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Abstract
Concrete is a microheterogeneous material. Therefore, mechanical properties of concrete

are related to the hierarchically organized microstructure of the material. At an observation
scale of millimeters to centimeters, one can visually distinguish sand grains, gravel aggregates,
and the surrounding cement paste matrix. Resolving the cement paste matrix at smaller scales
of observation reveals a surprisingly complex material microstructure. It consists of cement
grains, pores, and hydrates; whereby the latter represent products of the chemical reaction
between cement and water. Material modeling is particularly challenging at early material
ages, because the microstructure of cement paste undergoes a continuous transformation due
to the progressive consumption of cement and water, and the corresponding precipitation of
hydrates.

Describing the evolving microstructures within a mathematical framework is the first
objective of this work. We aim at quantifying the volumes occupied by the material constituents,
as functions of the initial volumetric composition and of the maturity of the material. Thereby,
we account for recently quantified phenomena like the progressive densification of calcium-
silicate-hydrates (C-S-H) and the “internal curing” capacity provided by water residing in
the open surface porosity of aggregates. Additional important challenges tackled in this
thesis are: identification of the morphology of the individual material constituents and of
their arrangement within the hierarchically organized microstructure, quantification of their
mechanical properties, and modeling their interactions. Corresponding multiscale models are
fed with measured or modeled input data, taken from several fields of cement science reported
in the open literature. The mass density and the elastic stiffness of solid C-S-H nanoparticles
are taken from small angle scattering experiments and from atomistic modeling, respectively.
Strength properties and the densification behavior of C-S-H gel are taken from limit state
analysis of nanoindentation tests and from nuclear magnetic resonance relaxometry tests,
respectively. This way, the number of model parameters is kept at an absolute minimum and
all involved quantities are physically meaningful.

Methods of continuum micromechanics are used as vehicles for scale transitions, i.e. for
establishing links between microstructure and microstructural properties, on the one hand,
and macroscopic mechanical properties of cementitious materials, on the other hand. Bottom-
up homogenization is used to upscale physical laws introduced at material microscales and
top-down identification is used to quantify constants of material constituents, which are
nowadays not accessible by direct material testing. Thereby, the present thesis addresses
all three major mechanical properties of cementitious materials: their elastic stiffness, their
creep properties, and their uniaxial compressive strength. As for poroelasticity, it is shown
that stiffness homogenization starting at nanoscopic solid C-S-H particles all the way up
to the macroscopic elastic behavior of cement paste is possible, if one considers that space
confinements in the water-filled pore spaces govern (i) the shape of precipitating solid C-S-H
particles and (ii) the overall density of the evolving C-S-H gel. As for creep, it is shown that
the maturity- and composition-dependent creep properties of cement pastes, mortars, and
concretes – as quantified in several thousands of macroscopic creep experiments – can be
traced back to one universal creep function of microscopic hydrates. As for strength, it is
shown that hydrates of environmentally friendly “green” cement pastes and mortars, produced
with slag or fly ash as cement replacement materials, are considerably stronger than the
hydrates in ordinary Portland cement pastes.



Kurzfassung
Die makroskopischen mechanischen Materialeigenschaften von Beton werden durch seine

hierarchisch organisierte, heterogene Mikrostruktur bestimmt. Auf einem Beobachtungsmaß-
stab von einigen Milli- bis Zentimetern kann man visuell zwischen Sand- und Gesteinszu-
schlagskörnern und der sie umgebenden Zementsteinmatrix unterscheiden. Betrachtet man
die Matrix auf einem kleineren Beobachtungsmaßstab, offenbart sich ein überraschend kom-
plexes Materialsystem, bestehend aus unhydrierten Zementpartikeln, Poren, Hohlräumen und
Hydraten, die aus der chemischen Reaktion von Zement mit Wasser entstehen. Besonders die
Modellierung des jungen Betons ist herausfordernd, da, aufgrund des ständigen Ausfallens
weiterer Hydrate, die Mikrostruktur einer kontinuierlichen Transformation unterzogen ist.

Das Erfassen dieser komplexen, sich entwickelnden Mikrostruktur mithilfe eines mathe-
matischen Modellierungskonzepts stellt das erste Ziel dieser Arbeit dar. Die Volumina der
Materialbestandteile sollen als Funktion der volumetrischen Zusammensetzung und des Aushär-
tegrades ermittelt werden, wobei auf erst kürzlich entdeckte Phänomene, wie die zunehmende
Verdichtung der Calciumsilicathydrate (C-S-H) oder die durch Wasser in der zugänglichen
Oberflächenporosität der Zuschlagskörner ermöglichte “innere Nachbehandlung”, eingegangen
werden soll. Die Bestimmung der Hierarchie der Materialbestandteile, deren Morphologie,
deren mechanischer Eigenschaften und deren Interaktion sind weitere Themen, die in dieser
Arbeit behandelt werden. Die Mehrskalen-Mikrostrukturmodelle werden mit publizierten Mess-
oder Modellergebnissen aus unterschiedlichen Disziplinen der Betonwissenschaften gespeist.
Die Festigkeitskennwerte und das Verdichtungsverhalten von C-S-H, beispielsweise, stammen
von Nanoindentationtests bzw. von Messungen der Kernspinresonanzrelaxation. Dadurch
verbleibt die Anzahl der Modellparameter auf einem absoluten Minimum und alle eingeführten
Materialkonstanten sind direkt physikalisch interpretierbar.

Methoden der Kontinuumsmikromechanik ermöglichen den Skalenübergang zwischen Mi-
krostruktur und makroskopischen mechanischen Materialverhalten. Durch einen Bottom-up
Ansatz werden die homogenisierten mechanischen Eigenschaften auf der Makroskala basie-
rend auf physikalischen Gesetzen auf der Mikrostruktur bestimmt; ein Top-down Ansatz
quantifiziert Materialkonstanten auf der Mikrostruktur, die bis heute experimentell nicht
zugänglich sind. Dabei wird auf die drei zentralen mechanischen Eigenschaften der zementge-
bundenen Materialien eingegangen: poroelastisches Verhalten und Kriechverhalten sowie auf
die einaxiale Druckfestigkeit. Es wird gezeigt, dass die Steifigkeitshomogenisierung ausgehend
von den Nanometer großen C-S-H Festkörpern bis hinauf zum makroskopischen elastischen
Materialverhalten möglich ist, wenn man berücksichtigt, dass die beengten Platzverhältnisse
in den wassergefüllten Porenräumen die Dichte und die Morphologie des C-S-H steuert. Die
alters- und zusammensetzungsabhängige Kriechaktivität von Zementstein, Mörtel und Be-
ton – die aus mehreren tausenden von Kriechtests bestimmt wurde – kann auf eine einzige
universelle Kriechfunktion in den Hydraten zurückgeführt werden. Außerdem wird gezeigt,
dass Hydrate in umweltfreundlichen “grünen” Zementsteinen und Mörteln, hergestellt mit
Hochofenschlacke oder Flugasche als Zementersatz, wesentlich fester sind als in gewöhnlichen
Portlandzementsteinen.
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Chapter1
Introduction
1.1 Motivation
With an annual global production of 25 billion tons – or 3.4 tons per person each year –
concrete is, after water, the most consumed substance on the planet (Klee, 2009). Given
these numbers and the 250-year-long research history which goes back to French engineers
trying to decipher the secret for the remarkable hardness of mortars in brick walls built in
the Roman age, see Blezard (1998) for a comprehensive historical review, one might think
that the material is sufficiently studied. However, the material is still far from being fully
understood, mainly due to the tremendously complex microstructure of concrete which reveals
itself on very small scales of observations.

Concrete consists of sand and gravel aggregates (occupying typically 60-70% of the
volume), cement clinker, and water. After mixing, the clinker continuously dissolves in
the water and hydration products (called “hydrates) precipitate from the supersaturated
solution. The hydrates form a binding agent that glues the aggregates together and provides
the material with its strength. At the observation scale of some centimeters, concrete
may look like a simple composite material where aggregates are embedded in a matrix of
cement paste, which continuously hardens as the material matures, but the complexity of
cement paste at observation scales of micrometers or even nanometers renders cementitious
materials a challenging field of research. Understanding the macroscopic material behavior
and quantitative modeling require careful consideration of these small scales of observation,
where physical phenomena and processes prevail, which govern the macroscopic mechanical
properties of concrete. Two well known illustrative examples underlining this statement are
discussed next:

• The elastic limit of concrete, i.e. the end of the linear elastic regime of the material is
triggered by microcracks occurring around the aggregates (Hsu et al., 1963; Shah and
Sankar, 1987), see Fig. 1.1. In order to model the macroscopic elastic limit, one has
to study the microstructure at micrometer-large observation scales. In narrow zones
around the aggregates, referred to as interfacial transition zones (ITZs), the porosity is
significantly larger than in the bulk of the cement paste (Ollivier et al., 1995; Diamond
and Huang, 2001; Scrivener et al., 2004), in particular in young concrete. They are
typically considered to be the weakest link within the microstructure of concrete (Hsu
et al., 1963; Shah and Chandra, 1968; Zimbelmann, 1985). Only if microscopic failure
mechanisms at the micrometer large scale of the ITZ (either ITZ-aggregate separation
or ITZ cracking) are taken into account, the macroscopic elastic limits can be accurately
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predicted, as it was shown by a multiscale approach (Königsberger et al., 2014a,b).

• Another example where macroscopic phenomena can be traced back to micromechanical
processes is the complex creep behavior of concrete, i.e. the material feature that time-
invariant stresses applied on a piece of concrete result not only in instantaneous elastic
deformation, but also in progressive delayed deformation. Even several years after loading
these creep strains still increase (Bažant et al., 2011) causing severe problems with
concrete bridges, because traditional design codes envisioned creep to be asymptotically
vanishing process. It is likely that the macroscopic creep results from microstructural
sliding processes along viscous interfaces in the layered calcium-silicate-hydrates (C-S-H),
see Fig. 1.2 and (Manzano et al., 2012; Shahidi et al., 2014). Therefore, studying concrete
creep from a purely macroscopic viewpoint can never explain the whole complexity of
the creep phenomenon simple because the physical origin is only “visible” at smaller
observation scales.

Both examples show that promising and physically sound models for the complex behavior of
cementitious materials require the consideration of the physical mechanism at small scales of
observation. Such type of modeling is typically referred to as micromechanical modeling (Li
and Gao, 2013) or multiscale modeling, respectively.
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stress/strength [%]

strain

initiation stress (elastic limit)

strength

discontinuity stress

cracking around aggregates
and in cement paste matrix

cracking around aggregates

no significant cracking

(a) (b)

cement paste matrix

microcrack

aggregate

Figure 1.1: (a) Typical stress-strain diagram of concrete subjected to uniaxial compression:
the elastic limit occurs at stress magnitudes of 30-50% with respect to the uniaxial compressive
strength; (b) microcrack in the interfacial transition zone (ITZ) around the aggregates which
is responsible for prepeak nonlinearities in the stress-strain diagram and thus governs the
elastic limit

Experimental investigations of the microstructure of cement paste provide a valuable basis
for multiscale modeling. Catalyzed by the possibilities which are provided by state-of-the
art experimental techniques, concrete researchers have gained comprehensive insight into the
material characteristics at micro- and nanoscales, see e.g. Fig. 1.3. The most relevant findings
are very briefly summarized next. The first optical insight into cementitious microstructures
was presented by Chatterji and Jeffery (1966) who showed, by using electron microscopy
techniques with resolution of several micrometers, that the cement paste consists of unhydrated
clinker grains, of hydration products, and of capillary pores (either filled by water or air).
Calcium-Silicate-Hydrates (C-S-H) form dense areas of inner product around the unhydrated
clinker grains (Diamond, 2004), see the grey shells around the white particles in Fig. 1.3(a)
and the dense area of hydration products in the top left corner of Fig. 1.3(c). Further away
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Figure 1.2: Creep deformation of concrete structures at the macroscopic scale are likely to
result from microstructural sliding processes at viscous interfaces within the solid C-S-H
nanoparticles

from the clinker grains, the microstructure is less dense and very heterogeneous. Pores,
different crystalline hydrates (plate-like portlandite, rod-like ettringite, and monosulfate) and
amorphous C-S-H are intermixed, see Fig. 1.3(b). Given that the C-S-H phase exhibits the
largest sub-volume, it plays a major role in mechanics of cementitious materials. Although
visual insight for this nanomaterial is challenging, significant steps towards understanding its
microstructure have been accomplished during the last two decades. C-S-H is considered to be
a “gel”-type material which consists of so called solid C-S-H nanoparticles and of water-filled
gel pores with characteristic sizes of only a few nanometers (Jennings, 2000; Allen et al.,
2007; Jennings, 2008). The approximately 5 nm thick solid C-S-H particles exhibit a layered
structure. Calcium-silicate layers alternate with “glassy” interlayer water (Pellenq et al., 2009),
whereby typically 2-3 water layers are found in one nanoparticle (Allen et al., 2007; Chiang
et al., 2012; Muller et al., 2013), see the schematic representation of solid C-S-H nanoparticles
in Fig. 1.2.

The microstructure of cement paste is far from being constant. First and foremost, the
hydration reaction i.e. the continuous dissolution of clinker and precipitation of hydration
products results in an evolving microstructure and adds another level of complexity to the
material. Moreover, the choice of raw materials and their initial dosages considerably influence
the microstructural properties and their evolutions. For instance, it is quite obvious from a –
micromechanical point of view – that the cement paste microstructure is denser in a paste with
a high cement content, i.e. with a low water-to-cement mass ratio. Given the fact the cement
production alone is responsible for 5–7% of global anthropogenic CO2 emissions (Worrell
et al., 2001; Gao et al., 2015), attempts to reduce the cement content have gained a lot of
popularity in recent years. Therefore, cement clinker is blended by hydraulic waste materials
(so-called supplementary cementitious materials – SCM) or by inert filler materials. Typically,
this SCMs result in a delayed hydration reaction, in particular in cement pastes blended
with fly ash or granulated blast furnace slag (Pane and Hansen, 2005). Because the calcium
content in most of the replacement materials is smaller than in ordinary Portland cement
clinker, hydration products itself are different as well, both from a chemical and a mechanical
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Figure 1.3: Microstructure of cement paste at various scales of observation as observed
by electron microscopy imaging techniques: (a) cement paste at a scale of several tens of
microns observed by backscatter-mode electron microscopy after Diamond (2004), unhydrated
clinker grains in white, surrounded by dense inner product C-S-H, and embedded in a “foam”
consisting of different hydrates and capillary pores; (b) hydrates at a scale of several microns
observed by secondary electron microscopy after Stutzman (2001), portlandite (plate-like)
and ettringite crystals (rod-like) are intermixed with amorphous C-S-H and pores; (c) inner
product and outer product C-S-H at the scale of several hundreds of nanometers as observed
by transmission electron microscopy after Richardson (2004)

perspective (Lothenbach et al., 2011; Zadeh and Bobko, 2013). In summary, cement and
concrete researchers have to deal with a great variety of materials and microstructures.

Given the aforedescribed microstructural complexity and variety, multiscale micromechan-
ics modeling of cementitious materials is a challenging field of research. Several modeling
approaches qualify for such aspects. Discrete numerical approaches such as Finite Element
modeling (FEM), Discrete Element modeling (DEM), or Lattice Discrete Particle models
(LDPM) have shown to be very useful to model several aspects of the mechanical behavior of
cementitious materials, see e.g. (Hentz et al., 2004; Haecker et al., 2005; Wriggers and Moftah,
2006; Cusatis et al., 2011; Hlobil et al., 2016). In general, such approaches face difficulties,
since they require the generation of detailed microstructures and they are computationally
expensive. Within this thesis, a continuum micromechanics approach is applied. Thereby,
the material’s microstructure is not resolved in every single detail. Instead, subdomains
(called material phases) with constant micromechanical and micromorphological properties
and their interaction are identified. This allows for very elegant modeling of the material in
an analytical fashion. Indeed, continuum micromechanics approaches, see e.g. (Bernard et al.,
2003b; Sanahuja et al., 2007; Scheiner and Hellmich, 2009; Pichler et al., 2009; Pichler and
Hellmich, 2011; Stefan et al., 2010; Bary, 2011; Venkovic et al., 2013), have turned out to be
efficient and successful for predicting the macroscopic properties of cementitious materials,
and this provides the motivation the continue this line of research.

The most fundamental challenge in developing micromechanical models is to accurately
predict the phase volumes fractions. Customarily, they are estimated from the Powers model
(Powers and Brownyard, 1947; Powers, 1958), relying on experimentally determined water
vapor isotherms. The model provides analytical expressions for the phase volume evolutions
of clinker, hydrates, water-filled capillary pores, and air-filled voids as functions of the pastes’
composition in terms of the initial water-to-cement mass ratio and of the pastes’ maturity in
terms of the hydration degree. Notably, the Powers model implies a proportionality between
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the hydrate volume and the hydration degree. Given its predictive character, the model has
survived for almost 60 years, although it has some shortcomings and limitations. In the context
of the C-S-H hydrates, the Powers-predicted linearity is nowadays questioned from nuclear
magnetic resonance frequency experiments (Muller et al., 2012, 2013). The C-S-H hydrates
are found to progressively densify during ongoing hydration. Still, the governing mechanism
for the experimentally observed composition-dependent densification behavior is under debate
and there is dire need for a mathematical description of the process. Moreover, the Powers
model considers cement paste as a thermodynamically closed system, and as such it is not able
to model water migration processes between cement paste and aggregates. Depending on the
type of aggregates and on their initial water content, however, such migration processes are of
significant importance for mortars or concretes. Part of the mixing water might initially be
absorbed from by the aggregates, but later on, it might be soaked back to the water-consuming
cement paste. Such a water supply of aggregates is referred to as internal curing (Bentz et al.,
2005; Jensen and Lura, 2006). Building up a mathematical framework which still keeps the
predictive capabilities of Powers’ approach but incorporates the aforementioned phenomena is
another motivation of the research.

1.2 Main objectives of the research
The main objective of the present thesis is to predict a variety of mechanical properties of
cementitious materials by means of continuum micromechanics approaches. In the context of
macroscopic mechanical properties, the focus is on strength, creep, and poroelastic properties,
as described next.

• Strength:
The uniaxial compressive strength, which is the first focus of the thesis, is the cen-
tral material property for structural applications. During the last years, continuum
micromechanics-based modeling was successfully applied to predict the strength evolu-
tion of ordinary Portland cement paste (Pichler et al., 2009; Pichler and Hellmich, 2011;
Pichler et al., 2013a). Based on these achievements, the model should be extended in
two directions,

– to the mortar scale by explicitly considering the stress concentrations around the
sand aggregates which are driven by the stiffness contrast between cement paste
matrix and sand aggregates; and

– to different types of blended cement pastes and mortars by incorporating replace-
ment type-specific microstructural peculiarities and measured microstructural phase
evolutions

• Creep:
Quantifying creep mechanisms at the microscale is a major challenge in concrete research.
Relying on a recently launched experimental creep campaign (Irfan-ul-Hassan et al.,
2016) and again on the existing continuum micromechanics representation of cement
paste developed from (Pichler and Hellmich, 2011), we aim for downscaling-based
identification of the creep behavior of the hydrates. In particular, we aim at clarifying,
whether or not, the creep behavior of hydrates in Portland cement pastes is universal,
although the cement paste creep potential reduces significantly during the maturation
of the paste. Moreover, we aim at upscaling the creep behavior of cement pastes to the
scale of mortars and concretes.
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• Poroelastic behavior:
The strength and creep predictions will be based on the microstructural representation
developed by Pichler and Hellmich (2011), which starts at the micrometer-large scale
of the hydrates. In the context of elasticity upscaling, we seek for going even further
down to the nanometer-large scale of solid C-S-H nanoparticles. This way, we might
be able to transfer the stiffness, obtained from solid C-S-H simulations at the atomic
level (Pellenq et al., 2009; Manzano et al., 2012) all the way up to the macroscopic
stiffness of cement paste. Hence, our micromechanics model is required to bridge several
magnitudes of length scales. Moreover, we aim at understanding the role of water in gel
and capillary pores on the elastic behavior of the paste and for quantifying the stiffening
effect resulting from pore water pressures.

The sought models should be valid for all maturity states of cementitious materials, i.e.
hydration-induced hardening should be captured by our approach. This requires access
to the phase volume evolutions accompanying to the hydration process. Overcoming the
aforementioned limitations of the customarily used Powers model (Powers and Brownyard,
1947; Powers, 1958) is an important secondary objective of the thesis. Aiming at accurate
micromechanics predictions for mortar and concrete, water migration processes from the paste
to the aggregates and then back from the aggregates to the paste have to be considered.
Consequently, we seek for an engineering approach to model this water migration processes.
In a similar fashion, we also aim at taking into account the experimentally observed C-S-H
densification. In the spirit of the ready-to-use mathematical expressions provided by the
Powers model, a mathematical model for the phase volume evolutions should be developed.

1.3 Mathematical modeling philosophy

A model is typically understood as (Dym, 2004)

a miniature representation of something; a pattern of something to be made; an
example for imitation or emulation; a description or analogy used to help visualize
something (e.g., an atom) that cannot be directly observed; a system of postulates,
data and inferences presented as a mathematical description of an entity or state
of affairs.

Using the precise and concise “language” of mathematics has considerably improved modeling
activities and has led to several mathematical models which can be defined as (Meyer, 2012)

a model whose parts are mathematical concepts, such as constants, variables,
functions, equations, inequalities, etc.

In the context of material modeling, new modeling concepts together with the progressively
increasing computational power have led to a whole new generation of models, potentially of
multiscale and interdisciplinary character. Typical objectives are:

• increasing the scientific understanding of material phenomena through their quantifica-
tion, e.g. through identification of the central physical mechanisms which govern the
phenomena

• predicting scenarios which are difficult to be accessed experimentally insight is limited,
e.g. because respective test campaigns would span over very large time intervals
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• study the sensitivity of changes regarding the material composition or the environmental
conditions on the physical phenomena

• provide a scientifically sound foundation for decision makers

Achieving the aforementioned objectives requires careful model development. The following
steps are essential and have to be sequentially tackled (Dym, 2004; Scheiner, 2009):

1. Identification of the underlying physical mechanisms:
First and foremost, the physical mechanisms which govern the phenomenon to be studied
have to be identified. In this context, micromechanical multiscale models have gained a
lot of popularity during the recent years, since they are able to capture the physical
mechanisms at the scale where they occur. By means of upscaling or homogenization
techniques, the macroscopic material behavior is obtained. Rather than trying to
incorporate all physical processes potentially occurring in the material, it is of central
importance to consider especially those mechanisms which do have a significant effect
on the phenomenon, according to the principle “as simple as possible, as complex
as necessary”. Such models typically require only a very limited amount of material
parameters which is beneficial for the robustness and the reliability of modeling results.

2. Mathematization of the mechanisms:
The underlying physical mechanisms have to be put into a mathematical framework,
which typically yields a set of governing equations. Again, simple mathematical forms are
preferred, e.g. a non-linear function for quantifying a physical relation is only preferable
if it significantly increases the reliability in comparison to a linear function.

3. Choice of solution method:
The priority is to solve as much of the problem in an analytical or semi-analytical fashion.
Thanks to the continuum micromechanics approach used in this thesis, numerical
methods are required only very rarely. Consequently, inevitable problems which come
along with numerical methods such as the Finite Element Method, e.g. mesh size
dependence, are avoided.

4. Code verification:
If the mathematical model is implemented into a computer program, code verification
attempts such as debugging and plausibility checks are of utmost importance for
obtaining proper model results. Therefore, we strive, at every possible position, to check
the obtained results based on independent, mostly simpler models. For instance, the
homogenized stiffness tensor of a material, which is estimated based on the Mori-Tanaka
or the self-consistent scheme can be verified by checking whether or not, the estimate
falls in between the Voigt and Reuss bounds, or the much stricter Hashin-Shtrikman
bounds (Hashin and Shtrikman, 1962), respectively.

5. Parameter identification:
Preferably, the developed model is based on readily measurable and physically inter-
pretable universal material constants only. Any other parameter should be avoided.
Clearly, this guideline cannot be obeyed in a strict sense in some application, as e.g.
neither the elastic stiffness nor the strength of the nanometer-sized solid C-S-H particle
can be determined experimentally. As a remedy, parameters might be identified by
means of a top-down approach based on macroscopic experimental data, a process which
is typically referred to as model calibration.
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6. Model validation based on experimental data:
In the sense of Popper (1959), model validation by means of comparing model predictions
to experimental results has to be performed based on falsification attempts. The more
experimental campaigns the model withstands unfalsified, the more relevant it is.
Notably, the experimental data used for model validation has to be independent. Hence,
if experimental results are used for top-down identification of material parameters of
a model, the very same data disqualify per se for model validation purposes. In other
words, only “blind” predictions allow for falsification attempts.

7. Improvement of the model:
Within an iterative loop, unsuccessful validation attempts should lead to an improvement
of the model. In this context, one should start at the very beginning, check whether
or not an important physical process might have been overlooked and question the
underlying mathematical assumptions, etc.

A model which is successfully developed according to the described model philosophy, can
be evaluated in order to predict the material behavior for situations of interest. Thus, it might
be able to replace expensive experimental campaigns, as targeted in Chapters 6 where a model
is sought which provides access to the density of the C-S-H gel for arbitrary maturity states
and arbitrary compositions (in terms of the water-to-cement mass ratio) of the cement paste
or as targeted in Chapter 5 where the creep behavior of different mortars or concretes should
be predicted based on the measured creep behavior of the cement paste used to produce
the mortar/concrete. Mathematical modeling might be also useful to identify the physical
behavior at very small scales, where trustworthy experimental data is still not available. In
Chapter 4, we aim for such an identification, in more detail we downscale the experimentally
determined creep behavior at the scale of cement paste in order to identify the universal creep
constants of the hydrates. Moreover, the mathematical models which are developed herein
aim at providing valuable insight into microstructural features and physical mechanism at the
level of the cement hydrates. For instance, it we aim at studying whether or not, the cohesion
of the C-S-H in blended cements is significantly larger than the cohesion of C-S-H in ordinary
Portland cement paste (see Chapter 3 for more details). We also strive for a knowledge gain
from the microporomechanical modeling campaign for hydrating cement paste, see Chapter 7,
where the potential stiffening effect of the water entrapped in the nanometer-sized porosity
should be deciphered.

1.4 Outline of the thesis
In accordance with the objectives of the research, the thesis is structured as follows. The
fundamentals of continuum micromechanics, including the eigenstress influence tensor concept,
are revisited in Chapter 2. The following five chapters contain either already accepted
or published papers, or quite mature paper drafts which are planned to be submitted for
publication– potentially in further improved form. Chapter 3 deals with modeling the uniaxial
compressive strength of cement pastes and mortars made from pure Portland cement clinker
or from blended clinker. This is followed by a two chapters for creep modeling. Firstly,
the hydrate creep behavior is identified by means of downscaling macroscopic material tests
performed on cement pastes (see Chapter 4). Secondly, the measured creep behavior of cement
paste is upscaled to the level of mortar and concrete, taking into account that water migrates
from the paste to aggregates directly after mixing and vice versa during the hydration.
In Chapter 6 we use experimental results from nuclear magnetic resonance relaxometry,
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available in the open literature, to study the evolution of the C-S-H gel density based on space
confinement considerations. This further allows for obtaining quantitative expressions for
phase volume evolutions accompanying the hydration reaction. Next, we develop a three-scale
representation of cement paste incorporating gel pores and capillary pores (see Chapter 7).
Based on the mathematical expression for the phase volume evolutions and on this new
micromechanical representation, the pore pressures and the phase stiffnesses are upscaled
to poroelastic properties at the macroscopic scale of cement paste. Finally, the thesis in
concluded and completed with a future outlook (see Chapter 8).



Chapter2
Fundamentals of continuum
micromechanics in the framework
of the eigenstress influence tensor
concept
2.1 Representative volume element
Continuum micromechanics approaches for material modeling rely on the concept of rep-
resentative volume elements (RVE). The studied volume is representative for the actual
microstructure of the material if it fulfills the principle of scale separation. This principle
requires, on the one hand, that the structural dimensions and the characteristic dimensions of
external loading, L, are considerably larger than the characteristic size of the RVE, `, and,
on the other hand, that the characteristic size of the RVE is significantly larger than the
characteristic length of the inhomogeneities within the RVE, d. In mathematical terms, this
reads as

L � `� d. (2.1)

As for the first inequality condition in (2.1), factors of 5 to 10 between the size of the structure
and the RVE size are typically considered in order to enable differential calculus. Notably, a
factor of 7 is found to be sufficient in order to deal with RVEs subjected to uniform stress
and strain boundary conditions for ultrasonic wave experiments where the wavelength λ takes
the role of the characteristic size L, see Kohlhauser and Hellmich (2013) for details. The
second inequality condition in (2.1) allows for assigning homogenized properties of the RVE
(such as a homogenized stiffness). Drugan and Willis (1996) studied two-phase RVEs with
randomly distributed non-overlapping identical spheres embedded in a matrix phase. By using
a variational nonlocal formulation they compared the strain variations under consideration of
a homogenized modulus based on the RVE to the strain variations by applying the load on
the actual microstructure. Surprisingly, an error of 5% is already achieved if the RVE size is
only by a factor of two larger than the inclusion size, and a factor 4.5 leads to errors of 1% or
smaller. Notably, these factors refer to inclusion volume fractions of 25% and to a stiffness
contrast between matrix and inclusion which goes to infinity (inclusions are pores). For all
other scenarios, the maximum RVE size would be even smaller if similar errors were tolerated.
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Figure 2.1: Illustration of the principle of scale separation: a representative volume element
(RVE) with characteristic size ` contains inhomogeneities with characteristic size d and is
embedded in a structure with characteristic size L

2.2 Field equations
Within the RVE, Ω, we formulate the field equations of linear elasticity. The stress-strain
relation reads as

σ(x) = C(x) : [ε(x)− η(x)] , (2.2)

where σ and ε are the (second-order) stress and strain tensors, C is the (fourth-order) elastic
stiffness tensor, x is for the location vector, labeling positions within and on the boundary of the
RVE, and η(x) denotes the second-order eigenstrain tensor which considers potential thermal
strains, plastic strains, or pore pressures. The static equilibrium conditions disregarding
volume forces and read as

divσ(x) = 0 . (2.3)

Finally we consider linear strain-displacement relations, reading as

ε(x) = 1
2

[
∇ξ +

(
∇ξ
)T ]

, (2.4)

where ξ stands for the displacement vector and ∇ξ for the gradient of this field.

2.3 Homogeneous boundary condition and average rules

Homogeneous (macroscopic) strains E, are prescribed at the boundary of the RVE, ∂Ω. They
are applied in terms of microscopic displacements ξ of the form

ξ(x) = E · x ∀x ∈ ∂Ω . (2.5)

For a field of compatible (kinematically admissible) microstrains ε(x), the strain boundary
condition (2.5) implies that the (spatial) average of the microstrain field is equal to the
macrostrain (Hill, 1963; Hashin, 1983; Zaoui, 2002), i.e.

E = 1
Ω

∫
Ω

ε(x)dV . (2.6)

The microscopic deformations (2.5) provoke microstresses inside the RVE and tractions T at
the boundary of the RVE, reading as

T = σ(x) · n(x) , (2.7)
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with n denoting the unit (outward) normal vector to the boundary ∂Ω. The external work
done by these tractions reads as

W ext = 1
Ω

∫
∂Ω

T (x) · ξ(x) dS . (2.8)

Inserting Eqs. (2.5) and (2.7) into (2.8) and making use of the divergence theorem yields

W ext = E : 1
Ω

∫
Ω

σ(x) dV = E : Σ (2.9)

The force quantity in (2.9), which is doing work on the macrostrains is the spatial average of
the microstresses, and is therefore denoted as macrostress Σ, reading as

Σ = 1
Ω

∫
Ω

σ(x)dV . (2.10)

This also implies that the (spatial) average of the local work done from equilibrated mi-
crostresses and compatible microstrains is equal to the work done from macrostresses and
macrostrains, typically referred to as Hill’s lemma (Hill, 1963; Zaoui, 2002):

Σ : E = 1
Ω

∫
Ω

σ(x) : ε(x)dV . (2.11)

A similar average rule for the local power σ(x) : ε̇(x) (with ε̇ denoting the time derivative of
the strains) applies.

2.4 Concentration-influence relations and stiffness
homogenization

Next we aim at deriving relations between macroscopic and microscopic quantities. The
relationship between local microscopic strains ε(x), and and the applied macrostrain E as
well as the eigenstrains η(x) has to be linear due to the linearity of the field equations (2.2) to
(2.4) and the boundary condition (2.5). It might be written as (Pichler and Hellmich, 2010)

ε(x) = A(x) : E +
∫

Ω
D(x, y) : η(y) dΩ(y) , (2.12)

where A(x) denotes the fourth-order strain concentration tensor quantifying the concentration
of macrostrains into microstrains, D(x, y) denotes the eigenstrain influence tensors, quantifying
the effect of eigenstrains at location y on microstrains at position x. Eq. (2.12) depicts that
strain concentration tensors and eigenstrain influence tensors are essential for the strain
concentrations from the macroscale to the microscale. Since the eigenstrains η(x) can be
given in terms of eigenstresses π(x) as

η(y) = −C(y)−1 : π(y) , (2.13)

Eq. (2.12) can be reformulated as

ε(x) = A(x) : E −
∫

Ω
Q(x, y) : π(y) dΩ(y) , (2.14)
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where Q(x, y) denotes, the eigenstress influence tensor, quantifying the effect of eigenstresses at
location y on microstrains at position x. Combination of (2.12) to (2.14) allows for obtaining
eigenstress influence tensors from eigenstrain influence tensor as

Q(x, y) = D(x, y) : C(y)−1 . (2.15)

Based on the strain concentration relations (2.12) and (2.14), we aim at stiffness ho-
mogenization next, i.e. we aim at upscaling the local stiffness C(x) to the homogenized
(macroscopic) stiffness of the RVE Chom. In order to derive the homogenized stiffness, we
focus on an eigenstrain/eigenstress-free case, η(y) = π(y) = 0. Specification of Eq. (2.14)
for π(y) = 0, insertion of the resulting expression into the elastic constitutive law (2.2), and
further inserting the resulting expression into the stress average rule (2.10) yields

Σ = 1
Ω

∫
Ω

C(x) : A(x) dV : E . (2.16)

Comparison of (2.16) with the macroscopic elastic law reading as

Σ = Chom : E , (2.17)

allows for the identification of the homogenized stiffness tensor, Chom, as (Zaoui, 2002)

Chom = 1
Ω

∫
Ω

C(x) : A(x) dV . (2.18)

Eq. (2.18) implies that the strain concentration tensor is also a prerequisite for stiffness
upscaling.

2.5 Consideration of phase averages
An macrohomogeneous but microheterogeneous material is typically too complex as to resolve
its microstructure in full detail. As a remedy, np quasi-homogeneous subdomains (called
material phases) are considered to represent the microstructure, whereby the phases exhibit
a specific shape, a specific elastic stiffness Cj , a specific eigenstress πj , and specific volume
fractions fj . The latter is defined as

fj = Ωj

Ω , with Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωnp , (2.19)

where Ω denotes the total RVE volume and Ωj denoted the subvolume of phase j.
Next, we define volume averages of microstrains and microstresses in phase j, εj and σj ,

respectively, reading as

εj = 1
Ω j

∫
Ωj

ε(x)dV and σj = 1
Ω j

∫
Ωj

σ(x)dV . (2.20)

Consideration of (2.19) in (2.20) and insertion into the average rules (2.10) and (2.6), respec-
tively, yields strain and stress average rules in terms of average phase strains and average
phases stresses, respectively, reading as

E =
np∑
i=1

fi εi and Σ =
np∑
i=1

fi σi (2.21)
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The strain concentration relation (2.14) can be also specified for phase averages, resulting in

εj = Aj : E −
np∑
i=1
Qji : πi , (2.22)

where Aj stands for the fourth-order phase strain concentration tensor of phase j and Qji
stands for the eigenstress influence tensors quantifying the influence of eigenstresses in phase
i, πi, on the average microstrains of phase j. Combining the elastic law of the j-th phase,
σ(x) = Cj : ε(x), with Eqs. (2.6), yields

σj = Cj : εj . (2.23)

By analogy to Section 2.3, the homogenized stiffness is derived by considering πj = 0 in
(2.22), by inserting the obtained expression into Eq. (2.23), and by inserting of the established
expression for σj into (2.21)2 and by comparing the result with (2.17), providing access to
Hill’s expression for the macroscopic stiffness (Hill, 1963):

Chom =
np∑
j=1

fj Cj : Aj (2.24)

In turns out that the concentration and influence tensors are the key to both macro-to-
micro concentration and to micro-to-macro homogenization. Throughout this thesis, the
aforementioned tensors are estimated based on matrix-inclusion problems as described next.

2.6 Homogenization schemes based on matrix-inclusion
problems

In general, phase strain concentration tensors and eigenstress influence tensors are not known
up to analytical precision. However, micromechanical estimates for these tensors can be
derived from so-called matrix-inclusion problems.

We consider a single ellipsoidal inclusion (with uniform stiffness Ci and uniform eigenstress
πi) to be embedded in an infinite matrix (with uniform stiffness C0 and uniform eigenstress
Π0), see Fig. 2.2. The infinite boundary of the matrix is subjected to homogeneous strains,

infinite boundary

infinite matrix

inclusion
Ci, πi

C0, Π0

E0

Figure 2.2: Eshelby problem: ellipsoidal inclusion embedded in an infinite matrix

E0. Remarkably, the stress state in the inclusion is homogeneous and can be written as
(Eshelby, 1957; Laws, 1977; Pichler and Hellmich, 2010):

εi = A∞,i :
[
E0 − P0

i : (πi −Π0)
]
, with A∞,i =

[
I+ P0

i : (Ci − C0)
]−1

. (2.25)
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In Eq. (2.25), I stands for the fourth-order unity tensor with components Iijkl = 1
2 δikδjl+δilδkj ,

where Kronecker delta δij being 1 for i = j and 0 otherwise. Moreover, P0
i denotes the fourth-

order Hill tensor which depends on the shape of the inclusion, as well as on the elastic properties
of the infinite matrix, and A∞,i, denotes the Eshelby problem-related strain concentration
tensor. The latter tensor provides, in the eigenstress-free situation, the link between boundary
strains E0 and inclusion strains εi.

In continuum micromechanics, the strain state (2.25)1 is used as an estimate for the
average strain within one phase εj , Zaoui (2002)

εi = εj = A∞,i :
[
E0 − P0

i : (πi −Π0)
]
. (2.26)

To this end, the link between the actual RVE on the one hand and the matrix inclusion
problem on the other hand has to be established, as discussed in the following section.

2.7 Links between the matrix-inclusion problem and the
RVE

First and foremost, the properties of the inclusion (shape, eigenstress and stiffness) are set
equal to the corresponding properties of the material phase in the RVE. Accordingly an
np-phase RVE relates to np matrix-inclusion problems.

In the context of linking the Eshelby problem-related boundary strains E0 to the RVE-
related macrostrains E, we specify the phase strain average rule (2.21)1 for (2.26) and solve
the resulting expression for E0, resulting in

E0 =
( np∑
i=1

fiA∞,i

)−1

:
[
E +

np∑
i=1

fiA∞,i : P0
i : (πi −Π0)

]
. (2.27)

Insertion of Eq. (2.27) into the expression for the estimated phase strains (2.26) yields

εj = Aj :
[
E +

np∑
i=1

fiA∞,i : P0
i : (πi −Π0)

]
−A∞,j : P0

j : (πj −Π0) , (2.28)

with the abbreviation Aj standing for

Aj = A∞,j :
( np∑
i=1

fiA∞,i

)−1

. (2.29)

Comparison of the coefficients of E in (2.28) and in (2.22) allows for the identification of the
auxiliary tensor Aj as the phase strain concentration tensor Aj . The estimated phase strain
concentration tensor is independent of the eigenstresses, see Eq. (2.29). Consequently, the
homogenized stiffness is not influenced by eigenstresses as well [see Eq. (2.24)]. A closed-form
expression for the homogenized stiffness is obtained by inserting Eq. (2.29) into Hill’s relation
of the homogenized stiffness (2.24) and considering the expression for the infinite strain
concentration tensor (2.25)2:

Chom =
{∑

i

fiCi :
[
I+ P0

i : (Ci − C0)
]−1

}
:

∑
j

fj
[
I+ P0

j : (Cj − C0)
]−1


−1

.

(2.30)
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Concerning the link between the auxiliary stiffness of the infinite matrix, C0, and a
corresponding quantity of the RVE, two different approaches are discussed. As long as the
RVE exhibits a matrix-inclusion-type morphology, i.e. if the RVE is a composite material
[e.g. concrete at a scale of several centimeters, see Fig. 2.3(a)], C0 is chosen to be equal to
the stiffness of RVE-related matrix phase (Zaoui, 2002). This concept is referred to as the
Mori-Tanaka scheme (Mori and Tanaka, 1973; Benveniste, 1987). In case of a polycrystalline

(a) (b)

Figure 2.3: Microstructures of two materials: (a) concrete at the scale of several centimeters
exhibits a matrix-inclusion-type morphology with aggregates embedded in a cement paste
matrix, from http://monteiro.ce.berkeley.edu/lectures.html; (b) gypsum at the scale
of several micrometers exhibits a polycrystalline morphology with needle-shaped crystals
orientated in all space directions, from (Carvalho et al., 2008)

RVE, constituted by a disordered arrangement of phases which are in direct mutual interaction
[e.g. gypsum at a scale of several microns, see Fig. 2.3(b)], C0 is set to be equal to the
homogenized RVE stiffness Chom (Zaoui, 2002). This concept, in turn, is referred to as
self-consistent scheme (Hershey, 1954; Kröner, 1958), and it results in an implicit definition
of Chom, rendering an iterative computation of the expression for the homogenized stiffness
necessary.

We are left with linking the auxiliary matrix eigenstress with a corresponding quality of
the RVE. There are two independent ways to calculate the macroscopic stresses, Σ, Levin’s
theorem (Levin, 1967) on the one hand and the stress average rule (2.21)2 on the other hand
(Pichler and Hellmich, 2010). Levin’s theorem-predicted macrostresses, specified for phase-wise
constant eigenstresses read as,

Σ = Chom : E + Πhom = Chom : E +
np∑
i=1

fi πi : Ai , (2.31)

where Πhom denotes the homogenized eigenstress. Specification of stress average rule (2.20)2
under consideration of the expression for the volume fraction (2.19) for the average phase
strains (2.22) and considering Hill’s expression of the homogenized stiffness (2.24) yields

Σ = Chom :
[
E +

np∑
i=1

fiA∞,i : P0
i : (πi −Π0)

]

−
np∑
i=1

fiCi : A∞,i : Pi : (πi −Π0) +
np∑
i=1

fi πi .

(2.32)

Setting Eqs. (2.31) and (2.32) equal, i.e. satisfying the stress admissibility condition, delivers
an expression for the auxiliary eigenstress of the infinite matrix, Π0 (Pichler and Hellmich,

http://monteiro.ce.berkeley.edu/lectures.html
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2010):

Π0 =
[ np∑
i=1

fi (Chom − Ci) : A∞,i : Pi

]−1

:

{ np∑
i=1

fi [πi : (I−Ai) + (Chom − Ci) : A∞,i : Pi : πi]
}
.

(2.33)

This allows for identifying the introduced eigenstress influence tensors, Qji, by inserting (2.33)
into (2.28), considering Ai = Ai, and comparing the result with the formulation of the average
phase strains (2.22), reading as

Qij = [δijI− fiAi] : A∞,i : Pi +
[
Ai :

np∑
k=1

fkA∞,k : Pk −A∞,i : Pi

]

:
[ np∑
k=1

fk (Chom − Ck) : A∞,k : Pk

]−1

: fi
[
(I−Ai)T + (Chom − Ci) : A∞,i : Pi

]
.

(2.34)

Analogous expressions for eigenstrain influence tensors Dji are given by Pichler and Hellmich
(2010), which only differ in the concluding tensor-multiplication of the whole expression with
the stiffness tensor (2.15). They showed, that the eigenstrain influence tensors, specified for
Mori-Tanaka estimates and multiphase composites, where all phases are of identical shape,
are equal to the corresponding result of transformation field analysis, according to Dvorak
and Benveniste (1992).

In case of a polycrystal, the homogenized stiffness is equal to the stiffness of the infinite
matrix. By analogy, it can be expected, that the homogenized eigenstress, is equal to the
eigenstress of the infinite matrix. Although there is no mathematical evidence, numerical
computations confirm this expectation (Pichler and Hellmich, 2010). Considering Eq. (2.31),
this leads to

Π0 = Πhom =
np∑
i=1

fi πi : Ai , (2.35)

which is again inserted into the estimated phase strains (2.26), yielding, by comparing the
result with (2.22), eigenstress influence tensors for self consistent estimates Qscji as

Qscij = [δijI− fiAi] : A∞,i : Pi +
[
Ai :

np∑
k=1

fkA∞,k : Pk −A∞,i : Pi

]
: fiAT

i . (2.36)

If the RVE contains only phases with similar shapes, all Hill Tensors are equal

Pi = P, ∀i = 1, 2, . . . , np , (2.37)

and hence, P can be put out of the sum
∑np
k=1 fkA∞,k : Pk. Having in mind the definition of

the strain concentration tensor according to Eq. (2.29), the identity

Ai :
np∑
k=1

fkA∞,k : Pk = A∞,i : P (2.38)

is found. The expressions for the influence tensors (2.34) therefore degenerate to:

Qij = [δijI− fiAi] : A∞,i : P (2.39)
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2.8 Conditions for phase strain concentration tensors and for
eigenstress influence tensors

Herein, mathematical conditions for strain concentration tensors and eigenstress influence
tensors are derived, which turn out to be useful for code verification purposes. A condition for
the phase strain concentration tensor is obtained, by specification of the phase strains (2.22)
for a RVE with vanishing eigenstresses πi = 0 for all np phases, yielding

εi = Aj : E . (2.40)

Insertion of this expression into the strain average rule (2.21)1 readily shows that the average
of the phase concentration tensors is equal to the symmetric fourth order identity tensor, I,

np∑
i

fiAi = I . (2.41)

According to Dvorak and Benveniste (1992) three independent conditions for the eigenstress
influence tensors can be obtained based on three physical prerequisites: (i) strain compatibility,
(ii) stress admissibility, and (iii) the reciprocal theorem.

1. Consider an RVE, where only one phase, namely phase k, is exposed to an eigenstrain,
ηk = −C−1

k : πk. Specification of the strain average rule (2.21)1 (which is valid as long
as the microstrains are kinematically compatible) for the phase strains (2.22) induced
by arbitrary macrostrains E and by the nonzero eigenstress πk = −Ck : ηk yields:

np∑
j

fj (Aj : E +Qjk : πk) = E (2.42)

Considering the previously established condition for the average of the phase strain
concentration tensors (2.41), the strain compatibility implies that

np∑
j

fjQjk = 0 . (2.43)

2. Consider a multiphase composite, where only one phase, namely phase k, is exposed
to an nonzero eigenstress πk. As long as the microstrains are statically admissible,
the stress average rule (2.21)2 is valid, and allows for calculation of the macroscopic
stresses Σ. Expressing the statically admissibly microstresses through microstrains and
eigenstresses, in terms of σj = Cj : εj + πj and the microstrains in terms of Eq. (2.22),
yields

Σ =
np∑
j

fj σj = fk πk +
np∑
j

fj Cj : εj =

fk πk +
np∑
j

fj Cj : Aj : E −
np∑
j

fj Cj : Qjk : πk

(2.44)

Also Levin’s theorem (2.31), specified for the vanishing eigenstress expect for that of
phase k, allows for calculation of the macrostresses:

Σ =
np∑
j

fjCj : Aj : E + fk πk : Ak (2.45)
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Setting this two expressions equal yields the identity

fk
(
I−AT

k

)
=

np∑
j

fj Cj : Qjk , (2.46)

where the transpose of a fourth-order tensor T is given in terms of T Tijkl = Tklij .

3. Finally, consider a macrostrain-free multiphase RVE, where two independent loading
cases are applied: In loading case one, an eigenstress πr only occurs in the r-th phase,
in loading case two, an eigenstress πs only occurs in the s-th phase. Calculation of
the corresponding strain fields ε(x,πr) for loading case one, and ε(x,πs) for loading
case two, allows for computation of the work done by the eigenstresses πs along the
strains ε(x,πr) and, vice versa, the work done by πr along ε(x,πs). The reciprocal
theorem implies the equality of these two work expressions, resulting in a condition for
the eigenstress influence tensor (Dvorak and Benveniste, 1992):

fsQsr = fr C
−1
s : CTs : QTrs (2.47)

If the phases exhibit linear elastic behavior, CT = C, Eq. (2.47) simplifies to

fsQsr = fr Q
T
rs (2.48)

Since we used both, that the average of the microstrains is equal to the macrostrain and
that the average of the microstress is equal to the Levin’s theorem-predicted macrostress
during the derivation of the eigenstress influence tensors, the strain compatibility and the
stress admissibility conditions are satisfied by construction (Pichler and Hellmich, 2010).
Therefore, apart from the code verification, only the reciprocal theorem constitutes a condition
for the eigenstress influence tensors.
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Abstract: This contribution refers to early-age strength of pastes and mortars produced
either with ordinary Portland cement (OPC) or with blended OPC where part of cement
clinker is replaced either by quartz, limestone, slag, or fly ash. The study combines multiscale
elasto-brittle modeling with microstructural characterization and early-age macroscopic testing
of blended mortars. In the context of modeling, the elasto-brittle strength model for cement
pastes presented in [CCR 41:467-476, 2011] is extended towards mortars. Loading imposed
on mortar samples is first concentrated down to stress peaks in cement paste volumes which
are directly bonded to stiff sand grains. Further stress concentration down to micron-sized
needle-shaped hydrates is quantified based on strain energy-related stress averages. This is
motivated by the envisioned failure mode of hydrates, which is energy-driven shear cracking
at the nanometric scale, with a shear strength that increases with increasing pressure acting
on the crack plane. The friction angle and the cohesion intervening in the newly adopted
Mohr-Coulomb failure criterion are taken from limit state analysis of grid indentation testing
on low-density calcium-silicate-hydrates. Therefore, the model is free of fitting parameters.
Blind predictions of the macroscopic compressive strength of OPC pastes and mortars agree
very well with experimental results from three different laboratories. This is the motivation
to continue with mortars produced with binders representing blends of OPC and limestone,
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quartz, slag, and fly ash, respectively. Early-age phase evolutions are quantified based on
state-of-the-art microstructural characterization, including thermogravimetric analysis and
X-ray diffraction with Rietveld refinement, and scanning electron microscopy. As for modeling,
very finely ground quartz and limestone are introduced as reinforcements of the hydrate
foam, i.e. they directly interact with needle-shaped hydrates and capillary porosity. The
coarser hydraulic supplementary cementitious materials (SCM) slag and fly ash, in turn, are
introduced at the same scale as unhydrated clinker grains. Comparison of model-predicted
strength evolutions agree well with test results, as long as the blending materials do not
hydrate. Hydration of slag and fly ash is shown to increase the hydrate cohesion significantly,
and this is consistent with recent nanoindentation studies on mature OPC and blended
pastes.

Contribution: Bernhard Pichler and Christian Hellmich set up the overall research strategy,
supervised the research progress, checked key results, and supported the documentation
process. Michal Hlobil implemented a software script for compressive strength predictions,
produced mortar specimens, tested them, documented research results, and produced diagrams
for the paper. Markus Königsberger provided support for Michal Hlobil during model
implementation and code verification, produced figures and wrote the first draft of the
paper. Pipat Termkhajornkit and Rémi Barbarulo coordinated, supervised and carried out
microstructural characterization.

Keywords: supplementary cementitious materials, compressive strength, micromechanics,
cement paste, mortar

3.1 Introduction
The hydration-induced development of strength of cementitious materials is of highest practical
relevance, because the uniaxial compressive strength of concrete is the central material
property for classification and design used by codes and regulations (European Commitee
for Standardization, 2004; American Concrete Instititue (ACI) Committee 318, 2014; Japan
Society of Civil Engineers (JSCE), 2010). In the second half of the 20th century, concrete
technology was challenged to satisfy high – and to a certain extent contradicting – demands
from construction industry. This includes the following requirements.

• As for flexible construction, fresh concrete shall remain workable for hours, i.e. significant
hydration of cement shall not start prior to placement of concrete.

• As for efficient construction, hydration shall be a speedy process after placement, i.e.
early-age strength shall develop so fast that formworks can be stripped 24 hours after
production.

• The final product shall be durable, in order to guarantee serviceability of structures
over their entire designed lifetime.

Available concrete mixes based on ordinary Portland cement (OPC) satisfy the described
demands. At the end of the 20th century, in turn, reduction of CO2 emissions became
an additional challenging requirement. The favorite solution was to replace part of OPC
clinker either by hydraulic waste materials from other industries, such as the supplementary
cementitious materials (SCMs) blast furnace slag or fly ash from combustion power plants, or
by inert fillers, such as quartz or limestone. The resulting blended binders make the sought
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reduction of CO2 emissions possible, they comply with the requirements regarding fresh
concrete properties and the long-term performance, but the early-age strength development
is slower compared to traditional OPC. This has initiated intensive research on early-age
properties of cementitious materials produced with blended binders, see e.g. (Feldman et al.,
1990; Lam et al., 2000; Pane and Hansen, 2005; Lothenbach et al., 2011; Zadeh and Bobko,
2013; Hlobil et al., 2016).

Use of blended binders adds, on the one hand, a lot of flexibility for the development
of innovative mix designs, given that different clinker replacement ratios can be used and
that several clinker replacement materials are available, see above. On the other hand, the
early-age evolutions of mechanical properties such as stiffness and strength are significantly
different as compared to pure OPC materials. First and foremost, this is a consequence of
modified hydration kinetics (Pane and Hansen, 2005). Finely ground non-reactive fillers made
of limestone or quartz are known to speed up reaction kinetics, since the small particles
represent preferred precipitation sites for hydrates (Lothenbach et al., 2011), although the
fillers themselves do not dissolve considerably (Ye et al., 2007; Wang et al., 2013). While SCM
particles exhibit (to a certain extent) a similar filler effect, they start to hydrate typically
much later than OPC, because the pH value of the pore solution must exceed a certain
threshold to initiate SCM hydration (Lothenbach et al., 2011). Delayed hydration results
in the delayed development of early-age stiffness and strength. In addition to the influence
on reaction kinetics, interaction between SCM hydration and clinker hydration may lead to
chemical hydrate compositions which are significantly different from those precipitating in
pure OPC pastes (Bonavetti et al., 2001; Chindaprasirt et al., 2007). The fibrillar morphology
of hydrates, known from OPC, may gradually change into a more foil-like morphology under
the influence of blast furnace slag (Richardson, 2000). Fly ash, in turn, may result in a
more uniform microstructure and a decreased average pore size relative to the OPC reference
(Chindaprasirt et al., 2007). Other sources report on an influence of grinding fineness on the
resulting pore size distribution (Chindaprasirt et al., 2007) and, consequently, also on the
macroscopic compressive strength (Chindaprasirt et al., 2005). Finally, nanoindentation tests
imply that hydrates in SCM-blended pastes are considerably stronger than in OPC paste
(Zadeh and Bobko, 2013), while inert calcareous fillers do not alter the hydrates’ strength
(Vandamme, 2008).

The present contribution further extends this line of research by studying the strength
evolution of (cement pastes and) mortars produced with pure OPC or blended binders, in the
framework of a combined experimental-computational approach. Given that predictive model-
ing of the phase evolution of blended pastes is out of reach, state-of-the-art microstructural
characterization techniques are combined in order to quantify the phase volume evolutions
of one pure OPC paste and of four blended pastes, where 45% of the clinker volume are
replaced either by quartz, limestone, slag, or fly ash. In addition, blended mortar cylinders
are crushed under uniaxial compression at material ages amounting to 3 days and to 28 days.
This experimental database serves as the motivation for related modeling activities, which are
based on methods of continuum micromechanics (Zaoui, 2002). As for OPC materials, these
methods have shown to be valuable for homogenization of elastic stiffness (Bernard et al.,
2003a; Sanahuja et al., 2007; Pichler et al., 2009; Stefan et al., 2010; Bary, 2011; Venkovic et al.,
2013), creep (Scheiner and Hellmich, 2009; Königsberger et al., 2016b), and strength (Pichler
et al., 2009; Pichler and Hellmich, 2011; Pichler et al., 2013a). Notably, the elasto-brittle
strength models consider that the macroscopic strength of OPC cement pastes is reached,
once stresses in microscopic hydration products reach the corresponding hydrate strength. In
the context of the present paper, aspects of the strength model (Pichler and Hellmich, 2011;
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Pichler et al., 2013a) are further elaborated:

1. The range of applicability of the strength models (Pichler and Hellmich, 2011; Pichler
et al., 2013a) is first extended from cement pastes to mortars. The latter are considered
as matrix-inclusion composites, with rather stiff sand grains embedded in a less stiff
cement paste matrix. Because of the stiffness contrast, we consider that stress peaks of
the cement paste matrix occur in representative volumes that are directly attached to
the surface of sand grains. Such stress peaks are evidenced by the formation of cracks
in this region (Shah and Winter, 1966; Shah and Sankar, 1987). We here quantify these
stress peaks by means of the stress concentration concept developed in (Königsberger
et al., 2014a,b).

2. Envisioning that hydrate failure is related to shear cracking at the nanoscopic scale, and
that the corresponding shear strength increases with increasing pressure acting on the
crack plane, the von Mises-type elastic limit criterion used in (Pichler and Hellmich,
2011; Pichler et al., 2013a) is replaced by a Mohr-Coulomb criterion. Related strength
constants are taken from limit state analysis of nanoindentation studies on low-density
calcium-silicate-hydrates (Sarris and Constantinides, 2013).

3. When it comes to the scale transition from cement paste down to micron-sized needle-
shaped hydrates, we consider that cracking of hydrates is an energy-driven phenomenon.
Therefore, we quantify principal hydrate stresses intervening in the Mohr-Coulomb
criterion based on energy density-related stress averages, i.e. we provide a mechanical
explanation why so-called “higher-order” or “second-order” stress averages intervene
in the strength models (Pichler and Hellmich, 2011; Pichler et al., 2013a), rather than
simple volume averages which are also referred to as “first-order” averages.

4. While the models (Pichler and Hellmich, 2011; Pichler et al., 2013a) are based on only
one average hydrate type, we here extend the microstructural representation towards all
types of hydrates that are identified by means of microstructural characterization, and
they include C-S-H, portlandite, ettringite, monosulfate, etc.

5. Finally, consideration of blended binders (rather than pure OPC cements) requires an
extension of the microstructural representation towards consideration of the cement
replacement materials quartz, limestone, slag, and fly ash.

The paper is structured as follows. Section 3.2 refers to strength of OPC pastes and
mortars. We extend the multiscale strength homogenization model of (Pichler and Hellmich,
2011; Pichler et al., 2013a) by newly adding the scale of mortar and by implementing the
Mohr-Coulomb criterion for hydrate failure. The extended model is validated for OPC cement
pastes and mortars, by comparing blind predictions of early-age strength evolutions with
experimental data from three different laboratories. Section 3.3 refers to strength of pastes and
mortars produced with blended binders. Phase volume evolutions of four blended binders and
of the underlying OPC are quantified based on state-of-the-art methods for microstructural
characterization. Compressive strength values are determined on mortar samples at ages
of 3 days and 28 days. The strength model of Section 3.2 is further extended towards
consideration of the replacement materials and of all hydrate types that were identified by
means of microstructural characterization. Model predicted strength values are compared with
their experimental counterparts. Finally, the paper is closed with a discussion (Section 3.4)
and conclusions (Section 3.5).
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3.2 Elasto-brittle multiscale strength modeling of ordinary
Portland cement pastes and mortars

Following the concept of quasi-brittle strength upscaling developed by Pichler et al. (2008,
2009) and Pichler and Hellmich (2011), it is considered that the macroscopic strength of
cement paste or mortar is reached once microstresses in hydration products reach the hydrate
strength. Therefore, a multiscale representation of cementitious materials is required, which
accounts for key features of their microstructure.

3.2.1 Micromechanical representation

In continuum micromechanics a material is understood as a micro-heterogeneous representative
volume element (RVE) with characteristic size ` fulfilling the separation of scales requirement
(Zaoui, 2002):

d� `� D , (3.1)

where d and D, respectively, stand for the characteristic sizes of inhomogenities and of the
structure containing the RVE (such as structural dimensions or the wavelength of loading).
RVEs of cementitious materials are too complex to be resolved in full detail. As a remedy,
quasi-homogeneous material subdomains (referred to as material phases), are identified
as microstructural key features. The overall (“homogenized”) mechanical properties of
cementitious materials are governed by the mechanical properties of the material phases, their
shapes, volume dosages, and mutual interaction.

Following Pichler and Hellmich (2011) as well as Pichler et al. (2013a), we resolve the
microstructure of mortar across three separated scales of observation, see Fig. 3.1. At the
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Figure 3.1: Multiscale micromechanics representation of mortar (“material organogram”)
after (Pichler and Hellmich, 2011; Pichler et al., 2013a); two-dimensional sketches of three-
dimensional representative volume elements

largest scale of observation, we envision a centimeter-sized RVE of mortar, which consists of
spherical sand grains that are embedded in a cement paste matrix, see Fig. 3.1(a). At the
intermediate scale of observation, we envision a (sub-)millimeter-sized RVE of cement paste,
which consists of spherical unhydrated clinker grains that are embedded in a hydrate foam
matrix, see Fig. 3.1(b). At the smallest scale of observation, we envision a micrometer-sized
RVE of hydrate foam, which consists of spherical capillary pores and needle-shaped hydrates
that are uniformly orientated in all space directions, see Fig. 3.1(c).

3.2.2 Volume fractions and mechanical constants of material phases

The Powers-Acker model Acker (2001); Powers and Brownyard (1947) provides analytical
expressions for phase volume fractions as functions of the initial water-to-cement mass ratio
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w/c, the initial sand-to-cement mass ratio s/c, and the degree of clinker hydration ξclin,
defined as the volume of already hydrated clinker divided by its initial volume. At the scale
of mortar, the volume fractions of sand fmorsand and of the cement paste matrix fmorcp read as
(Bernard et al., 2003a)

fmorsand =
s/c
ρsand

1
ρclin

+ w/c
ρH2O

+ s/c
ρsand

, fmorcp = 1− fmorsand . (3.2)

At the scale of cement paste, the volume fractions of clinker f cpclin and of the hydrate foam
matrix f cphf read as (Acker, 2001; Powers and Brownyard, 1947; Pichler and Hellmich, 2011)

f cpclin = 20 (1− ξclin)
20 + 63w/c ≥ 0 , f cphf = 1− f cpclin . (3.3)

At the scale of the hydrate foam, the volume fractions of capillary pores fhfpore and of hydrates
fhfhyd read as (Pichler and Hellmich, 2011)

fhfpore = 63 (w/c− 0.367 ξclin)
20 ξ + 63w/c ≥ 0 , fhfhyd = 1− fhfpore . (3.4)

All material phases are considered to exhibit isotropic elastic properties, which allows for
expressing the phase stiffness tensor Ci in terms of bulk moduli ki and shear moduli µi

Ci = 3 ki Ivol + 2µi Idev , (3.5)

where index i refers to the material phase i, see Table 3.1 for phase-specific constants. In
Eq. (3.5), Ivol and Idev denote the volumetric and deviatoric parts of the symmetric fourth-order
identity tensor I, defined as Iijkl = 1/2(δikδjl + δilδjk), Ivol = 1/3(1⊗ 1), and Idev = I− Ivol,
respectively, whereby 1 denotes the second-order identity tensor with components equal to
the Kronecker delta δij , namely δij = 1 for i=j, and 0 otherwise.

Table 3.1: Isotropic elasticity constants of material phases

Bulk modulus Shear modulus Source
k [GPa] µ [GPa]

clinker kclin 116.58 µclin 53.81 (Velez et al., 2001)
hydrates khyd 18.69 µhyd 11.76 (Pichler and Hellmich, 2011)
quartz kquartz 36.44 µquartz 31.20 (Ahrens, 1995)
limestone klimestone 67.19 µlimestone 29.24 (Presser et al., 2010)
slag kslag 36.44 µslag 31.19 (Němeček et al., 2011)
fly ash kFA 58.33 µFA 43.75 (Šmilauer et al., 2011)
sand ksand 35.35 µsand 29.91 (Vorel et al., 2012)
pores kpore 0.00 µpore 0.00

As for strength properties, we consider that hydrates are the weakest links in cementitious
microstructures. In (Pichler and Hellmich, 2011; Pichler et al., 2013a), it was considered that
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hydrate failure follows a (von Mises-type) elastic limit criterion and the corresponding (shear
failure-related) deviatoric hydrate strength was identified by top-down analysis, i.e. from
macroscopic strength measurements on young cement pastes. Considering the nanogranular
nature of C-S-H Constantinides and Ulm (2007), we now consider a Mohr-Coulomb-type
elastic limit criterion (Coulomb, 1776; Mohr, 1900), expressing that the shear strength of
gliding planes increases with increasing normal pressure acting on the gliding planes:

f(σhyd) = σhyd,I
1 + sinϕhyd

2 chyd cosϕhyd
− σhyd,III

1− sinϕhyd
2 chyd cosϕhyd

− 1 ≤ 0 , (3.6)

where σhyd denotes the hydrate stress tensor (with σhyd,I and σhyd,III as largest and smallest
principal stress component), ϕhyd the angle of internal friction, and chyd the cohesion. Notably,
f < 0 refers to elastic hydrate behavior and f = 0 corresponds to hydrate failure. The
material constants of low density calcium-silicate-hydrates are considered to be representative
for all the hydrates Pichler et al. (2013b), and they were quantified using limit state analysis
of nanoindentation test data Constantinides and Ulm (2004); Sarris and Constantinides (2013)
as

ϕhyd = 12◦ , chyd = 50MPa . (3.7)

Evaluation of the the Mohr-Coulomb criterion (3.6) requires quantification of hydrate stress
states σhyd. They follow from concentration of macrostress states imposed on RVEs of cement
paste or mortar down to the level of needle-shaped hydrates, discussed next.

3.2.3 Concentration of loading imposed on RVEs of mortar into cement
paste: quantification of stress peaks

Because sand grains are stiffer than the cement paste matrix (particularly so at early ages),
sand grains exhibit – on average – larger stresses than the cement paste matrix. Therefore
stress peaks of cement paste occur in the immediate vicinity of the sand grains. In order to
quantify these stress peaks, we follow the two-step procedure developed by Königsberger et al.
(2014a), i.e. we concentrate first the loading imposed on RVEs of mortar down to average
stresses and strains of sand grains. Subsequently, we apply firm bond-related stress and strain
compatibility conditions at the sand-to-cement paste interface Icpsand, in order to obtain the
sought cement paste stress states representing stress peaks in the immediate vicinity of sand
grains, as detailed next.

Concentration from homogeneous macrostresses imposed on an RVE of mortar, Σmor,
down to average stresses of sand grains, σsand, reads as

σsand = Bmorsand : Σmor , (3.8)

with Bmorsand as the stress concentration tensor which is a function of the volume fractions and
of the elastic properties of sand grains and cement paste. Based on the micromechanical
representation of mortar as a matrix-inclusion composite, see Fig. 3.1, a Mori-Tanaka-scheme
(Mori and Tanaka, 1973; Benveniste, 1987) is appropriate for homogenization (Zaoui, 2002).
The scheme provides analytical access to the concentration tensor Bmorsand, see Appendix A for
details. Averages strains of sand grains, εsand, are obtained from the elasticity law

εsand = (Csand)−1 : σsand , (3.9)

where Csand stands for the isotropic stiffness tensor of sand, see Eq. (3.5) and Table 3.1.
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Consideration of firm bond between sand grains and the surrounding cement paste
matrix, implies interfacial continuity conditions of tractions and displacements. Displacement
continuity can be expressed as the following relation (Salençon, 2001; Königsberger et al.,
2014a) between sand strains εsand and cement paste strains εcp(x)

t1(x) · [εsand − εcp(x)] · t2(x) = 0 ∀ x ∈ Icpsand , (3.10)

where t1(x) and t2(x) denote all possible pairs of tangent vectors in the tangential plane to the
interface Icpsand at position x. Traction continuity, in turn, can be expressed as the following
relation (Salençon, 2001; Königsberger et al., 2014a) between sand stresses σsand and cement
paste stresses σcp(x)

[σsand − σcp(x)] · n(x) = 0 ∀ x ∈ Icpsand , (3.11)

where n(x) denotes a unit vector orientated perpendicular to the interface Icpsand at position x.
Stresses and strains of cement paste are related to each other by isotropic elasticity law

σcp(x) = Ccp : εcp(x) , (3.12)

where Ccp denotes the homogenized stiffness of cement paste, which is obtained by two-
step upscaling starting at needle-shaped hydrates and capillary pores. Their polycrystalline
arrangement (direct mutual interaction) renders the self-consistent scheme (Hershey, 1954;
Kröner, 1958; Hill, 1965) appropriate for homogenization of the hydrate foam. Subsequent
homogenization of the matrix-inclusion composite cement paste is carried out based on the
abovementioned Mori-Tanaka scheme, see Appendix A for details.

The sought cement paste stress states prevailing in the immediate vicinity of the sand-to-
cement paste interface Icpsand follow from combination of relations (3.8)-(3.12) as (Königsberger
et al., 2014a)

σcp(x) = Bsandcp (x) : σsand = Bsandcp (x) : Bmorsand : Σmor ∀ x ∈ Icpsand , (3.13)

with Bsandcp denoting the sand-to-cement paste stress concentration tensor, see Appendix A
for details. Notably, the stress states σcp depend on the location vector x, e.g. stress
concentrations around the equator of the sand grains are quite different from the ones at the
poles (Königsberger et al., 2014a), see Fig. 3.2.

3.2.4 Concentration of loading imposed on RVEs of cement paste into
hydrates

As for quantification of hydrates stresses σhyd intervening in the Mohr-Couomb criterion (3.6),
we now consider, at any point x of the interface Icpsand, the microstructure of cement paste in
terms of a three-dimensional RVE, such as illustrated in Fig. 3.1(b). In agreement with that,
we consider specific stress states σcp(x) from Eq. (3.13) as “macroscopic” loading imposed
on RVEs of cement paste, Σcp, representing the starting point for further multiscale stress
concentration, i.e. σcp(x)→ Σcp.

The Mohr-Coulomb criterion (3.6) implies that failure of hydrates is governed by cracking
processes at the nanometric scale inside hydrate needles which is not explicitly resolved
herein. Given that cracking is a dissipative phenomenon, failure of hydrates is a strain
energy-dependent process, and this provides the motivation to perform strain energy-related
stress concentration into hydrate needles (Dormieux et al., 2002; Pichler et al., 2008, 2009),
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Figure 3.2: Concentration of uniaxial loading imposed on an RVE of mortar, see (3.28), to
stress states of cement paste in the immediate vicinity of sand grains: (a) sand grain with
global Cartesian base frame e1, e2, e3 and local spherical base frame er, eθ, eφ; (b) cement
paste stress components in the immediate vicinity of the sand-to-cement paste interface Icpsand
as a function of polar angle ψ; evaluation of (3.13) for w/c = 0.50, s/c = 3.0, and ξclin = 0.50

rather than quantifying spatial averages of stresses. To this end, the elastic energy W stored
in the RVE of cement paste is expressed both macroscopically (Wmacro) and microscopically
(Wmicro). In the latter case, it is considered that cement paste is made up of three constituents:
isotropically orientated hydrate needles, capillary pores, and clinker grains:

W = Wmacro = Vcp
2 Ecp : Ccp : Ecp , (3.14)

W = Wmicro =
2π∫
0

π∫
0

∫
Vhyd;ϕ,ϑ

1
2ε(x) : Chyd : ε(x) dV sinϑ

4π dϑ dϕ

+
∫

Vpore

1
2ε(x) : Cpore : ε(x) dV +

∫
Vclin

1
2ε(x) : Cclin : ε(x) dV (3.15)

whereby ϕ and ϑ define the orientation of the hydrate needles by azimuth and zenith angle
(see Fig. 3.3), ε(x) denotes the microscopic strain field, and Vi and Ci denote the volume and
the elastic stiffness tensor of material phase i; whereby i refers to hydrates, to capillary pores,
to clinker grains, or to cement paste, i ∈ {hyd, cpor, clin, cp}. Again, Ccp is the homogenized
stiffness of cement paste, see Appendix A for details. In Eq. (3.14), Ecp refers to the macro-
homogeneous strain state at the considered RVE of cement paste. The strains Ecp are related
to the stresses Σcp by the isotropic elasticity law

Ecp = (Ccp)−1 : Σcp . (3.16)

Setting equal the microscopic and the macroscopic expressions of the elastic energy, see
Eqs. (3.14) and (3.15), and deriving them either with respect to bulk modulus or to shear
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Figure 3.3: Definition of azimuth and zenith angle for identification of the orientation of the
needle-shaped hydrates

modulus of ϕ, ϑ-orientated hydrate needles (Fig. 3.3), yields under consideration of isotropic
phases (3.5) and kinematically admissible displacement fields Dormieux et al. (2002)

∂W

∂khyd;ϕ,ϑ
= Vcp

2 Ecp : ∂Ccp
∂khyd;ϕ,ϑ

: Ecp = 3
2

∫
Vhyd;ϕ,ϑ

ε(x) : Ivol : ε(x) dV , (3.17)

∂W

∂µhyd;ϕ,ϑ
= Vcp

2 Ecp : ∂Ccp
∂µhyd;ϕ,ϑ

: Ecp =
∫

Vhyd;ϕ,ϑ

ε(x) : Idev : ε(x) dV , (3.18)

where Vhyd;ϕ,ϑ, khyd;ϕ,ϑ, and µhyd;ϕ,ϑ denote the volume, the bulk modulus, and the shear
modulus of the hydrate needles orientated in ϕ, ϑ-direction. Under consideration of the
definition of volumetric/deviatoric strain decomposition ε = εvol + εdev, with εvol = Ivol : ε
and εdev = Idev : ε, Eqs. (3.17) and (3.18) are divided by Vhyd;ϕ,ϑ and rearranged as

1
3 f cphyd;ϕ,ϑ

Ecp : ∂Ccp
∂khyd;ϕ,ϑ

: Ecp = 1
Vhyd;ϕ,ϑ

∫
Vhyd;ϕ,ϑ

εvol(x) : εvol(x) dV =
(
ε
vol
hyd;ϕ,ϑ

)2
(3.19)

1
2 f cphyd;ϕ,ϑ

Ecp : ∂Ccp
∂µhyd;ϕ,ϑ

: Ecp = 1
Vhyd;ϕ,ϑ

∫
Vhyd;ϕ,ϑ

εdev(x) : εdev(x) dV =
(
ε
dev
hyd;ϕ,ϑ

)2
(3.20)

where f cphyd;ϕ,ϑ = Vhyd;ϕ,ϑ/Vcp stands for the cement paste-related volume fraction of ϕ, ϑ-
orientated hydrate needles, and εvolhyd;ϕ,ϑ and εdevhyd;ϕ,ϑ are scalars representing strain energy-
related averages of volumetric and deviatoric strains in hydrate needles orientated in ϕ, ϑ-



Compressive strength evolution of OPC and blended materials 30

direction. Corresponding scalar stress averages can be quantified as (Dormieux et al., 2006)

σ
vol
hyd;ϕ,ϑ = 3 khyd εvolhyd;ϕ,ϑ =

√√√√ 3 k2
hyd

f cphyd;ϕ,ϑ
Ecp : ∂Ccp

∂khyd;ϕ,ϑ
: Ecp , (3.21)

σ
dev
hyd;ϕ,ϑ = 2µhyd εdevhyd;ϕ,ϑ =

√√√√ 2µ2
hyd

f cphyd;ϕ,ϑ
Ecp : ∂Ccp

∂µhyd;ϕ,ϑ
: Ecp . (3.22)

While details about the numerical computation of the partial derivatives in (3.21) and (3.22)
are given in (Pichler et al., 2008, 2009), Eqs. (3.19)-(3.22) allow for expressing the volume
average of elastic strain energy stored in hydrate needles orientated in ϕ,ϑ-direction as

1
Vhyd;ϕ,ϑ

∫
Vhyd;ϕ,ϑ

1
2ε(x) : Chyd : ε(x) dV = 1

2
(
σ
vol
hyd;ϕ,ϑ ε

vol
hyd;ϕ,ϑ + σ

dev
hyd;ϕ,ϑ ε

dev
hyd;ϕ,ϑ

)
(3.23)

We are left with calculating the largest and the smallest principal stress invervening in
the Mohr-Coulomb criterion (3.6) based on the scalar stress measures σvolhyd;ϕ,ϑ and σvolhyd;ϕ,ϑ.
This requires access to the full tensorial expression of the strain energy-related stress tensor
σhyd;ϕ,ϑ. The latter is estimated by scaling the volume-averaged stress tensor σhyd;ϕ,ϑ such
that it is related to the same strain energy as σhyd;ϕ,ϑ, see (3.23). To this end, we decompose
the sought stress tensor σhyd into its volumetric and deviatoric part as

σhyd;ϕ,ϑ = σ
vol
hyd;ϕ,ϑ + σdevhyd;ϕ,ϑ . (3.24)

and we express these parts as being equal to their volume-averaged counterparts σvolhyd;ϕ,ϑ and
σdevhyd;ϕ,ϑ, multiplied with scalar scaling factors

σ
vol
hyd;ϕ,ϑ = σvolhyd;ϕ,ϑ

σ
vol
hyd;ϕ,ϑ
σvolhyd;ϕ,ϑ

, σ
dev
hyd;ϕ,ϑ = σdevhyd;ϕ,ϑ

σ
dev
hyd;ϕ,ϑ
σdevhyd;ϕ,ϑ

. (3.25)

The volume-averaged stress tensor σhyd;ϕ,ϑ follows from the stress concentration rule which
involves stress concentration tensor Bcphyd;ϕ,ϑ as

σhyd;ϕ,ϑ = B
cp
hyd;ϕ,ϑ : Σcp , (3.26)

for details see Appendix A, and the scalar stress quantities σvolhyd;ϕ,ϑ and σdevhyd;ϕ,ϑ follow by
analogy to Eqs. (3.19)-(3.22) as

σvolhyd;ϕ,ϑ =
√
σhyd;ϕ,ϑ : Ivol : σhyd;ϕ,ϑ , σdevhyd;ϕ,ϑ =

√
σhyd;ϕ,ϑ : Idev : σhyd;ϕ,ϑ . (3.27)

3.2.5 Identification of location and of orientation of most heavily loaded
hydrate needles

Herein, we consider that uniaxial compressive loading in e3-direction is either imposed on an
RVE of mortar or of cement paste

Σi = −Σuni
i e3 ⊗ e3 , i ∈ {mor, cp} (3.28)
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where Σuni
i denotes the absolute value of the imposed uniaxial traction. The location in the

immediate vicinity of sand grains and the orientation of most heavily loaded hydrate needles
inside RVEs of cement paste are identified as follows.

As for strength predictions for cement paste, macroloading Σcp is first concentrated into
strain energy-related stress averages of hydrate needles, using Eqs. (3.16), (3.21) and (3.22),
(3.26)-(3.27), and (3.25) and (3.24). The obtained hydrate stress tensors are functions of the
macroloading and of the orientation angles ϕ and ϑ of the hydrate needles

σhyd = σhyd
(
Σuni
cp ;ϕ, ϑ

)
. (3.29)

The largest and smallest eigenvalues of σhyd, i.e. σhyd,I(Σuni
cp ;ϕ, ϑ) and σhyd,III(Σuni

cp ;ϕ,
ϑ), are inserted into the Mohr-Coulomb failure criterion, see (3.6) and (3.7). Next, the
intensity of macroscopic loading Σuni

cp is conceptually increased (starting from zero) and the
failure criteria are checked in all hydrate orientations, i.e. for all ϕ, ϑ-directions (see Fig. 3.3).
The specific orientation angles ϕfail and ϑfail, for which the corresponding failure criterion is
satisfied first, refer to the most heavily loaded hydrate orientation, and the corresponding
load intensity represents the uniaxial compressive strength of cement paste, Σuni,ult

cp .
As for strength predictions for mortar, macroloading Σmor according to (3.28) is first

concentrated into cement paste stress states around sand grains, see Eq. (3.13). This problem
exhibits axial symmetry with respect to the macroscopic loading direction, i.e. cement paste
stress states are a function of the polar angle ψ (see Fig. 3.2):

σcp = σcp
(
Σuni
mor;ψ

)
. (3.30)

The calculated stress states represent macroscopic loading of cement paste RVEs, i.e. σcp →
Σcp, and further stress concentration down to hydrate needles is performed as described in
the preceding paragraph, such that hydrate stress tensors are also functions of the orientation
angles ϕ and ϑ of hydrate needles

σhyd = σhyd
(
Σuni
mor;ψ;ϕ, ϑ

)
. (3.31)

The largest and smallest eigenvalues of σhyd, i.e. σhyd,I(Σuni
mor;ψ;ϕ, ϑ) and σhyd,III(Σuni

mor;
ψ;ϕ, ϑ) are inserted into the Mohr-Coulomb failure criterion, see (3.6) and (3.7), and the
intensity of macroscopic loading, Σuni

mor is conceptually increased (starting from zero). The
Mohr-Coulomb failure criteria are checked for all polar angles ψ marking positions of cement
paste RVEs around sand grains [see Fig. 3.2(a)] as well as for all angles ϕ and ϑ defining
the orientation of hydrate needles within RVEs of cement paste (see Fig. 3.3). The specific
position and orientation angles ψfail, ϕfail, and ϑfail, for which the corresponding failure
criterion is satisfied first, refer to the most heavily loaded hydrate location and orientation,
and the corresponding load intensity represents the uniaxial compressive strength of mortar,
Σuni,ult
mor . Appendix B contains details about the numerical realization.
Notably, the described multiscale model for strength of OPC-based cementitious materials

does not contain any fitting parameters. The only input parameters are the initial water-to-
cement mass ratio w/c, the initial sand-to-cement mass ratio s/c, and the degree of hydration
ξclin, intervening in the expressions of phase volume fractions, see Eqs. (3.2)-(3.4). All other
inputs, i.e. the elastic properties of all involved material phases as well as the strength
properties of hydrates, are material constants, see Table 3.1 and Eq. (3.7).
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3.2.6 Model validation on OPC pastes

Herein, the presented micromechanical model is used to predict strength tests on cement
pastes performed at Lafarge Centre de Recherche (LCR), TU Wien – Vienna University of
Technology (TUW), and Swiss Federal Laboratories for Materials Science and Technology
(EMPA), respectively. All considered strength tests were performed on elongated samples
(either cylinders or prisms), such that determined strength values can be interpreted as genuine
(“material”) uniaxial compressive strength values and not as shear-enhanced (“structural”)
cube compressive strength values.

Four sets of tests were carried out at LCR on cement paste cylinders (with a diameter of
7 mm and a height of 22 mm) exhibiting w/c ratios ranging from 0.33 up to 0.508 produced
from three distinct OPC cements (referred to as LCR I, LCR II, and LCR III), see Pichler
et al. (2013a) for more details. Specimens were cured at 20 ◦C, tested 1, 3, 7, and 28 days
after production, and their hydration degree was determined by XRD/Rietveld coupled with
thermogravimetric analysis, as specified in Termkhajornkit and Barbarulo (2012). Blind
model predictions agree well with experimental results, see Fig. 3.4, as quantified through the
quadratic correlation coefficient R2 = 0.897 for samples with w/c = 0.33, and R2 = 0.867 for
samples with w/c ≈ 0.50.
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Figure 3.4: Model validation on OPC pastes tested at LCR, as for strength data see (Pichler
et al., 2013a)

Two sets of independent strength tests were performed at TUW, referred to as TUW I and
TUW II. The testing campaign TUW I was carried out on cylindrical cement paste specimens
(with diameter of 29.0± 0.3 mm and a height of 58.0± 1.3 mm) exhibiting w/c = 0.42 from
commercial CEM I 42.5 N cement and distilled water, see Pichler et al. (2013a) for details.
After demoulding, the specimens were cured in lime-saturated water at 25 ◦C until testing.
The clinker hydration degree was identified from isothermal calorimetry carried out at 25 ◦C.
In the testing campaign TUW II, cement paste prisms (with dimesions of 40× 40× 80 mm3)
were tested 24 h after production, immediately after demoulding Kosse (2015). Clinker type
(CEM I) and mix design (w/c = 0.42) were the same as in test campaign TUW I. Molded
specimens were continuously stored in a climate chamber at 20 ◦C, and isothermal calorimetry
tests were carried out at the same temperature to get access to the hydration degree. Model
predicted strength evolutions for w/c = 0.42 agree very well with both experimental campaigns;
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the corresponding quadratic correlations coefficient amounts to R2 = 0.977.
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Figure 3.5: Model validation on OPC pastes tested at TUW, as for strength data see (Pichler
and Hellmich, 2011; Kosse, 2015)

Strength values of another test campaign performed at EMPA were provided in the
framework of the COST action TU1404 (TU1404, 2016), see also Wyrzykowski and Lura
(2013). Prismatic cement paste samples (25× 25× 100 mm3) were produced in vacuum from
CEM I 42.5 N with two different water-to-cement mass ratios w/c = {0.25, 0.30}, cured under
sealed conditions at 20 ◦C, and tested 1, 3, and 7 days after production. The hydration degree
was measured by isothermal calorimetry, see (Wyrzykowski and Lura, 2013). Model predictions
agree very well with experimental results, see Fig. 3.6, as quantified by quadratic correlation
coefficients amounting to R2 = 0.994 for w/c = 0.25 and to R2 = 0.993 for w/c = 0.30.
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Figure 3.6: Model validation on OPC pastes tested at EMPA, as for strength data see (TU1404,
2016; Wyrzykowski and Lura, 2013)
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3.2.7 Model validation on OPC mortars

After the successful model validation at the level of cement paste, we now proceed at the
mortar scale, where we consider two sets of experimental data: tests performed at TUW and
a test campaign carried out at LCR within the framework of NANOCEM’s Core Project 10
(CP 10), see the acknowledgment.

Mortar tests at TUW were carried out on prisms with volume 4× 4× 8 cm3, produced
with w/c = 0.50 (CEM I 42.5 N and distilled water) and sand-to-cement ratio of s/c = 3.0,
using oven-dried standard quartz sand from the company “Normensand”, with diameters
smaller than 2 mm. The same material was also characterized by means of hourly repeated
three-minute-long creep tests Irfan-ul Hassan et al. (2014), which allowed for quantification of
internal curing processes, i.e. water is partly uptaken – upon mixing of raw materials – by
the open porosity of the quartz grains, and – during hydration – this water is progressively
soaked back into the cement paste matrix, such that the effective water-to-cement mass ratio
wcp/c increases linearly with increasing hydration degree

wcp/c = 0.47 + 0.0317 ξclin ≤ 0.50 . (3.32)

Given that strength tests were carried out one day after production, and that calorimetry
implies that the degree of clinker hydration reached ξclin = 0.353 at that time, Eq. (3.32)
allows for quantifying the effective water-to-cement mass ratio of the tested specimens as
wcp/c = 0.481. Evaluation of the described strength model for these inputs delivers predictions
which agree very well with the measured strength values, see Fig. 3.7.
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Figure 3.7: Model validation on OPC mortar tested at TUW, as for strength data see (Kosse,
2015)

Experiments from CP 10 were carried out on cylindrical mortar specimens (with a diameter
of 70 mm and a height of 150mm) produced using sand-to-cement mass ratio s/c = 3.0 and
initial water-to-cement mass ratio w/c = 0.51 from CEM I 52.5 N. Moulds were removed
24 hours after production and the specimens were subsequently exposed to air conditioned
to 20 ◦C and 99% relative humidity until testing. Tests were carried out 3 and 28 days
after production. The clinker hydration degree was identified from XRD/Rietveld and
thermogravimetric analysis, amounting to ξclin = 0.69 and ξclin = 0.84 at material ages of
3 days and 28 days, respectively, see also Section 3.3.1 for more details. Evaluating the model
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for the tested composition and comparing the results with the experimentally determined
strength values, see the thick solid line in Fig. 3.8, shows that the model predicts the strength
evolution in OPC mortars quite reliably, as quantified by R2 = 0.809.
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Figure 3.8: Model validation on OPC mortar tested at LCR in the framework of NANOCEM’s
Core Project 10

3.2.8 Location and orientation of most heavily loaded hydrate needles

For all analyzed OPC mortars, the model-predicted location and orientation of the most
heavily loaded hydrate needle is the same, i.e. location angle ψfail ≈ π/6, and orientation
angles ϑfail = 0, ϕfail ∈ [0; 2π]. Polar angle ψfail ≈ π/6 indicates that strength-relevant stress
peaks in cement paste occur at the shoulder of sand grains, approximately one third of the
distance between the poles and the equator, see Fig. 3.9(b). At the microscale of cement paste,
the most heavily loaded hydrate needle is virtually aligned with the direction of macroscopic
loading (ϑ ≈ 0), see Fig. 3.9(c), and the normal of the nanoscopic plane of shear failure is
inclined by an angle of ≈ π/4 with respect to the loading direction, see Fig. 3.9(d).

(b)

π/6

(d)(a)

π/4

(c)

e3

e2

e1

Figure 3.9: Multiscale failure mechanism in mortar: (a) uniaxially compressed mortar sample,
(b) location of failure-inducing stress peaks of cement paste attached to a sand grain, (c) most
heavily loaded hydrate needle which is part of the microstructure of cement paste (see also
Fig. 3.1), (d) orientation of nanoscopic failure plane inside the most heavily loaded hydrate
needle
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3.3 Strength evolution of blended cement mortars:
microstructural characterization, strength testing, and
multiscale modeling

The satisfactory model performance regarding OPC pastes and mortars is the motivation to
extend our study to blended cement materials. Four blended cement binders were obtained
by replacing 45% of cement volume either by finely ground fillers (quartz or limestone,
respectively) or by supplementary cementitious materials (ground granulated blast furnace
slag or fly ash, respectively), for mass densities and Blaine fineness values see Table 3.2. The
fifth binder, i.e. pure ordinary Portland cement, served as a reference. Replacing cement clinker

Table 3.2: Physical properties of used raw materials
Material Density Blaine Granulometry

[kg/m3] [cm2/g] d90 [µm] d50 [µm] d10 [µm] d4.3 [µm]

OPC 3 170 3 630 41.78 15.44 2.45 19.21
Quartz 2 650 6 172 – – – –
Limestone 2 715 4 015 – – – –
Slag 2 930 3 400 – – – –
Fly ash 2 090 3 686 – – – –

by volume (rather than by mass) ensures that the composition of the different materials is
identical in terms of initial volume fractions. Also to this end, the initial water-to-solid volume
ratio amounting to 1.6 is the same for all pastes. Consequently, pure OPC paste exhibited a
water-to-cement mass ratio amounting to w/c = 0.53 while this mass ratio was equal to 0.93
for all blended mixes. Notably, water-to-solid mass ratios differed from mix to mix, because
of the differences in specific mass densities of blending materials, see Table 3.3. All materials
were demoulded 1 day after production and subsequently exposed to air conditioned to 20 ◦C
and 99% relative humidity.

Table 3.3: Investigated paste compositions
Paste type Initial water/solid Cement replacement Initial water/cement Initial water/solid

volume ratio [–] volume [%] mass ratio [–] mass ratio [–]

OPC 1.60 0 0.51 0.51
Quartz blend 1.60 45 0.93 0.55
Limestone blend 1.60 45 0.93 0.54
Slag blend 1.60 45 0.93 0.53
Fly ash blend 1.60 45 0.93 0.60

3.3.1 Microstructural characterization: phase volume evolutions

Microstructural characterization was performed on the dry binders as well as on pastes 1, 3,
7, 28, and 91 days after their production, in order to quantify the evolution of paste volume
fractions, see Figs. 3.10(a)-3.14(a). To this end, several methods were combined as follows.
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Thermogravimetric analysis and X-ray diffraction including Rietveld refinement allowed for
determination of the crystalline phases clinker, portlandite (CH), and ettringite (AFt) as
well as the amount of total amorphous matter together with the hydration degree of clinker.
The amounts of the poorly crystalline amorphous phases calcium silicate hydrates C-S-H,
monosulfoaluminate (AFm), and monosulfocarboaluminates (AFmC) are obtained as follows.
Volume and mass balance equations allowed for relating C-S-H and portlandite to hydration of
C3S and C2S under the assumption that both clinker phases lead to the same type of C-S-H,
as suggested also by TEM analysis Richardson (2000). The amount of AFm hydrates was
determined based on the amount of dissolved C3A which was not transformed into ettringite.
Finally, the capillary pore volume was calculated as the total paste volume minus the solid
volume. As for the supplementary cementitious materials, the degree of reaction of slag and
fly ash was determined based on SEM/BSE image analysis. A pozzolanic reaction is assumed
for both slag and fly ash materials leading to the formation of additional C-S-H (with a lower
calcium-to-silica ratio) and consumption of portlandite in such pastes.

Results from microstructural characterization underline that C-S-H is by far the most
frequently produced hydration product, followed by portlandite and by aluminate hydrates,
see Figs. 3.10-3.14. As for OPC, the limestone blend, and the quartz blend, the overall
hydrate volume increases in very good approximation linearly with increasing degree of cement
clinker reaction. Although quartz and limestone volumes remain virtually constant throughout
the hydration process, they increase the speed of the hydration, compare hydration degrees
reached 3, 7, 28, and 91 days after production in Figs. 3.10-3.12. This is typically referred
to as a “microfiller effect” (Lothenbach et al., 2011). In addition, the presence of limestone
seems to have an influence on the composition of the produced aluminate hydrates, which is
in agreement with previous experimental observations (Taylor, 1997).
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Figure 3.10: Phase assemblage of OPC paste: (a) results from microstructural characterization;
and (b) subdivision into clinker, hydrates, and capillary pores according to Eq. (3.33)

As for slag- and fly ash-blended pastes, the overall hydrate volume increases linearly with
increasing degree of cement clinker hydration, as long as the supplementary cementitious
materials remain inert. Slag hydration appears to start around 3 days after production, and
the subsequent increase of the degree of slag reaction is virtually a linear function of the
degree of clinker hydration. Fly ash hydration, in turn, appears to start around 7 days after
production, and the subsequent increase of the degree of fly ash hydration appears to be an
overlinear function of the degree of cement clinker hydration. Notably, the unexpected kink
in the C-S-H volume fraction developing between the 3rd and the 7th day after production
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Figure 3.11: Phase assemblage of quartz-blended paste: (a) results from microstructural
characterization; and (b) subdivision into clinker, hydrates, capillary pores, and quartz
according to Eq. (3.34)
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Figure 3.12: Phase assemblage of limestone-blended paste: (a) results from microstructural
characterization; and (b) subdivision into clinker, hydrates, capillary pores, and limestone
according to Eq. (3.35)

[Fig. 3.14(a)] indicates that microstructural characterization was particulary challenging for
the fly ash-blended material. The microfiller effects of the used SCMs was less effective than
the one observed with the inert fillers, compare hydration degrees reached 3, 7, 28, and 91
days after production in Figs. 3.10-3.14.

In order to obtain simple closed-form expressions describing monotonous evolutions of
phase volumes of clinker, hydrates, capillary porosity, and blending solids, the point-wisely
measured phase volume evolutions are approximated by linear, piecewise linear, and piecewise
cubic fitting functions. The latter are computed based on a least square approach, which is
constrained by the requirement that the volume fractions must sum up to one. The obtained
volume fraction evolutions are depicted in Figs. 3.10(b)-3.14(b), and the corresponding
functions are given next. For the OPC paste, they read as

f cpclin = 0.388 (1− ξclin) , f cphyd = 0.767 ξclin , f cppore = 1− f cpclin − f
cp
hyd , (3.33)
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Figure 3.13: Phase assemblage of slag-blended paste: (a) results from microstructural charac-
terization; and (b) subdivision into clinker, hydrates, capillary pores, and slag according to
Eq. (3.36)
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Figure 3.14: Phase assemblage of fly ash-blended paste: (a) results from microstructural
characterization; and (b) subdivision into clinker, hydrates, capillary pores, and fly ash
according to Eq. (3.37)

for the quartz-blended paste, they read as

f cpclin = 0.213 (1− ξclin) , f cpquartz = 0.174 ,

f cphyd = 0.407 ξclin , f cppore = 1− f cpclin − f
cp
quartz − f

cp
hyd ,

(3.34)

for limestone-blended paste, they read as

f cpclin = 0.200 (1− ξclin) , f cplimestone = 0.188 ,

f cphyd = 0.412 ξclin , f cppore = 1− f cpclin − f
cp
limestone − f

cp
hyd ,

(3.35)



Compressive strength evolution of OPC and blended materials 40

for the slag-blended paste, they reads as

f cpclin = 0.223 (1− ξclin)

f cpslag =
{

0.173 if ξclin < 0.69
0.173− 0.415 (ξclin − 0.69) if ξclin ≥ 0.69

f cphyd =
{

0.387 ξclin if ξclin < 0.69
0.387 ξclin + 0.872 (ξclin − 0.69) if ξclin ≥ 0.69

f cppore = 1− f cpclin − f
cp
slag − f

cp
hyd ,

(3.36)

and for fly ash-blended paste, they read as

f cpclin = 0.237 (1− ξclin)

f cpFA =
{

0.173 if ξclin < 0.755
0.173− 1.081 (ξclin − 0.755)3 + 0.031 (ξclin − 0.755) if ξclin ≥ 0.755

f cphyd =
{

0.411 ξclin if ξclin < 0.755
0.411 ξclin + 0.254 (ξclin − 0.755) if ξclin ≥ 0.755

f cppore = 1− f cpclin − f
cp
FA − f

cp
hyd

(3.37)

3.3.2 Uniaxial compressive strength testing of blended mortars

Blended mortars were produced with paste compositions according to Table 3.3 as well as
standard sand with mass ratio of sand-to-“sum of cement clinker and of replacement materials”
amounting to 3.0. Fresh mortar was cast into cylindrical steel moulds with diameters amounting
to 70mm and heights amounting to 150mm. Specimens were demoulded after 24 hours and
subsequently exposed to air conditioned to 20 ◦C and 99% relative humidity until testing. Top
and bottom surfaces of the mortar cylinders were ground prior to testing in order to ensure
close-to-perfect coplanarity required for a central load application. Five to six specimens of
each given composition were tested 3 and 28 days after production.

3.3.3 Revisiting strength homogenization of OPC mortar based on
microstructural characterization results

Herein, we perform two sensitivity analyses complementing the OPC mortar predictions of
Subsections 3.2.7: At first, we stay with representing all hydrates as isotropically orientated
needles [see Fig. 3.1(c)], with elastic constants according to Table 3.1 and strength properties
according to Eqs. (3.7), but rather than using the Powers-Acker phase evolution model (3.2)-
(3.4), we now use the measured phase volume evolutions as illustrated in Fig. 3.10(b), see
also Eqs. (3.33). Obtained model predictions, referred to as “single hydrate” model (see the
dashed line in Fig. 3.8), explain the available strength data similarly well as the Powers-Acker
model-related predictions (see the thick solid line in Fig. 3.8), but the former are by some
15% smaller than the latter. This is because the microstructural characterization results
suggest that hydration products are denser than foreseen by the Powers-Acker model, and
denser hydrates result in an increased capillary porosity which effectively reduces the strength
of the material.
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As for the second sensitivity analysis, we consider five types of hydrates within the RVE
of hydrate foam (rather than only one type), see Fig. 3.15 for a conceptual illustration
and Table 3.4 for elastic properties and characteristic phase shapes. The Mohr-Coulomb
strength properties of Eqs. (3.7) are now assigned to C-S-H only. Corresponding strength
homogenization results, referred to as “five hydrates” model (see the thin dashdotted line
in Fig. 3.8), are very similar to the ones obtained using the “single hydrate” approach. The
sensitivity analyses suggest that investments into a reliable quantification of the overall phase
volume fraction of all hydrates is more important than investments into a very detailed
representation of different hydration products; at least for OPC mortars.

Table 3.4: Elastic and micromorhological hydrate properties
Bulk modulus S hear modulus Source Shape
k [GPa] µ [GPa]

C-S-H gel kCSH 18.7 µCSH 11.8 [1] needle [1,2]
portlandite kCH 40.00 µCH 16.00 [3,4] sphere
ettringite kAFt 27.20 µAFt 9.45 [5] needle [1,6]
monosulfate kAFm 40.00 µAFm 16.00 ∗ sphere
monocarbonate kAFmC 40.00 µAFmC 16.00 ∗ sphere
∗ chosen to be equal to portlandite, see also (Termkhajornkit et al., 2014)
[1] from (Pichler and Hellmich, 2011)
[2] from (Richardson, 2004)
[3] from (Holuj et al., 1985a)
[4] from (Monteiro and Chang, 1995)
[5] from (Speziale et al., 2008)
[6] from (Scrivener, 2004)
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Figure 3.15: RVE of hydrate foam with five types of hydrates (“material organogram”);
two-dimensional sketches of three-dimensional representative volume elements
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3.3.4 Strength homogenization of inert filler-blended mortars:
consideration of quartz and limestone as reinforcements of the
hydrate foam

When it comes to include quartz or limestone fillers into the micromechanical representation
of mortar (Fig. 3.1), it is noteworthy that the Blaine fineness of the used fillers is considerably
higher than the one of the cement clinker, see Table 3.2. Higher Blaine values imply smaller
particle sizes, and this motivates us to introduce the fillers as spherical inclusions at the scale
of the hydrates, i.e. one scale below the cement clinker, see Fig. 3.16. In addition, the finely

hydratecapillary pore
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Figure 3.16: RVEs of hydrate foam including the finely ground fillers quartz or limestone
(“material organograms”): (a) one hydrate type, (b) five types of hydrates; two-dimensional
sketches of three-dimensional representative volume elements

ground filler grains act as preferred precipitation sites for hydrates, as underlined by the
observed microfiller effect, and this is a further argument to consider filler particles as part of
the hydrate foam matrix. By analogy to the sensitivity analysis described in the previous
subsection, we compare two modeling options: (i) consideration of one hydrate type [see
Fig. 3.16(a)] with elastic constants, strength properties and phase volume evolutions according
to Table 3.1, Eq. (3.7), and Figs. 3.11(b) and 3.12(b), respectively; and (ii) five hydrate types
[see Fig. 3.16(b)] with elastic properties and shapes according to Table 3.4 as well as phase
volume evolutions according to Fig. 3.11(a) and 3.12(a). Strength values predicted by the
“single hydrate” model overestimate strength values measured 3 days after production and
underestimate 28 day strength values, see the dashed lines and the circles in Figs. 3.17(a) and
(b). The multiscale model with the more detailed representation of hydrates (“five hydrates”
model), in turn, explains the strength values measured after 3 days very reliably, but also
underestimates the 28 day strength values, see the solid lines and circles in Figs. 3.17(a) and
(b).

Model-predicted strength evolutions as function of hydration degree of cement clinker
exhibit the following remarkable features. While compressive strength is well known to increase
initially overlinearly and later virtually linearly (Taplin, 1959; Pichler and Hellmich, 2011;
Pichler et al., 2013a), the obtained strength evolution of both filler-blended mortars show a
surprising under liner increase of strength as function of hydration degree during the age period
from 3 to 28 days, see the solid lines in Figs. 3.17. This phenomenon particularly concerns
the quartz-blended mortar. It is a consequence of the microstructural characterization results
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which have served as input for strength homogenization, see particularly Fig. 3.11, where the
difference quotient ∆f cpCSH/∆ξclin (i.e. the increase of the C-S-H volume fraction over the
increase of the hydration degree of cement clinker) in the age interval from 3 to 7 days is larger
than in the age interval from 7 to 28 days. This suggests that microstructural characterization is
particularly challenging 28 and 91 days after production, because extrapolating, in Fig. 3.17(a),
the model-predicted strength evolution from 7 to 28 days, based on the obtained trend from 0
to 7 days, would explain the strength data measured 28 days after production. While this
suggests a considerable uncertainty regarding the microstructural characterization results
at mature stages, model-predicted strength evolutions also suggest that consideration of
only one hydrate type or several hydrate types renders a considerable difference for strength
homogenization of inert filler-blended mortars, see Figs. 3.17.
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Figure 3.17: Comparison of model-predicted strength evolutions with experimental data from
Core Project 10 for (a) quartz-blended mortar, and (b) and limestone-blended mortar

3.3.5 Strength homogenization of SCM-blended mortars: the
strengh-increasing effects of slag and fly ash hydration

As for including slag or fly ash into the microstructural representation of mortar (Fig. 3.1), it
is noteworthy that the Blaine fineness of the used SCMs is comparable or smaller than to the
one of the OPC clinker, see Table 3.2. Similar Blaine values imply similar particle sizes, and
this motivates us to introduce SCMs as spherical inclusions at the same scale as the clinker
grains, see Fig. 3.18. In addition, the microfiller effect of the SCMs was significantly less
effective compared to the one of the inert fillers, and this is a further argument to consider
SCM particles at the same scale as clinker grains.

Slag and fly ash are inert during the first few days after production, such that the
OPC-related hydrate strength values (3.7) are expected to apply for macroscopic strength
predictions. However, as soon as the SCMs start to react, the characteristic hydrate strength
increases, as described next. Nanoindentation experiments of Zadeh and Bobko (2013) showed
that the strength-related indentation hardness of low density C-S-H in mature slag- and fly
ash-blended pastes is by almost 50% larger than the one in conventional OPC. This SCM
hydration-related strength increase is even more pronounced for high density C-S-H (Zadeh
and Bobko, 2013). Stiffness-related indentation moduli, however, are virtually unaffected by
SCM hydration (Zadeh and Bobko, 2013). The increased strength might origin from the fact
that slag and fly ash contain significantly more silicon oxide than clinker, yielding a smaller
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hydrate foam matrix clinker
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Figure 3.18: RVE of cement paste including SCMs slag or fly ash (“material organogram”);
two-dimensional sketches of three-dimensional representative volume elements

calcium-to-silica ratio of C-S-H (Feldman et al., 1990; Lam et al., 2000). Using rigidity theory
of glass science, Bauchy et al. (2014) showed that decreasing calcium-to-silica ratio increases
the hydrates’ strength, because more bonds between the atoms develop. In order to capture
this effect in the model, the hydrates’ cohesion is considered to increase as soon as slag or fly
ash start to react. In the sense of a first approach, the increase of the cohesion is considered
to be proportional to the volume of already consumed SCM, ∆VSCM , divided by the volume
of already consumed clinker, ∆Vclin:

chyd =
(

1 + αSCM
∆VSCM
∆Vclin

)
50MPa ∀SCM ∈ {slag, FA} (3.38)

with αSCM denoting a dimensionless proportionality constant. The hydrates’ friction angle,
in contrast, is considered to remain constant, motivated by the fact that low and high density
C-S-H exhibit markedly different cohesion values but the same friction angle Sarris and
Constantinides (2013). As for the unknown quantities αslag and αFA, we perform sensitivity
analyses, as discussed next. Motivated by the aforementioned nanoindentation results (Zadeh
and Bobko, 2013), we consider that slag-blended hydrates are, 28 days after production, by
50% stronger than OPC hydrates, implying that αslag = 1.812, see Eq. (3.38). This serves as
a starting point for the sensitivity analyses for slag- and fly ash blended pastes, i.e.

αSCM ∈ {0.000, 0.906, 1.812, 3.624} (3.39)

is considered for the study. In addition, we compare the modeling approach with one type of
hydrate [Fig. 3.1(c)] with the alternative approach based on five hydrates (Fig. 3.15). Both
modeling approaches slightly underestimate measured strength values 3 days after production,
see Figs. 3.19 and 3.20. As for slag-blended mortars, the measured strength evolution from 3
to 28 days after production is nicely reproduced based on αslag = 1.812 of the studied interval
(3.39), see Fig. 3.19. As for fly ash-blended mortars, the volume ratio ∆VSCM/∆Vclin is quite
small at 28 days after production. Consequently, also the strengthening effect is rather small,
see Figs. 3.20. Reminiscent of the situation encountered with the quartz-blended mortar,
the underestimated strength values 28 days after production might well be a consequence
of the microstructural characterization results, see the kinky evolution of the point-wisely
resolved phase volume evolutions from 3 days to 91 days after production (Fig. 3.14). The
corresponding uncertainties render a detailed assessment of the used multiscale strength model
in the context of the fly ash-blended mortar impossible.
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Figure 3.19: Comparison of model-predicted strength evolutions with experimental data from
NANOCEM’s Core Project 10 for slag-blended mortar: (a) single hydrate model, and (b)
five hydrate model; SCM hydration related strengthening of C-S-H is modeled according to
Eq. (3.38) and (3.39).
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Figure 3.20: Comparison of model-predicted strength evolutions with experimental data from
NANOCEM’s Core Project 10 for fly ash-blended mortar: (a) single hydrate model, and (b)
five hydrate model; SCM hydration related strengthening of C-S-H is modeled according to
Eq. (3.38) and (3.39).
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3.4 Discussion

Two aspects related to multiscale stress concentration deserve discussion: (i) stress redistribu-
tions resulting from potential partial debonding of sand grains from the surrounding cement
paste matrix, prior to reaching the uniaxial compressive strength of mortar, and (ii) stress
peaks in the hydrate foam occurring in the immediate vicinity of unhydrated clinker grains.

As regards uniaxial compressive strength tests on concretes, it is well known that partial
debonding of aggregates from the surrounding cement paste matrix typically starts once the
macroscopic loading exceeds one third of the compressive strength (Mang and Hofstetter,
2000). Debonding is driven by tensile stresses, and it may either develop in form of cracking
inside the 15 to 30 microns thin interfacial transition zone (ITZ) which is located between
the aggregates and the cement paste matrix, or in form of separation of the ITZ from the
aggregate (Königsberger et al., 2014a,b). In addition, debonding is spatially limited to regions
where significant tensile stresses occur, and – under macroscopic uniaxial compression – this
is observed only in lateral parts of aggregates (Königsberger et al., 2014a,b). Therefore,
debonding results in rather localized stress re-distributions, and the latter are on the order of
magnitude of the debonding strength. Because the latter is by one order of magnitude smaller
than the compressive strength, debonding-induced stress redistributions are of secondary
importance for compression-dominated stress states in the shoulder region of aggregates,
where cement paste fails once the compressive strength of concrete is reached. Therefore,
consideration of firm bonding between sand grains and the surrounding cement paste matrix
is a reasonable assumption when it comes to quantifying compression-dominated stress states
of cement paste in the immediate vicinity of sand grains.

Unhydrated clinker grains are significantly stiffer than the average stiffness of the sur-
rounding hydrate foam matrix. This raises the question whether failure of the hydrate foam
starts in the immediate vicinity of clinker grains, by analogy to the situation encountered with
sand grains and the cement paste matrix, see above. In this context, it is noteworthy that the
hydrate foam exhibits density gradients. Close to unhydrated clinker grains, namely, so called
“inner products” form, and they are denser than the “outer products” forming in the interstitial
space between unhydrated clinker grains (Taplin, 1959; Richardson, 2000). Considering that
mass density, stiffness, and strength are typically well-correlated properties, also stiffness
and strength of the hydrate foam decrease with increasing distance from unhydrated clinker
grains. The stiffer a microstructural region, in turn, the larger is the stress concentration, and
vice versa (Salençon, 2001). Therefore, also hydrate foam stresses decrease with increasing
distance from the unhydrated clinker grains (Hlobil et al., 2016), such that failure of the
hydrate foam will start in characteristic distance from unhydrated clinker grains, where the
stress-to-strength ratio reaches a maximum. This is likely to happen in the domain of outer
products, i.e. in the region of low-density C-S-H, rather than in the immediate vicinity of
the unhydrated clinker grains. This explains why we have used different modes of stress
concentration around sand grains and around unhydrated clinker grains, respectively. In
addition, it is noteworthy that the hydrate foam densifies progressively during hydration,
i.e. quantitatively the density increases, while the density distribution can be expected to
stay qualitatively the same, as suggested recently by Finite Element-based homogenization of
cement pastes (Hlobil et al., 2016). This renders simple consideration of hydration-dependent
average hydrate foam properties (density and stiffness) reasonable for quantification of stress
concentration.
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3.5 Conclusions
In order to study the early-age strength evolution of OPC and blended mortars, we have
carried out several extensions of the multiscale elasto-brittle strength model of Pichler and
Hellmich (2011):

• As for the extension towards mortars, the presented model accounts for stress peaks in
representative volumes of cement paste, which are directly attached to the surface of
sand grains.

• The elasto-brittle failure criterion of micron-sized hydrate needles was extended from a
von Mises approach to a Mohr-Coulomb approach.

• The microstructural representation of “hydrates” was extended from on one average
hydrate type towards several types of hydrates, including C-S-H, portlandite, ettringite,
monosulfate, etc.

• The microstructural representation of the “binder” phase was extended from consid-
eration of cement clinker towards additional consideration of the cement replacement
materials quartz, limestone, slag, and fly ash.

From the satisfactory model performance regarding blind predictions of strength of OPC
pastes and mortars, tested in three different laboratories, we draw the following conclusions:

• When subjecting mortars to uniaxial compression, the most heavily loaded representative
volume of cement paste is directly attached to sand grains. Related stress peaks of
cement paste can be quantified by calculation of spatial averages of stresses and strains
in sand grains, and by “translating” them to adjacent cement paste volumes which are
directly attached to the sand grains. As for this sand-to-cement paste transition, it
is adequate to consider firm bond-related continuity conditions for displacements and
tractions in the interfaces between sand grains and cement paste.

• As for the stress concentration from (stress peaks of) cement paste down to micron-sized
needle-shaped hydrates, strain energy-related stress averages, i.e. so called “higher-order”
or “second-order” stress averages, are relevant, because hydrate failure is very likely
related to energy-driven shear cracking at nanometric scales inside hydrate needles,
whereby the shear strength increases with increasing pressure acting on the crack plane.

• The described failure mode of hydrate needles is accounted for by the newly adopted
Mohr-Coulomb criterion. As for OPC materials, the two involved strength constants
of hydrates, i.e. the cohesion and the angle of internal friction, may be set equal to
the corresponding quantities of low-density C-S-H, which are known from limit state
analysis of grid nanoindentation studies (Sarris and Constantinides, 2013).

• Virtually the same model-predicted strength evolutions of OPC mortars are obtained,
no matter whether just one average hydrate type was considered or several types of
hydrates.

• Microstructural characterization has delivered phase volume evolutions that are related
to denser hydrates, compared to the Powers-Acker phase volume evolution model. Denser
hydrates, in turn, result in larger amounts of capillary pores, and this results in smaller
model-predicted strength values.



Compressive strength evolution of OPC and blended materials 48

As for cementitious materials produced with blended binders, phase evolution models are,
unfortunately, still out of reach. Therefore, microstructural characterization data are required
prerequisites for multiscale strength predictions. In this context, the following conclusions are
drawn

• Microstructural characterization based on thermogravimetric analysis, X-ray diffraction
with Rietveld refinement, and scanning electron microscopy remains to be a challenging
task. The nowadays achievable accuracy is, unfortunately, not high enough as to allow
for a detailed assessment of the predictive capabilities of multiscale strength models
which use the microstructural characterization results an input. Still, the following
additional conclusions appear to be justified.

• Compared to OPC mortars, strength predictions for blended mortars appear to be
significantly more sensitive to the microstructural representation of hydrates either in
form of just one average hydrate type or in form of several different types of hydrates.
The latter more detailed representation appears to deliver better strength predictions.

• Finely ground inert fillers (quartz and limestone) exhibit a significant filler effect. It is
well-known that they are accelerating hydration kinetics, because small filler particles
represent preferred precipitation sites for hydrates. In addition to this “filler effect on
reaction kinetics”, the present study suggests that finely ground fillers also exhibit a
“mechanical filler effect”, because they appear to act as strength-increasing reinforcements
of the hydrate foam, i.e. at the fine scale of observation of individual hydration products
and of capillary porosity.

• Supplementary cementitious materials (slag and fly ash) are hydraulic materials which
are well known to react – during the first few days after production – significantly slower
than ordinary Portland cement. Notably, the present study suggests that SCM hydration
significantly increases the strength of cementitious materials already during the second,
third, and fourth week after production, and – very remarkably – this strengthening effect
appears to be not only related to an increase of hydrate volume and to a corresponding
decrease of capillary porosity, but also to an increase of the strength of those hydrates
which represent the weakest links of the microstructure. While this hydrate strengthening
effect of SCMs is consistent with results from nanoindentation testing of pure OPC
and blended pastes, see Zadeh and Bobko (2013), and with theoretical considerations
inspired by glass physics (Bauchy et al., 2014), a more detailed analysis is required to
identify the evolution of the increase of the hydrate strength, driven by the hydration of
SCMs.
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Appendix A: Scale transitions, stiffness upscaling and
stress concentrations

Stiffness homogenization starts with the hydrate foam (Fig. 3.1). Given the polycrystalline
arrangement of hydrate needles and capillary pores, the self consistent scheme (Hershey, 1954;
Kröner, 1958; Hill, 1965) is appropriate for homogenization, yielding the following implicit
expression for the homogenized stiffness of the hydrate foam (Pichler et al., 2009)

Chf =

fhfporeCpore :
{
I+ Phfsph : [Cpore − Chf ]

}−1

+fhfhydChyd :
2π∫
0

π∫
0

{
I+ Phfcyl(ϕ, ϑ) : [Chyd − Chf ]

}−1 sinϑ
4π dϑ dϕ

 :

fhfpore {I+ Phfsph : [Cpore − Chf ]
}−1

+fhfhyd

2π∫
0

π∫
0

{
I+ Phfcyl(ϕ, ϑ) : [Chyd − Chf ]

}−1 sinϑ
4π dϑ dϕ

−1

.

(3.40)

whereby fhfj denote the hydrate foam-related phase volume fractions and Cj denote the elastic
phase stiffness for hydrates and capillary pores j ∈ {hyd, cpor}. The spherical and cylindrical
phase shape, respectively, is taken into account by using the corresponding Hill tensors Phfsph
and Phfcyl, see (Pichler et al., 2009) for details. Notably, orientation angles ϕ and ϑ refer
to the azimuth and zenith angles of the hydrate needle. As for the homogenization of the
matrix-inclusion composites cement paste and mortar, the Mori-Tanaka scheme (Mori and
Tanaka, 1973; Benveniste, 1987) is appropriate, resulting in homogenized stiffness tensors of
cement paste reading as (Pichler et al., 2009)

Ccp =
({

1− f cpclin
}
Chf + f cpclinCclin :

{
I+ Phfsph : [Cclin − Chf ]

}−1
)

:

({
1− f cpclin

}
I+ f cpclin

{
I+ Phfsph : [Cclin − Chf ]

}−1
)−1

,

(3.41)

with cement paste-related clinker volume fraction f cpclin, and in the homogenized stiffness tensor
of mortar as (Pichler et al., 2013a)

Cmor =
(
{1− fmorsand}Ccp + fmorsandCsand :

{
I+ Pcpsph : [Csand − Ccp]

}−1
)

:

(
{1− fmorsand} I+ fmorsand

{
I+ Pcpsph : [Csand − Ccp]

}−1
)−1

,

(3.42)

with mortar-related sand volume fraction fmorsand and cement paste-related Hill tensor Pmorsph .
As for downscaling of macrostresses to the spatial average of hydrate stresses (first-order

concentration) the following stress concentration tensors are used: Bmorsand, Bsandcp , and Bcphyd;ϕ,ϑ,
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see Eqs. (3.8) and (3.26). The mortar-to-sand stress concentration tensor Bmorsand is isotropic
and reads as (Königsberger et al., 2014a) reads as

Bmorsand = Csand :
{
I+ Pcpsph : [Csand − Ccp]

}−1
:

(
{1− fmorsand} I+ fmorsand

{
I+ Pcpsph : [Csand − Ccp]

}−1
)−1

: (Cmor)−1
(3.43)

The aggregate-to-cement paste stress concentration tensor Bsand
cp can be given in a compact

form in a local spherical base frame with base vectors er, eθ, eφ moving along the sand grain
surface. The non-zero components read as (Königsberger et al., 2014a)

Bsand
cp,rrrr = 1

Bsand
cp,θθθθ = Bsand

cp,φφφφ = µcp (3 ksandkcp + 2 ksandµcp + 2 kcpµsand) /∆

Bsand
cp,θθφφ = Bsand

cp,φφθθ = 2µcp (kcpµsand − ksandµcp) /∆

Bsand
cp,θθrr = Bsand

Icp,φφrr = [3 ksandkcp (µsand − µcp)− 2µsandµcp (ksand − kcp)] /∆

Bsand
cp,rθrθ = Bsand

cp,rφrφ = 1
2 Bsand

cp,θφθφ = µcp
2µsand

(3.44)

with ∆ = ksandµsand (3 kcp + 4µcp) and symmetries Bsand
cp,ijkl = Bsand

cp,jikl = Bsand
cp,ijlk = Bsand

cp,jilk.
Finally, the stress concentration from the cement paste scale to ϕ,ϑ-orientated hydrates,
quantified by the stress concentration tensor Bcphyd;ϕ,ϑ is discussed. It is readily obtained by
combining the two stress concentrations, first the one from the cement paste to the hydrate
foam scale, with the one from the hydrate foam to the hydrate, reading as

B
cp
hyd;ϕ,ϑ =Chyd :

({
1− f cpclin

}
Chf + f cpclinCclin :

{
I+ Phfsph : [Cclin − Chf ]

}−1
)

:

{
I+ Phfcyl(ϕ, ϑ) : [Chyd − Chf ]

}−1
:

fhfpore {I+ Phfsph : [Cpore − Chf ]
}−1

+fhfhyd

2π∫
0

π∫
0

{
I+ Phfcyl(ϕ, ϑ) : [Chyd − Chf ]

}−1 sinϑ
4π dϑ dϕ


(3.45)

Appendix B: Numerical realization of the strength criterion
Herein, we describe the strategy to find the critical position along the sand grain surface, the
critical hydrate orientation, and correspondingly, the critical macroscopic stress magnitude
(macroscopic material strength) which governs the material failure according to the microscopic
Mohr-Coloumb strength criterion (3.6). In order to minimize the amount of the time consuming
derivatives related to the critical hydrate orientation, the macroscopic loading is rotated while
only the e3-orientated hydrate is considered, see also (Pichler et al., 2008). Provided the
symmetry of the problem, the azimuth and zenith angle related to the loading rotation are
resolved for 31 homogeneously distributed points within the interval [0, π/2], respectively.
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The zenith angle ψ, which marks the position of the critical cement paste RVE at the sand
grain surface, in turn, is resolved for 91 points within the interval [0, π/2]. In summary, we
are checking 31× 31× 91 = 87, 451 combinations for position with (respect to the aggregate
surface) and orientation of the critical hydrate.

Appendix C: Nomenclature

Abbreviations

AFt ettringite hydrates
AFm monosulfoaluminate hydrates
AFmC monocarbosulfoaluminate hydrates
clin cement clinker
CH portlandite hydrates
cp cement paste
cyl cylindrical (needle-shaped)
C-S-H,CSH calcium-silicate-hydrates
hf hydrate foam
H2O water
hyd hydrates
mor mortar
pore pores
RVE representative volume element
sph spherical
SCM supplementary cementitious materials

Mathematical operators

· inner product
: second-order tensor contraction
⊗ dyadic product
∂ partial derivative
d derivative

Mathematical symbols

1 second-order identity tensor
Bsandcp stress concentration tensor relating sand stresses down to stresses in the

cement paste
Bmorsand stress concentration tensor relating mortar stresses down to stresses in the

sand grains
B
cp
hyd;ϕ,ϑ stress concentration tensor relating cement paste stresses down to stresses in

the ϕ, ϑ-orientated hydrate needles
Cj elastic stiffness tensor of phase j with j ∈ {clin, cp, hf, hyd,mor, pore}
chyd cohesion of hydrates
d characteristic size of the inclusion in an RVE
D characteristic size of the structure containing an RVE
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e1, e2, e3 unit base vectors of the global Cartesian base frame
er, eθ, eφ unit base vectors of the local spherical base frame
Ecp macroscopic strain tensor at the cement paste scale
f cpj cement paste-related volume fraction of phase j

with j ∈ {clin, hf, hyd, pore; quartz, limestone, slag, FA}
f cphyd;ϕ,ϑ cement paste-related volume fraction of ϕ, ϑ-orientated hydrate needles
fhfj hydrate foam-related volume fraction of phase j with j ∈ {hyd, pore}
fmorj mortar-related volume fraction of phase j with j ∈ {cp, sand}
I fourth-order identity tensor
Ivol, Idev volumetric and deviatoric parts of fourth-order identity tensor
Icpsand sand-to-cement paste interface
kj bulk modulus of phase j with j ∈ {clin, cp, hf, hyd, pore, sand;

quartz, limestone, slag, FA;CSH,CH,AFt,AFm,AFmC}
khyd;ϕ,ϑ bulk modulus of ϕ, ϑ-orientated hydrates
` characteristic size of an RVE
n unit (outward) normal vector acting perpendicular to the interface Icpsand
P
hf
j Hill tensor of an inclusion with shape j, embedded in an infinite hydrate

foam matrix, j ∈ {sph, cyl}
P
cp
sph Hill tensor of a spherical inclusion embedded in an infinite cement paste

matrix
R2 quadratic correlation coefficient
s/c initial sand-to-cement mass ratio
t1, t2 pairs of tangent vectors in the tangential plane to the interface Icpsand
Vj volume of phase j with j={hyd;ϕ, ϑ} or j={pore}
w/c initial water-to-cement mass ratio
wcp/c effective water-to-cement mass ratio
W elastic energy stored in an RVE, expressed macroscopically Wmacro and

microscopically Wmicro

x position vector
αSCM dimensionless proportionality constant for slag (SCM = slag) or fly ash

(SCM=FA)
δij Kronecker delta
∆ Auxiliary variable
∆VSCM ,
∆Vclin

volume of already consumed SCM or clinker

εj strain tensor of phase j with j ∈ {cp, sand}
εvol,εdev volumetric and deviatoric part of the strain tensor
ε
vol
hyd;ϕ,ϑ, ε

dev
hyd;ϕ,ϑ volumetric and deviatoric strain scalars of the strain energy-related strain

tensor of ϕ, ϑ-orientated hydrate needles
ϑ zenith angle marking the orientation of hydrate needles
ϑfail azimuth angle ϑ of failing hydrate needles
µj shear modulus of phase j with j ∈ {clin, cp, hf, hyd, pore, sand;

quartz, limestone, slag, FA;CSH,CH,AFt,AFm,AFmC}
ξclin hydration degree of cement clinker
ξSCM hydration degree of SCM
ρj mass density of phase j with j ∈ {sand,H2O, clin}
σj stress tensor of phase j with j ∈ {cp, hyd, sand}
σhyd strain energy-related stress tensor of hydrates



Compressive strength evolution of OPC and blended materials 53

σhyd;ϕ,ϑ volume average-related stress tensor of ϕ, ϑ-orientated hydrates
σvolhyd;ϕ,ϑ,σ

dev
hyd;ϕ,ϑvolumetric and deviatoric part of σhyd;ϕ,ϑ

σhyd;ϕ,ϑ strain energy-related stress tensor of ϕ, ϑ-orientated hydrates
σ
vol
hyd;ϕ,ϑ,σ

dev
hyd;ϕ,ϑvolumetric and deviatoric part of σhyd;ϕ,ϑ

σvolhyd;ϕ,ϑ, σ
dev
hyd;ϕ,ϑ volumetric and deviatoric stress scalars of σhyd;ϕ,ϑ

σ
vol
hyd;ϕ,ϑ, σ

dev
hyd;ϕ,ϑ volumetric and deviatoric stress scalars of σhyd;ϕ,ϑ

σhyd,I , σhyd,III largest and smallest principal stress component of σhyd
σhyd,I , σhyd,III largest and smallest principal stress component of σhyd
Σj macroscopic stress tensor at scale j with j ∈ {cp,mor}
Σuni
j absolute value of imposed uniaxial loading at scale j with j ∈ {cp,mor}

Σuni,ult
j magnitude of Σuni

j corresponding to the macroscopic material strength at
scale j with j ∈ {cp,mor}

ϕ azimuth angle marking the orientation of hydrate needles
ϕfail azimuth angle ϕ of failing hydrate needles
ϕhyd angle of internal friction of hydrates
ψ polar angle marking locations at the sand grain surface
ψfail polar angle ψ of most heavily loaded RVE of cement paste
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Abstract: Creep of cementitious materials results from the viscoelastic behavior of the
reaction products of cement and water, called hydrates. In the present paper, a single
isochoric creep function characterizing well-saturated Portland cement hydrates is identified
through downscaling of 500 different non-aging creep functions derived from three minute-long
tests on differently old cement pastes with three different initial water-to-cement mass ratios.
A two-scale micromechanics representation of cement paste is used for downscaling. At a scale
of 700 microns, spherical clinker inclusions are embedded in a continuous hydrate foam matrix.
The latter is resolved, at the smaller scale of 20 microns, as a highly disordered arrangement of
isotropically oriented hydrate needles, which are interacting with spherical water and air pores.
Homogenization of viscoelastic properties is based on the correspondence principle, involving
transformation of the time-dependent multiscale problem to Laplace-Carson space, followed
by quasi-elastic upscaling and numerical back-transformation. With water, air, and clinker
behaving elastically according to well-accepted published data, the hydrates indeed show one
single power law-type creep behavior with a creep exponent being surprisingly close to those
found for the different cement pastes tested. The general validity of the identified hydrate
creep properties is further corroborated by using them for predicting the creep performance
of a 30 years old cement paste in a 30 day-lasting creep test: the respective model predictions
agree very well with results from creep experiments published in the open literature.

Contribution: Christian Hellmich and Bernhard Pichler set up the overall strategy for top-
down identification of hydrate creep properties by means of three-scale creep homogenization
of cement pastes. They supervised the research progress, checked key results, and supported
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the documentation process. Markus Königsberger developed a Maple code for three-scale creep
homogenization of cement pastes, identified universal creep properties of (sub)micron-sized
needle-shaped cement hydrates, carried out model validation based on data he found in the
open literature, and documented the research results. Muhammad Irfan-ul-Hassan provided
his experimental data in suitable numerical formats, contributed to the discussion processes,
and helped proof reading the paper.

Keywords: micromechanics, viscoelasticity, cement paste, creep

4.1 Introduction
It is well accepted in the cement and concrete research community that the creep properties
of cementitious materials stem from the viscoelastic nature of the reaction products between
cement and water, called hydrates; while the remaining solid material constituents, namely
unhydrated clinker grains and aggregates, do not exhibit delayed deformations under time-
invariant stresses (Neville, 1964; Bažant and Prasannan, 1989a,b; Acker, 2001). It is also a
widely acknowledged idea that the aging, i.e. time variant, creep properties of concrete are due
to the hydration process, i.e. the subsequent formation of increasingly many hydrates, while
the hydrates themselves may actually exhibit non-aging, i.e. time-invariant, creep properties
(Bažant and Prasannan, 1989a,b; Scheiner and Hellmich, 2009). However, quantification of
such non-aging hydrate creep properties, both short and long term, remains an unsettled
challenge – and this challenge is tackled in the present contribution. In this context, ultra-short
term creep tests are of interest (Boulay et al., 2012; Delsaute and Staquet, 2014; Delsaute
et al., 2016), and we here build upon a very recent experimental campaign consisting of three-
minute-long creep tests on ordinary Portland cement pastes with different water-to-cement
ratios and different maturity degrees (Irfan-ul-Hassan et al., 2016). Over this short creep
measuring time, the pastes virtually do not age at all, and their creep behavior is almost
perfectly represented (see Fig. 4.1) by a uniaxial power-law creep function of the form

Jexpcp (t− τ) = Jexpe,cp + Jexpv,cp(t− τ) = 1
Eexpcp

+ 1
Eexpc,cp

(
t− τ
tref

)βexpcp

, (4.1)

with t as chronological time, τ as time instant of loading, and tref =1d=86 400 s as a fixed
reference time (Irfan-ul-Hassan et al., 2016); with Eexpcp denoting the Young’s elastic modulus,
Eexpc,cp denoting the Young’s creep modulus, and βexpcp representing a dimensionless power-law
exponent. Notably, the latter three quantities depend on the microstructural composition of
the cement paste encountered at the time instant of loading, τ .

In the remainder of the present paper, we will test whether the maturity- and composition-
dependent parameters Eexpc,cp and βexpcp reported by Irfan-ul-Hassan et al. (2016) may actually
be traced back to only one “universal” Portland cement-related, isochoric hydrate creep tensor
function

Jhyd(t− τ) = 1
3 khyd

Ivol + 1
2

 1
µhyd

+ 1
µc,hyd

(
t− τ
tref

)βhyd Idev , (4.2)

with the (elastic) bulk and shear modulus of the hydrates denoted as khyd and µhyd, and with
the shear creep modulus and the power-law creep exponent of hydrates denoted as µc,hyd and
βhyd. Ivol and Idev are the volumetric and deviatoric parts of the fourth-order identity tensor
I, defined as Iijkl = 1/2(δikδjl + δilδjk), Ivol = 1/3(1 ⊗ 1), and Idev = I − Ivol, respectively,
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Figure 4.1: Experimentally measured temporal evolutions of viscous creep strains (divided
by the applied stress at the loading plateau) and corresponding power-law fits according to
Eq. (4.1) for 35-hours-old cement paste with w/c ∈ {0.42, 0.45, 0.50}; quadratic correlation
coefficients amount to R2 = {99.7%, 99.6%, 99.5%}; see (Irfan-ul-Hassan et al., 2016) for
details

whereby 1 denotes the second-order identity tensor with components equal to the Kronecker
delta δij , namely δij = 1 for i=j, and 0 otherwise. For “downscaling” from the cement paste
to the hydrate level, we use the micromechanical representation of cement paste as developed
by Pichler and Hellmich (2011), in combination with the theory of viscoelastic homogenization
(Laws and McLaughlin, 1978; Scheiner and Hellmich, 2009; Sanahuja and Dormieux, 2010).

The present paper is organized as follows: after a review of micromechanics and viscoelastic
scale transitions, mixture-independent hydrate creep is back-analyzed from the aforementioned
three-minute test campaign over various mixtures. The resulting hydrate creep function is
then further validated through Tamtsia and Beaudoin’s classical test on very old cement
paste (Tamtsia and Beaudoin, 2000). Corresponding results are carefully discussed thereafter,
followed by concluding remarks.

4.2 Micromechanics of creeping cement pastes

4.2.1 Micromechanical representation of cement pastes

Cement pastes are microheterogeneous materials exhibiting a scale-separated hierarchical
organization. In agreement with our focus on creep of cement paste, we here account for
four quasi-homogeneous constituents (or material phases), namely for cement clinker, water,
hydration products, and air. Their characteristic sizes, their characteristic phase shapes, and
their specific modes of mutual interaction motivate the two-scale representation of cement
pastes according to Pichler and Hellmich (2011), sketched in Fig. 4.2.

• At the scale of a few tens of microns, we envision a representative volume element
(RVE) of hydrate foam, consisting of single micron-sized or even smaller spherical water
and air phases, as well as of similarly thick hydrate needles oriented uniformly in all
space directions. All three material phases are in direct mutual interaction, i.e. they are
arranged in a polycrystalline fashion.
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Figure 4.2: Micromechanical representation of cement paste by means of the two-step ho-
mogenization scheme of Pichler and Hellmich (2011): (a) RVE of matrix-inclusion composite
“cement paste” where a spherical clinker phase is embedded in a hydrate foam matrix [modeled
by means of a Mori-Tanaka scheme (Mori and Tanaka, 1973; Benveniste, 1987; Bernard et al.,
2003b)]; (b) polycrystalline RVE of “hydrate foam” built up of spherical capillary porosity
(water and air phases), as well as of needle-shaped hydrate phases oriented uniformly in all
space directions [modeled by means of a self-consistent scheme (Hershey, 1954; Hill, 1965;
Fritsch et al., 2006)]; all schematic 2D sketches refer to 3D volume elements

• At the significantly larger scale of several hundreds of microns, we envision a repre-
sentative volume element of cement paste, consisting of a quasi-homogeneous hydrate
foam matrix and a spherical cement clinker phase. Their interaction is the one typically
encountered in matrix-inclusion composites.

4.2.2 Homogenization of hydrate foam properties

The RVE of Fig. 4.2 (b) is subjected to homogeneous (“macroscopic”) strains εhf , in terms of
“microscopic” displacements ξ(x, t) fulfilling

ξ(x, t) = εhf (t) · x , (4.3)

with x labeling positions inside as well as at the boundary of the RVE. Boundary condition
(4.3) and compatibility of the microstrains inside the RVE, reading as

ε(x, t) = 1
2
[
∇ξ(x, t) + ∇T ξ(x, t)

]
, (4.4)

imply the so-called strain average rule (Hashin, 1983; Zaoui, 2002)

εhf (t) = 1
Vhf

∫
Vhf

ε(x, t) dV , (4.5)

with Vhf as the volume of the RVE. Moreover, these deformations provoke traction forces
T at the boundary ∂Vhf of the RVE, and equilibrated microstresses σ throughout the RVE.
They fulfill

T (x, t) = σ(x, t) · n(x) and divσ(x, t) = 0 , (4.6)
with n as the normal to the surface ∂Vhf of the RVE. The (external) work density done by
these traction forces reads as

W ext
hf (t) = 1

Vhf

∫
∂Vhf

T (x, t) · ξ(x, t) dS

= 1
Vhf

∫
∂Vhf

[εhf (t) · x] · [σ(x, t) · n(x)] dS = εhf (t) : 1
Vhf

∫
Vhf

σ(x, t) dV .
(4.7)
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Hence, the force quantity doing work on the macroscopic strains εhf is the spatial average
over the microscopic stresses. Thus, this average qualifies as the macroscopic stress, i.e. here
as the stress tensor σhf related to the hydrate foam,

σhf (t) = 1
Vhf

∫
Vhf

σ(x, t) dV . (4.8)

Given the morphological representation of the hydrate foam RVE [see Fig. 4.2 (b)], the strain
average rule (4.5) takes the particular form

εhf (t) = fhfporεpor(t) + fhfhyd

2π∫
0

π∫
0

εhyd(ϕ, ϑ, t)
sinϑ
4π dϑ dϕ . (4.9)

In Eq. (4.9), fhfpor, and f
hf
hyd denote the volume fractions of capillary pores and of the hydrates,

within the RVE of hydrate foam. εpor is the microstrain averaged over the RVE-subvolume
Vpor = Vair + VH2O, occupied by the capillary pores, namely

εpor(t) = 1
Vpor

∫
Vpor

ε(x, t) dV , (4.10)

and εhyd(ϕ, ϑ) relates to the average strains in the needle-shaped hydrate phase oriented in
ϕ,ϑ-direction,

εhyd(ϕ, ϑ, t) = 1
`(ϕ, ϑ)

∫
`(ϕ,ϑ)

ε(x, t) ds , (4.11)

with `(ϕ, ϑ) as the length of all needle-shaped hydrates oriented in ϕ, ϑ-direction. Analogously,
the stress average rule (4.8) specifies to

σhf (t) = fhfporσpor(t) + fhfhyd

2π∫
0

π∫
0

σhyd(ϕ, ϑ, t)
sinϑ
4π dϑ dϕ . (4.12)

The hydrates exhibit viscoelastic behavior (Acker, 2001),

σhyd(t) =
∫ t

−∞
Rhyd(t− τ) : ∂εhyd(τ)

∂τ
dτ , εhyd(t) =

∫ t

−∞
Jhyd(t− τ) : ∂σhyd(τ)

∂τ
dτ ,

(4.13)
where the creep and relaxation tensor functions, Jhyd and Rhyd, fulfill the convolution condition
(Schwarzl and Struik, 1968)∫ t

−∞
Jhyd(t− τ) : Rhyd(τ) dτ =

∫ t

−∞
Rhyd(t− τ) : Jhyd(τ) dτ = t I , (4.14)

and where the hydrate creep function has the format of Eq. (4.2). On the other hand, the
capillary pore phase behaves elastically,

σpor(t) = Cpor : εpor(t) , (4.15)

with the stiffness tensors Cpor playing the role of time-invariant (constant) relaxation “func-
tions”,

Cpor = Rpor(t− τ) = 3 kporIvol + 2µporIdev (4.16)
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whereby kpor=0 and µpor=0 denote the vanishing (elastic) bulk and shear modulus of the
pores, i.e. we consider, from a poromechanical viewpoint, drained pores.

Upscaling of this material behavior, up to the level of the hydrate foam, is particularly
easily done in the Laplace-Carson (rather than the time) domain. The Laplace-Carson (LC)
transform f∗(p) of any time-dependent function f(t) is defined as

f∗(p) = pf̂(p) = p

∞∫
0

f(t)e−ptdt , (4.17)

where p is the complex variable in the Laplace-Carson domain, and f̂(p) is the Laplace
transform of f(t). Applying the transformation rule (4.17) to the viscoelastic behavior of
the hydrates (4.13) as well as to the elastic behavior of air and water (4.16) yields algebraic
constitutive equations in the LC space, reading as (Gurtin and Sternberg, 1962)

ε∗j (p) = J∗j (p) : σ∗j (p) , σ∗j (p) = R∗j (p) : ε∗j (p) ∀j ∈ {por, hyd} , (4.18)

whereby, interestingly, the convolution condition (4.14) is transformed into a simple inversion
rule,

R∗j (p) =
[
J∗j (p)

]−1
. (4.19)

Hence, LC transformation (4.17) of the creep function (4.2), followed by insertion of the
respective result for J∗hyd(p) into (4.19), yields the LC-transformed relaxation function of the
hydrates as

R∗hyd(p) = 3 khydIvol + 2µ∗hyd(p)Ivol

= 3 khydIvol + 2

 1
µhyd

+ 1
µc,hyd

(
1
tref

)βhyd
Γ (βhyd + 1) p−βhyd

−1

Idev ,
(4.20)

with Γ denoting the gamma function. Note that Eqs. (4.18) are formally identical to the
relations encountered with linear elasticity homogenization. Thus, upscaling of viscoelastic
properties to the hydrate foam can be done as quasi-elastic homogenization in the LC space
[this is referred to as the correspondence principle (Read Jr, 1950; Sips, 1951; Laws and
McLaughlin, 1978; Beurthey and Zaoui, 2000)]. This process is based on the LC-transformed
average rules (4.9) and (4.12) reading as

ε∗hf (p) = fhfporε
∗
por(p) + fhfhyd

2π∫
0

π∫
0

ε∗hyd(ϕ, ϑ, p)
sinϑ
4π dϑ dϕ , (4.21)

σ∗hf (p) = fhfporσ
∗
por(p) + fhfhyd

2π∫
0

π∫
0

σ∗hyd(ϕ, ϑ, p)
sinϑ
4π dϑ dϕ . (4.22)

Linearity of the problem defined by (4.4), (4.6), and (4.18) implies a linear strain concentration
rule from the LC-transformed macrostrains to the LC-transformed microstrains in phase j,
reading as

ε∗j (p) = A∗j (p) : ε∗hf (p) ∀j ∈ {por, hyd} , (4.23)

where A∗j denotes the LC-transformed phase strain concentration tensor, which can be accessed
from classical Eshelby-type matrix inclusion problems (Eshelby, 1957; Laws, 1977; Benveniste,
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1987; Zaoui, 2002), while considering the polycrystalline morphology of the hydrate foam by
means of the self-consistent scheme (Hershey, 1954; Kröner, 1958). This results in

A∗j (p) =
{
I+ Phf,∗j (p) :

[
R∗j (p)−R∗hf (p)

]}−1
:

fhfpor {I+ Phf,∗sph (p) :
[
R∗por(p)−R∗hf (p)

]}−1

+fhfhyd

2π∫
0

π∫
0

{
I+ Phf,∗cyl (p, ϕ, ϑ) :

[
R∗hyd(p)−R∗hf (p)

]}−1 sinϑ
4π dϑ dϕ

−1

∀j ∈ {por, hyd} .

(4.24)

In Eq. (4.24), Phf,∗j denotes the LC transform of the fourth-order Hill tensor, which accounts
for the shape of phase j embedded in a fictitious matrix with “stiffness” R∗hf . Pores are
considered to be spherical inclusions, hydrates are cylindrical (needle-shaped), see Fig. 4.2, and
the corresponding LC-transformed Hill tensors read as Phf,∗sph , and Phf,∗cyl , see the Appendix A
for corresponding mathematical details. Insertion of the macro-to-micro strain concentration
relation (4.23) and of the constitutive behavior (4.18)2, into the LC-transformed stress average
rule (4.22) leads, after comparison to the LC-transformed constitutive law at hydrate foam
level, σ∗hf (p) = R∗hf (p) : ε∗hf (p), to an implicit expression for the LC-transformed homogenized
relaxation tensor of the hydrate foam, R∗hf , reading as

R∗hf (p) =
∑
j

fjR
∗
j (p) : A∗j (p)

=

fhfporR∗por(p) :
{
I+ Phf,∗sph (p) :

[
R∗por(p)−R∗hf (p)

]}−1

+fhfhydR
∗
hyd(p) :

2π∫
0

π∫
0

{
I+ Phf,∗cyl (p,ϕ,ϑ) :

[
R∗hyd(p)−R∗hf (p)

]}−1 sinϑ
4π dϑ dϕ



:

fhfpor {I+ Phf,∗sph (p) :
[
R∗por(p)−R∗hf (p)

]}−1

+fhfhyd

2π∫
0

π∫
0

{
I+ Phf,∗cyl (p,ϕ,ϑ) :

[
R∗hyd(p)−R∗hf (p)

]}−1 sinϑ
4π dϑ dϕ

−1

.

(4.25)

4.2.3 Homogenization of cement paste properties

We are left with homogenization of the RVE of cement paste. Given the matrix-inclusion type
morphology of the RVE, the Mori-Tanaka scheme (Mori and Tanaka, 1973; Benveniste, 1987)
is appropriate to account for phase interactions. Accordingly, the LC-transformed relaxation
function of the infinite matrix in the corresponding matrix-inclusion problems is set equal to
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the LC-transformed homogenized relaxation function of the hydrate foam. This results in an
explicit expression for the LC-transformed relaxation function of cement paste, R∗cp, reading,
by analogy to (4.25), as

R∗cp(p) =
({

1− f cpclin
}
R∗hf (p) + f cpclinR

∗
clin(p) :

{
I+ Phf,∗sph (p) :

[
R∗clin(p)−R∗hf (p)

]}−1
)

:
({

1− f cpclin
}
I+ f cpclin

{
I+ Phf,∗sph (p) :

[
R∗clin(p)−R∗hf (p)

]}−1
)−1

.

(4.26)
This relaxation function, as well as its creep analogue, J∗cp(p) =

[
R∗cp(p)

]−1
, is then back-

transformed from the LC domain, back to the time domain. This is done by means of the
Gaver-Wynn-Rho algorithm (Abate and Valkó, 2004; Valkó and Abate, 2004), which allows
for reliable numerical back-transformation, provided that the quantities in the LC space are
available in a multiprecision number format. In more detail, the approximation accuracy of
the back-transformation increases with the “order of approximation” quantified by the even
integer M , see (Scheiner and Hellmich, 2009) for details. Herein, M = 10 is chosen, which
requires all computations in the LC space to be done with a precision higher than 21 digits
(Abate and Valkó, 2004; Valkó and Abate, 2004). In this way, the implicit equation (4.25)
is solved iteratively, and the calculation is stopped once subsequent homogenized relaxation
functions differ by a value smaller than 10−25 GPa.

4.3 Identification of power-law creep properties of
well-saturated cement hydrates

4.3.1 Downscaling minute-long creep test data from cement paste to
hydrate level

We here identify the viscous behavior of the only creeping phase, the hydrate phase, by
minimizing the error between the experimental creep functions (4.1) resulting from three-
minute-long creep tests, and corresponding model predictions according to Eq. (4.26). The
aforementioned creep tests were conducted in parallel to the hydration process of ordinary
Portland cement pastes exhibiting compositions of w/c ∈ {0.42, 0.45, 0.50} and material ages
ranging from approximately 1 to 8 days, see (Irfan-ul-Hassan et al., 2016) for details on the
test protocol. As the experiments also allowed for determination of the (elastic) Young’s
moduli (which was confirmed by ultrasonic tests, see (Irfan-ul-Hassan et al., 2016) for details),
we isolate the elastic strains from the overall creep strains and restrict the minimization
process to the viscous part of the creep function, which can be almost exactly fitted with a
power-law function Jexpv,cp reading as (Irfan-ul-Hassan et al., 2016)

Jexpv,cp(t− τ) = 1
Eexpc,cp

(
t− τ
tref

)βexpcp

, (4.27)

with Eexpc,cp denoting the creep modulus and βexpcp representing a dimensionless power-law
exponent. Both parameters are functions of the initial water-to-cement mass ratio w/c and of
the (calorimetry-based) hydration degree ξ, the latter being defined as the hydrated clinker
volume divided by the initial clinker volume (Irfan-ul-Hassan et al., 2016).

As concerns the aforementioned model predictions, the elastic phase properties are given
in Table 4.1, and the volume fractions occurring in (4.25) and (4.26) are determined from the
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famous Powers’ model (Powers and Brownyard, 1947; Powers, 1958). Accordingly, the cement

Table 4.1: Isotropic elastic phase properties from Pichler and Hellmich (2011); corresponding
phase stiffness tensors read as Cj = 3 kjIvol + 2µjIdev

Phase j Bulk modulus Shear modulus
kj [GPa] µj [GPa]

Air kair = 0 µair = 0
Water kH2O = 0 µH2O = 0
Hydrates khyd = 18.69 µhyd = 11.76
Clinker kcem = 116.7 µcem = 53.80

paste-related phase volume fractions of clinker f cpclin, of capillary pores f cppor, and of hydrates
f cphyd, and read as (Pichler and Hellmich, 2011):

f cpclin = 20 (1− ξ)
20 + 63w/c ≥ 0 ,

f cppor = 63 (w/c− 0.367 ξ)
20 + 63w/c ≥ 0 ,

f cphyd = 43.15 ξ
20 + 63w/c .

(4.28)

Given the two-scale representation of cement paste (see Fig. 4.2), we also need access to
hydrate foam-related volume fractions of capillary pores and hydrates (fhfpor and f

hf
hyd). They

follow from dividing the cement paste-related volume fractions by the total hydrate foam
volume, (1− f cpclin), according to

fhfj =
f cpj

1− f cpclin
∀j ∈ {por, hyd} . (4.29)

Given the substantial computational effort associated with the inversion of the LC transfor-
mation, it is more efficient to compare the model-predicted and experimentally measured
creep function in the LC space. This requires the LC transformation (4.17) of Jexpv,cp, in order
to obtain an experimentally determined LC-transformed viscous creep function Jexp,∗v,cp in the
form

Jexp,∗v,cp (p) = 1
Eexpc,cp

(
1
tref

)βexpcp

Γ
(
βexpcp + 1

)
p−β

exp
cp . (4.30)

The model-predicted (homogenized) counterpart Jmod,∗v,cp is the 1111-component of the fourth-
order tensor Jmod,∗v,cp (p) =

[
R∗cp(p)

]−1 −
[
Ccp

]−1, see (4.26); whereby Ccp = Rcp(t= 0) is the
homogenized elastic stiffness of cement paste. Conclusively, we are minimizing the error
between the model-predicted viscous part of the uniaxial creep function in the LC space,
Jmod,∗v,cp (p), and its experimentally measured counterpart, Jexp,∗v,cp (p); in mathematical terms,

nw/c∑
i=1

nξ∑
j=1

np∑
k=1

[
Jmod,∗v,cp (p)− Jexp,∗v,cp (p)

]2
→ min . (4.31)
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In Eq. (4.31), the sum over nw/c = 3 indicates that three different cement paste mixes
exhibiting w/c ∈ {0.42, 0.45, 0.50} are tested, the sum over nξ = 167 indicates that 167 creep
tests were performed on each cement composition for different maturity states, and the sum
over np = 20 indicates that 20 complex LC “time” values p ∈ [10−6, 10−4] are considered. The
optimization problem (4.31) is solved in MATLAB (2013), by means of a quasi-Newtonian
solver, and this provides the optimal creep parameters for well-saturated hydrates as

µc,hyd = 20.93 GPa , βhyd = 0.251 . (4.32)

These optimal hydrate creep parameters indeed allow for satisfactory representation of the
experimental results in the time domain, see Fig. 4.3. The agreement between model prediction
and experiment is quantified through the mean error, defined as the sum of the absolute values
of the difference between model-predicted and experimentally measured uniaxial viscous creep
function, resolved for nt = 180 steps within the three-minute-long creep tests tk∈ [1, 180], and
averaged with respect to the number of creep tests (nw/c nξ ≈ 500) and the number of time
steps nt, reading as

ε =
∑nw/c
i=1

∑nξ
j=1

∑nt
k=1

∣∣∣Jmodv,cp (tk)− Jexpv,cp(tk)
∣∣∣

nw/c nξ nt
. (4.33)

This error amounts to 0.768 10−6/MPa. This supports the idea that the (visco-)elastic
properties of well-saturated hydrates neither change during the aging of cement paste nor
upon composition change of the cement paste. Accordingly, the varying creep potential of
cement pastes arises solely from varying volume dosages of the hydrates, as predicted by
Powers’ hydration model.

4.3.2 Confirmation of hydrate creep properties by data from weeks-long
creep test on 30-year-old cement paste

The question arises whether the intrinsic (i.e. mixture- and maturity-independent) creep
properties of well-saturated hydrates as identified here from three-minutes creep tests on
different early-age cement pastes, may be also relevant for longer creep durations, and for
more mature pastes. In this context, we consider the results of Tamtsia and Beaudoin (2000),
who performed a 30-day-long uniaxial compressive creep test on a 30-year-old Portland cement
paste sample with w/c=0.50, stored continuously under water. Given its age, the sample can
be considered to be completely hydrated; thus, also in this case, it is appropriate to consider
aging effects as negligible during the test period. An estimate for the hydration degree which
corresponds to full hydration of cement paste, can be obtained from the empirical relationship
of Lin and Meyer (2009). Accordingly, a water-to-cement mass ratio of w/c= 0.50 and a
typical Blaine fineness of 340m2/kg (Tamtsia et al., 2004) relate to a final hydration degree of
ξ = 0.87. The corresponding model-predicted creep function, i.e. that relating to w/c=0.50,
ξ = 0.87, and to the hydrate properties according to (4.2) and (4.32), agrees remarkably well
with the aforementioned experimental results, see Fig. 4.4. This result shows that it is the
intrinsic viscous behavior of the hydrate needles, which drives the basic creep of cement paste
for time intervals ranging from a few seconds, up to several weeks. Moreover, this corroborates
that the viscous behavior of well-saturated hydrates does not change.
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Figure 4.3: Comparison of the experimentally determined and model-predicted viscous strains
of cement pastes aged 30, 40, 60, and 144 hours, respectively; the relation between material
age and hydration degree is taken from Irfan-ul-Hassan et al. (2016)
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Figure 4.4: Comparison of experimental data (Tamtsia and Beaudoin, 2000) for (total) creep
functions of 30-year-old cement paste samples with w/c= 0.50, with corresponding model
predictions
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4.4 General characteristics of the creep of well-saturated
hydrates

The good agreements in Figs. 4.3 to 4.4 motivate deeper study of the features of the ho-
mogenized creep behavior of cement paste. Therefore, we represent the viscous part of the
model-predicted uniaxial creep functions of cement paste very accurately, see Fig. 4.5, by
means of a power function,

Jmodv,cp (t− τ) = 1
Emodc,cp

(
t− τ
tref

)βmodcp

, (4.34)

with Emodc,cp denoting the model-predicted creep modulus, and βmodcp representing the model-
predicted creep exponent. Notably, the total model-predicted creep function then reads as
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Figure 4.5: Viscous part of the uniaxial creep function of 40h old cement paste with w/c ∈
{0.42, 0.45, 0.50}: point-wisely obtained model predictions and corresponding power-law fits
according to Eq. (4.27), with quadratic correlations coefficients R2 > 99.9%

Jmodcp = Jmodv,cp + 1/Emodcp with Emodcp denoting the model-predicted Young’s elastic modulus.
It turns out that the elastic and creep modulus are strongly composition-dependent; they
increase with increasing ξ and decreasing w/c, see Fig. 4.6. In contrast, the creep exponent
appears as virtually composition- and maturity-independent quantity, being constant around
β ≈ 0.252 for w/c ∈ [0.2, 1] and ξ ∈ [0, 1]. This value is even close to the hydrate creep
exponent of Eq. (4.32); i.e. it is hardly effected by the upscaling scheme.

4.5 Discussion and conclusion

Concerning the invariant hydrate creep properties, expressed by Eq. (4.32) and Figs. 4.3-4.4,
it is important to note that the herein investigated cement samples were all characterized
by w/c ≥ 0.42, that they were tested within the first week after production, and that they
were continuously covered, in order to avoid drying. Consequently, these samples (and the
hydrates within them) were well saturated, and our statement on the invariance of hydrate
creep properties is valid for well saturated hydrates.

Change of this saturated state, i.e. drying, is known to significantly influence the macro-
scopic creep behavior of cement paste (Acker and Ulm, 2001; Tamtsia and Beaudoin, 2000),
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Figure 4.6: Model-predicted elastic and creep properties for hydrating cement pastes with
hydration degrees ξ ∈ [0, 1] and exhibiting water-to-cement mass ratios w/c ∈ [0.2, 1]: (a)
Young’s elastic modulus, (b) Young’s creep modulus, (c) dimensionless creep exponent
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and of other hydrated nanolayered material systems, such as clay (Carrier et al., 2016). It
is very probable that drying also changes the hydrate creep behavior itself, e.g. through
reduction of so-called creep sites within the hydrate phases (Thomas and Jennings, 2006).
The same authors report NMR studies which show that even under constant hydro-thermal
conditions, the polymerization state within the hydrates changes, and they propose that this
so-called “chemical aging of C-S-H” might also change the hydrate creep properties. More
recent research results, however, seem to relativize this proposition: indeed, polymerization
leads to an enlargement of the non-spherical nanoscaled solid elements within the hydrates,
while the actual source of hydrate creep lies in the layered (confined) water sheets between
these solid elements (Manzano et al., 2012, 2013; Shahidi et al., 2014, 2015c). Hence, as long
as the amount of the latter “creep sites” does not change, it makes sense to expect invariant
creep properties of the hydrate phases as introduced in Fig. 4.2 (b).

Fig. 4.6 and Eq. (4.34) illustrate that upscaling of a power-law creep function from needle-
shaped hydrates up to the scale of cement paste results in a power-law creep function. In other
words, the herein performed scale transitions do not alter the shape of the creep function, a
fact that was also found for upscaling the asymptotically reached creep rates “seen” in nano-
and microindentation tests (Vandamme and Ulm, 2013; Zhang et al., 2014). Pursuing this
argument to the scale of concrete, one will also end up with a creep function which virtually
follows a power function. However, concrete creep tests or monitoring activities spanning over
time periods of years, have revealed a transition to a logarithmic creep behavior (Bažant et al.,
2011). Conclusively, the validity range of the hydrate creep properties identified through
Eq. (4.2) and (4.32) is constrained to creep periods of weeks to months (see Fig. 4.4). During
such time periods, creep of cement paste indeed follows a power-law function (Tamtsia and
Beaudoin, 2000; Irfan-ul-Hassan et al., 2016). Extension of the formulation (4.1) towards
ultralong creep periods is beyond the scope of the present manuscript.

The quantification of the hydrate creep function according to (4.26) and (4.28)-(4.31) rests
on the assumption of isochoric creep according to (4.2), implying that creeping hydrates would
exhibit a time-invariant volume. This assumption is motivated by a suggestion of Bernard
et al. (2003a), by results of an earlier creep micromechanics model (Scheiner and Hellmich,
2009), and by theoretical considerations concerning the upscaling of sliding processes of viscous
interfaces within hydrated calcium silicate (Shahidi et al., 2014, 2015a,b,c). These viscous
interfaces are located within the hydrate nanoparticles, such as solid C-S-H, see Fig. 4.7 (c).
The needle-shaped hydrate phases considered in the present work are defined at a level well
above the aforementioned nanoparticles: our hydrate phases are actually built up by these
nanoparticles as well as by the gel porosity in between. Such nanocomposites are also referred
to as “C-S-H gel” (Sanahuja and Dormieux, 2010; Manzano et al., 2013). Accordingly, the
isochoric creep function of the nanoparticles would actually scale up to a hydrate gel-related
creep function also including volumetric creep strains (Sanahuja and Dormieux, 2010). Hence,
the question arises whether consideration of such volumetric creep strains occurring at the
level of hydrate gel [i.e. that of the needle-shaped hydrate phases in Fig. 4.2 (b)] would have a
remarkable effect on the results of the downscaling-based hydrate creep identification process
described further above. In order to answer this question, we here repeat this process, but
now based on the popular concept of a constant (elastic and creep) Poisson’s ratio as proposed
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Figure 4.7: Nanoscopic downscaling from hydrate foam microstructure introduced in
Fig. 4.2 (b): (a) Hybrid Molecular Dynamics - Grand Canonical Monte Carlo simulations
suggest emergence of elongated morphological features at the level of the hydrate foam (a);
these needles, represented by the needle-shaped hydrate phases shown in Fig. 4.2 (b), are
made up of hydrate gel (b), consisting itself of gel pores and solid hydrates (c); the latter are
built from calcium silicate layers separated or covered by films of confined water

by Bažant and L’Hermite (1988). Accordingly, we consider

Jhyd(t− τ) =

1− 2 νhyd
Ehyd

+ 1− 2 νhyd
Ec,hyd

(
t− τ
tref

)βhyd Ivol

+

1 + νhyd
Ehyd

+ 1 + νhyd
Ec,hyd

(
t− τ
tref

)βhyd Idev
(4.35)

whereby Ehyd denotes Young’s elastic modulus, Ec,hyd denotes Young’s creep modulus, and νhyd
denotes Poisson’s ratio. The latter follows from the elastic bulk and shear moduli of isotropic
hydrates (see also Table 4.1), as νhyd = 0.24. The alternative hydrate creep tensor function
(4.35) is then upscaled to the level of cement paste, as described in Section “Micromechanics
of creeping cement pastes”. Thereafter, the hydrate creep properties Ec,hyd and βhyd are
identified by means of minimizing Eq. (4.31). The resulting prediction error ε according to
Eq. (4.33) is, in good approximation, equal to the one obtained under the assumption of
isochoric creep, see Table 4.2. Very remarkably, virtually the same Young’s creep modulus of

Table 4.2: Comparison of hydrate creep properties of Eq. (4.2) and (4.35), identified by means
of downscaling 500 macroscopic creep tests on cement pastes: isochoric creep vs. creep at
constant Poisson’s ratio; prediction error ε according to Eq. (4.33)

assumption Ec,hyd [GPa] βhyd ε [10−6/MPa]

isochoric 62.8a 0.251 0.768
constant Poisson’s ratio 62.4 0.250 0.765

aThe Young’s creep modulus Ec,hyd follows from the shear creep
modulus identified in Eq. (4.32) as Ec,hyd = 3µc,hyd

hydrates, and the same power-law creep exponent of hydrates are obtained, irrespective of
whether isochoric creep or creep at constant Poisson’s ratio is considered. The underlying
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reason seems to lie in the elongated (non-spherical) shape of the hydrate phases building up
kind of a “framework”, with the capillary porosity playing the role of the “free spaces” in
between. In such a “framework”, the individual needles (or “beams”) are predominantly loaded
in terms of uniaxial stress states, irrespective of potential lateral deformations which remain
insignificant for the overall load carrying behavior. A very similar result has been obtained
in the context of homogenizing the elastic properties of various types of ceramic porous
polycrystals with non-spherical (needle- or disc-shaped) solid phases (Fritsch et al., 2013), as
was confirmed by very many experiments as well as by full 3D Finite Element simulations
of corresponding microstructures (Sanahuja et al., 2010). In this context, we note that the
morphology with non-spherical hydrate phase shapes, as depicted in Fig. 4.2 (b), was validated
by various experimental sources (Pichler et al., 2009; Pichler and Hellmich, 2011; Pichler
et al., 2013a). Moreover, this morphology has been, only very recently, further confirmed by a
hybrid Molecular Dynamics – Grand Canonical Monte Carlo simulation (MD-GCMC) scheme
(Ioannidou et al., 2016), see Fig. 4.7 (a).

Appendix A: Analytical expressions facilitating upscaling in
LC space
Upscaling of the hydrate creep behavior, up to the larger scales of the hydrate foam and
of the cement paste, respectively, is performed in the LC space, according to the analytical
formulae described next. Thereby, we consider that an isotropic fourth-order tensor, G, can
be decomposed into a volumetric part and a deviatoric part as G = GvolIvol + GdevIdev,
where Gvol and Gdev, respectively, are the (scalar) volumetric and deviatoric components of
the fourth-order tensor G, and where Ivol and Idev are the volumetric and deviatoric parts
of the symmetric fourth-order identity tensor, as introduced below Eq. (4.2). They satisfy
Ivol : Ivol = Ivol, Idev : Idev = Idev, and Ivol : Idev = Idev : Ivol = O. In addition, the isotropic
average of a transversally isotropic tensor F can be written as (Torquato, 2013; Sadowski
et al., 2015)

2π∫
0

π∫
0

F(ϕ, ϑ)sinϑ
4π dϑ dϕ =

3∑
i=1

3∑
j=1

[1
3FiijjI

vol + 1
5

(
Fijij −

1
3Fiijj

)
Idev

]
, (4.36)

provided that the tensor F exhibits the symmetries Fijkl=Fjikl=Fijlk=Fjikl.
We start our collection of analytical formulae with the LC-transformed Hill tensors occur-

ring in concentration and stiffness expressions of Eqs. (4.24)-(4.26). Given the organization
of cement paste according to Fig. 4.2, the inclusions in the corresponding Eshelby problems
are all embedded in an infinite hydrate foam matrix with quasi-elastic “stiffness” R∗hf . For
material phases with spherical shape (j=sph), i.e. for air, water, and cement clinker, and for
cylindrical hydrates (j=cyl) the Hill tensor reads as

P
hf,∗
j (p) = S

hf,∗
j (p) :

[
R∗hf (p)

]−1
∀j ∈ {sph, cyl} , (4.37)

whereby Shf,∗j denotes the LC-transformed Eshelby tensor. As for a spherical inclusion
embedded in an infinite hydrate foam matrix, the LC-transformed Eshelby tensor Shf,∗sph is
isotropic, and its volumetric and deviatoric components read as (Eshelby, 1957; Zaoui, 2002)

Shf,∗,volsph (p) =
3 k∗hf (p)

3 k∗hf (p) + 4µ∗hf (p) , Shf,∗,devsph (p) = 6
5
k∗hf (p) + 2µ∗hf (p)

3 k∗hf (p) + 4µ∗hf (p) . (4.38)
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As for a cylindrical hydrate orientated in e3-direction and embedded in an infinite hydrate
foam matrix, the non-zero components of the LC-transformed Eshelby tensor Shf,∗cyl read as
(Eshelby, 1957; Hellmich et al., 2004)

Shf,∗cyl,1111(p) = Shf,∗cyl,2222(p) = 9
4

k∗hf (p) + µ∗hf (p)
3 k∗hf (p) + 4µ∗hf (p) ,

Shf,∗cyl,1122(p) = Shf,∗cyl,2211(p) = 1
4

3 k∗hf (p)− 5µ∗hf (p)
3 k∗hf (p) + 4µ∗hf (p) ,

Shf,∗cyl,1133(p) = Shf,∗cyl,2233(p) = 1
2

3 k∗hf (p)− 2µ∗hf (p)
3 k∗hf (p) + 4µ∗hf (p) ,

Shf,∗cyl,1212(p) = 1
4

3 k∗hf (p) + 7µ∗hf (p)
3 k∗hf (p) + 4µ∗hf (p) ,

Shf,∗cyl,1313 = Shf,∗cyl,2323 = 1
4 ,

(4.39)

whereby Shf,∗cyl exhibits symmetries Shf,∗cyl,ijkl = Shf,∗cyl,jikl = Shf,∗cyl,ijlk = Shf,∗cyl,jilk.
Next, we discuss the expressions for the homogenized quasi-elastic “stiffness” tensor R∗hf ,

see Section “Homogenization of cement paste properties”. As for hydrate foam, insertion of the
LC-transformed Eshelby tensor expressions (4.38) and (4.39) into (4.37), and further insertion
of the thus obtained Hill tensors, together with the vanishing quasi-elastic “stiffnesses” of
air and water (see Table 4.1) and the quasi-elastic “stiffness” of hydrates (4.20), into the
expression for the quasi-elastic “stiffness” of the homogenized hydrate foam (4.25), yields
scalar expressions for the LC-transformed bulk and shear moduli, reading as

k∗hf (p) = fhfhydkhydA
∗,vol
∞,hyd(p)

[(
fhfair + fhfH2O

)
A∗,vol∞,por(p) + fhfhydA

∗,vol
∞,hyd(p)

]−1
,

µ∗hf (p) = fhfhydµ
∗
hyd(p)A

∗,dev
∞,hyd(p)

[(
fhfair + fhfH2O

)
A∗,dev∞,por(p) + fhfhydA

∗,vol
∞,dev(p)

]−1
,

(4.40)

with A∗,vol∞,por, A∗,dev∞,por, A
∗,vol
∞,hyd, and A

∗,dev
∞,hyd denoting the LC-transformed volumetric and devia-

toric components of the Eshelby problem-related strain concentration tensors for the pores
(air and water) and for the hydrates, reading as

A∗,vol∞,pore(p) =
[
1− Shf,∗,volsph (p)

]−1
,

A∗,dev∞,pore(p) =
[
1− Shf,∗,devsph (p)

]−1
,

(4.41)
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so that, according to (4.36), we finally have

A∗,vol∞,hyd(p) =
3 k∗hf (p) + µ∗hyd(p) + 3µ∗hf (p)
3 khyd + µ∗hyd(p) + 3µ∗hf (p) ,

A∗,dev∞,hyd(p) =
{

9 khyd
[
µ∗hyd(p)

]2
k∗hf (p) + 64

[
µ∗hf (p)

]4
+

[
63 khyd + 84 k∗hf (p) + 184µ∗hyd(p)

] [
µ∗hf (p)

]3
+[

156 khyd µ∗hyd(p) + 120 k∗hf (p)µhyd + 72
[
µ∗hyd(p)

]2
+ 81 khyd k∗hf (p)

] [
µ∗hf (p)

]2
+

[
36 k∗hf (p)

[
µ∗hyd(p)

]2
+ 21 khyd

[
µ∗hyd(p)

]2
+ 90 k∗hf (p) khyd µ∗hyd(p)

]
µ∗hf (p)

}
(

5
{[
µ∗hf (p)

]2
+
[
7µ∗hyd(p) + 3 k∗hf (p)

]
µ∗hf (p) + 3 k∗hf (p)µ∗hyd(p)

}
[
µ∗hf (p) + µ∗hyd(p)

] [
3 khyd + µ∗hyd(p) + 3µ∗hf (p)

] )−1
.

(4.42)
As for cement paste, insertion of LC-transformed Eshelby tensor expression (4.38) into (4.37),
and further insertion of the thus obtained Hill tensor, together with the quasi-elastic “stiffnesses”
of cement clinker (see Table 4.1) and of hydrate foam (4.40), into the expression for the
quasi-elastic “stiffness” of the homogenized cement paste (4.26), yields scalar expressions for
the LC-transformed bulk and shear moduli, reading as

k∗cp(p) =
[
f cphfk

∗
hf (p) + f cpclinkclinA

∗,vol
∞,clin(p)

] [
f cphf + f cpclinA

∗,vol
∞,clin(p)

]−1
,

µ∗cp(p) =
[
f cphfµ

∗
hf (p) + f cpclinµclinA

∗,dev
∞,clin(p)

] [
f cphf + f cpclinA

∗,dev
∞,clin(p)

]−1
,

(4.43)

with A∗,vol∞,clin, A
∗,dev
∞,clin denoting the LC-transformed volumetric and deviatoric components of

the Eshelby problem-related strain concentration tensor for clinker inclusions, reading as

A∗,vol∞,clin(p) =
[
1 + Shf,∗,volsph (p)

kclin − k∗hf (p)
k∗hf (p)

]−1

,

A∗,dev∞,clin(p) =
[
1 + Shf,∗,devsph (p)

µclin − µ∗hf (p)
µ∗hf (p)

]−1

.

(4.44)

Appendix B: Notation
The following symbols are used in this paper:
A∗,vol∞,j , A

∗,dev
∞,j = LC-transformed volumetric and deviatoric components of Eshelby problem-

related strain concentration tensor of phase j;
A∗j = LC transform of strain concentration tensor of phase j;
Cj = elastic stiffness tensor of phase j;
clin = cement clinker;
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cp = cement paste;
cyl = cylindrical (needle-shaped);
div = divergence operator;
Eexpcp = experimentally determined Young’s elastic modulus of cement paste;
Eexpc,cp, E

mod
c,cp = experimentally determined and model-predicted Young’s creep modulus of

cement paste;
Ehyd = Young’s elastic modulus of the hydrates;
Ec,hyd = Young’s creep modulus of the hydrates;
exp = experimentally determined;
F = auxiliary anisotropic fourth-order tensor;
fhfj = hydrate foam-related volume fraction of phase j, j ∈ {air,H2O, hyd};
f cpj = cement paste-related volume fraction of phase j, j ∈ {clin, hf};
G = auxiliary isotropic fourth-order tensor;
Gvol, Gdev = volumetric and deviatoric components of G;
H2O = water;
hf = hydrate foam;
hyd = hydrates;
I = fourth-order identity tensor;
Ivol, Idev = volumetric and deviatoric parts of fourth-order identity tensor;
Jj = uniaxial creep function of phase j;
Jexpcp , Jmodcp = experimentally determined and model-predicted uniaxial creep function of
cement paste;
Jexpe,cp = elastic part of Jexpcp ;
Jexpv,cp, Jmodv,cp = viscous parts of Jexpcp and Jmodcp ;
Jhyd = uniaxial elastic creep function of cement paste;
Je,hyd = elastic part of Jhyd;
Jv,hyd = viscous part of Jhyd;
Jj = fourth-order creep tensor function of phase j;
Jmod,∗v,cp = model-predicted viscous part of the creep tensor function of cement paste in the LC
space;
kj = bulk modulus of phase j;
` = length of needle-shaped hydrates;
M = number of precision digits for computations in the LC space;
mod = model-predicted;
n = unit normal vector perpendicular to ∂Vhf ;
np, nw/c, nξ = numbers over which sums in the optimization problem (4.31) extend;
P
hf,∗
j = LC-transformed Hill tensor of an inclusion with shape j, embedded in an infinite

hydrate foam matrix, j ∈ {sph, cyl};
p = complex variable in the LC domain;
por = pores;
Rj = fourth-order relaxation tensor function of phase j;
S
hf,∗
j = LC-transformed Eshelby tensor of an inclusion with shape j embedded in an infinite

hydrate foam matrix, j ∈ {sph, cyl};
Shf,∗,volj , Shf,∗,devj = volumetric and deviatoric components of Shf,∗j ;
sph = spherical;
T = traction vector acting at ∂Vhf ;
t = chronological time;
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tref = reference time, tref =1 d=86 400 s;
Vhf = volume of RVE of hydrate foam;
∂Vhf = boundary of RVE of hydrate foam;
W ext
hf = external work density, done on the boundary of the RVE of hydrate foam;

w/c = initial water-to-cement mass ratio;
x = position vector labeling positions inside Vhf as well as at the boundary ∂Vhf ;
βexpcp , βmodcp = experimentally determined and model-predicted power-law exponent in the creep
function of cement paste;
βhyd = power-law exponent of hydrates;
δij = Kronecker delta;
Γ(.) = gamma function of real quantity (.);
ε = mean error between model-predicted and experimentally measured uniaxial viscous creep
functions;
ε = second-order strain tensor;
εj = second-order strain tensor of phase j;
εc,cp = viscous cement paste strain component in loading direction;
ϑ = zenith angle;
µj = shear modulus of phase j;
µc,hyd = shear creep modulus of the hydrates;
νhyd = Poisson’s ratio of the hydrates;
ξ = hydration degree;
ξ = displacement vector;
σ = second-order stress tensor;
σj = second-order stress tensor of phase j;
σcp = cement paste stress component in loading direction;
σplatcp = applied uniaxial stress in creep experiment;
τ = time instant of loading;
ϕ = azimuth angle;
1 = second-order identity tensor;
(.)∗ = Laplace-Carson transform of quantity (.);
(̂.) = Laplace transform of quantity (.);
· = inner product;
: = second-order tensor contraction;
⊗ = dyadic product;
∇ = nabla operator.
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Abstract: Customary micromechanics models for the poroelasticity, creep, and strength of
concrete restrict the domain affected by the hydration reaction, to the cement paste volume;
considering the latter as thermodynamically closed system with respect to the (chemically
inert) aggregates. Accordingly, the famous Powers hydration model appears as a natural choice
for the determination of clinker, cement, water, and aggregates volume fractions entering
such micromechanical models. The situation changes once internal curing occurs, i.e. once
part of the present water is absorbed initially by the aggregates, and then soaked “back” to
the cement paste during the hydration reaction. For this case, we here develop an extended
hydration model, introducing water uptake capacity of the aggregates on the one hand, and
paste void filling extent on the other, as additional quantities. Based on constant values
for just these two new quantities, and on previously determined creep properties of cement
pastes as functions of an effective water-to-cement mass ratio (i.e. that associated to the
cement paste domain, rather than to the entire concrete volume), a series of ultrashort-term
creep tests on different mortars and concretes can indeed be very satisfactorily predicted by a
standard micro-viscoelastic mathematical model. This further extends the applicability range
of micromechanics modeling in cement and concrete research.
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concretes. He used the code for identification (i) of the water uptake capacity of the used
aggregates, and (ii) of the filling extent of shrinkage-induced voids by water. He carried out
model validation and documented the research results. Markus Königsberger developed the
Maple code for creep homogenization, contributed to both the discussion processes and the
documentation of research results, and helped proof reading the paper. Roland Reihsner
operated the testing machine and the deformation measurement equipment.

Keywords: creep homogenization, continuum micromechanics, correspondence principle,
cement paste, upscaling, internal curing

5.1 Introduction
Concrete hydration is generally regarded as a process from which the aggregates, being
chemically inert, are fully excluded, and which is therefore taking place exclusively in the
cement paste, where water reacts with cement grains, so as to form hydrates. Correspondingly,
concrete hydration models such as the famous Powers-Acker model (Powers and Brownyard,
1947; Acker, 2001) are typically built on evolving volume fractions of cement clinker, water,
and hydrates in the cement paste; and considering the cement paste compartment as a
thermodynamically closed system, all these volume fractions can be traced back to the
hydration degree and to the (initial) water-to-cement mass ratio. By contrast, the volume
fractions of cement paste and aggregates remain constant at the hierarchical level of concrete.
Besides other applications, such hydration models have been a particularly appropriate
basis for the development of multiscale mechanics models for concrete, be they related
to elasticity (Bernard et al., 2003b; Hellmich and Ulm, 2005; Sanahuja et al., 2007) to
poroelasticity (Ulm and Heukamp, 2004; Ghabezloo, 2010) to viscoelasticity (Scheiner and
Hellmich, 2009) or to strength (Pichler and Hellmich, 2011; Pichler et al., 2013a).

All these models have been experimentally validated up to different levels of precision, so
that on the one hand, multiscale continuum mechanics has become a well accepted theoretical
tool in cement and concrete research; while on the other hand, the field is still open for
improvements. The latter is true in particular for the very challenging topic of concrete creep,
which spans several orders of time magnitude, starting from the scale of minutes (Vandamme
and Ulm, 2009; Delsaute et al., 2012; Boulay et al., 2012; Vandamme and Ulm, 2013; Zhang
et al., 2014; Irfan-ul-Hassan et al., 2016) to that of several days (Bažant et al., 1976; Tamtsia
et al., 2004; Rossi et al., 2011), weeks (Tamtsia and Beaudoin, 2000; Laplante, 2003; Atrushi,
2003; Briffaut et al., 2012), months (Rossi et al., 1994; Zhang et al., 2014), or even years (Bažant
et al., 2011, 2012; Zhang et al., 2014).

In the present paper, we show that the challenge in the multiscale modeling of concrete creep
probably does not lie so much in finding the appropriate micromechanical representation of the
material, but rather in the reliable estimation of the evolving volume fractions of the material
constituents, entering the corresponding micromechanics models as input. In this context,
we abandon the aforementioned assumption of the cement paste being a thermodynamically
closed system, and we explicitly introduce water migration from the inter-aggregates spaces
into the aggregates, as well as back-suction of water from the aggregates into the hydrating
(and therefore water-consuming) cement paste.

Accordingly, the paper is organized as follows: A simple mathematical model for water
migration into and from the aggregates is formulated in Section 5.2. Based on the initial
water-to-cement mass ratio, on the hydration degree, and on two newly introduced quantities,
namely the water uptake capacity of the aggregates and the water filling extent of the cement
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paste voids, this models provides the volume fractions of water, cement clinker, hydrates,
and aggregates within concretes and mortars with water-absorbing aggregates. These volume
fractions then enter a micromechanical model for mortar and concrete creep, upscaling cement
paste behavior, as quantified in the recent ultrashort-term tests of Irfan-ul-Hassan et al. (2016),
to the mortar and concrete level, as detailed in Section 5.3. Corresponding micromechanical
model predictions are then compared to a total of 32 newly performed ultrashort-term creep
tests at two different mortars (made from aggregates type I - „Normensand Quartz”) and
two different concretes (made from aggregates type II - „Pannonia Kies”), which are all made
from the same cement, but differ in water-to-cement and aggregate-to-cement mass ratios, see
Section 5.4. It is checked whether this comparison would allow for identification of one value
each for (i) the water uptake capacity of aggregates; and (ii) the cement-specific void filling
extent by water soaked out from the aggregates. Also, air entrapment between aggregates
and cement paste is considered. Thereafter, the paper is terminated by a conclusion section.

5.2 Modeling hydration-dependent water migration to
and from the aggregates

We consider that during the mixing of concrete or mortar, i.e. before the hydration reaction,
a significant amount of water may be taken up by the aggregates. This is the case with
oven-dried quartz aggregates, on which we focus throughout the present paper. Accordingly,
we decompose the total mass of water, w, into that of the water residing inside the cement
paste, wcp, and that which is absorbed within the open porosity of quartz, wa,

w = wcp(ξ) + wa(ξ) . (5.1)

During the hydration reaction, however, part of the water which has been initially absorbed
into the aggregates, is soaked back into the inter-aggregates space, which is then occupied by
the cement paste. This is because the hydration products fill less volume than their unreacted
counterparts. In more detail, the volume reduction during cement paste hydration [also called
autogeneous shrinkage (Powers and Brownyard, 1947; Acker, 2001)] leads to the formation of
air voids, which are partially refilled by the additional water extracted from the aggregates.
Such a process driven by water supply from the aggregates is sometimes called internal
curing (Bentz et al., 2005; Jensen and Lura, 2006; Wyrzykowski et al., 2011; Zhutovsky and
Kovler, 2012; Justs et al., 2015). Maintaining the philosophy of the Powers model to identify
linear relations between chemical reactants and products on the one hand, and the degree
of hydration on the other hand, we envision that the amount of aggregate-extracted water
increases (linearly) with the volume of voids. The latter increases (linearly) with the mass of
hydrates formed, which then increases, again linearly, with the degree of hydration. Hence,
the water content in the cement paste is linearly linked to the hydration degree as well, which
is mathematically expressed as follows

wcp(ξ)
c

= d+ k ξ (5.2)

In this context, it needs to be emphasized that wcp(ξ) comprises the mass of all the water in
the cement paste in the most general understanding, i.e. both the unreacted water and that
which is chemically combined to the cement clinker; in the same sense, c denotes the total
mass of cement, including both the unreacted cement and that which is chemically combined
to water. The material constants in (5.2), d and k, are the initial value of the water-to-cement
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mass ratio which is effective at the cement paste level, and the hydration-dependent (linear)
increase of this effective mass ratio. The former constant can be linked to the water mass
which is initially uptaken by the aggregates, wa(0). This quantity is normalized by the mass
of the aggregates, a, yielding the initial water-to-aggregate mass ratio in the form wa(0)/a.
Namely, when splitting the (nominal) water-to-cement mass ratio into a cement paste-specific
and an aggregate-specific portion, the respective mathematical expression can be readily
solved for d, according to

w

c
= wcp(0)

c
+ wa(0)

a

a

c
⇒ d = wcp(0)

c
= (w/c)− wa(0)

a
(a/c) (5.3)

Concerning the soaking of water, from the aggregates back to the inter-aggregate spaces, then
occupied by cement paste, we introduce a cement-specific void-filling extent α between 0 and
1, with zero referring to no water filling of air voids formed during autogeneous shrinkage of
the cement paste, while 1 relates to complete filling of the air voids by water. Thereby, the
voids themselves evolve linearly with the hydration degree, as seen in Fig. 5.1. This void filling
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Figure 5.1: Hydration-driven evolution of volume fractions of cement paste constituents
(cement, water, hydrates, and voids) according to Powers-Acker’s hydration model: (a)
complete phase volume evolution diagram according to (Powers and Brownyard, 1947; Acker,
2001); (b) detail illustrating void filling extent α, concerning partial void filling by water that
is soaked from the open porosity of quartz into the cement paste matrix

extent α can be related to the back-soaking-related parameter k, by deriving an expression
for the hydration-dependent water mass which was soaked into the cement paste, through
combination of Eqs. (5.2) and (5.3), yielding

wcp(ξ)− wcp(0) = c k ξ (5.4)

and by expressing this mass as the volume of voids, times the void filling extent α, times the
mass density of water, yielding

c k ξ = Vvoid αρH2O (5.5)

We are left with relating the void volume Vvoid to the initial composition of the cement paste
and to the hydration degree. To this end, the void volume is considered to be equal to the
volume of cement paste, Vcp, times the cement paste-related volume fraction of voids, f cpvoid

Vvoid = Vcp f
cp
void (5.6)
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The volume of cement paste is equal to the initial volumes of cement and water, i.e. Vc and
Vw, which can be expressed by the masses of cement and water as well as by the related mass
densities as

Vcp = Vc + Vw = c

ρclin
+ wcp(0)

ρH2O
(5.7)

Finally, the volume fraction of shrinkage-induced voids in cement paste is considered to
increase proportionally to the hydration degree, as quantified through the Powers-Acker
hydration model (Powers and Brownyard, 1947; Acker, 2001), evaluated for the effective
initial composition of the cement paste matrix, quantified in terms of the effective initial
water-to-cement mass fraction wcp(0)/c, compare Eq. (15.4) of (Pichler et al., 2009):

f cpvoid =

(
1 + 0.42 ρclin

ρH2O
− 1.42 ρclin

ρhyd

)
ξ

1 + ρclin
ρH2O

(wcp(0)/c) = 3.31 ξ
20 + 63 wcp(0)

c

(5.8)

with ρclin = 3.150 kg/dm3 (Acker and Ulm, 2001), ρH2O = 1.000 kg/dm3, and ρhyd =
2.073 kg/dm3

(Barthélémy and Dormieux, 2003), denoting the mass densities of cement clinker grains,
water, and hydrates, respectively. The sought relation between the constant k and the void
filling extent by water, α, follows from specialization of Eq. (5.5) for Eqs. (5.6), (5.7), and
(5.8), as well as from solving the resulting expression for k, yielding

k =
[
ρH2O

ρclin
+ wcp(0)

c

] 3.31α
20 + 63 wcp(0)

c

(5.9)

Eq. (5.9) underlines that k, the hydration degree-related rate of the effective water-to-cement
mass fraction of the cement paste matrix, see Eq. (5.2), is directly proportional to α, the
extent up to which the shrinkage-induced voids in the cement paste are filled by water.

With respect to the classical Powers-Acker model, the herein developed hydration model
which considers also internal curing, contains two additional quantities: (i) the water uptake
capacity of the aggregates, wa(0)/a, and (ii) the void filling extent by water, α. The former
quantity is involved in the expression for the initial value of the effective water-to-cement mass
fraction, see Eq. (5.3), while α is involved in the mathematical expression for the evolution of
the water-to-cement mass ratio which is effective in the cement paste; and this expression is
obtained by specializing Eq. (5.2) for d and k according to (5.3) and (5.9), respectively, and
from consideration of the mass densities ρclin = 3.150 kg/dm3 and ρH2O = 1.000 kg/dm3, as

wcp(ξ)
c = (w/c)− wa(0)

a
(a/c) +

([
ρH2O

ρclin
+ wcp(0)

c

] 3.31α
20 + 63 wcp(0)

c

)
ξ

= (w/c)− wa(0)
a

(a/c) +
[

1.051 + 3.31 [(w/c)− wa(0)
a (a/c)]

20 + 63 [(w/c)− wa(0)
a (a/c)]

]
α ξ

(5.10)

This is the water-to-cement mass ratio which is effective at the cement paste level, and which
governs the hydration reaction taking place there.

Its initial value needs to be considered when quantifying the volume fractions of cement
paste and aggregates in a material volume of concrete or mortar with water absorbing aggre-
gates; except for the use of this effective water-to-cement mass ratio, the latter quantification
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follows the standard relation given in (Bernard et al., 2003b; Pichler et al., 2009) , which
finally yields

fno−aircp =
ρagg
ρclin

+ ρagg
ρH2O

(wcp(0)/c)
ρagg
ρclin

+ ρagg
ρH2O

(wcp(0)/c) + (a/c)
=

0.8406 + 2.648 [(w/c)− wa(0)
a (a/c)]

0.8406 + 2.648 [(w/c)− wa(0)
a (a/c)] + (a/c)

fno−airagg = (a/c)
ρagg
ρclin

+ ρagg
ρH2O

(wcp(0)/c) + (a/c)
= (a/c)

0.8406 + 2.648 [(w/c)− wa(0)
a (a/c)] + (a/c)

(5.11)
with ρagg = 2.648 kg/dm3 as the mass density of quartz aggregates, considered throughout the
present paper. However, it often occurs during mixing that small amounts of air get entrapped
into the cement paste matrix as well. Denoting the corresponding air volume fraction by fair,
the volume fractions at the concrete or mortar level can be derived from the relations

fcp + fagg + fair = 1 fcp
fagg

=
fno−aircp

fno−airagg
(5.12)

which imply that

fcp = 1− fair
1 + fno−airagg /fno−aircp

, fagg = 1− fair
1 + fno−aircp /fno−airagg

, (5.13)

The relevance of this new water migration model and its effect on concrete composition will
now be tested through a creep upscaling analysis from the cement paste level to the concrete
or mortar level.

5.3 Creep homogenization of mortars and concretes

The relevance of the effective water-to-cement mass ratio according to Eq. (5.10) and of
the cement paste and aggregates volume fractions according to Eq. (5.11) and (5.13), both
depending on the void filling extent α and the water uptake capacity of the aggregates, wa(0)/a,
will now be checked by using Eq. (5.10), (5.11), and (5.13) and the quantities appearing
therein, within a creep upscaling analysis from the cement paste to the mortar and concrete
level.

Thereby, the question is tackled whether the experimental results of numerous creep tests
performed at the level of cement paste made from only one type of cement, and at the level
of mortars and concretes made from the same type of cement, but with two different types of
aggregates, can be predicted by a micromechanical model, which is based on only one value
for the cement-specific void filling capacity α, and of only two aggregate-specific values for
the water absorption capacity wa(0)/a.

The creep tests considered in this context all follow the protocol recently reported by
Irfan-ul-Hassan et al. (2016): Accordingly, three-minute creep tests on the same cement
paste, mortar, or concrete samples are hourly repeated. The key idea behind this protocol is
that three minutes are short enough for the microstructure to remain practically invariant
throughout each individual test. Within one hour, on the other hand, the hydration process
in early-age cementitious systems goes on in a significant manner, such that two subsequent
three-minute long creep tests refer to already remarkably different microstructures. Hence,
an upscaling analysis concerning cement paste, mortar, and concrete samples tested according
to the aforementioned protocol can be performed in the theoretical framework of classical,
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non-aging micro-viscoelasticity (Read Jr, 1950; Sips, 1951; Laws and McLaughlin, 1978;
Beurthey and Zaoui, 2000).

Choosing, in this context, a standard micromechanical representation for mortar and
concrete (Scheiner and Hellmich, 2009; Baweja et al., 1998; Bernard et al., 2003b; Hellmich
and Ulm, 2005), namely that of a composite material consisting of a (viscoelastic) cement
paste matrix with (elastic) aggregate inclusions and with (potentially occurring) air inclusions,
as seen in Fig. 5.2, the (homogenized) relaxation tensor at the concrete/mortar scale, Rhom,

cement paste matrix      aggregate

air voids

T = Σ(t).n

n

Figure 5.2: Micromechanical representation of mortar and concrete: 2D sketch of 3D matrix-
inclusion composites comprising a continuous cement paste matrix with embedded spherical
inclusions representing quartz aggregates and air pores

follow from those at the cement paste scale, Rcp, as well as from the volume fractions of
cement paste, of aggregates, and of (potentially occurring) air, as (Scheiner and Hellmich,
2009)

R∗hom(p) = 3 k∗hom(p) Ivol + 2µ∗hom(p) Idev =(
fcpR

∗
cp + faggR

∗
agg :

{
I+ P∗sph(p) :

[
R∗agg −R∗cp(p)

] }−1

+ fairR
∗
air :

{
I+ P∗sph(p) :

[
R∗air −R∗cp(p)

] }−1
)

:
(
fcp I+ fagg

{
I+ P∗sph(p) :

[
R∗agg −R∗cp(p)

] }−1

+ fair
{
I+ P∗sph(p) :

[
R∗air −R∗cp(p)

] }−1
)−1

(5.14)

where the star-indicated properties refer to the Laplace Carson (LC) transforms of the
originally time-dependent quantities occurring in the standard convolution integrals of linear
viscoelasticity [“correspondence principle” (Read Jr, 1950; Sips, 1951; Laws and McLaughlin,
1978; Beurthey and Zaoui, 2000)]

f∗(p) = pf̂(p) = p

∞∫
0

f(t) exp(−pt) dt , (5.15)
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and back-transformation of (5.14) from the Laplace Carson domain back to the time domain
may be performed by the Gaver-Wynn-Rho algorithm (Scheiner and Hellmich, 2009; Gaver,
1966). Mathematical details on the LC-transformed homogenized bulk and shear moduli, k∗hom
and µ∗hom, on the fourth-order unity tensor I with its volumetric and deviatoric parts, Ivol and
Idev, and on the morphology tensor P∗sph can be found in the Appendix. The relaxation tensors
R∗cp correspond to a power-law-type creep behavior characterized by an elastic modulus Ecp,
a Poisson’s ratio νcp, a creep modulus Ec,cp, and a creep exponent βcp; hence they read as

R∗cp(p) = 3 k∗cp(p)Ivol + 2µ∗cp(p)Idev

=

1− 2 νcp
Ecp

+ 1− 2 νcp
Ec,cp

(
1
tref

)βcp
Γ (βcp + 1) p−βcp

−1

Ivol (5.16)

+

1 + νcp
Ecp

+ 1 + νcp
Ec,cp

(
1
tref

)βcp
Γ (βcp + 1) p−βcp

−1

Idev .

The aforementioned material characteristics at the cement paste level all depend on the
(here effective) water-to-cement mass ratio and the hydration degree, as identified in the
more than 500 creep tests on cement paste reported by Irfan-ul-Hassan et al. (2016), see
Fig. 5.3. For considering (effective) water-to-cement mass ratios between those which were
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Figure 5.3: Results from hourly-repeated three-minute creep testing on cement pastes with
initial water-to-cement mass ratios amounting to 0.42, 0.45, and 0.50, respectively: (a) elastic
modulus Ecp, (b) creep modulus Ec,cp, and (c) creep exponent βcp; as functions of hydration
degree, see (Irfan-ul-Hassan et al., 2016)

explicitly tested, we resort to quadratic interpolation, as exemplified in Fig. 5.4. For the
quantification of Poisson’s ratio, we use a validated multiscale model (Pichler et al., 2008;
Pichler and Hellmich, 2011) for establishment of a relation between the latter and the elastic
modulus, see Fig. 5.5.

Our present study is devoted to aggregates consisting of quartz, with elastic bulk and
shear moduli amounting to (Bass, 2013),

kagg = 37.8GPa , µagg = 44.3GPa ⇒ R∗agg = 3 kagg Ivol + 2µagg Idev (5.17)

while the air inclusions (if existing) dispose over only negligible elastic stiffness,

kair = µair = 0GPa , ⇒ R∗air = 0. (5.18)
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Figure 5.4: Quantification of effective viscoelastic properties of the cement paste matrix
as a function of the effective water-to-cement mass fraction wcp/c, by means of quadratic
interpolation between creep test results on plain cement pastes with w/c ∈ [ 0.42, 0.45, 0.50 ]:
(a) elastic modulus Ecp, (b) creep modulus Ec,cp, and (c) creep exponent βcp; at degree of
hydration ξ = 0.40
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Figure 5.5: Relation between elastic modulus and Poisson’s ratio of cement pastes with initial
water-to-cement mass ratios amounting to 0.42, 0.45, and 0.50, respectively; predictions of
the validated multiscale model of Pichler et al. (2009) and Pichler and Hellmich (2011)

5.4 Comparison of ultrashort creep experiments and
corresponding micromechanics predictions –
identification of water absorption capacities of quartz
aggregates and of paste void filling extent

5.4.1 Experimental campaign on the mortar/concrete level

In order to assess the relevance of the newly introduced quantities, the paste void filling extent
α and the water absorption capacity of aggregates, wa(0)/a, expressed in corresponding creep
homogenization results as described in the previous section, the latter results need to be
compared to experimental data at the level of mortar and concrete. To this end, a series of
three minute-long creep tests on two mortars and two concretes was performed:

Thereby, all four materials exhibited the same nominal volume fractions of quartz aggregates
and of cement paste, respectively, namely amounting to 0.58 and to 0.42, respectively, see
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Table 5.1. Mortar #1 and Concrete #1 exhibited the same nominal composition in terms of
w/c = 0.50 and a/c = 3.0. Mortar #2 and Concrete #2, in turn, exhibited w/c = 0.42 and
a/c = 2.7. All four materials were produced from a commercial cement of type CEMI 42.5N
and distilled water, i.e. with the same raw materials that were also used for the production
of the cement pastes discussed in Irfan-ul-Hassan et al. (2016). In addition, we used oven-
dried aggregates made of quartz. The two mortars contain standard sand of the company
“Normensand” as per standard DIN EN-196-1, consisting of rounded sand grains with diameters
being smaller or equal to dmax = 2mm. The two concretes contain aggregates of the Austrian
company “Pannonia Kies”, consisting of quartz gravels with diameters being smaller or equal
to dmax = 8mm.

Table 5.1: Nominal composition of tested mortars and concretes
Material w/c a/c fnomcp fnomagg dmax

Mortar #1 0.50 3.0 0.42 0.58 2mm
Mortar #2 0.42 2.7 0.42 0.58 2mm
Concrete #1 0.50 3.0 0.42 0.58 8mm
Concrete #2 0.42 2.7 0.42 0.58 8mm

The early-age testing protocol is identical to the one used to characterize cement paste [see
Irfan-ul-Hassan et al. (2016)], i.e. the mortar and concrete specimens with dimensions (70mm
diameter and 300mm height) were hourly subjected to three-minute long creep tests under
uniaxial stress conditions, see Fig. 5.6 (a) for the stress history in a specific three-minute long
creep test. For each test, the load plateau was selected such that induced compressive stresses
were smaller than 15% of the expected compressive strength, see Fig. 5.6 (b). Using the
calorimetry results described by Irfan-ul-Hassan et al. (2016), sample ages were “translated”
into equivalent hydration degrees.
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Figure 5.6: Three-minute creep tests on mortars and concretes: (a) force history during creep
testing carried out at an age of 100 h on Mortar #1; and (b) prescribed load levels chosen to
be smaller than or equal to 15% of the expected compressive strength

Each tested specimen was subjected to 168 three-minute creep tests. Out of this database,
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we focus on the tests carried out at hydration degrees amounting to

ξ ∈ [ 0.32 , 0.35 , 0.40 , 0.45 , 0.50 , 0.55 , 0.60 , 0.63 ] (5.19)

The plateau stresses of Fig. 5.6, which correspond to the hydration degrees of Eq. (5.19), were

Σplat = [ 2.08 , 2.32 , 3.0 , 3.0 , 4.37 , 4.83 , 6.25 , 6.25 ] MPa (5.20)

The correspondingly measured normal strains in loading direction, E(t), were divided by the
applied plateau stress Σplat, see Fig. 5.6, so as to arrive at a convenient illustration of the test
results, as shown in Fig. 5.7
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Figure 5.7: Plateau stress-normalized strains obtained from three minute-long creep tests on
mortars and concretes, at the hydration degrees given in Eq. (5.19), and the corresponding
load plateaus according to Eq. (5.20): (a) Mortar #1: w/c = 0.50, a/c = 3.00, (b) Mortar #2:
w/c = 0.42, a/c = 2.70, (c) Concrete #1: w/c = 0.50, a/c = 3.00, (d) Concrete #2:
w/c = 0.42, a/c = 2.70
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5.4.2 Micromechanical predictions of experimental data

For micromechanically predicting the creep test results of Fig. 5.7, the relaxation functions of
Eq. (5.14) are transformed to creep functions according to

J∗hom(p) = R∗hom(p)−1

E∗(p) = J∗hom(p) : Σ∗(p)
(5.21)

and this result is then back-transformed into the time-domain, yielding

E(ξ, t) =
t∫

0

Jhom(ξ, t− τ) : Σ̇(τ)dτ (5.22)

This Boltzmann convolution integral is then evaluated for the volume fractions of Eqs. (5.11)
and (5.13), for the cement paste properties of Fig. 5.4, and for the loading history of Fig. 5.6.
These evaluations comprise two quantities which are not known a priori, but which are
identified from a series of creep results at the concrete and mortar levels. This is described
next.

Also, it needs to be emphasized that consideration of the load history of Fig. 5.6 as a
continuous function, rather than as a step function, and corresponding use of the continuous
form of the Boltzmann integral (5.22), is mandatory for arriving at reliable results. This
is because a ramp loading as indicated in Fig. 5.6, does not only provoke elastic, but also
viscoelastic strains, as was explicitly evidenced by Irfan-ul-Hassan et al. (2016).

5.4.3 Identification of water uptake capacity of “Normensand” quartz
aggregates and of the paste void filling extent, from experimental
data concerning Mortar #1

The water uptake capacity of quartz, wa(0)/a, and the paste void filling extent α, are identified
from a very large set of numerical values making up the following "search intervals"

wa(0)/a ∈ [0.000 , 0.0001 , 0.0002 , . . . 0.0199 , 0.0200]
α ∈ [0.000 , 0.001 , 0.002 , . . . 0.999 , 1.000]. (5.23)

For all data pairs [wa(0)/a, α] composed from the values given in Eq. (5.23), the microme-
chanics model of Eqs. (5.14)–(5.18), together with Eqs. (5.3), (5.10), and (5.11) evaluated
for w/c = 0.50 and a/c = 3.0, see Table 5.1, with the interpolation scheme of Fig. 5.4, and
with the loading history of Fig. 5.6 entering Eq. (5.22), is used to predict the creep functions
arising from the eight creep tests conducted on Mortar #1, as seen in Fig. 5.7(a). Eight
hydration degree-specific model predictions of the normal strain histories Epred, represented
by 180 discrete values each, are compared to the corresponding experimentally determined
strains normalized by plateau stress Eexp; and the corresponding prediction error is quantified
through

E = 1
8× 180

8∑
i=1

1
Σplat(ξi)

180∑
j=1

∣∣∣Epred(ξi, tj)− Eexp(ξi, tj)∣∣∣ (5.24)

whereby all strain values were normalized with respect to the plateau stresses Σplat. The
smallest prediction error E = 1.55 × 10−7 MPa−1 (see Table 5.2) is obtained for the following
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Table 5.2: Prediction Errors E (MPa−1) according to Eq. (5.24)
Material E from nominal composition E from water migration model

Mortar #1 4.50 × 10−6 1.55 × 10−7

Mortar #2 1.50 × 10−6 2.90 × 10−7

Concrete #1 5.50 × 10−6 1.50 × 10−7

Concrete #2 1.23 × 10−6 1.30 × 10−7

values of the water uptake capacity of quartz and of the water filling extent of shrinkage-induced
voids:

wa(0)
a

= 0.0099 α = 0.603 (5.25)

see Fig. 5.8 (a) for the comparison of measured and modeled creep functions. The identified
material constants (5.25) imply (i) that 1 kilogram of quartz takes up 9.9 gram of water
during mixing of the raw materials, and (ii) that shrinkage-induced voids of the cement paste
matrix soak water from the open porosity of quartz such that these voids are water-filled to
an extent of 60.3 percent.

The identified material constants (5.25) provide access to the effective composition of the
cement paste of Mortar #1. The initial value of the effective water-to-cement mass fraction of
the cement paste matrix, for instance, follows from specialization of Eq. (5.3) for wa(0)/a from
(5.25) and for the mix-related water-to-cement and quartz-to-cement mass ratios w/c = 0.50
and a/c = 3.0 as:

wcp(0)
c

= 0.4703 (5.26)

This is remarkably smaller than the (nominal) mix-related water-to-cement mass ratio w/c =
0.50. The evolution of the effective water-to-cement mass fraction of the cement paste matrix
follows from specialization of Eq. (5.10) for (5.25), w/c = 0.50, and a/c = 3.0 as

wcp(ξ)
c

= 0.4703 + 0.0317 ξ (5.27)

see also Fig. 5.8 (b). The actual volume fractions of the cement paste matrix and of quartz
follow from specialization of Eqs. (5.11) for Eq. (5.26), w/c = 0.50, and a/c = 3.0 as

fcp = 0.4101 , fagg = 0.5899 . (5.28)

5.4.4 Confirmation of the water uptake capacity of "Normensand" quartz
aggregates and of the paste void filling extent, through
experimental data concerning Mortar #2

Since Mortar #1 and Mortar #2 are produced with the same raw materials, the identified
material constants given in Eqs. (5.25) are not only valid for Mortar #1, but they must also
hold for Mortar #2, i.e. the strain evolutions measured during creep testing of Mortar #2 must
be predictable, and this is checked next. To this end, the initial value of the effective water-
to-cement mass fraction of the cement paste matrix follows from specialization of Eq. (5.3)
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Figure 5.8: Application of the water migration model according to Eq. (5.10) to Mortar #1,
with a mix-related (nominal) composition given through w/c = 0.50 and a/c = 3.0, as well
as water uptake capacity of quartz and void water-filling extent according to Eq. (5.25): (a)
Comparison of experimentally-determined and model-predicted plateau stress-normalized
strains, at the hydration degrees given in Eq. (5.19) and the corresponding load plateaus
according to Eq. (5.20); (b) evolution of the effective water-to-cement mass fraction of the
cement paste matrix, as a function of degree of hydration; for the complete set of material
properties of cement paste, see Table 5.3

for wa(0)/a from (5.25) and for the mix-related water-to-cement and quartz-to-cement mass
ratios w/c = 0.42 and a/c = 2.7 as:

wcp(0)
c

= 0.3933 (5.29)

This is significantly smaller than the mix-related water-to-cement mass ratio w/c = 0.42. The
evolution of the effective water-to-cement mass fraction of the cement paste matrix follows
from specialization of Eq. (5.10) for (5.25), w/c = 0.42, and a/c = 2.7 as

wcp(ξ)
c

= 0.3933 + 0.0317 ξ (5.30)

see also Fig. 5.9 (b). The actual volume fractions of the cement paste matrix and of quartz
follow from specialization of Eq. (5.11) for Eq. (5.29), w/c = 0.42, and a/c = 2.7 as

fcp = 0.4107 , fagg = 0.5893 . (5.31)

Viscoelastic properties of the cement paste matrix – valid for effective water-to-cement mass
fractions from Eq. (5.30), evaluated for all hydration degrees of interest given in Eq. (5.19)
– are quantified by means of interpolation; as described in the previous subsection, see also
Fig. 5.4.

Model-predicted creep functions for Mortar #2 agree well with measured creep functions,
as quantified by prediction error E = 2.90 × 10−7 MPa−1 (see Table 5.2) evaluated according
to Eq. (5.24), see also Fig. 5.9 (a). This underlines not only the satisfactory predictive
capabilities of the developed water migration model, see Eq. (5.10), but also the significance
of the identified values of the water uptake capacity of quartz and of the water filling extent
of shrinkage-induced voids, see Eqs. (5.25).
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Table 5.3: Input quantities for creep homogenization of Mortar #1 with mix-related (nominal)
composition quantified through w/c = 0.50 and a/c = 3.0: effective water-to-cement mass
fractions of the cement paste matrix according to Eqs. (5.10) and (5.25), as well as corre-
sponding viscoelastic properties of the cement paste matrix found by means of interpolation
(see Fig. 5.4), for hydration degrees listed in Eq. (5.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.32 0.480 6.529 0.205 9.218 0.269
0.35 0.481 7.041 0.206 8.562 0.267
0.40 0.483 8.223 0.210 13.220 0.242
0.45 0.484 9.172 0.214 15.775 0.228
0.50 0.486 10.236 0.217 19.270 0.219
0.55 0.487 11.274 0.221 23.640 0.210
0.60 0.489 12.442 0.225 29.012 0.209
0.63 0.490 12.843 0.226 30.774 0.208

Table 5.4: Input quantities for creep homogenization of Mortar #2 with mix-related (nominal)
composition quantified through w/c = 0.42 and a/c = 2.7: effective water-to-cement mass
fractions of the cement paste matrix according to Eqs. (5.10) and (5.25), as well as corre-
sponding viscoelastic properties of the cement paste matrix found by means of interpolation
(see Fig. 5.4), for hydration degrees listed in Eq. (5.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.32 0.403 8.623 0.211 9.719 0.322
0.35 0.404 9.864 0.215 11.857 0.290
0.40 0.405 10.693 0.218 14.872 0.270
0.45 0.407 12.175 0.222 19.312 0.260
0.50 0.409 13.189 0.225 23.055 0.244
0.55 0.410 14.369 0.229 30.780 0.222
0.60 0.412 15.417 0.232 38.460 0.196
0.62 0.413 16.146 0.234 44.927 0.192

5.4.5 Identification of water uptake capacity of "Pannonia Kies"
aggregates and of entrapped air content, from experimental data
concerning Concrete #1

When it comes to model prediction of the creep strain evolutions measured in three-minutes
creep tests on Concrete #1, it is important to emphasize that both concretes were produced
with quartz gravel of type “Pannonia Kies”, i.e. the corresponding water-uptake capacity
is unknown and needs to be identified. Notably, this is not enough for obtaining a sat-
isfactory agreement between model-predicted and measured creep functions, because the
model-predicted creep functions turn out to underestimate the measured creep functions,
particularly because the elastic stiffness is overestimated. In order to improve the situation, we
consider that air was mixed into concrete during production. Since all eight considered creep
tests were carried out on the same specimen, just one entrapped air content, as appearing in
Eq. (5.13) needs to be identified.

Similar to the identification process described for Mortar #1, the water uptake capacity
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Figure 5.9: Application of the water migration model according to Eq. (5.10) to Mortar #2,
with a mix-related (nominal) composition given through w/c = 0.42 and a/c = 2.7, as well
as water uptake capacity of quartz and void water-filling extent according to Eq. (5.25): (a)
Comparison of experimentally-determined and model-predicted plateau stress-normalized
strains, at the hydration degrees given in Eq. 5.19) and the corresponding load plateaus
according to Eq. (5.20); (b) evolution of effective water-to-cement mass fraction of the cement
paste matrix, as a function of degree of hydration; for the complete set of material properties
of cement paste, see Table 5.4

of “Pannonia Kies” quartz and the entrapped air content are identified from the following
search intervals:

wa(0)/a ∈ [0.000 , 0.0001 , 0.0002 , . . . 0.0199 , 0.0200]
fair ∈ [0.000 , 0.001 , 0.002 , . . . 0.049 , 0.050] (5.32)

The identified void filling extent α according to Eq. (5.25), in turn, is treated as being also
applicable to both concretes.

Accordingly, for all data pairs [wa/a(0), fair] composed from the values given in Eq. (5.32),
the micromechanics model of Eqs. (5.14)–(5.18), together with Eqs. (5.3), (5.10), and (5.11)
evaluated for α = 0.603, as well as for w/c = 0.50 and a/c = 3.0, see Table 5.1, with the
interpolation scheme of Fig. 5.4 and with the loading history of Fig. 5.6 entering Eq. (5.22), is
used to predict the creep functions arising from the eight creep tests conducted on Concrete
#1, as seen in Fig. 5.7 (c). Model-predicted creep functions are compared to measured creep
functions, and model prediction errors are quantified according to Eq. (5.24). The smallest
prediction error amounts to E = 1.5 × 10−7 MPa−1 (see Table 5.2), and the corresponding
values of the water uptake capacity and of the air volume fraction read as

wa(0)
a

= 0.0089 fair = 0.026 (5.33)

see Fig. 5.10 (a) for the comparison of measured and model-predicted creep functions. The
identified water uptake capacity given in (5.33) implies that 1 kilogram of “Pannonia Kies”
quartz takes up 8.9 gram of water during mixing of the raw materials. The corresponding
initial value of the effective water-to-cement mass fraction of the cement paste matrix follows
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from specialization of Eq. (5.3) for wa(0)/a from (5.33) and for the mix-related water-to-cement
and quartz-to-cement mass ratios w/c = 0.50 and a/c = 3.0 as:

wcp(0)
c

= 0.4733 (5.34)

This is significantly smaller than the mix-related water-to-cement mass ratio w/c = 0.50. The
evolution of the effective water-to-cement mass fraction of the cement paste matrix follows
from specialization of Eq. (5.10) for α from (5.25), for wa(0)/a from (5.33), for w/c = 0.50,
and for a/c = 3.0, as

wcp(ξ)
c

= 0.4733 + 0.0317 ξ (5.35)

see also Fig. 5.10 (b). Finally, the actual volume fractions of the cement paste matrix and of
quartz follow from Eqs. (5.33), (5.34), w/c = 0.50, a/c = 3.0, (5.11), and (5.13) as:

fcp = 0.4004 , fagg = 0.5736 . (5.36)

The satisfactory agreement between between model-predicted and measured creep functions
further corroborates the developed water migration model, see Eq. (5.10), and the void
water-filling extent α given in Eq. (5.25).
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Figure 5.10: Application of the water migration model according to Eq. (5.10) to Concrete #1,
with a mix-related (nominal) composition given through w/c = 0.50 and a/c = 3.0, with void
water-filling extent according to Eqs. (5.25), as well as with water uptake capacity of quartz
and entrapped air volume fraction according to Eq. (5.33): (a) Comparison of experimentally-
determined and model-predicted plateau stress-normalized strains, at the hydration degrees
given in Eq. (5.19) and the corresponding load plateaus according to Eq. (5.20); (b) evolution
of effective water-to-cement mass fraction of the cement paste matrix, as a function of degree
of hydration; for the complete set of material properties of cement paste, see Table 5.5

5.4.6 Confirmation of water uptake capacity of "Pannonia Kies"
aggregates, through experimental data concerning Concrete #2

Since Concretes #1 and #2 were produced with the same quartz gravel, the water uptake
capacity is already known, see Eq. (5.33). Also, the void water-filling ratio α is already
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Table 5.5: Input quantities for creep homogenization of Concrete #1 with mix-related (nominal)
composition quantified through w/c = 0.50 and a/c = 3.0: effective water-to-cement mass
fractions of the cement paste matrix according to Eqs. (5.10), with void water-filling extent
according to Eq. (5.25), and with water uptake capacity of quartz and entrapped air volume
fraction according to Eq. (5.33), as well as corresponding viscoelastic properties of the cement
paste matrix found by means of interpolation (see Fig. 5.4), for hydration degrees listed in
Eq. (5.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.33 0.484 6.720 0.205 9.096 0.262
0.35 0.4845 6.927 0.206 9.531 0.257
0.40 0.486 7.966 0.210 12.332 0.244
0.44 0.487 8.900 0.213 15.582 0.240
0.50 0.489 9.940 0.216 18.548 0.232
0.55 0.490 10.884 0.219 21.911 0.227
0.60 0.492 12.115 0.224 27.777 0.215
0.63 0.493 12.569 0.225 30.116 0.218

identified, see Eq. (5.25). However, Concrete #2 was tested on a specific specimen, and
the related air volume fraction is to be identified. By analogy to the previously described
identification processes, the entrapped air volume fraction is found as

fair = 0.027 (5.37)

The initial value of the effective water-to-cement mass fraction of the cement paste matrix
follows from specialization of Eq. (5.3) for wa(0)/a from (5.33) and for the mix-related
water-to-cement and quartz-to-cement mass ratios w/c = 0.42 and a/c = 2.7 as:

wcp(0)
c

= 0.3960 (5.38)

This is significantly smaller than the mix-related water-to-cement mass ratio w/c = 0.42. The
evolution of the effective water-to-cement mass fraction of the cement paste matrix follows
from specialization of Eq. (5.10) for α from (5.25), for wa(0)/a from (5.33), for w/c = 0.42,
and for a/c = 2.7, as

wcp(ξ)
c

= 0.3960 + 0.0317 ξ (5.39)

see also Fig. 5.11 (b). Finally, the actual volume fractions of the cement paste matrix and of
quartz follow from Eqs. (5.33), (5.38), w/c = 0.42, a/c = 2.7, (5.11), and (5.13) as:

fcp = 0.4005 , fagg = 0.5725 . (5.40)

The satisfactory agreement between between model-predicted and measured creep functions,
as quantified by prediction error E = 1.30 × 10−7 MPa−1 (see Table 5.2) further corroborates
the developed water migration model, see Eq. (5.10), evaluated according to Eq. (5.24) the
void water-filling extent α given in Eq. (5.25), and the water uptake capacity wa(0)/a given
in Eqs. (5.33).
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Figure 5.11: Application of the water migration model according to Eq. (5.10) to Concrete #2,
with a mix-related (nominal) composition given through w/c = 0.42 and a/c = 2.7, with void
water-filling extent according to Eq. (5.25), with water uptake capacity of quartz according to
Eqs. (5.33) and with entrapped air volume fraction according to Eq. (5.37): (a) Comparison
of experimentally-determined and model-predicted plateau stress-normalized strains, at the
hydration degrees given in Eq. (5.19) and the corresponding load plateaus according to
Eq. (5.20); (b) evolution of effective water-to-cement mass fraction of the cement paste matrix,
as a function of degree of hydration; for the complete set of material properties of cement
paste, see Table 5.6

5.5 Conclusions
We here presented an extension of the classical Powers hydration model with respect to
internal curing, and checked the relevance of the latter through micromechanical upscaling
of effective water-to-cement mass ratio-dependent cement paste creep functions, up to the
levels of mortar/concrete. Remarkably, internal curing can be considered in terms of only two
additional quantities: an aggregate-specific uptake capacity, and a cement-paste specific void
filling extent. Identifying these quantities herein for two types of oven-dried quartz aggregates,
and for one type of cement, allowed for satisfactory prediction of numerous ultrashort-term
creep tests on two mortars and two concretes, see Figs. 5.8 to 5.11. Such creep tests directly
deliver the hydration-dependent (non-aging) creep properties, also valid for medium-term
creep tests on very old pastes, see (Irfan-ul-Hassan et al., 2016). Neglecting internal curing
effects, i.e. initial water uptake through the aggregates followed by "back-soaking" of this water
from the aggregates domain to that of the maturing cement paste, would clearly not allow for
satisfactory micromechanical prediction of the creep properties at the mortar and concrete
level, as is quantified in Table 5.2 and illustrated in Fig. 5.12, showing predictions based on
wa(0)/a = α = fair = 0, while keeping all other input variables as defined earlier in this paper.
Obviously, the creep response predicted by the micromechanical model of Fig. 5.2 would be
too soft under these conditions. It is also illustrative to quantify the degree of hydration when
the “back-suction” of water from aggregates to the cement paste is finished, simply because
no water is left any more in the aggregates. To this end, wcp(ξ)/c in Eq. (5.10) is set equal to



Creep upscaling to mortar and concrete 93

Table 5.6: Input quantities for creep homogenization of Concrete #2 with mix-related (nominal)
composition quantified through w/c = 0.42 and a/c = 2.7: effective water-to-cement mass
fractions of the cement paste matrix according to Eq. (5.10), with void water-filling extent
according to Eq. (5.25), with water uptake capacity of quartz according to Eqs. (5.33), and with
entrapped air volume fraction according to Eq. (5.37), as well as corresponding viscoelastic
properties of the cement paste matrix found by means of interpolation (see Fig. 5.4), for
hydration degrees listed in Eq. (5.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.33 0.406 8.519 0.211 9.597 0.312
0.35 0.407 9.268 0.213 10.701 0.286
0.40 0.408 10.477 0.217 14.669 0.265
0.45 0.410 11.921 0.221 19.020 0.255
0.50 0.411 12.791 0.224 22.434 0.238
0.55 0.413 13.940 0.228 29.692 0.218
0.60 0.415 15.153 0.231 38.407 0.195
0.62 0.415 15.672 0.233 43.084 0.191

w/c, and the resulting expression is solved for hydration degree ξ. This delivers

ξ∗ =
wa(0)
a (a/c)

{
20 + 63

[
w/c− wa(0)

a (a/c)
]}

α
{

1.051 + 3.31
[
w/c− wa(0)

a (a/c)
]} (5.41)

Notably, the creep tests which were analyzed herein refer to hydration degrees smaller than
ξ∗, see Figs. 5.8 (b), 5.9 (b), 5.10 (b), and 5.11 (b).

The method described herein, showing how to integrate internal curing events into
micromechanical modeling of concrete, in particular concerning creep, can be straightforwardly
extended to aging creep behavior, based on earlier contributions such as those of Scheiner and
Hellmich (2009) or Sanahuja (2013a).

Another obvious extension concerns the deeper reasons for the dependencies of the
creep properties of cement paste, on the water-to-cement mass ratio as depicted in Fig. 5.4,
which may be deciphered through micromechanical resolution down to the level of the
hydrates (Königsberger et al., 2016b), or even, down to the level of lubricating water layers
between calcium silicate sheets, (Pellenq et al., 2009; Sanahuja and Dormieux, 2010; Shahidi
et al., 2014, 2015a; Vandamme et al., 2015; Shahidi et al., 2015b).

Acknowledgment
We cordially thank for valuable help of the laboratory staff of the Institute of Mechanics of
Materials and Structures, TU Wien – Vienna University of Technology. The first author also
wishes to thank the Higher Education Commission (HEC) Pakistan and the University of
Engineering and Technology, Lahore, Pakistan, for their support.



Creep upscaling to mortar and concrete 94

Appendix A: Analytical expressions facilitating upscaling in
LC space
Upscaling of the creep behavior, up to the larger scales of mortar or concrete, is performed in
the LC space, according to the analytical formulae described next. Thereby, we consider that
an isotropic fourth-order tensor, G, can be decomposed into a volumetric part and a deviatoric
part as G = GvolIvol +GdevIdev, where Gvol and Gdev, respectively, are the (scalar) volumetric
and deviatoric components of the tensor. Ivol and Idev are the volumetric and deviatoric parts
of the fourth-order identity tensor I, defined as Iijkl = 1/2(δikδjl + δilδjk), Ivol = 1/3(1⊗ 1),
and Idev = I − Ivol, respectively, whereby 1 denotes the second-order identity tensor with
components equal to the Kronecker delta δij , namely δij = 1 for i=j, and 0 otherwise. They
satisfy Ivol : Ivol = Ivol, Idev : Idev = Idev, and Ivol : Idev = Idev : Ivol = 0.

We start our collection of analytical formulae with the LC-transformed Hill tensors for
spherical inclusions embedded in an infinite cement matrix with quasi-elastic “stiffness” R∗cp,
occurring in concentration and stiffness expressions of (5.14). The Hill tensor reads as

P∗sph(p) = S∗sph(p) :
[
R∗cp(p)

]−1
(5.42)

In Eq. (4.37), S∗sph denotes the LC-transformed Eshelby tensor of a spherical inclusion
embedded in an infinite cement paste matrix. The LC-transformed Eshelby tensor S∗sph is
isotropic, and its volumetric and deviatoric components read as (Zaoui, 2002; Hellmich et al.,
2004)

S∗,volsph (p) =
3 k∗cp(p)

3 k∗cp(p) + 4µ∗cp(p)
, S∗,devsph (p) = 6

5
k∗cp(p) + 2µ∗cp(p)

3 k∗cp(p) + 4µ∗cp(p)
. (5.43)

Next, we discuss the expressions for the homogenized quasi-elastic “stiffness” tensor R∗hom.
As for mortar or concrete, insertion of the LC-transformed Eshelby tensor expressions (5.43)
into (5.42), and further insertion of the obtained Hill tensor, together with the vanishing
quasi-elastic “stiffnesses” of air and the available quasi-elastic “stiffness” of quartz (5.16), into
the expression for the quasi-elastic “stiffness” of the homogenized mortar or concrete (5.14),
yields scalar expressions for the LC-transformed bulk and shear moduli, reading as

k∗hom(p) = [fcpk∗cp(p) + faggA
∗,vol
∞,agg(p)]

[
fcpI+ faggA

∗,vol
∞,agg(p) + fairA

∗,vol
∞,air(p)

]−1
,

µ∗hom(p) = [fcpµ∗cp(p) + faggµaggA
∗,dev
∞,agg(p)]

[
fcpI+ faggA

∗,dev
∞,agg(p) + fairA

∗,dev
∞,air(p)

]−1
,

(5.44)
with A∗,vol∞,agg, A∗,dev∞,agg, A

∗,vol
∞,air, and A∗,dev∞,air denoting the LC-transformed volumetric and de-

viatoric components of the Eshelby problem-related strain concentration tensors for quartz
aggregates and air. As for air, the volumetric and deviatoric components of the strain
concentration tensor can be written as

A∗,vol∞,air(p) =
[
1− S∗,volsph (p)

]−1
,

A∗,dev∞,air(p) =
[
1− S∗,devsph (p)

]−1
,

(5.45)
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As for quartz, they read as

A∗,vol∞,agg(p) =
[
1 + S∗,volsph (p)

kagg − k∗cp(p)
k∗cp(p)

]−1

,

A∗,dev∞,agg(p) =
[
1 + S∗,devsph (p)

µagg − µ∗cp(p)
µ∗cp(p)

]−1

.

(5.46)

Appenidx B: Nomenclature

Symbols:
A∗,vol∞,agg LC-transformed volumetric component of Eshelby problem-related strain

concentration tensor of aggregates
A∗,dev∞,agg LC-transformed deviatoric component of Eshelby problem-related strain

concentration tensor of aggregates
A∗,vol∞,air LC-transformed volumetric component of Eshelby problem-related strain

concentration tensor of air
A∗,dev∞,air LC-transformed deviatoric component of Eshelby problem-related strain

concentration tensor of air
a mass of aggregates
a/c aggregate-to-cement mass ratio
α water filling extent of shrinkage induced voids in cement paste
βcp power-law creep exponent for cement paste
c mass of cement paste
d a material constant equal to wcp(0)/c
dmax maximum diameter of aggregates
δij Kronecker delta
E macroscopic uniaxial strain
E macroscopic strain tensor
Eexp experimentally-determined macroscopic uniaxial strain
Epred model-predicted macroscopic uniaxial strain
Ecp Young’s elastic modulus of cement paste
Ec,cp Young’s creep modulus of cement paste
E prediction error
Fplat plateau force
fcp volume fraction of the cement paste
fagg volume fraction of the aggregates
fair volume fraction of the air
fno−airagg volume fraction of aggregates without entrapped air
fno−aircp volume fraction of cement paste without entrapped air
f cpvoid cement paste-related volume fraction of voids
G auxiliary isotropic fourth-order tensor
Gvol, Gdev volumetric and deviatoric components of G
I fourth-order identity tensor
1 second-order identity tensor
Ivol, Idev volumetric and deviatoric parts of I
Jhom homogenized fourth-order tensorial creep function
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k a material constant equal to rate of wcp/c
kagg bulk modulus of aggregates
kair bulk modulus of air
kcp bulk modulus of cement paste
khom bulk modulus of mortar or concrete
LC Laplace-Carson
µagg shear modulus of aggregates
µair shear modulus of air
µcp shear modulus of cement paste
µhom shear modulus of mortar or concrete
νcp Poisson’s ratio of cement paste
p complex variable in the LC domain
P∗sph LC-transformed Hill tensor of spherical inclusions, embedded in an infinite

cement paste matrix
R∗agg LC-transformed fourth-order relaxation tensor function of aggregates
R∗air LC-transformed fourth-order relaxation tensor function of air
R∗cp LC-transformed fourth-order relaxation tensor function of cement paste
R∗hom LC-transformed fourth-order relaxation tensor function of mortar or concrete
ρagg mass density of aggregates
ρclin mass density of cement clinker
ρH2O mass density of water
ρhyd mass density of hydrates
Σ macroscopic stress tensor
Σplat plateau stress
S∗sph LC-transformed Eshelby tensor of spherical inclusion, embedded in an infinite

cement paste matrix
S∗,volsph , S∗,devsph volumetric and deviatoric components of S∗sph
t chronological time
τ time instant during creep test
τ0 time instant at start of the loading ramp
tref reference time, tref =1 d=86 400 s
Vc volume of cement
Vcp volume of cement paste
Vvoid volume of voids
Vw volume of water
w total water mass
wa water absorbed into the aggregates
wa(0)/a initial water-to-aggregate mass ratio
wcp water residing inside the cement paste
wcp/c effective water-to-cement mass ratio
wcp(0)/c initial value of the effective water-to-cement mass ratio
w/c (nominal) water-to-cement mass ratio
ξ hydration degree
ξ∗ hydration degree at which all aggregates-absorbed water is soaked to cement

paste
Operators:
(.)∗ Laplace-Carson transform of quantity (.)
· inner product
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(̂.) Laplace transform of quantity (.)
× multiplication
: second-order tensor contraction
Γ(.) gamma function of real quantity (.)
˙(.) time derivative of quantity (.)
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Figure 5.12: Comparison of experimentally-determined and model-predicted plateau stress-
normalized strains, using nominal compositions as input, see Table 5.1, at the hydration
degrees given in Eq. (5.19) and the corresponding load plateaus according to Eq. (5.20); For
(a) Mortar #1, (b) Mortar #2, (c) Concrete #1, and (d) Concrete #2: Model predicted
strains overestimate the experimentally measured strains; see also Table 5.2
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6.1 Introduction

After water, cement is the most frequently used material on the planet (Wray and Scrivener,
2012). Given the significant amounts of carbon dioxide released during cement production,
great efforts are nowadays made to minimize the cement content in mortars and concretes,
while preserving their mechanical properties. This calls specifically for careful analysis of
cement paste, the binder of all cementitious materials – from the atomistic scale up to the
homogenized material scale.

In recent years, the development of several multiscale models allowed for describing the
microstructural evolution of hydrating cement paste, see e.g. (Bentz, 2000; Van Breugel,
1995b,a; Bishnoi and Scrivener, 2009; Thomas et al., 2011), and for microstructure-based
prediction of early-age mechanical properties of cement pastes, including stiffness (Bernard
et al., 2003b; Constantinides and Ulm, 2004; Sanahuja et al., 2007; Stefan et al., 2010;
Bary, 2011; Venkovic et al., 2013), compressive strength (Pichler et al., 2009; Pichler and
Hellmich, 2011), and creep (Scheiner and Hellmich, 2009; Sanahuja and Dormieux, 2010;
Sanahuja, 2013b), to name just a few. Thereby, quantitative information on the hydration-
driven evolution of material microstructures concerns in particular the volume fractions of
the individual material constituents (i.e. those of “cement”, “water”, and “hydrates”) per
volume of cement paste. Such volume fractions are customarily estimated by means of Powers’
1946/1957 hydration model (Powers and Brownyard, 1947; Powers, 1958), which was developed
on the basis of water vapor sorption isotherms. Powers’ model provides access to the volumes
of cement, water, and hydrates for any composition in terms of the initial water-to-cement
mass ratio w/c, and for any maturity in terms of the hydration degree ξ; see also (Hansen,
1986; Acker, 2001) for compact descriptions. Most importantly, all phase volumes are linear
functions of the hydration degree, and the “hydrate phase” includes not only solid matter
[calcium-silicate-hydrates, calcium hydroxide, alumina-ferric oxide-monosulfate – AFm, as
inferred from nitrogen sorption experiments (Jennings and Tennis, 1994)], but also water-filled
gel pores. The linearity of the hydration model stems from the assumption that the density of
all formed hydrates is constant. This constant hydration density, together with the constant
chemical composition of the hydrates’ elementary components, would imply a constant gel
porosity of all the hydrates.

This viewpoint was considerably challenged by recent nuclear magnetic resonance (NMR)
measurements of Muller et al. (2012, 2013), which provide – for the first time in cement
research – access to the relative amounts of water in different confinement states, and this
allows for distinguishing water chemically bound in solids, such as in calcium-silicate-hydrates
(weak chemical bonding) or in other types of hydrates (strong chemical bonding), from liquid
water filling capillary pores (weak confinement) and gel pores (strong confinement). It turns
out that much of the water that according to classical hydration models, would fill capillary
pores, is actually residing as gel water within the porous calcium-silicate-hydrates (C-S-H)
(Muller et al., 2012, 2013). This indicates evolving (rather than constant) porosity of the
C-S-H gel, and calls for careful re-thinking of the assumptions underlying Powers’ hydration
model.

Such re-thinking process is the topic of the present contribution: On the one hand, Powers’
assumption of constant hydrate density needs to be replaced by a more appropriate statement;
while on the other hand, the appealing simplicity of Powers’ linear relations should be kept
to the maximum degree possible. Therefore, we here develop new analytical mathematical
expressions, comprising an only linear dependency of the hydrate mass density on a new state
variable describing the hydration degree- and water-to-cement ratio-dependent microstructure
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of cement paste: this new variable is called specific precipitation space. The new mathematical
model, based on a minimum of involved physical quantities with very simple mutual relations,
will be shown to be able to account for a collection of recent experimental data from NMR
concerning (i) the density of C-S-H gel as it evolves with ongoing hydration; and (ii) the
simultaneous evolution of phase volume fractions in white cement pastes with different initial
water-to-cement ratios. The former mathematical expressions are referred to as “C-S-H
densification model” and the latter as “phase volume evolution model”. Together, they form a
new analytical hydration model for cement pastes which are chemically similar to the white
cement pastes tested by Muller et al. (2013). Like Powers’ model, the new phase volume
evolution model will provide access to the volumes of cement, water, and hydrates; for any
initial water-to-cement mass ratio w/c, and for any maturity in terms of the hydration degree
ξ.

The paper is structured as follows: Based on the NMR experiments of Muller et al.
(2012, 2013); Muller (2014), the C-S-H gel density is shown to vary with time and with
the initial water-to-cement-mass ratio (Sections 6.2.1 and 6.2.2). In order to explain this
variation, we introduce a new quantity called specific precipitation space, defined as the
volume ratio of water-filled (gel and capillary) pores over the sum of these pore spaces and the
solid C-S-H. The evolution of the C-S-H gel density with respect to this new quantity turns
out to be independent of the w/c-ratio (Section 6.2.3), in a highly nonlinear fashion. The
corresponding relation suggests three distinct hydration regimes with typical morphologies
seen in Scanning Electron Micrographs (SEM). It is explained by subdividing the C-S-H gel
into two classes: one of constant mass density (class A) and one of varying density (class B),
see Sections 6.2.4 and 6.2.5. This finding enters an analytical hydration model which allows
for quantitative consideration of effects stemming from different w/c-ratios (Section 6.3).
It comprises a reaction equation for the main clinker phases of typical Portland cement
pastes and contains three fitting parameters: the precipitation space thresholds between the
aforementioned hydration regimes, and the density increase per lost precipitation space. These
model parameters are identified and analytical expressions for phase volumes of hydrating
cement pastes are given. After discussing several aspects of the new hydration model, including
several sensitivity analyses (Section 6.4), the paper closes with conclusions (Section 6.5).

6.2 C-S-H gel densification quantified from NMR water
mass fractions

6.2.1 NMR quantification of water mass fractions in hydrating Portland
cement pastes

Applying 1H nuclear magnetic resonance (NMR) relaxometry, Muller et al. (2012, 2013);
Muller (2014) characterized white cement pastes at different ages and corresponding maturity
stages, using quadrature and CPMG (Carr-Purcell-Meiboom-Gill) echos for resolving the
water phases in cement pastes. The measured spin-spin relaxation times of water molecules,
which are the smaller, the more bound (i.e. the less mobile) the molecules (Valori et al., 2013),
delivered the amounts (i) of chemically strongly bonded water in solids such as portlandite
and ettringite, (ii) of chemically weakly bonded water within solid C-S-H (interlayer water),
(iii) of water strongly confined in gel pores (strong physical bond), and (iv) of water weakly
confined in capillary pores (weak physical bond in inter-hydrate pores). Notably, the NMR
signal fractions Ij quantify the mass fraction of specific water types mj

H2O
relative to the total
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mass of water mH2O

Ij(t) =
mj
H2O

(t)
mH2O

, j ∈ {PE, sCSH, gpor, cpor} , (6.1)

where PE refers to portlandite and ettringite, sCSH to solid C-S-H, gpor to gel water, and
cpor to capillary water. The sum of all signal fractions is equal to one, IPE(t) + IsCSH(t) +
Igpor(t) + Icpor(t) = 1. Because of hydration, signal fractions according to Eq. (6.1) evolve
with increasing material age t, where t= 0 refers to the time instant where cement gets in
contact with water. We here evaluate NMR signal fractions measured on white cement pastes
with initial water-to-cement mass ratios w/c ∈ {0.32, 0.40, 0.48}, and cured at 20 ◦C, see
(Muller, 2014) and Fig. 6.1.
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Figure 6.1: NMR signal fractions of three white cement pastes cured at 20 ◦C, as function of
material age; after (Muller, 2014)

6.2.2 Evolution of C-S-H gel density with time

In order to quantify the evolution of C-S-H gel density based on the NMR signal fractions of
(Muller, 2014) (see Fig. 6.1), we consider that C-S-H gel density is the sum of the masses of
solid C-S-H and of gel water, divided by their volumes, the latter labeled as VsCSH and Vgpor,
respectively:

ρgel(t) =
msCSH(t) +mgpor

H2O
(t)

VsCSH(t) + Vgpor(t)
= ρsCSH VsCSH(t) + ρH2O Vgpor(t)

VsCSH(t) + Vgpor(t)
, (6.2)

where mass densities of solid C-S-H and of water, respectively, amount to (Allen et al., 2007)

ρsCSH = 2.604 g/cm3 , ρH2O = 1 g/cm3 . (6.3)

This mass density value for solid C-S-H was derived from combining small-angle neutron and
X-ray scattering data, and by exploiting the hydrogen/deuterium neutron isotope effect both
in water and methanol, see (Allen et al., 2007) for more details. More recent studies based
on NMR (Muller et al., 2012, 2013) revealed that this mass density might actually slightly
depend on the hydration degree. The effect of this variational subtlety on the results of our
analysis is studied in more detail in the Discussion, see Section 6.4.3. In order to link the solid
C-S-H volume to the NMR signal fraction IsCSH , we express the mass of solid C-S-H, msCSH ,
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as the mass of water which is chemically bound inside solid C-S-H, msCSH
H2O

, see Eq. (6.1),
divided by the mass fraction of water within solid C-S-H, µsCSHH2O

,

msCSH(t) =
msCSH
H2O

(t)
µsCSHH2O

. (6.4)

The water mass fraction µsCSHH2O
follows from the chemical composition of solid C-S-H, quantified

as 1.7 CaO · SiO2 · 1.8 H2O from small angle scattering techniques (Allen et al., 2007), as
well as from the molar masses of water and solid C-S-H, amounting to 18.01 g/mol and to
187.8 g/mol, respectively. This results in

µsCSHH2O = 1.8× 18.01
187.8 = 0.1726 . (6.5)

The sought relation between solid C-S-H volume VsCSH and the corresponding NMR signal
fraction IsCSH(t) follows under consideration of Eqs. (6.1) and (6.4) as

VsCSH(t) = msCSH(t)
ρsCSH

= mH2O

µsCSHH2O
ρsCSH

IsCSH(t) . (6.6)

As for the gel pore volume Vgpor, we consider the gel pores to be water-saturated. Therefore,
Vgpor is directly proportional to the NMR signal fraction Igpor(t), and it follows under
consideration of Eq. (6.1) as

Vgpor(t) =
mgpor
H2O

(t)
ρH2O

= mH2O

ρH2O
Igpor(t) . (6.7)

The evolution of the C-S-H gel density as a function of material age follows from specialization
of the C-S-H gel density according to Eq. (6.2) for phase volumes according to Eqs. (6.6) and
(6.7), for the constants given in Eqs. (6.3) and (6.5), as well as for the signal fractions of the
three cement paste mixes (see Fig. 6.1) as

ρgel(t) =
ρsCSH ρH2O

[
IsCSH(t) + µsCSHH2O

Igpor(t)
]

ρH2O IsCSH(t) + ρsCSH µsCSHH2O
Igpor(t)

. (6.8)

Interestingly, the obtained C-S-H gel densities decrease during the first few hours of hydration,
followed by progressive C-S-H gel densification (Fig. 6.2). At mature ages, the C-S-H gel
density is the larger, the smaller the initial water-to-cement mass ratio w/c. The reason for
the w/c-dependent density evolutions is analyzed next.

6.2.3 Specific precipitation space controls C-S-H gel density

We now check whether there may be a w/c-independent relationship between the gel densities
and the space which is available for new solid C-S-H to precipitate. In this context, we
quantify the precipitation space as the porosity γ of a C-S-H foam consisting of solid C-S-H
as well as of water filling gel and capillary pores:

γ(t) = VH2O(t)
VsCSH(t) + VH2O(t) , (6.9)

where VH2O is the volume of water filling the gel and capillary pores, and VsCSH is the volume
filled by solid C-S-H. In the sequel, γ is referred to as specific precipitation space. It is equal to
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Figure 6.2: Normalized C-S-H gel density of three white cement pastes cured at 20 ◦C, as
function of material age; quantified from NMR signal fractions of Fig. 6.1, together with
Eqs. (6.2)-(6.8)

1 at the time instant of mixing cement and water, γ(t=0) = 1, it decreases during hydration,
and it reaches zero once all initially available water is chemically combined with clinker.

Translating NMR signal fractions (Fig. 6.1) into a parameter plot showing C-S-H gel
density ρgel(t) over specific precipitation space γ(t) requires the quantification of the right-
hand-side of Eq. (6.9) based on time-dependent NMR signal fractions. The expression for
VsCSH(t) is given in Eq. (6.6). As for VH2O(t), we consider effective drying prevention, such
that the liquid water-occupied volume VH2O is equal to the sum of gel and capillary pore
volumes, following by analogy to Eq. (6.7) as

VH2O(t) = Vgpor(t) + Vcpor(t) = mH2O

ρH2O

[
Igpor(t) + Icpor(t)

]
. (6.10)

The sought expressions of the specific precipitation space as a function of the time-dependent
NMR signal fractions is obtained from specialization of Eq. (6.9) for Eqs. (6.6) and (6.10),
and reads as

γ(t) =
µsCSHH2O

ρsCSH
[
Igpor(t) + Icpor(t)

]
ρH2O IsCSH(t) + µsCSHH2O

ρsCSH
[
Igpor(t) + Icpor(t)

] . (6.11)

Finally, the ρgel(t)-γ(t) diagram is obtained from combining ρgel(t) according to Eq. (6.8), with
the evolution γ(t) according to Eq. (6.11), under consideration of the numerical values given
in Eqs. (6.3) and (6.5). Very remarkably, this indicates the existence of a w/c-independent
master curve (Fig. 6.3). This corroborates that space confinement indeed controls the evolution
of the C-S-H gel density.

In order to clarify why the C-S-H gel density evolves nonlinearly with decreasing precipi-
tation space (Fig. 6.3), we now deal with the partition of the total water volume VH2O(t) into
the gel pores and the capillary pores, respectively. To this end, we introduce a capillary pore
fraction ϕcpor and a gel pore fraction ϕgpor, which add up to 1, i.e. ϕcpor + ϕgpor = 1. They
are defined as

ϕcpor(t) = Vcpor(t)
Vcpor(t) + Vgpor(t)

= Icpor(t)
Icpor(t) + Igpor(t)

,

ϕgpor(t) = Vgpor(t)
Vcpor(t) + Vgpor(t)

= Igpor(t)
Icpor(t) + Igpor(t)

.

(6.12)
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Figure 6.3: Normalized C-S-H gel density of three white cement pastes cured at 20 ◦C (triangles,
crosses, and circles refer to w/c=0.32, w/c=0.40, and w/c=0.48, respectively), as function
of the specific precipitation space; quantified from NMR signal fractions of Fig. 6.1, together
with Eqs. (6.3), (6.5), (6.8), and (6.11); solid lines are upper and lower bounds described in
Section 6.2.4

A parameter plot showing ϕcpor(t) and ϕgpor(t) over the specific precipitation space γ(t) is
obtained from combining Eqs. (6.3), (6.5), (6.11), and (6.12) with the NMR signal fractions
given in Fig. 6.1, see Fig. 6.4. At very early ages, i.e. in the vicinity of γ = 1, virtually all
pores are capillary pores, thus ϕcpor ≈ 1 and ϕgpor ≈ 0. At quite mature ages, i.e. for γ ≤ 0.43,
virtually all capillary pores have vanished, thus ϕcpor ≈ 0 and ϕgpor ≈ 1 (Fig. 6.4). In between,
a quite dense data cloud describes a smooth and w/c-independent transition from the initial
limiting case (vanishing gel porosity) to the final limiting case (vanishing capillary porosity).
This provides the motivation for introducing three hydration regimes and two classes of C-S-H,
as is discussed next.

6.2.4 Interpretation of gel densification: introduction of two C-S-H
classes and three hydration regimes

Hydration regime I covers the first few hours after mixing cement and water, during which
reaction products with vanishing gel porosity precipitate. This is consistent with Scanning
Electron Micrographs – SEM (Garrault et al., 2005; Ylmén et al., 2009), showing “platelets” of
ordered C-S-H on electrically charged clinker surfaces (Nachbaur et al., 1998), see Fig. 6.5(a).
We here refer to this type of precipitation products as class A C-S-H. In hydration regime I,
the “gel” volume is equal to the volume of solid C-S-H and the “gel” density is equal to the
solid C-S-H density, ρgel = ρsCSH , see also the upper bound in Fig. 6.3 (ρgel/ρsCSH = 1).

Hydration regime II starts a few hours after mixing, once the formation of ordered class
A C-S-H comes to an end and less ordered calcium-silicate-hydrates (class B C-S-H) start
to grow such that gel pores are enclosed (Ylmén et al., 2009; Scrivener and Nonat, 2011),
see Fig. 6.5(b). In hydration regime II, we envision two precipitation mechanisms to happen
simultaneously on two different length scales: (i) on two different length scales related to
capillary and gel pores, respectively: gel porous calcium silicate hydrates precipitate out of
the supersaturated water filling both (i) the interstitial capillary pore spaces and (ii) the gel
pores themselves. The latter process leads to a progressive densification of the C-S-H gel itself.
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Figure 6.4: Capillary as well as gel pore fractions of three white cement pastes cured at 20 ◦C
(triangles, crosses, and circles refer to w/c=0.32, w/c=0.40, and w/c=0.48, respectively), as
functions of the specific precipitation space; quantified from NMR signal fractions of Fig. 6.1,
together with Eqs. (6.3), (6.5), (6.11), and (6.12); data points between the gray areas at the
top and the bottom of the graph belong to hydration regime II

Hydration regime II ends, once the gel porous hydrates have completely filled the interstitial
space, so that the water-filled capillary porosity vanishes.

In the final hydration regime III, C-S-H precipitates only inside the gel pores. Since
capillary porosity has vanished, the water volume is equal to the gel pore volume, VH2O = Vgpor.
Consequently, the specific precipitation space is equal to the porosity of the C-S-H gel, and the
relationship between the C-S-H gel density according Eq. (6.2), and the specific precipitation
space according to Eq. (6.9) follows as

ρgel(γ) = ρsCSH (1− γ) + ρH2O γ , (6.13)

see also the lower bound in Fig. 6.3.

6.2.5 Nonlinear gel density evolution in hydration regime II results from
linear densification of class B C-S-H gel

Focusing on hydration regime II, we now quantify the density of class B C-S-H as a function
of the specific precipitation space, based on the time-dependent NMR signal fractions (see
Fig. 6.1 and (Muller, 2014)). To this end, we consider that the nonlinear evolution of the
overall gel density ρgel(γ), see Fig. 6.3, results from the interplay of constant class A C-S-H
volume VACSH exhibiting solid C-S-H density ρsCSH , see Eq. (6.3), and growing class B C-S-H
gel volume VBgel(γ) exhibiting an evolving mass density ρBgel(γ), i.e.

ρgel(γ) = ρsCSH VACSH + ρBgel(γ)VBgel(γ)
VACSH + VBgel(γ) . (6.14)

Solving Eq. (6.14) for ρBgel(γ), delivers the following expression for the mass density of the
class B C-S-H gel, as a function of the specific precipitation space:

ρBgel(γ) = ρgel(γ)× [VACSH + VBgel(γ)]− ρsCSH VACSH
VBgel(γ) . (6.15)
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solid C-S-H platelets

(a) (b) (c)

Figure 6.5: Morphology of C-S-H gel at clinker surfaces in Portland cement pastes as observed
by SEM: (a) 120 min after mixing, solid C-S-H platelets grow at grain surfaces, (b) 240 min
after mixing, C-S-H starts to cluster, i.e. to enclose gel pores, and (c) 480 min after mixing, C-
S-H gel occupies a lot of the available precipitation space, after Ylmén et al. (2009); permission
to reproduce the figures is granted by Elsevier

In Eq. (6.15), the volume of class A C-S-H is equal to the volume of solid C-S-H “platelets”
at the end of hydration regime I. Introducing γI−II as the (unknown) specific precipitation
space marking the transition from hydration regime I to II, volume VACSH follows as

VACSH = VsCSH(γI−II) . (6.16)

The volume of class B C-S-H gel is equal to the volumes of the solid C-S-H and of the gel
pores forming in hydration regime II

VBgel(γ) = VsCSH(γ)− VsCSH(γI−II) + Vgpor(γ) . (6.17)

The sought parameter plot between the mass density of class B C-S-H gel ρBgel(t) and
specific precipitation space γ(t) requires a relation between ρBgel(t) and the time-dependent
NMR signal fractions (see Fig. 6.1 and (Muller, 2014)). This relation is gained as follows:
Eqs. (6.16) and (6.17) are inserted into Eq. (6.15); this results in an expression which is then
specialized for (6.6) and (6.7), yielding

ρBgel(t) =
ρgel(t)×

[
ρH2O IsCSH(t) + ρsCSH µ

sCSH
H2O

Igpor(t)
]
− ρsCSH ρH2O IsCSH(γI−II)

ρH2O [IsCSH(t)− IsCSH(γI−II)] + ρsCSH µsCSHH2O
Igpor(t)

.

(6.18)
As for the quantification of the right-hand-side of Eq. (6.18), the expression for ρgel(t) in terms
of NMR signal fractions is given in Eq. (6.8); the NMR signal fractions IsCSH(t) and Igpor(t)
are given in Fig. 6.1; and the numerical values for the mass densities ρsCSH and ρH2O as well
as for the water mass fraction µsCSHH2O

are given in Eq. (6.3) and (6.5), respectively. However,
the NMR signal fraction of solid C-S-H at the transition point from hydration regime I to
hydration regime II, denoted as IsCSH(γI−II) in Eq. (6.18), is unknown, because the boundary
between hydration regimes I and II cannot be identified clearly in Fig. 6.4. Similarly, also
the boundary between hydration regimes II and III cannot be clearly identified in Fig. 6.4.
While a sophisticated (and therefore more expensive) solution of this problem is reserved
for Section 6.3 in the form of a new hydration model, we here present a more basic access
to the nature of class B gel densification, by excluding points which are potentially close or
even beyond the I-II and the II-III hydration regime boundaries, respectively. More precisely,
as boundary I-II relates to vanishing gel porosity, and boundary II-III relates to vanishing
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capillary porosity, we exclude data points with any (gel or capillary) porosity value below 10%,
as indicated by the grey shaded areas in Fig. 6.4. In addition, we estimate IsCSH(γI−II) based
on the average of solid C-S-H signal fractions of all data points which exhibit ϕgpor < 0.1, see
the top gray area in Fig. 6.4, resulting in IsCSH(γI−II) ≈ 0.028.

On this basis, we combine temporal evolutions of ρBgel(t) according to Eq. (6.18) with the
evolutions of the specific precipitation space γ(t) according to Eq. (6.11), yielding a parameter
plot ρBgel over γ, see Fig. 6.6. It illustrates the remarkable result that class B C-S-H gel
densifies in hydration regime II – in very good approximation – linearly with decreasing
precipitation space. The corresponding linear regression function reads as

ρBgel(γ) = (0.925− 0.457 γ) ρsCSH , γ ∈ hydration regime II, (6.19)

and the respective coefficient of determination amounts to R2 = 0.94.
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Figure 6.6: Normalized density evolution of class B C-S-H gel of three white cement pastes
cured at 20 ◦C (triangles, crosses, and circles refer to w/c=0.32, w/c=0.40, and w/c=0.48,
respectively), as function of the specific precipitation space; quantified from NMR signal
fractions of Fig. 6.1, together with Eqs. (6.3), (6.5) and (6.8), as well as from IsCSH(γI−II) ≈
0.028 (see Section 6.2.5 for details on this estimation); the linear regression function given in
Eq. (6.19) exhibits R2 = 0.94

This remarkable linear relation between class B C-S-H gel density and the specific pre-
cipitation space will now be combined with basic cement chemistry, so as to come up with
a simple hydration model delivering phase volume fractions as functions of w/c-ratio and
hydration degree. This is described in Section 6.3, where we also identify the values of the
specific precipitation space at the transition points from hydration regime I to hydration
regime II, γI−II , and from hydration regime II to hydration regime III, γII−III . Then, the value
for γI−II will allow us to identify IsCSH(γI−II) more precisely than through the estimate of
IsCSH(γI−II) ≈ 0.028, as given above.

6.3 Development of a mathematical hydration model for
C-S-H gel densification

We here develop a mathematical hydration model for white cement pastes, based on the
observation that the C-S-H density varies during hydration. In this sense, the new model may
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qualify as an alternative to Powers’ famous hydration model (Powers and Brownyard, 1947),
where the C-S-H density is assumed to be constant. The new model comprises two parts: the
first part concerns C-S-H densification in terms of mathematical functions quantifying the
densification of C-S-H gel. They are the basis for the second part: a phase evolution model
defined in terms of functions quantifying the hydration-driven evolution of phase volume
fractions. Our aim is to develop analytical mathematical functions which can be evaluated
for any initial water-to-cement mass ratio w/c and any hydration degree ξ. Accounting for
the observation that the C-S-H gel density varies during the hydration, this will provide an
alternative to the Powers model. The C-S-H densification model will provide continuous
functions for the point-wisely resolved relations shown in Figs. 6.3 and 6.4, and it will in
particular allow for precise identification of the NMR signal fraction at the transition between
hydration regimes I and II, IsCSH(γI−II). This will be done by considering a specific reaction
chemistry, as described next.

6.3.1 Hydration chemistry of typical Portland cement pastes

Typical Portland cement clinker consists of 70% (per mass) tricalcium silicate C3S (“alite”)
and 30% dicalcium silicate C2S (“belite”) (Neville, 1995), whereby we use the standard
abbreviations of cement chemistry: C=CaO, S= SiO2, H=H2O, and CH=Ca(OH)2. Hy-
dration of these two main clinker types produces essentially C-S-H and calcium hydroxide
CH (“portlandite”), as quantified by the following reaction equations (Odler, 1998), see also
Table 6.1

C3S + 3.1H → C1.7SH1.8 + 1.3CH + voids 70 %
228.3 55.85 187.8 96.32 0 g/mol
72.48 55.85 72.14 43.78 12.41 cm3/mol

C2S + 2.1H → C1.7SH1.8 + 0.3CH + voids 30 %
172.2 37.83 187.8 22.23 0 g/mol
5.2.67 37.83 72.14 10.10 8.26 [cm3/mol]

(6.20)

For the sake of simplicity, it is assumed that both reactions take place simultaneously and
up to the same extent, i.e. C3S and C2S are consumed proportionally to their initial mass
fractions. Noting that the initial mass fractions mC3S : mC2S = 70 : 30, see above, relate to
molar fractions 63.77 : 36.23, the combined reaction equation for one mol of cement reads as

0.6377C3S+0.3623C2S + 2.738H → C1.7SH1.8 + 0.938CH + voids 100 %
208.0 49.32 187.8 69.48 0 g/mol
65.30︸ ︷︷ ︸
Vmcem

49.32︸ ︷︷ ︸
VmH2O

72.14︸ ︷︷ ︸
VmsCSH

31.58︸ ︷︷ ︸
VmCH

10.91︸ ︷︷ ︸
Vm
void

cm3/mol

(6.21)
where V m

cem, V m
H2O

, V m
sCSH , V m

CH , V m
void denote phase volumes per one mole of cement. Notably,

the mass density of cement follows from dividing its molar mass, 208 g/mol, by its molar
volume, 65.3 cm3/mol, see Eq. (6.21), as

ρcem = 3.185 g/cm3 . (6.22)
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Table 6.1: Mass densities and molar masses of clinker and hydrates
mass density molar mass
g/cm3 g/mol

C3S 3.15 (Bye, 1999) 228.3
C2S 3.27 (Bye, 1999) 172.2
H2O 1.00 18.01
C1.7SH1.8 2.604 (Muller et al., 2012) 187.8
CH 2.20 (Muller et al., 2012) 74.09

6.3.2 Phase volumes as functions of hydration degree

Next, we derive, from reaction equation (6.21), how the volumes of each of the phases (cement
clinker, water, C-S-H, CH, and voids) depend on the hydration degree ξ, on the initial water-
to-cement ratio w/c, and on the molar volumes given in Eq. (6.21). To this end, we recall
that the hydration degree ξ is defined as the volume of hydrated cement over the initially
available volume of cement Vcem(t=0). Denoting the volume of unhydrated cement available
at time t as Vcem(t), the definition of the hydration degree reads as

ξ(t) = Vcem(t=0)− Vcem(t)
Vcem(t=0) . (6.23)

In order to use hydration degree ξ rather than time t as the parameter for our further
developments, we consider the bijective relation between ξ and t in order to re-formulate
Eq. (6.23) as

ξ = Vcem(ξ=0)− Vcem(ξ)
Vcem(ξ=0) . (6.24)

It will turn out to be useful to express all phase volumes as functions of the initially available
cement volume. Therefore, we solve (6.24) for Vcem(ξ), yielding

Vcem(ξ) = (1− ξ)Vcem(ξ=0) . (6.25)

Next, we focus on the phase volume evolution of water, which is equal to the initial amount
of water, VH2O(ξ=0), minus the volume of chemically consumed water, ∆VH2O(ξ), i.e.

VH2O(ξ) = VH2O(ξ=0)−∆VH2O(ξ) . (6.26)

The initial water volume VH2O(ξ=0) can be related to the initial water-to-cement mass ratio
w/c = mH2O(ξ=0)/mcem(ξ=0). When expressing these masses as products of volumes times
mass densities, w/c reads as

w/c = ρH2O VH2O(ξ=0)
ρcem Vcem(ξ=0) . (6.27)

Solving Eq. (6.27) for VH2O(ξ=0) delivers the sought expression for the initial water volume
as

VH2O(ξ=0) = w/c
ρcem
ρH2O

Vcem(ξ=0) . (6.28)

The volume of chemically consumed water, ∆VH2O(ξ), in turn, is proportional to the volume of
chemically consumed cement, ∆Vcem(ξ) = ξ Vcem(ξ=0), see Eq. (6.25), and the proportionality
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factor is the initial water-to-cement ratio of molar volumes, see hydration reaction equation
(6.21),

∆VH2O(ξ) =
V m
H2O

V m
cem

ξ Vcem(ξ=0) . (6.29)

The phase volume evolution of water follows from specifying Eq. (6.26) for Eqs. (6.28) and
(6.29), as

VH2O(ξ) =
(
w/c

ρcem
ρH2O

−
V m
H2O

V m
cem

ξ

)
Vcem(ξ=0) . (6.30)

Finally, the phase volume evolutions of solid C-S-H, CH, and voids (related to autogeneous
shrinkage) follow by analogy to Eq. (6.29) as

Vi(ξ) = V m
i

V m
cem

ξ Vcem(ξ=0) , i ∈ [sCSH,CH, void] . (6.31)

Eqs. (6.25), (6.30), and (6.31) provide access to the phase volume evolutions of cement, water,
solid C-S-H, CH, and voids, as functions of the hydration degree ξ. The transition from
hydration degree ξ to specific precipitation space γ is discussed next.

6.3.3 Relation between hydration degree and specific precipitation space

Specifying the definition of the specific precipitation space according to Eq. (6.9), for the phase
volumes of water, see Eq. (6.30), and of solid C-S-H, see Eq. (6.31), delivers the following
expression for the specific precipitation space γ as a function of the hydration degree ξ

γ(ξ) =
w/c ρcem

ρH2O
−

VmH2O
Vmcem

ξ

w/c ρcem
ρH2O

+
VmsCSH−V

m
H2O

Vmcem
ξ
. (6.32)

The inverse relationship, i.e. hydration degree ξ expressed as a function of the specific
precipitation space γ, is obtained from solving Eq. (6.32) for the hydration degree

ξ(γ) =
w/c ρcem

ρH2O
(1− γ)

γ VmsCSH+VmH2O
(1−γ)

Vmcem

. (6.33)

6.3.4 Partition of total water volume into gel and capillary pore volumes

Reaction equation (6.21) provides access to the evolution of the total water volume, see
Eq. (6.30), which is now partitioned between the gel and capillary pore volumes. This is
simple in hydration regimes I and III, because gel porosity vanishes in regime I

Vgpor(γ) = 0 Vcpor(γ) = VH2O(γ) 1 ≥ γ ≥ γI−II , (6.34)

and capillary porosity vanishes in regime III

Vgpor(γ) = VH2O(γ) Vcpor(γ) = 0 γII−III ≥ γ ≥ 0 , (6.35)

with γII−III as the specific precipitation space marking the transition from hydration regime II
to III. We are left with the intermediate hydration regime II.

The key to partitioning water volume between gel and capillary pore volumes in hydration
regime II is the density of class B C-S-H gel. On the one hand, evaluation of NMR experiments
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has shown that ρBgel increases in a linear manner, with decreasing precipitation space, see
Fig. 6.6 and Eq. (6.19), and this is now modeled as

ρBgel(γ) = ρBgel(γII−III)−
∣∣∣∣dρBgeldγ

∣∣∣∣II (γ − γII−III) ∀γII−III ≤ γ ≤ γI−II , (6.36)

with three fitting parameters,
∣∣∣dρBgeldγ

∣∣∣II , γI−II , and γII−III , which need to be identified.
ρBgel(γII−III) depends on the three fitting parameters, i.e. its numerical value follows from
considering that the total C-S-H gel density is continuous at the transition from hydration
regime II to III, i.e. that Eqs. (6.13) and (6.14) deliver the same density for γ = γII−III . On
the other hand, ρBgel can be expressed through the volumes of solid C-S-H and gel pores
formed in hydration regime II, as well as the mass densities of solid C-S-H and water

ρBgel(γ) = ρsCSH [VsCSH(γ)− VsCSH(γI−II)] + ρH2O Vgpor(γ)
VsCSH(γ)− VsCSH(γI−II) + Vgpor(γ) . (6.37)

The sought gel pore volume evolution in hydration regime II follows from solving Eq. (6.37)
for Vgpor as

Vgpor(γ) = [ρsCSH − ρBgel(γ)] [VsCSH(γ)− VsCSH(γI−II)]
ρBgel(γ)− ρH2O

. (6.38)

Specifying Eq. (6.38) for VsCSH(γ) according to Eqs. (6.31) and (6.33), for the mass densities
given in Table 6.1, and for ρBgel(γ) according to Eq. (6.36), delivers the gel porosity as a
function of the specific precipitation space, in hydration regime II. The corresponding capillary
pore volume follows as the difference between the total water volume and the gel pore volume

Vcpor(γ) = VH2O(γ)− Vgpor(γ) . (6.39)

Combination of the precipitation space-dependent pore volumes according to (6.38) and (6.39)
with Eq. (6.32) yields (w/c)- and hydration degree-dependent pore volumes, in analogy to the
format given for the constituent volumes of Eq. (6.25), (6.30), and (6.31). Thus, the C-S-H
densification model is completed, whereby its key equations are (6.25), (6.30), and (6.31); as
well as (6.38) and (6.39) in combination with Eq. (6.32).

6.3.5 Identification of fitting parameters

The three fitting parameters of the densification model, namely
∣∣∣dρBgeldγ

∣∣∣II , γI−II , and γII−III ,
see Eq. (6.36), are identified by minimizing the sum of the squared modeling errors regarding
capillary and gel pore fractions according to Eq. (6.12)

51∑
i=1

[
ϕexp
cpor,i − ϕ

mod
cpor,i

]2
=

51∑
i=1

[
ϕexp
gpor,i − ϕ

mod
gpor,i

]2
→ min , (6.40)

where ϕexp
cpor,i and ϕ

exp
gpor,i are two times 51 NMR-derived values, see Fig. 6.4, and where ϕmod

cpor,i

and ϕmod
gpor,i are two times 51 modeled values of capillary and gel pore fractions. The equal sign

in Eq. (6.40) stems from the fact that the entire water-filled pore space is composed of two
pore fractions only; ϕcpor+ϕgpor = 1. Hence, any gel fraction modeling error, (ϕexp

gpor,i−ϕmod
gpor,i)

is always equal to the corresponding capillary fraction modeling error multiplied by minus one,
(ϕexp

cpor,i − ϕmod
cpor,i); and hence the squared errors are identical. As for quantification of ϕmod

cpor,i

and ϕmod
gpor,i values, we combine Eqs. (6.12), (6.30)-(6.36), (6.38), (6.39), and the numerical
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Table 6.2: Numerical values of constants involved in the developed mathematical model
ρsCSH 2.604 g/cm3 Eq. (6.3)
ρH2O 1.000 g/cm3 Eq. (6.3)
µsCSHH2O

0.1726 Eq. (6.5)
ρcem 3.185 g/cm3 Eq. (6.22)∣∣∣dρBgeldγ

∣∣∣II 1.07 g/cm3 Eq. (6.41)
γI−II 0.942 Eq. (6.41)
γII−III 0.426 Eq. (6.41)
ρBgel(γII−III) 1.89 g/cm3 Eq. (6.41)

values summarized in Table 6.2. Error minimization according to Eq. (6.40) on the basis
of capillary or gel pore fractions, rather than on the basis of mass densities, is motivated
by the pronounced uncertainty propagation from the measured NMR signals to the mass
density values derived therefrom, particularly so at the beginning of hydration regime II (for
details see Section 6.4.1). The optimal fitting parameters as well as the resulting value of
ρBgel(γII−III) are identified as∣∣∣dρBgeldγ

∣∣∣II = 1.07 g/cm3 , γI−II = 0.942 , γII−III = 0.426 , ρBgel(γII−III) = 1.89 g/cm3 .

(6.41)
The resulting fit, characterized by a quadratic correlation coefficient of R2 = 98%, is of very
satisfactory quality, see Fig. 6.7, suggesting that the partition of water volume into gel and
capillary porosity is slightly nonlinear in hydration regime II.
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Figure 6.7: Capillary and gel pore fractions according to Eqs. (6.12), as functions of the
specific precipitation space according to Eq. (6.9): comparison of best model fit (thick solid
line) with NMR-derived data (triangles, crosses, and circles refer to w/c=0.32, w/c=0.40,
and w/c=0.48, respectively); see Eq. (6.41) for optimal model parameters

6.3.6 Model consistency: quantification of C-S-H gel densification

The mathematical expression describing the densification of class B-C-S-H in hydration
regime II is obtained from inserting the identified quantities according to Eq. (6.41), into the
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linear density evolution model of Eq. (6.36), yielding

ρBgel(γ) = (0.901− 0.411 γ) ρsCSH , 0.426 ≤ γ ≤ 0.942 . (6.42)

The coefficients in Eq. (6.42) are quite similar to the ones given in Eq. (6.19), which underlines
the relevance of the much simpler estimate for ρBgel(γ) described in Section 6.2. However, the
more sophisticated optimization problem of Eq. (6.36) has also delivered values for the specific
precipitation space at the interval boundaries between the three hydration regimes, γI−II and
γII−III , see Eq. (6.41). This allows for identification of the solid C-S-H signal fraction at the
transition from regime I to regime II, IsCSH(γI−II). It follows from combination of Eqs. (6.6),
(6.27), (6.31), and (6.33) under consideration of the relation mH2O = VH2O ρH2O resulting in

IsCSH(γI−II) =
µsCSHH2O

ρsCSH V
m
sCSH (1− γI−II)

ρH2O

[
γI−II V m

sCSH + V m
H2O

(1− γI−II)
] = 0.0266 , (6.43)

where numerical values of phase volumes V m
sCSH and V m

H2O
according to Eq. (6.21), densities

according to Eq. (6.3), and µsCSHH2O
according to Eq. (6.5) were considered. The linear

densification model for class B C-S-H gel forming in hydration regime II, see Eq. (6.42), very
satisfactorily represents the densities of class B-C-S-H gel considering IsCSH(γI−II) = 0.0266
according to Eq. (6.43), see Fig. 6.8. The increased scatter of NMR-derived values at the
beginning of hydration regime II, i.e. in the vicinity of γI−II = 0.942, is a consequence of the
small signal fractions IsCSH and their considerable dispersion at very early ages, see Fig. 6.1
and Section 6.4.1 for more details.
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Figure 6.8: Normalized density evolution of class B C-S-H gel according to Eq. (6.42), as
function of the specific precipitation space according to Eq. (6.9) in hydration regime II:
comparison of model (thick solid line) with NMR signal fractions of Fig. 6.1, together with
Eqs. (6.3), (6.5) and (6.8), as well as from IsCSH(γI−II) = 0.0266 (triangles, crosses, and
circles refer to w/c=0.32, w/c=0.40, and w/c=0.48, respectively)

The C-S-H densification model reproduces the NMR-derived evolution of the total C-S-H
gel density also very reliably, see Fig. 6.9. At the beginning of hydration regime II, i.e.
in the vicinity of γI−II = 0.942, gel density decreases with decreasing precipitation space,
because gel-porous class B C-S-H gel grows so quickly into the interstitial space that the
associated generation of new gel porosity outperforms the densification of this gel. The
minimum total C-S-H gel density is reached around γ = 0.84, and this corresponds to material



C-S-H densification from cement hydration model 115

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
o
rm

a
li
ze
d
C
-S
-H

g
el

d
en

si
ty

ρ
ge
l/
ρ
sC

S
H

[–
]

specific precipitation space γ [–]

regime III

regime I

regime II

γI−IIγII−III

Figure 6.9: Normalized C-S-H gel density according to Eq. (6.2), as function of the specific
precipitation space according to Eq. (6.9): comparison of model (thick solid line) with NMR-
derived data (triangles, crosses, and circles refer to w/c= 0.32, w/c= 0.40, and w/c= 0.48,
respectively)

ages of approximately 10 hours. This implies that the minimum C-S-H gel density is reached
somewhere around (but not exactly at) the maximum heat release rate, which marks the
transition from the acceleration period to the deceleration period (Bullard et al., 2011). After
that, hydration kinetics are well known to decelerate significantly (Scrivener and Nonat, 2011),
such that densification of already formed class B C-S-H gel outperforms the generation of new
gel porosity associated with the new production of class B C-S-H gel. Our model suggests
that capillary porosity vanishes at γII−III = 0.426, and this corresponds to material ages
ranging from approximately 20 days (w/c=0.32), to 50 days (w/c=0.40), and to 400 days
(w/c=0.48), given a hydration temperature amounting to 20 ◦C.

6.3.7 Phase volume fraction evolutions derived from new C-S-H
densification model

Herein, we provide closed-form expressions for the phase volume fractions of cement paste,
as functions of the hydration degree ξ and of the initial water-to-cement mass ratio w/c. To
this end, we now explicitly consider the numerical values for the phase densities, as given in
Tables 6.1 and 6.2, the molar volumes involved in reaction equation (6.21), and the optimal
densification parameters according to Eqs. (6.41).

At first, we quantify the hydration degrees which mark the transition from one hydration
regime to the following, i.e. ξI−II and ξII−III . They follow from specialization of Eq. (6.33) for
the corresponding precipitation spaces γI−II and γII−III from Eqs. (6.41) as

ξI−II = 0.170w/c , ξII−III = 2.022w/c . (6.44)

Eqs. (6.44) express that hydration degrees at transition points between hydration regimes
increase linearly with increasing initial water-to-cement mass ratio (Fig. 6.10).

Cement paste-related phase volume fractions, f cpi , are defined as the phase volumes Vi(ξ)
divided by the total cement paste volume Vcp(ξ):

f cpi (ξ) = Vi(ξ)
Vcp(ξ)

, i ∈ [cem , H2O , sCSH , CH , void , gpor , cpor , gel] , (6.45)
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Figure 6.10: Hydration regimes I, II, and III defined in terms of hydration degree ξ and initial
water-to-cement mass ratio w/c; for theoretically reachable ultimate hydration degrees see
Section 6.4.6

for phase volumes of cement, water, solid C-S-H, CH, voids, as well as gel and capillary pores,
see Eqs. (6.25), (6.30), (6.31), and (6.38) in combination with Eq. (6.10). The total cement
paste volume Vcp(ξ) is traditionally set equal to its initial value, see (Powers and Brownyard,
1947; Acker, 2001), such that it can be expressed, under consideration of (6.28), as

Vcp(ξ) = Vcem(ξ=0) + VH2O(ξ=0) =
(

1 + w/c
ρcem
ρH2O

)
Vcem(ξ=0) . (6.46)

The sought expressions for the phase volume fractions follow from specialization of Eqs.(6.45)
for (6.25), for (6.30), for (6.31), for (6.38) combined with (6.10) and with (6.32), and for
(6.46) – under consideration of the aforementioned numerical input parameters – as

f cpcem = 1− ξ
1 + 3.185w/c ≥ 0 , (6.47)

f cpCH = 0.484 ξ
1 + 3.185w/c , (6.48)

f cpsCSH = 1.105 ξ
1 + 3.185w/c , (6.49)

f cpgpor =


0 0 ≤ ξ ≤ ξI−II ,
−0.799 (w/c)2+4.824w/c ξ−0.793 ξ2

(1+3.185w/c) (0.864w/c+1.278 ξ) ξI−II < ξ < ξII−III ,
3.185w/c−0.755 ξ

1+3.185w/c ≥ 0 ξII−III ≤ ξ ≤ 1 ,
(6.50)

f cpcpor = 3.185w/c− 0.755 ξ
1 + 3.185w/c − f cpgpor ≥ 0 , (6.51)

f cpvoid = 0.167 ξ
1 + 3.185w/c . (6.52)

It turns out that the phase volume fractions of cement, solid hydrates (CH and solid C-S-
H), and voids are obtained as linear functions of the hydration degree, similar to the case
encountered with Powers’ model (Powers and Brownyard, 1947; Powers, 1958). On the other
hand, phase volume fractions of gel and capillary pores are nonlinear functions of the hydration
degree in hydration regime II.
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We proceed with comparing the phase volume fraction evolutions according to Eqs. (6.47)-
(6.52) to data of Muller et al. (2012), who combined 1H nuclear magnetic resonance relaxometry,
Rietveld analyses of X-ray diffraction patterns, thermal gravimetric analysis (TGA), and
chemical shrinkage measurements, in order to identify the phase volume fraction evolutions of
cement pastes with initial water-to-cement mass ratios of 0.32, 0.40, and 0.48, respectively. The
comparison regarding unhydrated cement, solid hydrates (= solid C-S-H + CH), gel porosity,
capillary porosity, and voids with experimental data from Muller et al. (2012) underlines the
coherence of the developed model (Fig. 6.11). It is particularly appealing that the model
reliably foresees hydration degrees ξII−III at which water in capillary pores is completely
consumed by the chemical reaction, so that the continued hydration of cement is limited to
water in gel pores. In addition, the model can be evaluated for any paste composition in terms
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Figure 6.11: Comparison of modeled phase volume fraction evolutions (thick black lines), see
(6.47)-(6.52), with experimental data from Muller et al. (2012) (colored areas)

of the initial water-to-cement mass ratio w/c, and for any maturity in terms of hydration
degree ξ, see Fig. 6.12.
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Figure 6.12: Phase volume fraction evolutions for pastes with w/c ∈ {0.35, 0.45, 0.50},
according to the mathematical model defined by Eqs. (6.47)-(6.52)

6.4 Discussion

We here discuss five major issues: (i) the influence of the metrological uncertainty associated
with NMR tests, on the quantities involved in the C-S-H densification model, (ii) the relation
between existing C-S-H classifications (e.g. inner/outer products low/high density C-S-H) and
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the newly introduced class A C-S-H and class B C-S-H, (iii) the density of solid C-S-H, (iv)
the model sensitivities with respect to changes of the solid C-S-H density and of the reaction
kinetics, as well as (v) theoretically reachable ultimate hydration degrees.

6.4.1 Assessment of uncertainty regarding NMR signal fractions

So far, NMR signal fractions were treated as deterministic values, but since measurements are
unavoidably characterized by uncertainty, it is interesting to note that Muller (2014) estimate
their measured NMR signal fractions to exhibit a metrological dispersion amounting to ±2%.
This raises the question how this uncertainty would affect quantities which are derived from
the NMR fractions, such as the specific precipitation space, the density of class B C-S-H, the
capillary pore fraction, and the gel pore fraction.

Herein, we derive upper and lower bounds for the mass density of class B C-S-H gel ρBgel,
as well as for the capillary pore fraction ϕcpor and for the gel pore fraction ϕgpor, as these
bounds arise from the C-S-H densification model [Eqs. (6.12), (6.14)-(6.17), (6.30)-(6.36),
(6.38), (6.39), and the numerical values summarized in Table 6.2] when specialized for NMR
fraction values which are increased or decreased by 2%, respectively, see Figs. 6.13 (a) and (b).
The uncertainty interval of ρBgel is rather wide at the beginning of hydration regime II, and
it decreases significantly with decreasing specific precipitation space, see Fig. 6.13 (a). The
uncertainty interval of the pore ratios ϕcpor and ϕgpor, in turn, exhibits an almost constant
width in hydration regime II, see Fig. 6.13 (b). This clarifies, a posteriori, the motivation to
identify the four model parameters listed in Eq. (6.41) through minimizing errors regarding
the capillary and gel pore fractions, see Eq. (6.40), rather than minimizing errors regarding
the density of class B C-S-H gel.

6.4.2 Relation between existing C-S-H classifications nd the new
categories “class A/class B C-S-H”

The presented model is based on two classes of C-S-H: class A C-S-H and class B C-S-H. This
is reminiscent of traditional approaches in cement and concrete research, where two distinct
classes of C-S-H are distinguished:

1. Inner products and outer products were introduced by Taplin (1959). They refer to
C-S-H forming either within or outside the initial clinker boundaries.

2. Phenograin and groundmass were introduced by Diamond and Bonen (1993). They refer
to either visible or invisible microporosity in backscattered electron micrographs.

3. Low-density C-S-H and high-density C-S-H were introduced by Jennings (2000); Tennis
and Jennings (2000). They refer to C-S-H which is penetrable or impenetrable by
nitrogen in sorption experiments.

Deconvolution of frequency plots regarding indentation modulus and indentation hardness,
obtained from nanoindentation grid indentation studies (Qomi et al., 2014; Constantinides
and Ulm, 2004, 2007), revealed two characteristic peaks which can be associated with low
and high density C-S-H. Since both probability distribution functions exhibit a considerable
spread, C-S-H gel could also be seen as a polymorph material exhibiting a widespread density
distribution (Juenger and Jennings, 2001; Muller et al., 2012, 2013).

The question arises how the two newly introduced C-S-H classes are related to the existing
C-S-H classifications. Class A C-S-H refers to solid C-S-H, being free of gel pores, such that
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Figure 6.13: (a) Normalized density of class B C-S-H gel according to Eq. (6.15) as well as
(b) capillary and gel pore fractions according to Eqs. (6.12), respectively, as functions of the
specific precipitation space according to Eq. (6.9): gray areas refer to uncertainty intervals
related to a metrological dispersion of ±2% of the underlying NMR signal fractions

expected density fluctuations of class A C-S-H are very small, see Fig. 6.14. This classification
is new, given that all existing C-S-H classifications (see above) contain at least some gel pores.
Class B C-S-H, in turn, refers to C-S-H gel exhibiting a widespread density distribution. The
herein introduced density of class B C-S-H gel refers to the average of the underlying density
distribution. NMR experiments, namely, provide access to the average density, while details
regarding the underlying density distribution function remain inaccessible. In other words,
also class B C-S-H is a new classification, referring to C-S-H including both inner products
and outer products, as well as both low-density C-S-H and high-density C-S-H.

6.4.3 Is the density of solid C-S-H indeed constant?

We have followed the diffraction data-derived suggestion of Allen et al. (2007), that the
solid C-S-H density ρsCSH may be regarded as an invariant material property. However,
NMR experiments of Muller et al. (2012, 2013) propose a (slight) decrease of the solid C-S-H
density with increasing hydration degree, particularly so for hydration degrees exceeding 80%,
see Fig. 6.14. This slight decrease of density may be due to the formation of larger C-S-H
compounds comprising more alternating calcium/silicate and water layers (Valori et al., 2013):
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Figure 6.14: NMR-derived solid C-S-H density (points) for white cement paste with w/c = 0.4,
as function of the hydration degree ξ, after (Muller et al., 2013); the dashed line represents
the mean value amounting to ρsCSH = 2.73 g/cm3

As the two outermost layers are always made of calcium/silicate, such an increase of layers
entails an increasing water volume fraction of the “calcium/silicate-water-nanocompound”.
Still, these effects are of really subtle nature, so that Fig 6.14 actually supports the idea of an
approximately constant solid C-S-H density, in particular so at early ages.

6.4.4 Sensitivity of the presented models, with respect to the density of
solid C-S-H

The presented models for C-S-H gel densification and for phase volume evolutions were based
on the density of solid C-S-H, ρsCSH = 2.604 g/cm3, which was quantified by means of small
angle scattering techniques (Allen et al., 2007). Notably, this values is by 4.6% smaller than
the value of ρsCSH = 2.73 g/cm3, which was quantified from NMR experiments, see (Muller
et al., 2013) and Fig. 6.14. This difference provides the motivation to study the sensitivity of
the presented models with respect to the uncertainty regarding the density of solid C-S-H.

In order to quantify the sensitivity of the C-S-H densification model, we repeat the afore-
mentioned computations, whereby we now use the NMR-related density ρsCSH = 2.73 g/cm3,
rather than ρsCSH = 2.604 g/cm3. The results are almost identical to those obtained for
ρsCSH = 2.604 g/cm3, as is underlined by fits which are in both cases characterized by a
quadratic correlation coefficient amounting to R2 = 98%, while the corresponding numbers
for fitting parameters of Eq. (6.40) vary slightly, see Table 6.3. This underlines that the
presented mathematical description of densification of C-S-H gel is very robust with respect
to uncertainties regarding knowledge of the density of solid C-S-H – the latter is known to lie
somewhere between 2.604 g/cm3 (as derived from diffraction experiments (Allen et al., 2007))
and 2.73 g/cm3 (as derived from NMR experiments (Muller et al., 2012, 2013)).

In order to quantify the sensitivity of the model-predicted phase volume evolutions, we
re-evaluate the corresponding expressions, whereby we now use the NMR-related density
ρsCSH = 2.73 g/cm3 rather than ρsCSH = 2.604 g/cm3. This increase of the density of solid
C-S-H essentially manifests itself in an increase of autogeneous shrinkage, compare the V m

void

values given in Table 6.3. Still, the shrinkage-related reduction in volume is small in both
cases, such that the phase volume evolutions change only marginally, compare Fig. 6.15 with
Fig. 6.11. This underlines that also the presented mathematical description of phase volume
evolutions is very robust with respect to uncertainties regarding the density of solid C-S-H.

In general, consideration of an evolving C-S-H gel density results in nonlinear evolutions
of capillary and gel pore volume fractions. This is a notable difference to Powers’ linear phase
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Table 6.3: Sensitivity of numerical values involved in the presented models with respect to
changes in solid C-S-H density

ρsCSH [g/cm3] 2.604 2.73∣∣∣dρBgeldγ

∣∣∣II [g/cm3] 1.07 1.16
γI−II 0.942 0.945
γII−III 0.426 0.438
ρBgel(γII−III) [g/cm3] 1.89 1.94
V m
void [cm3/mol] 10.91 14.24

volume evolutions, resulting from consideration of a constant C-S-H gel density (see Fig. 6.15).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

C2S

C3S

solid hydrates

gporcpor

void

hydration degree, ξ [–]

v
o
lu
m
e
co

m
p
o
si
ti
o
n

[–
]

w/c = 0.32

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

C2S

C3S

solid hydrates

gporcpor

void

hydration degree, ξ [–]

v
o
lu
m
e
co

m
p
o
si
ti
o
n

[–
]

w/c = 0.40

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

C2S

C3S

solid hydrates

gpor
cpor

void

hydration degree, ξ [–]

v
o
lu
m
e
co

m
p
o
si
ti
o
n

[–
]

w/c = 0.48

Figure 6.15: Comparison of phase volume fraction evolutions: continuous black lines refer to
derivations described in Section 6.3, i.e. to ρsCSH = 2.604 g/cm3; dashed lines refer to same
derivations, but evaluated for ρsCSH = 2.73 g/cm3; dashdotted lines refer to consideration
of C3S hydration prior to C2S hydration; and gray solid lines refer to the Powers’ hydration
model (Powers and Brownyard, 1947; Hansen, 1986)

6.4.5 Sensitivity of model-predicted phase volume evolutions with
respect to reaction rates of tricalcium silicate and dicalcium silicate

While tricalcium silicate (C3S) actually reacts faster than dicalcium silicate (C2S), see, e.g.,
(Odler, 1998), the phase volume evolution model presented here is based on the assumption of
identical reaction rates, see Eq. (6.21). The resulting underestimation of the reaction kinetics
of C3S and overestimation of the reaction kinetics of C2S motivates a sensitivity analysis
on the model-predicted phase volume fractions, with respect the reaction rates of C3S and
C2S. To this end, we now analyze the limit case of sequential hydration of C3S and C2S, i.e.
hydration is considered to start with the consumption of C3S only, and consumption of C2S
only starts once the C3S is completely hydrated. This overestimates the reaction kinetics of
C3S and underestimates the reaction kinetics of C2S. Therefore, the actual hydration rates will
obviously fall within the two considered limit cases, sequential hydration versus simultaneous
hydration at identical rates.

Actually, these two limit case computations deliver very similar results, see Fig. 6.15. This
underlines that the presented model for phase volume evolutions is very robust with respect
to uncertainties regarding knowledge on actual reaction rates of C3S and C2S.
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Although it may seem conceptually desirable to use realistic hydration kinetics models
such as the Avrami model, see (Bernard et al., 2003b), or thermodynamics approaches
(Lothenbach and Winnefeld, 2006), such models would significantly increase the complexity of
the analytical mathematical expressions for the phase volume evolutions, while they, most
probably, would not significantly increase their reliability for Portland cement pastes. The
presented expressions given in Eqs. (6.47) to (6.52), in turn, appear to be appealing because
they are comparably simple, and at the same time, they turn out to be robust enough for
many practical purposes. In this context, it appears as interesting future task to use the
presented phase volume evolution expressions as input for improved versions of multiscale
models for elasticity, creep, and strength of cementitious materials, continuing the line of
research documented in (Sanahuja et al., 2007; Stefan et al., 2010; Scheiner and Hellmich,
2009; Pichler et al., 2009; Pichler and Hellmich, 2011), which so far, has been based on the
original Powers’ model.

6.4.6 Theoretically reachable ultimate hydration degrees

Finally, we here discuss theoretically reachable ultimate hydration degrees. Noting that
208.0 g/mol of clinker require only 49.32 g/mol of water for complete hydration, see Eq. (6.21),
every composition exhibiting an initial water-to-cement mass ratio larger than (w/c)lim =
49.32/208.0 = 0.237 contains (at least theoretically) enough water for complete hydration
of cement, hence the ultimate hydration degree ξult = 1 (Fig. 6.10). Sub-stoichiometric
compositions, w/c < (w/c)lim, do not contain enough water for complete hydration and
the ultimate hydration degree decreases proportionally to w/c, i.e. ξult = (w/c)/(w/c)lim =
4.217w/c, see Fig. 6.10.

6.5 Conclusion
We here studied the hydration-induced evolution of the C-S-H gel density, based on data from
1H nuclear magnetic resonance relaxometry carried out on three different Portland cement
pastes with initial water-to-cement mass ratios w/c ∈ {0.32 , 0.40 , 0.48}, curing at 20 ◦C, see
(Muller et al., 2012) and Fig. 6.1. Our analysis considers two C-S-H composites containing
nanometer-sized solid C-S-H and pores of different sizes: C-S-H gel consists of solid C-S-H
and gel pores, while C-S-H foam consists of solid C-S-H as well as gel and capillary pores.
The results of our analyses suggest the following conclusions:

• C-S-H gel density is a w/c-independent function of the specific precipitation space
(Fig. 6.3). The latter is the porosity of the C-S-H foam. This corroborates the nowadays
widely discussed expectation that C-S-H gel density would be controlled by the available
precipitation space.

• The total C-S-H gel density evolves nonlinearly during hydration: it is practically equal
to the solid C-S-H density at very early ages, then it decreases quickly by some 40%,
and after this minimum, the density increases again. Cement paste with w/c = 0.32, for
instance, reaches 90% of the solid C-S-H density a few months after production. This
underlines that the total C-S-H gel density is not progressively densifying.

• The nonlinear evolution of total C-S-H gel density can be traced back to three underlying
successive hydration regimes, and to two classes of C-S-H:
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– Hydration regime I covers the first few hours after mixing cement and water. Ordered
calcium-silicate-hydrates (class A C-S-H) precipitate on electrically charged clinker
surfaces (Nachbaur et al., 1998) without forming any gel porosity. Consequently,
at that stage, the “gel” density is equal to the solid C-S-H density.

– Hydration regime II starts a few hours after mixing, once formation of ordered
class A C-S-H comes to an end and less ordered calcium-silicate-hydrates (class B
C-S-H) form, this time enclosing gel pores. Thereby, two precipitation mechanisms
are happening simultaneously at two different length scales: (i) at the larger length
scale of the capillary porosity, class B C-S-H gel grows into the interstitial space,
and (ii) at the smaller length scale of the gel pores, the gel gradually densifies
because calcium-silicate-hydrates precipitate also out of the supersaturated water
which fills the gel pores.

– Hydration regime III starts once class B C-S-H gel has completely filled the
interstitial space, such that the water-filled capillary porosity vanishes and the
precipitation of calcium-silicate-hydrates is restricted to the gel pores only. This
manifests itself in a linear increase of the total C-S-H gel density with decreasing
specific precipitation space.

• The nonlinear evolution of total C-S-H gel density in hydration regime II results from
the terminated formation of the “totally compact” class A C-S-H and the new formation
of class B C-S-H gel which densifies linearly with decreasing specific precipitation space.
At the beginning of hydration regime II, the total C-S-H gel density decreases with
decreasing precipitation space, because class A C-S-H is no longer produced and class
B C-S-H gel grows so quickly into the interstitial space that production of new gel
porosity outperforms its densification. The minimum of total C-S-H gel density is
reached somewhere around (but not exactly at) the maximum heat release rate marking
the transition from the acceleration period of hydration to the deceleration period. In
the latter period, the hydration kinetics are well known to decelerate significantly, such
that the densification of already formed class B C-S-H gel outperforms the generation of
new gel porosity associated with the new production of class B C-S-H gel. Consequently,
the total C-S-H gel density increases with decreasing precipitation space.

• Combining the described precipitation theory with traditional reaction equations for
typical Portland cement pastes allows for deriving analytical expressions linking the
phase volumes to the initial water-to-cement mass ratio w/c and to the hydration
degree ξ, see in particular Eqs. (6.25), (6.30), and (6.31); as well as (6.38) and (6.39) in
combination with (6.32). The new hydration model suggests that the nonlinear C-S-H
gel density evolution in the central hydration regime II relates to gel and capillary
porosities which depend nonlinearly on the hydration degree. Also, the new model
describes continued hydration in hydration regime III, where the capillary porosity
does not exist anymore. The model considers that hydrates precipitate out of the
supersaturated water filling the gel pores, resulting in progressive densification of the
C-S-H gel.

• The new hydration model appears as interesting alternative to Powers’ model (which
assumes constant C-S-H gel density) and is expected to translate straightforwardly
NMR-provided insight concerning C-S-H gel densification, into quantitative input for
multiscale models predicting the poromechanical properties of hydrating Portland cement
pastes.
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Appendix A: Nomenclature

Abbreviations

ACSH Class A C-S-H
Bgel Class B C-S-H gel
CH Calcium Hydroxide, Portlandite
cpor Capillary pores, capillary water
C-S-H Calcium Silicate Hydrate
gel C-S-H gel
gpor Gel pores, gel water
H2O Water
NMR Nuclear Magnetic Resonance
PE Portlandite and Ettringite
sCSH Solid C-S-H
void Voids

Mathematical symbols

f cpj Cement paste-related volume fraction of material phase j
Ij NMR-based signal fraction of phase j
mj Mass of phase j
mj
H2O

Mass of water fraction in phase j
t Material age
Vj Volume of phase j
V m
j Volume of phase j after hydration of 1 mole of typical Portland

cements
w/c Initial water-to-cement mass ratio
(w/c)lim Initial water-to-cement mass ratio w/c required for full hydration

of typical Portland cements
µsCSHH2O

Mass fraction of water within solid C-S-H
γ Specific precipitation space
γI−II γ at the transition point from hydration regime I to II
γII−III γ at the transition point from hydration regime II to III
∆Vj Chemically consumed volume of phase j during hydration
ξ Hydration degree
ξI−II Hydration degree ξ at the transition from hydration regime I to II
ξII−III Hydration degree ξ at the transition from hydration regime II to

III
ξult Ultimate hydration degree
ρj Mass density of phase j
ϕcpor Capillary pore fraction (capillary pore volume divided by total

water-filled pore volume)
ϕgpor Gel pore fraction (gel pore volume divided by total water-filled

pore volume)
ϕexp
cpor,ϕexp

gpor NMR-derived values of ϕcpor and ϕgpor
ϕmod
cpor,ϕmod

gpor Model-predicted values of ϕcpor and ϕgpor
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Abstract: We here bridge the molecular-to-continuum gap in cement poroelasticity, providing
a multiscale poro-micromechanical representation allowing for predictive upscaling of elasticity
properties of nanoscopic solid C-S-H blocks, as determined from statistical physics (Manzano
et al., 2012), to poroelastic properties at the cement paste and the capillary pore-hosting
hydrate foam scale, as obtained from resonance frequency, ultrasonic, or quasi-static unloading
tests. The success of the novel predictive model stems from explicit consideration of (i)
densification of the C-S-H gel during the hydration process, i.e. of C-S-H basic blocks with gel
porosity in-between, as evidenced by recent nuclear magnetic resonance relaxometry experi-
ments (Muller et al., 2012) and cast in a mathematical evolution rule thereafter (Königsberger
et al., 2016a), and of (ii) the shape of the basic C-S-H units, precipitating as plate-type
features at early hydration stages (Garrault et al., 2005), but showing a variety of shapes
with ongoing chemical reactions at more mature stages (Chiang et al., 2012). At the cement
paste scale, elastic moduli increase with increasing hydration degree and decreasing initial
water-to-cement mass ratio; while within the C-S-H gel, the hydration characteristics results
in non-monotonous relationships. The same is also true for the Biot coefficients and moduli.

Contribution: Bernhard Pichler and Christian Hellmich set up the overall research strategy,
supervised the research progress, checked key results, and supported the documentation
process. Markus Königsberger developed the microstructural model, performed continuum
micromechanics-based poroelasticity upscaling, validated the model based on stiffness data
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from the literature, and documented research results.

Keywords: micromechanics, poromechanics, cement paste, Calcium-Silicate-Hydrates (C-S-
H), hydration, multiscale modeling

7.1 Introduction
A rigorous material mechanics framework for hydrating cement paste and concrete poses great
challenges, as the material is chemically active and therefore exhibits elastic, viscoelastic, and
strength properties, which evolve with time. This has kept the material mechanics community
busy over decades, developing more and more precise and physically sound mathematical
formulations. Important steps thereby are thermodynamics-based formulations (Ulm and
Coussy, 1995, 1996; Sercombe et al., 2000) introducing the degree of hydration and the
reaction kinetics into material mechanics; and micromechanics formulations (Bernard et al.,
2003b; Ulm and Heukamp, 2004; Sanahuja et al., 2007; Scheiner and Hellmich, 2009; Pichler
and Hellmich, 2011) resolving the material into non-reactive basic components: unhydrated
clinker, water, air, aggregate, and one or several types of hydrates (the hydration products
between water and clinker). Invariant mechanical properties of these basic components have
thereby been estimated from nanoindentation (Constantinides et al., 2003; Constantinides
and Ulm, 2004; Sorelli et al., 2008) or from top-down back-analyses based on very many
experiments on the composite material level (Pichler et al., 2013a; Königsberger et al., 2016b;
Irfan-ul Hassan et al., 2016).

There is still a gap between such basic mechanical properties, and those found, by a bottom-
up approach based on statistical physics methods (Pellenq et al., 2009; Manzano et al., 2012;
Ioannidou et al., 2016), at an even smaller level of the fundamental calcium-silicate-hydrate (C-
S-H) building block (Allen et al., 2007). The present contributions seeks to close this remaining
gap, by carefully investing into an appropriate representation of the complex hierarchical
nano- and microstructure of cement paste and concrete, and its physical properties. In fact,
two features which hitherto have remained ignored in the pertinent literature on the topic
so far, are explicitly considered here: (i) densification of the C-S-H gel during the hydration
process, i.e. of C-S-H basic blocks with gel porosity in-between, as evidenced by recent nuclear
magnetic resonance (NMR) relaxometry experiments (Halperin et al., 1994; Muller et al., 2012,
2013; Valori et al., 2013) and cast in a mathematical evolution rule thereafter (Königsberger
et al., 2016a), and (ii) the shape of the basic C-S-H units, precipitating as plate-type features
at early hydration stages (Garrault et al., 2005), but showing a variety of shapes with ongoing
chemical reactions at more mature stages (Chiang et al., 2012). The corresponding material
description is cast in the framework of micro-poromechanics (Dormieux et al., 2006), making
in particular use of an extended form of the so-called transformation field analysis (Dvorak
and Benveniste, 1992; Pichler and Hellmich, 2010) allowing for eigenstress upscaling from
arbitrarily oriented and shaped material phases, to the scale of homogenized poroelastic media.

Accordingly, the remainder of this paper is structured as follows: First, the homogenization
concept is explained and the microstructural representation of hydrating cement pastes
is introduced, see Sec. 7.2. This is followed by discussing the volume evolutions of the
cement paste constituents considering the NMR-derived densification, see Sec. 7.2. Next, the
poromechanical behavior is scaled up throughout the different observation scales, see Sec. 7.4-
7.6. In Sec. 7.7, the pore pressures are determined based on the macroscopic loading. This
yields macroscopic poromechanics state equations and an expression for the undrained stiffness
of cement paste, see Sec. 7.8. Careful model validation based on independent experimental
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data is carried out in Sec. 7.9. The paper is closed with discussions on pore pressure-induced
stiffening effects and on the dependencies of the predicted poroelastic properties with respect
to maturity and composition; and finally with concluding remarks, see Sec. 7.10.

7.2 Homogenization of poromechanical properties and
micromechanical representation of hydrating cement
paste

We consider cement paste as a macro-homogeneous, but micro-heterogeneous matter filling a
representative volume element (RVE), (Zaoui, 2002; Hill, 1963), fulfilling the separation of
scales principle, reading as

d� `� L (7.1)

Inequalities (7.1) imply that the characteristic size ` of an RVE is considerably larger than
the characteristic size d of the heterogeneities contained inside the RVE and, at the same
time, ` is considerably smaller than characteristic size L of the structure containing the RVE.
Notably, the aforementioned requirements of “much larger” (�) and “much smaller” (�),
respectively, have been shown to be already satisfied if the respective characteristic lengths are
separated by a factor of two to three, and five to ten, respectively (Drugan and Willis, 1996;
Kohlhauser and Hellmich, 2013). Inside such RVEs, the morphological details are represented
in the form of homogeneous subdomains called phases. Then, the shape of these phases, their
poro-mechanical properties and their volume fractions are used for estimating the overall
(“homogenized”) mechanical properties of the RVE: therefore, homogeneous deformation or
traction boundary conditions, related to “macroscopic” strains or pore pressures, are enforced
at the external and internal boundaries of the RVE, while the virtual power equivalence of
“macroscopic” and “microscopic” (phase-specific) physical quantities is maintained (Germain,
1973; Dormieux et al., 2006). The mechanical properties of the phases may arise from yet
another homogenization process across another RVE, of size `2 ≤ d and `2 � d2; and this
leads to the introduction of multiscale homogenization schemes as described in (Fritsch and
Hellmich, 2007), involving a sequence of characteristic sizes; fulfilling in the case of three such
schemes

L � `� d ≥ `2 � d2 ≥ `3 � d3 . (7.2)

In the case of cement paste, we indeed employ such a sequence of three RVEs, as depicted
in Fig. 7.1. An RVE of cement paste sized around 1 mm [see Fig. 7.1(a)] consists of the
phases “(unhydrated) clinker”, “portlandite”, and “C-S-H foam”. The mechanical properties
of the latter are approximated from homogenization over yet another RVE [see Fig. 7.1(b)],
which consists of the phases “C-S-H gel”, “capillary pores”, and “air voids”. Gel and capillary
pores not only relate different length scales (Muller et al., 2012), but also to different physical
characteristics: gel water is strongly influenced by surface forces, while capillary water is not.
The mechanical properties of C-S-H gel are obtained from a third homogenization step [see
Fig. 7.1(c)], involving the phases called “gel pores” and “solid C-S-H crystals” (the properties
of which are those resulting from the bottom-up statistical physics approach of Manzano et al.
(2012), alluded to already in the Introduction). Besides the remaining elastic phase properties,
i.e. that of the pores, of portlandite, and of unhydrated clinker, the volume fractions are the
key input parameters involved in the three-level scheme depicted in Fig. 7.1. They are derived
from latest results in NMR research, as described next.
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gel pores (water-filled)C-S-H gel elements

(a) cement paste (b) C-S-H foam (c) C-S-H gel

CH plates solid C-S-H crystals

Figure 7.1: Three-scale representation of cement paste: (a) single millimeter-sized RVE of
cement paste: clinker grains and portlandite crystals embedded in a C-S-H foam matrix; (b)
single micrometer-sized RVE of C-S-H foam: C-S-H gel needles intermixed with capillary
pores; (c) 50 nm-sized RVE of C-S-H gel: solid C-S-H building blocks with gel pores in between

7.3 Phase volume evolutions considering progressive C-S-H
gel densification

In order to quantify the hydration-driven phase volume evolution, existing micromechanics
models (see e.g. (Sanahuja et al., 2007; Scheiner and Hellmich, 2009; Pichler and Hellmich,
2011)) typically rest on the Powers’ hydration model (Powers and Brownyard, 1947; Powers,
1958). However, NMR relaxometry measurements on white cement pastes, performed by
Muller et al. (Muller et al., 2012, 2013), have shown that C-S-H gel densifies during hydration,
rather than maintaining a constant mass density, as assumed by Powers and Brownyard (1947).
The NMR-evidenced gel densification has been translated into a mathematical evolution rule
by Königsberger et al. (2016a), and the resulting, alternative hydration model is used hereafter.

This model is based on the idea that it is the confinement of space in the water-filled
pores, which governs the densification of the C-S-H gel. This confinement is quantified by
means of the specific precipitation space γ. Denoting the volume occupied by solid C-S-H as
VsCSH , the volume occupied by gel porosity as Vgpor, and the volume occupied by capillary
porosity as Vcpor, the specific precipitation space is defined as (Königsberger et al., 2016a)

γ = Vgpor + Vcpor
VsCSH + Vgpor + Vcpor

, 0 ≤ γ ≤ 1 . (7.3)

This way, γ suitably quantifies the available space where solid C-S-H crystals can precipitate,
and thus characterizes the confinement state in the water-filled pore space. Remarkably, the
relation between the NMR-derived C-S-H gel density ρgel and the precipitation space is fully
independent of the material composition as quantified by the initial water-to-cement mass
ratio w/c, see Fig. 7.2. The obtained relation also reveals that the hydration process – the
progress of which is customarily described by a hydration degree ξ (defined as the volume of
already hydrated cement clinker over the initially available clinker volume) – comprises three
characteristic precipitation regimes (Königsberger et al., 2016a):

• Regime I (0 ≤ ξ ≤ ξI-II), is characterized by precipitation of C-S-H solids without
entrapment of any gel porosity.

• In regime II (ξI-II < ξ < ξII-III), C-S-H precipitates as gel with entrapped gel pores, and
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Figure 7.2: C-S-H gel density (normalized with respect to the solid C-S-H density ρsCSH =
2.604 g/cm3, see (Allen et al., 2007)) as function of the specific precipitation space: ex-
perimental points from NMR relaxometry for three different cement pastes exhibiting
w/c ∈ {0.32, 0.40, 0.48}, as provided by Muller et al. (2012, 2013); and model-predicted
density evolution according to Königsberger et al. (2016a)

which exhibits a density increasing linearly with decreasing precipitation space. This
process is accompanied by a progressive reduction of the capillary porosity as the water
residing there drives the hydration process.

• Once all capillary pore water is consumed, hydration regime III (ξII-III ≤ ξ ≤ 1) starts.
Further precipitation is forced to happen on the expense of the water in the gel pores.
This leads to a further densification of the C-S-H gel.

Stoichiometric equations for the hydration of alite and belite in combination with the
assumption that the considered clinker phases dissolve proportionally to their initial extend
allows for predicting, from the modeled C-S-H gel densification behavior, the volumes of the
cement paste constituents, as functions of the hydration degree ξ and of the water-to-cement
mass ratio w/c. Dividing the individual phase volumes by the total cement paste volume, we
end up with cement paste-related phase volume fractions, labeled as f cpi with i standing for
cement clinker (abbreviated as cem), portlandite crystals (CH), solid C-S-H crystals (sCSH),
gel pores (gpor), capillary pores (cpor), and voids (void), reading as (Königsberger et al.,
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2016a)

f cpcem = 1− ξ
1 + 3.185w/c ≥ 0 (7.4)

f cpCH = 0.484 ξ
1 + 3.185w/c (7.5)

f cpsCSH = 1.105 ξ
1 + 3.185w/c (7.6)

f cpgpor =


0 ∀0 ≤ ξ ≤ ξI-II
−0.799 (w/c)2+4.824w/c ξ−0.793 ξ2

(1+3.185w/c) (0.864w/c+1.278 ξ) ∀ξI-II < ξ < ξII-III
3.185w/c−0.755 ξ

1+3.185w/c ∀ξII-III ≤ ξ ≤ 1
(7.7)

f cpcpor = 3.185w/c− 0.755 ξ
1 + 3.185w/c − f cpgpor (7.8)

f cpvoid = 0.167 ξ
1 + 3.185w/c (7.9)

The three precipitation regimes are bounded, for the white cement paste studied from Muller
et al. (2013), by the hydration degrees (Königsberger et al., 2016a)

ξI-II = 0.170w/c ξII-III = 2.022w/c . (7.10)

Theoretically, hydration either stops if all clinker is consumed, ξ ≤ 1, or if – focusing on
sealed conditions – all mixing water is consumed. The latter implies that ξ ≤ 4.217w/c,
see (Königsberger et al., 2016a). We can simultaneously represent both conditions through
introduction of an ultimate hydration degree ξult ≥ ξ, reading as

ξult = min {4.217w/c ; 1} . (7.11)

However, once regime III is reached, the water necessary for further hydration exclusively
comes from the gel water, i.e. the water in the nanometer-sized gel pores. Consequently,
further hydration slows down significantly, so that the ultimate hydration degree may be
reached only after a very long time.

The hydration model was derived on the basis of the experimental densification character-
istics determined on white cement paste samples. Given the chemical analogy between white
cement paste and Portland cement paste (Neville, 1995), the model is expected to reasonably
approximate the volume evolutions of Portland cement pastes as well.

7.4 Microporoelasticity of cement paste
In the following, a micro-poromechanics approach considering eigenstresses in arbitrarily
shaped phases (Pichler and Hellmich, 2010) will be applied for upscaling pore pressures
and elastic properties from the phase level to the RVE level, based on the microstructural
representation of hydrating cement pastes, depicted in Fig. 7.1. We start from the largest
observation scale, i.e. the scale of cement paste [see Fig. 7.1(a)], and subsequently we move to
the C-S-H foam [see Fig. 7.1(b)], and thereafter to the C-S-H gel [see Fig. 7.1(c)].
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In an RVE of cement paste, we consider the following bulk material phases: an unhydrated
clinker phase of approximately spherical shape (indicated by subscript “cem”), infinitely many
disc-shaped portlandite phases which are uniformly oriented in all space directions (indicated
by subscript “CH”), and a C-S-H foam phase (indicated by subscript “foam”), see Fig. 7.1(a).
Portlandite crystals are considered as phase on the cement paste scale because they precipitate
as crystals with diameters up to 50 microns (Pratt et al., 1983) in the first hours of hydration,
which is comparable to typical clinker grain sizes (Sun et al., 2007). This is in accordance with
earlier micromechanics models (Bernard et al., 2003b; Venkovic et al., 2013). The spherical
disc-like shape of these crystal phases is approximately consistent with observations from
environmental scanning electron microscopy (Meredith et al., 1995), showing the precipitation
of thin hexagonal platelets in particular at early age. The orientations of the individual crystal
phases are quantified through the normal vectors nCH aligned with the axes of rotational
symmetry of the crystals, see Fig. 7.11 in Appendix A.

The elastic properties of the unhydrated clinker phase are isotropic, quantified in terms of
bulk modulus kcem=116.7 GPa and shear modulus µcem=53.8 GPa, see (Velez et al., 2001;
Pichler and Hellmich, 2011). Accordingly, the phase stiffness tensor of cement clinker Ccem
reads as

Ccem = 3 kcemIvol + 2µcemIdev (7.12)

with Ivol and Idev standing for the volumetric and the deviatoric part of the fourth-order unity
tensor I, respectively. They are defined as Ivol = 1/3(1 ⊗ 1), and Idev = I − Ivol, whereby
the components of I read as Iijkl = 1/2(δikδjl + δilδjk), and where 1 denotes the second-order
identity tensor with components equal to the Kronecker delta δij , namely δij = 1 for i= j,
and 0 otherwise. Portlandite crystals exhibit a layered structure and therefore an intrinsic
anisotropy (Speziale et al., 2008). Holuj et al. (1985b) measured their stiffness by Brillouin
spectroscopy and found stiffness tensor components (in Kelvin-Mandel notation (Cowin and
Mehrabadi, 1992), see also Appendix A) reading as

CCH =



99.3 36.2 29.7 0 0 0
36.2 102 29.7 0 0 0
29.7 29.7 32.6 0 0 0

0 0 0 19.7 0 0
0 0 0 0 19.7 0
0 0 0 0 0 70.0


eϑ,eϕ,er

GPa , (7.13)

whereby the components are given in a local CH crystal-related base frame with base vectors
eϑ and eϕ defining planes being parallel to the crystal and with er = nCH representing the
axis of rotational symmetry. The stiffness tensor of the C-S-H foam phase evolves during
the hydration process. Consequently, it follows from homogenization over lower-scale RVEs,
determined in Sec. 7.5. Furthermore, the C-S-H foam is the only phase in the RVE of cement
paste, which exhibits eigenstresses σhom,Efoam = −pfoam1, whereby pfoam is the pressure exerted
by the foam to the adjacent matter within the RVE. These eigenstresses are obtained by
means of homogenization over the RVE of C-S-H foam, as described in Sec. 7.5.

Based on the aforementioned elastic properties and eigenstresses, homogenization theory
(Dormieux et al., 2006; Pichler and Hellmich, 2010) provides the first poromechanical state
equation in the form

σcp = Chomcp : εcp + σhom,Ecp , (7.14)

where σcp and εcp denote macrostresses and macrostrains at the scale of cement paste, while
Chomcp and σhom,Ecp denote the isotropic homogenized stiffness and the homogenized eigenstress
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of cement paste. The isotropic cement paste stiffness reads as (Benveniste, 1987; Fritsch et al.,
2006, 2010)

Chomcp = f cpcemCcem : Acem + f cpCH

2π∫
0

π∫
0

CCH(nCH) : ACH(nCH)sinϑ
4π dϑ dϕ

+ f cpfoamC
hom
foam : Afoam ,

(7.15)

whereby the uniform orientation of the CH crystals is captured by means of integration along
the unit sphere in terms of azimuth angle ϕ and zenith angle ϑ, respectively, which determine
the orientation of the orientation vector nCH , see Appendix A and in particular Fig. 7.11(a)
for more details. Cement paste-related volume fractions f cpcem, f

cp
CH , and f

cp
foam are directly

provided by the hydration model [see (7.4)-(7.9) in Sec. 7.3], whereby the foam volume fraction
is obtained as

f cpfoam = f cpsCSH + f cpgpor + f cpcpor + f cpvoid . (7.16)

Moreover, Acem, ACH , and Afoam denote the phase strain concentration tensors, see Ap-
pendix C for details. These strain concentration tensors reflect the mechanical interaction
of the phases within an RVE of cement paste, namely that clinker and CH inclusions are
embedded into a C-S-H foam matrix. A homogenization approach related to such a mode of
interaction is normally called Mori-Tanaka scheme (Mori and Tanaka, 1973). The homogenized
eigenstresses, in turn, follow from Levin’s theorem and read as (Levin, 1967; Zaoui, 2002;
Dormieux et al., 2006)

σhom,Ecp = f cpfoamσ
hom,E
foam : Afoam . (7.17)

The second state equation of poromechanics relates macrostrains and phase eigenstresses
to phase strains (in particular pore space changes). Homogenization theory provides access
via the so-called transformation field analyses (Dvorak and Benveniste, 1992; Pichler and
Hellmich, 2010), so that the RVE of cement paste is characterized by

εcem = Acem : εcp −Qcem,foam : σhom,Efoam , (7.18)

εCH(nCH) = ACH(nCH) : εcp −QCH,foam(nCH) : σhom,Efoam , (7.19)

εfoam = Afoam : εcp −Qfoam,foam : σhom,Efoam , (7.20)

where Qj,foam denote the phase eigenstress influence tensors, relating the homogenized
eigenstress of C-S-H foam, σhom,Efoam , to the average strains of phase j, εj . Analytical expressions
for all eigenstress influence tensors Qj,foam are given in Appendix C.

7.5 Microporoelasticity of C-S-H foam

In an RVE of C-S-H foam [see Fig. 7.1(b)], we consider the following phases: two spherical
phases representing air voids (subscript “void”) and water-filled capillary porosity (subscript
“cpor”), and infinitely many, needle-shaped phases oriented in all space directions, representing
C-S-H gel elements (subscript “gel”). Thereby the orientation of the individual C-S-H gel
phases is indicated by the orientation vector ngel, see Appendix A and Fig. 7.11(b). The
considered morphology of C-S-H gel elements follows from experimental observation by means
of Scanning Electron Microscopy (SEM), secondary SEM (Pratt et al., 1983; Williamson,
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1972), environmental SEM (Meredith et al., 1995), backscatter-mode SEM (Scrivener, 2004;
Diamond, 2004; Kjellsen and Justnes, 2004), transition electron microscopy (TEM) (Jennings
et al., 1981; Richardson and Groves, 1993; Richardson, 1999) and atomic force microscopy
(AFM) (Garrault et al., 2005). It is described as strongly heterogeneous material with fibrillar
(Jennings et al., 1981; Kjellsen and Justnes, 2004), reticular, foil-like (Kjellsen and Justnes,
2004), flaky or plate-like (Jennings et al., 1981; Garrault et al., 2005; Chiang et al., 2012), or
amorphous morphology, varying with age (Kjellsen and Justnes, 2004), cement composition
(Scrivener and Nonat, 2011), temperature (Kjellsen et al., 1991), and with the position of
precipitation (inside or outside the shell around clinker grains) (Pratt et al., 1983). Herein,
we focus on plain Portland cement, which predominately exhibits fibrillar gel morphologies
(Scrivener and Nonat, 2011). Following Pichler and Hellmich (Pichler and Hellmich, 2011),
we use infinitely many needles, oriented uniformly in all space directions, to represent this
fibrillar morphology of the C-S-H gel in our micromechanics model. The micromechanical
combination of isotropically oriented needles with spheres, in a self-consistent setting, has
been endured as the optimal choice for representing a disordered network of needle-shaped
elements with pore space in between (Sanahuja et al., 2010).

Only gel phases exhibit a non-zero stiffness tensor, which evolves during hydration, and
is therefore obtained from homogenization over a lower-scale RVE, as described in Sec. 7.6.
On the other hand, the C-S-H gel elements also exhibit orientation-specific eigenstresses
σhom,Egel (ngel), which also follows from homogenization over a lower-scale RVE, as described in
Sec. 7.6. In addition, also the capillary porosity exhibit eigenstresses, which are related to the
capillary pore pressure pcpor and accordingly read as σEcpor = −pcpor 1. As it was the case in
Sec. 7.4, microporomechanics provides the theoretical means to translate the aforementioned
morphological and mechanical information into the first state equation of poromechanics
related to the RVE of C-S-H foam,

σfoam = Chomfoam : εfoam + σhom,Efoam , (7.21)

with RVE-related C-S-H foam stresses σfoam and strains εfoam. The homogenized stiffness at
the C-S-H foam scale, Chomfoam follows from the self-consistent scheme (Hershey, 1954; Kröner,
1958; Hill, 1965) as

Chomfoam = ffoamgel

2π∫
0

π∫
0

Chomgel : Agel(ngel)
sinϑ
4π dϑ dϕ . (7.22)

C-S-H foam-related volume fractions of voids and capillary pores and C-S-H gel (ffoamvoid , ffoamcpor ,
and ffoamgel , respectively) follow from the cement paste-related volume fractions see (7.4)-(7.9)
and (7.16), and they read as

ffoamj =
f cpj
f cpfoam

, j = {cpor, void, gel} , (7.23)

whereby ffoamvoid + ffoamcpor + ffoamgel = 1. The latter volume fractions enter the homogenized
eigenstresses at the C-S-H foam scale, σhom,Efoam , reading in analogy to (7.17) as

σhom,Efoam = ffoamgel

2π∫
0

π∫
0

σhom,Egel (ngel) : Agel(ngel)
sinϑ
4π dϑ dϕ− ffoamcpor pcpor1 : Acpor . (7.24)
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The second poromechanical state equation at the scale of the C-S-H foam concerns the
porosity change of the capillary pores, reading as

∆φfoamcpor = ffoamcpor 1 : εcpor , (7.25)

where εcpor denotes the average phase strains of the capillary pores. By analogy to the
phase strain concentration at the cement paste scale, see Eqs. (7.18)-(7.20), the orientation-
dependent phase strains of gel needles, εgel(ngel), as well as the strains within capillary pores,
εcpor, and the ones in the voids, εvoid, respectively, are linearly linked to the C-S-H foam
strains and to the phase eigenstresses. They read as

εcpor =Acpor : εfoam −
2π∫
0

π∫
0

Qcpor,gel(ngel) : σhom,Egel (ngel)
sinϑ
4π dϑ dϕ

+Qcpor,cpor : 1 pcpor , (7.26)

εgel(ngel) =Agel(ngel) : εfoam −
2π∫
0

π∫
0

Qgel,gel(ngel, ngel∗) : σhom,Egel (ngel∗)sinϑ∗

4π dϑ∗ dϕ∗

+Qgel,cpor(ngel) : 1 pcpor , (7.27)

εvoid =Avoid : εfoam −
2π∫
0

π∫
0

Qvoid,gel(ngel) : σhom,Egel (ngel)
sinϑ
4π dϑ dϕ

+Qvoid,cpor : 1 pcpor . (7.28)

Given that eigenstresses occur in the capillary pore phase and in the infinitely many gel needles
(with particular orientation ngel), all respective eigenstress influences on phase strains have to
be considered. This way, Eqs. (7.26)-(7.28) involve infinitely many influence tensors. Notably,
in Eq. (7.27), gel orientation vector ngel∗ is moving along the surface of the unit sphere in
order to account for gel eigenstresses from all possible directions, while ngel is fixed. Again,
analytical expressions of all concentration and influence tensors can be found in Appendix C.

7.6 Microporoelasticity of C-S-H gel

Finally, we deal with the RVE of C-S-H gel [see Fig. 7.1(c)], consisting of a spherical pore
phase, and of infinitely many, oblate spheroidal phases, with axes of rotational symmetry
functioning as orientation vectors nsCSH ; these orientation vectors are uniformly oriented
in all space directions. The corresponding gel pores (subscript “gpor”) are intermixed with
solid C-S-H crystals (subscript “sCSH”), i. e. with the primary hydration products of the
chemical reaction between Portland cement clinker and water, which represent the smallest
microstructural building blocks of cementitious materials; this interpretation of phases will be
represented by a self-consistent homogenization approach, as it was the case in Sec. 7.5.

Solid C-S-H crystals exhibit characteristic dimensions ranging from a few single nanometers
to several tens of nanometers. Therefore, characterization is typically carried out based on
scattering spectroscopy experiments (Allen et al., 2007; Chiang et al., 2012; Brisard and
Levitz, 2013), NMR (Muller et al., 2012), atomic force microscopy (Garrault et al., 2005),
and atomistic modeling (Pellenq et al., 2009). At the very early material age of 4 hours,
atomic force microscopy shows that solid C-S-H crystals typically exhibit platy shapes, with
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dimensions of 60 nm × 30 nm × 5 nm, see (Garrault et al., 2005). At an age of 40 days, small
angle neutron scattering experiments propose that solid C-S-H crystals exhibit a disk-like
shape, whereby (i) in-plane dimensions range from 13nm to 18 nm and (ii) out-of-plane
thicknesses exhibiting a wide distribution with averages around 5-12 nm, see (Chiang et al.,
2012). More qualitative evidence for age-specific C-S-H crystal dimensions was provided from
Valori et al. (2013), who concluded, based on NMR measurements, that the number of layers
in the solid C-S-H crystals increases with hydration. Based on these experimental findings,
solid C-S-H crystals are considered as oblate spheroids with age-specific aspect ratios, denoted
as XsCSH . In this context, by analogy to the C-S-H gel density (see Sec. 7.3), also the solid
C-S-H crystal morphology is assumed to be driven by space confinements in the C-S-H foam,
expressed in terms of the precipitation space parameter γ according to (7.3). In the limit
case of γ = 1, flat discs exhibiting XsCSH = 0 precipitate in the unconfined pore space. Solid
C-S-H crystals precipitating in the next densification increment ∆γ exhibit larger aspect ratios
XsCSH>0, see Fig. 7.3. Finally, spherical crystals exhibiting XsCSH = 1 precipitate in the
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Figure 7.3: Maximum solid C-S-H aspect ratio as a function of the specific precipitation space
including schematically the discretization process: the earlier a solid C-S-H crystal precipitate,
the closer is its shape to a plate, the later it precipitates, the closer is its shape to a sphere;
depicted volume elements schemtatically show the shape dependence in 2D; more details can
be found in Appendix B

fully confined pore space, corresponding to the limit case γ = 0. Linear interpolation between
the described limit cases allows for calculating the space limitation-dependent maximal aspect
ratio in the RVE,

Xmax
sCSH = 1− γ . (7.29)

Thus, at a particular densification state of the gel γ∗, the RVE contains solid C-S-H crystal
phases which are uniformly distributed within the aspect ratio interval XsCSH ∈ [0; Xmax

sCSH ].
Appendix B provides additional details on the numerical discretization of this aspect ratio
distribution. Conclusively, an RVE of C-S-H gel is modeled as a polycrystal of spherical gel
pores and disc-like C-S-H crystal phases which are uniformly oriented in all space directions,
see also Fig. 7.1(c). The individual orientation of a single C-S-H crystal is described by the
normal vector nsCSH , aligned with the axis of rotational symmetry with the C-S-H oblates,
see Fig. 7.11(a) in Appendix A.

The layered structure of the C-S-H crystal (Allen et al., 2007; Muller et al., 2012; Chiang
et al., 2012) implies an intrinsic anisotropy considered in full detail here. Quantitative
information on the elasticity tensor is provided by atomistic models (Pellenq et al., 2009;
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Manzano et al., 2012). Accordingly, the stiffness tensor of solid C-S-H is transversely isotropic,
and its components read (in Kelvin-Mandel notation (Cowin and Mehrabadi, 1992), see also
Appendix A) as (Manzano et al., 2012):

CsCSH =



91.2 33.2 29.8 0 0 0
33.2 91.2 29.8 0 0 0
29.8 29.8 72.6 0 0 0

0 0 0 42.4 0 0
0 0 0 0 42.4 0
0 0 0 0 0 58.0


eϑ,eϕ,er

GPa , (7.30)

whereby the components are given in a local material base frame with base vectors eϑ and
eϕ defining planes being parallel to the crystal layers and with er = nsCSH being equal to
the representing the axis of rotational symmetry. The solid C-S-H phases do not exhibit
any eigenstresses, while no stiffness is assigned to the gel pores. The latter, however, exhibit
eigenstresses in the form of a gel pore pressure pgpor, namely σEgpor = −pgpor1. This pore
pressure, however, depends on the orientation of the phase within the higher-scale RVE of
C-S-H foam of Fig. 7.1(b), hence σEgpor(ngel) = −pgpor(ngel)1.

As in the preceding sections, the first poromechanical state equation, i.e. the relation
between C-S-H gel stresses σgel and strains εgel, follows from homogenization theory, and
reads as

σgel(ngel) = Chomgel : εgel(ngel) + σhom,Egel (ngel) , (7.31)

whereby the homogenized gel stiffness Chomgel is isotropic (gel orientation-independent), while
the homogenized eigenstress σhom,Egel does depend on the C-S-H gel orientation ngel. The
corresponding self-consistent expression for the homogenized stiffness (Hershey, 1954; Kröner,
1958; Hill, 1965) has to account (i) for the orientation of the solid C-S-H crystals (expressed
by the normal vector nsCSH), and (ii) for the aspect ratio distribution of the solid C-S-H
crystals (which is characterized by the aspect ratio XsCSH). Thus, we end up with surface
integral expressions over the surface of a unit sphere accounting for all space directions, and
an additional integral over the aspect ratio distribution with XsCSH ∈ {0, Xmax

sCSH}, whereby
Xmax
sCSH follows from (7.29), reading as

Chomgel = fgelsCSH

1−γ∫
1

2π∫
0

π∫
0

CsCSH(nsCSH) : AsCSH(nsCSH , XsCSH)sinϑ
4π dϑ dϕdXsCSH ,

(7.32)
where C-S-H gel-related volume fractions of solid C-S-H fgelsCSH and of gel pores fgelgpor follow
from the cement paste-related gel volume fraction

f cpgel = f cpsCSH + f cpgpor, (7.33)

given in (7.6) and in (7.7), respectively, and read as

fgelj =
f cpj
f cpgel

, j = {sCSH, gpor} . (7.34)

Mathematical details on the strain concentration tensor AsCSH are found in Appendix C. By
analogy to the previous scales, the strain concentration tensors also allow for deriving the
homogenized gel eigenstresses from the phase eigenstresses as

σhom,Egel (ngel) = −fgelgporpgpor(ngel)1 : Agpor . (7.35)



Poroelasticity of hydrating cement pastes 137

The second poroelastic state equation at the C-S-H gel scale links the the change of the
gel porosity within the gel RVE with orientation ngel, denoted as ∆φgelgpor(ngel), to the gel
orientation-dependent gel pore strains, and reads as

∆φgelgpor(ngel) = fgelgpor1 : εgpor(ngel) . (7.36)

Strain concentration relations provide access to the strains in gel pores, εgpor(ngel), and also
to strains in the solid C-S-H crystals εsCSH(ngel, nsCSH , XsCSH),

εgpor(ngel) =Agpor : εgel(ngel) +Qgpor,gpor : 1 pgpor(ngel) , (7.37)

εsCSH(ngel, nsCSH , XsCSH) =AsCSH(nsCSH , XsCSH) : εgel(ngel)

+QsCSH,gpor(nsCSH , XsCSH) : 1 pgpor(ngel) . (7.38)

For the sake of clarification, QsCSH,gpor relates the gel pore pressure of gel needle with
orientation ngel to the solid C-S-H body of orientation nsCSH and aspect ratio XsCSH .
Notably, phase strain concentration Ai and eigenstress influence tensors Qj,i are equivalent
for all C-S-H gel RVEs [argument (ngel) is not necessary]. Analytical expressions of these
tensors are given in Appendix C.

7.7 Pore pressure determination for drained and undrained
conditions

We are interested in the potential stiffening effect of water in gel and capillary pores in
hydrating cement paste samples. This is why we distinguish between drained and undrained
conditions. Under drained conditions, all pore pressures vanish:

pgpor(ngel) = pcpor = 0 (7.39)

As undrained conditions we here refer to fully saturated and sealed gel and capillary pore
spaces, so as to obtain an upper bound for the hydraulic stiffening effect. In this context,
water is considered to be trapped in either the gel or the capillary pore phases, i.e. we neither
consider any interaction between the different pore pressures in gel needle-specific gel pore
families, nor any interactions between gel and capillary pore pressures. These assumption
allows us to find a functional relation between the pore pressures and the macrostrains, as
described next.

Gel pore volume changes, which are given in (7.36), can be written as

∆φgelgpor(ngel) = f
(
εhomcp , pgpor(∀ngel), pcpor

)
, (7.40)

i.e. they are a function of macrostrains, of gel pore pressures of gel needles oriented in all
space directions, and of the capillary pore pressure. By analogy, capillary volume changes, see
(7.25), read as

∆φfoamcpor (ngel) = f
(
εhomcp , pgpor(∀ngel), pcpor

)
. (7.41)

In addition, if no mass transport of water out of the different pore spaces occurs, the porosity
changes can be also obtained from the elastic behavior of the fluid filling the pore space
(Coussy, 2004), which allows us to obtain gel porosity changes at the C-S-H gel RVE of
orientation ngel with respect to the C-S-H gel scale as

∆φgelgpor(ngel) = fgelgpor

pgpor(ngel)
kH2O

, (7.42)



Poroelasticity of hydrating cement pastes 138

whereby kH2O = 2.3GPa is the bulk modulus of water. By analogy, changes of the capillary
porosity referring to the C-S-H foam scale read as

∆φfoamcpor = −ffoamcpor

pcpor
kH2O

(7.43)

Setting equal (7.40) with (7.42), as well as (7.41) with (7.43), provides the sought relation
between pore pressures and macrostrains for undrained conditions, reading as

pgpor(ngel) = Lcpgpor(ngel) : εcp and pcpor = Lcpcpor : εcp . (7.44)

As for the computation of the second-order auxiliary tensors Lcpgpor(ngel) and Lcpcpor, we have
to distinguish between the three hydration regimes introduced in Sec. 7.3. Since there are no
gel pores in regime I (0 ≤ ξ ≤ ξI-II), all gel pore pressures must vanish, while in regime II and
III nonzero gel pore pressures exist. Thus, the gel pore-related tensors Lcpgpor(ngel) read as

Lcpgpor(ngel) =
{

0 ∀0 ≤ ξ ≤ ξI-II

see Appendix C ∀ξI-II < ξ ≤ 1
(7.45)

By analogy, capillary pores vanish in regime III (ξII-III < ξ ≤ 1), implying

Lcpcpor =
{
see Appendix C ∀0 ≤ ξ < ξII-III

0 ∀ξII-III < ξ ≤ 1
(7.46)

7.8 Macroscopic poromechanics state equations and
undrained stiffness of cement paste

So far, we presented our derivations in the framework of the transformation field or the
eigenstress influence tensor concept (Dvorak and Benveniste, 1992; Pichler and Hellmich,
2010). We now turn towards more classical poromechanical quantities, such as the Biot tensors
and the Biot moduli, and rewrite the macroscopic poromechanical state equation. This way,
the first state equation follows from stepwise insertion of the C-S-H gel eigenstress σhom,Egel

[see (7.35)] into the C-S-H foam eigenstress σhom,Efoam [see (7.24)], further insertion of the result
into the cement paste eigenstress σhom,Ecp [see (7.17)], and finally, insertion of the result into
the cement paste-related stress-strain relation (7.14), resulting in

σcp = Chomcp : εcp −
2π∫
0

π∫
0

Bcpgpor(ngel) pgpor(ngel)
sinϑ
4π dϑ dϕ−Bcpcpor pcpor (7.47)

Therein, Bcp
gpor and Bcp

cpor denote cement paste-related Biot tensor for the gel pore phases
and for the capillary pore phase, whereby the former tensor is a function of the orientation
of the C-S-H gel needle, in which the gel pores reside, and the latter tensor is isotropic
Bcp
cpor = Bcp

cpor1. They read as

Bcp
gpor(ngel) = f cpfoamf

foam
gel fgelgpor1 : Agpor : Agel(ngel) : Afoam (7.48)

Bcp
cpor = f cpfoamf

foam
cpor 1 : Acpor : Afoam (7.49)

Stepwise insertion of the C-S-H foam strains, εfoam, according to (7.20), into the expression
of the strains of gel phase εgel, according to (7.27), and further insertion of the result into
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the expression of the strains of gel pores in C-S-H gel RVE, εgpor according to (7.37), yields
– under consideration of the homogenized eigenstresses σhom,Egel , σhom,Efoam , according to (7.35)
and (7.24), and after combination with the porosity change relation (7.36) – the so-called
second state equation of poromechanics in the more classical setting of

∆φcpgpor(ngel) = Bcp
gpor(ngel) : εcp +

2π∫
0

π∫
0

pgpor(ngel∗)
N cp
gpor,gpor(ngel, ngel∗)

sinϑ∗

4π dϑ∗ dϕ∗ + pcpor
N cp
gpor,cpor

.

(7.50)
Notably, ngel is the fixed orientation vector, while ngel∗ is moving along the surface of a unit
sphere. In Eq. (7.50), N cp

gpor,gpor and N cp
gpor,cpor

1 denote cement paste-related solid Biot moduli
relating gel and capillary pore pressures to gel porosity changes, and they read as

1
N cp
gpor,gpor(ngel, ngel∗) = f cpfoamf

foam
gel fgelgpor1 :

[
ffoamgel fgelgporAgpor : Agel(ngel) : Qfoam,foam : Agel(ngel∗)

: 1 : Agpor + ffoamcpor Agpor : Qgel,gel(ngel, ngel∗)

: 1 : Agpor + δ(ngel, ngel∗)Qgpor,gpor : Qgpor,gpor1
]

(7.51)

1
N cp
gpor,cpor

= f cpfoamf
foam
gel fgelgpor1 : Agpor :[

ffoamcpor Agel(ngel) : Qfoam,foam : 1 : Acpor +Qgel,cpor(ngel) : 1
]
(7.52)

with δ(ngel, ngel∗) denoting the tensorial Kronecker-Delta, with δ(ngel, ngel∗) = 1 for ngel =
ngel∗ , and δ(ngel, ngel∗) = 0 for ngel 6= ngel∗ . By analogy, we find the macrostrain-to-capillary
porosity change concentration relation by inserting both the C-S-H foam strains, εfoam,
according to (7.20), as well as the expression for the homogenized eigenstrains of the C-S-H
gel needles, σhom,Egel , according to (7.35), into the expression of capillary pore strains, εcpor,
according to (7.26) – after insertion of the result into (7.25) – as

∆φcpcpor = Bcp
cpor : εcp +

2π∫
0

π∫
0

pgpor(ngel)
N cp
cpor,gpor

sinϑ
4π dϑ dϕ+ pcpor

N cp
cpor,cpor

. (7.53)

Therein, N cp
cpor,gpor and N cp

cpor,cpor denote cement paste-related solid Biot moduli relating gel
pore pressure and capillary pore pressure to the capillary porosity change, respectively, and
they read as

N cp
cpor,gpor = N cp

gpor,cpor , (7.54)

1
N cp
cpor,cpor

= f cpfoamf
foam
cpor 1 :

(
Qcpor,cpor : 1 + ffoamcpor Acpor : Qfoam,foam : 1 : Acpor

)
. (7.55)

1Ncp
gpor,cpor translates the capillary pore pressure into gel porosity changes and since capillary pore pressures

are isotropic Ncp
gpor,cpor is gel orientation-independent. For energetic reasons, Nij = Nji (Dormieux et al., 2006).

Thus, also Ncp
gpor,cpor is gel orientation independent and the argument (ngel) can be omitted.
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The link (7.44) between the macrostrains and pore pressures, finally allows us to derive
the undrained stiffness tensor of cement paste. Insertion of the pore pressures according to
(7.44) into the macrostress expression (7.47) and comparison with the (undrained) elastic law
on the cement paste scale

σcp = Chom,ucp : εcp (7.56)

finally yields the undrained stiffness of cement paste as

Chom,ucp = Chomcp −
2π∫
0

π∫
0

Bcp
gpor(ngel)⊗Lcpgpor(ngel)

sinϑ
4π dϑ dϕ−Bcp

cpor ⊗Lcpcpor , (7.57)

whereby the symbol ⊗ denotes a dyadic product. Having predicted the (drained) homogenized
cement paste stiffness, see (7.15), as well as the undrained homogenized cement paste stiffness
(7.57), we now compare our predictions to experimental results.

7.9 Model validation
Herein, the poroelastic model predictions are presented and compared to several independent
experimentally determined elastic properties. Stiffnesses of (almost) fully hydrated cement
pastes exhibiting w/c ∈ [0.25, 0.85] obtained by resonance frequency measurements from
Helmuth and Turk (Helmuth and Turk, 1966) and from Haecker et. al. (Haecker et al., 2005)
are compared to corresponding model predictions in Subsec. 7.9.1. Experimentally determined
evolutions of elastic properties with respect to the hydration degree, measured by mechanical
and ultrasonic testing at Vienna University of Technology (Karte et al., 2015; Wasserbauer,
2014), are compared to corresponding model predictions in Subsec. 7.9.2.

7.9.1 Fully hydrated cement paste

Two experimental datasets are used for validation of mature cement pastes, shortly summarized
next. Helmuth and Turk (Helmuth and Turk, 1966) studied thin samples (80 by 15 by 1-2mm)
of cement paste (Portland cement with Blaine fineness of 342 and 447 m2/kg, respectively)
exhibiting w/c ranging from 0.35 to 0.85 after several months of water curing at 25◦ Celsius.
They measured the flexural and torsional fundamental resonance frequency, the specimen mass
and specimen dimensions, and back-calculated the Young’s modulus and the shear modulus
of the paste. A similar approach was used from Haecker et. al. (Haecker et al., 2005), who
studied 2 month old water-stored samples of different cement pastes exhibiting w/c ranging
from 0.25 to 0.60.

The model for fully hydrated cement paste ξ = ξult according to (7.11) beautifully predicts
the experimental data, see Fig. 7.4. The difference between drained (black line in Fig. 7.4)
and undrained (blue line) is remarkably small for both the homogenized Young’s and, in
particular, for the homogenized shear modulus. Clearly, the smaller w/c the smaller is the
pore pressure-induced stiffening effect, since in low-w/c-pastes, only a small pore volume
fraction remains at complete hydration ξ = ξult. The relatively large deviation between the
model and experiment for w/c<0.35 probably stems from the fact that specimens of Haecker
et al. (2005) are only two months old, and at very low w/c the hydration process far from
complete (Juenger and Jennings, 2001). In such specimen, capillary water is likely to have
vanished completely due to hydration, while gel water might still be present. Thus, the
poroelastic model prediction for the hydration degree ξII-III according to (7.10), can be seen
as a lower bound for the elastic properties, see Fig. 7.4. Haecker et al. (2005) also noted that
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they observe some bleeding for pastes exhibiting w/c>0.5, implying that the real w/c for such
pastes is definitely smaller. This might explain why the stiffness values for pastes exhibiting
w/c>0.5, as measured by Haecker et al. (2005), are slightly higher than the ones obtained
from Helmuth and Turk (1966) – and also slightly higher than the model-predicted ones.
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Figure 7.4: Young’s modulus and shear modulus, respectively, as a function of the initial
water-to-cement ratio of mature pastes; drained and fully undrained model predictions and
test data from Helmuth and Turk (1966) and Haecker et al. (2005) measured by resonance
frequency methods; gray areas indicate limits for elastic properties (see text)

7.9.2 Early age cement paste

Next, we compare our predictions to early age elastic properties measured at Vienna University
of Technology (Wasserbauer, 2014; Karte et al., 2015). Two mixes (w/c ∈ {0.42; 0.50}) of
commercially available CEM I 42.5N were tested at 20◦ C by means of a mechanical unloading
tests and by means of ultrasonic testing. The mechanical tests were conducted in parallel
to the hydration process with close-to-centric loads causing stresses well below the critical
30% of the material strength. Five LVDTs, evenly distributed around the perimeter of the
specimen, are used for deformation measurements. Ultrasonic tests deliver longitudinal and
transversal wave velocities, respectively, which allow for the back calculation of the so-called
dynamic elastic stiffness components. Notably, the ultrasonic frequency amounting to 250 kHz
ensures that the wavelength is, at any time, larger than 4 mm, i.e. significantly larger than
the characteristic size of the RVE of cement paste, see Fig. 7.1. Hence, scale separation `� L
according to inequalities (7.1) is fulfilled. In order to relate sample ages to hydration degrees,
isothermal differential calorimetry measurements were performed.

Comparing the model-predicted Young’s and shear moduli evolution to mechanical test
results as well as to ultrasonic test results, shows, in general, an excellent agreement between
predictions and test results, see Fig. 7.5. The model predicted drained Young’s moduli
agree remarkably well with the values obtained by mechanical testing. The model-predicted
undrained Young’s moduli are only slightly larger than the drained model results during the
whole hydration regime 0 ≤ ξ ≤ 1. The Young’s moduli determined by means of ultrasonic
measurements are marginally higher than the undrained model predictions and thus also only
slightly higher than the results from the mechanical test campaign. The stiffening effect due
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to pore pressures is negligible for the homogenized shear moduli, in Fig. 7.5, the undrained
predictions overlap the drained ones. Hence, the fact that water does not resist any shear
stresses, reflects itself also at the macroscopic scale, despite the mutual interactions of the pore
water with all the other solid phases throughout the three observation scales. The agreement
between the experimentally determined shear moduli and the model results is outstanding.
While this impressively shows the predictive capabilities of the presented model, we are left
with discussing the pore-pressure induced increase of other elastic properties, as it is done
next.
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Figure 7.5: Comparison of drained and undrained model predictions with experimental data
from TU Wien (ultrasonic (Wasserbauer, 2014; Karte et al., 2015) and mechanical testing
(Karte et al., 2015)) for cement pastes exhibiting w/c ∈ {0.42, 0.50}: (a)+(b) Young’s modulus;
(c)+(d) shear modulus

7.10 Discussion and conclusion
In order to discuss the poromechanical stiffening effect during the hydration-induced hardening
in more detail, we study the evolution of two other homogenized elasticity quantities herein,
namely the homogenized Poisson’s ratio and the 1111-component of the homogenized stiffness
tensor of cement paste. The difference between drained and undrained homogenized Poisson’s
ratio is much more pronounced than the difference between drained and undrained moduli, see
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Fig. 7.6. The Poisson’s ratio for drained conditions amounts to ≈ 0.2 initially and it increases
during ongoing hydration. In the undrained case, however, the initial value of the Poisson’s
ratio amounts to 0.5, and it decreases during ongoing hydration, and thus corroborates results
obtained from Bernard et al. (2003b). This shows that pore pressure-induced stiffening effects
might play a considerable role for characterizing the full elastic behavior of cement paste, in
particular at very early ages. The experimentally determined Poisson’s ratios (back-calculated
from longitudinal and shear wave velocity as measured by ultrasonics) agree reasonably well
with the undrained model predictions, demonstrating that ultrasonic pulses activate pore
pressures. The mechanical tests of Karte et al. (2015) allow for measuring the Young’s
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Figure 7.6: Comparison of the drained and undrained model-predicted Poisson’s ratio with
experimental data from TU Wien (ultrasonic (Wasserbauer, 2014; Karte et al., 2015)) for
cement pastes exhibiting (a) w/c=0.42 and (b) w/c=0.50

moduli only, rendering similar conclusions regarding the activation of pore pressures in such
mechanical tests impossible.

As for the 1111-component of the homogenized stiffness tensor of cement paste again,
undrained predictions are much larger than the drained counterpart, see Fig. 7.7. Given a
typical cement paste used in construction engineering with w/c = 0.60, the 1111-component
of the undrained stiffness is by approximately 30% larger than the drained counterpart at
an hydration degree of ξ = 0.50, and still approximately 10% larger at ultimate hydration
ξ = 1. Our model also allows us to quantify the stiffening effect of gel and capillary porosity
separately. By evaluating the model for the case of drained capillary porosity (pcpor = 0), but
undrained gel porosity (pgpor 6= 0), it is shown that the stiffening effect of the porosity scales
with its volume fractions: in early ages, the capillary pore pressures stiffen the material, while
later on, the gel pore pressures are responsible for the material stiffening.

The good agreements between model predictions and experimental results motivate deeper
study of the poroelastic behavior of cement paste, namely its evolution of as a function of
the hydration degree ξ and its dependence on the initial water-to-cement mass ratio w/c,
see Fig. 7.8-7.10. The drained Young’s modulus of cement paste increases with increasing
hydration degree, and decreases with increasing water-to-cement mass ratio, see Fig. 7.8(a).
A similar dependence is observed at the scale of the C-S-H foam, which, however, is always
softer tan the corresponding cement paste. Respective factors vary between 1.1 (at w/c=0.3)
and 2.7 (at w/c=1.0) for complete hydration ξ=1.0, while they typically amount to 5 at early
ages, see Fig. 7.8(b). This demonstrates the reinforcing effect of the clinker grains, which is
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particular effective at early ages. A difference emerges at the C-S-H gel scale where, with
increasing hydration degree, the elastic Young’s modulus first rapidly decreases, and then
starts to increase only with hydration degree between 0.2 and 0.6. In more detail, the C-S-H
scale-related Young’s modulus is constant and amounts to 63.6GPa in hydration regime I
(ξ ≤ ξI-II), since no gel pores are present. If hydration proceeds, the gel pore stiffness sharply
drops to minimum values of ≈ 5.5GPa and then continually increases again, see Fig. 7.8(c).
As for the Poisson’s ratio of the C-S-H gel, the constant value in hydration regime I amounts to
0.28, and the initial decrease at the scale of the gel further translates itself to the larger scales
of the C-S-H foam and the cement paste, see Fig. 7.8(d)-(f). While the undrained Young’s
modulus very much agrees with the drained counterpart [see Fig. 7.9(a) and compare with
Fig. 7.8(a)], the undrained Poisson’s ratio, unlike the drained one, decreases, from initial values
of 0.5, with increasing hydration degree in most of the studied w/c interval, see Fig. 7.9(b).

Next, we discuss the Biot tensors and the Biot moduli. The isotropic Biot tensor for
the capillary pores Bcp

cpor = Bcp
cpor1 is equal to one for ξ = 0, it smoothly decreases with

increasing hydration degree, and reaches zero for ξ = ξII-III; and in hydration regime III,
it does not exist anymore as the capillary pore space has vanished, see Fig. 7.10(a). This
shows, that capillary pore pressures affect the macroscopic stresses, according to the first
poromechanical state equation (7.47), in particular at early ages. The gel pore-related
Biot tensors do not exist in hydration regime I, and they amount to zero at the ξ = ξI-II.
We visualize these anisotropic tensors for C-S-H gel needle oriented in ez-direction so that
Bcp
gpor = Bcp

gpor,t(ex⊗ex+ey⊗ey)+Bcp
gpor,lez⊗ez. The longitudinal and transversal component,

Bcp
gpor,l and B

cp
gpor,t, exhibit similar dependencies with respect to ξ and w/c, see Fig. 7.10(b)-

(c), whereby Bcp
gpor,l > Bcp

gpor,t; they increase, for increasing hydration degree, from ξ= ξI-II
continuously up to approximately ξ=ξII-III, and afterwards, they decrease sharply due to the
sharply decreasing gel pore volume fraction. The Biot moduli, in turn, relate the pore pressures
to the pore volume changes, see the poroelastic state equations (7.42) and (7.43). Again,
studying their dependencies as function of ξ and w/c strongly reflects the three hydration
regimes of Fig. 7.2. The Biot modulus N cp

cpor,cpor rapidly goes to infinity for ξ→ ξII-III, see
Fig. 7.10(d), demonstrating that capillary pore pressures in the end of hydration regime II
hardly affect the capillary pore volume, due to the vanishing capillary porosity. The Biot
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Figure 7.8: Drained RVE-specific homogenized Young’s moduli (a)-(c) and Poisson’s ratios
(d)-(f), as functions of w/c and ξ
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Figure 7.9: Undrained cement paste-related Young’s moduli (a) and Poisson’s ratios (b), as
functions of w/c and ξ

moduli N cp
gpor,cpor = N cp

cpor,gpor exist neither in hydration regime III, nor in hydration regime I,
see Fig. 7.10(e), and they are negative in hydration regime II. Hence, capillary pore pressures
increase the gel pore volume, and gel pore pressures increase the capillary pore volume. In
order to visualize the C-S-H gel orientation dependent Biot moduli N cp

gpor,gpor(ngel, ngel∗), we
focus on its maximum value which occurs for the case of ngel = ngel∗ , which does not depend
on the C-S-H gel orientation anymore. Its dependencies on ξ and w/c are reminiscent of those
encountered at the cement paste scale, see Fig. 7.10(f).

In summary, by developing a novel representation of the cement pastes’ nano- and
microstructure, taking into account latest findings regarding the densification of C-S-H and
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Figure 7.10: Cement paste-related Biot tensor components (a)-(c) and Biot moduli (d)-(f), as
functions of w/c and ξ; note that: Bcp

cpor = Bcp
cpor1 is isotropic; Bcp

gpor is shown for the needle
aligned with ez implying Bcp

gpor = Bcp
gpor,t(ex ⊗ ex + ey ⊗ ey) +Bcp

gpor,lez ⊗ ez; the Biot moduli
N cp
gpor,gpor(ngel, ngel∗) are shown for the case of ngel = ngel∗ for which they do not depend on

the C-S-H gel orientation

regarding the morphology and stiffness of the solid C-S-H nanoparticles, we developed a
micromechanical multiscale model for poroelastic nano-to-macro homogenization. Remarkably,
the model does not introduce any parameters which have to be calibrated from macroscopic
experiments. All mechanical input quantities either stem from physically sound experimental
methods, or from yet another model at the atomistic scale (Manzano et al., 2012) for the
elastic stiffness the nanometer-large solid C-S-H particles. The volume evolution of the
cement paste constituents, in turn, are predicted based on a recently developed and validated
hydration model (Königsberger et al., 2016a). This allows for model validation in a very
strict sense, by comparing the blind stiffness predictions to experimental results from four
different comprehensive testing campaigns conducted in three different laboratories by means
of three different testing principles (resonance frequency methods, ultrasonics, and machanical
testing). Surviving all these falsification attempts demonstrates the reliability of the presented
micromechanical model and the underlying microstructural representation. Moreover, we can
conclude that the homogenized Young’s modulus and the homogenized shear modulus for the
case of drained and undrained pore spaces are very close to each other, which agrees very well
with recent experimental insights (Karte et al., 2015; Irfan-ul-Hassan et al., 2016). However,
a very significant pore pressure-induced increase of the homogenized Poisson’s ratio or the
homogenized 1111 stiffness tensor component is found, in particular so at early ages.
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Appendix A: Base frames and numerical integration over the
surface of a unit sphere
Use of different base frames enables the computational handling of material phases which are
oriented in all space directions (solid C-S-H crystals, C-S-H gel needles, and CH crystals),
see Fig. 7.1. The orientation of these needles can be described based on the link between
the global (RVE-related) and the local (phase-related) base frame. Therefore, we recall
the transformation rules for fourth-order tensors. Finally, the present section addresses the
numerical integration scheme used for computing the integrals over the surface of a unit sphere
in terms of zenith angle ϑ and azimuth angle ϕ.

We consider, apart from the global Cartesian base frame ex,ey,ez, a local base frame
eϑ,eϕ,er moving along along the surface of a unit sphere, see Fig. 7.11. The zenith angle ϑ

er=nsCSH

ϑ

ϕ

er=nCH

eϕ

ϑ = const.

eϑ
ϕ = const.

ex

ey

ez

aϑ

aϕar

ϑ

ϕ

eϕ

eϑ
ϕ = const.

ex

ey

ez

ar

er=ngel

aϑ

aϕ

ϑ = const.

(a) oblate spheroid aϑ=aϕ>ar (b) prolate spheroid aϑ=aϕ<ar

Figure 7.11: Global Cartesian base frame e1,e2,e3 and local spherical base frame eϑ,eϕ,er;
and characterization of the orientation of oblate solid C-S-H crystals and of disc shaped CH
crystals (a), and of needle shaped C-S-H gel needles (b), by the unit normal vector in the axis
of rotational symmetry nsCSH , nCH , and ngel, respectively, which corresponds to the base
vector er

and the azimuth angle ϕ allow for characterization of the position on the surface of a unit
sphere. Moreover, they also allow us to describe the orientation of the non-spherical phases
considered in our multiscale micromechanics model. Solid C-S-H element orientation is given
by the unit normal vector nsCSH which is orthogonal to the plane of isotropy, and is therefore
aligned with the axis of rotational symmetry of the oblate spheroid. Notably, nsCSH coincides
with the base vector er, see Fig. 7.11(a). By analogy, the orientation of the needle-shaped
C-S-H gel needles is characterized by the unit normal vector ngel, see Fig. 7.11(b), and the
orientation of penny-shaped CH element is characterized by the unit normal vector nCH , see
again Fig. 7.11(a).

Next, the transformation rules for fourth-order tensor components are shortly recalled.
A fourth-order tensor T with components Tijkl (exhibiting minor symmetry, Tijkl = Tijlk =
Tjilk = Tjikl) given in the local spherical base eϑ, eϕ, er is introduced. The transformation of
components referring to this local base, to components referring to the global Cartesian base



Poroelasticity of hydrating cement pastes 148

reads as
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(7.58)
whereby Q denotes a 6× 6 transformation matrix with elements reading as
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(7.59)

and Qij are the elements of the 3× 3 transformation matrix Q reading as

Q =

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 =

cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0

sinϑ cosϕ sinϑ sinϕ cosϑ

 (7.60)

Transformation rule (7.58) allows for e.g. transformation of local spherical components of the
transversely isotropic stiffness tensors given in (7.30) and (7.13), to the global Cartesian ones,
in order to account for the element orientation.

We are left with discussing the integration of a tensorial quantity T over the surface of a
unit sphere. This enables us to account for phases which are oriented in all space directions
(solid C-S-H crystals, C-S-H gel needles and CH discs). Since analytical integration is out of
reach for the surface integrals encountered herein, a discretized approach is employed. Herein,
we use a 15-point numerical integration rule (Stroud, 1971). Thus, the integration over an
infinite amount of orientations is approximated by a summation over 15 orientation as follows

2π∫
0

π∫
0

T(ϑ, ϕ)sinϑ
4π dϑ dϕ ,≈ 1

15

15∑
i=1
T(ϑi, ϕi) (7.61)

whereby ϑi and ϕi are the position angles referring to integration point i (see (Pichler et al.,
2009) or (Stroud, 1971) for numerical values), and the factor 1/15 is the uniform weight at
each point and can therefore be taken out from the sum. Notably, this numerical integration
method is exact for integration of polynomials with degrees up to 5 (Stroud, 1971). Thus, it
also represents a very good approximation for the integration of the gel orientation-dependent
gel pore pressures pgpor(ngel).
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Appendix B: Discretized aspect ratio distribution
Herein, we discuss the discretization of the aspect ratio distribution of solid C-S-H crystals,
introduced in Sec. 7.6. We first recall that aspect ratios of solid C-S-H crystals are a function
of the available precipitation space γ, see Fig. 7.3. Given our interest in a model capable
of predicting poroelastic properties as a function of hydration degree ξ and water-to-cement
mass ratio w/c, a link between precipitation space and hydration degree is required. This link
was derived in the Königsberger et al. (2016a) and it reads as

γ = 3.185w/c− 0.755 ξ
3.185w/c+ 0.349 ξ (7.62)

Next, we can give details on the discretization. In the first precipitation increment ∆γ(1),
a crystal family exhibiting aspect ratio X(1)

sCSH precipitates, implying immediate non-zero
stiffness at the level of the RVE of C-S-H gel. The crystals precipitating in this first increment
are chosen to be penny-shaped infinite long with aspect ratio X(1)

sCSH =0. The increment is
chosen to cover a very small precipitation space range: ∆γ(1) =10−3. Next, the remaining
precipitation space interval γ ∈ [γ∗, 1 − ∆γ(1)] is subdivided into (nf −1) precipitation
increments ∆γ, with nf denoting the number of aspect ratio families considered. Further
hydration in terms of γ ∈ [1−∆γ(1), 1−∆γ(1)−∆γ] results in precipitation of solid C-S-H
crystals of aspect ratio X(2)

sCSH , which follows from the mean precipitation space value in the
current interval, γ(2), according the linear relation (7.29) as XsCSH = 1 − γ(2). Within the
third precipitation increment γ ∈ [1−∆γ(1)−∆γ, 1−∆γ(1)−2∆γ], crystals with aspect ratio
X3
sCSH precipitate, whereby the aspect ratio X3

sCSH , by analogy to increment two, follows
from the mean precipitation space value γ3 as X3

sCSH = 1−γ3. This procedure is repeated
up to the last precipitation increment γ ∈ [γ∗+∆γ, γ∗]. We are left with assigning, to the
i-th family, volume fractions fsCSHi , with i = 1...nf , whereby

∑nf
i=1 f

sCSH
i = 1. Since the

volume fraction is proportional to the length of the precipitation increment, and since the
increment length is chosen to be constant for all increments after the first one, the volume
fractions are also constant, fsCSH2 = fsCSH3 = ...fsCSHnf

= ∆γ/(1 − γ∗). The volume fraction
of the first family, however, follows as fsCSH1 = ∆γ(1)/(1 − γ∗). In summary, we deal, at a
particular maturity state in terms of the precipitation space parameter γ∗, with a C-S-H gel
RVE with nf aspect ratio families exhibiting uniformly distributed aspect ratios. Thereby,
each aspect ratio family consists of crystal phases, which are oriented in 15 particular space
directions (see Appendix A).

As for the computation, we consider, that RVE at all maturity states exhibit the same
amount of aspect ratio families. Therefore, the increment lengths ∆γ increase with decreasing
precipitation space γ. This procedure avoids kinks in the results since the aspect ratio
discretization is smoothly running in the interval which has to be covered. Keeping the
precipitation increment length constant would lead to an increasing aspect ratio family
number which, in turn, would lead to a kink in the results when a new family starts to evolve.
It turns out that considering nf = 20 aspect ratio families, already delivers a convergent
solution.
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Appendix C: Computational implementation based on 15
element orientations and 20 aspect ratio families
Herein, we provide full details on the computational implementation of the poro-micromechanical
homogenization and the poromechanics at all involved scales discussed in Sec. 7.4-7.6. Thereby,
we use the 15 point numerical integration scheme (7.61) to account for the orientation of solid
C-S-H crystals, of C-S-H gel elements, and of CH crystals, as it was described in Appendix A.
Moreover, we consider the discretized aspect ratio distribution involving 20 aspect ratio
families, see Appendix B. We start the derivation at the smallest scale.

Within an RVE of C-S-H gel, we now deal with spherical gel pores and 20 aspect ratio
families of solid C-S-H crystals with aspect ratio XsCSH = X

(1)
sCSH ...X

(20)
sCSH , whereby each

family is oriented in 15 space directions described by normal vectors n(1)
sCSH ...nsCSH

(15).
Thus, in total the RVE contains 15× 20 + 1=301 material phases. The phase strains at the
solid C-S-H scale stem from the strains in the solid C-S-H gel and from the gel pore pressure,
see (7.38) and (7.37), respectively. These equations involve phase strain concentration AsCSH

as well as Agpor, and eigenstress influence tensors QsCSH,gpor as well as Qgpor,gpor, discussed
next. The phase strain concentration tensors read as

AsCSH(n(i)
sCSH , X

(j)
sCSH) = A∞,sCSH(n(i)

sCSH , X
(j)
sCSH) :

(301∑
r=1

fgelr A∞,r

)−1

(7.63)

Agpor = A∞,gpor :
(301∑
r=1

fgelr A∞,r

)−1

, (7.64)

with A∞,j as Eshelby problem-related strain concentration tensors, assigning remote matrix
strains to inclusion strains in the corresponding Eshelby problems (Eshelby, 1957). Due to
the polycrystalline nature of the RVE of C-S-H gel, the stiffness of the infinite matrix in
the underlying matrix-inclusion problems, C∞, is chosen to be equal to the homogenized
stiffness of the gel RVE. Considering C∞ = Chomgel yields the Eshelby problem-related strain
concentration tensors as

A∞,sCSH(n(i)
sCSH , X

(j)
sCSH) =

[
I+ PsCSH(n(i)

sCSH , X
(j)
sCSH) :

(
CsCSH(n(i)

sCSH)− Chomgel

)]−1

(7.65)

A∞,gpor = (I− Sgpor)−1 , (7.66)

whereby in the latter Eq. we take advantage of the vanishing pore stiffness. Aspect ratio
family-specific and orientation-specific Hill Tensors PsCSH and Eshelby tensor of the spherical
gel pores Sgpor are discussed in Appendix D. Also the transversely isotropic stiffness tensor of
the solid C-S-H crystals [for components related to the local base frame eϑ,eϕ,er see (7.30)] is
a function of the orientation nsCSH , see also Fig. 7.11. Orientation-dependent tensors follow
from transformation of local components to global ones, see (7.58), whereby the angles ϑi, ϕi

which describe the orientation vector n(i)
sCSH of the solid C-S-H crystals (see Fig. 7.11) are

used to construct transformation matrices Q and Q, see (7.60) and (7.59), respectively. The
sum in (7.63) and (7.64) comprise all solid C-S-H phases (20 considered aspect ratio families
with 15 orientations in each family) and also includes the gel pore phase – thus, index r runs



Poroelasticity of hydrating cement pastes 151

from 1 to 301 – allowing for rewriting the sum as

301∑
r=1

fgelr A∞,r = 1
15f

gel
sCSH

15∑
i=1

20∑
j=1

fsCSHj A∞,sCSH(n(i)
sCSH , X

(j)
sCSH) + fgelgporA∞,gpor (7.67)

whereby the family volume fraction related to the total solid C-S-H volume fsCSHj is given in
Appendix B, and the gel-related volume fraction of solid C-S-H and of gel pores can be found in
Sec. 7.6. Phase eigenstress influence tensor are derived next. Since the homogenized eigenstress
of the infinite matrix is chosen to be equal to the homogenized eigenstress, σE∞ = σhom,Egel , the
eigenstress influence tensor Qgpor,gpor then read as (Pichler and Hellmich, 2010)

Qgpor,gpor =
[
I− fgelgporAgpor

]
: A∞,gpor : Pgpor+[

Agpor :
301∑
r=1

fgelr A∞,r : Pr −A∞,gpor : Pgpor

]
: fgelgporA

T
gpor (7.68)

QsCSH,gpor(n(i)
sCSH ,X

(j)
sCSH)=−AsCSH(n(i)

sCSH , X
(j)
sCSH) : fgelgporA∞,gpor : Pgpor+[

Agpor :
301∑
r=1

fgelr A∞,r : Pr −A∞,gpor : Pgpor

]
: fgelgporA

T
gpor (7.69)

with the sum being equal to

301∑
r=1

fgelr A∞,r : Pr = 1
15f

gel
sCSH

15∑
i=1

20∑
j=1

fsCSHj A∞,sCSH(n(i)
sCSH , X

(j)
sCSH) : PsCSH(n(i)

sCSH , X
(j)
sCSH)

+ fgelgporA∞,gpor : Pgpor
(7.70)

The homogenized (drained) isotropic stiffness Chomgel follows from (7.32), which can be rewritten
in discretized fashion as

Chomgel = 1
15f

gel
sCSH

15∑
i=1

20∑
j=1

fsCSHj CsCSH(nsCSH) : AsCSH(n(i)
sCSH , X

(j)
sCSH) . (7.71)

The homogenized eigenstress is C-S-H orientation-dependent, see (7.35) – in discretized form,
we get the homogenized eigenstress of the RVE of gel oriented in n(i)

gel direction as

σhom,Egel (n(i)
gel) = −fgelgporpgpor(n

(i)
gel)1 : Agpor , (7.72)

whereby herein, we deal with 15 orientations n(1)
gel...n

(15)
gel .

Within the polycrystalline nature of the RVE of C-S-H foam, C-S-H gel needles in 15
particular orientations n(1)

gel . . . n
(15)
gel and spherical water-filled capillary pores as well as voids,

are intermixed. The phase strains follow from (7.27)-(7.28), whereby the double integral over
the unit sphere surface is replaced by the sum over the 15 considered orientations n(1)

gel...n
(15)
gel ,

see (7.61). We need analytical access to phase strain concentration tensors for gel needles
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oriented in direction n(i)
gel, Agel, for capillary pores Acpor, and for voids, Avoid. They read as

Agel(n
(i)
gel) = A∞,gel(n

(i)
gel) :

( 17∑
r=1

ffoamr A∞,r

)−1

(7.73)

Acpor = A∞,cpor :
( 17∑
r=1

ffoamr A∞,r

)−1

(7.74)

Avoid = A∞,void :
( 17∑
r=1

ffoamr A∞,r

)−1

, (7.75)

whereby the sum comprises the 15 gel phases with orientations n(i)
gel, the capillary pores, and

the voids. The involved Eshelby problem-related strain concentration tensors follow from
the underlying matrix-inclusion problem. Due to the polycrystalline nature of the RVE,
the stiffness of the infinite matrix in the matrix-inclusion problem is chosen to be equal
to the homogenized stiffness of the C-S-H foam RVE, C∞ = Chomfoam. Thus, the Eshelby
problem-related strain concentration tensors read as

A∞,gel(n
(i)
gel) =

[
I+ Pgel(n

(i)
gel) :

(
Chomgel − Chomfoam

)]−1
(7.76)

A∞,cpor = A∞,void = (I− Scpor)−1 , (7.77)

whereby we take advantage of the vanishing pore and void stiffness. Hill and Eshelby tensors
can be found in the Appendix D, and transformation rule (7.58) – considering the angles ϑi

and ϕi which describe the 15 orientation of n(i)
gel – is again used to obtain the gel orientation-

dependent tensor Pgel. The sum in (7.76) and (7.77) can be rewritten as

17∑
r=1

ffoamr A∞,r = 1
15f

foam
gel

15∑
i=1
A∞,gel(n

(i)
gel) +

(
ffoamcpor + ffoamvoid

)
A∞,cpor (7.78)

The eigenstress influence tensors Qgel,gel, Qgel,cpor, Qcpor,gel, Qcpor,cpor, Qvoid,gel, and Qvoid,cpor,
which occur in the phase strain expressions (7.27)-(7.28), follow for the polycrystalline nature
of the RVE (the eigenstress of the infinite matrix in the matrix-inclusion problem is equal to
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the homogenized eigenstress) as

Qgel,gel(n
(i)
gel, n

(j)
gel) =

[
δijI−

1
15f

foam
gel Agel(n

(i)
gel)
]

: A∞,gel(n
(i)
gel) : Pgel(n

(i)
gel)+[

Agel(n
(i)
gel) :

17∑
r=1

ffoamr A∞,r : Pr −A∞,gel(n
(i)
gel) : Pgel(n

(i)
gel)
]

: 1
15f

foam
gel AT

gel(n
(j)
gel) (7.79)

Qgel,cpor(n
(i)
gel) =−Agel(n

(i)
gel) : ffoamcpor A∞,cpor : Pcpor+[

Agel(n
(i)
gel :

17∑
r=1

ffoamr A∞,r : Pr −A∞,gel(n
(i)
gel) : Pgel(n

(i)
gel)
]

: ffoamcpor AT
cpor (7.80)

Qcpor,gel(n
(i)
gel) =−Acpor : 1

15f
foam
gel A∞,gel(n

(i)
gel) : Pgel(n

(i)
gel)+[

Acpor :
17∑
r=1

ffoamr A∞,r : Pr −A∞,cpor : Pcpor

]
: 1

15f
foam
gel AT

gel(n
(i)
gel)

(7.81)

Qcpor,cpor =
[
I− ffoamcpor Acpor

]
: A∞,cpor : Pcpor+[

Acpor :
17∑
r=1

ffoamr A∞,r : Pr −A∞,cpor : Pcpor

]
: ffoamcpor AT

cpor (7.82)

Qvoid,gel(n
(i)
gel) =−Avoid : 1

15f
foam
gel A∞,gel(n

(i)
gel) : Pgel(n

(i)
gel)+[

Avoid :
17∑
r=1

ffoamr A∞,r : Pr −A∞,void : Pvoid

]
: 1

15f
foam
gel AT

gel(n
(i)
gel)

(7.83)

Qvoid,cpor =−Avoid : ffoamcpor A∞,cpor : Pcpor+[
Avoid :

17∑
r=1

ffoamr A∞,r : Pr −A∞,void : Pvoid

]
: ffoamcpor AT

cpor (7.84)

with the sum being equal to∑17
r=1 f

foam
r A∞,r : Pr = 1

15f
foam
gel

∑15
i=1A∞,gel(n

(i)
gel) : Pgel(n

(i)
gel) +

(
ffoamcpor + ffoamvoid

)
A∞,cpor : Pcpor

(7.85)
The homogenized (drained) stiffness Chomfoam follows from (7.22) in discretized form as

Chomfoam = 1
15f

foam
gel

15∑
i=1
Chomgel : Agel(n

(i)
gel) . (7.86)
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The homogenized eigenstress of the C-S-H-foam related RVE, in turn, follows from (7.24) in
discretized form as

σhom,Efoam = 1
15f

foam
gel

15∑
i=1
Agel(n

(i)
gel) : σhom,Egel (n(i)

gel)− f
foam
cpor pcpor1 : Acpor . (7.87)

Within an RVE of cement paste, transversely isotropic CH crystals, oriented in 15 space
directions (expressed in terms of orientation vector nCH), as well as spherical clinker grains
are embedded within a C-S-H foam matrix. Phase strain expressions (7.18)-(7.20) involve
strain concentration tensors and eigenstress influence tensor, given next. The phase strain
concentration tensors read as

Acem = A∞,cem :
( 17∑
r=1

f cpr A∞,r

)−1

(7.88)

ACH,m = A∞,CH,m :
( 17∑
r=1

f cpr A∞,r

)−1

(7.89)

Afoam = A∞,foam :
( 17∑
r=1

f cpr A∞,r

)−1

, (7.90)

whereby the sum comprises 17 phases: CH phases oriented in 15 directions, clinker grains and
the C-S-H foam matrix. Due to the matrix-inclusion-type RVE, the stiffness of the infinite
matrix is chosen to be equal to the stiffness of the C-S-H foam (Mori-Tanaka scheme). This
implies that C∞ = Chomfoam and that Eshelby problem-related strain concentration tensors read
as

A∞,cem =
[
I+ Pcem :

(
Ccem − Chomfoam

)]−1
(7.91)

A∞,CH(niCH) =
[
I+ PCH(niCH) :

(
CCH,m − Chomfoam

)]−1
(7.92)

A∞,foam = I . (7.93)

Again, Hill tensors can be found in Appendix D. The sums in (7.88)-(7.90) can be rewritten
as

17∑
r=1

f cpr A∞,r = f cpcemA∞,cem + 1
15f

cp
CH

15∑
i=1
A∞,CH(niCH) + f cpfoamAfoam (7.94)

The 17 eigenstress influence tensors Qcem,foam, QCH,foam, Qfoam,foam follow from the general
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eigenstrain influence tensor expressions presented in (Pichler and Hellmich, 2010) as

Qcem,foam =−Acem : f cpfoamA∞,foam : Pfoam+[
Acem :

17∑
r=1

f cpr A∞,r : Pr −A∞,cem : Pcem

]
:

[ 17∑
r=1

f cpr

(
Chomcp − Cr

)
: A∞,r : Pr

]−1

:

f cpfoam

[
(I−Afoam)T +

(
Chomcp − Chomfoam

)
: A∞,foam : Pfoam

]
(7.95)

QCH,foam(niCH) =−ACH(niCH) : f cpfoamA∞,foam : Pfoam+[
ACH(niCH) :

17∑
r=1

f cpr A∞,r : Pr −A∞,CH(niCH) : PCH(niCH)
]

:

[ 17∑
r=1

f cpr

(
Chomcp − Cr

)
: A∞,r : Pr

]−1

:

f cpfoam

[
(I−Afoam)T +

(
Chomcp − Chomfoam)

)
: A∞,foam : Pfoam

]
(7.96)

Qfoam,foam =
[
I− f cpfoamAfoam

]
: A∞,foam : Pfoam+

[
Afoam :

17∑
r=1

f cpr A∞,r : Pr −A∞,foam : Pfoam

]
:

[ 17∑
r=1

f cpr

(
Chomcp − Cr

)
: A∞,r : Pr

]−1

:

f cpfoam

[
(I−Afoam)T +

(
Chomcp − Chomfoam

)
: A∞,foam : Pfoam

]
, (7.97)

with the sums reading as

17∑
r=1

frA∞,r : Pr = f cpcemA∞,cem : Pcem + 1
15f

cp
CH

15∑
i=1
A∞,CH(niCH) : PCH(niCH)

+ f cpfoamAfoam : Pfoam

(7.98)

and
17∑
r=1

f cpr

(
Chomcp − Cr

)
: A∞,r : Pr =f cpcem

(
Chomcp − Ccem

)
A∞,cem : Pcem

+ 1
15f

cp
CH

15∑
i=1

(
Chomcp − CCH(niCH)

)
A∞,CH(niCH) : PCH(niCH)

+ f cpfoam

(
Chomcp − Chomfoam

)
A∞,foam : Pfoam

(7.99)
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The homogenized (drained) stiffness of cement paste is obtained by rewriting integral expression
(7.15) for the 15 CH crystal orientation as

Chomcp = f cpcemCcem : Acem + 1
15f

cp
CH

15∑
i=1
CCH(niCH) : ACH(niCH) + f cpfoamC

hom
foam : Afoam .

(7.100)
The homogenized eigenstress of the C-S-H-foam related RVE, in turn, is obtained from (7.17).

Next, the computational approach to obtain the undrained stiffness is discussed. Nu-
merically, we consider 15 orientations of the C-S-H gel needles. Thus, we also deal with 15
particular gel pore pressures and additionally with the (orientation-independent) capillary
pore pressure. First, we present, by analogy to (7.50), the relation between the porosity
change in the 15 gel pore phases and in the capillary pore phase, respectively, as a function of
all 16 pore pressures and as function of the macrostrain εcp. The procedure to obtain these
expression is similar to the one given in Sec. 7.8. For the porosity change of the 15 gel pore
phases, we arrive at

∆φcpgpor(n
(i)
gel) = Bcp

gpor(n
(i)
gel)

cp : εcp +
15∑
j=1

pgpor(n(j)
gel)

N cp
gpor,gpor(n(i)

gel, n
(j)
gel)

+ pcpor
N cp
gpor,cpor

. (7.101)

Therein, Bcp
gpor denotes the cement paste-related Biot tensor for the gel pore phase in C-S-H gel

RVE with orientation (n(i)
gel), and N cp

gpor,gpor as well as N cp
gpor,cpor denote the cement paste-related

solid Biot moduli. They read as

Bcp
gpor(n

(i)
gel) = 1

15f
cp
foamf

foam
gel fgelgpor1 : Agpor : Agel(n

(i)
gel) : Afoam (7.102)

1
N cp
gpor,gpor(n(i)

gel, n
(j)
gel)

= 1
15f

cp
foamf

foam
gel fgelgpor1 :

[ 1
15f

foam
gel fgelgporAgpor : Agel(n

(i)
gel) : Qfoam,foam : Agel(n

(j)
gel) : 1 : Agpor

+ffoamcpor Agpor : Qgel,gel(n
(i)
gel, n

(j)
gel) : 1 : Agpor + δijQgpor,gpor : 1

]
(7.103)

1
N cp
gpor,cpor

= 1
15f

cp
foamf

foam
gel fgelgpor1 : Agpor :[

ffoamcpor Agel(n
(i)
gel) : Qfoam,foam : 1 : Acpor +Qgel,cpor(n

(i)
gel) : 1

]
(7.104)

whereby N cp
gpor,cpor is gel-orientation independent of which we can assure ourselves by evaluating

(7.104) for all 15 gel orientations i = 1, 2, . . . 15. By analogy to the gel porosity changes (7.101),
we find the capillary porosity changes in discretized form of (7.53) as

∆φcpcpor = Bcp
cpor : εcp +

15∑
i=1

pgpor(n(i)
gel)

N cp
cpor,gpor

+ pcpor
N cp
cpor,cpor

. (7.105)

Therein, Bcp
cpor denotes the cement paste-related Biot tensor for the capillary pore phase, and

N cp
cpor,gel as well as N cp

cpor,cpor denote the cement paste-related solid Biot moduli, and they
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respectively read as

Bcp
cpor =f cpfoamf

foam
cpor 1 : Acpor : Afoam (7.106)

1
N cp
cpor,gpor

=f cpfoamf
foam
cpor 1 :

(
fgelgporQcpor,gel(n

(i)
gel) : 1 : Agpor

+ 1
15f

foam
gel fgelgporAcpor : Qfoam,foam : Agel(n

(i)
gel) : 1 : Agpor

)
(7.107)

1
N cp
cpor,cpor

=f cpfoamf
foam
cpor 1 :

(
Qcpor,cpor : 1 + ffoamcpor Acpor : Qfoam,foam : 1 : Acpor

)
. (7.108)

Notably, Ni,j = Nj,i for energetic reasons (Dormieux et al., 2006) and therefore whereby
N cp
cpor,gpor is also gel-orientation independent.
Next, we calculate the 16 pore pressures as function of the macroscopic stresses, i.e. we

try to find the gel orientation dependent tensors Lgpor and the tensor Lcpor, respectively,
introduced in (7.44). Therefore, we compare gel porosity change relations (7.101) with the
corresponding relations stemming from the gel water compressibility (7.42), and we compare
capillary porosity change relation (7.105) with the corresponding relations stemming from the
capillary water compressibility (7.43), allowing us to obtain a system of 16 equations for the
16 unknown pore pressures which can be given in matrix form, by analogy to the approach
presented in (Hellmich et al., 2009), as

M×



pgpor(n(1)
gel)

pgpor(n(2)
gel)

...
pgpor(n(15)

gel )
pcpor


=



−M cp
gporB

cp
gpor(n

(1)
gel)

−M cp
gporB

cp
gpor(n

(2)
gel)

...
−M cp

gporB
cp
gpor(n

(15)
gel )

−M cp
cporB

cp
cpor


: εcp (7.109)

with M standing for the matrix

M =



1 Mcp
gpor

Ncp
gpor,gpor(n

(1)
gel
,n

(2)
gel

)
· · · Mcp

gpor

Ncp
gpor,gpor(n

(1)
gel
,n

(15)
gel

)
Mcp
gpor

Ncp
gpor,cpor

Mcp
gpor

Ncp
gpor,gpor(n

(2)
gel
,n

(1)
gel

)
1 · · · Mcp

gpor

Ncp
gpor,gpor(n

(2)
gel
,n

(15)
gel

)
Mcp
gpor

Ncp
gpor,cpor

... . . . ...
Mcp
gpor

Ncp
gpor,gpor(n

(15)
gel

,n
(1)
gel

)
Mcp
gpor

Ngpor,gpor(cpn(15)
gel

,n
(2)
gel

)
· · · 1 Mcp

gpor

Ncp
gpor,cpor

Mcp
cpor

Ncp
cpor,gpor

Mcp
cpor

Ncp
cpor,gpor

· · · Mcp
cpor

Ncp
cpor,gpor

1


(7.110)

and with modulus-type quantities M cp
gpor and M cp

cpor reading as

1
M cp
gpor

= 1
15
fgelgpor

kH2O
+ 1
N cp
gpor,gpor(n(i)

gel, n
(i)
gel)

, (7.111)

1
M cp
cpor

=
ffoamcpor

kH2O
+ 1
N cp
cpor,cpor

. (7.112)

Notably, the influence of the gel pore pressure on the porosity change of the very same gel
pore is gel orientation-independent, hence, also M cp

gpor is orientation-independent. Eq. (7.109)
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represents a linear inhomogeneous system of equation which solution finally gives access to
the 16 pore pressures as a function of the macrostrains εcp, i.e. it provides access to the sought
tensors Lcpgpor and Lcpcpor as

Lcpgpor(n
(1)
gel)

Lcpgpor(n
(2)
gel)

...
Lcpgpor(n

(15)
gel )

Lcpcpor


= M−1 ×



−M cp
gporB

cp
gpor(n

(1)
gel)

−M cp
gporB

cp
gpor(n

(2)
gel)

...
−M cp

gporB
cp
gpor(n

(15)
gel )

−M cp
cporB

cp
cpor


(7.113)

We are left with presenting the discretized counterpart to the expression of the undrained
cement paste stiffness (7.57), which simply reads as

Chomcp,ud = Chomcp −
15∑
i=1
Bcp
gpor(n

(i)
gel)⊗L

cp
gpor(n

(i)
gel)−B

cp
cpor ⊗Lcpcpor (7.114)

Appendix D: Accounting for phase shapes: Eshelby and Hill
tensors
In order to complete the analytical derivations presented in Sec. 7.6-7.8 and Appendix C,
we need analytical access to Hill Tensors for oblate spheroids (as this shape is assumed to
represent the solid C-S-H crystals), for cylindrical inclusions (needle-shaped gel elements), for
flat oblates (disc-shaped CH crystals), and for spherical inclusions (pores, cement clinker).
We deal with a spheroidal inclusion with semi axis aϑ=aϕ, ar with respect to the local base
frame eϑ, eϕ, er, whereby er is the axis of rotational symmetry and semi axis aϑ aligns with
the base vector eϑ (and similarly aϕ with eϕ and ar with er), see Fig. 7.11. This inclusion is
embedded within an infinite matrix exhibiting isotropic stiffness tensor C∞ with Poisson’s
ratio ν∞. Then the Hill tensor P of the spheroid can be obtained from the Eshelby Tensor S
as

P = S : C−1
∞ , (7.115)

whereby S is a function of the inclusion’s aspect ratio X=ar/aϑ and of the stiffness of the
infinite matrix (Eshelby, 1957). Notably, S exhibit minor symmetries, i.e. Sijkl = Sjikl = Sijlk.
Next, the components of S, Sijkl are given with respect to the local base eϑ, eϕ, er. We
start with the general spheroidal inclusion and specify for the limit case of a penny-shaped
disc, and for the other limit case of a cylinder. Thereafter, spherical inclusions are discussed.
Conclusively, the construction of the Hill Tensors for the particular material phases is described.
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The components of the Eshelby tensor for a spheroidal inclusion Sell read as

Sellϑϑϑϑ = Sellϕϕϕϕ = 3
8 (1− ν∞)

X2

X2 − 1 + 1
4(1− ν∞)

(
1− 2ν∞ −

9
4(X2 − 1)

)
g;

Sellrrrr = 1
2 (1− ν∞)

[
1− 2ν∞ + 3X2 − 1

X2 − 1 −
(

1− 2ν∞ + 3X2

X2 − 1

)
g

]
;

Sellϑϑϕϕ = Sellϕϕϑϑ = 1
4 (1− ν∞)

{
X2

2 (X2 − 1) −
[
1− 2ν∞ + 3

4 (X2 − 1)

]
g

}
;

Sellϑϑrr = Sellϕϕrr = − 1
2 (1− ν∞)

X2

X2 − 1 + 1
4 (1− ν∞)

[
3X2

X2 − 1 − (1− 2ν∞)
]
g;

Sellrrϑϑ = Sellrrϕϕ = 1
2 (1− ν∞)

(
−1 + 2ν∞ + 1

1−X2

)
+ 1

4 (1− ν∞)

[
2 (1− 2ν∞)− 3

1−X2

]
g;

Sellϑϕϑϕ = 1
8 (1− ν∞)

X2

X2 − 1 + 1
4 (1− ν∞)

[
1− 2ν∞ −

3
4 (X2 − 1)

]
g;

Sellϕrϕr = Sellϑrϑr = 1
4 (1− ν∞)

(
1− 2ν∞ −

X2 + 1
X2 − 1

)
− 1

8 (1− ν∞)

[
1− 2ν∞ −

3
(
X2 + 1

)
X2 − 1

]
g;

(7.116)
with

g =


X

(1−X2)3/2

[
arccosX −X

(
1−X2)1/2] ∀X = ar

aϑ
< 1

X
(X2−1)3/2

[
X
(
X2 − 1

)1/2 − arccoshX
]

∀X = ar
aϑ
> 1 .

(7.117)

As for the limit case of flat prolate spheroids (X → 0), denoted as discs, we obtain the nonzero
components of the Eshelby tensor as

Sdiscrrrr = 1

Sdiscrrϑϑ = Sdiscrrϕϕ = ν∞
1− ν∞

Sdiscϕrrϕ = Sdisc1rr1 = 1
2 .

(7.118)

and for the case of a cylindrical inclusion (X →∞), nonzero components read as

Scylϑϑϑϑ = Scylϕϕϕϕ = 5− 4ν∞
8 (1− ν∞)

Scylϑϑϕϕ = Scylϕϕϑϑ = −1 + 4ν∞
8 (1− ν∞)

Scylϕrϕr = Scylϑrϑr = 1
4

Scylϑϕϑϕ = 3− 4ν∞
8 (1− ν∞)

(7.119)

The fourth-order Eshelby tensor of a spherical inclusion aϑ=aϕ=ar, Ssph, is given for example
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in (Zaoui, 2002) and can be written as

Ssphijkl = 5ν∞ − 1
15 (1− ν∞)δij δkl + 4− 5ν∞

15 (1− ν∞) (δik δjl + δil δjk) (7.120)

Finally, we discuss the construction of the Hill tensors for spheroidal and spherical
elements used for cement paste homogenization based on the formulas (7.115)-(7.120). The
Hill tensor for the solid C-S-H elements, PsCSH(n(i)

sCSH , XsCSH), appearing in (7.65) and
(7.70), is obtained after construction of the Eshelby tensor from its components given in
(7.116) considering ν∞ = νhomgel and tensor multiplication according to (7.115) considering
C∞ = Chomgel . Note that this tensor refers to a e3-aligned spheroid. In order to obtain other
orientations in terms of angles ϕi, ϑi transformation rule (7.58) has to be used. The Eshelby
tensor of the spherical gel pores Sgpor appearing in (7.66) is obtained from (7.120) considering
ν∞ = νhomgel , and the corresponding Hill tensor, Pgpor, follows from (7.115) with C∞ = Chomgel .
Hill tensor for voids and capillary pores at the C-S-H foam scale, appearing in (7.77) and
(7.80)-(7.85) read as Pcpor = Pvoid = Scpor : C−1

por, whereby the Eshelby tensor of the spherical
phases is given in (7.120) considering ν∞ = νhomfoam. Hill tensors for e3-aligned cylindrical gel
elements, Pgel, appearing in (7.76) and (7.79)-(7.85) are obtained from components (7.119)
and (7.115) while considering ν∞ = νhomfoam and C∞ = Chomfoam. At the cement paste scale, we
obtain the Hill tensor for spherical cement clinker grains, Pcem appearing in (7.91), (7.95),
and (7.98)-(7.99), from (7.120) considering ν∞ = νhomfoam and insertion into (7.115) considering
C∞ = Chomfoam. PCH(niCH), i.e. the Hill tensor for disc-like CH-elements appearing in (7.92),
(7.96), and (7.98)-(7.99), follow from the Eshelby tensor components of disc-shaped inclusions,
see (7.118) with ν∞ = νhomfoam, and from (7.115) considering C∞ = Chomfoam. In the expression
for the eigenstress influence tensors (7.95)-(7.99), also a Hill tensor for the C-S-H foam
matrix occurs. Being a matrix phase, the shape for the foam is irrelevant and Pfoam can be
obtained from e.g. a spherical representation (7.120) and (7.115), considering ν∞ = νhomfoam

and C∞ = Chomfoam.

Appendix E: Notation

1 second-order identity tensor
(.)T transpose of quantity (.)
(.)−1 inverse of quantity (.)
· inner product
: second-order tensor contraction
⊗ dyadic product
× multiplication
A strain concentration tensor
Aj strain concentration tensor of phase j, whereby j ∈

{cem,CH, cpor, foam, gel, gpor, sCSH, void}
A∞,j Eshelby problem-related strain concentration tensor of phase j, whereby

j ∈ {cem,CH, cpor, foam, gel, gpor, sCSH, void}
Bcp
j cement paste-related Biot tensor for the pore phase j with j ∈ {cpor, gpor}

aϑ, aϕ, ar dimensions of the spheroidal phases in eϑ, eϕ, er-directions
C elastic stiffness tensor
C∞ elastic stiffness tensor infinite matrix in Eshelby problem
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Cj elastic stiffness tensor of phase j with j ∈ {cem,CH, sCSH}
Chomj homogenized elastic stiffness tensor for RVE j with j ∈ {cp, gel, foam}
C
hom,u
ud homogenized undrained elastic stiffness tensor for cement paste

C-S-H calcium-silicate-hydrates
CH portlandite (calcium hydroxide) crystals
cp cement paste
cpor capillary pores
d, d2, d3 characteristic sizes of the inclusions in an RVE
ex, ey, ez unit base vectors of the global Cartesian base frame
eϑ, eϕ, er unit base vectors of the local spherical base frame
Ehomcp homogenized Young’s modulus for cement paste
f cpj cement paste-related volume fraction of phase j

with j ∈ {cem,CH, cpor, foam, gel, gpor, sCSH, void}
ffoamj C-S-H foam-related volume fraction of phase j with j ∈ {cpor, gel, void}
fgelj C-S-H gel-related volume fraction of phase j with j ∈ {gpor, sCSH}
fsCSHj solid C-S-H-related volume fraction of crystal family with aspect ratio X(j)

sCSH ,
where j = 1, 2, . . . , nf

foam C-S-H foam
g auxiliary variable
gpor gel pores
gel C-S-H gel
H2O water
I fourth-order identity tensor
Ivol, Idev volumetric and deviatoric parts of fourth-order identity tensor
kj bulk modulus of phase j with j ∈ {cp,H2O}
L characteristic size of the structure containing an RVE
Lcpj auxiliary, cement paste-related second-order tensor providing the link between

cement paste strains and pore pressures in pore phase j with j ∈ {cpor, gpor}
`, `2, `3 characteristic RVE sizes
M cp
j auxiliary, cement paste-relate modulus-type scalar for pore phase j with

j ∈ {cpor, gpor}
M auxiliary matrix
N cp
i,j cement paste-relate solid Biot modulus relating pore pressures in phase j to

pore volume changes in phase i, whereby i, j ∈ {cpor, gpor}
nf number of aspect ratio families of solid C-S-H crystals; herein nf = 20
nj orientation vector in line with the axis of rotational symmetry of the spheroidal

element j with j ∈ {CH, gel, sCSH}
n

(i)
j orientation vector nj pointing in particular direction i whereby the direction

i refers to a point located at the surface of a unit sphere regarding the
numerical integration algorithm, herein i = 1, 2, . . . 15

P Hill tensor
Pj Hill tensor for phase j with j ∈ {cem,CH, cpor, foam, gel, gpor, sCSH, void}
pj pore pressure in phase j with j ∈ {cpor, gpor}
pfoam pressure exerted by the foam to the adjacent matter within the RVE of

cement paste
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Q transformation matrix with elements Qij for transformation of the spher-
ical eϑ, eϕ, er-components of a second-order tensor to Cartesian ex, ey, ez-
components

Q transformation matrix for transformation of the spherical eϑ, eϕ, er-
components of a fourth-order tensor to Cartesian ex, ey, ez-components

Qi,j eigenstress influence tensor quantifying the influence of eigen-
stresses in phase j on phase strains in phase i; where
i ∈ {cem,CH, cpor, foam, gel, gpor, sCSH, void} and j ∈
{cpor, foam, gel, gpor}

T auxiliary tensor with components Tijkl
Srijkl Eshelby tensor components for inclusion r, whereby r refers the inclu-

sion shape with r ∈ {cyl, disc, ell, sph} standing for cylindrical, disc-
like,ellipsoidal, or spherical shape

S Eshelby tensor
Sj Eshelby tensor for phase j with j ∈ {cpor, gpor}
sCSH solid C-S-H
Vj volume of phase j with j ∈ {cpor, gpor, sCSH}
w/c initial water-to-cement mass ratio
XsCSH aspect ratio of solid C-S-H crystals
X

(i)
sCSH aspect ratio XsCSH for particular crystal family i, where i = 1, 2, . . . , nf

Xmax
sCSH maximum aspect ratio XsCSH at particular specific precipitation space γ

X aspect ratio of ellipsoidal inclusion in Eshelby problem
x position vector
γ specific precipitation space with 0 ≤ γ ≤ 1
γ∗ a certain value of γ
γ(i) mean precipitation space γ in the current interval i with i = 1, 2, . . . , nf
∆ Auxiliary variable
∆foam
cpor capillary pore volume change related to the C-S-H foam volume

∆gel
gpor gel pore volume change related to the gel volume

∆cp
j pore volume change of phase j related to the cement paste volume, with

j ∈ {cpor, gpor}
∆γ length of precipitation increment
∆γ(i) precipitation increment where solid C-S-H crystals exhibiting aspect X(i)

sCSH

precipitate, with i = 1, 2, . . . , nf
δij Kronecker delta
δngel,ngel∗ tensorial Kronecker delta
εj strain tensor of phase j with j ∈ {cem, cp, CH,

cpor, foam, gel, gpor, sCSH, void}
ϑ zenith angle marking the orientation of hydrate needles
µcem shear modulus of unhydrated cement clinker
µhomcp homogenized shear modulus of cement paste
ν∞ Poisson’s ratio of infinite matrix in Eshelby problem
νhomj homogenized Poisson’s ratio for RVE j with j ∈ {cp, foam, gel}
ξ hydration degree
ξI-II hydration degree at the transition from hydration regime I to II
ξII-III hydration degree at the transition from hydration regime II to III
ξult ultimate hydration degree, ξult ≥ ξ
ρj mass density of phase j with j ∈ {gel, sCSH}
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σj stress tensor of phase j with j ∈ {cp, foam, gel}
σE eigenstress
σhom,Ej homogenized eigenstress for RVE j with j ∈ {cp, foam, gel}
ϕ azimuth angle marking the orientation of hydrate needles
Ωi domain of phase j with j ∈ {cem,CH, cpor, foam, gel, gpor, sCSH, void}



Chapter8
Conclusions and outlook
8.1 Summary of the developed models
This thesis is built upon the philosophy that modeling physical phenomena of cementitious
materials at the macroscopic scale requires to capture the underlying basic mechanisms at
the microscale. Accordingly, a multiscale approach is used to get insight into macroscopic
failure processes, creep processes, and the poroelastic behavior of cement pastes, mortars, and
concretes. Careful representation of the materials’ microstructures is a prerequisite for such
an approach. In the framework of continuum micromechanics, the complex microstructure is
resolved into material phases with distinct mechanical and morphological characteristics. In
agreement with the principle of scale separation, four scales of observation are envisioned:

• At the centimeter-large scale of concrete or mortar, respectively, a matrix-inclusion
composite is considered, consisting of spherical aggregates (sand or gravel), air voids,
and a matrix of cement paste.

• At the scale of one millimeter, the microstructure of cement paste is again envisioned to
be a matrix-inclusion morphology. Spherical clinker grains, potentially together with
the plate-like portlandite hydrates, are considered to be embedded in a hydrate foam
matrix.

• At the scale of one micron, the microstructure of hydrate foam is represented as a
polycrystal, consisting of needle-shaped phases (particularly representing the C-S-H gel),
potentially intermixed with spherical hydrates (such as sulfoaluminates), and intermixed
with capillary porosity and shrinkage-induced voids.

• At the smallest scale of observation, the microstructure of C-S-H is considered to consist
of five nanometer-thick solid C-S-H particles which are intermixed with the water-filled
gel porosity to form another polycrystal.

The maturation during the hydration process is considered by evolving volumes of the
material phases, on the one hand, and by solid C-S-H particle shapes which are a function
of the material age at their precipitation, on the other hand. The elastic, viscoelastic, and
strength properties of the phases, however, stay constant. Volume evolutions are either
estimated based on the Powers model, if the micromechanical problem is restricted to the first
three scales of observation. If the actual problem requires to start at the smallest observation
scale, the evolution of the gel porosity has to be predicted reliably. Powers’ model does not
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qualify for that task since it assumes the gel pores to be maturity-independent. Recently
published nuclear magnetic resonance relaxometry data, however, showed that the gel porosity
decreases during the hydration process, implying a hydration-induced densification of C-S-H
gel. Within this thesis, the measured data are cast into a mathematical model. Thereby,
the progressively decreasing space available for new C-S-H to precipitate is considered to
be the origin of the C-S-H densification. Powers model does only apply for bulk cement
paste, i.e. it considers the paste to be a thermodynamically isolated domain. In mortars or
concrete, however, water migration between aggregates and the cement paste matrix occurs
and this influences the phase volume evolutions significantly. Therefore, the water flow from
the aggregates to the cement paste is explicitly considered in this thesis, by developing yet
another mathematical model, based on the idea that chemical shrinkage governs the suction
of water residing in the aggregates’ porosity to the hydrating cement paste matrix.

8.2 Research contribution and main findings
The presented microstructural modeling campaign contributes to the knowledge in cement
and concrete science in three ways:

1. The models developed in this thesis can be evaluated in order to predict the evolution
of mechanical behavior of cementitious materials. Thus, they might be able to replace
costly and time-consuming experimental campaigns.

2. Mathematical modeling proves to be useful to identify the physical behavior at very
small scales, where experimental insight is still limited.

3. Valuable insights into physical mechanisms and features at the nano- and microscale,
which govern the macroscopic material behavior, are gained by the microstructural and
micromechanical multiscale models developed herein.

Related main findings are summarized in the following.
In Chapter 3, the compressive strength evolution of ordinary Portland cement paste and

mortar is predicted very reliably as a function of the material’s composition (in terms of the
water-to-cement mass ratio) and as a function of the material’s maturity (in terms of the
hydration degree). Macroscopic material failure is related to Mohr-Coulomb type material
failure of hydrate needles, whereby the microscopic strength constants are taken from limit
state analysis of nanoindentation tests. By considering stress peaks around stiff aggregates
in mortar, the hydrates in the vicinity of the aggregate surfaces are shown to govern mortar
failure. Unlike in Portland cement materials, the consideration of only one representative
hydrate type in blended cement mixes does not allow for satisfactory model predictions.
Instead, a more detailed representation based on several types of hydrates delivers model
predicted strength values which are much closer to experimental results. Microfillers such as
finely ground quartz and limestone act as strength-increasing reinforcements by filling the
capillary porosity at the scale of the hydrates. Supplementary cementitious materials such as
slag and fly ash, in turn, are found to increase the hydrates’ cohesion once they start to react.

In Chapter 4, it is shown that the age- and composition-dependent creep behavior of
cement paste subjected to compressive loads for some minutes up to 30 days can be traced
back to an intrinsic (i.e. age- and composition-independent) viscous behavior of the hydrate
needles. This result is obtained by downscaling the basic creep strains, as measured in a
series of three-minute-long creep tests on cement pastes at early ages, to the hydrate level
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and by upscaling the hydrate creep behavior for creep tests lasting for 30 days on 30-year-old
cement paste specimen. Notably, in all the experiments, the microstructure of the material is
nonaging. The macroscopically observed power-law creep function for time periods of minutes
to weeks is reflected in the microscopic creep function which is of power-law-type as well.

Reliable creep upscaling from cement paste to mortar and concrete requires consideration
of internal curing effects, i.e. of water migration processes from aggregates to the cement paste
matrix, as it is shown in Chapter 5. By introducing two new material constants, namely the
initial water uptake capacity of the aggregates and the void filling extent, mathematization
of the aforementioned processes is achieved. This allows for very satisfactory predictions of
mortar and concrete creep properties based on measured creep properties of cement paste.

By casting relaxometry data obtained from nuclear magnetic resonance (NMR) experiments
into a mathematical framework, it was shown in Chapter 6 that the densification of the C-S-H
gel is controlled by the available precipitation space. Moreover, the density is shown to be
a universal function (i.e. it does not depend on the paste’s water-to-cement mass ratio) of
the specific precipitation space. This function is of highly nonlinear nature, but it can be
traced back to two classes of C-S-H, a totally compact class and a linearly densifying class,
respectively. Combining the density evolution with the traditional set of equations which
cover the reaction of Portland cement paste, analytical expressions for the phase volume
evolutions of clinker, portlandite, solid C-S-H, gel pores, capillary pores, and air voids are
obtained. Hence, the obtained model provides a promising improvement of the widely used
Powers hydration model.

As a very first application of the novel hydration model, the poroelastic properties of
cement pastes are upscaled based on the stiffness of the solid C-S-H nanoparticles in Chapter 7.
Taking the results from atomistic modeling for the stiffness of the solid C-S-H nanoparticles
as an input into our micromechanics model, allows us to bridge the scales from the one of
nanoscopic solid C-S-H all the way up to the macroscopic scale of cementitious materials.
Using the eigenstress influence tensor concept to consider the pore pressures within gel and
capillary pore spaces, the effect of entrapped water on macroscopic test results has been
deciphered. While the homogenized elastic moduli in the case of drained and undrained pore
spaces are very close to each other, the homogenized Poisson’s ratio is found to be much larger
in the undrained case, particularly so at early ages.

In summary, a significant knowledge gain has been achieved in all five key chapters of the
thesis at hand. Micromechanics modeling turned out to be a very valuable tool for deciphering
mechanisms happening at the microscale, catalyzed by the benefits that the quantification of
these mechanisms by means of mathematical modeling provides.

8.3 Perspectives
Given the complexity of cementitious materials, there is still a lot of motivation for future
research using microstructural modeling techniques. The very promising multiscale repre-
sentation of hydrating cement paste incorporating the solid C-S-H nanoparticles and the
gel porosity at the smallest scale of observation, as applied for the poroelasticity upscaling,
qualifies to be used for strength and creep upscaling as well. This way, one can study the origin
of the material failure at the nanoscale by identifying the macrostrength-governing nanoscopic
failure mode potentially involving interface failure around the nanoparticles. Creep very likely
originates from sliding processes along viscous interfaces within the nanoparticles. Successful
casting this mechanism into a mathematical framework based on continuum micromechanics
has been already achieved (Shahidi et al., 2014, 2015a,b). This provides the motivation to use
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the concept as input for the creep behavior of the C-S-H nanoparticle in the framework of
the multiscale material representation developed in this thesis and this way, to upscale the
sliding processes occurring at the viscous nano-interfaces all the way up to the creep behavior
of concrete.

Creep predictions obtained from our modeling approach follow a power-law creep function,
as also found in short-term macroscopic creep tests. However, for loads applied for several
months to several years, creep strains evolve logarithmically (Bažant et al., 2011). Deciphering
the micromechanical reason for this change of the characteristic shape of the creep function
provides also a lot of motivation for future research. Moreover, the modeling campaign was
based on three-minute-long creep tests on one- to seven-day-old cement pastes, mortars, and
concretes, i.e. the microstructure during the creep test virtually does not change. As for
model validation, a 30-day-long creep test on 30-year-old cement paste was used. Again,
the microstructure of cement paste remains virtually constant during the test period. If the
characteristic time of the hydration-induced microstructure changes is not well separated from
the creep period, however, one is faced with so-called aging creep. Extending the model to
those situations might also be a next logical step in the future. In this context, the recently
studied extension of the Eshelby problem for aging viscoelasticity (Lavergne et al., 2016)
might be a very valuable theoretical basis.

As for the C-S-H densification model, future work might focus on the effect of different
hydration temperatures. High temperatures during the hydration lead to a very coarse C-S-H
gel, while low temperatures and the associate slow hydration reaction lead to very dense and
homogeneous C-S-H gel. Incorporating the temperature effect into the densification model
will significantly broaden the range of applicability.

The long overdue awareness of the climate-damaging effects of cement production has led
to efforts to reduce the cement content in concretes in the recent years. The availability of
different cement replacement materials provides scientific challenges, in particular for modeling
campaigns. A first step to handle blended cement pastes and mortars within a multiscale
micromechanical modeling framework has been made in this thesis. Several other steps might
follow and might eventually lead to designing eco-concretes which do not suffer from the
major disadvantage, the low early-age strength. In the same spirit, instead of natural virgin
aggregates, crushed concrete from construction and demolition waste can be reused for the
production of a more environmentally friendly eco-concrete. In order to use this recycled
concrete for structural applications, one has to understand its perspectives and limitations, in
particular from a micromechanical viewpoint. For instance, the recycled aggregates exhibit a
large water absorption, and this significantly reduces the water available for the hydration
process and might significantly affect the early-age cracking behavior of concrete.
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