some scenarios,
a single bit of transmitted data suffices to cause harm, whereas in other situations a
high-capacity channel is useless due to an overall lack of sensitive data. It thus remains
more promising to include all three steps of an attack into consideration and to ask the
following: Which information is gained by an adversary exploiting secret communication,
and which advantages does the adversary take from this information? This line of action
further implies that secret communication is dependent on the case of application, and
cannot be considered separately from its context. Based on these insights, it is then
possible to identify a channel’s impact on security, and whether mitigation becomes
necessary.

The thesis at hand overcomes this gap and focuses on the latter two aspects – extraction
of information, and turning it into successful attacks. Thereby, the development of
channels becomes a (clearly necessary) precondition. Due to the vast subject, the thesis’
scope is limited with respect to (i) the context as well as to (ii) distinct means of secret
communication. With respect to the first, we investigate secret communication in cloud
computing on the one hand, and secret communication in the Internet Protocol version 6
(IPv6) on the other hand. There is a key difference between cloud computing and IPv6
with respect to novelty of technology. The first reuses available technology in order to
form a novel operational model and additional functionality; the latter means replacement
of technology without changing key functionality. Finally, side channels are unintended
by the sender, and thus do not require the latter’s active participation in communication.
For this reason, we consider them a more likely attack model and dedicate the practical
part of this thesis entirely to side channels.

1.3 Contributions
The contribution of this thesis is fourfold, and highlighted in the following paragraphs.
The first two paragraphs consider cloud computing, the latter IPv6 networking.

We exploit side channels to investigate the role of firewalls at major Infrastructure-as-a-
Service (IaaS) cloud providers; our results shed light on firewall details that are hidden
by the respective providers and hence not accessible by average tenants. The developed
test tool is of importance as the cloud as a whole – and in consequence also its firewalls –
remain a black box for customers; but the latter have substantial interest in more details,
e. g., for reasons of risk analysis, troubleshooting or compliance checking, and the official
documentation is rare, barely scratching the surface.

We develop side channels revealing all configuration parameters related to the Xen
hypervisor’s rate limits – a functionality to throttle a virtual instance’s networking in
order to guarantee fair bandwidth distribution among neighbors. Their actual impact on
security is dependent on the adversary’s advantage; thus, we show how these side channels
are further developed in an actual denial-of-service attack exploiting the same mechanism.
The denial-of-service attack causes up to 88.3 percent of packet drops, or up to 13.8
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1. Introduction

seconds of packet delay. Our results show that rate limits – originally intended as a
protection mechanism – snap back and become attack vectors themselves. As Xen is used
in major cloud providers, a high number of virtual instances is potentially vulnerable.

We investigate a new method for IPv6 reconnaissance, i. e., the discovery of previously
unknown victims, that is based on rule mining. Therefore, we develop an automatic way
for the extraction of implicit address patterns in a data set of addresses or, to put it
in another way, these addresses form a side channel revealing implicit address patterns.
Using the gained patterns, we generate potential addresses for active probing (scanning).
The fundamental idea behind this approach lies in the observation that administrators
do not select random addresses when migrating their services to IPv6, but rather rely on
patterns. Our approach finds significantly more addresses than manual pattern-based
approaches; however, it is limited by random-appearing addresses generated by the IPv6
Privacy Extension.

We prove that the IPv6 Privacy Extension’s randomness is not sufficient. An adversary
is able to predict a host’s future temporary interface identifiers1 that are generated by
the IPv6 Privacy Extension once the algorithm’s internal state is known, and is further
able to synchronize to this internal state by exploiting the victim’s previous interface
identifiers as a side channel. In turn, the adversary is able to perform address-based
correlation of different transactions and infer (private) details about people’s Internet
behavior. The IPv6 Privacy Extension is generally held to be insusceptible against any
kind of pattern exploitation, and thus also against address correlation. This aspect of
our research not only disproves this belief, but also highlights that current IPv6 address
formats do not protect user privacy on a sufficient scale.

1.4 Structure of this Work

The remainder of this thesis is structured as follows. In Chapter 2, we define underlying
terminology with respect to secret communication. Part I investigates such patterns of
communications in cloud computing: Chapter 3 contains a survey of available approaches
of secret communication in cloud computing and a classification thereof. Chapter 4
investigates the role of firewalls in IaaS clouds, and draws conclusions on their functionality
as well as location in clouds using side channels. Finally, Chapter 5 shows how the
protection measure of rate limiting becomes an actual attack vector; we develop a side
channel and a denial-of-service attack exploiting these rate limits.

Part II addresses secret communication with respect to IPv6. In Chapter 6, we pro-
vide background on this protocol, and a survey on the latter’s security and privacy
short-comings. Further, we systematize this short-comings and allot appropriate coun-
termeasures. In Chapter 7, we investigate IPv6 reconnaissance that exploits implicit

1The IPv6 Privacy Extension aims to protect privacy by regularly changing the address, and defines
an algorithm for the generation of interface identifiers that are combined with the advertised network
prefix to form temporary IPv6 addresses.
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patterns from a data set of addresses. The latter approach comes to a grief with the IPv6
Privacy Extension that pretends to generate random addresses that are totally unrelated
to each other. In Chapter 8, we overcome this belief and prove that an adversary is able
to predict all future identifiers of a host once she has synchronized to the algorithm’s
internal state; synchronization is feasible by exploiting former interface identifiers as a
side channel.

In Chapter 9, we conclude on both aspects of this work and provide an outlook on future
work. The research that is presented within this thesis has further been published in the
following peer-reviewed conferences and workshops:

• J. Ullrich and E. Weippl, “The Beauty or The Beast? Attacking Rate Limits of
the Xen Hypervisor,” in European Symposium On Research in Computer Security
(ESORICS), 2016. (Chapter 5)

• J. Ullrich, T. Zseby, J. Fabini, and E. Weippl, “Secret Communication in Clouds:
A Survey,” IEEE Communications Surveys & Tutorials, 2016. (under Submission
after Major Revision) (Chapter 2 and 3)

• J. Ullrich, J. Cropper, P. Frühwirt, and E. Weippl, “The Role and Security of
Firewalls in Cyber-Physical Cloud Computing,” EURASIP Journal on Information
Security, 2016. (Extended Version of the Conference Paper) (Chapter 4)

• J. Ullrich and E. Weippl, “Privacy is Not an Option: Attacking the IPv6 Privacy
Extension,” in International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID), 2015. (Chapter 8)

• J. Ullrich, P. Kieseberg, K. Krombholz, and E. Weippl, “On Reconnaissance
with IPv6: A Pattern-Based Scanning Approach,” in International Conference on
Availability, Reliability and Security (ARES), 2015. (Chapter 7)

• J. Cropper, J. Ullrich, P. Frühwirt, and E. Weippl, “The Role and Security of
Firewalls in IaaS Cloud Computing,” in International Conference on Availability,
Reliability and Security (ARES), 2015. (Chapter 4)

• J. Ullrich, K. Krombholz, H. Hobel, A. Dabrowski, and E. Weippl, “IPv6 Security:
Attacks and Countermeasures in a Nutshell,” in USENIX Workshop on Offensive
Technologies (WOOT), 2014. (Chapter 6)
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CHAPTER 2
Background

This chapter provides background for the remainder of this thesis. In Section 2.1, we
define fundamental terms of cloud computing; discuss its key technologies and introduce
the general challenge of cloud computing security. Further, we describe participating
stakeholders. In a second step, we focus on patterns of secret communication in Section 2.2;
in particular, we define covert channels, side channels as well as obfuscation and compare
them with each other. Then, we describe the potential of secret communication in cloud
environments in Section 2.3. Finally, we discuss application scenarios, both typically
considered benign and malicious, in which such communication channels are used for the
sake of secrecy and relate them to covert channels, side channels as well as obfuscation,
see Section 2.4.

2.1 Cloud Computing At A Glance

In this section, we define cloud computing and present service models that assign
responsibility to different stakeholders in manifold ways. These definitions, however,
are rather vague from a technical point of view. Thus, we review the key technologies
that lay the foundation for cloud computing, and highlight security challenges in cloud
computing despite its lacking novel technologies. Finally, we shed light on different roles
and entities in cloud computing.

2.1.1 Defining the Cloud and Cloud Service Models

The term cloud computing emerged in the late 2000s [3], and rather describes a mode
of operation that combines several other technologies than a novel technology itself [4].
Thus, definitions are diverse [5], and rather comprehensive. The definition from the
National Institute of Standards and Technology (NIST) appears to be the most popular,
and sees cloud computing as “a model for enabling ubiquitous, convenient, on demand
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2. Background

network access to a shared pool of configurable computing resources (e. g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction” [6].

Further, NIST defines five essential cloud characteristics:

• Cloud customers have to provision resources in an “on-demand self-service” way
leading to 24/7 service “without requiring any human intervention” [6].

• As the services are provisioned over the network, “broad network access” [6] is
an inevitable pre-requisite and a lack of networking leads to full outage, i. e., the
Internet is a critical infrastructure.

• “Resource pooling” [6], frequently also called multi-tenancy, means sharing of
resources like storage, processing or network bandwidth with other customers.

• Customers do not only provision resources on their own, they can also easily
scale them leading to “rapid elasticity” [6]. Customer needs are rather small in
comparison to the size of professional data centers and thus the latter “often appear
to be unlimited” [6].

• Metering is used for resource control and optimization of the providers’ infrastruc-
ture as well as billing.

Real-world cloud computing encompasses a broad range of applications: social networking,
tax and health applications, storage solutions, virtual machine rentals, and many more.
Generally, these services are classified into the three service models SaaS, PaaS and
IaaS [6]. We added StaaS as a fourth service model due to its characteristics. The service
models assign responsibilities to customer and cloud provider in different combinations.

• In Software as a Service (SaaS), the customer uses “provider’s applications running
on a cloud infrastructure” [6] by means of a web browser or a certain client.
Examples are Twitter1 and Google Cloud Messaging2.

• Platform as a Service (PaaS) clouds provide a platform including programming
languages, libraries, etc. to run “consumer-created or acquired applications” [6]. An
example is Google App Engine3.

• In Infrastructure as a Service (IaaS), the cloud provides resources to the customers.
The latter are able to “run arbitrary software, which can include operating systems
and applications” [6] on this resources. Examples are Amazon Elastic Compute
Cloud (EC2)4 and Google Compute Engine5.

1www.twitter.com
2developers.google.com/cloud-messaging/
3cloud.google.com/appengine/
4aws.amazon.com/de/ec2/
5cloud.google.com/compute/
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• Storage as a Service (StaaS) offers synchronization into the cloud and a possibility
for storing backups. While some see it as a specialization of IaaS due to storage
provision [7], its aspect of offering a certain client for easy up- and downloading
tends to be SaaS. For the purpose of this thesis, we use StaaS as a service model
sui generis. A real-world example is Dropbox6.

2.1.2 Key Technologies and the Challenge of Cloud Security

From a technology perspective, the definition of cloud computing appears vague. Following
the idea of cloud computing as an operational model and a confluence of existing
technologies, [7] highlights the following economic, societal and technological shifts as
relevant for the establishment of clouds.

• The spread of devices: Smart phones, tablets, or laptops allow access to clouds in a
variety of situations and places.

• The trend towards browser interfaces or thin clients: Shifting heavy computing
to the server (and further into the cloud) requires less performance of the access
device.

• The provisioning of services over the network: Fast broadband access is inevitable
therefore and a lack of networking leads to service outage.

• The dropping of hardware prices: This paved the way for data centers consisting of
inexpensive and inter-connected servers and storage devices.

• The sharing of data centers: The data centers are rarely used by a single organisa-
tion, but shared among different customers. Virtualization technologies abstract
computer resources to ”provide a dedicated resource view for customers” [7].

• The development of Application Programming Interfaces (APIs): This allows “self-
provisioning and programmatic control” [7].

Still, one might ask for the reasons of seemingly excessive engagement with the cloud.
Cloud computing is certainly a tremendous economic success story: This year’s global
market size is estimated to $96.98 billions, and its annual growth rate to 9.14% [8].
Market leader Amazon alone generates an annual $6 billion revenue [9]. By 2014, 69% of
enterprises had an application or infrastructure in the cloud, another 18% planned to do
so within the following year [10]. Beyond, cloud services for end users have large user
bases. Dropbox claims to have 400 million registered users by 20157, Evernote more than
100 millions8 and Spotify 75 millions9. Moving into the cloud is primarily an economic

6www.dropbox.com
7http://techcrunch.com/2015/06/24/dropbox-hits-400-million-registered-users/
8https://blog.evernote.com/blog/2014/05/13/evernote-reaches-100-million-users/
9https://press.spotify.com/at/information/
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decision: Cloud computing does not require upfront capital investment for infrastructure,
and typically provides (almost) immediate access. Flexibility allows to start with little
resources, and increase later if needed. It unfolds its full effect with the creation of new
services based on existing ones, and is a key enabler of many novel services due to low
economic risk. Low entry costs further enable small companies access to computing
facilities that were previously only accessible by large players [7, 11].

Despite lacking of novel technology, there is a decent technical aspect in the deployment of
cloud computing: The combination of several existent technologies into a new operation
model implies that they are now used in an environment with different characteristics.
As a consequence, several (formerly) basic assumptions might be broken and partial
redesign required. Among them are:

• Traditional enterprise architectures follow a zoned approach. Internal is considered
as benign, external as potentially malicious and thus perimeter protection is applied.
Potentially sensitive data is now travelling the Internet on its way to the cloud or
back to the customer. Even the cloud-internal traffic is not necessarily benign as
the cloud-internal network is shared among (potentially malicious) customers. A
traditional zoned approach becomes infeasible.

• Moving to the cloud changes infrastructure from a white box to a black box. An
operator knows the details of his infrastructure and thus its advantages as well as
its disadvantages, or is at least able to find out. Cloud providers however see their
internal structure as their company secret, and disclose only a limited view thereof.
This means that the customers are not fully aware of the provider’s intentions and
vice versa; and their combination might introduce risks that neither of the two is
aware of.

• The customer is not solely unaware of the infrastructure, but also dependent on
the cloud provider’s offer. While a minor change in configuration might be easy
in a self-operated infrastructure, it is almost impossible to do so in the cloud. In
the worst case, a provider has to be replaced by another. However, migration is
another challenge as there are barely any standards.

Such broken assumption due to a changed use of technology might negatively impact
non-functional requirements. Among them is security, and it is thus of utmost importance
to address this issue. Indeed, concerns of security is considered the major obstacle by
enterprises when moving to the cloud [10].
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2.1.3 Roles and Entities in Cloud Computing

The definition of service models in cloud computing has already revealed two roles – the
cloud provider and the customer. These and other roles are defined for the purpose of
this thesis based on descriptions found in the literature [12, 13, 14, 3, 7, 15, 6], and are
also depicted in Figure 2.1.

• A cloud provider develops, operates and offers cloud services. Others are able to
access these services via the Internet, and use them for their own purposes. The
offered services follow one of the cloud service models. Major cloud providers not
solely offer a single service, but a variety thereof and also span among more than a
single service model.

• A cloud customer is somebody who accesses and uses a cloud service; cloud
customers are also referred to as cloud users or consumers. Typically, they pay
the cloud provider for the service. Customers might be enterprises or private
individuals.

• Virtual machines pretend to be real computers, but are virtual representations
thereof. They are a consequence of virtualization technology that enables different
cloud customers to utilize the same hardware simultaneously.

• The physical server is the hardware that is abstracted by means of virtualization.
Atop runs a hypervisor (or virtual machine monitor). This is a software that
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manages virtual machines. Multiple virtual machines might reside on the same
physical server and share its hardware.

• A neighbor is a virtual machine that resides on the same physical server as another
virtual machine, i. e., they share a server’s hardware resources. Neighbors are
co-resident to each other; the situation is referred to as co-residency.

• A node is an entity that is connected to the network – independently whether its
role is data redistribution or being a data end point. The term includes virtual
machines, but also non-virtualized (ordinary) computers, e. g., adversaries that
reside outside the cloud. We distinguish cloud-based nodes from cloud-external
nodes. Cloud-based nodes reside in a cloud, while external nodes are outside and
reside at an arbitrary place on the Internet. Customers access the cloud typically
by means of external nodes, e. g., laptops, smart phones, etc.

2.2 Secret Communication
Data transmission over networks typically follows a regular pattern: A sender wants
to transmit a message to a receiver, and thus embeds data in packets. Packets do not
only hold a payload but also a header containing information for delivery. The receiver
extracts the data from the packets and processes the data according to its needs. For
protection, transmitted data might be encrypted so that only the intended receiver can
access the actual content. Still, it remains clear who intends to communicate with whom,
who is the sender/receiver, what remains control data for purposes of delivery and what
is the delivered data (albeit an outsider might not access it due to encryption).

This pattern is contrasted by the concept of secret communication that deviates from the
classic pattern insofar as communication takes a more clandestine way. Clandestineness
manifests through stakeholder’s nescience of certain aspects of communication or even its
mere existence. We identified three means of such secret communication, namely covert
channels, side channels and obfuscation, that are defined and discussed in this section.

2.2.1 Covert Channels

The United States Department of Defense standard 5200.28-STD defines a covert channel
as “any communication channel that can be exploited by a process to transfer information
in a manner that violates the system’s security policy” [2]. Literature highlights further
aspects: A covert channel “exploits a shared resource” [16], and the used channel “is not
designed to be a communication mechanism” [16] or “contrary to design” [17]. Typically
it is of “malicious or unwanted nature” [1] and “can be used to leak information” [18].

If communication partners want to prevent unauthorized parties from eavesdropping on
transmitted data, end-to-end encryption is a practical countermeasure. Covert channels
go beyond insofar as their intention is concealment of the communication’s mere existence
from third parties [1, 19], and are applied in case an observer should not even know
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that communication is on-going. They exploit senders’ degrees of freedom [20] that are
also accessible to receivers. Traditional network-based covert channels use for example
unused or vaguely defined bits; values that are chosen by senders without having strict
criteria (e. g., identification numbers, fragmentation offsets or hop counts); values that
are typically not parsed by receivers (e. g., timestamps); checksums in case the payload
can be modified in a way to correspond to the checksum value; and timing as IP-based
traffic shows indeterministic behavior [1].

Observers are usually unaware of the fact that some of these characteristics can be
used to communicate. Nevertheless, even if the method is known, the content of the
communication should remain confidential by using encryption and ideally should not
be distinguishable from typical (e.g. random) values used in such fields. So the secrecy
of the communication should additionally lie in the knowledge of a secret key and not
solely in the unawareness of external observers of potential communication channels [21].
Therefore classical cryptographic methods should be applied before a message is encoded
in a covert channel.

Cryptography differentiates between symmetric and asymmetric algorithms [22]. Sym-
metric cryptography uses a single secret key that is used by the sender to encrypt, and by
the receiver to decrypt the message accordingly. In contrast, asymmetric cryptography
operates with two keys – a private key, and a public key per communication partner.
While the first is kept private by all means, the public key is made available to the general
public. A sender encrypts a message with the public key, and only the receiver is able to
regain the message by decryption with the private key. Asymmetric approaches rely on
trapdoor functions, i. e., functions that are computationally inexpensive in one direction
but only solvable in the other direction if additional knowledge (private key) is known.

The differences between symmetric and asymmetric cryptography have an impact on
covert channel application scenarios. An autocratic regime might force communication
partner A within its jurisdiction to reveal the secret key. In a symmetric key setting the
regime is able to decrypt all traffic of both communication partners A and B, even if
communication partner B is outside its area of influence. If asymmetric cryptography is
used, and the regime gets hold of the private key of A (communication partner in its
jurisdiction), but does not know the private key of the communication partner outside
B, it can decrypt incoming messages to A (encrypted with the public key of A) but has
no possibility to decrypt outgoing traffic from A to B (encrypted with the public key of
B). Nevertheless, a regime in possession of a private key of A is able to sign messages
and pretend to be A. Asymmetric encryption appears further suitable for encrypting
unidirectional data extraction, e. g., from several compromised hosts, via covert channels
to one data collector. Whenever data is ready to be delivered to a data collector it is
encrypted with the same public key and the reporting hosts do not need a key pair on
their own. Beyond, an administrator discovering compromization of his own host (and
the public key used for data extraction) is not able to decrypt messages that have been
sent from his host, neither to decrypt communication of hosts that are still compromised.
However, asymmetric cryptography bears the drawback of being computationally more
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expensive than symmetric approaches and thus might be more conspicuous for the owner
of a compromised host. Furthermore, if signing or mutual authentication is needed, the
reporting hosts need to create keypairs.

Authenticated and eavesdropping-secure key exchange is a vital part of symmetric
cryptography, and a major challenge. The Diffie-Hellman protocol is nowadays the
major approach to overcome this issue on a non-tap-proof communication link, and is
based on the concept of finite cyclic groups [23]. Diffie-Hellman (and also other key
exchange protocols like Needham-Schroeder [24]) require a two-way data exchange, i. e., a
bidirectional channel – an assumption that does not necessarily hold for covert channels.
In unidirectional covert channel settings, the communication partners might perform an
out-of-band key exchange. For example, Diffie-Hellman could be performed over regular
networking instead of the covert channel. Such an unexpected key exchange might,
however, appear illegitimate to an observer, and might be a hint for covert communication.
This especially holds for countries prohibiting cryptography, see application scenario
Superficial Compliance to Cryptography Laws in Section 2.4, as a Diffie-Hellman key
exchange is an unambiguous characteristic of cryptography.

With respect to covert channels in cloud computing we further have to highlight two
distinct aspects: First, a shared resource in the context of covert channels as highlighted
in [16] does not necessarily mean resource sharing in the sense of cloud computing. A
shared resource of a covert channel is one that both sender and receiver can access, i. e.,
read and/or write. However, this resource does not necessarily have to be physically
shared in the cloud computing’s sense of resource-sharing. I. e., sender and receiver need
not be co-resident virtual machines (neighbors) and compete for the resource, as packet
header fields can be used as shared resource, too.

Second, an observer that is looking for suspicious traffic has to reside on the communication
path between sender and receiver. For determination of the non-existence of suspicious
traffic, the observer has to control all alternative paths that the communication might
take. Depending on the observer’s power this appears to be a minor or major challenge.
In cloud computing however such a potential observer is always present with the cloud
provider. In dependence of the service model, the provider controls the underlying
infrastructure including computing, storage and network facilities, virtualization, the
operating system, the platform and/or the applications and traffic has to pass in any
case.

2.2.2 Side Channels

Side channels root in the field of cryptographic engineering and “exploit characteristic
information extracted from the implementation of the cryptographic primitives and proto-
cols. This characteristic information can be extracted from timing, power consumption,
or electromagnetic radiation features” [25]. The classic way of exploiting a side channel
is the extraction of a secret key. A recent prominent example is the extraction of the
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RSA private key from noise that emerges from a laptop during the performance of
cryptographic algorithms [26].

But even beyond breaking cryptography, side channels are prevalent whenever an imple-
mentation’s behavior reveals systems internals that should be kept secret. A well-known
side channel is operating system detection (fingerprinting): Although protocols like IP are
standardized [27], stack implementations show (subtle) differences in behavior and allow
to determine a host’s operating system. For example, operating systems initialize the IP
Time to Live (TTL) field with different values. Adding the measured hop distance to the
received TTL allows to draw conclusions on the remote host’s operating system [28].

In comparison to the classic communication pattern, side channels are a side effect of
the system architecture or implemented algorithms and unintended by the sender. Such
channels can leak (confidential) information, and transmitted data is neither encrypted
nor otherwise protected due to the channel’s unplanned nature.

Cloud computing adds new aspects to such channels’ application: Cloud providers conceal
their infrastructure and configuration following a security-by-obscurity concept. In-depth
and verifiable knowledge on cloud internals remains widely inaccessible for customers,
and this black-box approach impedes checks on the provider’s compliance with service
level agreements. In such scenarios, side channels can be used as a source of information
gathering that allow plausibility checks. For example, cloud providers offer dedicated
instances10, i. e., physical servers that just run instances of a single customer to mitigate
the threat of co-residency. A customer might use a side channel checking for co-residency
as a defensive tool and verify whether there is a stranger’s virtual machine on the same
physical server [29]. This example also emphasizes a modified standing of side channels.
In cloud computing, side channels are not exclusively means of attacking and thus evil,
but also serve the benign purposes, e. g., protection of customers against a typically
far more powerful provider that might silently disobey service level agreements. This
modification goes hand in hand with a change in perspective from building systems as
in traditional engineering to discovering phenomena in a way that is comparable to the
natural sciences.

2.2.3 Obfuscation

Obfuscation aims at anonymous communication by concealment of sender/receiver or
hindering their correlation by third-parties [1]. Communication is not fully covert:
Observers are generally aware that nodes are participating in communication and use a
certain method of obfuscation [30]. However, they are not able to correlate sender and
receiver and/or identify them. This assumption holds even in case the observer joins this
technique of obfuscation. Observers might further be unable to read the transmitted
content due to encryption.

The most prominent example is Tor [30]. Based on onion-routing, packets are detoured
over relays that are provided by volunteers. Relays decrypt packets to infer the next

10https://aws.amazon.com/de/blogs/aws/amazon-ec2-dedicated-instances/
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2. Background

Covert Channel Side Channel Obfuscation

Intention yes no yes

Hiding Technique resource unintended
for communication none large set of

nodes or users
Intermediate nodes optional optional required
Content Protection encryption none encryption
Suspicion Level medium low high

Table 2.1: Classification of Secret Communication Variants

address and deliver to the next hop. Although aware of the communication, a third
party cannot compromise anonymity by simple actions like the provision of single relays.
Obfuscation in general relies on confusion due to the Internet’s extent, requires high
traffic and many users/participating nodes for successful concealment.

With respect to the classic communication pattern that has been presented at the
beginning of this section, obfuscated communication is intended, as with covert channels.
An observer however is aware that communication is going on, but cannot find out who
is communicating with whom. An observer is also unable to decode transmitted data.
A pattern of obfuscation is the involvement of intermediate nodes: Sender and receiver
seem to maintain a connection to this intermediate, but as a number of nodes do the
same, correlation becomes more difficult.

Clouds appear to be a sound substrate for obfuscation - less due to technology than
their impact on economy and society. First, obfuscation depends crucially on the number
of participants, and cloud services typically have a large user base. As networking is a
prerequisite of cloud computing many participants imply much traffic that can be used
to hide. Second, this traffic appears in-dubious as the majority of people use the cloud
service as intended. Finally, services with a vast user base are unlikely to be blocked. For
example, countries applying Internet censorship refrain from blocking clouds as they fear
negative impact on commerce and society. This enables activities to counter censorship
by moving content to the cloud or using the cloud as a relay [31, 32].

2.2.4 Comparison

We defined three means of secret communication, namely covert channels, side channels
and obfuscation, and discussed them with respect to classic communication patterns
and their application in clouds. Table 2.1 summarizes differences between these three
(general) kinds of communication on the basis of five discovered major characteristics:

• Intention for communication describes whether the data is transmitted by the
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sender on purpose. This is the case for communication via covert channels and
obfuscation techniques, as the communication partners aim to exchange information.
In contrast, side channels leak information unintentionally; the sender might not
even know that it is transmitting data and provides sensitive information to third
parties.

• Hiding technique describes the method that hides the exchanged information from
potential observers: As side channels are unintended, they do not hide either. Covert
channels hide by using a shared resource which is not intended for communication.
Examples are CPUs or caches in a system, header fields or packet timing in network
protocols. Obfuscation exploits a large set of nodes or users to hide.

• Intermediate nodes reside between sender and receiver on the communication path.
Obfuscation requires intermediate nodes for concealment. For example, sender and
receiver might maintain connections to the same intermediate node, but correlation
of these parties is complicated as they are lost in the multitude of other connections.
This intermediate node is used as a reflection point for information. An alternative
is the redirection of traffic over a number of relays. Covert and side channel do
not necessarily require an intermediate node. It is worth noting, however, that
intermediate nodes might be detrimental to the quality of side and covert channels,
for instance by rewriting packet headers or changing packet timing.

• Content protection refers to techniques that might be used to prevent others from
accessing transmitted information. Covert channels and obfuscation might use
encryption, side channels do not include any – again due to their unintended
nature. Senders might attempt to close side channels when becoming aware of their
existence.

• Suspicion level describes the degree to which an observer suspects that communica-
tion is taking place. Low means that an observer is unaware of the communication
in general, medium means an observer may suspect communication, but cannot find
details, and high refers to an observer being (quite) sure that there is communication
but cannot find details, either.

With respect to the communication pattern that was presented at the begin of this section,
side channels lack the intention to transmit data; covert channels lead an observer to
believe in the non-existence of communication despite the latter might be able to access
overt traffic; and obfuscation attempts to hide who is communicating with whom.

2.3 Potentials for Secret Communication
Distinct factors of cloud computing influence networking, and thus provide potential for
the establishment of secret communication. These influence factors can be exploited to
generate network traffic with certain characteristics like traffic amount, certain header
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fields or packet timing as well as nodes involved in the communication. Exploiting its
influence factors, a sender forms a traffic with certain characteristics in order to deliver
the secret message; the receiver in turn interprets these characteristics, and infers this
way the secret message. This process is illustrated in Figure 2.2.

Senders of covert channels aim to deliberately modify these influence factors, while senders
of side channels configure them as needed in their environment. In both cases, receivers
draw conclusion on the influence factors from the resulting network traffic’s characteristics.
An obfuscation’s sender aims to mimic legitimate traffic and its characteristics.

In detail, we identified the following influence factors on networking. As they can impact
traffic characteristics, they bear potential for secret communication in cloud computing.

• Cloud computing requires underlying physical hardware and infrastructure that is
subject to physical limits. Consequently, cloud computing efforts are also limited.

• Virtualization has to partition hardware among virtual instances in a fair and
efficient manner, but also has to protect instances from each other facing a natural
trade-off.

• Operating systems are networking’s pivot and support various protocols. Applica-
tions utilize them for delivering their messages11.

• Cloud computing has led to plenty of novel applications. These applications
provide new features, but also new weaknesses – both forming a substrate for secret
communication.

• Cloud services attract large user populations; pervasive customer behavior has
economic and societal impact bearing potential for secret communication.

11As an operating system’s role does not differ in cloud computing from traditional use, we refrain
from highlighting its impact on networking in this section.
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Figure 2.2 depicts the influence factors as well as network traffic characteristics. Further,
it highlights that the influence factors are managed either by the cloud provider or
the cloud customers; distribution is however dependent on the service model. With
management comes the power to influence networking, i. e., the service model defines secret
communication’s extent and the communication partners. We discuss in the following
the influence factors’ impact on networking, and sketch their potential exploitation for
secret communication in cloud computing.

2.3.1 Underlying Physical Hardware and Infrastructure

Clouds ultimately rely on physical computing resources and are thus subject to their
physical limitations; although cloud providers put effort in abstraction and concealment
of their internal infrastructure, they cannot overcome physical principles. Hardware still
has an impact on the service that is accessible by customers, and this becomes visible in
manifold ways. For example, a network interface card cannot serve two or more virtual
machines at the same time because it is able to send or receive just one packet at a
time [33].

Neither are access times detached from their physical background. Responses from
distant machines (in remote data centers) take longer than those from one close-by [34].
Round-trip times within a data center’s segment or to a virtual machine on the same
physical server are lower; and typically, there are also less intermediate hops [35]. Round-
trip times might be artificially prolonged by intentionally delaying the response, but not
speeded up. These general statements also hold for resources beyond networking. Drive
redundancy reduces response times, and fetching information from a number of drives is
faster than gaining the same from only one [36].

Clouds reuse known technologies. Providers aim to conceal their utilization or detailed
configuration from customers. They frequently prohibit the Internet Control Message
Protocol (ICMP) and thus standard tools like ping and traceroute. Networking however
still works as expected and replacement of diagnosis tools by crafted, benign network
probes is feasible. Development of such replacements is especially fruitful as knowledge
and experience is existent from the pre-cloud era. This is highlighted at the example of
the IPv4 Time To Live (TTL) field. The amount of intermediate hops can be extracted
from the minimal TTL that is required without any need of ICMP messages [37].

In conclusion, layers of abstraction and concealment cannot hide all ground truths of
the cloud and such limitations provide substrate for side channels that reveal internals
of the cloud structure. However these aspects are less usable for covert channels as the
underlying hardware cannot be easily modulated.

2.3.2 Virtualization: Utilization vs. Isolation

Virtualization means “abstraction of physical hardware resources” [38] and allows parallel
execution of different operating systems on the same hardware. Virtualization uses
hypervisors that control access to physical resources by intercepting requests of hosted
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virtual machines and mediating them to the hardware [38]. It is a key enabler of multi-
tenancy in clouds, and serves a twofold goal: First, it has to partition available hardware
resources among tenants in an efficient manner to maximize hardware utilization. The
better this goal is met, the higher the cloud provider’s monetary revenue. Second,
virtualization has to provide isolation for security [39, 40], and separate co-resident
instances best possible from each other to prevent assaults. Due to resource costs,
isolation is a natural antipode to maximum utilization and “undermines the cloud’s
elasticity and business model” [41].

Beyond, customers demand fair resource partitioning [42, 43]. This includes the provision
of resources that customers are paying for; minor impact of neighbors’ resource requests
on one own’s resources and the provision of minimum requirements. In contrast, cloud
providers tend to resource over-subscription [44], and the sum of guaranteed resources
exceeds the actually available hardware resources. This relies on the assumption that
users do not request their full resource share at the same time, and is known from the
power grid but may cause severe problem in case the previous assumption is intentionally
falsified [45].

This leads to the following conclusion: Cloud providers have little motivation for better
isolation as it would reduce monetary revenue. Quite the contrary, they over-subscribe
resources to increase revenue and neighbors are likely to influence each other providing
an ideal ecosystem for covert and side channels [44]. The potential is emphasized by the
following two scenarios.

The hypervisor Xen [46] processes packets in a round-robbing manner in regular intervals;
incoming packets are prioritized over outgoing. Buffers on the path are limited by size [33].
Packets might be delayed due to a heavy networking neighbor. Heavy networking of an
instance causes fluctuations in neighbors’ data transmission due to delayed packets [47],
or packets might even be dropped due to a full buffer. A neighbor might intentionally
exploit this coherence.

Increased demand for a certain resource, may not only influence neighbors with demand
for the same resource. We highlight this by an example of networking and CPU usage:
Instance A and B experience network load and share the NIC equally. If instance A
experiences additional CPU load that requires the full time given for the CPU, B has
increased chance of networking. The reason is twofold: First, A requires obviously less
of the resource (networking). Second, the resource demand might shift in time and B
is provided with the resource for a longer continuous period [48]. Thus, there are also
inferences among different resources that might be exploited.

2.3.3 Novel Applications in Clouds

Cloud computing reduces start-up costs as no physical equipment anticipating future
needs has to be bought. At the same time, flexibility allows easy scale-up and down
with immediate needs [49]. Being of comparably low risk, the cloud is an excellent
substrate for start-up companies providing all types of novel applications to the market;
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enhanced by providers’ market places where native as well as third-party applications
are offered [50]. A number of now popular cloud services started in the data centers of
large cloud providers, and are still there, e. g., Spotify and Dropbox in the Amazon cloud.

Cloud applications follow approaches that were unknown before or reuse known technolo-
gies in a different environment. In addition, they connect users that are unrelated to
each other to a single central service albeit the application’s purpose does not necessarily
require this radial topology. Cloud services are accessible via the network and this traffic
provides potentials for secret communication. For obfuscation, the cloud may serve as
a reflection point. The traffic may alternatively serve as overt channel for the covert
channel [1], or reveal internals and thus be a side channel. Examples of such novelties
are provided in the following paragraph.

Data deduplication associates users that are unknown to each other due to storing
the same file in their personal cloud-synchronized folder in order to optimize storage
capacity through the elimination of redundancy [51, 52]. Push Notification Services
release developers from reliably delivering updates for mobile applications, and allow
forwarding of messages by means of an ID making the services a reflection point with
a lot of users [53]. The market place bundles services related to a certain cloud on one
place. The services are not only from the cloud provider, but also from third parties.
While it might “provide the customer with peace of mind by knowing that all purchases
from the vendor’s marketplace will integrate [...] smoothly” [50], the provider does not
check these third party offers in detail fostering all types of misuse and slackness [54].

2.3.4 Customer Behavior and Cloud Population

Clouds attract a high number of users. These users in turn maintain connections to
cloud services causing massive network traffic and giving the providers significant market
power. While this aspect is more societal than technological, it has particular impact on
secret communication for three reasons.

• Maintained connections to these clouds are common and do not appear suspicious.
A network administrator might not react to Twitter traffic as he might know that
some users of his network are actively using this SaaS service. Even in case of
additionally caused Twitter traffic, it might appear harmless and users might believe
that this traffic origins from their own account.

• The pervasiveness of cloud traffic decreases the chance of being filtered or censored
because users might recognize and condemn the intervention. For example, China
refrained a long time from blocking large cloud providers for business reasons, and
censored content could spread by moving it into the cloud [31, 32]

• Users maintain connections to the same cloud services albeit the service does not
necessarily need to connect users. Thus, these services might be used as reflection
point, and indirectly connect users that appear unrelated to each other in the first.
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Industrial Espionage X X

Whistleblowing X X

Censorship Evasion X

Exchange of Illegal or
Regime-Critical Content X X

Superficial Compliance to
Cryptography Laws X

Gain of
Transmission Capacity X

Compliance Checking X

Reconnaissance X

Data extraction
from Compromized Hosts X

Malware Communication X X

Table 2.2: Application Scenarios wrt. Types of Secret Communication

The high number of users is supported by the fact that basically everybody is able to
join cloud services with almost no barriers. A lot of services are free of charge, others
provide opening offers. However, an adversary is able to subscribe in the same way as
an ordinary user does, and to investigate the cloud services in detail for potentials of
secret communication. While providers might have a chance to check the users’ identity,
other users do not and have to trust the provider. Thus, there is no classical perimeter
protection that separates the “trusted” inside from the “malicious” outside [39] anymore,
and formerly insider attacks become outsider attacks [41].

2.4 Secret Communication Scenarios

The following list shows typical classes of information for which the communication
partners have an incentive to hide from potential observers. Table 2.2 provides an
overview on these scenarios with respect to applicable types of secret communication.

Industrial Espionage: Intellectual property is an important asset of companies and
measures are taken to prevent its disclosure to the public or competitors. Due to measures
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preventing such content from leaving the company, an inside spy has to use covert channels
to evade this barrier; see, e. g., [55]. Conversely, competitors might also spy from outside
and gain information from unintended sources of the victim via side channels.

Whistleblowing: Whistleblowers disclose content “about non-trivial illegality [...]
under the control of that organization, to an external entity having potential to rectify the
wrongdoing” [56]. Whistleblowers can use covert channels to secretly transmit information
or use obfuscation techniques to conceal their identity.

The scenario is comparable to inside industrial espionage, if the whistleblower reports
from inside the organization with protection against leakage. The whistleblower then
might use a covert channel. If the whistleblower reports from outside the organization, it
suffices to stay anonymous by means of obfuscation.

Censorship Evasion: Some countries apply Internet censorship and block access to
certain content [57, 58]. However, obfuscation might redirect traffic over other nodes to
evade censorship. Covert channels cannot be used because direct communication (and
therefore overt traffic) between the two nodes is impossible; however covert channels can
be piggybacked on obfuscated traffic.

Exchange of Illegal or Regime-Critical Content: The Internet serves as a channel
for illegal content, e. g., trading of drugs [59] or child pornography [60], and communication
partners aim to evade detection. They might apply two approaches that protect them in
different ways: Obfuscation protects from the identification of individual perpetrators,
although law enforcement, e. g., might order an inquiry against person or persons unknown
after seeing the content. With covert channels, even the existence of the transmission
is unknown. In non-democratic states, regime-critical content may be penalized and
considered illegal in the context of local jurisdiction. Thus, we include regime criticism
here.

Superficial Compliance to Cryptography Laws: Countries may restrict or pro-
hibit the use of encryption [61], and the use of cryptographic protocols might lead
to governmental punishment. If any kind of application of cryptography is penalized,
encrypted messages have to be hidden from governmental observers in a covert channel
to superficially fulfill the law.

Gain of Transmission Capacity: Covert channels use channels that are unintended
for communication, and thus increase the total transmission capacity. More data is
transmitted without paying for, and is of interest in case of high transmission costs, e. g.,
Internet taxes per gigabyte [62]. Obfuscation typically causes overhead in comparison to
direct communication between the end nodes, and therefore cannot be used to increase
transmission capacity.
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Compliance Checking: Service-level agreements are negotiated between cloud providers
and customers, but are frequently standardized due to market imbalance. The provider’s
economic power is typically far higher than the customer’s, and checking compliance of
the provider by the latter is difficult [63]. Customers may use side channels to check
whether measured results are plausible considering the terms of contract.

Reconnaissance: An adversary might aim to discover and get information about a
(not yet compromised) victim to tailor the succeeding attack, or place his own virtual
machine on the same physical server for a cross-VM attack [64]. The more information
gathered, the higher the chance of a successful attack. Therefore, an adversary may
exploit side channels as they transmit information that the victim does not intend to
disclose.

Data Extraction from Compromised Host: An adversary may aim to leak secret
information of a compromised system, e. g., a secret key, without alarming the operators.
She might use a covert channel as this is the most secure way of preventing an alarm
and have ongoing access to the systems as the operator might otherwise change the key.

Malware Communication: Botnets are networks of nodes that are infected by mal-
ware and coordinated by command and control structures. These nodes “contact a
command and control (C&C) server to receive instructions or updates” [65]. Botnet
operators aim to evade discovery, and thus conceal their traffic and are moving their
infrastructure (partly) into the cloud [66]. Depending on the extent of disguise, they
choose obfuscation or covert channels. A botnet that aims to gain control over as many
nodes as possible, e. g., for later denial-of-service attacks, might prefer obfuscation [67]
to get best cost-benefit ratio and takes in exchange removal of malware from certain
nodes into account. Alternatively, covert channels might be preferred in cases of higher
demands on concealment, e. g., in targeted attacks or worms.
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2.4. Secret Communication Scenarios

In this part of the thesis, we focus on the specific problem of secret communication in cloud
environments. Chapter 3 provides a survey on known approaches of secret communication
in cloud computing; we classify the latter, and highlight that most side channels can
be further developed into covert channels. Up to now, channels are assessed by their
capacity; however, we conclude that the development of full attack paths including all
steps from channel development over information extraction to exploitation appears more
promising in order to assess (and understand) secret communication’s impact on security.

In consequence, the remaining chapters develop such scenarios for cloud computing.
Chapter 4 develops a test tool for firewalls, and investigates deployed firewalls at major
IaaS cloud providers. Our results shed light on aspects that typically remain hidden from
the average customers, and enables the latter to take (more) informed decisions with
respect to security, but also performance or compliance. Chapter 5 shows how a side
channel revealing all configuration parameters of Xen’s rate limit functionality can be
turned into a denial-of-service attack exploiting the same mechanisms. This attack causes
up to 88.3 percent of packet loss or up to 13.8 seconds of delay in benign connections.
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CHAPTER 3
A Survey on Secret

Communication in Clouds

In this chapter, we describe and classify available approaches for network-based secret
communication in cloud computing. We group known methods into (1) covert channels
(Section 3.1), (2) side channels (Section 3.2) and (3) obfuscation (Section 3.3) according
to the definitions in Section 2.2. As a number of secret communication channels rely
on specific, widely unknown cloud-inherent mechanisms, we explain them directly in
conjunction with the respective secret communication to ensure readability and compare
different approaches with each other. Each type of secret communication is followed
by a discussion. Finally, we added a unique identifier consisting of a letter – (c)overt
channel, (s)ide channel and (o)bfuscation – in combination with a number to identify
every means of secret communication in the following sections. Their identifiers are
enclosed in brackets. Their classification is found in Section 3.4; our findings are discussed
in Section 3.5.

3.1 Approaches for Covert Channels

In the following paragraphs, we describe covert channels in clouds. In a first step,
we discuss covert channel that arise from cloud-immanent physical resource sharing,
in particular sharing of NICs (Resource Sharing Covert Channels) before highlighting
channels that exploit deduplication (Deduplication Covert Channels), a technology for
storage optimization. Finally, we discuss channels that are specific to (novel) cloud
applications.
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Figure 3.1: Covert Channels using Packet Flooding

3.1.1 Resource Sharing Covert Channels

Resource sharing is cloud-immanent, and provides substrate for covert channels. This
holds for central processing units (CPUs) [68], level 2 (L2) caches [69] and also for shared
networking capabilities. Multiple virtual machines share various network interface cards
(NICs) of a physical machine, and the number of NICs limits the maximum amount of
sent/received packets. Virtual machines’ network packets are scheduled and might have
to wait before being forwarded to the network via one of the NICs due to high load
resulting from given hardware limitations. As packet scheduling is a hypervisor task (or
even outsourced to hardware assistance1), virtual machines are unaware of these latencies
caused by other machines’ traffic in general and would also not recognize extra-latencies
deliberately caused by a neighbor machine. By deliberately causing high traffic a virtual
machine might modulate packet timing of its neighbor in order to establish a covert
channel.

Two distinct scenarios as depicted in Figure 3.1 are discussed in the literature [70, 71, 37].
They have in common that at least two virtual machines are located on the same physical
machine, and share their networking resources2. An external node maintains a legitimate
connection to one of these virtual machines, and triggers continuous data transmission,

1http://www.intel.com/content/www/us/en/network-adapters/virtualization.html
2We assume that a physical service has a single physical NIC for clarity of the explanations. Multiple

shared NICs might reduce a virtual machine’s impact on its neighbor and thus a channel’s quality, but
do not change a channel’s basic principle.
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e. g., by downloading again and again a file from a webserver. This external node is the
covert channel receiver.

The first attack scenario, see Subfigure 3.1a, considers the co-resident virtual machine to be
the covert channel’s sender. This machine causes a packet flood and increases the latency
of packets in the download process of the legitimate connection. The receiver measures the
packet arrival rate looking for local extrema, which indicate the channel’s symbols [70, 71]
(c1). Recently, a stealthier version of this side channel has been proposed [72]; however,
transmission capacity has decreased by 75 percent. In the alternative scenario of [37],
an external sender influences the latencies of the legitimate connection by flooding the
co-resident virtual machine, see Subfigure 3.1b (c2).

The sender’s location has certain implications. (c1) requires the sender to rent a virtual
machine, while in (c2) the sender might use an arbitrary co-resident neighbor that does
not have to be in her control. Depending on its network bandwidth, the external sender
might face difficulties in generating enough packets to successfully flood the cloud-based
instance, and might have to synchronize with additional hosts for joint flooding [37].
The impact of packet floods on packet latency is dependent on the hypervisor’s packet
handling. For example, Xen prioritizes incoming packets over outgoing [33], and (c2)
might thus outplay (c1).

3.1.2 Deduplication Covert Channels

A variety of covert channels in cloud storage solutions arise from data deduplication –
a technique to save storage capacity and in certain cases also networking. Instead of
storing the same data multiple times, just one actual copy is maintained in the storage.
Deduplication’s working principle is depicted in Figure 3.2a: First, a hash is calculated
over the data that should be stored, and by means of this hash the availability of this
data in the storage is checked. Hash inequality implies its non-existance, and the data is
added to the storage. In case of hash equality, just a link to the already existing file is
generated.

Different approaches of data deduplication are available. In the target-based approach
data deduplication as described in Subfigure 3.2a is fully performed in the cloud storage
leaving the external client unaware of any internal activities. In contrast, source-based
deduplication splits the process among the stakeholders: The client calculates the hash
and sends it to the cloud, actual data is supplied later if needed. This way networking
can be reduced. Cross-user deduplication promises more resource savings by exploiting
data redundancy within several user accounts. The resulting source-based cross-user
deduplication then becomes a substrate for covert channels. The first user storing a certain
data has to upload it leading to the situation depicted in Subfigure 3.2b. Subsequent
users uploading the same data to their account are solely linked to the data without
the need of any further data upload as depicted in Subfigure 3.2c. From the lack of
this upload, the later users might infer the availability of this data in the storage. Data
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Figure 3.2: Data Deduplication

deduplication works on a file or block level. For better readability, we refer to files in the
following paragraphes without loss of generality.

Based on these insights, [73] proposes two covert channels: In the first alternative, the
sender and receiver have agreed on two files representing 0 and 1. The sender uploads
one of these files to the storage, and the receiver is able to check which file is uploaded
by attempting to upload both files. The sender proceeds with transmission through file
deletion and upload of the respective file for the following bit after a certain time interval
(c3). The other approach is based on a pre-defined template with a field for variable
input. By brute-forcing all possibilities for the variable input using deduplication, the
receiver is able to learn the file’s content (c4). (c3) uses two distinct symbols, but the
number of symbols might be easily increased by adding additional files. The number of
symbols of (c4) is dependent on the potential values of the field. Both covert channels
assume that no other customer uploads one of these files, and it is thus necessary to
choose unusual files.

In [74], data deduplication is evaluated using the example of Dropbox. This specific
storage solution did not delete files from the storage when users did so, and just removed
the link between the user account and the actual file. Although this prevents the above
covert channels, it enables other approaches: The sender uploads a file, deletes it from
his own account and provides the file’s hash value to the intended receiver. The receiver
pretends uploading this file, and provides the received hash to the storage provider.
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Figure 3.3: Covert Channel via Push Notification Service

Then, his account is linked to the sender’s uploaded data (c5). Beyond, Dropbox allowed
uploading any file to an arbitrary account solely by using the receiver’s host ID. This
way, the sender is able to put information directly into the receiver’s storage without
ever claiming it as its own data (c6).

The advantage of (c6) is its increased anonymity in comparison to (c5) as the file is never
associated with the sender’s account. Even beyond, the sender does not necessarily have
to be a regular customer with its own account at the StaaS provider. The difference
between (c5) and (c6) is thus comparable to (c1) and (c2): (c5, c1) require the adversary
to become a cloud customer, while (c6, c2) allow non-customers to be senders as well.

3.1.3 Novel Application Covert Channels

Spotique has been presented as a solution for communication with people in local proximity
without publishing the current location to a broader audience, e. g., in social networks [53,
75]. It can also be considered as a covert channel as it introduces a communication
channel that has not been intended this way. It is based on cloud push notification
services like Google Cloud Messaging3 or Apple Push Notification Service4, whose intended
functionality is the reliable notification of mobile applications in case there are news at
the respective application server. In such a case, an application server sends registration

3developer.android.com/google/gcm
4developer.apple.com/notifications
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IDs identifying the individual mobile devices and the message to the push notification
service. The service itself guarantees delivery and sends the message immediately or later
in case the addressed device is offline at the moment, see Subfigure 3.3a. At the mobile
device, the operating system forwards the message to the appropriate application.

The registration IDs are generated in a registration process as depicted in Subfigure 3.3b.
First, the mobile device reports its sender ID as well as the application ID to the push
notification service, and receives a registration ID in response. In a second step, the
mobile device forwards this registration ID to the application server.

Spotique modifies the registration insofar as mobile devices not only forward the regis-
tration ID, but also their MAC address to a central server that replaces the application
server. The actual communication is depicted in Subfigure 3.3c: Sniffing on the local
network a mobile device gains the MAC address of a node in proximity. To send a
message, the sender asks the central server for the respective registration ID and sends it
in combination with its message to the push notification service that reliably forwards
the message to the intended receiver. Once the receiver’s registration ID is known, the
central server is not needed for succeeding messages and the channel can be even used to
communicate with nodes that are not in local proximity anymore (c7).

Due to being a wide-spread peer-to-peer protocol, Bittorrent is increasingly used in StaaS
and SaaS services for data synchronization among their internal nodes. The protocol
uses a tracker that enables peers to locate others. Nodes announce their files available for
download at this tracker by sending the torrent’s hash file, a peer ID, IP address, port
number, etc. The peer ID field is random and can therefore carry covert communication.
The receiver accesses the content by requesting available seeders from the tracker. The
latter sends all nodes providing the respective downloads including the IP address and
the peer ID. By means of the address, the receiver identifies the covert channel’s sender
and infers the covert information from the ID field (c8). There exists also a compressed
tracker response format, which omits a peer ID. In this case, the authors propose the
use of another field – the alternative address. This field had originally been intended
to enable connection passing through Network Address Translation (NAT) devices or
proxys [76] (c9).

3.1.4 Discussion

Literature describes very different covert channel approaches. On the one hand, covert
channels (c1, c2) exploit low layers of networking; on the other hand, approaches like
(c5, c6) utilize the application layer. In any case, it boils down to (1) a sender that is
able to modulate a certain resource (packet timing, stored files, etc.), and (2) a receiver
that is able to infer this modulation. This point of view leads to the most obvious ways
of covert channel mitigation – removal of (a) the shared resource in total, of (b) the
sender’s capability of modulation or of (c) the receiver’s capability of observation. The
latter two are commonly referred to as isolation (among tenants). Indeed, all alternatives
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are prevalent nowadays, and have their distinct drawbacks for the provider and/or the
customers.

The first strategy, i. e., rigid closure of potential covert channels, is common among IaaS
providers. For higher payment, they provide dedicated instances5 that are guaranteed
to be alone on a physical server, or are solely co-resident to other instances of the same
customer. This appears to be practicable in utterly sensitive scenarios, but not for the
majority of cases as resource pooling and sharing is one of the cornerstones enabling
computing as a utility for reasonable prices. Dedicated instances do not only have higher
hourly fees6, but a comparably high, hourly registration fee is charged in addition. This
fee is independent of the number of running instances, and discriminates low-volume
customers.

The more common approach however remains isolation, i. e., tenant behavior must not
impact the other at all or only in a minimal way. It naturally opposes optimal resource
utilization as isolation itself consumes resources. The cloud provider however might favor
to lease these resources out to other customers in order to gain higher revenue instead
of investing into better security7. Finally, both strategies – dedicated instances as well
as isolation – protect against other tenants, but not against channels like (c6) that can
be performed by practically everbody; the sender does not have to be a regular cloud
customer or user.

In consequence, we believe that other directions of mitigation appear more promising, and
should be considered in future research. Nowadays strategies focus on hindering covert
channels as mentioned above, but development of novel covert channels – especially with
the daily introduction of new cloud applications – might be as quick and straightforward
as those for video gaming [77]. Like ancient Egypt lived with the annual Nile flooding,
one might adapt mitigation strategy in a similar manner for cloud computing, i. e., living
with the existence of covert channels, but protecting sensitive data against leakage via
such channels. On the one hand, there are hardware-based approaches. For example, [78]
protects security-relevant data like keys from unauthorized access by means of hardware-
based control flow integrity, [79] proposes the implementation of additional hardware
functionality that protects from a compromised hypervisor accessing its guests’ memory
page tables. On the other hand, there are software-based approaches; [80] partitions
applications among more vulnerable public clouds running uncritical portions, and private
clouds running more sensitive ones; [81] overlays public clouds with private clouds to
meet higher security levels. Approaches like [78] and [80] apparently require a plan of
action to distinguish critical from uncritical data, e. g., by means of risk analysis, while
[79] and [81] protect all and might be more favorable for a cloud provider that is unaware
of user data details.

5e. g., https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
6e. g., https://aws.amazon.com/ec2/pricing/
7Obviously, a provider is interested in a basic level of security to prevent everyday attacks, but might

refrain from investment into more sophisticated solutions. Beyond, providers and customers naturally have
contradicting interests. For example, customers wish instances that are resilient to malware; potentially
increased resource use by malware however implies more revenue for the provider.
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Cloud providers tend to camouflage their infrastructure for ostensible reasons of security;
but providers consider their knowledge on infrastructure deployment also as their oper-
ational value that has to be kept secret. This behavior might increase an adversary’s
effort to develop covert channels, but also hinders customers from performing a detailed
security analysis as well. This line of action conflicts with security’s basic principle
of disclosure [21]. Disclosure, however, offers substantial benefits for both customers
and cloud providers. First, cloud security can benefit from analysis through external,
e. g., academic, review as known from the field of cryptography. Second, disclosure
might accelerate innovation in general (even beyond the field of security), and lead to
the development of novel cloud applications that are in turn hosted at disclosing cloud
providers (resulting in additional revenue). For example, car manufacturer Tesla declared
its patents to be open source for exactly this reason [82, 83]. Especially cloud providers
running their own hardware infrastructure do not have to fear new competitors as entry
to this highly competitive market requires not only experience, but also immense upfront
capital for physical infrastructure. Cloud computing requires a standardized way of
disclosure that allows to keep cloud providers their worth of protection assets, and is
trusted by customers at the same time.

3.2 Approaches for Side Channels
In this section, we describe cloud-related side channels. For better readability, we call the
entity that undeliberately reveals secret information victim, and the entity that accesses
this information the adversary. We arrange side channels in five categories according to
the secret information that they reveal and pre-requisites on placement of the adversary
and the victim.

• Internal side channels are used by an adversary to reveal aspects about her own
virtual machine or account. In this case, the cloud provider is the victim.

• By means of placement side channels, an adversary finds out about a victim’s
placement within the cloud.

• An adversary exploits co-residency side channels to gather information about
neighbors, i. e., the victim and the adversary are co-resident on the same physical
server.

• Co-customer side channels allow an adversary to reveal information about a victim
that resides in the same cloud, but not necessarily on the same physical server, i. e.,
without the pre-requisite of co-residency.

• Finally, we discuss en-route side channels that are related to website fingerprinting.
An adversary exploits network traffic characteristics to infer content that is accessed
by the victim, and has therefore reside en-route, but not necessarily in the cloud,
to analyze the traffic.
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Figure 3.4: Remote Assessment of Fault Tolerance

3.2.1 Internal Side Channels

Internal side channels represent a novel type of side channels insofar as they provide
customers information that are easily accessible in traditional IT landscapes but remain
hidden in clouds. By evading cloud services’ non-disclosure, they are means of gathering
information about the provided infrastructure or providers’ compliance with service level
agreements.

Being used for data backup, cloud storage providers claim to use fault-tolerance in order
to guarantee that data is not lost in case hardware components fail. General best practice
in cloud computing as well as in traditional computing is data duplication across different
hardware as well as physical data centers, i. e., locations. Thereby, the question how
customers can verify a provider’s guarantees arises.
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[36] presents remote assessment of fault tolerance by means of a challenge response
protocol. First, the client requests the delivery of a number of data blocks from the
storage solution. The latter retrieves these blocks. The time it takes to respond reveals
the level of the provider’s fault tolerance as it is assumed that a higher number of hard
drives speeds up the response.

Figure 3.4 highlights this fact: The client requests three blocks in both cases. In the
first scenario of Subfigure 3.4a, all blocks are stored on a single drive. Thus, the total
time to deliver the response encompasses (1) the latency between client and server to
deliver the challenge, (2) three times the period to read a block from the drive and (3)
the latency to deliver the response back to the client, see also Subfigure 3.4c. As the
total time measured is going to be higher than a threshold that is calculated by means
of network and drive timing models, the client infers insufficient fault-tolerance. In the
alternative scenario of Subfigure 3.4b, the blocks are available on all drives. In this case,
the time to deliver the response consists of (1) the latency between client and server,
and (3) the latency on the return path. As the three blocks can be fetched from the
three drives simultaneously, the (2) period for reading a block just adds once to the total
time, see Subfigure 3.4c. As the total time is below the threshold, one can deduce that
sufficient fault-tolerance is provided (s1).

[34] complements this approach by assessing whether data is replicated over a number of
geographically distributed data centers by measuring response time as well. The authors
developed a model that allowed to infer the origin of cloud data in dependence of the
response time and the client location (s2).

Both channels (s1, s2) measure the same physical quantity, i. e., response time, but infer
from the results onto different internal states of the cloud. This raises the question
whether both side channels can be applied to the same cloud, and still provide results
with high accuracy. Control theory uses a related term observability to determine if and
to which extent system internals can actually be inferred from available outputs [84].
Applying these concepts to (cloud) computing could help to assess potential impact of
competing co-located side channels (s1) and (s2) onto their accuracy.

Cloud providers expand their data centers gradually and in accordance with their
economic necessities. For example, a data center might initially consist of hardware
A; is expanded by additional physical nodes of hardware B as the hardware market
advanced and faces another expansion with nodes of hardware C. Such hardware upgrades
transform data centers from homogeneous to heterogeneous. Variations in hardware
performance propagate in virtual machines, which then may provide more or less hardware
performance for the same money albeit being of the same instance type. [85, 86] use
standard benchmarks, i. e., UnixBench, RAMspeed, Bonnie++, in combination with
self-developed benchmarks to evaluate CPU, memory, disk and also network performance.
With the gained knowledge, a customer is able to apply cost-saving approaches and
choose a machine with better performance. We also refer to [87] for a more sophisticated
strategy for performance optimization (s3).
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Figure 3.5: Side Channels checking Co-Residency of Virtual Machines using Packet
Flooding

3.2.2 Placement Side Channels

In terms of cloud computing, placement refers to the physical server a virtual machine
resides at and we refer to the respective side channels as placement side channels. They
are of special interest due to making it possible to reveal concrete information on a
victim’s location in advance of an attack. A unique aspect in clouds is co-residency
detection, i. e., inferring whether a certain virtual machine is placed on the same physical
server as oneself. This is of interest for adversaries as a number of hypervisor exploits
require previous co-residency. Exploitation typically consists of two steps: First, the
adversary instantiates a number of virtual machines and checks for co-residency of the
adversary’s machine with the victim. Second, she executes the exploit to harm her
neighbor. However, co-residency checking is also of interest for benign customers to assess
risks from neighbors. The literature describes three different approaches: (1) address
vicinity, (2) measuring round-trip times and (3) the generation of deliberate delays in
neighbor traffic.

Following the assumption that nearby nodes have close addresses, [88] developed a rapid
test for non-co-residency in the Amazon cloud: If two node addresses are not within the
same /24 IPv4 network prefix, they are not co-resident (s4). However, two addresses
within the same prefix do not necessarily indicate co-residency. While this side channel
appears inconspicuous due to the sole need of the victim’s address, it requires knowledge
on the respective cloud provider’s addressing strategy as behavior differs.
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While adversaries are looking for other virtual machines on the same physical server
in IaaS clouds, they look for other platforms on the same virtual machine in PaaS
clouds. Platforms of different customers share the operating system, and communicate
with cloud-external nodes by means of the same IP address. Thus, a simple address
comparison reveals co-residency [89] (s5). Similarly, co-resident virtual machines in IaaS
clouds had the same gateway - the Xen hypervisor’s privileged virtual machine running
the respective devices drivers (Dom0 ) - in the past [35]. But the gateway is hidden now,
at least at Amazon instances [88].

Round-trip times have been reported to be shorter among neighbors than among arbitrary
cloud-based nodes [35] – a fact potentially caused due to short-circuiting of the hypervisor
for performance reasons [90]. We denote such side channels as (s6).

Assuming an adversary checking for co-residency with a victim based on flooding, two
alternatives are available as depicted in Figure 3.5. First, the adversary maintains a
legitimate connection from an external node to the victim. At the same time, she
floods the network from her cloud-based virtual instance, see Subfigure 3.5a. In case
this flood has a negative impact on the arrival packet rate, the virtual machines are
co-resident [70, 71] (s7). Alternatively, the adversary can flood her own virtual machine
from another external node, see Subfigure 3.5b. If extra latency is introduced into the
legitimate connection, the virtual machines are again co-resident [37] (s8).

The basic principle of (s7) and (s8) is equivalent to their relative covert channels (c1) and
(c2). The successful establishment of such covert channels between different nodes of the
adversary implies co-residency of her virtual machine with the victim and forms a side
channel. The reason lies in the fact that without co-residency these channels would not
operate. Comparing the side channels, (s7) requires less nodes that are operated by the
adversary in comparison to (s8). On the contrary, (s8) does not necessariliy require an
adversary-controlled cloud instance and allows to check whether two virtual machines of
strangers are co-resident. Then, an adversary might first attack a less secured neighbor
before targeting the actual victim via the hypervisor.

3.2.3 Co-Residency Side Channels

Once co-residency is verified, an adversary is interested in further information about her
neighbor. On the one hand, this additional information makes it easier to plan an attack;
on the other hand, information about the neighbor is also helpful for benign customers,
e. g., when deciding whether to stay, or terminate this virtual machine and instantiate a
new one due to overlapping resource demands.

In [91, 92], timing side channels in shared event schedulers are examined. In the context
of cloud computing, the appropriate scenario is depicted in Subfigure 3.6a. An adversary
aims to infer a victim’s (legitimate) networking behavior, e. g., to find usage patterns,
peak loads or idle times. Therefore, she sends a low-bandwidth, high-frequency probe to
the victim’s neighbor and awaits the response. As both virtual machines share a packet
scheduler the following holds: the more victim traffic, the longer the round-trip times of
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the probes. We denote side channels of this type with (s9). The impact on the victim’s
privacy depends on the applied scheduling algorithm. First-come-first-serve provides high
performance, but protects privacy least. The other extreme – protecting privacy at the
cost of lower performance – is time-division-multiple-access [92].

The adversary could also directly probe the victim. However, there are scenarios where
probing a neighbor appears more attractive: For example, a direct connection to the
victim might be suspect. Further, the adversary needs a responding service of the victim.
If such a service is not present, she might opt for a neighbor offering such a service. In
comparison to (s7) and (s8), (s9) aims to reveal traffic volume, and not co-residency but
requires previous co-residency. The exploited principle is similar to the one of covert
channels (c1) and (c2). A virtual machine’s traffic delays neighbors’ traffic. The traffic
causing the delay is deliberately caused by the adversary or sender in (c1), (c2), (s7)
and (s8), but not in (s9). As in (s8), the adversary of (s9) does not have to control a
cloud-based instance and does not have to register at the cloud provider.

In [70, 71], traffic is measured in a relative way by maintaining a measuring connection
to the victim as well as a reference connection to a co-resident neighbor under the
adversary’s control, see Subfigure 3.6b. A changing ratio between the connections’
throughput indicates a change in the victim’s traffic. Any other causes for decreased
throughput are filtered: network congestion or change in another co-resident load would
impact the reference as well as the measuring connection in the same manner and not
change the ratio. As its related covert channel (c1) and co-residence detection technology
(s7), the packet arrival rate is measured (s10).
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A more generic approach to infer neighbor resources is provided in [48]: Using two
virtual machines – one is the adversary, the other the victim – that compete for network
bandwidth on the same physical node, the authors show that causing CPU bottlenecks
to the victim by requesting computing-intensive dynamic webpages enables the adversary
to increase its network bandwidth. While this is presented as an attack mechanism called
resource-freeing attack in [48], it might also serve as a side channel. If one experiences
increased resource allocation for oneself while trying to trick a neighbor into such a
bottleneck, it is possible to infer the neighbor’s resource demand in normal operation
(s11).

Considering (s10, s11), there are subtle differences in requirements. (s10) requires to
connect to a victim via TCP and to regularly download some data whereas (s11) narrows
this down to dynamic web pages. These differences are caused by the actual attack
vector that is exploited by the respective side channel. (s10) utilizes the bottleneck of
networking, (s11) the bottleneck of computing at the CPU. Finally, (s11) emphasizes
mutual dependence of resources. However, this mutual dependence appears to be
widely ignored with respect to cloud security and might become a starting point for the
development of future attacks.

3.2.4 Co-Customer Side Channels

In contrast to co-residency side channels, we refer to side channels that reveal information
about other cloud customers without requiring co-residency as co-customer side channels.

Data deduplication in StaaS does not only lead to covert channels, but also to related
side channels: A customer can check whether a file has already been uploaded to the
cloud and infer, e. g., whether somebody has placed confidential or illegal data in the
cloud [73, 74]. Thereby, the algorithm that has already been used in the related covert
channels (c3) and (c4), see Subfigure 3.2a, is followed. For example, [74] investigated the
amount of copyright-protected material stored in Dropbox and found that it had been
heavily used for storing piratebay.org torrents (s12).

IaaS assigns customers the highest level of customization, but also puts great effort into
concealment of their internal infrastructure. Following the publication of [35], a number
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of classic network diagnosis tools were disabled, e. g., tracerouting. However, [37] shows
that it is still possible to count intermediate hops between two virtual machines. Its
principle is highlighted in Figure 3.7: The Internet Protocol’s TTL field is generally
decreased by one at every intermediate router, and discarded in case its value equals zero.
Thus, the victim performs several trials of TCP connection attempts, and increases the
TTL field from zero with every failed trial. The lowest TTL that causes a successful TCP
SYN/ACK response is equivalent to the number of intermediate hops (s13). A single
intermediate hop between virtual machines might indicate that they reside on the same
server rack [88], and this in turn is of interest for power attacks: A simultaneous increase
in power demand of machines on the same rack might in turn cause power outage by
tripping the circuit breaker and results in denial-of-service [45].

Cloud-based nodes are typically reachable with an external address, but also have an
internal address to be reachable for other cloud-based nodes. From an adversary’s
perspective, the internal address is of greater interest. First, firewalls might allow traffic
from cloud-internal addresses while blocking external. Second, an adversary attacking
a cloud-based victim from another cloud instance is able to utilize more bandwidth in
comparison to attacking from outside as there is typically a high-speed cloud-internal
network. For correlating an internal with an external address, [45] as well as [37] propose
means of address deanonymization.

In [45], the authors highlight that the Domain Name System (DNS) differentiates
between cloud-external and cloud-internal requests. While a request from outside the
cloud provides an external address for a certain domain, queries from another cloud-based
node lead to the respective internal address for the same domain due to performance
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reasons. An adversary might simply correlate these addresses after two DNS requests
(s14).

Alternatively, the adversary controls two nodes, at least one of them must be cloud-based
to reach nodes by means of their internal address as depicted in Figure 3.8. The internal
node sends a high amount of traffic to an internal address, while the other maintains a
legitimate connection to the victim via the external address. If the latter experiences
extra latencies, the two addresses belong to the same virtual machine, otherwise the
flooder continues to the next internal address (s15).

The setup of (s15) is analog to (c2) and (s8); however, the legitimate connection is
maintained to the host that is also probed. (c2) and (s8) split these two connections
among two neighbors. Comparing (s14, s15), the adversary requires different prerequisites.
(s15) needs an external address, and (educated) guesses on internal addresses or vice
verse. (s14) requires a domain name for resolution, and thus no previous knowledge
on addresses. Further, mitigation of the latter appears rather simple and a provider
could decide to include external addresses in all DNS responses; though, this might cost
resources as internal traffic is detoured. Mitigation of the first appears rather lavish
as it requires changes of subtle networking details (at the hypervisor or the operating
systems).

IaaS clouds frequently offer a way to publish machine images from third parties. These
images contain pre-configured operating systems and can be instantiated by customers.
However, the customer has to trust that the publisher has not left malicious code or back
doors in them, as there is no control by the cloud provider. In [93], the authors discovered
a number of virtual machines using the same Secure Shell (SSH) host key revealing
their origin from the same machine image (s16). This has several drawbacks: First, it
is possible to identify virtual machines that are inferred from the same machine image.
Second, an adversary might instantiate the image herself, and prepare an attack specific
to this image. Third, virtual machines are typically offered in different performance
classes, and an adversary might infer a machine’s class as certain images support only a
limited number of different types.

Cloud providers are strongly interested in operating systems and the exact version
installed on hosted virtual machines for the purposes of penetration testing, virtual
machine management and digital forensics [94, 95]. While these papers rely on memory-
based technologies, traditional network-based operating system fingerprinting is also
applicable. Here, we can distinguish between active approaches with probing [96, 97]
(s17) and passive ones with accessing logs or eavesdropping [98] (s18). However, as
network-stack implementations are relatively robust over versions of the same operating
system, they are not capable of providing the exact version.

(s16) seems to be more advantageous for malicious purposes than (s17) and (s18).
Identifying the specific machine image instead of the operating system’s version allows an
adversary to tailor her attack more accurately to the victim. However, cloud providers
could easily mitigate (s16) through checking machine images that are offered via their
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market place, or by regularly checking the virtual machines for such striking features as
equivalent host keys. In contrast, mitigation of (s17), (s18) appears unlikely as it would
require to align all operating systems to behave in exactly the same manner for all details
of networking, e. g., initial TTL values, timeouts, etc.

3.2.5 En-Route Side Channels

Beyond the above-mentioned categories, there are two side channels related to accessed
websites. [99, 100] investigated side channels in SaaS providers and discovered that
modern SaaS applications make it possible to infer private information about customers.
The reasons are low entropy input, e. g., a limited number of alternatives for marital
status, and stateful communication of a known program (despite encryption is used).
This is exacerbated by the use of Web 2.0 technologies, e. g., AJAX, where little chunks
of information are transmitted separately. By analyzing tax refund or online health
services, the program logic and its internal states have been modelled to allow guessing
the current position of a user within the model (s19).

[101] presents a technique for inferring the accessed website from frequency distribution
of packet sizes despite using privacy enhancing technologies, e. g., Tor. This way an
intermediate node, e. g., the cloud provider itself, is able to know which websites were
accessed by hosted instances. A similar approach based on the measurement of volume,
time and the direction of traffic is presented in [102] (s20).

3.2.6 Discussion

Clouds appear to be a black box for outsiders, but also for their customers. Thus, side
channels have gained momentum with the success of cloud computing. Based on our
literature research, we infer that interpretation of side channel results has to be performed
with care. On the one hand, different side channels measure the same physical quantity
in order to extract different information. For example, (s1) measures file access time to
assess a file’s existence on different drives. (s2) measures the same to infer geographic
location, i. e., the data center, of a file that is stored in the cloud. On the other hand,
interpretation is often dependent on the cloud provider and side channels cannot be
re-used without adaption. For example, (s4) allows statements on co-residency and
claims that instances that are not within the same /24 network prefix are definitely not
co-resident. This was proven to be valid for Amazon EC2, but might not hold true for
Rackspace, Google Compute Engine, Microsoft Azure or any other provider. Finally,
cloud providers evolve their infrastructures without noticing customers. This means that,
once revealed, side channels will not necessarily work in the future. For example, Dropbox
appears to hinder (s12) now by uploading the files in any case [103].

Side channels can also be categorized according to their application scenarios. In
Section 2.4, we identified three distinct application scenarios for side channels, namely
industrial espionage, compliance checking and reconnaissance. Table 3.1 highlights
suitability of presented side channels for these scenarios. Thereby, we separated industrial
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s3 X X
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s4 X X X

s5 X X X

s6 X X X

s7 X X X

s8 X X X

Co-Residency

s9 X X

s10 X X

s11 X X

Co-Customer

s12 X X X

s13 X X X

s14 X X

s15 X X

s16 X X

s17 X X

s18 X X

En-Route
s19 X X

s20 X X

Table 3.1: Suitability of Side Channels wrt. Application Scenarios
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espionage into two sub-categories. On the one hand, industrial espionage might be
directed against the cloud provider itself to find details about its infrastructure. On
the other hand, espionage might target somebody residing in the cloud, i. e., a cloud
customer. The table indicates that the application scenarios are congruent with our five
categories, e. g., all internal side channels serve industrial espionage against providers,
and compliance checking; all placement channels serve espionage against other customers,
compliance checking and reconnaissance. The odd ones appear to be (s12, s13) as they
additionally serve industrial espionage against the provider in comparison to other co-
customer side channels. The reason therefore lies in the distinct nature of these channels.
(s12) allows not only to infer whether another customer has uploaded a specific file to the
cloud storage, but also enables to find out whether the provider utilizes deduplication
per se (or not). (s13) enables not only to infer the hop distance to a potential victim
(espionage against customer), but might also be used to scout the whole cloud networking
infrastructure by launching multiple instances and measuring the hops en-route (espionage
against provider).

Further, we conclude from Table 3.1 that most side channels serve predominately malicious
purposes, i. e., espionage or reconnaissance for later attacking, and should apparently
be mitigated. Internal side channels (s1-s3) represent an exception as these kind of side
channel reveal information like hardware and geographic spread or instance hardware
types in a relative manner. This information supports the customer with regard to his
own cloud participation, and further does not reveal any major trade secrets of cloud
providers. Nevertheless, we believe that utilization of side channels for benign compliance
checks is just a consequence of customer’s lacking insight into the cloud infrastructure.

Many side channels have the potential to become a covert channel, or are accompanied
by an associated covert channel as emphasized in Section 3.4. Thus, mitigation for
these covert channels can potentially mitigate side channels, as well. At the moment
dedicated instances and better isolation are predominant but protect only against side
channels requiring co-residency. Disclosure of internal infrastructure involves external
review, which increases the likelihood of discovery and mitigation of harmful side channels.
However, protection of data from illegitimate memory access as for example described
in [79] does not mitigate side channels, as information that is revealed via side channels
is frequently not stored in memory.

Cloud computing seems to lack a methodical approach for security. At the moment, an
arms race is taking place between research and cloud providers, and security is added
in a retrospective manner. I. e., whenever a vulnerability like a side channel is detected
it is patched. For example, [35] was the very first paper publishing cloud scouting by
means of ordinary diagnosis tools like ICMP Echo Requests. In response, several cloud
providers totally or partially filter ICMP [33]. The Dropbox client appears to have
changed as well and is now uploading every file to the cloud in order to hinder (s12) [103].
Security however should be considered right from the beginning, i. e., in the design and
development phase. The community is challenged to develop a planned approach to
guarantee clouds that are secure by design. If security becomes part of the specification,

47



3. A Survey on Secret Communication in Clouds

the potential for side channels (but also other kind of secret communication) is likely
to decrease. Such an approach might be inspired by Privacy-by-Design [104] that even
becomes mandatory according to soon-to-be European legislation [105].

3.3 Approaches for Obfuscation

Obfuscation techniques provide tools to achieve anonymity for people when using the
Internet, e. g., Tor [30]. A major drawback of some of today’s anonymity tools is the
limited amount of proxy or relay nodes that allow packet rerouting. On the one hand,
people want to stay anonymous; but on the other hand, they prefer not to route traffic
from other users who want to stay also anonymous. As a solution, [106] proposes Dust
Clouds, which consist of short-lived virtual machines running Tor that are launched at
cloud providers. By providing specified machine images, adequate separation between
a user’s home node and the virtual machine is maintained with low effort. The issue
remaining is billing for these virtual machines because billing data still allows linking
back to the user and prepaid solutions are not widely available.

Based on the same idea, [107] presents Cloud-based Onion Routing (COR) an ecosystem
using Tor that introduces another layer of indirection between the cloud provider and the
communication partners. These intermediate anonymity service providers rent virtual
machines from cloud providers, and run the relay nodes. Clients with the wish to
anonymously communicate may create their own relay circuit spanning multiple cloud
and anonymity service providers. This way communication spans multiple administrative
boundaries to overcome trusting a single provider. Payment relies on encrypted tokens
(o1). The authors further claim that Tor nodes are easily blocked due to having publicly
announced, typically static addresses, but are also actively found by the Great Firewall
of China [108]. Moving relays to the cloud enables frequent address change, but censors
also tend to refrain from blocking cloud providers due to societal and economic reasons.

Countries applying censorship sometimes even refrain from blocking encrypted services
in case they are (economically or socially) important. Circumvention approaches over
such services are ignored as they would force censors in computationally expensive traffic
analysing techniques, and false positives might hamper innocuous people. CloudTransport
as presented in [109] is such a hide-within system, and exploits public cloud storage
providers as tolerated encrypted services.

The architecture, depicted in Figure 3.9, connects a user in a censor’s jurisdiction with
a bridge by means of a shared storage account as a rendezvous point. The bridge is
operated outside of the censored area, e. g., by volunteers. The user client wraps its
network packets into a file, and uploads the latter to the account. The bridge waits for
and reads the file, forwards the packets and deletes the file afterwards. The response is
delivered back the same way: The bridge writes a file into the account for the user client.

The advantages for the respective communication partners are manifold: First, Cloud-
Transport tunnels over available cloud storage protocols and promises to be indistinguish-
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Figure 3.9: CloudTransport: Architecture

able from ordinary storage use. Approaches that imitate certain protocols are typically
more prone to detection. Second, albeit discovering bridges is easy for observers it cannot
impede CloudTransport by filtering traffic as the clients are connected to the cloud storage
and the censor does not want to stop the latter service. Third, bootstraping is simple by
means of an encrypted ticket that is written into a bridge-owned dead drop, and clients
do not have to be informed of a bridge’s address change (o2). A Tor client in contrast
requires notification over a changed bridge address as well as attacking a bridge/filtering
traffic towards a bridge negatively impacts data transmission.

The other aspect of obfuscation concerns botnets aiming at concealment of their command
and control communication; otherwise, they risk detection. It has become a recent trend
to install communication on social networks with the motivation that this traffic is
lost amidst all the legitimate traffic users produce. [110] characterizes a Twitter-based
communication structure (o3): The bot makes a request to a certain twitter account, and
receives an RSS feed containing Base64-encoded text. After decoding, one or more URLs
of the URL shortener bit.ly are gained. Being redirected to the original address, zip files
are downloaded, decoded and executed. Gathered information is returned to a botnet’s
server. [111] even proposes a way to create plausible cover messages for the tweets to
stay under the radar.

[112] however use Pastebin (o4), a clipboard-like website for sharing text-based content
without the need for registration. Users might upload data anonymously, and can share
their data with others by means of an URL containing a random ID. The latest posts
are also accessible via the time line. A botmaster might access the data by means of the
URL that it received from an infected device, or alternatively fetch the timeline at a
regular interval. While the providers might remove suspect messages, the adversary itself
cannot be identified. The server cannot solely be used as a dropzone for stolen data, but
also to disseminate commands from the master to the bots.
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SaaS based command and control structures’ biggest advantages is their undetectability.
It seems impossible to easily and accurately distinguish a botnet’s behavior from legitimate
one when using certain applications - especially as they have millions of users. Comparing
(o3) with (o4) also reveals a difference on an application-level approach of mitigation:
While Twitter could disable the account that had been hard-coded in (o3), the anonymous
way of Pastebin hinders such an action.

For mobile botnets, a more sophisticated solution using push notification services is
proposed in [113]. Thereby, the botmaster’s commands are sent from a command and
control server, that replaces the application server in Subfigures 3.3a and 3.3b, to infected
mobile devices (bots) via the push notification service. High stealthiness in general is
gained: First, the bot communicates only once directly with the command and control
server – during registration8. Second, neither heartbeat traffic nor command dissemination
cause high overhead or suspicious patterns in the traffic in comparison to apps, like mail
clients and messengers, that are typically installed on mobile devices. The command and
control traffic appears as a benign application’s one (o5).

The question, however, arises why the use of push notification services as command and
control infrastructure is considered as obfuscation, while Spotique (c7) is considered a
covert channel in Section 3.1. We classified (o6) as obfuscation because hiding among a
large set of nodes and users is the focus, but the technology itself is used as intended –
even though in bad faith. In contrast, (c7) creates a communication channel for messaging
between mobile devices. The channel is used in an unintended way.

Discussion

Our literature research reveals five approaches of obfuscation that utilize cloud computing.
The motivation for going into the cloud however varies; in total, we identified three distinct
reasons therefore. First, anonymity tools like Tor lack proxies and relays; there are not
enough volunteers running such nodes. However, this shortage should not be considered
as a shortage of computing power per se; people rather refrain from provision due to
potential consequences, e. g., cyber-attacks against their own servers or legal prosecution.
Dust Cloud and Cloud-based Onion Routing aim to overcome this issue by means of cloud
computing. Cloud computing introduces an additional layer of indistinctness between
volunteers (operating and paying for the relay) and the relay itself.

The second type of obfuscation wraps (censored or illegitimate) communication into
traffic that appears benign like CloudTransport – a well-known strategy to overcome
censorship [114]. Wrapping traffic in cloud applications exploits the economic and societal
power of cloud computing as popular cloud applications are not blocked – despite being
known to be used for overcoming censorship. If a censor totally blocked this cloud service,

8In an enhanced architecture, the return path has also been detoured over the push notification
service and there is no direct contact. Thereby, the server generates a second push notification account,
subscribes itself and delivers the necessary credentials in the malicious application.
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o1 o2 o3 o4 o5

Whistleblowing X X

Censorship Evasion X X

Exchange of Illegal or
Regime-Critical Content X X

Malware Communication X X X

Table 3.2: Suitability of Obfuscation wrt. Application Scenarios

it would risk severe societal or economic consequences. If it blocked certain connections,
the risk of overblocking, i. e., blocking benign connections, would remain.

Third, numerous cloud applications are social apps like Twitter, and enable people to
communicate in an easy way. Entry barriers are kept low to motivate people to join, but
might negatively impact users’ privacy and security [115]. Such low entry barriers have at
least two consequences. On the one hand, a high number of people join the service, and
cause lots of application-related traffic. In consequence, appearance of such traffic does
not raise suspicion. On the other hand, entry barriers are low for botmasters and bots
as well. This third kind of obfuscation exploits cloud computing due to its freedom of
suspicion. Summarizing, motivation for cloud-based obfuscation is threefold: (1) Cloud
computing provides an additional layer of anonymity; (2) cloud applications have a high
societal or economic value and thus remain uncensored; (3) cloud applications have a
high number of users, and thus related traffic appears unsuspicious.

Beyond, application scenarios appear to be a distinctive feature among obfuscation
approaches. In Section 2.4, we identified four applications scenarios for obfuscation,
namely whistleblowing, censorship evasion, the exchange of illegal or regime-critical
content as well as malware communication. Table 3.2 shows the suitability of the five
obfuscation approaches with respect to these four application scenarios. Approaches
(o1, o2) are appropriate for the scenarios of whistleblowing, censorship evasion and the
exchange of illegal or regime-critical content. The remaining approaches (o3 - o5) appear
to serve malware communication, i. e., command-and-control communication, only. The
first group appears to serve predominantly benign purposes and its implementations are
of rather high technical finesse in comparison to the latter. Thus, mitigation against
obfuscation in general remains a double-edged issue. Following the principles of our
Western democracies, (o1 - o2) should rather be supported. Misusing social networks for
bots should undoubtedly be mitigated. The development of mitigation against “benign
approaches” might even play into the hands of censors.

Accordingly, we identified a number of future research directions with respect to obfusca-
tion. These directions reflect the conflicts between mitigation and support, but also the
multidisciplinarity of related application scenarios. Censorship evasion, whistleblowing
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and regime critics are not solely technical challenges. Thus, evaluation of obfuscation’s
quality should not only rely on technical analysis; but also on expertise from sociology to
answer the impact on society and how users actually use certain solutions, economics to
investigate the monetary impact of certain actions and political science to investigate the
impact on international relations.

Cloud applications might increase their entry barriers in order to prevent bots from
joining their network, e. g., by using Completely Automated Public Turing Tests to Tell
Computers and Humans Apart (Captachas) [116]. This, however, increases the effort
for ordinary customers as well, and they might decide to use less demanding apps as
an alternative. For example, less secured mobile messengers tend to be more popular
than more secure alternatives [117, 118]. On the one hand, usable security might be
able to develop enhanced security mechanisms for cloud applications that are handier
for humans than today’s, but protect against the participation of botnets. On the other
hand, machine-to-machine communication [119] as caused by botnets is likely to have
different characteristics than human communication. Thus, traffic anomaly detection is
worth to be considered in future research for this distinct scenario. Similarly, a censor
could aim to detect traffic anomalies in a cloud application’s traffic, and abort suspect
connection attempts [114]. The CloudTransport approach (o2) wraps packets of HTTP
requests into files that are stored at an StaaS service. File updates caused by such secret
communication might differ from ordinary file updates, and allow to infer improper use
of the respective storage service.

3.4 Classification
In this section, we classify covert channels, side channels and obfuscation according to
their characteristics. A taxonomy is depicted in Figure 3.10, and provides an overview
on means of secret communication; it distinguishes covert channels in resource sharing,
deduplication and novel application covert channels; side channels in internal, placement,
co-residency, co-customer and en-route side channels. Details on these sub-categories of
covert and side channels have been provided in Sections 3.1 and 3.2.

3.4.1 Classification of Covert Channels

We classify covert channels described in Section 3.1 according to the following attributes:

Exploited Channel: This attribute names the concrete technology which is exploited
in the respective covert channel.

Symbol Encoding: Symbols are used to transmit the information content in telecom-
munications and define how a secret message is encoded.

Sender/Receiver: The attribute identifies the respective source and sink of the secret
channel, which are not necessarily the same as for the overt communication. We distin-
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Secret Communication

Covert Channels

Side Channels

Obfuscation

Resource Sharing Covert Channels

Deduplication Covert Channels

Novel Application Covert Channels

Internal Side Channels

Placement Side Channels

Co-Residency Side Channels

Co-Costumer Side Channels

En-Route Side Channels

Figure 3.10: Taxonomy of Secret Communication in Cloud Computing

guish between cloud providers, cloud-based nodes, (cloud-)external nodes and neighbors as
defined in Subsection 2.1.3. Neighbors are cloud-based nodes but have to fulfil additional
constraints with respect to co-residency. Thus, we use the more specific term of neighbor
if applicable. Further, we add nodes en-route, i. e., nodes between the sender and receiver
of an overt channel.

Service Model: We distinguish between SaaS, PaaS, IaaS and StaaS as defined in
Subsection 2.1.1.

Transmission Type: Transmission type states whether data is transmitted to a single
receiver (unicast), a group of receivers (multicast) or a all receivers simultaneously
(broadcast) – a distinctive feature also mentioned in [1]. Covert channels do not contain
addresses as in classic networking protocols. Thus, we refer to channels that are accessible
by everybody as broadcast. Those having a higher barrier than just measuring the
respective quantity, e. g., by having some kind of token or a certain placement, are
considered as unicast or multicast in dependence of the number of receivers typically
fulfilling this requirement.
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ID Ref. Exploited Channel Symbol Encoding Sen-
der

Re-
ceiver Service Tr.

Type
Bi-
dir.

Resource Sharing Covert Channels

c11 [70,
71] NIC sharing packet arrival rate nei. ext. IaaS b n

c21 [37] NIC sharing latency of file
download ext. ext. IaaS b y

Deduplication Covert Channels

c3 [73] data deduplication availability of
certain files ext. ext. StaaS u y

c4 [73] data deduplication inserted values in
pre-def. template ext. ext. StaaS u y

c5 [74] shared storage file content ext. ext. StaaS u y

c6 [74] data deduplication file content ext. ext. StaaS u y

Novel Applications Covert Channels

c7 [53,
75] push notification service notification message

content ext. ext. SaaS u y

c8 [76] P2P tracker mechanism Peer ID field int. int. SaaS2 u y

c9 [76] P2P tracker mechanism alternative address
field int. int. SaaS2 u y

Reference (Ref.)
Sender/Receiver: cloud provider (prov.), neighbor (nei.), cloud-based node (int.), external node (ext.), node
en-route (en-rou.)
Transmission Type (Tr. Type): unicast (u), multicast (m), broadcast (b)
Bidirectionality (Bidir.): yes (y), no (n)

1 Channel is based on co-residency.
2 P2P protocols are used at various SaaS for updating internal servers in datacenters.

Table 3.3: Covert Channels in Cloud Computing

Bidirectionality: This column gives information on whether a channel is capable of
information transfer in both directions, i. e., not only from the sender to the receiver, but
also from the receiver to the sender.

The results of classifying the presented covert channels are shown in Table 3.3.

3.4.2 Classification of Side Channels

We categorize side channels described in Section 3.2 according to the following attributes:

Extracted Information: This column identifies the information that is gained by the
application of the respective side channel.

Measured Quantity: This attribute names the physical quantity that is measured by
the side channel’s operator to infer the extracted information.
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ID Ref. Extracted Information Measured Quantity Service

Internal Side Channels

s1 [36] hardware spread of file file access time StaaS

s2 [34] geographic location of file file access time StaaS

s3 [87, 85,
86] instance hardware type network bandwidth IaaS

Placement Side Channels

s4 [35, 88] non-co-residency IP network prefix IaaS

s5 [89] co-residency IP addresses PaaS

s6 [35] co-residency round-trip time IaaS

s7 [70, 71] co-residency packet arrival rate IaaS

s8 [37] co-residency latency in file download IaaS

Co-Residency Side Channels

s9 [91, 92] neighbor’s traffic amount round-trip time IaaS

s10 [70, 71] neighbor’s traffic amount TCP throughput ratio
(measurement/reference connection) IaaS

s11 [48] neighbor’s resource use network bandwidth IaaS

Co-Customer Side Channels

s12 [73, 74] file availability file upload StaaS

s13 [37] no. of intermediate hops min. TTL of successful connection IaaS

s14 [45] private address internal DNS resolving IaaS

s15 [37] private address latency in file download IaaS

s16 [93] Amazon Machine Image (AMI)
type

SSH host key IaaS

s17
[96, 97]
icw1

[94, 95]
operating system/version protocol response behavior (active) IaaS

s18
[98]
icw1

[94, 95]
operating system/version protocol behavior (passive) IaaS

En-Route Side Channels

s19 [99, 100] inserted value in web
application

response data size SaaS

s20 [101, 102] accessed website frequency distribution of packets IaaS

1 in conjunction with

Table 3.4: Side Channels in Cloud Computing

Service Model: see Subection 3.4.1

The results of side channel classification are shown in Table 3.4.
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3.4.3 Potential of Side Channels Becoming Covert Channels

ID Symbol Encoding Sender Receiver Feas.
Tr.
Type

Bi-
dir. ID

Internal Side Channels

s1 number of distinct physical disks prov. ext. n - - -

s2 geographic locations prov. ext. y u n f1

s3 physical server of virtual machine prov. int. y u n f2

Placement Side Channels

s4 network prefix or
physical server of virtual machine1

prov. int. y b n f32

s5 network address or
virtual machine of platform1

prov. ext. y b n f42

s6 round-trip time or
physical server of a virtual machine1

prov. nei. y m n f52

s7 physical server of a virtual machine prov. ext. y b n f62

s7 packet arrival rate int. ext. y b n c12

s8 physical server of a virtual machine prov. ext. y b n f72

s8 latency in file download ext. ext. y b y c22

Co-Residency Side Channels

s9 traffic amount nei. or
ext. ext. y b y f82

s9 physical server of a virtual machine prov. ext. y b n f92

s10 traffic amount nei. or
ext. ext. y m n f102

s10 physical server of a virtual machine prov. ext. y m n f112

s11 levels of CPU use ext. nei. y m n f122

s11 physical server of a virtual machine prov. nei. y m n f132

Reference (Ref.)
Sender/Receiver: cloud provider (prov.), neighbor (nei.), cloud-based node (int.), external node (ext.), node
en-route (en-rou.)
Feasibility: yes (y), no (n)
Transmission Type (Tr. Type): unicast (u), multicast (m), broadcast (b)
Bidirectionality (Bidir.): yes (y), no (n)

1 The provider is able to modify the one or the other; however, the receiver cannot distinguish.
2 Channel is based on co-residency.

Table 3.5: Side Channels with Potential of Becoming a Covert Channel (Part I)

Side channels in general have the potential to become covert channels. Necessary
conditions for covert channel existence were proposed in [120, 121]. The defined Constraint
of Communication condition requires the existence of confidential information at respective
nodes. Then, a Potential for Communication is identified in case communication from
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ID Symbol Encoding Sender Receiver Feas.
Tr.
Type

Bi-
dir. ID

Co-Customer Side Channels

s12 file availability ext. ext. y u y c3,c5,c6

s13 no. of intermediate nodes prov. int. n - - -

s14 internal addresses prov. int. y b n f14

s15 internal addresses prov. int. y b n f15

s16 host keys int. int. or
ext. y b y f16

s17 protocol-specific response behavior int. int. or
ext. y b y f17

s18 protocol-specific behavior int. en-rou. y m n f18

En-Route Side Channels

s19 web-service’s input fields ext. en-rou. y m n f19

s20 access of certain websites int. en-rou. y m n f20

Reference (Ref.)
Sender/Receiver: cloud provider (prov.), neighbor (nei.), cloud-based node (int.), external node (ext.), node
en-route (en-rou.)
Feasibility: yes (y), no (n)
Transmission Type (Tr. Type): unicast (u), multicast (m), broadcast (b)
Bidirectionality (Bidir.): yes (y), no (n)

1 The provider is able to modify the one or the other; however, the receiver cannot distinguish.
2 Channel is based on co-residency.

Table 3.6: Side Channels with Potential of Becoming a Covert Channel (Part II)

this source to a sink exists. However, the assessment regarding confidential information
must be done for every system individually. In the following, we identify the necessities
of a side channel to become a potential covert channel:

• At least two distinct symbols are necessary to represent 0 and 1.

• A sender is somebody who is able to change the symbols.

• The receiver is able to access these symbols after transmission to infer the secret
message.

Feasibility: Feasibility refers to whether there is potential for a covert channel. Beyond
the identification of at least two disjunct symbols, sender and receiver, the change in
states has to be of adequate effort. We define adequate effort as follows: (1) The change
from one symbol to another one is possible within seconds. (2) The change does not
require any physical modification.
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ID Ref. Channel Sender Receiver Service Tr.
Type

Bi-
dir.

o1 [106,
107] Tor traffic ext. ext. IaaS u y

o2 [109] cloud storage ext. ext. StaaS u y

o3 [110] Twitter communication ext.
(bot master)

ext.
(bot) SaaS b n1

o4 [112] Pastebin communication ext.
(bot)

ext.
(bot master) SaaS b y

o5 [113] push notification service ext.
(bot master)

ext.
(bot) SaaS u y

Reference (Ref.)
Sender/Receiver: cloud provider (prov.), neighbor (neigh.), cloud-based node (int.), external node (ext.), node
en-route (en-rou.)
Transmission Type (Tr. Type): unicast (u), multicast (m), broadcast (b)
Bidirectionality (Bidir.): yes (y), no (n)

1 The respective references describe a unidirectional approach, but bidirectionality would be feasible.

Table 3.7: Obfuscation in Cloud Computing

Transmission Type, Bidirectionality: see Subsection 3.4.1
These fields are filled solely in case of feasibility.

The results of potential covert channels based on the presented side channels are provided
in Tables 3.5 and 3.6. We identify 18 out of 20 side channels that have the potential to
become a covert channel, five thereof even allow the development of two covert channels
each. For every of these future covert channels, we introduce an additional identifier with
the initial letter f and a number for unique identification in the remainder of this section.
Alternatively, it is referred to the respective covert channel with the initial letter c if this
channel has been already described in the literature.

3.4.4 Classification of Obfuscation

We classify obfuscation techniques according to the following characteristics:

Channel: This column identifies the respective communication channel that is used
for obfuscated traffic. In comparison to covert channels, the channel is used as intended.

Sender, Receiver Service Model, Transmission Type and Bidirectional: see
Subsection 3.4.1

The classification results are provided in Table 3.7.
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3.5 Findings and Discussion

In this section, we summarize and discuss our findings. We group our results into three
classes: general findings, applicability to communication scenarios, and potential damage.

3.5.1 General Findings

Cloud as Obfuscation Infrastructure: The connection of external nodes via covert
channels further means that the cloud serves as an intermediate, which is rather a typical
characteristic of obfuscation, see Table 2.1. Still, we consider (c2-c7) as well as (f8)
and (f10) covert channels as they use a resource unintended for communication or in an
unintended way for information transmission and do not hide in the mass. Nevertheless,
it must be stated that these covert channels include an aspect of obfuscation, which
might enable even better hiding.

Interpretation of Side Channel Information: Side channels deliver various kinds
of information. However, measured quantities seem ambiguous for some approaches:
Table 3.4 reveals that the access time is an indicator of the file’s hardware spread (s1),
but also of its geographical spread (s2). In a similar way, latency during a download is
introduced in the case of probing for co-residency (s8), the neighbor’s traffic amount (s9)
as well as in the case of address deanonymization (s15). Thus, one has to use care at the
interpretation of measurements.

Secret Communication Approaches and Cloud Delivery Models: We found
approaches for secret communication in SaaS, PaaS, IaaS and StaaS clouds. This
indicates that there is potential for secret communication in all types of clouds; however,
the distribution among delivery models varies. Covert channels arise primarily from
StaaS ; side channels from IaaS and obfuscation from SaaS. Approaches in PaaS represent
a minority.

Potential for Covert Channels from Side Channels: The classification of covert
channels from the literature in Table 3.3 has shown that almost all of them still connect
external nodes with each other although a number of additional stakeholders are available
in cloud environments, e. g., the provider or a neighbor. At the same time, considering
potential future covert channels based on today’s side channels revealed a wide variety
of sender/receiver combinations, see Tables 3.5 and 3.6. We identified potential covert
channels between cloud providers and cloud-external nodes or cloud-based nodes. This
leads us to the conclusion that these novel combinations have not been considered in
depth by now.

Potential of Side Channels Checking for or Demanding Co-Residency: The
analysis of side channels becoming covert channels revealed a distinct group of channels.
These side channels have two characteristics: First, they check for co-residency or require
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previous co-residency in their setup. Second, a third party (actively) performs a certain
action that consequently enables to infer information from the measured quantity. These
actions encompass flooding from a victim’s neighbor (s7), or flooding the neighbor (s8),
generating general traffic (s9, s10) or modulate resource use by means of certain network
requests (s11).

These channels bear two degrees of freedom (influence factors) each that can be exploited
as symbols in a potential covert channel: The cloud provider might move the virtual
machine to another physical server and void co-residency indicating a symbol, and moving
the machine back indicating another symbol. This leads to a series of covert channels
having the provider as a sender, and placement as symbols (f6, f7, f9, f11, f13). Their
difference lies in the measured quantity. Alternatively, the third party might act as a
sender by performing its action or not (or at another intensity) leading to side channels
among internal and external nodes in various constellations (c1, c2, f8, f10, f12). Every
of the above mentioned side channels results in two covert channels each. In comparison,
(s4-s6) each lead only to a single covert channel (f3-f5) because no third party is required.
The provider might change a machine’s placement or its network address, but the channel
remains anyway the same from the receiver’s point of view.

3.5.2 Applicability to Communication Scenarios

In the following paragraphs, we aim to discuss the approaches of secret communication
with their relevance to the secret communication scenarios defined in Section 2.4.

Secret Communication from Cloud Providers: With the analysis considering side
channels becoming potential covert channels, we identified additional stakeholders in
communication. One might ask for the adequate application scenario of covert channels
with the cloud provider as sender (f1-f7, f11, f13-f15). In this context, we want to highlight
their potential in insider industrial espionage or whistleblowing.

Side Channels to get Insight about Cloud Providers: In Section 2.4, we identified
three application scenarios for side channels, among them outside compliance checking.
In compliance checking, side channels might be used to gain knowledge that is not
directly accessible by means of the operated machine or account, and verify a providers’
conformance to the service level agreement. Channels (s1) and (s2) are of interest to
prove whether the provider has spread data for fault tolerance over various hardware
and geographical locations, (s3) allows to choose a certain type of offered hardware.
(s12) makes it possible to check whether a StaaS provider applies deduplication across
multiple customers. (s13) allows to infer a provider’s internal network structure. Beyond,
side channels might be applied for protection: (s4-s8) allow to ensure that a cloud
instance is alone on a physical server, or only co-resident to benign ones, e. g., of the
same organization. (s12) makes it possible to check whether a confidential file has been
moved into a StaaS solution.
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Side Channels to Search for Victims: The majority of side channels seem to enable
the search for victims to plan a subsequent attack: (s5, s6, s7, s8) enable checking for
co-residency or at least for vicinity (s4, s13); (s9-s11) allow to infer a neighbor’s traffic
load; (s16-s18) reveal a node’s operating system or image type; (s14, s15) its internal
address. (s12) allows to identify the presence of a victim by the availability of a specific
file. (s19, s20) enable to spy on a victim’s communication. Industrial espionage against
cloud customers might use the same channels, but without the intention of attacking.

Obfuscation Objectives: All types of obfuscation connect external groups, see Table
3.7. However, approaches (o3-o5) are used for command and control between the
botmaster and its bots. (o1, o2) have been proposed with the good in mind, i. e.,
censorship evasion and the transmission of regime-critical content; both support unicast
and bidirectional communication. In comparison, obfuscation for bot nets appears
less sophisticated with respect to their method of concealment as well as the lack of
encryption and tend to be rather broadcast (o3,o4). An exemption is the unicast and
more sophisticated approach (o5). It might thus be worthwhile to think about it as a
means of censorship evasion or transmission of regime-critical content. Obfuscation for
bot nets is based without exception on SaaS clouds. It seems that the diversity and
seemingly endless supply of SaaS is a good substrate for C&C infrastructures of botnets,
and (partly) a successor of the formerly used IRC channels.

3.5.3 Potential Damage

The potential damage that can be caused by secret communication depends on several
factors.

Covert Channel Capacity: Covert channels’ impact is considered to depend on their
capacity. The literature review revealed only the capacity of the following two approaches:
4 bits per second (c1), 20 bytes (c8) or 4 byte (c9) per announcement to the tracker. In
some scenarios, a single bit of transmitted data suffices, while a high-capacity channel is
useless in others due to an overall lack of sensitive data. Hence, we believe that it is more
promising to ask which information is gained by the adversary, and which advantages
does the latter take from this information.

Value of Side Channel Information: In the case of side channels, one has to ask
oneself likewise whether it is acceptable that the information gained from them is known.
While this might be the case for internal side channels that reveal aspects about one’s
own instance, it is definitely not the case if other customers are measured, as there are
privacy concerns.

Dependance on Obfuscation Objectives: For obfuscation, the answer seems di-
vided. Approaches such as cloud-based Tor rather deserves support, while hindering
botnets from using benign infrastructure seems worthwhile. However, mitigation remains
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a double-edged sword and the development of mitigation might play in the hand of
censors.
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CHAPTER 4
Investigating Firewalls in IaaS

Cloud Computing

In traditional networks, perimeter firewalls protect internal nodes from attacks from
the outside; the firewall as well as the internal nodes are managed by the same entity
and considered to be benign. Cloud computing blurs this concept of benign internal
and potentially malicious external; basically everybody is able to rent cloud instances
residing within the perimeter and run their applications there, while the provider remains
unaware, i. e., considering used protocols, ports, etc., in terms of networking. Nevertheless,
firewalls remain an important appliance within cloud computing, and a number of cloud
providers offer firewalls to their customers. At the same time, providers aim to conceal
their infrastructure for superficial reasons of security, but also in order to protect their
competitive edge. In consequence, the cloud remains a black box for their customers,
and so do the offered firewalls. Details on their type, location within the architecture,
functionality, etc. are rare; documentation is rather unsatisfying due to its recipe style;
and in turn, security considerations are shots into the dark.

In this chapter, we aim to overcome this gap in knowledge, and investigate the role and
security of firewalls at major Infrastructure-as-a-Service (IaaS) cloud providers. Therefore,
we utilize firewall tests as side channels in order to gain more details on the deployed
firewalls, and investigate the latter’s evolution over time between 2014 and begin of 2016.
Our analysis shows that cloud providers are constantly introducing new functionality or
improving usability. Thus, we provide our extensible test tool on an open-source base
to the public. Summarizing, our results shed light on firewall aspects which are not
accessible by average cloud tenants. We address our results’ implications on securing
cloud instances, and consider improvements for the provider as well as the machine
owners.

The remainder of this chapter is structured as follows: Section 4.1 provides background
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Provider Service Model

Amazon Web Services IaaS

IBM (Softlayer) IaaS / PaaS

Microsoft Azure IaaS / PaaS

Google IaaS / PaaS

Rackspace IaaS

Table 4.1: A Comparison of Cloud Computing Providers

on major IaaS providers, and different types of firewalls. As the providers typically refrain
from providing in-depth information on their infrastructure, we develop an extensible
tool for firewall probing in Section 4.2. In Section 4.3, we analyse firewall evolution
over time. Section 4.4 introduces additional test cases focusing on the aspects of TCP
filtering, fragmentation and Path MTU discovery. Section 4.5 discusses the results and
infers practical advice for gaining secure virtual machines. The chapter is concluded in
Section 4.6.

4.1 Background

In this section, we provide an overview of today’s cloud computing providers and a
typology of firewalls.

4.1.1 Major IaaS Cloud Computing Providers

The current cloud computing marketplace is a young market and still relatively diverse
[11], but a number of larger providers hold considerable market share. This paper looked
at a number of different cloud computing providers who all enjoy a considerable level of
market share in the cloud computing space, summarized in Table 4.1. Consistent with
the origins and high initial setup costs of a cloud computing platform, they are all large,
well recognized names in the technology sphere. Providers are ranked in approximately
decreasing size of market share, although the way in which cloud computing operates
makes it extremely difficult to make accurate comparisons. Companies are often under no
obligation to report the extent of their revenue which comes from cloud computing, and
the use of different metrics makes direct comparison difficult. However it is universally
acknowledged that Amazon is the largest player in the cloud computing space, with as
much cloud revenue and capacity as the majority of the competition combined [122].
Many providers offer a number of service types or are difficult to classify. Google’s
Compute Engine uses an IaaS model much the same as Amazon’s Elastic Compute Cloud
(EC2), which shares little with Google App Engine, the company’s other offering firmly
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in the PaaS area. Parts of the Azure cloud suite are also PaaS offerings, but their virtual
machines are a standard IaaS product.

4.1.2 Firewall Typology

A firewall is a component residing at the border of two networks which inspects traffic
going from one to the other. For best security results, no traffic should bypass the device
to guarantee inspection of the whole communication process. Reflecting the historic
development of these security tools, firewalls are grouped into three types [123].

The most simple are packet filters. They hold a number of rules which define allowed or
disallowed traffic; while the first is forwarded to the other network, the latter is dropped.
Rules include source and destination addresses as well as ports identifying the service.
The decision is based solely on the currently inspected packet and no connection context
is maintained. The advantages of this general approach allow the firewall to handle
a high level of service without any respective in-depth knowledge; this also allows the
integration of newly developed services the firewall is not already aware of. Beyond, the
simple architecture has only a limited need for resources in comparison to other types.
On the other hand, they do not have full insight into the communication as a number of
protocols are stateful, i. e., packets may be in general valid, but not at this certain point
in communication.

Stateful filters go beyond this approach and maintain a context for connections. This allows
the use of previously seen packets as part of the decision regarding the current packet [124].
This way it is possible to guarantee that certain packet types are protocol-compatible;
not only considering the message format, but also their point in the communication
process, although at the cost of requiring more memory. Typically, real-world stateful
filters also use simple packet filtering for the best effect.

The third step in firewall evolution are application layer filters which have special code for
every application. While this allows even deeper inspections and is thus also considered
to be more secure, the drawback is the specialized code for every single application. This
generally leads to the situations that only the best known services are available, without
any extension for niche or novel protocols, and is even more costly in terms of computing.
Currently, deep packet inspection is all the rage, which also scans the packet payloads,
e. g. for malware.

For all kind of firewalls, the permissive and the restrictive approach can be applied.
Describing the default behavior, a permissive firewalls allows all traffic to pass unless
specified otherwise; restrictive configurations drop everything unless specified. Assuming
in general everything as evil, the latter is far more common.

4.2 Firewall Testing Tool
In this section, we present our firewall test tool. First, architectural aspects are considered;
then, we describe our implementation.
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Figure 4.1: Alternatives for Hypervisor-Based Firewalls
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Figure 4.2: Assumption for Black Box Firewall Testing in Cloud Environments

4.2.1 Architectural Consideration

Although firewalls are offered by multiple cloud providers, none of them allows deep
insights into the architecture. The available documentation is typically of limited use
due to being more like a handbook. With regard to firewalls, the following is known
from a customer’s perspective: (1) We are able to configure ports and addresses, mostly
from a web interface for a group or a single machine. (2) Every customer is able to
make a configuration for his own needs. However, the providers refrain from stating
whether the customer can configure partially a perimeter firewall this way or a hypervisor-
based firewall. While Amazon’s approach of security groups lets one think of a more
de-centralized approach, Microsoft Azure naming of end points lets one rather believe
in a configurable perimeter. In the case of a hypervisor-based solution, we are further
not able to infer whether the firewall is placed in front of the hypervisor, or afterwards
directly before the guest operating system, see Figure 4.1 for both alternatives.

While this seems minor at first sight, the order may have serious impact: Hypervisors are
not obliged to deliver packets to the guests without any alteration. For example, they
can decide to reassemble fragments before forwarding for reasons of performance. One
has to be aware, that the connection between hypervisor and guest is not constricted
to typical network requirements like a MTU (Maximum Transmission Unit). Thus, in
the first case of Figure 4.1 the packets investigated by the firewall are how they traveled
the network, while they might have been altered by the hypervisor in the second case.
This has impact on the way firewall rules have to be defined as well as the complexity of
the firewall mechanism itself, e. g., a hypervisor reassembling the fragments releases the
firewall from doing so.

As a consequence of these uncertainties, we have chosen to establish a black box model
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including the firewall independent of its location in combination with the hypervisor
functionality, see Figure 4.2. We are able to access the prober as well as the virtual
machine for measurements and therefore define the following general test approach:

1. Start of the capturing tool on the receiver, i. e., the virtual machine,

2. Establishment of pre-conditions, e. g., TCP handshake,

3. Sending of test packet(s) from the prober to the virtual machine,

4. and observe whether packet(s) has/have been captured by the sniffing tool.

We prefer this over invoking a response from the virtual machine as this would add more
chances for failure. By means of this set-up and specific test scenarios, we aim to answer
the following question:

Which aspects (e.g. protocols and respective fields) are filtered? This aspects
encompasses the ISO/OSI layer the firewall is inspecting and which protocol header
fields are included into inspection. Conceivably, we will heavily work with the network
layer protocol IP and transport layer’s TCP and UDP. This also include layer-dependent
mechanisms, e. g., fragmentation.

Do cloud firewalls reveal stateful or stateless behavior? Knowledge on firewall
behavior enables customers to estimate the extent of protection and the residual measures
that are necessary to gain the required level of protection, e. g., by additional host-based
firewalls. As today’s state-of-the-art are stateful firewalls, it would be unusual to find
plain packet filters. Thus, we will investigate the “extent of statefulness” of the tested
implementations.

Are application layer filters implemented? Application layer filters would imply
a large intervention into a customer’s traffic and might restrict their free choice of ports.
On the other hand, it would provide more control on what is going into the cloud. We
limit our research however on application layer filters for HTTP as we believe that this
would be the first choice beneath SSH and FTP for providers for implementation, due to
the vast number of web servers in the cloud.

4.2.2 Implementation

As a precondition we presume that at least one port is reachable by the testing client,
which is used later as a feedback and communication channel between the test client and
the server. Our approach consists of two components: A testing client that executes test
cases against a cloud instance, and a server component running on the cloud instance and
recording the traffic during test execution. A test case implements a concrete scenario
outlined in Section 4.3.2. The test case can evaluate the network traffic that reached the
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Client

start recording

Test execution

receive traffic dump

Server

tcpdump

Figure 4.3: Communications between Test Client and Server Component

server instance in order to decide if the test case was blocked by the cloud firewall, i. e.,
it represents a side channels revealing a firewall’s range of functionality. In best case
the test case hides a randomized token, e.g., by adding it to the payload, within the
test connections and seeks afterwards in the traffic dump for this token. If the token is
present, the test case fails because the request has passed the cloud firewall.

Figure 4.3 gives a detailed view of the communication between the test client and the
server component running on the cloud instance. In detail, the client connects to the
server component running on a cloud instance using a plain TCP connection. This
channel is used for coordination and callbacks. A single test case is stored as a separate
file in a directory. The client loads a test case from this directory and creates a test
case instance. Afterwards the client tells the server component over the communication
channel to start recording the network traffic using tcpdump. Subsequently the client
executes the test case and requests the tcpdump of this session from the server component.
The test case instance now evaluates the success of this test iteration using the dump
received from the server. The client repeats this steps until all test cases are executed.
We released the implementation including all test cases1.

4.3 Results: Firewall Evolution over Time
Public cloud providers constantly improve their offer, and might also alter firewall
capabilities in this processes. Thus, we ran our experiments twice, and compare today’s
results (2016) with past ones from the year of 2014. Thereby, we identify various
modifications. In particular, Subsection 4.3.1 focuses on cloud-based firewalls’ default
configuration, Subsection 4.3.2 explains the utilized test cases for probing using our
firewall test tool, and finally Subsection 4.3.3 analyzes the results.

1https://gitlab.sba-research.org/johanna/cloud-firewall-monitoring-tool
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4.3. Results: Firewall Evolution over Time

4.3.1 Default Setup at Major Providers

In this step, we investigate the availability of firewalls and their scope of functionality.
Out of the providers in Table 4.1, Rackspace and IBM (Softlayer) could not be tested as
they do not offer a firewall, the subject of this paper. We looked at Amazon’s Elastic
Compute Cloud (EC2), Microsoft’s Azure Cloud Platform and Google’s Compute Engine.
It has to be noted though that Azure offers now two deployment models – Azure Classic
and Azure Resource Manager. New virtual machines should be launched into the more
recent Resource Manager mode, while the old machines remain in Classic mode if not
migrated.

The latter – EC2, Azure and Compute Engine – provide firewalls to protect machines,
groups of machines or virtual machines. However, only Compute Engine names them
firewall, EC2 goes for security groups and Azure Classic for endpoints. Azure Resource
Manager additionally provides network security groups. Thus, we include them separately
into our considerations. All of them are now configurable via the web interface that
also allows to instantiate virtual machines; but vastness of the interface makes finding
configuration sometimes difficult. Adequate documentation is provided, mostly in recipe
style and by means of practical examples.

By default, all offer good security by vastly blocking inbound traffic, preventing unsecured
machines being exposed to the Internet unintentionally. Nevertheless, there are subtle
differences in the inbound configuration as cloud instances have to be remotely accessed
anyway: Amazon EC2 and Microsoft Azure solely opens port 22 for SSH in case of
Linux instances; alternatively, port 3389 for Remote Desktop Protocol (RDP) in case
of Windows instances. Google Compute Engine opens both ports independently of the
respective instances. In all cases, rules can be added to allow certain transport layer
protocols, ports and protocols. Although it varies whether single values or (IP/port)
ranges are allowed.

Amazon as well as Azure’s network security groups provide separate configurations on
inbound and outbound traffic, while others provide inbound configuration only and in
general all kind of outbound traffic is allowed to pass. Amazon provided only inbound
configuration in the older EC2-classic configuration as well, so it might also be included in
the future at the other providers. Although outbound traffic is configurable, the default
configuration of Amazon and Azure Resource Manager allows any kind of outgoing traffic.
Beyond, Amazon is the only provider giving the advice to restrict SSH connections to
your own IP address when instantiating a new virtual machine, and provides a mechanism
for automatic detection therefore.

Azure now not only provides endpoints as a means of protection, but also network security
groups that contain rules for the protection of a virtual network. While they were only
controllable in a programmatic way at the end of 2015, they are now also accessible via
the web interface. By default no network security group is present, and protection is
thus solely provided by endpoints. An overall overview can be seen in Table 4.2.
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4.3. Results: Firewall Evolution over Time

This chapter concentrates on provider provided software firewalls. Some providers, such
as IBM Softlayer, offer the option of a dedicated hardware firewall, which is beyond
the scope of this paper and has more in common with traditional enterprise networks
than the cloud environment. Similarly, we are not looking at local, instance or operating
systemlevel firewalls, an area covered by traditional firewall products such as iptables
and other commercial offerings. We are primarily interested in the new challenges that
the cloud brings to security, and how provided perimeter firewalls can work towards
mitigating these threats.

Finally, let us conclude the changes since our first measurements in 2014:

• Amazon EC2 provides functionality to automatically determine one’s own IP
address – a valuable support for firewall configuration for less experienced users.
Amazon’s intention is to restrict SSH/RDP access for remote maintenance.

• Google Compute Engine’s firewall is now also configurable by means of the web
interface. Previously, it was necessary to use Google Cloud SDK via the termi-
nal. This change makes control easier for users without or limited command line
experience.

• In its new deployment model, Microsoft Azure provides network security groups
in addition to endpoints. They allow separate inbound/outbound configuration.
While they had to be configured by means of the Azure command line in the past,
they are now accessible via the web interface.

4.3.2 Test Cases

For our test tool, see Section 4.2, we implement 26 test cases according to Table 4.3.
With these test cases, we determine the responses of firewalls to specific inputs, in order
to classify them and to examine how they would respond to certain well known security
threats. The test cases are separated in groups A to E depending on the functionality.
Some test scenarios, e. g., 1 or 7, are benign scenarios to test for functionality and
connection. For a detailed explanation, we refer to the test cases provided with our
testing tool. We chose to examine the firewalls’ responses in the following areas:

A: Internet Protocol (IP): Test cases 1 to 6 cover basic aspects of IP and a variety
of illegitimate field combinations. These scenarios test the extent of packet investigation
on the network layer. At present, we limit the test cases to IPv4 as IPv6 is not widely
supported in public clouds. By now, IBM Softlayer and Rackspace – both not offering
firewalls – are the only providers supporting IPv6 natively at their virtual machines.

B: Fragmentation: The firewall responses to fragmented packets, both normally
generated and “malicious” overlapping packet fragments, were measured in test cases 7
to 11. The same operating system was used for all tests, and kernel level measuring tools
were employed to ensure that the firewall, not the operating system, was responsible for
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the observed behavior. We used both, fragmented ICMP and UDP packets, except for
Azure where only UDP was used, as Azure does not permit ICMP traffic at all.

C: Basic TCP and UDP: Group C scenarios (test cases 12 to 17) cover basics aspects
of the transport-layer protocols TCP and UDP, i. e., invalid source and destination ports
as well as invalid checksums.

D: TCP Flagging: Group D (test cases 18 to 23) contains a number of packets with
TCP flag combinations, tested without a previously established connection. From these
results, we infer whether there are checks on absurd combinations in absence of an
established connection.

E: Stateful Behavior: Stateful behavior, i. e., in combination with an established
connection, is tested with test cases of group E (test cases 24 and 25). In general, all
stateless test cases should be repeated within a connection. In our first measurements,
we saw at a very early stage that stateless behavior is not prevalent, and thus limited
the number of developed test cases.

F: Application Layer: The last group F targets the application layers firewalls. We
target HTTP as it seems to be one of the most heavily used protocols in clouds.

These areas have been well addressed by traditional firewall products.The absence of
any form of firewall logging means that the testing took on a black box approach, with
limited information available even with full access to the firewall configuration menus.

4.3.3 Firewall Responses over Time

We ran the test cases twice, once at the end of 2014 and now (mid 2016); results of
both runs are presented in Table 4.3. We used the firewall default configurations with
slight adaptions: First, we allowed TCP traffic for our testing tool’s synchronization, and
second we opened another port, both for TCP and UDP traffic, for probing. We chose
port 100 (or alternatively port 3333) for the first, and port 6666 for the latter. Where
possible, we allowed ICMP traffic to pass. In the following paragraphs, we describe our
results, and especially highlight differences to our results from the first measurements, as
they indicate further development of cloud firewalls.

A: Internet Protocol (IP): Firewalls filter all these packets as expected; however,
with a single exception. Azure generally disallows ICMP (see test case 1) without any
possibility to opt-in. The other providers allow ICMP traffic; Google by default and
Amazon offers respective configuration possibilities. The results of these test cases imply
that packet investigation on the network layer is not only present, but also successfully
filters malformed packets. We did not find any differences between our results from 2014
and now. All these test cases were originally written using ICMP; however, Azure’s
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A IP 14 16 14 16 14 16 16

1 Valid ICMP Request 7 7 7 7 3 3 3

2 Checksum invalid 3 3 3 3 3 3 3

3 Invalid packet length 3 3 3 3 3 3 3

4 Invalid header length 3 3 3 3 3 3 3

5 Reserved flag unequal zero 3 3 3 3 3 3 3

6 IP protocol number unequal ICMP, TCP or UDP 3 3 3 3 3 3 3

B Fragmentation

7 Benign Fragmentation 7 7 7 3 7 3 7

8 Overlapping Fragmentation 7 7 7 3 3 3 3

9 Overlapping Fragmentation without Terminating Fragment 3 3 3 3 3 3 3

10 Overlapping Fragmentation in Reverse Order 7 7 7 3 3 3 3

11 Tiny Fragments 7 3 7 3 7 3 3

C Transport Layer Protocols

12 Invalid Source Port (TCP) 7 7 7 7 7 7 7

13 Invalid Source Port (UDP) 7 7 7 7 7 7 7

14 Invalid Destination Port (TCP) 3 3 3 3 3 3 3

15 Invalid Destination Port (UDP) 3 3 3 3 3 3 3

16 Invalid Checksum (TCP) 7 7 7 3 7 7 7

17 Invalid Checksum (UDP) 7 7 7 3 7 7 7

D TCP Flags

18 Null Packet (no flags) 7 7 7 7 7 7 7

19 SYN, FIN 7 7 7 7 3 3 3

20 SYN, FIN, PSH 7 7 7 7 3 3 3

21 SYN, FIN, RST 7 7 7 7 3 3 3

22 SYN, FIN, RST, PSH 7 7 7 7 3 3 3

23 FIN 7 7 7 7 7 7 7

E Stateful Behaviour

24 SYN in Established Connection 7 7 7 7 7 7 7

25 ACK without ACK Number 7 7 7 7 7 7 7

F Application Layer

26 Improper HTTP Request 7 3 7 3 7 3 3

Table 4.3: Test Cases and Results per Cloud Provider (3 filtered, 7 unfiltered)
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policy forced us to rewrite them (as well as those for fragmentation, see next paragraph)
for UDP as a transport layer protocol; we provide both to our readers.

B: Fragmentation: While benign fragments (test case 7) passed the firewall at all
providers in 2014, they do not pass in Google and Azure at the moment; unfortunately,
we could not identify the exact reasons from the network traces but consider scapy’s
fragmentation functionality as root. Overlapping fragmentation are mostly filtered;
however, the responses differ with overlapping fragments which are terminated (test case
8). While Amazon still lets them pass, Google and Azure filter them. Their actions are
consistent when the fragments are received in reverse order (test case 10). Looking at the
packet captures from the receiver, we saw that fragmented packets are reassembled before
reaching the virtual machine, i. e., by the firewall or the hypervisor. We believe that this
is done for performance reasons. Changes are prevalent for tiny fragments, i. e., packets
that are reassembled from a single fragment; they are now filtered at all providers.

C: Basic TCP and UDP: Test cases 12 to 17 indicate checks of transport layer
protocol fields. Invalid source ports, i. e., zero, is allowed to pass at all providers, invalid
destination ports are filtered. The latter behavior appears obvious when following a
port-based filtering approach as there is no rule for this port. While invalid checksums
were allowed to pass at our first measurements; Google seems to check them now. While
transport layer checks were absent in 2014; at least Google seems willing to introduce
such checks now.

D: TCP Flagging: Test cases 18 to 22 test absurd flag combinations, provider reactions
differ. While Amazon and Google let them pass, Azure Classic filters all expect the null
packet (test case 18). All providers let FIN packets (test case 23) pass albeit there is no
established connection; such FINs appear however meaningless without the latter. In
conclusion, Amazon and Google do not appear to check flags at all, Azure to a certain
extent. Beyond, we did not identify any changes in comparison to our first measurements.

E: Stateful Behavior: All firewalls allow sending SYN flags in an established connec-
tion as well as packets containing the ACK flag without an acknowledgement number,
i. e., there are no changes in comparison to our previous measurement. In addition, it
appears as there is no stateful behavior at any of the providers.

F: Application Layer: In our previous measurements, no signs of an application
layer firewall were found. Now, it seems that all check for invalid HTTP requests. This
might be an indicator that application layer firewalls have been implemented meanwhile.
However, we saw that Amazon still accepts the header when sent within an established
TCP connection; thus, the results might also be caused by some sort of statefulness.

Additional Findings: Each platform disallows the use of certain protocols: Google’s
Compute Engine does not allow SMTP (port 25) or SMTP over SSL (465 and 587);
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Azure does not permit ICMP packets to be sent or received. In a similar way, EC2 also
blocks sending of SMTP mail by default, though this can be enabled by submitting a
support request and using a set of Amazon APIs (SES). None of the services responded
to either crafted UDP packets or to a UDP scan using the Nmap port scanning tool. The
result were the same no matter if the ports were opened or closed in the firewall. We
see from this that the firewall does not send an ICMP “Port Unreachable” notification
when the port is closed. This is expected for Azure, which completely disallows the use
of ICMP, but perhaps less so for Amazon EC2 and Google Compute Engine.

4.4 Results: An In-Depth Look on Responses

On the one hand, comparison of firewall functionality over time has shown certain
improvements; on the other hand, certain functionality has remained unchanged over
the last years. Thus, we decided to extend our work and investigate the following issues
in more details. First, we focus on overlapping fragmentation. While the firewalls
appear to work well at the very first glimpse, there might be more subtle differences
and shortcomings, see Subsection 4.4.1. Then, we investigate TCP flag-based filtering in
more detail, see Subsection 4.4.2. Finally, we take a look on unknown TCP options, and
Path MTU Discovery, see Subsection 4.4.3.

4.4.1 Fragmentation

According to the results of our first measurements, see Subsection 4.3.3, overlapping
fragmentation appears to be filtered and thus securely handled. In consequence, we aim
to take a more detailed look answering the following questions: Are all fragments filtered?
Are fragments already assembled when reaching the virtual machine, and how are they
assembled? Therefore, we implemented 22 additional test cases according to the ones
proposed in [125]; however, translated to IPv4.

In principle, every test case consists of three fragments:

• The first fragment consists of 24 bytes; thereof, the first eight bytes form the ICMP
header, or alternatively UDP if ICMP is prohibited. The remainder is a fixed string.
Its More Fragments (MF) flag is set as there are further fragments underway.

• The third packet has a fragmentation offset of 24, i. e., it is non-overlapping with
the first fragment, and could form a legitimate packet with the first fragment. Its
MF flag is never set as it is the last fragment.

• The second fragment is sent in-between; and overlaps with the first and/or the
third fragment. Its fragmentation offset as well as its length varies; and so does its
MF flag. Every test case is first executed with the second fragment’s flag unset;
and then with the flag being set.
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Sent Fragments: Received at
Amazon Instances:

Received at Google and
Azure Classic Instances:

Test Case 1:
H A1 A2

B1 B2
C1 C2 C3

MF=0 H A1 A2 C1 C2 C3 MF=0 H A1 A2

MF=1 H A1 A2 C1 C2 C3 MF=1 H A1 A2

Test Case 2:
H A1 A2

B1 B2
C1 C2 C3

MF=0 H A1 A2 B1 B2 MF=0 H A1 A2

MF=1 H A1 A2 C1 C2 C3 MF=1 H A1 A2

Test Case 3:
H A1 A2

B1 B2 B3
C1 C2 C3

MF=0 H A1 A2 B1 B2 B3 MF=0 H A1 A2

MF=1 H A1 A2 C1 C2 C3 MF=1 H A1 A2

Test Case 4:
H A1 A2

B1 B2 B3 B4
C1 C2 C3

MF=0 H A1 A2 B2 B3 B4 MF=0 H A1 A2

MF=1 H A1 A2 C1 C2 C3 MF=1 H A1 A2

Test Case 5:
H A1 A2

B1 B2
C1 C2 C3

MF=0 H A1 A2 B2 MF=0 H A1 A2

MF=1 H A1 A2 C1 C2 C3 MF=1 H A1 A2

Test Case 6:
H A1 A2

B1 B2 B3 B4
C1 C2 C3

MF=0 H A1 A2 B1 B2 B3 B4 MF=0 H A1 A2

MF=1 MF=1 H A1 A2

Test Case 7:
H A1 A2

B1 B2 B3 B4 B5
C1 C2 C3

MF=0 H A1 A2 B2 B3 B4 B5 MF=0 H A1 A2

MF=1 MF=1 H A1 A2

Test Case 8:
H A1 A2

B1 B2 B3 B4
C1 C2 C3

MF=0 H A1 A2 B3 B4 MF=0 H A1 A2

MF=1 H A1 A2 C1 C2 C3 MF=1 H A1 A2

Test Case 9:
H A1 A2
H B1 B2

C1 C2 C3

MF=0 H B1 B2
H A1 A2 C1 C2 C3

MF=0
H B1 B2
H A1 A2

MF=1 H B1 B2 C1 C2 C3 MF=1 H A1 A2
H B1 B2

Test Case 10:
H A1 A2
H B1

C1 C2 C3

MF=0 H B1
H A1 A2 C1 C2 C3

MF=0
H B1
H A1 A2

MF=1 H B1 A2 C1 C2 C3 MF=1 H A1 A2
H B1

Test Case 11:
H A1 A2
H B1 B2 B3

C1 C2 C3

MF=0 H B1 B2 B3
H A1 A2 C1 C2 C3

MF=0
H B1 B2 B3
H A1 A2

MF=1 H B1 B2 B3 C2 C3 MF=1 H A1 A2
H B1 B2 B3

Figure 4.4: Fragmentation in Amazon, Google and Microsoft Clouds
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The test cases as well as the results are shown in Figure 4.4. Every block represents eight
bytes; H an ICMP or UDP header, the remainder letters indicate payload. The columns
show the captured packets at Amazon, Google and Azure Classic instances.

Google and Azure Classic instances show the same behavior: It appears that they drop
fragments when detecting overlapping ones; an exception are solely those with their
own header having a fragmentation offset of zero. In addition, fragments following such
overlapping fragments are also filtered; the results never show a part of the third fragment.
There is further no difference between test cases with a set/unset MF flag. Amazon
instances show different behavior. First, there are two test cases where all fragments are
filtered (test case 6 and 7, each with MF is set). Second, the first fragments appear to be
preferred over later ones; these with an unset MF flags are preferred over those with a
set flag.

With respect to fragmentation, Azure Resource Manager shows different characteristics
than its classic counterpart (not present in the figure). First, it is the only virtual
machine where we see (not assembled) fragments in our network captures, i. e., neither
the hypervisor nor the firewall seem to reassemble them and deliver them as-is to the
virtual machine. Second, it always delivers the first and the second fragment; the third is
delivered in all use cases except 1 to 8, each with MF unset. In consequence, we assume
that all fragments before the first with MF is zero are allowed to pass.

4.4.2 TCP Filtering

Our previous results imply the absence of TCP flag-based filtering at Amazon and Google;
only Azure seemed to check to a certain extent. Nonetheless, we aim to expand our
knowledge on the exact details of filtering, and created 128 additional test cases. In a
first step, we probe all flag combinations, i. e., 64 test cases as a consequence of six flags,
without a previously established TCP connection. In the ideal case, only packets with a
set SYN flags should be allowed to pass in order to establish such a connection. In a
second step, we repeat these tests, but establish the connection before by means of a
TCP handshake.

The results are shown in Table 4.4. As predicted, Amazon and Google do not appear
to check the flags at all. However, Azure shows not only filtering in the absence of
a connection, but also stateful filtering behavior – contradicting our forecasts based
on our first measurements. In the first case, it filters all except the following four
flag combinations (1) S, (2) PS, (3) US, and (4) UPS. This can be seen as a secure
configuration. In the latter case, it filters 24 combinations while letting the remainder
40 pass. These filtered cases are combinations of SYN and FIN, and/or SYN and RST.
These are frequently used for port scanning attempts, and are thus of utter importance to
be filtered. Some remaining combinations do not make sense in a TCP connection, e. g.,
the combination of FIN and RST; however, they appear less threatening in comparison
to the combinations mentioned above. The provider might thus have chosen to let them
pass.
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Amazon and Google Azure (both)
Connection est. no yes no yes

(null) 7 7 3 7

F 7 7 3 7

S 7 7 7 7

SF 7 7 3 3

R 7 7 3 7

RF 7 7 3 7

RS 7 7 3 3

RSF 7 7 3 3

P 7 7 3 7

PF 7 7 3 7

PS 7 7 7 7

PSF 7 7 3 3

PR 7 7 3 7

PRF 7 7 3 7

PRS 7 7 3 3

PRSF 7 7 3 3

A 7 7 3 7

AF 7 7 3 7

AS 7 7 3 7

ASF 7 7 3 3

AR 7 7 3 7

ARF 7 7 3 7

ARS 7 7 3 3

ARSF 7 7 3 3

AP 7 7 3 7

APF 7 7 3 7

APS 7 7 3 7

APSF 7 7 3 3

APR 7 7 3 7

APRF 7 7 3 7

APRS 7 7 3 3

APRSF 7 7 3 3

U 7 7 3 7

UF 7 7 3 7

US 7 7 7 7

USF 7 7 3 3

UR 7 7 3 7

URF 7 7 3 7

URS 7 7 3 3

URSF 7 7 3 3

UP 7 7 3 7

UPF 7 7 3 7

UPS 7 7 7 7

UPSF 7 7 3 3

UPR 7 7 3 7

UPRF 7 7 3 7

UPRS 7 7 3 3

UPRSF 7 7 3 3

UA 7 7 3 7

UAF 7 7 3 7

UAS 7 7 3 7

UASF 7 7 3 3

UAR 7 7 3 7

UARF 7 7 3 7

UARS 7 7 3 3

UARSF 7 7 3 3

UAP 7 7 3 7

UAPF 7 7 3 7

UAPS 7 7 3 7

UAPSF 7 7 3 3

UAPR 7 7 3 7

UAPRF 7 7 3 7

UAPRS 7 7 3 3

UAPRSF 7 7 3 3

Table 4.4: TCP Filtering Behavior With and Without An Established TCP Connection



4.4. Results: An In-Depth Look on Responses

In consequence, we summarize our findings with respect to TCP flags:

• Amazon and Google neither check TCP flags in case of an established TCP
connection, nor in the absence of such a connection. This means that each and
every TCP flag combination is allowed to pass the firewall.

• Azure shows a more sophisticated behavior in both of its deployment models.
Without an established connection, it filters all flag combination except S, PS, US,
and UPS.

• In comparison to the results of Subsection 4.3.3, we could further discover stateful
behavior at Azure. From all (64) flag combination, only 40 are allowed to pass.
The filtered appear to prevent various kinds of port scanning.

4.4.3 Further Findings

In the following paragraphs, we discuss three additional findings considering (1) unknown
TCP options, (2) Path MTU discovery and (3) ICMP Echo Requests. First, we aim to
send a TCP header with an unknown TCP option. The test case included the option
type 111 (which is undefined), and ten bytes of payload. Our results show that these
option could pass at all tested providers.

Second, Path MTU discovery searches for the Maximum Transmission Unit that is able
to pass a network, and is known for causing “black holes” [126] in case of misbehaving
firewalls. If the transmitted bytes exceed a network’s MTU, a router en-route fragments
the latter. However, packets with the DF (Don’t Fragment) bit set are not allowed
to be fragmented en-route; and thus an ICMP Destination Unreachable (ICMP code
4)/Fragmentation Needed (ICMP type=4) is returned. If a firewall now filters exactly
these ICMP message, it breaks Path MTU discovery and creates a black hole for packets.
In consequence, firewalls that allow outgoing IP packets with a set DF bit must also
allow this certain kind of ICMP message as a response. We performed manual checks
leading to the following results: Amazon allows outgoing packets with DF is one as well
as incoming ICMP Destination Unreachable messages; Google filters all kind of ICMP
messages with type is three (but letting others pass!), and both deployment models of
Azure appear to block all kind of ICMP messages, see also Section 4.3).

During this checks, we found another issue of interest. While Azure Resource Managers
prohibits Echo Requests from the virtual machine to other targets; Azure Classics seems
to let them pass as well as their replies. This implies that there is some statefulness
insofar as Echo Replies to outgoing Requests are allowed to pass. In consequence, we
re-tried our checks at Amazon Classic for Path MTU discovery answering to previously
outgoing UDP packets; however, still without success. In consequence, only Amazon
shows behavior that is accordant with RFC 2979 [126].
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4.5 Discussion
The cloud providers Amazon Elastic Cloud Compute, Google Compute Engine and
Microsoft Azure have implemented firewalls for protection of their customers’ virtual
machines. Currently, Azure provides two alternative deployment models Classic and
Resource Manager; the latter not only provides endpoints, but also (more accurately
configurable) network security groups. Current measurements show that quality has
increased since our first measurements at the end of 2014; improvements are found with
regard to filtering quality and/or usability of firewall configuration. Differences are
especially visible with respect to ICMP filtering, fragmentation and TCP filtering.

With regard to filtering, Azure Classic as well as Google have changed their fragmentation
rules; and tiny fragments are now filtered at all providers. Further, HTTP requests
without a previously established TCP connection are not feasible anymore. Beyond,
Google now checks TCP and UDP checksums and filters packets with invalid ones. At
the first glance, the more recent Azure Resource Manager seems to behave the same way
as its older counterpart Azure Classic; however, fragmentation appears to be handled
differently as our more detailed measurements show.

Considering usability, Google Compute Engine caught up and its firewall is now also
configurable via the web interface. Previously, the firewall was solely configurable by
means of command line instructions and made configuration difficult for less experienced
users. We saw a similar change with Azure’s network security groups; at the end of 2015,
they were just configurable in a programmatic way. Now, they are also easily configurable
via Azure web interface.

In a second step, we extended our measurements with respect to three aspects. First, we
investigated TCP filtering – both in the absence and presence of an established TCP
connection. The results are discouraging as solely Azure provides adequate filtering
behavior. In the absence of a connection, just SYN packets (and three of its variants)
are allowed to pass. In the other case, it filters all combination of SYN and RST as
well as SYN and FIN as they do not make sense in a legitimate connection but are
heavily used in port scanning approaches. Amazon and Google neither show some sort
of stateful behavior, nor any attempts of filtering absurd flag combinations. We assume
that cloud providers deliberately allow a wide range of packets since they do not know in
advance what rented machines are used for, and thus refrain from the implementation
of stateful behavior. Despite being though from a security perspective, cloud providers
might prioritize easy handling over better security. As a consequence, we advise customers
to additionally configure further means of protection, e. g., a host-based firewall. This
firewall could not only perform statefully, but also include application layer firewalls and
deep packet inspection; however, there is the drawback of additional resources use at the
customer’s expense.

Fragmentation handling shows a more pleasing picture; but again, strategies vary among
different providers. Overlapping fragments are filtered at Google and Azure Classic
(and these providers might be more vulnerable to denial-of-service attacks in case an
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attacker spoofs overlapping fragments); Amazon aims to make meaningful packets from
the received packets (and thus might be more vulnerable to fragments overwriting each
other). With Amazon, Google and Azure Classic, it seems that some intermediary,
i. e., the firewall or the hypervisor, is reassembling before forwarding traffic to the
virtual machine as we could not identify any fragments in our network captures. Our
measurements at Azure Resource Manager show distinct (not reassembled) fragments;
and lets us conclude that there is no reassembling intermediary. The latter means that
final reassembly is dependent on the operating system. Path MTU discovery appears to
be broken at all providers except Amazon, and appears to be a consequence of ICMP
blocking. It appears that this protocol is still considered harmful; especially as Azure
aims to block it (almost) totally.

We still believe that logging is one of the larger features missing in today’s firewall
implementations. As we have not observed any modification in more than a year, we
draw the conclusion, that a logging feature is not right at the top of the providers’ list of
priorities. Nevertheless, we claim that logging would be an significant improvement for
overall security.

4.6 Conclusion
This chapter examines firewall implementations in public clouds focusing on the major
providers Amazon Elastic Cloud Compute, Google Compute Engine and both deployment
models of Microsoft Azure (Classic and Resource Manager). We develop a tool that
utilizes firewall tests as side channels in order to gain details of firewall implementations.
We took a more detailed look on TCP filtering, fragmentation and Path MTU discovery.
TCP filtering is solely present at a single provider, Azure even shows stateful behavior,
while the remainder do not filter absurd flag combination at all. Fragmentation is
handled by filtering overlapping fragments (Google and Azure), or reassembling “most
meaningful” packets (Amazon). Finally, it seems that an intermediary, i. e., the firewall
or the hypervisor, are already reassembling the packets before forwarding them to the
final virtual machine in most cases. We conclude that the offered firewalls provide a solid
base of protection, and advise customers to configure firewalls according to their needs
when running cloud instances and additionally deploy host-based firewalls. We believe
that there is still room for further gains: all cloud providers could integrate stateful
behavior and logging capabilities.
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CHAPTER 5
Exploiting Network Rate Limits

of the Xen Hypervisor

A key technology in cloud computing is virtualization as provided by the Xen hyper-
visor [46] that enables multiple virtual instances to share a physical server [7]; but at
the same time, resource sharing provides opportunity for adversarial virtual machines
to launch attacks against its neighbors. For example, side channels exploiting shared
hard disks [35] or network capabilities [37] allow to check for co-residency of two virtual
machines; data might be leaked from one virtual instance to another via covert channels
exploiting CPU load [68] or cache misses [69]; an instance might free up resources for
itself when tricking the neighbor into another resource’s limit [48]; and shared network
interfaces allow to infer a neighbor’s networking behavior [70, 71]. Mitigation follows
two principal directions: On the one hand, dedicated hardware eliminates mutual depen-
dencies and thus the threat of co-residency, but contradicts cloud computing’s premise
of resource sharing. On the other hand, isolation reduces the impact of a virtual ma-
chine’s behavior on its neighbors despite resource sharing. With respect to networking,
rate limits are introduced as means of isolation in order to throttle a virtual machine’s
maximum amount of traffic per time interval. This approach is considered to guarantee
fair distribution of bandwidth among virtual instances and mitigates denial-of-service of
neighbors in case a single instance (accidentally or maliciously) requests all bandwidth.
The Xen hypervisor provides such a rate limiting functionality [127].

The introduction of a countermeasure should raise the question whether it does not
form a new attack vector itself. Throttling network traffic however seems to be such a
universal approach that its implementation into the Xen hypervisor is barely scrutinized.
Solely, [47] investigates rate limiting’s quality of isolation; [128] analyzes rate limiting
with respect to bandwidth utilization. This chapter overcomes this gap and examines
the impact of Xen’s rate limiting functionality on security. Our analysis reveals that rate
limits might protect from co-residency threats, but allow (yet unknown) attacks that
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are directed against the rate limited virtual machine itself. In particular, we propose a
side channel and a denial-of-service attack. The side channel reveals Xen’s configuration
parameters that are related to the rate limiting functionality, while the denial-of-service
attack causes up to 88.3 percent of packet loss or up to 13.8 seconds of delay in benign
connections. Our results emphasize that Xen’s rate limiting snaps back, and revision
should be considered.

The remainder of this chapter is structured as follows: Section 5.1 provides details on
Xen’s networking in general and its rate limiting functionality in particular, whereas
Section 5.2 analyzes this mechanism with respect to security. Section 5.3 presents our
side channel revealing configuration parameters and respective measurement results;
Section 5.4 presents three flavors of our denial-of-service attacks and discusses them with
respect to their impact on benign connections. Overall results are discussed in Section 5.5.
Section 5.6 concludes.

5.1 Background

This section first provides a general overview on Xen’s networking architecture. Its rate
limiting functionality however throttles only a virtual machine’s outbound traffic; thus,
we describe a virtual machine’s outbound traffic path in a second step. Finally, we focus
on the credit-based algorithm eventually throttling a machine’s traffic.

General Networking Architecture: The Xen hypervisor follows the approach of
paravirtualization; it provides device abstractions to its virtual machines – in terms of
Xen virtual machines are called domains – so that all sensitive instructions like those for
device I/O are redirected over the hypervisor. Paravirtualizing hypervisors do not need
specific hardware capabilities; but require modifications of the operating systems running
in the virtual machines [46]. With respect to Xen, the hypervisor in the narrower sense
is responsible for CPU scheduling, memory management and interrupt forwarding. The
remainder tasks are delegated to domain0 – a privileged virtual machine with the right to
access physical I/O devices and to interact with other (non-privileged) domains. Abstract
networking devices consist of two distinct parts: (1) netfront devices are provided to
non-privileged domains replacing classic networking interfaces; (2) its counterpart netback
resides in domain0, multiplexes packets from multiple netfront devices and forwards them
to the physical network interface card as in standard Linux operating systems [47, 129].

Outbound Traffic Path: Packets originating from non-privileged virtual machines
(domainN ) have to pass domain0 on their way to the physical network; the respective
handover path is depicted in Figure 5.1. Therefore, Xen provides descriptor rings, i. e.,
ring buffers, as central points of communication. The ring does not directly contain data;
this data is rather stored in buffers that are indirectly referenced via the ring descriptors.
Packets pass this path in the following manner. First, packets are enqueued in the virtual
machine’s network interface TX queue. Then, netfront forwards these packets from the
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Figure 5.1: Xen’s Outbound Traffic Path

TX queue to the ring buffer, and notifies netback. Netback – being within domain0
and thus having access to physical drivers – hands them over to the physical network
interface card’s driver queue and removes them from the ring buffer. Beyond, netback is
the place of rate limiting. If a respective virtual machine exceeds its assigned bandwidth
quota, netback refrains from taking further packets from the ring buffer and discontinues
forwarding for some time. As items are not removed from the ring anymore, the buffer
becomes full. As soon as a virtual machine’s netfront detects this, it signalizes this fact
to the upper networking layers by means of a flag. Packets pending in the ring buffer
have to wait for further processing until the next bandwidth quota is received.

Rate Limiting: Rate limiting throttles a virtual machine’s bandwidth – however, it
confines outbound traffic only – and is configured by means of two parameters [127].
The parameter rate defines the respective bandwidth limit in MB/s, while time window
defines the replenish interval of the rate limiting algorithm. Its default value is 50ms.
Looking behind the scenes, the algorithm is credit-based1. With every packet forwarded
from the ring buffer, the respective packet size is subtracted from the remaining credit.
In case of lacking credits, two alternatives remain: (1) immediate replenishment of credits
and continuation of transmission, or (2) discontinuation and waiting for replenishment
of credits at a later point in time. Immediate replenishment is only possible if the last
replenishment happened at least the time defined by the parameter time window ago.
In the alternative case, a timer is set to the time of next replenishment, and packet
transmission is rescheduled as soon as credits are regained. According to the parameters
rate r and time window t, the credit bytes per interval c calculates to c = r · t, and the
total amount of available credit is limited to this number. This implies that accumulating
unused credits for later transmission is impossible. There is a single exception if c remains

1Kernel 3.16.0, /net/xen-netback/netback.c
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below 128 kB, i. e., rates of less than 2.5MB/s, as then jumbo packets might seize up the
interface. In such a case, credit accumulation up to 128 kB is allowed.

5.2 Security Analysis

In this section, we perform a manual security analysis of Xen’s rate limiting functionality.
This analysis reveals distinct characteristics that may serve as attack surface; we describe
these characteristics, highlight their implication on security and discuss them with respect
to cloud computing. Finally, we provide a high-level overview of our attacks that exploit
the found characteristics.

(1) Unidirectional Bandwidth Limits: Xen allows to restrict a virtual machine’s
outbound bandwidth, but inbound remains unlimited without any chance for change.
In consequence, the transmission paths are asymmetric. In principle, asymmetry in
bandwidth is a known phenomena, e. g., Asymmetric digital subscriber line (ADSL), but
Xen’s asymmetry appears to contradict its application in cloud services as highlighted by
the following analogy. ADSL’s asymmetry is concordant with its application in consumer
broad-band connections. Consumers typically request more downstream than upstream
bandwidth, and thus favoring the first direction (at the expense of the latter) is reasonable.
Cloud instances predominantly require higher outbound than inbound bandwidth, e. g.,
when used as application, web or streaming servers. Xen however performs precisely the
opposite and limit’s the more utilized outbound direction2.

Bandwidth is not only unequally distributed, but also differs by magnitudes as in
consequence inbound traffic is only limited by the underlying hardware. Outbound
bandwidth in public clouds starts from 12.5MB/s for small cloud instances; assuming a
10-Gigabit physical network in the data center, maximum inbound outperforms maximum
outbound bandwidth by a factor up to 100.

(2) Susceptibility to Burst Transmissions: Xen’s algorithm is prone to burst
transmissions. A virtual machine transmitting high amounts of traffic shoots its wad at
the begin of a time slot, and has to wait for new credits then. At the time of replenishment,
further packets might already wait for transmission and cause another burst consuming
all credits. In consequence, packets experience latencies when pausing for the next slot;
however, these latencies are only experienced by outbound traffic due to the unidirectional
bandwidth limitation. In case the outbound traffic exceeds the configured bandwidth for
a longer period of time, packets might even be dropped: Packets remain in the ring buffer
as a result of credit shortage. As a consequence, netfront cannot forward packets to the
ring descriptor anymore and causes a growing backlog in the virtual machines TX queue.
If the number of packets becomes larger than this queue’s size, packets are dropped. By
default, time window is set to 50ms; according to the documentation “a good balance

2Cloud providers like Rackspace (see https://www.rackspace.com/cloud/servers) or Amazon EC2
(see https://aws.amazon.com/en/ec2/pricing/) typically do not even charge inbound traffic.
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between latency and throughput and in most cases will not require changing” [127]. This
implies that the credit-based algorithm is rather coarse-grained as time slots in the virtual
machine’s traffic are of the same order of magnitude as round trip times, and the bursts
are externally observable.

Attacks Exploiting Rate Limiting: We found two attacks exploiting these charac-
teristics – a side channel revealing Xen configuration parameters that are related to its
rate limiting functionality, and a denial-of-service attack causing significant delays and
packets drops in benign connections to third parties. We provide a high-level overview
on these attacks, before addressing them in more detail in Sections 5.3 and 5.4.

1. Side Channel: Pushing a virtual machine into its outbound traffic limits leads to
burst transmissions that can be observed. By measuring time between to bursts,
it is possible to infer the parameter time window t; by summing up the bytes of
a burst, an adversary is able to infer the amount of credits c per interval and
subsequently calculate the rate r.

2. Denial-of-Service Attack: An adversary might force a virtual machine to spend
all its credits; in consequence, a virtual machine has not enough credits left in order
to serve benign requests. Respective responses are significantly delayed as they have
to wait for credit replenishment, or dropped due to full buffers. This denial-of-service
attack is insofar remarkably as it exhausts outbound bandwidth in comparison to
ordinary bandwidth exhaustion attacks exhausting inbound bandwidth.

5.3 Side Channel

If a virtual machine requires more bandwidth than assigned, its traffic becomes bursty
due to Xen’s credit-based rate limiting algorithm. An adversary might exploit this
behavior to determine a virtual machine’s configuration parameters time window t and
rate r by means of the following side channel. The adversary sends a high number of
legitimate requests to the virtual machine. The latter replies according to the chosen
protocol; however, the sum of all replies exceeds the assigned bandwidth and outbound
traffic becomes bursty as depicted in Figure 5.2. The time interval between two bursts
is equivalent to the configured time window t, as the virtual machine receives credits
for further transmission immediately after the timer expires. Summing up the size of
all packets within a burst allows to determine the victim’s credit rate c. Finally, the
adversary is able to calculate the victim’s assigned bandwidth (parameter rate) r = c/t.
The side channel is advantageously protocol independent. The only stringent objective
is that the virtual machine reliably replies; thus, a wide variety of protocols are worth
considering, e. g., ICMP, DNS, etc. The more outbound traffic, the better; the larger the
amplification between outbound and inbound traffic, the better; both facilitate to reach
the assigned rate limit for outbound traffic.
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Figure 5.2: Side Channel Attack Scenario

We evaluated this side channel in our experiments. For our experiments, we use Xen
version 4.4.1 (on Debian 8.2) on an Intel i5-750. On the hypervisor, two virtual machines
run Debian 7.9; each guest is pinned to a separate CPU, domain0 runs on the remaining
two CPUs. The two virtual instances were rate limited and bridged via the hypervisor.
The adversary ran Debian 8.2 on an Lenovo X200 laptop. The hypervisor and the
adversary’s laptop were connected via a 1Gbit/s network switch. The virtual machine
was limited to 5MB/s at the default time window of 50ms. Checking the configuration
with iperf 3, we measured 4.7 MB/s from the virtual machine to the adversary (throttled
outbound traffic), and 117.3 MB/s in the other direction (unthrottled inbound traffic).
Attacking the virtual machine, the adversary sent 16 ICMP Echo Request of length 1458
bytes, waiting for a millisecond before sending the next 16 ICMP Echo Requests causing
up to 22.2 MB/s of inbound traffic for the virtual machine. In total, the attack runs
for 1000 of such cycles sending in total 16000 Echo Requests. Repeating this attack ten
times, we inferred the configuration parameter from the measurements according to the
following approaches:

• Time Window: The begin of a time window is indicated by a packet following a
(larger than usual) pause. Thus, we extracted all packets following a pause of at
least 5ms, and measured the time window between these first packets of subsequent
bursts. Rounding off to whole milliseconds, we took the most frequent candidate of
all test runs.

• Credit Rate: In the previous step, the first packets of bursts have already been
determined; the credit rate is now calculated by summing up the size of all packets
from this first packet of the burst to the last one. The last packet of the burst is
the one right before the first packet of the next burst. Again, the most frequent
candidate is taken from all candidates.

3https://iperf.fr/
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Figure 5.3: Side Channel Measurement Results using ICMP

Xen Configuration Attack Parameters Side Channel

Configured
Bandwidth

iperf (Out-
bound)

Requests
per Cycle

Inbound
Bandwidth

Credit
Rate c

(Measured)

Time
Window t
(Measured)

Rate r
(Calculated)

MB/s MB/s MB/s B ms MB/s

5 4.7 16 23.3 249318 52 4.8

10 9.4 32 46.7 498636 52 9.6

20 18.9 32 46.7 998730 52 19.2

30 27.8 48 70.0 1498824 56 26.8

40 37.0 60 87.5 1998918 52 38.4

Table 5.1: Bandwidth Measurements with Fixed Time Window of 50ms

This way, we inferred a time window t of 52ms, and a credit rate c of 249,318 bytes; the
resulting bandwidth r is thus 4.8 MB/s. Figure 5.3 depicts a network trace of the side
channel from the adversary’s point of view; for reasons of simplicity, the graph is already
slotted in time intervals of 52ms. While the adversary sends requests in regular intervals,
the virtual machines replies predominantly at the begin of a time slot. Afterwards, it
remains silent due to lacking further credits. One can also see in the figure that the
number of sent replies is high at the begin of a time slot; this is an indicator that all
waiting replies are sent at once immediately after credit replenishment. The side channel
was measured with different configurations of the virtual machine. First, we altered
the bandwidth keeping the time window at the default configuration of 50ms; results
are provided in Table 5.1. Then, we modified the time window at a fixed bandwidth of
5MB/s; results are provided in Table 5.2. The first line of Table 5.1, and the second line
of Table 5.2 represents the results of the measurement that has been described above.
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Xen Configuration Attack Parameters Side Channel

Configured
Time

Window

iperf (Out-
bound)

Requests
per Cycle

Inbound
Bandwidth

Credit
Rate c

(Measured)

Time
Window t
(Measured)

Rate r
(Calculated)

ms MB/s MB/s B ms MB/s

70 4.8 16 23.3 349920 72 4.8

50 4.7 16 23.3 249318 52 4.8

30 4.6 16 23.3 148716 32 4.6

20 4.9 16 23.3 100602 24 4.2

10 4.1 16 23.3 49572 8 6.2

Table 5.2: Time Window Measurements with Fixed Bandwidth of 5MB/s

Our results show that the measured time window is slightly longer than the configured
time window. Taking a look into Xen’s source code, the time window is strictly speaking
the time period for the timer; this additional time of mostly 2ms might be caused by
credit replenishment, packet forwarding, etc. that is necessary after the timer expires.
Actual bandwidth appears to be below the configuration parameter; however, our side
channel appears to reflect iperf measurements well. Measurements for 30MB/s at 50ms
of Table 5.1 shows an increased time window; however, evaluation shows two almost
equally frequent candidates – 56ms and 48ms – both equally distant from the expected
52ms. Similarly, measurements for 5MB/s at 20ms (peaks at 16ms and 24ms) as well
as 5MB/s at 10ms (peaks at 8ms and 16ms) of Table 5.2 show two such peaks. For the
latter however the lower peaks has slightly more candidates. The reason for less quality
of the latter two results might be the rather small time window t. Pauses before first
packets of a burst become shorter with decreasing time windows; thus, our algorithm
looking for 5ms pauses might struggle to detect beginning packets at such low time
windows accurately. This might be overcome by looking for shorter pauses.

5.4 Denial-Of-Service
Traffic exceeding the rate limit has to wait for a free time slot in the future; beyond, if
the backlog of waiting packets becomes too much, buffers become full and packets are
dropped. Deliberately filling the buffers, an adversary might exploit this behavior in
order to perform a denial-of-service attack causing significant packet delays or even drops
of benign traffic.

For evaluation, we extended the measurement setup by an additional host representing
the victim as depicted in Figure 5.4. The victim ran Ubuntu 14.4 LTS on a Lenovo X60
laptop. The virtual machines were rate limited to 5MB/s at the default window time of
50ms. The victim had a benign connection to the virtual machine; we decided to probe
the virtual machine with ICMP Echo Requests at an interval of 10ms. In total, these
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Figure 5.4: Denial-of-Service Attack Scenario

requests (and potentially received replies) require a maximum bandwidth of 19.6 kB/s
which is negligible in comparison to the attack traffic. For the adversary, we tested three
alternatives for causing the backlog – by means of ICMP Echo Requests, UDP-based
traffic amplification and TCP acceleration as described in the following paragraphs.

ICMP Echo Requests: As with the side channel, the adversary sends multiple Echo
Requests and pauses afterwards for 1ms repeating both actions in a loop. Echo Requests
however bear the drawback of being non-amplifying, i. e., the virtual machine’s (maxi-
mum) outbound traffic is of the same amount as the inbound traffic from the adversary.

UDP-Based Traffic Amplification: A virtual machine might host a service that
answers with replies that exceed the requests in size and thus amplifies inbound traffic.
An adversary sending numerous such requests is able to trigger more outbound traffic
than with ICMP. Susceptible protocols are predominantly UDP-based, e. g., NTP, DNS,
SSDP or BitTorrent, and bandwidth amplification factors reach up to 4670.0 [130]. In
that paper, the authors investigated amplifying protocols with respect to reflective denial-
of-service. Such attacks require source address spoofing in order to redirect replies to the
victim – a prerequisite that is not necessary for our denial-of-service attack. This implies
that (1) there are even more protocols than described in these papers that are susceptible
to our attack and (2) ingress filtering does not prevent our attack. For our evaluation, we
scripted a simple UDP server that responded with a bandwidth amplification factor of
100. The server ran on the virtual machine; our adversary sent respective UDP requests
in the same manner as the ICMP Requests – sending a certain number of UDP requests
before pausing for 1ms repeating both actions in a loop.

TCP Acceleration: TCP connections, e. g., when serving a HTTP request, are fre-
quently asymmetric with respect to transmitted payload; a server is sending amounts
of data while the client almost exclusively acknowledges receipt with a couple of bytes.
TCP is a reliable protocol, adjust its speed according to given networking capabilities and
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Adversary Victim

ID Requests
per Cycle

Inbound
Bandwidth

Potential
Outbound
Bandwidth

Average
Delay

Maximum
Delay

Dropped
Replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

icmp16 16 23.3 23.3 14.3 65.7 67.5

icmp32 32 46.7 46.7 23.6 49.3 85.6

icmp48 48 70.0 70.0 21.8 51.5 83.6

icmp60 60 87.5 87.5 16.7 52.8 88.3

Table 5.3: Denial-of-Service Attack with ICMP Echo Requests

Adversary Victim

ID Requests
per Cycle

Inbound
Bandwidth

Potential
Outbound
Bandwidth

Average
Delay

Maximum
Delay

Dropped
Replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

udp4 4 0.2 23.2 23.0 53.3 0

udp8 8 0.5 46.4 22.9 53.5 0

udp12 12 0.7 69.6 22.7 53.4 0

udp15 15 0.9 87.0 23.6 53.7 0

Table 5.4: Denial-of-Service Attack with UDP-Based Traffic Amplification

thus does not automatically lead into a denial-of-service attack; but an adversary might
intentionally accelerate a TCP connection by means of optimistic acknowledgments [131].
Such optimistic acknowledgments are sent prior the receipt of the respective segment, lead
the server to believe in higher available bandwidth and make the server send at a higher
speed than normally. For our evaluation, we installed an Apache4 server on the virtual
machine providing a 100MB file for download. For the adversary, we re-implemented
this attack with respect to current TCP implementations as congestion control has
significantly changed over the last decade and ran the attack when downloading the
previously mentioned file.

Results for ICMP and UDP-Based Attacks: Results for the ICMP-based attacks
are found in Table 5.3; results for UDP-based attack with traffic amplification in Table 5.4.

4https://httpd.apache.org/
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Figure 5.5: Impact on the Victim (icmp16)
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Figure 5.6: Impact on the Victim (udp4)

As in the side channel, the results are based on ten test runs each. Inbound bandwidth
refers to the traffic that is sent from the adversary to the virtual machine, while the
potential outbound bandwidth refers to the bandwidth that would be caused in the
reverse direction in the absence of rate limits. The remaining three columns show the
average delay of replies to the victim’s Echo Requests, the observed maximum delay as
well as the relative amount of dropped replies. In both tables, the first line represents
the latter values in the absence of an attack for reasons of comparison.

The results highlight the following: (1) All attacks significantly increase the delays by two
orders of magnitudes. (2) The higher the ICMP bandwidth, the more packet drops. The
average delay however appears to decrease at higher attack bandwidths; and might be an
artifact of increased drop rates as less replies were received by the victim and were taken
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Adversary Victim

ID Requests
per Cycle

Inbound
Bandwidth

Potential
Outbound
Bandwidth

Average
Delay

Maximum
Delay

Dropped
Replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

tcp 0.01 65.8 1625.8 13791.6 33.2

Table 5.5: Denial-of-Service Attack with TCP

into account for average delay calculation. The maximum delay of icmp16 might be
higher than the remainder for the same reason. (3) UDP-based attacks do not cause any
packets drops; average and maximum delay are higher than in the ICMP-based attacks,
and appear to be independent of the attack bandwidth. The reason might be that the
virtual machine favors ICMP traffic over UDP, and thus drops attack traffic rather than
the victim’s. However, amplification allows the adversary to reduce the amount of sent
traffic in order to gain the same potential outbound bandwidth at the virtual machine;
for example, attack icmp16 leads to the same potential outbound bandwidth as udp4.
Figure 5.5 depicts a test run of the ICMP-based attack, Figure 5.6 of the UDP-based
attack. Both figures show the increased round-trip times of the victim; the first figure
further shows packet drops.

Results for TCP-Based Attack: The result of our TCP attack are found in Table 5.5.
In comparison to ICMP- or UDP-based attacks, delays are much higher. The average
delay is 1625.8ms, the maximum delay even 13791ms, i. e., almost 14 seconds. Packet
drops are however below the ICMP-based attack: 33.2 percent.

Figure 5.7 shows the sequence numbers of sent TCP acknowledgments and received
TCP payload from the adversary’s perspective. While the first increases exponentially
to maximize the virtual machine’s congestion window, the latter increases only in a
linear manner. This linear increase is caused by the rate limit of 5MB/s, and provides
a first evidence that the virtual machine operates at its networking limits. Moreover,
enlarged sections of this figure clearly depict the bursty transmission and the underlying
roughly 50ms intervals, see Figure 5.8. Figure 5.9 shows the attack’s impact on the
victim’s round-trip times: Right at the start, round-trip times are as expected less than
a millisecond; then, round-trip times start to increase. The maximum recorded delay
is 13,791.6ms. In a third phase, the buffers are full and Echo Replies are dropped at
a large-scale. As numerous packets are dropped, the buffer is released and round-trip
times decrease back to normal.
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5.5 Discussion
Throttling network bandwidth hinders a virtual machine from claiming all available
resources and cutting off supply to neighbor machines. Such rate limits have always
been considered as means of security against denial-of-service attacks, but not as an
attack vector themselves. Notwithstanding, our work conveys by the example of the
popular Xen hypervisor that (1) configuration parameters of rate limiting are easily
gained through a side channel and (2) serve as a base for novel denial-of-service attacks
exploiting (allegedly protective) rate limits. In comparison to traditional bandwidth
consumption attacks, our denial-of-service attack shows a peculiarity with respect to the
point of consumption. A traditional denial-of-service attack jams the virtual machine’s
inbound link, exploiting rate limiting functionality as shown in this chapter causes jam
on the outbound link. In the first case, a virtual machine would not receive any further
traffic and might suspect irregularities on the network. In the latter case, it would still
obtain requests and would be (mostly) unaware that responses are stuck in the hypervisor.
Digging its own grave, it would even answer incoming requests strengthening the attack.
Xen’s unilateral bandwidth limits (not throttling inbound traffic) is an additional blessing
as requests from the adversary are reliably forwarded to the victim. This means that
there is in principle no need for traffic amplification; but admittedly, the attack is more
likely to succeed with some sort of traffic amplification, e. g., when striking over the
Internet with much lower bandwidth.

Our side channel allows to infer all configuration parameters of Xen’s rate limiting – the
rate and the window time. On the one hand, this enables an adversary to plan an attack,
e. g., our denial-of-service-attack, more accurately. Further, an adversary once knowing
these parameters of a virtual machine would be able to glean the latter’s networking
behavior; but also benign customers might use the side channel to check compliance of
the configuration with their service contract. On the other hand, the side channel may
also serve as a way to identify the underlying hypervisor of a virtual machine as Xen.
Beyond, the side channel has potential to be developed further into a covert channel. A
limitation is however given by network jitter as an adversary depends on clear distinction
between subsequent time slots. This limitation however is only valid for the side channel,
not for the denial-of-service attack.

Our denial-of-service attack causes latencies of up to almost 14 seconds, and packet
drops of up to 88.3 percent. Service degradation is generally undesired, for example, it
decreases interactivity [132]; but there are also scenarios beyond the obvious that we
would like to highlight. First, virtual machines are remotely synchronized by means
of a synchronization protocol like Network Time Protocol (NTP) for purposes of time
measurements [133, 134]. However, the synchronization algorithm easily looses its stability
in case of variable path delays [135], and these delays are heavily increased by our attack
for a certain period before going back to normal; further, synchronization is prone to path
asymmetry [135], and this asymmetry is also exacerbated by our attack. Synchronization
errors are already in the milliseconds in presence of moderate CPU load [134], and will
become significantly worse in presence of our attack making accurate time measurements
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in the cloud a nightmare. Second, temporal lensing was lately introduced as a way of
attacking [136]; thereby an adversary performs a reflective denial-of-service attack that
concentrates into a single (short, but high-bandwidth) pulse striking the victim. This is
achieved by using reflectors with different attack path latencies, i. e., requesting reflectors
with long paths before those with shorter ones, with the goal that all replies reach the
victim simultaneously. The more reflectors with higher latencies are found, the more the
adversary is able to funnel. The longest path latency found by the authors was 800ms.
In case such a reflector resided on a virtual machine, its responses could be delayed up to
almost 14 seconds by hitting this virtual machine with our TCP attack. This approach
would significantly increase temporal lensing’s power of impact by providing seamlessly
controllable reflectors.

Finally, our results provide a further explanation to cloud phenomena: [137] measured
TCP and UDP performance in the Amazon EC2 cloud that is known to use the Xen
hypervisor, and identified regular bandwidth drops5. They seem to occur roughly every
50ms, and might be a consequence of rate limiting. This observation might further
be an indicator that rate limiting was (and possibly still is) deployed at this major
cloud provider; but Rackspace – another public cloud provider also using Xen – might
also throttle virtual machines this way as they claim that only outbound traffic is
limited [138]. Parenthetically, public cloud providers charge only outbound traffic while
inbound remains free. This implies that our denial-of-service attack does not only impact
a virtual machine’s availability, but also costs the owner actual money and could be used
to economically harm somebody.

In consequence, mitigation is of utter importance; however, none of the following sugges-
tions fully prevents our attacks. (1) Throttling inbound traffic as well would only prevent
non-amplifying attacks, but might negatively impact a host’s availability. However,
providers could choose to apply such limits only in the presence of an attack – provided
that adequate detection mechanisms are prevalent. (2) A modification of the credit-based
scheduler enabling short spikes (by spending previously saved credits) would increase
the effort to overwhelm rate limits and buffers for the adversary. (3) Decreasing the
time window t makes our side channel more prone to jitter (and thus prevent it) as the
time slots cannot be clearly distinguished anymore, but would have a negative impact
on performance. Alternatively, the algorithm might be modified in order to be less
deterministic, e. g., by randomizing the time window.

5.6 Conclusion
Rate limits are known to guarantee fair bandwidth distribution and to prevent denial-
of-service attacks among virtual machines on the same Xen hypervisor; but our work
shows that rate limits themselves become a vector for externally-launched attacks. The
underlying reasons are Xen’s unidirectional rate limits throttling outbound traffic only,
and its susceptibility to burst transmissions. In this chapter, we propose two distinct

5See Figure 5 in [137]
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attacks exploiting rate limits. Our side channel reveals all configuration parameters that
are related to rate limiting functionality and form a substrate for a denial-of-service
attack; the latter causes up to 13.8 seconds of packet delay or up to 88.3 percent packet
drops. Beyond ordinary service degradation, these latencies may heavily destabilize time
synchronization in clouds due to increased path asymmetry and path variability; but may
also strengthen temporal lensing attacks due to providing reflectors with controllable
path latency. There is indication that popular cloud providers like Amazon EC2 or
Rackspace are using Xen’s rate limiting; thus, a large number of hosts remains conceivably
vulnerable.
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Secret Communication with IPv6
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In this part of the thesis, we focus on secret communication related to the Internet
Protocol version 6 (IPv6). As in cloud computing, the ability to establish such secret
communication provides a powerful instrument to adversaries and can be used for later
attacks. Chapter 6 provides a survey on security and privacy vulnerabilities in IPv6. In
comparison to cloud computing, secret communication with IPv6 appears to play a minor
role; there exists only a handful of approaches. Among these channels, IPv6 addresses
seem to be of most interest.

In consequence, the remainder chapters develop scenarios exploiting IPv6 addresses as
side channels. Chapter 7 develops a pattern-based approach for reconnaissance that
generates potential host addresses for active probing (scanning) as exhaustive search
became infeasible with IPv6. Our results show that automatically mining implicit patterns
from address data sets outperforms other approaches of address generation. Chapter 8
proves that the IPv6 Privacy Extension bears implicit patterns and is vulnerable to a
side channel – contradicting the Privacy Extension’s intended goal of privacy protection.
An adversary is able to predict future temporary addresses once the internal state is
known, and is further able to synchronize to this internal state by exploiting the victim’s
previous addresses as a side channel.
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CHAPTER 6
A Survey on IPv6 Security and

Privacy

This chapter summarizes and systematizes IPv6 vulnerabilities as well as associated
countermeasures in a nutshell. In addition to scientific papers, we included Requests
for Comments (RFCs) as well as non-scientific contributions like videos or blogs in
order to complete our systematization. Finally, we infer three major challenges for IPv6:
secret communication, reconnaissance and addressing. The remainder of this chapter is
structured as follows: Section 6.1 introduces IPv6 and related technologies. Section 6.2
summarizes currently known security vulnerabilities, while Section 6.3 considers privacy
in relation to IPv6. Section 6.4 presents our systematization of IPv6 vulnerabilities and
countermeasures. Finally, Section 6.5 discusses major challenges with respect to IPv6.

6.1 Background on IPv6
In comparison to IPv4, its successor IPv6 encompasses four major modifications: (1) The
address length has been quadrupled to 128 bit, providing 3.4·1038 unique addresses. These
contain a subnet prefix and an interface identifier, and are represented by 8 quadruples
of hexadecimal values separated by colons [139]. (2) Regarding the amount of receivers,
three types of addresses are distinguished: unicast, anycast and multicast addresses.
There are no broadcast addresses in IPv6. (3) The header format has been simplified
and is now fixed to 40 byte, as shown in Table 6.1. Fragmentation and other optional
functionality has been shifted to extension headers, which are inserted between the IP and
the upper-layer protocol header. (4) Fragmentation has further been limited to end nodes
with the objective of router offloading. (5) Formerly mandatory IPsec [140, 141, 142] is
seen as its fifth major modification before being released as optional [143].

With IP being the Internet’s main protocol, many constitutive Internet technologies are
heavily tied to it and the change to version 6 resulted in updates of related protocols.
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Size in Bits Field Name Comment

4 Version set to 6

8 Traffic Class replaces Type of Services

20 Flow Label for packet flow marking

16 Payload Length incl. IPv6 Extension Headers

8 Next Header

8 Hop Limit replaces Time to Live

128 Source Address

128 Destination Address

Table 6.1: IPv6 Header Format [144]

One of them is the Internet Control Message Protocol (ICMPv6) [145]. In spite of a
reduced number of message types, its scope has increased beyond error and diagnostic
messages. Performing now also address resolution by means of the Neighbor Discovery
Protocol (NDP) [146], it is also the successor of the Address Resolution Protocol (ARP)
and responsible for router discovery.

IPv6 addresses are either configured manually, statefully (such as by Dynamic Host
Configuration Protocol (DHCPv6) [147]1), or by the newly introduced Stateless Autocon-
figuration (SLAAC) [149, 150], providing plug-and-play connectivity. With SLAAC, the
host first creates a link-local address on its own. After receiving a router advertisement,
the node generates global addresses with the announced network prefixes. Recommended
network prefix sizes for end sites are between /48 and /64 [151, 152].

Due to the increasing number of mobile nodes, mobility support [153] has gained im-
portance. It allows nodes to remain transparently reachable via the same address while
wandering through the network. In case the mobile node is in a foreign network, it
provides its actual address to its router by means of a binding update. This provides
two possibilities for correspondent nodes to communicate with the mobile node: The
communication can be passed on to the home agent, which tunnels the traffic on to the
mobile node. Alternatively, route optimization allows direct communication without the
home agent by using a certain routing header.

The transition from version 4 to 6 takes time and is accompanied by a phase of co-
existence. Some nodes are capable of both protocols, while others are limited to one or
the other. Therefore, transition technologies that bridge this gap have been developed;
they can be divided into two main types: (1) Tunneling delivers a packet as another
packet’s payload. [154] provides a general description on tunneling IPv6 over IPv4, while

1The stateless DHCP approach is technically speaking not a means of address assignment because it
does not maintain a client state [148].
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[155] is a specification for tunneling other protocols over IPv6. Currently, there are a
high number of different technologies tunneling IPv6 over IPv4: 6to4 [156, 157], IPv6
rapid deployment [158, 159], 6over4 [160, 161], ISATAP [162] and Teredo [163, 164]. (2)
Alternatively, protocol translation, i. e., the translation of IPv4 into IPv6 headers and vice
versa, can be used. Due to being tightly connected, IP translation also includes ICMP
translation. The first specification Network Address Translation - Protocol Translation
(NAT-PT) has been criticized by [165, 166] for numerous reasons, e.g. lacking support of
DNSSEC. Its successor is standardized in [167, 168, 169, 170, 171]. However, tunneling
is currently preferred.

6.2 Security Vulnerabilities

In the course of the development of the new Internet Protocol version, changes in
and supplements to functionality were made. These enhancements, however, yield
different behavior and therefore often result in novel security vulnerabilities. In this
section, we summarize fundamental security vulnerabilities in IPv6 and present feasible
countermeasures. We organize them by intended functionality, starting with extension
headers, fragmentation and other native header fields. Subsequently, Neighbor and
Multicast Listener Discovery are discussed, followed by tunneling and mobility support.

6.2.1 Extension Headers

Extension headers provide optional functionality and are inserted before the next-layer
protocol header. Two of them are of further interest for security: (1) The routing
header type 0 holds a list of addresses that have to be visited en route to the receiver.
By alternating the two addresses, the packet cycles between two nodes, causing traffic
amplification on a remote path and possibly resulting in denial of service [172]. This
extension header was more harmful than beneficial and was finally deprecated [172]2.

Offloading routers was a major focus during development. IPv6 extension headers are,
therefore, only allowed to be processed at end nodes. The only exception is the Hop-by-
Hop header and its Router Alert option, which may be used for updating in the future.
However, this option may also cause a decrease in router performance when many such
packets are sent [174].

Initially, extension headers and options did not have to follow a certain format, therefore,
middleboxes are not necessarily able to process new extension headers. Later, a uniform
format for extension headers was standardized [175].

6.2.2 Fragmentation

IPv6 did not explicitly prohibit the reassembly of overlapping fragments initially despite
this being a well-known security threat that can be used, e. g., to evade firewalls [176].

2Routing header type 0 differs from the benign type 2 [173] used for mobile applications.
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The best-known way of doing so is overwriting the TCP SYN flag. The countermeasure in
IPv4 was dropping fragments with an offset of one byte [177]. But this is no appropriate
mitigation for IPv6 because an arbitrary number of extension headers can be inserted
prior to the next-layer protocol header and cause any offset.

Such insertions are also able to shift flags or port numbers to succeeding fragments.
Common firewalls collect incoming packet fragments and reassemble them in any case, but
reassembly implementations differ, making IPv6 vulnerable to the same attack scenarios
as IPv4 [177, 178]. These differences in reassembly can also be used to fingerprint
operating systems [125].

As a consequence, overlapping fragments are now explicitly forbidden because benign
nodes do not have any need of sending overlaps [179]. Further, deep packet inspection
should treat initial fragments without flags or port numbers with suspicion as there is a
guaranteed MTU (Maximum Transmission Unit) in IPv6. Finally, fragmentation is still
a stateful process within a stateless protocol with the risk of memory overflow.

Specific to IPv6 are atomic fragments. These packets consist of only one fragment and
are used in protocol translation to deliver an identifier for fragmentation in IPv4 [180].
Unfortunately, these fragments can cause dropping of benign fragments that have the
same identifier. Thus, the two types of fragments should be handled in isolation from
each other.

6.2.3 Mandatory IPv6 Header Fields

Similar to the Router Alert option, a high number of different flow labels is able to
decrease router performance because the latter has to store a state for every label value.
An adversary can also gain access to someone else’s quality of service by using the same
flow label [181].

6.2.4 Neighbor Discovery

Neighbor discovery has many security implications due to its philosophy of trusting
everybody on the local network. Assuming an adversary has managed to reach the local
network, they can perform a variety of malicious actions.

Address Resolution: Spoofing attacks that provide wrong link-layer addresses are
still possible (Figure 6.1a). Adversaries are further able to prevent victims from address
assignment by answering to duplicate neighbor detection. One applied countermeasure
is Optimistic Duplicate Address Detection. Here, the node assumes that its address is
unique in any case [182].

Router Advertisement Spoofing: Any node on the local network is able to announce
itself as a router (see Figure 6.1b), or spoof a router’s announcement. A number of
variations of this attack are known: (1) Setting the router’s lifetime to zero kicks the
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Figure 6.1: Basic Attacks with Neighbor Discovery

remainder from the client’s configuration. (2) Announcing an arbitrary prefix lets the
clients assume this prefix is local [183, 184].

(3) Flooding the network with router advertisements with various prefixes causes clients
to configure one address per announcement and may lead to denial of service. These
problems are not fully solved by using DHCP, as the adversary can force the node to
abandon DHCP. As a countermeasure, the router advertisement guard – a middlebox
filtering illegitimate announcements – is proposed [185, 186].

Advertisements may also be sent unintentionally due to misconfiguration. Preferences
of benign announcements should therefore be high to guarantee service even in such a
case [187].

Redirects: An adversary may redirect traffic by sending redirects and change the
sender’s configuration this way.

Smurf Attacks: An adversary sends a request to a multicast address, spoofing the
victim’s source address. Responses are returned to the victim, causing a denial of service.
Adequate request types are echo requests or IP packets with an unknown extension header
option of type 10. echo requests to multicast addresses must not be answered, but some
implementations do. In contrast, the alternative containing an unknown option has to be
answered [188]. Considering the latter, non-answering has been proposed [189], but even
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in case of becoming a standard, an exception remains for Packet too Big messages for
path MTU discovery.

General security mechanisms tackling all vulnerabilities together have been targeted.
With IPsec being initially mandatory, neighbor discovery seemed adequately secure, but
it suffered from bootstrapping problems. Securing it would require manual key exchange,
and therefore, unacceptable effort. As a consequence, Secure Neighbor Discovery (SeND)
was introduced [190]. With this technology, cryptographically generated addresses enable
the association of addresses to a public key [191], and signing messages with the private
key prevents spoofing. However, RSA is calculation intensive and the overhead makes the
systems more prone to denial-of-service attacks. Even more limiting is the low support.
For example, there is only one proof-of-concept implementation for Microsoft operating
systems [192]. Therefore, the only option remains to prevent adversaries from joining the
local network through physical protection or link-layer access control.

6.2.5 Multicast Listener Discovery

Multicast Listener Discovery (MLD) is a protocol maintaining information on nodes
listening to multicast addresses. This allows the forwarding of packets destined for these
addresses. A query router in charge of maintaining this information regularly sends
general query messages asking for listening nodes. The latter answer with report messages.
A malicious node can abort this forwarding of multicast-destined packets by sending a
spoofed done message. The effect, however, would last only until the next general query
message that is answered by the victim, initializing forwarding again.

Thus, the adversary has to attempt to become the query router itself. The query router
is determined by having the lowest address. Although routers are frequently assigned
ascending addresses, the lowest IPv6 interface identifier :: (all zeros) is typically unused
and addressing starts with ::1 [193] – possibly an IPv4 legacy.

After becoming the query router, it stops sending query requests, causing an MLD denial

108



6.2. Security Vulnerabilities

of service. However, the old query router will start querying again if it does not see MLD
requests. However, if the adversary sends such queries only to the all-router multicast
address, the other routers are satisfied while the nodes face deteriorated service (see
Figure 6.2). Assigning the lowest address :: to the legitimate router is an adequate
countermeasure, as explained above.

6.2.6 Tunneling

At the beginning of IPv6 deployment, tunneling illegitimate content over IPv6 was easy
because many firewalls let any IPv6 traffic pass. While this has changed drastically,
special threats arise from transition technologies due to the combination of the two IP
versions.

Routing loops are an issue of automatic tunneling mechanisms, e. g. Teredo or ISATAP
[194, 195]. Starting with a native IPv6 packet with a spoofed source address, this packet
is forwarded to a tunnel ingress point. There it is encapsulated into an IPv4 packet and
forwarded. At the egress point, the packet is decapsulated and equals the first, which
is forwarded again to the ingress point. This causes traffic amplification because the
hop count is only reduced on native IPv6 routers. Mitigation methods may include the
general avoidance of multiple tunnels and border routers, a list of other tunnel routers’
addresses to drop their packets, and checking IPv4 and IPv6 addresses for consistency
[196, 194].

Special attacks are known for Teredo: (1) Cycling is possible between an end node and
a cone NAT supporting hair-pin routing. (2) Even endless looping is possible with a
bubble request. Originally intended to open another NAT via the server, the request to
open the server address causes the server to send bubbles endlessly.

Nested encapsulation means the encapsulation of tunnel packets in packets of another
tunnel, causing additional overhead through another packet header or even fragmentation.
To counter this, a Tunnel Encapsulation Limit option limiting the number of nested
tunnels has been introduced [197].

6.2.7 Address Space Size

The massive expansion of address space returns vulnerabilities known from the Internet’s
early days. Simplistic implementations of neighbor discovery may hold too many still
unanswered neighbor address requests caused by network scanning. To mitigate this
denial of service, filtering unused address space and minimal subnet sizing is proposed
[198]. There is even the discussion of minimizing subnets down to e. g. a /124, but then
it is likely that implementations fail due to assuming minimum subnetworks of /64.

Point-to-point links encounter the threat of ping-pong packets in case a router forwards
a packet back over the incoming interface and causes packet cycling. As above, taking
smaller subnets, e. g., /127 would mitigate the risk [199]. Alternatively, the latest ICMPv6
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specification [145] mitigates this by returning an ICMPv6 Destination Unreachable
message.

6.2.8 Mobile IPv6

Binding updates inform the home agent of a mobile node’s current address and enable
it to stay reachable via its home address. Spoofing binding updates may inform the
agent of a wrong address and can be used for man-in-the-middle, hijacking, passive wire
tapping or denial-of-service attacks. In order to prevent these attacks in mobile IPv6
networks, the use of IPsec is recommended [200].

6.3 Privacy Issues
Internet-based technologies are becoming increasingly pervasive and exhibit a tendency
to neglect users’ privacy, addressing privacy violations is of utmost importance. In this
section, we highlight privacy-related challenges along with state-of-the-art countermea-
sures.

6.3.1 Addressing

As stated above, an 128-bit IPv6 address consists of a network prefix and an interface
identifier. While the first is given by the network on which the host resides, the interface
identifier is independently generated by the host. Initially, the modified EUI-format
containing the MAC address was proposed for generation of the interface identifier [149].
Since using a hardware address results in unique identifiers even across different subnets,
it is easy to track a node’s movement through the network. A draft now even proposes
their deprecation [201].

Numerous address formats have been proposed as an alternative: (1) The Privacy
Extension generates an MD5 hash at a regular time interval – typically 24 hours – and
uses this as the identifier [202]. While this impedes long-term tracking, short-term
tracking is still possible as the identifier does not change simultaneously with the prefix.
(2) Another alternative frequently proposed is DHCPv6. However, it relies on the static
DHCP Unique Identifier (DUID). By sniffing DUIDs locally or requesting the respective
DHCP servers directly, an adversary is still able to correlate a node with its current
address [203].

With Mobile IPv6, there is a trade-off between keeping track of all sessions during
network switching and the privacy breach allowing to be traceable across different
networks. By including the home address and the temporary care-of address in one
packet, a potential adversary is able to eavesdrop on the communication channel and infer
the device’s location. This may be prevented by encryption, e. g., IPsec. However, nodes
communicating with the mobile device can still track the latter. To prevent such privacy
breaches, the care-of address and the home address must also be changed simultaneously
[153].
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6.3.2 Reconnaissance

The discovery of unknown nodes is typically the first step in an attack or penetration
test, but the sheer size of the address range makes brute-forcing impossible. Thus, more
sophisticated methods are necessary: (1) In 2007, an analysis of IPv6 addresses in the
wild showed frequent address structures for the first time [204]. While servers and routers
tend to follow the modified EUI-Format and “low” addresses, clients have a significant
portion of addresses generated by the privacy extension. Further analyses are feasible by
address6 [201]. Results of such analyses have resulted in scan6 of the same toolkit. This
tool searches for low-byte, IPv4-based, port-based or modified EUI addresses.

(2) Another source for addresses is DNS, which will be becoming more popular with IPv6
due to the address length. First, it is possible to query known domains. Second, reverse
entries can be exploited at BIND or NDS implementations [205]. As the response for
an empty non-terminal differs from other error messages, it is possible to infer whether
addresses starting with this prefix are known to this server. (3) Beyond DNS, all other
sources of addresses are of interest as well, e. g., Node Information Queries [206], Inverse
Discovery [207] or whois.net [208].

(4) A modified version of the smurf attack is also capable of reconnaissance. Instead of
spoofing the source address, the adversary inserts its own address and receives responses
with previously unknown source addresses. However, one has to be aware that a high
number of responses may cause a denial of service to oneself [193]. To prevent revealing
individual addresses, servers listening to anycast addresses should also use this anycast
address as a source address in the response [176].

But inherent features of IPv6 also make reconnaissance easier: (1) The assignment of
more than one address to an interface is legitimate, but for reconnaissance it is sufficient
to discover one. (2) Addresses expire after a preferred lifetime, but are still used for an
existing connection for some time [150]. (3) Clients using the privacy extension further
own a stable address that can be assigned randomly or following the modified EUI format
[201]. (4) ICMP must not be totally filtered with IPv6. Even further, filtering echo
requests and responses is said to be less important due to the alleged possible risk from
scans [209]. An overview on this topic is also given by [208].

6.3.3 Covert Channels

Covert channels are communication channels violating system policies. In total, 22
possible covert channels have been found in the IPv6 header and its extensions [210],
thereof six alone in the plain IPv6 header: (1) flow label, (2) traffic class, (3) payload
length, (4) next header, (5) hop limit and (6) the source address. The most known
covert channels are the flow label with 20 bit [181] and the traffic class with 8 bit, as
their use is still vaguely defined. While the latter is allowed to be changed en route,
the modification of the flow label was previously prohibited [211]. This, however, has
changed: resetting is allowed in case a covert channel imposes a serious risk [181]. The
payload length channel increases this value, and includes the covert messages at the end
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of the payload; the next header inserts an additional extension header and hides the
message there; channels exploiting hop limit are well known as time to live channels
from IPv4 and insofar nothing new [212]. A novel covert channel of 64 bit is however
provided by the interface identifiers, i. e., the remainder 64 bit of the address. As the
privacy extension causes frequently changing random addresses, it is highly unlikely that
these secret messages are detected [213].

6.4 Systematization of Knowledge

Systematization means arranging something so as to present the content more clearly.
Section 6.2 and Section 6.3 explained security and privacy vulnerabilities as well as
countermeasures for IPv6 verbally. This section presents them so that they can be taken
at a glance and serve as a checklist for researchers and practitioners alike. With the more
in-depth verbal description in the previous sections and this systematic overview, this
chapter presents the subject in multiple ways, allowing it to be used as a reference guide.

The methodology has to fulfil two goals: (1) a clear arrangement and (2) a brief description
of the attacks. In Section 6.4.1, an appropriate approach is presented. Section 6.4.2
contains the systematization for vulnerabilities, Section 6.4.3 for countermeasures and
Section 6.4.4 shows the adequacy of countermeasures to vulnerabilities.

6.4.1 Methodology

[214] developed an extendible common language for describing computer security incidents.
According to this work, “an attack is a series of steps taken by an adversary to achieve
an unauthorized result”. It consists of a tool for exploitation, a vulnerability describing
a system weakness, an event – a directed action intended to change the state of a
system – and an unauthorized result. The event consists of an action performed by the
adversary on a certain target. We adapted this common language for the purpose of
describing IPv6 security and privacy vulnerabilities and the respective countermeasures.
The original common language did not offer a description for countermeasures, but we
believe describing them as a sequence of steps as well is adequate.

6.4.2 Systematization of Vulnerabilities

The vulnerabilities have been systematized by means of six attributes: (1) action, (2)
object, (3) target, (4) unauthorized result, (5) origin, and (6) type.

The action describes the activity of the adversary and is further specified by the object
and the target. The object describes the entity the action is performed on. The target
defines the victim node. If the latter attribute is left free, all types of nodes are likely to
be attacked. While object and target are not enumerated, a limited number of values
exist for action. The following list defines them in accordance with place holders for
object and target in brackets:
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• assign: set the address for [target] to [object]

• flood: emit a high number of [object] to [target]

• insert: include [object] into [target]

• listen: eavesdrop on the traffic for [object]

• scan: iterate through the addresses of [target]

• send: emit a packet including [object] to [target]

• spoof: emit [object] to [target] pretending to be another node

The unauthorized result describes the aftermath of the malicious action. Further, the
origin of a vulnerability and a threat type is defined. The attribute vulnerability indicates
whether the vulnerability results from a design, implementation or configuration flaw
according to the following definitions by [214]:

• configuration: “a vulnerability resulting from an error in the configuration of a
system”

• design: “a vulnerability inherent in the design or specification of hardware or
software whereby even a perfect implementation will result in a vulnerability”

• implementation: “a vulnerability resulting from an error made in the software or
hardware implementation of a satisfactory design”

The threat type is also limited to three values following the definitions by [215]:

• interception: “some unauthorized party has gained access to an asset”

• interruption: “an asset of the system becomes lost, unavailable, or unusable”

• modification: “an unauthorized party not only accesses but tampers with an asset”

The resulting systematization for the above described vulnerabilities is found in Tables 6.2
and 6.3 (security vulnerabilities) and Table 6.4 (privacy vulnerabilities).
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ID Vulnerability Action Object Target Unauthorized Result Origin Type

v01 Fragmentation Header I send overlapping fragments modified header fields design modification

v02 Fragmentation Header II send port number in second fragment middlebox evasion design interception

v03 Fragmentation Header III flood fragments memory shortage design interruption

v04 Fragmentation Header IV flood atomic fragments packet loss design interruption

v05 Routing Header Type 0 I send routing header traffic amplification design interruption

v06 Routing Header Type 0 II send routing header middlebox evasion design interception

v07 Extension Header Options I send router alert option increased workload design interruption

v08 Extension Header Options II spoof invalid 10xxxx option multicast address multiple responses design interruption

v09 Hop-by-Hop Header send hop-by-hop header increased workload design interruption

v10 New Extension Header send unknown extension header middlebox evasion design interception

v11 New Extension Header send unknown extension header increased workload design interruption

v12 Flow Label I send different flow labels memory shortage design interruption

v13 Flow Label II send existing flow label quality-of-service theft design interruption

v14 Neighbor Advertisement I spoof neighbor advertisement wrongly resolved address design interruption

v15 Neighbor Advertisement II spoof neighbor advertisement traffic redirection design modification

v16 Neighbor Advertisement III spoof neighbor advertisement address assignment prevention design interruption

v17 Router Advertisement I spoof router advertisement new default router design modification

v18 Router Advertisement II spoof router advertisement removed default router design modification

v19 Router Advertisement III spoof router advertisement wrong locally-announced prefix design modification

v20 Router Advertisement IV flood router advertisement multiple address assignment impl. interruption

v21 Router Advertisement V spoof router advertisement prevention of DHCP assignment design interruption

v22 Router Advertisement VI send router advertisement IPv6 activation impl. modification

v23 Redirect I spoof redirect redirected traffic design modification

v24 Redirect II spoof redirect wrong locally-announced node design modification

v25 Echo Request I spoof echo request multicast address multiple responses impl. interruption

v26 SeND send authenticated messages increased workload design interruption

Table 6.2: Classification of Security Vulnerabilities (Part I)



ID Vulnerability Action Object Target Unauthorized Result Origin Type

v27 Tunneling I send IPv6 packet as IPv4 payload middlebox evasion impl. interception

v28 Tunneling II send tunnel packet relay router cycling packet impl. interruption

v29 Tunneling III send tunnel packet cycling packet conf. interruption

v30 Teredo send Teredo bubble server cycling packet design interruption

v31 Nesting insert packet into packet packet overhead conf. interruption

v32 Fragmentation Header V send packet too big inclusion of atomic fragments design interception

v33 Neighbor Discovery scan subnetwork memory shortage impl. interruption

v34 Forwarding send returning packet traffic amplification design interruption

v35 Mobile IPv6 I spoof binding update home agent traffic redirection design modification

v36 Multicast Listener assign lowest address itself new MDL query router design modification

Table 6.3: Classification of Security Vulnerabilities (Part II)



ID Vulnerability Action Object Target Unauthorized Result Origin Type

c01 Fragmentation Header VI send overlapping fragments identification impl. interception

c02 Modified EUI Format scan interface identifier networks tracking design interception

c03 Echo Request II send echo request invalid multicast
address identification of sniffing nodes impl. interception

c04 Mobile IPv6 II listen binding update tracking design interception

c05 DHCP I listen DHCP traffic tracking design interception

c06 DHCP II send DHCP information request DHCP server tracking design interception

c07 DNS send DNS request DNS server reconnaissance design interception

c08 Reverse DNS send Reverse DNS query reconnaissance impl. interception

c09 Echo Request III send echo request multicast address multiple responses impl. interception

c10 Extension Header Options III send packet with invalid option multicast address multiple responses design interception

c11 Anycast send anycast address response with unicast address impl. interception

c12 Traffic Class insert secret information traffic class field leaked information design interception

c13 Flow Label insert secret information flow label field leaked information design interception

c14 Privacy Extension I insert secret information interface identifier leaked information design interception

Table 6.4: Classification of Privacy Vulnerabilities
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6.4.3 Systematization of Countermeasures

Countermeasures are described by the two attributes action and object, which have the
same purpose as for vulnerabilities. However, the list of actions changes to the following:

• assign: set [object]

• disable: deactivate [object]

• encrypt: encode [object] to be secured against reading and/or tampering

• filter3: remove [object] when passing

• isolate: process [object] separately

• limit: define maximal value for [object]

• log: write message about [object]

• minimize: reduce number of [object] as much as possible

• prohibit: ban [object]

• respond: return with [object]

Object is not enumerated. The countermeasures are further classified into three groups of
activity levels: (1) detective countermeasures discover a present attack, (2) preventative
countermeasures are taken before an attack takes place, and (3) reactive countermeasures
are triggered by the attack. The resulting systematization is found in Table 6.5 (detective
and preventative countermeasures) and Table 6.6 (reactive countermeasures).

3Discarding has been included in filtering as it can also be understood as removing messages.

117



6. A Survey on IPv6 Security and Privacy

ID Countermeasure Action Object

Detective

c01 NDP Mon log inconsistent NDP msg.

Preventative

c02 Use Anycast Address respond with anycast as source address
c03 DHCP assign addresses statefully
c04 No Forwarding prohibit forwarding over same interface
c05 Fragment Isolation isolate atomic from other fragments
c06 IPsec encrypt packets
c07 IPsec with Manual Keys encrypt packets
c08 No IPv6 Support disable IPv6
c09 Format Deprecation prohibit modified EUI format
c10 Multicast Listener Address assign lowest address to router
c11 No Multiple Edge Routers disable other edge routers
c12 No Multiple Tunnels disable other tunnels
c13 No Multicast Responses prohibit answers to multicast addresses
c14 No Overlapping Fragments prohibit overlapping fragments
c15 Packet Rate limit packet rate
c16 Physical Protection prohibit physical access to network
c17 Privacy Extension assign temporary random address
c18 RA Throttler limit router advertisements
c19 No RAs disable router advertisements
c20 No Routing Header Type 0 prohibit routing header type 0
c21 Router Preference assign highest preference
c22 Segmentation segment network
c23 SeND encrypt NDP messages
c24 Subnet Size minimize subnet size
c25 Temporary DUID assign temporary DUID
c26 No Tunneling disable all tunnels
c27 Uniform Format limit number of ext. header formats

Table 6.5: Systematization of Countermeasures (Part I)
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ID Countermeasure Action Object

Reactive

c28 Address Change assign new addresses simultaneously
c29 Address Checks filter inconsistent addresses
c30 Change Field en route assign default value
c31 Echo Requests filter echo requests
c32 Hop-by-Hop Options filter hop-by-hop extension header
c33 Routing Header filter routing headers
c34 Fragmented Packets filter packets with port not in 1st frag.
c35 Invalid Options filter options of type ’10xxxx’
c36 Link Layer Access Control filter unauthorized clients
c37 Message Checks filter invalid ICMP msg.
c38 NDP Inspection filter inconsistent msg.
c39 RA Guard filter invalid router advertisements
c40 RA Filtering filter router alert options
c41 Router Listing filter msg. from other tunnel routers
c42 Tunnel Enc. Limit limit number of nested packets
c43 Tunnel Ingress and Exit filter at tunnel end points
c44 Unused Addresses filter unused addresses

Table 6.6: Systematization of Countermeasures (Part II)

6.4.4 Vulnerabilities and Appropriate Countermeasures

Table 6.7 and Table 6.8 show the adequacy of countermeasures to vulnerabilities. We
created a matrix where each row represents a vulnerability and each column a countermea-
sure. A checkmark indicates that a countermeasure is adequate. There is no distinction
between various levels of mitigation, e. g., total mitigation vs. some improvement of
status quo.

The introduction of a certain countermeasure may lead to new vulnerabilities. For
example, the use of SeND to prevent router advertisement attacks creates a vulnerability
to denial-of-service attacks due to increased calculation efforts. Likewise, the use of the
privacy extension prohibits tracking, but makes it possible for the interface identifier to
be used as a covert channel. Thus, a method may be a vulnerability and a solution to
another vulnerability at the same time. Further, there are vulnerabilities that cannot be
mitigated easily by means of the mechanisms presented here, e. g., memory shortage due
to fragment flooding.
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Fragmentation Header I 3

Fragmentation Header II 3

Fragmentation Header III
Fragmentation Header IV 3

Routing Header Type 0 I 3

Routing Header Type 0 II 3

Extension Header Options I 3 3

Extension Header Options II 3 3 3

Hop-by-Hop Header 3

New Extension Header 3

New Extension Header 3

Flow Label I
Flow Label II
Neighbor Advertisement I 3 3 3 3 3 3 3 3

Neighbor Advertisement II 3 3 3 3 3 3 3 3

Neighbor Advertisement III 3 3 3 3 3 3 3 3

Router Advertisement I 3 3 3 3 3 3 3 3 3 3 3

Router Advertisement II 3 3 3 3 3 3 3 3 3 3

Router Advertisement III 3 3 3 3 3 3 3 3 3 3

Router Advertisement IV 3 3 3 3 3 3 3 3 3 3 3

Router Advertisement V 3 3 3 3 3 3 3 3 3 3

Router Advertisement VI 3 3 3 3 3 3 3 3 3 3 3

Redirect I 3 3 3 3 3 3

Redirect II 3 3 3 3 3 3

Echo Request I 3 3 3

SeND 3 3

Tunneling I 3 3 3 3

Tunneling II 3 3 3 3 3

Tunneling III 3 3

Teredo 3

Nesting 3 3 3

Table 6.7: Evaluation of Countermeasures (Security Vulnerabilities)
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Fragmentation Header V
Neighbor Discovery 3 3 3

Forwarding 3 3

Mobile IPv6 I 3 3

Multicast Listener 3

Fragmentation Header VI 3

Modified EUI Format 3 3

Echo Request II 3

Mobile IPv6 II 3 3

DHCP I 3

DHCP II 3

DNS
Reverse DNS
Echo Request III 3 3

Extension Header Options III 3 3

Anycast 3

Traffic Class 3

Flow Label 3

Privacy Extension I 3

Table 6.8: Evaluation of Countermeasures (Privacy Vulnerabilities)
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6.5 Findings and Discussion

Large-scale IPv6 deployment is unquestionably a practitioners’ task. However, in this
case, practice and research live in mutual symbiosis. The practical experience gained
from large-scale deployments typically reveals previously unknown security issues that
are not easily solved. As such, they are bounced back to research, where in-depth
investigation takes place. In this chapter, we described IPv6’s status quo with the
objective of identifying such back-bouncing topics. While many vulnerabilities have
already been considered in practice, the results from our systematization suggest that
there is a variety of research challenges to be investigated. In this section, we infer these
main challenges regarding IPv6 and propose possible approaches for mitigation.

6.5.1 Secret Communication

Our survey has a broad focus on IPv6 security and privacy. In comparison to cloud
computing, secret communication appears to have lower importance with IPv6; the
amount of research in the respective field is considerably lower.

IPv6 provides numerous covert channels; but the most outstanding appears to be the
IPv6 addresses of 128 bit length. On the one hand, it appears obvious that 128 bit
allows more expressiveness than 32 bit of legacy IPv4 addresses. On the other hand, the
potential for covert channels does not solely arise from this increased size. The reasons
are rather the following: Node density is considerably lower in IPv6 networks; typically
a few hosts reside in a /64 network and are provided with more addresses than the
whole IPv4 Internet. Thus, addresses can be chosen almost freely. Further, SLAAC
introduces a (partly) decentralized way of address assignment and a host generates a
part of its address itself without any further restrictions. Finally, fast changing addresses
as introduced by the IPv6 privacy extension as well as multiple addresses per network
interface are becoming the norm allowing secret data transmission at a regular interval
while maintaining normal networking behavior.

With respect to IPv6, literature solely describes covert channels, i. e., a sender with the
intention to reveal (sensitive) information. We believe that these channels could not only
serve as a covert channel, but are rather of the opinion that side channels are a more likely
attack scenario as the sender does not have to actively participate in communication.
By the example of IPv6 addresses, addresses could unintentionally reveal patterns that
provide insights into an organization’s network architecture or the administrator’s habits
on address assignment. Both could lay the foundation for later attacks.

Finally, the IPv6 privacy extension might be considered as a means of obfuscation as
it aims to conceal the client address in order to protect privacy. In comparison to the
definition of Section 2.2.4, no intermediate node is required as the loads of different
addresses dupe multiple nodes.
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6.5.2 Reconnaissance

Even though reconnaissance in IPv6 has been considered impossible, various techniques
have proven the opposite. Nevertheless, they have some drawbacks: (1) DNS querying
reveals mainly servers that are intended to be found anyway. (2) Messages to multicast
addresses invoking responses may result in a denial of service and their deprecation is
foreseeable. (3) Eavesdropping, i. e., passive listening to network traffic, does not work
for outside adversaries as it is unlikely that packets originating within the victim’s prefix
will run into the adversary in an arbitrary location on the Internet.

Considering this, scanning is still the most promising reconnaissance type due to (1)
invoking active responses from the victim, (2) revealing the stable address instead
of a temporary one, (3) its local as well as global applicability, (4) its independence
from certain protocols and (5) the difficulty of mitigating it due to using the inherent
functionality of protocols. What seems to be legacy is brute-force scanning, i. e., iterating
through all possible addresses – the method of choice in IPv4. In conclusion, research has
to find new address selection algorithms for active probing to replace brute-forcing and
manage the large amount of IPv6 addresses in this way. We believe that the exploitation
of address structures is promising. Reconnaissance is however also dependent on the
developments in addressing, see the next subsection.

6.5.3 Addressing

Every proposed addressing solution has a serious drawback: (1) The modified EUI-format
is easily traceable by benign administrators as well as adversaries using out-of-the-box
tools like ping. (2) The usage of DHCP does not mitigate this issue because of the unique
and stable DUID, and (3) the privacy extension is highly volatile. Therefore, especially
administrators fear its negative impact on logging. (4) Manual address assignment
is possible for servers and routers, but not for a large amount of clients, e. g., in the
Internet-of-Things (IoT). These drawbacks highlight the lack of an adequate address
assignment structure for the clients’ side in IPv6.

This implies that IPv6 has not been well understood, and that the most suitable address
format for distinct application scenarios remain unclear. For example, better protection
of privacy might be more important for mobile nodes than for stationary ones, more
important for private users than for corporate users. Requirements for client addressing
have to be defined prior the development of another approach, but therefore we need to
make an inventory of current approaches, understand their advantages as well as their
drawbacks before defining another – now privacy protecting – address format.
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CHAPTER 7
A Pattern-Based Reconnaissance

Approach

Internet-wide scanning experienced a tremendous boom in recent years; and today,
scanning the entire Internet takes not more than an hour to complete [216, 217]. This
evolution has provided a number of insights into the Internet ecosystem: Heninger et al.
investigated the cryptographic protocol TLS and SSH, and found hosts using the same
keys as others [218]. Durumeric et al. studied the HTTPS certificate system and showed
that the majority of trusted certificates were controlled by three organizations [219].
Rossow scanned for nodes which were vulnerable for reflection attacks and found millions
of them [130]. Even further, scanning plays a vital role in vulnerability mitigation: By
handing scanning results over to CERTs, Kührer et al. measured a drop of 92% of hosts
vulnerable to NTP reflection attacks [220]. Durumeric et al. measured a 47% decrease of
servers vulnerable to Heartbleed after reporting [221]. Apart from Internet-wide scanning,
scanning a certain subnet has always been a part of penetration testing to discover
potential victims.

The presented approaches have in common that they probe every address within a certain
range. However, this method collides with the introduction of IPv6 [144]. The new
version of the Internet Protocol has an increased address range making it impossible
to scan even the smallest subnet in the common way. As a consequence, practitioners
and researchers looked out for alternative ways of reconnaissance1, and the resulting
development can be best described in two steps that followed different premisses:

(1) If one cannot probe all addresses, one has to use other sources to gain valid addresses.
In a first step, researchers and practitioners accessed systems that stored addresses for

1In this chapter, we use the term reconnaissance for the discovery of unknown hosts in a network.
The term (network) scanning is used for the discovery of unknown host through sending requests in await
for responses. According to this definitions, scanning is a means of reconnaissance.
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their intended application. Thereupon are public archives, centralized application servers
or various ways of leveraging the Domain Name Systems [208, 222]. The drawback of
this approach is that nodes that are not participating or not listed are never discovered.

(2) If one cannot probe all addresses, one has to include more information to synthesize
promising addresses. In a second step, researchers and practitioners targeted to reduce
the address space through address patterns. Thereby, all addresses containing a certain
pattern are probed. Known patterns arise from standardization (e. g. Modified EUI
format) or striking structures in addresses (e. g. low-byte addresses) [208, 222]. This
approach also has its drawbacks. The benefit of patterns that are inferred from standards is
unknown because these standards are not without alternatives and other IPv6 addressing
schemes exist. Striking patterns are typically crafted manually, based on educated guesses
and might not be as wide-spread as they might seem to humans. To the best of our
knowledge, no evaluation of pattern-based approaches is available.

In this chapter, we overcome this gap and assess pattern-based scanning in IPv6 in an
experimental set-up. We evaluate not only currently known patterns with respect to their
applicability to reconnaissance, but also develop a pattern-based scanning algorithm.
This algorithm automatically extracts patterns from a small training set of addresses in
a first step, i. e., the patterns are extracted by means of a side channel, and generates
addresses based on these findings for later scanning. Our results imply that pattern-based
scanning is a feasible approach for the discovery of IPv6 hosts, but known patterns are
of limited benefit. They are outperformed by our novel algorithm using a side channel.
Our algorithm’s results vary with respect to certain parameters, however, we are able to
pre-estimate the quality of our results.

The remainder of the chapter is structured as follows: Section 7.1 discusses reconnaissance
in both protocol versions IPv4 and IPv6. Section 7.2 presents the considered scenario for
scanning, explains our novel pattern-based algorithm for scanning and current, manually
crafted patterns. In Section 7.3, we cover experiments to evaluate pattern-based scanning.
The results are discussed in Section 7.4, Section 7.5 concludes this chapter.

7.1 Internet Reconnaissance
Our research is based on two foundations: First, we discuss network scanning with the
predecessor version IPv4 and highlight why approaches of more sophisticated address
generation serve a different goal than increasing the number of discovered hosts. Second,
we highlight ways of reconnaissance with IPv6, show the advantages of scanning with
version 6 and further highlight current scanning approaches.

7.1.1 Scanning with IPv4

The de-facto standard IPv4 scanner is the open-source tool nmap [223]. This and similar
tools are crafted for scanning small address ranges. Due to maintaining a connection-wise
state they are not capable of sending high numbers of packets. Internet-wide scanning
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with a tool like nmap requires a high number of nodes, lots of time and/or money [218].
Their counterparts are specialized scanning tools that are optimized for high traffic rates:
IRL scanner was the first in 2010 [224] and covered the whole Internet in 24 hours using
a single machine. As this tool had never been released to the community, the issue was
brought up again in 2013 and two new tools were presented: ZMap [217] and masscan
[216]. ZMap is a modular, open-source tool that predominates in academia and enabled
a variety of insights into the global Internet ecosystem, e. g., [218, 219]. masscan is also
open-source and claims to be faster. Being released to the public, both tools were found
to be used in the wild [225].

With respect to this chapter, the tools’ address generation is of interest: nmap iterates
through all addresses of a range in ascending order and starts with the lowest. This method
imposes the drawback of possibly overloading a destination because close addresses are
likely to be also topologically close. Internet-wide scanners thus aim to balance the
traffic by scrambling the address order. IRL scanner uses a reversed linear congruential
generator permutation, ZMap iterates over a multiplicative group of integers modulo a
prime slightly larger than 232, and masscan encrypts an incrementally increased index by
means of a hash function. Although the latters’ address generation is more sophisticated,
they still target to probe every single address in a range.

7.1.2 Reconnaissance with IPv6

Initially, the focus drifted to ways of reconnaissance beyond scanning [208] due to the
myth of IPv6’s unscannability. On the one hand, sources that store addresses could be
used: (1) Querying the DNS for known domains reveals addresses, and unhandy IPv6
addresses might be more likely listed than their IPv4 counterparts. (2) Different answers
of certain DNS server implementations allowed the reduction of the address space because
the server’s response differs for empty non-terminal from other errors. (3) A variety of
other services might also be used, e. g., Node Information Queries, log files or centralized
application servers. On the other hand, (4) some IPv6 implementations responded to
requests to multicast addresses with their unicast address and allowed reconnaissance
for local adversaries. Summarizing however, no approach seemed more promising than
scanning: The attacker actively invokes a response and is thus independent of the victim’s
networking customs. Scanning is locally as well as globally applicable and can base on a
variety of protocols. Scanning exploits the protocols’ intended functionality that cannot
be fully prevented without an impact on regular networking. In return, one has to deal
with the fact that not all addresses can be probed.

An early analysis of IPv6 addresses provided the insight that they include extra expres-
siveness due to their increased length [204]. Reversing this expressiveness is an approach
to create actually used IPv6 addresses. Gont et Chown [222] searched through addressing
standards for exploitable patterns for address reduction and also proposed patterns for
manually crafted addresses. Gont implemented these patterns in the scanning tool scan6
[226]. The idea behind pattern-based scanning is the reduction of search space as a
consequence of the fact that not all addresses in IPv6 can be probed. Thus, one aims to
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probe more likely addresses prior less likely ones as opposed to the IPv4 approaches that
use a changed address order solely to prevent destination overloading. These patterns
are manually crafted based on educated guesses, and have never been evaluated with
respect to their applicability. Further, manual crafting needs manual updates in case the
underlying addressing schemes change, and do not go beyond obvious patterns.

This chapter aims to overcome these issues: It assesses whether pattern-based approaches
are feasible in general, evaluates the current approaches in detail and compares them to
our novel pattern-based algorithm. This algorithm automatically discovers addresses,
and generates new addresses for scanning based on these findings.

7.2 Scanning Design

In this section, we present our considered scenario for scanning, explain the recursive
design of our novel pattern-based algorithm and finally describe the manually crafted
patterns from the literature in detail.

7.2.1 Considered Attack Scenario

We consider hosts that reside in the same IPv6 network prefix, and an adversary that
resides at an arbitrary location on the Internet without local access to the targeted
network. The adversary aims to discover as many hosts as possible. He/She is aware of
manually crafted address patterns and further has a representative sample of addresses in
this prefix2. This scenario is typical for penetration tests or adversaries targeting a certain
organization unit. Internet-wide scanning consists of a multitude of such scenarios with
different prefixes. The assumptions are realistic insofar as manually crafted patterns are
publicly available ([226, 222]). The address sample might be gained from the organization
unit itself, e. g., insider information, but might also be derived from a similarly organized
network.

7.2.2 Recursive Algorithm

This dual-purpose algorithm automatically discovers patterns in a training set of addresses,
and generates addresses based on these patterns for scanning. The algorithm for pattern
discovery is recursive and refines a given pattern through the determination of an
additional bit per recursion. This additional bit is chosen in a way that the refined
pattern covers the highest number of addresses among all pattern candidates. With
every recursion the number of determined bits increases by one, thus decreasing the
number of undetermined bits by one. If the number of undetermined bits falls below
a given threshold, address generation is started. Then, all addresses that contain the

2An IPv6 address consists of a 64-bit network prefix, and a 64-bit interface identifier. Technically
speaking, the adversary aims to discover interface identifiers as the prefix is known, but we stick to the
term addresses for comprehensibility.
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current pattern are generated in ascending order. In addition to the following textual
representation, our algorithm is depicted in Algorithms 1 and 2.

Algorithm 1 doRecursionWith determines a further bit in every recursion.
Require: pattern is a bit pattern with determined and undetermined bits

1: if count(undetermined bits) < threshold then
2: iterateAddresses(pattern)
3: return false
4: end if

5: rule = findBestRule(pattern)
6: pattern = apply(pattern,rule)
7: doRecursionWith(pattern)

8: alternativeRule = inverse(rule)
9: alternativePattern = apply(pattern,alternativeRule)

10: doRecursionWith(alternativePattern)

Algorithm 2 findBestRule finds the rule for the highest number of addresses.
Require: pattern is a bit pattern with determined and undetermined bits

1: addresses = getAddressesWith(pattern)

2: for each undetermined bit in pattern do
3: calculateSupportForRule(addresses, undet. bit = 0)
4: calculateSupportForRule(addresses, undet. bit = 1)
5: end for each

6: return rule with highest support

Refined Pattern: The refined pattern covers the highest number of addresses among
all candidate patterns. To find this pattern, rules are created and their key performance
indicator support is calculated. In detail, for every undetermined bit bu two rules
are generated: Rule 1: The address is appropriate to the current pattern. ⇒ The
undetermined bit bu is zero. and Rule 2: The address is appropriate to the current
pattern. ⇒ The undetermined bit bu is one. The support of a rule is the ratio of the
number of addresses fulfilling the rule to the number of addresses fulfilling the current
pattern. Applying the rule with the highest support to the current pattern provides the
refined pattern that is provided to the next recursion.

Inverse Rule and Pattern: The recursion is not only recalled with the refined pattern,
but also with its inverse pattern. In case the best rule of a recursion is The address
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is appropriate to the current pattern ⇒ The undetermined bit bv is zero. Its inverse
rule is The address is appropriate to the current pattern. ⇒ The undetermined bit bv is
one. Applying the inverse rule to the current pattern leads to the inverse pattern, and
another recursion is called with this inverse pattern. This guarantees that all patterns
are included in the manner of a binary search tree and more likely addresses are probed
prior less likely.

Initialization: A pattern with at least one determined bit is necessary for initialization.
The algorithm has to be started 2number of start bits times to fully cover the search space.

Stop Condition: If the number of undetermined bits falls below a certain threshold,
the recursive pattern generation is stopped. Based on the current pattern, all appropriate
addresses are iterated in ascending order for scanning. The number of generated addresses
is 2threshold−1.

The start bits and the threshold are parameters of our pattern-based algorithm. Start
bits should be chosen in a way that does not impede pattern finding. The threshold of
the stop condition defines the transition from pattern discovery to address generation,
and thus defines the degree of exploitation of known combinations in addresses versus
the flexibility to find slightly different addresses.

7.2.3 Manual Patterns

In the following paragraphs, we discuss manually crafted patterns as defined in [226]. The
major difference between this work and our approach is that in [226] the list of scanned
patterns bases on experience instead of sample analysis and is fixed. This means that
an upgrade has to be done manually by releasing a new version of the scanner. With
the approach outlined in this work, trends in the selection of address deployment will be
incorporated into the reconnaissance. The manually crafted patterns are as follows.

Low-byte: It was detected that many administrators simply select low numbers for the
two low bytes of addresses, so-called low-byte addresses. The scanned address range is
2001:db8::0-100:0-1500, i. e., 1.381.889 addresses in total.

Ports: Several different ports are defined as standard ports for services. Administrators
use simple schemes to map these service ports into the last bytes of an IPv6 address. The
port pattern uses 23 different port numbers of popular services to create four address
ranges per port. By the example of FTP (port 21), these ranges are: 2001:db8::0-5:21,
2001:db8::21:0-5, 2001:db8::0-5:15 and 2001:db8::15:0-53.

OUIs: IPv6 Interface Identifiers in Modified EUI format contain the three byte Orga-
nizationally Unique Identifier (OUI), a fixed pattern of two bytes and another three
free bytes. This pattern iterates through all 224 addresses of a certain OUI, e. g.,
2001:db8::1234:56ff:fe(00-ff):0-ffff with the showcase OUI 1234:56. [226] further mentions
a vendor pattern consisting of all OUIs of a certain vendor, and a virtual machines

3 21 in decimal is 15 in hexadecimal.
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pattern taking OUIs usually used by virtualization software like VMWare and vbox. We
consider them as a particular case of the OUI pattern.

7.3 Experiments

This section describes our experimental set-up and included data sets. Further, our
gained results are provided and it is shown that our algorithm’s performance can be
predicted to a certain degree.

7.3.1 Experimental Setup

Our set-up consists of two Python scripts. One implements our recursive pattern-based
algorithm and generates an address list. This address list represents the addresses that
are scanned. A data set represents the addresses that are used by hosts in this network.
The second script compares the generated list with this data set to evaluate the number
of actually discovered hosts. We decided for this approach instead of scanning real-world
networks in order to gain non-ambiguous results: No response in real-world scanning
might have various reasons, like no host listening to this address or that the requested
service is not supported. Our set-up allows to isolate IPv6 address generation from
non-IPv6 factors.

For every run, two data sets are required: Our pattern-based algorithm requires a training
data set to find patterns, while the evaluation algorithms requires a test data set to
evaluate the number of successfully discovered hosts. Both data sets are created from
our entire data (see below) by a 10-folds cross validation. Typically, the entire data set
is split in ten portions of equal size, nine portions form the training data set, one portion
the test data set [227]. We believe that using the smaller data set to find patterns, and
discover addresses in a larger data set represents the process of reconnaissance more
adequately. Thus, we took the smaller set for training, the large for reconnaissance. For
the creation of all subsets, we used WEKA’s stratified remove folds algorithm [228] and
the addresses’ LSB as classifier. The manually crafted patterns were evaluated by the
same evaluation algorithm and on the same test data sets for comparability. The list of
addresses were extracted from scan6 by means of tcpdump, and another Python script
extracting the addresses. In total, we ran ten runs per data set.

For our experiments, we were able to access three real-world data sets that represent a
different node type each. Client addresses were gained from logs of RIPE’s IPv6-enabled
homepage www.ripe.net. In total we had 167 347 addresses. Requesting AAAA records of
the Alexa Top Million revealed 16 644 Server addresses. Tracerouting the path to these
servers revealed 12 982 distinct Router addresses. Both data sets were collected from a
Rackspace cloud instance in the Dallas region. These data sets include addresses from
a high number of organisations and are thus assumed to be representative for address
assignment habits of administrators.
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Figure 7.1: Routers: Comparison of Pattern-Based Algorithm, Low-Byte Pattern and
Brute-Forcing
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Figure 7.2: Routers: Found Addresses in Dependence of Start Bit

7.3.2 Results

Figures 7.1 to 7.6 provide the results for the three host types routers, servers and clients.
The first figure respectively shows the number of found addresses in dependence of
the number of probed addresses for different thresholds. The results of our recursive
algorithm are contrasted with the results of the low-byte pattern and brute-forcing4.
The second figures show the number of addresses found by the recursive algorithm in
dependence of the start bit with a threshold of 18. The graphs average ten runs, and
also provide the confidence interval (CI).

Routers: Our recursive algorithm outperforms brute-forcing and the low-byte pattern
(see Figure 7.1). The higher the threshold, the higher the number of found addresses.

4In this chapter, brute-forcing is considered as probing addresses in ascending order and starting with
the lowest.
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Figure 7.3: Servers: Comparison of Pattern-Based Algorithm, Low-Byte Pattern and
Brute-Forcing
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Figure 7.4: Servers: Found Addresses in Dependence of Start Bit

With a threshold of 20, the algorithm reveals plus 442 addresses in comparison to brute-
forcing, and plus 353 in comparison to the low-byte pattern. A threshold of 4 still reveals
plus 118 respectively 29 addresses. The low-byte pattern discovers 88 addresses more
than brute-forcing. Considering initialization, bit 0 to 46 and bit 48 to 53 result in more
than 800 discovered addresses (see Figure 7.2). The maximum is 962 addresses (bit
45). Starting with bit 56 to 63 results in less than 620 addresses, the minimum is 395
addresses (bit 62).

Servers: Higher thresholds perform better, and our recursive algorithm outperforms
brute-forcing (see Figure 7.3). However, low thresholds (4, 6 and 8 bits) are below
brute-forcing in the beginning, but are outstripping brute-forcing within the first third of
probes. With a threshold of 20, the algorithm discovers plus 217 addresses in comparison
to brute-forcing, and plus 72 in comparison to the low-byte pattern. The low-byte pattern
reveals 145 more addresses than brute-forcing, and experiences a steep increase not
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Figure 7.5: Clients: Comparison of Pattern-Based Algorithm, Low-Bytes Pattern and
Brute-Forcing
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Figure 7.6: Clients: Found addresses in Dependence of Start Bit

only in the beginning, but also at about 500.000 probes. Considering initialization, the
maximum is 593 addresses starting with bit 53 (see Figure 7.4). Its neighbor bits 52 and
54 however result in only 452 and 294 addresses, but bit 16 to 26 all result in more than
500 addresses. Results for bit 54 to 63 are below brute-forcing.

Clients: The recursive algorithm with thresholds above 16 reveals more addresses than
brute-forcing and the low-byte pattern (see Figure 7.5). With a threshold of 20, the
recursive algorithm reveals plus 387 addresses in comparison to brute-forcing, and plus
417 addresses in comparison to the low-byte pattern. Noticeably, low-byte performs
slightly worse than brute-forcing and reveals 31 addresses less. Considering initialization,
only bit 17 and 19 to 21 provide more than 1000 addresses (see Figure 7.6). Starting
with bit 1, 14, 15 and 26 to 63 performs worse than brute-forcing.

Manual Patterns: The port pattern includes only 552 probes. Table 7.1 shows that
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Routers Servers Clients

Port Pattern 52.6 (CI 1.0) 35.5 (CI 0.9) 43.8 (CI 2.0)

Low-Byte Pattern 204.1 (CI 0.8) 192.8 (CI 1.0) 209.6 (CI 0.8)

Brute-Forcing 203.1 (CI 0.8) 191.8 (CI 1.0) 208.6 (CI 0.8)

Our Algorithm 407.3 (CI 1.7) 274.3 (CI 1.7) 386.1 (CI 81)

Table 7.1: Port Pattern in Comparison to Alternatives

Routers Servers Clients

Top 1 8.1 (CI 0.5) 163.8 (CI 2.7) 707.4 (CI 6.0)

Top 2 6.3 (CI 0.5) 41.4 (CI 0.9) 311.0 (CI 3.8)

Top 3 4.7 (CI 0.3) 18.0 (CI 0.7) 147.4 (CI 2.5)

Top 4 4.5 (CI 0.4) 13.5 (CI 0.8) 140.9 (CI 2.4)

Table 7.2: OUI Pattern: Best Results

these probes reveal 44 client, 53 router and 36 server addresses. The table compares
these results to the number of discovered addresses in the first 552 probes of the low-byte
pattern, brute-forcing and our recursive algorithm with a threshold of 18. All of them
reveal roughly four-times the addresses of scanning with the port pattern, or even more.

Table 7.2 shows the four most successful scanning attempts of the OUI pattern per host
group. Every attempt requires 224 probes. For routers and servers a low number of
addresses is discovered: The most-frequent OUI reveals only 8 router addresses and 164
server addresses. The most-frequent OUI in clients reveals 707 addresses, but remains a
singular result. The second-frequent reveals 311 address, and the remaining below 150
addresses. These are all rather low results considering the roughly 16 million probes per
OUI.

7.3.3 Parameter Prognosis

An adversary using our pattern-based algorithm for host discovery likes to know in
advance whether a certain start bit is a good choice because the algorithm’s results are
heavily dependent on initialization. We claim that the results are dependent on the bit
ratio as shown in Figure 7.7. This ratio indicates the part of addresses with this certain
bit set to one. Low ratios provide better results, than ratios close to 50%. Starting with
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Figure 7.7: Bit Ratio: Ratio of Addresses with a Certain Bit Set to One.

Routers Servers Clients

linear 2519 2148 9424

quadratic 2389 1974 9424

exponential 3641 2738 10109

Table 7.3: Residual Variances of Regression Analysis

such ratios of about 50% postpones a pattern with a rather high number of appropriate
addresses. This impedes our algorithm’s intention of prioritizing frequent patterns.

We performed regression analysis to investigate this. Quadratic regression fitted best
among linear, quadratic and exponential approaches evaluated by the residual variance,
as shown in Table 7.3. The coefficient of determination R2 is 0.58 for routers and 0.48 for
servers. This means that roughly half of the scanning results’ variance is determined by
the starting bit’s bit ratio. Residual variances for client nodes are higher in comparison
and regression fitting is of less quality. R2 is only 0.13 for quadratic regression. The
influence of the initial bit on the overall result is minor. Figure 7.8 shows the scatter
diagrams for routers, and Figure 7.9 servers respectively. Every crossing indicates a bit
ratio and its related scanning result. The resulting quadratic regression curves are added
to the scatter diagrams.

7.4 Discussion
Our results on pattern-based scanning approaches are twofold: On the one hand, the
manually crafted patterns that are known from the literature turned out to be of limited
benefit. On the other hand, we proposed a pattern-based algorithm that automatically
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Figure 7.8: Routers: Scatter Diagram and Regression Curve
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Figure 7.9: Servers: Scatter Diagram and Regression Curve

discovers patterns in a sample and generates addresses based on the found patterns.
This novel algorithm is able to outperform brute-forcing and manually-crafted patterns.
Focusing on manually-crafted patterns, the low-byte pattern solely performs well with
servers, and is even worse than brute-forcing for clients. The port pattern finds a fourth
or less nodes than all other approaches within their first 552 probes, and the OUI pattern
typically finds less than half of the nodes of our algorithm but requires 16 times the
number of probes. Return to our pattern-based algorithm, it outperforms the other
evaluated approaches, but its overall performance is dependent on the start bit that is
set during initialization. Taking a neighbor bit might already impact the performance
negatively. However, we have shown that the algorithm’s performance in dependence of
the start bit can be pre-estimated by means of simple bit-wise statistics for servers and
routers to a certain degree. Pre-estimation with respect to clients is of less quality, and
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might be a consequence of the high amount of random addresses generated by the Privacy
Extension in the sample data sets. A removal of these temporary addresses from the
data set is likely to improve the results on pre-estimation, but also on overall scanning
results as their pseudo-randomness might negatively impact the pattern discovery. [204]
proposes an algorithm to identify such addresses. Hosts using a temporary address are
anyway also reachable via a stable address that might be even easier to guess.

The success of our pattern-based algorithm also highlights that address scanning is feasible
with a comparable low effort due to address-inherent patterns, and defense-in-depth in
the context of IPv6 reconnaissance seems incomplete; notwithstanding, that already early
RFCs as of 2008 advise the assignment of addresses ”that are not obvious to guess” [229]
as low node density alone does not guarantee to be undiscoverable. This points the way
towards mitigation of pattern-based scanning approaches. Random or pseudo-random
addresses, e. g., [230], repel the threat of finding implicit patterns. Mitigation against
our algorithm nevertheless requires more effort than against manually-crafted patterns.
To mitigate the threat of manual patterns, choosing an address beyond the patterns is
enough. For example, 2001:db8::5:21 is probed by the port pattern, but 2001:db8::6:21 is
not.

7.5 Conclusion
In this chapter, we proposed a new methodology for enabling scanning for active IPv6
addresses based on rule mining. Our algorithm automatically extracts patterns from a
data set of addresses; the approach is considered a side channel unintentionally revealing
implicit patterns. The fundamental idea behind this approach lies in the observation that
administrators do not select random addresses when migrating their services to the IPv6
world, but rather rely on patterns. While, opposed to IPv4, probing every single address
is not possible for IPv6 due to the sheer amount of existing addresses, this approach
uses prediction of patterns based on a sample set of addresses in order to rearrange the
scanning order to enable faster retrieval of addresses. While this does not allow scanning
the whole IPv6 range, this technique opens up great chances for fast retrieval of a large
amount of used addresses. Contrary to approaches based on experience, this method
allows the regular recalculation of the most likely patterns in order to detect changes
in the typical selection of addresses. Future work includes the implementation of this
techniques into a scanning tool, more results are needed with respect to the performance
of the algorithm, as well as further research on speeding up searches.
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CHAPTER 8
An Attack against the IPv6

Privacy Extension

The power of correlation lies in its capability of making sense from large amounts of data
that seem unrelated to each other by combing countless pieces of information [231]. This
means that a person’s different activities on the Internet can be correlated to each other,
and this condensed information typically exceeds what people believe can be found out
about their lives. Addresses play a sensitive role in this: On the one hand, an address
has to accurately identify the receiver so that traffic reaches its intended destination. On
the other hand, address-based correlation enables the attribution of different transactions
to the same origin and allows to gain insights into others’ Internet behavior. General
protection strategies against correlation like an attribute’s removal or its encryption
seem inadequate for addresses as intermediate nodes require access for appropriate data
delivery.

Addressing, in turn, is heavily dependent on the protocol, and IPv6 introduced new
aspects in the matter of address-based correlation. Initially, all addresses of an interface
were defined to include a globally unique identifier and thus allowed simplest address
correlation over an interface’s full lifetime [139]. In response, temporary addresses that
change by default every 24 hours were introduced. This mechanism is known as the
Privacy Extension [202], and is considered as state-of-the-art privacy protection in IPv6.
It is implemented in major desktop and mobile operating systems.

In this chapter, we scrutinize the IPv6 Privacy Extension’s capability of protecting
against address-based correlation, and therefore focus on the algorithm for temporary
address generation. We find that once the algorithm’s state is known by an adversary,
she is able to accurately predict a victim’s future addresses. Beyond that, we develop a
way that allows an adversary to synchronize to the victim’s state by exploiting observed
temporary addresses as a side channel, and appraise the attacker’s effort to perform our
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Figure 8.1: IPv6 Addresses using Interface Identifiers in Modified EUI-64 Format

attack with currently available technology. Our results yield 3.3 years of hashing but
advances in technology are going to decrease this time period. We highlight mitigation
strategies; however, our most important contribution may be the impetus for a revision
of the extension’s specification.

The remainder of this chapter is structured as follows: Section 8.1 provides details
on addressing in IPv6 and the Privacy Extension. Section 8.2 summarizes privacy
implications of competing IPv6 addressing standards as well as known vulnerabilities of
the Privacy Extension. Section 8.3 describes the assumed attack scenario and is followed
by a security analysis of the extension’s address generation algorithm that identifies four
weaknesses in Section 8.4. Based on these insights, the development of our attack is
described in Section 8.5. Its feasibility is discussed in Section 8.6, which is followed by
an investigation of current operating systems’ vulnerability in Section 8.7. Strategies for
mitigation are presented in Section 8.8, and Section 8.9 concludes this chapter.

8.1 Background

This section provides background on IPv6 addressing in general: the address structure,
address assignment and their implications for address-based correlation. In a second step,
we focus on the IPv6 Privacy Extension and describe its principal idea as well as its
algorithm for temporary interface identifier generation.

IPv6 Addressing: IPv6 addresses have a length of 128 bit and are portioned into two
distinct parts of equal size as depicted in Figure 8.1. The first 64 bits form the network
prefix, and are dependent on a host’s location in the network. The remaining 64 bits
form the interface identifier (IID) that enables a subscriber’s identification on the link.
Address configuration for clients is done via Stateless Address Autoconfiguration [150]
and does not require human intervention: Routers advertise the network prefix on the
network, and hosts form their global IPv6 addresses by combining the announced prefix
with a self-generated interface identifier.
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Figure 8.2: Interface Identifier Generation According to the Privacy Extension

The interface identifier was initially intended to follow the modified EUI-64 format [139]
that infers an interface identifier from the 48 bit media access control (MAC) address, see
also Figure 8.1. The MAC address consists of a 24 bit organizationally unique identifier,
and a network interface card (NIC)-specific part of equal size. A fixed pattern of two
bytes is inserted between these parts and a universal/local bit is set to one in order to
form the identifier.

The MAC address is globally unique and typically remains stable over a host’s lifetime1.
Consequently, the interface identifier that is included in every IPv6 address is globally
unique and stable as well. All addresses of a certain host have the same second half,
while their network prefix changes according to the visited location. An adversary is thus
able to attribute various transactions to the same origin based on the identifier and trace
a host’s Internet behavior even beyond a certain sub-network. The adversary is further
able to retrace a host’s movement in the network as the included network prefixes allow
localization.

The IPv6 Privacy Extension: The Privacy Extension is presented as a solution
that impedes correlation “when different addresses used in different transactions actually
correspond to the same node” [202]. Its basic principle are interface identifiers that change
at a regular interval of typically 24 hours. Hosts form temporary IPv6 addresses from
the announced prefix in combination with the current interface identifier, and change the
IPv6 address with every newly generated identifier. An expired address is considered
deprecated and not used for new connections, but still serves already active transactions.

A host’s successive interface identifiers have to be chosen in a way that appears random
to outsiders and hinders them in attributing different identifiers to the same origin. Thus
the IPv6 Privacy Extension defines an algorithm for a pseudo-random generation of these
temporary identifiers as described in the following and depicted in Figure 8.2:

1Technically speaking the MAC remains stable over the NIC’s lifetime, but we suppose that personal
computers, laptops, tablets and mobiles keep their NIC over their whole lifetime.
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1. A 64 bit history value is concatenated with the interface identifier in the modified
EUI-64 format.

2. An MD5 digest is calculated over the concatenation of the previous step to gain a
digest of 128 bit length.

3. The digest’s leftmost 64 bits are extracted and bit 6 is set to zero in order to form
the temporary interface identifier.

4. The digest’s rightmost 64 bits form the next iteration’s history value and are stored.

5. In case the generated interface identifier is found to be used by other local devices
or reserved, the process is restarted to gain another identifier.

The very first history value is initialized with a random value the first time a system boots.
This algorithm is defined for systems with present stable storage, which is necessary
to keep the history value across system restarts. Devices like stationary PCs, laptops,
tablets and smart phones are typically considered to have such storage. However, in
its absence, it is allowed to randomly re-initialize the history value after every system
restart.

Temporary IPv6 addresses are assigned in addition to stable addresses in modified EUI-64
format, and do not replace them in order to prevent negative impacts on addressing.
Temporary addresses are used in outgoing connections to stay private, while stable
addresses make it possible to stay reachable for incoming requests.

8.2 Address Formats and Known Vulnerabilities

Our research has a two-pronged foundation: First, we discuss various IPv6 address
structures with respect to privacy, and highlight the IPv6 Privacy Extension’s outstanding
positions due to its capability to protect against geographical as well as temporal address-
based correlation. This further emphasizes why the extension’s secure standardization
and implementation is an important aspect of IPv6 privacy. Second, we summarize
previously discovered vulnerabilities of the Privacy Extension, and illustrate their minor
importance in comparison to the new attack that we present in this chapter.

8.2.1 IPv6 Address Formats and Address Correlation

There are ways to form IPv6 interface identifiers for Stateless Address Autoconfiguration
beyond the modified EUI-64 format and the Privacy Extension: (1) manually configured
stable identifiers, (2) Semantically Opaque Identifiers [230] and (3) Cryptographically
Generated Addresses (CGAs) [191]. CGAs, however, require authenticated messages as
defined by Secure Neighbor Discovery (SeND) [190] instead of plain Neighbor Discovery
[146].
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We discus these alternatives with respect to an adversary’s capability for address correla-
tion, and consider two distinct aspects of address correlation:

• Temporal correlation refers to address-based correlation over multiple sessions of a
stationary host.

• Geographical correlation refers to address-based correlation over multiple sessions
of a mobile node.

The difference is the network prefix: A stationary host stays in the same sub-network
and includes the same network prefix in all its addresses. A mobile node wanders and
changes the network prefix when moving.

Addresses using the Modified EUI-64 format include the globally unique MAC address,
and all of a host’s addresses are equivalent in their second part. This fact allows the
correlation of multiple sessions of a stationary or mobile node, i. e., this type of address
is vulnerable to both forms of address correlation and, beyond that, also for active
host tracking [232, 233]. Apart from global uniqueness, the same is valid for (manually
configured) interface identifiers that remain static.

Semantically Opaque Interface Identifiers are generated by hashing the network prefix
and a secret key among other parameters. As the hash calculation includes the address
prefix, the interface identifier changes from subnet to subnet and prevents geographical
correlation. The identifier, however, remains stable in a certain network, even when
returning from another network, and allows temporal correlation over long periods of
time. Due to their recent standardization their availability in current operating systems
is limited.

Cryptographically Generated Addresses are generated by hashing the public key and other
parameters and are bound to certain hosts. Ownership is verified by signing messages
that originate from this address with the corresponding private key. The network prefix
is included as a parameter into hashing, and a node’s CGA changes from network to
network, preventing geographical correlation of traffic. However, their generation comes
at high computational costs, and prevents address changes as a means of protection
against temporal correlation in practise [234]. An approach to overcome the limitation
with respect to frequent address change has been proposed [235]. However, CGAs and
SeND lack acceptance and are neither widely implemented nor deployed.

The discussion is summarized in Table 8.1, and is accompanied by the capabilities’ native
availability in the current client operating systems Mac OS X Yosemite, Ubuntu 14.10
(Utopic Unicorn) and Windows 8.1, see Table 8.2. The results emphasizes the unique
position of the Privacy Extension: First, it is the only mechanism using Stateless Address
Autoconfiguration that is currently deployed at a larger scale and that is intended to
protect against traffic correlation. Second, it is the only mechanism that considers
protection against temporal as well as geographical address correlation.
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Temporal Correlation - - - - X

Geographical Correlation - - X X X

Table 8.1: IPv6 Address Formats wrt Protection against Address Correlation

Mac OS X Yosemite X X - - X

Ubuntu 14.10 X X - - X

Windows 8.1 X X - - X

Table 8.2: IPv6 Address Formats wrt. Availability in Client Operating Systems

In this chapter, we develop an attack that overcomes the belief that the Privacy Extension
provides adequate protection against address correlation. The attacks leaves a gap that
cannot be filled by another address mechanism, and highlights the importance of revisiting
the extension’s current definition.

8.2.2 Known Vulnerabilities of the Privacy Extension

Drawbacks of the IPv6 Privacy Extension were discussed before, and follow two prin-
cipal directions. First, its design does not impede active tracking, e. g., by using ping.
Temporary addresses are assigned in addition to stable ones, and an adversary can still
actively probe multiple subnets for a certain interface identifier in order to trace a host’s
movement. The respective specification, however, explicitly states its intention to protect
solely against passive eavesdroppers, and not against active adversaries [202]. Beyond,
the Privacy Extension further introduces a covert channel as regular changing addresses
become normal.

Second, shortcomings in the extension’s protection against address correlation are known.
A node does not have to change its interface identifier when moving to a new network
prefix. Thus, tracking a host’s movement remains feasible within an identifier’s lifetime
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Figure 8.3: Attack Scenario

of typically 24 hours [236, 232]. For mitigation, the inclusion of the network prefix into
the interface identifier calculation was proposed [236]. The respective specification also
allows the change of an identifier in such a situation [202]. Our attack supports the
second direction, and highlights that adversaries are able to perform address correlation
even when the Privacy Extension is used. In comparison to known attacks, our attack
cannot be fully mitigated within the specification’s limitations.

8.3 Attack Scenario

Our attack scenario is depicted in Figure 8.3 and assumes full IPv6 deployment. We
assume three stakeholders named Alice, Bob and Eve. Alice loves coffee, and regularly
visits coffee shops. Then, she brings her laptop with her, and uses the offered Internet
access to read mails or to chat. Bob and Eve each run a coffee shop, and provide
Internet access to their guests. They deployed Stateless Address Autoconfiguration, and
their routers advertise the respective IPv6 network prefix so that customers are able to
configure their global IPv6 addresses by connecting the prefix with their self-generated
interface identifiers. Bob’s router advertises the prefix PBob, Eve’s router advertises PEve.
Eve further runs a webserver to advertise current offers. She records her coffee shop’s
local traffic, and logs visits to her webserver.

Alice visits Eve’s coffee shop for T successive days2, and connects her laptop to the coffee
shop’s local network. Eve’s router advertises PEve, and Alice’s laptop configures a stable
IPv6 address from this prefix and the stable interface identifier. Alice has enabled the
IPv6 Privacy Extension, and thus temporary addresses are created in addition to the
stable address by combining the prefix with the interface identifier of the day. Alice’s

2Although the T days do not necessarily have to be successive, we claim so here for better readability.
In case days are missing, e. g., due to weekends, one simply has to consider these gaps when calculating
the current state.
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Figure 8.4: The Privacy Extension’s Characteristics Impacting its Quality of Protection

temporary addresses are < PEve : IID1 >, < PEve : IID2 >, ..., < PEve : IIDT > for day
1, 2, ..., T .

After T days, Alice stops going to Eve’s coffee shop. On an arbitrary day t (t > T ), Alice
visits Eve’s competitor Bob. She connects her laptop to Bob’s local network. Bob’s router
announces the prefix PBob, and Alice’s laptop forms a stable identifier from this prefix.
In addition, the Privacy Extension generates a temporary address < PBob : IIDt >. On
this day, Alice visits Eve’s website to check current offers and causes a respective log
entry.

Eve is interested tracing her customers’ activities, and wants to find out whether (1)
Alice is still interested in her offers and visits the webserver, and whether (2) Alice is
drinking coffee at a competitor.

We refer to this scenario in the remainder of the chapter for illustration of our attack.
This scenario was developed due to its representativeness for day-to-day life, but we are
sure that there are plenty of alternative scenarios. The preconditions for an adversary are
moderate: She has to gain a victim’s MAC address and T successive interface identifiers
that have been generated by the Privacy Extension. The MAC address is gained from
local traffic as in the presented scenario, or inferred from the stable IPv6 address in
case the latter is in Modified EUI-64 format. Interface identifiers are included in the
temporary addresses, and are inferred from there.

8.4 Security Analysis
In this section, we perform a manual security analysis of the Privacy Extension’s algorithm
for temporary interface identifier generation as defined in [202] and presented in Section
8.1. Our analysis reveals four striking characteristics that facilitate the prediction of
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future interface identifiers. While some of them might seem minor in isolation, their
combination forms a reasonable attack vector as described in Section 8.5. In this section,
we consider each characteristic separately: First, we describe the characteristic and
highlight the specification’s argumentation in its favor. Next, we infer implications
on security. Figure 8.4 contrasts the algorithm for temporary address generation with
the discussed characteristics; the depicted numbers are consistent with the following
paragraphs.

(1) Concatenation of Successive Hashes: Interface identifiers are based on MD5
digests that are chained with each other because an iteration’s result is partly included
into the next hash calculation. The RFC states that “In theory, generating successive
randomized interface identifiers using a history scheme [...] has no advantages over
generating them at random,” [202] but claims an advantage in case two hosts have the
same flawed random number generators. Performing Duplicate Address Detection would
make both hosts recognize their identical identifiers and trigger the generation of new
identifiers. However, the flawed random number generators would again provide identical
numbers, leading to identical identifiers. The presented algorithm is said to avoid this as
the inclusion of the (globally unique) interface identifier in Modified EUI-64 format leads
to different temporary interface identifiers in the next iteration.

It remains unclear why the inclusion of a globally unique identifier, e. g., in Modified
EUI-64 format, requires working with a history scheme, i. e., the concatenation of
successive hashes. We believe that inclusion of a globally unique interface identifier and a
random value into MD5 digest calculation is sufficient. It seems unlikely that sequences
of equivalent random numbers result in successive collision in case a globally unique
identifier is included into calculation.

The concatenation does not only appear dispensable with respect to the discussed aspect,
but also negatively impacts the algorithm’s quality of protection. Successive interface
identifiers are dependent on each other, and today’s state influences future identifiers.
An adversary might exploit this to predict a victim’s future identifiers.

(2) Cryptographic Hash Function: The Privacy Extension aims to create random-
appearing interface identifiers, but states that pseudo-randomness suffices “so long as
the specific sequence cannot be determined by an outsider examining information that is
readily available or easily determinable” [202]. For the algorithm, MD5 with its adequate
properties with respect to randomization has been “chosen for convenience” [202].

MD5 is considered broken, but a general dissolution would be an overshooting reaction:
MD5 turned out to be prone to collisions that can be found within seconds on commodity
hardware [237]. Pre-image attacks are still of high complexity and remain practically
infeasible. The Privacy Extension uses MD5 for randomization, and neither relies on
collision resistance nor pre-image resistance. Taking these considerations into account,
the extension’s choice of MD5 is justifiable.
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MD5 is, however, a comparably fast hash function and the more hashes per second, the
more feasible brute-force search becomes. This especially holds in combination with a
limited input range. In 2012, a cluster of four servers hosting 25 off-the-shelf graphics
processing units (GPU) achieved 180 Gigahashes per second [238], and time is usually in
favor of the adversary as technology moves forward.

(3) Scarce Randomization: The RFC claims that “To make it difficult to make
educated guesses as to whether two different interface identifiers belong to the same
node, the algorithm for generating alternate identifiers must include input that has an
unpredictable component from the perspective of the outside entities that are collecting
information” [202].

Our analysis, however, identifies only scarce unpredictability in the algorithm for tempo-
rary address generation. Every iteration includes 128 bits into MD5 digest calculation:

• 64 bit of the former iteration’s result, i. e., the remainder of the MD5 hash that was
not used for the temporary interface identifier, and

• the 64 bit interface identifier in Modified EUI-64 format. This identifier is not kept
secret. An adversary might infer it from the stable IPv6 address that is assigned in
addition to temporary addresses or from the MAC address. 17 bit of this identifier
are fixed and thus the same for all nodes anyway.

In conclusion, there is no entropy added per iteration and this fact makes prediction of
future identifiers easier as there are less possibilities. The only unpredictable component
of the presented algorithm is the very first history value of 64 bit that should “be generated
using techniques that help ensure the initial value is hard to guess” [202].

(4) Partial Disclosure of Digest: A temporary interface identifier is generated by
taking “the leftmost 64-bits of the MD5 digest and set bit 6 [...] to zero” [202]. The
gained interface identifier forms a temporary IPv6 address when combined with the
current network prefix. The address is present in packets’ address fields and accessible
by others.

As a consequence, an eavesdropper gains 63 bit (one bit is overwritten with zero as
mentioned above) of the calculated MD5 digest. This eavesdropped part does not present
the algorithm’s internal state, i. e., the history value, but both are part of the same
MD5 digest. In conclusion, 63 bit of every iteration’s MD5 digest is readily available to
outsiders without any further processing effort and form a side channel of the algorithm’s
internal state. The algorithm leaks information but does not add entropy in an iteration.

8.5 Attack Design
We will now explain the steps of our attack in detail. We will include the characteristics
that have been found in the security analysis of Section 8.4. In a first step, we will analyse
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the predictability of future addresses if the current state (history value) is known. As
this turns out to be promising, we investigate methods to gain the current state. Finally,
we summarize our full attack.

Predictability of Future Identifiers: For rather unambiguous prediction of future
temporary identifiers, two requirements have to be met. First, future identifiers have
to be dependent on the current state of the algorithm. Second, the calculation of the
next identifier should include little randomness. The less random input, the better
predictability.

We know from the previous section that both conditions apply to the IPv6 Privacy
Extension: Interface identifiers are based on concatenated hashes. A part of the digest is
used for the identifier, the other is called the history value and used as an input for the
next calculation. An iteration’s input is twofold – the mentioned history value and the
interface identifier in Modified EUI-64 format that is inferred from the MAC address.
This means that there are no unpredictable components that are included. In conclusion,
an adversary that is aware of the victim’s history value and its MAC address is able to
calculate the next temporary interface identifier according to the following recipe:

1. Infer the interface identifier in Modified EUI-64 format from the victim’s MAC
address. This requires the insertion of a fixed pattern of two byte, and setting bit 6
as described in Section 8.1.

2. Concatenate the victim’s current history value with the interface identifier in
Modified EUI-64 format generated in step 1.

3. Calculate the MD5 digest of the concatenation of step 2.

4. Extract the first 64 bits from the calculated digest and unset bit 6 to form the next
temporary interface identifier.

5. Extract the remaining 64 bits from the digest and form the next history value.

This way an adversary is not only able to compute the next interface identifier, but all
future identifiers by repeating the described steps. As a consequence, it seems worth
developing methods to gain the algorithm’s internal state.

Synchronization to the Current State: The internal state could be leaked, e. g.,
by means of malware, but this approach would imply an active adversary that does
not simply eavesdrop. In the following paragraphs, we show that eavesdropping over a
number of consecutive days is sufficient to gain the internal state: As described in Section
8.4, a temporary interface identifier that is included into an IPv6 address inherently
discloses 63 bit of an iteration’s MD5 digest. While the disclosed part is not the internal
state, it is nevertheless related to the latter as both are clips of the same MD5 digest.
The disclosed interface identifier can be considered a side channel of the internal state.
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Figure 8.5: Synchronization to Current State

Figure 8.5 depicts a situation like our attack scenario from Section 8.3. The victim’s very
first history value is randomly initialized at day 0 and determines the history value and
the temporary interface identifier of day 1; the history value of day 1 in turn determines
history value and temporary interface identifier of day 2 and so on. The randomly
assigned history value at day 0 determines one of 264 deterministic sequences that the
victim’s interface identifiers follow.

An adversary might probe all possible values for this history value at day 0, and compare
the first half of the MD5 digest with the interface identifier of day 1. If they are equal
this value might represent an appropriate candidate. As it is only possible to compare
63 bit of the MD5 digest, it is likely that numerous candidates remain. The adversary
thus extracts the second half of the digest as a candidate for the history value at day
1, includes it in another iteration containing an MD5 calculation, compares the result
with the interface identifier at day 2 and further shrinks the candidate set until a single
candidate remains. Then, the adversary has identified the internal state.

It is, however, unlikely that an adversary observes the very first temporary addresses
that a victim generates after its installation; an adversary rather observes an arbitrary
sequence of T successive addresses starting at day t0 + 1 as indicated in Figure 8.5. Due
to the algorithm’s structure, the adversary then assumes the history value at day t0 to
be randomly initialized without loss of generality. The adversary does not have to know
the number of temporary addresses that the victim has generated before being recorded.
For this reason, we added a relative time line for the attack in the figure for readability.

Composite Attack: Based on the attack scenario of Section 8.3, the gained insights
of the previous paragraphs and Figure 8.5, we summarize Eve’s steps towards predicting
Alice’s future identifiers.
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On Alice’s first visit at Eve’s coffee shop on day 1, Eve has to perform the following
steps:

• Data Extraction from Traffic Records:
Eve records the local traffic in her coffee shop, and is thus able to read Alice’s
MAC address from Ethernet headers as well as her temporary IPv6 address. From
this temporary IPv6 address, Alice extracts the last 64 bits that are the interface
identifier for the first day IID1.

• Generation of Modified EUI-64 Interface Identifier:
Eve infers Alice’s interface identifier in Modified EUI-64 Format from the MAC
address by inserting a fixed pattern of two bytes and setting bit 6 as described in
Section 8.1. Alternatively, she might read the identifier in Modified EUI-64 format
directly from Alice’s stable IPv6 address.

• Reduction of Candidate Set:
Eve probes all possible values for the assumed initial history value at day 0,
concatenates the value with the stable identifier in Modified EUI-64 format, and
calculates the MD5 digest. If the first part of the MD5 digest equals Alice’s current
temporary address3, the remainder of the digest forms a candidate for the next
iteration’s history value and is added to the candidate set of the first day C1. In
this step, Eve reduces the initial candidate set C0 of 264 alternative sequences to a
smaller set C1 that is stored for the next day.

On every further visit of Alice at Eve’s on subsequent days t with 1 < t ≤ T , Eve
performs:

• Data Extraction from Traffic Records:
Eve extracts today’s temporary interface identifier IIDt from Alice by reading the
traffic records.

• Further Reduction of Candidate Set:
Eve probes all values for the history value that are present in yesterday’s candidate
set Ct−1, concatenates the values with the stable identifier in Modified EUI-64
format, and calculates the MD5 digest. If the first part of the MD5 digest equals
Alice’s current temporary address IIDt, the remainder of the digest forms a
candidate for the next iteration’s history value and is added to the candidate set Ct.
In this step, Eve further reduces the number of alternative sequences to a smaller
set that is again stored for the next day.

3The comparison is done on 63 different bits (0-5 and 7-63); bit 6 is always set to zero in temporary
addresses, see Section 8.1.
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This is performed whenever a new temporary address is available until a single candidate
remains. This single candidate represents the algorithm’s internal state, the history value,
and allows to predict future addresses from now on.

On every further day t with t > T , Eve is able to anticipate Alice’s temporary interface
identifier for this day:

• Anticipation of Current Temporary Address:
Eve concatenates the history value of day T with the stable identifier in Modified
EUI-64 format and calculates the MD5 digest. She extracts the history value, and
repeats the calculation with the new history value. In total, (t− T ) MD5 digest
calculation are performed.

• Assemblage of the Interface Identifier:
Eve forms Alice’s interface identifier IIDt from the first part of the last MD5 digest
by setting bit 6 to zero.

With this knowledge, Eve is able to search her web server’s logs for the calculated
temporary identifier and attributes certain visits to Alice. At the same time, the prefix
that the temporary identifier is concatenated with to form an IPv6 address provides
information on the sub-network that Alice resided at the time of the page visit. If this is
equivalent to Bob’s assigned prefix, Eve is able to infer that Alice drank coffee at Bob’s
coffee shop.

8.6 Feasibility
In the previous sections, we identified weaknesses of the IPv6 Privacy Extension and
developed an attack exploiting these characteristics. The question on the attack’s
practicability with respect to today’s technology remains, and is discussed in this section.
Three aspects have to be considered: (1) the minimum number of observed interface
identifiers, i. e., the number of days that Alice has to visit Eve’s coffee shop, (2) the
expenditure of time for brute-forcing, and (3) the storage capacity to save the candidate set
for the next day. Finally, a modified version of our attack for limited storage capabilities
is presented.

Number of Address Observations: Alice has to visit Eve’s coffee shop so often that
Eve gains enough temporary identifiers for synchronization to the internal state. We
assume that Alice generates one temporary address per day as recommended by the RFC
[202], and an iteration of the attack corresponds to a day.

On the first day, Eve probes 264 potential values for the history value and compares their
MD5 digest to the observed interface identifier of Alice. The unequal ones are excluded,
and the appropriate ones form the candidate set C1 of potential values for the next day.
The size of the candidate set is dependent on the ratio of candidates that Eve is able
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to reject per day. With p being this ratio, the size of the candidate set Ct for day t is
calculated as follows

|Ct| = 264 · (1− p)t (8.1)

Eve has to repeat the explained step until a single candidate remains, i. e., |Ct| = 1, and
the minimum number of days Tmin is calculated as follows

Tmin = ceil
log(264)

log(p− 1) (8.2)

The more candidates can be excluded per iteration, the less successive interface identifiers
have to be known by Eve. If Eve is able to reduce the candidate set by only 50% every
day, the minimum number of days is 64. A reduction by 99%, 99.99%, 99.9999% shortens
this to 10, 5, 4 days.

Time Expenditure for Brute-forcing: Every iteration requires brute-forcing the
current candidate set Ct, and means an MD5 digest calculation for every candidate.
Assuming a hash rate r indicating the number of calculated hashes per second, the total
time TBrute for brute-forcing is calculated as follows

TBrute = 1
r

Tmin∑
i=0
|Ci| =

264

r

Tmin∑
i=0

(1− p)i (8.3)

Assuming 1− p < 14, the equation is bounded as follows and allows an estimation of the
total time expenditure for MD5 brute-forcing

TBrute <
264

r

∞∑
i=0

(1− p)i = 264

r
· 1

p
(8.4)

A hash rate of 180G/s with MD5 is feasible [238]. The more candidates can be excluded,
the less time is required. If Eve is able to reduce the candidate set on average by only
50% every day, the time for brute-forcing remains 6.5 years, a reduction by 99% shortens
this to 3.3 years. Time expenditure appears high at the first sight, but time plays for
the adversary, and advances in technology are likely to decrease this effort. It is likely
that faster hashing is already feasible today as the given hash rate was measured at a
cluster of 25 consumer GPUs back in the year 2012 and GPUs have recently experienced
extensive advancement.

4p is the portion of candidates that can be excluded per iteration.
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Storage of Candidate Set: Appropriate candidates for the history value have to be
stored for the next iteration. The history value size is 8 byte, and the storage demand St

is dependent on the size of the candidate set.

St = |Ct| · 8 byte = 264 · (1− p)t · 8 byte (8.5)

The following calculation considers the first iteration due to its worst case character5: If
Eve is able to reduce the candidate set on average by only 50% every day, the storage
demand for the first iteration is 74Exabyte, a reduction of 99%, 99.99%, 99.9999%
reduces the storage demand to 1.5Exabyte, 15Petabyte, 148Terabyte.

This storage demand, however, can be circumvented by a modification of the attack.
In our initial design of Section 8.5, Eve synchronized to Alice’s state simultaneously
to her coffee shop visits, but Eve might alternatively perform the attack retroactively.
Therefore, she stores Alice’s successive interface identifiers for Tmin days before starting
the attack. Instead of storing an appropriate candidate after the first iteration, she
performs the second, third, etc. iteration with this candidate as long as it appears
appropriate. Otherwise, it is rejected. This way the storage demand is reduced to a few
bytes for execution of the algorithm for temporary interface identifier generation.

8.7 Implementation in Operating Systems

In this section, we assess current operating systems that support the IPv6 Privacy
Extension with respect to their individual vulnerability. We tested Mac OS X Yosemite,
Ubuntu 14.10 (Utopic Unicorn) and Windows 8.1 Enterprise as representatives of the
three major ecosystems on clients. In doing so, we faced the challenge that we cannot
access the respective sources of all operating systems, and had to rely on the externally
observable pattern of successively generated interface identifiers. A machine running an
operating systems that implemented the Privacy Extension as described in the respective
RFC has to generate the same sequence of successive interface identifiers whenever
originating from a defined initial state. The sequence appears unchanged when faced
with some external factors, while changing in dependence of other factors. The specific
influencing factors are discussed later in this section.

For checking the stated premise, we created a setup of two virtual machines running in
VMWare Workstation 11 and Fusion Pro 7. The machines were virtually connected for
networking. One ran the tested operating system; we refer to this machine as the testee.
To save time, we decreased the preferred lifetime on all operating systems and forced
the generation of a new temporary address at an interval of twelve minutes. We finally
created a snapshot of the testee that made it possible to return it to the initial state after
every test. The testee generated temporary addresses after a router’s announcement of
a network prefix. The second virtual machine thus ran Ubuntu 14.10 simulating this

5The candidate set C0 does not have to be stored as it contains all 264 possible values.
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Windows 8 3 3 3 7 3

Ubuntu 14.10 7

Mac OS 10.10 7

Table 8.3: Temporary Address Characteristics wrt to Client Operating Systems

router; to send ICMPv6 Router Advertisements the tool fake_router6 from the thc-ipv6
toolkit [193] was used. We recorded the temporary addresses of the testee by means of
local scripts.

Using the above premise, we tested the operating systems for five criteria. First, repeating
the test without any changes multiple times has to result in the same sequence of successive
interface identifiers due to the algorithm’s determinism. If this holds, the sequence is
checked for their dependence on various influencing factors. The algorithm has to be
invariant to time, the announced prefix as well as system restarts and provide the same
sequence of identifiers, while it has to be variant to a change of the MAC address. These
conditions are inferred from the algorithm’s definition in the respective RFC: Neither the
point in time of address generation is included into the calculation nor the identifier’s
lifetime. Thus, a later repetition of the experiment or a change in the interval may not
have an impact on the identifiers. The same holds for the announced network prefix. The
algorithm has to be invariant to system restarts as the current state has to be stored in
stable storage; all the tested operating systems require the availability of such a storage.
In contrast, the MAC address is included into the calculation, and its change should
result in different identifiers. These are necessary criteria, and are not sufficient criteria.
The results of our tests are shown in Table 8.3.

Ubuntu 14.10 does not generate deterministic sequences, and its temporary interface
identifiers appear to be assigned by a random number generator without following the
defined algorithm. A review of the source code6 supports this. Mac OS X Yosemite
showed the same behavior.

Windows 8.1 provides the same sequence whenever originating from the same state, and
6Kernel 3.16.0, /net/ipv6/addrconf.c, line 1898
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Figure 8.6: Mitigation Strategies for Generation of Temporary IIDs

further fulfills the conditions of time and prefix invariance as well as MAC variance.
Restarting the machine or the interface, however, influences the sequence. Thus, we
assume that Windows 8.1 implements the Privacy Extension’s version for systems without
presence of stable storage. In such a case, the first history value after a restart is randomly
assigned. This assumption coincides with the fact that we could not find any appropriate
history value in the Windows Registry analysing Registry diffs. Further signs supporting
our assumption are the collaboration of Microsoft in the definition of the RFC, as well as
the algorithm’s description in older TechNet Library articles [239].

The gained insights lead to the following conclusion: While Ubuntu 14.10 and Mac OS
X Yosemite seem to be immune to our attack, Windows 8.1 appears to be vulnerable
– admittedly to a decreased extent as reinitialization of the history value is performed
with every restart. However, systems that are continuously running for longer periods
or using sleep mode remain vulnerable; and sleep mode is widely used for laptops. For
interest, the operating systems’ protection to our attack is gained by disobeying the
Privacy Extension’s standard. Ubuntu and Mac OS seem to totally ignore the proposed
generation algorithm, while Windows 8.1 appears to implement the alternative for systems
without stable storage albeit it assumes such storage according to its system requirements.

8.8 Mitigation

In this section, we recommend changes to the address generation mechanism for mitigation
of our attack. We propose two kinds of strategy: The first aims at impeding synchroniza-
tion to the algorithm’s current state, while the other removes the predictability of future
identifiers in general.

Restraint of Synchronization: Our attack is based on the fact that an adversary is
able to learn a victim’s state by observating them over multiple days, and one might
hamper an adversary’s synchronization to the algorithm’s internal state for mitigation.
These strategies do not offer protection in case the state is leaked. The following
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explanations are supported by Figure 8.6; the numbers in the figure match those provided
in the following paragraphs.

(1) An increased history value would imply improved randomization and increase the size
of the initial candidate set C0, see Equation 8.1. As a consequence, the adversary has
to observe more successive identifiers according to Equation 8.2, and time expenditure
for brute-forcing increases, see Equations 8.3 and 8.4. The algorithm’s current design,
however, does not allow an isolated increase of the history value. The MD5 digest’s first
half forms the temporary interface identifier and its second the current history value.
Beyond, there are no bits available that could serve as additional bits for an increased
history value. Thus, this strategy would require the replacement of MD5 by another hash
function.

(2) MD5 is considered insecure, and its replacement by a state-of-the-art hash function
seems tempting. MD5 is vulnerable to collision attacks, and insecure for applications
that rely on collision resistance, e. g., as necessary for certificates [240]. The IPv6 Privacy
Extension, however, exploits a hash function’s randomization, and replacing MD5 with
the currently used SHA-265 would only modestly increase brute-force effort [241].

Removal of Identifiers’ Predictability: Another precondition of our attack is the
dependency of future identifiers on the current state and predictable inputs only. The
following mitigation approaches tackle this issue by removing the predictability of future
identifiers in different ways.

(3) Including a random value in every iteration makes the digest dependent on more inputs,
and adds unpredictability with every new interface identifier. This is the major difference
to an increased history value as mentioned above that solely increases randomization
at the algorithm’s initialization. Even if the current state is leaked, it is impossible to
accurately predict future interface identifiers. Moreover, this measure does not require a
dissolution of MD5.

(4) A removal of the concatenation would result in successive addresses that are not
related to each other; instead, the history value could be randomly initialized for every
new address. A similar but more limited approach is defined by the Privacy Extension’s
standard, but only for devices without stable storage [202]. As such systems are not able
to store the history value across system restarts, they are allowed to randomly initialize
the first history value after a reboot. Their vulnerability is thus dependent on their
typical restart intervals in comparison to the temporary addresses’ lifetime. Nevertheless,
it seems curious that an alternative algorithm for specific devices is more secure than the
standard algorithm.

Alternatively, temporary interface identifiers could be randomly assigned without such a
complex algorithm. A host’s vulnerability to address correlation is then dependent on
the quality of its random number generator. We see advantages in this approach because
high-quality random number generators are necessary in modern operating systems on
personal computers, laptops and mobiles anyway. The Privacy Extension would benefit
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from this quality and further be updated automatically with every improvement of the
number generator. For systems without an appropriate random number generator, an
alternative would have to be available. This practice is opposed to today’s standard
that defines a rather complex algorithm “to avoid the particular scenario where two
nodes generate the same randomized interface identifier, both detect the situation via
DAD, but then proceed to generate identical randomized interface identifiers via the same
(flawed) random number generation algorithm” [202] and lowers security for all systems
that implement the Privacy Extension.

Finally, we considered the question which mitigation strategies are in accordance with
the current specification, and have drawn the following conclusions: (1) It is allowed
to use another hash function instead of MD5. The brute-force effort would, however,
increase only modestly, and a replacement brings only limited protection. (2) The history
value is allowed to be randomly re-initialized after every system restart, but this behavior
is restricted to systems without stable storage. However, a variety of systems that
implement the Privacy Extension like personal computers, laptops, tablets or mobiles
do not lack stable storage, and have to follow the standard variety of the algorithm. (3)
The Privacy Extension is considered more secure the shorter the temporary addresses’
lifetime. This inherent belief has to be revised with respect to the presented attack
because more addresses are provided to the adversary within the same time interval,
making synchronization to the current state easier.

8.9 Conclusion

The IPv6 Privacy Extension aims to protect privacy by regularly changing the address,
and defines an algorithm for the generation of interface identifiers that are combined
with the advertised network prefix to form temporary IPv6 addresses. In this chapter, we
presented an attack that questions the extension’s capability of protection: An adversary
is able to predict future temporary interface identifiers once the internal state is known,
and is further able to synchronize to this internal state by exploiting the victim’s previous
interface identifiers as a side channel. In consequence, an adversary knows interface
identifiers belonging to the same host; in turn, she is able to perform address-based
correlation of different transactions and infer (private) details about people’s Internet
behavior. Moreover, an adversary might even retrace a host’s movement in the network
based on the network prefixes that are included in the respective addresses.

The presented attack is worthwhile as it does not solely identify a privacy vulnerability but
questions a whole measure for privacy protection. The Privacy Extension was developed
with the intention to impede address-based correlation, and our attack shows that it
does not meet its goal. Nevertheless, we believe that the general idea of temporary
addresses is valuable, and recommend a revision of the algorithm for interface identifier
generation. We want to highlight the fact that merely replacing MD5 does not solve
the problem, as the vulnerability arises from the concatenation of successive interface
identifiers, scarce randomization and information leakage via a side channel. MD5 just
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makes the attack easier due to its fast nature. Proper mitigation within the current
definition appears impractical, and we want to stress the importance of strategies beyond
today’s specification.

Operating systems appeared less vulnerable than originally assumed. This does not,
however, oppose a revision, as their robustness is gained by silently disobeying the
standard and should not be held as a virtue. The standard in its current form can tempt
developers to implement a version of the Privacy Extension that is vulnerable to side
channels, and should be adapted soon. This utmost concern is further emphasized by
the fact that the Privacy Extension is the only widely deployed IPv6 mechanism using
Stateless Address Autoconfiguration that is intended to protect against temporal as well
as geographical address correlation.
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CHAPTER 9
Conclusion and Future Work

Secret communication characterizes clandestine approaches of communication and en-
compasses covert channels, side channels as well as approaches of obfuscation. Secret
communication serves manifold goals like industrial espionage, compliance checking,
reconnaissance or malware communication; and a full attack typically consists of three
successive steps: (1) channel development, (2) information extraction and (3) information
exploitation. While previous work focuses on the aspect of channel development, the
thesis at hand includes all three aspects asking the following question: Which informa-
tion is gained by an adversary exploiting secret communication, and which advantages
does the adversary take from this information? This line of action further implies that
secret communication is dependent on the application scenario; thus, we investigate side
channels in cloud computing on the one hand, and with respect to the Internet Protocol
version 6 (IPv6) on the other hand. While the first represents a new operational model
with additional functionality through the reuse of existing technologies, the latter is a
new technology replacing its predecessor with almost the same functionality to overcome
address scarcity on the Internet.

We contribute four full attacks using side channels, two for each application scenario;
Table 9.1 highlights them with respect to the three attack phases. In Chapter 4, we
examined the functionality scope and quality of firewalls that are provided by public IaaS
cloud providers. The gained information on filtering behavior might be exploited in two
ways. In good faith, a customer might decide for additional protection, e. g., a host-based
firewall, as a consequence of discovered limitations of the default firewalls, e. g., their
lacking statefulness. In bad faith, an adversary might evade the firewall in order to strike
the virtual machine behind, e. g., using fragmentation attacks. In Chapter 5, we measured
traffic patterns of virtual instances residing at Xen hypervisors to infer all configuration
parameters that are related to bandwidth throttling. We have shown that an adversary
is able to adjust a denial-of-service attack based on the same mechanisms to its victim
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Development Phase Extraction Phase Exploitation Phase

Chapter
Channel Information Attack

4 Firewall Filtering Firewall Behavior Compliance Checking
Firewall Evasion

5 Network Throttling Configuration Parameters Compliance Checking
Denial-of-Service

7 IPv6 Addresses Implicit Address Patterns Reconnaissance

8 IPv6 Addresses Internal State Address Correlation

Table 9.1: Contributed Side Channels wrt. Attack Phases

with this information; in contrary, a benign customer could check compliance with the
service contract, i. e., whether the providers assigns as much bandwidth as promised.

With respect to IPv6, we developed two side channels, see Chapter 7 and 8, both use
IPv6 addresses as their channel. The first discovers implicit address patterns that are
exploitable for reconnaissance, i. e., the discovery of previously unknown victims. By
means of the gained patterns, we generate potential addresses making active probing
(scanning) with IPv6 possible in the first place as scanning even the smallest IPv6 sub-
network exhaustively would take longer than the sun’s lifespan. Addresses generated by
the IPv6 Privacy Extension had been considered to be insusceptible against such pattern
exploitation. We disprove this belief; first, successive addresses are related to each other;
second, future address are predictable once an internal state is known; and finally, this
internal state can be inferred using former addresses as a side channel. This makes
users of the Privacy Extension vulnerable to address correlation, i. e., the attribution of
different Internet transactions to a single user using solely IP addresses.

The thesis at hand shows that side channels become important whenever information is
not accessible in a regular manner; this fact is especially apparent when using the side
channel in good faith. If a customer does not receive enough technical information from
the cloud provider, the first is tempted to use side channels to infer details on firewall
functionality or network bandwidth configuration. If exhaustive Internet-wide scanning,
as in IPv4, becomes infeasible with IPv6, researchers snatch for more information in
order to generate likely address candidates.

It is further noteworthy that cloud computing forms a substrate for a variety of chan-
nels exploiting very diverse technologies, and this work solely discussed network-based
secret communication in cloud computing not mentioning all the other ways of secret
communication using CPU load or cache hits; whereas IPv6 offers only a limited number
of approaches and these are all classic storage channels. Beyond, it appears that the
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IPv6 address is outstanding among these channels as general protection strategies like an
attribute’s removal or its encryption fail; both our channels exploit addresses.

For future work, we plan to continue our efforts on secret communication in both scenarios,
cloud computing as well as IPv6, in a threefold way. First, academia seems to cultivate
side channels in cloud computing; on the contrary, business appears to be unaware despite
such channels’ immense potential to check cloud providers for compliance. Thus, we plan
to combine known side channels into a single tool in order to provide research outcomes
in a usable way to the public. For professional use, some challenges however remain. One
the one hand, side channels are dependent on the underlying infrastructure and thus on
the provider; on the other hand, cloud infrastructures change over time, and the tool
would require regular adaptions.

With regard to IPv6 addressing, we aim to achieve a revision of the IPv6 Privacy
Extension and its fast re-implementation in vulnerable operating systems as time in
favor of the adversary. By now, however, our attack is still considered to be practically
infeasible due to its brute-force effort taking multiple years; thus, we aim to develop an
improved and practically feasible version supporting our initial statements in order to
promote a revision.

Finally, we see potential to utilize IPv6 addresses as Moving Target Defense (MTD). The
address could change at a regular interval in a deterministic way, but appear random to
observers. Hosts having a key are able to determine the current address, and connect
to a server; the others are excluded. If an adversary sniffs a legitimate address, she will
automatically loose connectivity with the next address. Such Moving Target Defense
might be fruitful for Internet-of-Thing scenarios, and home servers serving only a limited
group of users, e. g., the residents of a single household. With regard to the type of secret
communication, this means a change in comparison to our approaches. We exploit IPv6
addresses as side channels; this implies that communication is unintended by the address
owners. In the described scenario, all partners would actively communicate and patterns
are hidden in the address on purpose, i. e., the address would be exploited as a covert
channel.
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