

Implementation of 2x1 Alamouti Space-Time Coded
OFDM System

Diploma Thesis

executed for the purpose of obtaining the academic degree graduate
Engineering

submitted by:
Emra Tairi

Student ID
0527228

Institute of Telecommunication

Submitted to Vienna University of Technology

under the supervision of:

Univ.Prof. Dipl.-Ing. Dr.techn. Christoph F. Mecklenbräuker

Dipl.-Ing. (FH) Georg Maier

submitted on:
12. 10. 2016

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung:

Ich erkläre, dass die vorliegende Diplomarbeit/Masterarbeit von mir selbst verfasst wurde
und ich keine anderen als die angeführten Behelfe verwendet bzw. mich auch sonst
keiner unerlaubter Hilfe bedient habe.

Ich versichere, dass ich diese Diplomarbeit/Masterarbeit bisher weder im In- noch im
Ausland (einer Beurteilerin/einem Beurteiler zur Begutachtung) in irgendeiner Form als
Prüfungsarbeit vorgelegt habe.

Weiters versichere ich, dass die von mir eingereichten Exemplare (ausgedruckt und
elektronisch) identisch sind.

Datum: Unterschrift: ..

i

Acknowledgements
This thesis has been written for the completion of the master study of Communications
Engineering at the Technical University of Vienna.

First of all I would like to express my gratitude towards my University, Technical
University of Vienna, for a wonderful experience during the past years.

I am deeply grateful to Prof. Christoph Mecklenbräuker for giving me the opportunity to
work under his supervision and learn from his experience during this thesis. I enjoyed
working with him. Also his good ideas and helpful suggestions are gratefully
acknowledged. I am honored working with him.

Further, I wish to express my gratitude to my supervisor Georg Maier, who provided me
constant support and guidance through the entire thesis. He has supported me with
kindness, patience and friendly assistance throughout my thesis. His constant advice
resulted in many useful suggestions that helped a lot to improve this master thesis with
regard to both technical content and presentation.

I will never forget my colleagues and all the great moments we spent together throughout
our studies at the University. I am deeply thankful to all my colleagues for always being
there for me.

Big thanks to my family for patiently motivating me and helping me to put all my effort in
this work. I can never thank them enough for their consistent encouragement,
understanding, love, friendship and support.

ii

Abstract
The rapid development of wireless communication enabled its use in many fields of
technology. Also in vehicular environment to reduce the number of traffic accidents, to
provide high data rate information as well as to enable entertainment and comfort
applications for drivers and passengers wireless communication systems are used.
Therefor IEEE 802.11p standard has been developed for dealing with vehicular
communication, which is a protocol that adds wireless access in vehicular environment. It
enables data exchange between the vehicles and between the vehicles and the roadside
infrastructure. The standard specifies a Physical Layer (PHY), which is based on
Orthogonal Frequency Division Multiplexing (OFDM). This thesis gives an overview of the
IEEE 802.11p standard's Physical Layer (PHY) together with the methodology of the
OFDM and the Alamouti Space-Time Code.

Especially a closer look has been achieved at the OFDM technology by investigating its
major benefits and the main obstacles that come with it. The performance and reliability
of OFDM system is calculated in Fixed-Point algorithm, analyzed through C code-based
simulations and plotted on Matlab. Overall system is demonstrated through numerical
simulations on PC and the performance is evaluated in AWGN channel. The results are
plotted on graphs and also discussed and compared with the theoretical simulation
results. The analyses highlight that the performance of OFDM system can be increased
with 2x1 Alamouti Space-Time Code.

After a brief introduction, the entire communication system is implemented together with
some design parameters. The first part of the thesis deals with the implementation of
OFDM on the single-input single-output (SISO) system. The second major part analyses
Alamouti Space-Time Coded OFDM on 2x1 (MISO, 2 transmitter and 1 receiver) system.

iii

Kurzfassung
Die schnelle Entwicklung der drahtlosen Kommunikation ermöglicht in vielen Bereichen
der Technik eingesetzt werden. Auch in Fahrzeugumgebung die Anzahl der
Verkehrsunfälle zu reduzieren, die hohe Datenrate an Informationen zu ermöglichen als
auch Unterhaltung und Komfortanwendungen für Fahrer und Passagiere zu ermöglichen,
werden drahtlose Kommunikationssysteme verwendet. IEEE 802.11p Standard ist für den
Umgang mit Fahrzeug-Kommunikation entwickelt worden. Es ist ein Protokoll, welches
drahtlosen Zugang in Fahrzeugumgebung hinzufügt. IEEE 802.11p Standard ermöglicht
den Datenaustausch zwischen Fahrzeugen und zwischen Fahrzeugen und der
Straßeninfrastruktur. IEEE 802.11p Standard spezifiziert physikalischen Schicht (PHY)
basierend auf das Orthogonales Frequenzmultiplexverfahren (OFDM).

Diese Diplomarbeit gibt einen Überblick über den physikalischen Schicht (PHY) des IEEE
802.11p Standard zusammen mit der Methodik des OFDM und des Alamouti Raum-Zeit-
Kode. Besonders einen genaueren Blick auf die OFDM-Technologie durch die
Untersuchung ihrer großen Vorteile und die wichtigsten Hindernisse erreicht wird. Die
Leistung und Zuverlässigkeit von OFDM-System wird durch Fixpunkt Algorithmus
berechnet, durch C-Kode-basierte Simulationen analysiert und im Matlab aufgetragen.
Das Gesamtsystem wird durch numerische Simulationen auf PC demonstriert und die
Leistung des Systems wird in AWGN-Kanal ausgewertet. Die Ergebnisse werden in
Diagrammen aufgetragen und mit den theoretischen Simulationsergebnissen verglichen
und diskutiert. In dieser Diplomarbeit zeigen die Analysen, dass die Leistung des OFDM-
Systems mit 2x1 Alamouti Raum-Zeit-Kode erhöht werden kann.

Nach einer kurzen Einführung, beschreibt diese Diplomarbeit die Umsetzung des
gesamten Kommunikationssystems zusammen mit Fehlerwahrscheinlichkeit und einige
Design-Parameter. Der erste Teil der Diplomarbeit befasst die Umsetzung der OFDM auf
dem SISO-System. Der zweite wesentliche Teil dieser Diplomarbeit ist Alamouti Raum-
Zeit-Kodierte OFDM auf 2x1 (MISO, 2 Sender und 1 Empfänger) System.

iv

Acronyms and Abbreviations
AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CP Cyclic Prefix

DAB Digital Audio Broadcasting

DSL Digital Subscriber Line

DSP Digital Signal Processing

DFT Discrete Fourier Transformation

DVB Digital Video Broadcasting

FEC Forward Error Correction

FFT Fast Fourier Transformation

FWL Fractional Word Length

ICI Inter Carrier Interface

IDE Integrated Development Environment

IDFT Inverse Discrete Fourier Transformation

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transformation

ISI Inter Symbol Interface

ITS Intelligent Transport Systems

IWL Length of Words Integer Part

3G Third Generation

GI Guard Interval

LAN Local Area Network

LFRS Linear Feedback Shift Register

LMSE Least Mean Square Estimation

LS Least Square

LTE Long Term Evolution

MAC Medium Access Control

MISO Multiple-Input Single-Output

MIMO Multiple-Input Multiple-Output

MRRC Maximum Ratio Receiver Combining

MPDU Medium Access Control Protocol Data Unit

OFDM Orthogonal Frequency Division Multiplexing

OSI Open System Interconnection

PARP Peak To Average Power Ratio

v

PHY Physical Layer

PLCP Physical Layer Convergence Protocol

PMD Physical Medium Dependent

PPDU Physical Protocol Data Unit

PSDU PLCP Service Data Unit

QPSK Quadrature Phase Shift Keying

SISO Single-Input Single-Output

SNR Signal-to-Noise-Ratio

STC Space-Time Coding

STBC Space-Time Block Code

STTC Space-Time Trellis Code

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VA Viterbi Algorithm

WAVE Wireless Access in Vehicular Environments

WL Total Length of the Word

WLAN Wireless Local Area Network

WIFI Wireless Fidelity

WIMAX Worldwide Interoperability for Microware Access

WMAN Wireless Metropolitan Area Network

ZF Zero-Forcing

vi

Keywords
Alamouti Space-Time Code

AWGN Channel

Channel Estimator

Convolutional Encoder

Cyclic Prefix

Error Ratio

Fast Fourier Transform

Fixed-Point Algorithm

Fixed-Point FFT

IEEE 802.11p

Interleaver

Multiple-Input Multiple-Output

Orthogonal Frequency Division Multiplexing

OFDM Symbol Assembler

PPDU Frame

Scrambler

Subcarrier

Twiddle Factor

Viterbi Decoder

Zero-Forcing Equalizer

vii

Contents	

Acknowledgements ... i	

Abstract.. .. ii	

Kurzfassung .. iii	

Acronyms and Abbreviations .. iv	

Keywords .. vi	

1	 Introduction ... 9	
1.1	 Basics of the OFDM Transmission Technique ... 10	

1.2	 MIMO Systems ... 13	

1.3	 Space-Time Coding .. 14	

1.4	 Introduction to IEEE 802.11p .. 15	

1.5	 Scope ... 17	

2.	 Implementation of Systems ... 18	
2.1	 1x1 OFDM System ... 18	
2.1.1	 Transmitter .. 18	
2.1.2	 Channel ... 29	
2.1.3	 Receiver .. 31	

2.2	 2x1 OFDM System ... 39	
2.2.1	 Alamouti Coding .. 40	
2.2.2	 Channel Estimation of Alamouti 2x1 .. 43	

3.	 Fixed-Point Algorithm and Code ... 45	
3.1	 Algorithmic Explanations .. 45	
3.1.1	 Fixed-Point Representation ... 45	
3.1.2	 Fixed-Point FFT and Twiddle Factor ... 46	
3.1.3	 Treatment of End Effect using Zero Padding .. 49	

3.2	 Explanation of the Functions from the Code .. 50	

4.	 Simulation Results .. 54	
4.1	 Error Ratio Calculation ... 54	

4.2	 Graphical results over AWGN channel ... 55	

viii

5.	 Conclusion .. 59	

Bibliography ... 60	

List of Figures .. 61	

List of Tables ... 62	

Appendix .. 63	

1. Introduction

9

1 Introduction

The increasing number of vehicles leads to more traffic jams and a higher risk of road
accidents. Some technologies like seat belts, airbags, anti-lock braking systems, radar,
cameras and sensors have been implemented in vehicles in order to reduce traffic jams
and road accidents [1]. Especially while talking about car communication there are
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communication
applications, which are used to provide real time communication network for drivers and
for higher level traffic management systems. In V2V communication vehicles establish
connections between each other. In V2I some infrastructure is present from which the
vehicles retrieve information.

Applications of vehicular communications are traffic safety applications, traffic efficiency
applications and commercial applications, which are used to avoid accidents. Traffic
efficiency applications are speed limit information, route guidance, green light optimal
speed information and variable traffic light phases. The commercial applications are local
advertising, Internet access, chasing vehicles, parking management and point of interest
notification. And lastly the traffic safety applications are collision avoidance, wrong-way
driving warnings, and hazardous location notification. Safety applications require reliability
and strict short predictable deadlines for the delay, while commercial applications require
high data rates.

OFDM, with its high rate transmission capability and high bandwidth efficiency, is applied
in vehicular communication systems. OFDM signals are generally created by the inverse
fast Fourier transform (IFFT) on the transmitter site and demodulated by the fast Fourier
transform (FFT) on the receiver site.

This thesis examines the effect of OFDM as a modulation technique for IEEE 802.11p
standard. The main goal of this thesis is to develop, learn, and understand an OFDM
802.11p PHY layer baseband implementation. The most important building blocks in the
development of this thesis are OFDM modulation with Fast Fourier Transform (FFT), and
Alamouti Space-Time Code (STC). Entire communication system is numerically
calculated with Fixed-Point algorithm, which enables better understanding about the
usage of Fixed-Point algorithms.

This chapter provides a theoretical background about standardization, basics of OFDM,
and Space-Time Codes together with multiple-input multiple-output (MIMO) systems.

1. Introduction

10

1.1 Basics of the OFDM Transmission Technique

OFDM is a modulation technique that places the information on multiple carrier
frequencies. As shown in the Fig. 1 it is a multicarrier modulation technique and is used
for high-speed digital communications.

0 t

f

T t0

f

NT

d[
0]

d[
1]

d[
2]

d[
3]

d[
4]

d[
5]

d[
6]

d[
7]

d[0]

d[1]

d[2]

d[3]

d[4]
d[5]

d[6]
d[7]

single	carrier

multi	carrier

Fig. 1: Difference between single-carrier systems

OFDM performs excellently over frequency selective channels. The signal itself is split
into independent channels, each using a fraction of the available bandwidth. Each of
independent channels are called subcarriers, where all together form the OFDM carrier.
Transport data is modulated in the amplitude and phase of the signal. N parallel streams
are transmitted by modulating N distinct carriers. The symbol duration is enlarged N times
and the bandwidth consumption of each symbol is reduced by the same factor N. The
overall data rate and bandwidth consumption is kept constant through parallel
transmission over N independent subcarriers. Although the spectra of different modulated
carriers overlap, the subcarriers will not interfere with each other. Due to orthogonality a
tight spacing of the subcarriers becomes possible enabling an efficient use of the
available bandwidth B. In the Fig. 2 OFDM transmission technique in the frequency
domain is shown.

Fig. 2: Orthogonal basis function in an OFDM

1. Introduction

11

N adjacent and orthogonal subcarriers are spaced by the frequency distance ∆f on the
frequency axis. Orthogonality between all subcarrier signals exists, if the subcarrier
distance and the symbol duration are chosen such that 𝑇!= !

∆!
. Since the system

bandwidth B is subdivided into N narrowband sub-channels, the OFDM symbol duration
𝑇! is N times larger than in the case of an alternative sub-channel transmission system
covering the same bandwidth B [2].

Typically the number of subcarriers is chosen in such a way that the symbol duration 𝑇! is
sufficiently large compared to the maximum multi-path delay 𝜏!"# of the radio channel.
Additionally, delay dispersion in frequency-selective channels exists, which leads to
appreciable errors even when TF≥1, and also leads to a loss of orthogonality between
the subcarriers and thus the ICI (inter carrier interference) [2]. In order to maintain
orthogonality a special type of guard interval called a cyclic prefix is added. This is done
by taking the M last symbols of the frame and putting a copy of them at the beginning of
the frame. This also makes the output from the IFFT periodic. Cyclic prefix serves as a
buffer between consecutive OFDM frames. It is also mentioned in section 2.1.1.7.

OFDM symbol duration with cyclic prefix is 𝑇!! = 𝑇!+𝑇!", where during -𝑇!"<t<0 a copy of
the last part of the symbol is transmitted. At the transmission, data is transformed into
time-domain using IFFT. At the receiver the received time-domain signal is transformed
back to the frequency domain using FFT. The number of points of the IFFT and FFT is
usually of radix two. The 802.11p standard uses a 64-point FFT. The discrete-time
representation of the signal after IFFT is given by Equation (1.1)

x(n) = !
!

𝑋(𝑘)𝑒!!!
!
!!!!!

!!! (1.1)

where N is the total number of subcarriers and n∈[0, N-1). At the receiver the data is
recovered by performing FFT on the received signal, which is given by Equation (1.2)

X(k) = 𝑥(𝑛)𝑒!!!!
!
!!!!!

!!! (1.2)

where k∈[0, N-1).

The received signal is represented by the convolution of the transmitted time signal with
the channel impulse response h(t) and an Additive White Gaussian Noise term given by
Equation (1.3).

𝑟! 𝑡 = 𝑠!(t)* ℎ!(t)+ 𝑛!(t) (1.3)

1. Introduction

12

After demodulation (FFT) cyclic convolution corresponds to multiplicative input-output
relation given by Equation (1.4).

𝑟![n]= 𝐻! ∙ 𝑠![n] + 𝑛![n]. (1.4)

This shows that there is no interference between the sub channels and no inter-channel
interference.

Advantages of the OFDM:

• OFDM transmits simple constellation at low symbol rate.
• OFDM systems provide high spectral efficiency.
• Each transmitted data stream occupies a very narrow frequency

band.
• ISI is less of a problem with OFDM because low data rates are

carried by each carrier.
• OFDM offers frequency diversity by spreading the carriers all

over the used spectrum.
• Transmitter and receiver can be implemented using an IFFT and

FFT respectively.
• If the channel state is known the transmitter can decide on the

correct transmission parameters for each subcarrier, namely,
coding rate and modulation order. Also different power levels per
subcarrier can be assigned according to the channel quality.

• OFDM needs simple equalizer at the receiver due to the long
symbol duration and the use of CP.

Disadvantages of the OFDM:

• OFDM is not power efficient, due to linearity power amplifiers are
required.

• OFDM is sensitive to Doppler shift-frequency error offset
• OFDM is also sensitive to frequency time issues.
• Cyclic prefix lowers overall spectral efficiency
• High Peak to average power ratio (PAPR) of the transmitted

signal.
• High time-frequency synchronization at the receiver.
• The choice of small values of GI can introduce ISI and ICI

thereby destroying the orthogonality.
• The choice of small values of subcarrier bandwidth can cause

carrier offset errors.
• Requires complex electronics, like DSP including FFT

algorithms, to run the software.

1. Introduction

13

1.2 MIMO Systems

The capacity of wireless communication systems is increased with multiple transmit and
receive antennas (MIMO) technology. MIMO systems use multiple transmit and multiple
receive antennas for a single user providing much higher spectral efficiency than SISO
systems. MIMO systems reduce BER or increase the transmission quality. Multiple-
antenna technique simply improves reliability and increases transmission data-rate
without any increase of transmission bandwidth. Especially the use of OFDM combined
with MIMO technology improves system performance remarkably.

Let us consider MIMO system with j transmit and i receive antennas. The block diagram
is given in Fig 3.

Tx Rx

Fig. 3: MIMO System

The ℎ!,! is a complex number corresponding to the channel gain between transmit
antenna j and receive antenna i. If at a certain time instant complex signals 𝑠! are
transmitted then the receive signal can be expressed as in Equation (1.5)

𝑟!= ℎ!,! ∙ 𝑠!!
!!! + 𝑛! (1.5)

where 𝑛! is a noise term.

We can also combine all receive signals in an 𝑖× 1 vector r, as shown in Equation (1.6)

r= H∙s + n (1.6)

where s is the j × 1 transmit symbol vector, n is the 𝑖× 1 additive noise vector and H is
the 𝑖× 𝑗 MIMO channel transfer matrix, given by Equation (1.7).

1. Introduction

14

 H =
ℎ!! ⋯ ℎ!!
⋮ ⋱ ⋮
ℎ!! ⋯ ℎ!"

 . (1.7)

In this thesis a Multiple-Input Single-Output (MISO) system is used, because in a 2x1
Alamouti Space-Time Coded System two antennas are employed only at the transmitter
side.

Due to diversity the different transmission channels carry independently fading copies of
the same signal, so the correlation between signals on different diversity branches should
be zero for maximum diversity, which means the higher the diversity gain, the lower the
probability of error. There exists time, frequency, and space or antenna diversity. Antenna
or space diversity is classified into receive diversity and transmit diversity. In this thesis
the 2x1 Alamouti Space-Time coded OFDM system transmitter diversity is used. In
transmit diversity information is processed at the transmitter and then spread across the
multiple antennas, in our case across two antennas. In this thesis also time and
frequency diversity is implemented. Time diversity is introduced by the convolutional
encoder and the interleaver whereas frequency diversity is introduced by spreading the
bits over different OFDM subcarriers.

1.3 Space-Time Coding

In the case of multiple antennas at the transmitter side, the implementation of Space-
Time Codes (STC) is required. STC reduce the fading effect in the wireless channel and
improves the BER performance in receiver. Through the space-time coding, the
information is spread across space and time, meaning a set of symbols is encoded in
another set of symbols suitable for the transmission on spatially separated streams.
Space time coding introduces redundancy between signals transmitted from various
antennas (space) at various symbol periods (time). The goals of STC are simple
decoding, minimization of error probability and the maximization of the information rate. A
space-time coding has low complexity and high diversity. Simply space-time codes are
powerful techniques to achieve full spatial diversity with low decoding complexity. There
exist two types of space-time codes, namely space-time trellis codes (STTC) and space-
time block codes (STBC). STBCs are mostly used with an error correction code, whereas
STTCs are an extension of the trellis codes in the case of multi-antenna transmit system
and the error correction code is not needed. This thesis focuses on Alamouti Code, which
is a special type of space-time block code (STBC). Alamouti introduces a very simple
scheme allowing transmissions from two antennas with the same data rate as on a single
antenna but increasing the diversity at the receiver from one to two in a flat-fading
channel [3].

In the case of two transmit antennas, Alamouti code promises full diversity and full data
rate, that means orthogonality between the signal vectors transmitted over the two
transmit antennas exists. In the section 2.2 details and characteristics of the Alamouti
space-time codes are explained.

1. Introduction

15

1.4 Introduction to IEEE 802.11p

Wireless Access in Vehicular Environments (WAVE) defines a complete layered protocol
stack, which is also shown in Fig. 4. The Institute of Electrical and Electronics Engineers
(IEEE) develops IEEE 802.11p protocol. IEEE 802.11p is a standard for vehicular
networks, which work with the cooperation of the IEEE 1609 standard family. The IEEE
802.11p standard specifies an OFDM PHY that provides high speed wireless data
transmission for minimizing data errors. The IEEE 802.11p standard is mainly based on
the Wireless Local Area Network (WLAN) IEEE 802.11a standard.

Communication architectures are usually based on the layered OSI (Open Systems
Interconnection)-model, where each level provides certain functions. WAVE upper layers
support functions like data transfer, resource management, system configuration, and
notification. IEEE 802.11p standard provides specifications for the lower layers like
Physical (PHY) and Medium Access Control (MAC) layer. The MAC layer enables
participants of the vehicular network to establish a network or join a pre-existing network
performing functions like fragmentation, packet retransmissions, and acknowledgements.

This thesis deals with the physical layer characteristics. PHY layer in IEEE 802.11
standard is split into two sublayers the PMD (Physical Medium Dependent) sublayer and
the PLCP (Physical Layer Convergence Protocol) sublayer. The PLCP sublayer defines a
method of mapping the MAC sublayer MPDU (MAC Protocol Data Units) into a framing
format suitable to the medium. The PLCP prepares MPDUs for transmission when the
MAC layer instructs, delivers incoming frames from the wireless medium to the MAC
layer, and also minimizes the dependence of the MAC layer on the PMD sublayer. The
PLCP sublayer adds a header containing parameters of the physical transmission like
signal, service, length, CRC and preamble, which allows synchronization between
transmitter and receiver, to each frame coming from the MAC layer. Under the direction of
the PLCP, the PMD provides actual transmission and reception of PHY entities between
two stations through the wireless medium [4]. PMD sublayer defines all modulation and
coding types. IEEE 802.11p protocol uses OFDM signaling with 48 data subcarriers
within a 10 MHz bandwidth. The OFDM frame, which is the resulting frame on the PHY
Physical Medium Dependent (PMD) consists of 4 OFDM symbols for the PLCP preamble.
These symbols are 2 for a short and 2 for a long preamble, 1 OFDM symbol for signaling,
and a variable number of OFDM symbols for data. The packet length N!"#$ and data
rate determine the number of data OFDM symbols. Tab. 1 shows all main values used in
this thesis for the PHYs implementation.

1. Introduction

16

Applications

WAVE	PHY

WAVE	MAC

LLC

IPv6

UDP/TCP WSMPWME

MLME
PLME

802.11p
802.11p

1609.3

802.2
1609.4

Data	PlaneManagement	Plane

1609.3

1609.1

Fig. 4: Protocol Stack

Modulation BPSK, QPSK
Data Rate
(Mbits/s)

3, 6

Coded bits per subcarrier 1, 2
Data bits per OFDM Symbol 24, 48
Coded bits per OFDM Symbol 48, 96
Number of fft points 64
Number of sub carriers 52+DC
OFDM Symbol duration 8 µs
Cyclic prefix time (guard
interval)

1.6 µs

FFT period 6.4 µs
Channel bandwidth 10 MHz
Subcarrier spacing 0.15625 MHz
Sampling period 100 ns
Alamouti space-time code rate 1/2

Tab. 1: Main system parameters in IEEE 802.11p standard

1. Introduction

17

1.5 Scope

In this thesis OFDM system with 64 subcarriers is coded. OFDM system is also
implemented in 16-bit fixed-point algorithm. At the transmitter bit streams are grouped
and mapped into complex symbols. Channel is assumed to be AWGN channel.
Convolutional encoder is applied to a block of data, resulting in the increases of
transmission redundancy. At the receiver, Viterbi decoder is used in order to decode
convolutional codes more efficiently. To improve the BER performance at the receiver
also Equalizer and LMS Channel Estimation are used.

The goal of this thesis is the use of 2x1 (two transmit and one receive antenna) Alamouti
Space-Time Coding and fixed-point algorithm. Especially Alamouti Coding increases
diversity and enhances the transmission quality. This thesis will present the benefits of
applying fixed-point algorithm and space-time coding schemes to vehicular
communication-environments.

2. Implementation of Systems

18

2. Implementation of Systems

In this chapter IEEE 802.11p PHY simulator is presented. For transmission an OFDM
technique with 64 subcarriers is used. The transmitted signal is organized in frames. All
submodules for 1x1 OFDM and 2x1 Alamouti Space-Time Coded OFDM communication
systems are covered. Next chapter describes the Fixed-Point Algorithms, Fixed-Point
FFT together with the important parts of the code. In chapter 4 the simulation results with
plotted graphs are discussed. Conclusion, remarks and outlook are summed up in
chapter 5.

2.1 1x1 OFDM System
Fig. 5 shows a block diagram of a point to point transmission system using OFDM, which
is conceptually divided into three main modules: the transmitter, AWGN channel and the
receiver. Each module is further split up into several submodules. This section gives a
conceptual view of how each submodule is defined in the IEEE 802.11p standard.

TxTx S/PS/P ScramblerScrambler Convolution-
al Encoder

Convolution-
al Encoder InterleaverInterleaver

Mapper
(BPSK/
QPSK)

Mapper
(BPSK/
QPSK)

IFFTIFFT CPCP

Pilot
Preamble
Insertion

Pilot
Preamble
Insertion

RxRx P/SP/S DescramblerDescrambler Viterbi
Decoder
Viterbi

Decoder
Deinterleav-

er
Deinterleav-

er
Demapper

(BPSK/
QPSK)

Demapper
(BPSK/
QPSK)

EqualizerEqualizer FFTFFT CP
Remover

CP
Remover

Channel
Estimation
Channel

Estimation

AWGN
Channel

Fig. 5: Block diagram of a 1x1 OFDM System

2.1.1 Transmitter
Fig. 6 presents the main parts of the transmitter. First of all input data bits are randomly
generated with equally likely ones and zeros. The input serial data bit stream is formatted
into blocks of the size required for transmission. This data bit stream represents the
information to be transmitted. The data is then transmitted in parallel by assigning each
data word to one carrier in the transmission. The binary sequence from the source block
is encoded. After the convolutional encoding some redundancy is introduced, which is
used to combat the corruptive effect introduced by the channel. After convolutional
encoder interleaving is used to map adjacent bits into non-adjacent OFDM subcarriers.
Afterwards coded and interleaved data string is converted into a complex number

2. Implementation of Systems

19

according to a certain signal constellation. This complex numbers are divided into groups
of 48 and mapped to OFDM subcarriers. Next stage is assembling the symbols, which
inserts 4 pilot subcarriers among 48 data subcarriers. Those 52 subcarriers together with
the zero DC subcarrier are folded in 11 zero guard subcarriers to form an OFDM symbol.
The comb pilot subcarriers and the two long training symbols are used to perform channel
estimation. Short training sequences used for a coarse timing estimation do not appear
on the figure because perfect time synchronization is assumed. The next block called
IFFT (Inverse Fast Fourier Transformation) converts the complex-valued symbols on 64
subcarriers into a 64 tap complex discrete time signal for each OFDM symbol. This time
domain signal consists of two long training sequences, signal field and data OFDM
symbols. Signal field contains information about the modulation format, coding rate and
frame length. Cyclic prefix, which is also called guard interval (GI) consists of the last 16
taps of the discrete time signal of the OFDM symbol, which is copied and placed on the
front of each OFDM symbol. In the last step, PPDU frame is created with appended
OFDM data symbols. Next subsection begins with the building blocks of the transmitter.

Encoder Modulation IFFT Add Cyclic
Prefix

Data
bits

x(n) s(n)

Channel
Fig. 6: Main parts of the transmitter

2.1.1.1 Source

Transmit signal is represented by a random binary sequence. Output values are binary
and equally likely. All values which are greater than one half are mapped to “1” and
smaller than one half to “0”. These random values represent the PSDU, the payload of
the PPDU. The number of generated random bits N depends on coding rate R, number of
data subcarriers 𝑁!", number of OFDM data symbols per frame 𝑁!"#, as well as on the
number of bits corresponding to one constellation point 𝑁!"#$ which is given by the
Equation (2.1):

N = 𝑁!" ∙ 𝑁!"# ∙R∙ 𝑁!"#$ [5]. (2.1)

2. Implementation of Systems

20

2.1.1.2 Scrambler

Bitstream may contain long sequences of 1s or 0s, causing an energy flowing in the
transmitter and receiver. To make sure that there is no long run of 1s or 0s in the
bitstream and to disperse the energy across all of its bandwidth some randomization is
needed. A scrambler also known as a randomizer is used to convert an input string into
random output string at the same length. Scramblers are usually defined on linear
feedback shift registers (LFSRs). The scrambler implemented in this thesis consists of 7
shift registers and 2 XORs as shown in the Fig. 7. The generator polynomial S(x) used by
the frame synchronous scrambler is given by Equation (2.2):

S(x) = 𝑥!+ 𝑥!+ 1 [6]. (2.2)

which repeatedly generates a 127-bit sequence for a given pseudo-random initial state.
Each incoming data bit is XORed with the current bit in the 127-bit sequence creating the
output of scrambler.

Data	In

Scrambled	Data	
Out

TT TT TT TT TT TTTT

Fig. 7: Data Scrambler [6]

2.1.1.3 Encoder

The scrambled data passes through a convolutional encoder. In the convolutional
encoder data sequence is first divided into long blocks and then encoded, because of that
convolutional encoder requires very little buffering and storage hardware. Convolutional
encoder adds correlation to the input data sequence by using delay elements and modulo
adders, which can be implemented with a feed forward shift register and XOR gates. A
convolutional encoder is described by three parameters (n, k, m) where n is the number
of output bits, k is the number of input bits and m is the number of shift register stages of
the encoder. The convolutional encoder accepts k-bit blocks of information sequence and
produces an encoded sequence of n-bit blocks called codewords. However, each
encoded block also depends on M previous blocks. As also shown in the Fig. 8 output of
convolutional encoder is generated with one present input bit and six previous input bits.
Constraint length K represents the number of bits in the encoder memory that affect the
generation of the n output bits. The error correction capacity is also related with constraint
length.

2. Implementation of Systems

21

Data In

Data Out 1

Data Out 2

TT TT TT TT TT TT

Fig. 8: Convolutional Encoder (K=7, r=1/2)

Code rate is another important parameter, which measures the code efficiency and is
defined as r= k/n. Code rate of value 1/2 means at each time index the encoder takes one
input information bit and produces two output code bits. An encoder with N memory
elements has 2! possible states and a K=N+1 constraint length. Longer constraint length
leads to more powerful code, more coding gain, more complex decoder and also more
decoding delay. In this thesis IEEE 802.11p is implemented, which has a maximum size
codeword packets of 2!" bits and 1/2 convolutional encoder (n=2, k=1), which means for
one bit entering the encoder there are 2!=2 possible branches. If constraint length K=7,
then the size of shift register would be 6, which results in 2!=64 possible states. Fig. 9
shows the state diagram of K=7 and r=1/2 convolutional encoder.

Also the generator polynomials 𝑔!= [01011011]! and 𝑔!= [01111001]! are important for
representing the connection of the shift register taps to the modulo-2 adders.
Redundancy introduced by the convolutional encoder is used for error correcting coding
that allows the receiver to combat errors occurred by the channel.

2. Implementation of Systems

22

Fig. 9: State diagram of K=7, r=1/2 convolutional encoder [7]

2. Implementation of Systems

23

2.1.1.4 Interleaver

The weakness of convolutional encoder is its susceptibility to burst error. This weakness
can be avoided by using an interleaver, which is used for combating against burst error.
Interleaver takes data packets, chops them up and then rearranges them. By this
rearrangement the contiguous data is spaced further apart into a non-continuous stream.
Interleaver aims to distribute transmitted bits in order to achieve desirable bit error
distribution after demodulation. The kind of interleaving pattern depends on the channel
characteristics. Interleaving reduces adjacent correlation in the bit stream. In the
interleaver the encoded data bits are interleaved with the block size equal to the number
of bits in a single OFDM symbol. In this thesis the interleaving depth, which defines the
number of bits/bytes in each block of data, of m=16 is used.

The interleaver performs two consecutive permutations. The first one ensures that
adjacent coded bits are mapped onto nonadjacent subcarriers. The second one ensures
that adjacent coded bits are mapped alternately onto less and more significant bits of the
constellation.

Let k=0,1,….𝑁!"#$-1 denote the index of the coded bit before interleaving, where 𝑁!"#$
gives number of coded bits in a single OFDM symbol, i the index after first permutation, j
the index after second permutation. The first permutation works as shown in Equation
(2.3):

i= (𝑁!"#$/16) ∙(k mod16)+floor(k/16). (2.3)

Function floor denotes the largest integer not exceeding the argument. The second
permutation is defined as shown in Equation (2.4):

j= s ∙ floor(i/s)+(i+𝑁!"#$-floor(16 ∙ i/𝑁!"#$)) mod s. (2.4)

The value of s is determined by the number of coded bits per subcarrier 𝑁!"#$ given by
Equation (2.5).

s= max(𝑁!"#$/2,1) [8]. (2.5)

At the receiver end, the interleaved data is arranged back into the original sequence by
the deinterleaver.

2. Implementation of Systems

24

2.1.1.5 Mapper

The mapper is used for achieving higher throughput where blocks of l consecutive bits 𝑏!
are combined into higher level “symbols” a[k] that can take on 𝑀!= 2! different real
values/level given by Equation (2.6).

a[k] ∈ A= {𝑎(!), 𝑎(!),…, 𝑎(!")} with 𝑀!= 2! . (2.6)

A is called the symbol alphabet. Since each symbol a[k] carries l bits, we can transmit
these bits l times faster.

M= 𝑀!
! different signals s(t) are transmitted corresponding to a total number L= ldM=

ld𝑀!
!= Kld𝑀!of transmitted bits [9]. The symbol rate is reduced by a factor of l as

compared to the bit rate given by Equation (2.7):

 𝑅!= !
!!

= !
!"!

= !!
!

= !!
!"#!

 (2.7)

In practice the symbols a[k] are mapped to the subcarrier amplitude and phase. Those
mapped symbols a[k] can be represented as points in the complex plane which is called
signal constellation. The signal constellation design makes it possible to reduce the mean
signal power without reducing the minimum distance between symbols. Gray codes are
binary words, where neighboring symbols differ by exactly one bit, which are mostly used
in Gaussian channels. In this thesis the signal constellations like BPSK and QPSK are
defined according to Gray-coding constellation mappings and are illustrated in Fig. 10.

Q

I

BPSK

0 1

-1

1

1

-1

Q

I

QPSK
01 11

-1

1

1

-1

00 10

Fig. 10: Constellation Diagrams

In this implementation first the bit stream coming from the interleaver is divided into
groups of 𝑁!"#$=48 bits for BPSK and 𝑁!"#$=96 bits for QPSK. For each group bits are
mapped into constellation symbols of 𝑁!"#$=1 bit for BPSK modulation and 𝑁!"#$=2 bits
for QPSK modulation.

2. Implementation of Systems

25

To achieve equal average symbol power, the resulting 48 complex pairs are then
normalized by multiplying the resulting value (𝑆!+j𝑆!) in BPSK by 1 and in QPSK by a

factor of !
!
.

2.1.1.6 OFDM Symbol Assembler

Input of the OFDM modulation is 48 complex numbers (one OFDM symbol) coming from
the symbol mapping block. Then each complex number is mapped to one of 48
subcarriers represented as frequency offset indices. Also pilots are inserted in the four
other subcarriers (-21, -7, 7, 21) giving the 52 total subcarriers per OFDM symbol. Pilots
ensure robustness against frequency offsets and phase noise. By looking for pilot signals
in the received signal all parameters regarding synchronization and equalization will be
deduced. Then 52 complex pairs are padded to create 64 complex pairs. These
remaining 12 subcarriers are zero-subcarriers. After modulation the OFDM data is divided
into a groups of 𝑁!" = 48 complex number with logical numbering 0 to 47. Logical
subcarrier numbers are mapped into frequency offset index -26 to 26, while skipping pilot
subcarriers and zero DC subcarrier. The subcarriers -32 to -27 and 28 to 32 are set to
zero resulting in a guard band. Pilot subcarriers for the 𝑛!! OFDM symbol are produced
by the multiplication between the values {1,1,1,-1} and the second element of sequence
𝑝!. The sequence 𝑝!controls the polarity of the pilot subcarriers, which is given by

𝑝!={+1,+1,+1,+1,-1,-1,-1,+1,-1,-1,-1,-1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,+1,-
1,+1,+1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,+1,-1,-1,+1,+1,+1,-1,+1,-1,-1,-1,+1,-1,+1,-1,-
1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,-1,-1,-1,+1,+1,+1,-1,-1,-1,-1,+1,-1,-
1,+1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,-1,+1,-1,+1,-1,+1,+1,+1,-1,-1,+1,-
1,-1,-1,+1,+1,+1,-1,-1,-1,-1,-1,-1,-1}

The sequence 𝑝! is the cyclic extension of the 127-element sequence and can be
generated by the scrambler when the all ones initial state is used, and by replacing all
ones with negative ones and all zeros with ones [6].

2.1.1.7 IFFT

Fourier transform is efficient computational tool specifying given signal amplitude as a
function of time or frequency. Each 48 complex sample coming from the mapper is
associated with one OFDM symbol. For each complex sample also a subcarrier position
in the OFDM symbol is associated. The first two OFDM symbols are called preamble and
the last one postamble. After modulation different OFDM data subcarriers are
transformed to a time domain signal by IFFT operation as shown in the Equation (2.8).

𝑠! = !
!
∙ 𝑆! ∙ 𝑒

!!!"#
!!!!

!!! . (2.8)

2. Implementation of Systems

26

IFFT block converts the data from frequency-domain into a time-domain. N orthogonal
sinusoids are basis functions for an IFFT. In this thesis IFFT is made up of N=64
samples. Input symbols behave like a complex weight for the corresponding sinusoidal
basis functions. Through IFFT all 64 sinusoidals are added to make up a single OFDM
symbol.

The coefficients from 1 to 26 are mapped to the same numbered IFFT inputs, the
coefficients -26 to -1 are copied into IFFT inputs 38 to 63, while the rest of the inputs 27
to 37 and 0 (dc) input are set to zero by forming the 64-point IFFT as shown in the Fig.
11.

0 1 7 21 26 -26 -21 -7 -1

0 1 7 21 26 38 43 57 63

k

k IFFT

Fig. 11: 64 subcarriers 4 of them pilots [6]

The IFFT is useful for OFDM because it generates samples of a waveform with frequency
components satisfying orthogonality conditions. IFFT/FFT operations ensure that
subcarriers do not interfere with one another and can be brought closer. Orthogonality
between the subcarriers allows them to overlap while avoiding crosstalks. Thus, a
significant bandwidth savings can be achieved by using an orthogonal multicarrier
technique.

To reduce the effect of the multipath propagation in the form of ISI some redundancy in
the transmitted signal has to be added, which is called cyclic prefix (CP). Because of that,
the output of IFFT is cyclically extended to the desired length. The cyclic prefix is added
to avoid problems in the receiver caused by the mixing of subsequent symbols in the
receiver. Cyclic prefix is applied to the signal in the time domain and is meant to create a
kind of guard band at the beginning of each symbol. The cyclic prefix is formed by a cyclic
continuation of the signal. As mentioned above cyclic prefix is a copy of Fourier
transformed waveform corresponding to the last 16 samples of OFDM symbol. The
complete time duration of OFDM symbol is given by Equation 2.9.

𝑇!"# = 𝑇!!" + 𝑇!"= 𝑇!!" + !!!"
!

 = 8 µs, (2.9)

where 𝑇!!"= 6.4 µs is IFFT/FFT period and 𝑇!" is a duration of cyclic prefix. Both Fig. 12
and Fig. 13 illustrate OFDM frames separated by cyclic prefix.

2. Implementation of Systems

27

OFDM	Symbol OFDM	SymbolCyclic	
prefix

Cyclic	
prefix

Guard	
bits

OFDM	Frame OFDM	Frame
Fig. 12: OFDM frames separated by guard bits

CP OFDM	symbol

TCP FFT

sym

T
T

Fig. 13: Cyclic Prefix

With 64 point IFFT and 16 bits long cyclic prefix 80 samples are obtained at the output of
the cyclic prefix block as shown in the Fig. 14. 16-tap long cyclic prefix is chosen to be
longer than the maximal channel impulse response length. The OFDM symbols can
interfere just when the transmission delay of the symbols is bigger than the cyclic prefix
duration. The advantages of cyclic prefix are not without a cost. The transmitted energy
required to transmit the signal increases with the length of the cyclic prefix. This 𝑆𝑁𝑅!"##
after the insertion of CP is given by Equation (2.10):

𝑆𝑁𝑅!"##= -10𝑙𝑜𝑔!" (1- !!"
!!"#

). (2.9)

Cyclic	Prefix	Block
64	samples	input 80	samples	output

Fig. 14: Cyclic Prefix Block

2. Implementation of Systems

28

2.1.1.8 PPDU Frame

During transmission, an IEEE 802.11p physical layer data unit (PPDU) consists of a
preamble, header and data. The PPDU includes the OFDM PLCP preamble, OFDM
PLCP header, PSDU, tail and pad bits. The PLCP preamble field, which is used for
synchronization and channel estimation, consists of ten short training symbols (𝑡!, 𝑡!, 𝑡!
to 𝑡!") and two long training symbols (𝑇! and 𝑇!) as illustrated in both Figures 15 and 16.
The long training sequence exhibits double duration and consists of two equal OFDM
symbols and is used for channel estimation and fine frequency offset estimation. The
PLCP preamble is followed by the signal field and data. SIGNAL field is encoded using
BPSK with a coding rate of 1/2. However the first DATA symbol includes the 16 bit
SERVICE field, where the first six bits are set to zero used to synchronize the
descrambler at the receiver.

Fig. 15: OFDM Training Structure [5]

Fig. 16: PLCP Header [5]

2. Implementation of Systems

29

A long OFDM training sequence is composed of 53 subcarriers including a zero value at
DC, which are modulated by the fixed sequence L, given by:

L!!",!" = {0,0,0,0,0,0,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-
1,+1,+1,+1,+1,0,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-
1,+1,+1,+1,+1,0,0,0,0,0}

The contents of the two long training symbols are equal, therefore averaging them can be
used to improve the quality of the channel estimation. The two long training OFDM
symbols, each of duration 6.4 µs with a cyclic prefix of duration 3.2 µs, which is doubled
as compared with duration of cyclic prefix of data OFDM symbol, are implemented. The
reason is that the cyclic prefix contributes to both long training symbols, instead of
prepending each symbol with cyclic prefix of duration 1.6 µs, as is done for data symbols.
In this thesis the final PPDU frame is assembled by simply appending long training
sequence, signal field and data symbols one after another.

2.1.2 Channel
The channel is the physical media between the transmitter and the receiver. The
transmitted signal undergoes channel distortion. AWGN channel attenuates the signal,
adds Gaussian-distributed noise and causes phase rotation. Adding noise to transmitted
signal involves generating Gaussian random numbers, scaling the numbers according to
the desired 𝐸!/𝑁! (energy per symbol to noise density ratio) and adding the scaled
Gaussian random numbers to the channel symbol values. Typically, noise will be
assumed uncorrelated, zero-mean, white with power spectral density 𝑁!/2 and Gaussian
process. AWGN simply means ‘Additive’ added to any noise, ‘White’ uniform power
across frequency band and ‘Gaussian’ normal distribution in the time domain. The output
of the channel is the convolution of the channel impulse response with the transmitted
signal and with the AWGN as illustrated in Fig. 17.

h(k)

n(k)

r(k)s(k)

Fig. 17: Channel Model

The frequency response of the channel is estimated in the receiver.

2. Implementation of Systems

30

By the OFDM transmission technique each subcarrier has an individual transfer factor 𝐻!.
Therefore, the subcarriers can have different bit error probabilities if the same modulation
scheme is applied to all subcarriers.

If all subcarriers are transmitted with the same normalized transmit power, the subcarrier-
specific signal-to-noise ratio (𝑆𝑁𝑅!) values are calculated in decibel as shown in Equation
2.11:

𝑆𝑁𝑅!= 10∙ 𝑙𝑜𝑔!"
|!!|
!!

, (2.11)

where 𝜎! is the variance of the white Gaussian noise.

2.1.2.1 AWGN Channel

To generate random numbers with Gaussian distribution Central Limit Theorem (“law of
large numbers”) is used. According to the central limit theorem a sum of randoms will
approach normal distribution. The law of large numbers shows that the sample mean
converges to the distribution mean as the sample size increases. The random variable
being observed, which is the sum or mean of many independent identically distributed
random variables can be defined by Equation (2.12):

Gauss = mean + 𝜎 ∙x (2.12)

where the variance σ is calculated as given by Equation (2.13):

𝜎 = !

!"
!"#
!"

 (2.13)

mean is set to zero and x is an independent, identically distributed random variable,
which can be defined by Equation (2.14):

𝑥 = !"#$
!"#$_!"#

!"#!
!!!

 (𝑥!"# = 𝑥!"# - !"#$
!

) (2.14)

where NSUM=12 is used quantity of noise values.

The received signal can then be represented as Equation (2.15):

r[k]= h[k]*s[k] + n[k] (2.15)

where s[k] is a transmit signal, h[k] is a channel impulse response and n[k] is a noise
component.

In the developed model, white Gaussian noise is added by means of the standard AWGN
channel block, which adds complex Gaussian noise and produces a complex output

2. Implementation of Systems

31

signal, if the input to the block is complex. In this simulation the actual power of the noise
in an AWGN channel is predefined by the quantities SNR and Eb/N0.

2.1.3 Receiver
Receiver captures the transmitted signal. Fig. 18 shows the main parts of the receiver.
Receiver’s procedure is just the inverse of the transmitter. As seen in the Fig. 5, the
receiver is formed from the Serial-to-Parallel converter, FFT, equalizer, demapper,
deinterleaver, decoder (Viterbi decoder), descrambler, and the received binary data
stream. First step at the receiver is to parallelize the signal which is done by using the
FFT. After FFT the OFDM signal is converted into time domain and the preamble training
symbols, signal field and the pilots are removed. Pilot subcarriers and two long training
symbols are used for channel estimation. The equalizer compensates the fading effects,
which gives the estimate of the transmitted symbol. These symbol sequences are
converted into the codeword in the demapper. The deinterleaver reverses the stages of
interleaver performed in the transmitter. Viterbi decoder converts the codeword into the
dataword. The decoded bits are descrambled to recover the original binary data stream.
Finally the received binary data stream is compared with the transmitted binary data, in
order to derive the overall error ratio. Submodules of the receiver are presented in the
following parts of this chapter.

Viterbi
Decoder

Demodula-
tion Equalizer FFT

Remove
Cyclic
Prefix

Channel
Estimation

Fig. 18: Structure of the receiver

2.1.3.1 Demodulator

Each PPDU frame after the S/P submodule is divided into blocks. The first two blocks
correspond to the ten short training symbols (not needed in our case), the third and the
fourth blocks correspond to long training symbols, the fifth block is a signal field and the

2. Implementation of Systems

32

rest are data symbols. First of all the cyclic prefix is removed by ignoring first 16 samples
of each symbol. After removing the cyclic prefix from 80 samples 64 samples are
obtained at the output of the cyclic prefix remover block. The FFT at the receiver side
performs the inverse of the IFFT and is defined as in Equation (2.16):

𝑆! = 𝑠! ∙ 𝑒
!!!"#$!!!!

!!! (2.16)

At the output of the FFT block subcarriers are rearranged by exchanging the left and right
halves of the spectrum and moving the zero-frequency component to the middle. The
ideal FFT output should be the original samples that were sent to the IFFT at the
transmitter.

2.1.3.2 Channel Estimator

Channel adds some noise into the signal, therefore channel estimation is used to obtain
the channel state information. A continuous estimate of the channel behavior is important
to ensure reliable data transmission and reception, for this reason a known frame is sent,
and the received frame is compared with the original frame for the estimation of channel
response.

The channel estimation frame, which is a set of all the possible symbols assigned to each
sub-channel, is another important frame that predicts the channel response at the
receiver. Once the channel estimation frame is received, this information is used to
generate a channel adjustment matrix. The channel adjustment matrix acts as a linear
transform applied to all of the following frames to shift and scale the symbols as required
to negate the combined effects of the channel.

Due to the cyclic prefix in the OFDM system we assume, that the OFDM symbols are ISI-
free and orthogonal. Because of this the system can be described as a set of parallel
Gaussian channels. We try to estimate the K complex-valued channel coefficient gains.
As shown in the Fig. 19 the received data symbol 𝑟! on each subcarrier k equals the data
symbol 𝑠!, which was transmitted on that sub-carrier, and multiplied with the
corresponding frequency-domain channel coefficient 𝐻! in addition to the transformed
complex Gaussian random variable 𝑛! given by Equation (2.17):

𝑟![n] = 𝐻!𝑠![n] + 𝑛![n]. (2.17)

2. Implementation of Systems

33

H

H

N

N

R

RS

S

0

0

0

0

k-1

k-1 k-1

k-1

Fig. 19: OFDM System interpreted as pasallel Gaussian channels

First of all a raw channel is estimated at pilot subcarrier frequencies using known pilots.
The first step in determining the least squares estimate is to extract the pilot symbols from
their known location. As the values of pilot symbols are known, the channel response at
these locations can be determined by using the LS estimate which is obtained by dividing
the received pilot symbols by their expected values.

The estimation of channel coefficients is defined as in Equation (2.18):

Ĥ![n] = !![!]
!![!]

 = 𝐻![n] + !![!]
!![!]

. (2.18)

The final channel estimation for the 𝑘!! subcarrier is then given by Equation (2.19):

Ĥ! = !
!
(Ĥ![1] + Ĥ![2]) (2.19)

where Ĥ![1] and Ĥ![2] are estimates of the first and second long training symbols.

2.1.3.3 Equalizer

After the channel coefficients are estimated, the equalizer utilizes the information about
the channel to remove the distortion of the signal. The equalizer creates estimates of the
transmitted binary data, which means the output of the equalizer should be a good
approximation to current symbol. Equalization requires an element-wise multiplication of
the FFT output by the inverse of the estimated channel transfer function. Zero-Forcing
(ZF) strategy is one of the design strategies of the equalizer, which is used in this thesis.

2. Implementation of Systems

34

In ZF equalizer multiplication by the complex conjugate of the channel estimate can do
the equalization.

Orthogonality of individual subcarriers is assumed to be still present and multiplicative
input-output relation of the channel holds. It is also assumed that all channel coefficients
𝐻! are known. The coefficients of the Zero-Forcing equalizer are inverse-proportional to
the channel coefficients given by 𝐸!= 1/𝐻!. Hence, the output of the equalizer is given by
transmitted samples plus a noise component given by Equation (2.20):

𝑟!＾= 𝐸!𝑟![n]= !
!!

(𝐻!𝑠![𝑛] + 𝑛![n])= 𝑠![𝑛] + 𝑛!＾[n]. (2.20)

Through Zero-Forcing (ZF)-design total absence of ISI is possible. But the great
disadvantage of the ZF equalizer is its effect on the noise. Hence values of 𝐸! near zero
will result in significant noise amplification.

2.1.3.4 Demapper

Each received symbol sequence at the output of the Equalizer is demapped into the
corresponding binary word, which is an inverse process of the mapper at transmitter.
These detected symbols can be any complex number and can also be different from the
transmitted symbols â ≠ a, where â is not from symbol alphabet A= {𝑎(!), 𝑎(!),…, 𝑎(!")},
which means that symbol errors have occurred. The output of the demapping are
detected coded bit sequences ĉ! with bit rate 𝑅!= l𝑅!. If no symbol errors have occurred,
the detected coded bit sequence equals the original coded bit sequence ĉ! = 𝑐!. In the
case of symbol errors, some of the detected coded bits will be incorrect. Hard demapping
and soft demapping are two types of detection methods. In this thesis hard demapping is
used, which is based on the minimum Euclidian distance between the received symbols
and the valid symbols given by Equation (2.21):

â[n] = arg []min q k a
a A

⎡ ⎤−⎣ ⎦
∈

= arg []() []()2 2
min k kq qa aR IR I
a A

− + −
∈

 (2.21)

2. Implementation of Systems

35

2.1.3.5 Deinterleaver

The deinterleaver converts the interleaved hard-coded bits into the original code
sequence. As a result of deinterleaver, correlated noise introduced in the transmission
channel appears to be statistically independent at the receiver, allowing better error
correction. Like interleaver also deinterleaver performs two consecutive permutations.

Let j=0, 1,….𝑁!"#$-1 denote the index of the received bit before deinterleaving, i the index
after first permutation and k the index after second permutation. The first permutation
works as shown in Equation (2.22):

i= s ∙ floor(j/s)+j+(floor(16 ∙ j/𝑁!"#$)) mod s. (2.22)

As already mentioned function floor denotes the largest integer not exceeding the
argument. The second permutation is defined as shown in Equation (2.23):

k= 16∙i-(𝑁!"#$-1)floor(16 ∙ i/𝑁!"#$). (2.23)

Like at interleaver also at deinterleaver the value of s is determined by the number of
coded bits per subcarrier 𝑁!"#$ and is defined in Equation (2.5).

2.1.3.6 Viterbi Decoder

Beside the channel estimator and the equalizer, the purpose of the encoder and decoder
is to minimize the effect of channel noise. Viterbi decoder, which is a part of this thesis,
was developed by Andrew J. Viterbi. Viterbi decoder together with the convolutional
encoder is the most popular FEC (Forward error correction) technique that is particularly
suited to the AWGN channel. FEC communication scheme adds redundancy to the
transmitted data so that any errors introduced by the channel can be corrected at the
receiver.

Viterbi decoding based on the maximum likelihood algorithm has a fixed decoding time,
which is well suited to hardware implementations. At the Viterbi decoder, actual received
encoded data plus the noise is compared with the encoded data sequence for each of the
possible outputs of the convolutional encoder. In other words in Viterbi decoder, the
deinterleaved coded bit sequence ĉ is converted into the transmitted bit sequence b̂,
which means any error introduced by the channel is corrected. Fig. 20 shows the block
diagram of Viterbi decoder. Maximization of the log-likelihood function represents the
probability that the decoder output sequence matches the encoder input sequence.
Viterbi decoder is simple to implement and offers large coding gain but it needs to
process O(2!) transitions each bit time, meaning the time complexity is exponential in
constraint length K.

2. Implementation of Systems

36

Branch Metric
Unit

Add Compare
and Select Unit

Trace Back
Unit

Survivor
Memory

Branch Metric
Optimal

Path

Survivor Path
Metric

Survivor Path
Metric

previous State
Information

previous State
Information

Fig. 20: Block diagramm of Viterbi decoder

The Viterbi decoder receives a pair of channel symbols and determines a distance metric
between the received channel symbol pair and the possible channel symbol pairs. The
mapping of an existing encoder state to a new state based on the input bit value is
illustrated by a trellis diagram, which is a time indexed version of a state diagram. Trellis
diagram consists of nodes and branches. Each column has the set of states, each state
in a column is connected to two states in the next column. States of the convolutional
encoder are values of the encoder’s register. State transitions 𝛹! → 𝛹!!! represent
branches in the trellis diagram.

If there are no errors the path in the trellis would match up with the received sequence.
Finding the most likely transmitted sequence means having the minimum BER. Because
of that Viterbi decoder is used to capture the errors occurred through the states of the
trellis and to navigate the trellis without actually materializing the entire trellis. The error
probability depends on the constraint length (larger K better error correction), the number
of generators (larger this number, lower the rate and the better the error correction) and
the amount of noise.

Fig. 21 gives an example of a trellis diagram. Let the state at time i be defined as the
current content of this encoder’s register, so the collection of the outputs of the J delay
elements at time k is given by Equation (2.24):

𝛹!= (s[k-1], s[k-2], …, s[k-J]). (2.24)

Since each sequence can take M different values, there are 𝑀! different states. Different
states 𝛹! for some time index I are represented by the nodes of the trellis diagram. Viterbi
decoder finds the most likely transition and ignores the other transitions. In this thesis
Viterbi decoder with J=6 delay elements, M=2 different values and 𝑀!=2!= 64 different

2. Implementation of Systems

37

states is implemented. Meaning BMU calculates sixty four set of hamming distances and
each set consists of two values.

000000

000000

000001

000000

000001

000010

000011

000000

000001

000010

000011

000110

000111

000100

000101

Decoder	Input 00 01 10 11

…….

…….

…….

…….

…….

…….

…….

…….

Fig. 21: First three levels of the decoder

As already mentioned branch metric (BM) and the path metric (PM) are two metrics used
in Viterbi algorithm. Branch metric is a measure of the distance between what was
transmitted and what was received. Hard decision decoder and soft decision decoder are
two main methods of branch metric calculation depending on the decoder type. By the
“soft decision” decoder method a branch metric is calculated using the Euclidean
distance.

In the “hard decision” decoder a branch metric is calculated using the Hamming distance
between the received pair of bits and the “ideal” pair, where the result can only be zero,
one, or two. In this thesis a hard decision decoder is used, where the branch metric is
calculated as given by Equation (2.25):

𝑑!![i]= |𝑟[𝑖] − 𝑠![𝑖]| !. (2.25)

Patch metric is a value associated with a state in the trellis. The path metric is calculated
with the “Add-Compare-Select” procedure as also shown in Fig. 22, where at a new state
branch metric is added to the path metric from the old state, then the sums for paths
arriving at the new state are compared and the path with smallest value, called survivor
path, is selected. Path metric is represented by Equation (2.26):

𝑑!![i]= |𝑟 𝑙 − 𝑠![𝑙]|!!
!!! . (2.26)

2. Implementation of Systems

38

AddPossible
Branch Metric

1

Survivor Path
metric for
storage

Path metric
from previous

stage

Add

Path metric
from previous

stage

Compare

Possible
Branch Metric

2

Possible Path
Metric 1

Possible Path
Metric 2

Survivor Path
metric to next

stage

Fig. 22: Block diagram of Add Compare and Select Unit

At the current time point i, 𝑀! survivor paths have to be stored. It has been proved that all
survivor paths merge after decoding a sufficiently large block of data. In particular,
decoding depth D is a very important parameter. A decoding depth should be
considerably large for quality decoding. Increasing D decreases the probability of a
decoding error, but also increases latency [10]. Any deeper traceback increases
decoding delay and decoder memory requirements. In this thesis traceback depth of 5xK
is used, which is very sufficient for Viterbi decoding.

2.1.3.7 Descrambler

The descrambler block descrambles input data sequence. Descrambler is the inverse of
the scrambler block at the transmitter. At each time step, the input causes the contents of
the registers to shift sequentially.

2. Implementation of Systems

39

2.2 2x1 OFDM System
Until now, OFDM system based on IFFT and FFT with one transmit and one receive
antenna signaling over the channel was described. However, OFDM-based system is a
special case of multiuser systems. The goal of this subsection is the development of a
model for the data transmission in an OFDM-based system over a MISO channel.

MISO system provides a better performance in two different respects, the diversity and
the multiplexing. Receiver antenna diversity at the remote units needs to remain relatively
simple, inexpensive and small. Therefore, for commercial reasons, transmit diversity
schemes are becoming increasingly popular as they promise high data rate transmission.
The diversity gain improves the quality of the communication link and is obtained through
the use of Space Time Coding (STC). To obtain space diversity gain, multiple transmit
antennas and at least one receive antenna must be used.

By the use of OFDM in MISO systems, the bit stream is distributed onto many parallel
subcarriers with a low data rate. The difference of the 2x1 OFDM system from the 1x1
OFDM system is that MISO, diversity and space-time coding rules are used. In this
thesis, MISO is implemented using Alamouti algorithm. ST-OFDM is based on the
transmit diversity scheme, where the transmitter is formed from two transmit antennas
and the signals are combined through Alamouti Space-Time codes. Block diagram of
such communication system is illustrated in the Fig. 23.

In this subsection, an OFDM system equipped with 𝑁!!" subcarriers (K data subcarriers,
remaining 𝑁!!"-K subcarriers are zero), 𝑁!= 2 transmit and 𝑁!=1 receive antennas will
be discussed. It can be seen that channel bandwidth B is decomposed into 𝑁!!"
orthogonal MIMO channels, each with bandwidth B/𝑁!!", which in our case corresponds
to two transmit channels. Also, different channel gains exist. The transmit function
depends on the space and time components. Using Alamouti-Coded OFDM system with
64 subcarriers can turn a frequency-selective MISO channel into a set of parallel
frequency-flat MISO channels.

2. Implementation of Systems

40

TxTx S/PS/P ScramblerScrambler Convolution-
al Encoder

Convolution-
al Encoder InterleaverInterleaver

Mapper
(BPSK/
QPSK)

Mapper
(BPSK/
QPSK)

RxRx P/SP/S DescramblerDescrambler Viterbi
Decoder
Viterbi

Decoder
Deinterleav-

er
Deinterleav-

er
Demapper

(BPSK/
QPSK)

Demapper
(BPSK/
QPSK)

EqualizerEqualizer FFTFFT CP
Remover

CP
Remover

Channel
Estimation
Channel

Estimation

AWGN
Channel

IFFTIFFT CPCP

Pilot Preamble
Insertion

Pilot Preamble
Insertion

ST
BC

IFFTIFFT CPCP

Pilot Preamble
Insertion

Pilot Preamble
Insertion

ST
BC

Fig. 23: Block Diagram of 2x1 Alamouti Space-Time Coded OFDM System

2.2.1 Alamouti Coding
As mentioned above second main part of this thesis investigates the application of the
Alamouti Space-Time coded system. Alamouti Code was introduced by Siavash M.
Alamouti in 1998. Alamouti Code is the first STBC that provides full diversity at full data
rate for two transmit antennas. Alamouti code improves the quality of reception with low
complexity at the receiver. Two transmit and one receive antenna provides the same
diversity order as Maximum Ratio Receiver Combining (MRRC) with one transmit and two
receive antennas. However, due to the fact that no channel state information is available
at the transmitter, there is approximately 3 dB offset between 1x2 MRRC and 2x1
Alamouti STBC BER versus SNR curves. Particularly Alamouti scheme with two transmit
antennas is optimum in both the capacity and the diversity. Also, the Alamouti scheme
does not require channel state information at the transmitter, which requires a low
complexity maximum-likelihood decoding algorithm. To decouple the transmitted signals
from different antennas, the channel between individual transmit and receive antenna
pairs requires to remain constant during two consecutive OFDM symbol periods. Figures
24 and 25 illustrate how the Alamouti encoding procedure is performed.

2. Implementation of Systems

41

Alamouti	Code	S

Tx1

Tx2

Fig. 24: Alamouti scheme with two transmit antenna

The two SISO channels from the two transmit antennas are assumed to be both time-
and frequency selective. The space-time block encoder generates a pair of complex
symbols {𝑠!, 𝑠!}, which implies that transmitter with two antennas using the Alamouti
STBC requires two signaling intervals. In general, transmission matrix of the space-time
block code is linear combination of the transmitted symbols and their conjugates. During
the first interval, 𝑠! and 𝑠! are transmitted from the first and second antenna respectively
and during the second, −𝑠!∗ and 𝑠!∗ are transmitted from the first and second antenna
respectively. In other words, the information symbols are transformed into the space-time
code matrix given by Equation (2.27):

S=
𝑠! 𝑠!
−𝑠!∗ 𝑠!∗

 (2.27)

where the first row represents the first transmission period and the second row the
second transmission period. Encoding is performed in both time and space domain. As
shown in the equations, two consecutive symbols are spatially encoded into four symbols.
One of the main properties from Alamouti codeword matrices is the orthogonality,
regardless of the underlying modulation scheme [11]. This property enables the receiver
to detect 𝑠! and 𝑠! using a simple linear signal processing operation. In this thesis
Alamouti Space-Time Coding is performed to every symbol in 48-bit data blocks.

2. Implementation of Systems

42

Tx1

Tx2
Fig. 25: Alamouti scheme

The observations during the forty-eight signaling interval at a receiver with a single
antenna are given by Equation (2.28):

𝑟!
𝑟!……
𝑟!"
𝑟!"

 =

h!
h!∗

h!
−h!∗…

…
h!"
h!"∗

…
…
h!"
−h!"∗

𝑠!
𝑠!
…
…
𝑠!"
𝑠!"

 +

𝑛!
𝑛!
…
…
𝑛!"
𝑛!"

 = r = 𝐻!"" ∙s + n (2.28)

2. Implementation of Systems

43

where n is white Gaussian and zero-mean noise and 𝐻!"" is an effective channel matrix.
In the Equation 2.28, a mathematical decoding description is presented. The channel
gains are assumed to stay constant during each consecutive symbol interval. Alamouti
code transforms a MISO (2x1) channel into an effective MIMO (2x2) channel with transfer
function 𝐻!"". 𝐻!"", which is orthogonal, namely 𝐻!""*𝐻!""= | 𝐻 |!𝐼 , where | 𝐻 |!= |ℎ!|!+
|ℎ!|! is the squared norm of the underlying MISO channel H= [ℎ!, ℎ!] [12]. The output
signal then is given by Equation (2.29):

r = 𝐻!""∗ ∙r= 𝐻!""∗ ∙(𝐻!"" ∙s+n) = | 𝐻 |! ∙s+ 𝑛^ (2.29)

From the result it is seen that the maximum-ratio combiner output for a two-input single-
output channel with Alamouti transmit diversity coding is statistically identical to the
maximum-ratio combiner output for a single-input two-output channel with receive
diversity and no space- time coding. The Alamouti scheme leads to order-two diversity,
without an array at the receiver, without channel knowledge at the transmitter and with
only simple linear combining and slicing at the receiver. Alamouti’s technique with two
transmit antennas can easily be extended to an arbitrary amount of receive antennas to
obtain a diversity order of 2𝑀!

!.

2.2.2 Channel Estimation of Alamouti 2x1

In this subsection, the basic estimation algorithm in an OFDM MISO system is
represented. Time orthogonal method with four linear independent equations and four
unknown variables are used. It is assumed that transmitted and received preamble
symbols, s and r are known at the receiver. Also the channel matrix H is assumed to stay
constant during the transmission, which is given by Equation (2.30).

𝑅!= 𝐻!𝑆!+𝑁!

𝑟!,!! 𝑟!,!!

𝑟!,!! 𝑟!,!!
 =

ℎ!,!! ℎ!,!!

ℎ!,!! ℎ!,!!
𝑠!,!! 𝑠!,!!

𝑠!,!! 𝑠!,!!
 +

𝑛!,!! 𝑛!,!!

𝑛!,!! 𝑛!,!!
 (2.30)

Where 𝑟!,!! is the received signal, ℎ!,!! are the channel gains, 𝑠!,!! the transmit signal and the
indices i, j, l represent the number of receive antenna, number of transmit antenna and

OFDM symbol interval respectively. The transmit signal matrix 𝑆! is always c 1 −1
1 1

with c= 1 or c= -1, which depends on subcarrier index k. The second method, which is
used in this thesis is the time multiplexed MISO channel estimation. It is suboptimal for
signal amplification issues where the transmit matrix 𝑆! is always cI (identity matrix),
which leads to the following channel estimation given by Equation (2.31):

2. Implementation of Systems

44

Ĥ! = 𝑅!𝑆!!! = 𝐻! + 𝑁!𝑆!!! , (2.31)

where both equations are valid for the case of 2x1 channel estimation [12].

3. Fixed-Point Algorithm and Code

45

3. Fixed-Point Algorithm and Code

This chapter is composed of two main parts. The first part describes the fixed-point
algorithm and the second part gives an understanding about the development of the
code. The first part begins with the theoretical explanation of the fixed-point algorithm and
fixed-point FFT, in the second part, explanation of the functions written in C programming
language are given. In the next chapter the results from the code which are simulated in
PC are presented.

3.1 Algorithmic Explanations
The main goal of this thesis is to present an entire 1x1 and 2x1 OFDM System in fixed-
point algorithm. The meaning and the way of fixed-point programming in the C
programming language is described below.

3.1.1 Fixed-Point Representation
The arithmetic units in digital signal processing hardware usually employ fixed-point
computations. The reason is that fixed-point operations are fast, memory and bus sizes
are small and use less area and energy. C and other high level programs usually allocate
16 bits to store integers. A K-bit fixed-point number can be represented as an integer or
as a fraction. Integer representation may be unsigned or signed. In unsigned case
number can take any integer value from 0 to 65535 and on signed integer case two’s
complement is used to include negative numbers having the range from -32768 to 32767.
Integer fixed-point representation is difficult to use due to possible overflows. Also
fractional fixed-point representation may be unsigned fraction and signed fraction, in
unsigned fraction the 65536 levels are spread uniformly between 0 and 1 but the signed
fraction format allows negative numbers equally spaced between –1 and 1. Fractional
fixed-point representation, which is also called Q-format, represents numbers between -
1.0 and 1-2!(!!!), when N is a number of bits. In fractional fixed-point representation
multiplying a fraction by a fraction always results in a fraction, which will not produce an
overflow [13].

In this thesis signed integer fixed-point representation is used.

Signed integer number is shown in the Fig. 26. N-bit fixed-point, two`s complement
number is shown by Equation (3.1):

 X= -𝑏!!!2!!!+𝑏!!!2!!!+…+𝑏!2! (3.1)

N-1 0
S

Fig. 26: Signed integer fixed-point representation of a number

3. Fixed-Point Algorithm and Code

46

For the conversion of the integers into a fixed-point format, first the range of number
should be found, than the suitable fixed-point version of the number can be obtained.

General characteristics of the fixed-point implementation are:

1) The processing time is reduced.
2) Is adopted for smaller area and lower energy consumption.
3) May suffer from some loss on the error-rate performance, which

needs to be investigated.
4) The processing time is drastically reduced compared with the

floating-point counterpart, running at a higher clock frequency.

The fixed-point arithmetic operations are addition, subtraction, multiplication and division.
The shifting operation is used for all the arithmetic operations. Shifting is used to displace
the position of the binary point. It is equivalent to multiplication or division by a power of
two. In order to add two fixed-point numbers, first they must be shifted to have the same
binary point position and then can be added with each other. The result is a fixed-point
number with a length of N+1 bits, where N represents the number of bits in each number.
In multiplication the bits are unsigned and the number of bits of the result is equal to the
sum of the numbers of the bits of the multipliers [14]. After the multiplication, if in the
result extra signed bits exist, then they should be avoided by shifting the bits to the left.
The shifting positions are equal to the number of extra signed bits. More difficult problem
is division because hardware divider does not exist. For division reciprocal of the divisor
is calculated.

3.1.2 Fixed-Point FFT and Twiddle Factor

FFT is one of the most important tools used to reduce computations of DFT from O(𝑁!) to
NlogN, where N denotes the length of the input vector. FFT breaks up the original N point
samples into two (N/2) sequences, where one is formed from the even-numbered points
and the other from the odd-numbered points of the original DFT. The development of FFT
algorithm because of complex twiddle factors result in complex variables. Therefore FFT
algorithm is designed to perform complex additions and multiplications. However, the
input sequence consists of real numbers. For the calculation of an FFT with fixed-point
arithmetic the input data is scaled to prevent overflow and to maintain accuracy. Also new
conditions on the magnitudes of the input components to avoid overflow during the
computation of the FFT are derived. Butterfly-based architecture, recursive algorithm-
based architecture, multiplier-accumulator-based structure and ROM operation-based
structure are four possible categories used for the FFT/DFT computation. The radix-2
butterfly is the simplest FFT algorithm, which greatly reduces the total computational cost
by recursively splitting the DFT as shown in the Fig. 27. The radix-2 FFT of a complex
sequence {𝑠!} of length N is the complex sequence {𝑆!} of length N, given by Equation
(3.2):

3. Fixed-Point Algorithm and Code

47

S[k]= 𝑠[𝑛] ∙ 𝑒
!!!!"#

!!!!
!!!

= 𝑠[2𝑛] ∙ 𝑒
!!!!"#

(!!)
!
!!!
!!! +𝑊!

!" 𝑠[2𝑛 + 1] ∙ 𝑒
!!!!"#

(!!)
!
!!!
!!! (3.2)

As shown by the Equation 3.2 one radix-2 FFT begins by calculating N/2 2-point DFT. In
the next stage these are combined to form N/4 4-point DFT and it continues until a single
N-point DFT is produced. Fast Fourier transform with basic radix-2 algorithm, can be
characterized in terms of a basic computational unit known as the butterfly. These
butterflies process a pair of complex data values to produce a new pair of complex data
values which can occupy the same storage locations as the input data. The butterfly is
the FFT algorithm represented as a diagram and its operations are complex addition and
multiplication by a complex exponential. For radix-2 algorithm, there are 𝑙𝑜𝑔!! stages in
the computation. At each of the 𝑙𝑜𝑔!! stages of the FFT, N/2 butterflies are computed. For
64-point DFT 6 stages are needed. At each stage, N complex values are used to
compute N new complex values. It is important to guarantee that the data to be
transformed has a range which avoids overflow problems. The entire data array is scaled
(shift the data to accomplish multiplication by power of two) with the same scale factor to
bring the largest value to near full scale.

3. Fixed-Point Algorithm and Code

48

x(0)
x(32)
x(2)
x(34)
x(4)
x(36)
x(6)
x(38)
x(8)
x(40)
x(10)
x(42)
x(12)
x(44)
x(14)
x(46)
x(16)
x(48)
x(18)
x(50)
x(20)
x(52)
x(22)
x(54)
x(24)
x(56)
x(26)
x(58)
x(28)
x(60)
x(30)
x(62)
x(1)
x(33)
x(3)
x(35)
x(5)
x(37)
x(7)
x(39)
x(9)
x(41)
x(11)
x(43)
x(13)
x(45)
x(15)
x(47)
x(17)
x(49)
x(19)
x(51)
x(21)
x(53)
x(23)
x(55)
x(25)
x(57)
x(27)
x(59)
x(29)
x(61)
x(31)
x(63)

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)
X(8)
X(9)
X(10)
X(11)
X(12)
X(13)
X(14)
X(15)
X(16)
X(17)
X(18)
X(19)
X(20)
X(21)
X(22)
X(23)
X(24)
X(25)
X(26)
X(27)
X(28)
X(29)
X(30)
X(31)
X(32)
X(33)
X(34)
X(35)
X(36)
X(37)
X(38)
X(39)
X(40)
X(41)
X(42)
X(43)
X(44)
X(45)
X(46)
X(47)
X(48)
X(49)
X(50)
X(51)
X(52)
X(53)
X(54)
X(55)
X(56)
X(57)
X(58)
X(59)
X(60)
X(61)
X(62)
X(63)

2-point
DFT

Combine	
2-point
DFT‘s

Combine	
4-point
DFT‘s

Combine	
8-point
DFT‘s

Combine	
16-point
DFT‘s

Combine	
32-point
DFT‘s

Combine	
16-point
DFT‘s

Combine	
8-point
DFT‘s

Combine	
8-point
DFT‘s

Combine	
8-point
DFT‘s

Combine	
4-point
DFT‘s

Combine	
4-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

Combine	
4-point
DFT‘s

Combine	
4-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

Combine	
4-point
DFT‘s

Combine	
4-point
DFT‘s

Combine	
4-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

Combine	
2-point
DFT‘s

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

2-point
DFT

Fig. 27: 6 stages in the computation of the N=64-point DFT

𝑊 is the twiddle factor matrix with the elements defined by the complex exponential as in
Equation (3.3):

𝑊!
!"= exp(!!!!!"

!
)= cos(!!!"

!
) - j∙sin(!!!"

!
). (3.3)

Twiddle means “Turn around with fingers”, shown also in Fig. 28 it is the factor of rotation.

3. Fixed-Point Algorithm and Code

49

Real	Axis

Imaginary	Axis

Fig. 28: Twiddle factors for 64-point FFT

In this thesis for the fixed-point FFT first of all the values are scaled between the signed
short range of 32767 to -32768. The scaled values that serve as input to the FFT are
labeled as Fix Real and Fix Imag. Then the twiddle values are calculated using the
equations above. The calculated twiddle factors are scaled to fixed-point values and
multiplied by input values to give an output values.

3.1.3 Treatment of End Effect using Zero Padding
Zero padding is also important method during simulations. Because the input signal must
be periodic and the duration of the response has to be the same as the period of the
data. For the first condition often the data has to be padded with the number of zeros on
one end, equal to the maximum positive duration or maximum negative duration of the
response function. These zeros protect the output channels from wrap-around pollution. If
the response is much shorter than the length of the data set, it can be extended to the
same length by padding it with zeros.

3. Fixed-Point Algorithm and Code

50

3.2 Explanation of the Functions from the Code
Hardware implementation for a SISO and MISO Fixed-Point OFDM system utilizing
Alamouti Space-Time Coding is written in C source. The main point of the code is to use
a fixed-point algorithm. First block of the transmitter module is a data generator. It
randomly produces the payload data bits with equally likely zeros and ones. This
generated amount of data is an input parameter to the simulator. The next block, called
the scrambler is used to randomize the bit pattern because often the payload bits consist
of long runs of zeros or ones. In this thesis the data generator is already random so a
scrambler is not really needed, a code can also be implemented without it. The next block
of the transmitter module is the convolutional encoder. The data passes through the
convolutional encoder, which introduces redundancy in the stream to combat corruptive
channel influence. Encoder in this thesis has a code rate of 1/2 and constraint length of 7.
After the encoding, the interleaver combats against temporally long channel fades
resulting in burst errors. The interleaver simply rearranges the bit streams, which is then
reversed at the receiver node.

In order to obtain higher spectral efficiency the output of the interleaver is mapped onto a
higher order of modulation symbols, which is carried out by the mapper. In this thesis the
supported modulation alphabets for IEEE 802.11p are BPSK and QPSK. Due to the use
of Gray coded modulation schemes, the consecutive symbol points differ by only one bit,
so a symbol error will most likely result in only one bit error.

Transmission is organized in frames. Frame structure consists of data symbols and
preamble. In other words the payload bit size together with the modulation and coding
scheme determine the OFDM frame size.

Until the mapping part, the MISO simulation is equal to the SISO simulation. In the MISO
simulator space-time encoding process is accomplished before the OFDM symbol
assembler. Alamouti Space-Time encoding is represented in Equation (3.4):

 S =

𝑠!
−𝑠!∗

𝑠!
𝑠!∗…

…
𝑠!"
−𝑠!"∗

…
…
𝑠!"
𝑠!"∗

=

𝑐!,!
𝑐!,!

𝑐!,!
𝑐!,!…

…
𝑐!",!
𝑐!",!

…
…
𝑐!",!
𝑐!",!

. (3.4)

As shown on the Tab. 2 the Alamouti coding scheme is applied to each OFDM symbol in
each time interval.

 Time intervals
 t t+T t+2T t+3T … t+47T
Tx! s! −s!∗ s! −s!∗ … −s!"∗
Tx! s! s!∗ s! s!∗ … s!"∗

Tab. 2: Coding process of Alamouti scheme

3. Fixed-Point Algorithm and Code

51

48 time intervals exists because OFDM symbol comprises 48-bit data blocks. The symbol
stream obtained from the mapper is grouped into blocks of two consecutive symbols. The
elements of every block with index b are labeled 𝑠! and 𝑠!. All these blocks are encoded
by the Alamouti encoding procedure ending up in four code symbols 𝑐!,!! which are 𝑠!, 𝑠!,
−𝑠!∗ and 𝑠, where the indices i and l represent the transmit antenna number and the
OFDM symbol number modulo 2, respectively.

After encoding every block of the consecutive symbols, the encoded symbols c are
arranged at the various positions in the time-frequency grid. After rearrangement the
comb pilot subcarriers and preamble are added. Then, encoded and assembled data is
modulated by an IFFT transformation with 𝑁!!"= 64 and 𝑁!"= 16.

The core functions of this code are IFFT and FFT. In these two functions we can see the
effect of fixed-point numbers. IFFT and FFT are not simply presented through their sine
and cosine functions. They are presented through the twiddle factor 𝑊!

!".

For 64 subcarriers in OFDM we get a 64x64 matrix of twiddle factor and the output of the
IFFT can be expressed as in Equation (3.5).

𝑠!
𝑠!
𝑠!
⋮
𝑠!"

 = !
!
∙

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

⋯ 𝑊!

⋯ 𝑊!"

⋯ 𝑊!"

⋮ ⋮ ⋮
𝑊! 𝑊!" 𝑊!"

⋮ ⋮
⋯ 𝑊!

∗

∙

𝑆!
𝑆!
𝑆!
⋮
𝑆!"

 (3.5)

The values of the inverse twiddle factor matrix are converted to the fixed-point values,
where 1 is equal to 32767 and -1 to -32768. All the inverse twiddle factors are
represented with limited number of bits and the loss due to the inexact coefficients is
called coefficient quantization error.

Code works with 16 bit long variables. If the output values of IFFT lie outside the values
32767↔ -32768, the bits have to be shifted in order not to lose too much information.

Afterwards, the OFDM signals pass through the AWGN channel, which introduces white
Gaussian noise. As mentioned above just the values in the AWGN channel are not fixed-
point. The input output relation of a 2x1 MISO channel model is given by Equation (3.6).

y[n] = ℎ![n,m]𝑠![n]+ ℎ![n,m]𝑠![n]+n[n]. (3.6)

AWGN system model is represented with Gaussian distributed random variables with
impulse response H=1 and N additive white Gaussian noise. The model is presented in a
per-subcarrier manner. Since during the entire transmission the impulse responses for
every link branch remain constant the time dependence vanishes as given by Equation
(3.7).

3. Fixed-Point Algorithm and Code

52

Y= HS + N (3.7)

Since the transmitted signal is in general a complex valued sequence, a complex valued
AWGN component has to be added. The elements of N are derived from the noise
component and added to the discrete time domain signal on receive antenna.

FFT at the receiver does not change the statistical properties of the noise component, the
elements of N are complex valued, stationary, zero mean, circularly symmetric,
Gaussian-distributed random processes with independent real and imaginary parts, so
the variance remains equal to the noise power. This complex-valued output of the AWGN
channel is converted into fixed-point values again.

The first submodule at the receiver is the demodulator. At the demodulator, first the cyclic
prefix is removed and the remaining 64 samples of the OFDM symbol are directed to an
FFT block, which converts the data into a time-frequency grid. At the FFT block the
twiddle factor is multiplied with the input of the FFT as shown in the Equation (3.8).

𝑆!
𝑆!
𝑆!
⋮
𝑆!"

=

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

𝑊! 𝑊! 𝑊!

⋯ 𝑊!

⋯ 𝑊!"

⋯ 𝑊!"

⋮ ⋮ ⋮
𝑊! 𝑊!" 𝑊!"

⋮ ⋮
⋯ 𝑊!

𝑠!
𝑠!
𝑠!
⋮
𝑠!"

 (3.8)

Also here after the multiplication in case of overflow the bits are shifted. It is the opposite
of the IFFT function.

The demodulated symbols are then directed to the channel estimator. After channel
estimation equalization follows. Alamouti STC decoding is implemented with the ZF
Equalizer. ZF Equalizer provides the unbiased estimates 𝑋!^=[𝑠!,!^ 𝑠!,!^] and is given by
Equation (3.9).

𝑋!^= (𝐻!!𝐻!)!!𝐻!!𝑌! (3.9)

Consequently the estimates 𝑠!^ and 𝑠!!!^ for the transmitted signal 𝑠! and 𝑠!!! are
obtained as given by Equation (3.10).

𝑠!^= !
!!,!!!,!!!

∗ !!!,!!!,!!!
∗ (𝐻!,!!!∗ 𝑦! + 𝐻!,!𝑦!!!∗)

𝑠!!!^ = !
!!,!!!,!!!

∗ !!!,!!!,!!!
∗ (𝐻!,!!!∗ 𝑦! − 𝐻!,!𝑦!!!∗) (3.10)

Hard demapping, based on the minimum Euclidean distance from every distinct receive
soft symbol to the set of transmitted symbols, is processed by the slicer given by
Equation (3.11).

3. Fixed-Point Algorithm and Code

53

Â = arg min ||y-a|| = arg min 𝑦! − 𝑎! ! + 𝑦! − 𝑎!
! (3.11)

In the demapper the estimated hard symbol stream is converted into an estimated bit
stream. Afterwards in the deinterleaver the rearrangement procedure accomplished by
the interleaver is inverted.

The next and the most important submodule of the receiver is the Viterbi decoder. Viterbi
decoder is based on a Maximum Likelihood decoding selecting the minimum distance
between the received signal and the codeword. Viterbi decoder calculates set of
hamming distance. Afterwards cumulative hamming distance until the last branch is
added to hamming distance of the new branches by add-compare-select module. After
adding operation each current state gets two new cumulative hamming distances, now
add-compare-select module compares the size of the two cumulative distances and
selects the smaller one as a survivor. The smaller cumulative hamming distance
becomes the benchmark for the next computation. Survivor paths of all the states are
stored. In last step, survivor paths are stored at each stage. When there are no more
encoded bits to process the detection of a node having minimum path metric is done by
comparing all the cumulative hamming distances at the last stage.

In this thesis for 48 data bits 24 time points in trellis diagram exists. Current state and the
hamming distance are stored for Viterbi algorithm. The path with lowest Hamming
distance minimizes the total number of bit errors and is most likely when the BER is low.
Because of that the path with lowest hamming distance is codeword, which means the
corresponding input number are read.

The payload data bits ŝ are estimated at the receiver through the decision rule with r
representing the receive bit sequence and s the transmitted bit sequence given by
Equation (3.12).

ŝ = max Pr(y|s) (3.12)

4. Simulation Results

54

4. Simulation Results

This chapter presents the graphical results from the code providing the simulation results
obtained from the IEEE 802.11p PHY simulator. The system depends on the certain user-
defined parameters that strictly determine the performance of the physical layer.
Received bits are compared with transmitted bits and if they are different an error is
recorded. After the counted errors BER is calculated by dividing the number of errors by
the total number of counted bits. In system performance analyses both uncoded and
decoded BER are calculated. The uncoded BER is the error ratio obtained by comparing
the encoded bits at the output of the encoder with the undecoded bits at the input of the
Viterbi decoder. The decoded BER is the error ratio obtained by comparing the payload
data bits at the transmitter with the decoded bits at the output of the Viterbi decoder at the
receiver. Code performance is analyzed in terms of decoded/encoded BER as a function
of Eb/N0. Eb represents the average energy transmitted per information bit and N0
represents the signal sided power spectral density of a channel. The power profile is
normalized so that the overall average channel impulse response energy is equal to 1.
Noise at the receiver is assumed to be additive white complex Gaussian noise. The
concept of Eb/N0 is to find an analytical relationship between the SNR of the coded bits
of a data frame and the frame error probability. SNR is derived from the simulator input
parameter Eb/N0 in a linear form, which is used to prescribe the noise power at the
receiver. The x-axis measure Eb/N0 and y-axis measure BER. The channel is modeled
as an AWGN channel. The channel SNR is swept from 0 to 20 dB. General input
parameters are transmission regime, frame length (in bytes), bit energy to noise power
spectral density ratio (Eb/N0), AWGN channel and the types of the channel estimator,
equalizer, demapper and decoder. The simulation results are visualized on BER-curves
versus Eb/N0. Especially the most important point for fair comparison is that the total
transmit energy must be equal for SISO and Alamouti. Therefore the mean transmit
power in the simulator on SISO and Alamouti is 1. The simulation results visualized by
the curves give an idea how to design the hardware for vehicular communications.

4.1 Error Ratio Calculation
As mentioned above the main performance measure used to assess the efficiency is the
bit error probability. In particular, using the receive energy per bit, E! corresponding to
each of the information bits contained in the modulated data symbol is determined and
using the two-sided power spectral density 𝑁!/2 of the noise, the corresponding bit error
probability 𝑃! is simulated for various values of 𝐸!/𝑁!. Error rate calculation block
compares input data from a transmitter with input data from a receiver. It calculates the
error rate as a running statistic by dividing the total number of unequal pairs of data
elements by the total number of input data elements from one source [15]. If the inputs
are bits, the block computes the bit error rate and if the inputs are symbols then the
symbol error rate is calculated. Also for an exact calculation of error rate the 𝑇! and 𝑅!
signals must share the same sampling rate. In this thesis, simulator output provides
information of transmission reliability in terms of Bit Error Rate (BER) versus 𝐸!/𝑁!.

4. Simulation Results

55

4.2 Graphical results over AWGN channel
In the following diagrams performance of SISO, fixed-point SISO, 2x1 Alamouti and fixed-
point 2x1 Alamouti schemes is compared. Simulations are carried out with a simple
AWGN channel model, which helps to analyze key transmission settings. In the Fig. 29
SISO with fixed-point SISO is compared. Simulation is done for uncoded BER with BPSK
mapper, code rate ½, frame length 2000 byte, and 500 frames. Fixed-point OFDM is
simulated for word length of 16 bit. From the figure it is seen that fixed-point SISO
performs with 2 dB difference.

Fig. 29: Simulation Results for SISO and Fixed-Point SISO

Next simulation model was developed to quantify the performance of the Alamouti STBC.
Here the channel is also modeled as an AWGN channel. The total transmit power is
equally divided by the number of transmit antennas. In the Fig. 30 simulation is done also
for uncoded BER with BPSK mapper, code rate ½, frame length 2000 byte and 500
frames. Fixed-point Alamouti is also simulated for word length of 16 bit. From Fig. 30 can
be seen that the BER of the fixed-point Alamouti is also higher.

4. Simulation Results

56

Fig. 30: Simulation Results for 2x1 Alamouti and Fixed-Point 2x1 Alamouti

From both figures (Fig. 29 and Fig. 30) can be concluded that the use of fixed-point
arithmetic increases the BER.

Next two figures compare the performances of fixed-point SISO with the fixed-point 2x1
Alamouti. Fig. 31 presents uncoded BER and Fig. 32 presents decoded BER. Both
curves fixed-point SISO and fixed-point 2x1 Alamouti reach almost the small BER values
when the 𝐸!/𝑁! is low. In higher 𝐸!/𝑁! values the fixed-point 2x1 Alamouti scheme
achieved higher BER than fixed-point SISO.

4. Simulation Results

57

Fig. 31: Uncoded BER for Fixed-Point SISO and 2x1 Alamouti

4. Simulation Results

58

Fig. 32: Decoded BER for Fixed-Point SISO and 2x1 Alamouti

From Fig. 31 and Fig. 32 can also be concluded that MISO scheme need higher
transmission power then pure 802.11p SISO transmission in order to obtain the same
reliability.

When Fig. 31 and Fig. 32 are compared, it can be seen that for decoded BER better
simulation results exists than uncoded BER. This proofs that Viterbi decoder increases
the performance by optimizing the decoded bits and lowering the overall BER count.
Because as already mentioned decoded BER is the error ratio obtained by comparing the
payload data bits at the transmitter with the decoded bits at the output of the Viterbi
decoder at the receiver.

5. Conclusion

59

5. Conclusion

This thesis investigates the performance of the physical layer defined in IEEE 802.11p.
Performance of the OFDM and fixed-point OFDM in SISO and in 2x1 Alamouti system
has been implemented and simulated.

First main part of this thesis is the Alamouti Space-Time Coding. As can be seen from
simulation results 2x1 Alamouti scheme doesn’t bring enhancement over SISO in terms
of flow throughput. This is due to the space-time code rate and because of 2x1 Alamouti
scheme estimates two impulse responses by utilizing two OFDM symbols.

But Alamouti Space-Time coding reduces the BER at a specific 𝐸!/𝑁!, without any loss
on the data rate, which gives Alamouti’s code a significant advantage. Full transmission
rate has higher practical interest because it is the right choice in case of lower 𝐸!/𝑁! and
higher BER. As can be seen from simulations in uncoded BER till 6 dB 𝐸!/𝑁! and in
decoded BER till 8 dB 𝐸!/𝑁! performs 2x1 Alamouti almost the same as SISO system
and after 10 dB 𝐸!/𝑁!, BER decreases more remarkably and at 20 dB 𝐸!/𝑁!, BER
reaches its minimum value but almost with 8 dB difference in comparison to SISO
system.

It can be concluded that Alamouti multi-antenna system in vehicular communications will
provide reliable performance and low complexity detection schemes. Furthermore, it is
also clear that MISO Alamouti improves the system because transmitting data through
many low-powered channels is more beneficial than one single high-powered channel
system.

Second main part of the thesis is the fixed-point algorithm. From the simulation results it
is seen that the fixed-point implementation suits not better than floating-point
implementation. Especially, while using different number systems floating-point
implementation overcomes fixed-point solution. Floating-point implementation is more
useful while dealing with data of different ranges. Implementing fixed-point solutions word
length is very important to achieve desired BER performance with respect to floating point
performance. Due to the limited word length, both the input signal and twiddle factors are
truncated. In simulations 16-bit word length and signed integer fixed-point is used, which
performs with 2 dB difference with respect to floating-point OFDM. The main reason is
that signed integer fixed-point algorithm introduces overflows, which needs to be
considered after each operation. Also the gaps between adjacent numbers are much
larger in fixed-point then in floating-point. This means that floating-point has less
quantization noise than fixed-point.

But fixed-point algorithm is easier and cheaper to implement and in practice it can be
used with user-friendly tools in communication systems.

Bibliography

60

Bibliography
[1] A. Paier, „The Vehicular Radio Channel in the 5 GHz Band“, Dissertation, Vienna

University of Technology, 2010.

[2] A. F. Molisch, „Wireless Communication“, IEEE Press, J. Wiley, 2010.

[3] B. Badic, „Space-Time Block Coding for Multiple Antenna Systems“, Dissertation,
Vienna University of Technology, 2005.

[4] S. Andleeb Gillani, „Evaluation and Comparison of IEEE 802.11p and IEEE
802.11b as VANET MAC schemes“, Diploma thesis, Mohammad Ali Jinnah
University Islamabad, 2010.

[5] IEEE Std 802.11a, Standards Board, „Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications – High speed Physical Layer in
the 5 GHz Band“, 2003.

[6] V. Shivaldova, „Implementation of IEEE 802.11p Physical Layer Model in
SIMULINK“, Master thesis, Vienna University of Technology, 2010.

[7] Y. M. Sandesh, R. Kasetty, „Implementation of Convolutional Encoder and Viterbi
Decoder for Constraint Length 7 and Bit Rate 1/2“, Research Article, 2013.

[8] A. Costantini, „Implementation of an IEEE 802.11p transmitter in open-source
Software Defined Radio“, Master thesis, Universita del Salento, 2008/2009.

[9] F. Hlawatsch, „Modulation and Detection“, Vienna University of Technology, 2010.

[10] Core Technologies, „Viterbi Algorithm for Decoding of Convolutional Codes“,
2004.

[11] J. R. Barry, E. A. Lee, D. G. Messerschmitt, „Digital Communication“, third edition,
Springer, 2004.

[12] D. Niklos, „Implementation of Space-Time Codes in IEEE 802.11p-Based
Systems“, Master thesis, Vienna University of Technology, 2012.

[13] A. G. M. Cillio, H. Corporaal, „Floating Point to Fixed Point Conversion of C Code“,
Delft University of Technology, 1999.

[14] A. Haghparast, H. Penttinen, A. Huovilainen, „Fixed-Point Algorithm
Development“, Helsinki University of Technology, 2006.

[15] SIMULINK-Dynamic System Simulation for Matlab (Using Simulink Version 3).
The Math Works Inc.

List of Figures

61

List of Figures
Fig. 1: Difference between single-carrier systems ... 10	
Fig. 2: Orthogonal basis function in an OFDM ... 10	
Fig. 3: MIMO System .. 13	
Fig. 4: Protocol Stack ... 16	
Fig. 5: Block diagram of a 1x1 OFDM System ... 18	
Fig. 6: Main parts of the transmitter .. 19	
Fig. 7: Data Scrambler [6] .. 20	
Fig. 8: Convolutional Encoder (K=7, r=1/2) .. 21	
Fig. 9: State diagram of K=7, r=1/2 convolutional encoder [7] ... 22	
Fig. 10: Constellation Diagrams ... 24	
Fig. 11: 64 subcarriers 4 of them pilots [6] ... 26	
Fig. 12: OFDM frames separated by guard bits ... 27	
Fig. 13: Cyclic Prefix ... 27	
Fig. 14: Cyclic Prefix Block ... 27	
Fig. 15: OFDM Training Structure [5] ... 28	
Fig. 16: PLCP Header [5] ... 28	
Fig. 17: Channel Model .. 29	
Fig. 18: Structure of the receiver .. 31	
Fig. 19: OFDM System interpreted as pasallel Gaussian channels ... 33	
Fig. 20: Block diagramm of Viterbi decoder ... 36	
Fig. 21: First three levels of the decoder .. 37	
Fig. 22: Block diagram of Add Compare and Select Unit ... 38	
Fig. 23: Block Diagram of 2x1 Alamouti Space-Time Coded OFDM System .. 40	
Fig. 24: Alamouti scheme with two transmit antenna ... 41	
Fig. 25: Alamouti scheme ... 42	
Fig. 26: Signed integer fixed-point representation of a number ... 45	
Fig. 27: 6 stages in the computation of the N=64-point DFT .. 48	
Fig. 28: Twiddle factors for 64-point FFT ... 49	
Fig. 29: Simulation Results for SISO and Fixed-Point SISO .. 55	
Fig. 30: Simulation Results for 2x1 Alamouti and Fixed-Point 2x1 Alamouti ... 56	
Fig. 31: Uncoded BER for Fixed-Point SISO and 2x1 Alamouti ... 57	
Fig. 32: Decoded BER for Fixed-Point SISO and 2x1 Alamouti ... 58	

List of Tables

62

List of Tables
Tab. 1: Main system parameters in IEEE 802.11p standard .. 16	
Tab. 2: Coding process of Alamouti scheme ... 50	

Appendix

63

Appendix

FFTW (more specifically version 3) is used as a helper library in the code.

Parts of the code are removed for clarity.

„utils.c“

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "utils.h"

double gen_uniform_random(void) {

 return rand() / (RAND_MAX + 1.);

}

double gen_rayleigh_random(double sigma) {

 double v = gen_uniform_random();

 return sigma * sqrt(-2 * log(v));

}

double gen_standard_normal_random(void) {

 double u = gen_uniform_random();

 return gen_rayleigh_random(1) * cos(M_PI * (2 * u - 1));

}

double gen_normal_random(double mean, double sigma) {

 return sigma * gen_standard_normal_random() + mean;

}

short gen_binomial_random(double p) {

 return gen_uniform_random() > p ? 1 : 0;

}

void leftshift(const short *in, short *out, unsigned long size, unsigned shift) {

Appendix

64

 unsigned long i;

 for (i = 0; i < size - shift; i++) {

 out[i] = in[i + shift];

 }

 for (i = size - shift; i < size; i++) {

 out[i] = 0;

 }

}

void rightshift(const short *in, short *out, unsigned long size, unsigned shift) {

 unsigned long i;

 for (i = size - 1; i >= shift; i--) {

 out[i] = in[i - 1];

 }

 for (i = 0; i < shift; i++) {

 out[i] = 0;

 }

}

„ofdm.h“

#ifndef OFDM_H_

#define OFDM_H_

#include <fftw3.h>

#define N_DATA_SUBCARRIERS 48

#define N_PILOT_SUBCARRIERS 4

#define N_TOTAL_SUBCARRIERS (N_DATA_SUBCARRIERS + N_PILOT_SUBCARRIERS
+ 1)

#define FFT_SIZE 64

Appendix

65

#define CYCLIC_PREFIX_SIZE 16

#define OFDM_SYMBOL_SIZE (FFT_SIZE + CYCLIC_PREFIX_SIZE)

#define EXT_OFDM_SYMBOL_SIZE (OFDM_SYMBOL_SIZE + 1)

enum MODULATION_TYPE {

 BPSK,

 QPSK

};

enum CODING_RATE {

 RATE_1_2

};

#define BPSK_NORMALIZATION 1.0

#define QPSK_NORMALIZATION 0.707106781 // 1/sqrt(2)

static const double bpsk_i[] = { -1 * BPSK_NORMALIZATION, 1 * BPSK_NORMALIZATION };

static const double bpsk_q[] = { 0, 0 };

static const double qpsk_i[] = { -1 * QPSK_NORMALIZATION, 1 * QPSK_NORMALIZATION };

static const double qpsk_q[] = { -1 * QPSK_NORMALIZATION, 1 * QPSK_NORMALIZATION };

static const double subcarrier_polarities[] = {

1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1,1,1, 1, -
1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -
1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -
1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1 };

struct OFDM_PARAMETERS {

 enum MODULATION_TYPE modulation;

 char signal_rate;

 enum CODING_RATE coding_rate;

 unsigned n_bpsc;

 unsigned n_cbps;

 unsigned n_dbps;

};

Appendix

66

„ofdm.c“

#include <assert.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "ofdm.h"

#include "utils.h"

#define MAX(x, y) (((x) > (y)) ? (x) : (y))

struct OFDM_PARAMETERS get_ofdm_parameters(enum MODULATION_TYPE mod) {

struct OFDM_PARAMETERS p;

 p.modulation = mod;

 switch (mod) {

 case BPSK:

 p.coding_rate = RATE_1_2;

 p.n_bpsc = 1;

 p.n_cbps = 48;

 p.n_dbps = 24;

 p.signal_rate = 0x0D; //0b00001101

 break;

 case QPSK:

 p.coding_rate = RATE_1_2;

 p.n_bpsc = 2;

 p.n_cbps = 96;

 p.n_dbps = 48;

 p.signal_rate = 0x05; //0b00000101;

 break;

Appendix

67

 default:

 assert(0);

 break;

 }

 return p;

}

void scrambler(const short *in, short *out, unsigned long size, short *initial_state) {

 unsigned long i;

 short carry;

 short *shift_register = initial_state;

 for (i = 0; i < size; i++) {

 carry = (shift_register[3] + shift_register[6]) % 2;

 rightshift(shift_register, shift_register, 7, 1);

 shift_register[0] = carry;

 out[i] = (in[i] + carry) % 2;

 }

}

void encoder(const short *in, short *out, unsigned long size) {

 unsigned long i;

 short shift_register[7] = { 0 };

 short out_1, out_2;

 for (i = 0; i < size; i++) {

 rightshift(shift_register, shift_register, 7, 1);

 shift_register[0] = in[i];

 out_1 = (shift_register[0] + shift_register[2] + shift_register[3] + shift_register[5] +
shift_register[6]) % 2;

 out_2 = (shift_register[0] + shift_register[1] + shift_register[2] + shift_register[3] +
shift_register[6]) % 2;

 out[2*i] = out_1;

Appendix

68

 out[2*i + 1] = out_2;

 }

}

void interleaver(const short *in, short *out, unsigned N_CBPS, unsigned N_BPSC, unsigned
long size) {

 unsigned sym;

 short i, j;

 short s, k;

 short first_permutation[N_CBPS];

 s = MAX((short)(N_BPSC / 2), 1);

 for (sym = 0; sym < (size / N_CBPS); sym++) {

 for (k = 0; k < N_CBPS; k++) {

 i = (((short)(N_CBPS / 16)) * (k % 16)) + ((short)floor(k / 16));

 first_permutation[i] = in[k + (sym * N_CBPS)];

 }

 for (i = 0; i < N_CBPS; i++) {

 j = s * ((short)floor(i / s)) + (i + N_CBPS - ((short)floor((16 * i) / N_CBPS))) % s;

 out[j + (sym * N_CBPS)] = first_permutation[i];

 }

 }

}

void mapper(const short *in, unsigned long size, enum MODULATION_TYPE mod,
fftw_complex *out, unsigned sym) {

 struct OFDM_PARAMETERS p = get_ofdm_parameters(mod);

 unsigned long i, idx;

 for (i = 0; i < size; i += p.n_bpsc) {

 idx = i / p.n_bpsc;

 switch (p.modulation) {

Appendix

69

 case BPSK:

 out[idx][0] = bpsk_i[in[i + (sym * p.n_cbps)]];

 out[idx][1] = bpsk_q[in[i + (sym * p.n_cbps)]];

 break;

 case QPSK:

 out[idx][0] = qpsk_i[in[i + (sym * p.n_cbps)]];

 out[idx][1] = qpsk_q[in[i+1 + (sym * p.n_cbps)]];

 break;

 }

 }

}

void add_pilots(fftw_complex *in, fftw_complex *out, unsigned symbol_index) {

 unsigned i;

 double polarity = subcarrier_polarities[symbol_index % 127];

 out[5][0] = polarity;

 out[5][1] = 0;

 out[19][0] = polarity;

 out[19][1] = 0;

 out[33][0] = polarity;

 out[33][1] = 0;

 out[47][0] = -polarity;

 out[47][1] = 0;

 out[26][0] = 0;

 out[26][1] = 0;

 for (i = 0; i < 48; i++) {

 if (0 <= i && i <= 4) {

 out[i][0] = in[i][0];

 out[i][1] = in[i][1];

 continue;

 }

Appendix

70

 if (5 <= i && i <= 17) {

 out[i + 1][0] = in[i][0];

 out[i + 1][1] = in[i][1];

 continue;

 }

 if (18 <= i && i <= 23) {

 out[i + 2][0] = in[i][0];

 out[i + 2][1] = in[i][1];

 continue;

 }

 if (24 <= i && i <= 29) {

 out[i + 3][0] = in[i][0];

 out[i + 3][1] = in[i][1];

 continue;

 }

 if (30 <= i && i <= 42) {

 out[i + 4][0] = in[i][0];

 out[i + 4][1] = in[i][1];

 continue;

 }

 if (43 <= i && i <= 47) {

 out[i + 5][0] = in[i][0];

 out[i + 5][1] = in[i][1];

 }

 }

}

void map_ofdm_to_ifft(fftw_complex *ofdm, fftw_complex *ifft) {

 unsigned i;

 ifft[0][0] = 0;

 ifft[0][1] = 0;

 for (i = 1; i <= 26; i++) {

 ifft[i][0] = ofdm[i + 26][0];

 ifft[i][1] = ofdm[i + 26][1];

Appendix

71

 }

 for (i = 27; i <= 37; i++) {

 ifft[i][0] = 0;

 ifft[i][1] = 0;

 }

 for (i = 38; i <= 63; i++) {

 ifft[i][0] = ofdm[i - 38][0];

 ifft[i][1] = ofdm[i - 38][1];

 }

}

void perform_ifft_fft(fftw_complex *in, fftw_complex *out, int sign) {

 fftw_plan ifft;

 fftw_complex *input = fftw_alloc_complex(64);

 fftw_complex *output = fftw_alloc_complex(64);

 unsigned i;

 for (i = 0; i < 64; i++) {

 input[i][0] = in[i][0];

 input[i][1] = in[i][1];

 }

 ifft = fftw_plan_dft_1d(64, input, output, sign, FFTW_ESTIMATE);

 fftw_execute(ifft);

 for (i = 0; i < 64; i++) {

 out[i][0] = output[i][0];

 out[i][1] = output[i][1];

 }

 fftw_destroy_plan(ifft);

 fftw_free(input);

Appendix

72

 fftw_free(output);

}

void ifft(fftw_complex *in, fftw_complex *out) {

 perform_ifft_fft(in, out, 1);

}

void normalize_ifft_output(fftw_complex *in, unsigned size, unsigned fftSize) {

unsigned i;

 for (i = 0; i < size; i++) {

 in[i][0] *= 1.0 / (double)fftSize;

 in[i][1] *= 1.0 / (double)fftSize;

 }

}

void add_cyclic_prefix(fftw_complex *in, unsigned in_size, fftw_complex *out, unsigned
out_size, unsigned cp_length) {

 unsigned i;

 assert(cp_length < in_size);

 for (i = cp_length; i < out_size; i++) {

 out[i][0] = in[(i - cp_length) % in_size][0];

 out[i][1] = in[(i - cp_length) % in_size][1];

 }

 for (i = 0; i < cp_length; i++) {

 out[i][0] = in[(i + in_size - cp_length) % in_size][0];

 out[i][1] = in[(i + in_size - cp_length) % in_size][1];

 }

}

double gauss(double mean, double snr) {

unsigned i;

Appendix

73

const unsigned NSUM = 12;

 double sigma = 1.0 / pow(10.0, snr/10.0);

 double x = 0.0;

 for (i = 0; i < NSUM; i++) {

 x += (double)rand() / RAND_MAX;

 }

 x -= NSUM / 2.0;

 x *= sqrt(12.0 / NSUM);

 return mean + sqrt(sigma) * x;

}

void channel(fftw_complex *in, fftw_complex *out, unsigned size, double ebn0) {

 unsigned i;

 for (i = 0; i < size; i++) {

 out[i][0] = in[i][0] + gen_normal_random(0.0, ebn0);

 out[i][1] = in[i][1] + gen_normal_random(0.0, ebn0);

 }

}

void alamouti_encoder(fftw_complex *in, fftw_complex *tx1, fftw_complex *tx2, unsigned size) {

 unsigned i;

 for (i = 0; i < size; i++) {

 tx1[i][0] = (i % 2 == 0) ? in[i][0] : -in[i][0];

 tx1[i][1] = (i % 2 == 0) ? in[i][1] : - (-1 * in[i][1]);

 tx2[i][0] = (i % 2 == 0) ? in[i + 1][0] : in[i - 1][0];

 tx2[i][1] = (i % 2 == 0) ? in[i + 1][1] : (-1 * in[i - 1][1]);

 }

Appendix

74

}

void alamouti_channel(fftw_complex *in_tx1, fftw_complex *in_tx2, fftw_complex *out,
fftw_complex h_1, fftw_complex h_2, unsigned size, double snr) {

 unsigned i;

 for (i = 0; i < size; i++) {

 out[i][0] = (in_tx1[i][0] * h_1[0]) + (in_tx2[i][0] * h_2[0]) + gauss(0.0, snr);

 out[i][1] = (in_tx1[i][1] * h_1[1]) + (in_tx2[i][1] * h_2[1]) + gauss(0.0, snr);

 out[i + 1][0] = (in_tx2[i + 1][0] * (-h_1[0])) + (in_tx1[i + 1][0] * h_2[0]) + gauss(0.0, snr);

 out[i + 1][1] = ((-1 * in_tx2[i + 1][1]) * (-h_1[1])) + ((-1 * in_tx1[i + 1][1]) * h_2[1]) +
gauss(0.0, snr);

 }

}

void alamouti_decoder(fftw_complex *in, fftw_complex *out, fftw_complex h_1, fftw_complex
h_2, unsigned size) {

 unsigned i;

 for (i = 0; i < size; i += 2) {

 out[i][0] = ((h_1[0] * in[i][0]) + (h_2[0] * in[i + 1][0]));

 out[i][1] = (((-1 * h_1[1]) * in[i][1]) + (h_2[1] * (-1 * in[i + 1][1])));

 out[i + 1][0] = ((h_2[0] * in[i][0]) - (h_1[0] * in[i + 1][0]));

 out[i + 1][1] = (((-1 * h_2[1]) * in[i][1]) - (h_1[1] * (-1 * in[i + 1][1])));

 }

}

void fft(fftw_complex *in, fftw_complex *out) {

 perform_ifft_fft(in, out, -1);

}

void change_sign(fftw_complex *in, unsigned size) {

Appendix

75

 unsigned i;

 for (i = 0; i < size; i++) {

 if ((in[i][0] < 0 && in[i][0] > -1e-4) || in[i][0] == -0.0) {

 in[i][0] = 0.0;

 }

 if ((in[i][1] < 0 && in[i][1] > -1e-4) || in[i][1] == -0.0) {

 in[i][1] = 0.0;

 }

 }

}

void remove_cyclic_prefix(fftw_complex *in, unsigned in_size, fftw_complex *out, unsigned
out_size, unsigned cp_length) {

 unsigned i;

 for (i = cp_length; i < in_size; i++) {

 out[(i - cp_length) % out_size][0] = in[i][0];

 out[(i - cp_length) % out_size][1] = in[i][1];

 }

}

void map_fft_to_ofdm(fftw_complex *fft, fftw_complex *ofdm) {

 unsigned i;

 for (i = 1; i <= 26; i++) {

 ofdm[i + 26][0] = fft[i][0];

 ofdm[i + 26][1] = fft[i][1];

 }

 for (i = 38; i <= 63; i++) {

 ofdm[i - 38][0] = fft[i][0];

 ofdm[i - 38][1] = fft[i][1];

 }

Appendix

76

}

void remove_pilots(fftw_complex *in, fftw_complex *out) {

 unsigned i;

 for (i = 0; i < 53; i++) {

 if (0 <= i && i <= 4) {

 out[i][0] = in[i][0];

 out[i][1] = in[i][1];

 continue;

 }

 if (6 <= i && i <= 18) {

 out[i - 1][0] = in[i][0];

 out[i - 1][1] = in[i][1];

 continue;

 }

 if (20 <= i && i <= 25) {

 out[i - 2][0] = in[i][0];

 out[i - 2][1] = in[i][1];

 continue;

 }

 if (27 <= i && i <= 32) {

 out[i - 3][0] = in[i][0];

 out[i - 3][1] = in[i][1];

 continue;

 }

 if (34 <= i && i <= 46) {

 out[i - 4][0] = in[i][0];

 out[i - 4][1] = in[i][1];

 continue;

 }

 if (48 <= i && i <= 52) {

 out[i - 5][0] = in[i][0];

 out[i - 5][1] = in[i][1];

 }

Appendix

77

 }

}

void demapper(fftw_complex *in, unsigned long size, enum MODULATION_TYPE mod, short
*out) {

 struct OFDM_PARAMETERS p = get_ofdm_parameters(mod);

 unsigned long i, idx;

 for (i = 0; i < size; i++) {

 idx = i * p.n_bpsc;

 switch (p.modulation) {

 case BPSK:

 if (in[i][0] <= 0) out[idx] = 0;

 else out[idx] = 1;

 break;

 case QPSK:

 if (in[i][0] <= 0) out[idx] = 0;

 else out[idx] = 1;

 if (in[i][1] <= 0) out[idx + 1] = 0;

 else out[idx + 1] = 1;

 break;

 }

 }

}

void regrouping(const short *in, unsigned in_size, short *out, unsigned index) {

 unsigned i;

 for (i = 0; i < in_size; i++) {

 out[(index * in_size) + i] = in[i];

 }

Appendix

78

}

void deinterleaver(const short *in, short *out, unsigned N_CBPS, unsigned N_BPSC, unsigned
long size) {

 unsigned sym;

 short i, j;

 short s, k;

 short first_permutation[N_CBPS];

 s = MAX((short)(N_BPSC / 2), 1);

 for (sym = 0; sym < (size / N_CBPS); sym++) {

 for (j = 0; j < N_CBPS; j++) {

 i = s * ((short)floor(j / s)) + (j + ((short)floor((16 * j) / N_CBPS))) % s;

 first_permutation[i] = in[j + (sym * N_CBPS)];

 }

 for (i = 0; i < N_CBPS; i++) {

 k = 16 * i - (N_CBPS - 1) * ((short)floor((16 * i) / N_CBPS));

 out[k + (sym * N_CBPS)] = first_permutation[i];

 }

 }

}

unsigned long ber(short *x, short *y, unsigned long size) {

 unsigned long i, count = 0;

 for (i = 0; i < size; i++) {

 if (x[i] != y[i])

 ++count;

 }

 return count;

}

Appendix

79

„viterbi.h“

#ifndef VITERBI_H_

#define VITERBI_H_

struct pair {

 int first;

 int second;

};

typedef int** Trellis;

#define CONSTRAINT 7

#define PARITY_BITS 2

const unsigned POLYNOMIALS[] = { 109, 79 };

short **OUTPUTS;

“viterbi.c”

#include <assert.h>

#include <limits.h>

#include <string.h>

#include "viterbi.h"

int reverse_bits(int num_bits, int input) {

 assert(input < (1 << num_bits));

 int output = 0;

 while (num_bits-- > 0) {

 output = (output << 1) + (input & 1);

 input >>= 1;

Appendix

80

 }

 return output;

}

unsigned min_element_index(const int *arr, unsigned first, unsigned last) {

 assert(first < last);

 unsigned i, idx = first;

 int minimum = arr[first];

 for (i = first + 1; i < last; i++) {

 if (arr[i] < minimum) {

 minimum = arr[i];

 idx = i;

 }

 }

 return idx;

}

unsigned hamming_distance(const short *x, const short *y, unsigned size) {

 unsigned i, distance = 0;

 for (i = 0; i < size; i++) {

 if (x[i] != y[i])

 ++distance;

 }

 return distance;

}

void initialize_outputs() {

Appendix

81

 int i, j, k;

 OUTPUTS = (short **)malloc((1 << CONSTRAINT) * sizeof(short *));

 for (i = 0; i < (1 << CONSTRAINT); i++) {

 OUTPUTS[i] = (short *)malloc(PARITY_BITS * sizeof(short));

 }

 for (i = 0; i < (1 << CONSTRAINT); i++) {

 for (j = 0; j < PARITY_BITS; j++) {

 int polynomial = reverse_bits(CONSTRAINT, POLYNOMIALS[j]);

 int input = i;

 int output = 0;

 for (k = 0; k < CONSTRAINT; k++) {

 output ^= (input & 1) & (polynomial & 1);

 polynomial >>= 1;

 input >>= 1;

 }

 OUTPUTS[i][j] = output ? 1 : 0;

 }

 }

}

const short* output(int current_state, int input) {

 return OUTPUTS[(current_state | (input << (CONSTRAINT - 1)))];

}

unsigned branch_metric(const short *in, int source_state, int target_state) {

 assert((target_state & ((1 << (CONSTRAINT - 2)) - 1)) == source_state >> 1);

Appendix

82

 const short *out = output(source_state, target_state >> (CONSTRAINT - 2));

 return hamming_distance(in, out, PARITY_BITS);

}

struct pair path_metric(const short *in, const int *prev_path_metrics, int state) {

 struct pair p;

 int s = (state & ((1 << (CONSTRAINT - 2)) - 1)) << 1;

 int source_state1 = s | 0;

 int source_state2 = s | 1;

 int pm1 = prev_path_metrics[source_state1];

 if (pm1 < INT_MAX) {

 pm1 += branch_metric(in, source_state1, state);

 }

 int pm2 = prev_path_metrics[source_state2];

 if (pm2 < INT_MAX) {

 pm2 += branch_metric(in, source_state2, state);

 }

 if (pm1 <= pm2) {

 p.first = pm1;

 p.second = source_state1;

 return p;

 } else {

 p.first = pm2;

 p.second = source_state2;

 return p;

 }

}

Appendix

83

void update_path_metrics(const short *in, int *path_metrics, int path_size, Trellis trellis, int
index) {

 unsigned i;

 int *new_path_metrics = (int *)malloc(sizeof(int) * path_size);

 int *new_trellis_column = (int *)malloc(sizeof(int) * (1 << (CONSTRAINT - 1)));

 for (i = 0; i < path_size; i++) {

 struct pair p = path_metric(in, path_metrics, i);

 new_path_metrics[i] = p.first;

 new_trellis_column[i] = p.second;

 }

 memcpy(path_metrics, new_path_metrics, (path_size * sizeof * path_metrics));

 memcpy(trellis[index], new_trellis_column, ((1 << (CONSTRAINT - 1)) * sizeof *
new_trellis_column));

 free(new_path_metrics);

 free(new_trellis_column);

}

void viterbi_decoder(const short *in, short *out, unsigned long size) {

 initialize_outputs();

 long i, j, idx = 0;

 Trellis trellis = malloc((size / 2) * sizeof(int *));

 for (i = 0; i < (size / 2); i++) {

 trellis[i] = (int *)malloc(sizeof(int) * (1 << (CONSTRAINT - 1)));

 }

Appendix

84

 int *path_metrics = (int *)malloc(sizeof(int) * (1 << (CONSTRAINT - 1)));

 path_metrics[0] = 0;

 for (i = 1; i < (1 << (CONSTRAINT - 1)); i++) {

 path_metrics[i] = INT_MAX;

 }

 for (i = 0; i < size; i += PARITY_BITS) {

 short current_bits[PARITY_BITS];

 current_bits[0] = in[i];

 current_bits[1] = (i + 1) >= size ? 0 : in[i + 1];

 update_path_metrics(current_bits, path_metrics, (1 << (CONSTRAINT - 1)), trellis, idx);

 idx++;

 }

 int state = min_element_index(path_metrics, 0, (1 << (CONSTRAINT - 1)));

 for (i = (size / 2) - 1; i >= 0; i--) {

out[i] = state >> (CONSTRAINT - 2) ? 1 : 0;

 state = trellis[i][state];

 }

 free(path_metrics);

 for (i = 0; i < (size / 2); i++) {

 free(trellis[i]);

 }

 free(trellis);

 for (i = 0; i < (1 << CONSTRAINT); i++) {

Appendix

85

 free(OUTPUTS[i]);

 }

 free(OUTPUTS);

}

“simul.c”

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <unistd.h>

#include "ofdm.h"

#include "utils.h"

#define MAX_SNR 20

int main(int argc, char *argv[]) {

 unsigned long i, j;

 unsigned long decoded_ber, uncoded_ber;

 unsigned long n_bytes, n_bits, n_pad, n_sym;

 unsigned mod, alamouti;

 struct OFDM_PARAMETERS params;

 struct timespec start, finish;

 double elapsed_time;

 FILE *fp;

 char filename[32] = "";

Appendix

86

 short *input;

 short *scrambler_output;

 short *encoder_output;

 short *interleaver_output;

 fftw_complex *modulation_output;

 // alamouti only

 fftw_complex *tx1;

 fftw_complex *tx2;

 fftw_complex *alamouti_pilots_added_tx1;

 fftw_complex *alamouti_pilots_added_tx2;

 fftw_complex *ifft_input_tx1;

 fftw_complex *ifft_input_tx2;

 fftw_complex *ifft_output_tx1;

 fftw_complex *ifft_output_tx2;

 fftw_complex *cyclic_prefix_tx1;

 fftw_complex *cyclic_prefix_tx2;

 fftw_complex *alamouti_decoder_output;

 // siso only

 fftw_complex *pilots_added_output;

 fftw_complex *ifft_input;

 fftw_complex *ifft_output;

 fftw_complex *cyclic_prefix_output;

 fftw_complex *channel_output;

 fftw_complex *fft_input;

 fftw_complex *fft_output;

 fftw_complex *pilots_remove_input;

 fftw_complex *demodulation_input;

 short *demodulation_output;

Appendix

87

 short *deinterleaver_input;

 short *deinterleaver_output;

 short *decoder_output;

 short *descrambler_output;

 printf("\nn_bytes: ");

 scanf("%lu", &n_bytes);

 n_bits = n_bytes * 8;

 printf("\nModulation (BPSK : 1 / QPSK : 2): ");

 scanf("%u", &mod);

 switch (mod) {

 case 1:

 params = get_ofdm_parameters(BPSK);

 strcat(filename, "ber_bpsk");

 break;

 case 2:

 params = get_ofdm_parameters(QPSK);

 strcat(filename, "ber_qpsk");

 break;

 default:

 fprintf(stderr, "Error: invalid modulation\n");

 exit(1);

 }

 printf("\nAlamouti (Yes : 1 / No : 0): ");

 scanf("%u", &alamouti);

 if (alamouti != 0 && alamouti != 1) {

Appendix

88

 fprintf(stderr, "Error: invalid value for alamouti\n");

 exit(1);

 }

 if (alamouti) strcat(filename, "_alamouti.csv");

 else strcat(filename, "_siso.csv");

 if ((fp = fopen(filename, "w+")) == NULL) {

 fprintf(stderr, "Error: couldn't open file to write\n");

 exit(1);

 }

 if (n_bits % params.n_cbps != 0) {

 n_pad = params.n_cbps - (n_bits % params.n_cbps);

 n_bits += n_pad;

 }

 else n_pad = 0;

 n_sym = (unsigned long)ceil(n_bits / (double)params.n_dbps);

 input = (short *)malloc(sizeof(short) * n_bits);

 scrambler_output = (short *)malloc(sizeof(short) * n_bits);

 encoder_output = (short *)malloc(sizeof(short) * n_bits * 2);

 interleaver_output = (short *)malloc(sizeof(short) * n_bits * 2);

 modulation_output = fftw_alloc_complex(N_DATA_SUBCARRIERS);

 if (alamouti) {

 tx1 = fftw_alloc_complex(N_DATA_SUBCARRIERS);

 tx2 = fftw_alloc_complex(N_DATA_SUBCARRIERS);

 alamouti_pilots_added_tx1 = fftw_alloc_complex(N_TOTAL_SUBCARRIERS);

 alamouti_pilots_added_tx2 = fftw_alloc_complex(N_TOTAL_SUBCARRIERS);

 ifft_input_tx1 = fftw_alloc_complex(FFT_SIZE);

Appendix

89

 ifft_input_tx2 = fftw_alloc_complex(FFT_SIZE);

 ifft_output_tx1 = fftw_alloc_complex(FFT_SIZE);

 ifft_output_tx2 = fftw_alloc_complex(FFT_SIZE);

 cyclic_prefix_tx1 = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE);

 cyclic_prefix_tx2 = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE);

 alamouti_decoder_output = fftw_alloc_complex(N_DATA_SUBCARRIERS);

 } else {

 pilots_added_output = fftw_alloc_complex(N_TOTAL_SUBCARRIERS);

 ifft_input = fftw_alloc_complex(FFT_SIZE);

 ifft_output = fftw_alloc_complex(FFT_SIZE);

 cyclic_prefix_output = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE);

 }

 channel_output = fftw_alloc_complex(EXT_OFDM_SYMBOL_SIZE);

 fft_input = fftw_alloc_complex(FFT_SIZE);

 fft_output = fftw_alloc_complex(FFT_SIZE);

 pilots_remove_input = fftw_alloc_complex(N_TOTAL_SUBCARRIERS);

 demodulation_input = fftw_alloc_complex(N_DATA_SUBCARRIERS);

 demodulation_output = (short *)malloc(sizeof(short) * params.n_cbps);

 deinterleaver_input = (short *)malloc(sizeof(short) * n_bits * 2);

 deinterleaver_output = (short *)malloc(sizeof(short) * n_bits * 2);

 decoder_output = (short *)malloc(sizeof(short) * n_bits);

 descrambler_output = (short *)malloc(sizeof(short) * n_bits);

 if (descrambler_output == NULL) {

 fprintf(stderr, "Error: couldn't allocate memory\n");

 exit(1);

 }

 if (sysconf(_SC_MONOTONIC_CLOCK) > 0) {

 clock_gettime(CLOCK_MONOTONIC, &start);

 }

Appendix

90

 else clock_gettime(CLOCK_REALTIME, &start);

 srand((unsigned)time(NULL));

 for (i = 0; i < n_bits - n_pad; i++) {

 input[i] = gen_binomial_random(0.5);

 }

 if (n_pad > 0) {

 for (i = n_bits - n_pad; i < n_bits; i++) {

 input[i] = 0;

 }

 }

 for (j = 0; j <= MAX_SNR; j += 2) {

 double ebn0 = exp10((double)-1 * j/10);

 short scrambler_init[] = { 1, 1, 1, 1, 1, 1, 1 };

 short descrambler_init[] = { 1, 1, 1, 1, 1, 1, 1 };

 fftw_complex h1 = { 1.0, 1.0 };

 fftw_complex h2 = { 1.0, 1.0 };

 scrambler(input, scrambler_output, n_bits, scrambler_init);

 encoder(scrambler_output, encoder_output, n_bits);

 interleaver(encoder_output, interleaver_output, params.n_cbps, params.n_bpsc, n_bits *
2);

 for (i = 0; i < n_sym; i++) {

Appendix

91

 mapper(interleaver_output, params.n_cbps, params.modulation, modulation_output, i);

 if (alamouti) {

 alamouti_encoder(modulation_output, tx1, tx2, N_DATA_SUBCARRIERS);

 change_sign(tx1, N_DATA_SUBCARRIERS);

 change_sign(tx2, N_DATA_SUBCARRIERS);

 add_pilots(tx1, alamouti_pilots_added_tx1, i + 1);

 add_pilots(tx2, alamouti_pilots_added_tx2, i + 1);

 map_ofdm_to_ifft(alamouti_pilots_added_tx1, ifft_input_tx1);

 map_ofdm_to_ifft(alamouti_pilots_added_tx2, ifft_input_tx2);

 fixed_point(ifft_input_tx1, ifft_input_tx1, FFT_SIZE);

 fixed_point(ifft_input_tx2, ifft_input_tx2, FFT_SIZE);

 ifft(ifft_input_tx1, ifft_output_tx1);

 ifft(ifft_input_tx2, ifft_output_tx2);

 normalize_ifft_output(ifft_output_tx1, FFT_SIZE, FFT_SIZE);

 normalize_ifft_output(ifft_output_tx2, FFT_SIZE, FFT_SIZE);

 add_cyclic_prefix(ifft_output_tx1, FFT_SIZE, cyclic_prefix_tx1,
EXT_OFDM_SYMBOL_SIZE, CYCLIC_PREFIX_SIZE);

 add_cyclic_prefix(ifft_output_tx2, FFT_SIZE, cyclic_prefix_tx2,
EXT_OFDM_SYMBOL_SIZE, CYCLIC_PREFIX_SIZE);

 defixed_point(cyclic_prefix_tx1, cyclic_prefix_tx1, EXT_OFDM_SYMBOL_SIZE);

 defixed_point(cyclic_prefix_tx2, cyclic_prefix_tx2, EXT_OFDM_SYMBOL_SIZE);

Appendix

92

 alamouti_channel(cyclic_prefix_tx1, cyclic_prefix_tx2, channel_output, h1, h2,
EXT_OFDM_SYMBOL_SIZE, (double)j);

 } else {

 add_pilots(modulation_output, pilots_added_output, i + 1);

 map_ofdm_to_ifft(pilots_added_output, ifft_input);

 fixed_point(ifft_input, ifft_input, FFT_SIZE);

 ifft(ifft_input, ifft_output);

 normalize_ifft_output(ifft_output, FFT_SIZE, FFT_SIZE);

 add_cyclic_prefix(ifft_output, FFT_SIZE, cyclic_prefix_output,
EXT_OFDM_SYMBOL_SIZE, CYCLIC_PREFIX_SIZE);

 defixed_point(cyclic_prefix_output, cyclic_prefix_output,
EXT_OFDM_SYMBOL_SIZE);

 channel(cyclic_prefix_output, channel_output, EXT_OFDM_SYMBOL_SIZE, ebn0);

 }

 fixed_point(channel_output, channel_output, EXT_OFDM_SYMBOL_SIZE);

 remove_cyclic_prefix(channel_output, EXT_OFDM_SYMBOL_SIZE, fft_input,
FFT_SIZE, CYCLIC_PREFIX_SIZE);

 fft(fft_input, fft_output);

 change_sign(fft_output, FFT_SIZE);

Appendix

93

 defixed_point(fft_output, fft_output, FFT_SIZE);

 map_fft_to_ofdm(fft_output, pilots_remove_input);

 remove_pilots(pilots_remove_input, demodulation_input);

 if (alamouti) {

 alamouti_decoder(demodulation_input, alamouti_decoder_output, h1, h2,
N_DATA_SUBCARRIERS);

 demapper(alamouti_decoder_output, N_DATA_SUBCARRIERS, params.modulation,
demodulation_output);

 } else {

 demapper(demodulation_input, N_DATA_SUBCARRIERS, params.modulation,
demodulation_output);

 }

 regrouping(demodulation_output, params.n_cbps, deinterleaver_input, i);

 }

 deinterleaver(deinterleaver_input, deinterleaver_output, params.n_cbps, params.n_bpsc,
n_bits * 2);

 viterbi_decoder(deinterleaver_output, decoder_output, n_bits * 2);

 scrambler(decoder_output, descrambler_output, n_bits, descrambler_init);

 double theory_siso_ber = erfc(sqrt(exp10((double)j/10))) * 0.5;

 double p_alamouti = 0.5 - (0.5 * pow(1.0 + (double)2/j, (double)-0.5));

 double theory_alamouti_ber = pow(p_alamouti, 2.0) * (1 + 2 * (1 - p_alamouti));

 if (j == 0) {

Appendix

94

 printf("\nBER for %s modulation in AWGN with Viterbi decoder (%s)\n", (mod == 1) ?
"BPSK" : "QPSK", (alamouti == 1) ? "nTx=2, nRx=1" : "nTx=1, nRx=1");

 printf("|--|\n");

 printf("|Eb/N0 | BER (sim) | BER (sim) | BER (siso) | BER (alamouti) |\n");

 printf("| (dB) | (uncoded) | (decoded) | (theory) | (theory) |\n");

 printf("|--|\n");

 fprintf(fp, "Eb/N0, BER_uncoded, BER_decoded\n");

 }

 uncoded_ber = ber(encoder_output, deinterleaver_output, n_bits * 2);

 decoded_ber = ber(scrambler_output, decoder_output, n_bits);

 printf("| %2u | %lf | %lf | %lf | %lf |\n", j, (double)uncoded_ber/(n_bits),
(double)decoded_ber/n_bits, theory_siso_ber, theory_alamouti_ber);

 fprintf(fp, "%u, %lf, %lf\n", j, (double)uncoded_ber/(n_bits), (double)decoded_ber/n_bits);

 }

 printf("|--|\n");

 if (sysconf(_SC_MONOTONIC_CLOCK) > 0) {

 clock_gettime(CLOCK_MONOTONIC, &finish);

 }

 else clock_gettime(CLOCK_REALTIME, &finish);

 elapsed_time = (finish.tv_sec - start.tv_sec);

 elapsed_time += (finish.tv_nsec - start.tv_nsec) / 1000000000.0;

 printf("\nElapsed time: %.3lf\n", elapsed_time);

 fclose(fp);

 return 0;

}

