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Abstract

BTA (Boring and Trepanning Association) deep hole drilling is a widely applied cut-
ting method to manufacture or process bores. In this thesis, numerical simulations
with Finite Element Method for the determination of eigenfrequencies of a BTA
deep drilling machine in real boundary and working conditions are executed with
Ansys Workbench in order to study dynamic disturbance during deep hole drilling
processes. The pre-stressed modal analysis gives the information regarding varying
dominant eigenmodes and the corresponding critical locations on the boring bar of
BTA tool with different drilling depths. To prevent chatter vibration and spiralling
during the deep hole drilling process, a real-time monitoring of varying system dy-
namics would be recommended and the results from the simulation are considered
as reliable references in this case. Furthermore, the influences of the one-way Fluid-
Structure Interaction, drilling-depth dependent values of boundary conditions and
material damping effect are proven not to be neglected comparing to the influence of
mechanical loads on BTA tool head in modal analysis.

Keywords: Deep Hole Drilling, BTA, Modal Analysis, Finite Element Method,
Fluid-Structure Interaction, Rotor Dynamics, Effective Modal Mass.
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Abbreviations

BTA Boring and Trepanning Association

FEM Finite Element Method

FSI Fluid-Structure Interaction

CFD Computational Fluid Dynamics

ACF Autocorrelation Function

MPC Multi-Point-Constraint

RMS Root Mean Square

SSE Sum of Squared Errors

Nomenclatures

C - Damping matrix

cSB,1, cSB,2
Nms
rad

Torsional damping factors of stuffing box

Db mm External diameter of BTA boring bar

db mm Internal diameter of BTA boring bar

Dh mm External diameter of BTA tool head

DLD m Distance between clamping end and Lanchester damper

DSB,1, DSB,2 m Distances between clamping end and stuffing box

Eb MPa Elastic modulus of material of BTA boring bar

Ecg MPa Elastic modulus of material of cutters and guide pads

Eh MPa Elastic modulus of the material of BTA tool head

F N Total cutting force

Faxial N Axial force

~f - Vector of external excitation and force

~ff N Body force in fluid domain
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~fs N Body force in solid domain

fexp,i, fnum,i Hz Experimental and numerical values of i-th eigenfrequency

K - Stiffness matrix

kLD
N
m

Elastic stiffness of Lanchester damper

kSB,1, kSB,2
N
m

Elastic stiffness of stuffing box

kW
N
m

Elastic stiffness of workpiece

Lb mm Length of BTA boring bar without the thread

Lbc−ld mm Distance between Lanchester damper and boring bar chuck

Lcl mm Length of clamp in boring bar chuck

LLD mm Length of Lanchester damper

LLD,left, LLD,right mm Ineffective lengths of Lanchester damper

Lh mm Length of BTA tool head

Lsb mm Dual spacing of the stuffing box

Lth mm Length of thread

M - Mass matrix

MN , MP Nm Bending moment in normal and passive directions

MT Nm Torsional moment

M̄ - Generalized mass matrix

meff,j kg Effective modal mass for mode j

~nf , ~ns - Normal vectors at FSI interface from fluid and solid domains

~uf , ~us - Displacements in fluid and solid domains at FSI interface

vc
Liter
min

Flow speed of fluid

~vf - Vector of velocity in fluid domain

~vs - Vector of velocity in solid domain

x1, x2 - Degrees of freedoms of the vibration

α 1
s·rad Material proportional damping factor

β s Material proportional damping factor

Γ̄ - Coefficient vector

µcg - Poisson´s ratio of material of cutters and guide pads
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µh - Poisson´s ratio of material of BTA tool head

µb - Poisson´s ratio of material of BTA boring bar

νf
mm2

s
Viscosity of cutting fluid

ξ - Unit ground displacement vector

ρb
kg
m3 Density of material of BTA boring bar

ρcg
kg
m3 Density of material of cutters and guide pads

ρf
g
ml

Density of cutting fluid

ρh
kg
m3 Density of material of BTA tool head

ρs - Density in solid domain

σf - Stress tensor in fluid domain

σs - Stress tensor in solid domain

Φj kg Modal participation factor for mode j

Ψ - Eigenvector matrix

ω - Eigenvalue of dynamic system

D
Dt

- Material derivative

∂
∂t

- Partial derivative with respect to time

∇ - Nabla symbol
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1 Introduction

Boring and Trepanning Association (BTA) deep hole drilling is applied to manufac-
ture deep holes with a diameter starting from 6 mm and a length to diameter ratio
larger than 3 (l/d>3)[1]. During the deep hole drilling processes, the cooling lubricant
is supplied through the gap between the BTA tool and the workpiece and flushes the
cutting chips out via the inner of the boring bar. BTA deep hole drilling machines
could be applied for solid drilling, trepanning and boring. The qualities of the man-
ufactured bores, such as bore diameter, surface roughness, mismatch of axes etc.[1]
are often influenced by the superposition of torsional and flexural vibrations, which
cause dynamic disturbance in deep hole drilling processes and are known as chatter
vibration and spiralling. Chatter vibration could damage the BTA tool and create
harsh noise while spiralling leads to a multi-lobe shaped cross section of the man-
ufactured bore, increases the roundness error and damages the inner surface of the
produced bore. This thesis is considered as a part of the research regarding dynamic
disturbance in deep hole drilling processes with BTA deep hole drilling machines.
In this thesis, the solid drilling process with a BTA deep hole drilling machine is
the basis for the simulation. The relation between the eigenfrequencies and varying
boundary and working conditions is studied. The dependency of eigenfrequencies of
a BTA deep hole drilling machine on the varying drilling depth is investigated, as the
drilling depth is an essential factor that influences the eigenfrequencies. All boundary
and working conditions are taken into consideration, such as the influences of cooling
lubricant flow, mechanical loads and damping effects, the elastic support between the
Lanchester damper and the boring bar, the one between the stuffing box and the
boring bar and the one between the workpiece and the tool head. The numerical
simulation is based on the finite element method (FEM) and coupled with compu-
tational fluid dynamics (CFD). The results of the simulation are worthy of reference
for further studies regarding dynamic disturbance during BTA deep hole drilling pro-
cesses and could contribute to further researches regarding countermeasures against
chatter vibration and spiralling, especially in the areas for the real-time monitoring
and operating reference.
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2 State-of-the-art

2.1 Backgrounds

BTA deep hole drilling belongs to the family of conventional deep hole drilling meth-
ods and has a good reputation for high quality of finish. Figure 2.1 shows a con-
ventional BTA deep hole drilling machine. Fritz et al. [6] have declared that deep
hole drilling methods comparing to conventional drilling methods have advantages in
terms of drilling performance, surface quality after machining and machining of hard
material. However, the discrepancy comparing to the ideal flawless process impairs
the quality of the produced bore and is generally caused by the so-called self-excited
vibration during the hole drilling process. The self-excited torsional vibration, which
is known as chatter vibration, leads to creation of noise and severe wear of BTA tool
during drilling process. The self-excited bending vibration, which is also known as
spiralling or twisted drilling, leads to poor qualities of hole surface in terms of the
roughness, roundness error, surface texture and mismatch of axes. Sometimes it could
lead to an useless workpiece. The BTA boring tool is susceptible to these vibrations
due to its slender geometry, which leads to small torsional and bending stiffness. The
influence of the self-excited vibration must be avoided as BTA deep hole drilling is usu-
ally applied for the last machining procedure and hence the cost could be tremendous.
Researches have shown that torsional and bending eigenfrequencies are interrelated
with chatter vibration and spiralling respectively. Therefore the cognizance of the
eigenfrequencies of BTA deep drilling machine in different drilling depths and differ-
ent boundary and working conditions is of vital importance to predict, counteract or
avoid chatter vibration and spiralling in the deep hole drilling process.
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Figure 2.1: A conventional BTA deep hole drilling machine [35].

2.2 Setup and working principle of general BTA deep drilling

machines

The general setup and working principle of a BTA deep drilling machine are shown in
figure 2.2 and 2.3 respectively. In figure 2.2 the left end of the boring bar is clamped
to the left drive unit via the boring bar chuck. A Lanchester damper that is fixed on
the machine bed is applied on the boring bar. The stuffing box for the coolant supply
gives support on the boring bar and the joint between the stuffing box and workpiece
is sealed. Figure 2.4 shows the setup of the Lanchester damper. Figures 2.5 and 2.6
show the setup of the stuffing box in the coolant supply unit.

In figure 2.3, the BTA drilling tool consists of one tool head (10), two guide pads
(1 and 4) and one cutting edge (3). The tool head is connected to the boring bar
(8) via the screw joint (9). During a machining process the cooling lubricant (7)
flows from the inlet of the stuffing box through the gap between the BTA tool and
the workpiece to reach the chip mouth (2) and then flushes out the cutting chips
via the cylindrical cavity inside the tool head and the boring bar. The seal (5) be-
tween the workpiece and the stuffing box prevents the leakage of coolant. The drilling
bush (6) contributes to the stable starting drilling phase of the drilling process. The
explanation for the notations in figure 2.3 is seen in table 2.1.
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Figure 2.2: General setup of BTA deep drilling machine [15].

Figure 2.3: Working principle of BTA deep drilling machine according to [1].

Number Description Number Description

1 Guide pad 1 6 Drilling bush

2 Chip mouth 7 Cooling lubricant

3 Cutting edge 8 Boring bar

4 Guide pad 2 9 Screw joint

5 Seal 10 Tool head

Table 2.1: Explanation for the notations in figure 2.3.
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(a) A conventional Lanchester damper. Source:

IFT, TU Wien

(b) Sketch of a Lanchester damper [18].

Figure 2.4: General setup of a Lanchester damper.

Figure 2.5: A conventional stuffing box. Source: IFT, TU Wien
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Figure 2.6: Sketch of a stuffing box [36].

The workpiece is clamped with the drive unit on the right-hand side (seen in fig-
ure 2.2). This leads to three available operating modes, which are seen in figure 2.7
and 2.8.

• Rotating BTA tool with fixed workpiece, feed from the tool or workpiece.

• Rotating workpiece with fixed BTA tool, feed from the tool.

• Rotating BTA tool with rotating workpiece in the opposite direction, feed from
the tool.

(a) Rotating BTA tool with fixed workpiece,

feed from the tool.

(b) Rotating BTA tool with fixed workpiece,

feed from the workpiece.

Figure 2.7: Rotating BTA tool with fixed workpiece [1].

14



(a) Rotating workpiece with fixed BTA tool,

feed from the tool.

(b) Rotating BTA tool with rotating workpiece

in the opposite direction, feed from the tool.

Figure 2.8: Rotating workpiece with fixed BTA tool and rotating BTA tool with rotating

workpiece in the opposite direction [1].

Due to the big ratio between length and diameter of the manufactured hole, BTA deep
drilling method is susceptible to dynamical instability. The quality of the via BTA
deep drilling method manufactured bores are often influenced by the superposition
of torsional and flexural vibrations, which cause dynamic disturbance during drilling
processes and are also known as chatter vibration and spiralling. Chatter vibration
is mainly caused by self-excited torsional vibration, which leads to severe wear of
boring tool and creates harsh noises during drilling process. Spiralling is generated
from self-excited bending vibration, which leads to a helical propagation of hole with
multi-lobe cross section along the drilling axis. A brief introduction to the self-excited
vibration is given as follows.
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2.3 Self-excited vibration

As mentioned before, chatter vibration and spiralling result from self-excited torsional
and bending vibration respectively. The causes of self-excited vibration have been
studied by many researchers so far and three major reasons are stated as follows:

• Regenerative effect.

• Positional coupling.

• Falling characteristic curve of drilling moment.

The third reason above is according to [18] not as important as the other two be-
cause it is usually seen in processing with low cutting speed and not considered as
a main factor for BTA deep drilling process nowadays. Tlusty et al. [9] have given
the mathematical derivation of characteristic equations for self-excited vibration of a
simplified model based on regenerative effect plus positional coupling principle and
obtained the analytical criteria of stability for both principles. Therefore the first and
second reasons are considered as main reasons for self-excited vibration in BTA deep
hole drilling process and will be introduced as follows.

2.3.1 Regenerative effect

During a deep hole drilling process, a pulse-like excitation is easily triggered by e.g.
noise floor or static unbalance in the machine operation. This kind of excitation leads
to eigenvibrations of the machine, which force the cutting movement on the surface
of the workpiece into a wave-like shape in accordance with eigenfrequencies of the
machine. After repeated cutting in the wave-like shape, which means repeated exci-
tation with eigenfrequencies of the machine, the relative vibration between machine
and workpiece could exceed the restriction of damping and stiffness of the machine,
which means the cutting in the wave-like surface of the workpiece is unable to be
stopped. Weck et al. [10] established a simplified model based on control engineering
and gave the criteria of stability for self-excited vibration due to regenerative effect
and positional coupling principle with Nyquist plot. This resulted the conclusion re-
garding influence factors of chatter vibration and appropriate countermeasures were
also proposed. The illustration of regenerative effect is shown in figure 2.9 [11]. Here
vc represents the cutting speed and F represents the total cutting force. An arbi-
trary pulse-like excitation, which leads to the eigenvibration of the machine, leaves
a wave-like surface on the workpiece after cutting, with however a possibly declining
amplitude of the vibration due to the existing damping and stiffness. After each
rotation, the machine is excited again into its eigenvibration due to the cutting into
the previously manufactured wave-like surface. At last, the cutting and producing of
the wave-like surface of the workpiece are uncontrollably repeated due to the limited
stiffness and damping properties of the machine.
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Figure 2.9: Regenerative effect of a simplified cutting process [11].

2.3.2 Positional coupling

If the vibration of the cutting edge of the BTA tool is in more than one direction
possible, which also means the relative movement between the cutting edge and the
workpiece possesses at least two degrees of freedom, then positional coupling is con-
sidered as the major cause for the self-excited vibration. Thai [12] has confirmed
positional coupling as the main reason of self-excited torsional vibration based on
theoretical stability analysis combining experiments. He also gave suggestions to
improve the Lanchester damper and the recognition of self-excited vibrations. A sim-
plified illustration of this principle is shown in figure 2.10 [10]. Here vc represents
the cutting speed, x1 and x2 represent the two degrees of freedom in the vibrations
and F represents the total cutting force. The vibrations in the two directions are
triggered by the cutting force and both vibrate with the same eigenfrequency. The
angle between the two directions defines the phase delay, which leads to an elliptical
relative movement between the cutting tool and the workpiece.
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Figure 2.10: Positional coupling of a simplified model [10].
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2.4 Chatter Vibration

Chatter vibration leads to severe wear of BTA tool and creates harsh noises during
the deep hole drilling process. It could also leave radial chatter marks on the bot-
tom of the produced hole (seen in figure 2.11 [22]). Studies have proven that chatter
vibration is related to the self-excited torsional vibration. Many studies are focused
on the analysis of chatter vibration and its prevention. Wolfrum et al. [5] derived
the motion equation from the idea of finite element by discretizing the boring tool in
space and achieved the simulation by using fourth order method on this model. They
have successfully simulated the regenerative process and given the relation between
the start of chatter vibration and the initial working point. Weinert et al. [14] verified
via experimental and finite element methods the influence of the time variant drilling
depth on the changing of modal damping, which is responsible for the transition of
chatter states regarding different torsional eigenfrequencies during a BTA deep hole
drilling process. Theis et al. [21] studied the relation between the machine parame-
ters and the drilling depth where the machining process started to change its dynamic
state based on experimental design for BTA deep hole drilling. Weinert et al. [22]
proceeded the determination of the transition for chattering in a BTA deep drilling
process via Fourier analysis and autocorrelation function (ACF) method based on
the experimental measurement of acceleration on the tool head and found that ACF
method could predict the chatter vibration earlier than using Fourier analysis. Wein-
ert et al. [23] studied the connection between the parameter of their established
statistical model and the parameter of a BTA drilling process. They have observed
the different phases including transition from stable state to the beginning of chatter
vibration in a dynamic process based on experimental analysis. Dieter [11] created
an automatic system consisting of a recognizing component of vibration, a driving
component for the determination of coupling location and a controlling component
based on a hydraulically controlled Lanchester damper with improved characteris-
tics regarding the pressing element against chatter vibration during a BTA drilling
process.

Figure 2.11: Radial chatter marks [22].
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2.5 Spiralling

Studies have proven the relation between spiralling and bending eigenfrequencies of
a BTA deep hole drilling machine. Spiralling leads to severe deviation of the cross
section of the produced hole from standard requirement. The cross section shows a
multi-lobe shape and propagates helically along the axis of the bore, which leaves
periodic sloping marks on the hole surface (seen in figure 2.12 (a) [22]). An example
of a cross section of the bore with 5 lobes is seen in figure 2.12 (b) [2].

(a) Marks due to spiralling on the inner of a bore. (b) Sketch of a cross section with 5

lobes.

Figure 2.12: Consequences due to spiralling on produced hole [2, 22].

Many studies have been conducted regarding analysis of spiralling and its prevention.
Gessesse et al. [20] revealed two major causes of spiralling via experimental stud-
ies with commercial BTA solid tools and proved that the lateral natural frequencies
were related to the occurrence of spiralling. Deng et al. [2] carried out a study of
roundness error after giving the derivation of analytical expression of the dynamic
radial deflection based on Euler beam theory under consideration of radial excitation
force. The results were compared with the ones from experiments in different working
conditions and showed a good agreement. Sakuma et al. [4] designed a special model
to study the action of guide pads during the working process of a BTA machine.
They have carried out the calculation of bending eigenfrequencies with consideration
of varying relative position between boring bar and stuffing box. Stockert [13] listed
the factors regarding the formation of spiralling and proved the significant influence
due to angular positions of guide pads on the formation of spiralling and the form
of manufactured holes based on the results from experiments. Raabe [19] developed
an efficient model for the determination of bending eigenfrequencies to prevent spi-
ralling during a machining process with BTA deep drilling tool via approximation of
the simulated results towards the measured solid-borne noise of the drilling tool in
real working conditions. Matsuzaki et al. [16] applied the transfer matrix method on
the analytical study of the occurrence of rifling marks on the surface of the machined
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hole and the results from the eigenanalysis agree well with the ones from experiments.
They have proposed an effective countermeasure as well. Szepannek et al. [15] de-
veloped a method for the determination of unknown parameters of an established
mechanic model. The method was via approximation of frequency responses from the
fitted system towards results from measured periodogram data. This method could
be used for process control to monitor the appearance of spiralling during a BTA deep
hole drilling process. Kong et al. [17] verified the effectiveness of a countermeasure
experimentally against vibration during a BTA drilling process via applying magneto-
rheological fluid damper with adjustment of excited current and suppression position.

Furthermore, some researches have also been done regarding the determination of
eigenproperties of a BTA deep drilling machine with consideration of different cou-
pling conditions. Perng et al. [3] investigated the eigenproperties of a rotating BTA
drill shaft based on both Euler and Timoshenko beam theories using Hamiltion’s prin-
ciple for derivation of governing equations and used Galerkin’s method as solution
tool. The system was in coupling with rotational motion, cutting fluid with constant
velocity inside boring bar and axial forces. The validity of the analytical solutions
was verified by comparing with results from experiments. Chin et al. [7] gave the
theoretical analysis for determination of eigenproperties based on Euler beam the-
ory for BTA deep drilling tool without tool head in coupling with static fluid from
inside of the boring bar and also the tool including tool head with coupling of cut-
ting fluid under constant flow velocity inside the boring bar. The results showed a
good agreement with the experimental data. Chin et al. [8] gave the theoretical
analysis for determination of eigenproperties based on Euler beam theory for BTA
deep drilling tool without tool head and without coupling of fluid and also the tool
including tool head without coupling of fluid. The results showed a good agreement
with the experimental data.
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3 Objective and approach

Via finite element (FE) simulation the relation between the development of critical
eigenfrequencies of a BTA deep drilling machine and the drilling depth in real op-
erating conditions could be discovered for further developments of countermeasures
against self-excited vibrations. A real-time recognition of critical eigenfrequencies is
of vital importance both for manual and automatic operations to avoid spiralling and
chatter vibration and this can be done with FE simulation efficiently. The correspond-
ing dominant eigenmodes are also available from FE simulation and their usages lie
mainly in the determination of critical locations of maximal deflections in the criti-
cal eigenmodes for the setup of additional dampers. Operations such as altering the
location of Lanchester damper and adjusting the rotational speed could treat results
from FE simulation as authentic references. In the automatic damping system of a
BTA deep hole drilling machine, the FE simulation could be integrated into the unit
of real-time monitoring.

3.1 Predefined assumptions and problem statement

In this thesis, the 3D model of the studied BTA deep hole drilling tool is shown in
figure 3.1. In FE simulation, some topological corrections, such as chamfer, irrelevant
geometrical complexities which worsen the quality of mesh, empties that can be filled
and all possible defeatures, are executed to improve the quality of mesh generation.
The topological optimization is considered as acceptable and necessary for further
simulation. Within the demand of further studies, some factors are simplified, such
as the ineffective lengths of Lanchester damper is set as 20% of the total physical
length and the stiffness within the ineffective lengths is neglected. More details are
seen in chapter 4.1. The procedure for the study of self-excited torsional and bending
vibrations of the BTA deep drilling tool could be summarized as a ”pre-stressed modal
analysis”. The influences of different boundary and working conditions on the modal
analysis will be distinguished. The executive strategies are given in chapter 3.2.

Figure 3.1: 3D model of the BTA deep hole drilling tool.

The detail of the BTA tool head is shown in figure 3.2 (a), (b) and (c) respectively.
The constructional difference here comparing to the one in [1] lies in the number of
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guide pads and cutters, and their relative positions. This improvement contributes
to a higher dynamic stability during deep hole drilling processes.

(a) BTA tool head top view. (b) BTA tool head front view. (c) BTA tool head right view.

Figure 3.2: 3D model of BTA tool head in different views.

The data of BTA tool head and boring bar are seen in table 3.1.
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Toohead

External diameter Dh 69.5 mm

Length Lh 97 mm

Density ρh 7700 kg
m3

Poisson’s ratio µh 0.27

Elastic modulus Eh 212000 MPa

Boring bar

External diameter Db 62 mm

Internal diameter db 48 mm

Length without thread Lb 3959 mm

Length of thread Lth 41 mm

Density ρb 7700 kg
m3

Poisson’s ratio µb 0.30

Elastic modulus Eb 210000 MPa

Length of clamp in boring bar chuck Lcl 125 mm

Stuffing Box

Dual spacing Lsb 90 mm

Speed of cutting fluid vc 320 Liter
min

Density of cutting fluid ρf 0.867 g
ml

Viscosity of cutting fluid νf 15 mm2

s

Lanchester Damper

Distance to boring bar chuck Lbc−ld 1000 mm

Length Lld 80 mm

Cutters and Guide Pads

Elastic modulus Ecg 600000 MPa

Poisson’s ratio µcg 0.22

Density ρcg 14800 kg
m3

Table 3.1: Physical data for BTA setup and input in FE simulation
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3.2 Executive strategy

The modal analysis is pre-stressed with coupling conditions from static mechanical
module and fluid dynamic module. The setup of the procedure in Ansys Workbench
16.0 is shown in figure 3.3.

Figure 3.3: Setup for FE simulation in Ansys Workbench.

The process chart in figure 3.4 is given to illustrate the setup and process in Ansys
Workbench.

Figure 3.4: Illustration of the setup and process in Ansys Workbench. Blue: input data,

red: applied modules in Ansys Workbench, green: shared data, yellow: interim results,

purple: required results.

The strategies for the problem solution are as follows.

Phase 1: Determination of essential parameters for FE simulation
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• Summarizing essential parameters for FE simulation.

• Parameter study of boundary and working conditions.

Phase 2: FE Simulation

• Pre-processing for mechanical domain and fluid domain: topological optimiza-
tion, mesh configuration and convergence study

• Simulation in different coupling conditions and study of their influences.

• Determination of the relation between critical eigenproperties and drilling depth
for different setups of the Lanchester damper.

• Post-processing: Interpretation of the results and countermeasures recommen-
dation.
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4 Implementation of FE Simulation

4.1 Analysis of boundary and working conditions

In order to gain the results in real working and boundary conditions, the influences
from the stuffing box, the Lanchester damper and the workpiece on the BTA tool are
considered. In [14, 18], the torsional damping and elastic supporting effects from the
stuffing box, the elastic supporting effect from the Lanchester damper and the work-
piece, the material damping factors of the boring bar are obtained with experimental
and numerical methods. According to [18], an experimental modal analysis could be
designed as follows.

First of all, the trigger and measurement in the modal experiment for torsional vi-
bration could be executed both tangentially with flange on the boring bar. The
Lanchester damper is not applied during the experiment in order to obtain clear tor-
sional responses. Furthermore, the experiment for bending vibration is only supposed
to focus on the lateral measurement. The trigger via hammer could be executed with
consideration of nodal nodes. The potential nodal nodes are known for zero displace-
ment in vibration and are supposed to appear at the supporting areas in stuffing box
and Lanchester damper plus the equidistant locations between the supports. The lo-
cations of sensors for the measurement of lateral acceleration should have also taken
the potential nodal nodes into consideration. The plan for the experiments should
take the drilling depth as a critical influential factor into consideration. For the de-
termination of the first three torsional plus first five bending eigenfrequencies, a mean
valued frequency response of 10 repeated measurements at each drilling depth could
be computed for the final determination of eigenfrequencies. The effective length of
the Lanchester damper is supposed to be shorter than its physical length according
to [18, 29]. The details of the Lanchester damper and stuffing box are shown in figure
4.1 (a) and (b). In figure 4.1 (a), LLD,left and LLD,right refer to the ineffective lengths
in the physical length of Lanchester damper LLD due to wear and error from produc-
tion respectively. LLD,left and LLD,right are assumed to be 10% of LLD respectively.
In figure 4.1 (b), unknown torsional damping effects from stuffing box to boring bar
are brought at the two contact locations.
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(a) Lanchester damper. (b) Stuffing box.

Figure 4.1: Models of Lanchester damper and stuffing box [18].

The setup of the BTA deep drilling tool is shown in figure 4.2. Label 1, 2, 3, 4 and
5 refer to the Lanchester damper, boring bar, stuffing box, workpiece and BTA tool
head respectively. DSB,1, DSB,2 and DLD refer to the distances between the clamping
end and the two contacting locations of stuffing box plus the Lanchester damper
respectively, where DSB,1 and DSB,2 depend on the drilling depth.

Figure 4.2: Sketch of the setup of BTA tool. 1: Lanchester damper, 2: Boring bar, 3:

Stuffing box, 4: Workpiece, 5: BTA tool head.

A common tool of the evaluation of measured eigenfrequencies is via ME Scope and
the determination of the elastic stiffness at the contacting area between the Lanch-
ester damper and the boring bar kLD and the elastic stiffness at the contacting areas
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between the stuffing box and the boring bar kSB,1,2 could be succeeded with exper-
imental measurements. However the elastic stiffness between the workpiece and the
BTA tool head kW was not able to measure due to the working condition. Although
many researches are done with ideal rigid support or extremly large stiffness for kW
(seen in [14, 19]), according to [18] the stiffness is supposed to be limited and varies
as the drilling depth changes. Furthermore, regarding the unknown torsional damp-
ing factors from contact locations between stuffing box and boring bar cSB,1, cSB,2

plus the material proportional damping factors α and β, numerical studies are done
in many researches, such as by applying Nelder-Mead Simplex method according to
[30]. The strategy is based on monitoring the SSE (short for ”Sum of Squared Er-
rors”), which is obtained by comparing measured and calculated eigenfrequencies via
iteration of input regarding unknown factors [31]. Based on the mechanical model in
[18], the method is to evaluate the eigenproperty of the system of equations, which
are derived from the finitely discrete model. The system of equations is given as (4.1).

Mẍ+ Cẋ+Kx = 0 (4.1)

where C, M and K represent the damping, mass and stiffness matrix respectively. x
is the vector that contains all degrees of freedom of the discrete model.

The approach for this system is conventionally using (4.2) for the solving procedure,
where X, j, ω and t represent the norm of the vector, imaginary unit, eigenvalue of
the system of equations and quantity of time respectively.

x = Xejωt (4.2)

Eventually for the non-trivial solution of the system, which is e.g. undamped, the
equation (4.3) must hold.

det(K − ω2M) = 0 (4.3)

Furthermore, the proportional material damping model (4.4) is used to simulate the
system damping, where α and β are the material damping factors.

C = αM + βK (4.4)

The aim is to minimize the value of function h, which is defined in (4.5)

h =
n∑

i=1

(fexp,i − fnum,i)
2 (4.5)

fexp and fnum are the experimental and numerical values of eigenfrequencies respec-
tively. n is the number of treated eigenfrequencies. The values of the unknown factors
in this thesis are rationally assumed based on the study in [18]. Numerical programs
for the determination of material and torsional damping ratios are written in Matlab
for the support of further study with experimental measurements. The programs and
the input values of determined factors for FE simulation are seen in Appendices.
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4.2 Numerical study of damping effects in modal analysis

In this section, the influence of damping factors on the determination of eigenfre-
quencies is studied. The purpose is to evaluate the experimental and numerical cost
for the determination of torsional and material damping factors by comparing the
discrepancy of eigenfrequencies with and without damping effects. As the damping
effects will not be considered in static structural module, the study is only applied
for modal analysis module. A FE simulation using beam element is carried out. One
line body is modeled with a defined cross section, which corresponds to the cross
section of boring bar. The line body is meshed with beam 188 element, which is
based on Timoshenko beam theory. Comparing to 2D and 3D element, the beam
element reduces computational effort while maintains satisfied results in modal anal-
ysis. The line body is meshed with 2000 elements and simply clamped at one end
without other conditions. The only variable is damping effect. The simulation is
conducted both for damping free and damping attached cases. For damping attached
cases a further distinction is among torsional damping only, material damping only
and two damping effects together. The setting of torsional spring is given in figure 4.3.

The relative errors regarding torsional and bending eigenfrequencies are shown in
table 4.1 and 4.2. T-N, M-N, T+M-N refer to the comparison between the natu-
ral eigenfrequencies and the damped eigenfrequencies in simulations with torsional
damping, material proportional damping and both at the same time respectively.

Order of torsional Ef rel.error T-N rel.error M-N rel.error T+M-N

1 -0.01% -0.08% -0.09%

2 -0.00% -0.03% -0.03%

3 -0.00% -0.01% -0.01%

Table 4.1: Relative error for torsional eigenfrequencies with different damping effects.

Order of bending Ef rel.error T-N rel.error M-N rel.error T+M-N

1 0.00% -7.00% -7.00%

2 0.00% -0.87% -0.87%

3 0.00% -0.23% -0.23%

4 0.00% -0.09% -0.09%

Table 4.2: Relative error for bending eigenfrequencies with different damping effects.

In table 4.1 it can be seen that both torsional and material proportional damping
effects reduce the torsional eigenfrequencies. However, the influence for higher order
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Figure 4.3: Setting for torsional damping spring in Ansys Workbench 16.0.

torsional eigenfrequencies is decreasing. A combination from both effects leads to
larger damping effect, but the effect is not simply added from both. For the same
order of torsional eigenfrequency, the torsional damping is less effective comparing to
material damping.

In table 4.2 it can be seen that only material proportional damping reduces the
bending eigenfrequencies and as the order of eigenfrequency increases, the damping
effect is decreasing. The original natural eigenfrequency was around 3 Hz and this
was not shown in the results in damped simulation. One reasonable explanation is
that the damping effect is big enough to prevent the triggering of resonance at this
frequency. This can be seen that the material damping reduces the 1st order eigen-
frequency for more than 7%. After that, the damping effect drops monotonically.
Therefore, the 3 Hz natural eigenfrequency could be damped to almost 0 Hz, which
represents rigid body case.
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All in all, the torsional damping effect from stuffing box contributes only a very
limited effect to torsional eigenvibration, while material proportional damping influ-
ences both torsional and bending eigenvibrations and the effect is not supposed to
be neglected. Therefore, for further FE simulation, due to the limited damping effect
and also because the torsional damping function is currently still in beta features in
Ansys WB 16.0, the effect of material damping is to be included while the torsional
damping effect is to be dropped.
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4.3 Convergence study in static structural mechanics

Every FE simulation requires around 80% of the total working time for pre-processing
because the quality of the generated mesh determines the usefulness of the result sig-
nificantly. Therefore a convergence study to determine a proper mesh is conducted
before the simulation starts.

The convergence study is mainly focused on the boring bar, because firstly, in [14]
the FE simulation was conducted both for the model with BTA tool head and the
model without BTA tool head and the results showed an acceptable discrepancy. The
computational effort for the latter model is however much smaller. Furthermore, due
to the high length to diameter ratio, the boring bar is simulated with shell element
and the connection between the BTA tool head and the boring bar is set as one MPC
(Multi-Point-Constraint) connection in Ansys Workbench. So the meshes in tool
head and boring bar are not necessarily consistent. Last but not least, the mapping
of results from fluid domain requires high quality of mesh in structure domain and
the main interface is in boring bar instead of tool head.

Due to the thin shell model of the boring bar, one layer shell element with element
type shell 181 is created in Ansys Workbench. There are two variables that are set to
change the mesh. One is the number of division on the perimeter of the circular cross
section (note as NoDC) and the other one is the number of division in the longitu-
dinal direction (note as NoDL). Figure 4.4 shows the thin shell model of the boring
bar and figure 4.5 shows the local mesh controls for the specified discretization.

Figure 4.4: Thin shell model of the BTA boring bar.

Although a pre-stressed modal analysis is needed, the stress field in fluid domain
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Figure 4.5: Local mesh control settings for specified discretization.

and solid domain are to be determined first because the stress will be applied in
the modal analysis later on. Therefore the convergence study here runs for a simple
static structural analysis, in which stress is defined as output. The reference for error
determination is via monitoring the varying relative error till it reaches one percent,
which is set as the termination criterion. The boring bar is clamped at one end while
the other end is applied with a force in lateral direction. The observed stress is the
von Mises stress at a fixed monitor point on the boring bar.

Firstly, the changes of mesh quality as the two variable change are observed. The ten-
dency of the change is obviously small for available criteria in Ansys static structural
module except for aspect ratio. These can be seen in table 4.3 with two randomly
picked combinations. This is due to the fact that meshing method for surface is in-
serted in local mesh control to produce quadrilateral mesh in the regular cylindrical
geometry. So the varying quality criterion is the aspect ratio only and according
to the user guide in Hypermesh, the acceptable aspect ratio for simulation regarding
stress field is till 1:3. Although the best ratio is 1:1, this leads however to high density
of mesh and the computational effort rises. This is possibly not seen in the simple
loading case here, but will be seen in the analysis with larger computational burden
due to the complex geometry of tool head and the mapping of the result from fluid
domain later on. Therefore, the 1:3 aspect ratio is chosen for the following phase as
the minimal criterion.
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Criteria NoDL=100, NoDC=10 NoDL=120, NoDC=60 Optimum

Jacobian Ratio 1.0023 1.002 1

Warping Factor 0 0 0

Parallel Deviation max. 0.08 max. 0.07 0

Maximum Corner Angle 90 deg 90 deg 90 deg

Skewness 0 0 0

Orthogonal Quality 1 1 1

Aspect Ratio max. 1:2.87 max. 1:14.27 1:1

Table 4.3: Change of mesh quality in two random combinations.

The approach for convergence study is that based on the chosen aspect ratio, the
best choice of NoDL regarding different NoDC are determined and their correspond-
ing computational relative errors are calculated until the criterion is reached. The
progress is shown in table 4.4 and 4.5

Trial NoDC opt. NoDL max. Aspect ratio Relative error in %

1 10 100 1 : 2.87 –

2 20 200 1 : 2.85 -2.04

3 30 300 1 : 2.86 -1.56

4 40 400 1 : 2.86 1.74

5 50 500 1 : 2.86 1.69

6 60 600 1 : 2.86 1.69

7 70 700 1 : 2.86 1.12

8 80 800 1 : 2.86 1.09

9 90 900 1 : 2.86 0.78

Table 4.4: Global convergence study regarding stress field.
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Trial Set 1 Set 2 Rel. error in %

1 10×90 10×100 -0.24

2 20×190 20×200 0.07

3 30×290 30×300 0.05

4 40×390 40×400 0.23

5 50×490 50×500 0.18

6 60×590 60×600 0.14

7 70×690 70×700 0.11

8 80×790 80×800 0.09

9 90×890 90×900 0.08

Table 4.5: Transversal convergence study regarding stress field.

Beside the convergence near the combination around 90 × 900, two intersections
between the convergence history and criterion are also captured in table 4.4 and 4.5
for the combination around 30 × 300 and 40 × 400. To disambiguate this seeming
convergence point, the convergence study regarding deformation is conducted as a
reference with analytical solution based on Timoshenko beam theory. The reason
is that the requirement of aspect ratio for simulation of deformation is according
to Hypermesh user manual around 1:5, which is lower than that for stress field.
Therefore with the same model, the mesh for stress field study is denser than the one
for deformation. The convergence history for deformation is shown in table 4.6.

Trial NoDC opt. NoDL max. Aspect ratio Relative error in %

1 10 60 1 : 4.88 9.58

2 20 120 1 : 4.74 2.93

3 30 180 1 : 4.76 1.74

4 40 230 1 : 4.97 1.33

5 50 290 1 : 4.92 1.15

6 60 350 1 : 4.90 1.04

7 70 420 1 : 4.76 0.94

Table 4.6: Convergence study regarding deformation.

Here, to reach the convergence criterion of 1%, the combination is recorded as 70×420,
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which equals 29400 shell elements, while the seeming convergence point shows around
40 × 400, which represents 16000 shell elements. Therefore the seeming convergence
point is safely exclusive. The reason for this ambiguity is possibly due to the fact
that the error in the simulation of stress field is one order higher than the one in de-
formation, as the latter one is for the calculation of stress field further accumulated.
The sensitivity of error accumulation in stress field is one order higher than the one
in simulation of deformation and therefore a larger fluctuation could be observed in
convergence study of stress field, but possibly not in the one of deformation. The
convergence histories for stress field and deformation are shown in figure 4.6.

Figure 4.6: Convergence study for stress field and deformation in static structural module.

With the satisfaction of the criterion for aspect ratio, the numbers of division at
the perimeter on the cross section and the one in longitudinal direction are set as
90 and 900 respectively for the lowest computational effort. For automatic adjust-
ment in default settings in FE simulation later on, as long as this minimal criterion
is satisfied, the result is considered as reliable for the calculation and transfer of stress.

As mentioned before, the meshing process for the BTA tool head is not straightfor-
ward comparing to the boring bar due to its complex geometry. Beside the advanced
curvature function in global setting, local mesh refinement and mesh size control are
applied to improve its mesh quality. Furthermore, a comparison between tetrahedral
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and hexahedral mesh regarding the critical mesh criterion, skewness, shows tetrahe-
dral mesh fits the complex geometries better than hexahedral mesh. Therefore, a
local mesh method using tetrahedral meshing method is applied for the tool head
to limit the maximal skewness within the acceptable range according to Ansys user
manual.
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4.4 Introduction to Fluid-Structure Interaction (FSI)

FSI is short for Fluid-Structure Interaction and it represents a kind of problem re-
quiring knowledge from multidisciplinary fields. In this thesis the BTA tool interacts
with the coolant flow during the deep hole drilling process. The vibration of the solid
structure will not be stopped but obviously resisted by the surrounding cutting flow
and this effect will be studied to determine the influence on the eigenfrequencies of
BTA tool. An illustration regarding FSI is shown in figure 4.7. The fluid domain is
colored blue and the solid domain is colored black. The broken red line between two
domains represents the interface, where data could transfer between two domains.
The governing equations in two domains are according to [24, 25, 27] given as follows.

Figure 4.7: Illustration of Fluid-Structure Interaction.

∂ρf
∂t

+∇ · (ρf ~vf ) = 0 (4.6)

ρf
D~vf
Dt
−∇ · σf = ~ff (4.7)

ρs
∂ ~vs
∂t
−∇ · σs = ~fs (4.8)

Here the subscripts f and s represent the fluid and solid domain respectively. m, ρ,
v, σ and f correspond to the quantity of mass, density, velocity, stress tensor and
body force respectively. The equations (4.6) and (4.7) are mass conservation equation
and Navier-Stokes equation in fluid dynamics respectively while the equation (4.8)
is the momentum conversation equation in solid mechanics. In the FSI simulation
later on, the mass of fluid domain doesn’t have to be added to the solid structure to
capture the conventionally known ”resisting effect”. The reason is that in equation
(4.7), σf includes pressure effect and the mass conservation equation (4.6) holds for
the whole fluid domain, so there is no need to add mass to structure after transferring
the pressure at FSI interface. The coupling conditions at FSI interface are given in
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(4.9a) and (4.9b) [24, 25, 27]. Here u and ~n represent the displacement and normal
vector at FSI interface. The directions of normal vectors are shown in figure 4.7.

~uf = ~us, (4.9a)

~nf · σf = ~ns · σs, (4.9b)

The condition (4.9a) represents the equal displacement at the FSI interface and the
condition (4.9b) represents the equilibrium of stress. In the configuration in FE sim-
ulation, the definition of the interface is important because the definition of ”wall” in
CFD depends on the viscosity of cutting fluid. In case the fluid model is non-viscous,
the coupling condition (4.9a) has to be modified so that the relative movement in tan-
gential direction along interface is not prohibited anymore although the movement in
normal direction remains banned [24].

There are two different approaches for solving FSI problems. The first approach
is called the monolithic approach, which solves the governing equations in both do-
mains simultaneously and the second approach is called the partitioned approach,
which solves the equations separately (seen in [27, 28]). For the FE simulation in An-
sys Workbench 16.0, the partitioned approach is applied and one-way FSI is needed
in this thesis without large geometric deformation. However, especially when the de-
formation at interface is large comparing to the geometry of structure, one challenge
in FSI known as moving mesh occurs at interface if partitioned approach is applied,
as this approach requires conforming mesh, which means the mesh generation must
comply the deformed geometric boundary. The cause of moving mesh is that the load
transfer from fluid to structure via interface will cause linear or non-linear dynamic
response in structure. This will in return lead to deformation at interface and the dis-
placement there will be transferred back to fluid domain, which is to be interpolated
and conform the deformation at interface. Therefore the mesh at interface must be
regenerated to conform the geometric change. Although some tools are available in
CFD programs, extra programming regarding mesh generation is often required.
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4.5 Convergence study in fluid dynamics

The fluid calculation is executed in Ansys CFX module. The fluid domain is shown
in figure 4.8. The green marks A and B represent the inlet and outlet of the coolant
flow respectively.

Figure 4.8: Illustration of fluid domain in Ansys CFX.

The details of inlet A and outlet B are shown in figure 4.9 (a) and (b).

(a) A. Inlet in fluid domain. (b) B. Outlet in fluid domain.

Figure 4.9: Inlet and outlet in fluid domain.

The simulation is defined as a laminar flow as the Reynold number doesn’t reach the
range for turbulent flow. Similarly, a convergence study is carried out. The dominant
criteria in CFX are the minimal orthogonal angle (in degree), the maximal expansion
factor and the maximal aspect ratio. The monitored quantities are the default RMS
U-Moment, RMS V-Moment, RMS W-Moment and RMS P-Mass, where RMS refers
to ”Root Mean Square”. The termination criterion is set as 1×10−4 for all four
quantities. The results are shown in table 4.7.
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Element size in mm 3 3 3 2 1 Ideal Range

Method Hex Tet Auto Auto Auto -

Min. Orthogonal Angle 3.4 30.8 57.2 63.3 70.2 > 20

Max. Expansion Factor 6220 153 12 4 2 < 20

Max. Aspect Ratio 106 6 5 3 2 < 100

RMS U-Moment ×10−4 40 4.3 3.7 1.6 0.7 < 1

RMS V-Moment ×10−4 50 3.7 3.8 1.8 0.9 < 1

RMS W-Moment ×10−4 60 14 16 4.9 0.8 < 1

RMS P-Mass ×10−4 70 0.2 0.11 0.07 0.03 < 1

Table 4.7: Convergence study in fluid domain.

The simulation converges reluctantly with 1 mm size of element with 94 iterations,
while the computational effort is already extremely high. An optimization of the
original model is recommended for the study in the future.

The hydraulic pressure, which is calculated in Ansys CFX, will be transferred to
the static mechanic module. The definition of the interface for the transmission of
the data on the mechanic model, the illustration of the hydraulic pressure on the cross
section of the thin shell boring bar and one example of the stress field on the interface
of the mechanic model at the drilling depth of 250 mm after mapping and interpo-
lation of the pressure in accordance with the meshes from the two coupled fields are
given in figure 4.10, 4.11 and 4.12 respectively. According to Bernoulli’s principle,
the hydraulic pressure is supposed to be larger when the flow velocity is smaller. In
the simulation, minimal pressure is observed around the tool head, when the cross
section of the flow is small, which leads to high velocity. In the inner of the boring
bar, the cross section is large and the pressure there is the largest. Furthermore, as
the hydraulic pressure is added on the shell element, comparing to the solid element,
where two interfaces are seperated, the pressure on the shell element is supposed to
be higher than the experimental data, but the results of the simulation satisfies with
both types of elements.
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Figure 4.10: Definition of interface for data transmission (selected surfaces).

Figure 4.11: Hydraulic pressure on the thin shell model of the boring bar (cross section).
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Figure 4.12: Distribution of the pressure field on the interface.
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5 Results and Discussion

5.1 Rotor dynamics analysis

To fulfill the completeness of this thesis, a rotor dynamics analysis was carried out at
first. The simulations were both for the setup with a fixed position of the Lanchester
damper on the boring bar and the setup with a varying position of the Lanchester
damper as the drilling depth changed. The results were recorded for the simulations in
the drilling depth of 250 mm, 500 mm, 750 mm and 1000 mm respectively. The model
was considered as non-loaded and the elastic supports at the clamping end, contact
zones of stuffing box and Lanchester damper were simulated with COMBI214 bearing
elements respectively without considering rotational damping effect. The range of
monitored rotational speed was set up to 2000 rad/s. The Campbell diagrams are
shown in figure 5.1 to 5.8.

Figure 5.1: Campbell diagram at the drilling depth of 250 mm with fixed Lanchester

damper.
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Figure 5.2: Campbell diagram at the drilling depth of 500 mm with fixed Lanchester

damper.

Figure 5.3: Campbell diagram at the drilling depth of 750 mm with fixed Lanchester

damper.
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Figure 5.4: Campbell diagram at the drilling depth of 1000 mm with fixed Lanchester

damper.

Figure 5.5: Campbell diagram at the drilling depth of 250 mm with moving Lanchester

damper.
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Figure 5.6: Campbell diagram at the drilling depth of 500 mm with moving Lanchester

damper.

Figure 5.7: Campbell diagram at the drilling depth of 750 mm with moving Lanchester

damper.
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Figure 5.8: Campbell diagram at the drilling depth of 1000 mm with moving Lanchester

damper.

The critical rotational speeds and corresponding eigenfrequencies with the fixed Lanch-
ester damper are listed in table 5.1 and 5.2
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Drilling depth Frequency in Hz Rotational speed in rad/s Type of vibration

250 mm

43 270 Bending

83 522 Longitudinal

118 741 Torsional

204 1282 Bending

274 1722 Bending

500 mm

51 320 Bending

83 522 Longitudinal

114 716 Torsional

137 861 Bending

220 1382 Bending

311 1954 Bending

Table 5.1: Critical speed at 250 mm and 500 mm drilling depth with fixed Lanchester

damper.
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Drilling depth Frequency in Hz Rotational speed in rad/s Type of vibration

750 mm

45 283 Bending

83 522 Longitudinal

115 723 Torsional

125 785 Bending

212 1332 Bending

295 1854 Bending

1000 mm

41 258 Bending

83 522 Longitudinal

115 723 Torsional

126 792 Bending

217 1363 Bending

301 1891 Bending

Table 5.2: Critical speed at 750 mm and 1000 mm drilling depth with fixed Lanchester

damper.

The critical rotational speeds and corresponding eigenfrequencies with the moving
Lanchester damper are shown in table 5.3 and 5.4
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Drilling depth Frequency in Hz Rotational speed in rad/s Type of vibration

250 mm

29 182 Bending

83 522 Longitudinal

94 591 Bending

115 723 Torsional

194 1219 Bending

314 1993 Bending

500 mm

27 170 Bending

83 522 Longitudinal

89 559 Bending

115 723 Torsional

190 1194 Bending

235 1477 Bending

Table 5.3: Critical speed at 250 mm and 500 mm drilling depth with moving Lanchester

damper.
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Drilling depth Frequency in Hz Rotational speed in rad/s Type of vibration

750 mm

24 151 Bending

83 522 Longitudinal

88 553 Bending

115 723 Torsional

167 1049 Bending

210 1319 Bending

1000 mm

24 151 Bending

83 522 Longitudinal

94 591 Bending

115 723 Torsional

146 917 Bending

248 1558 Bending

Table 5.4: Critical speed at 750 mm and 1000 mm drilling depth with moving Lanchester

damper.

53



5.2 Pre-stressed modal analysis

Similarly, in the pre-stressed modal analysis, two setups regarding Lanchester damper
were studied separately. One was that the distance between the Lanchester damper
and the clamping end of the boring bar was fixed during drilling process and the
other one was that the distance between the Lanchester damper and the stuffing box
was fixed, which represented that the Lanchester damper moved during the drilling
process. The reason for choosing modal analysis instead of harmonic analysis is that
the eigenmodes must be plotted and the critical locations on the boring bar must be
recorded regarding varying drilling depth for the further study of countermeasures
against dynamic instability. Note that in the model setup in Ansys Workbench, the
origin point in global coordinate system corresponds to the clamping end of boring
bar and the axis of boring bar lies in the positive direction of z-axis.

5.2.1 Mechanical loads

The topologically optimized BTA tool head model and the for the specification of
mechanical loads required local coordinate system are shown in figure 5.9 (a) and (b)
respectively. The topology of the BTA tool head, guide pads and cutters influences
not only the mesh generation in static structural module, but also the mesh in CFX
module, as the fluid domain is created via boolean operation with the topology in the
solid domain as the reference. The z-axis of the established local coordinate system
matches the center axis of tool head, while the x-z plane matches the side face of a
cutter as shown in figure 5.9 (b).

(a) Geometry of BTA tool head. (b) Local coordinate system.

Figure 5.9: Geometry of tool head and local coordinate system in Ansys Workbench.

The axial force and torque that are applied on the tool head are shown in figure 5.10
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(a) and (b) respectively.

(a) Axial force in z direction. (b) Torque on the front face of BTA tool head.

Figure 5.10: Axial force and Torque on the BTA tool head.

The bending moment in the normal direction was applied on the cut face in x-z plane
of local coordinate system while the bending moment in the passive direction was
applied on the cut face in y-z plane of local coordinate system. These are shown in
figure 5.11 (a) and (b) respectively. The values of the axial force, the torsional and
bending moments are obtained from experiments and given in Appendices.

(a) Bending moment in normal direction. (b) Bending moment in passive direction.

Figure 5.11: Bending moment on the tool head.
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5.2.2 Modal participation factor and effective modal mass

To determine the dominant eigenmode, the modal participation factor and effective
modal mass are generally considered as the criteria. The eigenmode with the largest
values of these two is considered as dominant. A brief introduction is according to
[32, 33, 34] given as follows.

Consider a dynamic system with a form in (5.1), where M , C, K, x and ~f represent
the mass matrix, damping matrix, stiffness matrix, vector of degrees of freedoms and
vector of external excitation and force respectively.

Mẍ+ Cẋ+Kx = ~f (5.1)

With the help of modal analysis, the eigenvector matrix can be obtained and noted
as Ψ. The generalized mass matrix M̄ and the coefficient vector Γ̄ are then defined
in (5.2) and (5.3), where ξ is the so-called unit ground displacement vector.

M̄ = ΨTMΨ (5.2)

Γ̄ = ΨTMξ (5.3)

According to Ansys manual, ξ is given in each direction of the global Cartesian coor-
dinate system as the assumed displacement spectrum for the computation of partici-
pation factors.

The modal participation factor for mode j is then given in (5.4)

Φj =
Γ̄j

M̄jj

(5.4)

and the effective modal mass meff,j for mode j is defined as (5.5)

meff,j =
Γ̄2
j

M̄jj

(5.5)

Both modal participation factor and effective modal mass could be used to evaluate
the dominant eigenmodes in modal analysis. Due to the conservation of mass in the
dynamic system, Ansys Workbench has listed the results of ratios of the effective
modal mass to the total mass, which will be used for the determination of dominant
eigenmodes in this thesis.

5.2.3 Simulation with fixed Lanchester damper on the boring bar

The results of bending eigenfrequencies with varying drilling depth are shown in table
5.5 and 5.6.
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Drilling depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz Ef4 in Hz Ef5 in Hz

50 34.1 99.6 197.2 291.4 326.1

100 36.5 104.8 205.6 291.5 337.3

150 38.6 109.8 214.1 291.7 349.0

200 40.5 114.4 222.4 291.8 360.8

250 42.2 119.0 230.8 291.9 372.7

300 43.9 123.5 239.3 292.0 383.8

350 45.6 128.1 248.1 292.1 386.5

400 47.3 132.9 257.2 292.2 368.9

450 49.0 137.8 266.5 292.5 346.5

500 50.9 143.0 275.9 293.0 323.3

Table 5.5: Bending eigenfrequencies with fixed Lanchester damper part 1.

Drilling depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz Ef4 in Hz Ef5 in Hz

550 52.8 148.3 284.4 294.4 300.8

600 54.8 153.9 277.2 289.9 301.5

650 57.0 159.7 256.8 290.8 311.8

700 59.2 165.5 238.0 291.2 323.6

750 61.6 171.0 222.0 291.4 336.1

800 64.1 174.8 209.0 291.6 349.2

850 66.7 173.5 203.5 291.7 362.6

900 69.5 166.0 206.1 291.8 374.9

950 72.4 156.4 213.2 291.8 379.9

1000 75.4 147.0 221.8 291.9 371.7

Table 5.6: Bending eigenfrequencies with fixed Lanchester damper part 2.

The results of torsional eigenfrequencies with varying drilling depth are shown in
table 5.7 and 5.8.
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Drilling depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz

50 252.4 740.0 1199.2

100 252.3 740.0 1199.2

150 252.3 740.0 1199.2

200 252.3 740.0 1199.2

250 252.3 740.0 1199.1

300 252.3 739.9 1199.1

350 252.3 739.9 1199.1

400 252.3 739.9 1199.1

450 252.3 739.9 1199.1

500 252.3 739.9 1199.1

Table 5.7: Torsional eigenfrequencies with fixed Lanchester damper part 1.

Drilling Depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz

550 252.3 739.8 1199.1

600 252.2 739.8 1199.1

650 252.2 739.8 1199.1

700 252.2 739.8 1199.2

750 252.2 739.8 1199.2

800 252.2 739.8 1199.2

850 252.2 739.8 1199.2

900 252.1 739.8 1199.2

950 252.1 739.8 1199.2

1000 252.1 739.8 1199.2

Table 5.8: Torsional eigenfrequencies with fixed Lanchester damper part 2.

The tendency chart of the drilling-depth dependent bending and torsional eigenfre-
quencies is shown in figure 5.12, where blue lines represent bending eigenfrequencies
and red lines represent torsional eigenfrequencies respectively.
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Figure 5.12: Bending and torsional eigenfrequencies with different drilling depths for fixed

damper.

In figure 5.12 it can be seen that with the fixed Lanchester damper, bending eigen-
frequencies vary significantly with different drilling depths while the torsional eigen-
frequencies stay almost constant. Their values could be seen in table 5.5 to 5.8.

The first dominant eigenmodes and their corresponding ratios of effective mass and
locations on the boring bar in bending modal analysis with respect to drilling depths
were recorded and the results are listed in table 5.9 and 5.10
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Drilling depth Order of 1st dominant mode Ratio of eff. mass z-coordinate in m

50 mm 1 50.8% 2.55

100 mm 1 49.5% 2.50

150 mm 1 48.5% 2.46

200 mm 1 47.4% 2.42

250 mm 1 46.1% 2.40

300 mm 1 44.9% 2.37

350 mm 1 44.2% 2.34

400 mm 1 43.5% 2.32

450 mm 1 42.7% 2.30

500 mm 1 41.8% 2.27

Table 5.9: Study of first dominant bending eigenmodes with fixed Lanchester damper part

1.

Drilling depth Order of 1st dominant mode Ratio of eff. mass z-coordinate in m

550 mm 1 40.8% 2.25

600 mm 1 39.8% 2.23

650 mm 1 38.7% 2.21

700 mm 1 37.5% 2.18

750 mm 1 36.2% 2.16

800 mm 1 34.9% 2.13

850 mm 1 33.5% 2.11

900 mm 1 31.9% 2.08

950 mm 1 30.2% 2.06

1000 mm 1 28.4% 2.04

Table 5.10: Study of first dominant bending eigenmodes with fixed Lanchester damper part

2.

The results in terms of the computation of modal participation factor and the ef-
fective mass are from a unit displacement spectrum vector in the three translational
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directions in the global coordinate system in Ansys Workbench and the ratios of the
effective mass from torsional eigenmodes are therefore significantly smaller than those
of bending eigenmodes. The criterion here for the determination of the dominant tor-
sional mode is therefore the comparison among the results from torsional eigenmodes
only, which is different from the criterion in bending analysis. The dominant eigen-
modes and their corresponding ratios of effective mass in torsional modal analysis
were recorded and the results are listed in table 5.11 and 5.12. Comparing to the
bending case, the critical location for torsional vibration is fixed at the end face of
tool head.

Drilling depth Order of 1st dominant mode Ratio of eff. mass (torsional only)

50 mm 1 69.2%

100 mm 1 67.7%

150 mm 1 65.8%

200 mm 1 64.3%

250 mm 1 62.7%

300 mm 1 59.8%

350 mm 1 58.2%

400 mm 1 59.3%

450 mm 1 61.5%

500 mm 1 62.1%

Table 5.11: Study of first dominant torsional eigenmodes with fixed Lanchester damper

part 1.
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Drilling depth Order of 1st dominant mode Ratio of eff. mass (torsional only)

550 mm 1 59.9%

600 mm 1 57.3%

650 mm 1 54.9%

700 mm 1 50.8%

750 mm 1 48.3%

800 mm 1 50.4%

850 mm 1 52.9%

900 mm 1 49.2%

950 mm 1 44.7%

1000 mm 1 38.3%

Table 5.12: Study of first dominant torsional eigenmodes with fixed Lanchester damper

part 2.

To meet the demand for further researches, the second dominant bending eigenmodes
are recorded and are given in table 5.13 and 5.14 for fixed Lanchester damper. The
determination of dominant modes is based on the computation of modal participation
factors and the effective mass, which is however obtained with a unit displacement
vector in the global coordinate system and the bending analysis influences the re-
sults on a different order of magnitude comparing to torsional analysis. The critical
locations of torsional eigenmodes are fixed at the front face of tool head during the
deep hole drilling process and the prior countermeasure for chatter prevention is con-
trolling of the rotational speed, while the countermeasures regarding spiralling take
the critical locations on the boring bar as critical factors into consideration and the
damage on the workpiece due to spiralling is more significant comparing to chatter
vibration. The study for the second dominant mode is therefore of vital importance
for prevention of spiralling comparing to chatter vibration.
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Drilling depth Order of 2nd dominant mode Ratio of eff. mass z-coordinate in m

50 mm 4 13.5% 0.56

100 mm 4 13.9% 0.56

150 mm 4 14.0% 0.56

200 mm 4 13.6% 0.56

250 mm 4 13.6% 0.56

300 mm 4 13.5% 0.56

350 mm 4 13.0% 0.56

400 mm 4 11.7% 0.56

450 mm 4 12.7% 0.56

500 mm 4 15.0% 0.56

Table 5.13: Study of the second dominant bending eigenmodes with fixed Lanchester

damper part 1.

Drilling depth Order of 2nd dominant mode Ratio of eff. mass z-coordinate in m

550 mm 4 19.7% 0.56

600 mm 3 14.7% 3.53

650 mm 3 13.7% 3.52

700 mm 4 14.5% 0.56

750 mm 3 23.5% 3.48

800 mm 3 20.8% 3.47

850 mm 2 21.4% 3.44

900 mm 2 22.2% 3.42

950 mm 2 21.4% 3.40

1000 mm 4 18.8% 0.56

Table 5.14: Study of the second dominant bending eigenmodes with fixed Lanchester

damper part 2.

The characteristics of dominant eigenmodes regarding drilling depth are shown in
figure 5.13.
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Figure 5.13: Critical analysis for bending modes with fixed damper.

Here it can be seen that the ratio of effective mass of the first dominant mode stays
above than that of the second dominant mode during the drilling process and the
corresponding critical location on the boring bar moves slowly towards the end of the
boring bar. The ratio of effective mass of the second dominant mode increases as
the BTA tool drills deeper. The difference between the ratios of effective mass of the
first and second dominant modes decreases during the drilling process, which means
the energy of vibration starts to distribute to multiple eigenmodes. From the drilling
depth of 750 mm till 1000 mm, the difference narrows more significantly than in other
drilling depths. The critical location for the second dominant mode fluctuates from
the end of the boring bar to the part that is inside or near the workpiece starting from
the drilling depth of 550 mm till 1000 mm. Considering the high ratio of effective
mass, the boring bar inside the workpiece with drilling depth between 750 mm and
950 mm could be subjected to a bending vibration with noticeable amplitude.

5.2.4 Comparison of the influence from each boundary condition

Comparing to the fully stressed model with varying values of boundary conditions,
the simulations were also carried out to determine the influence of each variable. The
results of the setup without mechanical loads comparing to the fully stressed model
at the drilling depths of 50 mm and 100 mm are shown in table 5.15.
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Eigenfrequency 50 mm rel. Error 100 mm rel. Error

BEf 1 in Hz 34.4 1.0% 36.8 0.9%

BEf 2 in Hz 100.0 0.4% 105.3 0.4%

BEf 3 in Hz 197.7 0.2% 206.1 0.2%

BEf 4 in Hz 291.7 0.1% 291.9 0.1%

BEf 5 in Hz 326.6 0.2% 337.8 0.1%

Order of 1st dominant mode 1 - 1 -

Ratio of eff. mass 50.8% 0.0% 49.5% 0.0%

Eigenfrequency 50 mm rel. Error 100 mm rel. Error

TEf 1 in Hz 252.4 0.0% 252.4 0.0%

TEf 2 in Hz 740.0 0.0% 740.0 0.0%

TEf 3 in Hz 1199.2 0.0% 1199.2 0.0%

Order of 1st dominant mode 1 - 1 -

Ratio of eff. mass 69.2% 0.0% 67.7% 0.0%

Table 5.15: Results without mechanical loads for drilling depths of 50 and 100 mm.

Here it can be seen the difference between results with and without mechanical loads
for the eigenfrequencies is relatively small. The largest relative error shows at the first
bending mode at 50 mm drilling depth with around 1%. The small difference is mainly
due to the fact that the mechanical loads are applied at BTA tool head, where elastic
support with high stiffness limits the deformation (seen in chapter 4.1). Furthermore,
no significant difference is observed between the results in the drilling depths of 50
mm and 100 mm. The small influence is mainly seen in different orders of eigenfre-
quency while the eigenmodes don’t change. Similar results are also observed in the
simulations for other drilling depths. The mechanical loads are therefore suggested
to be ignored in case a better mesh quality and less computational effort are required.

The results of setup without FSI comparing to the fully stressed model for the drilling
depths of 50 mm and 100 mm are shown in table 5.16.
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Eigenfrequency 50 mm rel. Error 100 mm rel. Error

BEf 1 in Hz 35.4 3.9% 37.9 3.9%

BEf 2 in Hz 103.4 3.8% 108.7 3.7%

BEf 3 in Hz 204.8 3.8% 213.5 3.9%

BEf 4 in Hz 302.0 3.6% 302.1 3.6%

BEf 5 in Hz 338.4 3.8% 350.0 3.8%

Order of 1st dominant mode 1 - 1 -

Ratio of eff. mass 51.2% 1.0% 50.0% 0.9%

Eigenfrequency 50 mm rel. Error 100 mm rel. Error

TEf 1 in Hz 256.2 1.5% 255.8 1.4%

TEf 2 in Hz 748.6 1.2% 748.6 1.2%

TEf 3 in Hz 1219.5 1.7% 1219.5 1.7%

Order of 1st dominant mode 1 - 1 -

Ratio of eff. mass 69.5% 0.5% 68.1% 0.5%

Table 5.16: Results without FSI for the drilling depths of 50 and 100 mm.

Here it can be seen the eigenfrequencies without FSI are higher than those with FSI in
each order. This is mainly due to the damping effect from fluid domain. The influence
of FSI is larger in bending eigenfrequencies than that in torsional ones. The dominant
modes however don’t change. Furthermore, no significant difference is observed be-
tween the results in the drilling depths of 50 mm and 100 mm. Similar results are also
observed in the simulations for other drilling depths. The relative error for bending
eigenfrequencies is around 3% and therefore the FSI is not suggested to be overlooked.

The results of setup with mean values of boundary conditions in different drilling
depths comparing to the results with drilling-depth dependent inputs at the drilling
depths of 50 mm and 100 mm are shown in table 5.17. The reason for chosing 50 mm
and 100 mm drilling depths is that the values of factors for 50 mm and 100 mm differ
from the mean values more significantly than the ones for other drilling depths.
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Eigenfrequency 50 mm rel. Error 100 mm rel. Error

BEf 1 in Hz 32.8 -3.6% 35.4 -3.0%

BEf 2 in Hz 96.9 -2.7% 102.3 -2.4%

BEf 3 in Hz 193.0 -2.1% 201.6 -2.0%

BEf 4 in Hz 290.6 -0.3% 290.8 -0.2%

BEf 5 in Hz 320.8 -1.6% 332.5 -1.4%

Order of 1st dominant mode 1 - 1 -

Ratio of eff. mass 50.6% -0.4% 49.4% -0.2%

Eigenfrequency 50 mm rel. Error 100 mm rel. Error

TEf 1 in Hz 249.9 -1.0% 249.8 -1.0%

TEf 2 in Hz 730.0 -1.4% 729.9 -1.4%

TEf 3 in Hz 1157.3 -3.5% 1157.3 -3.5%

Order of 1st dominant mode 1 - 1 -

Ratio of eff. mass 68.9% -0.4% 67.4% -0.5%

Table 5.17: Results with mean values of factors for the drilling depths of 50 and 100 mm

Here it can be seen the results with mean values of factors as the input show a
difference with less than 4% comparing to the ones with varying values in different
drilling depths. The reason lies mainly in the influence on the construction of the
stiffness matrix of the dynamic system in the FE simulation. Moreover, the input of
the drilling-depth dependent values could inherit accumulated error from numerical
approximation towards experimental data, the comparison here is therefore mainly
supposed to verify the validity of the assumption that the drilling-depth dependent
values of boundary conditions influence the eigenanalyses. Some researches are also
done in ideal boundary conditions, such as rigid support instead of elastic support
for tool head. Whether these simplifications are acceptable depends on the error tol-
erance for different cases.

5.2.5 Simulation with moving Lanchester damper on the boring bar

The results for bending eigenanalysis are shown in table 5.18 and 5.19.
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Drilling depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz Ef4 in Hz Ef5 in Hz

50 40.5 114.5 223.6 307.1 367.2

100 42.1 118.6 231.5 308.7 379.9

150 43.7 122.9 239.7 310.3 393.2

200 45.4 127.4 248.5 311.6 407.3

250 47.2 132.2 257.6 312.5 422.2

300 49.1 137.3 267.3 313.3 437.9

350 51.1 142.7 277.5 313.8 454.5

400 53.2 148.3 288.1 314.3 471.8

450 55.5 154.3 299.4 315.2 444.8

500 57.8 160.7 308.7 317.9 401.8

Table 5.18: Bending eigenfrequencies with moving Lanchester damper part 1.

Drilling depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz Ef4 in Hz Ef5 in Hz

550 60.4 167.5 312.4 327.2 363.1

600 63.1 174.7 313.2 328.5 340.5

650 65.9 182.4 298.2 313.6 354.8

700 69.0 190.5 271.5 313.8 370.3

750 72.2 199.3 247.9 313.9 386.9

800 75.7 208.6 227.1 314.0 404.7

850 79.5 208.6 218.7 314.1 423.8

900 83.5 192.3 229.4 314.2 444.2

950 87.8 177.7 240.9 314.3 466.0

1000 92.4 164.7 253.3 314.4 460.6

Table 5.19: Bending eigenfrequencies with moving Lanchester damper part 2.

The results for torsional eigenanalysis are shown in table 5.20 and 5.21 .
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Drilling depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz

50 533.0 663.5 1072.6

100 540.8 638.8 1090.3

150 547.7 617.4 1108.7

200 551.6 600.9 1127.7

250 548.4 593.6 1147.4

300 537.0 596.2 1167.7

350 522.4 603.7 1188.6

400 507.2 613.4 1210.0

450 492.4 624.3 1231.5

500 478.1 635.9 1252.7

Table 5.20: Torsional eigenfrequencies with moving Lanchester damper part 1.

Drilling depth in mm Ef1 in Hz Ef2 in Hz Ef3 in Hz

550 464.6 648.2 1272.0

600 451.7 661.2 1284.9

650 439.5 674.9 1282.2

700 427.9 689.1 1263.1

750 416.9 704.0 1236.9

800 406.5 719.7 1208.9

850 396.5 736.0 1181.1

900 387.1 753.1 1154.0

950 378.1 771.0 1128.0

1000 369.5 789.6 1103.0

Table 5.21: Torsional eigenfrequencies with moving Lanchester damper part 2.

The tendency chart of the drilling-depth dependent bending and torsional eigenfre-
quencies is shown in figure 5.14, where blue lines represent bending eigenfrequencies
and red lines represent torsional eigenfrequencies in the drilling process respectively.
In figure 5.14 it can be seen that with the moving Lanchester damper, both bending
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Figure 5.14: Bending and torsional eigenfrequencies with different drilling depths with

moving Lanchester damper.

and torsional eigenfrequencies vary significantly with different drilling depths, which
is a contrast to figure 5.12. The corresponding values can be seen in table 5.18 to 5.21.

Results regarding the first dominant bending eigenmodes and their corresponding
ratios of effective mass and locations on the boring bar are listed in table 5.22 and
5.23
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Drilling depth Order of 1st dominant mode Ratio of eff. mass z-coordinate in m

50 mm 1 47.2% 1.57

100 mm 1 46.4% 1.54

150 mm 1 45.5% 1.51

200 mm 1 44.7% 1.49

250 mm 1 43.9% 1.47

300 mm 1 43.0% 1.44

350 mm 1 42.2% 1.41

400 mm 1 41.3% 1.39

450 mm 1 40.5% 1.36

500 mm 1 39.7% 1.34

Table 5.22: Study of the first dominant bending eigenmodes with moving Lanchester damper

part 1.

Drilling depth Order of 1st dominant mode Ratio of eff. mass z-coordinate in m

550 mm 1 38.8% 1.32

600 mm 1 38.0% 1.29

650 mm 1 37.1% 1.26

700 mm 1 36.3% 1.24

750 mm 1 35.5% 1.21

800 mm 1 34.6% 1.19

850 mm 1 33.8% 1.17

900 mm 1 33.0% 1.14

950 mm 1 32.1% 1.11

1000 mm 1 31.3% 1.09

Table 5.23: Study of the first dominant bending eigenmodes with moving Lanchester damper

part 2.

Results regarding critical torsional eigenmodes and their corresponding ratios of ef-
fective mass are listed in table 5.24 and 5.25. Again, the criterion here for the deter-
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mination of the dominant torsional mode is the comparison among the results from
torsional eigenmodes only, which is different from the one in bending analysis. Sim-
ilarly, comparing to the bending case, the critical location for torsional vibration is
fixed at the end face of BTA tool head again.

Drilling depth Order of 1st dominant mode Ratio of eff. mass (torsional only)

50 mm 1 79.2%

100 mm 1 74.2%

150 mm 1 70.3%

200 mm 1 69.4%

250 mm 1 70.3%

300 mm 1 73.1%

350 mm 1 77.9%

400 mm 1 77.3%

450 mm 1 72.3%

500 mm 1 66.7%

Table 5.24: Study of the first dominant torsional eigenmodes with moving Lanchester

damper part 1.
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Drilling depth Order of 1st dominant mode Ratio of eff. mass (torsional only)

550 mm 1 62.4%

600 mm 1 63.1%

650 mm 1 67.7%

700 mm 1 74.1%

750 mm 1 71.4%

800 mm 1 61.8%

850 mm 1 50.9%

900 mm 1 50.3%

950 mm 1 51.7%

1000 mm 1 53.7%

Table 5.25: Study of the first dominant torsional eigenmodes with moving Lanchester

damper part 2.

The second dominant bending eigenmodes are recorded and are given in table 5.26
and 5.27 for moving Lanchester damper.

Drilling depth Order of 2nd dominant mode Ratio of eff. mass z-coordinate in m

50 mm 4 16.0% 3.49

100 mm 4 17.5% 3.45

150 mm 4 18.4% 3.40

200 mm 4 19.3% 3.36

250 mm 4 20.1% 3.31

300 mm 4 21.0% 3.27

350 mm 4 22.0% 3.22

400 mm 4 23.3% 3.17

450 mm 4 25.7% 3.11

500 mm 4 27.0% 3.07

Table 5.26: Study of the second dominant bending eigenmodes with moving Lanchester

damper part 1.
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Drilling depth Order of 2nd dominant mode Ratio of eff. mass z-coordinate in m

550 mm 4 16.7% 0.61

600 mm 3 15.5% 2.97

650 mm 4 17.2% 2.92

700 mm 4 18.0% 2.87

750 mm 4 17.7% 2.82

800 mm 4 20.8% 2.77

850 mm 4 20.3% 2.72

900 mm 4 20.4% 2.67

950 mm 4 20.6% 2.62

1000 mm 4 20.7% 2.57

Table 5.27: Study of the second dominant bending eigenmodes with moving Lanchester

damper part 2.

The corresponding characteristics of dominant eigenmodes regarding the drilling depth
are shown in figure 5.15

Here it can be seen that during the whole drilling process, the ratio of effective mass
of the first dominant mode decreases monotonically and the critical location moves
towards the clamping end of the boring bar. The difference between the ratios of
effective mass of the first and second dominant modes decreases in the process of the
first 500 mm drilling depth and reaches its minimum at 500 mm, where the critical
location on the boring bar of the second dominant mode is near the workpiece. Within
the drilling depth between 500 and 600 mm, the ratio of effective mass of the second
dominant mode decreases and the corresponding critical location on the boring bar
fluctuates temporarily. From the drilling depth of 600 mm the ratio of effective
mass of the second dominant mode increases again and the corresponding location
moves from the area near the workpiece towards the clamping end. Although the
difference regarding the ratios of effective mass for both modes narrows again, the
corresponding critical location is out of the bore hole. Based on the difference of
the ratios of effective mass of the two dominant modes, the influence of the second
dominant mode is significant in the first 500 mm drilling depth as its critical location
is near the workpiece with increasing vibrating energy.
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Figure 5.15: Critical analysis for bending eigenmodes with moving Lanchester damper.

5.2.6 Plots of eigenmodes for 100 and 400 mm drilling depths

A plot of an eigenmode gives an intuitive grasp of the whole form of the eigenvibra-
tion, range of influence of the vibration and the critical location with its maximal
deflection, which is eventually reliable for further studies in terms of predictions and
countermeasures against chatter vibration and spiralling. Figure 5.16 to 5.20 show
the bending eigenmodes of the BTA machine at the drilling depth of 100 and 400 mm
respectively with fixed Lanchester damper. The plots for 700 mm and 1000 mm are
seen in Appendices.
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(a) Bending eigenmode 1 for 100 mm. (b) Bending eigenmode 1 for 400 mm.

Figure 5.16: Bending eigenmode 1 for 100 and 400 mm with fixed Lanchester damper

(a) Bending eigenmode 2 for 100 mm. (b) Bending eigenmode 2 for 400 mm.

Figure 5.17: Bending eigenmode 2 for 100 and 400 mm with fixed Lanchester damper
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(a) Bending eigenmode 3 for 100 mm. (b) Bending eigenmode 3 for 400 mm.

Figure 5.18: Bending eigenmode 3 for 100 and 400 mm with fixed Lanchester damper

(a) Bending eigenmode 4 for 100 mm. (b) Bending eigenmode 4 for 400 mm.

Figure 5.19: Bending eigenmode 4 for 100 and 400 mm with fixed Lanchester damper
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(a) Bending eigenmode 5 for 100 mm. (b) Bending eigenmode 5 for 400 mm.

Figure 5.20: Bending eigenmode 5 for 100 and 400 mm with fixed Lanchester damper

The torsional eigenmodes don’t show big difference at different drilling depths with
fixed Lanchester damper. Therefore only the plots for 100 and 400 mm drilling depth
are given in figure 5.21 to 5.23 as an example.

(a) Torsional eigenmode 1 for 100 mm. (b) Torsional eigenmode 1 for 400 mm.

Figure 5.21: Torsional eigenmode 1 for 100 and 400 mm with fixed Lanchester damper
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(a) Torsional eigenmode 2 for 100 mm. (b) Torsional eigenmode 2 for 400 mm.

Figure 5.22: Torsional eigenmode 2 for 100 and 400 mm with fixed Lanchester damper

(a) Torsional eigenmode 3 for 100 mm. (b) Torsional eigenmode 3 for 400 mm.

Figure 5.23: Torsional eigenmode 3 for 100 and 400 mm with fixed Lanchester damper

Figure 5.24 to 5.28 show the bending eigenmodes of the BTA machine at the drilling
length of 100 and 400 mm respectively with the moving Lanchester damper. The
plots for 700 mm and 1000 mm are seen in Appendices.
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(a) Bending eigenmode 1 for 100 mm. (b) Bending eigenmode 1 for 400 mm.

Figure 5.24: Bending eigenmode 1 for 100 and 400 mm with moving Lanchester damper

(a) Bending eigenmode 2 for 100 mm. (b) Bending eigenmode 2 for 400 mm.

Figure 5.25: Bending eigenmode 2 for 100 and 400 mm with moving Lanchester damper
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(a) Bending eigenmode 3 for 100 mm. (b) Bending eigenmode 3 for 400 mm.

Figure 5.26: Bending eigenmode 3 for 100 and 400 mm with moving Lanchester damper

(a) Bending eigenmode 4 for 100 mm. (b) Bending eigenmode 4 for 400 mm.

Figure 5.27: Bending eigenmode 4 for 100 and 400 mm with moving Lanchester damper
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(a) Bending eigenmode 5 for 100 mm. (b) Bending eigenmode 5 for 400 mm.

Figure 5.28: Bending eigenmode 5 for 100 and 400 mm with moving Lanchester damper

The torsional eigenmodes vary as the drilling depth changes in case Lanchester
damper moves with the stuffing box with respect to the boring bar. Figure 5.29
to 5.31 show the torsional eigenmodes of the BTA machine at the drilling length
of 100 and 400 mm respectively. The plots for 700 mm and 1000 mm are seen in
Appendices.

(a) Torsional eigenmode 1 for 100 mm. (b) Torsional eigenmode 1 for 400 mm.

Figure 5.29: Torsional eigenmode 1 for 100 and 400 mm with moving Lanchester damper
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(a) Torsional eigenmode 2 for 100 mm. (b) Torsional eigenmode 2 for 400 mm.

Figure 5.30: Torsional eigenmode 2 for 100 and 400 mm with moving Lanchester damper

(a) Torsional eigenmode 3 for 100 mm. (b) Torsional eigenmode 3 for 400 mm.

Figure 5.31: Torsional eigenmode 3 for 100 and 400 mm with moving Lanchester damper
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6 Summary

BTA deep hole drilling has the reputation for precise finish to meet the demand of
high quality of the manufactured bore during the deep hole drilling process. How-
ever, due to the high length-to-diameter ratio, BTA tool is susceptible to self-excited
torsional and bending vibrations, which lead to chatter vibration and spiralling re-
spectively. The chatter vibration could generate harsh noise and damage the BTA
tool head while the spiralling causes the helical propagation of a multi-lobe like cross
section and affects the inner of the bore during the deep hole drilling process. As BTA
deep drilling is usually applied as the last step of the whole manufacturing procedure,
the economic cost due to the dynamic instability is immeasurable.

The purpose of this thesis is via studying the self-excited torsional and bending vi-
brations during the BTA deep hole drilling process with numerical simulation based
on Finite Element Method to support further researches regarding predictions and
countermeasures for BTA deep hole drilling method.

3D model of the studied BTA tool was topologically improved in FEM software and
essential convergence studies were executed with respect to relevant modules of the
simulation for a higher quality of the pre-processing and satisfying reliability of the
output. The corresponding real working and boundary conditions were studied and
analysed.

Campbell diagrams in rotor dynamics analysis illustrated the critical rotational speeds
for the corresponding eigenfrequencies at different drilling depths with different se-
tups of the Lanchester damper. A rotor dynamics analysis was executed to fulfill the
completeness of this thesis and the results of the critical rotational speed didn’t have
a deep influence on the operation of the BTA deep hole drilling machine.

Pre-stressed modal analysis showed how the torsional and bending eigenfrequencies
varied during the deep hole drilling process with different setup of Lanchester damper.
In terms of working and boundary conditions, the fluid-structure interaction and vary-
ing elastic supports of components influence the determination of eigenfrequencies
significantly while the influence of the mechanical loads on the BTA tool head were
restricted due to the high elastic stiffness from the workpiece to the BTA tool head.
The analysis regarding dominant eigenmodes showed the varying system dynamics
with different drilling depths and the results gave the reference in terms of real-time
monitoring of varying dominant eigenfrequencies and the corresponding critical loca-
tions on the boring bar to prevent dynamic instabilities. Comparing to the results of
torsional eigenanalysis, in which the critical locations of the dominant modes don’t
vary, the bending eigenanalysis showed the real-time changed critical locations on
the boring bar both for the first and second dominant eigenmodes, which are of vi-
tal importance in terms of prediction and prevention for spiralling. The tendency of
the narrowing difference between the first and second dominant bending eigenmodes
within some ranges of drilling depths with different setups of Lanchester damper was
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also captured.

Furthermore, the setup of a moving Lanchester damper on the boring bar influ-
enced the torsional and bending eigenmodes more significantly than the one of a
fixed Lanchester damper. This was mainly due to the higher influence on the real-
time rearrangement of the vibrational structure with a moving Lanchester damper
than that with a fixed one.

The FE simulation could be integrated into the real-time monitoring unit of an au-
tomatic damping system on a BTA tool machine for prediction and prevention of
chatter vibration and spiralling. The possible countermeasures are, e.g. rotational
speed control, alternation of applied Lanchester damper with varying critical location
on the boring bar or setup of additional dampers.

The 3D model has the potential to be further optimized in pre-processing in or-
der to achieve higher precision of computation and reduce computational burden and
elapsed time in case professional tools for FE pre-processing are applied. The com-
plexity of the numerical and experimental works for the determination of essential
factors could also be modified for different demands of precision in the future.
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[23] K. Weinert, O. Webber, M. Hüsken, J. Mehnen, W. Theis (2002): Analysis
and Prediction of Dynamic Disturbances of the BTA Deep Hole Drilling Pro-
cess, Department of Machining Technology, University of Dortmund; Institut fur
Neuroinformatik, Ruhr-Universität, Bochum; Lehrstuhl fur Computergestützte
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Appendices

A Input values for FE simulation

Drilling depth in mm kLD × 1010 in N
m

kW × 107 in N
m

cSB,1/2 in Nms
rad

50 4.91 2.68 0 1.42

100 5.21 2.68 0 1.42

150 5.37 2.68 0 1.42

200 5.52 2.68 0 1.42

250 5.82 2.68 0 1.42

300 6.07 2.68 0 1.42

350 6.32 2.68 0 1.42

400 6.61 2.68 0 1.42

450 6.83 2.68 0 1.42

500 7.15 2.68 0 1.42

550 7.37 2.68 0 1.42

600 7.62 2.68 0 1.42

650 7.87 2.67 0 1.42

700 8.21 2.67 0 1.42

750 8.46 2.67 0 1.42

800 8.72 2.67 0 1.42

850 8.91 2.67 0 1.42

900 9.17 2.67 0 1.42

950 9.48 2.67 0 1.42

1000 9.89 2.67 0 1.42

mean value 7.29 2.68 0 1.42

Table A.1: Input data for boundary conditions part 1.
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Drilling depth in mm α in 1
s·rad β in s LLD,left/right/LLD kSB,1/2 × 107 in N

m

50 128.57 0 0.1 2.11 4.89

100 128.57 0 0.1 2.26 2.03

150 128.57 0 0.1 2.46 1.12

200 128.57 0 0.1 2.63 0.93

250 128.57 0 0.1 2.81 0.87

300 128.57 0 0.1 3.01 0.78

350 128.57 0 0.1 3.18 0.71

400 128.57 0 0.1 3.37 0.63

450 128.57 0 0.1 3.52 0.57

500 128.57 0 0.1 3.72 0.39

550 128.57 0 0.1 3.93 0.23

600 128.57 0 0.1 4.12 0.17

650 128.57 0 0.1 4.31 0.09

700 128.57 0 0.1 4.52 0.09

750 128.57 0 0.1 4.73 0.08

800 128.57 0 0.1 4.92 0.07

850 128.57 0 0.1 5.11 0.06

900 128.57 0 0.1 5.29 0.03

950 128.57 0 0.1 5.52 0.02

1000 128.57 0 0.1 5.79 0.01

mean value 128.57 0 0.1 3.88 0.71

Table A.2: Input data for boundary conditions part 2.
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Drilling depth in mm Moment MN/P in Nm Torque MT in Nm Force Faxial in N

50 -43.27 -22.78 227.23 8492.71

100 -45.86 -24.95 223.86 8509.35

150 -39.74 -20.07 228.66 8553.03

200 -42.27 -26.07 230.63 8355.02

250 -46.88 -25.43 233.61 8584.24

300 -40.90 -22.75 224.42 8397.01

350 -39.44 -19.37 221.15 8477.98

400 -46.21 -24.50 223.62 8504.35

450 -45.96 -20.06 227.19 8512.47

500 -42.26 -23.45 226.77 8624.80

550 -47.27 -22.56 224.81 8433.94

600 -40.71 -23.61 225.09 8667.49

650 -41.31 -21.68 223.75 8597.24

700 -44.39 -22.98 226.29 8607.16

750 -43.75 -19.70 220.97 8474.50

800 -45.97 -23.93 221.37 8563.56

850 -47.17 -25.71 226.05 8607.21

900 -45.16 -23.11 223.92 8548.35

950 -44.92 -24.82 226.83 8520.79

1000 -43.84 -22.77 225.29 8476.82

mean value -42.30 -24.32 226.08 8499.47

Table A.3: Input data for mechanical loads.
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B Code in Matlab for numerical approximation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear; %Bending part

close all;

pho=7700;da=0.062;di=0.048;

Ld=0.08;lbr=3.595;E=212000*10ˆ6;

N=130; %Discretization

I=pi*(daˆ4-diˆ4)/64;

mseg=pho*pi*(daˆ2-diˆ2)*lbr/4/N;

lseg=lbr/N;

summe=0;

for i=1:N

summe=summe+iˆ2;

end

Kbseg=3*E*I/lbr/Nˆ2*summe;

Kd li=0; %Input from experiments

Kd=1.58*10ˆ10;

Kd re=0;

Ksb1=1.78*10ˆ7;

Ksb2=2.95*10ˆ7;

Kbk=1.18*10ˆ7;

alpha=102; %Initiation of unknown material damping

beta=0.2;

M1 = 1:1; %Mass matrix of discrete system

V1 = repmat(M1', 1, N)';

M2 = V1(:);

M=mseg*diag(M2);

K1=1:1; %Stiffness matrix of discrete system

V2= repmat(K1', 1, N-2)';

K2=V2(:);

K3=1:1;

V3= repmat(K3', 1, N-2)';

K4=V3(:);

K5=-4:-4;
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V4= [repmat(K5', 1, N-2) -2];

K6=V4(:);

K7=-4:-4;

V5= [repmat(K7', 1, N-2) -2];

K8=V5(:);

K9=6:6;

V6= [repmat(K9', 1, N-2) 5 1];

K10=V6(:);

K11=0:0;

V7= [repmat(K11', 1, N-50) Kd li Kd...

Kd Kd Kd Kd re repmat(K11', 1, 44)]; %Arranging position of Lanchester damper

K12=V7(:);

K13=0:0;

V8= [repmat(K13', 1, N-40) Ksb1 repmat(K13', 1, 10)...

Ksb2 repmat(K13', 1, 28)]; %Arranging position of stuffing box

K14=V8(:);

K15=0:0;

V9= [repmat(K15', 1, N-1) Kbk]; %Workpiece

K16=V9(:);

K=Kbseg/(lsegˆ2)*(diag(K2,2)+diag(K4,-2)...

+diag(K6,1)+diag(K8,-1)+diag(K10))...

+diag(K12)+diag(K14)+diag(K16);

C=alpha*M+beta*K; %Damping matrix

A = [zeros(size(M)), eye(size(M,1)); -inv(M)*K, -inv(M)*C];

e = eig(A);

abse = abs(imag(e));

fcomp=zeros(N,1);

for i=1:N

fcomp(i,1)=abse(2*i-1)/2/pi;

end

B = sort(fcomp);

fmessen=[100,110,200,280,350]; %Experimental input of frequency

SSE=0;

for j=1:5

SSE=SSE+(B(j,1)-fmessen(1,j))ˆ2;

end
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h=SSE;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear; %Torsional part

close all;

pho=7700;da=0.062;di=0.048;lbr=3.595;E=212000*10ˆ6;miu=0.27;

G=E/2/(1+miu);

N=60;

Iseg=pho*pi*(daˆ4-diˆ4)*lbr/32/N;

Ktseg=G*pi*(daˆ4-diˆ4)*N/32/lbr;

M1 = 1:1;

V1 = repmat(M1', 1, N)';

M2 = V1(:);

M=Iseg*diag(M2); %Mass matrix of discrete system

K1=-1:-1;

V2= repmat(K1', 1, N-1)';

K2=V2(:);

K3=-1:-1;

V3= repmat(K3', 1, N-1)';

K4=V3(:);

K5=2:2;

V4= [repmat(K5', 1, N-1) 1];

K6=V4(:);

K=Ktseg*(diag(K2,1)+diag( K4,-1)+diag(K6)); %Stiffness matrix of discrete system

alpha=102; %Result from bending part

beta=0;

Csb1=0; %Initiation of unknown factors

Csb2=1.11;

C1=0:0;

V5= [repmat(C1', 1, N-40) Csb1 repmat(C1', 1, 10)...

Csb2 repmat(C1', 1, 28)]; %Arranging position of stuffing box

C2=V5(:);

C=alpha*M+beta*K+diag(C2); %Damping matrix
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A = [zeros(size(M)), eye(size(M,1)); -inv(M)*K, -inv(M)*C];

e = eig(A);

abse = abs(imag(e));

fcomp=zeros(N,1);

for i=1:N

fcomp(i,1)=abse(2*i-1)/2/pi;

end

B = sort(fcomp);

fmessen=[100,110,200]; %Experimental input of frequency

SSE=0;

for j=1:3

SSE=SSE+(B(j,1)-fmessen(1,j))ˆ2;

end

h=SSE;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C Plots of eigenmodes for 700 and 1000 mm drilling

depths

(a) Bending eigenmode 1 for 700 mm. (b) Bending eigenmode 1 for 1000 mm.

Figure C.1: Bending eigenmode 1 for 700 and 1000 mm with fixed Lanchester damper

(a) Bending eigenmode 2 for 700 mm. (b) Bending eigenmode 2 for 1000 mm.

Figure C.2: Bending eigenmode 2 for 700 and 1000 mm with fixed Lanchester damper
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(a) Bending eigenmode 3 for 700 mm. (b) Bending eigenmode 3 for 1000 mm.

Figure C.3: Bending eigenmode 3 for 700 and 1000 mm with fixed Lanchester damper

(a) Bending eigenmode 4 for 700 mm. (b) Bending eigenmode 4 for 1000 mm.

Figure C.4: Bending eigenmode 4 for 700 and 1000 mm with fixed Lanchester damper
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(a) Bending eigenmode 5 for 700 mm. (b) Bending eigenmode 5 for 1000 mm.

Figure C.5: Bending eigenmode 5 for 700 and 1000 mm with fixed Lanchester damper

(a) Bending eigenmode 1 for 700 mm. (b) Bending eigenmode 1 for 1000 mm.

Figure C.6: Bending eigenmode 1 for 700 and 1000 mm with moving Lanchester damper
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(a) Bending eigenmode 2 for 700 mm. (b) Bending eigenmode 2 for 1000 mm.

Figure C.7: Bending eigenmode 2 for 700 and 1000 mm with moving Lanchester damper

(a) Bending eigenmode 3 for 700 mm. (b) Bending eigenmode 3 for 1000 mm.

Figure C.8: Bending eigenmode 3 for 700 and 1000 mm with moving Lanchester damper
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(a) Bending eigenmode 4 for 700 mm. (b) Bending eigenmode 4 for 1000 mm.

Figure C.9: Bending eigenmode 4 for 700 and 1000 mm with moving Lanchester damper

(a) Bending eigenmode 5 for 700 mm. (b) Bending eigenmode 5 for 1000 mm.

Figure C.10: Bending eigenmode 5 for 700 and 1000 mm with moving Lanchester damper
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(a) Torsional eigenmode 1 for 700 mm. (b) Torsional eigenmode 1 for 1000 mm.

Figure C.11: Torsional eigenmode 1 for 700 and 1000 mm with moving Lanchester damper

(a) Torsional eigenmode 2 for 700 mm. (b) Torsional eigenmode 2 for 1000 mm.

Figure C.12: Torsional eigenmode 2 for 700 and 1000 mm with moving Lanchester damper
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(a) Torsional eigenmode 3 for 700 mm. (b) Torsional eigenmode 3 for 1000 mm.

Figure C.13: Torsional eigenmode 3 for 700 and 1000 mm with moving Lanchester damper
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