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A B S T R A C T

Characterization of large antenna structures at high frequencies re-
quires a considerable amount of measurement time. This thesis estab-
lishes methods to decrease measurement time while maintaining ac-
curacy by introducing and exploiting sparsity in the multipole coeffi-
cient domain. By means of compressed sensing principles the number
of samples required in antenna characterization is reduced by 75% as
compared to standard techniques. If implemented appropriately this
allows for significantly reduced measurement times.

In the beginning, the spherical multipole expansion in combination
with optimized translation and rotation operations is introduced and
identified as a sparsity transform. In this context, a novel kind of
antenna phase center estimation based on a 1-norm minimization is
demonstrated. The subsequent discussion of compressed sensing in
antenna theory in general and the uniform uncertainty principle in
particular provide empirical bounds on the number of samples nec-
essary to reconstruct radiated fields and the corresponding multipole
coefficients. These bounds are derived using the worst case scenario
of a maximum directivity antenna. Moreover, truncation handling by
applying compressed sensing techniques is outlined. An evaluation
of the proposed methods concludes the thesis. Solver parameters for
the numerical minimization are identified and an iterative algorithm
for non-sparse antennas is introduced which accomplishes the recon-
struction in an optimized coordinate system, thus enabling its ap-
plication for a large variety of antennas. The reconstruction of both
synthetic and real world antenna data using only 25% of the usually
required sampling points demonstrates the functionality of the new
methods and their compliance with the empirical bounds.
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Z U S A M M E N FA S S U N G

Der Trend zu hohen Sendefrequenzen im Telekommunikationsbere-
ich resultiert in sehr langen Messzeiten, die für die Charakterisierung
großer Antennen notwendig sind. Diese Arbeit führt eine Vorgehens-
weise ein, die die Anzahl an notwendigen Messpunkten um 75%
verringert, ohne die Genauigkeit wesentlich zu beeinflussen. Dazu
werden Ergebnisse aus dem Umfeld des sogenannten Compressed
Sensing verwendet, um die Anzahl an Multipol-Entwicklungskoeffi-
zienten, die für die Beschreibung einer Antenne notwendig sind, zu
minimieren und diese Tatsache für die Antennencharakterisierung zu
nutzen. Die korrekte Umsetzung dieser Methode führt zu einer sig-
nifikanten Verkürzung der Messzeit.

Zu Beginn wird die sphärische Multipol-Entwicklung als mathema-
tische Grundlage eingeführt. Durch die Anwendung von optimierten
Translations- und Rotationsoperatoren wird sichergestellt, dass die
Anzahl der Koeffizienten in der Multipol-Entwicklung minimal ist
und daher Methoden des Compressed Sensing angewandt werden
können. In diesem Zusammenhang wird eine neue Abschätzung des
Phasenzentrums einer Antenne vorgestellt, die auf einer 1-Norm Min-
imierung beruht. Die anschließende Auseinandersetzung mit Com-
pressed Sensing im Antennenumfeld, vor allem mit dem Begriff des
Uniform-Uncertainty Prinzips, führt zu empirischen Schranken für
die Anzahl an Messpunkten, die für die Rekonstruktion der Entwick-
lungskoeffizienten notwendig sind. Dazu wird als worst case Szena-
rio die Vermessung einer Antenne mit maximaler Direktivität betra-
chtet. Darüber hinaus wird eine Technik zum Umgang mit einge-
schränkten Messbereichen vorgestellt, welche die zuvor entwickelten
Methoden anwendet. Den Abschluss bildet eine Evaluierung, in der
zunächst die notwendigen numerischen Parameter der Minimierung
ermittelt werden. Weiters wird ein iterativer Algorithmus vorgestellt,
der die Rekonstruktion der Entwicklungskoeffizienten in einem op-
timierten Koordinatensystem durchführt und daher auf eine breite
Klasse von Antennen angewandt werden kann. Die abschließende
Rekonstruktion von synthetischen und gemessenen Antennendaten
mit nur 25% der üblicherweise notwendigen Messpunkte demonstri-
ert die Effektivität der vorgestellten Algorithmen.
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1
I N T R O D U C T I O N

In an entirely connected and data-oriented world, antennas play a cru-
cial but mostly invisible role in every kind of information transmis-
sion system. The endeavor to increase data rates while minimizing
physical size pushes development towards higher and higher trans-
mission frequencies. This trend entails rising measurement time re-
quired for precise antenna characterization. At frequencies of up to
40GHz, a spherical scan of a large antenna takes days rather than
hours. This thesis employs compressed sensing methods to improve
on this restriction and to allow for a faster prototyping process. Mea-
surement time savings of up to 75% are found to be realistic and
achievable, all while the accuracy usually found in spherical scanners
is maintained.

1.1 outlook

The first part of this thesis deals with the basics of the spherical mul-
tipole expansion and leads to an algorithm for transforming the field
of a source to the multipole coefficient domain and vice verca. The co-
ordinate system underlying this transform is the spherical coordinate
system depicted in Figure 1.

With this knowledge, new methods are developed for further pro-
cessing and analysis of antenna measurement data. Translation and
rotation of an antenna and their effects on the multipole coefficients
are investigated in detail. Chapter 3 and Chapter 4 introduce concepts
of compressed sensing and their applicability to antenna theory. First,
the notion of phase center and rotational symmetry is established. In
a second step, compressed sensing principles are introduced and they
are applied to antenna theory. This results in a 1-norm regularization
providing significant reduction of measurement points by using spar-
sity in the spherical multipole coefficient domain. Finally, an iterative
scheme is suggested and verified to further reduce measurement time
in antenna characterization setups. Figure 2 illustrates the procedure.
Instead of utilizing the complete equiangular sampling grid, only a
small random subset thereof is sampled and used for characterizing
a source, all while maintaining accuracy.

The theoretic discussion of the matter is concluded by a numerical
evaluation of the results. Measurements of different antennas and
synthetic data are analyzed and the newly developed methods are
applied and evaluated. Good agreement of theoretical considerations
and numerical evaluation support the validity of the new approaches.
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1.1 outlook 2
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Figure 1: The spherical coordinate system with polar angle θ, azimuth angle
φ and radial coordinate r. An arbitrary vector f can be factored
into its three components fr, fθ and fφ with the absolute value of
the component fr = f · r̂, fθ = f · θ̂ and fφ = f · φ̂, respectively.
The notations r̂, θ̂ and φ̂ indicate the unit vector of the respective
quantity.
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(a) Complete equiangular sampling
grid on the sphere.
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(b) Random subset of the complete
equiangular sampling grid.

Figure 2: Comparison of the complete equiangular sampling grid and the
reduced sampling grid which contains 25% of the sampling points
(gray dots).



1.2 literature overview 3

1.2 literature overview

The near-field to far-field transform has long been a standard tool for
antenna characterization in a closed and controllable environment.
Of all the different kinds of measurements, the spherical setup pro-
vides the most complete and accurate representation for any given
antenna since the truncated scan area is smallest. It is, on the other
hand, more computationally expensive than its planar and cylindrical
counterparts. In [1], a very broad and detailed insight into spherical
antenna measurements is provided. The suggested methods for the
near-field to far-field transform, probe compensation and measure-
ment setups became quasi-standard in industry and research. More
advanced probe compensation methods for high-order probes, which
allow a large variety of antennas to be used as probes, can be found
in [2, 3]. A near-field to far-field transform using a plane wave expan-
sion and featuring full probe correction is provided in [4]. However,
none of the afore mentioned publications includes the case of highly
undersampled spherical measurement data.

Accurate determination of the phase center of an antenna is of
great interest in global positioning systems, spatial filtering of an-
tenna measurements and broadcasting. Common approaches to this
task include Least Squares (LS) solutions [5, 6, 7] and angular mo-
mentum minimization [8]. Both methods have the disadvantage of
not minimizing the size of the coefficient’s supporting set and are
therefore not adequate for sampling point reduction via compressed
sensing.

One of the earliest and most recognized publications which estab-
lishes the term compressed sensing is given by [9] where it is proved
that partial knowledge of frequency samples allows perfect recon-
struction of a sparse signal under certain circumstances. In [10] this
methodology is extended to non-exact signals and the term of the
Uniform Uncertainty Principle is refined. For signals with power law
decay, [11] provides error bounds and reconstruction probabilities as
well as different measurement ensembles. From the early days, one
of the most prominent applications of compressed sensing was the
measurement time reduction for medical Magnetic Resonance Imag-
ing (MRI) scans [12]. The close fundamental similarity of MRI scans
and antenna scans as well as the use of compressed sensing prin-
ciples for antenna measurements has, to the best knowledge of the
author, never been investigated in detail.

As a short note on the side, it is stated that the personal pronoun
we will be used throughout the thesis when procedures, approaches
and derivations are explained. On the one hand, this prevents the
excessive and complicated use of passive voice when it is not suitable.
On the other hand, it invites the reader to follow the author’s stream
of thoughts and decisions through the thesis.



2
S P H E R I C A L M U LT I P O L E E X PA N S I O N

The spherical multipole expansion is broadly used in the field of
electrical engineering. Wave propagation, electrostatics and quantum-
mechanics are just a few important areas of application. Geophysics
and computer graphics employ multipole expansions in spherical
coordinates as well. In this chapter, the mathematical fundamentals
are presented and their use concerning multipole radiation is investi-
gated. A detailed derivation can be found in [13, Chapter 9], the most
important results for this thesis are repeated in what follows.

2.1 solving the spherical wave equation

Assuming a time dependence of e−iωt, a source-free region and a
lossless, linear, isotropic and homogeneous medium, Maxwell’s equa-
tions read as

∇× E = iωµH

∇ · E = 0

∇×H = −iωεE

∇ ·H = 0

(1)

with

E - electric field

H - magnetic field

ω - angular frequency

ε - permittivity of medium

µ - permeability of medium.

By applying the curl operator and eliminating H in Equation 1, we
get an equivalent system of equations(

∇2 + k2
)
E = 0

∇ · E = 0

H = −
i

ωµ
∇× E ,

(2)

where k = ω
√
εµ is the propagation constant. Correspondingly, when

we eliminate E, we get(
∇2 + k2

)
H = 0

∇ ·H = 0

E =
i

ωε
∇×H .

(3)

4



2.1 solving the spherical wave equation 5

With the vector formula

∇2(r ·A) = r · (∇2A) + 2∇ ·A (4)

for a well-behaved vector field A, Equation 1 and Equation 3 we can
easily verify that(

∇2 + k2
)
(r ·H) = 2∇ ·H+ r ·

(
∇2 + k2

)
H = 0 (5)

holds for the scalar r ·H. This quantity is introduced as an interme-
diate step because it facilitates the derivation of a spherical mode
expansion of the electromagnetic field. A general solution

r ·H =

∞∑
n=0

n∑
m=−n

[
A

(1)
nmh

(1)
n (kr) +A

(2)
nmh

(2)
n (kr)

]
Ynm(θ,φ) (6)

can be constructed via separation of variables with the quantities

Ynm(θ,φ) - spherical harmonics of degree n and order m

h
(1)
n (kr) - spherical Hankel function of first kind

h
(2)
n (kr) - spherical Hankel function of second kind

A
(1)
nm - first expansion coefficient

A
(2)
nm - second expansion coefficient.

The spherical harmonics constitute a complete orthonormal set on
the surface of the unit sphere and are defined as

Ynm(θ,φ) =

√
2n+ 1

4π

(n−m)!
(n+m)!

Pmn (cos θ)eimφ (7)

with the Legendre polynomial and associated Legendre function, re-
spectively, given by

Pn(cos θ) =
1

2nn!

(
d

d cos θ

)n (
cos2 θ− 1

)n
(8)

Pmn (cos θ) = (sin θ)m
(

d
d cos θ

)m
Pn(cos θ) . (9)

The spherical Hankel functions of first and second kind are written
as

h
(1,2)
n (x) = jn(x)± iyn(x) (10)

with the spherical Bessel functions

jn(x) = (−x)n
(
1

x

d
dx

)n sin x
x

yn(x) = −(−x)n
(
1

x

d
dx

)n cos x
x

.
(11)



2.1 solving the spherical wave equation 6

Table 1: Depiction of the spherical harmonics of degree n and order m used
for describing the radial component of the electromagnetic field of
an arbitrary radiating source.

Yn,m(θ,φ) m = 0 m = 1 m = 2 m = 3 . . .

n = 1 − − . . .

n = 2 − . . .

n = 3 . . .

...
...

...
...

...
. . .

For the purpose of this thesis, it is sufficient to consider only out-
wards travelling waves with respect to the origin. Further, we will
drop the superscript of the coefficient A(1)

nm. Therefore, Equation 6
reduces to

r ·H =

∞∑
n=0

n∑
m=−n

Anmh
(1)
n (kr)Ynm(θ,φ) . (12)

The magnetic summation term of degree n and order m from the
expansion in Equation 12 is defined to fulfill the conditions

r ·H(M)
nm =

n(n+ 1)

k
Anmh

(1)
n (kr)Ynm(θ,φ)

r · E(M)
nm = 0

(13)

and is therefore a Transversal-Electric (TE) component of the electro-
magnetic field. From Equation 2 we have

ωµr ·H =
1

i
r · (∇× E) = 1

i
(r×∇) · E = L · E (14)

with the operator

L =
1

i
(r×∇) . (15)

Combining Equation 13 and Equation 14 yields

L · E(M)
nm = n(n+ 1)ZAnmh

(1)
n (kr)Ynm(θ,φ)

r · E(M)
nm = 0

(16)

for the electric field. Z =
√
µ/ε denotes the wave impedance of the

medium. Since

L2Ynm(θ,φ) = n(n+ 1)Ynm(θ,φ) , (17)



2.1 solving the spherical wave equation 7

the electromagnetic field of the magnetic term of degree n and order
m satisfying the conditions in Equation 16 can be written as

E
(M)
nm = ZAnmh

(1)
n (kr)LYnm(θ,φ)

H
(M)
nm = −

i

ωµ
∇× E(M)

nm .
(18)

A very similar approach leads to the electromagnetic field of the elec-
tric mode of degree n and order m

H
(E)
nm = Bnmh

(1)
n (kr)LYnm(θ,φ)

E
(E)
nm =

i

ωε
∇×H(E)

nm .
(19)

If we now introduce the normalized vector spherical harmonics

Xnm =
1√

n(n+ 1)
LYnm(θ,φ) , (20)

the electromagnetic field in a source-free region can be written as

H =
∑
n,m

[
aE(n,m)h

(1)
n (kr)Xnm

−
i

k
aM(n,m)∇× h(1)n (kr)Xnm

]
(21)

E = Z
∑
n,m

[ i
k
aE(n,m)∇× h(1)n (kr)Xnm

+ aM(n,m)h
(1)
n (kr)Xnm

]
. (22)

The normalized vector spherical harmonics satisfy the orthogonality
relations∫

X̄n ′m ′ ·Xnm dΩ = δnn ′δmm ′ (23)∫
X̄n ′m ′ · (r×Xnm)dΩ = 0 (24)

with ∫
f(θ,φ)dΩ =

∫2π
0

∫π
0

f(θ,φ) sin θdθdφ (25)

being the integral over the unit sphere and z̄ denoting the complex
conjugate of z. The spherical wave coefficients used in the above ex-
pansion can be calculated according to

aM(n,m)h
(1)
n (kr) =

k√
n(n+ 1)

∫
Ȳnm(θ,φ)r ·HdΩ (26)

ZaE(n,m)h
(1)
n (kr) = −

k√
n(n+ 1)

∫
Ȳnm(θ,φ)r · EdΩ . (27)
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This concludes the summary of [13] and is the main result of this
Section. It shows that we can calculate the spherical wave coefficients
if we know the electric or magnetic field normal to a sphere via an
integration over the sphere (cf. Equation 26, Equation 27). Once we
determine these coefficients, we can calculate the electric and mag-
netic field in a source-free region via Equation 21 and Equation 22.

If only the tangential components of the electric field are known,
the spherical wave coefficients are obtained by

ZaM(n,m)h
(1)
n (kr) =

1√
n(n+ 1)

∫
Ȳnm(θ,φ)L · EdΩ (28)

ZiaE(n,m)
(
krh

(1)
n+1(kr) − (n+ 1)h

(1)
n (kr)

)
=

k√
n(n+ 1)

∫
(r× E) · LȲnm(θ,φ)dΩ

(29)

what can be verified by substitution into Equation 22.

2.2 a near-field to far-field transform

Before we start to develop a near-field to far-field transform, a new
notation is introduced for Equation 21 and Equation 22 similar to
the one used in [1]. We do this because this notation proves to be
more convenient. It is also the most used notation for the multipole
expansion in the field of antenna measurements.

2.2.1 Multipole Expansion and Multipole Coefficients

Equation 21 and Equation 22 can be rewritten as

H =
−ik√
Z

∑
smn

QsmnF3−s,m,n (30)

E = k
√
Z
∑
smn

QsmnFsmn (31)

with

∑
smn

=

2∑
s=1

∞∑
n=0

n∑
m=−n

. (32)

The new spherical multipole coefficients Qsmn can be calculated by
using

Q1mn =
i
√
Z

k

(
−m

|m|

)m
aM(n,m)

Q2mn =
−
√
Z

k

(
−m

|m|

)m
aE(n,m) ,

(33)
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while the new base functions are defined as

Fmn(r, θ,φ) =
(
−m

|m|

)m
1√

n(n+ 1)
h
(1)
n (kr)Ynm(θ,φ)

F1mn = ∇Fmn(r, θ,φ)× r
F2mn = k−1∇× F1mn(r, θ,φ) .

(34)

With this notation, the radiated power P of the outwards travelling
waves can be easily calculated as (cf. [1])

P =
1

2

∑
smn

|Qsmn|
2 . (35)

The power radiated by modes with specific degree n is given by the
n-mode power spectrum (cf. [14])

Pn =
1

2

2∑
s=1

n∑
m=−n

|Qsmn|
2 . (36)

For sources with finite spatial dimension, modes above a certain de-
greeN do not significantly contribute to the expansion in Equation 31
and Equation 30, i.e.

Pn =
1

2

2∑
s=1

n∑
m=−n

|Qsmn|
2 ≈ 0 for n > N . (37)

This threshold N is directly linked to how electrically large the source
is. A very common value often used in antenna measurements (cf.
[1, 14]) is

N = dkr0e+ 10 (38)

with r0 denoting the Maximum Radial Extent (MRE) of the source,
i. e. the radius of the sphere centered at the origin and completely
enclosing the source. Other values for the cutoff degree N directly
related to the required accuracy can be found in [14].

With Equation 37, the multipole expansion of the electromagnetic
field can now be approximated as

E ≈ k
√
Z
∑
smn

QsmnFsmn (39)

H ≈ −ik√
Z

∑
smn

QsmnF3−s,m,n (40)

with

∑
smn

=

2∑
s=1

N∑
n=0

n∑
m=−n

(41)

and N chosen according to Equation 38.
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2.2.2 The Transmission Formula

For antenna measurements, the projection of the field onto our or-
thogonal basis described by Equation 26 and Equation 27 needs some
adaptation because we usually do not measure the electric field in
one point, we rather obtain a weighted spatial average of the field
which depends on the probe antenna. In [1, Chapter 3]. a method to
obtain the multipole coefficients Qsmn with knowledge of the probe
antenna and the field tangential to a sphere enclosing the Antenna
Under Test (AUT) is developed. In what follows, his method is sum-
marized and explained for our purpose. For detailed derivations, the
reader is referred to the original literature.

The transmission formula

w(A,χ, θ,φ) =
1

2

∑
smn
σµν

Qsmne
imφdnµm(θ)eiµχCsnσµν(kA)R

p
σµν (42)

relates the multipole coefficients of the AUT with the output of a per-
fectly matched probe. The quantities used in the formula are:

w(A,χ, θ,φ) - probe output at measurement radius A and
probe orientation χ

Qsmn - multipole coefficient of AUT

dnµm(θ) - rotation coefficient

Csnσµν(kA) - translation coefficient

R
p
σµν - probe receiving coefficients.

The definitions for the rotation and translation coefficients are ra-
ther lengthy and are therefore omitted here. They can be found in
the appendix of [1]. What is important to note is that in combination
with the factors eimφ and eiµχ, they account for a coordinate trans-
form of the basis functions from the original coordinate system to the
one where the probe receiving coefficients are defined. A simplified
notation is used to describe the summation in Equation 42, defined
as

∑
smn
σµν

=

2∑
s=1

N∑
n=0

n∑
m=−n

n∑
µ=−n

2∑
σ=1

∞∑
ν=|µ|
ν6=0

. (43)

Another simplification in notation arises when all terms depending
on the probe and its position are collected into the probe response
constants

Psµn(kA) =
1

2

∑
σν

Csnσµν(kA)R
p
σµν , (44)
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what allows to write Equation 42 as

w(A,χ, θ,φ) =
∑
smn
µ

Qsmne
imφdnµm(θ)eiµχPsµn(kA) . (45)

Solving this equation for the unknown spherical coefficients is usually
challenging due to ill conditioning. A distinctive simplification arises
when first-order probes are used for measurement purposes, i. e.

Psµn(kA) ≈ 0 for µ 6= ±1 . (46)

Concluding the summary of [1], the coefficients Qsmn can be calcu-
lated by solving the system of equations

Q1mnP11n(kA) +Q2mnP21n(kA) = w
n
1m(A)

Q1mnP1,−1,n(kA) +Q2mnP2,−1,n(kA) = w
n
−1,m(A)

(47)

with a series of transformations of the input data

wµ(A, θ,φ) =
1

2π

∫2π
χ=0

w(A,χ, θ,φ)e−iµχ dχ (48)

wµm(A, θ) =
1

2π

∫2π
φ=0

wµ(A, θ,φ)e−imφ dφ (49)

wnµm(A) =
2n+ 1

2

∫π
θ=0

wµm(A, θ)dnµm(θ) sin θdθ . (50)

Again, once the spherical coefficients are determined from the mea-
surement, the field can be evaluated on an arbitrary point in space as
long as it is not within the MRE of the source.

A scenario which is frequently encountered in practice is the so
called near-field to far-field transform where the near-field of the AUT

is measured on a sphere and the far-field is desired. This task can
easily be accomplished with the derivations above and is summarized
in in the following list.

1. Measuring: The tangential field of the AUT is measured on a
sphere with radius A surrounding the source. A probe with
only first-order coefficients is used for the measurement.

2. Analysis: The spherical multipole coefficients Qsmn are calcu-
lated using Equation 47 - Equation 50.

3. Synthesis: The tangential field of the AUT is calculated on a
sphere with radius A ′ surrounding the source.

Usually, the measurement radius A is in the near-field of the AUT and
the synthesis radius A ′ is in the far-field. Then the above algorithm is
referred to as a near-field to far-field transform. But the method is not re-
stricted to this case. Measurement and synthesis radius are arbitrary
as long as none of them is smaller than the MRE of the AUT.
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Figure 3: Logarithmic depiction of |Eθ| of a x-directed Hertzian dipole nor-
malized to the maximum amplitude.

There exist very efficient algorithms for solving Equation 47 - Equa-
tion 50 based on the Fast Fourier Transform (FFT) Algorithm, but de-
veloping implementation specific formulations is out of the scope of
this thesis. It is noted that for all calculations of the multipole coeffi-
cients and the far-field of antennas throughout this theses, a Matlab
implementation was used.

2.3 the hertzian dipole

To illustrate our results until now, we consider the simplest source of
radiation, the Hertzian dipole. It is perfectly suitable to be our test
case because the electric field as well as the multipole coefficients can
be easily calculated. With the dipole moment p, the electric field of
Hertzian dipole is written as (cf. [13])

E =
1

4πε

[
k2(r̂×p)× r̂e

ikr

r
+ [3r̂(r̂ ·p) −p]

(
1

r3
−
ik

r2

)
eikr

]
. (51)

The point in space where the field is evaluated is denoted by r with
the magnitude r = |r| and the vector of unit length r̂ = r/r.

Figure 3 shows the logarithmically scaled absolute value of the θ-
component of the electric field, i. e. Eθ = E · θ̂, for a Hertzian dipole
with the dipole moment p coinciding with the x-axis, i. e. p = px̂. The
field amplitude is normalized to its maximum value. Figure 4 shows
the absolute value of the corresponding φ-component Eφ.

The multipole coefficients Qsmn obtained by Equation 47 - Equa-
tion 50 are shown in Table 2 and Table 3. In the simple case of a
Hertzian dipole, only modes of degree n = 1 are needed to fully
characterize the source. All other coefficients are zero.
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Figure 4: Logarithmic depiction of |Eφ| of a x-directed Hertzian dipole nor-
malized to the maximum amplitude.

Table 2: Multipole coefficients Q1mn of the x-directed Hertzian dipole nor-
malized to unit transmit power P = 1

2

∑
smn |Qsmn|

2 = 1.

Q1mn m = ±1 m = ±2 m = ±3 . . .

n = 1 0 − − . . .

n = 2 0 0 − . . .

n = 3 0 0 0 . . .
...

...
...

...
. . .

Table 3: Multipole coefficients Q2mn of the x-directed Hertzian dipole nor-
malized to unit transmit power P = 1

2

∑
smn |Qsmn|

2 = 1.

Q2mn m = ±1 m = ±2 m = ±3 . . .

n = 1 ∓i − − . . .

n = 2 0 0 − . . .

n = 3 0 0 0 . . .
...

...
...

...
. . .
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Figure 5: Logarithmic depiction of |Qsmn| of a x-directed Hertzian dipole
normalized to the maximum value.

An alternative way of depicting the multipole coefficients is shown
in Figure 5. The data points for m > n are left blank since only coef-
ficients with |m| 6 n are needed for the expansion in Equation 39. A
cutoff degree of N = 10 according to Equation 38 was chosen.

2.3.1 Shifting the Source

In the previous section it was shown that for a Hertzian dipole, we
only need multipole coefficients of degree n = 1 to fully characterize
the source. This is only true if the dipole is located in the origin of the
coordinate system. If the source is shifted outwards by the the vector
r ′, then according to Equation 38 we need coefficients up to degree

N = dk(r0 + |r ′|)e+ 10 (52)

to accurately describe the source. Figure 6 illustrates the distribution
of transmit power over the modes n. For larger shifts r ′, modes with
higher degree n contribute more to the total field. Therefore, a higher
cutoff degree N is needed for an accurate description in terms of
multipole coefficients.

The direction of shifting only effects the distribution of transmit
power among order m modes for a fixed degree. Thus, the direction
of shifting has no impact on the n-node power spectrum since the
power of all modes with order m is summed up in Equation 36.

This fact has important implications for the next chapters. This is
why Figure 7 gives a simplified overview of the power distribution
among modes under translation and rotation. Simply put, a rotation
redistributes power within one level of the “coefficient pyramid”. The
cutoff degree N is therefore not altered. A translation redistributes
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Figure 6: n-mode power spectrum Pn for different shifts from the coordinate
origin |r ′| normalized to the total radiated power P.

power among different levels of the “coefficient pyramid” and the
cutoff degree has to be altered accordingly.

Calculating the new coefficients (i. e. after shifting) of a source us-
ing the old coefficients is computationally very expensive and numer-
ically challenging. Fortunately, there is an easy approximation which
leads to good results and is easy to obtain. For this we use the pre-
viously developed near-field to far-field transform to transform the
tangential field of the source to the radius A ′FF in the far-field. There,
we assume that a small shift |r ′| � A ′FF only affects the phase of the
field and the amplitude stays the same. By applying a phase correction
term Eshift = Ee

ikr̂·r ′ and transforming the field back to the near-field
the shifted field and its coefficients are known.
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3
P H A S E C E N T E R A N D R O TAT I O N A L S Y M M E T RY

One of the first applications of compressed sensing was reducing mea-
surement time for MRI scans in medical applications as introduced in
[12]. Sparsity of the measurement data in some domain can be ex-
ploited to allow for sampling rates far below the Nyquist rate (cf.
[15]). Because of the similar measurement setup, these methods can
readily be applied to antenna measurements. Before doing this, two
new concepts have to be introduced which help applying compressed
sensing techniques to antenna measurements, namely the phase cen-
ter and the rotational symmetry of a source.

3.1 phase center of an antenna

In [16], the phase center of an antenna is defined as follows:

2.270 phase center. The location of a point associated with
an antenna such that, if it is taken as the center of a sphere
whose radius extends into the far-field, the phase of a
given field component over the surface of the radiation
sphere is essentially constant, at least over that portion of
the surface where the radiation is significant.

For all practical antennas the phase center is not uniquely defined.
Its position depends on the angle of observation, the frequency, the
polarization and the considered angular space. Often it is possible to
find a point for which the phase is nearly constant over a reasonable
angular space. Following [17], this point is then referred to as the
apparent phase center. The importance of the phase center becomes
clear when a paraboloidal reflector antenna is considered. The feed
antenna has to be mounted in a way that its phase center coincides
with the focal point of the paraboloid. Otherwise significant perfor-
mance degradations are introduced.

In what follows, a new method for phase center determination is in-
troduced and its performance is compared to the LS procedure which
is the standard method for phase center determination in antenna
theory (cf. [5, 6, 7]). The new method uses a 1-norm minimization
of the spherical multipole coefficients to estimate the phase center
and proves to be superior in terms of precision and reliability. But
before going into details, a matrix vector notation is introduced for
the spherical multipole expansion. This helps keeping a clean and
concise notation throughout the following chapters.

17
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3.1.1 Matrix Notation

The simplified transmission formula from Equation 45 reads as

w(A,χ, θ,φ) =
∑
smn
µ

Qsmne
imφdnµm(θ)eiµχPsµn(kA) . (53)

Following the conventions from [1], a new summation index j is in-
troduced which replaces the indices s, n and m. The new index

j = 2(n(n+ 1) +m− 1) + s (54)

simplifies the summation in the transmission formula to

2∑
s=1

N∑
n=1

n∑
m=−n

=

J∑
j=1

(55)

with the new truncation index

J = 2N(N+ 2) . (56)

The inverse mapping to retain the old indices can be calculated easily
via a three step algorithm:

s(j) = js = (j− 1 mod 2) + 1

n(j) = jn =

⌊√
j− js
2

+ 1

⌋

m(j) = jm =
j− js
2

+ 1− jn(jn + 1) .

(57)

Figure 8 shows the mapping from old to new index set.
The transmission formula can now be written as

w(A,χ, θ,φ) =
J∑
j=1

∑
µ

Qje
ijmφd

jn
µjm

(θ)eiµχPjsµjn(kA) , (58)

which can be condensed into a compact matrix form

w = FQ (59)

with the matrices

(w)l = w(A,χl, θl,φl) (60)

(Q)j = Qj = Qjsjmjn (61)

(F)l,j =
∑
µ

eijmφld
jn
µjm

(θl)e
iµχlPjsµjn(kA) (62)

w ∈ CL×1 (63)

F ∈ CL×J (64)

Q ∈ CJ×1 (65)

(66)
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Figure 8: Depiction of the index mapping (s,m,n) → j. The new j index
(white) is placed at its corresponding position (s,m,n) in the coef-
ficient pyramid.

and the measurement index l = 1, . . . ,L. The new index j provides
means to organize the index triplet (s,m,n) into a single vector, as
can be seen in the coefficient matrix (cf. Figure 8)

Q =



Q1

Q2

Q3
...

QJ−1

QJ


=



Q1,−1,1

Q2,−1,1

Q1,0,1
...

Q1,N,N

Q2,N,N


. (67)

Equation 59 implies that if L = J independent measurements are
taken, the multipole coefficient matrix Q can be calculated by inver-
sion of F. In practice the coefficients are never calculated by simple
inversion because of its numerical instability. Other methods which
use a Fourier representation of F are used instead. Nevertheless, the
notation

Q = F−1w (68)
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will be used to denote the calculation of the coefficients Q. To sum-
marize, the near-field to far-field transform algorithm outlined in Sec-
tion 2.2.2 can be compactly written as

wFF = FFF F
−1
NFwNF︸ ︷︷ ︸

Q

, (69)

where the subscripts (·)NF and (·)FF indicate if the analysis and syn-
thesis radius A of the respective quantity lies in the near-field or far-
field.

In Section 2.3.1 the translation operation for the far-field of a source
is introduced. This operation can be compactly written in terms of the
matrix notation. The shifted multipole coefficients Qshift are obtained
as

Qshift = F
−1
FF T̃ FFFQ = TQ (70)

with the far-field translation matrix T̃ defined as

T̃ (r ′) =


eikr̂1·r

′
0 . . . 0

0 eikr̂2·r
′ . . .

...
...

. . . . . . 0

0 · · · 0 eikr̂L·r
′

 ∈ CL×L . (71)

The phase correction factors in the diagonal of T̃ are constituted of
the inner product of the unit vector r̂l pointing in the direction of the
lth measurement and the shifting vector r ′ scaled by the wavenumber
k.

Similar to the translation matrix T , a rotation matrix R ∈ CJ×J is
used to carry out a rotation of the field by the three Euler angles
(χ, θ,φ). For the rotation sequence, the (z,y, z)-convention is used.
Rotation of the coordinate system as derived in [1, Chapter 3] leads
to a sum invoking the rotation angles and the rotation coefficient
introduced in Section 2.2.2

Qsmn,rotate =

n∑
µ=−n

eimφdnµm(θ)eiµχQsµn . (72)

By using the new indices j and l (Equation 54) and writing the µ-sum
as a matrix multiplication, the rotated coefficients Qrotate are calcu-
lated by

Qrotate = RQ (73)

with

(R)j,l(χ, θ,φ) =

eijmφdjnlmjm(θ)eilmχ l ∈ L(j)

0 otherwise
(74)
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and the set of admissible values for l (which depends on the current
j index)

L(j) =
{
l : l = 2

(
jn(jn + 1) + µ− 1

)
+ js,

µ ∈ {−jn,−jn + 1, . . . , jn}
}

.
(75)

3.1.2 Minimum 1-Norm Estimation

In Section 2.3.1 (Figure 6 and Figure 7 in particular) the effects of
translating a source relative to the coordinate origin are shown. For
larger distances between origin and source the modal content is shifted
towards modes with higher degree n. On the contrary, if the sources
n-mode power spectrum is concentrated on lower degree modes, this
implies relative closeness of source and coordinate origin. It is there-
fore save to assume that if the n-mode power spectrum is “maximally
focused” (in a sense which is still to be defined) on low degrees, the
coordinate origin coincides with the phase center of the source.

Another way of establishing this issue is the analogy with the
Fourier transform where the mode degree n takes over the role of
the frequency. To ensure a slowly varying phase, only low frequency
components should be present. Constant phase as suggested for the
phase center by [16] is guaranteed if only the DC-component of the
Fourier transform is present.

phase center definition The explanations above motivate the
following definition. The phase center of a source is the point for
which Qshift has the fewest non-zero entries. In mathematical terms
the phase center is defined as

rPC = − arg min
r ′

r ′<r0

‖Qshift‖0

= − arg min
r ′

r ′<r0

‖F−1FF T̃ (r
′)FFFQ‖0

(76)

with r0 being the MRE of the source. As usual, the p-norm of a vector
x is defined as

‖x‖p =

(∑
i

|xi|
p

) 1
p

, p > 1 . (77)

This expression can be extended to smaller values 0 < p < 1, but
due to the violation of the triangle inequality it does not constitute a
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proper norm. The case p = 0 and the corresponding quasi-norm ‖x‖0
denote the number of non-zero elements of x, i. e.

‖x‖0 =
∑
i

I(xi) (78)

I(xi) =

1 xi 6= 0
0 xi = 0

. (79)

It is important to note that the cutoff index J up to which the mul-
tipole coefficients Q are calculated has to be chosen large enough.
Otherwise, a shift might redistribute power contributions to indices
larger than the cutoff index which entails false minimization results
in Equation 76. Moreover, the absolute value r ′ of the shift vector
needs to be smaller than r0 (which is the MRE of the source).

Equation 76 requires a combinatorial search over all possible val-
ues for the shift vector r ′ and is therefore not suitable for standard
optimization routines. The solution to this problem is the utilization
of the 1-norm in the argument of the minimization. It is shown in [15]
that this step renders the optimization problem convex while main-
taining the sparsity constraint on Qshift. The definition of the phase
center then reads as

rPC = − arg min
r ′

r ′<r0

‖Qshift‖1

= − arg min
r ′

r ′<r0

‖F−1FF T̃ (r
′)FFFQ‖1

(80)

and allows for a simple implementation.

simulation results A broadly established and straightforward
way of calculating the phase center of an antenna is to compare the
measured field of an antenna with the theoretic field of a point source
and translate the antenna so that an error term becomes minimal
in an LS sense. For further details and implementation guidelines,
the reader is referred to [5]. The algorithm found there is frequently
applied in practice and will be the benchmark the new algorithm is
compared to.

For simulation purposes, the field of an electric dipole is calculated
according to Equation 51 with random dipole moment p and random
shift r ′ with magnitude smaller than one wavelength. The error vector
is then calculated by

re = rPC + r ′ (81)

and its length

re = ‖re‖2 (82)
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Figure 9: Simulation Setup for comparison of phase center detection perfor-
mance based on an LS method and the minimum 1-norm method
from Equation 80. The dipole moments pi (blue) are chosen with
random orientation and magnitude. The corresponding fields are
calculated and then shifted by respective random vectors r ′i. The
error vector ri,e (orange) and its magnitude are used as perfor-
mance metric.
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is used as a performance metric to evaluate the precision of the two
proposed phase center detection techniques. Figure 9 illustrates the
measurement setup.

To carry out the minimization in Equation 80, the Sequential Quad-
ratic Programming (SQP) solver of the Matlab function fmincon is
used. The step size tolerance is set to λ/1000 and a random starting
point within a sphere of radius λ is chosen.

Figure 10 shows the results for M = 1000 measurements. The per-
formance of the LS-based phase center detection depends on the ori-
entation of the dipole moment. Since the moment pi was chosen at
random, there is a large fluctuation in the achieved precision. Fur-
ther, it seems that offsets in the z-direction can be better compensated
than offsets in the x- or y-direction. This is caused by the higher sam-
pling density in the polar regions of the measurement sphere. The
minimum 1-norm does not exhibit dependencies on the orientation
or the offset direction. Translations are estimated very precisely and
robustly. In some part this is due to the fact that a dipole has the
smallest norm ‖Q‖1 possible for a given transmit power 12‖Q‖2. This
is of course a favorable scenario for the minimization problem. But
nevertheless, the method works equally well for all different kinds of
sources since the underlying principle is the same for all antennas.

Table 4 summarizes the simulation results. The quantities used for
the performance evaluation are the sample mean of the absolute error

r̄e =
1

M

M∑
i=1

ri,e , (83)

the unbiased sample standard deviation

s =

√√√√ 1

M− 1

M∑
i=1

(ri,e − r̄e)2 , (84)

the radius which is larger than 95% of all absolute error radii

re,95% = min
r
r s. t. P{ri,e < r} > 0.95 , (85)

the maximum of the absolute error

re,max = max
i
ri,e , (86)

and the sample mean of the execution time

t̄ =
1

M

M∑
i=1

ti . (87)

It is obvious from the results in Table 4 that the minimum 1-norm
estimation provides superior accuracy and reliability. This gain is



3.1 phase center of an antenna 25

−0.5 0 0.5

−0.5

0

0.5

x/λ

y
/
λ

Least Squares

[ April 29, 2016 at 14:07 – classicthesis version 3.0 ]

(a) Error distribution in xy-plane for LS-
method
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(b) Error distribution in xy-plane for min-
imum 1-norm method
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(c) Error distribution in xz-plane for LS-
method
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(d) Error distribution in xz-plane for mini-
mum 1-norm method

Figure 10: The distribution of error vectors ri,e = ri,PC + r ′i (see Figure 9)
is shown for the two considered phase center detection methods
in the xy-plane and in the xz-plane. Each error vector ri,e, i =

1, . . . ,M is indicated by an orange dot. For perfect estimation
it holds that ri,e = 0 (black cross). The sphere with radius
re,95% containing 95% of the simulation results for the respec-
tive method is indicated in blue. The minimum 1-norm method
is more accurate (note the different scaling of the axes) and not
dependent on orientation.
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Table 4: Comparison of the LS- and the minimum 1-norm based phase cen-
ter detection methods. The simulation was carried out M = 1000

times. The minimum 1-norm method provides superior precision
but is more computationally expensive. The maximum error is
larger since in some rare cases, the Matlab optimization does not
converge.

Method: Least Squares Minimum 1-Norm

r̄e 372.60 · 10−3λ 1.81 · 10−3λ
s 125.76 · 10−3λ 29.05 · 10−3λ
re,95% 558.32 · 10−3λ 1.87 · 10−3λ
re,max 0.70λ 0.92λ

t̄ 11.66 · 10−3s 8.31s

bought by longer execution times. It has to be noted, however, that
the routines for calculating the minimum 1-norm estimation have not
been optimized for computation time. If execution time turns out to
be a limiting factor for the use of this method, it can certainly be re-
duced significantly by an optimized implementation. This is, however,
out of the scope of this thesis. The gain in precision over the conven-
tional LS-method turns out to be a crucial component for reducing
overall measurement time in antenna measurements. It is therefore
acceptable to spend a little extra time on the phase center detection
when measurement time can be reduced overall. These issues will be
discussed in detail in the next chapters. The larger maximum error
re,max arises from a failed minimization in Equation 80. The iteration
limit was reached without finding the global minimum. Preventing
this case and increasing overall performance is possible by using the
LS solution as starting point for the minimum 1-norm method and by
checking if the phase variation is indeed minimal for the calculated
phase center.

3.2 rotational symmetry of an antenna

The notion of rotational symmetry for a given source is discussed
next. The phase center was defined as the point in space for which,
when coinciding with the coordinate origin, the multipole coefficients
Q were “maximally focused” on modes with low degree n. In a sim-
ilar manner, rotational symmetry is achieved when, after rotating the
source by the Euler angles (χ, θ,φ), the multipole coefficients Q are
“maximally focused” on modes with low order m.

The use of this definition will become clearer in the next chapters
when the notion of compressed sensing is introduced. There, a sparse
vector Q will lead to a reduction in necessary antenna measurement
samples. The calculation of the multipole coefficients in an optimal
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coordinate system (with the origin in the phase center and the z-axis
as the axis of rotational symmetry) ensures the sparsest representa-
tion of Q possible.

3.2.1 Minimum 1-Norm Estimation

rotational symmetry definition Similar to the phase center,
the Euler angles necessary to achieve rotational symmetry are defined
as rotation angles for whichQrotate has the fewest non-zero entries. In
mathematical terms, this reads as

(χ, θ,φ)RS = arg min
(χ,θ,φ)

‖Qrotate‖0

= arg min
(χ,θ,φ)

‖R(χ, θ,φ)Q‖0 .
(88)

Again, since optimization problems of the form Equation 88 are
computationally intractable, a 1-norm relaxation is introduced to ren-
der the optimization problem tractable. The Euler angles to achieve
rotational symmetry are then written as

(χ, θ,φ)RS = arg min
(χ,θ,φ)

‖Qrotate‖1

= arg min
(χ,θ,φ)

‖R(χ, θ,φ)Q‖1
(89)

and can be calculated using standard minimization techniques.
Figure 11 shows the effects of a rotation according to Equation 89

and a translation according to Equation 80 on the coefficients of a
Hertzian dipole. Depending on the position and orientation of the
source, a different number of non-zero entries in Q is necessary to
accurately describe it in terms of multipole coefficients. Figure 11a
shows to original position r and the dipole moment p while Fig-
ure 11b depicts the corresponding coefficients. Next, the coefficients
Q ′ = RQ are rotated (cf. Figure 11c, Figure 11d). The necessary ro-
tation angles are calculated using Equation 89. As a final step, the
source is translated to the coordinate origin byQ ′′ = TQ ′ = TRQ (cf.
Figure 11e, Figure 11f). The necessary translation vector is calculated
using Equation 80. With this approach a sparse representation of the
source in terms of multipole coefficients is obtained.
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(a) Original position and
orientation

−15 0 15
1

5

10

15

m

n

20 log |Q1mn|

−15 0 15
1

5

10

15

m

n

20 log |Q2mn|

−30

−20

−10

0

[dB]

[ April 29, 2016 at 14:08 – classicthesis version 3.0 ]

(b) Original Coefficients
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(c) Position and orienta-
tion after rotation by
(χ, θ,φ)RS
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(d) Coefficients after rotation by (χ, θ,φ)RS
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(e) Position and orienta-
tion after rotation by
(χ, θ,φ)RS and trans-
lation by rPC
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(f) Coefficients after rotation by (χ, θ,φ)RS and transla-
tion by rPC

Figure 11: The first row shows the position r (black) and orientation p (blue)
of a Hertzian dipole and its corresponding multipole coefficients
Qsmn. The second row shows the position, orientation and coef-
ficients after a rotation, and successively, the third row shows the
respective quantities after a translation.
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C O M P R E S S E D S E N S I N G F O R A N T E N N A
M E A S U R E M E N T S

The field of compressed sensing has been and still is a very active
research area. The prospect of reducing the number of samples neces-
sary to characterize a signal source has found great appeal in many
applications. One of the very first usages of compressed sensing was
the reduction of measurement time in MRI scans as described in [12].
Here, sparsity in the total variation of medical images is exploited so
that the number of samples in the frequency domain decreases. The
similarity of this setup to antenna measurements is one of the main
inspirations for this thesis. Later we will see how compressed sens-
ing can be applied to antenna characterization. But before, the basic
principles and results of sparse signal recovery are introduced.

4.1 recovery of sparse signals

Suppose we have an arbitrary discrete signal f(n) of size N which is
non-zero only on a subset T ⊆ {0, 1, . . . N− 1} = ZN. The support size
of f is thus

|supp(f)| = |T | =

N−1∑
n=0

I(f(n)) (90)

with the indicator function I(x) (Equation 79) being 1 for non-zero
entries of x and zero else. The discrete Fourier transform of the se-
quence is defined as

f̂(k) =

N−1∑
n=0

f(n)e−i
2πkn
N =

N−1∑
n=0

f(n)e−iωkn (91)

and its inverse reads as

f(n) =
1

N

N−1∑
k=0

f̂(k)eiωkn . (92)

Similar to Equation 90, the support size of f̂ is defined as

|supp(f̂)| = |Ω| =

N−1∑
k=0

I(f̂(k)) (93)

with the support Ω ⊆ ZN being the subset on which f̂ is non-zero.
If all entries of f̂(k), k = 0, 1, . . . ,N− 1 are known, the signal f(n)

can simply be reconstructed using the inverse Fourier transform from

29
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Equation 92. In the well known paper [9] it is shown that we can do
significantly better if f(n) is supported only on a small subset T , i. e.
if f(n) is sparse. Then it suffices to know ˆf(k) on a subset Ω satisfying

|T | 6
1

2
|Ω| (94)

to guarantee (for N prime) exact reconstruction of f(n) from the lim-
ited number of frequency samples f̂(k),k ∈ Ω. The algorithm achiev-
ing exact reconstruction is a combinatorial search, i. e.

(P0) min
g
‖g‖0 s. t. ĝ(k) = f̂(k), k ∈ Ω . (95)

Solving this optimization problem directly is not feasible due to
its combinatorial complexity. Therefore, the following relaxation is
introduced

(P1) min
g
‖g‖1 s. t. ĝ(k) = f̂(k), k ∈ Ω (96)

which can be solved numerically in a very efficient manner. The re-
markable observation proved in [9] is that (P0) and (P1) are equiva-
lent for almost all choices of Ω given that

|T | 6
α|Ω|

logN
. (97)

To underline the significance of this result, let us consider a small ex-
ample. To reconstruct a time signal f(n) of length N = 1000 from its
Fourier coefficients via Equation 92, we need all of its Fourier coeffi-
cients f̂(k), k = 0, . . . , 999. If we know that the support |T | of f(n) is
10, i. e. f(n) is non-zero on 10 unknown positions, numerical results
in [9] suggest that 100 random samples of f̂(k) are enough to recover
the signal f(n) exactly with probability almost 1.

The methodology introduced above only considers the case of sam-
pled Fourier coefficients and cannot be directly related to the spheri-
cal coefficients domain. However, subsequent work of the afore men-
tioned authors extends the compressed sensing framework to a larger
set of transform pairs.

uniform uncertainty principle definition To verify if a
given transform pair is suitable for a compressed sensing approach,
the notion of the Uniform Uncertainty Principle (UUP) is introduced
[11, 18]. Assume FΩ is an |Ω| ×N matrix (often called the sensing
matrix) and f̂ = FΩf. The matrix FΩ fulfills the UUP with S-restricted
isometry constant δS if the inequality

(1− δS)‖f‖22 6 ‖FΩf‖22 6 (1+ δS)‖f‖22 (98)

holds for all subsets T with |T | 6 S and supp(f) = T . Essentially,
Equation 98 states that the samples f̂ = FΩf capture a “fair share”
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of the signal energy and that the power which is not captured is
bounded by δS. According to [18], "This property essentially requires
that every set of columns with cardinality less than S approximately
behaves like an orthonormal system."

In general, it is very hard to prove if an arbitrary sensing matrix ful-
fills the UUP with good isometry constants. Numerical evaluation fails
since the number of different supporting subsets T and the number
of different sampling subsets Ω is to large for an exhaustive search.
However, randomness in the sensing matrices allows for probabilis-
tic statements concerning uniform uncertainty and sparsity S = |T |.
Sensing matrices FΩ often encountered in literature are [10, 11]

• The Gaussian sensing matrix: The entries of FΩ ∈ R|Ω|×N are
sampled from a normal distribution

(FΩ)k,n =
1√
N
Xk,n, Xk,n i.i.d. N(0, 1) . (99)

The UUP is satisfied with probability 1−O(e−γN), γ > 0 if

S 6
α|Ω|

log N
|Ω|

. (100)

• The binary sensing matrix: The entries of FΩ ∈ R|Ω|×N are sam-
pled from a symmetric Bernoulli distribution

(FΩ)k,n =
1√
N
Xk,n, P{Xk,n = ±1} = 0.5 . (101)

The UUP is satisfied with probability 1−O(e−γN), γ > 0 if

S 6
α|Ω|

log N
|Ω|

. (102)

• The Fourier sensing matrix: The entries of FΩ ∈ C|Ω|×N are ob-
tained by randomly choosing |Ω| rows from an orthonormal
Fourier matrix

(FΩ)k,n =
1√
N
e−i2π

kn
N , k ∈ Ω, n = 1, . . . ,N (103)

The UUP is satisfied with probability 1−O(e−γN), γ > 0 if

S 6
α|Ω|

(logN)6
. (104)

To get an intuitive idea of the UUP, a visualization is quite helpful.
Consider a Fourier sensing matrix as defined in Equation 103. A sig-
nal f with spikes on just a few positions and zeros otherwise (Fig-
ure 12a) is known to have a rich spectrum to capture the sharp tran-
sitions. Its Fourier transform f̂ has therefore necessarily a large sup-
port accounting for the high frequency components introduced by the
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sharp transitions (Figure 12b). If now the Fourier domain is sampled
on a random subset Ω, the probability to capture a “fair share” of
power is quite large. But the larger the support |T | of f becomes, the
more concentrated the spectrum might be. This results in reduced
probability of fulfilling the UUP with good isometry constants. Vice
versa, if the Fourier transform has only a few distinct frequency com-
ponents (Figure 12d), the corresponding time signal can never be lo-
calized in time (Figure 12c). Summarizing this example, a sensing
matrix FΩ satisfying the UUP guarantees that a signal f in the original
domain and a signal f̂ = FΩf in the transform domain can never be
sparse at the same time.
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(a) Signal f(n) is highly localized in time
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(b) . . . but its Fourier transform f̂ is dis-
tributed over frequency.
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(c) Signal f(n) is distributed over time . . .
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(d) . . . but its Fourier transform f̂ is local-
ized in frequency.

Figure 12: Visualization of the UUP for Fourier matrices. Signals which are
highly localized in time have a broad frequency spectrum (first
row). On the contrary, signals with just a few frequency compo-
nents do not have sparse time support (second row).

The UUP and accordingly the isometry constant δS can now be
used to derive statements for signal recovery and stability using the
recovery algorithms stated in Equation 95 and Equation 96.
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In [10] it is shown that for

δS + δ2S + δ3S 6 1 (105)

the program (P1) recovers any sparse signal f satisfying |T | 6 S. More-
over, since the samples f̂ are often not known exactly, a third recovery
algorithm is introduced which amounts for small errors e,

(P2) min
g∈CN

‖g‖1 s. t. ‖FΩg− f̂‖2 = ‖e‖2 6 ε . (106)

Equation 106 allows for reconstruction of the signal f with error
constraint. In [10] it is proved that a solution f] to (P2) stays close to
the original signal f with support size |T | 6 S,

‖f] − f‖2 6 CSε, (107)

given that

δ3S + 3δ4S 6 2 (108)

for a small constant CS and error constraint ‖FΩg− f̂‖2 = ‖e‖2 6 ε.
Under the same conditions as above,

‖f] − f‖2 6 C1,Sε+C2,S
‖f− fS‖1√

S
(109)

holds for an arbitrary signal f. The signal fS is obtained by consider-
ing only the S largest entries of f and setting all other entries to zero.
This result implies that if the isometry constants of a sampling ma-
trix obeys certain constraints, the reconstruction error is subject to the
sampling error constraint ‖e‖2 and by the term ‖f− fS‖1 accounting
for the non-sparseness of f.

4.2 applicability to antenna theory

In the previous section, principles of compressed sensing for sparse
signal recovery were introduced and recovery accuracy and probabil-
ity were stated. An important question is now how to apply these
methods to the antenna theory framework introduced in Chapter 2.
The ultimate goal here is the significant reduction of sample points
(and therefore sample time) required in near-field measurements of
antennas. Current spherical scanners rotate around the AUT to cap-
ture samples on an equiangular grid. The density of measurement
points is primarily determined by the electric size of the antenna.
Scan times for large antennas at high frequencies are in the order
of several hours to days. Consequently, scan time reduction via post
processing of the gathered data appears to be very promising.

First, a short recap of Chapter 2 and Chapter 3 is provided for
convenience. The field measured by a probe antenna with orientation
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χ on a sphere with radius A and at angular position θ and φ can
be developed into spherical modes as described by the transmission
formula (cf. Equation 53)

w(A,χ, θ,φ) =
∑
smn
µ

Qsmne
imφdnµm(θ)eiµχPsµn(kA) . (110)

In matrix notation this expansion can be written as (cf. Equation 59)

w = FQ (111)

and its inverse is formally written as

Q = F−1w . (112)

If the measurement sphere around the antenna is sampled on an
equiangular grid, very efficient techniques exist to solve Equation 112.
These techniques take use of the special structure of the transmission
formula and its similarity to the Fourier transform. In fact, solving the
transmission formula for the coefficients Q only takes two discrete
Fourier transforms over θ and φ and some additional processing [1].
This similarity is the reason why compressed sensing results which
were originally developed for Fourier matrices are predestined for
application in spherical wave expansions as well. In what follows it
will be shown that the spherical sensing matrix F in fact satisfies the
UUP and can therefore be used to reconstructw by exploiting sparsity
in Q.

4.2.1 Uniform Uncertainty

To be able to apply results from the compressed sensing framework,
the respective quantities have to be identified. Table 5 provides an
mapping of quantities from antenna theory to their counterparts in
compressed sensing. The sampling domain is space with the samples
at different locations specified byw. The sparsity domain is the spher-
ical wave domain with the corresponding coefficients specified in Q.
The transform linking spatial domain and spherical wave domain is
defined by the matrix F.

The UUP condition in this new context now reads as

(1− δS)‖Q‖22 6 ‖FQ‖22 = ‖w‖22 6 (1+ δS)‖Q‖22 . (113)

To investigate for which isometry constants δS Equation 113 is satis-
fied, we first have to specify the sampling set Ω on which the mea-
surements w are obtained.

Many commercially available spherical antenna scanners sample
on a sphere surrounding the AUT on an equiangular grid. This al-
lows for efficient calculation of the spherical coefficients Q [1] and
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Table 5: Mapping of the quantities from compressed sensing to their coun-
terparts in antenna theory.

Compressed Sensing Antenna Theory

sampled signal f̂ w

supporting set Ω Ω

sparse signal f Q

supporting set T T

sensing matrix FΩ F

will therefore be our starting point. Sampling on an equiangular grid
means that the angular step ∆ between two adjacent sampling points
is constant for all sampling points,

(w)l = w(A,χl, θl,φl) (114)

θl = (l− 1)∆ mod π+∆ (115)

φl =

⌊
l∆

π+∆

⌋
∆ mod 2π+∆ (116)

χl =

0, 1 6 l 6 L/2

π/2, L/2+ 1 6 l 6 L
(117)

with L being the total number of sampling points. L and ∆ have to be
chosen such that the whole sphere is reached for both probe orienta-
tion angles χ, i. e.

L = 2LθLφ (118)

∆ =
π

Lθ − 1
=

2π

Lφ − 1
, (119)

where Lθ and Lφ denote the number of different θ and φ values,
respectively.

This complicated formulation of simple circumstances arises be-
cause the measurement data of a two-dimensional surface has to be
organized somehow in a one-dimensional vector. Figure 13 provides
a comprehensible depiction of this method for an angular step value
∆ = π/4. Figure 14 shows the same mapping on a three-dimensional
sphere.

Now that the notion of an equiangular grid is established and the
arrangement into the vector w is specified, the set of sampling loca-
tions Ω is defined to be a subset of the l-index set for equiangular
sampling,

Ω ⊆ {1, 2, . . . ,L} . (120)
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Figure 13: Definition of summation index l (blue) for an exemplary angu-
lar step size ∆ = π

4 . The values of θ, φ and χ are numbered as
depicted above. This allows for a two-dimensional data set to be
arranged in an one-dimensional vector.
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Figure 14: Three-dimensional depiction of the summation index l (blue) on
the sphere for an exemplary angular step size ∆ = π

4 and χl = 0.
For χl = π/2 the index l can be calculated by adding L/2, i. e.
l→ l+ L/2.
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The quantity

Ω(χ,θ,φ) = {(χl, θl,φl) : l ∈ Ω} (121)

specifies the set of orientation angles associated with the points in
the sampling set Ω. Defining Ω as a subset of the l-index set is by no
means necessary. It will, however, allow us to use efficient and numer-
ically stable implementations of the spherical multipole transform.

As was already shown in Section 4.1, sensing matrices satisfy the
UUP with high probability if the sampling set Ω is chosen at random.
A uniform random distribution (as it is used for the Fourier matrix)
will not take into account the underlying spherical geometry of our
problem. That is why the UUP inequality

(1− δS)‖Q‖22 6 ‖w‖22 6 (1+ δS)‖Q‖22 . (122)

has to be considered again. The bounding factor ‖Q‖22 is seen to ac-
commodate for the total radiated power

P =
1

2

∑
smn

|Qsmn|
2 =

1

2

J∑
j=1

|Qj|
2 =

1

2
‖Q‖22 (123)

of the measured source (cf. Equation 35). To achieve the smallest pos-
sible isometry constants δS, ‖w‖22 has to approximate the transmit
power as well as possible. Considering only tangential field compo-
nents, the transmit power can be calculated by

P = c1

∫2π
0

∫π
0

(
|Eθ|

2 + |Eφ|
2
)

sin θdθdφ

≈ c2
L∑
l=1

|w(A,χl, θl,φl)|2 sin θl∆2

= c24π

L∑
l=1

|w(A,χl, θl,φl)|2p (θl)p (φl)

= c24πE
{
|w|2
}

(124)

with sinusoidal probability density function

p (θl) =
∆ sin θl
2

(125)

and the uniform probability density function

p (φl) =
∆φl
2π

(126)

for angles from the equiangular sampling set. In the last line of Equa-
tion 124 the expected power of a sample regarding its spatial distri-
bution is calculated. For ‖w‖22 as close as possible to ‖Q‖22, it is there-
fore beneficial to pick random samples according to the distributions
in Equation 125 and Equation 126.
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definition of the random sampling set Ω Following the
considerations above, the random set of measurements Ω is created
using the procedure below.

• Pick three realizations of a uniform random process.

U,V ,W ∼ U(0, 1) (127)

• Calculate spherical coordinates (θ,φ) which are distributed ac-
cording to a uniform distribution on the unit sphere and calcu-
late χ uniform in the interval χ ∈ [0,π/2].

θ = cos−1(2U− 1) (128)

φ = 2πV (129)

χ =
π

2
W (130)

• Find the closest neighbor in the complete set of equiangular
sampling points l ∈ 1, . . . ,L.

lΩ = arg min
l

{
(θ− θl)

2 + (φ−φl)
2 + (χ− χl)

2
}

(131)

• Add the index corresponding to the nearest set of spherical co-
ordinates to the random sampling set.

Ω = Ω∪ {lΩ} (132)

This procedure is repeated until the number of desired samples |Ω| is
obtained. Figure 15 shows a comparison of the procedure above and
a simple uniform distribution in the angular values. The proposed
method (Figure 15a) guarantees uniform spacing between samples
whereas the simple variant (Figure 15b) leads to a dense distribution
of samples in the polar regions of the measurement sphere.

4.2.2 Bounds for the Isometry Constant

Now that the sampling set Ω is defined, the next step is to determine
if the sensing matrix F satisfies the UUP with good isometry constants.
In Section 4.1 it was shown that the UUP basically guarantees that
a transform can never be localized (i. e. have small support) in both
its original domain and its image domain. To analyze if the sensing
matrix F satisfies this constraint, we will consider the worst possible
case, namely the maximum directivity antenna. Supergain antennas,
which under some circumstances have even higher directivity than
maximum directivity antennas, are not considered here since they
are highly inefficient and not relevant for the practical purposes con-
sidered in this thesis (cf. [19]).
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(a) Uniformly distributed sampling
points on sphere.

[ April 29, 2016 at 14:10 – classicthesis version 3.0 ]

(b) Dense distribution of sampling
points in the polar regions.

Figure 15: Uniform sampling positions (left, blue) are distributed evenly
over the sphere and are suitable for different antenna patterns.
Uniform angular sampling in both θ and φ leads to a high den-
sity of sampling points in the polar regions (right, blue) and is
therefore not desirable.

The maximum directivity antenna has the highest possible directiv-
ity for a given degree NMDA [19],

D = N2MDA + 2NMDA (133)

That means no other practical antenna allows stronger focusing of
the electric field. The maximum number of coefficients necessary to
characterize this antenna can be calculated using Equation 56 and
amounts to

J = 2NMDA(NMDA + 2) . (134)

The sparsest possible representation of the maximum directivity an-
tenna is achieved for maximum rotational symmetry of its field (the
order m needed for representation of variations in φ is minimal in
this case). The only non-zero coefficients Q for this orientation are
given by [1] as

Q1,1,n = Q2,1,n = Q1,−1,n = −Q2,−1 = −c

(
in

2

√
2n+ 1

)
. (135)

This specific constellation gives us the worst case for the UUP inequal-
ity and will therefore provide worst case bounds for the isometry con-
stants δS. Every other antenna is either less localized in the coefficient
domain or has a less focused electric field in the spatial domain. Fig-
ure 16a and Figure 16b show the normalized θ- and φ-components of
a maximum directivity antenna and Figure 16c and Figure 16d show
the corresponding multipole coefficients.
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(a) Logarithmic depiction of Eθ of a maximum directivity antenna normalized
to the maximum amplitude.
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(b) Logarithmic depiction of Eφ of a maximum directivity antenna normal-
ized to the maximum amplitude.
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(c) Logarithmic depiction of
|Q1mn| of a maximum di-
rectivity antenna normal-
ized to the maximum value.
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(d) Logarithmic depiction of |Q2mn| of a
maximum directivity antenna normal-
ized to the maximum value.

Figure 16: Field and coefficients of a maximum directivity antenna with de-
gree NMDA = 15.
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Figure 17: Bar plot of the upper bound on the isometry constant, δ120,90%,
over the support size Ω normalized to the size of the complete
sampling set L. The probability of a realization of δ120 to be
smaller than δ120,90% is 90%.

Since deriving analytical bounds for the isometry constants δS of
a maximum directivity antenna is challenging and would exceed the
scope of the thesis, a novel approach is suggested. The sampling set
Ω is a random set and the isometry constants δS satisfying the UUP

inequality are considered to be random as well. We will therefore an-
alyze multiple realizations of the sampling set and its corresponding
isometry constants and derive bounds for which a fixed percentage of
realizations satisfies the UUP. Further, different sparsity levels S = |T |

are achieved by using maximum directivity antennas with different
degree NMDA while keeping the overall number of samples the same.

First, let us consider the case of a maximum directivity antenna
with maximum degree NMDA = 30. According to Equation 38, the
cutoff degree N = 40 is chosen for the multipole expansion. The
number of sampling points for the complete equiangular sampling
set is L = 2(2N + 1)(N + 1) = 6642. The size of the supporting set
for the spherical wave coefficients Q follows from Equation 135 to
S = |T | = 4NMDA = 120. Calculating 1000 realizations for the sam-
pling setΩ and calculating the upper bound on the isometry constant
which is larger than 90% of the δ120-realizations leads to the results
depicted in Figure 17. The UUP inequality is seen to be satisfied with
very tight bounds δ120 in at least 90% of sampling set realizations.

When performing the same numerical evaluation for different sup-
port sizes (by using maximum directivity antennas with lower maxi-
mum degree and maintaining the number of equiangular samples L),
an interesting issue arises (cf. Figure 18). Intuitively, the bound on the
isometry constant is decreasing for decreasing support size S because
fewer coefficients cause a less focused electric field. On the contrary,
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Figure 18: Depiction of the upper bound δS,90% on the isometry constant
δS for coefficient support size S = |T | and sampling set support
size |Ω|. S ≈ 30 constitutes the worst case scenario for which the
upper bound is rather large.

fewer coefficients cause fewer sidelobes for the maximum directivity
antenna, thus leading to less radiated power outside the main lobe.
The worst case for which coefficient sparsity and low sidelobe level
add up to large upper bounds on the isometry constant δS occurs for
NMDA = 8 . . . 10.

Figure 19 shows the upper bound δS,99% containing 99% of isom-
etry constant realizations. Again, the largest bounds are found for
NMDA = 8 . . . 10.

Considering now the condition in Equation 105 for the isometry
constant, it is possible to search for the minimum number of sample
points in Ω such that the program (P1) recovers any sparse set of
coefficients with support size S with given probability. The isometry
bounds δS,99%, δ2S,99% and δ3S,99% are calculated for S in the range
S = 4, 8, . . . , 40 (corresponding to maximum directivity antennas with
NMDA = 1, 2, . . . 10) and it is checked if the inequality

δS,99% + δ2S,99% + δ3S,99% 6 1 (136)

holds. The data obtained by the numerical evaluation described above
suggests that Equation 136 holds for S = 4, 8, . . . , 40 for all Ω satisfy-
ing

|Ω| > 0.25L (137)

with probability

P{δS + δ2S + δ3S 6 1} > 0.993 ≈ 0.95 . (138)

For noisy samples, the condition on the isometry constant

δ3S + 3δ4S 6 2 (139)
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Figure 19: Depiction of the upper bound δS,99% on the isometry constant δS
for coefficient support size S = |T | and sampling set support size
|Ω|. Again, S ≈ 30 constitutes the worst case scenario for which
the upper bound is rather large.

guarantees a bound on the error

‖Q] −Q‖2 6 CS‖FQ−w‖2 (140)

for the solution Q] of the reconstruction program (P2) (cf. Equa-
tion 106 - Equation 108). The data obtained by the numerical eval-
uation described above suggests that Equation 139 holds for S =

4, 8, . . . , 40 for all Ω satisfying

|Ω| > 0.20L (141)

with probability

P{δ3S + 3δ4S 6 2} > 0.993 ≈ 0.95 . (142)

The procedure used for deriving these approximate bounds is sum-
marized in the following listing.

• The field of a maximum directivity antenna is calculated on L
equiangular grid points.

• For a given realization of the random sampling set Ω, the corre-
sponding realization of the isometry constant (cf. Equation 122)
is calculated.

• The above step is repeated 1000 times and an upper bound
δS,99% is calculated which is larger than 99% of the isometry
constant realizations.

• The upper steps are repeated for different support sizes S.
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• The size of the random sampling set |Ω| for which Equation 136
holds is determined.

• The data gathered by the steps above suggest that only 25% of
the sampling points from the complete equiangular sampling
set are needed to recover the field of an arbitrary antenna with
support size S 6 40 by using the program (P1) with probability
larger than 95%.

• Further, the experiment suggests that only 20% of the sampling
points from the complete equiangular sampling set are needed
to recover the field of an arbitrary antenna with support size
S 6 40 by using the program (P2) with probability larger than
95% and error constraint.

This is a remarkable result since it suggests that we only have to
measure one quarter of the sampling points previously needed to
characterize an antenna (under the condition of sparse wave coeffi-
cients). An adequate spatial sampling pattern can therefore save up
to 75% of measurement time because fewer samples have to be ob-
tained. In the next chapter, we will support these theoretical results
with simulation data.

The cutoff degree N = 40 which was used for the numerical estima-
tion of the bound on |Ω| was chosen arbitrarily. However, choosing
a larger cutoff degree and simulating larger maximum directivity an-
tennas (i. e. larger NMDA) will lead to increased sidelobe radiation
and will decrease the bounds on the isometry constant. Lower cut-
off degrees are not considered here because they are not part of the
use case. For low cutoff degrees, sampling time is low and a method
for sampling time reduction can therefore not gain much and is not
worth the effort.

4.3 truncation handling

Often measurement issues arise due to the mechanical structure of
spherical antenna scanners limiting the accessibility of parts of the
measurement sphere. Typically, this fact leads to a truncation of the
measurement sphere for angles larger than a certain threshold. Much
scientific work concentrated on different approaches to solve this is-
sue. In [20] an LS-estimation method with energy constraint is de-
ployed whereas [21] suggests an iterative approach using the band-
limitation for antennas. In [22] an iterative approach is compared to
an equivalent current method with subsequent extrapolation.

The compressed sensing framework which was developed in the
previous chapter allows for a very different approach to this prob-
lem. The truncated measurement sphere can be seen as a random set
of sampling positions Ω containing all measurement points on the
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equiangular grid which are accessible by the scanner, see Figure 20.
Solving the program (P1) in a very similar manner as in the previ-
ous section, we can find a coefficient set Q which on the one hand
explains the observations w and on the other hand is sparse. This
approach has the favorable feature that it does not introduce addi-
tional complexity in the coefficients. It searches for the simplest so-
lution which still explains the measurements. This is not guaranteed
for the other methods mentioned above. A deeper investigation of
the proposed truncation handling method is unfortunately out of the
scope of this thesis. However, further research in this area seems very
promising.

[ April 29, 2016 at 14:12 – classicthesis version 3.0 ]

Figure 20: Sampling scheme on the sphere for truncation handling, i. e. if a
small area (white) cannot be sampled due to mechanical limita-
tions.
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R E C O N S T R U C T I O N E VA L U AT I O N

Due to the popularity of compressed sensing in the resent years, the
research area of minimization methods attracted a lot of attention as
well. There is a huge number of adequate solvers available for the so
called basis pursuit

(P1) min
g
‖g‖1 s. t. ĝ(k) = f̂(k), k ∈ Ω (143)

and the so called basis pursuit de-noising

(P2) min
g
‖g‖1 s. t. ‖FΩg− f̂‖2 6 ε (144)

which are the recovery algorithms introduced in the previous chapter.
The choice of the right solver is primarily determined by the size of
the problem. For small-scale and medium-scale applications, classical
convex optimization methods (e. g. [23]) can be applied. For large-
scale problems, where the number of unknowns is in the thousands
or millions, iterative thresholding and message passing techniques
are often employed [24].

Since antenna measurements at high frequencies require thousands
of sampling points, a large-scale solver is necessary to reconstruct
our measurement. The interior point method described in [25] will
be used in what follows to solve Equation 143 and Equation 144. It
is specifically suitable for our purposes because there exists a read-
ily available Matlab implementation (cf. [26]) which does not require
explicit knowledge of the sensing matrix F. Instead, a function han-
dle can be supplied to take full advantage of an efficient, FFT-based
Matlab implementation for the transform w = FQ.

The choice of the specified solver is by no means mandatory. Equal
or even better results are achievable with a variety of other methods.
However, searching for the optimal solver is out of the scope of this
thesis.

The remaining chapter addresses the question of solving the recon-
struction problem with a reduced number of sampling points. After
the basic concepts of the selected solver are introduced, synthetic as
well as measurement data is reconstructed. For antennas with non-
sparse coefficient set, an iterative algorithm is introduced which al-
lows for successful reconstruction in a large variety of scenarios.

46
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5.1 solver for regularized least squares programs

We will focus on the basis pursuit de-noising problem given in Equa-
tion 144 because it incorporates measurement noise. With the sam-
ples w measured on the random set Ω, the sensing matrix F and the
(hopefully) sparse multipole coefficients Q, our problem reads as

min
Q
‖Q‖1 s. t. ‖FQ−w‖2 6 ε . (145)

In what follows, the reconstruction problem is recast so that the inte-
rior point solver of [25] can be applied. This method is shortly sum-
marized in the following.

The reconstruction problem of Equation 145 can be equivalently
described as an unbounded optimization problem

min
Q
‖FQ−w‖22 + λ‖Q‖1 (146)

or as a quadratic problem with linear inequality constraints

min
Q

‖FQ−w‖22 + λ
J∑
j=1

uj

s. t. − uj 6 Qj 6 uj, j = 1, . . . , J .

(147)

The box constraints −uj 6 Qj 6 uj are now accounted for by intro-
ducing the logarithmic barrier

Φ(Q,u) = −

J∑
j=1

log
(
uj +Qj

)
−

J∑
j=1

log
(
uj −Qj

)
(148)

what allows to define the central path as the unique minimizer (Q∗(t),
u∗(t)) of the convex function

Φt(Q,u) = tmin
Q
‖FQ−w‖22 + t

J∑
j=1

λuj +Φ(Q,u) (149)

with the parameter t ∈ (0,∞) specifying the steepness of the log-
arithmic barriers. Starting on a central point (Q∗(t0), u∗(t0)), the
next point on the central path (Q∗(t1), u∗(t1)) is calculated for an
increased value t1 > t0. Usually, Newton’s method is used to min-
imize Equation 149. But considering the size of the problem, inver-
sion of the Hessian is prohibitively complex. That is why the inverse
Hessian is approximated using a preconditioned conjugate gradient
approach. After the minimization using the approximate inverse Hes-
sian, the logarithmic barrier factor t is increased and a new central
point is calculated. If the inverse Hessian can be approximated accu-
rately enough, this procedure leads to an optimal solution for Equa-
tion 147. For additional details and derivations concerning the above
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Table 6: Input parameters of the Matlab function l1_ls and the respective
quantities in antenna theory.

l1_ls input Notation Explanation

A F Sensing matrix

At F−1 Transposed sensing matrix

m |Ω| Number of observations

n J Number of unknowns

y w Measurement samples

lambda λ Regularization parameter

rel_tol ε/‖Q‖22 Relative accuracy

quiet default Controls displayed information

x0 default Starting vector

u0 default Starting bounds

t0 t0 Starting boundary weight

summary, the reader is referred to the original literature in [25]. Ad-
ditionally, [27] provides a broad overview on convex optimization.

The Matlab implementation l1_ls [26] of the method above allows
to specify the quantities listed in Table 6.

Choosing the right parameters λ and t0 is no easy task. The reg-
ularization parameter λ > 0 influences the sparsity of the optimal
coefficient set Q∗ (cf. Equation 146). For large values of λ, the 1-norm
has more weight in the minimization and the solution will have few
non-zero entries. For small regularization parameters, the solution
to Equation 146 will degrade to a LS-fit with many non-zero entries.
Finding a balanced value for λ is therefore crucial.

The starting boundary weight t0 determines if the “strictness” of
the logarithmic barriers. For t0 → 0 the only term contributing to the
function being minimized in Equation 149 is the logarithmic barrier.
For t0 → ∞, the minimization problem degrades to an unbounded
problem since the logarithmic barriers do not contribute to the func-
tion being minimized. A correctly chosen value for t0 ensures fast
convergence while maintaining all constraints.

5.1.1 Solver Parameters

We will now run a small numerical experiment to find suitable values
for the regularization parameter λ and the starting boundary weight
t0. For this, a fixed value of t0 is chosen and λ is iterated over a
large span of possible values with logarithmic spacing. For the recon-
struction, a maximum directivity antenna with NMDA = 30 and cutoff
degree N = 40 is chosen. Following the insights of Chapter 4, 25% of
the sampling points of the complete equiangular sampling grid are
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Figure 21: MSE of the reconstructed multipole coefficients for a maximum di-
rectivity antenna. Small values of λ and large t0 are the favorable
parameter setting.

taken into account. The performance metric will be the Mean Square
Error (MSE) of the reconstructed multipole coefficients Q] to the orig-
inal coefficients Q, i. e.

eMSE =
1

M

M∑
i=1

‖Q] −Q‖22 , (150)

with the number of runs M = 10 for one value of λ.
Figure 21 shows the resulting MSE for λ ∈ [10−3, 101] and for t0 ∈ {1,

10, 100, 1000}. For small values of t0, the logarithmic barriers are
dominant and corrupt the minimization. For t0 > 10, the MSE de-
creases and the reconstruction successfully converges. For λ ≈ 1 the
1-norm in Equation 146 is dominant and the minimum solution for
the multipole coefficients is therefore the trivial all-zero solution. Reg-
ularization parameters which ensure good reconstruction properties
are located in the interval [10−3, 10−2]. It is noted that for λ � 10−3,
the minimization degrades into a LS-problem. From now on, unless
stated otherwise, we will choose a regularization parameter λ of 10−3

and an initial boundary weighting factor t0 = 1000.

5.1.2 Maximum Directivity Antenna

With the solver parameters found in the previous chapter, we can
now investigate the reconstruction of the field of a maximum direc-
tivity antenna in detail. As it is explained in Chapter 4, this specific
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antenna type poses a worst case scenario for the reconstruction be-
cause of its highly localized field. Again, the field of a the AUT is
randomly sampled on the measurement sphere. The number of sam-
ples is chosen to be 25% of the number of samples in the complete
equiangular sampling set which is usually necessary to characterize
this antenna.

Figure 22a shows the original tangential field of a maximum direc-
tivity antenna withNMDA = 30. For an antenna like this, the complete
equiangular sampling grid consists of L = 2(2N+ 1)(N+ 1) = 6642

sampling points [1] with the cutoff degree N = 40 chosen according
to Equation 38. When choosing 0.25L ≈ 1660 samples randomly from
the complete equiangular sampling grid and carrying out the mini-
mization of Equation 146 with the parameters found in the previous
section, we achieve the reconstructed fieldsw] depicted in Figure 22b.
The reconstruction error depicted in Figure 22c is seen to be insignif-
icant.

5.2 iterative reconstruction

Until now, only synthetic measurement data which is sparse by de-
sign and noiseless was considered. To be able to apply reconstruction
algorithms to real world measurements of arbitrary antennas, a novel
scheme is introduced. Broadly speaking, this scheme reconstructs the
multipole coefficients of a given antenna in the coordinate system
where those coefficients are sparsest. For this, the insights of Chap-
ter 3 and Chapter 4 are condensed into an iterative reconstruction
algorithm which is outlined in the following.

reconstruction First, Equation 146 is carried out to find a set of
coefficients Q(k) which at this point is not necessarily sparse.
Usually, the field w(k) = F−1Q(k) associated with this set of
coefficients is just some sort of interpolation of the random sam-
ples w.

phase center As a next step, the newly found multipole coeffi-
cients Q(k) are translated into the phase center of the antenna,
following Equation 80. This step yields a new coefficient set
Q

(k)
shift which is by definition sparser than before.

rotational symmetry Now a similar step is carrier out, only that
the translation is replaced by a rotation. Following Equation 89,
the translated coefficients are now rotated. As before, this step
yields a new coefficient setQ(k)

rotate which is by definition sparser
than before.

iterate With the newly found sparse coefficient set, a better recon-
struction according to Equation 109 of the multipole coefficients
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(a) Logarithmic depiction of the tangential field of a maximum directivity antenna
normalized to the maximum amplitude.
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(b) Logarithmic depiction of the reconstructed tangential field of a maximum direc-
tivity antenna normalized to the maximum amplitude. Only 25% of the complete
equiangular grid points are used in the reconstruction.
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(c) Logarithmic depiction of the reconstruction error which stays below −50dB on
the whole sphere.

Figure 22: Original (first row) and reconstructed (second row) tangential
field of a maximum directivity antenna with NMDA = 30 normal-
ized to the maximum absolute value. The reconstruction error
|w] −w| is insignificant on the whole measurement sphere.
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is possible, yielding Q(k+1). This in turn leads to improved es-
timations of the phase center and rotational symmetry. The it-
eration can be stopped when the difference ‖Q(k+1) −Q(k)‖2
becomes small.

In mathematical terms, this algorithm reads as follows.

1. Take |Ω| random samples w uniformly spaced on the sphere.

2. Perform reconstruction

Q(k) = arg min
Q
‖Q‖1 s. t. ‖FQ−w‖2 6 ε (151)

3. Translate into estimated phase center

Q
(k)
shift = T

(k)Q(k) (152)

4. Rotate to achieve rotational symmetry

Q
(k)
rotate = R(k)Q

(k)
shift = R

(k)T (k)Q(k) (153)

5. Perform reconstruction

Q(k+1) = arg min
Q
‖Q‖1

s. t. ‖FT−1,(k)R−1,(k)Q−w‖2 6 ε
(154)

6. Repeat steps 3− 5 for k→ k+ 1 until

‖Q(k+1) −Q(k)‖2 < εstop (155)

Following this procedure, a sparse set of coefficients representing
the AUT can be found as well as the translation and rotation matri-
ces to obtain the (not necessarily sparse) coefficients in the original
coordinate system.

5.2.1 Horn Antenna

To establish the proposed method, a horn antenna at 2.6GHz is con-
sidered. Measurements of this antenna are taken in the anechoic cham-
ber at the Institute of Telecommunication of TU Wien. The measure-
ments are obtained with a spherical scanner covering the azimuth
angles φ ∈ [0◦, 360◦] and the polar angles θ ∈ [0◦, 160◦]. To recover
the missing samples for θ ∈ [160◦, 180◦] which are blocked by the
supporting structure, an iterative estimation as described in [21] is
used. Since the horn antenna is mounted with a small offset to the co-
ordinate origin, we expect the multipole coefficients to be non-sparse.
Moreover, noise is present in the measurement samples.
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The MRE of the antenna (which is the radius of the smallest sphere
centered at the origin and fully enclosing the AUT) is 0.8m, the cutoff
degree therefore amounts to N = 54. The number of samples nec-
essary to calculate the multipole coefficients with the standard FFT-
based algorithm from [1] is L = 2(2N+ 1)(N+ 1) = 11990. We will try
to reconstruct the coefficients with as little as 0.25L ≈ 2997 samples
using the iterative reconstruction algorithm described above. Again,
the regularization parameter λ = 10−3 is chosen. Since the obtained
measurement data is normalized at some point in the preprocessing
at the measurement chamber, the starting boundary weight has to be
changed and is chosen to be t0 = 1.

Figure 23 shows the resulting reconstructed field of the iteration
method. The first iteration (first row) shows large deviations from
the original field (fourth row) which is calculated using the complete
equiangular sampling grid. The translation to the estimated phase
center and the rotation to achieve rotational symmetry in the first
iteration provide a coefficient set which is sparse so that already the
second iteration (second row) constitutes a good approximation of the
actual field. A subsequent iteration step refines this approximation
(third row).

Figure 24 shows the difference of the reconstructed field to the ref-
erence field for three iterations. While the reconstruction error is quite
large after the first iteration (first row), the error decreases with every
iteration. After the third step (third row), the error is below −17dB
for all polar angles θ < 150◦. For polar angles θ > 150◦, we see larger
deviations from the reference field. This effect arises due to the differ-
ent approaches concerning truncation handling. The reference field is
calculated using an iterative approach to recover the samples which
cannot be measured in the test chamber. The iterative approach re-
covers those samples in a way that minimizes ‖Q‖1. The difference
of these two approaches causes the differences in the region θ > 150◦.
A further discussion of this fact can be found in Section 4.3.

Table 7 lists the relative reconstruction error for three iterations.
The error is seen to decrease with every iteration due to the opti-
mization of the reconstruction coordinate system and the resulting
sparsity of the multipole coefficients. A residual error remains since
the truncation of the scan area introduces artifacts which cannot be
compensated with the current approach.

Concluding this chapter, it is stated that we were able to recover
both synthetic and real world measurements with a highly reduced
sampling set using principles from the compressed sensing frame-
work. For both synthetic and real world measurement, 25% of the
sampling points usually needed for efficient FFT-based analysis is suf-
ficient to recover the field of an antenna with good accuracy. This
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Figure 23: Depiction of the normalized reconstructed tangential field for
three iterations (rows 1-3) and the actual field (row 4), respec-
tively.



5.2 iterative reconstruction 55

−180 0 180

0

90

180

φ[◦]

θ
[◦
]

20 log |w(1)(0, θ,φ)
−w(0, θ,φ)|

−180 0 180

φ[◦]

20 log |w(1)(π/2, θ,φ)
−w(π/2, θ,φ)|

−60

−40

−20

0

[dB]

−180 0 180

0

90

180

φ[◦]

θ
[◦
]

20 log |w(2)(0, θ,φ)|
−w(0, θ,φ)|

−180 0 180

φ[◦]

20 log |w(2)(π/2, θ,φ)
−w(π/2, θ,φ)|

−60

−40

−20

0

[dB]

−180 0 180

0

90

180

φ[◦]

θ
[◦
]

20 log |w(3)(0, θ,φ)
−w(0, θ,φ)|

−180 0 180

φ[◦]

20 log |w(3)(π/2, θ,φ)
−w(π/2, θ,φ)|

−60

−40

−20

0

[dB]

[ April 29, 2016 at 14:13 – classicthesis version 3.0 ]

Figure 24: Depiction of the reconstruction error for three iterations (rows 1-3,
respectively). Each iteration reconstructs the original field better
then the one before due to the optimized coordinate transforma-
tion. The errors for θ ∈ [160◦, 180◦] are caused by the truncation
of the scan area and the different estimation methods for this
area.
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Table 7: Reconstruction error relative to the total transmitted power for three
iterations. The residual error after three iterations is mostly due to
the different truncation handling techniques.

Iteration ‖Q(k) −Q‖2/‖Q‖2
k = 1 0.392

k = 2 0.153

k = 3 0.129

results in the potential of significantly reducing measurement time in
antenna characterization since fewer samples have to be acquired.



6
C O N C L U S I O N

This thesis addresses the issue of measurement time reduction in
spherical near-field measurements by reducing the number of sam-
pling points necessary to characterize a radiating source. Since mea-
surements of large antennas at high frequencies often take several
hours, cutting on measurement time increases the efficiency of an-
tenna characterization facilities. To achieve this goal, principles of
compressed sensing are applied to determine the radiated fields with-
out knowledge of the complete sampling grid. This thesis demon-
strates the potential of reducing the number of necessary samples
for FFT-based antenna characterization by as much as 75%, leading
to a significant reduction in measurement time when implemented
appropriately.

Chapter 2 and Chapter 3 provide the mathematical framework for
finding the sparsity transform, i. e. the spherical multipole expansion,
and for optimizing the coordinate system (by translation and rota-
tion operations) so that the coefficient set of a given antenna is sparse.
Moreover, a newly developed phase center estimation method is com-
pared to a well known LS-based approach and, while being computa-
tionally more expensive, proves to increase mean accuracy by a factor
of 200.

The concept of compressed sensing and its applicability to antenna
theory is discussed in Chapter 4. In this context, it is shown that
the posed problem satisfies the UUP condition with high probability
given an appropriate sampling pattern on the sphere, thus allowing
for reconstruction of the field in spite of undersampling. An empiri-
cal value of 25% of the complete equiangular sampling grid is given
which still offers good reconstruction properties.

In Chapter 5 it is shown that an antenna can be characterized with
as little as 25% of measurement points which are normally used in an-
tenna characterization, given that the antenna’s multipole coefficients
are sufficiently sparse. If this is not the case, an iterative scheme is
introduced which solves the reconstruction problem in an optimized
coordinate system which renders the coefficients sparse again.

further work Due to the limited scope of this thesis, some as-
pects were not treated with the thoroughness they deserve, thus pro-
viding foundation and inspiration for future research. The most no-
table considerations are listed below.

• The UUP condition is only analyzed with a numerical experi-
ment considering the worst case scenario of a maximum direc-
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tivity antenna. The close similarity of the multipole expansion
and the two-dimensional Fourier transform suggests that ana-
lytical results which exist for the Fourier transform can be trans-
fered to the multipole expansion. This would lead to a closed
form stating the number of samples necessary to fulfill the UUP

with high probability for a given level of sparsity.

• The choice of the reduced sampling set as a random subset of
the complete equiangular sampling set is reasonable but arbi-
trary. Other choices for the reduced sampling set can lead to
improved reconstruction properties while facilitating the actual
sampling progress. Star- or spriral-shaped sampling trajectories
have already proved their usefulness in similar measurement
setups.

• As already indicated in the previous chapters, the proposed iter-
ative algorithm can be used to reconstruct truncated scan areas.
The investigation of this method’s performance compared to
methods already in use seems to be a promising research area.

• The choice of the solver used for the minimizing problem was
again reasonable but arbitrary. Optimizing the solver for the
minimization problem (e. g. by choosing a different precondi-
tioner in the inverse Hessian approximation) leads to better con-
vergence properties and possibly to better results. Moreover, the
solver parameters have a huge influence on the reconstruction
quality and are therefore suited for further investigation.
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