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Abstract

A whole is greater than the sum of its parts. A collaborating team is greater than a
group of contributors working in isolation. In this thesis we introduce a novel technique
called collaboration-assisted computation that evolves human-assisted computation in
line with these postulates. As human computation focuses on integrating human input
at various phases of machine computation, so collaboration-assisted computation aims
at integrating machine computation with input from collaborating teams. However,
collaboration-assisted computation is something more than a simple replacement of the
term human input with the term team input in the pipeline of machine computation.
What is collaboration without social interaction? How effective can collaboration be
without convenient software tools? While the answers to these questions lie outside of the
scope of this thesis, we argue that a truly efficient collaboration orbits around social con-
text and collaborative software. Therefore, the center of gravity for collaboration-assisted
computation lies at the intersection of human computation, social computing and collab-
orative software. Moreover, collaboration-assisted computing relies on crowdsourcing to
execute collaboration at massive scale.

Hence, this thesis presents a holistic framework for modeling and programming
collaboration-assisted computation. First, we present a query language capable to
express intuitively complex social traits of collaborating groups. Second, we show how
to model social collaboration processes. Third, the thesis introduces a programming
language to coordinate collaborative teams and a framework for integration of social and
collaborative software. Fourth, we show how crowdsourcing models can be extended to
scale collaboration processes. The proposed modeling and programming languages were
evaluated with extensive use cases, showing intuitiveness and expressiveness of each of
the approaches.
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CHAPTER 1
Introduction

Many problems that appear easy to humans cannot be solved by computers, such as
natural language understanding, decision-making, inference and so on. Therefore, incorpo-
ration of human elements in machine computation has been extensively considered since
more than half a century. Starting from the fitness function in genetic algorithms [Kos01],
adoption of human-assisted (human-based) computation gradually evolved from mere
language and framework extensions [KKL�05, AAD�07, STD11], Turing Machine exten-
sions [SA07] to fully human-centered programming models, such as crowdsourcing-based
programming models. To date, human computation has been considered aligned to
machine computation, i.e. human components were connected exclusively by dataflow
bindings. In other words, "human" components were integrated as isolated components
with predefined inputs and outputs. While such representation perfectly reflects commu-
nication between libraries, threads, processes and remote services in classic computer
software design, it ignores social connections between human workers and influence of
social formations on responsiveness and quality of the work performed. For example, a
socially coherent team is more likely to produce a better result than a team of strangers.

While human-assisted computation promotes a computer-centered view, i.e. humans
assist computer programs, social computing promotes quite the opposite view of computer
software facilitating social interaction [Sch94] and social network analysis [WCZM07].
Social network analysis operates with plethora of patterns and characteristics that define
social coherence of a team or connectedness between teams, such as geodesics, n-clique,
n-clan, n-club, k-core, k-plex, closeness centrality, betweenness centrality and so on
[Sco00].

While social computing focuses on facilitating social interaction, collaborative software
(groupware) focuses on improving collaboration. Collaboration capabilities of groupware
systems range from mere communication tools, real-time screen or file sharing, confer-
encing systems, to complex coordination platforms, such as project management and
workflow systems.
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Crowdsourcing allows outsourcing and distributing simple tasks to a large group
(crowd) of anonymous human workers via specialized software platforms. The terms
crowdsourcing and human computation are often intermixed and used synonymously in the
literature. Crowdsourcing work, however, can produce results that cannot be understood
and comprehended by computers, such as images, or text passages, contradicting thus
the main focus of human computation.

Even though there is a significant overlap between human computation, social com-
puting, collaborative software and crowdsourcing, the centers of their gravity are different.
This thesis introduces the technique called collaboration-assisted computation, which

Human Computation

Social 
Computing

Crowdsourcing

Collaborative 
Software

Collaboration-assisted 
computation

Figure 1.1: Human-centered computing paradigms

evolves human-based computation by outsourcing computation to complex social for-
mations (groups) of human workers, rather than isolated workers, with the focus on
collaboration as the driving force to produce the desired outputs for different phases of
machine computation. Interest in enhancing human computation with social traits is
gaining momentum in academia [DB11], emphasizing thus the necessity to bring these
social patterns and characteristics into the domain of human-based computation, and
further bridging the gap between human-assisted computation and social computing.
Venn digram in Figure 1.1 depicts the focus of collaboration-assisted computation as in-
tersection of the areas of interest of crowdsourcing, human computaton, social computing
and collaborative software. Collaboration-assisted computation extends human compu-
tation by considering social relations as the driving factor for successful computation
results. In the meantime, collaboration is hard to carry out without collaborative software
and scale out without the methods of crowdsourcing. Similarly to the case of human-
based computation, the terms collaboration-assisted computation and collaboration-based
computation can be used interchangeably.
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1.1 Problem Statement

Enhancing human-assisted computation with social collaboration requires: (i) a formalism
capable of expressing patterns and characteristics widely used in social network analysis;
(ii) a tool set of programming models, languages, and frameworks to support collaboration-
based computation throughout all the phases of software design and engineering.

Social formations can be intuitively represented as graphs, and graph formalisms and
graph query languages are widely adopted for querying social networks and capturing
various graph patterns. This makes graph query languages [AG08, Woo12a] a natural
choice for expressing groups of people. However, expressing complex social formations,
such as variable-sized cliques and k-plexes, hubs, structural equivalence [Sco00] etc., is
extremely difficult and verbose in the existing graph query languages. The problem here
is how to extend the existing graph query languages in order to express intuitively groups
of people, and consequently, advanced patterns in social networks.

A typical life cycle of software design and engineering undergoes through three main
phases: modeling, implementation, and scaling. The first phase of software engineering is
business process modeling (BPM), during which not only software engineers are involved,
but also process analysts and stakeholders. Business process modeling allows companies
to describe and document their enterprise processes. Although a variety of techniques
and tools have been introduced in this area, modeling of highly dynamic non-routine
processes such as human collaboration is still a subject for discussion in research [Nur08].
Chaotic nature of creative human collaboration makes it difficult to apply imperative
modeling approaches, predominantly used in business process modeling, as it is hard to
predefine exact steps to follow [Nur08].

The second phase of software engineering is implementation, which can be argued
to be the key phase. Implementation consists of a data model the program operates on,
and coordination model between program parts. The data model in our case is defined
by social relations. Utilization of social relations information can only be promoted by
integration of various social networking platforms, as those possess comprehensive user
data sets and the amount of such data will grow with social computing pervading the
enterprise IT1. In addition, the coordination of people groups requires integration of
groupware platforms and products serving as convenient tools for human collaboration.
The problem here is how to seamlessly integrate social and groupware platforms and
enable coordination of human collaboration in a unified way. Such integration brings in
multiple challenges such as how to manage authentication and authorization, and map
entities from different platforms.

The third phase of software engineering is scaling the implementation. Programming
for scale often means redesigning the implementation towards cloud computing platforms.
Being able to provide dozens of thousands of computing resources, cloud computing can be
considered as the endgame for scalability projects. With respect to human computation
crowdsourcing platforms provide resources to execute at a large scale comparable to cloud
computing. Crowdsourcing today is focused on simple unskilled crowd work, represented

1http://www.gartner.com/it/page.jsp?id=1470115

3



as Human Intelligence Tasks (HITs)2, which are posted online and are expected to be
picked up by workers. It is not possible to express group work with such "pull" model.
Enabling programming of group work along with social aspects can extend focus of
crowdsourcing from simple and easy tasks to complex collaborative work. The problem
here is how to adjust crowdsourcing programming models to express collaborative group
work.

1.2 Research Questions

We postulate that in order to enable collaboration-assisted computation and address the
aforementioned problems it is necessary to answer the following research questions:

Question 1: How to express complex social formations with relaxed structure in a formal
and structured way?

A formalism for collaboration-based computation needs to operate with groups of
people (teams) and individual contributors (army of one) interchangeably, which calls
for a notion of group as a first-class construct of the formalism. This would enable
expression of advanced composite structures, such as a group comprising of multiple
groups. Structure of a group can be represented both by social formations and dataflow
dependencies. Graph query languages have come a long way with respect to succinct
expression of complex graph patterns, from basic regular path expressions representing
repetition of edges to graph motifs [HS08] representing repetition of cycles and trees.
Yet the concept of groups has not been employed as a first-class citizen, limiting thus
expressivity of complex social formations.

With respect to relaxed graph structures, research in graph query languages focused
on two opposite approaches: "flexible" topologies [FLM�11] and approximate graph
matching [KS01, GT06, HPW09]. While the former approach relaxes constraints on
topology of returned graphs, the latter one allows result approximations with edit
distances. The question here is how to design a language that would allow for flexibility
in graph structure while avoiding producing completely irrelevant results.

Question 2: How to model collaboration-assisted computation?
This question can be in-depth re-phrased as "how to model chaotic social collaboration

while preserving its freedom, yet capturing key aspects of collaboration processes?". A
modeling notation for social collaboration has to address three main requirements. First,
it has to rely on declarative programming paradigm, describing a process in terms of
"what" needs to be done, and not "how" to do it. Such formulation is inherent to human
collaboration, leaving the necessary freedom of execution to the people involved. Second,
the modeling notation has to find a proper balance between intuitiveness and expressivity
when it comes to expressing complex social formations with relaxed structure, such as
k-plex, liaison, independent teams, etc. Third, the modeling notation has to intuitively
blend representation of groups of people and social formations into workflow sequences.

2https://www.mturk.com/mturk/welcome
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The modeling notation also has to provide a visual formalism that adheres to the discussed
requirements. The visual formalism has to focus on extending an existing visual language,
rather than introducing a new one, in order to foster its adoption.

Question 3: How to simplify implementation of collaboration-assisted computation?
Implementation of collaboration-assisted computation requires an extensive program-

ming framework that simplifies integration of plethora of existing social networking
platforms and groupware services. Social networking sites, such as Facebook3, LinkedIn4,
etc., provide information on social and semantic relations, while groupware services, such
as Assembla5, VersionOne6, etc., provide an ability to assign work to people and react to
work progress. Seamless integration of data and groupware services poses many different
challenges, as social computing software exposes heterogeneous application programming
interfaces (APIs), which are often asymmetric, have no clear indicators of idempotence
or presence of side effects. However, the main challenge comes from coordination of
process flow throughout many distinct social computing and groupware platforms, as it
often requires complex synchronization patterns. The architecture of an integration and
coordination framework should enable entity mapping, seamless transient authentication
and authorization, and plug-ability of different APIs into a single programming language.

Question 4: How to scale collaboration-assisted computation?
Scaling out collaboration-assisted computation means enabling collaborative work

involving hundreds or even thousands of people groups. Crowdsourcing platforms,
such as Amazon Mechanical Turk7, enable massive scalability of human computation.
These platforms, however, ignore altogether collaboration aspects of human computation
that encompass social relations and intelligent worker (group) discovery. To support
collaboration-assisted computation crowdsourcing frameworks and languages need to
conform to the "push" model which assigns workers to tasks rather than widely employed
"pull" model that allows workers to pick up tasks. Moreover, crowdsourcing languages and
programming models should not only support social selection of groups of people, but also
allow crowd workers to recruit group members in order to foster collaboration. Scaling
computation often goes hand in hand with performance tuning and optimization of a
program to minimize response times. In case of collaboration-assisted computation real-
time collaborative work can be achieved via real-time crowdsourcing [BBMK11, BKMB12]
with a premise to produce results within seconds after initial request.

1.3 Scientific Contributions

In an attempt to solve the research questions formulated in Section 1.2, this thesis
focuses on building a novel and holistic framework aiming to enable collaboration-based

3http://www.facebook.com
4http://www.linkedin.com
5https://www.assembla.com/
6https://www.versionone.com/
7https://www.mturk.com/mturk/welcome
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computation. The framework spans the key phases of the software engineering life cycle:
modeling, implementation, and scaling. Figure 1.2 depicts the core components of the
framework denoted with the contributions they correspond to.

Collaboration-based computation framework

Contribution 1
Query language

Contribution 2
Modeling approach

Contribution 3
Coordination/

integration framework

Contribution 4
Crowdsourcing model

Figure 1.2: Collaboration-based computation framework

Below we briefly overview the major contributions of the thesis along with relations
between the contributions. The contributions aim to push forward the state of the art
in programming models, languages, and frameworks to support, promote and simplify
programming of collaboration-based computation. The contributions aim at extending
existing programming or modeling languages rather than inventing new languages from
scratch. Apart of the benefit of relying on well-established foundations, such approach
also exercises the potential benefit of increased adoption in the research community and
industry due to familiarity of programmers with the existing languages.

• Contribution 1: A query language for expressing complex social forma-
tions.
We define Conjunctive Set Regular Path Queries (CSRPQs), which allow for intuitive
and succinct expression of complex social formations. CSRPQs extend Conjunctive
Regular Path Queries (CRPQs) which form the basis for many existing graph query
languages, allowing thus easy integration of CSRPQs. CSRPQs introduce a notion
of group, allowing thus expression of a variety of patterns in social network analysis
and selection of subgraphs with flexible structure. In addition, we define efficient
CSRPQ query evaluation techniques for selecting groups from graph structured
data, and show that CSRPQ-based query evaluation outperforms CRPQ-based
baseline.
Details on CSRPQs along with examples demonstrating their expressivity are
presented in Chapter 3. Contribution 1 has originally been presented in [LSZD13].

• Contribution 2: A modeling approach and a visual notation to model
social collaboration processes.

6



We introduce a modeling approach that allows to capture chaotic social collab-
oration processes by expressing collaboration processes in a bottom-up fashion
similar to Cellular Automata [Neu66]. Such representation allows to capture key
stages of collaboration processes while preserving freedom of collaboration. The
accompanying modeling formalism integrates CSRPQs, which allows to express
collaboration within and between social groups. In addition, we define visual
notation that allows for graphical representation of modeled processes. The visual
notation is based on Statecharts, smoothing thus the learning curve for people
familiar with UML8.

Details on the modeling approach are discussed in Chapter 4. Contribution 2 has
originally been presented in [LKTD12a] and further extended in [LKS�14].

• Contribution 3: A programming language and a framework to coordi-
nate social collaboration.

We define Statelets, a coordination language accompanied by an integration frame-
work. Statelets simplifies programming of complex synchronization patterns inherent
to collaborative processes. The Statelets design is heavily based on our modeling
approach, employing the same principles inspired by Cellular Automata. In ad-
dition, Statelets allows for seamless integration of heterogenous social neworking
and groupware APIs. Statelets is the only contribution of this thesis that defines
a programming language from scratch rather than extending one of the existing
approaches.

Details on Statelets are discussed in Chapter 5. Contribution 3 has originally been
presented in [LKTD12b].

• Contribution 4: A crowdsourcing graph database to augment crowd-
sourcing processes with social and collaborative aspects.

In this contribution we introduce Crowdstore, a crowdsourcing graph database.
Crowdstore aims at extending the popular crowd-as-a-database model to incorporate
intelligent worker discovery, real-time crowdsourcing, and social formations in
order to enable programming of low-latency collaboration-enabled computation at
scale. Crowdstore includes yet another CRPQ extension, CRowdPQ, which can
be combined with CSRPQ to further enhance expressivity of social formations in
crowdsourcing queries. In addition, Crowdstore introduces efficient query evaluation
techniques and database components to speed up CRowdPQ evaluation. Similarly
to CSRPQ, CRowdPQ relies on extending existing formalism (CRPQ), making it
easier to adopt in many existing graph query languages.

Details on Crowdstore are discussed in Chapter 6. Contribution 4 has originally
been presented in [LSSD15].

8http://www.uml.org
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1.4 Structure of the Thesis
The remainder of this thesis is structured as follows. Chapter 2 provides background
information about technologies and concepts used throughout the rest of the thesis. The
four main contributions outlined in Section 1.3 are presented in the four core chapters:

• Chapter 3 introduces a query language for expressing complex social formations
and efficient query evaluation techniques.

• Chapter 4 presents modeling approach that allows to intuitively capture social
collaboration processes.

• Chapter 5 details an integration and coordination framework to simplify implemen-
tation of collaboration-assisted computation.

• Chapter 6 introduces a crowdsourcing graph database to enable collaborative
aspects in crowdsourcing.

Each of the four core chapters approximately adheres to the same structure:

1. Start with Introduction and Motivation sections, describing use cases of social
collaboration.

2. Review related work specific to the chapter in order to show shortcomings of the
existing approaches.

3. Present main ideas behind the respective contribution, providing formal definition
of query/programming languages or models employed. In addition, Chapters 3
and 6 also discuss query evaluation techniques, while chapter Chapter 5 presents
framework architecture design.

4. Thorough evaluation of the proposed approach with respect to the use cases
presented in Motivation.

5. Conclude summarizing respective contributions.

Chapter 7 concludes the thesis and outlines the future research directions.
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CHAPTER 2
Background

This chapter provides background information about state-of-the-art concepts, approaches,
modeling and programming paradigms that form the basis of this thesis.

2.1 Human-related Computing Paradigms
In this section we discuss as to what constitutes human computation, social computing,
crowdsourcing and collaborative software and the key differences between them.

Human Computation

The term human computation was used in many disjoint research areas, from philosophy
to computer science. Interestingly, most modern papers use this term without explicit
definition [QB11]. The recent taxonomy by Quinn and Bederson on human computa-
tion [QB11] suggests that the modern usage of this term was largely influenced by von
Ahn’s 2005 dissertation [VA09], which defines human computation as "...a paradigm for
utilizing human processing power to solve problems that computers cannot yet solve.".
The taxonomy provides its own consensus as to what constitutes human computation:

• The problems fit the general paradigm of computation, and as such might someday
be solvable by computers.

• The human participation is directed by the computational system or process.

An example of human computation is Human-Provided Services (HPS) [STD11], which
focus on interaction of humans and services in service-oriented systems.

Social Computing

Contrarily to human computation, social computing focuses on facilitating social interac-
tion between human beings. The definitions of the term social computing vary from "...any
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type of computing that serves as an intermediary or a focus for social relation." [Sch94]
to "Computational facilitation of social studies and human social dynamics as well as
the design and use of information and communication technologies that consider social
context." [WCZM07]. While social relation lies at the core of social computing, it is only
but an element of complex social formations, such as cliques, k-plexes, n-clubs, etc. For
brevity, we delay detailed definitions and analysis of social formations until the next
chapter. Examples of social computing technologies are blogs, social networking web
sites, online communities, etc. With the advent of social networking platforms, such as
Facebook1, Twitter2, LinkedIn3 and many others, social computing is gaining momentum
in the research community and even reviving interest in related areas, such as graph
query languages.

Collaborative Software

Collaborative software (groupware) is a type of application software designed to help peo-
ple collaborate on a common task. One of the earliest definitions of collaborative software
was "...computer-based systems that support groups of people engaged in a common task
(or goal) and that provide an interface to a shared environment." [EGR91]. Groupware
is a rather broad concept encompassing vast variety of applications. One spectrum
of groupware classification ranges from real-time software (i.e., people collaborate at
the same time, as in Google Docs4, HackerRank5, etc.) to asynchronous applications
(e.g., e-mail, wikis). Another spectrum goes from distant collaboration to same-place
collaboration (i.e., an interactive presentation panel).

Crowdsourcing

The term crowdsourcing was coined by Jeff Howe and defined in his book as "...an act of
taking a task traditionally performed by a designated agent (such as an employee or a
contractor) and outsourcing it by making an open call to an undefined but large group of
people." [How08]. A typical crowdsourcing platform allows for publishing tasks that crowd
users can contribute to with their time and skills, or even money. Rewards for successful
task completion can be monetary, or non-material, such as recognition or intellectual
satisfaction. Exposure of programming interfaces by crowdsourcing platforms allows for
programmable task publishing and evaluation of results, enabling thus integration of
crowdsourcing and human computation concepts. Crowdsourcing finds applications in
many different areas, such as rescue missions (find a missing boat in thousands of satellite
images [Ols08]), mass artistic works 6, funding (crowdfunding), content creation, problem
solving (crowd wisdom) and many others [DRH11, Bra08]. The most widely referred in

1http://www.facebook.com
2http://www.twitter.com
3http://www.linkedin.com
4https://www.google.com/docs/about/
5https://www.hackerrank.com/
6http://www.thesheepmarket.com
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literature example of crowdsourcing platform is Amazon Mechanical Turk7, yet other
notable crowdsourcing platforms are Wikipedia8, Yahoo! Answers9, and Kickstarter10.

2.2 Programming Models and Modeling Approaches

This section provides a brief taxonomy of programming models and modeling approaches
most relevant for collaboration-based computation.

2.2.1 Graph Query Languages

Graphs are the natural data structure to represent social networks. Graph query languages
have been researched starting some 30 years ago [Woo12b]. The ever increasing attention
to social networks in research community has brought resurgence of interest in graph
query languages, as a natural tool for social network analysis and querying. In its
simplest form a graph G is a pair pV,Eq, where V and E are the finite sets of nodes
and edges connecting nodes respectively. A typical query on graph G might ask to
find persons who are friends with Adam and Eve - a simple conjunctive query (CQ)
returning a set of nodes as an answer. Such query can be expressed using the following
syntax: x friendof Adam^x friendof Eve, which is similar to Datalog. It is common in
querying graphs that users might want to find graph nodes connected by a path satisfying a
regular expression rather than a path with the exact number of edges. Conjunctive Regular
Path Queries (CRPQs) extend simple CQs with the ability to specify a link between two
nodes as a regular expression. CRPQs have been thoroughly studied and form the basis
for many query languages [CMW87, CM89, AQM�97, FFLS00, BFS00, KSI�08, Tea12]
including SPARQL 1.1 [spa12].

Evaluation of graph queries can be classified into three main categories:

• Exact graph matching. This is the most common approach in literature, where
queries define precise graph structure and (sub)graphs returned by the query should
exactly match the structure of the query graph.

• Approximate graph matching. In this approach queries define precise graph struc-
ture, and returned results may not match but rather be “close” to the query graph
by means of edit operations (insert/delete/substitute) [KS01, GT06, HPW09].

• Flexible topologies. In this approach queries define “flexible” topologies. GraphQL
[HS08] with repetition of graph motifs allows to define not only paths, but also, for
example, cycles and trees being thus more expressive in this aspect than regular path
expressions. The approach studied in [FLM�11] relaxes constraints on topology of
returned graphs in favor of performance. This approach is the most extreme with

7https://www.mturk.com/mturk/welcome
8http://www.wikipedia.com
9https://answers.yahoo.com/

10http://www.kickstarter.com
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respect to allowed relaxations on topologies, and can lead to completely irrelevant
results. It is worth noting though, that even canonical CRPQs allow number of
nodes to vary in paths.

2.2.2 Business Process Modeling

Business Process Modeling (BPM) focuses on describing and documenting enterprise
business processes in order to improve and analyze them. Techniques to model business
processes date back to as early as 1899, when Gantt charts were introduced. Typically,
modeling approaches define a formal (visual) notation, that can be easily understood
by people not affiliated with IT. Formal definitions allow for automated analysis and
verification to discover errors and optimizations, and even generation of source code
in various programming or execution languages. Existing modeling approaches can be
classified into two main categories:

• Activity-oriented approaches describe processes as sequences of tasks, connected
by control- or data-flow links. The most prominent example of activity-oriented
modeling approaches is Business Process Modeling Notation (BPMN11), which
allows for graphical representation of business processes similar to activity diagrams
in UML12. BPMN models dependencies between processes via messages or events.

• Information-centric approaches describe processes as evolution of business entities,
such as documents. Examples of information-centric modeling approaches are Case
Handling [vdAWG05] and Artifact-centric workflows [BHS09].

Benefits of BPM are twofold: formal and intuitive documentation of business processes,
and reduced maintenance and implementation costs due to code generation rather than
reimplementation.

2.2.3 Coordination Languages

Collaboration-assisted computation requires coordination of collaborative actors via group-
ware platforms. Coordination languages focus on coordination of black-box components
with unknown behavior. It is necessary to consider coordination languages via projec-
tion of integration of groupware software and social network platforms. Coordination
languages can be categorized as follows:

• Control-driven languages [AAB�05, GP07, KCM06] can be considered as incarna-
tion of activity-oriented modeling approaches as they coordinate processes similarly,
via messages or events. Activity-oriented modeling approaches often even provide
direct mappings to control-driven coordination languages, as in case of the BPMN
specification, which provides a mapping between its graphical notation constructs
and Business Process Execution Language (BPEL). BPEL allows to define business

11http://www.bpmn.org
12http://www.uml.org
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processes based on Web Services and is specifically designed for integration of
various APIs.

• Linda-based languages [BFLM01, BZ05] express coordination as dependencies
between removal/reading and insertion of atoms from or into a shared space. Linda-
based coordination languages provide the most flexibility as the coordinated actors
are unaware of each other.

• Complex Event Processing (CEP) languages [NN08, PE10, SC05] express corre-
lations of events originating from different data streams. Events can be mapped
(joined) via their properties/attributes and co-occurrence in time.

Unlike programming languages, coordination languages are typically higher-level, and
describe inter-component(service) communication protocols, behaviors and communica-
tion topology.

2.2.4 Crowdsourcing Models

We introduced the concept of crowdsourcing in the previous section, in this section we
focus on programming models employed in this domain. Existing hybrid human-machine
approaches to crowdsourcing-based computation can be classified as:

• Classic. Crowdsourcing platforms expose programming APIs, that can be used by
virtually any mainstream programming language. This approach is primitive and
involves superfluous efforts on the programmer’s side.

• Crowd-as-a-database. This approach extends database models by introducing
operators that can be executed by crowd workers, and enabling tuple (columns,
tables) generation by the crowd[FKK�11]. The database models employed in this
approach are not limited only to relational models, but span over Datalog-like
queries [PP11], and graph databases [ASFN12].

• Crowd-MapReduce. A number of studies exploit MapReduce programming model
for managing human computation [ABMK11, KSKK11, KCH12]. In the MapRe-
duce programming model a program is described as a dataflow between Map and
Reduce tasks. Map tasks are responsible for data sorting, filtering, and partitioning,
while Reduce tasks are responsible for accumulation and aggregation. MapReduce
framework manages automatic distribution of defined Map and Reduce tasks be-
tween a fixed pool of machines. Crowd-MapReduce approaches allow to replace
compuation nodes with crowd workers, integrating thus crowd work into the pipeline.
MapReduce allows to restrict machines used for certain tasks by their CPU or
memory size, and similarly Crowd-MapReduce approaches allow restricting worker
assignment based on worker attributes [ABMK11].

Crowdsourcing programming models play an important role in simplifying integration of
human and machine computation.
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CHAPTER 3
Expressing Complex Social

Formations

Many query languages for graph-structured data are based on regular path expressions,
which describe relations among pairs of nodes. We propose an extension that allows to
retrieve groups of nodes based on group structural characteristics and relations to other
nodes or groups. It allows to express group selection queries in a concise and natural
style, and can be integrated into any query language based on regular path queries. We
present an efficient algorithm for evaluating group queries in polynomial time from an
input data graph. Evaluations using real-world social networks demonstrate the practical
feasibility of our approach.

3.1 Introduction
The World Wide Web has rapidly evolved from a network providing access to static
webpages to a highly interactive experience. Web-based social networking services connect
millions of people and have deeply changed the way we communicate with each other.
Graphs are the natural data structure to represent social networks. The swift growth of
social networking services fueled with further developments in the Web (e.g., Semantic
Web) has led to a rising interest in graph databases and related query languages.

Today, SPARQL [PAG06], the W3C1 query language for RDF [KC04], is probably the
most widely known query language for graph-structured data. SPARQL and many other
graph query languages allow users to retrieve nodes based on conjunctive queries (CQs).
A simple CQ for finding persons who are friends with Adam and Eve could be expressed as
x friendof Adam^ x friendof Eve. An extension called regular path queries (CRPQs)
allows querying for nodes that are connected by a path satisfying a regular expression
rather than relying solely on static paths. CRPQs have been thoroughly studied and form

1http://www.w3.org/
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the basis for many query languages [CMW87, CM89, AQM�97, FFLS00, BFS00, KSI�08,
Tea12] including SPARQL 1.1 [spa12]. With CRPQs, however, it is not possible to query
sets of nodes. For instance, Adam and Eve might not just want to find their common
friends, but a group of common friends that are connected between them. Finding sets of
nodes that satisfy certain characteristics is of general interest for graph-structured data,
and particularly important for social networks. Let us consider a graph representing
the skills and relationships of developers of open source projects. With CRPQ-based
query languages it is, for instance, not possible to find socially coherent teams capable of
conducting a certain project. While groups are a fundamental concept in social networks
they are not well supported by current graph query languages.

In this chapter we propose an elegant and simple, but at the same time expressive,
extension - conjunctive set regular path queries (CSRPQs), which extends CRPQs with
the notion of sets of nodes. Using the example of SPARQL, we show how CSRPQs can be
integrated into existing graph query languages. We show that data complexity of CSRPQ
queries is in PTIME, and propose a novel algorithm for efficient query evaluation, which
leverages structure of the db-graph and the query itself for search space minimization.
Experiments show that query evaluation is feasible even for real-world social networks of
large scale.

In the remainder of this chapter, we first give a motivating scenario in Section 3.2 and
discuss related work in Section 3.3. After recapturing CRPQs in Section 3.4, we present
CSRPQs in Section 3.5, and demonstrate their expressivity in Section 3.6. Section 3.7
presents our algorithms for CSRPQ evaluation and reasons about its complexity. An
evaluation based on real-world datasets is presented in Section 3.8. Section 3.9 concludes
the chapter.

3.2 Motivation

The importance of social ties in software engineering is often emphasized in litera-
ture [LKTD12a, DB11]. Conway’s law suggests that “organizations which design systems
[...] are constrained to produce designs which are copies of the communication structures
of these organizations” [Con68]. We can rephrase it as: organization’s social network
structure influences its systems architecture. Also, Peopleware [Oye74] claims the main
reason for project failures to be the human factor, i.e., lack of communication or bad social
environment, and not the technology factor. Taking into account these two postulates, a
proper process of project team selection can be defined as a selection of a subgraph, which
exhibits certain structural characteristics, from social and organizational overlay networks.
For example, when assembling a project team it is preferable to maximize social coherence
within the team as well as to maintain good social connections with other project teams.
In social network analysis a number of characteristics and patterns have been defined to
characterize social coherence of a group, such as geodesics, n-clique, n-clan, n-club, k-core,
k-plex, and so on [Sco00]. Also, efficient coordination and integration of project teams
requires selection of special actors with certain structural properties, such as closeness,
degree, or betweenness centralities.
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Let us consider now a motivating scenario with a few examples. An organization
wants to start a new open source software (OSS) project, consisting of a number of sub
projects. For this purpose it uses a social network comprised of independent software
engineering experts as well as its own employees. In the social network two software
engineering experts are considered to be connected if they either worked on the same
software engineering project in the past or they are connected in a social networking site.
Now, let us consider few examples of queries the organization may want to issue in order
to select project teams:

1. Closeness centrality and connectedness. In case of a core component, it
may be needed to select a project team that has good social connections to all the other
teams, i.e. located in an intersection of their neighborhoods. Moreover, the project team
can be either implicitly or explicitly connected. A team is implicitly connected if it
forms a connected graph. Otherwise, if team members are connected via external nodes,
the team is considered to be implicitly connected. Closeness to other teams improves
inter-team communication, while explicit connectedness improves communication within
the team itself.

2. Cluster. To select a project team for implementation of a monolithic component
(i.e., a component with a lot of interdependencies between its parts) one might want to
select a clique (complete graph). This is necessary to maximize, again, communication
within the team and ensure that everyone is aware of all the changes introduced by
other team members. However, in practice cliques of required size and comprised of
necessary experts can rarely be found. Therefore, one may want to relax the requirement
by selecting a k-plex, where k-plex is defined as a graph G where every vertex has a
degree |G| � k.

3. Independent teams. In case of highly reliable software systems a valid practice
to minimize probability of failures is to execute several mutually replaceable components
in parallel. In order to mitigate failures introduced by a human factor (software defects),
it is important that such mutually replaceable components are developed by teams
isolated from each other. This is necessary to avoid propagation of erroneous approaches.

4. Liaison. When integrating two different components being developed by project
teams that have no direct social relations it may be helpful to search for a liaison/broker
between two teams. Such a liaison would facilitate communication and increase chances
for successful integration.

5. Structural equivalence. In order to replace an expert, that recently left a
project, it is necessary to find a structurally equivalent expert, i.e. an expert that has
almost the same social neighborhood as the former expert with respect to dependent
project teams. This would decrease on-boarding time and restore structural characteristics
of the team. Also, if it is not possible to find such a replacement, we may want to find a
group of people that is structurally equivalent.

Figure 3.1 shows an exemplary snippet from a graph representing relations among
developers of OSS. Developers are represented as nodes, and two of them are connected
by an edge if they are socially connected. One possible solution to each of the five
aforementioned queries is highlighted in the figure.
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Figure 3.1: Simplified graph representing social relationship among open source software
developers. Possible answers for OSS example queries are highlighted: 1) Closeness
Centrality: yellow nodes, 2) Cluster: green nodes (and blue nodes in case of 1-plex),
3) Independent teams: green nodes for first team and blue nodes for second team, 4)
Liaison: red node, 5) Structural equivalence: the two black nodes connected with bold
edge can replace each other

In the next section we discuss existing graph query languages and show their short-
comings with respect to the query examples enlisted above.

3.3 Related Work

In this section we discuss existing graph query languages and consider their capabilities
of expressing the queries outlined in the previous section. A comprehensive overview of
existing graph query languages can be found in [Woo12a] and [AG08]. Functionality of
canonical Conjunctive Regular Path Queries (CRPQs) has been employed in many graph
query languages, such as G [CMW87], GraphLog [CM89], Lorel [AQM�97], StruQL
[FFLS00], UnQL [BFS00], NAGA [KSI�08], Cypher [Tea12], and SPARQL 1.1 [spa12].

Query 1 in the motivating scenario defined in CRPQs would search for a disconnected
set of nodes satisfying the neighborhood condition, thus being incapable of finding a
tightly connected subgraph in a neighborhood. Queries expressed in CRPQ-based (and
not only) languages typically return node tuples, and are not able to return groups of
varying size. One exception here is NAGA, whose queries return graphs. Extended
Conjunctive Regular Path Queries [BHLW10] can return paths along with nodes, which
is somewhat similar to returning groups. Another interesting exception is SQL-based
PQL [Les] language, which can return nodes with their neighborhoods. Query 2 is
flexible in the sense that it does specify neither exact number of nodes in a group to
be found, nor its exact topology, but rather general characteristics. In literature there
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were a number of approaches employed for definition of “flexible” topologies in query
languages. Even canonical CRPQs allow number of nodes to vary in paths. GraphQL
[HS08] with repetition of graph motifs allows to define not only paths, but also, for
example, cycles and trees being thus more expressive in this matter than regular path
expressions. Approach studied in [FLM�11] relaxes constraints on topology of returned
graphs in favor of performance. This approach is the most extreme with respect to
allowed relaxations on topologies, and can lead to completely irrelevant results. Queries
specifying “flexible” topologies are quite the opposite approach to approximate graph
matching [KS01, GT06, HPW09], where queries define precise graph structure, and
returned results may not match but rather be “close” to the query graph by means of
edit operations (insert/delete/substitute).

In the domain of social networks there are several dedicated graph query languages,
such as SoQL [RS09], BiQL [DNDR09], SocialScope [AYLY09], SNQL [MGW11], QGraph
[BIJ02], as well as extensions of SPARQL for social network analysis [EBGC09]. SoSQL is
the only one of them that can specify flexible selection of groups of nodes with SELECT
FROM GROUP queries. Its expressivity, however, is limited with respect to graph
patterns used in social network analysis, as it is not capable, for example, to select groups
exhibiting characteristics of k-plex, n-clique, n-club, etc. Also, it does not have groups
as first-class citizens, i.e., it is not possible to specify paths or connections between two
or more groups. For instance, in Query 3 : select two groups that are mutually isolated.
Selection of actors, as in Query 4 and Query 5, is also not supported. Finally, SoSQL
provides no algorithm for query evaluation, which seems to be a complex computational
problem.

BiQL [DNDR09] suggests integration of external tools for finding graphs with certain
characteristics, e.g., quasi-cliques or clusters. Its distinguishing feature is unification
of nodes and edges, which makes it possible, though with integration of external tools
and algorithms, to find clusters of edges and not only clusters of nodes. Integration of
external tools for querying certain graph patterns, however, reduces flexibility of a query
language with respect to definition of possible graph patterns. SocialScope [AYLY09]
defines an algebraic language with node and link selection operators, union, disjunction,
subtraction and composition of graphs, as well as set and numerical aggregations. Node
and link selection can utilize an optional scoring function. SNQL [MGW11] is a query
language of similar functionality, as it has been claimed to cover SocialScope [RGW11].
SNQL is intended for data management in social networks. It extends GraphLog with
Skolem functions to create new nodes as part of the output. Both languages do not allow
flexible selection of groups and actors exemplified in the motivating scenario. Extension
of SPARQL [EBGC09] for social network analysis can examine global metrics of a graph,
such as density and diameter. However, it is not capable to search for groups exhibiting
specific metrics. QGraph [BIJ02] is a visual query language employed in a tool called
Proximity [JN03], which is used for data mining in social networks. QGraph queries
graph patterns can have numeric annotations, e.g., ’Find all directors that had at least
2 movies each of them winning at least 3 awards’. Such annotations resemble basic
quantitative conditions needed for k-plex, e.g., each node has at least N neighbors in the
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group. However, QGraph does not have notion of groups to succeed in such selection.
Many efficient algorithms (e.g., [BE93, CN85]) were proposed for selection of social

formations exhibiting certain structural characteristics (e.g., regular equivalence, n-clique,
k-plex, n-club), and implemented in such popular social network analysis tools as Pajek
[BM02] and Ucinet [BEF02]. Being capable of handling some examples in the motivating
scenario, these algorithms, however, are limited to specific problems they address and are
not as flexible and expressive as a query language might be. While offering far greater
expressivity, a query language requires a complete and generalized query interpretation
algorithm capable of solving mixed and combined problems.

The overview of related work shows that no existing language is able to fully cope
with the queries enumerated in Section 3.2. In the next section we provide definition of
CRPQs, and then, in Section 3.5, we present our extension.

3.4 Preliminaries
A database is defined as a directed graph K � pV,Eq labeled over the finite alphabet
Σ. If there is a path between node a and node b labeled with p1, p2, ..., pn we write
a

p1p2...pn
�����Ñ b. In the remainder of this section we give definitions of (conjunctive) regular

path queries, similar to other works, like [CGLV00a].
Definition 1 (Regular Path Queries). A regular path query (RPQ) QR Ð R is

defined by a regular expression R over Σ. The answer anspQR,Kq is the set connected
by a path that conforms to the regular language LpRq defined by R:

anspQR,Kq � tpa, bq P V � V | a
p
�Ñ b for p P LpRqu.

Conjunctive regular path queries allow to create queries consisting of a conjunction
of RPQs, augmented with variables.

Definition 2 (Conjunctive Regular Path Queries). A conjunctive regular path query
(CRPQ) has the form

QCpx1, ..., xnq Ð y1R1y2 ^ ...^ y2m�1Rmy2m,

where x1, . . . , xn, y1, . . . , ym are node variables. The variables xi are a subset of yi (i.e.,
tx1, . . . , xnu � ty1, . . . , ymu), and they are called distinguished variables. The answer
anspQC ,Kq for a CRPQ is the set of tuples pv1, ..., vnq of nodes in K such that there is
a total mapping σ to nodes, with σpxiq � vi for every distinguished variable, and pσpyiq,
σpyi�1qq P anspQ

R,Kq for every RPQ QR defined by the term yiRiyi�1.

3.5 Conjunctive set regular path queries
In this section we describe how CRPQs can be extended to overcome their shortcoming
for finding sets of nodes. Our extensions allow to express all queries presented in the
motivating scenario. The proposed extensions can be used to augment any graph query
language that employs CRPQs, like SPARQL.
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Figure 3.2: Exemplary graph K, serving as knowledge base for some simple queries.
Nodes represent persons and edges represent the friendship relation. Since we assume
that this is a symmetric relation, arrows have been omitted.

Before we introduce set regular path queries (SRPQs), which extend RPQs, we
introduce a set of generalized quantifiers. SRPQs allow to make statements about which
fraction of a set is affected by a path query. For giving SRPQs the expressiveness
necessary to handle sets we allow quantifiers beyond the standard quantifiers @ and D,
similar as proposed in [Mos57]. All extended quantifiers refer to a certain set. In the
following we define the quantifiers we use by showing the mapping they signify with
relation to some arbitrary set M .

• Universal quantification @M � tMu

• Existential quantification DM � tA �M : A � Hu

• Counting quantification: DM pdnq � tA �M : |A| d nu, where d P t¡,¥,�,¤, u
and n P N

• Fractional quantification: DM pdpq � tA �M : |A| d p|M |u, where d P t¡, u and
p P r0, 1s

We use capital Greek letters Ξ and Ψ as placeholders for one of the above defined
quantifiers. SRPQs are similar to RPQs, but extend them with the notion of sets. They
come in different flavors since we distinguish between paths from a single node to a set
of nodes, paths from a set to a single node, and paths from a set of node to another set
of nodes. Like RPQs, all SRPQs are defined by a regular expression R over Σ.

Definition 3 (SRPQ: Node – Set). A set regular path query QΞ Ð R describes a
relation between a single node and a set, based on a regular expression R together with
a quantifier Ξ. The quantifier defines to how many nodes from the set the single node
must be connected by a path conforming to the regular language LpRq. The respective
answer set anspQΞ,Kq is defined as

tpa,Bq P V � 2V : a p
�Ñ b for b P ΞB , p P LpRqu.

The following example queries refer to graph K, as defined in Figure 3.2. SRPQ
Q@ Ð friendof requires that a node is connected to all nodes within a set. Thus,
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a partial answer set is tpn1, tn2uq, pn2, tn1, n3, n4, n5uqu � anspQ@,Kq. The query
QD 3 Ð friendoffriendof? requires that the node is connected to less than three nodes
within the set. Nodes are connected when there is a “friendof” path of length one or two. A
partial answer set of this query is tpn1, tn2, n5, n6, n8uq, pn2, tn1, n8uqu � anspQD 3,Kq.

Definition 4 (SRPQ: Set – Node). A set regular path query QΞ Ð R describes a
relation between a set and a single node, based on a regular expression R together with
an quantifier Ξ. The quantifier defines how many nodes within the set must be connected
to the single node by a path conforming to the regular language LpRq. The respective
answer set anspQΞ,Kq is defined as

tpA, bq P 2V � V : a p
�Ñ b for a P ΞA, p P LpRqu.

The following example queries refer to graph K, as defined in Figure 3.2. Query
QD Ð friendoffriendof defines that there must be at least one node in the set that is
connected to the single node by a “friendof” path of length two. A partial answer set is
tptn1, n2u, n5q, ptn4u, n1qu � anspQD,Kq. The second example query defined asQD¡50%

Ð friendof requires that more than half of the nodes within the set are directly connected
to the single node. A partial answer would be the set tptn1, n4, n7u, n2q, ptn1u, n2qu �
anspQD¡50%,Kq.

Definition 5 (SRPQ: Set – Set). A set regular path query QΞΨ Ð R describes a
relation between two sets, based on a regular expression R together with two quantifiers
Ξ and Ψ. The quantifiers define how many nodes from within the "left" set must be
connected to how many nodes from the "right" set by a path conforming to the regular
language LpRq. The respective answer set anspQΞΨ,Kq is defined as

tpA,Bq P 2V � 2V : a p
�Ñ b, a P ΞA, b P ΨB, p P LpRqu

As before, the following example queries refer to graph K, as defined in Fig-
ure 3.2. Query Q@@ Ð friendof requires that all nodes within the first set are
friends with all nodes in the second set, for which a partial query answer is tptn5, n6u,
tn7, n8uq, ptn1u, tn2uqu � anspQ@@,Kq. QueryQD,D¡2 Ð friendoffriendof? determines
that there must be at least one element in the first set that is connected to more than
two elements in the second set by a path of length one or two. Thus, a partial query
answer would be the set tptn1, n5u, tn6, n7, n8uqu � anspQD,D¡2,Kq.

Through introduction of set variables SRPQs extend RPQs in a similar way as
Monadic Second-Order Logic (MSOL) extends First-Order Logic (FO). Along with set
variables MSOL introduces an atomic formula t P S, where t is a first-order term and S
is a set variable. Next, we show how this atomic formula can be expressed in SRPQs.
Empty string K is a valid regular expression. However, it is never used in RPQs, as K
path does not convey any functional load. In SRPQs it does: the query a K

Ñ B means
that node a is an element of B, and A K

Ñ B defines the subset relation.
In RPQs paths between nodes are specified over the input graph G. Specification of

more advanced structural properties, like explicitly connected groups, requires greater
flexibility on this matter. Therefore, we define the following query type.
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Definition 6 (SRPQ Closure). For the above defined query flavors QΞΨ and QΞ the
closures Q̄ΞΨ and Q̄Ξ further restrict the answer set by requiring that paths connecting
A and B{b stay within A, i.e.,

anspQ̄Ξ,Kq � tpA, bq P 2V � V : a p
�Ñ b for a P ΞA, p P LpRq and

@i P t1, . . . , n� 1u a p1...pi����Ñ c �ñ c P A, for p � p1 . . . pnu

and

anspQ̄ΞΨ,Kq � tpA,Bq P 2V � 2V : a p
�Ñ b for a P ΞA, b P ΨB, p P LpRq and

@i P t1, . . . , n� 1u a p1...pi����Ñ c �ñ c P A, for p � p1 . . . pnu.

The following example queries again refer to graph K, as defined in Figure 3.2. Query
Q̄D Ð friendoffriendof defines that there must be at least one node in the set that is
connected to the single node by a “friendof” path of length two. A partial answer set is
tptn1, n2u, n5qu � anspQ̄D,Kq, but ptn1u, n5q R anspQ̄D,Kq.

Definition 7 (Set Size Query). A set size query Q|�| Ð pfrom, toq describes an unary
relation. The variables from, to P N, with from ¤ to, define minimum and maximum
allowed set sizes. The respective answer set is defined as the sets of subsets of sizes from
from to to.

anspQ|�|,Kq � tA P 2V : |A| P tfrom, . . . , touu

The following example queries refer to graph K, as defined in Figure 3.2. Query
Q|�| Ð t2, 3u requires that all sets have size 2 or 3. A partial query answer is ttn1, n2u,
tn1, n3u, tn1, n2, n3uu � anspQ|�|,Kq.

Definition 8 (Conjunctive Regular Set Path Query). A conjunctive regular set path
query (CSRPQ) has the form

QSpx1, ..., xnq Ð ỹ1rpR1q
Ψ1

1Ψ1
2sy2^ ...^ ỹ2m�1rpRmq

Ψm
1 Ψm

2 sy2m^ Z1rf1, t1s^ ...^Zlrfl, tls

where x1, . . . , xn, y1, . . . , ym are either node or set variables. Z � tZ1, ..., Zlu represents
all set variables among yi, i.e., there is no set variable yk such that yk R Zi. The variables
xi are among yi. The � symbol may be either empty or �; the latter case is only possible
if yi is a set and defines a SRPQ closure. Each of the Ψ is either a quantifier, or . Each
Ri is a regular expression. The answer set anspQS ,Kq for a CSRPQ is the set of tuples
pv1, ..., vnq of nodes and sets of nodes in K such that there is a total mapping σ to nodes
and sets of nodes with σpxiq � di for every distinguished variable, and pσpyiq, σpyi�1q in
the set of the answer set of the respective query type; i.e., if y2i�1 and y2i represent both
nodes, then y2i�1Riy2i represents QR. If y2i�1 is node and y2i is set, then QΞ. If y2i�1
is set and y2i is node, then QΞ. If y2i�1 is set and y2i is set, then QΞΨ. And finally,
Zirfi, tis denotes set size queries.
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3.6 CSRPQ Expressiveness

In this section we demonstrate the expressiveness of CSRPQs via formal specification of
the use cases from the motivating scenario. For this purpose we use the formal notation
defined in the previous section. Also, we exemplify ease of CSRPQs integration into
CRPQ-based languages by showing how the same queries could be implemented in
CSRPQ-enhanced version of SPARQL 1.1.

3.6.1 Closeness Centrality and Connectedness

Goal. Given the three predefined organizational groups Team1, Team2, and Team3, we
need to assemble an explicitly connected team of three to five members with a maximum
diameter of two. The team should have a connection to every group.

Formal specification. In knowledge graphs organizational groups are usually repre-
sented as single nodes, e.g., Sales Department or Human Resources Department,
and affiliation of a person to a group is represented as a connection between the corre-
sponding nodes. We use the same approach and assume there are three predefined nodes:
Team1, Team2, and Team3. Affiliation of a person to a team is represented with the
inteam edge, and social connection is represented with the knows edge in the semantic
graph. Question mark applied to an atom, e.g., knows?, in regular expression specifies
that the edge is optional.

QSpAq Ð A rpknows � inteamqDsteam1
^ A rpknows � inteamqDsteam2
^ A rpknows � inteamqDsteam3
^ Ā rpknows � knows?q@@sA^Ar3, 5s

SPARQL. In the formal notation we used capital letters to define variables repre-
senting groups. In SPARQL we use two question marks (??) for this purpose in analogy
with single question marks (?) that precede node variables. ALL and SOME keywords
are used to denote universal and existential quantification respectively, and CLOSURE
keyword denotes a query closure. To conform to SPARQL semantics we put group size
operator in the FILTER clause.

Listing 3.1: Closeness centrality and connectedness
SELECT ??A
WHERE {
SOME ??A knows/inteam ’Team1’.
SOME ??A knows/inteam ’Team2’.
SOME ??A knows/inteam ’Team3’.
ALL CLOSURE(??A) knows{1,2} ALL ??A .
FILTER ( ??A{3,5} ) }
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Expressiveness. This example shows how explicitly connected teams can be defined
with CSRPQs. Note, that implicitly connected teams can be defined by removing the
query closure.

3.6.2 Cluster

Goal. Find a socially coherent group of people of size 10, which exhibits property of
2-plex.

Formal specification. In contrast to the previous example, for the sake of simplicity
we omit specification of neighborhoods. According to the definition of 2-plex, we need to
find a team, where every team member has at least 8 � 10� 2 connections to other team
members.

QSpAq Ð A rpfriendofq@,D¥8sA^Ar10, 10s

SPARQL. In this query parameterized version of SOME keyword denotes FOpCOUNT q
quantification. This goes in line with previous example, where SOME keyword without
parameters denotes existential quantification.

Listing 3.2: Cluster
SELECT ??A
WHERE {
ALL ??A knows SOME(>=8) ??A.
FILTER ( ??A{10,10} ) }

Expressiveness. This example shows succinctness of CSRPQs with respect to
definition of structures with relaxed coherence.

3.6.3 Independent Teams

Goal. Find two independent teams of experts, i.e., no inter-team social connections
exist.

Formal specification. Here we specify neither any search space, nor structural
constraints for the teams A and B. The interesting peculiarity is that negation expressed
in the query goal (i.e., no inter-team social connections exist) can be expressed with
countable quantifiers.

QSpAq Ð A rpknowsq@,D�0sB ^B rpknowsq@,D�0sA^Ar3, 5s ^Br3, 5s

SPARQL. This query does not introduce any additional extensions to SPARQL and
simply reuses keywords already defined in the previous examples.

Listing 3.3: Independent teams
SELECT ??A ??B
WHERE {
ALL ??A knows SOME(=0) ??B
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ALL ??B knows SOME(=0) ??A
FILTER ( ??A{3,5}, ??B{3,5})
}

Expressiveness. This example shows expressivity of CSRPQs with respect to
definition of multiple groups. Also, it shows how non-existence can be expressed with
extended quantifiers.

3.6.4 Liaison

Goal. Find a liaison between Operational Department and a team of three external
consultants C in order to foster adoption of new practices. The liaison should know at
least two out of the three consultants, and at least 70% of Operational Department
members.

Formal specification. In this example, in contrast to the previous ones, it is
necessary to find an actor, not a group. The group T used in the example should
represent the whole department. Therefore, in order to avoid selection of subgroups we
fix size of T to the known size of Operational Department, which is retrieved as an
additional query expressed in canonical CRPQagg (CRPQs extended with aggregation).

C :� tjill, jade, jacku
Qcountptq Ð t rpinteamqsoptdept

QSpaq Ð a rpknowsq¡0.7sT ^ T rpinteamq@soptdept
^a rpknowsq¡2sC ^ T rQcount, Qcounts

SPARQL. This example shows that notion of groups also allows specification of
predefined constant groups, i.e., group of four consultants. For this purpose we use syntax
reminiscent to many mainstream programming languages. In order to retrieve size of
Operational Department we use a nested SPARQL query.

Listing 3.4: Liaison
SELECT ?a
WHERE {
?a knows SOME(>70%) ??T.
ALL ??T inteam ’OptDept’.
?a knows SOME(>2)

{’jill’, ’jade’, ’jack’}.
{
SELECT COUNT(?t) as ?c
WHERE {?t inteam ’OptDept’}
}
FILTER ( ??T{?c,?c} )
}

Expressiveness. This example shows how CSRPQs can define selection of single
nodes based on relations to groups.
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3.6.5 Structural Equivalence

Goal. In order to replace a coordinator John we need to find a structurally equiva-
lent person, i.e., a person that has the same social and organizational connections as
John. Sometimes, however, it may not be possible to find a single person fulfilling this
requirement, and a group of persons may be needed.

Formal specification. This example is somewhat similar to the previous one as we
want to consider the whole neighborhood of a predefined node, e.g., group (T) in both
examples. Therefore, for the sake of clarity, we omitted the aggregation query as it can
be, with a small adjustment, reused from the previous example.

QSpEQq Ð john rpworkswithq@sT ^ EQ rpworkswithq@sT ^ EQr1, 3s ^ T rQcount, Qcounts

SPARQL. Again, to keep the definition succinct, in SPARQL implementation we
also omitted the nested aggregation query.

Listing 3.5: Structural equivalence
SELECT ??EQ
WHERE {
’john’ workswith ALL ??T.
SOME ??EQ workswith ALL ??T.
FILTER ( ??EQ{1,3},

??T{?count,?count})}

Expressiveness. This query exemplifies an opposite approach to the one employed in
the previous example. In the previous example we allowed to neglect certain connections
in favor of the size of the resulting group (single node), while in this example we relax
the constraint on the resulting group size in order to preserve all connections.

3.7 Complexity of Query Evaluation

In this section we discuss complexity of CSPRQs evaluation, optimization techniques
enabled by the design of CSRPQs, and propose an algorithm for the purpose of query
evaluation. Greater expressiveness always comes at a price, and CSRPQ extension is no
exception here. The problem of SRPQ evaluation contains a variant of a subset selection
problem, e.g., find a subgraph connected to a node a, incurring thus high complexity. In
the next two subsections we discuss upper bounds for the problem of CSRPQ evaluation.

3.7.1 Data Complexity

We fix query Q over a finite alphabet Σ, and K to be the maximum of upper bounds
for all the groups specified in the query. Now, to show data complexity of CSRPQs we
consider the following decision problem:
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PROBLEM: CSRPQS-EVAL(Q)
INPUT: A Σ-labeled db-graph G of size

N , a tuple of nodes v, and a
tuple of groups V

QUESTION: Does pv, V q belong to QpGq

Since number of groups is fixed in the query, let us denote it as some constant C.
Similarly, let us define c as a number of nodes in the query. In order to answer the
problem we need to traverse N c�K�C possible solutions. Since c, C, and K are all fixed,
we can see that data complexity of CSRPQ evaluation is in PTIME.

3.7.2 Query Complexity

We turn now to query complexity, i.e., where a query Q is an input parameter, while
Σ-labeled graph G is fixed.

PROBLEM: CSRPQS-EVAL(G)
INPUT: A CSRPQ query Q over Σ, a

tuple of nodes v, and a tuple
of groups V

QUESTION: Does pv, V q belong to QpGq

Let us define k1, ..., kl as upper bounds of groups specified in Q, where l is number of
groups. Let us also define c as number of nodes in the query graph. In order to answer
the problem we need to traverse N c�k1�...�kl possible solutions. Given that N is fixed
we can see that query complexity of CSRPQ evaluation is in EXPTIME.

3.7.3 The CSRPQ Evaluation Algorithm

The key observation behind CSRPQ evaluation is the mandatory presence of constraints
on the group size. A candidate for inclusion in a set should not only preserve structural
characteristics of the set, but also enable other potential candidates to be added later
in order to satisfy the set size constraints. This approach enables for efficient search
space pruning techniques. For example, a node with degree 5 cannot be selected as a
candidate for a clique of size 10. Without the loss of generality we can consider CSRPQs
with any number of predefined node/set constants and only one set variable specified.
Such an CSRPQ technically can be represented as a composite filter F pG,S,Kq that
selects potential candidates from the search space S for inclusion in assembled so far
set G with target set size upper bound K. Given queries QΞ

const, where the left operand
is the single set variable and the right operand is a constant node c, and queries QΞΨ

self ,
where both operands are the single set variable itself, let us consider several examples of
filters F pG,S,Kq:

• QD¡5
const Ð R: FQpG,S,Kq :� fpsq Ñ |G�| ¡ 5 _K ¡ 5 � |G�| _ s

pPLpRq
Ñ c, where

G� � tg
� P G|g�

pPLpRq
Ñ cu.
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• Q@@
self Ð R. FQpG,S,Kq :� fpsq Ñ @g P G : g pPLpRq

Ñ s^s
pPLpRq
Ñ g^dpsq ¥ K�|G|,

where dpsq denotes an out degree of a node s.

• Q@D¤m
self Ð R. FQpG,S,Kq :� fpsq Ñ @g P G : pdGpgq ¥ mintm, |G| �m � 1u _

g
pPLpRq
Ñ sq ^ dGpsq ¥ mintm, |G| �m� 1u, where dGpsq denotes an out degree of a

node s towards elements of a set G.

• Q̄@@
self Ð R. FQpG,S,Kq :� fpsq Ñ Dp P LpRq, |p| � 1,@g P G, Du P LpRq : pu P

LpRq ^ s
pu
Ñ g, where for each u there exists a physical path corresponding to u

that resides within G.

Algorithm 3.1 sketches basic inductive routine for CSRPQ evaluation. Given a set
G, we say that it does not violate CSRPQ Q, if it is possible to add nodes to G, such
that all SRPQs in Q are satisfied including the set size query. The algorithm takes set G
of size L, and tries to build a set G� of size L� 1, G � G�. The core of the algorithm,
filter function FQ represents conditions of CSRPQ Q violation. FQ returns a set of nodes
from the search space, such that the set G�, induced by adding any of them to G, does
not violate Q. Then, the algorithm traverses through each of the nodes returned by FQ

outputting all solutions.

Algorithm 3.1: CSRPQ evaluation CSRPQEV AL

Input: Search space S,group size K;
program stack G, list of already processed nodes P ;
CSRPQ Q;
Result: List of graphs

1 if K = 0 then
2 output G
3 end
/* initialize the neighborhood function */

4 fN psq Ð FQpS,G,Kq ;
/* filter the neighborhood */

5 N Ð tsi P S{P |fN psiqu;
6 for neighbor P N do
7 G� Ð GY tneighboru;
8 CSRPQEV ALpS,K � 1, G�, P Y tneighboru, Qq;
9 P Ð P Y tneighboru;

10 end

As a basis for CSRPQEV AL algorithm we took the algorithm proposed by Chiba
and Nishizeki [CN85], which has been designed for search of complete subgraphs
(cliques) of predefined size k. They have shown that the algorithm has time com-
plexity OpkapGqk�2mq, where G is an input graph, m is number of edges and apGq is
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arboricity of the graph. The arboricity of a graph is a measure of how dense the graph is:
graphs with many edges have high arboricity, and graphs with high arboricity must have
a dense subgraph.

As it can be seen, performance of CSRPQEV AL heavily depends on the efficient
reduction of the search space at each step. Therefore, given a query graph Q, graphs
containing high number of subgraphs that satisfy Q, or are close to Q within small edit
distance, result in longer execution times.

CSRPQEV AL algorithm can be easily converted to a greedy algorithm. Indeed,
instead of traversing in undefined order all nodes in N , it can first choose the fittest
one in order to come up with a first solution faster. Randomization approaches are also
possible to balance query evaluation time. Greedy and randomization approaches are
crucial when it is enough to return only one result. Also, similarly to the subset selection
problem, our problem exhibits natural data parallelism, making thus applicable parallel
data processing techniques.

So far we discussed only evaluation of queries defining groups with structural con-
straints, i.e., constraints that specify relations within the group. Absence of such
constraints may introduce high space complexity incurred by large result set. For exam-
ple, a CSRPQ query specifying selection of a group F without any predefined structure
from a finite search space S could yield |P¤|F |pSq| possible results, where |P¤|F |pSq| is
a power set of S of cardinality |F |. The result set, however, can be represented as a
single element describing a commutative monoid corresponding to the power set. This
approach would discard time required to enumerate possible answers as well as minimize
space needed for the output.

3.8 Evaluation

Query evaluation performance is one of the key attributes of database query lan-
guage success. In Section 3.7 we have shown that data complexity of CSRPQ eval-
uation is in PTIME. Since data complexity of CRPQ evaluation is in NLogspace and
NLOGSPACE � PTIME it is hard to reason about actual query evaluation times.
Therefore, we quantify the evaluation time of CSRPQ queries by conducting experiments.
In the remainder of this section we compare the time of CSRPQ evaluation based on
our approach (Algorithm 1) with a baseline. Also, we investigate key aspects influencing
CSRPQ evaluation time.

3.8.1 Evaluation Setup

Our evaluation is based on two real-world data sets from the social networks Slashdot2
and Friendster3. Both data set graphs consist of anonymous users represented as nodes
and social relationships represented as edges. Friendster is a social gaming web site
and Slashdot is a community-enabled news website. Table 3.8.1 depicts main structural

2http://snap.stanford.edu/data/soc-Slashdot0811.html
3http://archive.org/details/friendster-dataset-201107
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characteristics of the two data set graphs. Due to the large size of the Friendster graph,
which exceeded our evaluation computer’s physical memory constraints, we extracted
a subgraph consisting of around 11 million nodes out of the full graph, which contains
almost 120 million nodes.

Friendster Slashdot
#Nodes 10,999,986 77,359
#Edges 297,395,506 905,468

Avg Node Degree 27.036 11.705
Node Degree Dev 94.939 36.844
Max Node Degree 4,014 2,508

Avg Clustering 0.169 0.0555
Clustering Dev 0.309 0.382

Table 3.1: Main characteristics

The queries chosen for evaluation try to cover a large spectrum of CSRPQs by varying
structural constraints (e.g., how tightly connected the group should be), the search space
size (e.g., in what neighborhood the group should be searched for), and the size of the
group defined by the query. Query 1 represents a query with strict structural constraints
(complete subgraph), while Query 2 looks for less strictly defined groups (k-plex). For
each query the group size is provided as input parameter, while the search space size is
varied by both input parameter rand and its neighborhood depth.

Query 1 selects a complete graph A of size n in the neighborhood of input node
rand. The neighborhood includes friends of the predefined node, as well as friends of
friends.

Q1pAq Ð randrpfriendOffriendOf?q@sA
^ ArpfriendOfq@@sA

^ randrpfriendOfqDsA^Arn,ns

Query 2 selects a 2-plex B from the neighborhood of input node rand. Here numeral
n not only specifies group size, but also its structural characteristics.

Q2pBq Ð randrpKqDsB
^ BrpfriendOfq@Dp¥n�2qsB ^Brn,ns

Strictness of structural constraints influences the number of results: Query 1 above
describes more rigid structural constraints than Query 2, e.g., there might be no cliques in
a graph, but many 2-plexes. For the input parameter n, which defines the group size, we
choose values 5, 10, 15, and 20, as they seem to be reasonable for real life group selection
tasks. For the input node rand we randomly chose evenly distributed non-isolated nodes,
200 nodes for Friendster and 100 nodes for Slashdot, to get informative, averaged results.

All CSRPQ evaluation scenarios are implemented in Java 1.7.0 x64, and time values are
measured using the standard API’s System.nanotime() method. The system configuration
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used for the tests is: Intel Core i7 2840QM (2GHz, Sandy Bridge), 8GB DDR3 1333MHz
RAM, Windows 7 x64. Even though Algorithm 1 is inherently parallel, we execute all
experiment runs in a single thread in order to show the real running time.

The baseline algorithm is based on transforming CSRPQ to SPARQL queries and
evaluating them using Apache Jena4. Only the pure SPARQL evaluation time is mea-
sured, without query transformation overhead. The transformation is necessary because
SPARQL does not support queries for group patterns. However, it is possible to rewrite
a fixed query expressing strict structural constraints (complete graph) as a conjunction
of terms, i.e., as a series of CRPQs. Relaxation of structural constraints (k-plex) can
be expressed as a disjunction of CRPQs, where each single term represents a possible
group pattern. This can be seen as a demonstration of the problem CSRPQ tries to solve,
because with growing complexity and size of the queried groups, length and complexity of
the SPARQL query increases exponentially. This is the reason the group size in baseline
evaluation was set to 5 only, as bigger group sizes resulted in immersive queries impossible
to be handled by the SPARQL evaluation engine.

The code we use for evaluation along with baseline query examples is publicly
available5, and can be compiled and executed to verify the published results.

3.8.2 Comparison to Baseline

Algorithm 1 is compared to the baseline algorithm by executing Query 1 and Query
2 for different input nodes and data sets. Each single dot in Figure 3.3 represents the
execution on particular query instance, i.e., with fixed input node. The horizontal axis
reflects the size of the search space that is relevant for executing the defined queries, i.e.,
accumulation of node degrees of input nodes’ direct neighbors. Query evaluation times
for our approach are shown as red triangles, valid query evaluations for the baseline are
depicted as blue diamonds, and green ’�’ stand for instances, for which the baseline
failed to deliver the result within 30 minutes. In such timeout cases we discontinued
query evaluation.

Figure 3.3 demonstrates that our approach outperforms the baseline in orders of
magnitude. There are many timeouts for the baseline algorithm; in contrast, our algorithm
is always able to return the query result without timeout violations. Thus, CSRPQ
extension proves to be not only more expressive, but obviously also enables efficient
search space pruning and traversal that marks already visited nodes, as discussed in the
previous section.

3.8.3 Influences on Evaluation Time

In this section we illustrate how varying groups sizes influence the evaluation time of
Algorithm 1, together with information about the corresponding sizes of result sets. In
particular, Figure 3.4 depicts dependencies between the queried group size and resulting

4http://jena.apache.org/
5http://www.infosys.tuwien.ac.at/prototypes/csrpq
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(a) Friendster Query 1
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(b) Friendster Query 2
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(c) Slashdot Query 1
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(d) Slashdot Query 2

Figure 3.3: Performance of CSRPQ evaluation algorithm versus CRPQ SPARQL-based
implementation. Each dot denotes a single query evaluation. � and � symbols stand
for regular and timed-out CRPQ baseline evaluations respectively, � symbols denote
CSRPQ-based evaluations.

average query evaluation times ((a) for Query 1 and (c) for Query 2), and between the
group size and average number of results ((b) for Query 1 and (d) for Query 2).

The evaluation results show that the group size exponentially influences query evalu-
ation time only up to some limit. We can see that group sizes greater than 10 do not
result in substantial increase of evaluation time. As per design of our CSRPQ evaluation
algorithm, further increasing of the group size will eventually lead to zero evaluation
time as it will not be possible to find a single node with high enough degree, so that
query evaluation can be stopped immediately with empty result set.

As for the amount of results, we notice that a big number of results guarantees high
query evaluation time. But vice versa does not hold, i.e., absence of results does not
guarantee fast evaluation. This confirms our observation that the key aspect of query
evaluation time is the similarity of the underlying search space graph structure to the
query graph structure. A big number of subgraphs structurally similar to the query
graph, i.e., with small edit distances, would result in increased evaluation times.

Overall, the evaluation results prove the feasibility of Algorithm 1 for solving CSRPQs,
even for large, real world data sets. It is much more efficient compared to solving a
corresponding SPARQL query with a state of the art evaluation engine. Evaluation times
of our algorithm depends on the query and the dataset, and how effectively pruning can
be applied.
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(b) Average number of results for
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(c) Average runtime for Query 2.
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(d) Average number of results for
Query 2.

Figure 3.4: Influences of queried group size and size of result set on the evaluation time.

3.9 Conclusions
Being able to query groups based on structural properties and relations to other entities
is an important asset for languages working on graph-structured data. However, to the
best of our knowledge, there is no query language backed by an evaluation engine able to
express such queries. In this chapter we presented CSRPQs, which extend CRPQs with
such group selection capabilities. Being more expressive, CSRPQs also enable efficient
evaluation techniques, outperforming thus CRPQ-based implementations. Experiments
show that our CSRPQ-based implementation is capable of finding groups in orders
of magnitude faster than the state-of-the-art CRPQ-based SPARQL query evaluation
engine.

As discussed in Section 3.3, there exist many algorithms for selecting social formations
exhibiting specific structural characteristics (e.g., clique, k-plex). Being more restrictive,
these special-purpose algorithms might be more efficient than the general-purpose query
evaluation algorithm at hand. By operating with the notion of a set, however, CSRPQs
enable the evaluation algorithm to recognize special cases and fall back to the special-
purpose algorithms when needed.
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CHAPTER 4
Modeling Collaboration-assisted

Computation

Modeling collaboration processes is a challenging task. Existing modeling approaches are
not capable of expressing the unpredictable, non-routine nature of human collaboration,
which is influenced by the social context of involved collaborators. We propose a
modeling approach which considers collaboration processes as the evolution of a network
of collaborative documents along with a social network of collaborators. Our modeling
approach, accompanied by a graphical notation and formalization, allows to capture the
influence of complex social structures formed by collaborators, and therefore facilitates
such activities as the discovery of socially coherent teams, social hubs, or unbiased experts.
We demonstrate the applicability and expressiveness of our approach and notation, and
discuss their strengths and weaknesses.

4.1 Introduction

Business process modeling (BPM) allows companies to describe and document their
enterprise processes. If captured accurately, such knowledge allows to analyze, improve,
and execute those processes with higher efficiency. Although a variety of techniques and
tools have been introduced for BPM, modeling of highly dynamic non-routine processes,
such as human collaboration, is still a subject of discussion in research and very few
approaches have been proposed so far [Nur08].

While collaboration in general means working together to achieve a goal [DD00,
MM06], with the proliferation of collaboration software, such as groupware or wikis, the
manner of human collaboration has taken the form of incremental contributions to a
network of shared documents, e.g., source code files, wiki pages and so on. Relations
between documents, actors, and other artifacts may influence the collaboration process.
For example, some tasks should be done by actors chosen based on social relations, actions
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Figure 4.1: Software engineering collaboration process snapshot

on some documents should not be performed before related documents reach certain
conditions, or a change in a related document might force to re-do an activity. Moreover,
social structures formed by collaborators affect produced network of artifacts. Indeed,
Conway’s law suggests that “organizations which design systems are constrained to
produce designs which are copies of the communication structures of these organizations”
[Con68]. For example, socially coherent teams tend to produce more seamless solutions.
Therefore, a proper modeling of collaboration processes must consider both semantic
structures in networks of artifacts, as well as structural formations in social networks
formed by collaborators. Although artifact-based process models have already been
researched [San11a, vdAWG05, BHS09], existing modeling approaches do not emphasize
the relations between artifacts and actors, and are not capable of capturing complex
social structures formed by collaborators.

We thus propose a novel modeling approach and a graphical notation for collaboration
processes. The key idea is to treat each document’s evolution as an individual process
that is explicitly influenced by the states of related documents and patterns in the
surrounding social network. We propose to formalize the relations in line with the
data from collaboration software, e.g., two developers can be considered related if they
committed code to the same project folder in a source code repository. The amount of
such data will grow with social computing pervading the enterprise IT1, thus allowing
process modelers to create richer models of people-intensive processes that support
information-centric, bottom-up and context-aware and social modeling techniques for
collaborative tasks.

The main research contributions of this chapter are (i) a novel approach for modeling
context-aware social collaboration business processes, (ii) an expressive formalism that

1http://www.gartner.com/it/page.jsp?id=1470115
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allows to define complex dependencies as network of artifacts and people, and (iii) a
visual graphical modeling notation. The visual notation is a result of linking two threads
of research in a novel way by combining graph query languages and control flow languages.
Moreover, with the introduction of the notion of groups, this combination is further
extended with fundamental concepts of social network analysis by allowing to express
such advanced patterns as clique, k-plex, betweenness centrality, closeness centrality,
structural equivalence and so on [Sco00].

The rest of this chapter is organized as follows: Section 4.2 describes the motivation
behind the modeling approach and presents a motivating example. In Section 4.3 we show
the lack of expressiveness in existing modeling approaches with regard to the scenario
at hand. Section 4.4 describes the proposed modeling paradigm and the corresponding
graphical notation. Section 4.5 demonstrates the usability of the approach through
realistic use cases. Our modeling approach is critically discussed in Section 4.6. The
chapter is concluded in Section 4.7.

4.2 Motivation

Collaboration is a recursive process comprised of human interactions towards realization
of shared goals [DD00, MM06]. Groupware and social software foster collaboration of
individuals who work across time, space, cultural and organizational boundaries, i.e.,
virtual teams [PPI04]. Using this type of software, people interact through conversations
(e.g., e-mails and instant messages) and transactions (e.g., create/ modify/assign/restruc-
ture a document) in order to augment a common deliverable, e.g., the documentation
of an idea, a technical specification, a source code file, or a wiki page. Typically, such
interactions are disorganized, non-routine, and are hard to predict and model. However,
as side-effects they produce semantical and social relations between actors and artifacts
(e.g., authorship, friendship). Furthermore, artifacts are usually semantically connected
into hierarchical or network structures, e.g., references in wiki pages, or dependencies
between software components. Likewise, actors contributing to artifacts form complex
social or communication formations, whose structure significantly influences collaboration
processes and artifacts themselves. For example, given that a group of collaborators can
be represented by a graph with edges denoting regular communication, a group forming
a complete graph has more chances to produce a successful artifact(s), than a group
forming a sparse graph with many isolates. Patterns of interest differ in artifact and
social networks in the sense that structural patterns in artifact networks focus rather
on types of relations and artifacts, and their states, while structural patterns in social
networks focus on the density of edges by considering single type of relation, e.g., such
social formations as clique, k-plex, and notions of structural equivalence, betweenness
centrality (broker), and so on [Sco00].

As a motivating example, let us consider in-house software engineering in a dot-com
company. Projects, or ventures, in such a company can be classified as engineering
ventures (development of new functionality), or analysis ventures (incident investigation,
proof-of-concepts). Both types of ventures produce deliverables, such as source code or
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technical documentation. Figure 4.1 demonstrates a snapshot of a collaboration process
as a directed graph of venture deliverables and collaborating actors.

Edges connecting ventures represent functional dependencies (i.e., a venture depends
on either an investigation report or a software component produced by other ventures).
Edges connecting actors depict social relations, i.e., there is a regular communication
over instant messaging channels between them, or they contribute to the same venture.
Contrarily, the edge NO Social Relation denotes absence of social ties, e.g. actors
never worked on the same venture. Analysis ventures, representing rather creative and
non-routine work, can reside only in two possible phases, namely In Progress and
Finished, while engineering ventures, representing more structured and long-running
work, can reside in more phases, such as Design, Implementation, Testing, and
Finished.

Now, let us consider a process modeler that possesses knowledge of the working
environment, the culture, and the scale of the company, and aims at modeling the
following rules (we refer to them as context dependency rules (CDRs)):

1. A venture project team should be notified of any changes in the technical doc-
umentation of other ventures it depends on. However, if two functionally in-
terdependent ventures share any team members, then enforced communication is
not required. This rule ensures proper knowledge sharing between functionally
interdependent ventures while avoiding overcommunication. For example, any
new technical reports of Analysis Venture 2 should be communicated to the
project team of Engineering Venture 2. However, the same synchroniza-
tion between Engineering Venture 2 and Engineering Venture 4 is not
critical, because Engineer 3 is anyway aware of any such changes.

2. Venture technical documentation (i.e., design, or a report) should be reviewed by
an expert from a functionally dependent venture, socially unrelated to the venture
team members. Moreover, it might be necessary to find a group of such experts.
This rule tries to avoid biased reviews by finding socially unrelated experts. For
example, it is more preferable to assign Engineer 4, than Engineer 1, as a
reviewer of Engineering Venture 2, as Engineer 4 does not have strong
social relations with the Engineering Venture 2 team.

3. An engineering venture can be started if at least one venture, it depends on, has
passed Design phase. This rule defines a balance between total serialization of
dependent ventures Design phases, which results in a longer time-to-market,
and total parallelization of Design phases, which results in more iterations. For
example, Engineering Venture 2 was started upon completion of Design
phase of either Engineering Venture 3 or Engineering Venture 1.

4. Design phase of a venture cannot be finished if any venture, it depends on, have
not passed Design phase yet. This rule minimizes chances of potential rework and
wasted efforts. For example, Design phase of Engineering Venture 2 can
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be finished only after Engineering Venture 4 switches to Implementation
phase.

5. If an engineering venture is in Implementation phase, and any of the en-
gineering ventures it depends on has switched back to Design phase, then the
venture should switch back to Design phase. This rule covers possible redesign
cases and ensures proper handling of late adjustments.

6. For each analysis venture it is preferable to assemble a socially coherent team.
Given that a team can be represented as a graph, the extremum of social coherence
is a clique, i.e., every two vertices in a graph are connected by an edge. In practice,
however, cliques are seldom, and a modeler may want to relax constraints on social
coherence by specifying a k-plex, where k-plex can be defined as a group of size n
having each member connected to at least n � k other members. Such coherent
teams can be selected either for Analysis Venture 1 or Analysis Venture
2. This rule tries to maximize communication within the team and good social
atmosphere.

7. If a software engineer stops working on an engineering venture during Implementation
phase, it is necessary to replace her with a structural equivalent. A structural
equivalent is an engineer that has almost the same social neighborhood as the
former engineer with respect to dependent project teams. For example, to re-
place Engineer 2 it is preferable to find an engineer socially connected to both
Engineer 1 and Engineer 3. This rule aims at minimizing on-boarding time
and restoring communication structures.

8. If teams working on two interdependent ventures share no social connections,
then it is necessary to find a liaison (broker), who is socially connected to more
than 50% of members of each team. For example, absence of social ties between
groups Experts 1 and Experts 2 may hinder efficient communication thus
delaying Analysis Venture 2. This rule tries to cover any structural holes in
communication structures formed by collaborating teams.

As it can be seen from the examples above, CDRs allow to capture the knowledge
about the impact of social and structural relations on collaboration processes. A formal
specification can help to visualize and improve CDRs, thus reflecting management
experience in an organization. We argue that a modeling approach, suitable for social
collaboration processes, should encompass the following modeling principles that can be
abstracted from the examples of CDRs above:

1. Information-centric. Collaboration processes should be represented by network of
artifacts that originate from and evolve due to collaborative activities, following
thus the information-centric perspective. Activity-oriented approaches are difficult
to apply to collaboration processes, because it is hard to predefine exact steps
to follow [Nur08]. For instance, people interactions, such as conversations and
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transactions, in a collaboration process are rather unorganized and unpredictable,
therefore, it is easier to capture collaboration artifacts and corresponding social
and semantic relations as side effects of interactions. All the exemplified CDRs are
based on the information-centric perspective on collaboration processes.

2. Bottom-up and context-aware. Modeling an evolvement of a network of artifacts in a
holistic view can be a daunting task. Contrarily, neglecting relations completely and
modeling the progress of artifacts in isolation leads to context tunneling [vdASW03],
and, therefore ineffective models. A suitable modeling approach, therefore, should
model the evolution of each artifact as an individual process explicitly influenced by
its neighborhood (i.e., related artifacts), as it is shown in CDR examples 1 and 3-5.
This approach allows to describe behavior at the macro level (network of artifacts)
by means of modeling behaviors at the micro level (evolvement of a single artifact).

3. Social. Collaboration processes are influenced by social and communication struc-
tures formed by collaborators. Often, advanced non-routine activities are involved,
such as discovery of socially coherent teams (CDR example 6) and structural
equivalents (CDR example 7), or complex decision-making by exploiting social
hubs (CDR example 8), and unbiased experts (CDR example 2). Therefore, the
paradigm should promote not only the modeling of a network of evolving artifacts,
but also of an evolving network of people. The modeling approach should be able
to express not only social relationships between actors involved, but also complex
patterns in social networks, such as k-plex, clique, structural equivalence, structural
holes and so on.

Moreover, apart of incorporating the mentioned principles, the modeling approach
should be backed up by a formal definition to support automatic reasoning, verification,
and execution.

4.3 Related Work

In this section we discuss the related works with respect to modeling principles outlined
in the previous section, and show their shortcomings with regard to their ability to
model the exemplified CDRs. To the best of our knowledge, no existing framework is
capable of capturing the CDRs defined in this work in a formal and visual manner. In
the following, we will discuss Activity-oriented Business Process Modeling (Section 4.3.1),
Artifact-centric Workflows and Case Handling (Section 4.3.2), Context-aware Workflows
(Section 4.3.3), Visual Graph Query Languages (Section 4.3.4), and other approaches
which influence our work (Section 4.3.5). In addition, Table 4.1 provides an overview
of the general ability of the different related works to follow the modeling principles
presented in Section 4.2.
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4.3.1 Activity-oriented Business Process Modeling

Traditional activity-oriented business process modeling (BPM) approaches like the Busi-
ness Process Modeling Notation (BPMN)2 allow to model dependencies between processes
via messages or events. Asynchronous messaging can be used to partially resemble CDRs,
e.g., by sending notifications to related processes. However, it would not provide enough
expressiveness and flexibility to capture such rules. Using external events is another way
to model such logic, but, it would require the specification of events in natural language.
Moreover, activity-oriented approaches are difficult to apply for collaboration processes,
because it is hard to predefine exact steps to follow in collaborative workflows [Nur08]. In
addition, explicit communication and coordination entities (i.e., events, message channels),
intended for publishing information, do not convey any functional load and, therefore,
complicate and encumber process models. Agent-based or agent-inspired approaches
for coordination of business processes, such as [vdABEW00, HA99], also utilize explicit
information publishing entities, thus sharing the same disadvantages.

The Web Services Business Process Execution Language (WS-BPEL or just BPEL)
is an executable language standardized by OASIS3, which allows to define business
processes based on Web Services. This means that processes in BPEL export and import
functionality by using Web Service interfaces exclusively [CGK�03]. Major IT companies
realized the lack of human interaction support in service-oriented systems and proposed
the WS-HumanTask [AAD�07] and BPEL4People [KKL�05] specifications. While these
languages and their extensions (e.g., [SSP12]) allow for interaction with humans in the
setting of an SOA, they are not designed to capture CDRs.

Table 4.1: Overview of Covered Aspects in the Related Work

Information-centric Bottom-up Social
& Context-aware

Activity-oriented BPM � � �
Artifact-centric Workflows 2� 2� �
Case Handling 2� 2� �
Context-aware Workflows 4 2� �
Visual Graph Query Languages � � 4
Multiagent Systems and Speech Acts � � 4

Legend: 2� Supported 4 Partially Supported � Not Supported

4.3.2 Artifact-centric Workflows and Case Handling

Information-centric modeling approaches, such as Artifact-centric workflows [Hul08,
San11b] and Case Handling [vdAWG05], can capture the evolution of collaboration

2http://www.bpmn.org/
3http://www.oasis-open.org/
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entities into formal models in order to provide a higher degree of flexibility than routing-
based workflow descriptions are able to provide. Both approaches are examples of
entity-centric modeling, which puts entities into the focus of processes and makes use of
entity life cycles for dynamic modeling [San11b].

As the name implies, Artifact-centric workflows are based on (business) artifacts
instead of the task-centric approach usually applied in business process modeling [Hul08].
Artifacts are important (business) objects which have a life cycle and provide information
about their relationships to other artifacts as well as in what way and at what time
tasks can be invoked on them [NC03]. Hull [Hul08] makes this more explicit by pointing
out that artifact-centric workflows are not merely concerned with modeling process
constructs and patterns, but take into account four explicit dimensions: the artifacts
themselves, their (macro-level) life cycles, services (“tasks”) running on artifacts, and
associations/constraints.

For this, Artifact-centric workflows capture the relations on a conceptual level using
Entity-Relationship models [BHS09], name-value pairs [NC03], or some Description
[Hul08] or First-Order Logics [BHS09]. Life cycles are often depicted using some kind
of finite state machines, but other approaches, like the Guard-Stage-Milestone meta-
model for life cycles, which is based on Event-Condition-Action (ECA) rules, have also
been introduced [Hul08, HDF�10]. Most importantly, the association of services and
artifacts can be done either in a procedural [NC03] (also: imperative) or declarative
style [PvdA06, Hul08, FHS09, FMR�09]. In contrast to the explicit modeling of process
constructs as in, e.g., Petri nets, BPEL and BPMN, declarative languages (e.g., [PvdA06,
BGH�07, FHS09]) do focus on the goals of the process, i.e., what should be done instead
of how it should be achieved [FMR�09]. Example technologies to describe achievable
goals using pre- and postconditions are the Ontology Web Language for Web Services
(OWL-S) and the Web Service Modeling Ontology (WSMO) [FLP�06, MBM�07]. The
ConDec language [PvdA06], which allows both an imperative and declarative modeling
of business processes, makes use of Linear Temporal Logic to define declarative process
constraints. Using an according model checker, it is possible to verify the correctness of
processes and enact it by translating the process into an automaton. Comparable to our
work, ConDec defines a graphical notation for such constraints. Due to the nature of
the language, this notation is restricted to temporal constraints; social relationships are
however not foreseen.

Case Handling distinguishes between the possibility to execute a business process fully
automatic (“workflow management”) and the necessity of human intervention during
process runtime (“Case Handling”) [vdAWG05], thus allowing a high degree of flexibility
and variability. While the former is based on modeled process control structures, in the
latter a knowledge worker is responsible for actively finding a way to reach the goal of a
case. The Case Handling system is a dedicated assistant to the knowledge worker.

(Business) artifacts and cases are based on similar ideas, but cases are more focused
on giving the structure and state of a case by data objects and therefore describing these
objects in more detail [LBW07]. Data objects are also intended to represent pre- and
postconditions. Cases are defined by the activities that need to be executed, data objects,
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forms which provide activity-based views on data objects, actors, and roles grouping those
actors [vdAWG05, vdASW03]. Associations between single activities are not explicitly
modeled, but activities are attached to cases, and data objects are linked to activities.
By defining mandatory and restricted data objects, conditions, and precedence relations
for single activities, it is possible to model the process underlying a particular case.
Conditions are based on data objects’ states and values, and are bound to a particular
activity. During design time, roles can be linked to both complex cases and activities;
during runtime, concrete actors can be attached to a particular activity. With regard to
the work at hand, the evolvement of collaboration entities is captured on a conceptual
level using composite cases and ‘is-a’ relationships between roles.

To the best of our knowledge, condition elements in neither Artifact-centric workflows
nor in Case Handling approaches do allow to specify CDRs. Conditions in Case Handling
are defined as sets of bindings where a binding is a set of values for specific data objects.
Therefore, it is not possible to define a condition which examines all the objects in
a specific relation to the object at hand (CDR example 3), or to specify that all the
related objects must reside in a specific state (CDR example 4). Conditions in Artifact-
centric workflows may be specified in formulas written in First-Order Logic [BHS09].
However, the specification is restricted and does not allow to use quantifiers, which is
crucial for expressing CDRs (e.g., CDR examples 3 or 4). Nevertheless, Artifact-centric
workflows present an important foundation for our own work, as will be further discussed
in Section 4.4.

4.3.3 Context-aware Workflows

Both Artifact-centric workflows and Case Handling are (amongst other reasons) motivated
by the assumption that activity-oriented business process models do not capture the
workflow context in enough detail and therefore may lead to inefficiencies [vdAWG05,
Hul08]. Of course, this can be directly traced back to the fact that the modeling
perspective in these approaches focuses on other aspects.

According to Dey [Dey01], “context is any information that can be used to characterize
the situation of an entity”. Following this definition, workflow context is any information
that can be used to characterize the situation of a workflow. Accordingly, Rosemann and
Recker define business process context as “The minimum set of variables containing all
relevant information that impact the design and execution of a business process” [RR06].

As a similar notion is also underlying the work at hand, in particular regarding
context data related to collaborations, it is worthy to discuss further approaches towards
context-aware workflows with regard to the modeling of social collaboration processes.
In general, context-aware workflow modeling approaches extend modeling and execution
languages like BPMN and BPEL by the means to define context and make use of this
knowledge in workflow execution. Very often, this is motivated by some specific domain,
e.g., manufacturing [WKNL07, SSSA12] or e-health processes [AFG�12]. In the following,
we will only discuss different approaches in the field which are important to the work at
hand; for a thorough discussion we refer to the surveys by Baldauf et al. [BDR07] and
Truong and Dustdar [TD09].
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An early, Unified Modeling Language (UML) class diagram-inspired approach to a
visual language for context-aware business process modeling has been introduced as part
of the Systemic Enterprise Architecture Methodology (SEAM) [BW03]. As it is the goal
of SEAM to support human reasoning, a formal reasoning framework is not provided
and it is not possible to formally define rules. Instead, some very basic relationships
inspired by the means to model composition and dependencies in UML class diagrams
are provided. SEAM does not explicitly take care of collaboration between roles, i.e., it
is not possible to model CDRs. Instead, different roles are related to each other through
actions they are collaborating on.

Saidani and Nurcan [SN07, SN09] regard context-awareness in role-based business
process modeling. They allow the definition of location-, time-, resource-, and organization-
related context data aiming at the identification of fitting actors for the defined roles.
Notably, the authors do allow to state social relationships between actors, but it is not
possible to explicitly define CDRs. Comparable to the work at hand, the underlying
context model is based on First-Order Logic. However, the authors do not make use of a
formal definition of their modeling notation as it is provided in our work. Furthermore,
queries are mentioned, but the topic is not discussed on a deep technical level. In
general, Saidani and Nurcan do not focus on the actual modeling tasks and therefore do
not provide a graphical modeling notation. Furthermore, like in SEAM, they follow a
goal-oriented approach while in our work, we focus on information artifacts. Hence, their
work should be rather seen as a complementary approach than as a foundation for our
modeling notation.

Wieland et al. define context-aware workflows by advocating the augmentation of
workflow modeling and execution with information about the physical world [WKNL07].
For this, context events, context queries, and context decisions (context-based transition
conditions) are added to a workflow model, allowing to define and search context data as
well as changes of the control flow. The authors make use of BPMN for process modeling
and extend WS-BPEL 2.0 into Context4BPEL. An XML-based language is used to express
context dependencies. Ardissono et al. present the Context Aware Workflow Execution
Environment (CAWE), which is a complete Service-oriented Architecture extended by
capabilities to achieve context awareness [AFG�12]. With regard to the work at hand,
the context-based adaptation policies are the most interesting aspects of CAWE, as
they allow to alter the flow of a workflow execution. These policies are modeled using
declarative rules and based on boolean, context-based preconditions. Abstract activities
are used in order to define the generic behavior of a task, thus resembling Artifact-centric
workflow modeling languages and Case Handling as discussed above. Furthermore, the
authors introduce dedicated models (Role Model, User Model, and Context Model), but
do not take into account collaboration issues in them.

In theory, both the work by Wieland et al. and Ardissono et al. could be used as
a foundation for drafting and implementing CDRs. However, both frameworks do not
explicitly model collaboration dependencies. As a consequence, a resulting model would be
somewhat confusingly extensive and therefore hardly intuitive to comprehend. Instead, we
decided to draft an independent and therefore lightweight modeling notation as presented
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in Section 4.4. The inclusion of explicit information about (social) collaboration allows a
much more specific and therefore comprehensible modeling approach.

4.3.4 Visual Graph Query Languages

Conditions in CDRs can be intuitively represented as queries over graph-structured data.
Over 25 years, graph query languages have been investigated for expressing graph patterns
in various domains such as biological and transportation networks, Semantic Web and
many others [Woo12a, AG08]. In recent years a number of graph query languages have
been proposed also for the domain of social networks [RS09, DNDR09, BIJ02, EBGC09].
Graph query languages do not incorporate any control flow structures, being thus
incapable of expressing (business) processes. We review, however, the expressiveness of
various graph query languages with respect to complex structural formations.

Many prominent graph query languages, such as G [CMW87], GraphLog [CM90],
Lorel [AQM�97], StruQL [FFLS00], UnQL [BFS00], NAGA [KSI�08], Cypher [Tea12]
and SPARQL 1.1 [spa12], are based on Conjunctive Regular Path Queries (CRPQs),
which are in their turn based on Conjunctive Queries (CQ). A simple example of
CQ for finding persons who work on both artifacts Evaluation and Documentation is
x worksOn Evaluation^ x worksOn Documentation. CRPQs extend CQs by allowing
to query for nodes that are connected by a path satisfying a regular expression rather
than relying solely on static paths. Being capable of expressing many graph patterns,
CRPQs cannot capture groups of varying size or with inexact topology.

Among non-CRPQ languages greater variability can be observed with respect to
graph patterns that can be expressed. For example, GraphQL [HS08] with repetition of
graph motifs allows to define cycles and trees. PQL [Les], used for biological networks,
can capture along nodes also their neighborhoods of a specified radius. BiQL [DNDR09]
unifies nodes and edges, which makes it possible to capture even more complex patterns.
In QGraph [BIJ02], a visual query language employed for social networks data mining
tool Proximity [JN03], graph patterns can have numeric annotations, e.g., “Find all
directors that had at least 2 movies each of them winning at least 3 awards”. The Social
Networks Query Language (SoQL) [RS09], is the only graph query language that can
describe groups of flexible topology and varying size up to some degree. For example, it is
possible to select a clique by specifying a condition on a group as depicted in Listing 4.1.
This query language, however, is not capable to capture more advanced graph patterns,
like k-plex. None of the discussed graph query languages has groups as first-class citizens,
i.e., it is not possible to specify relations between two or more groups, nor are they
designed for CDRs.

4.3.5 Other Noteworthy Approaches

Several frameworks have proposed for modeling functional or social relations between
actors, for example DEMO [Die01], I� [YM94], EKD-CMM [NB03], Speech acts [Win86,
Kib06], or social commitments in multiagent systems [Sin99, CB06].
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Listing 4.1: Selection of a Clique using SoQL
SELECT GROUP

FROM GROUP(DISTINCT(X,Y,Z) IN G2)
...

WHERE
...
ALL SUBGROUPS(U,V) IN G2 SATISFY

(PATH(U TO V AS P1)
COUNT(P1.edges.*)<=1)

Frameworks modeling functional relations between actors, such as I� and EDK-
CMM, typically rely on different pre-defined dependency models. I� exploits intentional
and strategic relationships among actors [YM94]. It supports a Strategic Dependency
model for capturing dependencies among actors for a specific business process design.
Dependencies can be due to tasks, resources, goals and soft-goals. Based on that, one
can reason how to improve the process/activity. I� enables functional relations among
actors and it could be used to model the relationships between actors and artifacts but it
does not really consider dynamic and social context in our scenario, such as actors are
working in the same projects or the evolution of artifacts in connection to other ones.
The enterprise model of EKD-CMM supports business processes built atop three main
(sub)models: actor/role, role/activity and objects. It focuses on functional relations so
static dependencies among actors and artifacts could be modeled. But it does not support
social relations and context that links actors and artifacts in particular collaborative
tasks. Furthermore, pre-defined actor/role and role/activity models are not well-suited
for dynamic relations that we also support in our framework.

Speech acts and social commitments in multiagent systems could be used to model
functional relations taken by actors in the form of high-level communication actions. They
aim to support both human actors and intelligent software agents so specific languages
for human cooperative tasks [Win86], communicative acts [Die01], or social commitment
protocols [Sin99, CB06] have been introduced. But, they are mainly designed for modeling
actions, via communication messages, between two individual collaborators. Thus, they
do not support well high-level, context-aware interaction patterns among groups like
our approach. For example, we could use them to model the request from an actor to
another actor, but we could not use them to model the context in which several actors
are working on the same document (artifact). Furthermore, they require precise modeling
of semantics and action flows to be carried out by collaborators. Due to the inherent ad
hoc nature of communication and interactions in collaborations, this would prevent us
from modeling dynamic information-centric collaboration actions.

In [BW95], so-called batch-tasks were proposed to allow for a task that is executed
for multiple workflow instances at the same time. Other similar approaches can be found
in [CCPP95]. Some simple CDRs can be covered by batch-tasks, e.g., CDR example
4. For more complex rules, however, this approach is not flexible enough, e.g., because
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they do not consider artifacts. Team Automata [Ell97, EG02] use communication via
shared action spaces. Transitions, which include the same external action, are fired
simultaneously in these Automata. Alike to batch-tasks, it does not provide the needed
flexibility.

While not directly related to our work, the PENELOPE (Process ENtailment from
the ELicitation of Obligations and Permissions) language [GV06] allows to define timing
constraints in a manner that could be helpful to define CDR examples 3-5. Interestingly,
PENELOPE also allows to automatically generate a state space from the defined timing
constraints – this feature has not been foreseen in our work, but would be an interesting
aspect for the future work. Finally, the COREPRO modeling framework [MRH07]
proposes to model the dependencies between states of related processes via so-called
external state transitions. Again, it provides limited expressiveness for describing the
dependencies, as it allows to specify only exact external state transitions.

4.4 Modeling Paradigm

As discussed in the previous section, related works provide some interesting links and
foundations, but none of them provides a holistic approach encompassing all modeling
principles and CDR examples discussed in Section 4.2.

4.4.1 Modeling Framework

Our modeling framework is defined as a set of basic modeling elements that a business
process modeler can operate with in order to reflect CDRs within business process models:

1. Collaboration artifacts and their states. Artifacts should represent various aspects
and deliverables of collaboration process (e.g., a software component, or a technical
design). The states should represent the possible phases of collaborations. Artifacts
and their states may be modeled using existing information-centric approaches,
such as Artifact-centric workflows [BHS09], making thus our approach rather
complementary, than stand-alone. Actors in the modeling framework are modeled as
collaboration artifacts as well. This unification simplifies modeling of collaboration
processes, as it is easier to predict types (or roles) of involved actors and their
states rather than possible actions that comprise collaboration.

2. Relations. Relations can be pre-defined (e.g., functional or structural dependency)
or dynamic (e.g., temporal or social relations), i.e., produced as side effects of
interactions and transactions. Proliferation of groupware and social software boosts
the quantity and quality of dynamic relations data, thus empowering process
modelers.

3. Groups. Groups can be defined as sets of artifacts or people shaped by relations
into formations exhibiting complex structural characteristics.
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4. Context-aware state transitions. Context-aware state transitions define what Rela-
tions, Artifacts and Groups are relevant for a business process at various steps of
its execution.

In order to better demonstrate how the framework’s basic modeling elements can
be put together to model a business process, we present a graphical notation for the
modeling framework. The notation is an extension of the conventional statecharts visual
formalism [DH87]. The choice of statecharts is justified by their information-centric
nature and widespread adoption as part of UML4. Being a natural visual representation of
the state machine mathematical model, statecharts include the following basic elements:
(i) Clustered and refined states; (ii) State transitions comprised of events (external
happenings such as user input or timeout), conditions (boolean expressions over events
and state) and actions (e.g., sending an e-mail, or assigning a person to a task).

Our graphical notation, dealing with explicit modeling of relations, extends conven-
tional statecharts with a new element Context, graphically depicted as a hexagon. A
Context element, being inseparable to a State element, defines relations and artifacts,
relevant to a particular state. Each Context element contains a specification of the
neighborhood of the artifact (i.e., related artifacts and people) describing the presence
of a specific pattern. Essentially, a Context element is a formalization of statecharts’
conditions, usually expressed in free-text. Each Context can have several Transition
elements attached: If the pattern, described in the context specification, is found in
the neighborhood, then all transitions attached to the respective Context element
are enabled, otherwise disabled. Similarly to State elements in statecharts, Context
elements can be clustered using logical AND/OR/XOR operations.

Figure 4.2 demonstrates the overall integration of Context element into statecharts
(the context specifications are omitted in this figure for the sake of simplicity). Two
of three transitions in the figure are enabled by Context elements. By default, we
assume that transitions attached to Context elements have a higher priority over other
transitions, but generally it is up to a modeler to define the priorities. Below are enlisted
possible transitions in the default prioritization order:

1. If Event 1 is fired and a pattern described in Context 1 is found, then the state
machine switches to state B.

2. If Event 1 is fired and a pattern described in Context 1 is not found, then the
state machine switches to state C.

3. If a pattern described in Context 2 is found, then the state machine switches to
state D. Here we can see that an event element is optional, and if absent, then the
transition is activated at once.

When modeling the behavior of multiple interdependent concurrent process instances,
a modeler should assume that state transitions are synchronized, i.e., every Context

4http://www.omg.org/spec/UML/
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Figure 4.2: Integration of Context elements into statecharts

element is evaluated before activation of any state transition in any process. Thus, if a
process switches to state A and then instantly to some other state, the fact that it has
been in state A will be considered.

We believe that graphs a priori are rather a natural visual medium for describing
artifact networks and relations. Therefore, we define a visual graph query language, which
is used to define neighborhood specifications in Context elements. A query in the visual
language is a directed connected multigraph with labeled edges and nodes. Labels can
either denote atomic relations/states/types, or expressions over atomic entities based on
propositional calculus expressions. Additionally, labels may be absent in general, denoting
a placeholder (e.g., any relation/state/type). An edge direction in a graph is used to
depict a non-commutative relation. Query graphs always have one initialized primary
element, therefore, graph queries should be interpreted outwards: starting from the
central primary element towards most distant nodes. For example, context specifications
depicted in Figure 4.3 can be interpreted as follows:

• Context 1: If the primary document is in state A, and there are no documents,
related by content or author to the primary one, residing either in state A or state
B, then the attached transition is enabled.

• Context 2: If the primary document is in state A, and every single document,
related by content to the primary one, must reside in state B and have two socially
unrelated Authors that contributed to it, one of which is Active, then the attached
transition is enabled.
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Figure 4.3: Example of context specifications in Context elements

As depicted in Figure 4.3, single line edges correspond to existence quantifiers, while
double line and crossed dashed edges correspond to universal quantifiers. Nodes in query
graphs may be labeled with variables that can later be reused in Conditions and Activities
of corresponding Transitions. Since multiple occurrences of a context pattern may be
found in the neighborhood, Activities/Conditions may be also extended with quantifiers,
i.e., send e-mail to any/every related contributor. Interpretation of the exemplified
graph query naturally corresponds to the way we read First-Order Logic expressions.
First-Order Logic with its subsets form a solid foundation for many modeling frameworks
and query languages. For our purposes we, however, introduce two extensions that allow
for expressing CDRs as introduced in Section 4.2.

First, we introduce counting and fractional quantifiers that may annotate double line
edges. Fractional quantifiers define ratio, while counting quantifiers define exact number
of artifacts satisfying given condition. Counting and fractional quantifiers should always
be defined with comparison operators t¥,¤,�u, which define, respectively, at least, at
most, and exactly conditions. For example, double line edge in Context 2 in Figure 4.3
annotated with fractional quantifier ¥ 70% would be interpreted as “...at least 70% of
documents, related by content or author...”.

Universal and existential quantifiers can be considered as special cases of fractional
and counting quantifiers respectively, i.e, at least 100% artifacts and at least 1 artifact.
Since counting quantifiers are inherently similar to existential quantifiers, one might think
of having only one type of edges. We, however, for the sake of simplicity and clarity,
consider double line edges to correspond to plural existence of artifacts, while single line
edges to singular existence. Similarly, we introduce crossed dashed edges as a special
case of double line edges with � 0 countable quantifier.
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Second, as a means of modeling complex structural formations we introduce the
Group element, which defines a set of artifacts or people. Group elements naturally
extend graph query notation exemplified so far in the same way as Monadic Second-Order
Logic (MSOL) extends First-Order Logic. MSOL allows only existential quantifiers to be
applied to set variables. Likewise, groups in our notation can only be defined existentially.
Therefore, quantifiers, correspondent to single line, double line and crossed dashed edges
adjacent to Group element, are applied to elements of the corresponding group, but
not to the group itself. Similarly, state and type labels annotating Group element
are also applied to group members (e.g., all group members reside in state A). Double
line edges connecting two Group elements may be annotated with two quantifiers as
they are adjacent to two plural entities. Along with set variables MSOL introduces the
atomic formula t P S, where t is a first-order term and S is a set variable. Considering
practical usefulness of this formula, we introduce an additional edge type, which defines
membership. The shape of such edges resembles aggregation association in UML, and
the meaning of this type of edges is similar to a weak “has a” relationship.

!"#"$%&

Context

'(#)*#+*$

User X

State A

Send message to Every x in X

R

!
T

,

!
T

-./

-./

-./

Legend

Exists group G, which contains Doc

Exists a group of N artifacts, where each artifact is 
of type T and in state S, and more than k% of 
artifacts are related by relation R to Doc

Socially Related

> 1

Socially Related

> 30%

[3-8]

User Y

0)1)23$4

Document Z Edited by

Related

Owner

[N]

R

!
T

> k%

> m

Exists a group of N artifacts, where each artifact is 
of type T and in state S, and one of the artifacts in 
the group is related by relation R to Doc

Exists a group of elements that are of type T and in 
state S, where each element of the group is related 
by relation R to at least m of group members

[N]

Figure 4.4: Example of using Group elements

Let us consider the example depicted in Figure 4.4, which shows the selection of a
group exhibiting certain structural characteristics. The query described by the example
can be interpreted as a conjunction of the following three statements:

• Exists a group X of size 3 to 8 members, such that every member of the group is
of type User, and in state Available, and is socially related to at least 2 other
group members.
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• Every document Z related to the primary one is in state Finished and was edited
by a member of the group.

• An owner of the primary document is a member of the group X, and is socially
related to at least 30% of the group members.

Interpretation of the exemplified graph query naturally corresponds to the way we
read Monadic Second-Order Logic expressions. For simplicity, during interpretation it is
necessary to define groups before the edges adjacent to them. Quantifiers annotating a
loop edge should be interpreted in the order specified by a small arrow attached to the
edge.

The success of a modeling approach depends, to a great extent, on the level of
simplicity offered. Therefore, we favor simplicity over completeness and impose the
following constraints on the queries expressed in the visual language:

• Unlike artifacts, which can be defined with universal quantification by double line
edges, groups can be only defined with existentional quantification. Being more
expressive, universal quantification for groups is rather complex to comprehend.

• Only basic operators from proposition calculus are allowed as literal expressions
attached to edges and nodes: conjunction, disjunction and negation. Even though,
conditional and biconditional operators may be expressed via the former ones, more
complex operators may decrease understanding and make reasoning about the
model more difficult.

• Under the Open World Assumption [Rei87], negation may introduce ambiguity,
therefore only negation as a failure is allowed, i.e., negation on an edge can be used
only if nodes connected by the edge are transitively connected to the central node
with non-negative edges.

• During our experiments with the modeling notation we observed that edges with
universal (fractional) quantification adjacent to Artifact elements may introduce
ambiguity in query graphs with cycles. We can define node level as a length of
the shortest path from the node to the primary element. If a double line edge
is part of a cycle, then one of its adjacent Artifact nodes should have the
lowest level among the nodes in the cycle. In other words, since query graphs are
interpreted outwards starting with the primary element, we can say that double
line edges adjacent to Artifacts can appear only in those places where they can
be interpreted first among edges in the cycle. This rule is not applied to edges with
universal quantification adjacent to Group elements, as groups are always defined
with existential quantification avoiding thus any ambiguities.

4.4.2 Formal Definition

A formal definition of our modeling notation is given below. In order to keep the definition
succinct, we omit a formal definition of statecharts, as it is available elsewhere, e.g., in
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[LMM99]. The formal definition supports automatic reasoning about consistency and
correctness of a process at design time, e.g., detection context specifications that can
never be reached. Moreover, it enables various optimization techniques, e.g., conversion
of a workflow definition to a more compact and simple one.

Labels L in a query graph representing relations R, types T and states S of artifacts
are defined as:

Label L
def
�Atomic Condition| Placeholder

|L ^ L |L _ L|  L,

P laceholder denotes any value (no condition)
(4.1)

Edges in a query graph can have one or two attached quantifiers. Beyond standard
quantifiers @ and D the modeling notation allows generalized quantifiers, similar as
proposed in [Mos57]. All extended quantifiers refer to a certain set, which is a whole
domain of discourse or a single group in case of Artifact or Group elements respectively.
In the following, we define the quantifiers we use by showing the mapping they signify
with relation to some arbitrary set M .

Universal : @M � tMu

Existential : DM � tS �M : S � Hu
Counting : DM pdnq � tS �M : |S| d nu,

d P t¡,¥,�,¤, u, n P N
Fractional : DM pdp%q � tS �M : |S| d p|M |{100u,

d P t¡, u, p P r0, 100s

(4.2)

We use capital Greek letters Ξ and Ψ as placeholders for universal, counting, and
fractional quantifiers, i.e., Ξ,Ψ P t@, Dpdnq, Dpdp%qu.

Edges in a query graph, along with adjacent Artifact elements, are interpreted in
First-Order Logic, extended with generalized quantifiers, as follows:

paq
R
�� pT, Sq

def
� Dx : Rpa, xq ^ T pxq ^ Spxq (4.3)

paq
R
�� Ξ pT, Sq def� Ξx : Rpa, xq ^ T pxq Ñ Spxq (4.4)

paq
R
�99K pT, Sq def� @x : Rpa, xq ^ T pxq ^ Spxq (4.5)

Where, given that graph queries are interpreted outwards from the central primary
element (vertex), a denotes an already interpreted vertex. Predicates T and S describe
type and state of suitable artifacts respectively. The result of a query graph interpreta-
tion is a logical conjunction of the First-Order Logic formulas corresponding to graph
edges. Higher priority of edges with universal quantification ensure that the formulas
corresponding to these edges always appear at the beginning of the resulting logical
conjunction. For double line edges @ quantification should be assumed as a default one,
i.e., an absence of quantifier annotation is interpreted as @ quantifier.
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Query graph nodes representing Group elements can be interpreted as follows:

ppT, Sqqrm�ns
def
� DG : @gpg P GÑ T pgq ^ Spgqq

^ n   |G|   m
(4.6)

rm � ns annotation defines constraints on the group size, where both n and m can
be optional defining thus absence of upper or lower limits. We use capital letters for
variables identifying sets (e.g., G), and lower case for variables denoting single objects
(e.g., g).

Edges in a query graph, adjacent to Group elements, are interpreted in Monadic
Second-Order Logic, extended with generalized quantifiers, as follows:

paq
R
�� ppGqq

def
� Dg P G : Rpa, gq (4.7)

ppAqq
R
�� ppGqq

def
� Dg P G, Da P A : Rpa, gq (4.8)

paq
R
�� ΞppGqq def� Ξg P G : Rpa, gq (4.9)

ppAqqΨ R
�� ΞppGqq def� Ξg P G,Ψa P A : Rpa, gq (4.10)

paq
R
�99K ppGqq def� Rpa, gq Ñ g R G (4.11)

ppAqq
R
�99K ppGqq def� Rpa, gq Ñ a R A_ g R G (4.12)

Here, similarly to previous definition, a enclosed into single and A enclosed into double
round brackets denote an already interpreted artifact or group respectively. Also, @ is a
default quantifier for double line edges.

In addition to edges defined above, membership and subgroup relations in a graph
query can be defined as:

paq ♦�� ppGqq
def
� DG : a P G (4.13)

ppAqq ♦�� ppGqq
def
� DG : A � G (4.14)

Query graph Q is a triple defined as follows:

Q
def
� pa,E, V q, graph Q is connected,
a is the predefined central primary vertex (artifact),
V is a set of vertices pT, Sq and ppT, Sqqrm�ns, a R V,

E is a set of edges E � tau � t �� , �� , �99Ku � pV q

Y V � t �� , �� , �99Ku � V

(4.15)
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Context element CTX in the modeling notation is a composition of query graphs
CQ:

CQ
def
�Q |CQ1 AND CQ2| CQ1 OR CQ2

| CQ1 XOR CQ2,

CQ1 � pa1, E1, V 1q,

CQ2 � pa2, E2, V 2q,

a1 � a2, E1 X E2 � H,

V 1 X V 2 � H

(4.16)

Transition element CT , attached to Context element CTX, can be defined as:

CT
def
� pCTX,E,C,ACq,

E is an external event,
C is a condition, C : QU � ID Ñ ttrue, falseu ,
AC is an activity, AC : QU � ID ÑH,

ID is a set of identifiers attached
to vertices in CTX graph,
QU is a set of quantifiers, QU � tAny,Every,Allu

(4.17)

In the next section we demonstrate the expressiveness of the defined modeling notation
by means of several use cases.

4.5 Evaluation
This section describes four collaboration process use cases which demonstrate the appli-
cation of our modeling approach to various collaboration issues. As it can be seen, the
approach allows to easily express the dependency of a process on complex relations in its
environment, and to compactly capture the dynamic co-influence between instances of
the same process in one model. For clarity, in the use cases we attach to each Context
element a free text description of its specification.

4.5.1 Use Case – Design Game

Goal. The goal in this use case is to coordinate a design of a complex system consisting of
interrelated projects. A set of expert virtual teams thus collaborate to reach a consensus.
The assignment relation between teams and projects is one-to-one, but teams can share
members. As some projects are dependent, it can happen that changes in the design of
one project can be the reason for changes in the design of other ones. Finally, all project
designs should be consistent with their dependent ones.
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Figure 4.5: Use case – design game

Model. Each project of this system is regarded as a separate process (see Figure
4.5). In the beginning, it is in In Progress state, indicating that the team is currently
working on its design. When the team makes some changes to the design and commits
it, the process goes into Updated state. If no changes to the design were made, i.e.,
the existing version was examined and considered valid, then the process switches to
Finalized state. The states Updated and Finalized together represent superstate
Wait Input, which means that the project design is currently awaiting for some external
actions. If the team suddenly decides to update the design (e.g., a better idea emerged),
the process goes back into In Progress state.

Now, if the process is in Wait Input state, and if all the related projects are also in
Wait input state and at least one is Updated, then the team should check the design of
their project against inconsistencies with updated projects. Thus, the updated documents
are sent to the team and the state is switched to In Progress. An exception is the
case when the project team shares a common expert with the team of an updated project
(relation Socially related), who is expected to foresee any inconsistencies beforehand.
Waiting the related projects to be in Wait Input ensures that all the updates of related
documents will be taken into account.

When in Updated state, and if all the related projects are finalized, the process goes
into the finalized state, which ensures that if a document spawned no updates among
related documents, it will not stay in Updated state.

The system may be considered in the final state when all the projects are in
Finalized state.

Advantages. This use case demonstrates the modeling of collaboration as ordered
iterative communication of project teams towards reaching a consensus. It shows that
our modeling approach, as opposed to existing modeling approaches (see Section 4.3), is
capable of expressing universal and existential quantification.

4.5.2 Use Case – Social Selection

Goal. The goal of this use case is to support a software development process with the
selection of appropriate actors (e.g., developer, adviser, reviewer) based on relations with
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Figure 4.6: Use case – social selection

the other tasks and among the actors. Tasks are related if they belong to the same
project, employees are related if they collaborated before.

Model. Figure 4.6 depicts the software development process. At first, the task is in
the Ready for Implementation state and is waiting for an appropriate developer
to be assigned. Any available developer from a related task is assigned for this role, as
he/she is expected to be more productive because of being familiar with some related
concepts. Alternatively, a manual assignment is performed. In either case, the process
goes to the Implementation in Progress state. An impediment can occur during
the implementation (Impediment pending state), in which case an adviser is needed
for assistance. An adviser is preferably selected as being related to the developer employee
who contributed to a related task, because of joint work experience. Otherwise, any related
task contributor is chosen. If the adviser is found, the process goes into Resolution
in Progress state, from where it can either go either back to Implementation in
Progress or Impediment Pending states, depending on whether the impediment
has been resolved. Also, the developer can resolve the impediment by herself if no adviser
was found. After the implementation is finished, the reviewers are selected (Ready For
Review state): they are desired to have experience with related tasks but be unrelated
to each other, which assures unbiased reviews. After the review process (Review In
Progress state), either the implementation needs to be revised, or the task is considered
finished.

Advantages. This use case demonstrates expressiveness of the modeling approach
when visualizing a social network environment, allowing thus to model processes that
require discovery (e.g., compose a socially coherent team), unbiasedness (e.g., involve
independent people), and negotiation (e.g., by exploiting of social hubs). It shows expres-
siveness of the graphical notation with regards to modeling discovery in a surrounding

57



Depends upon at least one in 

testing phase, or no dependence

OR
Depends upon at least one 

switched back to implementation

Ready For 

Implementation

Finalized

External event

(e.g., change of 

requirements) 

or testing fail

Implementation 

In progress

Assign developer

Implementation phase

Testing phase

Testing phase

Component

Implementation

Depends upon only finalized 

components

Finalized

Component

Implementation 

phase

Component

Depends

Depends upon only 

implemented

Depends

Implementation 

done

Testing phase

Component

Ready for testing
Testing in 

progress
Tested OK

Assign 

tester
Testing Ready to finalizeAppovement

Depends

Open

Depends

Depends

x
Component
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social network. Contrarily, existing modeling approaches fall short of expressing such
patterns in a visual and formal manner (see Section 4.3).

4.5.3 Use Case – Dependent Components

Goal. The goal is to coordinate the development and testing of a software product,
which consists of manifold components, some of which depend on others (we assume
no cyclic dependencies). The development a component should proceed only when the
components it depends on have reached certain progress.

Model. Figure 4.7 depicts the process which corresponds to a single component. It
starts in Open state and switches over to Implementation Phase in either of two
cases: it does not depend on any components, or at least one component which it depends
on is in Testing Phase. This ensures some minimal basis for the development. After
Implementation Phase, the component is ready to switch over to Testing Phase,
but, first, it should wait for all the components it depends on to be implemented, so
the testing covers the combined functionality. The testing phase can reveal some flaws
so the component will return into Implementation Phase for fixing those. If, while
the component is in Testing Phase, any of the components it depends on suddenly
goes into Implementation Phase, then the testing should be stopped in order not to
waste the testing effort on outdated components. Lastly, if the component is in Ready
to Finalize state, and all the components it depends on are Finalized, then the
component can be finalized.

Advantages. This use case demonstrates the suitability of the modeling approach for
expressing the coordination of project teams towards ensuring consistency and correctness
of a complex product. It shows the expressiveness of our modeling notation if comparing
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it to existing modeling approaches that would capture process coordination either in a
text form or via events (see Section 4.3).

4.5.4 Use Case – Teams and Groups

Goal. The goal of this use case is to compose effective teams based on social connections
and internal company structure. This use case exemplifies a composition of a development
team, a replacement search for a key role (here: SCRUM Master5), and the formation of
independent expert groups.

Model. Figure 4.8 shows a simplified software development process with focus on
team creation and support. The process starts in Team Formation state where a
development team of five people and a product owner are chosen. The product owner
should be socially related to at least half of the future users of the product at hand,
which ensures more efficient communication of requirements and feedback. The product
owner should also know at least one of the developers, so a better contact with the team
can be established. Developers in turn should have the skills necessary for the project
and should know each other to some extent for easier integration, so the rule states that
each developer in a team should be related to at least two others.

To specify the requirement that all the customers that will use the product must be
included in the group, we need to use an advanced pattern, because having only a double
edge from the primary element is insufficient: that would mean that there exists a group
of customers, all of whom will use a product, but does not imply that all such possible
customers will fall into this group. We thus need to use an additional single Customer

5http://scrummethodology.com/scrum-effort-estimation-and-story-points/
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element defined with a universal quantification, which means that each customer who
uses the product is included in the group. The double edge from the primary element
should remain to state that the group is restricted only to the customers who will use
the product. The similar technique is used in the context with SCRUM Masters.

Once the team is formed, the development phase starts and the process goes into
Development state. During this phase it might happen that some member leaves a
team for an arbitrary reason, and a replacement has to be found. The use case illustrates
such a situation with the team’s SCRUM Master. A criterion for the new SCRUM
Master is that she should share at least half of connections of the leaving SCRUM
Master to managers of collaborating departments. This rule aims to retain the pace
of issue resolution, should any occur while collaborating with the other teams. After
the development phase is over, the process goes into Ready for review state where
evaluation teams are composed. Two teams of four to five people should be independent,
i.e., a member of one team should not have any connections to the members of the other
team, to assure unbiased evaluation. The process can then switch to Evaluation phase
and eventually be finished.

Advantages. This use case demonstrates the capabilities of the framework to express
advanced patterns in social networks, such as 2-plex (development team), broker (product
owner), and structural equivalence (new SCRUM Master), as well as conditions involving
multiple teams.

4.6 Discussion

Compared with existing approach, the main strengths of our modeling notation are its
expressivity and flexibility. First, the modeling notation is capable of capturing complex
graph patterns inherent to social networks. Second, the modeling notation goes in line
with statecharts by avoiding any domain-specific constructs, making it applicable outside
of the social networks domain. Third, it allows to capture the evolution of a network
of artifacts, as well as a network of people. Our modeling approach is supported by a
formal definition, enabling thus design time reasoning, verification, optimization and
efficient execution.

The absence of explicit communication entities (events or messages) in the modeling
approach is a strength regarding the clarity of the resulting model, but also a weakness.
It allows to provide simple processes coordination and secure encapsulation: a process
can modify only its own state, it cannot impact related processes explicitly, similarly
to Cellular Automata (CA) [Neu66]. However, a modeler cannot immediately see what
parts of a business process (states) other processes rely upon. Given that definitions of
events and messages represent a process interface, a modeler will not be able to remove
or change process states without a certain risk of affecting other models. However, this
problem can be remedied with state clustering available in statecharts.

Unlike CRPQ-based languages (see Section 4.3.4), our visual notation does not have
notion of paths defined with regular expressions. Seamless integration of paths requires
further investigation with respect to usefulness in the scope of context-aware processes,
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and is part of our future work. Also, we envision that other additional elements might
be added, like aggregation operators to describe the accumulated state of the entire
neighborhood. Moreover, among our major interests are the possibility of sharing context
elements between parallel processes along with zoom in and zoom out capabilities for
group elements.

Our modeling framework unifies active and passive entities, i.e., actors and artifacts,
and considers them from the perspective of classification (type) and possible states.
Correspondingly, our graphical modeling notation employs a single type of shapes for
both actors and artifacts in line with statecharts. This approach emphasizes the viewpoint
of groupware and collaborative software, where actors are represented simply as user
profiles, which are, essentially, also documents. The unification affects slightly the
intuitiveness of the modeling notation, as it is not immediately visible which entities are
active and which are passive. However, this unification allows for greater flexibility, e.g.,
it is possible to specify an actor as a central element, modeling thus evolvement of a
user profile, or express a semantically coherent group of artifacts. Moreover, it enables a
broader use of the framework and potential application to other domains. For example,
it is possible to introduce actors that represent software agents, or other types of social
entities, such as organizations.

According to the formal definition (see Section 4.4), our modeling notation incorporates
relation as a modeling element, but neither types nor semantics of relations are formalized.
This makes sociality of the modeling notation somewhat implicit, coming rather from the
ability to express common patterns in social networks and their influence on collaboration
processes. Being highly dependent on the target domain, semantics of relations between
collaborators are left to be defined by the modeler, as well as possible problems to infer
those relations. Absence of specific semantics behind relations, again, allows for greater
flexibility, enabling a modeler to define and adjust many specific types of relations, such
as colleagues, acquaintances, relations denoting mutual dislike or past conflicts and so on.
To avoid this, a context taxonomy [SN07, RRFA06] could be extended to incorporate
information about different social relationships.

4.7 Conclusion
This chapter proposes a modeling approach and a corresponding graphical notation
for creative human collaboration processes. The applicability of the approach was
demonstrated through several use cases, and its strengths and weaknesses were discussed.

Comparing to existing approaches, our contribution has two main distinguishable
features: it is capable of capturing complex patterns in network of artifacts and people,
and it advocates a communication model where a process can modify only its own state
and cannot explicitly impact related processes. We have shown that these features are
naturally suitable for modeling of social collaboration processes. Although our approach
was designed with this focus, we do not exclude its applicability in other areas.

In the next chapter, we first present an execution framework for our modeling approach
in the form of a coordination language.
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CHAPTER 5
Implementing

Collaboration-assisted
Computation

Today people work together across time, space, cultural and organizational boundaries.
To simplify and automate the work, collaboration employs a broad range of tools, such
as project management software, groupware, social networking services, or wikis. For a
collaboration to be effective, the actions of collaborators need to be properly coordinated,
which requires taking into account social, structural, and semantic relations among actors
and processes involved. This information is not usually available from a single source,
but is spread across collaboration systems and tools. Providing a unified access to this
data allows not only to establish a complete picture of the collaboration environment,
but also to automate the coordination decision making by specifying formal rules that
reflect social and semantic context effects on the ongoing collaboration processes. In
this chapter we present Statelets, a coordination framework and language for support
and coordination of collaboration processes spanning multiple groupware tools and social
networking sites, and demonstrate its suitability in several use cases.

5.1 Introduction

Groupware and social software foster collaboration of individuals who work across time,
space, cultural and organizational boundaries, i.e., virtual teams [PPI04]. Problem
of people coordination in collaborative processes has been already extensively studied
in academia, (e.g., in [Dus04, FBG96]), and addressed in industry with ever more
groupware products incorporating workflow and orchestration mechanisms (e.g., Microsoft
Sharepoint). However, in many cases, people interact and contribute in divergent
commercial or non-profit on-line collaboration platforms, such as social networks, open
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source development platforms, or discussion forums, that remain decoupled, isolated and
specific to their domains. The problem of coordination in such a setup gets a new look,
where processes that need to be coordinated are decentralized and distributed across
different specialized tools and online services.

Social network context is an integral part of human coordination. For example, the
following context aspects have an impact on the behavior of collaborating individuals:
actions taken by neighbors in social network [GGJ�10], social neighbors’ preferences
[Chw00], and the social network structure itself [ZB11]. The degree of the impact
varies from network context simply ’carrying’ the information that can be used in a
process to forcing adjustment or even cancellation of ongoing actions. Also, social
context can imply mutual dependency between processes, reflected by such common
coordination mechanisms in social networks as collective actions [Chw00], i.e., ’I’ll go
if you go’. Social network context can be used for such advanced activities as expertise
location [MA98], composition of socially coherent collaborative teams [DB11], discovery
of unbiased reviewers, and so on.

Along with the social component of the network context, semantic relations between
processes may affect coordination decisions as well. In groupware and wiki-like platforms,
processes are reflected as incremental changes of common deliverables (e.g., documentation
of an idea, a technical specification, or a source code file) connected into dependency and
semantic networks. Relations between these artifacts may influence the collaboration
process. For example, actions on a document should not be performed before related
documents reach a certain condition, or a change in a related document might force to
re-do an activity.

Due to an information-centric nature of both social and semantic contexts, we
combine these notions together and define network context of a collaboration process as
information about related processes and people, their actions and states. In our previous
work [LKTD12a] we discussed network context effects on collaboration processes, and
presented an approach for modeling them.

In spite of growing interest to social network effects in academia [Chw00, GGJ�10,
ZB11], the problem of network context-based coordination has not been properly ad-
dressed by coordination languages and frameworks. As examined in the chapter, existing
coordination languages lack necessary features to enable efficient programming of coordi-
nation based on network effects. We refer here to suitability as an amount of efforts a
developer needs to spend to express such coordination rules. Also, supplying the developer
with social and semantic network context requires horizontal composition of groupware
and social networking sites, which imposes yet additional challenges [DG11, KCSS10],
which are not addressed properly by existing frameworks as well.

In this chapter we present Statelets, a programming language for coordination of
social collaboration processes spanning multiple software systems. A distinguishing
characteristic of Statelets is the support for coordination based on social and semantic
network effects. Although the primary focus of the chapter is the programming language,
our contribution also includes a conceptual architecture of the underlying framework
that aims at integration of groupware and social networks to extract social and semantic
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contexts. To evaluate Statelets, we have implemented use cases that show its advantages
and suitability to the domain.

The rest of this chapter is structured as follows: Section 5.2 provides a motivating
example and identifies the features that are crucial for a network context-based coordina-
tion language. In Section 5.3 we explore the suitability of existing coordination languages
for the problem at hand in the perspective of these features. Sections 5.4 and 5.5 describe
the Statelets coordination language and the conceptual architecture of the underlying
framework respectively. Section 5.6 demonstrates the usage of the language with use
cases. The chapter is concluded in Section 5.7.

5.2 Motivation

As a motivating example, let us consider open source software engineering. Projects
in software engineering can be classified into analysis projects and engineering projects
(See Fig. 5.1b). An analysis project represents a non-routine and changeable process,
whereas an engineering project represents a rather routine and stable process. Both
types of projects produce deliverables, such as source code or technical documentation.
Projects get assigned to members of open source communities, who are located via social
(professional) networks and online collaboration services, and are then hold responsible
for the progress of corresponding activities.

Projects can be related to or depend on each other. For example, two projects are
related if they contribute to the same software product, are functionally interdependent,
or share components, goals, or resources. Similarly, social and professional relations and
technical dependencies exist between project members, e.g., a software engineer depends
on engineers who wrote previous versions of the component or worked on the code in the
past. Figure 5.1a depicts various relations between projects and their members.

The key to success of such engineering and analysis projects are advanced activities,
such as expertise and resource discovery. Such activities are not possible without
integration of professional (e.g., XING, LinkedIn) and private (e.g., Facebook, MySpace)
social networks, and online collaboration tools (e.g., SourceForge). Figure 5.1a depicts
integration and execution environment of processes that correspond to analysis and
engineering projects. Engineering projects are more specific to the domain, and, therefore,
require more specific groupware, e.g., VersionOne, or Jira. Analysis projects, on the
contrary, require more flexible and wide-spread groupware, such as MediaWiki (engine
for Wikipedia).

Given the setup described above, let us consider the following possible coordination
rules:

1. If an Analysis project is in Post-Deliberation phase, and all its related
Analysis projects have transitioned to Post-Deliberation phase, then, if any
changes have occured among solutions in those projects during the transition, the
project should be switched back to Deliberation phase and the changes should
be communicated to the project’s team. This rule ensures proper communication
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Figure 5.1: Projects in open source software engineering

of new or adjusted solutions between teams of interrelated Analysis projects and
allows a collaboration team to produce solutions that are not affected by possibly
incorrect solutions produced by other teams. Similar strategies were adopted in
agile software engineering methodologies, e.g., in SCRUM estimation game1.

2. An engineering project design should be reviewed by an expert from a functionally
dependent project. Moreover, it is preferable to assign an expert socially unrelated
to the project team members. This rule tries to avoid biased reviews by finding
socially unrelated experts.

3. In case of an expertise request, an appropriate expert should be socially connected
to one of the project team members, or work on a related project. This rule ensures
faster expert onboarding.

4. When starting an engineering project, a socially coherent team of qualified experts
should be assembled, which has connections to members of related projects. This
rule tries to maximize probability of a project success by ensuring a good social
environment in advance.

5. An engineering project can be started, if at least one project it depends on has
passed Design phase. This rule defines a balance between total serialization of
dependent projects Design phases, which results in a longer time-to-market,
and total parallelization of Design phases, which results in more iterations.

1http://scrummethodology.com/scrum-effort-estimation-and-story-points/
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6. Design phase of a project cannot be finished until all projects it depends on
pass Design phase. This rule minimizes chances of potential rework and wasted
efforts.

7. If an engineering project is in Implementation phase, and any of the projects
it depends on has switched back to Design phase, then the project should switch
back to Design phase. This rule covers possible redesign cases and ensures proper
handling of late adjustments.

8. All impediments in a project should be communicated to any engineer in every
related project. This rule ensures timely communication between project teams.

Let us consider the challenges that a developer faces when implementing the afore-
mentioned rules. Based on the challenges, we further draw conclusions and identify the
most important features that reflect the effectiveness of a coordination language and its
underlying framework.

1. Optimized horizontal integration of external collaboration projects. The motivation
scenario involves integration of many social networks and groupware products, such
as MediaWiki, Subversion, LinkedIn, Facebook, and VersionOne. The developer
should concentrate on the coordination logic, and not on how to extract the
needed information from external sources. As APIs of collaboration platforms
could not provide all the needed information in the right form, the framework
needs to decouple the concepts perceived by the developer from representation and
transformation issues and take care of the optimizing the data exchange seamlessly
for the developer. Different authorization mechanisms and the necessity for identity
mapping between entities coming from different sources makes integration even
more complex. The coordination language should in turn support the unconditioned
access to externally provided data in a manner that enables the optimization, and
the language’s semantics should reflect the nature of external APIs, i.e., consider
distinct behavioral classes of APIs’ methods (e.g., methods with and without
side-effects).

2. Condition-Action rules. Rules 5, 6, and 7 take the declarative condition-action form,
as opposed to more common event-condition-action rules, because the developer is
interested in situations or patterns that need to be managed rather than in events
that lead to these situations. When a condition depends on external data sources,
problems of continuous checking and polling arise. Additionally, when a condition
depends on time (e.g., escalation), timers get involved as well. These problems
should be abstracted away from the developer and be handled by the framework,
while the coordination language should support condition-action expressivity.

3. Network context querying and processing. Integration of groupware and social
software enables social resource discovery and process coordination based on rich
network context. Manipulations with network context, as it can be seen from most
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of the rules above, can be significantly simplified with quantifiers (as in Rules 5,
6, or 8), and disjunctions (as in Rule 3), as they naturally fit for expressing the
coordination logic.

4. Network context synchronization. As depicted by Rule 1, when multiple related
entities fulfill a rule, the action should be taken for all such entities simultaneously
to avoid a situation when the action for one entity discards the condition for other
related entities. Such synchronization issues should be handled at the framework
level and be taken into account by the language design.

5.3 Related Work

In this section we examine existing coordination and orchestration languages with respect
to the features outlined in the previous section. Table 5.1 summarizes the suitability
of considered languages to network context-based coordination. The suitability of a
language can be characterized as the amount of efforts a developer needs to spend on a
task at hand. We therefore regard the native support of the aforementioned features, i.e.,
when no additional effort is needed for their realization.

Table 5.1: Natively supported features in selected coordination languages

Seamless Condition- Context Context
integration Action queries synchronization

Control-driven languages 4 � � �
Linda-based languages � 2� 2� �
Reactors � 2� 2� �
CEP languages � 2� 2� �
BPEL4Data (BEDL) � 2� � �

Legend: 2� Supported 4 Partially Supported � Not Supported

Control-driven coordination and orchestration (workflow) languages based on mes-
sages (channels), such as BPEL [AAB�05], Orc [KCM06], or Workflow Prolog [GP07]
are specifically designed for integration of services like those in external APIs. They can
also simulate network effects via messages or events, i.e., by notifying related processes.
However, context querying using point-to-point messages would result in “chatty” com-
munication, and context synchronization would require the implementation of complex
protocols similar to two-phase commit. Also, support for integration is limited, as
difference between methods w/o side-effects is not considered.

Data-driven (Linda-like [GC92]) coordination languages (for example, [BFLM01])
express coordination as dependencies between removal/reading and insertion of atoms
from or into a shared space. However, groupware APIs are often assymetric and do
not provide insert/remove operations for each read operation. It is therefore hard to
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align API method calls with the removal and insertion of atoms, because the actual
changes made by API calls are not explicit and occur rather as side-effects. Basic
Linda operators provide only limited expressivity of conditions expressing network
context, unlike reactive Linda extensions [BZ05] that introduce additional notify operation.
Two coordination approaches are used in reactive extensions [BZ05]: parallel (e.g.,
JavaSpaces, WCL) and prioritized (e.g., MARS, TuCSoN (ReSpecT)). In order to express
network context synchronization, parallel reactions require implementing two-phase
synchronization protocols, similarly to control-driven languages. Prioritized extensions
make the implementation even more difficult by restricting the usage of coordination
operators within reactions.

Reactors [FMS09] is a coordination language where networks of reactors can be
defined by means of relations. The behavior of reactors in the neighborhood is observed
as sequences of their states, which can be queried with Datalog-based language, thus
allowing the context querying. Also, Reactors eliminate the distinction between events
and conditions. Reactors react to stimuli defined as insertion or removal of relations.
This is suitable for integrating RESTful APIs, but is limited to them, as many groupware
APIs are coarse-grained and it is not intuitive to map insertion and removal of tuples to
API calls. In general, reactors are executed concurrently and independently. Synchronous
execution can only be achieved through a composition of reactors, which is not intuitive
to implement.

Given that processes can publish their states as events, modern Complex Event
Processing languages (e.g., [PE10]) can express conditions on network context using
event correlation and predicates. However, representation of external data retrieved
from request-response web APIs in the form of events is not intuitive. Moreover, the
recursiveness [MM06] (See Rule 1) of collaboration processes can significantly complicate
the definition of network context queries.

Typically, rules in Rule-based languages fire non-deterministically, thus complicating
the network context synchronization. However, two notably different approaches here
are: (i) to derive dependencies from postconditions (e.g., [SC05]), which in scope of
external APIs integration might be not known, or not possible to define; and (ii) by
explicit operators (e.g., [NN08]), which do not allow to specify dependencies based on
relations between events.

In XML-based language BPEL4Data [NKM�10] processes can communicate via
shared business entities, resembling thus a shared-space paradigm. Business entities
are represented as XML documents. Simple conditions can be expressed as guards on
Business entities using XPath/XQuery. However, it is not intuitive to describe network
context querying, i.e., conditions on a graph of related XML documents. Synchronization
between processes is achieved through additional processes and locks. Similarly to CEP
languages, integration with BEDL requires representation of external data changes in
the form of CRUDE notifications or invocations, which is not always intuitive.

As it can be seen, existing approaches partially support requirements outlined in the
motivating scenario, but none of them provides a full spectrum of features necessary for
efficient programming of coordination based on network effects.
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5.4 Statelets Coordination Language

In this section we present Statelets, the coordination language designed for orchestration
of activities in groupware and social software systems. The language natively supports all
four features outlined in the previous section. However, native support of the ’Seamless
integration’ feature requires additionally implementation of an extensible framework,
conceptual design of which is discussed in the next section. The main building block of
Statelets is statelet - a construct that corresponds to a state of a process and denotes
coordination rules that should be fulfilled when the process resides in this state. Statelets
do not completely describe collaboration processes, but rather are complementary reac-
tions to workflows defined in groupware systems and human collaboration activities. A
statelet consists of mainly two parts: a condition(s) that formally describes an anticipated
situation and an action(s) which have to be undertaken if such a situation is detected.
Conditions are given in a form of context queries against the data integrated from external
collaboration projects, and the actions are given as either triggers that correspond to
external commands in collaboration software, or yield constructs that activate other
statelets. All the data integrated from external sources by the framework is accessed as
relations in the language. This allows the developer to easily design the coordination
rules by seamlessly combining the relations originating from diverse platforms into single
conditions.

5.4.1 Context Queries and Commands

Assymetric nature of many collaborative software APIs is reflected in Statelets as
segregation of operations2 to read (side-effect free) operations, i.e., queries, and modify
operations, i.e., commands. Such segregation allows a programmer to specify what API
methods are side-effect free and what are not, enabling thus the framework to treat them
differently.

Queries. Read operations define data models, which in Statelets are represented
as a unified hypergraph comprised of overlay networks. Even though the data model is
defined by collaboration software adapters, additional relations may be integrated, (e.g.,
Core Relations Library), denoting side-effect free external computation. For example,
querying the Factorial(X, Factorial) relation results in computation of a factorial by an
integrated component. Also, additional virtual relations can be defined on top of the
basic data model. For instance, a SocialRelation virtual relation below is defined by
means of relations coming from Facebook and MySpace.

Listing 5.1: Definition of social relation
relation SocialRelation(User1, User2):
Facebook.Friends(User1, User2) || MySpace.Friends(User1, User2);

Querying a hypergraph relation at runtime creates a data stream, i.e., a lazy sequence of
records, which is gradually initialized by the framework with each set of vertexes matching

2http://martinfowler.com/bliki/CQRS.html

70



the given relation found. Given that relations in hypergraph constitute predicates, data
streams can be formed by expressions using the following binary operators based on the
First-order logic:

• Operators &&, ||, not, and -> correspond appropriately to ^, _,  , and Ñ
first-order logic connectives with implicit existential quantification attached to all
variables within the expression.

• Operators =>, -!, and -x correspond to conditional (Ñ) connector with implicit
universal quantification over the variables present in the left part of the expression.
Variables in the right part of the expression, that are not present in the left part,
are quantified as D, D!, and  D appropriately. Clearly, second and third operators
can be expressed using the first one.

Basically, a query expression describes a pattern (a subgraph) within a hypergraph.
Appropriately, a data stream resulted from evaluation of this query contains all occurrences
of the pattern.

Queries in Statelets can be evaluated using define and wait operations:

• define operation simply evaluates a query expression and searches shared space
hypergraph for pattern instances. Each pattern instance found along the hypergraph
search is pushed into the data stream. If no instances are found, then define
returns an empty data stream.

• wait operation continuously evaluates a query expression until at least one pattern
instance is found. Therefore, wait operation always returns non-empty data
stream.

For instance, if it is necessary to wait until all related to the project documents are
completed, then we can use the following code snippet:

Listing 5.2: Queries in Statelets
wait Related(Project, Document) => Status(Document, ‘Completed‘);

Here a data stream is created that remains uninitialized until the condition is satisfied.
However, if it is simply necessary to check if all related documents are completed, then
the following code snippet can be used:

Listing 5.3: Relations in Statelets
define Related(Project, Documents) => Status(Document, ‘Completed‘);

Here an uninitialized data stream is created, which either is initialized with all related
documents if all of them are completed, or is initialized as empty. A statelet can run
many queries, getting thus many data streams. If query expressions within a statelet
share variables, then resulting streams are joined by those shared variables.

Commands. Commands represent groupware API methods with side effects, for
example, send an e-mail, or delete a document. Commands in Statelets are executed
using trigger keyword:
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Listing 5.4: Commands in Statelets
trigger AssignReviewer(Document, Reviewer);

Commands in Statelets are used to process or handle records of data streams defined
by query evaluations. If a data stream is not yet initialized, then a command is suspended
until it is initialized (similar to lists with unbound dataflow tail [VRH04]). However,
if a data stream is empty, then the command is not executed at all. A command can
be executed for any or for every record in a data stream, or for the whole collection
of records. Any quantifier is a default quantifier, which is implicitly attached if no
quantifiers are specified. Consider the example below:

Listing 5.5: Commands with quantifiers
trigger SendForReview(every Team, any Programmer, all Documents);

This reads as follows: send a list of Documents (all Documents) for a review to any
Programmer in every Team.

5.4.2 Programming Coordination

Coordination is managing dependencies between activities. Apart of being able to
express basic dependencies between human activities, Statelets also support network
context-based coordination.

Dependencies between Activities. A statelet by itself describes precedence depen-
dency: once completion of a human activity is registered in a shared space, a succeeding
activity is triggered by a command. Statelets can be composed using alternative
keyword expressing thus multiple different outcomes of a manual or automated activity.
We exemplify usage of such composition in the use case scenarios. The statelet in the
example below describes dependencies between design activity, project owner notification
activity, and assignment of multiple experts activity:

Listing 5.6: Design phase
statelet DesignPhase(Project):
{
wait DesignDocument(Project, Document) && Status(Document, ’Completed’);
trigger NotifyProjectOwner(Project);
define ExpertiseKeywords(Document, Keyword) && FindEngineers(Expert, Keyword);
trigger Assign(every Keyword, any Expert, Project);
};

Dependencies between processes. A process in Statelets is comprised of a se-
quence of statelets that produce each other by using yield new operation, i.e., a
sequence of states. A process may reside in multiple orthogonal states, requiring thus
presence of many statelets in parallel. Therefore, a statelet is technically a coroutine: it
can produce multiple new statelets along its execution. Statelet by itself complements
shared space hypergraph at runtime, simulating thus a relation. In other words, a statelet
can query existence of other statelets in its neighborhood similarly to how it queries
for existence of specific relations and nodes in a shared space hypergraph. A process
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in Statelets thus communicates with its neighborhood by changing its own state. In
other words, observable behaviors of Statelets processes are sequences of states, rather
then messages. This behavior was inspired by Cellular Automata [Neu66], a popular
abstraction for modeling complex behaviors in social and biological networks. If a
statelet queries for the presence of another statelet, then such situation is treated by
the framework as dependency, i.e., the assumption is that any actions triggered by a
statelet can discard conditions of dependent statelets. Therefore, the framework ensures
that actions of a statelet are triggered after conditions in dependent statelets are checked.
Appropriately, if two statelets are mutually dependent, then the framework executes
their actions simultaneously, allowing thus for expressing simultaneity dependencies, i.e.,
network context synchronization and collective actions (see Sec. 5.2). Lifetime of a
statelet is bound to the data streams defined within it. A statelet is visible in shared space
hypergraph until all its data streams are initialized. Once the statelet starts processing
data streams by triggering actions, it becomes invisible to other statelets, i.e., queries
being evaluated within wait operations of all other statelets will not consider presence
of the relation correspondent to the statelet. Let us consider an example: an engineering
project can be started if design of all projects it depends on is finalized, and if at least one
of them is in the implementation phase. The following code snippet implements this rule:

Listing 5.7: Design finalized phase
statelet DesignFinalizedPhase(Project):
{
wait Depends(Project, DepProject) => (DesignFinalizedPhase(DepProject)

|| ImplementationPhase(DepProject));
yield new ImplementationPhase(Project);
};

5.4.3 Feature Support and Prototype Implementation

All four features outlined in Sec. 5.2 are integral part of and natively supported by
Statelets. Data streams and segregation of operations realize the horizontal integration
feature. Wait operation enables condition-action rules. Implicit quantifiers in queries
along with explicit quantifiers in commands allow for easy network context querying and
processing. Statelet dependency solves the synchronization problem.

Statelets employ accustomed C-based syntax. Prototypes of the Statelets interpretor
and the initial version of the language runtime are implemented in the functional
programming language F#, and are publicly available for download3.

The complete abstract syntax tree of the Statelets coordination language is provided
below:

Listing 5.8: Statelets syntax tree
Quantifier Q ::= any | every | all
Constant C ::= boolean | number | string

3http://sourceforge.net/p/statelets/
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Identifier ID ::= string without spaces
Expression variables EVARS ::= ( ID | C | _ ) list
Command variables EPARS ::= ( Q ID | C ) list
Expression E ::= EVARS | (ID, EVARS) | (E && E) | (E || E) | (not E) | (E �> E)
| (E => E) | (E �! E) | (E �x E)

VirtualRelation VR ::= (ID, ID list , E)
Statement S ::= define E | wait E | trigger ID EPARS | yield new ID EPARS
Statelet ::= (ID, ID list , S list )

5.5 Statelets Framework
In this section we present the conceptual architecture of the Statelets framework that
enables horizontal integration of collaborative software systems. The focus of this chapter
is on the coordination language, therefore technical details are not provided. Figure 5.2
shows the high level design of the framework comprised of the following layers:

Connectors. Groupware APIs are diverse by their nature and employ distinct proto-
cols. This requires creation of fine-tuned integration points, i.e., connectors. Connectors
define supported relations and commands, and adapt object models of groupware APIs
to fit Statelets semantic model. Connectors may support not only initialization of data
streams corresponding to atomic relations, but also interpretation of queries on relations
in order to better utilize flexibility of APIs and improve efficiency.

Authentication and Authorization. User-centric APIs are designed for vertical
composition [DG11], and often require authorization and authentication mechanisms
with direct user involvement (e.g., OAuth 1.0/2.0). This complicates traversal of social
graphs, and imposes needs to store and maintain certificates, application and user tokens,
or even credentials. Moreover, a mechanism to update or collect new tokens should be
present as well.

Entity mapping. Many user accounts and entities map to the same entity in the
real world. For instance, users usually have different accounts per each collaboration tool
they use, and two files in different tools may represent the same research paper. Typical
approaches to entity mappings [KCSS10] are attribute-based identity, by e-mail address,
by custom metadata, or even direct mappings (e.g., based on Facebook Open Graph or
OpenID).

Optimizations. Authentication and authorization mechanisms together with identity
mappings algorithms may introduce high latency. Additionally, some data in social
networks, like a friendship connection, or a user profile, change rarely. This introduces
unnecessary overhead for queries with existential quantifiers, i.e., ’find any socially related
expert in given area’. In this case, caching and heuristic approaches may bring substantial
value.

Language Runtime. The language interpretor is responsible for code parsing and
interpretation of the language semantic model. The scheduling component is responsible
for polling graphs of artifacts and user profiles. The coordination component is responsible
for enforcing dependencies between activities and processes at runtime.

The multi-layer design decouples integration and optimization issues from the coordi-
nation logic. The developer therefore only operates with entity abstractions and is not
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Figure 5.2: Statelets framework architecture

required to comprehend technical details of data access, whereas the other layers are
handled by appropriate integration experts.

5.6 Evaluation

This section demonstrates the implementation of two process types considered in Sec.
5.2, namely Analysis and Engineering projects. The use cases exemplify main language
features and implementation of coordination based on network effects. More use-cases
can be found online3.

5.6.1 Analysis Projects

MediaWiki engine used in Wikipedia is used as an underlying groupware platform.
Typically, work on wiki pages is coordinated by non-functional attributes, for example,
‘Category:All articles with unsourced statements‘. Similarly, we add a special marker
category which is used to denote Post-Deliberation phase of a project. Two
analysis projects are considered to be related, if one of the project wiki pages contains a
link to a wiki page from the other project. Synchronization between related projects is
achieved in two steps: (i) residing in the Post-Deliberation phase, a process waits until all

75



related processes switch to the Post-Deliberation phase; (ii) all changes made in related
projects since last synchronization are communicated to every team member in related
projects, and related projects switch back to the Deliberation phase simultaneously.

Listing 5.9: Analysis projects
statelet AnalysisProject.Deliberation(WikiPage, Timestamp):
{
wait Wiki.Categories(WikiPage, "PostDeliberation");
yield new AnalysisProject.PostDeliberation(WikiPage, Timestamp);
};

statelet AnalysisProject.PostDeliberation(WikiPage, Timestamp):
{
wait
((Wiki.Links(WikiPage, RelatedPage) => AnalysisProject.PostDeliberation(RelatedPage, _))
�> Wiki.Revisions(RelatedPage, _, RelRevTimestamp))
&& >(RelRevTimestamp, Timestamp) && System.DateTime.Now(now);
define Wiki.Revisions(WikiPage, Contributor, _);
trigger Wiki.EmailUser(every Contributor, every RelatedPage, all RelRevTimestamp);
trigger Wiki.DeleteCategory(WikiPage, "PostDeliberation");
yield new AnalysisProject.Deliberation(WikiPage, now);
}
alternative
{
wait WikiPage �x Wiki.Categories(WikiPage, "PostDeliberation");
yield new AnalysisProject.Deliberation(WikiPage, Timestamp);
};

This use case exemplifies simplicity of network context synchronization and collective
actions implementation in case of recursive collaboration processes.

5.6.2 Engineering Projects

To save space, we exemplify only expertise discovery in social neighborhood. The
algorithm combines two ideas: (i) try to find a reviewer from a related project, which is
not socially related to any of the project team members; (ii) try to find any reviewer who
has appropriate expertise. In this example, social context is retrieved from Facebook,
LinkedIn, and Subversion (two engineers are socially related if they committed to the
same project in subversion). Project data is retrieved from the VersionOne groupware.
Subversion and VersionOne are depicted in the code snippet as SVN and V1 respectively.

Listing 5.10: Engineering projects
relation SVN.Related(User1, User2):
SVN.Logs(Path, User1, _, _, _) && SVN.Logs(Path, User2, _, _, _);

relation SocialRelation(User1, User2):
SVN.Related(User1, User2) || Facebook.Friends(User1, User2);

statelet EngeneeringProject.InProgress(Story):
{
wait V1.Attribute(Story, "Status", "Completed");
yield new EngineeringProject.ImplementationFinished(Story);
}
alternative
{
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wait
V1.Attribute(Story, "Status", "Review") && not V1.Relation(Story, "Reviewer", _)
&& V1.Relation(Story, "Developer", Dev)
&& V1.Relation(Story, "FunctionalRelation", RelStory)
&& V1.Relation(RelStory, "Developer", RelDev)
&& LinkedIn.Profile(RelDev, Profile) && ExpertiseFits(Profile, Story)
&& (not SocialRelation(Dev, RelDev) || RelDev);
trigger SetRelation(Story, "Reviewer", any RelDev);
yield new EngineeringProject.InProgress(Story);
};

The use case exemplifies implementation of such advanced activities as location of
socially connected experts, unbiased reviewers, and so on. The use case also shows
benefits arising from horizontal composition of social networking sites.

5.7 Conclusions
This chapter proposes a novel coordination language for network context-based coordina-
tion, and demonstrates its suitability through use cases. Compared to existing approaches,
our contribution provides a full spectrum of features that are crucial for network context
furnishing and coordination based on it. We have shown that these features are necessary
for an effective coordination of social collaboration processes. Although Statelets was
designed with the focus on collaboration, we do not exclude its applicability in other
areas.
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CHAPTER 6
Scaling Collaboration-assisted

Computation

Existing crowdsourcing database systems fail to support complex, collaborative or respon-
sive crowd work. These systems implement human computation as independent tasks
published online, and subsequently chosen by individual workers. Such pull model does
not support worker collaboration and its expertise matching relies on workers’ subjective
self-assessment. An extension to graph query languages combined with an enhanced
database system components can express and facilitate social collaboration, sophisti-
cated expert discovery and low-latency crowd work. In this chapter we present such an
extension, CRowdPQ, backed up by the database management system Crowdstore.

6.1 Introduction

Crowd-powered hybrid databases have gained momentum in recent years [FKK�11, PP11,
PPGM�12] due to their ability to combine human and machine computation. These
database engines allow the specification of human-computable predicates that transform
into Human Intelligence Tasks (HITs), which are posted online and are expected to be
picked up by workers. In spite of being cumbersome for workers, as browsing HITs is
time-consuming [KNB�13], such pull model has limitations for collaborative and expert
work. The better-suited push model requires the crowd platform to support sophisticated
worker discovery capabilities in order to assign or recommend tasks to workers.

Plethora of tasks require synchronous collaboration [IK92, KNB�13]. Successful
collaboration can be largely influenced by social relations between human workers.
Moreover, reusing teams that exhibited successful collaboration in the past can greatly
increase chances of success for new assignments.

Realtime crowdsourcing is based on the concept of flash crowds [KNB�13]: groups
of individuals who respond moments after a request and can work synchronously. The
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benefits of realtime crowdsourcing have been shown in [BBMK11, BKMB12]: paying
workers a small wage to stay on call is enough to draw a crowd together within seconds.

In this chapter we show how a graph query language can be extended to express
synchronous collaboration, social formations (teams) of crowd workers, sophisticated
worker discovery, as well as complex crowdsourcing patterns, such as iterative computation,
control groups, ranking, etc. Also, we show how classical database engine components,
such as indexes, caches, and the buffer pool manager, can be extended to improve worker
discovery, team formation, and flash crowds management.

6.2 Motivation
Consider following examples of crowdsourcing tasks:

1. Implement a web page, and create images for it. These two tasks require distinct
skill sets. Also, to improve collaboration, workers assigned to the tasks should be
socially related, or at least in close social vicinity.

2. You have a recorded melody fragment and want to know what song it belongs to.
You want only those workers to work on it who like rock music.

3. You need a set of hand-drawn paintings. You ask crowd workers to draw and rate
the paintings. To avoid biased ratings, workers rating the paintings should not be
socially related to workers drawing the paintings.

Existing crowdsourcing query languages fall short of expressing complex relations
between crowd workers working on related tasks, e.g., in the first example. Moreover,
discovery of proper workers might by a crowdsourcing task itself, e.g., in the second
example. Finally, even trivial crowdsourcing patterns, as in Example 3, are cumbersome
to express in existing crowdsourcing query language adaptations.

In the next section we review existing query languages employed for crowdsourcing
database scenarios.

6.3 Related Work
Table 6.1 provides an overview of existing hybrid human-machine databases. We analyze
their ability to express complex crowdsourcing workflow patterns (such as control groups
and ranking), social formations between workers, and sophisticated worker discovery.
Also, we overview techniques they employ for query optimizations, i.e., to minimize the
number of generated HITs under cooperative/collaborative scenarios, and approaches
they utilize to enable realtime crowdsourcing.

Qurk [MWK�11a, MWK�11b] and hQuery [PP11] were among the first attempts on
expressing crowdsourcing tasks as declarative queries. The SQL-based query language
in Qurk [MWK�11a] exploits user-defined scalar and table functions (called TASK)
to retrieve, join, sort and filter data from the crowd. Qurk also extends SQL with
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Table 6.1: Supported features in selected crowdsourcing databases

Workflow Query Worker Social Realtime
optimizations discovery formations crowdsourcing

Qurk 4 4 � � �
hQuery 4 4 � � �
CrowdDB 4 � � � �
CrowdSPARQL 4 � � � �
Deco 4 � � � �
CrowdSearcher 4 � � 4 �
Join optimizations N/A 4 � � �

Legend: 2� Supported 4 Partially Supported � Not Supported

a POSSIBLY clause to reduce the number of join candidates. Join optimizations
in Qurk consider batching of items, thus minimizing the number of generated HITs.
hQuery [PP11], a Datalog-like declarative model, features human-based and algorithm-
based predicates. Authors focus on presence of uncertainty in the result set as well as
optimization challenges, such as trade-offs between the number of certain answers, time
allocated and monetary cost.

CrowdDB [FKK�11] introduces extensions to the SQL data definition language to
define CROWD-enabled columns and tables, i.e., which should be fetched from an under-
lying crowdsourcing platform. Also, it introduces CROWDEQUAL and CROWDORDER
extensions to the SQL data modification language.

CrowdSPARQL [ASFN12] introduces a hybrid query engine that allows executing
SPARQL queries as a combination of machine- and human-driven functionality. Similar to
CROWD-enabled columns and tables in CrowdDB, CrowdSPARQL defines crowdsourced
classes and properties in VoID (Vocabulary of Interlinked Datasets). Also, CrowdSPARQL
defines an ORDER BY CROWD operator.

The Deco [PPGM�12] database semantics are defined based on the so-called Fetch-
Resolve-Join sequence, i.e., data is fetched using Fetch rules, then data inconsistencies
are resolved using Resolution rules and afterwards conceptual relations are produced by
outer-joining the resolved tables.

CrowdSearcher [BBC12] allows putting constraints on crowd workers via a mapping
model, e.g., friends of a specific user, geo-localized people, workers on a selected work
platform. However, it is not possible to specify either relations between workers, or social
formations.

Neither of the query languages above allow specifying CROWD-enabled constraints on
workers, nor relations between crowd workers themselves. Hence, these query languages
cannot support examples provided in the previous section. Moreover, they lack capabilities
to express complex workflows in a natural way.

Multiple papers discuss the problem of minimizing the number of HITs required
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to resolve JOIN operations. We have grouped those papers in the table under the
“Join Optimizations” row. CrowdER [WKFF12] suggests using a hybrid human-machine
approximation approach to filter out non-matching join pairs (with similarity ratio below
certain threshold), aiming to minimize the number of HITs required to join entities. Wang
et al. [WLK�13] discuss join optimization based on transitive relations. Contrary, in
[MKM�13] authors discuss selectivity estimation performed by the crowd, which implies
optimal join ordering. All these approaches focus on crowd-based and automatic join
resolution, neglecting a query writer, who can have better insight into selectivity of the
data queried and optimal join ordering.

While simple caching of results produced by HITs has been discussed (e.g., [MWK�11b]),
it has not been discussed how to cache successful workers and social formations (teams).
Also, to the best of our knowledge, no papers have suggested application of classical
database techniques and algorithms for realtime crowdsourcing.

6.4 Query Language
In this section we show how Conjunctive Regular Path Queries, a formalism behind many
graph query languages [Woo12b], can be extended to overcome their shortcoming for
incorporating free-text conditions and relations between data to be fetched and workers
who fetch the data.

6.4.1 Preliminaries

A database is defined as a directed graph K � pV,Eq labeled over the finite alphabet
Σ. If there is a path between node a and node b labeled with p1, p2, ..., pn we write
a

p1p2...pn
�����Ñ b. In the remainder of this section we give definitions of (conjunctive) regular

path queries, similar to other works, like [CGLV00b].
Definition 1 (Regular Path Queries). A regular path query (RPQ) QR Ð R is

defined by a regular expression R over Σ. The answer anspQR,Kq is the set connected
by a path that conforms to the regular language LpRq defined by R:

anspQR,Kq � tpa, bq P V � V | a
p
�Ñ b for p P LpRqu.

Conjunctive regular path queries allow to create queries consisting of a conjunction
of RPQs, augmented with variables.

Definition 2 (Conjunctive Regular Path Queries). A conjunctive regular path query
(CRPQ) has the form

QCpx1, ..., xnq Ð y1R1y2 ^ ...^ y2m�1Rmy2m,

where x1, . . . , xn, y1, . . . , ym are node variables. The variables xi are a subset of yi (i.e.,
tx1, . . . , xnu � ty1, . . . , ymu), and they are called distinguished variables. The answer
anspQC ,Kq for a CRPQ is the set of tuples pv1, ..., vnq of nodes in K such that there is
a total mapping σ to nodes, with σpxiq � vi for every distinguished variable, and pσpyiq,
σpyi�1qq P anspQ

R,Kq for every RPQ QR defined by the term yiRiyi�1.
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6.4.2 CRowdPQ

CRowdPQ is derived from CRPQ by extending the notion of RPQ with DRPQ and
RRPQ defined as follows.

Definition 3 (DRPQ). A descriptor regular path query (DRPQ) QDR Ð DR is
a regular path query defined over the extended alphabet Σ

�
Γ, where Γ is a human-

interpretable infinite alphabet of labels. Recursivity of descriptor regular path queries
corresponds to iterative human computation. The Descriptor relations are free-text
conditions that can be answered by human workers.

Definition 4 (RRPQs). A resolver regular path query (RRPQ) is a regular path
query over a predefined alphabet P � produce Y consume, where the labels produce
and consume correspond to dataflow producers and consumers respectively. The left
operand of a Resolver relation always has to be a worker node supplied by an integrated
crowdsourcing platform. Regular expression over the produce relation represent higher-
order selection of workers, e.g., workers find workers who find workers who can fetch
data. Resolver relations are dataflow constructs between the data to be fetched and
the workers working on the data. Note, Resolvers are not the only relations that can
be specified between a worker and the task at hand, i.e., RPQs can be used to specify
worker constraints.

6.4.3 Expressiveness

In this section we demonstrate the expressiveness of CRowdPQ by implementing the
three use cases from the motivating scenario. For this purpose we employ a CRowdPQ-
enhanced version of SPARQL 1.1: Descriptor and Resolver relations are denoted using
triangle and square brackets respectively.

Synchronous collaboration. Implement a web page, and create images for it.
These two tasks require distinct skill sets. Also, to improve collaboration, workers
assigned to the tasks should be socially related, or at least in close social vicinity (i.e.,
there exists a path between them of maximum length of 2).

Listing 6.1: Synchronous collaboration
SELECT ?webPage, ?pictures
WHERE
{

?webPage <"Design a web page">.
?pictures <"Draw pictures for the web page"> ?webPage.
?webDesigner [produce] ?webPage.
?artist [produce] ?pictures.
?webDesigner friendOf[1,2] ?artist.
?webDesigner [consume] ?pictures.
?artist [consume] ?webPage.

}

Worker discovery. You have a recorded melody fragment and want to know what
song it belongs to. You want only those workers to work on it who like rock music.
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Listing 6.2: Worker discovery
SELECT ?melodyName
WHERE
{

?melodyName <"Is similar to"> @file.
?melodyName <"Can you recognize the melody?">.
?musicFan [produce] ?melodyName.
?musicFan <"Find a person passionate about rock music">.
?indexWorker [produce] ?musicFan.

}

Note, that the specification of workers with no constraints is optional, i.e., ?indexWorker
can be omitted.

Workflow and social relations. You need a set of hand-drawn pictures. You ask
crowd workers to draw and rate the pictures. To avoid biased ratings, workers rating the
pictures should not be socially related to workers drawing the pictures.

Listing 6.3: Workflow and social relations
SELECT ?picture, ?ranking
WHERE
{

?picture <"Draw a funny sheep.">.
?talentedPainter [produce] ?picture.
?mercilessCritic [consume] ?picture.
?mercilessCritic [produce] ?ranking.
?ranking <"How funny is this sheep?"> ?picture.
FILTER NOT EXISTS
{ ?talentedPainter friendOf ?mercilessCritic }

}

Note, the example above can be easily changed to a control group (i.e., one worker
creates a picture and another one filters it) by replacing the ?rank variable with the
?filteredPicture variable and adjusting descriptor relations appropriately.

6.5 Database Engine
In this section we show how classical database components can be extended to be able to
cope with human workers as schemaless, volatile and context-dependent data sources.

6.5.1 Synchronous Collaboration: Social Formations and Caching

In Examples 1 and 3 of Section 6.4.3 we have shown the expressivity of our query language
with respect to specifying social formations.

In traditional RDBMS, the purpose of query caching is to speed up query evaluation
by reusing results from previous queries. While classical caching mechanisms of preserving
query results are also applicable in Crowdstore, here we consider a different kind of
caching. Instead of caching results, we cache workers and social formations of workers
(teams) in case of synchronous collaboration. If a worker has been answering recently a
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similar query to the query at hand, she might be a good fit to the task. For example, if a
worker has been searching recently through newspapers for information about charity
events, she might be able to quickly answer a query of searching recent newspapers for
road incidents.

The key element for efficiency of such caches is the ability to identify similarities
between queries, which resorts to finding a similar subgraph in a list of cached query graphs
(subgraph isomorphism). Matching descriptors can be achieved by finding similarity
between texts (or extracting labels). Answering subgraph isomorphism is a NP-complete
problem, so when using exact matching (isomorphism) the query cache will not scale.
Moreover, for complex queries expressing dense social formations, like cliques, it might be
difficult to find an exact match. To alleviate these two problems we can use approximate
graph matching, which, however, might not return the most suitable workers. Depending
on the importance of the relations between workers, we can choose either of the two
heuristics: relax the input query graph by removing worker nodes or data nodes in order
to focus on worker experience (i.e., who worked successfully on what) or maximize social
similarity respectively (i.e., what teams were successful).

Such quality caches can be pre-built by running pre-labeled queries over gold standard
data (e.g., [CB09, DHSC10, LEHB10]) and caching workers and teams that have shown
good quality.

6.5.2 Crowd Indexes

In Example 2 of Section 6.4.3 we have shown how the discovery of crowd workers can
be crowdsourced itself. We call index workers those workers that select and search for
workers for a query at hand. The distinction to regular workers should be driven by
different reward mechanisms applied to index workers, i.e., index workers should be
rewarded depending on the work quality of the workers they choose. The Crowdstore
design incorporates two techniques for worker indexes:

• Routing indexes. In the most trivial case the system can ask an index worker to
simply enter a list of workers she thinks satisfy the descriptor relation(s), or a list
of index workers who can route further. Routing indexes represent directed graphs,
and Crowdstore needs to detect cycles.

• Zonemap indexes. If there are other relations in addition to descriptors that are
adjacent to a worker node in a query graph, then Crowdstore can efficiently filter
worker candidates. In such case, index workers can be presented with a list of
workers they can select from. However, such lists might be immerse, so the system
needs to group workers by available tags (e.g., by country, or age), presenting
several hierarchical lists to index workers. This approach enables index workers to
quickly filter the list of workers.
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6.5.3 Query Optimization

One of the central aspects of query optimization is join ordering. Consider the following
example: “Where was this picture taken? - this query should be answered by workers
living in London”. An extremely inefficient case of evaluating such query is sending the
question to all the workers, and then filtering responses by workers living in London.
When joining descriptor and regular relations the join order is predefined, as automated
filtering is always more efficient than filtering done by a crowd. However, join ordering
for two crowd-produced relations can be highly error-prone and inefficient as the cost
of relations is not known beforehand. Contrarily to existing crowd-powered approaches,
in Crowdstore we take a different approach by assuming that a query writer can have
better insight into predicate selectivity than a crowd. CRowdPQ, as shown in Example 3
in Section 6.4.3, provides a query writer with the ability to specify join ordering by using
consume relations. If no consume relations are specified, then existing joining techniques
can be applied.

Another approach CRowdPQ provides is “denormalized” (“collaborative”) joins:
instead of asking crowd workers to work independently on two separate relations, Crowd-
store can ask workers to collaborate and produce already matched and joined results. The
benefit of “collaborative” join is that the worker produced data can be ambiguous and,
without direct contact with the data producer, difficult to match. Moreover, creative tasks
require collaboration, as shown in Example 1 in Section 6.4.3. If a single worker node in
a query is connected with a produce relation to multiple nodes, then “denormalization”
will result in sending a single HIT to a crowd worker asking to provide data for the whole
query graph. When working on “collaborative” joins, crowd workers will need to use
synchronous collaboration software.

Joining two crowd-produced relations without predefined join ordering allows two
approaches. The first approach consists of two sets of workers producing data for relations
independently and in parallel, and then a third set of workers joins the two produced
relations. The second approach is inherent to relational DBMS, i.e., data is produced for
one relation and then is used to filter in-place data for another relation.

6.5.4 Crowd Pool

In [BBMK11, BKMB12] the authors show that paying workers a small wage to stay on
call is enough to draw a crowd together two to three seconds later. The problem here is
which workers to keep on payroll based on variable query patterns, e.g., what subset of
workers satisfy most queries given the budget constraints. If a worker becomes less active,
it is better to replace the worker with another one. Basically, an efficient system needs to
maintain a limited set of useful/active workers and efficiently replace ineffective workers
with new ones. This scenario resembles problems addressed by the buffer pool manager in
traditional RDBMs, i.e., limited working set, replacement of least recently used database
pages. Henceforth, we draw here correspondence between crowd workers and database
pages: similarly as how a crowd worker can generate/provide data, a database page can
provide table records. The central part of the buffer pool manager in RDBMs is the clock
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algorithm, which evicts least-recently-used pages (LRU). The Crowd pool component
in Crowdstore similarly evicts least-recently-active (LRA) workers. The Crowdstore
adaptation of the clock algorithm, however, incorporates the following adjustments:

• Tracking slow-performing workers. The purpose of keeping a page in-memory in
RDBMs is the ability to fetch results faster. Similarly, keeping a worker on payroll
leads to the expectation of fast results. If a worker responds slower than other
payroll (and non-payroll) workers, then Crowd pool can evict such worker.

• Delayed enrollment on payroll. In RDBMs when reading records from a database
page it is necessary to fetch the page in memory (page-in). In Crowdstore, however,
there is no such restriction, i.e., even if some query required workers with a skill
set disjoint with skill sets in Crowd pool, such skill set might not be needed again.
So, apart of counting how useful is a payroll worker, Crowd pool needs to count
how useful a non-payroll worker is.

6.6 Conclusions
In this chapter we present the hybrid human-machine database Crowdstore, powered
by the graph query extension CRowdPQ. Contrarily to existing crowdsourcing query
languages, CRowdPQ can express social collaborations between crowd workers, sophis-
ticated worker discovery and complex crowdsourcing workflow patterns. Incorporation
of dataflow constructs makes CRPQs slightly less declarative, since a query writer can
directly influence execution plans. However, mispredictions in query evaluation performed
by the crowd possess considerable cost overhead, rendering explicit join ordering critical.
Crowdstore serves as a holistic design concept of a new generation crowdsourcing database,
featuring extended indexes, caches and buffer pool manager.
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CHAPTER 7
Conclusions and Future Research

In this chapter we summarize the main results of this thesis. Section 7.1 describes the
main outcomes of the conducted research with respect to advancing the state of the
art in human computation. In Section 7.2 we revisit and critically analyze the research
questions posed in Section 1.2. Finally, Section 7.3 provides future outlook on open
topics.

7.1 Summary of Contributions

In this thesis we have introduced a novel technique, called collaboration-assisted computa-
tion, which focuses on empowering human computation with social traits and collaborative
capabilities. The thesis defined what constitutes collaboration-assisted computation, and
postulated what programming models are needed to support and promote collaboration-
based computation at various phases of software engineering process. To express complex
social formations, a graph query language extension was introduced. To intuitively
capture social collaboration, a modeling approach along with a visual notation were
devised. To simplify implementation and coordination of collaborative processes, the
Statelets interpreter was implemented. To scale collaborative processes, a crowdsourcing
database Crowdstore was designed.

Evaluation of modeling and programming languages is difficult as language intuitive-
ness, expressivity and simplicity are subjective metrics. Therefore, each of the chapters
presented and discussed implementations of elaborate and comprehensive use cases. The
use cases were reflecting real-world scenarios and explicitly demonstrated the importance
of the research issues.

Figure 7.1 revisits Figure 1.2 in Section 1.2 and highlights languages and frameworks
introduced in the thesis. For the sake of simplicity, Statelets and Crowdstore were
presented in the respective chapters in isolation from other components. However, holistic
integration of all the framework components is easily achievable. For example, Statelets
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Figure 7.1: Collaboration-based computation development framework overview

can be easily extended to parse CSRPQs as part of Statelet queries, while CRowdPQ
can be easily combined with CSRPQ as both extensions rely on Conjunctive Regular
Path Queries. Similarly, Crowdstore can be integrated into Statelets framework via an
additional connector.

Synergy of CSRPQ, the modeling approach, Statelets and Crowdstore is, what we
believe, a comprehensive framework that simplifies modeling, coordination, and scaling
of social collaboration processes.

7.2 Research Questions Revised

In this section we revisit research questions posed in Section 1.2 with respect to: (i) how
they have been answered in this thesis; (ii) limitations of our contributions.

Question 1: How to express complex social formations with relaxed structure in a formal
and structured way?

In Chapter 3 we devised a CRPQ extension, called CSRPQ, that can express complex
social formations in a succinct and intuitive way. The expressivity and intuitiveness have
been demonstrated via implementation of various patterns and characteristics widely used
in social network analysis, such as: closeness centrality, connectedness, k-plex, liaison,
structural equivalence, and components (i.e., independent teams). CSRPQ defines a
notion of a group as a first-class citizen, which allows specification of not only social
structure within a team, but also inter-team social traits. The flexibility in a group
structure is achieved by connectedness constraints on a group. This approach is more
suitable than approximate graph matching for the domain of social network analysis, as
definitions for common social network patters are exact and approximating them can
produce completely irrelevant results.

While CSRPQ expressivity was studied over the most interesting patterns in social
network analysis, there exist many more patterns, such as n-clans, LS sets, lambda
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sets [BES90], which are yet to study in the context of CSRPQ expressiveness and their
applicability to collaboration-assisted computing.

Question 2: How to model collaboration-assisted computation?
Chapter 4 introduced a novel approach for modeling social collaboration as evolution

of overlay of social and document networks. The bottom-up nature of the modeling
approach provides the collaborators with flexibility on how to drive collaboration, i.e.
the approach focuses on specifying what has to be achieved rather than how to achieve
it. Integration of CSRPQ in the modeling approach allows to express complex social
context of collaborative teams.

Even though the modeling approach has the formal specification, it does not have
any serialization scheme defined to enable programming of tools that can analyze process
definitions and generate source code in execution languages, such as Statelets.

Question 3: How to simplify implementation of collaboration-assisted computation?
As per se, collaboration-assisted computation relies on collaborative and social soft-

ware. In Chapter 5 we introduced a framework that enables easy integration and
coordination of various groupware and social networking platforms. The framework
features Statelets, a coordination language capable of expressing complex synchronization
between collaborating teams.

Unlike the other languages introduced in this thesis, Statelets was designed from
scratch rather than as an extension to an existing language. For example, Statelets might
have been designed as a language integrated query (LINQ1) extension in C#, making it
easier to integrate with plethora of existing programming frameworks and libraries.

Question 4: How to scale collaboration-assisted computation?
Chapter 6 proposed a hybrid crowdsourcing database model Crowdstore that enables

synergy of crowdsourcing platforms and collaboration-assisted computation. Crowdstore
focuses on addressing requirements posed by collaboration-assisted computation, such as
worker selection based on social context, and worker coordination. Moreover, Crowdstore
proposes solutions to enable real-time collaborative work that potentially can provide
instant results.

Crowdstore relies on unconventional "push" model for task distribution among workers,
while many existing crowdsourcing platforms rely on "pull" model. This discrepancy can
complicate integration with the existing crowdsourcing platforms.

7.3 Future Work
Premise of human computation to solve problems difficult for machines is bounded by
human-machine interface. Machine components require structured input with a predefined
schema that not always can accommodate human outputs, such as free text, or drawings.
Deep neural networks is a promising approach that can bridge this gap, as it can be used
to classify human output into machine inputs with predefined structure.

1https://msdn.microsoft.com/en-us/library/bb397926.aspx
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Another interesting topic is group selection using machine learning techniques to
offload detection of successful collaboration patterns to deep neural networks, rather than
asking designers or programmers to specify the target group social traits or context.
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