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Abstract 
The rapid development of wireless communication enabled its use in many fields of 
technology. Also in vehicular environment to reduce the number of traffic accidents, to 
provide high data rate information as well as to enable entertainment and comfort 
applications for drivers and passengers wireless communication systems are used. 
Therefor IEEE 802.11p standard has been developed for dealing with vehicular 
communication, which is a protocol that adds wireless access in vehicular environment. It 
enables data exchange between the vehicles and between the vehicles and the roadside 
infrastructure. The standard specifies a Physical Layer (PHY), which is based on 
Orthogonal Frequency Division Multiplexing (OFDM). This thesis gives an overview of the 
IEEE 802.11p standard's Physical Layer (PHY) together with the methodology of the 
OFDM and the Alamouti Space-Time Code.  

Especially a closer look has been achieved at the OFDM technology by investigating its 
major benefits and the main obstacles that come with it. The performance and reliability 
of OFDM system is calculated in Fixed-Point algorithm, analyzed through C code-based 
simulations and plotted on Matlab. Overall system is demonstrated through numerical 
simulations on PC and the performance is evaluated in AWGN channel. The results are 
plotted on graphs and also discussed and compared with the theoretical simulation 
results. The analyses highlight that the performance of OFDM system can be increased 
with 2x1 Alamouti Space-Time Code.   

After a brief introduction, the entire communication system is implemented together with 
some design parameters. The first part of the thesis deals with the implementation of 
OFDM on the single-input single-output (SISO) system. The second major part analyses 
Alamouti Space-Time Coded OFDM on 2x1 (MISO, 2 transmitter and 1 receiver) system.   
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Kurzfassung 
Die schnelle Entwicklung der drahtlosen Kommunikation ermöglicht in vielen Bereichen 
der Technik eingesetzt werden. Auch in Fahrzeugumgebung die Anzahl der 
Verkehrsunfälle zu reduzieren, die hohe Datenrate an Informationen zu ermöglichen als 
auch Unterhaltung und Komfortanwendungen für Fahrer und Passagiere zu ermöglichen, 
werden drahtlose Kommunikationssysteme verwendet. IEEE 802.11p Standard ist für den 
Umgang mit Fahrzeug-Kommunikation entwickelt worden. Es ist ein Protokoll, welches 
drahtlosen Zugang in Fahrzeugumgebung hinzufügt. IEEE 802.11p Standard ermöglicht 
den Datenaustausch zwischen Fahrzeugen und zwischen Fahrzeugen und der 
Straßeninfrastruktur. IEEE 802.11p Standard spezifiziert physikalischen Schicht (PHY) 
basierend auf das Orthogonales Frequenzmultiplexverfahren (OFDM). 

Diese Diplomarbeit gibt einen Überblick über den physikalischen Schicht (PHY) des IEEE 
802.11p Standard zusammen mit der Methodik des OFDM und des Alamouti Raum-Zeit-
Kode. Besonders einen genaueren Blick auf die OFDM-Technologie durch die 
Untersuchung ihrer großen Vorteile und die wichtigsten Hindernisse erreicht wird. Die 
Leistung und Zuverlässigkeit von OFDM-System wird durch Fixpunkt Algorithmus 
berechnet, durch C-Kode-basierte Simulationen analysiert und im Matlab aufgetragen. 
Das Gesamtsystem wird durch numerische Simulationen auf PC demonstriert und die 
Leistung des Systems wird in AWGN-Kanal ausgewertet. Die Ergebnisse werden in 
Diagrammen aufgetragen und mit den theoretischen Simulationsergebnissen verglichen 
und diskutiert. In dieser Diplomarbeit zeigen die Analysen, dass die Leistung des OFDM-
Systems mit 2x1 Alamouti Raum-Zeit-Kode erhöht werden kann. 

Nach einer kurzen Einführung, beschreibt diese Diplomarbeit die Umsetzung des 
gesamten Kommunikationssystems zusammen mit Fehlerwahrscheinlichkeit und einige 
Design-Parameter. Der erste Teil der Diplomarbeit befasst die Umsetzung der OFDM auf 
dem SISO-System. Der zweite wesentliche Teil dieser Diplomarbeit ist Alamouti Raum-
Zeit-Kodierte OFDM auf 2x1 (MISO, 2 Sender und 1 Empfänger) System. 
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1 Introduction 

The increasing number of vehicles leads to more traffic jams and a higher risk of road 
accidents. Some technologies like seat belts, airbags, anti-lock braking systems, radar, 
cameras and sensors have been implemented in vehicles in order to reduce traffic jams 
and road accidents [1]. Especially while talking about car communication there are 
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communication 
applications, which are used to provide real time communication network for drivers and 
for higher level traffic management systems. In V2V communication vehicles establish 
connections between each other. In V2I some infrastructure is present from which the 
vehicles retrieve information.  

Applications of vehicular communications are traffic safety applications, traffic efficiency 
applications and commercial applications, which are used to avoid accidents. Traffic 
efficiency applications are speed limit information, route guidance, green light optimal 
speed information and variable traffic light phases. The commercial applications are local 
advertising, Internet access, chasing vehicles, parking management and point of interest 
notification. And lastly the traffic safety applications are collision avoidance, wrong-way 
driving warnings, and hazardous location notification. Safety applications require reliability 
and strict short predictable deadlines for the delay, while commercial applications require 
high data rates.  

OFDM, with its high rate transmission capability and high bandwidth efficiency, is applied 
in vehicular communication systems. OFDM signals are generally created by the inverse 
fast Fourier transform (IFFT) on the transmitter site and demodulated by the fast Fourier 
transform (FFT) on the receiver site.                                                 

This thesis examines the effect of OFDM as a modulation technique for IEEE 802.11p 
standard. The main goal of this thesis is to develop, learn, and understand an OFDM 
802.11p PHY layer baseband implementation. The most important building blocks in the 
development of this thesis are OFDM modulation with Fast Fourier Transform (FFT), and 
Alamouti Space-Time Code (STC). Entire communication system is numerically 
calculated with Fixed-Point algorithm, which enables better understanding about the 
usage of Fixed-Point algorithms.   

This chapter provides a theoretical background about standardization, basics of OFDM, 
and Space-Time Codes together with multiple-input multiple-output (MIMO) systems.  
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1.1 Basics of the OFDM Transmission Technique 

OFDM is a modulation technique that places the information on multiple carrier 
frequencies. As shown in the Fig. 1 it is a multicarrier modulation technique and is used 
for high-speed digital communications.  
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Fig. 1: Difference between single-carrier systems  

OFDM performs excellently over frequency selective channels. The signal itself is split 
into independent channels, each using a fraction of the available bandwidth. Each of 
independent channels are called subcarriers, where all together form the OFDM carrier. 
Transport data is modulated in the amplitude and phase of the signal. N parallel streams 
are transmitted by modulating N distinct carriers. The symbol duration is enlarged N times 
and the bandwidth consumption of each symbol is reduced by the same factor N. The 
overall data rate and bandwidth consumption is kept constant through parallel 
transmission over N independent subcarriers. Although the spectra of different modulated 
carriers overlap, the subcarriers will not interfere with each other. Due to orthogonality a 
tight spacing of the subcarriers becomes possible enabling an efficient use of the 
available bandwidth B. In the Fig. 2 OFDM transmission technique in the frequency 
domain is shown.  

 
Fig. 2: Orthogonal basis function in an OFDM 
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N adjacent and orthogonal subcarriers are spaced by the frequency distance ∆f on the 
frequency axis. Orthogonality between all subcarrier signals exists, if the subcarrier 
distance and the symbol duration are chosen such that 𝑇!= !

∆!
. Since the system 

bandwidth B is subdivided into N narrowband sub-channels, the OFDM symbol duration 
𝑇! is N times larger than in the case of an alternative sub-channel transmission system 
covering the same bandwidth B [2].  

Typically the number of subcarriers is chosen in such a way that the symbol duration 𝑇! is 
sufficiently large compared to the maximum multi-path delay 𝜏!"# of the radio channel. 
Additionally, delay dispersion in frequency-selective channels exists, which leads to 
appreciable errors even when TF≥1, and also leads to a loss of orthogonality between 
the subcarriers and thus the ICI (inter carrier interference) [2]. In order to maintain 
orthogonality a special type of guard interval called a cyclic prefix is added. This is done 
by taking the M last symbols of the frame and putting a copy of them at the beginning of 
the frame. This also makes the output from the IFFT periodic. Cyclic prefix serves as a 
buffer between consecutive OFDM frames. It is also mentioned in section 2.1.1.7. 

OFDM symbol duration with cyclic prefix is  𝑇!! = 𝑇!+𝑇!", where during  -𝑇!"<t<0 a copy of 
the last part of the symbol is transmitted. At the transmission, data is transformed into 
time-domain using IFFT. At the receiver the received time-domain signal is transformed 
back to the frequency domain using FFT. The number of points of the IFFT and FFT is 
usually of radix two. The 802.11p standard uses a 64-point FFT. The discrete-time 
representation of the signal after IFFT is given by Equation (1.1) 

x(n) = !
!

𝑋(𝑘)𝑒!!!
!
!!!!!

!!!                 (1.1) 

 

where N is the total number of subcarriers and n∈[0, N-1). At the receiver the data is 
recovered by performing FFT on the received signal, which is given by Equation (1.2) 

 

X(k) = 𝑥(𝑛)𝑒!!!!
!
!!!!!

!!!                                (1.2) 

 

where k∈[0, N-1).    

 

The received signal is represented by the convolution of the transmitted time signal with 
the channel impulse response h(t) and an Additive White Gaussian Noise term given by 
Equation (1.3). 

 

𝑟! 𝑡 =  𝑠!(t)* ℎ!(t)+ 𝑛!(t)                      (1.3) 
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After demodulation (FFT) cyclic convolution corresponds to multiplicative input-output 
relation given by Equation (1.4). 

 

𝑟![n]= 𝐻! ∙ 𝑠![n] + 𝑛![n].                               (1.4) 

 

This shows that there is no interference between the sub channels and no inter-channel 
interference.  

Advantages of the OFDM: 

• OFDM transmits simple constellation at low symbol rate. 
• OFDM systems provide high spectral efficiency. 
• Each transmitted data stream occupies a very narrow frequency 

band. 
• ISI is less of a problem with OFDM because low data rates are 

carried by each carrier. 
• OFDM offers frequency diversity by spreading the carriers all 

over the used spectrum. 
• Transmitter and receiver can be implemented using an IFFT and 

FFT respectively.  
• If the channel state is known the transmitter can decide on the 

correct transmission parameters for each subcarrier, namely, 
coding rate and modulation order. Also different power levels per 
subcarrier can be assigned according to the channel quality.  

• OFDM needs simple equalizer at the receiver due to the long 
symbol duration and the use of CP. 
 

Disadvantages of the OFDM: 

• OFDM is not power efficient, due to linearity power amplifiers are 
required. 

• OFDM is sensitive to Doppler shift-frequency error offset 
• OFDM is also sensitive to frequency time issues. 
• Cyclic prefix lowers overall spectral efficiency 
• High Peak to average power ratio (PAPR) of the transmitted 

signal. 
• High time-frequency synchronization at the receiver. 
• The choice of small values of GI can introduce ISI and ICI 

thereby destroying the orthogonality. 
• The choice of small values of subcarrier bandwidth can cause 

carrier offset errors. 
• Requires complex electronics, like DSP including FFT 

algorithms, to run the software.  
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1.2 MIMO Systems 

The capacity of wireless communication systems is increased with multiple transmit and 
receive antennas (MIMO) technology. MIMO systems use multiple transmit and multiple 
receive antennas for a single user providing much higher spectral efficiency than SISO 
systems. MIMO systems reduce BER or increase the transmission quality. Multiple-
antenna technique simply improves reliability and increases transmission data-rate 
without any increase of transmission bandwidth. Especially the use of OFDM combined 
with MIMO technology improves system performance remarkably.                                                                                                     

Let us consider MIMO system with j transmit and i receive antennas. The block diagram 
is given in Fig 3. 

 

Tx Rx

 
 

Fig. 3: MIMO System 

 

The ℎ!,!  is a complex number corresponding to the channel gain between transmit 
antenna j and receive antenna i. If at a certain time instant complex signals 𝑠! are 
transmitted then the receive signal can be expressed as in Equation (1.5)  

𝑟!= ℎ!,! ∙ 𝑠!!
!!!  + 𝑛!                                (1.5) 

where 𝑛! is a noise term. 

We can also combine all receive signals in an 𝑖× 1 vector r, as shown in Equation (1.6)  

r= H∙s + n                    (1.6) 

where s is the  j × 1 transmit symbol vector, n is the 𝑖× 1 additive noise vector and H is 
the 𝑖× 𝑗 MIMO channel transfer matrix, given by Equation (1.7). 



1. Introduction 

14 

 

 H = 
ℎ!! ⋯ ℎ!!
⋮ ⋱ ⋮
ℎ!! ⋯ ℎ!"

 .                          (1.7) 

In this thesis a Multiple-Input Single-Output (MISO) system is used, because in a 2x1 
Alamouti Space-Time Coded System two antennas are employed only at the transmitter 
side. 

Due to diversity the different transmission channels carry independently fading copies of 
the same signal, so the correlation between signals on different diversity branches should 
be zero for maximum diversity, which means the higher the diversity gain, the lower the 
probability of error. There exists time, frequency, and space or antenna diversity. Antenna 
or space diversity is classified into receive diversity and transmit diversity. In this thesis 
the 2x1 Alamouti Space-Time coded OFDM system transmitter diversity is used. In 
transmit diversity information is processed at the transmitter and then spread across the 
multiple antennas, in our case across two antennas. In this thesis also time and 
frequency diversity is implemented. Time diversity is introduced by the convolutional 
encoder and the interleaver whereas frequency diversity is introduced by spreading the 
bits over different OFDM subcarriers. 

 

1.3 Space-Time Coding 

In the case of multiple antennas at the transmitter side, the implementation of Space-
Time Codes (STC) is required. STC reduce the fading effect in the wireless channel and 
improves the BER performance in receiver. Through the space-time coding, the 
information is spread across space and time, meaning a set of symbols is encoded in 
another set of symbols suitable for the transmission on spatially separated streams. 
Space time coding introduces redundancy between signals transmitted from various 
antennas (space) at various symbol periods (time). The goals of STC are simple 
decoding, minimization of error probability and the maximization of the information rate. A 
space-time coding has low complexity and high diversity. Simply space-time codes are 
powerful techniques to achieve full spatial diversity with low decoding complexity. There 
exist two types of space-time codes, namely space-time trellis codes (STTC) and space-
time block codes (STBC). STBCs are mostly used with an error correction code, whereas 
STTCs are an extension of the trellis codes in the case of multi-antenna transmit system 
and the error correction code is not needed. This thesis focuses on Alamouti Code, which 
is a special type of space-time block code (STBC). Alamouti introduces a very simple 
scheme allowing transmissions from two antennas with the same data rate as on a single 
antenna but increasing the diversity at the receiver from one to two in a flat-fading 
channel [3].  

In the case of two transmit antennas, Alamouti code promises full diversity and full data 
rate, that means orthogonality between the signal vectors transmitted over the two 
transmit antennas exists. In the section 2.2 details and characteristics of the Alamouti 
space-time codes are explained. 
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1.4 Introduction to IEEE 802.11p 

Wireless Access in Vehicular Environments (WAVE) defines a complete layered protocol 
stack, which is also shown in Fig. 4. The Institute of Electrical and Electronics Engineers 
(IEEE) develops IEEE 802.11p protocol. IEEE 802.11p is a standard for vehicular 
networks, which work with the cooperation of the IEEE 1609 standard family. The IEEE 
802.11p standard specifies an OFDM PHY that provides high speed wireless data 
transmission for minimizing data errors. The IEEE 802.11p standard is mainly based on 
the Wireless Local Area Network (WLAN) IEEE 802.11a standard.                                                                                                          

Communication architectures are usually based on the layered OSI (Open Systems 
Interconnection)-model, where each level provides certain functions. WAVE upper layers 
support functions like data transfer, resource management, system configuration, and 
notification. IEEE 802.11p standard provides specifications for the lower layers like 
Physical (PHY) and Medium Access Control (MAC) layer. The MAC layer enables 
participants of the vehicular network to establish a network or join a pre-existing network 
performing functions like fragmentation, packet retransmissions, and acknowledgements.                                                                                                    

This thesis deals with the physical layer characteristics. PHY layer in IEEE 802.11 
standard is split into two sublayers the PMD (Physical Medium Dependent) sublayer and 
the PLCP (Physical Layer Convergence Protocol) sublayer. The PLCP sublayer defines a 
method of mapping the MAC sublayer MPDU (MAC Protocol Data Units) into a framing 
format suitable to the medium. The PLCP prepares MPDUs for transmission when the 
MAC layer instructs, delivers incoming frames from the wireless medium to the MAC 
layer, and also minimizes the dependence of the MAC layer on the PMD sublayer. The 
PLCP sublayer adds a header containing parameters of the physical transmission like 
signal, service, length, CRC and preamble, which allows synchronization between 
transmitter and receiver, to each frame coming from the MAC layer. Under the direction of 
the PLCP, the PMD provides actual transmission and reception of PHY entities between 
two stations through the wireless medium [4]. PMD sublayer defines all modulation and 
coding types. IEEE 802.11p protocol uses OFDM signaling with 48 data subcarriers 
within a 10 MHz bandwidth. The OFDM frame, which is the resulting frame on the PHY 
Physical Medium Dependent (PMD) consists of 4 OFDM symbols for the PLCP preamble. 
These symbols are 2 for a short and 2 for a long preamble, 1 OFDM symbol for signaling, 
and a variable number of OFDM symbols for data. The packet length N!"#$ and data 
rate determine the number of data OFDM symbols. Tab. 1 shows all main values used in 
this thesis for the PHYs implementation. 
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Fig. 4: Protocol Stack 

 

Modulation BPSK, QPSK 
Data Rate 
(Mbits/s) 

3, 6 

Coded bits per subcarrier 1, 2 
Data bits per OFDM Symbol 24, 48 
Coded bits per OFDM Symbol 48, 96 
Number of fft points 64 
Number of sub carriers 52+DC 
OFDM Symbol duration 8 µs 
Cyclic  prefix time (guard 
interval) 

1.6 µs 

FFT period 6.4 µs 
Channel bandwidth 10 MHz 
Subcarrier spacing 0.15625 MHz 
Sampling period 100 ns 
Alamouti space-time code rate 1/2 

Tab. 1: Main system parameters in IEEE 802.11p standard 
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1.5 Scope 

In this thesis OFDM system with 64 subcarriers is coded. OFDM system is also 
implemented in 16-bit fixed-point algorithm. At the transmitter bit streams are grouped 
and mapped into complex symbols. Channel is assumed to be AWGN channel. 
Convolutional encoder is applied to a block of data, resulting in the increases of 
transmission redundancy. At the receiver, Viterbi decoder is used in order to decode 
convolutional codes more efficiently.  To improve the BER performance at the receiver 
also Equalizer and LMS Channel Estimation are used.    

The goal of this thesis is the use of 2x1 (two transmit and one receive antenna) Alamouti 
Space-Time Coding and fixed-point algorithm. Especially Alamouti Coding increases 
diversity and enhances the transmission quality. This thesis will present the benefits of 
applying fixed-point algorithm and space-time coding schemes to vehicular 
communication-environments.   
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2. Implementation of Systems 

In this chapter IEEE 802.11p PHY simulator is presented. For transmission an OFDM 
technique with 64 subcarriers is used. The transmitted signal is organized in frames. All 
submodules for 1x1 OFDM and 2x1 Alamouti Space-Time Coded OFDM communication 
systems are covered. Next chapter describes the Fixed-Point Algorithms, Fixed-Point 
FFT together with the important parts of the code. In chapter 4 the simulation results with 
plotted graphs are discussed. Conclusion, remarks and outlook are summed up in 
chapter 5.  

 

2.1 1x1 OFDM System 
Fig. 5 shows a block diagram of a point to point transmission system using OFDM, which 
is conceptually divided into three main modules: the transmitter, AWGN channel and the 
receiver. Each module is further split up into several submodules. This section gives a 
conceptual view of how each submodule is defined in the IEEE 802.11p standard. 
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Fig. 5: Block diagram of a 1x1 OFDM System 

 

2.1.1 Transmitter 
Fig. 6 presents the main parts of the transmitter. First of all input data bits are randomly 
generated with equally likely ones and zeros. The input serial data bit stream is formatted 
into blocks of the size required for transmission. This data bit stream represents the 
information to be transmitted. The data is then transmitted in parallel by assigning each 
data word to one carrier in the transmission. The binary sequence from the source block 
is encoded. After the convolutional encoding some redundancy is introduced, which is 
used to combat the corruptive effect introduced by the channel. After convolutional 
encoder interleaving is used to map adjacent bits into non-adjacent OFDM subcarriers. 
Afterwards coded and interleaved data string is converted into a complex number 
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according to a certain signal constellation. This complex numbers are divided into groups 
of 48 and mapped to OFDM subcarriers. Next stage is assembling the symbols, which 
inserts 4 pilot subcarriers among 48 data subcarriers. Those 52 subcarriers together with 
the zero DC subcarrier are folded in 11 zero guard subcarriers to form an OFDM symbol. 
The comb pilot subcarriers and the two long training symbols are used to perform channel 
estimation. Short training sequences used for a coarse timing estimation do not appear 
on the figure because perfect time synchronization is assumed. The next block called 
IFFT (Inverse Fast Fourier Transformation) converts the complex-valued symbols on 64 
subcarriers into a 64 tap complex discrete time signal for each OFDM symbol. This time 
domain signal consists of two long training sequences, signal field and data OFDM 
symbols. Signal field contains information about the modulation format, coding rate and 
frame length. Cyclic prefix, which is also called guard interval (GI) consists of the last 16 
taps of the discrete time signal of the OFDM symbol, which is copied and placed on the 
front of each OFDM symbol. In the last step, PPDU frame is created with appended 
OFDM data symbols. Next subsection begins with the building blocks of the transmitter. 

Encoder Modulation IFFT Add Cyclic 
Prefix

Data
bits

x(n) s(n)

Channel  
Fig. 6: Main parts of the transmitter 

 

 

2.1.1.1 Source 

Transmit signal is represented by a random binary sequence. Output values are binary 
and equally likely. All values which are greater than one half are mapped to “1” and 
smaller than one half to “0”. These random values represent the PSDU, the payload of 
the PPDU. The number of generated random bits N depends on coding rate R, number of 
data subcarriers 𝑁!", number of OFDM data symbols per frame 𝑁!"#, as well as on the 
number of bits corresponding to one constellation point 𝑁!"#$ which is given by the 
Equation (2.1): 

 

N = 𝑁!" ∙ 𝑁!"# ∙R∙ 𝑁!"#$  [5].                                                                                          (2.1) 
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2.1.1.2 Scrambler 

Bitstream may contain long sequences of 1s or 0s, causing an energy flowing in the 
transmitter and receiver. To make sure that there is no long run of 1s or 0s in the 
bitstream and to disperse the energy across all of its bandwidth some randomization is 
needed. A scrambler also known as a randomizer is used to convert an input string into 
random output string at the same length. Scramblers are usually defined on linear 
feedback shift registers (LFSRs). The scrambler implemented in this thesis consists of 7 
shift registers and 2 XORs as shown in the Fig. 7. The generator polynomial S(x) used by 
the frame synchronous scrambler is given by Equation (2.2): 

S(x) = 𝑥!+ 𝑥!+ 1  [6].                                                                                                     (2.2) 

 
which repeatedly generates a 127-bit sequence for a given pseudo-random initial state. 
Each incoming data bit is XORed with the current bit in the 127-bit sequence creating the 
output of scrambler.  

 

Data	In

Scrambled	Data	
Out

TT TT TT TT TT TTTT

 
Fig. 7: Data Scrambler [6] 

 

2.1.1.3 Encoder 

The scrambled data passes through a convolutional encoder. In the convolutional 
encoder data sequence is first divided into long blocks and then encoded, because of that 
convolutional encoder requires very little buffering and storage hardware. Convolutional 
encoder adds correlation to the input data sequence by using delay elements and modulo 
adders, which can be implemented with a feed forward shift register and XOR gates. A 
convolutional encoder is described by three parameters (n, k, m) where n is the number 
of output bits, k is the number of input bits and m is the number of shift register stages of 
the encoder. The convolutional encoder accepts k-bit blocks of information sequence and 
produces an encoded sequence of n-bit blocks called codewords. However, each 
encoded block also depends on M previous blocks. As also shown in the Fig. 8 output of 
convolutional encoder is generated with one present input bit and six previous input bits. 
Constraint length K represents the number of bits in the encoder memory that affect the 
generation of the n output bits. The error correction capacity is also related with constraint 
length.  
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Data In

Data Out 1

Data Out 2

TT TT TT TT TT TT

 
Fig. 8: Convolutional Encoder (K=7, r=1/2) 

 

Code rate is another important parameter, which measures the code efficiency and is 
defined as r= k/n. Code rate of value 1/2 means at each time index the encoder takes one 
input information bit and produces two output code bits.  An encoder with N memory 
elements has 2! possible states and a K=N+1 constraint length. Longer constraint length 
leads to more powerful code, more coding gain, more complex decoder and also more 
decoding delay. In this thesis IEEE 802.11p is implemented, which has a maximum size 
codeword packets of 2!" bits and 1/2 convolutional encoder (n=2, k=1), which means for 
one bit entering the encoder there are 2!=2 possible branches. If constraint length K=7, 
then the size of shift register would be 6, which results in 2!=64 possible states. Fig. 9 
shows the state diagram of K=7 and r=1/2 convolutional encoder. 

Also the generator polynomials 𝑔!= [01011011]! and 𝑔!= [01111001]! are important for 
representing the connection of the shift register taps to the modulo-2 adders. 
Redundancy introduced by the convolutional encoder is used for error correcting coding 
that allows the receiver to combat errors occurred by the channel.  
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Fig. 9: State diagram of K=7, r=1/2 convolutional encoder [7] 
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2.1.1.4 Interleaver 

The weakness of convolutional encoder is its susceptibility to burst error. This weakness 
can be avoided by using an interleaver, which is used for combating against burst error. 
Interleaver takes data packets, chops them up and then rearranges them. By this 
rearrangement the contiguous data is spaced further apart into a non-continuous stream.  
Interleaver aims to distribute transmitted bits in order to achieve desirable bit error 
distribution after demodulation. The kind of interleaving pattern depends on the channel 
characteristics. Interleaving reduces adjacent correlation in the bit stream. In the 
interleaver the encoded data bits are interleaved with the block size equal to the number 
of bits in a single OFDM symbol. In this thesis the interleaving depth, which defines the 
number of bits/bytes in each block of data, of m=16 is used.  

The interleaver performs two consecutive permutations. The first one ensures that 
adjacent coded bits are mapped onto nonadjacent subcarriers. The second one ensures 
that adjacent coded bits are mapped alternately onto less and more significant bits of the 
constellation.   

Let k=0,1,….𝑁!"#$-1 denote the index of the coded bit before interleaving, where 𝑁!"#$ 
gives number of coded bits in a single OFDM symbol, i the index after first permutation, j 
the index after second permutation. The first permutation works as shown in Equation 
(2.3): 

i= (𝑁!"#$/16) ∙(k mod16)+floor(k/16).                                                                             (2.3) 

 
Function floor denotes the largest integer not exceeding the argument. The second 
permutation is defined as shown in Equation (2.4): 

j= s ∙ floor(i/s)+(i+𝑁!"#$-floor(16 ∙ i/𝑁!"#$)) mod s.                                                         (2.4) 
 

The value of s is determined by the number of coded bits per subcarrier 𝑁!"#$ given by 
Equation (2.5). 

s= max(𝑁!"#$/2,1)  [8].                                                                                                   (2.5) 

 
At the receiver end, the interleaved data is arranged back into the original sequence by 
the deinterleaver.  
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2.1.1.5 Mapper 

The mapper is used for achieving higher throughput where blocks of l consecutive bits 𝑏! 
are combined into higher level “symbols” a[k] that can take on 𝑀!= 2! different real 
values/level given by Equation (2.6).  

a[k] ∈ A= {𝑎(!), 𝑎(!),…, 𝑎(!")}     with  𝑀!= 2! .                                                              (2.6) 

 
A is called the symbol alphabet. Since each symbol a[k] carries l bits, we can transmit 
these bits l times faster.  

M= 𝑀!
! different signals s(t) are transmitted corresponding to a total  number L= ldM= 

ld𝑀!
!= Kld𝑀!of transmitted bits [9]. The symbol rate is reduced by a factor of l as 

compared to the bit rate given by Equation (2.7): 

 𝑅!= !
!!

= !
!"!

= !!
!

= !!
!"#!

                                                                                                      (2.7) 

 
In practice the symbols a[k] are mapped to the subcarrier amplitude and phase. Those 
mapped symbols a[k] can be represented as points in the complex plane which is called 
signal constellation. The signal constellation design makes it possible to reduce the mean 
signal power without reducing the minimum distance between symbols. Gray codes are 
binary words, where neighboring symbols differ by exactly one bit, which are mostly used 
in Gaussian channels. In this thesis the signal constellations like BPSK and QPSK are 
defined according to Gray-coding constellation mappings and are illustrated in Fig. 10. 
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Fig. 10: Constellation Diagrams 

 

In this implementation first the bit stream coming from the interleaver is divided into 
groups of 𝑁!"#$=48 bits for BPSK and 𝑁!"#$=96 bits for QPSK. For each group bits are 
mapped into constellation symbols of 𝑁!"#$=1 bit for BPSK modulation and 𝑁!"#$=2 bits 
for QPSK modulation. 
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To achieve equal average symbol power, the resulting 48 complex pairs are then 
normalized by multiplying the resulting value (𝑆!+j𝑆!) in BPSK by 1 and in QPSK by a 

factor of  !
!
. 

 

 

2.1.1.6 OFDM Symbol Assembler 

Input of the OFDM modulation is 48 complex numbers (one OFDM symbol) coming from 
the symbol mapping block. Then each complex number is mapped to one of 48 
subcarriers represented as frequency offset indices. Also pilots are inserted in the four 
other subcarriers (-21, -7, 7, 21) giving the 52 total subcarriers per OFDM symbol. Pilots 
ensure robustness against frequency offsets and phase noise. By looking for pilot signals 
in the received signal all parameters regarding synchronization and equalization will be 
deduced. Then 52 complex pairs are padded to create 64 complex pairs. These 
remaining 12 subcarriers are zero-subcarriers. After modulation the OFDM data is divided 
into a groups of 𝑁!" = 48 complex number with logical numbering 0 to 47. Logical 
subcarrier numbers are mapped into frequency offset index -26 to 26, while skipping pilot 
subcarriers and zero DC subcarrier. The subcarriers -32 to -27 and 28 to 32 are set to 
zero resulting in a guard band. Pilot subcarriers for the 𝑛!! OFDM symbol are produced 
by the multiplication between the values {1,1,1,-1} and the second element of sequence 
𝑝!. The sequence 𝑝!controls the polarity of the pilot subcarriers, which is given by 

𝑝!={+1,+1,+1,+1,-1,-1,-1,+1,-1,-1,-1,-1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,-
1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-
1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-
1,+1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-
1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,-1} 

The sequence 𝑝! is the cyclic extension of the 127-element sequence and can be 
generated by the scrambler when the all ones initial state is used, and by replacing all 
ones with negative ones and all zeros with ones [6].  

 

 

2.1.1.7 IFFT 

Fourier transform is efficient computational tool specifying given signal amplitude as a 
function of time or frequency. Each 48 complex sample coming from the mapper is 
associated with one OFDM symbol. For each complex sample also a subcarrier position 
in the OFDM symbol is associated. The first two OFDM symbols are called preamble and 
the last one postamble. After modulation different OFDM data subcarriers are 
transformed to a time domain signal by IFFT operation as shown in the Equation (2.8).  

𝑠! = !
!
∙ 𝑆! ∙ 𝑒

!!!"#
!!!!

!!! .                            (2.8) 
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IFFT block converts the data from frequency-domain into a time-domain. N orthogonal 
sinusoids are basis functions for an IFFT. In this thesis IFFT is made up of N=64 
samples. Input symbols behave like a complex weight for the corresponding sinusoidal 
basis functions. Through IFFT all 64 sinusoidals are added to make up a single OFDM 
symbol.  

The coefficients from 1 to 26 are mapped to the same numbered IFFT inputs, the 
coefficients -26 to -1 are copied into IFFT inputs 38 to 63, while the rest of the inputs 27 
to 37 and 0 (dc) input are set to zero by forming the 64-point IFFT as shown in the Fig. 
11.  

 

0 1 7 21 26 -26 -21 -7 -1

0 1 7 21 26 38 43 57 63

k

k IFFT

 

Fig. 11: 64 subcarriers 4 of them pilots [6] 

 

The IFFT is useful for OFDM because it generates samples of a waveform with frequency 
components satisfying orthogonality conditions. IFFT/FFT operations ensure that 
subcarriers do not interfere with one another and can be brought closer. Orthogonality 
between the subcarriers allows them to overlap while avoiding crosstalks. Thus, a 
significant bandwidth savings can be achieved by using an orthogonal multicarrier 
technique.   

To reduce the effect of the multipath propagation in the form of ISI some redundancy in 
the transmitted signal has to be added, which is called cyclic prefix (CP). Because of that, 
the output of IFFT is cyclically extended to the desired length. The cyclic prefix is added 
to avoid problems in the receiver caused by the mixing of subsequent symbols in the 
receiver. Cyclic prefix is applied to the signal in the time domain and is meant to create a 
kind of guard band at the beginning of each symbol. The cyclic prefix is formed by a cyclic 
continuation of the signal. As mentioned above cyclic prefix is a copy of Fourier 
transformed waveform corresponding to the last 16 samples of OFDM symbol. The 
complete time duration of OFDM symbol is given by Equation 2.9. 

𝑇!"# = 𝑇!!" + 𝑇!"=  𝑇!!"  + !!!"
!

 = 8 µs,                                                 (2.9) 

 

 
where 𝑇!!"= 6.4 µs is IFFT/FFT period and 𝑇!" is a duration of cyclic prefix. Both Fig. 12 
and Fig. 13 illustrate OFDM frames separated by cyclic prefix. 
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bits
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Fig. 12: OFDM frames separated by guard bits 
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sym
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Fig. 13: Cyclic Prefix 

 

With 64 point IFFT and 16 bits long cyclic prefix 80 samples are obtained at the output of 
the cyclic prefix block as shown in the Fig. 14. 16-tap long cyclic prefix is chosen to be 
longer than the maximal channel impulse response length. The OFDM symbols can 
interfere just when the transmission delay of the symbols is bigger than the cyclic prefix 
duration. The advantages of cyclic prefix are not without a cost. The transmitted energy 
required to transmit the signal increases with the length of the cyclic prefix. This  𝑆𝑁𝑅!"## 
after the insertion of CP is given by Equation (2.10): 

𝑆𝑁𝑅!"##= -10𝑙𝑜𝑔!" (1- !!"
!!"#

).                                     (2.9) 

 

Cyclic	Prefix	Block
64	samples	input 80	samples	output

 
Fig. 14: Cyclic Prefix Block 
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2.1.1.8 PPDU Frame 

During transmission, an IEEE 802.11p physical layer data unit (PPDU) consists of a 
preamble, header and data. The PPDU includes the OFDM PLCP preamble, OFDM 
PLCP header, PSDU, tail and pad bits. The PLCP preamble field, which is used for 
synchronization and channel estimation, consists of ten short training symbols (𝑡!, 𝑡!, 𝑡! 
to 𝑡!") and two long training symbols (𝑇! and 𝑇!) as illustrated in both Figures 15 and 16. 
The long training sequence exhibits double duration and consists of two equal OFDM 
symbols and is used for channel estimation and fine frequency offset estimation. The 
PLCP preamble is followed by the signal field and data. SIGNAL field is encoded using 
BPSK with a coding rate of 1/2. However the first DATA symbol includes the 16 bit 
SERVICE field, where the first six bits are set to zero used to synchronize the 
descrambler at the receiver.  

 

 
 

Fig. 15: OFDM Training Structure [5] 

 

 
 

Fig. 16: PLCP Header [5] 
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A long OFDM training sequence is composed of 53 subcarriers including a zero value at 
DC, which are modulated by the fixed sequence L, given by: 

L!!",!" = {0,0,0,0,0,0,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-
1,+1,+1,+1,+1,0,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-
1,+1,+1,+1,+1,0,0,0,0,0} 

The contents of the two long training symbols are equal, therefore averaging them can be 
used to improve the quality of the channel estimation. The two long training OFDM 
symbols, each of duration 6.4 µs with a cyclic prefix of duration 3.2 µs, which is doubled 
as compared with duration of cyclic prefix of data OFDM symbol, are implemented. The 
reason is that the cyclic prefix contributes to both long training symbols, instead of 
prepending each symbol with cyclic prefix of duration 1.6 µs, as is done for data symbols. 
In this thesis the final PPDU frame is assembled by simply appending long training 
sequence, signal field and data symbols one after another. 

 

 

2.1.2 Channel 
The channel is the physical media between the transmitter and the receiver. The 
transmitted signal undergoes channel distortion. AWGN channel attenuates the signal, 
adds Gaussian-distributed noise and causes phase rotation. Adding noise to transmitted 
signal involves generating Gaussian random numbers, scaling the numbers according to 
the desired 𝐸!/𝑁! (energy per symbol to noise density ratio) and adding the scaled 
Gaussian random numbers to the channel symbol values. Typically, noise will be 
assumed uncorrelated, zero-mean, white with power spectral density 𝑁!/2 and Gaussian 
process. AWGN simply means ‘Additive’ added to any noise, ‘White’ uniform power 
across frequency band and ‘Gaussian’ normal distribution in the time domain. The output 
of the channel is the convolution of the channel impulse response with the transmitted 
signal and with the AWGN as illustrated in Fig. 17. 

 

h(k)

n(k)

r(k)s(k)

 
Fig. 17: Channel Model 

The frequency response of the channel is estimated in the receiver. 
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By the OFDM transmission technique each subcarrier has an individual transfer factor 𝐻!. 
Therefore, the subcarriers can have different bit error probabilities if the same modulation 
scheme is applied to all subcarriers.                                                  

If all subcarriers are transmitted with the same normalized transmit power, the subcarrier-
specific signal-to-noise ratio (𝑆𝑁𝑅!) values are calculated in decibel as shown in Equation 
2.11: 

𝑆𝑁𝑅!= 10∙ 𝑙𝑜𝑔!"
|!!|
!!

,                 (2.11) 

 
where  𝜎! is the variance of the white Gaussian noise.  

 

 

2.1.2.1 AWGN Channel 

To generate random numbers with Gaussian distribution Central Limit Theorem (“law of 
large numbers”) is used. According to the central limit theorem a sum of randoms will 
approach normal distribution. The law of large numbers shows that the sample mean 
converges to the distribution mean as the sample size increases. The random variable 
being observed, which is the sum or mean of many independent identically distributed 
random variables can be defined by Equation (2.12):  

Gauss = mean + 𝜎 ∙x              (2.12) 

 
where the variance σ is calculated as given by Equation (2.13):   

𝜎 = !

!"
!"#
!"

                (2.13) 

 
mean is set to zero and x is an independent, identically distributed random variable, 
which can be defined by Equation (2.14):  

𝑥 = !"#$
!"#$_!"#

!"#!
!!!            

   (𝑥!"# = 𝑥!"# - !"#$
!

)                       (2.14) 

 
where NSUM=12 is used quantity of noise values.  

The received signal can then be represented as Equation (2.15): 

r[k]= h[k]*s[k] + n[k]                         (2.15) 

 
where s[k] is a transmit signal, h[k] is a channel impulse response and n[k] is a noise 
component.  

In the developed model, white Gaussian noise is added by means of the standard AWGN 
channel block, which adds complex Gaussian noise and produces a complex output 
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signal, if the input to the block is complex. In this simulation the actual power of the noise 
in an AWGN channel is predefined by the quantities SNR and Eb/N0. 

 

 

2.1.3 Receiver 
Receiver captures the transmitted signal. Fig. 18 shows the main parts of the receiver. 
Receiver’s procedure is just the inverse of the transmitter. As seen in the Fig. 5, the 
receiver is formed from the Serial-to-Parallel converter, FFT, equalizer, demapper, 
deinterleaver, decoder (Viterbi decoder), descrambler, and the received binary data 
stream. First step at the receiver is to parallelize the signal which is done by using the 
FFT. After FFT the OFDM signal is converted into time domain and the preamble training 
symbols, signal field and the pilots are removed. Pilot subcarriers and two long training 
symbols are used for channel estimation. The equalizer compensates the fading effects, 
which gives the estimate of the transmitted symbol. These symbol sequences are 
converted into the codeword in the demapper. The deinterleaver reverses the stages of 
interleaver performed in the transmitter. Viterbi decoder converts the codeword into the 
dataword. The decoded bits are descrambled to recover the original binary data stream. 
Finally the received binary data stream is compared with the transmitted binary data, in 
order to derive the overall error ratio. Submodules of the receiver are presented in the 
following parts of this chapter.  

 

Viterbi 
Decoder

Demodula-
tion Equalizer FFT

Remove 
Cyclic 
Prefix

Channel 
Estimation

 
 

Fig. 18: Structure of the receiver 

 

 

 

 

2.1.3.1 Demodulator 

Each PPDU frame after the S/P submodule is divided into blocks. The first two blocks 
correspond to the ten short training symbols (not needed in our case), the third and the 
fourth blocks correspond to long training symbols, the fifth block is a signal field and the 
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rest are data symbols. First of all the cyclic prefix is removed by ignoring first 16 samples 
of each symbol. After removing the cyclic prefix from 80 samples 64 samples are 
obtained at the output of the cyclic prefix remover block. The FFT at the receiver side 
performs the inverse of the IFFT and is defined as in Equation (2.16): 

 

𝑆! = 𝑠! ∙ 𝑒
!!!"#$!!!!

!!!                             (2.16) 

 
At the output of the FFT block subcarriers are rearranged by exchanging the left and right 
halves of the spectrum and moving the zero-frequency component to the middle. The 
ideal FFT output should be the original samples that were sent to the IFFT at the 
transmitter. 

 

 

2.1.3.2 Channel Estimator 

Channel adds some noise into the signal, therefore channel estimation is used to obtain 
the channel state information. A continuous estimate of the channel behavior is important 
to ensure reliable data transmission and reception, for this reason a known frame is sent, 
and the received frame is compared with the original frame for the estimation of channel 
response. 

The channel estimation frame, which is a set of all the possible symbols assigned to each 
sub-channel, is another important frame that predicts the channel response at the 
receiver. Once the channel estimation frame is received, this information is used to 
generate a channel adjustment matrix. The channel adjustment matrix acts as a linear 
transform applied to all of the following frames to shift and scale the symbols as required 
to negate the combined effects of the channel. 

Due to the cyclic prefix in the OFDM system we assume, that the OFDM symbols are ISI-
free and orthogonal. Because of this the system can be described as a set of parallel 
Gaussian channels. We try to estimate the K complex-valued channel coefficient gains. 
As shown in the Fig. 19 the received data symbol  𝑟! on each subcarrier k equals the data 
symbol 𝑠!, which was transmitted on that sub-carrier, and multiplied with the 
corresponding frequency-domain channel coefficient  𝐻! in addition to the transformed 
complex Gaussian random variable 𝑛! given by Equation (2.17): 

𝑟![n] = 𝐻!𝑠![n] + 𝑛![n].              (2.17) 

 



2. Implementation of Systems 

33 

 

H

H

N

N

R

RS

S

0

0

0

0

k-1

k-1 k-1

k-1  
 

Fig. 19: OFDM System interpreted as pasallel Gaussian channels 

 

First of all a raw channel is estimated at pilot subcarrier frequencies using known pilots. 
The first step in determining the least squares estimate is to extract the pilot symbols from 
their known location. As the values of pilot symbols are known, the channel response at 
these locations can be determined by using the LS estimate which is obtained by dividing 
the received pilot symbols by their expected values. 

The estimation of channel coefficients is defined as in Equation (2.18): 

Ĥ![n] = !![!]
!![!]

 = 𝐻![n] + !![!]
!![!]

.                        (2.18) 

 
The final channel estimation for the 𝑘!! subcarrier is then given by Equation (2.19): 

Ĥ! = !
!
(Ĥ![1] + Ĥ![2])                           (2.19) 

 
where Ĥ![1] and Ĥ![2] are estimates of the first and second long training symbols. 

 

 

2.1.3.3 Equalizer 

After the channel coefficients are estimated, the equalizer utilizes the information about 
the channel to remove the distortion of the signal. The equalizer creates estimates of the 
transmitted binary data, which means the output of the equalizer should be a good 
approximation to current symbol. Equalization requires an element-wise multiplication of 
the FFT output by the inverse of the estimated channel transfer function. Zero-Forcing 
(ZF) strategy is one of the design strategies of the equalizer, which is used in this thesis. 
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In ZF equalizer multiplication by the complex conjugate of the channel estimate can do 
the equalization.  

Orthogonality of individual subcarriers is assumed to be still present and multiplicative 
input-output relation of the channel holds. It is also assumed that all channel coefficients 
𝐻! are known. The coefficients of the Zero-Forcing equalizer are inverse-proportional to 
the channel coefficients given by 𝐸!= 1/𝐻!. Hence, the output of the equalizer is given by 
transmitted samples plus a noise component given by Equation (2.20): 

𝑟!＾= 𝐸!𝑟![n]= !
!!

(𝐻!𝑠![𝑛] + 𝑛![n])= 𝑠![𝑛] + 𝑛!＾[n].                              (2.20) 

 
Through Zero-Forcing (ZF)-design total absence of ISI is possible. But the great 
disadvantage of the ZF equalizer is its effect on the noise. Hence values of 𝐸! near zero 
will result in significant noise amplification. 

 

 

 

2.1.3.4 Demapper 

Each received symbol sequence at the output of the Equalizer is demapped into the 
corresponding binary word, which is an inverse process of the mapper at transmitter.  
These detected symbols can be any complex number and can also be different from the 
transmitted symbols â ≠ a, where â is not from symbol alphabet A= {𝑎(!), 𝑎(!),…, 𝑎(!")}, 
which means that symbol errors have occurred. The output of the demapping are 
detected coded bit sequences ĉ! with bit rate 𝑅!= l𝑅!. If no symbol errors have occurred, 
the detected coded bit sequence equals the original coded bit sequence ĉ!  = 𝑐!. In the 
case of symbol errors, some of the detected coded bits will be incorrect. Hard demapping 
and soft demapping are two types of detection methods. In this thesis hard demapping is 
used, which is based on the minimum Euclidian distance between the received symbols 
and the valid symbols given by Equation (2.21): 

 

â[n] = arg [ ]min q k a
a A

⎡ ⎤−⎣ ⎦
∈

= arg [ ]( ) [ ]( )2 2
min k kq qa aR IR I
a A

− + −
∈

        (2.21) 
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2.1.3.5 Deinterleaver 

The deinterleaver converts the interleaved hard-coded bits into the original code 
sequence. As a result of deinterleaver, correlated noise introduced in the transmission 
channel appears to be statistically independent at the receiver, allowing better error 
correction. Like interleaver also deinterleaver performs two consecutive permutations. 

Let j=0, 1,….𝑁!"#$-1 denote the index of the received bit before deinterleaving, i the index 
after first permutation and k the index after second permutation. The first permutation 
works as shown in Equation (2.22): 

i= s ∙ floor(j/s)+j+(floor(16 ∙ j/𝑁!"#$)) mod s.                                 (2.22) 

 
As already mentioned function floor denotes the largest integer not exceeding the 
argument. The second permutation is defined as shown in Equation (2.23): 

k= 16∙i-(𝑁!"#$-1)floor(16 ∙ i/𝑁!"#$).                       (2.23) 

 
Like at interleaver also at deinterleaver the value of s is determined by the number of 
coded bits per subcarrier 𝑁!"#$ and is defined in Equation (2.5). 

 

 

2.1.3.6 Viterbi Decoder 

Beside the channel estimator and the equalizer, the purpose of the encoder and decoder 
is to minimize the effect of channel noise. Viterbi decoder, which is a part of this thesis, 
was developed by Andrew J. Viterbi. Viterbi decoder together with the convolutional 
encoder is the most popular FEC (Forward error correction) technique that is particularly 
suited to the AWGN channel. FEC communication scheme adds redundancy to the 
transmitted data so that any errors introduced by the channel can be corrected at the 
receiver.    

Viterbi decoding based on the maximum likelihood algorithm has a fixed decoding time, 
which is well suited to hardware implementations. At the Viterbi decoder, actual received 
encoded data plus the noise is compared with the encoded data sequence for each of the 
possible outputs of the convolutional encoder. In other words in Viterbi decoder, the 
deinterleaved coded bit sequence ĉ is converted into the transmitted bit sequence b̂, 
which means any error introduced by the channel is corrected. Fig. 20 shows the block 
diagram of Viterbi decoder. Maximization of the log-likelihood function represents the 
probability that the decoder output sequence matches the encoder input sequence. 
Viterbi decoder is simple to implement and offers large coding gain but it needs to 
process O(2!) transitions each bit time, meaning the time complexity is exponential in 
constraint length K.   
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Fig. 20: Block diagramm of Viterbi decoder 

 

The Viterbi decoder receives a pair of channel symbols and determines a distance metric 
between the received channel symbol pair and the possible channel symbol pairs. The 
mapping of an existing encoder state to a new state based on the input bit value is 
illustrated by a trellis diagram, which is a time indexed version of a state diagram. Trellis 
diagram consists of nodes and branches. Each column has the set of states, each state 
in a column is connected to two states in the next column. States of the convolutional 
encoder are values of the encoder’s register. State transitions 𝛹! → 𝛹!!! represent 
branches in the trellis diagram.  

If there are no errors the path in the trellis would match up with the received sequence. 
Finding the most likely transmitted sequence means having the minimum BER. Because 
of that Viterbi decoder is used to capture the errors occurred through the states of the 
trellis and to navigate the trellis without actually materializing the entire trellis. The error 
probability depends on the constraint length (larger K better error correction), the number 
of generators (larger this number, lower the rate and the better the error correction) and 
the amount of noise. 

Fig. 21 gives an example of a trellis diagram. Let the state at time i be defined as the 
current content of this encoder’s register, so the collection of the outputs of the J delay 
elements at time k is given by Equation (2.24): 

𝛹!= (s[k-1], s[k-2], …, s[k-J]).                    (2.24) 

 
Since each sequence can take M different values, there are 𝑀! different states. Different 
states 𝛹! for some time index I are represented by the nodes of the trellis diagram. Viterbi 
decoder finds the most likely transition and ignores the other transitions. In this thesis 
Viterbi decoder with J=6 delay elements, M=2 different values and 𝑀!=2!= 64 different 
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states is implemented. Meaning BMU calculates sixty four set of hamming distances and 
each set consists of two values.  
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Fig. 21: First three levels of the decoder 

As already mentioned branch metric (BM) and the path metric (PM) are two metrics used 
in Viterbi algorithm. Branch metric is a measure of the distance between what was 
transmitted and what was received. Hard decision decoder and soft decision decoder are 
two main methods of branch metric calculation depending on the decoder type. By the 
“soft decision” decoder method a branch metric is calculated using the Euclidean 
distance.  

In the “hard decision” decoder a branch metric is calculated using the Hamming distance 
between the received pair of bits and the “ideal” pair, where the result can only be zero, 
one, or two.  In this thesis a hard decision decoder is used, where the branch metric is 
calculated as given by Equation (2.25): 

𝑑!![i]= |𝑟[𝑖]  −  𝑠![𝑖]| !.                          (2.25) 

 
Patch metric is a value associated with a state in the trellis. The path metric is calculated 
with the “Add-Compare-Select” procedure as also shown in Fig. 22, where at a new state 
branch metric is added to the path metric from the old state, then the sums for paths 
arriving at the new state are compared and the path with smallest value, called survivor 
path, is selected. Path metric is represented by Equation (2.26): 

𝑑!![i]= |𝑟 𝑙 −  𝑠![𝑙]|!!
!!! .                         (2.26) 



2. Implementation of Systems 

38 

 

AddPossible 
Branch Metric 

1

Survivor Path 
metric for 
storage

Path metric 
from previous 

stage

Add

Path metric 
from previous 

stage

Compare

Possible 
Branch Metric 

2

Possible Path 
Metric 1

Possible Path 
Metric 2

Survivor Path 
metric to next 

stage

 
Fig. 22: Block diagram of Add Compare and Select Unit 

 

At the current time point i, 𝑀! survivor paths have to be stored. It has been proved that all 
survivor paths merge after decoding a sufficiently large block of data. In particular, 
decoding depth D is a very important parameter. A decoding depth should be 
considerably large for quality decoding. Increasing D decreases the probability of a 
decoding error, but also increases latency [10].  Any deeper traceback increases 
decoding delay and decoder memory requirements. In this thesis traceback depth of 5xK 
is used, which is very sufficient for Viterbi decoding. 

 

 

2.1.3.7 Descrambler 

The descrambler block descrambles input data sequence. Descrambler is the inverse of 
the scrambler block at the transmitter. At each time step, the input causes the contents of 
the registers to shift sequentially.  
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2.2 2x1 OFDM System 
Until now, OFDM system based on IFFT and FFT with one transmit and one receive 
antenna signaling over the channel was described. However, OFDM-based system is a 
special case of multiuser systems. The goal of this subsection is the development of a 
model for the data transmission in an OFDM-based system over a MISO channel.  

MISO system provides a better performance in two different respects, the diversity and 
the multiplexing. Receiver antenna diversity at the remote units needs to remain relatively 
simple, inexpensive and small. Therefore, for commercial reasons, transmit diversity 
schemes are becoming increasingly popular as they promise high data rate transmission. 
The diversity gain improves the quality of the communication link and is obtained through 
the use of Space Time Coding (STC). To obtain space diversity gain, multiple transmit 
antennas and at least one receive antenna must be used.  

By the use of OFDM in MISO systems, the bit stream is distributed onto many parallel 
subcarriers with a low data rate. The difference of the 2x1 OFDM system from the 1x1 
OFDM system is that MISO, diversity and space-time coding rules are used. In this 
thesis, MISO is implemented using Alamouti algorithm. ST-OFDM is based on the 
transmit diversity scheme, where the transmitter is formed from two transmit antennas 
and the signals are combined through Alamouti Space-Time codes. Block diagram of 
such communication system is illustrated in the Fig. 23.  

In this subsection, an OFDM system equipped with 𝑁!!" subcarriers (K data subcarriers, 
remaining 𝑁!!"-K subcarriers are zero), 𝑁!= 2 transmit and 𝑁!=1 receive antennas will 
be discussed. It can be seen that channel bandwidth B is decomposed into 𝑁!!" 
orthogonal MIMO channels, each with bandwidth B/𝑁!!", which in our case corresponds 
to two transmit channels. Also, different channel gains exist. The transmit function 
depends on the space and time components. Using Alamouti-Coded OFDM system with 
64 subcarriers can turn a frequency-selective MISO channel into a set of parallel 
frequency-flat MISO channels. 
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Fig. 23: Block Diagram of 2x1 Alamouti Space-Time Coded OFDM System 

 

 

2.2.1 Alamouti Coding 
As mentioned above second main part of this thesis investigates the application of the 
Alamouti Space-Time coded system. Alamouti Code was introduced by Siavash M. 
Alamouti in 1998. Alamouti Code is the first STBC that provides full diversity at full data 
rate for two transmit antennas. Alamouti code improves the quality of reception with low 
complexity at the receiver. Two transmit and one receive antenna provides the same 
diversity order as Maximum Ratio Receiver Combining (MRRC) with one transmit and two 
receive antennas. However, due to the fact that no channel state information is available 
at the transmitter, there is approximately 3 dB offset between 1x2 MRRC and 2x1 
Alamouti STBC BER versus SNR curves. Particularly Alamouti scheme with two transmit 
antennas is optimum in both the capacity and the diversity. Also, the Alamouti scheme 
does not require channel state information at the transmitter, which requires a low 
complexity maximum-likelihood decoding algorithm. To decouple the transmitted signals 
from different antennas, the channel between individual transmit and receive antenna 
pairs requires to remain constant during two consecutive OFDM symbol periods. Figures 
24 and 25 illustrate how the Alamouti encoding procedure is performed.  
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Fig. 24: Alamouti scheme with two transmit antenna 

 

The two SISO channels from the two transmit antennas are assumed to be both time- 
and frequency selective. The space-time block encoder generates a pair of complex 
symbols {𝑠!, 𝑠!}, which implies that transmitter with two antennas using the Alamouti 
STBC requires two signaling intervals. In general, transmission matrix of the space-time 
block code is linear combination of the transmitted symbols and their conjugates. During 
the first interval, 𝑠! and 𝑠! are transmitted from the first and second antenna respectively 
and during the second, −𝑠!∗ and 𝑠!∗ are transmitted from the first and second antenna 
respectively. In other words, the information symbols are transformed into the space-time 
code matrix given by Equation (2.27):   

S= 
𝑠! 𝑠!
−𝑠!∗ 𝑠!∗

                        (2.27) 

 
where the first row represents the first transmission period and the second row the 
second transmission period. Encoding is performed in both time and space domain. As 
shown in the equations, two consecutive symbols are spatially encoded into four symbols. 
One of the main properties from Alamouti codeword matrices is the orthogonality, 
regardless of the underlying modulation scheme [11]. This property enables the receiver 
to detect 𝑠! and 𝑠! using a simple linear signal processing operation. In this thesis 
Alamouti Space-Time Coding is performed to every symbol in 48-bit data blocks. 
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Fig. 25: Alamouti scheme  

 

The observations during the forty-eight signaling interval at a receiver with a single 
antenna are given by Equation (2.28): 

 

𝑟!
𝑟!……
𝑟!"
𝑟!"

  = 

h!
h!∗

h!
−h!∗…

…
h!"
h!"∗

…
…
h!"
−h!"∗

𝑠!
𝑠!
…
…
𝑠!"
𝑠!"

  +  

𝑛!
𝑛!
…
…
𝑛!"
𝑛!"

 = r = 𝐻!"" ∙s + n           (2.28) 
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where n is white Gaussian and zero-mean noise and 𝐻!"" is an effective channel matrix. 
In the Equation 2.28, a mathematical decoding description is presented. The channel 
gains are assumed to stay constant during each consecutive symbol interval. Alamouti 
code transforms a MISO (2x1) channel into an effective MIMO (2x2) channel with transfer 
function 𝐻!"". 𝐻!"", which is orthogonal, namely 𝐻!""*𝐻!""= | 𝐻 |!𝐼 , where | 𝐻 |!= |ℎ!|!+ 
|ℎ!|! is the squared norm of the underlying MISO channel H= [ℎ!, ℎ!] [12].  The output 
signal then is given by Equation (2.29): 

r = 𝐻!""∗  ∙r= 𝐻!""∗ ∙(𝐻!"" ∙s+n) = | 𝐻 |! ∙s+ 𝑛^                      (2.29) 

 

From the result it is seen that the maximum-ratio combiner output for a two-input single-
output channel with Alamouti transmit diversity coding is statistically identical to the 
maximum-ratio combiner output for a single-input two-output channel with receive 
diversity and no space- time coding. The Alamouti scheme leads to order-two diversity, 
without an array at the receiver, without channel knowledge at the transmitter and with 
only simple linear combining and slicing at the receiver. Alamouti’s technique with two 
transmit antennas can easily be extended to an arbitrary amount of receive antennas to 
obtain a diversity order of 2𝑀!

!. 

 

 

2.2.2 Channel Estimation of Alamouti 2x1 

In this subsection, the basic estimation algorithm in an OFDM MISO system is 
represented. Time orthogonal method with four linear independent equations and four 
unknown variables are used. It is assumed that transmitted and received preamble 
symbols, s and r are known at the receiver.  Also the channel matrix H is assumed to stay 
constant during the transmission, which is given by Equation (2.30). 

 

𝑅!= 𝐻!𝑆!+𝑁! 

𝑟!,!! 𝑟!,!!

𝑟!,!! 𝑟!,!!
 = 

ℎ!,!! ℎ!,!!

ℎ!,!! ℎ!,!!
𝑠!,!! 𝑠!,!!

𝑠!,!! 𝑠!,!!
 + 

𝑛!,!! 𝑛!,!!

𝑛!,!! 𝑛!,!!
                           (2.30) 

 

Where 𝑟!,!!  is the received signal, ℎ!,!!  are the channel gains, 𝑠!,!!  the transmit signal and the 
indices i, j, l represent the number of receive antenna, number of transmit antenna and 

OFDM symbol interval respectively. The transmit signal matrix 𝑆! is always c 1 −1
1 1  

with c= 1 or c= -1, which depends on subcarrier index k.  The second method, which is 
used in this thesis is the time multiplexed MISO channel estimation. It is suboptimal for 
signal amplification issues where the transmit matrix 𝑆! is always cI (identity matrix), 
which leads to the following channel estimation given by Equation (2.31): 
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Ĥ! = 𝑅!𝑆!!! = 𝐻! + 𝑁!𝑆!!! ,                                                           (2.31) 
 

where both equations are valid for the case of 2x1 channel estimation [12].  
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3. Fixed-Point Algorithm and Code 

This chapter is composed of two main parts. The first part describes the fixed-point 
algorithm and the second part gives an understanding about the development of the 
code. The first part begins with the theoretical explanation of the fixed-point algorithm and 
fixed-point FFT, in the second part, explanation of the functions written in C programming 
language are given. In the next chapter the results from the code which are simulated in 
PC are presented.   

 

3.1 Algorithmic Explanations 
The main goal of this thesis is to present an entire 1x1 and 2x1 OFDM System in fixed-
point algorithm. The meaning and the way of fixed-point programming in the C 
programming language is described below. 

 

3.1.1 Fixed-Point Representation 
The arithmetic units in digital signal processing hardware usually employ fixed-point 
computations. The reason is that fixed-point operations are fast, memory and bus sizes 
are small and use less area and energy. C and other high level programs usually allocate 
16 bits to store integers. A K-bit fixed-point number can be represented as an integer or 
as a fraction. Integer representation may be unsigned or signed. In unsigned case 
number can take any integer value from 0 to 65535 and on signed integer case two’s 
complement is used to include negative numbers having the range from -32768 to 32767. 
Integer fixed-point representation is difficult to use due to possible overflows. Also 
fractional fixed-point representation may be unsigned fraction and signed fraction, in 
unsigned fraction the 65536 levels are spread uniformly between 0 and 1 but the signed 
fraction format allows negative numbers equally spaced between –1 and 1. Fractional 
fixed-point representation, which is also called Q-format, represents numbers between -
1.0 and 1-2!(!!!), when N is a number of bits. In fractional fixed-point representation 
multiplying a fraction by a fraction always results in a fraction, which will not produce an 
overflow [13].  

In this thesis signed integer fixed-point representation is used.  

Signed integer number is shown in the Fig. 26. N-bit fixed-point, two`s complement 
number is shown by Equation (3.1):  

 X= -𝑏!!!2!!!+𝑏!!!2!!!+…+𝑏!2!                                                (3.1) 

N-1 0
S

 
Fig. 26: Signed integer fixed-point representation of a number  
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For the conversion of the integers into a fixed-point format, first the range of number 
should be found, than the suitable fixed-point version of the number can be obtained.  

General characteristics of the fixed-point implementation are: 

1) The processing time is reduced. 
2) Is adopted for smaller area and lower energy consumption. 
3) May suffer from some loss on the error-rate performance, which 

needs to be investigated. 
4) The processing time is drastically reduced compared with the 

floating-point counterpart, running at a higher clock frequency. 
 

The fixed-point arithmetic operations are addition, subtraction, multiplication and division. 
The shifting operation is used for all the arithmetic operations. Shifting is used to displace 
the position of the binary point. It is equivalent to multiplication or division by a power of 
two. In order to add two fixed-point numbers, first they must be shifted to have the same 
binary point position and then can be added with each other. The result is a fixed-point 
number with a length of N+1 bits, where N represents the number of bits in each number. 
In multiplication the bits are unsigned and the number of bits of the result is equal to the 
sum of the numbers of the bits of the multipliers [14]. After the multiplication, if in the 
result extra signed bits exist, then they should be avoided by shifting the bits to the left. 
The shifting positions are equal to the number of extra signed bits. More difficult problem 
is division because hardware divider does not exist. For division reciprocal of the divisor 
is calculated.  

 

 

3.1.2 Fixed-Point FFT and Twiddle Factor 

FFT is one of the most important tools used to reduce computations of DFT from O(𝑁!) to 
NlogN, where N denotes the length of the input vector. FFT breaks up the original N point 
samples into two (N/2) sequences, where one is formed from the even-numbered points 
and the other from the odd-numbered points of the original DFT. The development of FFT 
algorithm because of complex twiddle factors result in complex variables. Therefore FFT 
algorithm is designed to perform complex additions and multiplications. However, the 
input sequence consists of real numbers. For the calculation of an FFT with fixed-point 
arithmetic the input data is scaled to prevent overflow and to maintain accuracy. Also new 
conditions on the magnitudes of the input components to avoid overflow during the 
computation of the FFT are derived. Butterfly-based architecture, recursive algorithm-
based architecture, multiplier-accumulator-based structure and ROM operation-based 
structure are four possible categories used for the FFT/DFT computation. The radix-2 
butterfly is the simplest FFT algorithm, which greatly reduces the total computational cost 
by recursively splitting the DFT as shown in the Fig. 27.  The radix-2 FFT of a complex 
sequence {𝑠!} of length N is the complex sequence {𝑆!} of length N, given by Equation 
(3.2): 
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S[k]= 𝑠[𝑛] ∙ 𝑒
!!!!"#

!!!!
!!!  

 

= 𝑠[2𝑛] ∙ 𝑒
!!!!"#

(!! )
!
!!!
!!! +𝑊!

!" 𝑠[2𝑛 + 1] ∙ 𝑒
!!!!"#

(!! )
!
!!!
!!!                                  (3.2) 

 
As shown by the Equation 3.2 one radix-2 FFT begins by calculating N/2 2-point DFT. In 
the next stage these are combined to form N/4 4-point DFT and it continues until a single 
N-point DFT is produced. Fast Fourier transform with basic radix-2 algorithm, can be 
characterized in terms of a basic computational unit known as the butterfly. These 
butterflies process a pair of complex data values to produce a new pair of complex data 
values which can occupy the same storage locations as the input data. The butterfly is 
the FFT algorithm represented as a diagram and its operations are complex addition and 
multiplication by a complex exponential. For radix-2 algorithm, there are 𝑙𝑜𝑔!! stages in 
the computation. At each of the 𝑙𝑜𝑔!! stages of the FFT, N/2 butterflies are computed. For 
64-point DFT 6 stages are needed. At each stage, N complex values are used to 
compute N new complex values. It is important to guarantee that the data to be 
transformed has a range which avoids overflow problems. The entire data array is scaled 
(shift the data to accomplish multiplication by power of two) with the same scale factor to 
bring the largest value to near full scale.  
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Fig. 27: 6 stages in the computation of the N=64-point DFT 

 

𝑊 is the twiddle factor matrix with the elements defined by the complex exponential as in 
Equation (3.3): 

𝑊!
!"= exp(!!!!!"

!
)= cos(!!!"

!
) - j∙sin(!!!"

!
).                                            (3.3) 

 

Twiddle means “Turn around with fingers”, shown also in Fig. 28 it is the factor of rotation. 
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Fig. 28: Twiddle factors for 64-point FFT 

 

In this thesis for the fixed-point FFT first of all the values are scaled between the signed 
short range of 32767 to -32768. The scaled values that serve as input to the FFT are 
labeled as Fix Real and Fix Imag. Then the twiddle values are calculated using the 
equations above. The calculated twiddle factors are scaled to fixed-point values and 
multiplied by input values to give an output values.  

 

 

3.1.3 Treatment of End Effect using Zero Padding  
Zero padding is also important method during simulations. Because the input signal must 
be periodic and the duration of the response has to be the same as the period of the 
data. For the first condition often the data has to be padded with the number of zeros on 
one end, equal to the maximum positive duration or maximum negative duration of the 
response function. These zeros protect the output channels from wrap-around pollution. If 
the response is much shorter than the length of the data set, it can be extended to the 
same length by padding it with zeros. 
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3.2 Explanation of the Functions from the Code 
Hardware implementation for a SISO and MISO Fixed-Point OFDM system utilizing 
Alamouti Space-Time Coding is written in C source. The main point of the code is to use 
a fixed-point algorithm. First block of the transmitter module is a data generator. It 
randomly produces the payload data bits with equally likely zeros and ones. This 
generated amount of data is an input parameter to the simulator. The next block, called 
the scrambler is used to randomize the bit pattern because often the payload bits consist 
of long runs of zeros or ones. In this thesis the data generator is already random so a 
scrambler is not really needed, a code can also be implemented without it. The next block 
of the transmitter module is the convolutional encoder. The data passes through the 
convolutional encoder, which introduces redundancy in the stream to combat corruptive 
channel influence. Encoder in this thesis has a code rate of 1/2 and constraint length of 7. 
After the encoding, the interleaver combats against temporally long channel fades 
resulting in burst errors. The interleaver simply rearranges the bit streams, which is then 
reversed at the receiver node. 

In order to obtain higher spectral efficiency the output of the interleaver is mapped onto a 
higher order of modulation symbols, which is carried out by the mapper. In this thesis the 
supported modulation alphabets for IEEE 802.11p are BPSK and QPSK. Due to the use 
of Gray coded modulation schemes, the consecutive symbol points differ by only one bit, 
so a symbol error will most likely result in only one bit error.  

Transmission is organized in frames. Frame structure consists of data symbols and 
preamble. In other words the payload bit size together with the modulation and coding 
scheme determine the OFDM frame size.  

Until the mapping part, the MISO simulation is equal to the SISO simulation. In the MISO 
simulator space-time encoding process is accomplished before the OFDM symbol 
assembler. Alamouti Space-Time encoding is represented in Equation (3.4): 

 

  S = 

𝑠!
−𝑠!∗

𝑠!
𝑠!∗…

…
𝑠!"
−𝑠!"∗

…
…
𝑠!"
𝑠!"∗

=

𝑐!,!
𝑐!,!

𝑐!,!
𝑐!,!…

…
𝑐!",!
𝑐!",!

…
…
𝑐!",!
𝑐!",!

.                                                                   (3.4) 

 

As shown on the Tab. 2 the Alamouti coding scheme is applied to each OFDM symbol in 
each time interval. 

                          Time intervals 
 t t+T t+2T t+3T … t+47T 
Tx! s! −s!∗  s! −s!∗  … −s!"∗  
Tx! s! s!∗ s! s!∗  … s!"∗  
 

Tab. 2: Coding process of Alamouti scheme 
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48 time intervals exists because OFDM symbol comprises 48-bit data blocks. The symbol 
stream obtained from the mapper is grouped into blocks of two consecutive symbols. The 
elements of every block with index b are labeled 𝑠! and 𝑠!. All these blocks are encoded 
by the Alamouti encoding procedure ending up in four code symbols 𝑐!,!!  which are 𝑠!, 𝑠!, 
−𝑠!∗  and 𝑠, where the indices i and l represent the transmit antenna number and the 
OFDM symbol number modulo 2, respectively. 

After encoding every block of the consecutive symbols, the encoded symbols c are 
arranged at the various positions in the time-frequency grid. After rearrangement the 
comb pilot subcarriers and preamble are added. Then, encoded and assembled data is 
modulated by an IFFT transformation with 𝑁!!"= 64 and 𝑁!"= 16.  

The core functions of this code are IFFT and FFT. In these two functions we can see the 
effect of fixed-point numbers. IFFT and FFT are not simply presented through their sine 
and cosine functions. They are presented through the twiddle factor 𝑊!

!".  

For 64 subcarriers in OFDM we get a 64x64 matrix of twiddle factor and the output of the 
IFFT can be expressed as in Equation (3.5). 

 

  

𝑠!
𝑠!
𝑠!
⋮
𝑠!"

 = !
!
∙ 

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

⋯ 𝑊!

⋯ 𝑊!"

⋯ 𝑊!"

⋮    ⋮   ⋮
𝑊! 𝑊!" 𝑊!"

⋮ ⋮
⋯ 𝑊!

∗

∙

𝑆!
𝑆!
𝑆!
⋮
𝑆!"

                                          (3.5) 

 

The values of the inverse twiddle factor matrix are converted to the fixed-point values, 
where 1 is equal to 32767 and -1 to -32768. All the inverse twiddle factors are 
represented with limited number of bits and the loss due to the inexact coefficients is 
called coefficient quantization error.  

Code works with 16 bit long variables. If the output values of IFFT lie outside the values 
32767↔ -32768, the bits have to be shifted in order not to lose too much information.  

Afterwards, the OFDM signals pass through the AWGN channel, which introduces white 
Gaussian noise.  As mentioned above just the values in the AWGN channel are not fixed-
point. The input output relation of a 2x1 MISO channel model is given by Equation (3.6). 

 

y[n] = ℎ![n,m]𝑠![n]+ ℎ![n,m]𝑠![n]+n[n].                                   (3.6) 

 
AWGN system model is represented with Gaussian distributed random variables with 
impulse response H=1 and N additive white Gaussian noise. The model is presented in a 
per-subcarrier manner. Since during the entire transmission the impulse responses for 
every link branch remain constant the time dependence vanishes as given by Equation 
(3.7). 
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Y= HS + N                                       (3.7) 

 
Since the transmitted signal is in general a complex valued sequence, a complex valued 
AWGN component has to be added. The elements of N are derived from the noise 
component and added to the discrete time domain signal on receive antenna.  

FFT at the receiver does not change the statistical properties of the noise component, the 
elements of N are complex valued, stationary, zero mean, circularly symmetric, 
Gaussian-distributed random processes with independent real and imaginary parts, so 
the variance remains equal to the noise power. This complex-valued output of the AWGN 
channel is converted into fixed-point values again. 

The first submodule at the receiver is the demodulator. At the demodulator, first the cyclic 
prefix is removed and the remaining 64 samples of the OFDM symbol are directed to an 
FFT block, which converts the data into a time-frequency grid. At the FFT block the 
twiddle factor is multiplied with the input of the FFT as shown in the Equation (3.8).  

 

𝑆!
𝑆!
𝑆!
⋮
𝑆!"

= 

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

⋯ 𝑊!

⋯ 𝑊!"

⋯ 𝑊!"

⋮    ⋮   ⋮
𝑊! 𝑊!" 𝑊!"

⋮ ⋮
⋯ 𝑊!

𝑠!
𝑠!
𝑠!
⋮
𝑠!"

              (3.8) 

 
Also here after the multiplication in case of overflow the bits are shifted. It is the opposite 
of the IFFT function.  

The demodulated symbols are then directed to the channel estimator. After channel 
estimation equalization follows. Alamouti STC decoding is implemented with the ZF 
Equalizer. ZF Equalizer provides the unbiased estimates 𝑋!^=[𝑠!,!^   𝑠!,!^ ] and is given by 
Equation (3.9). 

𝑋!^= (𝐻!!𝐻!)!!𝐻!!𝑌!                (3.9) 

Consequently the estimates 𝑠!^ and 𝑠!!!^  for the transmitted signal 𝑠! and 𝑠!!! are 
obtained as given by Equation (3.10). 

𝑠!^= !
!!,!!!,!!!

∗ !!!,!!!,!!!
∗ (𝐻!,!!!∗ 𝑦! + 𝐻!,!𝑦!!!∗ ) 

𝑠!!!^  = !
!!,!!!,!!!

∗ !!!,!!!,!!!
∗ (𝐻!,!!!∗ 𝑦! − 𝐻!,!𝑦!!!∗ )                           (3.10) 

 

Hard demapping, based on the minimum Euclidean distance from every distinct receive 
soft symbol to the set of transmitted symbols, is processed by the slicer given by 
Equation (3.11). 
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Â = arg min ||y-a|| =  arg min 𝑦! − 𝑎! ! + 𝑦! − 𝑎!
!                     (3.11) 

 

In the demapper the estimated hard symbol stream is converted into an estimated bit 
stream. Afterwards in the deinterleaver the rearrangement procedure accomplished by 
the interleaver is inverted.  

The next and the most important submodule of the receiver is the Viterbi decoder. Viterbi 
decoder is based on a Maximum Likelihood decoding selecting the minimum distance 
between the received signal and the codeword. Viterbi decoder calculates set of 
hamming distance. Afterwards cumulative hamming distance until the last branch is 
added to hamming distance of the new branches by add-compare-select module. After 
adding operation each current state gets two new cumulative hamming distances, now 
add-compare-select module compares the size of the two cumulative distances and 
selects the smaller one as a survivor. The smaller cumulative hamming distance 
becomes the benchmark for the next computation. Survivor paths of all the states are 
stored.  In last step, survivor paths are stored at each stage. When there are no more 
encoded bits to process the detection of a node having minimum path metric is done by 
comparing all the cumulative hamming distances at the last stage. 

In this thesis for 48 data bits 24 time points in trellis diagram exists. Current state and the 
hamming distance are stored for Viterbi algorithm. The path with lowest Hamming 
distance minimizes the total number of bit errors and is most likely when the BER is low. 
Because of that the path with lowest hamming distance is codeword, which means the 
corresponding input number are read.  

The payload data bits ŝ are estimated at the receiver through the decision rule with r 
representing the receive bit sequence and s the transmitted bit sequence given by 
Equation (3.12). 

ŝ = max Pr(y|s)               (3.12) 
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4. Simulation Results 

This chapter presents the graphical results from the code providing the simulation results 
obtained from the IEEE 802.11p PHY simulator. The system depends on the certain user-
defined parameters that strictly determine the performance of the physical layer. 
Received bits are compared with transmitted bits and if they are different an error is 
recorded. After the counted errors BER is calculated by dividing the number of errors by 
the total number of counted bits. In system performance analyses both uncoded and 
decoded BER are calculated. The uncoded BER is the error ratio obtained by comparing 
the encoded bits at the output of the encoder with the undecoded bits at the input of the 
Viterbi decoder. The decoded BER is the error ratio obtained by comparing the payload 
data bits at the transmitter with the decoded bits at the output of the Viterbi decoder at the 
receiver. Code performance is analyzed in terms of decoded/encoded BER as a function 
of Eb/N0. Eb represents the average energy transmitted per information bit and N0 
represents the signal sided power spectral density of a channel. The power profile is 
normalized so that the overall average channel impulse response energy is equal to 1.  
Noise at the receiver is assumed to be additive white complex Gaussian noise. The 
concept of Eb/N0 is to find an analytical relationship between the SNR of the coded bits 
of a data frame and the frame error probability. SNR is derived from the simulator input 
parameter Eb/N0 in a linear form, which is used to prescribe the noise power at the 
receiver. The x-axis measure Eb/N0 and y-axis measure BER. The channel is modeled 
as an AWGN channel. The channel SNR is swept from 0 to 20 dB. General input 
parameters are transmission regime, frame length (in bytes), bit energy to noise power 
spectral density ratio (Eb/N0), AWGN channel and the types of the channel estimator, 
equalizer, demapper and decoder. The simulation results are visualized on BER-curves 
versus Eb/N0. Especially the most important point for fair comparison is that the total 
transmit energy must be equal for SISO and Alamouti. Therefore the mean transmit 
power in the simulator on SISO and Alamouti is 1. The simulation results visualized by 
the curves give an idea how to design the hardware for vehicular communications.  

 

4.1 Error Ratio Calculation 
As mentioned above the main performance measure used to assess the efficiency is the 
bit error probability. In particular, using the receive energy per bit, E! corresponding to 
each of the information bits contained in the modulated data symbol is determined and 
using the two-sided power spectral density 𝑁!/2 of the noise, the corresponding bit error 
probability 𝑃! is simulated for various values of 𝐸!/𝑁!. Error rate calculation block 
compares input data from a transmitter with input data from a receiver. It calculates the 
error rate as a running statistic by dividing the total number of unequal pairs of data 
elements by the total number of input data elements from one source [15]. If the inputs 
are bits, the block computes the bit error rate and if the inputs are symbols then the 
symbol error rate is calculated. Also for an exact calculation of error rate the 𝑇!  and 𝑅! 
signals must share the same sampling rate. In this thesis, simulator output provides 
information of transmission reliability in terms of Bit Error Rate (BER) versus 𝐸!/𝑁!. 
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4.2 Graphical results over AWGN channel 
In the following diagrams performance of SISO, fixed-point SISO, 2x1 Alamouti and fixed-
point 2x1 Alamouti schemes is compared. Simulations are carried out with a simple 
AWGN channel model, which helps to analyze key transmission settings. In the Fig. 29 
SISO with fixed-point SISO is compared. Simulation is done for uncoded BER with BPSK 
mapper, code rate ½, frame length 2000 byte, and 500 frames. Fixed-point OFDM is 
simulated for word length of 16 bit. From the figure it is seen that fixed-point SISO 
performs with 2 dB difference. 

 

 
Fig. 29: Simulation Results for SISO and Fixed-Point SISO 

 

Next simulation model was developed to quantify the performance of the Alamouti STBC. 
Here the channel is also modeled as an AWGN channel. The total transmit power is 
equally divided by the number of transmit antennas. In the Fig. 30 simulation is done also 
for uncoded BER with BPSK mapper, code rate ½, frame length 2000 byte and 500 
frames. Fixed-point Alamouti is also simulated for word length of 16 bit. From Fig. 30 can 
be seen that the BER of the fixed-point Alamouti is also higher.  
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Fig. 30: Simulation Results for 2x1 Alamouti and Fixed-Point 2x1 Alamouti  

 

From both figures (Fig. 29 and Fig. 30) can be concluded that the use of fixed-point 
arithmetic increases the BER. 

Next two figures compare the performances of fixed-point SISO with the fixed-point 2x1 
Alamouti. Fig. 31 presents uncoded BER and Fig. 32 presents decoded BER. Both 
curves fixed-point SISO and fixed-point 2x1 Alamouti reach almost the small BER values 
when the 𝐸!/𝑁! is low. In higher 𝐸!/𝑁! values the fixed-point 2x1 Alamouti scheme 
achieved higher BER than fixed-point SISO.  
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Fig. 31: Uncoded BER for Fixed-Point SISO and 2x1 Alamouti 
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Fig. 32: Decoded BER for Fixed-Point SISO and 2x1 Alamouti 

 

From Fig. 31 and Fig. 32 can also be concluded that MISO scheme need higher 
transmission power then pure 802.11p SISO transmission in order to obtain the same 
reliability.  

When Fig. 31 and Fig. 32 are compared, it can be seen that for decoded BER better 
simulation results exists than uncoded BER. This proofs that Viterbi decoder increases 
the performance by optimizing the decoded bits and lowering the overall BER count. 
Because as already mentioned decoded BER is the error ratio obtained by comparing the 
payload data bits at the transmitter with the decoded bits at the output of the Viterbi 
decoder at the receiver.    
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5. Conclusion 

This thesis investigates the performance of the physical layer defined in IEEE 802.11p. 
Performance of the OFDM and fixed-point OFDM in SISO and in 2x1 Alamouti system 
has been implemented and simulated.  

First main part of this thesis is the Alamouti Space-Time Coding. As can be seen from 
simulation results 2x1 Alamouti scheme doesn’t bring enhancement over SISO in terms 
of flow throughput. This is due to the space-time code rate and because of 2x1 Alamouti 
scheme estimates two impulse responses by utilizing two OFDM symbols.  

But Alamouti Space-Time coding reduces the BER at a specific 𝐸!/𝑁!, without any loss 
on the data rate, which gives Alamouti’s code a significant advantage. Full transmission 
rate has higher practical interest because it is the right choice in case of lower 𝐸!/𝑁!  and 
higher BER. As can be seen from simulations in uncoded BER till 6 dB 𝐸!/𝑁! and in 
decoded BER till 8 dB 𝐸!/𝑁! performs 2x1 Alamouti almost the same as SISO system 
and after 10 dB 𝐸!/𝑁!, BER decreases more remarkably and at 20 dB 𝐸!/𝑁!, BER 
reaches its minimum value but almost with 8 dB difference in comparison to SISO 
system.  

It can be concluded that Alamouti multi-antenna system in vehicular communications will 
provide reliable performance and low complexity detection schemes. Furthermore, it is 
also clear that MISO Alamouti improves the system because transmitting data through 
many low-powered channels is more beneficial than one single high-powered channel 
system. 

Second main part of the thesis is the fixed-point algorithm. From the simulation results it 
is seen that the fixed-point implementation suits not better than floating-point 
implementation. Especially, while using different number systems floating-point 
implementation overcomes fixed-point solution. Floating-point implementation is more 
useful while dealing with data of different ranges. Implementing fixed-point solutions word 
length is very important to achieve desired BER performance with respect to floating point 
performance. Due to the limited word length, both the input signal and twiddle factors are 
truncated. In simulations 16-bit word length and signed integer fixed-point is used, which 
performs with 2 dB difference with respect to floating-point OFDM. The main reason is 
that signed integer fixed-point algorithm introduces overflows, which needs to be 
considered after each operation. Also the gaps between adjacent numbers are much 
larger in fixed-point then in floating-point. This means that floating-point has less 
quantization noise than fixed-point. 

But fixed-point algorithm is easier and cheaper to implement and in practice it can be 
used with user-friendly tools in communication systems.
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Appendix 
 

FFTW (more specifically version 3) is used as a helper library in the code. 

Parts of the code are removed for clarity.  

 

„utils.c“ 
 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include "utils.h" 

 

double gen_uniform_random(void) { 

    return rand() / (RAND_MAX + 1.); 

} 

 

double gen_rayleigh_random(double sigma) { 

    double v = gen_uniform_random(); 

    return sigma * sqrt(-2 * log(v)); 

} 

 

double gen_standard_normal_random(void) { 

    double u = gen_uniform_random(); 

    return gen_rayleigh_random(1) * cos(M_PI * ( 2 * u - 1 )); 

} 

 

double gen_normal_random(double mean, double sigma) { 

    return sigma * gen_standard_normal_random() + mean; 

} 

 

short gen_binomial_random(double p) { 

    return gen_uniform_random() > p ? 1 : 0; 

} 

 

void leftshift(const short *in, short *out, unsigned long size, unsigned shift) { 
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    unsigned long i; 

 

    for (i = 0; i < size - shift; i++) { 

        out[i] = in[i + shift]; 

    } 

 

    for (i = size - shift; i < size; i++) { 

        out[i] = 0; 

    } 

} 

 

void rightshift(const short *in, short *out, unsigned long size, unsigned shift) { 

 

    unsigned long i; 

 

    for (i = size - 1; i >= shift; i--) { 

        out[i] = in[i - 1]; 

    } 

 

    for (i = 0; i < shift; i++) { 

        out[i] = 0; 

    } 

} 

 

„ofdm.h“ 
 

#ifndef OFDM_H_ 

#define OFDM_H_ 

 

#include <fftw3.h> 

 

#define N_DATA_SUBCARRIERS      48 

#define N_PILOT_SUBCARRIERS     4 

#define N_TOTAL_SUBCARRIERS    (N_DATA_SUBCARRIERS + N_PILOT_SUBCARRIERS 
+ 1) 

#define FFT_SIZE                     64 
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#define CYCLIC_PREFIX_SIZE         16 

#define OFDM_SYMBOL_SIZE            (FFT_SIZE + CYCLIC_PREFIX_SIZE) 

#define EXT_OFDM_SYMBOL_SIZE    (OFDM_SYMBOL_SIZE + 1) 

 

enum MODULATION_TYPE { 

    BPSK, 

    QPSK 

}; 

 

enum CODING_RATE { 

    RATE_1_2  

}; 

 

#define BPSK_NORMALIZATION      1.0 

#define QPSK_NORMALIZATION      0.707106781 // 1/sqrt(2) 

 

static const double bpsk_i[] = { -1 * BPSK_NORMALIZATION, 1 * BPSK_NORMALIZATION }; 

static const double bpsk_q[] = { 0, 0 }; 

 

static const double qpsk_i[] = { -1 * QPSK_NORMALIZATION, 1 * QPSK_NORMALIZATION }; 

static const double qpsk_q[] = { -1 * QPSK_NORMALIZATION, 1 * QPSK_NORMALIZATION }; 

 

static const double subcarrier_polarities[] = { 

1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1,1,1, 1, -
1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -
1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -
1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1 }; 

 

struct OFDM_PARAMETERS { 

 enum MODULATION_TYPE modulation; 

 char signal_rate; 

 enum CODING_RATE coding_rate; 

 unsigned n_bpsc; 

 unsigned n_cbps; 

 unsigned n_dbps; 

}; 
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„ofdm.c“ 
 
#include <assert.h> 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include "ofdm.h" 

#include "utils.h" 

 

#define MAX(x, y) (((x) > (y)) ? (x) : (y)) 

 

struct OFDM_PARAMETERS get_ofdm_parameters(enum MODULATION_TYPE mod) { 

  

struct OFDM_PARAMETERS p; 

 p.modulation = mod; 

 switch (mod) { 

 

  case BPSK: 

   p.coding_rate = RATE_1_2; 

   p.n_bpsc = 1; 

   p.n_cbps = 48; 

   p.n_dbps = 24; 

   p.signal_rate = 0x0D; //0b00001101 

   break; 

 

  case QPSK: 

   p.coding_rate = RATE_1_2; 

   p.n_bpsc = 2; 

   p.n_cbps = 96; 

   p.n_dbps = 48; 

   p.signal_rate = 0x05; //0b00000101; 

   break; 
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  default: 

   assert(0); 

   break; 

 } 

 return p; 

} 

 

void scrambler(const short *in, short *out, unsigned long size, short *initial_state) { 

 

    unsigned long i; 

    short carry; 

    short *shift_register = initial_state; 

 

    for (i = 0; i < size; i++) { 

        carry = (shift_register[3] + shift_register[6]) % 2; 

        rightshift(shift_register, shift_register, 7, 1); 

        shift_register[0] = carry; 

 

        out[i] = (in[i] + carry) % 2; 

    } 

} 

 

void encoder(const short *in, short *out, unsigned long size) { 

 

    unsigned long i; 

    short shift_register[7] = { 0 }; 

    short out_1, out_2; 

 

    for (i = 0; i < size; i++) { 

        rightshift(shift_register, shift_register, 7, 1); 

        shift_register[0] = in[i]; 

        out_1 = (shift_register[0] + shift_register[2] + shift_register[3] + shift_register[5] +     
shift_register[6]) % 2; 

        out_2 = (shift_register[0] + shift_register[1] + shift_register[2] + shift_register[3] + 
shift_register[6]) % 2; 

         

        out[2*i] = out_1; 
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        out[2*i + 1] = out_2; 

    } 

} 

 

void interleaver(const short *in, short *out, unsigned N_CBPS, unsigned N_BPSC, unsigned 
long size) { 

 

    unsigned sym; 

    short i, j; 

    short s, k; 

    short first_permutation[N_CBPS]; 

 

    s = MAX((short)(N_BPSC / 2), 1); 

 

    for (sym = 0; sym < (size / N_CBPS); sym++) { 

 for (k = 0; k < N_CBPS; k++) { 

          i = (((short)(N_CBPS / 16)) * (k % 16)) + ((short)floor(k / 16)); 

          first_permutation[i] = in[k + (sym * N_CBPS)]; 

     } 

 

     for (i = 0; i < N_CBPS; i++) { 

          j = s * ((short)floor(i / s)) + (i + N_CBPS - ((short)floor((16 * i) / N_CBPS))) % s; 

          out[j + (sym * N_CBPS)] = first_permutation[i]; 

     } 

    } 

} 

 

void mapper(const short *in, unsigned long size, enum MODULATION_TYPE mod, 
fftw_complex *out, unsigned sym) { 

 

    struct OFDM_PARAMETERS p = get_ofdm_parameters(mod); 

    unsigned long i, idx; 

 

    for (i = 0; i < size; i += p.n_bpsc) { 

        idx = i / p.n_bpsc; 

 

        switch (p.modulation) { 
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            case BPSK: 

                out[idx][0] = bpsk_i[in[i + (sym * p.n_cbps)]]; 

                out[idx][1] = bpsk_q[in[i + (sym * p.n_cbps)]]; 

                break; 

 

            case QPSK: 

                out[idx][0] = qpsk_i[in[i + (sym * p.n_cbps)]]; 

                out[idx][1] = qpsk_q[in[i+1 + (sym * p.n_cbps)]]; 

                break; 

        } 

    } 

} 

 

void add_pilots(fftw_complex *in, fftw_complex *out, unsigned symbol_index) { 

 

 unsigned i; 

 double polarity = subcarrier_polarities[symbol_index % 127];  

 

 out[5][0] = polarity; 

 out[5][1] = 0; 

 out[19][0] = polarity; 

 out[19][1] = 0; 

 out[33][0] = polarity; 

 out[33][1] = 0; 

 out[47][0] = -polarity; 

 out[47][1] = 0; 

 out[26][0] = 0; 

 out[26][1] = 0; 

 

 for (i = 0; i < 48; i++) { 

  if (0 <= i && i <= 4) { 

   out[i][0] = in[i][0]; 

   out[i][1] = in[i][1]; 

   continue; 

  } 
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  if (5 <= i && i <= 17) { 

   out[i + 1][0] = in[i][0]; 

   out[i + 1][1] = in[i][1]; 

   continue; 

  } 

  if (18 <= i && i <= 23) { 

   out[i + 2][0] = in[i][0]; 

   out[i + 2][1] = in[i][1]; 

   continue; 

  } 

  if (24 <= i && i <= 29) { 

   out[i + 3][0] = in[i][0]; 

   out[i + 3][1] = in[i][1]; 

   continue; 

  } 

  if (30 <= i && i <= 42) { 

   out[i + 4][0] = in[i][0]; 

   out[i + 4][1] = in[i][1]; 

   continue; 

  } 

  if (43 <= i && i <= 47) { 

   out[i + 5][0] = in[i][0]; 

   out[i + 5][1] = in[i][1]; 

  } 

 } 

} 

 

void map_ofdm_to_ifft(fftw_complex *ofdm, fftw_complex *ifft) { 

 

 unsigned i; 

 ifft[0][0] = 0; 

 ifft[0][1] = 0; 

 

 for (i = 1; i <= 26; i++) { 

  ifft[i][0] = ofdm[i + 26][0]; 

  ifft[i][1] = ofdm[i + 26][1]; 
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 } 

 

 for (i = 27; i <= 37; i++) { 

  ifft[i][0] = 0; 

  ifft[i][1] = 0; 

 } 

 

 for (i = 38; i <= 63; i++) { 

  ifft[i][0] = ofdm[i - 38][0]; 

  ifft[i][1] = ofdm[i - 38][1]; 

 } 

} 

 

void perform_ifft_fft(fftw_complex *in, fftw_complex *out, int sign) { 

 

 fftw_plan ifft; 

 

 fftw_complex *input = fftw_alloc_complex(64); 

 fftw_complex *output = fftw_alloc_complex(64); 

 

 unsigned i; 

 for (i = 0; i < 64; i++) { 

  input[i][0] = in[i][0]; 

  input[i][1] = in[i][1]; 

 } 

 

 ifft = fftw_plan_dft_1d(64, input, output, sign, FFTW_ESTIMATE); 

 fftw_execute(ifft); 

 

 for (i = 0; i < 64; i++) { 

  out[i][0] = output[i][0]; 

  out[i][1] = output[i][1]; 

 } 

 

 fftw_destroy_plan(ifft); 

 fftw_free(input); 
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 fftw_free(output); 

} 

 

void ifft(fftw_complex *in, fftw_complex *out) { 

 perform_ifft_fft(in, out, 1); 

} 

 

void normalize_ifft_output(fftw_complex *in, unsigned size, unsigned fftSize) { 

  

unsigned i; 

 for (i = 0; i < size; i++) { 

  in[i][0] *= 1.0 / (double)fftSize; 

  in[i][1] *= 1.0 / (double)fftSize; 

 } 

} 

 

void add_cyclic_prefix(fftw_complex *in, unsigned in_size, fftw_complex *out, unsigned 
out_size, unsigned cp_length) { 

 

 unsigned i; 

 assert(cp_length < in_size); 

 

 for (i = cp_length; i < out_size; i++) { 

  out[i][0] = in[(i - cp_length) % in_size][0]; 

  out[i][1] = in[(i - cp_length) % in_size][1]; 

 } 

 

 for (i = 0; i < cp_length; i++) { 

  out[i][0] = in[(i + in_size - cp_length) % in_size][0]; 

  out[i][1] = in[(i + in_size - cp_length) % in_size][1]; 

 } 

} 

 

double gauss(double mean, double snr) { 

 

unsigned i; 
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const unsigned NSUM = 12;  

 

     double sigma = 1.0 / pow(10.0, snr/10.0); 

 double x = 0.0; 

  

 for (i = 0; i < NSUM; i++) { 

  x += (double)rand() / RAND_MAX; 

 } 

 

 x -= NSUM / 2.0; 

 x *= sqrt(12.0 / NSUM);   

 

 return mean + sqrt(sigma) * x; 

} 

 

void channel(fftw_complex *in, fftw_complex *out, unsigned size, double ebn0) { 

 

    unsigned i; 

 

    for (i = 0; i < size; i++) { 

        out[i][0] = in[i][0] + gen_normal_random(0.0, ebn0); 

        out[i][1] = in[i][1] + gen_normal_random(0.0, ebn0);  

    } 

} 

 

void alamouti_encoder(fftw_complex *in, fftw_complex *tx1, fftw_complex *tx2, unsigned size) { 

 

    unsigned i; 

 

    for (i = 0; i < size; i++) { 

        tx1[i][0] = (i % 2 == 0) ? in[i][0] : -in[i][0]; 

        tx1[i][1] = (i % 2 == 0) ? in[i][1] : - (-1 * in[i][1]);  

 

        tx2[i][0] = (i % 2 == 0) ? in[i + 1][0] : in[i - 1][0]; 

        tx2[i][1] = (i % 2 == 0) ? in[i + 1][1] : (-1 * in[i - 1][1]);  

    } 
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} 

 

void alamouti_channel(fftw_complex *in_tx1, fftw_complex *in_tx2, fftw_complex *out, 
fftw_complex h_1, fftw_complex h_2, unsigned size, double snr) { 

 

    unsigned i; 

 

    for (i = 0; i < size; i++) { 

        out[i][0] = (in_tx1[i][0] * h_1[0]) + (in_tx2[i][0] * h_2[0]) + gauss(0.0, snr); 

        out[i][1] = (in_tx1[i][1] * h_1[1]) + (in_tx2[i][1] * h_2[1]) + gauss(0.0, snr); 

 

        out[i + 1][0] = (in_tx2[i + 1][0] * (-h_1[0])) + (in_tx1[i + 1][0] * h_2[0]) + gauss(0.0, snr); 

        out[i + 1][1] = ((-1 * in_tx2[i + 1][1]) * (-h_1[1])) + ((-1 * in_tx1[i + 1][1]) * h_2[1]) + 
gauss(0.0, snr); 

    } 

} 

 

void alamouti_decoder(fftw_complex *in, fftw_complex *out, fftw_complex h_1, fftw_complex 
h_2, unsigned size) { 

 

    unsigned i; 

 

    for (i = 0; i < size; i += 2) { 

        out[i][0] = ((h_1[0] * in[i][0]) + (h_2[0] * in[i + 1][0]));  

        out[i][1] = (((-1 * h_1[1]) * in[i][1]) + (h_2[1] * (-1 * in[i + 1][1])));  

 

        out[i + 1][0] = ((h_2[0] * in[i][0]) - (h_1[0] * in[i + 1][0])); 

        out[i + 1][1] = (((-1 * h_2[1]) * in[i][1]) - (h_1[1] * (-1 * in[i + 1][1]))); 

    } 

} 

 

void fft(fftw_complex *in, fftw_complex *out) { 

 perform_ifft_fft(in, out, -1); 

} 

 

void change_sign(fftw_complex *in, unsigned size) { 
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 unsigned i; 

 

 for (i = 0; i < size; i++) { 

  if ((in[i][0] < 0 && in[i][0] > -1e-4) || in[i][0] == -0.0) { 

   in[i][0] = 0.0; 

  } 

  if ((in[i][1] < 0 && in[i][1] > -1e-4) || in[i][1] == -0.0) { 

   in[i][1] = 0.0; 

  } 

 } 

} 

 

void remove_cyclic_prefix(fftw_complex *in, unsigned in_size, fftw_complex *out, unsigned 
out_size, unsigned cp_length) { 

 

 unsigned i; 

 

     for (i = cp_length; i < in_size; i++) { 

          out[(i - cp_length) % out_size][0] = in[i][0]; 

          out[(i - cp_length) % out_size][1] = in[i][1]; 

     } 

} 

 

void map_fft_to_ofdm(fftw_complex *fft, fftw_complex *ofdm) { 

  

 unsigned i; 

 

 for (i = 1; i <= 26; i++) { 

  ofdm[i + 26][0] = fft[i][0]; 

  ofdm[i + 26][1] = fft[i][1]; 

 } 

 

 for (i = 38; i <= 63; i++) { 

  ofdm[i - 38][0] = fft[i][0]; 

  ofdm[i - 38][1] = fft[i][1]; 

 } 
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} 

 

void remove_pilots(fftw_complex *in, fftw_complex *out) { 

 

 unsigned i; 

 

 for (i = 0; i < 53; i++) { 

  if (0 <= i && i <= 4) { 

   out[i][0] = in[i][0]; 

   out[i][1] = in[i][1]; 

   continue; 

  } 

  if (6 <= i && i <= 18) { 

   out[i - 1][0] = in[i][0]; 

   out[i - 1][1] = in[i][1]; 

   continue; 

  } 

  if (20 <= i && i <= 25) { 

   out[i - 2][0] = in[i][0]; 

   out[i - 2][1] = in[i][1]; 

   continue; 

  } 

  if (27 <= i && i <= 32) { 

   out[i - 3][0] = in[i][0]; 

   out[i - 3][1] = in[i][1]; 

   continue; 

  } 

  if (34 <= i && i <= 46) { 

   out[i - 4][0] = in[i][0]; 

   out[i - 4][1] = in[i][1]; 

   continue; 

  } 

  if (48 <= i && i <= 52) { 

   out[i - 5][0] = in[i][0]; 

   out[i - 5][1] = in[i][1]; 

  } 
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 } 

} 

 

void demapper(fftw_complex *in, unsigned long size, enum MODULATION_TYPE mod, short 
*out) { 

 

    struct OFDM_PARAMETERS p = get_ofdm_parameters(mod); 

    unsigned long i, idx; 

 

    for (i = 0; i < size; i++) { 

        idx = i * p.n_bpsc; 

 

        switch (p.modulation) { 

 

            case BPSK: 

  if (in[i][0] <= 0) out[idx] = 0; 

  else out[idx] = 1; 

                 break; 

 

            case QPSK: 

  if (in[i][0] <= 0) out[idx] = 0; 

  else out[idx] = 1; 

  if (in[i][1] <= 0) out[idx + 1] = 0; 

  else out[idx + 1] = 1; 

                 break; 

        } 

    } 

} 

 

void regrouping(const short *in, unsigned in_size, short *out, unsigned index) { 

 

    unsigned i; 

 

    for (i = 0; i < in_size; i++) { 

        out[(index * in_size) + i] = in[i]; 

    } 
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} 

 

void deinterleaver(const short *in, short *out, unsigned N_CBPS, unsigned N_BPSC, unsigned 
long size) { 

 

 unsigned sym; 

     short i, j; 

     short s, k; 

     short first_permutation[N_CBPS]; 

 

     s = MAX((short)(N_BPSC / 2), 1); 

 

 for (sym = 0; sym < (size / N_CBPS); sym++) { 

  for (j = 0; j < N_CBPS; j++) { 

           i = s * ((short)floor(j / s)) + (j + ((short)floor((16 * j) / N_CBPS))) % s; 

           first_permutation[i] = in[j + (sym * N_CBPS)]; 

      } 

 

      for (i = 0; i < N_CBPS; i++) { 

           k = 16 * i - (N_CBPS - 1) * ((short)floor((16 * i) / N_CBPS)); 

           out[k + (sym * N_CBPS)] = first_permutation[i]; 

      } 

 } 

} 

 

unsigned long ber(short *x, short *y, unsigned long size) { 

 

 unsigned long i, count = 0; 

 

 for (i = 0; i < size; i++) { 

  if (x[i] != y[i]) 

   ++count; 

 } 

 return count; 

} 
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„viterbi.h“ 
 

#ifndef VITERBI_H_ 

#define VITERBI_H_ 

 

struct pair { 

    int first; 

    int second; 

}; 

 

typedef int** Trellis; 

 

#define CONSTRAINT    7 

#define PARITY_BITS   2 

 

const unsigned POLYNOMIALS[] = { 109, 79 }; 

 

short **OUTPUTS; 

 

“viterbi.c” 
 

#include <assert.h> 

#include <limits.h> 

#include <string.h> 

#include "viterbi.h" 

 

int reverse_bits(int num_bits, int input) { 

     

    assert(input < (1 << num_bits)); 

    int output = 0; 

 

    while (num_bits-- > 0) { 

        output = (output << 1) + (input & 1); 

        input >>= 1; 
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    } 

    return output; 

} 

 

unsigned min_element_index(const int *arr, unsigned first, unsigned last) { 

 

    assert(first < last); 

 

    unsigned i, idx = first; 

    int minimum = arr[first]; 

 

    for (i = first + 1; i < last; i++) { 

        if (arr[i] < minimum) { 

            minimum = arr[i]; 

            idx = i; 

        } 

    } 

    return idx; 

} 

 

unsigned hamming_distance(const short *x, const short *y, unsigned size) { 

 

    unsigned i, distance = 0; 

 

    for (i = 0; i < size; i++) { 

        if (x[i] != y[i]) 

            ++distance; 

    } 

    return distance; 

} 

 

void initialize_outputs() { 
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    int i, j, k; 

 

    OUTPUTS = (short **)malloc((1 << CONSTRAINT) * sizeof(short *)); 

    for (i = 0; i < (1 << CONSTRAINT); i++) { 

        OUTPUTS[i] = (short *)malloc(PARITY_BITS * sizeof(short)); 

    } 

 

    for (i = 0; i < (1 << CONSTRAINT); i++) { 

        for (j = 0; j < PARITY_BITS; j++) { 

            int polynomial = reverse_bits(CONSTRAINT, POLYNOMIALS[j]); 

            int input = i; 

            int output = 0; 

 

            for (k = 0; k < CONSTRAINT; k++) { 

                output ^= (input & 1) & (polynomial & 1); 

                polynomial >>= 1; 

                input >>= 1; 

            } 

 

            OUTPUTS[i][j] = output ? 1 : 0; 

        } 

    } 

} 

 

const short* output(int current_state, int input) { 

    return OUTPUTS[(current_state | (input << (CONSTRAINT - 1)))];  

} 

 

unsigned branch_metric(const short *in, int source_state, int target_state) { 

 

    assert((target_state & ((1 << (CONSTRAINT - 2)) - 1)) == source_state >> 1); 
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    const short *out = output(source_state, target_state >> (CONSTRAINT - 2)); 

 

    return hamming_distance(in, out, PARITY_BITS); 

} 

 

struct pair path_metric(const short *in, const int *prev_path_metrics, int state) { 

 

    struct pair p; 

 

    int s = (state & ((1 << (CONSTRAINT - 2)) - 1)) << 1; 

    int source_state1 = s | 0; 

    int source_state2 = s | 1; 

 

    int pm1 = prev_path_metrics[source_state1]; 

    if (pm1 < INT_MAX) { 

        pm1 += branch_metric(in, source_state1, state); 

    } 

    int pm2 = prev_path_metrics[source_state2]; 

    if (pm2 < INT_MAX) { 

        pm2 += branch_metric(in, source_state2, state); 

    } 

 

    if (pm1 <= pm2) { 

        p.first = pm1; 

        p.second = source_state1; 

        return p; 

    } else { 

        p.first = pm2; 

        p.second = source_state2; 

        return p; 

    } 

} 
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void update_path_metrics(const short *in, int *path_metrics, int path_size, Trellis trellis, int 
index) { 

     

    unsigned i; 

    int *new_path_metrics = (int *)malloc(sizeof(int) * path_size); 

    int *new_trellis_column = (int *)malloc(sizeof(int) * (1 << (CONSTRAINT - 1))); 

 

    for (i = 0; i < path_size; i++) { 

        struct pair p = path_metric(in, path_metrics, i); 

        new_path_metrics[i] = p.first; 

        new_trellis_column[i] = p.second; 

    } 

 

    memcpy(path_metrics, new_path_metrics, (path_size * sizeof * path_metrics)); 

    memcpy(trellis[index], new_trellis_column, ((1 << (CONSTRAINT - 1)) * sizeof * 
new_trellis_column)); 

 

    free(new_path_metrics); 

    free(new_trellis_column); 

} 

 

void viterbi_decoder(const short *in, short *out, unsigned long size) { 

 

    initialize_outputs(); 

 

    long i, j, idx = 0; 

 

    Trellis trellis = malloc((size / 2) * sizeof(int *)); 

    for (i = 0; i < (size / 2); i++) { 

        trellis[i] = (int *)malloc(sizeof(int) * (1 << (CONSTRAINT - 1))); 

    } 
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    int *path_metrics = (int *)malloc(sizeof(int) * (1 << (CONSTRAINT - 1))); 

    path_metrics[0] = 0; 

    for (i = 1; i < (1 << (CONSTRAINT - 1)); i++) { 

        path_metrics[i] = INT_MAX; 

    } 

 

    for (i = 0; i < size; i += PARITY_BITS) { 

        short current_bits[PARITY_BITS]; 

        current_bits[0] = in[i]; 

        current_bits[1] = (i + 1) >= size ? 0 : in[i + 1]; 

 

        update_path_metrics(current_bits, path_metrics, (1 << (CONSTRAINT - 1)), trellis, idx); 

        idx++; 

    } 

 

    int state = min_element_index(path_metrics, 0, (1 << (CONSTRAINT - 1))); 

 

    for (i = (size / 2) - 1; i >= 0; i--) { 

out[i] = state >> (CONSTRAINT - 2) ? 1 : 0;  

           state = trellis[i][state]; 

    } 

 

  

    free(path_metrics); 

 

    for (i = 0; i < (size / 2); i++) { 

        free(trellis[i]); 

    } 

    free(trellis); 

 

    for (i = 0; i < (1 << CONSTRAINT); i++) { 
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        free(OUTPUTS[i]); 

    } 

    free(OUTPUTS); 

} 

 

“simul.c” 

 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <time.h> 

#include <unistd.h> 

 

#include "ofdm.h" 

#include "utils.h" 

 

#define MAX_SNR 20 

 

int main(int argc, char *argv[]) { 

     

    unsigned long i, j;  

    unsigned long decoded_ber, uncoded_ber; 

    unsigned long n_bytes, n_bits, n_pad, n_sym; 

    unsigned mod, alamouti; 

 

    struct OFDM_PARAMETERS params; 

    struct timespec start, finish; 

    double elapsed_time; 

 

    FILE *fp; 

    char filename[32] = ""; 



Appendix 

86 

 

     

    short *input; 

    short *scrambler_output; 

    short *encoder_output; 

    short *interleaver_output; 

   fftw_complex *modulation_output; 

 

    // alamouti only 

    fftw_complex *tx1; 

    fftw_complex *tx2; 

    fftw_complex *alamouti_pilots_added_tx1; 

    fftw_complex *alamouti_pilots_added_tx2; 

    fftw_complex *ifft_input_tx1; 

    fftw_complex *ifft_input_tx2; 

    fftw_complex *ifft_output_tx1; 

    fftw_complex *ifft_output_tx2; 

    fftw_complex *cyclic_prefix_tx1; 

    fftw_complex *cyclic_prefix_tx2; 

    fftw_complex *alamouti_decoder_output; 

 

    // siso only 

    fftw_complex *pilots_added_output; 

    fftw_complex *ifft_input; 

    fftw_complex *ifft_output; 

    fftw_complex *cyclic_prefix_output; 

 

    fftw_complex *channel_output; 

    fftw_complex *fft_input; 

    fftw_complex *fft_output; 

    fftw_complex *pilots_remove_input; 

    fftw_complex *demodulation_input; 

    short *demodulation_output; 
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    short *deinterleaver_input; 

    short *deinterleaver_output; 

    short *decoder_output; 

    short *descrambler_output; 

 

    printf("\nn_bytes: "); 

    scanf("%lu", &n_bytes); 

 

    n_bits = n_bytes * 8; 

 

    printf("\nModulation (BPSK : 1 / QPSK : 2): "); 

    scanf("%u", &mod); 

 

    switch (mod) { 

 

        case 1:  

            params = get_ofdm_parameters(BPSK); 

            strcat(filename, "ber_bpsk"); 

            break; 

        case 2: 

            params = get_ofdm_parameters(QPSK); 

            strcat(filename, "ber_qpsk"); 

            break; 

        default: 

            fprintf(stderr, "Error: invalid modulation\n"); 

            exit(1); 

    } 

 

    printf("\nAlamouti (Yes : 1 / No : 0): "); 

    scanf("%u", &alamouti); 

 

    if (alamouti != 0 && alamouti != 1) { 
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        fprintf(stderr, "Error: invalid value for alamouti\n"); 

        exit(1); 

    } 

 

    if (alamouti) strcat(filename, "_alamouti.csv"); 

    else strcat(filename, "_siso.csv"); 

 

    if ((fp = fopen(filename, "w+")) == NULL) { 

        fprintf(stderr, "Error: couldn't open file to write\n"); 

        exit(1); 

    } 

 

    if (n_bits % params.n_cbps != 0) { 

        n_pad = params.n_cbps - (n_bits % params.n_cbps); 

        n_bits += n_pad; 

    } 

    else n_pad = 0; 

 

    n_sym = (unsigned long)ceil(n_bits / (double)params.n_dbps); 

 

    input = (short *)malloc(sizeof(short) * n_bits); 

    scrambler_output = (short *)malloc(sizeof(short) * n_bits); 

    encoder_output = (short *)malloc(sizeof(short) * n_bits * 2); 

    interleaver_output = (short *)malloc(sizeof(short) * n_bits * 2); 

    modulation_output = fftw_alloc_complex(N_DATA_SUBCARRIERS); 

 

    if (alamouti) { 

        tx1 = fftw_alloc_complex(N_DATA_SUBCARRIERS); 

        tx2 = fftw_alloc_complex(N_DATA_SUBCARRIERS); 

        alamouti_pilots_added_tx1 = fftw_alloc_complex(N_TOTAL_SUBCARRIERS); 

        alamouti_pilots_added_tx2 = fftw_alloc_complex(N_TOTAL_SUBCARRIERS); 

        ifft_input_tx1 = fftw_alloc_complex(FFT_SIZE); 
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        ifft_input_tx2 = fftw_alloc_complex(FFT_SIZE); 

        ifft_output_tx1 = fftw_alloc_complex(FFT_SIZE); 

        ifft_output_tx2 = fftw_alloc_complex(FFT_SIZE); 

        cyclic_prefix_tx1 = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE); 

        cyclic_prefix_tx2 = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE); 

        alamouti_decoder_output = fftw_alloc_complex(N_DATA_SUBCARRIERS); 

    } else { 

        pilots_added_output = fftw_alloc_complex(N_TOTAL_SUBCARRIERS); 

        ifft_input = fftw_alloc_complex(FFT_SIZE); 

        ifft_output = fftw_alloc_complex(FFT_SIZE); 

        cyclic_prefix_output = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE); 

    } 

  

    channel_output = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE); 

    fft_input = fftw_alloc_complex(FFT_SIZE); 

    fft_output = fftw_alloc_complex(FFT_SIZE); 

    pilots_remove_input = fftw_alloc_complex(N_TOTAL_SUBCARRIERS); 

    demodulation_input = fftw_alloc_complex(N_DATA_SUBCARRIERS); 

    demodulation_output = (short *)malloc(sizeof(short) * params.n_cbps); 

    deinterleaver_input = (short *)malloc(sizeof(short) * n_bits * 2); 

    deinterleaver_output = (short *)malloc(sizeof(short) * n_bits * 2); 

    decoder_output = (short *)malloc(sizeof(short) * n_bits); 

    descrambler_output = (short *)malloc(sizeof(short) * n_bits); 

 

    if (descrambler_output == NULL) { 

        fprintf(stderr, "Error: couldn't allocate memory\n"); 

        exit(1); 

    } 

 

    if (sysconf(_SC_MONOTONIC_CLOCK) > 0) { 

        clock_gettime(CLOCK_MONOTONIC, &start); 

    } 
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    else clock_gettime(CLOCK_REALTIME, &start); 

 

    srand((unsigned)time(NULL)); 

    for (i = 0; i < n_bits - n_pad; i++) { 

        input[i] = gen_binomial_random(0.5); 

    } 

     

    if (n_pad > 0) { 

        for (i = n_bits - n_pad; i < n_bits; i++) { 

            input[i] = 0; 

        } 

    } 

 

    for (j = 0; j <= MAX_SNR; j += 2) { 

 

        double ebn0 = exp10((double)-1 * j/10);  

 

        short scrambler_init[]   = { 1, 1, 1, 1, 1, 1, 1 }; 

        short descrambler_init[] = { 1, 1, 1, 1, 1, 1, 1 }; 

 

        fftw_complex h1 = { 1.0, 1.0 };  

        fftw_complex h2 = { 1.0, 1.0 };  

         

        scrambler(input, scrambler_output, n_bits, scrambler_init); 

 

        encoder(scrambler_output, encoder_output, n_bits); 

 

        interleaver(encoder_output, interleaver_output, params.n_cbps, params.n_bpsc, n_bits * 
2); 

 

        for (i = 0; i < n_sym; i++) { 
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            mapper(interleaver_output, params.n_cbps, params.modulation, modulation_output, i); 

 

            if (alamouti) { 

                 

                alamouti_encoder(modulation_output, tx1, tx2, N_DATA_SUBCARRIERS); 

 

                change_sign(tx1, N_DATA_SUBCARRIERS); 

                change_sign(tx2, N_DATA_SUBCARRIERS); 

 

                add_pilots(tx1, alamouti_pilots_added_tx1, i + 1); 

                add_pilots(tx2, alamouti_pilots_added_tx2, i + 1); 

 

                map_ofdm_to_ifft(alamouti_pilots_added_tx1, ifft_input_tx1); 

                map_ofdm_to_ifft(alamouti_pilots_added_tx2, ifft_input_tx2); 

 

                fixed_point(ifft_input_tx1, ifft_input_tx1, FFT_SIZE); 

                fixed_point(ifft_input_tx2, ifft_input_tx2, FFT_SIZE); 

 

                ifft(ifft_input_tx1, ifft_output_tx1); 

                ifft(ifft_input_tx2, ifft_output_tx2); 

 

                normalize_ifft_output(ifft_output_tx1, FFT_SIZE, FFT_SIZE); 

                normalize_ifft_output(ifft_output_tx2, FFT_SIZE, FFT_SIZE); 

 

                add_cyclic_prefix(ifft_output_tx1, FFT_SIZE, cyclic_prefix_tx1, 
EXT_OFDM_SYMBOL_SIZE, CYCLIC_PREFIX_SIZE); 

                add_cyclic_prefix(ifft_output_tx2, FFT_SIZE, cyclic_prefix_tx2, 
EXT_OFDM_SYMBOL_SIZE, CYCLIC_PREFIX_SIZE); 

 

                defixed_point(cyclic_prefix_tx1, cyclic_prefix_tx1, EXT_OFDM_SYMBOL_SIZE); 

                defixed_point(cyclic_prefix_tx2, cyclic_prefix_tx2, EXT_OFDM_SYMBOL_SIZE); 
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                alamouti_channel(cyclic_prefix_tx1, cyclic_prefix_tx2, channel_output, h1, h2, 
EXT_OFDM_SYMBOL_SIZE, (double)j); 

 

            } else { 

                 

                add_pilots(modulation_output, pilots_added_output, i + 1); 

 

                map_ofdm_to_ifft(pilots_added_output, ifft_input); 

 

                fixed_point(ifft_input, ifft_input, FFT_SIZE); 

 

                ifft(ifft_input, ifft_output); 

 

                normalize_ifft_output(ifft_output, FFT_SIZE, FFT_SIZE); 

 

                add_cyclic_prefix(ifft_output, FFT_SIZE, cyclic_prefix_output, 
EXT_OFDM_SYMBOL_SIZE, CYCLIC_PREFIX_SIZE); 

 

                defixed_point(cyclic_prefix_output, cyclic_prefix_output, 
EXT_OFDM_SYMBOL_SIZE); 

 

                channel(cyclic_prefix_output, channel_output, EXT_OFDM_SYMBOL_SIZE, ebn0); 

            } 

 

            fixed_point(channel_output, channel_output, EXT_OFDM_SYMBOL_SIZE); 

 

            remove_cyclic_prefix(channel_output, EXT_OFDM_SYMBOL_SIZE, fft_input, 
FFT_SIZE, CYCLIC_PREFIX_SIZE); 

 

            fft(fft_input, fft_output); 

 

            change_sign(fft_output, FFT_SIZE); 
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            defixed_point(fft_output, fft_output, FFT_SIZE); 

 

            map_fft_to_ofdm(fft_output, pilots_remove_input); 

 

            remove_pilots(pilots_remove_input, demodulation_input); 

 

            if (alamouti) { 

                alamouti_decoder(demodulation_input, alamouti_decoder_output, h1, h2, 
N_DATA_SUBCARRIERS); 

 

                demapper(alamouti_decoder_output, N_DATA_SUBCARRIERS, params.modulation, 
demodulation_output); 

 

            } else { 

                demapper(demodulation_input, N_DATA_SUBCARRIERS, params.modulation, 
demodulation_output); 

            }          

 

            regrouping(demodulation_output, params.n_cbps, deinterleaver_input, i); 

        } 

 

        deinterleaver(deinterleaver_input, deinterleaver_output, params.n_cbps, params.n_bpsc, 
n_bits * 2); 

 

        viterbi_decoder(deinterleaver_output, decoder_output, n_bits * 2); 

 

        scrambler(decoder_output, descrambler_output, n_bits, descrambler_init); 

 

        double theory_siso_ber = erfc(sqrt(exp10((double)j/10))) * 0.5; 

        double p_alamouti = 0.5 - (0.5 * pow(1.0 + (double)2/j, (double)-0.5)); 

        double theory_alamouti_ber = pow(p_alamouti, 2.0) * (1 + 2 * (1 - p_alamouti)); 

        if (j == 0) { 
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            printf("\nBER for %s modulation in AWGN with Viterbi decoder (%s)\n", (mod == 1) ? 
"BPSK" : "QPSK", (alamouti == 1) ? "nTx=2, nRx=1" : "nTx=1, nRx=1"); 

            printf("|------------------------------------------------------------|\n"); 

            printf("|Eb/N0 | BER (sim) | BER (sim) | BER (siso) | BER (alamouti) |\n"); 

            printf("| (dB) | (uncoded) | (decoded) |  (theory)  |    (theory)    |\n"); 

            printf("|------------------------------------------------------------|\n"); 

         

            fprintf(fp, "Eb/N0, BER_uncoded, BER_decoded\n"); 

        } 

 

        uncoded_ber = ber(encoder_output, deinterleaver_output, n_bits * 2); 

        decoded_ber = ber(scrambler_output, decoder_output, n_bits); 

        printf("|  %2u  | %lf | %lf   |  %lf  |    %lf    |\n", j, (double)uncoded_ber/(n_bits), 
(double)decoded_ber/n_bits, theory_siso_ber, theory_alamouti_ber); 

        fprintf(fp, "%u, %lf, %lf\n", j, (double)uncoded_ber/(n_bits), (double)decoded_ber/n_bits); 

    } 

 

    printf("|------------------------------------------------------------|\n"); 

 

    if (sysconf(_SC_MONOTONIC_CLOCK) > 0) { 

        clock_gettime(CLOCK_MONOTONIC, &finish); 

    }  

    else clock_gettime(CLOCK_REALTIME, &finish); 

 

    elapsed_time = (finish.tv_sec - start.tv_sec); 

    elapsed_time += (finish.tv_nsec - start.tv_nsec) / 1000000000.0; 

    printf("\nElapsed time: %.3lf\n", elapsed_time); 

 

    fclose(fp); 

 

    return 0; 

} 


