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Abstract

The increasing share of renewable energy systems and decentral electricity generation

provides challenges for the energy sector mainly due to their intermittent and unpre-

dictable generation. This results in high costs to guarantee security of energy supply. Also

the current electricity market environment is problematic for the direct marketing of

decentral energy resources (DERs). By combining different DERs and operating them

together, a more stable and controllable electricity output can be achieved. The increased

controllability helps to support their market integration. The aggregation of different

decentral energy resources is often referred to as “virtual power plants”.

To quantify the added value of combining DERs into a virtual power plant, a short

term optimization model for the spot market Day-Ahead was designed. It is based on

two-stage stochastic programming and provides optimal decisions under uncertainty

considering different scenarios of stochastic processes. A risk measure is implemented

that provides the possibility to set different risk preferences. The spot market price Day-

Ahead, imbalance price and the output of the wind power plants are stochastic parameters

in the optimization model and approximated with a finite number of scenarios. The

stochastic solution is around 8 % higher compared to the deterministic solution, where

stochastic processes are expressed by their respective expected values.

Scenarios are generated via multivariate autoregressive time series analysis regarding

the influences between time series on each other. It turns out that spot market prices

and the difference between realized and predicted wind generation (wind error) have

impacts on the imbalance price. The forecast tool provides acceptable root mean squared

errors (RMSE). The imbalance price has a rather high RMSE due to its unforeseeable

nature. Therefore a conservative offer strategy penalizing deviations between contracted

and delivered energy is chosen. Via the optimization model the performance of the

participating energy units is evaluated in separate and joint operation. Thereby the added

value of forming a VPP is assessed. The virtual power plant consists of wind power plants,

combined heat and power plants and temporarily controllable loads. The joint operation

of DERs provides a better performance by creating a more stable generation output in

comparison to separate operation. Thereby imbalance costs of intermittent generation

can be reduced. The added value is in the range of 4-41 %.
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Kurzfassung

Der steigende Anteil erneuerbarer Energien und dezentraler Erzeugungsanlagen (DEA)

stellt hohe Herausforderungen an den Energiesektor. Durch volatile und schwer zu prog-

nostizierende Erzeugung fallen beträchtliche Kosten an, um Versorgungssicherheit zu

gewährleisten. Darüberhinaus ist das Marktumfeld relativ unattraktiv für die Direktver-

marktung von DEA. Durch Kombination mehrerer DEA in einen Analgenverbund kann

ein ausgewogener Betrieb erreicht werden, was die Netz- und Marktintegration von DEA

erleichtert. Dieser Anlagenverbund wird oft als “virtuelles Kraftwerk” bezeichnet.

Um den Mehrwert des gemeinsamen Bertiebs zu evaluieren, wurde ein Optimierungs-

Modell für den Day-Ahead Spot Markt erstellt. Es basiert auf stochastischer Program-

mierung und stellt ein Werkzeug für Entscheidungen unter Unsicherheit dar. Unsicher-

heit wird über verschiedene Szenarien stochastischer Eingangsdaten abgebildet. Diese

stochastischen Prozesse sind Day-Ahead Spot Preis, Erzeugung aus Windkraftwerken

und der Ausgleichsenergiepreis. Die stochastische Lösung ist um 8 % höher als die de-

terministische Lösung, bei der die stochastischen Prozesse durch ihren Erwartungswert

angenähert werden. Die Szenarien werden mittels multivariater autoregressiver Zeitrei-

henanalyse erzeugt. Damit werden die Dynamiken und Abhängigkeiten in den Zeitreihen

mitberücksichtigt. Es zeigt sich, dass sowohl der Day-Ahead Preis, als auch der Wind-

vorhersagefehler den Ausgleichspreis beeinflusst. Das Vorhersagemodell ist akzeptabel

und erstellt plausible Szenarien der stochastischen Eingangsdaten mit einem akzeptablen

mittleren quadratischen Fehler (RMSE). Es fällt auf, dass der RMSE des Ausgleichsen-

ergiepreises relativ hoch ist. Darum wurde eine eher konservative Bieter-Strategie gewählt,

die Abweichungen zwischen plazierten Marktgeboten und Erzeugung bestraft. Mit dem

Optimierungs-Modell wird der separate und gemeinsame Betrieb der DEA verglichen, um

den Mehrwert zu quantifizieren. Das virtuelle Kraftwerk besteht aus Windkraftanlagen,

Kraft-Wärme-Kopplung und steuerbaren Verbrauchern.

Der gemeinsame Betrieb der DEA in einem virtuellen Kraftwerk führt zu Synergieef-

fekten und erhöhter Steuerbarkeit. Damit können Ausgleichsenergiekosten volatiler

Erzeugungsanlagen vermieden werden. Es ergibt sich ein Mehrwert zwischen 4-41%.
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1 Introduction

1.1 Motivation
Over the last years the share of decentral generation (DG) units is constantly rising. DG is

a general term that comprises mainly small scale and geographically distributed energy

devices like volatile renewable energy systems (RES), co-generation units for a combined

heat and power supply (CHP) and small run-of-river hydro power plants (HPP), just to

name a few. In Germany and Austria especially the increasing share of RES like photo-

voltaic systems (PV) and wind power plants (WPP) has significant consequences on the

energy sector due to their volatile, weather dependent electricity production. RES are

supported by several countries in the European Union via special incentive programs like

feed-in tariffs to comply with climate and emission targets. The support schemes for RES

are time limited (around 10 - 20 years depending on the specific country) and gradually

reduced in order to make RES ready for participating in conventional electricity markets.

After a certain time (depending on the countries, Austria/Germany) RES facilities have

no privileges anymore and they are confronted with the same market situation like other

market participants, i. e. conventional power plants. One key prerequisite for electricity

markets is the match of supply and demand of electricity. Usually operation schedules

are created for the specific generation units which have to be complied with. Otherwise

compensation payments have to be paid to make good for the costs caused by those devi-

ations. Energy producers with a high share of RES are faced with many challenges when

leaving the “secure” support schemes and entering the energy market environment:1 2

• In order to participate in certain electricity markets, several criteria regarding min-

imal offer size and incremental offer changes have to be fulfilled, representing

difficulties for small scale DG units.

• Mainly due to the stochastic output of WPP and PV (because they depend on the

actual weather) there is a significant risk of not meeting bilateral contracts or trades

made on electricity markets, which could result in significant compensation pay-

ments for not delivered energy.

1Saboori, Mohammadi, and Taghe (2011), p.2
2Pandžić, Kuzle, and Capuder (2013), p.134f
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• Operators of DG often do not have the required know-how to enter those markets.

• Considerable fixed costs (like annual fees or pre-qualification of energy units) have

to be paid to gain access to energy markets.

• Many DG units are operated as stand alone units usually by different operators,

mainly providing regional energy supply, compensated by feed-in tariffs without

communicating with other units to use synergy effects for market or grid integration.

Besides energy generation units also the involvement of the demand side is a heavily

discussed topic in the energy sector. Concepts focusing on electricity customers are

typically summarized under Demand Response (DR). DR can be defined as “changes in

electric usage by end-use customers from their normal consumption patterns in response

to changes in the price of electricity over time, or to incentive payments designed to induce

lower electricity use at times of high wholesale market prices or when system reliability

is jeopardized.”3 Electricity consumers that feature an electricity consumption pattern

that can react to market signals or can be directly controlled within technical limits,

have the potential to balance supply and demand of electricity. Different DR customers

are usually managed by an aggregator that brings the DR service to market. Different

ways to integrate DG and DR into the energy system are discussed in literature. In this

context an often discussed approach is the integration of DG and DR into a “Virtual

Power Plant” (VPP). A VPP aggregates many different DG units, creates a single generation

profile similar to conventional central power plants. The joint operation of many DG

units in combination with DR and electrical storage systems in a VPP increases their

controllability and therefore grid and market integration. From market view the VPP

acts as one entity although in reality it consists of many units combined through an

adequate IT infrastructure. 4 A VPP provides the possibility to harness synergy effects and

reduce market barriers for DG. There are different ways of benefiting from the flexibility

potential of a VPP from an economic as well as technical point of view. Concerning

market issues VPPs can minimize or diversify risk and overcome market barriers. Energy

producers with a well balanced portfolio can hedge themselves against variable outputs

of RES by integrating them into a mix of conventional power plants and energy storage

systems. Costs of not meeting contracts on energy markets can therefore be reduced.

Those VPPs focusing on market integration of DG are commonly summarized under the

3http://www.ferc.gov/industries/electric/indus-act/demand-response/dem-res-adv-metering.asp, ac-
cessed on: 13.01.2016

4Pandžić, Kuzle, and Capuder (2013), p.134
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term “commercial virtual power plants” (CVPP). Usually they focus solely on the economic

part. Their typical aim is to maximize benefits from the specific generation and demand

portfolio often neglecting electrical network restrictions. The aggregated output of a CVPP

is the sum of the participating units and their cost characteristics. It can be marketed at

wholesale electricity markets, reduce imbalance costs or provide ancillary services to the

Transmission System Operator (TSO).

Besides economic issues, also technical aspects can be addressed by a VPP. Distri-

bution System operators (DSO) are often confronted with grid congestion and voltage

violations with an increasing amount of DG. In this context main challenges from DSO

view are keeping thermal and voltage limits of the grid equipment (according to EN

501605). These devices, usually located at the same geographical site, can be merged

into technical virtual power plants (TVPP) to support local grid operation. The objective

of a TVPP usually is to prevent local grid congestion and meet network restrictions of

the distribution grid. Recently, concepts combining both the advantage of CVPPs and

TVPPs, gain increasing attention. In “hybrid” concepts the VPP can schedule its units

in an economically efficient way and participate on energy markets while also taking its

impact on the distribution grid into account.6 7 A VPP offers many benefits mainly due

to the resulting flexibility in contrast to normal, isolated operation. This thesis focuses

solely on the market participation of CVPPs. The operation of a VPP on electricity markets

is usually subject to uncertain parameters due to the variability of RES and the fact that

auctions on electricity markets are usually settled in advance. So, at the time of decision

making the real market prices and RES output are not known.

1.2 Research Question
The various potential benefits of the VPP concept should be tested in a real case study

to better understand and estimate the economic value of combining different comple-

mentary DG and DR units. Therefore, a short term VPP offering model for the electricity

spot market was developed. The model aims at finding optimal offer strategies of a VPP

operator having dispatchable (controllable) as well as intermittent generation units at its

disposal. In this context the value of Distributed Generation as well as Demand Response

5http://www.beuth.de/de/norm/din-en-50160/136886057?SearchID=407805367, accessed on
13.01.2016

6Peik-Herfeh, Seifi, and Sheikh-El-Eslami (2013), p.89
7Koopmann, Nicolai, and Schnettler (2014), p.2
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and their contribution to a Virtual Power Plant is analyzed. The units are evaluated by

their performance on the spot market Day-Ahead. The market offers made, are created

with the help of an optimization model considering uncertain parameters.

1.3 Outline
The structure of the thesis is organized as follows: Section 2 deals with the fundamentals of

VPPs, the modeling of different DG and DR units and price-based control strategies. After

elaborating on the energy economic background in Section 3 the applied methodology

is discussed in Section 4. A central element of the thesis is a stochastic optimization

problem taking into account different scenarios to meet the requirements of uncertain

input factors. The scenario generation approach is based on time series analysis and

described in Section 5. Section 6 deals with the optimization model for a VPP operating

under uncertainty. For every DG and DR unit participating, operational constraints are

implemented. The optimization model is fed with a case study in Section 6.6 and the

results are shown and discussed in Section 6.7. Final conclusions are drawn and further

aspects are mentioned in Section 7.
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2 Virtual Power Plant

2.1 Definition
Generators (G) and loads (L) of different grid levels (low, middle or high voltage level)

are merged together to a Virtual Power Plant (VPP) to get a power plant comparable to

conventional ones (Figure 1). This is mainly achieved by adequate information and com-

munication technologies (ICT) that connect the different units to an energy management

system (EMS). Thereby an operator can jointly control the VPP units depending on the

chosen operation strategy like market or grid participation.

A VPP can consist of all types of energy generation, storage or flexible consumption

units. Generally there are no constraints to the installed capacity of the different VPP

units. The aim of aggregating different, technically complementary devices in a VPP, is

to obtain a better performance compared to separate operation. Thereby a VPP is more

reliable, has a higher controllability and a better ability to temporarily change the actual

power generation or consumption than the single units.8

G L

G L

High Voltage (380/220 kV)

Medium Voltage (110 kV)

Low Voltage (400 V)

VPP
(G and L)

High Voltage (380/220 kV)

Figure 1: Combining generators (G) and loads (L) of different grid levels in a Virtual Power Plant.

(Pudjianto, Ramsay, and Strbac, 2007, p.11)

8Steck (2013), p.16
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Often the concept of a VPP aims at pooling distributed generation (DG) and Demand

Response (DR) to use synergy effects. With the development of large scale wind and pho-

tovoltaic plants the term DG refers more to systems where no separate operating schedule

(dispatch) can be created because of their volatile output or low installed capacity.9 Subse-

quently the terms DG, energy storage systems and DR are summarized under Distributed

Energy Resources (DER).10 11 “A [...] VPP aggregates the capacity of many diverse DERs

[and] creates a single operating profile from a composite of the parameters characterizing

each DER.”12 This enables trading at wholesale markets and providing ancillary services

to the grid. A well balanced combination of different DERs offers synergy effects, by:

• combining different energy systems, like non controllable and controllable ones (e.

g. WPP, PV and CHP units),

• using their compensatory effect, e. g. wind power is often more abundant in winter,

while PV generates more energy in summer,

• considering geographical aspects and their possibility to even out weather effects

on DER,

• including both the producer and customer side by means of generators, energy

storage systems and flexible loads via DR,

The next sections mention important modeling issues regarding different VPP units which

are later incorporated into a VPP simulation model.

2.2 Modeling Distributed Energy Resources
The diverse energy units of a VPP can be roughly separated in different modeling groups:

• controllable power plants where an operation schedule (dispatch) can be done,

• stochastic generation units that feature an intermittent character depending on

weather effects,

• storage systems being able to charge and discharge the storage at other times,

9Steck (2013), p.16
10Saboori, Mohammadi, and Taghe (2011), p.2f
11Peik-Herfeh, Seifi, and Sheikh-El-Eslami (2013), p.88
12Pudjianto, Ramsay, and Strbac (2007), p.11
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• and flexible customer loads via DR which are significantly influenced by user specific

factors.13

Dispatchable power plants are typically driven by fossil fuels (gas,oil etc.) or biomass.

The output of these generators can basically be controlled as long as technology specific

technical constraints are met. Some devices like gas fired power plants are very flexible

in terms of load changes, start ups and shut downs. Others like coal fired power plants

are more inert, only able to react to changing operation parameters with a higher time

delay. Devices that use both the resulting heat and electricity are referred to as CHP units

which feature a high efficiency. With CHP plants there exists a direct dependency of heat

and electricity production. One output can only be produced in relation to the other. If,

for example, heat is the main aim of the co generation process, then a limit is set to the

electricity produced by a CHP. The heat and electricity dependency can be reduced by

means of a thermal storage tank.14 Thereby the production of the CHP and the electrical or

thermal load can be decoupled providing flexible operation times to react to market prices,

to provide ancilliary services and to reduce on and off switches. This is economically

more attractive, because start up costs (usually higher fuel consumption during start) and

wear of the components (higher maintenance) from many on/off steps can be avoided.15

CHP systems can be operated in different modes depending on their main objective of

use. Typically, a distinction is drawn between heat-controlled and electricity-controlled

operation. Heat-controlled operation focuses on covering the current heat demand

or providing a certain level of an attached thermal storage tank. The heat demand is

subject to hourly, daily, seasonal and yearly deviations. Additionally user specific actions

can affect the actual heat demand of room heating applications. As a result the actual

electricity output of the heat controlled CHP is hard to anticipate. In case the CHP is

electricity-controlled, the operation is determined by the electricity price and aims at

reducing electricity costs or maximizing profits while supplying the needed heat load at

the same time. This can either be achieved by selling the produced electricity on electricity

markets or by an increased self consumption. The electricity production is thus easier

controllable, but from an energy related point of view, the overall efficiency of the system

can be lower if the heat output exceeds the required demand. The use of a thermal storage

system can reduce this effect by decoupling electricity and heat.16 Over the last years,

13Morales, Conejo, Madsen, Pinson, and Zugno (2014), p.243ff
14Bollen (2011), p.53
15Bollen (2011), p.54
16Steck (2013), p.16
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micro CHP systems experienced rising interest in recent scientific works. Usually “micro”

refers to small scale CHP systems with rated electric power in the field of a few kW up to 50

kW, but the term lacks a clear definition in literature regarding accurate power capacity.17

Micro-CHPs are decentral energy generation systems near consumers and often regarded

as a vital component for a VPP.

Power plants directly depending on weather effects are assigned to stochastic gen-

eration units. Renewable energy resources (RES) typically refer to wind power plants

(WPP), photovoltaic systems (PV) and small hydro power plants (HPP). All of them have

in common that their output is weather dependent and hard to anticipate. Compared to

other renewable energy technologies WPPs have the highest share of electricity produced

by variable RES. WPPs feature an intermittent power output depending on the specific

wind speeds. Their output is therefore rather not controllable. As electricity markets are

usually cleared in advance (see Section 3) fixed operation schedules are desirable which

is a real challenge due to the volatility of wind. As a result exact forecasts are vital for

market and grid integration of RES. Altogether forecasting of electricity produced from

RES is very complex. When it comes to forecasting usually a model is fitted with historic

data and future predictions are made by applying the model on new input data. Forecasts

usually assume that processes in the future can be predicted with their past realizations by

keeping their dynamics. Figure 2 shows a histogram of Day-Ahead wind generation errors

from the transparency platform of ENTSO-E18 for Austria since the beginning of 2015

until June. The wind error is here defined as the difference between real and predicted

wind power generation. The probability for the wind error being in the interval between

-50 and +50 MW is around 22,5%. Often also higher wind errors occur, up to around 50%

of the overall installed capacity. Nonetheless forecasts are very important in scheduling

wind power plants. The challenge to market WPPs directly at wholesale markets, is to

best use their stochastic output. In this thesis, the variability of the production of WPPs is

modeled as a stochastic process (see Section 6.5.2). The forecast method here applied is

based on time series analysis and described in detail in Section 5.

17Rezania and Haas (2012), p.217
18https://transparency.entsoe.eu/generation, accessed on: 13.01.2016
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Figure 2: Histogram of wind errors for Austria from the beginning of 2015 until June. (own illustra-

tion, data obtained from https://transparency.entsoe.eu/generation, accessed on: 13.01.2016)

The last group refers to DR as an incentive for flexible consumers to change their

electricity consumption pattern. DR is regarded as an important component of a VPP.

DR influences the load pattern mainly in two ways. These are load shedding and load

shifting (Figure 3). The first refers to the act of reducing the demand by resigning from

a certain process like switching off a process that requires electrical energy. Of course

the inconvenience or value of the lost process has to be compensated. Load shifting

however enables a temporary shift of a process to another time step, either by advancing

or delaying the process. In sum the amount of shifted load equals to zero. So load shifting

poses significantly less disadvantage to the customers, the process is only shifted in time.

These two measures are generally seen as the major DR measures.19 20

19Paulus and Borggrefe (2011), p.435
20Feuerriegel and Neumann (2014), p.362
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time

energy

original consumption

Load-shed Load-shift

consumption after DR

time

price

generation renewable

Figure 3: Schematic changes of original consumption pattern of end-use customers through

Demand Response, triggered by price signal or grid issues like high feed-in of renewable energy

systems. Generally a distinction is drawn between load sheds and load shifts.

In order to use flexibility potentials of consumers and compensate the involved com-

fort loss, monetary motivations are necessary. To some extent also other factors like

avoiding black outs or contributing to the integration of RES could encourage customers

to provide DR but this is negligible. Especially in the United States of America different

DR programs were implemented to stimulate the change of the electricity consump-

tion patterns. Generally these programs are divided in time based and incentive based

programs.21

In time-based programs, the control remains with the customers who can directly

adapt their current consumption to electricity price signals. The electricity pricing can

either be static or dynamic depending on the specific program. In this kind of schemes

time dependent prices are offered to the customers motivating them to rearrange their

demand characteristics. At peak times, where electricity prices are usually high, DR

21Siano (2014), p.465
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customers could be inclined to shift their consumption to off peak times and thus saving

costs on energy bill level.22 This is of course only possible if price signals from wholesale

electricity markets are passed on to the customers. A very simple form of this program

is the already existing night tariff where electricity prices at night are lower than during

day time. But with a rising share of RES (especially wind) not only the time of the day but

rather the current residual load23 is a dominating factor for pricing processes on electricity

markets. This supports the importance of dynamic pricing schemes. The different time

based programs mainly differ in the regulation of electricity prices of the DR customers.

In time-of-use programs static prices may be imposed for every hour of the next day.

Prices can be set days, weeks or years in advance. Other schemes like critical peak pricing

consider the state of the grid /market and adapt prices according to the current situation

/ prices. Normally these programs are only applied during peak times or grid congestion.

With an increasing proximity to the market, in real time pricing schemes, Day-Ahead

prices are directly forwarded to the customers.

In incentive based programs however, participants are willing to surrender the control

of selected processes / electric devices to some extent to the DR operator who in return

remunerates that flexibility. Devices for heating, ventilation and air conditioning are

often used for this kind of DR programs. The operator of incentive based programs can

send mandatory or voluntary DR requests to the customers depending on the applied

program. Both technical factors like grid congestion and temperature levels of vital grid

components or economic factors like price signals may trigger DR requests. Direct load

control grants complete control of the customers devices to the DR operator. Within

interruptible/curtailable load programs certain DR limits are contractually agreed, like

maximum of DR activities in a year. On the other hand, in emergency demand response

programs customers can voluntarily adapt their consumption pattern to emergency

requests when stable grid operation is jeopardized. Capacity market programs offer the

possibility to customers to make demand reduction offers to the market.24 25 26 The above

described characteristics have certain implications for aggregators. The most important

factor is, if the request sent by the aggregator is compulsory or not. Under direct load

control and interruptible/curtailable load programs the DR potential of the different

22Vardakas, Zorba, and Verikoukis (2014), p.1
23residual load is defined as the current electrical demand minus the feed-in of photovoltaic systems and

wind power plants
24Shariatzadeh, Mandal, and Srivastava (2015), p.344
25Palensky and Dietrich (2011), p.382
26Arasteh, Parsa Moghaddam, Sheikh-El-Eslami, and Abdollahi (2013), p.153f
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customers can be very well evaluated because the consumption of electrical devices

can be directly controlled by the DR operator. In time based programs the response of

the demand depends on the price elasticity of customers and also stochastic factors. In

this thesis DR is incorporated via direct load control described in Section 6.5.4. Besides

modeling the different VPP units, also their control is an important component of a VPP.

2.3 Price-based Control and Bidding Strate-
gies

The pooling of many electrical generation and consumption devices in a VPP needs

considerable information and communication technologies ICT. An EMS acts as a higher

level control to dispatch the VPP portfolio depending on the chosen operation strategy

like maximizing profits at electricity markets or supporting the grid. The units must be

connected to the EMS, to guarantee the optimized use of each DER.27 28 The basis for

that is an adequate infrastructure in order to measure and process all relevant data and

sending requests to the corresponding devices.

The price-based control strategy uses market mechanisms to dispatch the different

units of the VPP in an optimal way. Usually market signals have to be forecasted for

the next trading period. The signals are processed by the VPP control which returns an

operation schedule based on the marginal operating costs of the single VPP units. The

marginal costs express the costs of increasing the output of an energy resource by one

output unit. Under the assumptions of a competitive market environment the dominant

strategy is to bid its marginal costs. Over the time market signals generally become more

deterministic due to better forecasts of important factors like prices and RES feed-in.

Between forecasted and real values there is most likely some kind of deviation. Therefore

the operation schedule has to be updated over time until a defined tolerable deviation

is reached or a defined number of iterations is executed. The marginal costs depend on

the type of the DER and can change over time. This is illustrated in Figure 4. For some

devices the marginal costs are clear to determine like fuel based electricity generators

and RES. Regarding fuel based devices like diesel and gas generators the marginal costs

are a function of the fuel price, whereas RES typically feature low marginal costs only

depending on maintenance costs therefore producing at any positive market price. Other

27Palensky and Dietrich (2011), p.385
28Saboori, Mohammadi, and Taghe (2011), p.2



2.3 Price-based Control and Bidding Strategies 15

DER like electric energy storage systems charge energy at one time at a given price level

and discharge it at another profiting from price spreads. In this case they are on the

other end of the bidding spectrum. Their bidding strategy is fully price history based and

therefore highly depend on the market context the VPP is operating in. Devices like CHP

systems which also provide district heating services are positioned somewhere between

the extreme cases of the bidding spectrum. A factor influencing the marginal costs of

CHP are so called must run criteria, e. g. when heat has to be delivered, then the CHP is

obliged to run and the costs associated to it are low. Another factor is an optional heat

buffer which reduces the interdependency between heat and electricity. Depending on

the storage level it can be economically more or less attractive to run the CHP. When the

CHP produces excess heat that can not be used otherwise than the economic efficiency

declines. Systems that directly use electric energy for heating and cooling (like heat pumps

etc.) should be operated at lowest cost while satisfying a required comfort level of the user

at the same time for example by shifting heating / cooling requests to low price periods.

This fact assigns them to price history based bidding strategies.29 30

Inside the VPP every unit is associated with specific marginal costs depending on the

position within the bidding spectrum. As a rule, the VPP unit providing the requested

service with the lowest costs, is selected. Therefore the costs of the DER are ranked

from low to high marginal costs. A price-based control algorithm is later applied in the

optimization model described in Section 6. The corresponding market framework is

described in the next section.

Figure 4: Bidding spectrum of different DER, marginal cost based and price history based ap-

proaches (Kok, 2009, p.1)

29Ruthe, Rehtanz, and Lehnhoff (2012), p.2
30Kok (2009), p.1
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3 Market Framework

A significant amount of electricity is traded on energy-only markets like the European

Energy Exchange (EEX). For generators like thermal power plants, large combined heat

and power plants or nuclear facilities an operation schedule can be prepared. Electric

delivery contracts for those units can be made with a long lead time. Also large consumer

(industries) can often predict their demand very well in advance. Volatile units however

like RES feature an improved predictability with shorter lead time to contract fulfillment.

For those units markets near to real time are more favorable when their output can

be forecasted more accurately. Therefore markets with different time spans between

settlement and contract fulfillment exist. “Futures” offer long term contracts which are

especially interesting for participants with a rather deterministic operation schedule by

providing planning security. “Day-Ahead” markets on the other hand have a shorter lead

time where prices are determined for every time step of the next day. Market participants

can place offers until 12:00 pm about their generation or consumption for every hour

of the next day (00:00 to 24:00). After market closing, the generation offers are sorted

beginning with the cheapest offer and accumulated until they match the demand for

electricity sorted beginning with the highest prices for every hour of the day. This is called

Merit Order. Usually the offers correspond to the marginal costs of power plants. The

intersection between the demand and supply curve represents the market equilibrium

and results in the market clearing price (MCP). The MCP constitutes the costs of the

marginal power plant necessary to fulfill the demand request. Offers lower or equal to the

MCP get acceptance and have to fulfill the contracts made. All participants are rewarded

with the MCP. The lower the marginal costs of a power plant compared to the MCP, the

higher is the profit margin for the respective electricity producer. The pricing mechanism

at the Day-Ahead market is illustrated in Figure 5.
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Figure 5: Pricing mechanism of Day-Ahead market

Approximately half of the market share is traded on the Day-Ahead market. Single

contract orders (for every hour) as well as block orders (for different time blocks) can

be submitted. Typically the flexibility of the demand side is lower than the one of the

supply side. RES feed-in often does not match the predicted amount and also outages

of conventional power plants are not uncommon. Deviations thereby occurred can be

settled in the “Intraday” market. Here contracts are made up to 45 min before contract

delivery and offers at hourly or 15 min basis are possible. Deviations of RES feed-in

can be better compensated with shorter lead time by incorporating actual weather data

about wind and solar irradiation. The Intraday market is continuous and contracts are

remunerated precisely by the price made in the offer. This is called “pay as bid”. Every

participant can make offers into the market with a certain price and other participants

can accept or decline that offer. These deals can be used to compensate short term

deviation of the planned schedule either of the demand or the supply side. Apart from

standardized trades on the EEX, contracts can also be settled directly between two entities.

These are called “over the counter” markets and principally offer planning security with

typically long lead times similar to Futures. The advantage of Future markets primarily

lies in its standardized way, transparency and comfort in contract settlement. Every agent

trading on energy-only markets is obliged to adhere to the offers made and is assigned to

a balancing responsible party (BRP). In case a BRP can not meet its schedules, despite the

possibilities on the Day-Ahead and Intraday market, imbalance costs have to be paid to
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the balancing group coordinator.31 32

The described sequential bidding process is illustrated in Figure 6. Day-Ahead (D −1)

offers can be made until 12 pm. Following the above described principle the MCP is

evaluated and announced to the market. At 15 pm the Intraday market is open and offers

are possible until 45 min before contract fulfillment. On the actual delivery day (D ) the

contracts have to be fulfilled or deviations from schedule are optionally settled in the

imbalance settlement market.

0 2412

Gate Closure Time
all offers submitted

Day Ahead (D-1)

0 2412

Prices announced
to market

Intraday market
until 45 min before delivery

Delivery day (D)

t

Contract fulfillment
optional imbalance settlement

15

Figure 6: Bidding process on Day-Ahead markets

An electricity trader on the energy-only market usually tries to make realistic forecasts

for different market prices based on the actual predictions of the power plant portfolio.

Deviations in schedules and actually measured load and generation profiles have to be

compensated with imbalance energy. The costs for imbalance energy are supervised by

the Balancing Group Coordinators and have to be paid by the specific member of the

Balancing Group causing the deviation. On the generation side, deviations are mainly

caused by weather influences which especially affect the output of RES and CHP. Regarding

the consumption side also weather factors or user specific behavior can result in deviations

from schedules.

Apart from energy-only markets, there are also markets to incentivize ancillary services

to the grid. Those markets reward the reservation of a defined power-capacity in order to

31E-Control (2013), p.7ff
32von Roon, Hinterstocker, and Eberl (2014), p.2ff
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react to short-term deviations. Generation and consumption of electrical power have to

be in balance at every moment. To guarantee that enough compensation energy can be

provided, Transmission Service Operators (TSOs) tender auctions of positive as well as

negative balancing power. If generation exceeds the demand, negative balancing power

is necessary to bring the system back in balance. This can be achieved by decreasing the

generation or increasing the demand. If on the other hand demand exceeds generation

than positive balancing power must be provided. In this case increasing the generation or

reducing the demand again results in a stable operation of the electric infrastructure. In

Austria this is supervised by the Austrian Power Grid (APG). Partaking units have to be pre-

qualified to ensure their suitability for providing this service. Three different balancing

products are tendered with well defined areas of responsibility. Their main objective is to

provide frequency stability around the set point of 50 Hz by evening out differences in

generation and demand. The costs for reserve calls - in consequence of uneven operation

schedules - have to be paid by the specific BRP. The allocation of the resulting costs to

the specific BRP is handled in the imbalance clearing process and later described in the

optimization model in Section 6.33

As the VPP portfolio consists of DG and DR, Futures markets are not considered due

to the long lead time and their requirement for rather high predictability. Although the

balancing market provides interesting possibilities for VPPs especially the volatility of

RES is problematic. The focus of the thesis lies on the spot market Day-Ahead because

the majority of electricity is traded here.

33von Roon, Hinterstocker, and Eberl (2014), p.5f
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4 Methodology to Model Uncertainty

To answer the research question an optimization model was designed. Special attention

is given to the uncertainties in electricity markets. For a VPP operating in a market

framework similar to that described in Section 3, several sources of uncertainty exist, like:

• power plant or equipment outages,

• power output of non dispatchable energy resources like RES,

• uncertainties of actual market prices: for the spot market Day-Ahead, Intraday and

imbalance settlement prices or balancing market prices,

• and electrical energy demand of consumers.

Of the above mentioned uncertainties, the output of RES (especially wind) and market

prices are further taken into account. The applied methodology is schematically shown

in Figure 7. It consists of a scenario generation model that provides possible realizations

of the uncertain data and a subsequent optimization model that optimally schedules the

VPP on the spot market considering different realizations of uncertain parameters.

uncertain parameters

considering all scenarios
Optimal decisionMultivariate Time

Stochastic Optimization

Scenarios Generation

Forecast Model

Generation of

Optimization Model

Series Analysis

Risk measure

Figure 7: Principle of modeling approach for a Virtual Power Plant operating on electricity markets

under uncertainty. First different scenarios of uncertain parameters are generated and then used

as input for the optimization model, considering different scenarios and a risk measure.
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Uncertain parameters are modeled as discrete stochastic processes λ spanning over

a certain time horizon λ= {λt , t = 1, 2, ..., NT }, whereas λt is considered the state of the

stochastic process at time t of the set T . A discrete stochastic processλ can be formulated

with a sufficient amount of vectors λs , in the form of λ= {λs , s = 1, 2, ..., NS}, in which s

denotes the scenario index and NS the number of scenarios of the set S . Every realization

of λs is assigned with a probability πs so that:34

NS
∑

s=1

πs = 1 (4.1)

The expression λs ,t refers to the state of the stochastic process in scenario s at time t .

In this thesis Day-Ahead spot price λda
s , wind generation of WPPs P res

s and imbalance price

λimb
s are considered as stochastic processes. A scenario spans over the time horizon of

the offering day D , for which an optimized schedule is to be computed, in discrete time

steps of 15 minutes. Relevant market data is also published in this resolution. Therefore

every scenario s has a length of NT = 24x 4= 96 time steps. Exemplary this is shown for

the Day-Ahead spot price λda
s for a number of NS = 10 scenarios:

λda
1 = (λ

da
1,1,λda

1,2, ...,λda
1,96), with π1

λda
2 = (λ

da
2,1,λda

2,2, ...,λda
2,96), with π2

...

λda
10 = (λ

da
10,1,λda

10,2, ...,λda
10,96), with π10

π1+π2+ ...+π10 = 1

Time series of the uncertain parameters are used as information set for scenario

generation. The time series range to the specific offering day D , for which an optimized

schedule is computed. This guarantees, that only relevant information up to the time

of decision making, is used as input. The scenario generation model is based on vector

autoregressive models taking into account possible influences of uncertain parameters

on each other (Section 5). Every scenario s , consists of a specific combination of possible

realizations of uncertain parameters
�

λda
s ,t , P res

s ,t ,λimb
s ,t

	

, ∀t = 1, 2, ..., NT . It is supposed, that

34Conejo, Carrión, and Morales (2010), p.29
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the so obtained scenario tree, sufficiently describes the involved uncertain parameters.

This is clarified in Figure 8.

�

λda
1,t , P res

1,t ,λimb
1,t

	

,∀t = 1, ..., NT

π1

π2

πs

�

λda
2,t , P res

2,t ,λimb
2,t

	

,∀t = 1, ..., NT

�

λda
s ,t , P res

s ,t ,λimb
s ,t

	

,∀t = 1, ..., NT

Figure 8: Scenario tree considering different outcomes of the stochastic processes with corre-

sponding probability.

The subsequent optimization model is based on stochastic optimization and provides

an optimal solution for the offering day D regarding all input scenarios s of uncertain

parameters. It generates reasonable operation schedules of the considered DER for the

spot market Day-Ahead. The expected profit so obtained is used to evaluate the VPP and

its components (Section 6). The generation of multiple scenarios aims at better tackling

the involved uncertainty in contrast to a deterministic approach with only one possible

outcome. To sum up, the implemented short-term dispatch tool executes the following

steps for a specific offering day D :

• At first uncertain parameters are approximated by an adequate number of NS scenar-

ios. Scenarios, spanning over the offering day D with NT time steps, are generated

using time series analysis. The time series used, do not include the offering day

D to account for the fact, that only information available at D −1 can be used for

scenario generation of the random variables on day D . Scenario generation is based

on vector autoregressive models and described in detail in Section 5. The scenarios

are organized correspondingly, as shown in Figure 8.
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• After that, the scenarios, assumed to sufficiently describe uncertain parameters, are

fed into the optimization model (Section 6). The optimization model is based on

stochastic programming and computes optimal market offers for a VPP considering

all NS scenarios over all NT time steps of the offering day D . Additionally a risk

measure is implemented as a tool to manage the trade-off between expected profit

and risk.
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5 Scenario Generation Model

This section describes the applied method to consider the characteristics of the volatile

stochastic processes involved. Figure 9 shows the history of wind generation error from

WPPs, spot market price and imbalance settlement price from beginning of 2015 until

mid of June in a granularity of 15 minutes respectively, which are openly available.35 36 37

It can be seen that all time series are subject to volatility. Whereas the spot market price

features a more regular cyclic pattern with occasional peaks over the considered time,

the wind error and imbalance price are highly volatile. Both the occurrence as well as the

amplitude of the peaks are noteworthy. Although wind forecasts are improving there are

still considerable errors between real and predicted wind generation (see Figure 2). As

the concept of reserve power and imbalance settlement is to even out unforeseen events,

also the imbalance price is very volatile ranging from 500 to -500 Eur/MWh. All statistical

models were implemented with the Python package statsmodels.

35http://www.exaa.at/de, accessed on: 13.01.2016
36https://www.transparency.entsoe.eu, accessed on: 13.01.2016
37http://www.apcs.at, accessed on: 13.01.2016
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(a) EXAA spot market price data

(b) ENTSO-E wind error data

(c) APCS imbalance clearing price data

Figure 9: Time series of spot market price Day-Ahead, wind error for Austria and imbalance price

used as input for the vector autoregressive model to simulate scenarios uncertain parameters for

the next day.
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5.1 Vector Autoregressive Model
The quality of the optimization results performed in Section 6 highly depends on the input

data of deterministic and stochastic variables. Especially stochastic processes should

be described and predicted with sufficient accuracy. This section presents the method

to simulate different scenarios of the uncertain parameters in the optimization model.

Historical data of the random variables exist as equidistant, discrete time series in a gran-

ularity of 15 minutes. By means of vector autoregressive (VAR) models, scenarios of the

random input variables of the optimization problem are generated. VAR models assume

that future realizations of stochastic processes involved can be adequately modeled by

their past values and their influence on each other. The advantage of this method is

that the dynamic behavior of different stochastic processes can be simultaneously ana-

lyzed. Other studies use autoregressive (integrated) moving average (AR(I)MA) methods

either assuming no correlation between the involved stochastic processes or modeling

the dependency with cross correlation.38 For this thesis the VAR approach was chosen

because a correlation between the random variables wind generation, spot price and

imbalance market price is assumed. A stationary, finite order VAR(p ) model with a set of i

endogenous time series over the period t = {1, ..., T } expressed by y t =
�

y1,t , y2,t , ..., yi ,t

�T
,

is usually formulated as

y t = A1y t−1+ A2y t−2+ ...+ Ap y t−p +ut (5.1)

where Ap is a i × i matrix of the lagged terms describing the effect of past realizations

on future realizations of y t . The vector of the error term ut is regarded as Gaussian white

noise with constant variance, expressed as u t ∼N (0,Σu ).39 40

5.2 Fitting Model
The use of (5.1) requires the stochastic process y t to be stationary. The process y t is

stationary, if all eigenvalues z of Ap have modulus |z | less than 1, so that:41

38Conejo, Carrión, and Morales (2010), p.68ff
39Schröder (2012), p.185
40Lütkepohl (2005), p.13
41Lütkepohl (2005), p.25
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det(I i − A1z − ...− Ap z p ) 6= 0 for |z | ≤ 1, (5.2)

where det stands for the determinant and I i for the i x i unity matrix. If (5.2) holds, then

the reverse characteristic polynomial of (5.1) has no roots in and on the complex unit

circle.42 To test if the involved stochastic processes are stationary, Augmented Dickey-

Fuller test were carried out on the single time series forming the VAR(p) model. If a

stochastic process has a unit root, then 1 is a root of its characteristic polynomial rendering

the process non-stationary. The Null-hypothesis H0 of the Augmented Dickey-Fuller test

is that there is a unit root in a specific time series sample. If H0 can be rejected then

the process is stationary at some confidence interval.43 The results of the Augmented

Dickey-Fuller tests are shown in Appendix 8.1. For all considered time series, H0 can

be rejected with the significance level of 1%. Therefore it is assumed that the involved

stochastic processes are stationary.

The order of p is obtained via Akaike Information Criterion to settle the tradeoff

between over fitting the data and finding sufficient lagged terms representing the model

characteristics.44 Models were fitted with training data sets varying in length, to get an

idea about the sensitivity of the model to the input data. Appendix 8.2 shows the results

of the model fit up to the order of four. The standard error of the estimated spot price

lagged terms especially in the equation for wind error and imbalance price is noteworthy.

With longer training data sets however the standard error is declining.

Additionally also a structural analysis was performed with Granger-causality test,

Impulse Response Function and Forecast Error Variance Decomposition are used, provided

by the python-package statsmodels. Granger-causality describes the dynamic interaction

of endogenous variables and their value for predicting each other. If y1 is not Granger-

causal for y2 than there is no influence of the lagged terms of y1 on the actual value of

y2 which is not settled by the lagged terms of y2 itself. In case this hypothesis can be

rejected y1 has a significant effect on y2.45 Appendix 8.3 summarizes the results of the

Granger-causality tests. It shows that the spot market price as well as the wind error is

Granger-causal for the realization of the imbalance price which supports the use of a

VAR model (the H0 hypothesis was rejected in all cases) in contrast to one dimensional

models. An Impulse Response Function on the other hand analyzes the reaction of one

42Lütkepohl (2005), p.16
43Hamilton (1994), p.501f
44Schröder (2012), p.99ff
45Schröder (2012), p.185ff
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variable to sudden shocks in other variables. The shocks can be of magnitude one or

in case of different scales of the time series, one unit of standard deviation. Impulse

Response Functions provide insights of the reaction of one variable to sudden shocks

in other variables potentially affecting it.46 Section 8.4 shows the impulse response of

the used time series. Sudden shocks in the wind error time series are strongly affecting

imbalance prices. Regarding the spot market, the influence on the imbalance price is

rather low, with the confidence intervals being not significantly different from zero. At

last the aim of Forecast Error Variance Decomposition is to trace the uncertainty of one

variable to the variance of all variables.47 The input data suggests that the imbalance price

is especially influenced by the wind error (Section 8.5), which is in line with the above

mentioned tests.

5.3 Scenario Generation
In this thesis, scenarios are considered as plausible outcomes of uncertain parameters in

the future. Aim of scenario generation is to provide plausible input data for the subsequent

optimization model (Section 6). The following steps are executed to generate NS scenarios

spanning over a certain number of time steps NT .

• Step 1: For a certain offering day D , time series of uncertain parameters are used to

fit a VAR(p) model. Only time series data before the beginning of day D is used as

input, to account for the fact that only data available at the moment of making an

offer, can be used.

• Step 2: Initialize scenario counter: s ← 0.

• Step 3: Update scenario counter: s ← s +1, initialize time period counter t ← 0.

• Step 4: Update time period counter t ← t +1.

• Step 5: Randomly sample u t ∼N (0,Σu ).

• Step 6: Evaluate (5.1) to get y s ,t .

• Step 7: New VAR(p) model is fitted including the previously generated y s ,t .

46Schröder (2012), p.185ff
47Schröder (2012), p.185ff
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• Step 8: If t < NT jump back to Step 4, else continue with Step 9 (Here NT = 96

representing one offering day D in 15 minutes granularity).

• Step 9: If s <NS jump back to Step 3, else the desired amount of scenarios is gener-

ated over a certain time horizon and scenario generation is completed.

The generated scenarios are all assigned with the same probability πs =
1

NS
. The method-

ology of scenario generation is based on Conejo, Carrión, and Morales (2010), with the

difference that vector autoregressive models are used and fitted again for every newly

generated y s ,t .

The above described methodology generates scenarios of wind error, spot and im-

balance prices. To get different scenarios for the electrical wind output, the Austrian

day-ahead wind generation forecasts P forecast
t of the ENTSO-E48 are superimposed with

the obtained values of the wind generation error from the VAR model, referred to as εs ,t .

The scenarios for the wind power output P real
s ,t are obtained by:

P real
s ,t = P forecast

t + εs ,t (5.3)

These resemble the basis for the uncertain wind output. After that the wind output

is scaled to the installed capacity of WPPs participating in the VPP. The resulting wind

output scenarios P res
s ,t are based on the assumptions, that the geographic dispersion of

participating WPPs is sufficient enough to use ENTSO-E forecasting data for the wind

production of the whole of Austria for the next day, scaled by the ratio of the installed

capacity of the WPPs inside the VPP P vpp compared to the installed capacity in Austria

P total:

P res
s ,t = P real

s ,t ·
P vpp

P total
(5.4)

5.4 Results
The model provides ex post and out of sample forecasts. The time series were separated

into training data to fit the model coefficients and test data to analyze the quality of

the VAR model. One way to determine the accuracy of the VAR model is the root mean

squared error (RMSE) of predicted y pred
t and observed values y real

t (5.5) over the forecast

horizon (the next day). Forecasts of the stochastic processes y pred
t are obtained by linear

48https://www.transparency.entsoe.eu, accessed on: 13.01.2016
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minimum mean squared error predictor. The forecast horizon is one time step. Forecast

are done for every time step of the offering day.49 50 51

RMSE=

√

√

√ 1

NT
·

NT
∑

t=1

�

y real
t − y pred

t

�2
(5.5)

The output of the VAR model and the scenario generation process is exemplarily presented

for a summer day (15.06.2015). The predicted spot market price features a RMSE of 7

Euro/MWh. The RMSE of the generated imbalance price is 56 Euro/MWh which is rather

high. Because of the limited predictability of imbalance prices, a conservative bidding

strategy avoiding deviations is chosen in the optimization model (see Section 6). The

RMSE of the wind error is quite substantial with 336 MW. As the resulting wind scenarios

are obtained by superimposing the ENTSO-E forecast with the wind error of the VAR

model and afterwards scaled to the size of installed power in the VPP, the high RMSE of

wind error has not such a severe effect.

Based on the VAR model, scenarios are generated by the process described in 5.3.

Figure 10 shows the scenarios generated by the VAR model in a fan chart and the real

value of the respective stochastic processes (black line). Time series data before 0:00 are

used for training data. The scenarios start at the time 0:00 and span over one day until

24:00. Darker areas of the fan chart suggest scenario realizations with a higher probability

of occurrence.

The scenarios of the spot market price cover the values of the observed realization

whereas the darker areas follow the behavior of the real values (Figure 10a). Figure 10b

shows the scenarios for the wind output. The scenario generation model profits from

the sophisticated ENTSO-E forecast tool, which is then superimposed by historic wind

error data from the VAR model. Except for two peaks around 13:00 and 17:00 the wind

scenarios approximate the real trend relatively well. Imbalance settlement prices are

volatile and therefore hard to predict. This can be observed in Figure 10c where the real

imbalance price level ranges between 200 and -100 Euro/MWh. The scenarios generated

cover more or less the true realization of the stochastic process but a clear trend can not

readily be observed.

The performance of the subsequent optimization model highly depends on the in-

put data. Therefore the scenarios fed into the optimization model should sufficiently

49Crespo Cuaresma, Hlouskova, Kossmeier, and Obersteiner (2004), p.98
50Conejo, Contreras, Espínola, and Plazas (2005), p.447
51Lütkepohl (2005), p.35f
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resemble observed realizations of the uncertain values. Furthermore applied scenario

generation models should be continually improved and validated. Of course, additional

input variables like the electrical demand may improve the RMSE obtained by the VAR

model. Also other information criteria for the lag order p might be more appropriate.

The scenario generation model here applied, provides reasonable scenarios to feed the

optimization model.
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(a) Spot market price

(b) Wind output

(c) Imbalance price

Figure 10: Fan chart of the scenarios generated with the VAR model and the real realization of

the stochastic process (black). Dark areas of the fan chart suggest scenario outcomes that appear

more frequently considering all scenario outcomes.
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6 Optimization Model

Various optimization approaches exist to get an optimal schedule for energy resources.

Generally it can be distinguished between: single optimization of all resources, game the-

ory and agent based approaches. Single optimization strategies focus on modeling every

participating unit of a single market player. Game theory and agent based models in con-

trast take the interactions of different players in the energy sector into account.52 For this

paper only the actions of the VPP operator are considered, therefore single optimization

techniques are applied. These include methods like linear programming, mixed-integer

programming, stochastic programming or non-linear programming. While linear pro-

gramming features the lowest computational burden, discrete variables like integer or

binary variables can not be implemented. These are often used to model on/off states

and other discrete events and solved with mixed-integer and non-linear programs. Of-

ten a more realistic model also considering discrete values comes with the drawback of

higher computing times. Coefficients in the model can be deterministic or stochastic.

Uncertainty in decision making can be considered by applying stochastic programming.

The following paragraphs describe the implemented stochastic optimization problem.

The first part deals with mathematical fundamentals, after that the model for optimal

program planning of a VPP is described. The aim of the model is to generate for every time

step optimal bidding offers at the spot market Day-Ahead under uncertainty while also

regarding imbalance costs. Different DERs are modeled to evaluate their contribution to

a VPP like RES, CHP and DR. The simulation model was developed with the programming

language Python. The problem is formulated with the package Pyomo and solved with

Gurobi.

6.1 Stochastic Programming
6.1.1 Fundamentals

Deterministic models assume that all input data can be deterministically described. In

reality, processes like price developments on electricity markets, demand of customers

52Li, Shi, and Qu (2011), p.4689ff
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or the feed-in of RES can not be deterministically predicted. To make decisions under

incomplete information, stochastic optimization procedures can be applied. Usually

recursive stochastic optimization programs are modeled with stages describing points

in time where decisions have to be made and / or information about the states of the

system unfolds. One application of stochastic optimization are two stage problems where

decisions have to be made before the outcome of a stochastic process λ is clear. The

choice x has to be made before realization of λ, while y is computed afterward. Thus

y s depends on the chosen value for x and the realization of the stochastic parameter λs

in the respective scenario s . The variable x is referred to as first stage (or here and now)

variables for which decisions have to be made before the outcome of a stochastic process

is known and so do not depend on the stochastic process. y s describes a second stage

(or wait and see) variable that is determined after the outcome of a stochastic process is

known. In case uncertain parameters have a continuous joint distribution the problem

is non-linear and in general not a trivial problem. This can result in long computing

times which are unfavorable in electricity trading where decisions have often to be made

on short notice because of the dynamic market framework. Assuming a joint discrete

distribution of the random variables described by a finite set of scenarios, stochastic

problems can be expressed by their deterministic equivalent and efficiently solved.53

Throughout this thesis stochastic programs are expressed by their deterministic equiv-

alent. Equations (6.1) - (6.4) describe a maximization problem whereas c T , b , q T
s , h s , B ,

T s , W s are known coefficient vectors and matrices of appropriate size, representing the

input parameters for the optimization problem. The uncertainty in problem (6.1) - (6.4)

is assumed to be adequately described by a set of scenarios S and its specific realization s .

The future realizations of uncertain variables in the objective function are determined by

the sum of their realizations over all scenarios, weighted by their respective probability

of occurrence πs .54 55 After a supposedly optimal first-stage choice for x is made, the

optimal second-stage choice for y s is an optimization problem where uncertain data is

revealed. If a decision for x results in a violation of T s ·x = h s in (6.3), the term W s · y s

guarantees that expression (6.3) is met, coupling x and y s for every scenario s . This

however results in costs q T
s · y s considered in the objective function (6.1).

maxx ,y s
c T ·x +

∑

s∈S

πs ·q T
s · y s (6.1)

53Kall and Mayer (2011), p.4
54Morales, Conejo, Madsen, Pinson, and Zugno (2014), p.369ff
55Conejo, Carrión, and Morales (2010), p.34ff



6.1 Stochastic Programming 35

subject to

B ·x =b (6.2)

T s ·x +W s · y s = h s ∀s ∈ S (6.3)

x ∈ X , y s ∈ Y ,∀s ∈ S (6.4)

Stochastic problems can be graphically described with a scenario tree (Figure 11).

It consists of nodes and branches. Nodes describe states where decisions have to be

made and/or uncertain parameters become known. Branches connect different nodes

spanning trajectories of different scenario outcomes. A stochastic optimization problem

can consist of various nodes. For every stage in a decision process another node can be

introduced. The end of each scenario trajectory is referred to as leaves.

Figure 11: Scenario tree of three-stage stochastic programming problem (Conejo, Carrión, and

Morales, 2010, S.35)

Stochastic programming is a common tool to model uncertainties in electricity mar-
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kets and find optimal offering strategies for VPPs.56 57 58 59 60 Consider the market

framework described in Section 3. Before gate closure time offers to the Day-Ahead mar-

ket have to be done. These offers can be regarded as here and now (first stage) decisions

where market prices as well as intermittent generation from RES are unknown. Once a

offer is made, it has consequences on the overall performance depending on the possible

outcomes of the involved stochastic processes. If e. g. the output of variable RES differs

from its expected value, imbalance energy is due. In the context of stochastic optimization

those deviations can be regarded as wait and see (second stage) variables. The above

described methodology guarantees that optimal offers at electricity spot markets are

made taking into account all possible realizations of the stochastic processes with their

respective probability.

6.1.2 Mean-Risk Analysis

The above described stochastic model optimizes an objective function, e. g. the expected

profit, under different scenarios consisting of favorable as well as unfavorable realizations

of random variables. Risk management techniques provide the possibility to evaluate the

outcomes of a stochastic process to prevent high probabilities of unfavorable objective

values. There are different frameworks to handle risk, like the expected utility approach,

stochastic dominance or mean-risk analysis.61 In this thesis, the mean-risk approach

is chosen. The idea is, that “a decision under uncertainties may be evaluated in terms

of tradeoff between its risk and reward”.62 Consider a function f (x , s ) that characterizes

a certain profit in scenario s . The idea is to include a risk functional rs

�

f (x , s )s
	

that

assigns to every profit f (x , s ) a real number representing the risk attached to that profit.

According to the mean-risk analysis, a weighted combination of expected profit and risk

is used as objective function.63 64 65

56Pandžić, Kuzle, and Capuder (2013), p.141-143
57Pollok, Sowa, Koopmann, Raths, Elstermann, and Schnettler (2012), p.1-4
58Pandžić, Morales, Conejo, and Kuzle (2013), p.282-292
59Conejo, Carrión, and Morales (2010), p.27ff
60Morales, Conejo, Madsen, Pinson, and Zugno (2014), p.243ff
61Krokhmal, Zabarankin, and Uryasev (2011), p.52
62Krokhmal, Zabarankin, and Uryasev (2011), p.52
63Conejo, Carrión, and Morales (2010), p.127
64Morales, Conejo, Madsen, Pinson, and Zugno (2014), p.376
65Ogryczak and Ruszczynski (1999), p.37
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max E
�

f (x , s )
	

−β · rs

�

f (x , s )
	

(6.5)

whereE{.} is the expectation operator and β ∈ [0,∞) a risk weighing factor, represent-

ing the tradeoff between expected profit and risk. For the risk weighing factor β usually

a value between 3 and 5 is applied, depending on the specific market environment. All

feasible solutions of the process under consideration, feature different combinations of

expected profit and risk attached to it. “An efficient point is a pair expected profit/risk in

such a way that it is impossible to find a set of decision variables yielding simultaneously

greater expected profit and lower risk”.66 Efficient points are elements of an efficient fron-

tier. The efficient points dominate all other solutions to the right of the efficient frontier in

the risk / expected profit image space. A risk averse decision maker would therefore never

settle for solutions to the right of the efficient frontier. Points on the efficient frontier do

not dominate any other points on the frontier. Which solution on the efficient frontier to

choose depends on the risk preference of the specific decision maker.67

The expressions (6.5) and (6.6) are equivalent in the sense that they generate the same

efficient points.68 The benefit of formulation (6.6) is that the modified risk weighting factor

β̂ is an element of the defined interval [0,1]making parameter variations more intuitive.

The modified risk weighting factor can be estimated by β̂ =
β

β +1
. This formulation is

later used to include risk in the optimization problem (see Section 6.4):

max (1− β̂ ) ·E
�

f (x , s )s
	

− β̂ · rs

�

f (x , s )s
	

(6.6)

As a risk measure, the conditional value at risk is applied (Section 6.4). It is consid-

ered suitable, because it is a coherent risk measure69 that can be integrated into the

optimization problem as a linear program.

6.2 Modeling Assumptions
To implement the characteristics of electricity markets and stochastic generation of RES

into the optimization model, various assumptions have been made which are described in

this section. It is assumed that stochastic processes involved can be sufficiently described

66Conejo, Carrión, and Morales (2010), p.127
67Rachev, Stoyanov, and Fabozzi (2008), p.155
68Conejo, Carrión, and Morales (2010), p.130
69Rachev, Stoyanov, and Fabozzi (2008), p.266
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by a joint discrete distributions of finite size. The model can therefore be formulated using

the deterministic equivalent of a stochastic problem. Due to the small installed capacity

of the VPP compared to other market participants, the VPP operator is regarded as a pure

price taker without influencing market prices with the offering decisions made.70 71 At

energy markets, offers of the different participants are either met or refused depending on

the interaction between supply and demand (see Section 3). In this thesis it is assumed

that the operator always gets acceptance for the offers made. The bidding problem of

a VPP operator is separated in different stages where decisions have to be made and

uncertainty partially vanishes:

1. For every scenario s and time step t of the next day an offer P da
s ,t has to be done to

the Day-Ahead spot market. Offers for the offering day D can only be done until

gate closure time (see Figure 6). At gate closure time however, the output of RES

P res
s ,t , the spot market prices λda

s ,t and also the costs for compensation energy λimb
s ,t are

uncertain. P da
s ,t is modeled as a first stage variable. It can vary over the offering day

D , but at every time step only one decision can be made which should be optimal

for every scenario s .

2. After gate closure time the market clearing prices for every time step of the next

day are announced to the market participants. Before the delivery of the Day-

Ahead contract also the output of non dispatchable units like RES is known to

the VPP operator. In this stage the VPP operator can either use its dispatchable

units to balance out deviations from expected and real RES feed-in or settle the

deviation as imbalance energy∆s ,t whereas the imbalance prices are not yet known.

The VPP-operator has NN CHP units whose electrical output is expressed by P chp
n ,s ,t

representing the output of CHP n in scenario s at the time step t , NK load-shift

DR units expressed by D R shift,down
k ,s ,t and D R shift,up

k ,s ,t respectively, and NM load-shed DR

units expressed by D R shed
m ,s ,t at its disposal. The schedule of dispatchable units and

the deviations are considered as second stage variables which can react to the actual

realization of the wind output and spot market prices.

3. In the last stage costs for compensation energy arise. Actually at this step no decision

is made therefore the deviations occurred in the second stage have to be valued

with the expected imbalance prices λimb
s ,t .

70Pandžić, Morales, Conejo, and Kuzle (2013), p.284
71Raths, Pollok, Sowa, Schnettler, Brandt, and Eckstein (2013), p.4
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The market framework is similar to that applied in (Pandžić, Morales, Conejo, and

Kuzle, 2013, p.284). As described in Section 4 uncertainty is accounted for by considering

a set of possible scenarios sufficiently describing a stochastic process. Here spot market

prices, the output of the WPPs and the corresponding imbalance market price are modeled

as random variables. The above described stochastic problem is summarized in Figure 12

in scenario based form.

Day-ahead market Dispatchable VPP
and Imbalance energy

Expected values
of imbalance prices

λda
s ,t , P res

s ,t ,λimb
s ,t

First Stage Second Stage Third stage

Uncertainty

P chp
n ,s ,t , D R shed

m ,s ,t , D R shift,down
k ,s ,t , D R shift,up

k ,s ,t ,∆s ,tP da
s ,t

λimb
s ,t

λimb
1,tP res

1,tλda
1,t

λimb
2,tP res

2,tλda
2,t

λimb
s ,tP res

s ,tλda
s ,t

Decision variables

π1

π2

πs

Figure 12: Scenario tree of applied bidding problem of a VPP operator

6.3 Expected Profit
The model aims at getting optimal offers at spot markets for a VPP. This is expressed by

the expected profit whereas the profit consists of revenues minus costs. Uncertainty is

accounted for by considering the different realizations of spot price, wind output and

imbalance price over the time horizon of one day. The objective function consists of

different terms for the spot market, imbalance market and costs of the corresponding
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power plants which are discussed in more detail in the following paragraphs.

Spot market term

The revenues gained at the spot market are described by offer quantity P da
s ,t times the

actual simulated spot market priceλda
s ,t during the time step dt . The trades on spot market

P da
s ,t include positive selling offers and offers to buy energy with a negative sign (6.7). Power

producers usually place selling orders whereas a VPP featuring also customers, needs to

buy the corresponding energy if the demand can not be coped by the generation units

in the VPP. The decisions made for the spot market are treated as first stage (or here and

now) variables. To meet this requirement anticipativity constraints have to be included

that guarantee that only one offer is submitted Day-Ahead (6.8). The revenues respective

cots gained at the spot market, are therefore expressed by:

spot market=λda
s ,t ·P

da
s ,t ·dt (6.7)

P da
1,t = P da

2,t = ...= P da
s ,t ∀t (6.8)

Imbalance market term

Compensation energy is needed to balance out deviations from offers made to the spot

market and actual production/demand at contract fulfillment. In Austria the costs for

those imbalances are calculated by the Power Clearing & Settlement Austria (APCS), in a

process called clearing. The concept of compensation energy clearing aims at punishing

those market participants who cause system deviations and reward those that help to

restore system balance. To guarantee that, special imbalance price mechanisms are imple-

mented. This section focuses on the clearing of the Austrian and German compensation

energy. If electrical supply equals demand no reserve power is needed and the system is

zero regulated. If however deviations exist, the system can either be upwards regulated

(energy is added to the system) by calling positive reserve or downwards regulated (energy

is withdrawn from the system) by activating negative reserve. From the costs for called

positive and negative reserve energy, a reference imbalance price λref can be calculated.

The sign as well as the absolute value of the imbalance price depends on the system as

a whole. To reduce speculations with compensation energy, the preliminary imbalance
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price λref is coupled to the spot market price λda, so that:72

• If the system is upwards regulated (δ > 0) the lower limit for the imbalance price

is λda in order to consider the fact that for additional energy a price above λda is

necessary because positive reserve energy has been activated. Supply has to be

increased or demand reduced which comes at higher costs than λda (6.9).

λup =max(λref, λda) (6.9)

• If the system is downwards regulated (δ < 0) the imbalance price can have values

up to λda due to the fact that the excess energy is not needed at the moment from

system view. As a consequence the imbalance price is below or equal to λda (6.10).

λdown =min(λref, λda) (6.10)

The Austrian clearing system is regarded as a one-price system because positive and

negative deviations of BRPs are settled with the same price. The resulting Austrian clearing

price consists of a base price λbase plus a reallocation term T (6.11) and depends on the

direction the system is regulated (6.12).

λimb =λbase+T (6.11)

λbase =







λup , if δ>0

λdown , if δ<0
(6.12)

Note that for every time period there is only one imbalance price λimb. The resulting

price however depends on the system deviation, the amount of called reserve with its cor-

responding energy price and the spot market price. The above mentioned mechanism of

calculating the imbalance price λimb, is implemented in various countries (e. g. Germany,

Austria) and clarified in Figure 13. The resulting revenue respective costs for imbalance

energy depend on the direction the system is regulated and on the sign of the imbalance

price.

72APCS (2015), p.7f
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Figure 13: The interrelationship of spot market price and up and downwards regulated prices

The above described characteristic is integrated in the optimization model, so that

deviations from spot market offers are avoided. Deviations from the spot market offers

are referred to as∆s ,t . They can either be positive (delivery of more energy than expected)

or negative (delivery of less energy than expected). The resulting deviations depend on

the spot market offer and the energy produced and consumed by the DER inside the

VPP. For modeling convenience the term∆s ,t is separated in two non-negative variables

∆
pos
s ,t and∆neg

s ,t in the form of∆s ,t =∆
pos
s ,t −∆

neg
s ,t . In this formulation∆pos

s ,t describes an excess

generation, whereas ∆neg
s ,t describes a shortage of generation. As described above an

excess generation can only be sold at a price λdown
s ,t below the spot market price whereas a

shortage of generation∆neg
s ,t results in a penalty λup

s ,t higher than the spot market price. As

a result, the costs at the imbalance market are modeled by the term:73

imbalance market=λdown
s ,t ·∆pos

s ,t −λ
up
s ,t ·∆

neg
s ,t (6.13)

(6.13) reduces speculations on the imbalance settlement market. In reality the result-

ing imbalance settlement costs/profits depend on the real imbalance settlement price

and on the deviation of the BRP. If the signs of deviations of the BRP and the imbalance

market prices λimb
s ,t correlate the BRP gets paid for its deviations because the deviation

has a positive effect on system stability. If the opposite is the truth, the BRP is confronted

73Conejo, Carrión, and Morales (2010), p.222
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with costs. As the real imbalance prices (see Section 5) and the direction the system is

regulated are very hard to anticipate, the optimization model allocates imbalances with

reduced profits respective higher costs, representing a rather conservative offer strategy.

Costs of power plants

Also the costs of the different VPP units have to be considered. These include the ag-

gregated costs C chp
s ,t for all NN CHP units, the aggregated costs C dr

s ,t for all NK and NM DR

units and the aggregated costs for RES described by C res
s ,t . The marginal costs of RES are

assumed to be zero, no further costs are necessary to increase the output for one unit due

to their weather dependency. Therefore the costs term is:

costs=C chp
s ,t +C dr

s ,t +C res
s ,t (6.14)

The aggregated costs for the DR units can be separated in costs for shedding C shed
s ,t

and shifting load C shift
s ,t . The costs for load shifts are here neglected because processes are

only shifted in time and not canceled. Load sheds however must be compensated with

the value of the lost process. The aggregated costs C shed
s ,t consist of the costs of the single

units C shed
m ,s ,t .

C shed
s ,t =

NM
∑

m=1

C shed
m ,s ,t (6.15)

Also the costs for CHP units have to be considered in the model. Usually fuel based

power plants are modeled by considering the fuel costs of the single power plants C fuel
n ,s ,t

and costs for starting up C start
n ,s ,t to incorporate the wear of components. The aggregated

costs of the CHP units are:

C chp
s ,t =

NN
∑

n=1

�

C fuel
n ,s ,t +C start

n ,s ,t

�

(6.16)

The profit ps ,t in scenario s at time t is obtained by:

ps ,t = spot market+ imbalance market −costs (6.17)

ps ,t =λ
da
s ,t ·P

da
s ,t ·dt +λdown

s ,t ·∆pos
s ,t −λ

up
s ,t ·∆

neg
s ,t −C fuel

s ,t −C start
s ,t −C shed

s ,t (6.18)
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The profit ps in a certain scenario over the modeling time t is defined as:

ps =
NT
∑

t=1

ps ,t (6.19)

The resulting term for the expected profit E
�

ps

	

is obtained by considering the re-

spective probability of occurrence πs over the number of NS scenarios:

E
�

ps

	

=
NS
∑

s=1

πs ps (6.20)

6.4 Risk Measure
Often decision makers are not only interested in the expected profit but also in the vari-

ability of the profit. Risk management techniques provide the possibility to evaluate the

outcomes of a stochastic process to prevent high probabilities of unfavorable objective

values. As a risk measure the conditional value at risk (CVaR) approach was chosen. The

CVaR can be defined as “the expected value of the profit smaller than the (1−α)-quantile of

the profit distribution.“74 With α being the confidence level adequately chosen to assess

the desired risk properties, typically between 0,9 and 0,99.75 The CVaR is an adaption

of the value at risk (VaR) approach. The VaR is defined as the (1− α)-quantile of the

profit distribution. In contrast to the VaR as the (1−α)-quantile, the CVaR regards the

distribution of the profit smaller than the (1−α)-quantile. Thereby flat tails of the profit

distribution are considered. With the help of the CVaR unfavorable outcomes are reduced

within a given confidence level.76

The CVaR can refer to a loss or profit function. If it refers to a function f (x , s ) represent-

ing loss, the CVaR of a discrete distribution can be obtained by solving the minimization

problem:77

C V a R (x ) =minζζ+
1

1−α
·E
¦

�

f (x , s )−ζ
�+©

where [F ]+ =max{0, F } (6.21)

If the CVaR is defined for a function f (x , s ) representing profit, it can be equivalently

74Conejo, Carrión, and Morales (2010), p.142
75Li, Wang, and Zhang (2012), p.66
76Conejo, Carrión, and Morales (2010), p.142
77Rockafellear and Uryasev (2002), p.1454
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obtained by the following maximization problem:78

C V a R (x ) =maxζζ−
1

1−α
·E
¦

�

ζ− f (x , s )
�+©

(6.22) (6.22)

Here, the CVaR is used as the expected value of the profit smaller than the (1−α)-
quantile of the profit distribution, so minimizing risk equals to maximizing the profit of

the worst scenarios, which is considered using the CVaR formulation according to (6.22).79

The CVaR is implemented in the objective function in the form of:

max ps ,ζ,ηs
(1− β̂ ) ·E

�

ps

	

− β̂ ·

�

−ζ+
1

1−α

NS
∑

s=1

πs ·ηs

�

(6.23)

subject to

ζ−ps ≤ηs ∀s (6.24)

ηs ≥ 0 ∀s (6.25)

The term ηs is a non negative auxiliary variable that equals the maximum of ζ−ps or

0 in (6.22). The expressions (6.24)-(6.25) ensure the behavior of the definition of the CVaR

for discrete distributions (6.22).

(6.23) expresses the expected profit while also considering an appropriate risk measure.

With the risk weighting coefficient β̂ ∈ [0,1] a desired trade off between expected profit

and profit variation can be chosen. The objective function is restricted by the following

constraints.

6.5 Constraints
6.5.1 Energy Balance

For every time step t and scenario s an energy balance (6.26) has to be fulfilled. Selling

offers at the spot market P da
s ,t must be backed with electricity generation units while

deviations∆pos
s ,t and∆neg

s ,t can be settled in the imbalance market. The produced energy

78Conejo, Carrión, and Morales (2010), p.142
79Morales, Conejo, Madsen, Pinson, and Zugno (2014), p.379
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can be sold at the spot market or used to supply an electrical load D el
t . The electrical

consumption pattern can be modified by∆D el
s ,t which is later described in the Demand

Response model 6.5.4.

P res
s ,t ·dt +

NN
∑

n=1

P chp
n ,s ,t ·dt +∆neg

s ,t = P da
t ·dt +D el

t ·dt +∆D el
s ,t ·dt +∆pos

s ,t ∀s , t (6.26)

6.5.2 Renewable Energy Systems Model

The RES output P res
s ,t is modeled as an external random parameter depending on the

specific scenario. It is not a decision variable owing to the intermittent character of

RES. In principle the modeling techniques here applied can be adapted to several RES

facilities like wind power, photovoltaics or small run of river plants. P res
s ,t is a NS x NT

matrix describing the RES output in scenario s during the time step t . In other words

the optimization model reacts to the external and volatile RES input P res
s ,t by optimally

dispatching its controllable units.

6.5.3 Combined Heat and Power Model

The CHP model provides restrictions for every CHP plant n at every time step t of the

modeling period. Power restrictions guarantee that the power P chp
n ,t of the CHP plants

stays in their defined minimum and maximum power limits P chp,min
n and P chp,max

n (6.27).

The binary variable u chp
n ,s ,t denotes the operation state of the CHP plants (6.28).

P chp,min
n ·u chp

n ,s ,t ≤ P chp
n ,s ,t ≤ P chp,max

n ·u chp
n ,s ,t ∀n , s , t (6.27)

u chp
n ,s ,t =







1 , if unit n is running at time step t

0 , otherwise
(6.28)

Only a certain amount of the input flow Q̇ fuel
n ,s ,t of the fuel can be transformed in elec-

tricity depending on the electric efficiency factor µel
n of the CHP plant (6.29). (Steck, 2013,

p.34) implements a term to model part load efficiency of the CHP units but due to the

rather insignificant drop of efficiency of two percent points this was neglected (Steck,

2013, p.78). The combined heat and electricity generation process is characterized by the
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power to heat ratio r p2h
n representing the relation of electrical output P chp

n ,s ,t to heat output

Q̇ chp
n ,t described by (6.30).

Q̇ fuel
n ,s ,t ·µ

el
n −P chp

n ,s ,t = 0 ∀n , s , t (6.29)

P chp
n ,s ,t − r p2h

n ·Q̇ chp
n ,s ,t = 0 ∀n , s , t (6.30)

Additionally minimum run times (6.31) and minimum down times (6.32) are imposed

for the CHP units to guarantee an economic operation and reduce the wear of components

by an excessive amount of starts and stops. Often a certain time is necessary for the unit

to reach its rated power. If a specific unit is turned on it has to stay on for t chp,run
n . Similarly

if a unit is turned off, it must be off for t chp,down
n .

�

u chp
n ,s ,t −u chp

n ,s ,t−1

�

· t chp,run
n ≤

t chp,run
n −1
∑

τ=0

u chp
n ,s ,t+τ ∀n , s , t (6.31)

�

u chp
n ,s ,t−1−u chp

n ,s ,t

�

· t chp,down
n ≤ t chp,down

n −
t chp,down

n −1
∑

τ=0

u chp
n ,s ,t ∀n , s , t (6.32)

(6.33) and (6.34) ensure that over the modeling time t only a certain number of start

ups g start,max
n is possible.

u chp
n ,s ,t −u chp

n ,s ,t−1 ≤ u chp,start
n ,t ∀n , s , t (6.33)

NT
∑

t=1

u chp,start
n ,s ,t ≤ g start,max

n ∀n , s (6.34)

While some types of CHP plants often only allow the discrete states “on” and “off”,

others are capable of power modulations, whereas changes of the current power are

limited by technical restrictions like power gradients (6.35). The power of the CHP plant n

between two consecutive time steps can only be altered by the power gradients d P chp,pos
n

and d P chp,neg
n .

d P chp,neg
n d t≤ P chp

n ,s ,t −P chp
n ,s ,t−1 ≤ d P chp,pos

n d t ∀n , s , t (6.35)

It is assumed that the heat produced by the CHP plants Q̇ chp
n ,s ,t only provide the base

heat load while a separate auxilliary burner Q̇ aux
n ,s ,t manages peaks in the thermal load.

In the electricity let operation mode, the electricity price is the main control variable
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whereas heat supply still has to be guaranteed (6.36). The produced heat that is actually

used to cover the thermal load D th
n ,t is assessed with a certain value to model different

marginal costs of the CHP depending on the chosen operation mode. µaux
n represents the

efficiency factor of the auxilliary burner.

Q̇ chp
n ,s ,t +µ

aux
n ·Q̇ aux

n ,s ,t =D th
n ,t ∀n , s , t (6.36)

Every CHP start up is combined with specific start up costs c start
n (6.37) to account for a

higher fuel consumption and wear of components when starting up. Additionally operat-

ing costs for CHP and the auxilliary burner are considered which are usually expressed by

a quadratic cost function. To keep the model linear, here CHP costs are regarded with

(6.38).

C chp,start
n ,s ,t = c start

n ·u chp,start
n ,s ,t (6.37)

C fuel
n ,s ,t = c fuel

n ·
�

Q̇ fuel
n ,s ,t +Q̇ aux

n ,s ,t

�

(6.38)

To reduce the interdependency between heat and power, storage systems can be

implemented. Excess heat that might arise from CHP production can be used to fill a

storage system. (6.39) shows the heat balance in the presence of heat storage systems.

The heat output from the CHP units and the storage ˙Q st,out
n ,s ,t can be used to supply the

thermal load D th
n ,t or in case of excess heat, the heat flow ˙Q st,in

n ,s ,t can be filled into the storage

system, as long as (6.41) and (6.42) are fulfilled, until the capacity maximum is reached

(6.40). The energy balance condition at the storage is complied by (6.43). The state of

charge (SOC) of the storage is the difference between the in and outflow in the time step

dt . Additionally (6.44) and (6.45) can be applied to define special initial or end conditions

of the SOC via the parameter s o c .

Q̇ chp
n ,s ,t +Q̇ st,out

n ,s ,t +µ
aux
n ·Q̇ aux

n ,s ,t =D th
n ,t +Q̇ st,in

n ,s ,t ∀n , s , t (6.39)

0≤ E st
n ,s ,t ≤ E st,max

n ,t ∀n , s , t (6.40)

0≤ ˙Q st,in
n ,s ,t ≤

˙Q st,in,max
n ,t ∀n , s , t (6.41)

0≤ ˙Q st,out
n ,s ,t ≤ ˙Q st,out,max

n ,t ∀n , s , t (6.42)



6.5 Constraints 49

E st
n ,s ,t = E st

n ,s ,t−1+dt · (Q̇ st,in
n ,s ,t −Q̇ st,out

n ,s ,t ) ∀n , s , t (6.43)

E st
n ,s ,t=0 = s o c ·E st,max

n ∀n , s , t (6.44)

E st
n ,s ,t=T = s o c ·E st,max

n ∀n , s , t (6.45)

6.5.4 Demand Response Model

Load shedding

Similar to the CHP model, (6.46) describes a process with linear power modulation that

can be operated between its lower (zero) and upper limit D R shed,max
m . The binary value

u shed
m ,s ,t is the operation variable and characterizes whether the shedding process m is on

or off 6.47.

0≤D R shed
m ,s ,t ≤D R shed,max

m ·u shed
m ,s ,t ∀m , s , t (6.46)

u shed
m ,s ,t =







1, if unit m is operating in time step t

0, otherwise
(6.47)

D R shed,max
m denotes the maximal potential for demand shedding of the specific resource

m . It is assumed that processes can be triggered for the maximum duration of t dr,on
m . This

is formulated in equation (6.48). After the duration of the process the signal has to be

switched off again and has to stay off, for a defined time t dr,off
m . This is guaranteed by

equation (6.49). When a process is on in time step t − 1 but not at t , then the process

has been switched off at period t and therefore is not available for the duration t dr,off
m .

Mathematically this means the operation variables u shed
m ,t are set to 0 for the time they are

inactive.

t dr,on
m +t dr,off

m
∑

τ=0

u shed
m ,s ,t+τ ≤ t dr,on

m ∀m , s , t (6.48)

t dr,off
m ≤ t dr,off

m −
t dr,off

m −1
∑

d=0

u shed
m ,s ,t+τ ∀m , s , t (6.49)
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Another important aspect is that the analyzed resources vary in the allowed maximal

activations in a given period. Some resources can be used only once a day while others

can be activated several times. When a process is activated, the binary variable u shed,act
m ,s ,t

has the value one (6.50). To impose an upper limit for the number of activations, equation

(6.51) is applied. At last the process specific opportunity costs c shed
m have to be paid, to

compensate the value of the lost process as described in equation (6.52). During a certain

period, shedding processes can only be activated for a given amount of g act,max
m (6.51).

u shed
m ,s ,t −u shed

m ,s ,t−1 ≤ u shed,act
m ,s ,t ∀m , s , t (6.50)

NT
∑

t=1

u shed,act
m ,s ,t ≤ g act,max

m ∀m , s (6.51)

C shed
m ,s ,t = c shed

m ·D R shed
m ,s ,t (6.52)

Load shifting

The load shift formulation is similar to the load shed model with the main exception that a

shifting process that was increased or decreased must be compensated over the modeling

period. A process can only be shifted within a certain time period when it is available

otherwise it is already scheduled for an industrial process.

Again this is guaranteed by D R shift,down
k ,s ,t and D R shift,up

k ,s ,t . Regarding the minimum and

maximum power limits and the process characteristics, the formulation is identical to

equations (6.46). Also the maximal duration for a process and the idle time is equivalent

to equation (6.48) and (6.49). Equations (6.50) and (6.51) referring to the activation limit

must also be valid for load shifts.

To model load shifts additional restrictions are necessary. At every time period a

process can either be shifted up or down (6.53). Over the modeling time period the

sum off all load shifts must sum up to zero (6.54). u shift,down
k ,s ,t and u shift,up

k ,s ,t are again binary

variables describing if a process is switched.

u shift,down
k ,s ,t +u shift,up

k ,s ,t ≤ 1 ∀k , s , t (6.53)
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NT
∑

t=1

�

D R shift,down
k ,s ,t −D R shift,up

k ,s ,t

�

= 0 ∀k , s (6.54)

In this model it is assumed that load sheds pose monetary disadvantages because

processes are canceled. Load shifts however only shift the energy consumption in time.

In sum all DR actions sum to up zero therefore opportunity costs are not considered. At

last it has to be ensured that the current electrical load poses an upper limit for load sheds

and downwards load shifts at any given moment (see equation (6.55)). In other words

demand can not be further reduced than the existing demand D el
t :

NM
∑

m=1

D R shed
m ,s ,t +

NK
∑

k=1

D R shift,down
k ,s ,t ≤D el

t ∀s , t (6.55)

Regarding Direct Control measures the resulting change of electrical load∆D el
s ,t is:

∆D el
s ,t =−

NM
∑

m=1

D R shed
m ,s ,t +

NK
∑

k=1

�

D R shift,up
k ,s ,t −D R shift,down

k ,s ,t

�

(6.56)

6.6 Case Study of Virtual Power Plant
This section defines the case study that serves as input data for the VPP modeled by the

above described optimization problem. The considered VPP consists of wind turbines,

combined heat and power plants and controllable loads of demand side customers. The

electric demand is approximated via standardized load profiles obtained from APCS.80

According to Austrian energy law for end customers under 100.000 kWh annual electricity

consumption or under 50 kW connection capacity, standardized load profiles have to

be used.81 With a rising amount of customers, the use of standard load profiles provides

a pretty reasonable approximation of the electric consumption pattern. The electric

demand is exemplary displayed in Figure 14 for a summer day in June.

80http://www.apcs.at, accessed on 13.01.2016
81E-Control (2011), p.9
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Figure 14: Example of the daily behavior of the electric demand inside the Virtual Power Plant

used in the case study

The input data for direct controllable DR units, used for this case study, is shown in

Table 1. t dr,on
k refers to the maximum time a DR-process can be modified, whereas g act,max

k

is a counter referring to the maximum number of activations over the modeling time.

The input data is gathered from industrial companies at mid voltage level which results

in high power shifts in the MW scale. The data available showed mainly shiftable DR

processes therefore here no DR costs are considered.

Table 1: Case study input data for Direct Control Demand Response

D R max
k [MW] t dr,on

k [15min] g act,max
k

process 1 3 4 1
process 2 7,3 8 1
process 3 2 4 1
process 4 0,4 8 1
process 5 2,5 8 1

CHPs provide both electricity and heat, therefore also a thermal demand has to be
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considered which is also approximated via standard heat load profiles. It is assumed

that the CHP are not connected through a heat grid so for every CHP an own heat profile

is implemented. This implies that electricity can be marketed in a CHP pool whereas

individual heat loads have to be supplied by the individual CHP units. Technical and

operational data of the CHPs is provided in Table 2. In this case study the restrictions

concerning power gradients are neglected due to the flexibility of CHP which is in line with

the assumptions made in (Steck, 2013, S.78). The fuel price c fuel is set to 25 Euro/MWh.

To reduce computational complexity, the single CHP units are not modeled separately.

Instead it is assumed that 1000 units of each CHP-type are aggregated. The CHP-portfolio

therefore sums up to 15 MW installed capacity.

Table 2: Combined heat and power plants input data used in the case study

P chp,min
n [kW] P chp,max

n [kW] r p2h
n µel

n µaux
n g start,max

n c start
n [Eur] E st,max

n [kWh]

CHP 1 15 0,35 0,33 0,9 10 0,1 20

The thermal demand of the buildings the CHPs are operated in, is generated by ap-

plying a sigmoid soothing function 6.57 taking building specific parameters A, B , C , D , a

thermal reference temperature ϑ0 and the outdoor temperature ϑ as input. The influence

of building specific parameters is shown in Figure15. Thereby a normalized coefficient

of heating and warm water is computed for a day. Considering the average daily heat

demand D̄ th
d and the normalization coefficients of the specific day, results in the charac-

teristic thermal demand profile D th
t .82 83 Average outdoor temperatures are taken from

database of the German weather service.84 The resulting heat load is shown in Figure 16

for a summer day.

h
day

ϑ =
A

1+
�

B

ϑ−ϑ0

�C +D (6.57)

82Hellwig (2003), p.46ff
83Rezania and Haas (2012), p.217ff
84DWD (2016)
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Figure 15: Influence of building parameters on the behavior of the sigmoid function representing

the daily thermal demand of a building (Rezania and Haas, 2012, p.225)

Table 3: Input parameters to generate the thermal demand of buildings for each day of a year

A B C D D̄ th [kWh/d]

Building 2,794 37,2 5,4 0,17 200
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Figure 16: Example of heat load including space heating and warm water

WPPs with an installed capacity of 100 MW are also included in the VPP. Here it is

assumed that the regional dispersion of the WPPs is sufficient enough to use the wind

power forecasts of ENTSO-E for the next day for the whole of Austria (Section 5.3). A

more precise approach would be to respect the specific regional wind speeds and the

operational characteristics of each WPPs. The portfolio of the considered VPP is shown in

Table 4.

Table 4: Portfolio of analyzed virtual power plant

Type of DER installed capacity [MW] Share [%]

WPP 100 76,8
CHP 15 11,5
DR 15,2 11,7
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6.7 Results
To better understand the behavior of the implemented stochastic optimization prob-

lem, the results are divided into two parts:

• The first part deals with the behavior of the stochastic optimization model and

analyzes if the applied stochastic model is appropriate for the problem. Therefore,

in a first step, only the stochastic components i. e. the wind turbines are considered.

To evaluate the quality of the stochastic model the expected value of perfect infor-

mation and the value of the stochastic solution are assessed, using the risk neutral

formulation of the objective function (see Section 6.3). After that the applied risk

measure is closer examined and the mean-risk efficient frontier of the optimization

problem is shown.

• In a next step each DER is analyzed separately to assess their operational character-

istics. After that the DERs are combined into a VPP. By comparing the profits before

and after pooling the added value of forming a VPP is measured. For this part, also

the risk neutral formulation of the optimization problem is used. The performance

of the VPP and its components was analyzed for the year 2015 using a summer

(15th of June), transition (15th of April) and winter (15th of January) working day

respectively.

6.7.1 Expected Value of Perfect Information

The expected value of perfect information E V P I indicates the added value if the future

realizations of all stochastic processes λ are known at the time of decision making. It

therefore gives a benchmark what a decision maker gains for the perfect information

of future realizations of the involved stochastic processes. Consider a general recursive

stochastic program, where a decision of x has to be done before an observation of the

random vector λ is possible, referred to as z (x ,λ). Then the stochastic solution SS is

obtained by:

SS =maxx E{z (x ,λ)} (6.58)

In this thesis SS is approximated by the deterministic equivalent (6.1). To obtain

the E V P I the anticipativity constraints of SS are relaxed assigning different first stage

decision variables to every scenario. The decision maker is now able to react to every
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scenario realization in an optimal way having perfect information over the stochastic

processes. The optimal value thus obtained is referred to as the “wait-and-see” solution

W S :

W S =E{maxx z (x ,λ)} (6.59)

In case of a maximization problem, evaluating (6.60) yields the E V P I .85 86

E V P I =W S −SS (6.60)

For the here considered case, under perfect information the expected profit can be

significantly improved (see Table 5). The rather high value of the E V P I might be caused

by the high volatility in the stochastic processes especially of the imbalance settlement

prices. This results in high values of the wait and see solution. Here, improvements of

the forecasts of the random variables would result in high profit gains. The availability

of reasonable forecasts of the stochastic processes is therefore one central point for

successfully operating a VPP at the spot market.

Table 5: Expected value of perfect information (EVPI) over all stochastic processes involved (β̂ = 0).

Wait and see Stochastic EVPI

Profit [Eur] 62.897 23.872 39.025
Profit [%] 263% 100% 163%

6.7.2 Value of Stochastic Solution

Stochastic programming considers the distribution of stochastic processes instead of

merely their expected values. In the expected value model E V , uncertain parameters are

replaced by their expected values:

E V =maxx z (x , λ̄), with λ̄=E{λ} (6.61)

The solution thus obtained is referred to as x̄ (λ̄). Usually stochastic programming pro-

85Conejo, Carrión, and Morales (2010), p.49
86Morales, Conejo, Madsen, Pinson, and Zugno (2014), p.373f
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vides better solutions than its associated deterministic model, where first-stage decision

variables are fixed to the solution of the expected value model:

E E V =E
�

z (x̄ (λ̄),λ)
	

(6.62)

The value of the stochastic solution V SS for maximization problems is defined as:87 88

V SS = SS −E E V (6.63)

In case the objective function is to be minimized the terms SS and E E V of (6.63) are

exchanged. The V SS is a tool to assess the additional value of using stochastic program-

ming compared to a deterministic approach, where uncertain parameters are replaced

by their expected value. The higher the V SS the more is gained by using a stochastic

optimization model.89 The key findings are shown in Table 6. The value of the deter-

ministic solution accounts for 22.183 Euro for the considered day. With the case study

input data as of above, the stochastic model respecting the distribution of the random

variables, results in a higher profit of 23.872 Euro. The VSS is 1.680 Euro or 7.6% higher

than the deterministic solution. The added value argues in favor for applying a stochastic

approach, as long as the scenarios generated sufficiently describe the random processes

involved.

Table 6: Value of stochastic solution (VSS) compared to a deterministic approach (β = 0).

Deterministic Stochastic VSS

Profit [Eur] 22.183 23.872 1.689
Profit [%] 100% 107,6% 7,6%

6.7.3 Mean-Risk Efficient Frontier

Figure 17 shows the mean-risk efficient frontier (black line) of the optimization problem

in the CVaR / expected profit space with α= 0, 9. The higher the respective risk a decision

maker is willing to take, the higher the expected profit. On the other hand, the additional

expected profit achieved by accepting another unit of risk is declining. Figure 17 also

87Conejo, Carrión, and Morales (2010), p.52
88Morales, Conejo, Madsen, Pinson, and Zugno (2014), p.374
89Conejo, Carrión, and Morales (2010), p.52
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shows indifference curves with different risk preferences (grey lines). In the CVaR /

expected profit space the iso-utility lines of a risk averse decision maker are upwards

sloped. An additional unit of risk is only tolerated if there is a gain in expected profit.

The slope of the indifference curves depends on the risk weighting factor β̂ . Along these

indifference curves the decision maker is equally satisfied. In general, indifference curves

in the north-west direction of the graph are superior because they either feature a higher

expected profit at a given risk level or less risk at a given level of expected profit. Therefore

decision makers would like to position themselves on the highest indifference curve.

The portfolio here investigated however, is not able to serve the highest indifference

curve. The optimal location on the efficient frontier is the tangent point with the marginal

indifference curve, just coinciding with the efficient frontier.

In case of a risk-neutral decision maker (β̂ = 0) the slope of the indifference curves is

zero. Therefore the decision maker regards no compensation for the involved risk and

would settle with the highest expected profit available. A risk averse decision maker with

β̂ = 0,3 on the other hand, tolerates another unit of risk only at a certain increase in

expected profit. In this case, the tangent point with the efficient frontier is at a different

location where the expected profit but also the risk attached to it is reduced. A more risk

averse decision maker β̂ = 0, 5 and β̂ = 0, 75 chooses a portfolio with a lower risk, but also

a lower expected profit. At the minimum risk location the efficient frontier is very steep.

This is the tangent point at a risk preference of β̂ = 1. The optimal location for a very risk

averse decision maker will be near the minimum risk location.

The risk measure provides the possibility to influence the distribution of the profit.

Due to the variability of wind, an offer made can result in undesirable outcomes depending

on the actual scenario realization. This has to be considered when trading with WPPs

on the spot market. Figure 18 shows the histograms of the profit distribution obtained

by different risk preferences. In the risk neutral case (β̂ = 0) the profit spans from -

60,000 Euro to +90,000 Euro (Figure 18a) depending on the respective scenario which

can pose challenges for the direct marketing of WPPs. A negative profit corresponds

to costs. By incorporating the CVaR risk measure and choosing β̂ = 0,3, unfavorable

scenario outcomes are significantly reduced. This is achieved by maximizing the profit of

the (1−α)-quantile of the profit distribution. The profit now ranges between -40.000 to

90.000 Euro. By choosing a higher value for β̂ (β̂ = 0,5 and β̂ = 0,75) this effect is more

prominent. However, this comes with the drawback of a lower value of the expected profit.

By applying a risk measure the decision maker has a tool to set individual risk preferences.



6.7 Results 60

Figure 17: Mean-risk efficient frontier of the optimization problem in the CVaR / expected profit

space. The points forming the frontier are efficient in the sense that they have the highest expected

profit at a given level of risk represented by the CVaR. Optimal location on the frontier depends on

the risk preference of the decision maker.
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(a) β̂ = 0 (b) β̂ = 0, 5

(c) β̂ = 0, 3 (d) β̂ = 0, 75

Figure 18: Histogram of the profit distribution across the different scenarios s . In the risk neutral

formulation (β̂ = 0), the profit has a wider range of possible scenario outcomes, also featuring

very unfavorable outcomes (negative profit). By choosing different values for the risk weighting

parameter (β̂ = 0, 3; β̂ = 0, 5 and β̂ = 0, 75 respectively), the probability of obtaining unfavorable

scenario outcomes is reduced. This however comes at the expense of a lower expected profit.

6.7.4 Wind Power Plants

To better present the performance of the single units inside the VPP, the following results

are now computed considering three scenarios. Figure 19 shows the WPP schedule in

relation to the realization of the stochastic processes. The first three graphs show the

price scenarios of spot and imbalance prices.

In the fourth graph the resulting Day-Ahead offers (black line) and the different wind
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power output scenarios are displayed (grey lines). There is no incentive to place Day-

Ahead offers higher than the highest wind output scenario or offers lower than the lowest

wind output scenario due to the conservative bidding model. So the optimal Day-Ahead

offer quantities (black line) are between the highest and lowest wind output scenario (grey).

Speculations on imbalance energy are eliminated owing to the imbalance settlement

market model where deviations always result in penalty costs. The last graphs shows

the resulting imbalances for the different scenario outcomes. Imbalances occur because

Day-Ahead offers have to be submitted before the realization of the wind power output

is known. High negative imbalances are accepted in times of upwards imbalance prices

near the spot market price. Correspondingly this also holds for high positive imbalances

at times of downwards imbalance prices near the spot market price. The applied model

provides rather conservative spot market offers due to the high volatility and limited

predictability of the imbalance price (see Section 5).

Figure 20 shows the corresponding offer quantities separately for every scenario. For

every trading time step the selling quantities at the spot market are equal for every sce-

nario (first-stage decision variable). Due to the different wind outputs per scenario the

resulting imbalance energy (second-stage decision variable) varies significantly. Positive

deviations outweigh negative deviations due to the imbalance market model which pe-

nalizes negative deviations in general with values above the spot market price. In reality

this strategy might be favorable, in that WPP output can be restricted by switching off a

WPP whereas additional output is hard to achieve and only possible by operating WPPs

in part load. This is rather uncommon, because of the high opportunity costs involved. It

is noticeable, that almost no energy is sold on the spot market Day-Ahead from 6:00 to

9:00 o’clock. Under the assumptions here made, it is better to settle the RES feed-in in

scenario 1 and 2 as excess generation (delta_pos), although lower revenues than on the

spot market exist and even costs might occur in case of negative imbalance settlement

prices. As can be seen in scenario 3 (see s = 3), there is no energy traded because negative

deviations are avoided.

In general, operating RES under feed-in tariffs is highly preferable under the here

considered market situation. The Day-Ahead prices are in general too low to compete

with the feed-in tariff of 9,45 Cent/kWh. Furthermore in the feed-in scheme no imbalance

costs have to be considered. 90

90https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20007993,
accessed on: 13.01.2016



6.7 Results 63

Figure 19: Offers in dependence of realization of stochastic processes. From top down: different

scenario realizations of spot price, imbalance price for excess generation and imbalance price for

shortage of generation. Fourth subplot shows the offer quantities Day-Ahead with corresponding

wind output scenarios. Last subplot shows the resulting imbalance energy for every scenario.



6.7 Results 64

Figure 20: Offer quantities for a wind operator. Optimal offer quantity Day-Ahead (orange graph)

considering all scenario realizations of wind output (blue graph) as well as the resulting positive

(red graph) and negative imbalances (green graph).

6.7.5 Combined Heat and Power

CHP plants can be operated either heat or electricity controlled. Micro CHP without

pooling concept are usually heat controlled. In this case electricity is produced whenever
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there is a heat demand regardless of the current current electricity price. By pooling

many CHPs there is the possibility to participate at electricity markets and operate them

at favorable market prices. In electricity controlled mode the profits of CHPs can be

increased around 4 % compared to heat controlled operation. Although the percent value

is rather small over the year considerable gains can be achieved. Figure 21 depicts the

schedule of the CHP pool with the corresponding Day-Ahead prices. The operation of the

CHPs aims at providing the required heat load of the specific building, taking advantage

of operating at times of high spot market prices. The heat storage is used to decouple

demand and supply of thermal energy in a such a way, that high price periods can be

exploited (Figure 22) while eventually incurring excess heat is stored and later used to

cope with the heat demand. The CHPs feature different marginal costs in dependance of

the heat load. With the input data here applied the CHPs would not be switched on at the

existing spot market prices if the provided heat is not accounted for because of the high

fuel costs in relation to spot market prices. Providing heat is a must run condition that

lowers the marginal costs of CHPs.

On a summer and transition period day the auxiliary burner is not really needed, the

base heat load (D_th) can be provided by the CHPs alone (Figure 22a and 22b). For a

winter day on the other hand heat peaks are covered with the aid of the auxiliary burner

when the installed CHP capacity is not sufficient (Figure 22c). Despite a lower thermal

efficiency factor it is favorable to switch on the CHPs instead of the auxiliary burner

because the produced electricity can be sold at the spot market. In winter the totally

produced electricity is higher due to the higher heat demand. During the winter months

the flexibility of the CHPs is restricted because of the high base heat load.

The flexibility of the CHP plants depends on the the thermal storage system. For the

considered day the profit of the CHPs is 877 Euro higher when a thermal storage system

(20 kWh) is available which corresponds to around 7 %. With rising capacity of the thermal

storage also the profits increase due to the higher flexibility potential (Figure 23).
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(a) Summer day

(b) Transition period day

(c) Winter day

Figure 21: Schedule of CHPs on a summer, transition period and winter day respectively. Times of

high spot market prices are used to sell electricity as long there is flexibility available.
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(a) Summer day

(b) Transition period day

(c) Winter day

Figure 22: Heat load coverage by the CHP unit in combination with auxiliary boiler and heat

storage on a summer, transition period and winter day respectively
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Figure 23: Influence of thermal storage size variation on daily profit
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6.7.6 Demand Response

Electrical loads can adapt their electricity consumption pattern and therefore use price

spreads to switch processes from high price to low price periods. To analyze the potential

benefits of DR, the electrical load of the customers is at first solely covered at the spot

market Day-Ahead without any flexibility. After that, the electrical load is altered by DR

measures and the benefits are compared.

In a reference case it is assumed that there is no adaption of the electric load therefore

energy has to be bought at any current spot market price. In reality an energy trader can

hedge against spot market price risks on the Futures market. Here however the short term

flexibility is used as the evaluation parameter so only the Day-Ahead market is analyzed.

Without any flexibility of the demand side high price periods tend to coincide with periods

of high electrical demand resulting in rather high electricity procurement costs (Figure

25a).

Now the electrical demand is allowed to be modified according to the direct control

program described in Section 6.5.4. By employing the DR measures a reduction of the costs

for energy procured Day-Ahead can be achieved by shifting loads to other times profiting

from price differences of high and low spot market prices. As no shedding process where

considered the total electricity consumption before and after the DR events is equal. The

potential savings for the considered days are shown in Figure 24. In case DR processes

are available the whole day, the average savings account for 2000 Euro. In case units are

blocked between certain time spans the potential gains from DR tend to decline. The

lower the availability the lower is the possibility to profit from price spreads which reduces

extreme savings as well as average savings. Figure 25 clarifies the meaning of available

and blocked units. When a unit is blocked it is not able to alter its consumption pattern

because it is needed for other processes. Often this results in a reduced price spread

between high and low electricity prices.
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Figure 24: Daily profits of Demand Response measures on the spot market depending on the

availability of the units on the time of the day



6.7 Results 71

(a) No Demand Response potential

(b) Demand Response units considered, available 24h a day

(c) Demand Response units, blocked from 00:00 - 12:00

Figure 25: Adaption of the electrical load curve via Demand Response
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6.7.7 Virtual Power Plant

At last the DERs are combined in a VPP and optimized together. The results are shown

exemplary for a summer day in Figure 26 and 27 respectively (transition period and

winter day in appendix 8.6). There is again the tendency to approve rather high positive

imbalance (overproduction) compared to negative imbalance (shortage of production).

As described above this is due to the imbalance settlement model. Generally reducing the

absolute value of the imbalances, is different from reducing imbalance costs which result

from deviations multiplied by the respective imbalance market price. As a consequence

even if there is the ability to reduce deviations it is not necessarily the optimal decision to

do so. When combined in a VPP, several effects can be observed.

The flexibility of CHPs can be used to reduce negative imbalances (see scenario s = 3,

from 23:00 to 24:00). In the third scenario (s = 3, from 6:00 to 9:00) where WPP output is

zero, the CHPs are increasingly used. In the first scenario (s = 1) in contrast, the operation

of CHPs is shifted to other times because wind is actually present. Must-run restrictions

of the CHPs, imposed by a simultaneous heat load, can also result in higher imbalances

when there already is an excess of WPP production. (s = 3, from 14:00 to 16:00).

DR reduces electrical load mainly in times of high spot market prices compensating

the load at low price periods. The integration of RES can be supported by increasing the

electrical demand, in case there is overproduction from wind power, which is otherwise

settled as imbalance energy (s = 2, from 2:00 to 4:00). But there is also the effect of

reducing electrical load although there is already a positive imbalance. In times of high

spot prices this can be favorable when price-spreads can be used and the corresponding

imbalance price is near the spot market price. The joint operation of DERs in a VPP

creates a more stable operation profile. Overall it can be observed that the assured selling

quantity on the spot market Day-Ahead can be increased.

A VPP business model should consider, that it must create enough value to remu-

nerate the companies for their flexibility and cover all necessary expenses. In order to

assess the monetary advantage of a VPP, the profits obtained before and after pooling

the DERs into a VPP are compared. As a reference case only the WPPs and the electric

demand are considered. Because of the nature of wind power, imbalance costs occur.

The gain of combining the DERs into a VPP should be higher than in separate operation.

In case of separate operation, the participation of DR and CHPs at the spot market is

evaluated. Regarding CHPs, separate operation refers to heat-led operation, while in the

VPP electricity-led operation is assessed.
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After that the whole VPP portfolio including the controllable systems are analyzed.

The results are shown in Table 7 and Figure 28. The added value of the joint operation in a

VPP is compared to the performance of DERs operated separately. For the here considered

working days of summer, transition period and winter the daily synergy potential ranges

between 4 - 41% which corresponds to 1.000 - 7.500 Euro. Assuming that the three

simulated days are representative for the whole year, the yearly gains sum up to around

1.500.000 Euro. Considering the case study here applied, the flexibility from DR and

CHPs is worth around 50.000 Euro/MW over the whole year for a wind power pool trader

operating at the spot market Day-Ahead.

Table 7: Added value of joint operation of DERs compared to separate operation. Separate opera-

tion refers to the performance of the DR and CHPs on their own. In separate operation CHPs are

in heat-led operation. Joint operation uses synergy effects between the DERs and operates CHPs

electricity-led.

Added Value

Summer day 41 %
Transition period day 4 %

Winter day 9 %
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Figure 26: Covering the electrical load with WPPs (reference case) on a summer day
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Figure 27: Including controllable units to the VPP with DR and CHPs for a summer day
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(a) Summer day

(b) Transition period day

(c) Winter day

Figure 28: Comparison of separate operation of DERs to joint operation in a VPP in relation to the

reference case
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7 Conclusion

A forecast model was combined with an optimization model to operate a virtual power

plant at the spot market Day-Ahead under uncertainty. Input data for the optimization

model is generated with a vector autoregressive model. A structural analysis of the vector

autoregressive model was conducted. It turned out, that the spot market price as well

as the wind error Granger-cause the respective imbalance price. Also impulse response

function and forecast error variance decomposition indicate that there is some kind

of interrelation of wind error and imbalance prices. With longer training data sets the

standard deviation of the estimated lagged terms is declining. The forecasts generated by

the vector autoregressive model were compared to the real values. The root square mean

error is used to access the quality of the vector autoregeressive model. Whereas the error

of spot market is comparatively low, the errors of the imbalance price and wind error are

substantial. The applied process and vector autoregressive model proved reasonable as a

tool for scenario generation of spot market prices, imbalance prices and wind error terms.

The stochastic optimization model considers different scenarios of uncertain param-

eters and offers a risk weighting parameter to handle the variability of the profit. The

knowledge about uncertain parameters significantly enhances the expected profit be-

cause the expected value of perfect information is about 163 %. For the problem of a

virtual power plant operator the stochastic approach is superior to a mere deterministic

one with the value of the stochastic solution being around 7,6 %. It is assumed that the

scenarios generated are representative for the real values. Furthermore it is presumed

that the market offers made always get accepted, which must not necessarily be the case.

The forecast and optimization tools were applied to a virtual power plant case study

containing wind power plants, combined heat and power plants and demand response.

The characteristics and profits before and after joint operation in a virtual power plant

were measured to access the added value of a virtual power plant. By combining the energy

devices in a virtual power plant a more stable operation profile is achieved. Economically,

the added value for a wind power pool trader, operating at the Day-Ahead market, sums up

to around 1.500.000 Euro for the year 2015 or around 50.000 Euro for 1 MW of controllable

energy resource. The daily added value is in the range of 4 - 41 % depending on the season

and the current market prices. A reason for higher added values might be the variability
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of the stochastic processes, especially wind feed-in. If the wind output scenarios are

likely to be significantly varying from each other, then the flexibility of the virtual power

plant is more valuable. In contrast, if it is likely that wind feed-in is similar to each other

across the scenarios, than the flexibility potential is not really needed. Another factor for

a low added value could be that, even in the reference case, there is already an optimized

schedule respecting imbalances.

The potential benefits are supposed to increase when participating at more markets.

Here only the spot market Day-Ahead was analyzed. A promising market especially for

demand response and combined heat and power plants is the balancing market where

the provision of reserve power is remunerated. It is planned to extend the optimization

model by additional markets. The added value must be put in relation to the costs to build

up the necessary information and communication infrastructure, operate the virtual

power plant and provide incentives for its participants to use their flexibility. These topics

provide interesting opportunities for further research.
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8 Appendix

8.1 Augmented Dickey-Fuller Test
================================================================
augmented dickey− f u l l e r t e s t :

’ wind_error ’

l a g s : 40L

obs : 15891L

================================================================
Test s t a t i s t i c c r i t i c a l values based on MacKinnon

1% 5% 10%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z −14.840851 −3.430762 −2.861722 −2.566867

================================================================
MacKinnon approximate p−value f o r Z = 1.838114 e−27

H_0 : there i s unit root in [ ’ wind_error ’ ]
Conclusion : r e j e c t H_0 at 1.00% s i g n i f i c a n c e l e v e l

================================================================
augmented dickey− f u l l e r t e s t :

’ spot_price ’

l a g s : 40L

obs : 15891L

================================================================
Test s t a t i s t i c c r i t i c a l values based on MacKinnon

1% 5% 10%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z −8.721327 −3.430762 −2.861722 −2.566867

================================================================
MacKinnon approximate p−value f o r Z = 3.379264 e−14

H_0 : there i s unit root in [ ’ spot_price ’ ]
Conclusion : r e j e c t H_0 at 1.00% s i g n i f i c a n c e l e v e l

================================================================
augmented dickey− f u l l e r t e s t :

’ imbalance_price ’

l a g s : 6L

obs : 15925L

================================================================
Test s t a t i s t i c c r i t i c a l values based on MacKinnon

1% 5% 10%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z −24.708879 −3.430761 −2.861722 −2.566867

================================================================
MacKinnon approximate p−value f o r Z = 0 . 0

H_0 : there i s unit root in [ ’ imbalance_price ’ ]
Conclusion : r e j e c t H_0 at 1.00% s i g n i f i c a n c e l e v e l
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8.2 Model Fit
======================================================================================
t r a i n i n g s e t 1

Summary of Regression R e s u l t s

==================================
Model : VAR

Method : OLS

Date : Wed, 20 , Jan , 2016

Time : 1 5 : 2 3 : 4 1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
No . of Equations : 3.00000 BIC : 15.2568

Nobs : 3347.00 HQIC : 15.1159

Log l i k e l i h o o d : −39292.8 FPE : 3.39392 e+06

AIC : 15.0375 Det ( Omega_mle ) : 3.27509 e+06

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
R e s u l t s f o r equation wind_error

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 1.424069 1.367037 1.042 0.298

L1 . wind_error 1.565473 0.017392 90.011 0.000

L1 . spo t_ pr ic e −0.456803 0.335866 −1.360 0.174

L1 . imbalance_price 0.020883 0.016403 1.273 0.203

L2 . wind_error −0.662954 0.032319 −20.513 0.000

L2 . spo t_ pr ic e 0.566567 0.472283 1.200 0.230

L2 . imbalance_price −0.076818 0.020559 −3.736 0.000

L3 . wind_error 0.083667 0.034318 2.438 0.015

L3 . spo t_ pr ic e −0.455969 0.471943 −0.966 0.334

L3 . imbalance_price 0.036945 0.020631 1.791 0.073

L4 . wind_error −0.029085 0.034345 −0.847 0.397

L4 . spo t_ pr ic e 0.340844 0.472674 0.721 0.471

L4 . imbalance_price 0.037129 0.020640 1.799 0.072

R e s u l t s f o r equation sp ot _p ri ce

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.411497 0.070327 5.851 0.000

L1 . wind_error −0.001569 0.000895 −1.753 0.080

L1 . spo t_ pr ic e 0.986751 0.017279 57.108 0.000

L1 . imbalance_price 0.000343 0.000844 0.406 0.685

L2 . wind_error 0.000859 0.001663 0.517 0.605

L2 . spo t_ pr ic e 0.002694 0.024297 0.111 0.912

L2 . imbalance_price 0.000520 0.001058 0.491 0.623

L3 . wind_error 0.002222 0.001765 1.258 0.208

L3 . spo t_ pr ic e −0.002186 0.024279 −0.090 0.928

L3 . imbalance_price −0.001094 0.001061 −1.031 0.303

L4 . wind_error −0.002897 0.001767 −1.640 0.101

L4 . spo t_ pr ic e 0.585205 0.024317 24.066 0.000

L4 . imbalance_price −0.001120 0.001062 −1.055 0.292

R e s u l t s f o r equation imbalance_price

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const −1.167667 1.448703 −0.806 0.420

L1 . wind_error 0.003587 0.018431 0.195 0.846

L1 . s po t_ pr ic e 0.745609 0.355931 2.095 0.036

L1 . imbalance_price 0.756462 0.017383 43.516 0.000

L2 . wind_error 0.061098 0.034250 1.784 0.075

L2 . s po t_ pr ic e 0.114405 0.500496 0.229 0.819

L2 . imbalance_price 0.061610 0.021787 2.828 0.005

L3 . wind_error −0.078027 0.036368 −2.145 0.032

L3 . s po t_ pr ic e −0.232200 0.500136 −0.464 0.642

L3 . imbalance_price −0.004439 0.021863 −0.203 0.839

L4 . wind_error −0.210581 0.036397 −5.786 0.000

L4 . s po t_ pr ic e −0.358877 0.500911 −0.716 0.474



8.2 Model Fit 81

L4 . imbalance_price 0.071567 0.021873 3.272 0.001

C o r r e l a t i o n matrix of r e s i d u a l s

wind_error sp ot _p ric e imbalance_price

wind_error 1.000000 0.036319 0.034504

s pot _p ri ce 0.036319 1.000000 −0.003073

imbalance_price 0.034504 −0.003073 1.000000

======================================================================================
t r a i n i n g s e t 2

Summary of Regression R e s u l t s

==================================
Model : VAR

Method : OLS

Date : Wed, 20 , Jan , 2016

Time : 1 5 : 2 3 : 4 3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
No . of Equations : 3.00000 BIC : 15.3193

Nobs : 6015.00 HQIC : 15.1011

Log l i k e l i h o o d : −70372.3 FPE : 3.22058 e+06

AIC : 14.9851 Det ( Omega_mle ) : 3.06515 e+06

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
R e s u l t s f o r equation wind_error

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 1.220691 1.168223 1.045 0.296

L1 . wind_error 1.584795 0.013005 121.860 0.000

L1 . spo t_ pr ic e −0.208643 0.223218 −0.935 0.350

L1 . imbalance_price 0.015766 0.011593 1.360 0.174

L2 . wind_error −0.694630 0.024369 −28.505 0.000

L2 . spo t_ pr ic e 0.356621 0.314249 1.135 0.256

L2 . imbalance_price −0.041504 0.014595 −2.844 0.004

L3 . wind_error 0.095929 0.025982 3.692 0.000

L3 . spo t_ pr ic e −0.472595 0.314332 −1.503 0.133

L3 . imbalance_price 0.019239 0.014605 1.317 0.188

L4 . wind_error −0.017795 0.025999 −0.684 0.494

L4 . spo t_ pr ic e 0.458446 0.314402 1.458 0.145

L4 . imbalance_price 0.018753 0.014609 1.284 0.199

R e s u l t s f o r equation sp ot _p ri ce

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.407262 0.067773 6.009 0.000

L1 . wind_error −0.000619 0.000754 −0.820 0.412

L1 . spo t_ pr ic e 0.990861 0.012950 76.516 0.000

L1 . imbalance_price 0.001268 0.000673 1.886 0.059

L2 . wind_error 0.000466 0.001414 0.329 0.742

L2 . spo t_ pr ic e 0.003024 0.018231 0.166 0.868

L2 . imbalance_price 0.000726 0.000847 0.858 0.391

L3 . wind_error 0.001134 0.001507 0.753 0.452

L3 . spo t_ pr ic e −0.001705 0.018236 −0.094 0.925

L3 . imbalance_price −0.001156 0.000847 −1.365 0.172

L4 . wind_error −0.001906 0.001508 −1.264 0.206

L4 . spo t_ pr ic e 0.556210 0.018240 30.494 0.000

L4 . imbalance_price −0.002065 0.000848 −2.437 0.015

R e s u l t s f o r equation imbalance_price

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const −0.460489 1.309763 −0.352 0.725

L1 . wind_error 0.014322 0.014581 0.982 0.326

L1 . s po t_ pr ic e 0.495622 0.250263 1.980 0.048

L1 . imbalance_price 0.764942 0.012998 58.851 0.000

L2 . wind_error −0.002582 0.027322 −0.094 0.925

L2 . s po t_ pr ic e 0.534364 0.352323 1.517 0.129

L2 . imbalance_price 0.027034 0.016363 1.652 0.099

L3 . wind_error −0.001095 0.029130 −0.038 0.970

L3 . s po t_ pr ic e −0.371580 0.352417 −1.054 0.292
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L3 . imbalance_price 0.019182 0.016375 1.171 0.241

L4 . wind_error −0.223735 0.029149 −7.676 0.000

L4 . spo t_ pr ic e −0.484091 0.352494 −1.373 0.170

L4 . imbalance_price 0.046465 0.016379 2.837 0.005

C o r r e l a t i o n matrix of r e s i d u a l s

wind_error sp ot _p ric e imbalance_price

wind_error 1.000000 0.010406 0.019736

sp ot _p ri ce 0.010406 1.000000 −0.016516

imbalance_price 0.019736 −0.016516 1.000000

======================================================================================
t r a i n i n g s e t 3

Summary of Regression R e s u l t s

==================================
Model : VAR

Method : OLS

Date : Wed, 20 , Jan , 2016

Time : 1 5 : 2 3 : 4 9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
No . of Equations : 3.00000 BIC : 15.5716

Nobs : 8983.00 HQIC : 15.3964

Log l i k e l i h o o d : −106650. FPE : 4.43907 e+06

AIC : 15.3060 Det ( Omega_mle ) : 4.27709 e+06

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
R e s u l t s f o r equation wind_error

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.500736 1.092140 0.458 0.647

L1 . wind_error 1.591958 0.010624 149.843 0.000

L1 . spo t_ pr ic e −0.181470 0.184572 −0.983 0.326

L1 . imbalance_price −0.003767 0.010011 −0.376 0.707

L2 . wind_error −0.722983 0.019975 −36.194 0.000

L2 . spo t_ pr ic e 0.374972 0.260344 1.440 0.150

L2 . imbalance_price −0.021578 0.012546 −1.720 0.085

L3 . wind_error 0.139665 0.021395 6.528 0.000

L3 . spo t_ pr ic e −0.366081 0.260349 −1.406 0.160

L3 . imbalance_price 0.007616 0.012551 0.607 0.544

L4 . wind_error −0.066221 0.021441 −3.088 0.002

L4 . spo t_ pr ic e 0.383310 0.260419 1.472 0.141

L4 . imbalance_price 0.043413 0.012552 3.459 0.001

R e s u l t s f o r equation sp ot _p ri ce

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.419834 0.062786 6.687 0.000

L1 . wind_error −0.000760 0.000611 −1.244 0.214

L1 . spo t_ pr ic e 0.993500 0.010611 93.630 0.000

L1 . imbalance_price 0.001085 0.000576 1.885 0.059

L2 . wind_error 0.000224 0.001148 0.195 0.845

L2 . spo t_ pr ic e 0.001117 0.014967 0.075 0.941

L2 . imbalance_price 0.000914 0.000721 1.267 0.205

L3 . wind_error 0.001212 0.001230 0.985 0.325

L3 . spo t_ pr ic e −0.000316 0.014967 −0.021 0.983

L3 . imbalance_price −0.000755 0.000722 −1.046 0.296

L4 . wind_error −0.000919 0.001233 −0.745 0.456

L4 . spo t_ pr ic e 0.500893 0.014971 33.457 0.000

L4 . imbalance_price −0.002435 0.000722 −3.375 0.001

R e s u l t s f o r equation imbalance_price

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.495103 1.157758 0.428 0.669

L1 . wind_error 0.005761 0.011262 0.512 0.609

L1 . s po t_ pr ic e 0.636185 0.195661 3.251 0.001

L1 . imbalance_price 0.756460 0.010613 71.278 0.000

L2 . wind_error −0.018217 0.021176 −0.860 0.390
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L2 . spo t_ pr ic e 0.046117 0.275986 0.167 0.867

L2 . imbalance_price 0.026712 0.013300 2.008 0.045

L3 . wind_error 0.044955 0.022681 1.982 0.047

L3 . spo t_ pr ic e −0.189416 0.275991 −0.686 0.493

L3 . imbalance_price 0.004593 0.013305 0.345 0.730

L4 . wind_error −0.238910 0.022729 −10.511 0.000

L4 . spo t_ pr ic e −0.099416 0.276065 −0.360 0.719

L4 . imbalance_price 0.072447 0.013306 5.445 0.000

C o r r e l a t i o n matrix of r e s i d u a l s

wind_error sp ot _p ric e imbalance_price

wind_error 1.000000 0.021816 0.029762

sp ot _p ri ce 0.021816 1.000000 −0.020326

imbalance_price 0.029762 −0.020326 1.000000

======================================================================================
t r a i n i n g s e t 4

Summary of Regression R e s u l t s

==================================
Model : VAR

Method : OLS

Date : Wed, 20 , Jan , 2016

Time : 1 5 : 2 3 : 5 7

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
No . of Equations : 3.00000 BIC : 15.3466

Nobs : 11863.0 HQIC : 15.2077

Log l i k e l i h o o d : −139951. FPE : 3.75119 e+06

AIC : 15.1376 Det ( Omega_mle ) : 3.64692 e+06

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
R e s u l t s f o r equation wind_error

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.243958 0.989700 0.246 0.805

L1 . wind_error 1.610147 0.009230 174.447 0.000

L1 . spo t_ pr ic e −0.245525 0.167297 −1.468 0.142

L1 . imbalance_price −0.010640 0.008679 −1.226 0.220

L2 . wind_error −0.745553 0.017496 −42.612 0.000

L2 . spo t_ pr ic e 0.390135 0.236142 1.652 0.099

L2 . imbalance_price −0.013895 0.010910 −1.274 0.203

L3 . wind_error 0.167606 0.018807 8.912 0.000

L3 . spo t_ pr ic e −0.266869 0.236164 −1.130 0.258

L3 . imbalance_price 0.004686 0.010912 0.429 0.668

L4 . wind_error −0.091239 0.018897 −4.828 0.000

L4 . spo t_ pr ic e 0.274167 0.236171 1.161 0.246

L4 . imbalance_price 0.038514 0.010913 3.529 0.000

R e s u l t s f o r equation sp ot _p ri ce

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.396947 0.054532 7.279 0.000

L1 . wind_error −0.001123 0.000509 −2.207 0.027

L1 . spo t_ pr ic e 0.994987 0.009218 107.940 0.000

L1 . imbalance_price 0.001474 0.000478 3.082 0.002

L2 . wind_error 0.001154 0.000964 1.197 0.231

L2 . spo t_ pr ic e 0.000099 0.013011 0.008 0.994

L2 . imbalance_price 0.000827 0.000601 1.376 0.169

L3 . wind_error 0.000467 0.001036 0.451 0.652

L3 . spo t_ pr ic e 0.000469 0.013013 0.036 0.971

L3 . imbalance_price −0.000749 0.000601 −1.245 0.213

L4 . wind_error −0.000848 0.001041 −0.814 0.416

L4 . spo t_ pr ic e 0.501503 0.013013 38.539 0.000

L4 . imbalance_price −0.002804 0.000601 −4.664 0.000

R e s u l t s f o r equation imbalance_price

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.570935 1.051660 0.543 0.587

L1 . wind_error −0.002396 0.009808 −0.244 0.807
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L1 . spo t_ pr ic e 0.582631 0.177771 3.277 0.001

L1 . imbalance_price 0.761293 0.009222 82.550 0.000

L2 . wind_error 0.000474 0.018591 0.025 0.980

L2 . spo t_ pr ic e 0.063119 0.250926 0.252 0.801

L2 . imbalance_price 0.014895 0.011593 1.285 0.199

L3 . wind_error 0.020443 0.019984 1.023 0.306

L3 . spo t_ pr ic e −0.135564 0.250949 −0.540 0.589

L3 . imbalance_price 0.012839 0.011595 1.107 0.268

L4 . wind_error −0.226406 0.020080 −11.275 0.000

L4 . spo t_ pr ic e −0.130978 0.250956 −0.522 0.602

L4 . imbalance_price 0.064529 0.011596 5.565 0.000

C o r r e l a t i o n matrix of r e s i d u a l s

wind_error sp ot _p ric e imbalance_price

wind_error 1.000000 0.010663 0.030191

sp ot _p ri ce 0.010663 1.000000 −0.025540

imbalance_price 0.030191 −0.025540 1.000000

======================================================================================
t r a i n i n g s e t 5

Summary of Regression R e s u l t s

==================================
Model : VAR

Method : OLS

Date : Wed, 20 , Jan , 2016

Time : 1 5 : 2 4 : 0 6

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
No . of Equations : 3.00000 BIC : 15.6729

Nobs : 15991.0 HQIC : 15.5649

Log l i k e l i h o o d : −191757. FPE : 5.45218 e+06

AIC : 15.5115 Det ( Omega_mle ) : 5.33920 e+06

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
R e s u l t s f o r equation wind_error

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.443007 1.035429 0.428 0.669

L1 . wind_error 1.561309 0.007936 196.746 0.000

L1 . spo t_ pr ic e −0.133046 0.189548 −0.702 0.483

L1 . imbalance_price −0.010259 0.008545 −1.201 0.230

L2 . wind_error −0.681507 0.014714 −46.317 0.000

L2 . spo t_ pr ic e 0.362085 0.267559 1.353 0.176

L2 . imbalance_price −0.008699 0.010731 −0.811 0.418

L3 . wind_error 0.152260 0.015677 9.712 0.000

L3 . spo t_ pr ic e −0.404400 0.267576 −1.511 0.131

L3 . imbalance_price −0.008886 0.010732 −0.828 0.408

L4 . wind_error −0.128719 0.015727 −8.185 0.000

L4 . spo t_ pr ic e 0.230927 0.267643 0.863 0.388

L4 . imbalance_price 0.035014 0.010740 3.260 0.001

R e s u l t s f o r equation sp ot _p ri ce

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.351820 0.043330 8.120 0.000

L1 . wind_error −0.000782 0.000332 −2.355 0.019

L1 . spo t_ pr ic e 0.994883 0.007932 125.424 0.000

L1 . imbalance_price 0.001159 0.000358 3.242 0.001

L2 . wind_error 0.000783 0.000616 1.272 0.203

L2 . spo t_ pr ic e 0.001741 0.011197 0.156 0.876

L2 . imbalance_price 0.000781 0.000449 1.740 0.082

L3 . wind_error 0.000214 0.000656 0.327 0.744

L3 . spo t_ pr ic e −0.001225 0.011197 −0.109 0.913

L3 . imbalance_price −0.000825 0.000449 −1.838 0.066

L4 . wind_error −0.000184 0.000658 −0.280 0.780

L4 . spo t_ pr ic e 0.502957 0.011200 44.906 0.000

L4 . imbalance_price −0.002325 0.000449 −5.173 0.000

R e s u l t s f o r equation imbalance_price

======================================================================================
c o e f f i c i e n t std . e r r o r t−s t a t prob
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
const 0.104003 0.961017 0.108 0.914

L1 . wind_error 0.005195 0.007365 0.705 0.481

L1 . spo t_ pr ic e 0.835205 0.175926 4.747 0.000

L1 . imbalance_price 0.759116 0.007931 95.716 0.000

L2 . wind_error −0.030149 0.013657 −2.208 0.027

L2 . spo t_ pr ic e −0.193140 0.248331 −0.778 0.437

L2 . imbalance_price 0.009587 0.009960 0.963 0.336

L3 . wind_error 0.044456 0.014551 3.055 0.002

L3 . spo t_ pr ic e 0.003135 0.248347 0.013 0.990

L3 . imbalance_price 0.043970 0.009961 4.414 0.000

L4 . wind_error −0.168931 0.014597 −11.573 0.000

L4 . spo t_ pr ic e −0.317559 0.248409 −1.278 0.201

L4 . imbalance_price 0.021968 0.009968 2.204 0.028

C o r r e l a t i o n matrix of r e s i d u a l s

wind_error sp ot _p ric e imbalance_price

wind_error 1.000000 −0.002741 0.004464

sp ot _p ri ce −0.002741 1.000000 −0.024360

imbalance_price 0.004464 −0.024360 1.000000
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8.3 Granger-causality

Granger c a u s a l i t y f−t e s t

================================================================

Test s t a t i s t i c C r i t i c a l Value p−value df

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31.391880 1.410934 0.000 ( 3 7 , 36693)

================================================================

H_0 : [ ’ wind_error ’ ] do not Granger−cause imbalance_price

Conclusion : r e j e c t H_0 at 5.00% s i g n i f i c a n c e l e v e l

Granger c a u s a l i t y f−t e s t

================================================================

Test s t a t i s t i c C r i t i c a l Value p−value df

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5.135126 1.410934 0.000 ( 3 7 , 36693)

================================================================

H_0 : [ ’ spot_price ’ ] do not Granger−cause imbalance_price

Conclusion : r e j e c t H_0 at 5.00% s i g n i f i c a n c e l e v e l

Granger c a u s a l i t y f−t e s t

================================================================

Test s t a t i s t i c C r i t i c a l Value p−value df

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18.492463 1.285289 0.000 ( 7 4 , 36693)

================================================================

H_0 : [ ’ wind_error ’ , ’ spot_price ’ ] do not Granger−cause imbalance_price

Conclusion : r e j e c t H_0 at 5.00% s i g n i f i c a n c e l e v e l
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8.4 Impulse Response Function

Figure 29: Impulse response function tests of the VAR(p) model consisting of wind error, spot

price and imbalance price
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8.5 Forecast Error Variance Decomposition

Figure 30: Forecast Error Variance Decomposition of the VAR(p) model consisting of wind error,

spot price and imbalance price
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8.6 Virtual Power Plant Schedule

Figure 31: Covering the electrical load with WPPs (reference case) on a transition period day
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Figure 32: Including controllable units to the VPP with DR and CHPs for a transition period day
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Figure 33: Covering the electrical load with WPPs (reference case) on a winter day
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Figure 34: Including controllable units to the VPP with DR and CHPs for a winter day
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